

Lecture Notes in Computer Science 6194
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Cosimo Laneve Jianwen Su (Eds.)

Web Services
and Formal Methods

6th International Workshop, WS-FM 2009
Bologna, Italy, September 4-5, 2009
Revised Selected Papers

13

Volume Editors

Cosimo Laneve
Università di Bologna, Dipartimento de Scienze dell’Informazione
Mura Anteo Zamboni 7, 40127 Bologna, Italia
E-mail: laneve@cs.unibo.it

Jianwen Su
University of California, Department of Computer Science
Santa Barbara, CA 93106-5110, USA
E-mail: su@cs.ucsb.edu

Library of Congress Control Number: 2010930913

CR Subject Classification (1998): H.4, H.3.5, C.2, H.3, D.2, H.5

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-642-14457-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-14457-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

This volume contains the papers presented at WS-FM 2009: The 6th Interna-
tional Workshop on Web Services and Formal Methods held during September
4–5, 2009 in Bologna, Italy.

There were 18 submissions by authors from 12 countries. Each submission
was reviewed by at least 3, and on the average 3.9, Program Committee mem-
bers. The committee decided to accept 10 papers. Most of the selected papers
are reports on work in progress on problems related to formal aspects of Web
services. This workshop also features three invited talks by Mariangiola Dezani
(Sessions and Session Types: An Overview), Robin Milner (Processes, and Cat-
egories of Bigraphs) and Maurizio Lenzerini. Dezani’s talk is included in this
volume.

We thank all authors who submitted papers to this workshop, and the mem-
bers of the Program Committee for their work in the review process. We are also
grateful to the CONCUR 2009 organizers who take care of many organizational
details for the workshop and, in particular, to Mario Bravetti and Gianluigi Za-
vattaro. We also thank EasyChair that helped us in the management of every
step of the workshop.

April 2010 Cosimo Laneve
Jianwen Su

Organization

Program Chairs

Cosimo Laneve
(Program Co-Chair) Università di Bologna, Italy

Jianwen Su
(Program Co-Chair) University of Califorina at Santa Barbara, USA

Program Committee

Wil van der Aalst Eindhoven University of Technology,
The Netherlands

Albert Benveniste IRISA/INRIA, France
Karthikeyan Bhargavan Microsoft Research Cambridge, UK
Roberto Bruni Università di Pisa, Italy
Diego Calvanese Free University of Bolzano, Italy
Alin Deutsch University of California San Diego, USA
Marlon Dumas University of Tartu, Estonia
José Luiz Fiadeiro University of Leicester, UK
Xiang Fu Georgia Southwestern State University, USA
Philippa Gardner Imperial College, UK
Kohei Honda Queen Mary, University of London, UK
Nickolas Kavantzas Oracle Co., USA
Zongyan Qiu Peking University, China
Vasco T. Vasconcelos University of Lisbon, Portugal
Karsten Wolf University of Rostock, Germany

External Reviewers

Alberto Lluch Lafuente
Fabio Patrizi
Giuseppe De Giacomo
Ivan Lanese
Kathrin Kaschner
Luca Padovani
Lucian Wischik
Luis Cruz Filipe

Manuel Mazzara
Martin Berger
Marzia Buscemi
Niels Lohmann
Olivia Oanea
Simon Gay
Victor Vianu

Table of Contents

Sessions and Session Types: An Overview (Invited Talk) 1
Mariangiola Dezani-Ciancaglini and Ugo de’Liguoro

Choreography Rehearsal . 29
Chiara Bodei and Gian Luigi Ferrari

A Graph Syntax for Processes and Services . 46
Roberto Bruni, Fabio Gadducci, and Alberto Lluch Lafuente

A Formalisation of Adaptable Pervasive Flows . 61
Antonio Bucchiarone, Alberto Lluch Lafuente,
Annapaola Marconi, and Marco Pistore

Compliance Preorders for Web Services . 76
Michele Bugliesi, Damiano Macedonio, Luca Pino, and Sabina Rossi

A Formal Semantics for the WS-BPEL Recovery Framework: The
π-Calculus Way . 92

Nicola Dragoni and Manuel Mazzara

Realizability is Controllability . 110
Niels Lohmann and Karsten Wolf

Specification and Verification of Multi-user Data-Driven Web
Applications . 128

Monica Marcus

Automated Composition of Nondeterministic Stateful Services 147
Giuseppe De Giacomo and Fabio Patrizi

Towards Compensation Correctness in Interactive Systems 161
Cátia Vaz and Carla Ferreira

Small Specifications for Tree Update . 178
Philippa Gardner and Mark Wheelhouse

Author Index . 197

Sessions and Session Types: An Overview

Mariangiola Dezani-Ciancaglini and Ugo de’Liguoro

Dipartimento di Informatica, Università di Torino
corso Svizzera 185, 10149 Torino, Italy
{dezani,deliguoro}@di.unito.it

Abstract. We illustrate the concepts of sessions and session types as
they have been developed in the setting of the π-calculus. Motivated
by the goal of obtaining a formalisation closer to existing standards and
aiming at their enhancement and strengthening, several extensions of the
original core system have been proposed, which we survey together with
the embodying of sessions into functional and object-oriented languages,
as well as some implementations.

Keywords: Process calculi, Type Systems, Service Oriented Computing.

1 Introduction

The rapid growth of web technologies and of service oriented programming is
promoting a fruitful interaction between research communities and standards or-
ganizations, with the aim of designing languages and systems for communication
centred computations based on a sound theoretical footing.

Session types are one of the formalisms that have been proposed to struc-
ture interaction and reason over communicating processes and their behaviour.
They appeared in [THK94] and subsequently in [HVK98], where the issue of
formalising in a type system the concept of session was framed in the (polyadic)
π-calculus with types. The basic idea is to introduce a new form of polymor-
phism which allows the typing of channel names by structured sequences of
types, abstractly representing the trace of the usage of the channels.

The apparently weak constraint constituted by typing channels with session
types, while disregarding the interleaved usage of the channels themselves within
the process term, is however sufficient to detect subtle errors in the implemen-
tation of communication protocols. In fact it reveals to be the right setting
where concepts developed for the π-calculus or in general for process algebras
can be combined: we think of error freeness checked via typability, of internal
mobility which nicely captures the idea of private conversations, of linearity and
type duality which enforce the mirroring of the channel usage into its type, and
of channel transmission, at the very basis of the π-calculus, to model service
delegation.

C. Laneve and J. Su (Eds.): WS-FM 2009, LNCS 6194, pp. 1–28, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 M. Dezani-Ciancaglini and U. de’Liguoro

Since then a substantial body of research has been carried out: to better
understand the potentiality of the proposed calculi, as it is the case of the intro-
duction of subtyping polymorphism for session types in [GH05]; to strengthen
the expressive power of session type systems with respect to relevant compu-
tational properties like progress and deadlock-freedom in [DCdLY08], building
over ideas of [Kob06]; to widen the scenarios which can be modelled in the cal-
culus, stepping to multiparty sessions instead of just dyadic ones [HYC08], or to
detect realizable choreographies via a system of global session types in [CHY07];
to propagate the session type technology to existing programming languages as
in [VGR06] for the functional paradigm or in [CCDC+09] for the object-oriented
one, providing implementations and applications.

Session types are by no means the only proposal for a theoretical foundation
of communication centred programming which has been based on process al-
gebras. Service calculi as well as protocol descriptions called “contracts” have
been devised (for which see the references in Section 6) and in some cases the
relations with session types have been investigated, although much remains to
be done. The comparisons of the superficially different formalisms enlightening
common underlying concepts will hopefully improve the language design and the
programming practice for communication based computing.

In the present paper we will survey all these aspects mainly informally, by
means of examples or just providing pointers to the literature. We begin in Sec-
tion 2 with session types in their global versus local formulation, though this
is a recent development: this is where the basic concepts and formalisms are
presented. Section 3 overviews the numerous extensions for the original system
which have been proposed to gain expressivity and to catch stronger computa-
tional properties. Section 4 is devoted to the embedding of sessions and their
typings into the functional and object-oriented programming paradigms. In Sec-
tion 5 we report on implementations of sessions and session types which use
mainstream programming languages. Finally in Section 6, we quickly review for-
malisms and calculi which appear to be close to session type systems and to
their goals.

2 Basic Concepts and Systems

In networking a session is a logic unit of information exchange between two or
more communicating agents. The essential concern of a session is to specify the
topic of conversation as well as the sequence and direction of the communicated
messages. This has been formalized as a type system for a dialect of Milner’s
π-calculus in a series of papers by Honda and others [THK94, HVK98, YV07],
and recently extended to express ideas from W3C-CDL (http://www.w3.org/
TR/ws-cdl-10/), a language for choreography. To look at sessions and session
types in their latest incarnation, we follow [CHY07, HYC08], where sessions are
described at different levels. At the global level they are abstract specifications

http://www.w3.org/TR/ws-cdl-10/
http://www.w3.org/TR/ws-cdl-10/

Sessions and Session Types: An Overview 3

User ATM

identifier

success

deposit

amount

balance

link

User ATM

identifier

success

withdraw

amount

dispense

link

Fig. 1. UML sequence diagrams of some User-ATM interactions

of globally available services (called interactions in [CHY07]), whose types are
global session types, or simply global types. At the local level they are protocols
described in the participant perspective: the local session types or just session
types, which can be assigned to end-point processes, the actual participants of
the interaction. These two levels are related to each other: the global processes
(that can be thought of as choreographies) and the global types should project
to the local ones, where end-points play the role of the actual implementations
of the specified system.

To illustrate these concepts and their formal representation, let us consider the
following protocol which describes a simplified interaction between a customer
(User) and an automated teller machine (ATM)1:

– First the User communicates her/his identifier to the ATM;
– The ATM answers with either success or failure.
• In the first case the User can ask either for doing a deposit or a withdraw.
∗ For a deposit the User communicates an amount, and waits for a

balance.
∗ For a withdraw first the User communicates an amount and then the

ATM answers with either dispense or overdraft.
• If the answer is failure, then the interaction terminates.

Two possible interactions are described in the UML sequence diagrams in Fig-
ure 1. Note that identifier, amount and balance are row data and have been
represented by dashed arrows, while success, failure, deposit, withdraw, dispense
and overdraft are labels used to choose between different options, shown in the
diagrams by solid arrows.

1 The example of the interaction among User, ATM and Bank comes from [HVK98],
and it has been used by several authors. We adapt this example also to illustrate
the subsequent developments and variations of the original system.

4 M. Dezani-Ciancaglini and U. de’Liguoro

Following [CHY07]2 a global description of this interaction is as follows:

User −→ ATM : identifier.
ATM −→ User :
{ success : User −→ ATM :

{ deposit : User −→ ATM : amount.
ATM −→ User : balance.
end

� withdraw : User −→ ATM : amont.
ATM −→ User :
{ dispense : end
� overdraft : end
}

}
� failure : end
}

(1)

The arrows User −→ ATM and ATM −→ User represent the direction of the
message, which in the first line is simply an identifier. The alternatives between
the possible answers success or failure by the ATM (and similarly in the subse-
quent lines, where branching actions are described) are grouped by curly brackets
and separated by �. In the last case the protocol terminates, while in the first
one it goes on with nested choices, by choosing among deposit and withdraw. In
the first case the User is expected to send the amount and to wait for the balance
from the ATM. In the case of withdraw instead, after sending the amount the
User will receive either a dispense or an overdraft message from the ATM.

The global type of the current interaction can be simply obtained from the
global description replacing data by their types:

User −→ ATM : String.
ATM −→ User :
{ success : User −→ ATM :

{ deposit : User −→ ATM : Real.
ATM −→ User : Real.
end

� withdraw : User −→ ATM : Real.
ATM −→ User :
{dispense : end
� overdraft : end
}

}
� failure : end
}

(2)

2 In [CHY07, HYC08] global descriptions of interaction are more informative than
ours, since they also specify the initiation and the channel names on which data and
choice labels are communicated.

Sessions and Session Types: An Overview 5

Now let us look at the User view of this interaction, which can be described
by the session type:

! String. &{ success : ⊕{ deposit : ! Real. ? Real. end
� withdraw : ! Real.

&{ dispense : end
� overdraft : end
}

}
� failure : end
}

(3)

With respect to the global type (2), the local view of User is obtained by removing
the arrows, being the source and the target of the messages determined, and by
using ! or ? when the User is the sender or the receiver of a message, respectively;
then by writing ⊕ when the User selects a choice and & when she/he offers a
branching of choices.

Similarly we get the type for the ATM view; however, being this symmetric
w.r.t. the User’s view, the same result can be obtained form (3) by interchanging
! with ? and ⊕ with &:

? String. ⊕ { success : &{ deposit : ? Real. ! Real. end
� withdraw : ? Real.

⊕{ dispense : end
� overdraft : end
}

}
� failure : end
}

(4)

The types (3) and (4) show a typical duality of session types, which is at the
basis of communication safety and session fidelity properties of the processes
typable in the session type systems. Communication safety is the extension to
a sequence of communications of the standard correctness property of simple
types for (polyadic) π-calculus (see [SW01] Chap. 6), namely that only data of
the expected type are exchanged. Session fidelity is instead a typical feature of
session type systems, where special names, called session channels, may carry
messages of different types but in a specific sequence. To illustrate the point let
us see how a process implementing the User agent might look:

ā(k). k ! identifier.
k &{ success : if · · · then k ⊕ deposit : k ! amount. k ? (x). 0

else k ⊕ withdraw : k ! amount.
k &{ dispense : · · ·

� overdraft : · · ·
}

failure : 0
}

(5)

where · · · represent local computations.

6 M. Dezani-Ciancaglini and U. de’Liguoro

On the other hand a process modelling the ATM could be:

a(h). h ? (x).
if · · · then h ⊕ success : h&{ deposit : h ? (y). · · · h ! balance. 0

� withdraw : h ? (z).
if · · · then h ⊕ dispense : · · ·

else h ⊕ overdraft : · · ·
}

else h ⊕ failure : 0

(6)

The name a is a session name (simply a name in [HVK98]) and the prefixes a(h)
and ā(k) are used for session initiation, named accept and receive in the same
work; the names k, h are bound names in the respective bodies representing
the session channels. As soon as the session begins, the session channels are
substituted by a new name κ, with a superscript polarity3 p ∈ {+,−}, marking
the two end points of the running session, as it is apparent from the rule for
session initiation:

(ā(k).P) | (a(h).Q) −→ (νκ)(P{κ+/k} | Q{κ−/h}).

The polarised channels κp
1, κ

q
2, . . . are the medium of all messages between the

participants of a session. In fact they are used to receive and send values:

(κp ! v.P) | (κp̄ ? (x).Q) −→ P | Q{v/x}

(where +̄ = − and −̄ = +), and to perform select/branching actions4:

(κp ⊕ �i : P) | (κp̄ &{�1 : Q1 � · · · � �n : Qn}) −→ P | Qi, (1 ≤ i ≤ n).

Communication safety and session fidelity (simply called “error freeness” in
[HVK98]) are induced by a typing discipline, assigning session types S, S′, . . . to
session channels, and the type [S] to a session name carrying a session channel
typable by S or by S. So typing judgements are of the shape5:

Γ � P � Δ

where Γ associates types to session names and variables, while Δ associates
session types to session channels. In the sequel we do not report rules for the
polarised channels (that are essentially the same), just for simplicity.

3 The use of polarities has been proposed in [GH05], and adapted to the original syntax
in [YV07].

4 W.r.t. [HVK98], we write κp ⊕ �i : P for κp � �i; P and κq &{�1 : Q1� · · ·��n : Qn}
for κq � {�1 : Q1 � · · · � �n : Qn}, just to keep closer process and the type syntax in
the present informal exposition.

5 The syntax of judgments and rules of the session type system is from [YV07] §3,
omitting the bases Θ, of use for process definitions that we disregard in this survey.

Sessions and Session Types: An Overview 7

The typing rules for session initiation assure that the channels bound by
session names have exactly the session types prescribed (writing S for the dual
of S):

Γ, a : [S] � P � Δ, k : S

Γ, a : [S] � a(k).P � Δ

Γ, a : [S] � P � Δ, k : S

Γ, a : [S] � ā(k).P � Δ

The assumption a : [S] declares that the session name a is able to open a session
whose session channel k has type S. The session type S is constructed along the
use of its subject k in the process P , i.e.:

Γ, x : T � P � Δ, k : S′

Γ � k ? (x).P � Δ, k :?T.S′

whose dual is derived by the rule:

Γ � P � Δ, k : S′′ Γ � v : T

Γ � k ! v.P � Δ, k :!T.S′′

Because of these rules, the type ?T.S′ in the conclusion of the first rule tells
that over the channel k there will be an input of a value of type T , and then
the conversation will continue according to S′; similarly the type !T.S′′ in the
conclusion of the second rule tells that the session over k begins with output of
a value of type T , and then it continues according to S′′. By this we have that
!T.S′′ = ?T.S′, provided that S′′ = S′.

Note that to reflect the usage of the session channel in its session type, an
almost linear discipline is imposed to the typings Δ. In particular the axiom
Γ � 0 � Δ (where 0 is the inactive process) requires that Δ associates only
the session type end (the type of the completed sessions) to channels. As a
consequence weakening of the typing Δ is not admissible but for typings of this
form.

We omit the rules for typing selection, branching and parallel composition,
which can be found for instance in [YV07].

The actual strength of the π-calculus w.r.t. CCS and similar process algebras
consists in the ability to send and receive names. We have seen above that
the formalism chosen for the endpoint calculus is essentially a dialect of the
π-calculus, extended with session initiation and selection/branching primitives.
We will discuss now how a restricted (and more structured) form of mobility
allows to express delegation in the scenario of sessions and session types.

Consider the more complex version of the User-ATM protocol in Figure 2,
which further includes the Bank. The point here is that, to complete its proto-
col, the ATM asks the Bank to deposit or to withdraw the required amount from
the proper bank account. This is accomplished by opening a new session between

8 M. Dezani-Ciancaglini and U. de’Liguoro

deposit

amount

balance

User ATM Bank

link on a

link on b

identifier

success

amount

balance

identifier

deposit

Fig. 2. UML sequence diagram of a User-ATM and Bank interaction

the ATM and the Bank, which is the agent that ultimately is expected to send
or to receive the amount determined by the User:

a(h). h ? (x).
if . . . then

h ⊕ success : b̄(k). k ! x. h&{ deposit : k ⊕ deposit :
h ? (y). k ! y. k ? (z). h ! z. 0

� withdraw : k ⊕ withdraw :
h ? (t). k ! t.
k&{ dispense : h ⊕ dispense : · · ·

� overdraft : h ⊕ overdraft : · · ·
}

}
else h ⊕ failure : 0

(7)

The service name b̄ is used to require a connection to the Bank, and uses the
session channel k. Its first use is to send to the Bank the identifier, received on
x from the User. Then the ATM plays just the role of a forwarder between the
User and the Bank and vice versa. A quite different approach, however, would
be to delegate (say just after authentication) all the ATM job to the Bank by:

a(h). h ? (x).
if · · · then h ⊕ success : b̄(k). k ! x. k ! h.0

else h ⊕ failure : 0
(8)

In the process (8) the session channel h, which is supposed to carry the con-
versation with the User, is passed along k to the Bank, that will continue the
interaction directly with the User. This is however transparent to the User, who
is unaware of the fact that the opposite endpoint is now held by some different
partner.

Sessions and Session Types: An Overview 9

Delegation is achieved by allowing higher-order sessions, i.e. by allowing to
send channels over channels6:

(κp ! κq
1.P) | (κp̄ ? (h).Q) −→ P | Q{κq

1/h}

How is this reflected in the type system? Is typing able to guarantee to the User
that either interaction with the non delegating ATM (7) or with the delegating
ATM (8) will always comply with the protocol formalized by the type? As a
matter of fact both these issues are addressed by suitably typing the channel
exchanges. The rule for the sending process is:

Γ � P � Δ, k : S1

Γ � k ! h. P � Δ, k : !S2.S1, h : S2

where h is a fresh name. Because of this the new channel h cannot occur in P ,
even if it is credited of the (arbitrarily complex) usage described in S2. This is
essential for session fidelity to hold: looking at the example (8), if the ATM could
save an occurrence of h that could be used after having been sent to the Bank,
then the conversation with the User would be ambiguously directed either to the
ATM or to the Bank, and the interaction might end up in some unexpected way.
For example the process

(κ+ ! κ+
1 .κ

+
1 ! true.0) | (κ− ? (h).h ! false.0) | (κ−1 ? (x).P)

reduces to
(κ+

1 ! true.0) | (κ+
1 ! false.0) | (κ−1 ? (x).P)

where the linearity of the channel κ+
1 is lost. The last process can non determin-

istically give either (κ+
1 ! false.0) | P{true/x} or (κ+

1 ! true.0) | P{false/x}, so no
communication protocol is respected.

On the other hand the receiving process will bind a session channel h:

Γ � Q � Δ, k : S1, h : S2

Γ � k ? (h).Q � Δ, k : ?S2.S1

It is indeed essential that the actual usage in Q of the channel h is controlled by
the type S2, which suffices to guarantee that the delegated session will continue
as expected by the partner. This implies that, while the type of k obviously
changes, the session type of the delegated session in (8) remains the same as in
the case of (7) without delegation.

By admitting recursive definitions of processes, also protocols of unbounded
sequences of actions can be expressed.
6 Observe that, since channel names can only be introduced by the initiation of a

session, where they occur within the scope of the restriction operator ν, the com-
municated names are always private, that is only “internal mobility” is permitted
(see [SW01], Chap. 5.7). However in [Bor98] it is shown that the internal π-calculus
has the same expressive power, up to barbed-bisimulation, as the asynchronous π-
calculus, which in turn is known to encode the full π-calculus: see [SW01], Chap. 5.5.

10 M. Dezani-Ciancaglini and U. de’Liguoro

We remark that while global types have straightforward projections into ses-
sion types, this fails on the process side. Although this is not the case of our
examples, the projection map sending global interactions into end-point pro-
cesses is quite complex. In fact it is a partial map which is defined only if the
given interaction satisfies connectedness, well-threadedness and coherence condi-
tions, as they are detected via a further refinement of the global typing system
(for more details see [CHY07]).

The interested reader wishing a more technical presentation of the basics of
session types might consult [Vas09a], where Vasconcelos presents a reconstruc-
tion of session types in a linear π-calculus with a restriction operator binding at
the same time two variables and establishing that they are the two end-points
of communications.

3 Extensions

In this section we discuss, mainly through schematic examples, some extensions
of sessions and session types that allow to increase their expressivity and conse-
quently to widen their applications.

3.1 Extensions of the Calculus

Correspondence Assertions. In the example (7) of the User-ATM-Bank sketched
in the previous section, a malicious ATM′ could send to the Bank an amount of
money different from that communicated by the User, and consequently altering
the balance obtained from the Bank:

ATM′ =

a(h). · · · b̄(k). · · ·
deposit : h ? (y). k ! y − 10. k ? (z). h ! z + 10.
· · ·

(9)

This change is transparent to the typing, since it does not modify the commu-
nication protocol. In order to cope with such kind of misbehaviour, in [BCG05]
Bonelli et al. incorporate correspondence assertions in the theory of session types.
In particular to detect the misbehaviour of ATM′ one is enabled to include two
correspondence assertions (which are tagged tuples of expressions) into the codes
of the User and of the Bank, intended to state that values of both the amount
and the balance are the same:

User′ = ā(h). · · · h ! amount. h ? (x). cBegin 〈amount, x〉. · · ·
Bank′ = b(k). · · · k ? (y). k ! balance. cEnd 〈y, balance〉. · · ·

Then the type system can discover the malicious behaviours of the ATM′ since in
the type checking of the process User′ |ATM′ |Bank′ the tuples 〈amount, x〉 and
〈y, balance〉, paired by the keywords cBegin and cEnd, do not match.

Sessions and Session Types: An Overview 11

In general type systems with session types and correspondence assertions can
be used to check:

– source of information,
– whether data is propagated as specified across multiple parties,
– if there are unspecified communications between parties, and
– if the data being exchanged have been modified by the code in some unex-

pected way.

Multiparty Sessions. In a multiparty session we can have any number of par-
ticipants. So a multiparty session forms a unit of structured interactions among
many participants which follow a prescribed scenario specified as a global type
signature. Multiparty sessions were first designed in [HYC08], but we follow
the syntax of [BCD+08], being closer to that one used here for dyadic sessions.
For example a global type describing the User-ATM-Bank interaction with three
participants is:

User −→ {ATM,Bank} : String.
ATM −→ {User,Bank} :
{ success : User −→ Bank :

{ deposit : User −→ Bank : Real.
Bank −→ User : Real.
end

� withdraw : User −→ Bank : Real.
Bank −→ {User,ATM} :
{ dispose : end
� overdraft : end
}

}
� failure : end
}

(10)

In this context the arrow does not just indicate the direction of a message:
User −→ {ATM,Bank} : String expresses that the User sends the same String to
the ATM and to the Bank by means of a unique action. Differently than in the
dyadic case, when projecting the global type:

User −→ {ATM,Bank} : String

we have to take into account the roles to which the single actions are projected,
giving the slightly more verbose session types:

! 〈{ATM,Bank}, String〉 ? 〈User, String〉 ? 〈User, String〉

for respectively the User, the ATM and the Bank.
On the process side the session initialization primitives declare the role of the

single participants (labelled by a natural number), but for one (distinguished by
the over-bar on the service name) which being the last one declares the overall

12 M. Dezani-Ciancaglini and U. de’Liguoro

number of participants. For example, writing the initial actions of each partner
in columns which are separated by the parallel composition operator we get for
the previous example:

a[1](k1). a[2](k2). ā[3](k3).
k1 ! 〈{2, 3}, id〉. k2 ? 〈1, x〉. k3 ? 〈1, y〉.

.

where each communication specifies either the set of the receivers or the sender.

Concurrent Constraints. Following the approach of [BM07, BM08] the paper
[CDC09] proposes a calculus which combines concurrent constraints, name pass-
ing and sessions. Public and private constraints specify the requirements of ses-
sion participants to open new interactions and to conduct them. More precisely
the primitives for session initiation allow the programmer to specify a set of
constraints whose satisfaction is necessary for starting the session interaction.
For example a service could offer different times and prices:

a{deliveryTime = 3 | price = 10}(k). . . .
a{deliveryTime = 5 | price = 7}(k). . . .

so that a rushed client ā{deliveryTime ≤ 4}(h). . . . will choose the first option; a
thrifty client ā{price ≤ 9}(h). . . . will take the second one; finally a too demand-
ing client ā{deliveryTime ≤ 4 | price ≤ 9}(h). . . . will refuse the connection at
all.

In this calculus we have:

– a fusion mechanism that explicitly represents, through the notion of con-
straint, relations involving private and public names,

– symmetric data communication both in input and in output, achieved via
the introduction of constraints between channel names.

A simple example showing how communication is realised by fusion - i.e. just by
creating a new constraint and putting it in parallel with the process continuations
- is:

κ+(amount).P | κ−(x).Q −→ P | Q | amount = x

The main technical problem is to preserve the linearity of session channel
usage in presence of delegation and constraints.

Lopez et al. [LPO10] encode a timed extension of multi-party sessions [HYC08]
into the timed process calculus with concurrent constraints of [OV08]. The timed
extension explicitly includes information on session duration, allows for declara-
tive preconditions within session initiations, and features a construct for session
abortion. Since the processes of [OV08] can be interpreted as linear tempo-
ral logic formulas, the given encoding allows to verify properties of structured
communications.

Sessions and Session Types: An Overview 13

Code Mobility. Mostrous and Yoshida propose in [MY07, MY09] a calculus of
sessions in which processes can be sent and received, i.e. a calculus of sessions
with higher-order processes. The advantage is to avoid many remote interactions.
For example the ATM could send a process to the Bank in order to directly
interact with the User. [MY09] discusses also how actions can be permuted in
order to increase efficiency.

The main challenge of this approach is the preservation of the linear use of
session channels while allowing instantiation of names into executable code.

Exceptions. Carbone et al. in [CHY08] propose a notion of exceptions for sessions
which they call interactional exceptions. These exceptions demand not only local
but also coordinated actions between session participants. The main features of
the proposed calculus typed by sessions with exceptions are:

– flexibility: exceptions are allowed at any point of a conversation;
– consistency: messages in normal and exception conversations are not mixed-

up;
– safety: communications inside sessions take place linearly and without com-

munication mismatch.

Resource Access Control through Delegation. Capecchi et al. in [CCDR09] enrich
the calculus of multiparty sessions with security levels of participants and data.
A suitable type system assures that each participant can only receive data of
security levels less than or equal to its own security level. For example in a well-
typed protocol involving a Customer, a Seller and a Bank, the “secret” credit card
number of the Customer is communicated to the Bank, but not to the Seller. This
is realised also by making delegation explicit in the typing of the delegated session
channel. Typing prevents any leak of information due to selection/branching too.

3.2 Extensions of the Typing

Subtyping. The idea of subtyping, coming from the typed λ-calculus, is that any
value of a certain type can be safely placed in a context expecting a value of some
more general type: this principle is called subsumption (for a handy and clear
explanation of the concepts of subtyping and subsumption see [Bru02], Chap. 5).
In the setting of the π-calculus, where only names have a type, the subsumption
rule takes a dual form (also called narrowing): if a type T ′ describes a more
general kind of data than T , written T ≤ T ′, then any name typable by T ′ in
the process P can safely be typed by T in the same process. This is sound with
respect to communication safety because for example, an ATM which accepts
a Real amount of money can safely communicate with a User who sends an Int
amount of money, which is formally expressed by postulating Int ≤ Real and by
deriving ?Int ≤ ?Real.

The concept of subtyping, originally conceived for input/output types (see
[SW01] Chap. 7, where the covariance/contravariance of input and output ac-
tions - respectively - is explained) has been extended to session types by Gay and

14 M. Dezani-Ciancaglini and U. de’Liguoro

Hole in [GH05]. An ATM which offers on a channel both deposit and withdraw
can safely communicate through that channel with any User willing just to do a
deposit action, which can be expressed by:

&{deposit : S1} ≤ &{deposit : S1,withdraw : S2}.

On the contrary a User who is willing to do a deposit through a certain chan-
nel will comply with any environment ready to interact over that channel with
someone either asking for a deposit or for a withdraw:

⊕{deposit : S1,withdraw : S2} ≤ ⊕{deposit : S1}.

To formalize this in the type system, let us consider the following rule7:

Γ � P � Δ, k : S′ S ≤ S′

Γ � P � Δ, k : S

Then if we type the ATM by k : &{deposit : S1,withdraw : S2} in the premise,
we know that it is offering both actions, so that in particular it will do with
just deposit, as stated in the conclusion. On the other hand if we know from the
premise that the User will do just a deposit, a fortiori she/he will be correctly
communicate with an ATM accepting either a deposit or a withdraw selection
action, which is spelled out in the conclusion.

Summarizing:

– input is covariant,
– output is contra-variant,
– branching is covariant in the number of branches,
– selection is contra-variant in the number of branches,
– both branching and selection are covariant in the continuation types.

This has the remarkable consequence that, if S, S′ are session types and S ≤ S′,
then S′ ≤ S.

Subtyping enhances expressivity of typing with session types since it allows:

– refinement of participants without invalidating type-correctness of the overall
system,

– participants to follow different protocols which are nevertheless compatible
according to the subtype relation.

Bounded Polymorphism. A more precise and flexible specification of protocols
is obtained in [Gay07] by introducing bounded polymorphism. In particular
a choice of type in one message may affect the types of future messages. For
example

&{ opp (Int ≤ X ≤ Complex) : ? X. ! X. end
. . .
}

7 This rule is only admissible in the system studied in [GH05], where a more syntax
directed presentation is indeed preferred.

Sessions and Session Types: An Overview 15

is the type of a calculator which offers an opposite operator working on all
numbers whose type is between Int and Complex, returning a number of the
same type. A User typed by

⊕{ opp : ! Real. ? Real. end}

could safely engage a session with such a calculator.

Progress. A very useful property is that once a session is started, the participants
will be able to complete all the necessary communications without getting in a
deadlock. This property - usually called progress - has been studied for several
calculi; in particular Kobayashi has developed very refined techniques for the
π-calculus [Kob98, Kob02, Kob05, Kob07].

Session types already assure deadlock-freeness inside single sessions. If distinct
sessions do not overlap, then after a session initiation the process is never blocked.
This is no longer true if a process contains two or more interleaved sessions: in
fact if a session includes another one, then the outermost session might start and
wait forever if the innermost session does not find a partner. For example when
running the process (7), the session between the User and the ATM opened by a is
blocked if there is no Bank hearing on b. In an open scenario we can assume that it
is always possible to find the required partners, and therefore we do not consider
this kind of cases as deadlocks. There are however situations which cannot be
solved by adding suitable partners. A very simple kind of deadlock occurs when
two sessions are wrongly interleaved. Consider for example the following typable
process:

a (k). ā (k′).
b (h). b̄ (h′).
k ! 2. h′ ! true.
h ? (x) k′ ? (y)

.

After the two session initiations we get:

κ+
a ! 2. κ+

b ! true.
κ−b ? (x) κ−a ? (y)

.

which is blocked as soon as input and output actions are synchronous. Allowing
asynchronous output does not avoid this kind of blocks in general, as it is shown
for instance by:

a (k). ā (k′).
b (h). b̄ (h′).
h ? (x). k′ ? (y)
k ! 2 h′ ! true
.

More interesting examples of deadlocks involve delegation. Type systems assur-
ing progress are discussed in [DCdLY08] for dyadic sessions and in [BCD+08]
for multiparty sessions. The key ideas of these works are:

16 M. Dezani-Ciancaglini and U. de’Liguoro

– to take advantage of nested sessions,
– to infer the order of channel usage for interleaved sessions (following [Kob05]),
– to forbid “self-delegation” (opposite polarities of the same session channel

cannot be put in sequence).

Action Permutation. As it is well known, in asynchronous π-calculus inputs are
blocking while outputs are not (see [SW01], Chap. 5). This asymmetry is the
starting point of the work in [HMY09], where Honda et al. propose to execute
outputs before inputs when possible for increasing efficiency. This change of order
is realized by means of an appropriate subtyping theory, which allows automatic
action permutation for multiparty sessions while assuring communication safety
and session fidelity. Notably action permutation is tricky in presence of recursion
and selection/branching.

3.3 Other Extensions

Semantic Subtyping. Semantic subtyping, as proposed in [CF05], is based on the
interpretation of types as the sets of their inhabitants, so that subtyping turns
out to be set inclusion. Type constructors are indeed interpretable as plain set
theoretic operations, so that boolean combinators have their natural meaning.

In [CDCGP09] Castagna et al. propose a theory of session types in which
the choices are done on the basis of the type of the messages exchanged. The
standard choices through labels are then particular cases in which each label is
typed with a singleton type.

An example is the process:

&{ k ? (x : Int). k ! − x. 0
k ? (y : Bool). k ! ¬y. 0
}

which, when receiving either an Int or a Bool value, replies differently: in case of
an Int number it answers with its opposite; on receiving a Bool value it answers
with its negation. The type of the channel k in this process is therefore:

&{ ?Int. !Int. end
?Bool. !Bool. end
}

Consider now the slightly different type:

&{ ?Real. !Nat. end
?Int. !Bool. end
}

(11)

It can be assigned to a channel which, when receiving a Real number replies with
a Nat number, and when getting an Int number answers with a Bool value. Being
Int a (semantic) subtype of Real, when the channel receives an Int it can react

Sessions and Session Types: An Overview 17

either by sending a value of type Bool, or, by viewing the integer as a Real, a
value of type Nat. A session type which is dual of this type can naturally use
boolean operators within type syntax:

⊕{ !(Real ∧ ¬Int). ?Nat. end
!Int. ?(Nat ∨ Bool). end
}

This type says that if the channel sends a Real number which is not an Int
number, it will receive a Nat number; but if it sends an Int number, then it will
receive either a Nat number or a Bool value. In this way one can obtain a finer
description of behaviours within the formalism of session types. Note that also
the types !(Real ∧ ¬Int). ?Nat. end and !Int. ?(Nat ∨ Bool). end are dual of (11):
namely duality is not involutive in this theory.

In [CDCGP09] also duality is defined semantically: two session types are dual
if no conversation on a private channel shared by two processes which follow the
prescriptions of these two types ever gets stuck.

In this scenario, where types play a computational role, session types can be
interpreted as the sets of their dual types and the semantics of boolean combi-
nators is set theoretical. This interpretation of session types gives a semantic
subtyping relation, since it is safe to replace a channel with another one when
every dual of the replacing channel is also a dual of the replaced one.

Hennessy-Milner Logic. Berger et al. in [BYH08] present an extension of
Hennessy-Milner Logic suitable to capture the behaviours of session participants.
The basic concept of this logic is the hypothetical parallel composition formula
A � B, which means: if a process satisfying A is put in parallel with a process
that satisfies this formula, then the resulting process will satisfy B. For example
the process

P ≡ a(k). k ⊕ opp : k ! 2. k ? (x). h ! x.0

offers a session initiation on the service name a binding the session channel k,
then along k it selects the label opp, sends the integer 2, and receives an input
which is bound to the variable x. Eventually it sends over the channel h the value
of the variable x. LetQ be a process which offers a session initiation on the service
name ā binding the session channel k′; then using the session channel k′ it offers
a branch labelled opp, receives an input which is bound to the variable y and
then sends the opposite of y. It is clear that the process obtained by putting
P and Q in parallel may reduce to a process which sends −2 on the channel
h. This is expressed in the logic language by saying that P has the property
A� h ! − 2 true, where

A = ∀yInt.ā(k′). k′ & opp : k′ ? (y). k′ ! − y. true.

4 Session Embedding in Programming Paradigms

In the previous sections sessions have been considered in the context of the π-
calculus. In this section instead we will briefly overview how sessions can be

18 M. Dezani-Ciancaglini and U. de’Liguoro

incorporated into two mainstream programming paradigms, i.e. the functional
and the object-oriented ones. In this way one can achieve powerful type systems
which are suited to programming practice, while retaining the benefit of a sound
theoretical foundation.

4.1 Functional Paradigm

Vasconcelos et al. [VGR06, Vas09b] transfer the concept of session and session
type to a multi-threaded functional language with side-effecting input/output
operations. This shows that static checking of session types can be fruitfully
added to a language such as Concurrent ML [Rep99] or Concurrent Haskell
[JGF96]. For example a functional version of the process (6) would be:

a h = let x = receive h in
if · · · then select success on h case h of { deposit ⇒ · · ·

withdraw⇒ · · · }
else select failure on h

Characteristics of this embedding are:

– the operations on channels are independent terms rather than prefixes of
processes,

– the communication is asynchronous,
– typing is enhanced by subtyping, which also allows anticipation of outputs

with respect to inputs.

In the recent paper [GV10] Gay and Vasconcelos simplify and extend previous
work by giving an operational semantics with buffered channels and by proving
that the session type of a channel gives an upper bound on the necessary size of
the buffer. A novel form of subtyping between standard and linear function types
reduces the burden of linear typing on the programmer, by allowing standard
function types to be inferred by default and converted to linear types if necessary.

4.2 Object-Oriented Paradigm

Moose. Moose (Multi-threaded Object-Oriented calculus with Sessions) is a
multi-threaded object-oriented calculus augmented with session primitives, which
supports session names as parameters of methods, spawning, iterative sessions
and delegation (see [DCDMY09] and the references there). Progress is enhanced
by spawning a new thread when a session channel is received: in this way self-
delegation never happens. Choice is made on the basis of the class of the object
being sent/received instead of using labels. Through bounded polymorphism the
class of a received object may affect the class of the objects which will be sent.

SAM. The design of the SAM (Sessions Amalgamated with Methods) calculus
originates from the comparison between sessions and methods in [CCDC+09].
From this comparison a new notion of session is derived, which subsumes the

Sessions and Session Types: An Overview 19

notion of method. In SAM classes have fields and sessions, session bodies are se-
lected on the ground of object classes, and channels are created only at run time
when sessions are called. Invocation takes place on an object, say a customer
asking to withdraw money from a particular ATM machine, and execution of
the corresponding session takes place immediately and concurrently with the re-
questing thread. The body is defined in the class of the receiving object, namely
in the class implementing the ATM of our example, and any number of commu-
nications interleaved with computations is possible.

For example the ATM class might contain the declaration of a session:

void ?String . . . atmserver
{String x := receive;
. . .
}

where void is the return type of the session, ?String . . . is the session type shown
in example (4), atmserver is the session name and the code between brackets is
the session body - in this case a translation of the process (6). A User can then
call this session on an ATM object by:

new ATM . atmserver {send (identifier);
. . .
}

where the code between brackets is in this case a translation of the process (5).
Notably there are no channels in the source code, and only polarised channels
will be generated at run time.

Delegation is limited since it does not support an initial and a final dialogue
before and after the delegation itself. Expressiveness of typing in SAM has been
enhanced with union types [BCDC+08] and generics [CCDC+09].

Session Object Calculus. Mostrous and Yoshida propose in [MY08] an extension
of Abadi and Cardelli imperative object calculus (see [AC96]) with sessions,
naturally integrating session based choices with method invocations. The main
features of this typed calculus are:

– objects can be spawned, updated and cloned,
– communication is asynchronous,
– subtyping enjoys the minimal subtyping property.

Modular Session Types as Dynamic Interfaces. In the object-oriented calculus of
[VGR+09] the availability of methods depends on object states: object interfaces
are dynamic. Each class has a session type which provides a global specification of
the availability of methods at each state. The typing of a method specifies pre- and
post-conditions for its object states and static typing guarantees that methods
are only called when they are available. A key feature is that the state of an object
may depend on the result of a method whose return type is an enumeration.

20 M. Dezani-Ciancaglini and U. de’Liguoro

Inheritance is included; a subtyping relation on session types characterises the
relationship between method availability in a subclass and in its superclass.

Building on [VGR+09], Gay et al. show in [GVR+10] that a session can be
modularised by dividing it into distinct methods that can be called separately.
A key idea is to allow a channel to be stored in a field of an object. Several
methods can operate on the same channel, thus allowing to effectively encapsu-
late channels into objects, while retaining the usual object-oriented development
practice.

5 Implementations

Naturally implementations of sessions and session types require their embedding
in the used languages, so that it is not surprising that implementations have been
done using functional and object-oriented languages, even if to the time among
the works surveyed in the previous section just [GVR+10] (see the last paragraph
of Section 4.2) is implemented by Bica (see the last paragraph of Section 5.2).

On the contrary it is worthwhile to notice the interplay between the the-
ory sketched in Sections 2 and 3 and the actual implementations of sessions
and session types mentioned below. For example the Haskell implementation by
Sackman and Eisenbach (see Section 5.1) has first realised the action permuta-
tion studied then by Mostrous, Yoshida and Honda (see the last paragraph of
Section 3.2). Multiparty sessions were first implemented in Scribble (see Section
5.2) and then formalised by Honda, Yoshida, and Carbone (see Section 3.1).

5.1 Functional Languages

The first implementation of sessions and session types was done by Neubauer
and Thiemann [NT04] into Haskell. The core of this and of the following im-
plementations into Haskell is the definition of a session monad. Type classes
with functional dependencies model the progression of the current state of the
channel. Functions with polymorphic parameters model client and server side of
a communication with one specification.

Sackman and Eisenbach give in [SE08] an implementation of sessions as a
standard Haskell library. This implementation presents a monadic API to the
programmer. In particular the SMonad type class is a type indexed monad: it
allows to represent a computation from a state to another one which additionally
produces a value, where the two states can have different types. Since session
types are encoded into Haskell types, no preprocessor, external type checker or
modification to the Glasgow Haskell compiler are required.

At the address http://www.agusa.i.is.nagoya-u.ac.jp/person/sydney/
full-sessions.html one can find a tool providing session type inference in
Haskell using Haskell type-level programming.

Bhargavan et al. describe in [BCD+09] a compiler from high-level multiparty
session descriptions to custom cryptographic protocols coded as ML modules. In
the generated code each participant has strong security guarantees for all her/his

http://www.agusa.i.is.nagoya-u.ac.jp/person/sydney/full-sessions.html
http://www.agusa.i.is.nagoya-u.ac.jp/person/sydney/full-sessions.html

Sessions and Session Types: An Overview 21

messages against any adversary that may control both the network and some
participant to the session.

5.2 Object-Oriented Languages

The language Sing# [FAH+06] is a variant of C# which combines session types
with ownership types [CNP01], supports message-based communication via a
designed heap area (shared memory), and allows interfaces between OS-modules
to be described as message passing conversations.

SJ [HYH08] is an extension of Java with syntax for session types and struc-
tured communication operations. The main features of SJ are asynchronous mes-
sage passing, delegation, session subtyping, interleaving, class downloading, and
failure handling. The compilation-runtime framework of SJ maps session abstrac-
tion onto underlying transports, and guarantees communication safety through
static and dynamic session type checking. A User coded into SJ could be:

s.request(); s.send(identifier);
s.inbranch() {case success: if (· · ·){s.outbranch(deposit); . . .}

else {s.outbranch(withdraw); . . .}
}
{case failure: }

Scribble (http://sourceforge.net/projects/pi4scribble/) is a language
for describing global (choreography) and local (service end-point) behaviour.
Extensible tools are provided, both as stand alone applications and as Eclipse
plugins, to edit the language, to perform validation and to export specifications
to other formalisms.

Bica (http://gloss.di.fc.ul.pt/bica/) implements the type system of
[GVR+10]. This implementation comprises an extension to the Java 5 compiler
that checks conventional Java source code against session type specifications for
classes (included in Java annotations). The extension touches the type checker
only: if a program satisfies the more stringent type system of [GVR+10], then
code is generated as usual. Bica is implemented with Polyglot.

6 Related Concepts and Formalisms

The present section quickly surveys on formalisms which look to be closely re-
lated to sessions and session types, and it contains some pointers to the literature.

6.1 Generic Process Types

Igarashi’s and Kobayashi’s generic type system (GTS: see [IK04]) is a power-
ful framework from which one can obtain as instances a variety of type systems
for the π-calculus guaranteeing strong properties like deadlock and race-freedom.
Not surprisingly also systems of session types can be formalised into GTS [Kob07,
GGR08] although via non trivial translations. However, as observed by Gay et al.

http://sourceforge.net/projects/pi4scribble/
http://gloss.di.fc.ul.pt/bica/

22 M. Dezani-Ciancaglini and U. de’Liguoro

in [GGR08], this does not invalidate the usefulness of session types mainly
because:

1. session types are valuable for program design,
2. session types have been developed for calculi/languages different from π-

calculus,
3. proofs of type soundness for session types are fairly straightforward,
4. type checking algorithms for session types cannot be easily obtained via

translation, since GTS does not yield an algorithm automatically.

6.2 Contracts

Contracts are behavioural descriptions of Web services [MB03]. In [CGP09]
Castagna et al. formalise contracts by means of a sublanguage of CCS without τ
(see [DH87]), namely with both external and internal choice, but not including
the parallel operator. For example a contract for the ATM process (6) would be:

Login.(Success. (Deposit.Amount.Balance.0 +
Withdraw.Amount.(Dispense. · · · ⊕ Overdraft. · · ·))

⊕ Failure.0)

Names and co-names model the input and output actions, respectively; the ex-
ternal choice + is a selection by the ATM counterpart, while the internal choice
⊕ represents decisions by the ATM itself.

The main difference between contracts and session types is that contracts
record the overall behaviour of a process, while session types project this be-
haviour onto the private channels that a process uses.

A prominent feature of the theory of contracts is the subcontract relation: if
σ is a subcontract of τ , written σ � τ , then any client which is satisfied with
a service described by σ, will comply with a service described by τ , since the
latter possibly includes more capabilities than those described in σ.

In [LP08] Laneve and Padovani give two encodings, from contracts to session
types and from session types to contracts8. It is also shown that, if σ � τ , then
the translation of σ is a subtype of the translation of τ in the sense of [GH05].

As remarked in [BCdL10], however, when allowing session delegation, the
direct formalisation of the idea that a subcontract can be the description of
some “shorter interaction” (as it is in [CGP09]), leads to the collapse of the
subtyping relation; this can be avoided at the price of considering subtyping and
subcontract as different notions.

The distance between contracts and session types has been narrowed in [CP09]
by defining a theory of contracts with explicit channels, so that delegation be-
comes expressible.

Padovani in [Pad09] presents session types roughly speaking as projections of
contracts. The main contributions of this work are:
8 These encodings are however far more complex than what the last example seems

to suggest.

Sessions and Session Types: An Overview 23

– session types are generalised to processes similar to value-passing CCS,
– session types can be composed by a parallel composition operator (as con-

versation types, see Section 6.3),
– participants can use channels for communicating after delegating them.

A last remark is that there is a clear similarity between global types and
session types on one side and choreography and contracts (as defined in [BZ07])
on the other side. We think that such a relation should be further investigated
in order to gain a deeper view of both formalisms.

6.3 Conversation Calculus

The conversation calculus (see [CV09] and the references there) organizes be-
haviour around places of conversation, which slightly resemble Boxed Ambients
[BCC04]. The conversation types record the overall behaviour of processes and
assure progress, while accounting for dynamical join/leave of a possibly unan-
ticipated number of participants.

An example of [CV09] showing how the conversation calculus takes advantage
of localities is the following composition of two conversation contexts, named
Buyer and Seller :

Buyer � [new Seller · startBuy ⇐ buy!prod. price?(v)] |
Seller � [PriceDB | def startBuy ⇒ buy?(prod). askPrice↑!prod.

readVal↑?(v). price!v]

The code new Seller · startBuy ⇐ calls the service startBuy located at
Seller. This system reduces to

(ν c)(Buyer � [c � [buy!prod. price?(v)]] |
Seller � [PriceDB | c � [buy?(prod). askPrice↑!prod.

readVal↑?(v). price!v]])

where c is the fresh name of the new created conversation context. The code in
the Buyer side of c sends a product and receives a price, both in the current
conversation c. The code in the Seller side of c first receives a product in the
conversation c, then it consults the database PriceDB by means of the messages
superscripted by ↑ which are targeted to the parent conversation (Seller), and
finally it sends a price in the conversation c.

6.4 Calculi for Web Services

The work on this subject is documented by a large and rapidly growing body of
literature, which cannot be accounted for shortly in the present survey. There-
fore we just mention three calculi that look more closely related to sessions and
session types: the Service Centred Calculus (SCC) [BBC+06], the Calculus of

24 M. Dezani-Ciancaglini and U. de’Liguoro

Sessions and Pipelines (CaSPiS) [BBDNL08], and the Calculus for Orchestration
of Web Services (COWS) [LPT07]. Common features of these calculi are:

– a clear distinction between users and services,
– that services are permanent,
– that sessions can only be nested,
– the presence of operators for explicit closure of sessions,
– that values can be communicated from an inner session to an outer one

(pipeline).

For instance, the SCC process succ ⇒ (x)x + 1 models a service that, re-
ceived an integer, gives its successor. A client for this service will be written
succ {(y)(z) return z} ⇐ 5: after the invocation both x and y are bound to the
argument 5, the client waits for a value from the server and the received value
(in this case 6) is substituted for z and hence returned as the result of the service
invocation.

7 Conclusions

Session types allow the framing of newly emerged issues, in the world of com-
munication centred programming and web services, into the mainstream of type
theories and systems, familiar from the functional and object-oriented languages
theory and practice. As it is inherent to such approach, they are based on abstrac-
tions which just approximate the desired goal of detecting and certifying that
certain desirable properties are satisfied by given pieces of code or system speci-
fications. This has however the advantage of being a well-understood technique,
that can be implemented efficiently and, by the way, embodied into compilers or
software development tools assisting programmers and system designers. On the
other hand this should be contrasted with the modelling of processes into pro-
cess algebras, where powerful but unfeasible concepts of equivalence are used to
abstract from implementation details and to distil a precise notion of behaviour.

We think that, as it happens in other fields, it is a matter of balance between
expressivity and feasibility, which can be reached only via a deeper understanding
of the involved concepts and of their intrinsic complexity. This seems to be the
reason why session types look like processes, or why processes - possibly involving
few computational combinators - are often thought of as specifications, rather
than as concrete implementations. Because of these reasons we think that the
work of comparing session types and related systems with other process-based
formalisms is worthy and might be fruitful to step to a new generation of calculi
and reasoning tools apt to the emerging challenges of the world-wide computing.

Acknowledgments. We gratefully thank Giuseppe Castagna, Ilaria Castellani,
Vasco Vasconcelos, Simon Gay, and Luca Padovani for their comments and sug-
gestions on an early draft of the present paper.

Sessions and Session Types: An Overview 25

References

[AC96] Abadi, M., Cardelli, L.: A Theory of Objects. Springer, Heidelberg
(1996)

[BBC+06] Boreale, M., Bruni, R., Caires, L., De Nicola, R., Lanese, I., Loreti,
M., Martins, F., Montanari, U., Ravara, A., Sangiorgi, D., Vasconcelos,
V., Zavattaro, G.: SCC: a Service Centered Calculus. In: Bravetti, M.,
Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp.
38–57. Springer, Heidelberg (2006)

[BBDNL08] Boreale, M., Bruni, R., De Nicola, R., Loreti, M.: Sessions and
Pipelines for Structured Service Programming. In: Barthe, G., de Boer,
F.S. (eds.) FMOODS 2008. LNCS, vol. 5051, pp. 19–38. Springer, Hei-
delberg (2008)

[BCC04] Bugliesi, M., Castagna, G., Crafa, S.: Access Control for Mobile
Agents: The Calculus of Boxed Ambients. ACM Transactions on Pro-
gramming Languages and Systems 26(1), 57–124 (2004)

[BCD+08] Bettini, L., Coppo, M., D’Antoni, L., De Luca, M., Dezani-Ciancaglini,
M., Yoshida, N.: Global Progress in Dynamically Interleaved Multi-
party Sessions. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008.
LNCS, vol. 5201, pp. 418–433. Springer, Heidelberg (2008)

[BCD+09] Bhargavan, K., Corin, R., Deniélou, P.-M., Fournet, C., Leifer, J.J.:
Cryptographic Protocol Synthesis and Verification for Multiparty Ses-
sions. In: CSF 2009, pp. 124–140. IEEE Computer Society, Los Alami-
tos (2009)

[BCDC+08] Bettini, L., Capecchi, S., Dezani-Ciancaglini, M., Giachino, E., Ven-
neri, B.: Session and Union Types for Object Oriented Programming.
In: Degano, P., De Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs
and Models. LNCS, vol. 5065, pp. 659–680. Springer, Heidelberg (2008)

[BCdL10] Barbanera, F., Capecchi, S., de’Liguoro, U.: Typing Asymmetric
Client-Server Interaction. In: Sirjani, M. (ed.) FSEN 2009. LNCS,
vol. 5961, pp. 97–112. Springer, Heidelberg (2010)

[BCG05] Bonelli, E., Compagnoni, A., Gunter, E.: Correspondence Assertions
for Process Synchronization in Concurrent Communications. Journal
of Functional Programming 15(2), 219–248 (2005)

[BM07] Buscemi, M., Montanari, U.: CC-Pi: A Constraint-Based Language
for Specifying Service Level Agreements. In: De Nicola, R. (ed.) ESOP
2007. LNCS, vol. 4421, pp. 18–32. Springer, Heidelberg (2007)

[BM08] Buscemi, M., Montanari, U.: Open Bisimulation for the Concurrent
Constraint Pi-Calculus. In: Drossopoulou, S. (ed.) ESOP 2008. LNCS,
vol. 4960, pp. 254–268. Springer, Heidelberg (2008)

[Bor98] Boreale, M.: On the Expressiveness of Internal Mobility in Name-
Passing Calculi. Theoretical Computer Science 195(2), 205–226 (1998)

[Bru02] Bruce, K.: Foundations of Object-Oriented Languages: Types and Se-
mantics. MIT Press, Cambridge (2002)

[BYH08] Berger, M., Yoshida, N., Honda, K.: Completeness and Logical Full
Abstraction in Modal Logics for Typed Mobile Processes. In: Aceto,
L., Damgrard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir,
A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp.
99–111. Springer, Heidelberg (2008)

26 M. Dezani-Ciancaglini and U. de’Liguoro

[BZ07] Bravetti, M., Zavattaro, G.: Towards a Unifying Theory for Choreog-
raphy Conformance and Contract Compliance. In: Lumpe, M., Van-
derperren, W. (eds.) SC 2007. LNCS, vol. 4829, pp. 34–50. Springer,
Heidelberg (2007)

[CCDC+09] Capecchi, S., Coppo, M., Dezani-Ciancaglini, M., Drossopoulou, S.,
Giachino, E.: Amalgamating Sessions and Methods in Object Oriented
Languages with Generics. Theoretical Computer Science 410, 142–167
(2009)

[CCDR09] Capecchi, S., Castellani, I., Dezani, M., Rezk, T.: Session Types for
Access and Information Flow Control (2009),
http://www.di.unito.it/~dezani/ccdr.pdf

[CDC09] Coppo, M., Dezani-Ciancaglini, M.: Structured Communications with
Concurrent Constraints. In: Kaklamanis, C., Nielson, F. (eds.) TGC
2008. LNCS, vol. 5474, pp. 104–125. Springer, Heidelberg (2009)

[CDCGP09] Castagna, G., Dezani-Ciancaglini, M., Giachino, E., Padovani, L.:
Foundations of Session Types. In: PPDP 2009, pp. 219–230. ACM
Press, New York (2009)

[CF05] Castagna, G., Frisch, A.: A Gentle Introduction to Semantic Subtyp-
ing. In: PPDP 2005, pp. 198–208. ACM Press, New York (2005) (full
version); Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung,
M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 30–34. Springer, Heidel-
berg (2005) Joint ICALP-PPDP keynote talk.

[CGP09] Castagna, G., Gesbert, N., Padovani, L.: A Theory of Contracts for
Web Services. ACM Transactions on Programming Languages and Sys-
tems article n.19, 31(5), p. 51 (2009)

[CHY07] Carbone, M., Honda, K., Yoshida, N.: Structured Communication-
Centred Programming for Web Services. In: De Nicola, R. (ed.) ESOP
2007. LNCS, vol. 4421, pp. 2–17. Springer, Heidelberg (2007)

[CHY08] Carbone, M., Honda, K., Yoshida, N.: Structured Interactional Ex-
ceptions for Session Types. In: van Breugel, F., Chechik, M. (eds.)
CONCUR 2008. LNCS, vol. 5201, pp. 402–417. Springer, Heidelberg
(2008)

[CNP01] Clarke, D., Noble, J., Potter, J.: Simple Ownership Types for Object
Containment. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072,
pp. 53–76. Springer, Heidelberg (2001)

[CP09] Castagna, G., Padovani, L.: Contracts for Mobile Processes. In:
Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710,
pp. 211–228. Springer, Heidelberg (2009)

[CV09] Caires, L., Vieira, H.T.: Conversation Types. In: Castagna, G. (ed.)
ESOP 2009. LNCS, vol. 5502, pp. 285–300. Springer, Heidelberg (2009)

[DCdLY08] Dezani-Ciancaglini, M., de’ Liguoro, U., Yoshida, N.: On Progress for
Structured Communications. In: Barthe, G., Fournet, C. (eds.) TGC
2007 and FODO 2008. LNCS, vol. 4912, pp. 257–275. Springer, Hei-
delberg (2008)

[DCDMY09] Dezani-Ciancaglini, M., Drossopoulou, S., Mostrous, D., Yoshida, N.:
Session Types for Object-Oriented Languages. Information and Com-
putation 207(5), 595–641 (2009)

[DH87] De Nicola, R., Hennessy, M.: CCS Without τ ’s. In: Ehrig, H., Levi,
G., Montanari, U. (eds.) CAAP 1987 and TAPSOFT 1987. LNCS,
vol. 249, pp. 138–152. Springer, Heidelberg (1987)

http://www.di.unito.it/~dezani/ccdr.pdf

Sessions and Session Types: An Overview 27

[FAH+06] Fähndrich, M., Aiken, M., Hawblitzel, C., Hodson, O., Hunt, G.C.,
Larus, J.R., Levi, S.: Language Support for Fast and Reliable Message-
based Communication in Singularity OS. In: EuroSys 2006, ACM
SIGOPS, pp. 177–190. ACM Press, New York (2006)

[Gay07] Gay, S.: Bounded Polymorphism in Session Types. Mathematical
Structures in Computer Science 18(5), 895–930 (2007)

[GGR08] Gay, S., Gesbert, N., Ravara, A.: Session Types as Generic Process
Types. In: PLACES 2008, pp. 16–21 (2008),
http://gloss.di.fc.ul.pt/places08/Places08Proceedings.pdf

[GH05] Gay, S., Hole, M.: Subtyping for Session Types in the Pi-Calculus. Acta
Informatica 42(2/3), 191–225 (2005)

[GV10] Gay, S., Vasconcelos, V.: Linear Type Theory for Asynchronous Session
Types. Journal of Functional Programming 20(1), 19–50 (2010)

[GVR+10] Gay, S., Vasconcelos, V., Ravara, A., Gesbert, N., Caldeira, A.: Mod-
ular Session Types for Distributed Object-Oriented Programming. In:
POPL 2010, pp. 299–312. ACM Press, New York (2010)

[HMY09] Honda, K., Mostrous, D., Yoshida, N.: Global Principal Typing in
Partially Commutative Asynchronous Sessions. In: Castagna, G. (ed.)
ESOP 2009. LNCS, vol. 5502, pp. 316–332. Springer, Heidelberg (2009)

[HVK98] Honda, K., Vasconcelos, V., Kubo, M.: Language Primitives and Type
Disciplines for Structured Communication-based Programming. In:
Hankin, C. (ed.) ESOP 1998. LNCS, vol. 1381, pp. 122–138. Springer,
Heidelberg (1998)

[HYC08] Honda, K., Yoshida, N., Carbone, M.: Multiparty Asynchronous Ses-
sion Types. In: POPL 2008, pp. 273–284. ACM, New York (2008)

[HYH08] Hu, R., Yoshida, N., Honda, K.: Session-Based Distributed Program-
ming in Java. In: Vitek, J. (ed.) ECOOP 2008. LNCS, vol. 5142, pp.
516–541. Springer, Heidelberg (2008)

[IK04] Igarashi, A., Kobayashi, N.: A Generic Type System for the Pi-
Calculus. Theoretical Computer Science 311(1-3), 121–163 (2004)

[JGF96] Jones, S.P., Gordon, A., Finne, S.: Concurrent Haskell. In: POPL 1996,
pp. 295–308. ACM Press, New York (1996)

[Kob98] Kobayashi, N.: A Partially Deadlock-Free Typed Process Calculus.
ACM Transactions on Programming Languages and Systems 20(2),
436–482 (1998)

[Kob02] Kobayashi, N.: A Type System for Lock-Free Processes. Information
and Computation 177, 122–159 (2002)

[Kob03] Kobayashi, N.: Type Systems for Concurrent Programs. In: Aichernig,
B.K., Maibaum, T. (eds.) Formal Methods at the Crossroads. LNCS,
vol. 2757, pp. 439–453. Springer, Heidelberg (2003)

[Kob05] Kobayashi, N.: Type-Based Information Flow Analysis for the Pi-
Calculus. Acta Informatica 42(4-5), 291–347 (2005)

[Kob06] Kobayashi, N.: A New Type System for Deadlock-Free Processes. In:
Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp.
233–247. Springer, Heidelberg (2006)

[Kob07] Kobayashi, N.: Type Systems for Concurrent Programs. In: Extended
version of [Kob03], Tohoku University (2007)

[LP08] Laneve, C., Padovani, L.: The Pairing of Contracts and Session Types.
In: Degano, P., De Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs
and Models. LNCS, vol. 5065, pp. 681–700. Springer, Heidelberg (2008)

http://gloss.di.fc.ul.pt/places08/Places08Proceedings.pdf

28 M. Dezani-Ciancaglini and U. de’Liguoro

[LPO10] López, H., Pérez, J., Olarte, C.: Towards a Unified Framework for
Declarative Structured Communications. In: PLACES 2009. EPTCS,
vol. 17, pp. 1–16 (2010)

[LPT07] Lapadula, A., Pugliese, R., Tiezzi, F.: A Calculus for Orchestration of
Web Services. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421,
pp. 33–47. Springer, Heidelberg (2007)

[MB03] Meredith, G., Bjorg, S.: Contracts and Types. Communications of the
ACM 46(10), 41–47 (2003)

[MY07] Mostrous, D., Yoshida, N.: Two Sessions Typing Systems for Higher-
Order Mobile Processes. In: Della Rocca, S.R. (ed.) TLCA 2007. LNCS,
vol. 4583, pp. 321–335. Springer, Heidelberg (2007)

[MY08] Mostrous, D., Yoshida, N.: A Session Object Calculus for Structured
Communication-Based Programming (2008),
http://www.doc.ic.ac.uk/~mostrous/sesobj.pdf

[MY09] Mostrous, D., Yoshida, N.: Session-Based Communication Optimisa-
tion for Higher-Order Mobile Processes. In: Curien, P.-L. (ed.) TLCA
2009. LNCS, vol. 5608, pp. 203–218. Springer, Heidelberg (2009)

[NT04] Neubauer, M., Thiemann, P.: An Implementation of Session Types. In:
Jayaraman, B. (ed.) PADL 2004. LNCS, vol. 3057, pp. 56–70. Springer,
Heidelberg (2004)

[OV08] Olarte, C., Valencia, F.: Universal Concurrent Constraint Program-
ming: Symbolic Semantics and Applications to Security. In: SAC 2008,
pp. 145–150. ACM, New York (2008)

[Pad09] Padovani, L.: Session Types at the Mirror. In: ICE 2009. EPTCS,
vol. 12, pp. 71–86 (2009)

[Rep99] Reppy, J.H.: Concurrent Programming in ML. Cambridge University
Press, Cambridge (1999)

[SE08] Sackman, M., Eisenbach, S.: Session Types in Haskell (Updating Mes-
sage Passing for the 21st Century) (2008), http://pubs.doc.ic.ac.
uk/session-types-in-haskell/session-types-in-haskell.pdf

[SW01] Sangiorgi, D., Walker, D.: The π-Calculus: a Theory of Mobile Pro-
cesses. Cambridge University Press, Cambridge (2001)

[THK94] Takeuchi, K., Honda, K., Kubo, M.: An Interaction-based Language
and its Typing System. In: Halatsis, C., Philokyprou, G., Maritsas,
D., Theodoridis, S. (eds.) PARLE 1994. LNCS, vol. 817, pp. 398–413.
Springer, Heidelberg (1994)

[Vas09a] Vasconcelos, V.: Fundamentals of Session Types. In: Bernardo, M.,
Padovani, L., Zavattaro, G. (eds.) SFM 2009. LNCS, vol. 5569, pp.
158–186. Springer, Heidelberg (2009)

[Vas09b] Vasconcelos, V.: Session Types for Linear Multithreaded Functional
Programming. In: PPDP 2009, pp. 1–6. ACM Press, New York (2009)

[VGR06] Vasconcelos, V., Gay, S., Ravara, A.: Typechecking a Multithreaded
Functional Language with Session Types. Theoretical Computer Sci-
ence 368, 64–87 (2006)

[VGR+09] Vasconcelos, V., Gay, S., Ravara, A., Gesbert, N., Caldeira, A.: Dy-
namic Interfaces. In: FOOL 2009 (2009),
http://www.cs.cmu.edu/~aldrich/FOOL09/vasconcelos.pdf

[YV07] Yoshida, N., Vasconcelos, V.: Language Primitives and Type Disci-
plines for Structured Communication-based Programming Revisited.
In: SecReT 2006. ENTCS, vol. 171, pp. 73–93. Elsevier, Amsterdam
(2007)

http://www.doc.ic.ac.uk/~mostrous/sesobj.pdf
http://pubs.doc.ic.ac.uk/session-types-in-haskell/session-types-in-haskell.pdf
http://pubs.doc.ic.ac.uk/session-types-in-haskell/session-types-in-haskell.pdf
http://www.cs.cmu.edu/~aldrich/FOOL09/vasconcelos.pdf

Choreography Rehearsal�

Chiara Bodei and Gian Luigi Ferrari

Dipartimento di Informatica, Università di Pisa, Largo B. Pontecorvo, 3, I-56127,
Pisa, Italy

{chiara,giangi}@di.unipi.it

Abstract. We propose a methodology for statically predicting the pos-
sible interaction patterns of services within a given choreography. We
focus on choreographies exploiting the event notification paradigm to
manage service interactions. Control Flow Analysis techniques statically
approximate which events can be delivered to match the choreography
constraints and how the multicast groups can be optimised to handle
event notification within the service choreography.

1 Introduction

The ability of supporting programmable coordination policies of heterogeneous
services is a key element in the success of the Service Oriented Computing (SOC)
paradigm. Two different approaches are usually adopted to assemble services:
orchestration and choreography. In the service orchestration, an intermediate
entity, the orchestrator, arranges service activities according to the given busi-
ness process. The service choreography, instead, involves all parties and their
associated interactions providing a global view of the system. Relevant stan-
dard technologies are the Business Process Execution Language (BPEL) [23],
for the orchestration, and Web Service Choreography Description Language
(WS-CDL) [24], for the choreography. Notably, the orchestration-choreography
issues have led to the development of a variety of foundational models (see
e.g. [19,12,2,7,18,10] to cite only a few). We refer to the surveys in [9,22] for an
analysis of the approaches.

In [15,21] a middleware, called Java Signal Core Layer (JSCL), supporting the
design and implementation of service coordination policies has been introduced.
The middleware consists of a set of API for assembling services by exploiting
the event notification paradigm. A distinguished feature of JSCL consists of
the strict interplay among formal semantic foundations, implementation prag-
matics and experimental evaluation of the resulting programming mechanisms.
More precisely, the programming facilities available in JSCL have been seman-
tically motivated. At the abstract level, the middleware takes the form of the
Signal Calculus (SC) [17]. The SC calculus is an asynchronous process calculus
with explicit primitives to deal with (multicast) event notification and service

� Research supported by the EU within the FET-GC II Integrated Project IST-2005-
016004 Sensoria and by the Italian PRIN Project “SOFT”.

C. Laneve and J. Su (Eds.): WS-FM 2009, LNCS 6194, pp. 29–45, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

30 C. Bodei and G.L. Ferrari

distribution. The SC-JSCL framework allows one to specify and program ser-
vice coordination policies (orchestration and choreography) relying on multicast
notification only. Moreover, it features sessions as a mechanism to synchronise
behaviours of distributed and independent services. Remarkably, the middleware
does not assume any centralized mechanism for publishing, subscribing and no-
tifying events. Hence, SC and JSCL have to be properly regarded as a founda-
tional framework and its programming counterpart for specifying, verifying and
programming coordination policies of distributed services.

The JSCL framework has also been equipped with a model driven develop-
ment methodology [13,14,16]. The methodology exploits a suitable choreography
model that takes the form of a process calculus, called Network Coordination
Policies (NCP). The two calculi (SC and NCP) lay at two different levels of
abstraction. The former is tailored to support the (formal) design of services,
the latter is the specification language to declare the coordination policies. Poli-
cies are processes that specify service behaviour as seen by an observer standing
from a global point of view, hence capable of observing the interactions that
are expected to happen, and how these are interleaved. Indeed, certain features
can be described at both levels: the NCP specification declares what is expected
from the service network infrastructure, while the SC design specifies how to
implement it. The gap between the local and global abstraction levels has been
formally filled in [13,17]. It has been proved that for each SC design, there exists
an NCP choreography that reflects all the properties of the design. The confor-
mance of an SC design with respect to an NCP specification is formally proved
by checking weak asynchronous bisimilarity [1] between them. This notion of
conformance has the main benefit of supporting the development of systems in
a model driven development fashion. The designer can define a suitable chain of
SC models that implement the choreography: each model is obtained by refine-
ment steps that add more details. The conformance of each model with respect
to the NCP specification provides the formal machinery to choose the required
level of abstraction, so that one can focus on coordination of services, without
considering the implementation details, or focus on service design, just trying to
match the abstract policies requirements.

The present paper aims at contributing to this line of research. Our long-term
goal is to equip the JCSL middleware with semantic-based toolkits supporting its
design, development, and deployment. In particular, this paper develops static
reasoning techniques for the JSCL middleware. We use a specific static technique,
Control Flow Analysis, based on Flow Logic [20]. This kind of static analysis
provides a variety of automatic and decidable methods and tools for analysing
properties of computing system.

Our first contribution is the definition of a Control Flow Analysis for the SC
process calculus, that it is shown to be sound. For simplicity, the analysis is
introduced in two stages: first it is developed for a basic fragment of the calcu-
lus considering flows and multicast. In the second stage, session management is
taken into account. This analysis safely approximates the behaviour of an SC
design, statically predicting the possible structure of event notifications. This

Choreography Rehearsal 31

information offers a basis for studying dynamic properties, by suitably handling
the approximation of the static analysis constructs. We have indeed an over-
approximation of the exact behaviour of a system. This means that all those
interactions that the analysis does not include will never take place, while all the
interactions that the analysis does include can happen, i.e. they are only possible.
Therefore, the result of the analysis can be used to predict at compile time all the
possible event flows emanating from a certain service. Implicitly, this amounts
to providing the maximal flow of an event notification and, consequently, an
upper bound on the structure of the multicast group implementing the notifica-
tion. Hence, the analysis provides formal basis to optimise the management of
multicast groups of the JSCL run-time.

Our second contribution consists in the development of a Control Flow Analy-
sis for the NCP calculus. The analysis, that computes a safe over-approximation
of event interactions, can be used to verify whether certain choreography con-
straints are satisfied. We can assert that events of a certain type have not to be
captured by a service and then we can statically verify, by inspecting the anal-
ysis results, that this assertion is violated or not. In other words, the analysis
acts in a descriptive fashion: if no property violation is statically found then
no violation of the property can occur at run-time. However, within the NCP
choreography model, the analysis can also be exploited in a prescriptive fashion.
Intuitively, the analysis can suggest how to instrument the SC design to avoid
occurrences of a property violation. For instance, the constraints on event han-
dling mentioned above can be satisfied, by instrumenting the multicast group
with a filter discarding the events referring to the unauthorized event.

Our static machinery has been applied to several process calculi, amongst
which π-calculus (e.g. [5]) and LySa [4] to establish security properties. In par-
ticular, the mixed descriptive/prescriptive approach offered by Control Flow
Analysis has been introduced in [3] to deal with type flaws in crypto-protocols.

Plan of the Paper. In Section 2, we present the simplest version of the SC cal-
culus focussing on multicast notification. In Section 3, we completely introduce
the Control Flow Analysis for this version of the calculus. This analysis is ex-
tended in Section 4 to manage the SC notion of session. The NCP calculus and
its Control Flow Analysis are described in Section 5. In Section 6, we show how
consistency between a network of SC components and the global coordination
policy expressed by NCP specifications is reflected by the correspondence be-
tween the analysis results. For lack of space, all the proofs are omitted, but are
reported in the extended version of the paper [6].

2 The Calculus

The Signal Calculus (SC) [17], is a process calculus specifically designed to de-
scribe coordination of services distributed over a network. The calculus is based
on the event notification paradigm. SC building blocks are called components,

32 C. Bodei and G.L. Ferrari

which interact by issuing/reacting to events. A component contains a behaviour,
for instance, a “simple” service, interacting through an asynchronous signal pass-
ing mechanism. Each component stores information about the collection of com-
ponents that must be notified whenever events are issued (event flow). When
an event is raised by a component, several envelopes are generated to notify
all components in the flow (multicast notification). Each envelope, also called
signal, contains the event itself and the address of the target component. Each
component owns a set of signal handlers associated to type event. Usually, in the
event notification literature, the type of an event is called topic. Signal handlers,
called reactions, are responsible for the management of the reception of an event
notification. Indeed, the reception of a signal acts like a trigger that activates
the execution of a new behaviour, described by the compatible reaction within
the component.

The component interface is defined by its reactions and flows. The language
primitives allow one to dynamically modify the component interfaces topology
of the coordination, by adding new flows and reactions. Finally, components are
structured to build a network of services. A network provides the facility to
transport signals containing the events exchanged among components.

Let A, ranged over by a, b, c..., be a finite set of components names, and
T , ranged over by τ1, ..., τk, be a finite set of topics. We use ã to denote a set
of names a1, ..., an. A component is written as a[B]RF and represents the service
uniquely identified by the name a, i.e. its public address. Each component has
internal behaviour B, reaction R and flow F .

The syntax of SC is presented in Fig. 1. A reaction R is a multiset, possibly
empty, of unit reactions. A unit reaction τ � B triggers the execution of the
behaviour B upon reception of a signal tagged by the topic τ . A flow F is a set,
possibly empty, of unit flows. A unit flow τ � ã describes the set of component
names ã where raised events having τ as topic have to be delivered. We define
F ↓τ as the set of b̃ such that τ � b̃ occurs in F .

A behaviourB is a multiset of simple behaviours. The reaction part of the com-
ponent interface can be extended by the reaction update rupd(R);B. Similarly,
the flow update fupd(F);B extends the component flows. The asynchronous event

N ::= networks
| 0 empty network
| N ||N parallel composition

| a[B]RF component
| 〈τ 〉@a signal envelope

B ::= behaviour
| 0 empty behaviour
| rupd(R);B reaction update
| fupd(F);B flow update
| out〈τ 〉;B event emission
| ε; B internal behaviuor
| B|B parallel composition

R ::= reactions
| 0 empty reaction
| τ � B unit reaction
| R|R parallel composition

F ::= flows
| 0 empty flow
| τ � ã unit flow
| F |F parallel composition

Fig. 1. Syntax of SC, version 1

Choreography Rehearsal 33

emission out〈τ〉;B first spawns into the network a set of envelopes containing the
event, one for each component name declared in the flow having topic τ , and then
activates B. The behaviour ε;B abstracts from the internal activities performed
by the component (at the end of its execution, the component activates the con-
tinuation B). Finally, the inactive behaviour 0 and the parallel composition B|B
have the standard meanings. Reactions, flows and behaviours are defined up-to a
structural congruence (≡). Indeed we assume that (F, |, 0), (R, |, 0) and (B, |, 0)
are commutative monoids, i.e. parallel composition is commutative, associative
and 0 is the identity. Moreover, we have that τ � ã|τ � b̃ ≡ τ � ã ∪ b̃. We omit
the trailing occurrences of 0.

Networks (N) describe the distribution of components and carry signals ex-
changed among them. The signal envelope 〈τ〉@a describes a message containing
the topic τ , whose target component is named a. The empty network 0 and the
parallel composition have the standard meanings. In the following, we will use∏

bi∈b̃ 〈τ〉@bi, with b̃ a finite set of component names, to represent the parallel
composition of messages having topic τ .

The operational semantics is defined in the reduction style and states how
components, at each step, communicate and update their interfaces. Reduction
rules of SC are given in Fig. 2. Rule (SKIP) describes the execution of an internal
action, i.e. an action that has no side effects on the system. Rule (RUPD) extends
the component reactions with a further unit reaction (the parameter of the
primitive). Rule (FUPD) extends the component flows with a unit flow. Rule
(OUT) first takes the set of component names ã that are linked to the component
for the topic τ and then spawns into the network an envelope for each component
name in the set. Rule (IN) allows a signal envelope to react with the component
whose name is specified inside the envelope. Note that signal emission rule (OUT)
and signal receiving rule (IN) do not consume, respectively, the flow and the
reaction of the component, i.e. flows and reactions are persistent. Finally, rules
(STRUCT) and (PAR) are standard.

(SKIP)
a[ε; B1 | B2]RF → a[B1 | B2]RF

(RUPD)
a[rupd(R1); B1 | B2]RF → a[B1 | B2]

R|R1
F

(FUPD)
a[fupd(F1); B1 | B2]RF → a[B1 | B2]RF |F1

(OUT)
F ↓τ= b̃

a[out〈τ 〉;B1 | B2]RF → a[B1 | B2]RF ||Πbi∈b̃〈τ 〉@bi

(IN)
〈τ 〉@a||a[B1]

R|τ�B2
F → a[B1|B2]

R|τ�B2
F

(PAR)
N → N1

N ||N2 → N1||N2

(STRUCT)
N ≡ N1 → N2 ≡ N3

N → N3

Fig. 2. Reduction Semantics of SC

34 C. Bodei and G.L. Ferrari

Example 1. Multicast Notification. Let us consider a component s that requires
a set of resources to provide a certain functionality. This component is exploited
by several clients ci, with i = 1, .., n, to achieve a common goal. All clients
collaborate to the activation of the service supplied by s, providing the required
resources. The process is summarized as follows:

N
def
= s[out〈τr〉]τ0�out〈τr〉|τ0�B

tr�{c1,c2,c3} ||C1||C2||C3

Ci
def
= ci[0]

tr�out〈τ0〉|τr�0

τ0�{s}

Initially there is a bid phase, in which the service S issues an event to notify its
demand of resources.

s [out〈τr〉]τo�out〈τr〉 | τo�B
τr�{c1,c2,c3} → s [0]τo�out〈τr〉 | τo�B

τr�{c1,c2,c3} ‖ 〈τr〉@c1 ‖ 〈τr〉@c2 ‖ 〈τr〉@c3

Upon the reception of a resource request, a client non-deterministically activates
one of its two reactions: it can ignore the service demand, or as shown below,

ci [0]τr�out〈τo〉 | τr�0
τo�{s} ‖ 〈τr〉@ci → ci [out〈τo〉]τr�out〈τo〉 | τr�0

τo�{s}

the client raises events τo to notify their agreement to provide a resource.

ci [out〈τo〉]τr�out〈τo〉 | τr�0
τo�{s} → ci [0]τr�out〈τo〉 | τr�0

τo�{s} ‖ 〈τo〉@s

Upon the reception of a resource bid, the service non-deterministically activates
one of its two reactions. If no client responds to the service demand, the bid
fails and the functionality is not provided; otherwise, if it receives a sufficient
amount of resources the bid phase terminates, the functionality can be provided,
as shown below.

s [0]τo�out〈τr〉 | τo�B
τr�{c1,c2,c3} ‖ 〈τo〉@s→ s [B]τo�out〈τr〉 | τo�B

τr�{c1,c2,c3}

3 The Control Flow Analysis for SC

We now introduce the Control Flow Analysis for SC. The aim of the analysis is
to over-approximate all the possible behaviour of SC processes. In particular, we
focus on how components communicate and update their interface. The result of
analysing a networkN is a tuple (B,R,F , E), called estimate for N , that satisfies
the judgements defined by the axioms and rules in the upper (lower, resp.) part
of Table 1. Given a certain component a, B(a) gives an approximation of the
possible behaviours of a; R(a) gives an approximation of the possible reactions
of a; F(a) gives an approximation of the possible flows of a: and E(a) gives an
approximation of the possible envelopes to be received by a.

To validate the correctness of a proposed estimate (B,R,F , E) we state a set
of clauses operating upon judgements for analysing processes B,R,F , E |= N ,
defined in the flavour of Flow Logic [20].

Choreography Rehearsal 35

Validation. The analysis is specified in two phases. First, we check that the
estimate (B,R,F , E) describes the initial process. This is done in the upper part
of Table 1, where the clauses amount to a structural traversal of process syntax.
The clauses rely on the auxiliary functions AB, AR, AF , that given a behaviuor
B, reaction R or flow F , keep track of the single unit behaviour occurring in B,
reaction actions in R and flows in F , respectively. Their definitions are reported
at the beginning of Table 1. In the second phase, we check that (B,R,F , E)
also takes into account the possible dynamics of the process under analysis. This
is expressed by the closure conditions in the lower part of Table 1 that mimic
the semantics, by modelling, without exceeding the precision boundaries of the
analysis, the semantic preconditions and the consequences of the possible actions.
More precisely, preconditions check, in terms of (B,R,F , E), for the possible
presence of the redexes necessary for actions to be performed. The conclusion
imposes the additional requirements on (B,R,F , E), necessary to give a valid
prediction of the analysed action. For instance, in the penultimate clause in
Table 1, if (i) there exists an occurrence of out〈τ〉 in B(a), and (ii) there exists
an occurrence of (τ, b) in F(a), then there is a signal envelope with topic τ to
be received by b, i.e. a possible out action is predicted.

Table 1. Analysis for SC Processes

AB(0) = ∅
AB(ε; B) = AB(B)
AB(b; B) = {b} ∪ AB(B) where b ::= fupd(F)|rupd(R)|out〈τ 〉
AB(B0|B1) = AB(B0) ∪ AB(B1)

AR(0) = ∅
AR(τ � B) = {(τ, B)}
AR(R0|R1) = AR(R0) ∪ AR(R1)

AF (0) = ∅
AF (τ � ã) = {(τ, ai)|ai ∈ ã}
AF (F0|F1) = AF (F0) ∪ AF (F1)

B,R,F , E |= 0 iff true
B,R,F , E |= N0|N1 iff B,R,F , E |= N0 ∧ B,R,F , E |= N1

B,R,F , E |= 〈τ 〉@a iff τ ∈ E(a)
B,R,F , E |= a[B]RF iff AB(B) ⊆ B(a) ∧ AR(R) ⊆ R(a) ∧ AF (F) ⊆ F(a)

fupd(F) ∈ B(a) ⇒ AF (F) ⊆ F(a)
rupd(R) ∈ B(a) ⇒ AR(R) ⊆ R(a)
out〈τ 〉 ∈ B(a) ∧ (τ, b) ∈ F(a) ⇒ τ ∈ E(b)
τ ∈ E(a) ∧ (τ, B) ∈ R(a) ⇒ AB(B) ⊆ B(a)

Example 2 (Multicast notification). Back to our example, we report the main
entries of the analysis in Table 2. It is possible to check that (B,R,F , E) is a valid
estimate, by following the two stages explained above. The analysis correctly
approximates the behaviour of N ; for instance it predicts that three envelopes
〈τr〉@ci can be spawn (as proved by the fact that E(ci) � τr for i = 1, 2, 3).

36 C. Bodei and G.L. Ferrari

Table 2. Some Analysis Entries of the Multicast Notification Example

E(ci) � τr E(s) � τ0

B(s) � out〈τr〉,AB(B) B(ci) � out〈τ0〉
R(s) � (τ0, out〈τr〉), (τ0, B) R(ci) � (τr, out〈τ0〉), (τr, 0)
F(s) ⊇ {(τr, ci)|ci ∈ {c1, c2, c3}} F(ci) � (τ0, {s})

We prove that our analysis is safe with respect to the given semantics, i.e. a
valid estimate enjoys the following subject reduction property.

Theorem 1. (Subject Reduction)
If N → N ′ and B,R,F , E |= N then also B,R,F , E |= N ′.

Proof Sketch. The proof is by induction on N → N ′.
The above result can be made more precise, by looking at the single analysis

components. As an example, we just show that the analysis component F cap-
tures all the flows that involve the components of a network N . Clearly, similar
results hold for the other components of the analysis.

Theorem 2. (Flows F) If B,R,F , E |= N and N →∗ N ′ → N ′′, such that the
last transition N ′ → N ′′ is derived using the rule (FUPD) on the set F in a
component a, then AF (F) ⊆ F(a).

Proof Sketch. By Theorem 1, we have that B,R,F , E |= N ′. Therefore, the proof
proceeds by induction on the transition rules used to derive N ′ → N ′′.

Our Control Flow Analysis approximates the behaviour of the network under
consideration. It provides a safe over-approximation of the exact behaviour of
services: at least all the valid behaviours are captured. More precisely, all those
interactions that the analysis does not consider as possible will never occur.
On the other hand, the interactions deemed as possible may, or may not, occur
in the actual dynamic evolution of the network. Therefore, by exploiting the
analysis’s soundness, we can prove several properties. As an example, we discuss
a property related to the flow of a certain service. First, we introduce some
auxiliary notions. Given a network N , the set of networks reachable from N is
defined as Reach(N) = {N ′|N →∗ N ′}. Let the flows emanating from a in N
be defined as F (N)(a) = {F |a[B]RF occurs in N}. The analysis component F
can be used to predict, at compile time, all the possible flows emanating from a
certain component in a network at run time, as stated by the following result.

Theorem 3. Given a network N , including a component a, and an estimate
(B,R,F , E) such that B,R,F , E |= N , we have that {F (N ′)(a)|N ′ ∈ Reach(N)}
⊆ F(a).

Proof Sketch. Immediate by Theorems 1 and 2.
From this static result, we can infer the maximal possible dimension that a

flow emanating from a certain component in a network can reach at run time,
just by computing the cardinality of the set F(a).

Note that similar static machineries can be exploited in the back-end of JCSL
compiler, to optimise the code and the structure of the network interface.

Choreography Rehearsal 37

4 Managing Session: A New Version of SC and a New
Version of the Analysis

In the first version of SC, information associated to signals is not structured and
topics cannot be created dynamically. Furthermore, the notion of session is miss-
ing: components cannot keep track of concurrent event notifications. A refined
version of SC, whose syntax is presented in Fig. 3, tackles sessions management.

N ::= networks
| 0 empty network
| N ||N parallel composition

| a[B]RF component
| 〈τ c©τ ′〉@a signal envelope

B ::= behaviour
| 0 empty behaviour
| rupd(R); B reaction update
| fupd(F);B flow update
| out〈τ c©τ ′〉; B event emission
| ε; B internal behaviuor
| B|B parallel composition

R ::= reactions
| 0 empty reaction
| R|R parallel composition
| τ c©τ ′

� B check reaction
| τλτ ′

� B lambda reaction

F ::= flows
| 0 empty flow
| τ � ã unit flow
| F |F parallel composition

Fig. 3. Syntax of SC, version 2

Events are pairs including a topic and a session identifier. The syntax of
behaviors is modified by the signal emission primitive (out〈τ c©τ ′〉). Note that
both topics and sessions are names and are freely interchangeable. As far as
the reactive part is concerned, a lambda reaction τλτ ′ � B handles all signals
with topic τ , regardless of their session. In the behaviour B, τ ′ is bound by
the lambda reaction. A check reaction τ c©τ ′ �B can instead handle only signals
having the topic τ issued for the session τ ′ and does not declare bound names.
The syntax of flows has been not changed. The envelope 〈τ c©τ ′〉@a now carries
both the topic τ and the session identifier τ ′. For the sake of simplicity, we skip
the restriction construct.

In Fig. 4, we only give the rules that are different from the ones in Fig. 2 and
the new ones. Similarly, in Table 3, we just give the CFA rules that are different
from the ones in Table 1. The subject reduction result stated on the previous
version of SC can be easily extended to the present version.

(OUT)
F ↓τ= b̃

a[out〈τ c©τ ′〉; B1 | B2]RF → a[B1 | B2]RF ||Πbi∈b̃〈τ c©τ ′〉@bi

(CHECK)
〈τ c©τ ′〉@a || a[B1]

R|τ c©τ ′�B2
F → a[B1|B2]RF

(LAMBDA)
〈τ c©τ ′〉@a || a[B1]

R|τλτ ′′�B2
F → a[B1|{τ ′/τ ′′}B2]

R|τλτ ′′�B2
F

Fig. 4. Reduction Semantics of SC

38 C. Bodei and G.L. Ferrari

Table 3. Analysis for SC Processes, version 2

AB(b; B) = {b} ∪ AB(B) where b ::= fupd(F)|rupd(R)|out〈τ c©τ ′〉
AB((ντ)B) = AB(B)

AR(τ c©τ ′
� B) = {(τ c©τ ′, B)}

AR(τλτ ′
� B) = {(τλτ ′, B)}

B,R,F , E |= 〈τ c©τ ′〉@a iff τ c©τ ′ ∈ E(a)

out〈τ c©τ ′〉 ∈ B(a) ∧ (τ, b) ∈ F(a) ⇒ τ c©τ ′ ∈ E(b)
τ c©τ ′ ∈ E(a) ∧ (τ c©τ ′, B) ∈ R(a) ⇒ AB(B) ⊆ B(a)
τ c©τ ′ ∈ E(a) ∧ (τλτ ′′, B) ∈ R(a) ⇒ AB({τ ′/τ ′′}B) ⊆ B(a)

5 The Network Coordination Policies Calculus and Its
Analysis

The Calculus. We now conclude the presentation of JCSL framework, by in-
troducing the choreography model. This takes the form of an asynchronous cal-
culus, called Network Coordination Policies (NCP) [17]. Intuitively, SC is used
to support the design of services, while NCP is the specification language used
to declare the coordination policies. Policies are processes that represent the
behavior as observed from a global point of view, i.e. by observing all the pub-
lic interactions on the network infrastructure. Hence, an NCP process describes
the interactions that are expected to happen and how these are interleaved. The
NCP specification declares what is expected from the service network infrastruc-
ture, whereas the SC design specifies how to implement it. NCP adheres to the
multicast notification mechanism of SC, however, while SC exploits the notion
of flows, NCP manages this information by a global point of view, introducing
the notion of network topologies. In other words, a network topology represents
the flows of all components involved by the coordination.

A NCP specification consists of two entities: a policy and a network topology.
The former describes the actions that should be performed by components, while
the latter describes the component inter-connection. A network topology is a
structure G = (V,E), where V ⊆ A consists of the restricted component names
of the network and E ⊆ A×T ×A are the flow connections among components:
(a, τ, b) ∈ E represents a flow form a towards b for signal of topic τ . Note that G
induces a directed labelled graph, called topic-graph. We will use the following
auxiliary notations: (i) the flows emanating from a in G, G(a) = {(τ, b)|(a, τ, b) ∈
E}; (ii) the topic-graph of τ in G, G(τ) = {(a, τ ′, b) ∈ E|τ ′ = τ}; (iii) the flow
projection of τ for a in G, G(τ, a) = {b|(τ, b) ∈ G(a)}.

The syntax of NCP is presented in Fig. 5. For the sake of simplicity, we
consider the restriction-free fragment of NCP. As a consequence in the semantics,
we will skip the rules (OPEN), (CLOSE) and (NEW). Let G be an NCP topology
and P an NCP policy, then the pair 〈G;P 〉 is called NPC state. NPC states
represent the specifications of a system.

Choreography Rehearsal 39

P ::= coordination policies
| ∑

i∈I pi@ai.Pi non-det. guarded choice
| ττ ′@a.P policy
| 〈τ c©τ ′〉@a signal envelope
| fupd(F)@a.P flow update
| ι.P internal activity
| P ||P parallel composition

p ::=
| τ (τ ′) lambda input
| ττ ′ check input

Fig. 5. Syntax of NCP

α ::= actions
| ε silent action
| ττ ′@a free reaction activation
| (ττ ′@a) message reception
| 〈τ c©τ ′〉@a bound event notification

Fig. 6. NCP actions

An NCP process is called a coordination policy. Non-deterministic (guarded)
choice is denoted as

∑
i∈I pi@ai.Pi; a policy p@a.P represents an action p ex-

ecuted by the component a with continuation P ; prefix τ(τ ′) allows to receive
on τ and is called lambda input since it corresponds to the SC lambda reaction;
ττ ′ allows to receive signals having topic τ and session τ ′ and is therefore called
check input. Since a lambda input can handle events regardless their sessions,
the name τ ′ represents a binder for the received session identifier. The policy
ττ ′ raises an event on session τ ′ with topic τ . The component delivers the cor-
responding notifications to all services that are subscribed on the topic τ . The
envelope 〈τ c©τ ′〉@a represents a pending message/notification on the network
towards a. Notice that only the target of the envelope is declared. Also in NCP,
the emission of an event and its reception are performed in two phases. Initially,
the emitter spawns into the network the proper envelopes, according with the
actual network topology. Subsequently, a subscriber can react to the received
envelope. The policy fupd(F) adds F to the flows departing from a. Prefix ι.P
represents the execution of an internal activity before the execution of P . Finally,
coordination policies can be composed in parallel.

The operational semantics of NCP is specified by the labelled transition sys-
tem (LTS), reported in Fig. 7. Labels α are defined in Fig. 6.

Rule (SKIP) trivially fires the silent action. Rule (FUPD) changes the net-
work topology, by appending the sub-network a�F to the environment G, i.e. all
the flows departing from a in F . Rule (EMIT) allows for multicast communi-
cations: it spawns in the network an envelope for each subscriber in G(τ)(a).
Note that the continuation policy P is executed regardless the reception of en-
velopes as typical in asynchronous communications. Notification of envelopes is
ruled by (NOTIFY) as much like as the output in the asynchronous π-calculus.
Rules (LAMBDA) and (CHECK) model input actions. In the former, the se-
lected input pj reads any signal with topic τ and binds τ1 to τ ′1 in an early-style

40 C. Bodei and G.L. Ferrari

(SKIP) 〈G; ι.P 〉 ε→ 〈G; P 〉
(FUPD) 〈G; fupd(F)@a.P 〉 ε→ 〈G � (a � F); P 〉 where a � F ={(a, τ, b)|(τ, b)∈F}
(EMIT) 〈G; ττ ′@a.P 〉 ε→ 〈G; P ||Πb∈G(τ,a)〈τ c©τ ′〉@b〉
(NOTIFY) 〈G; 〈τ c©τ ′〉@a〉 τ c©τ ′@a→ 〈G; 0〉

(LAMBDA)
j ∈ I pj = τ (τ1)

〈G;
∑

i∈I pi@ai.Pi〉 ττ ′
1@a→ 〈G � τ ′

1 � T ; {τ ′
1/τ1}Pj ||pj@aj .Pj〉

where τ ′
1 � T = {(a, τ, b)|(a, b) ∈ T}

(CHECK)
j ∈ I pj = ττ ′

〈G;
∑

i∈I pi@ai.Pi〉 pj@aj→ 〈G; Pj〉
(ASYNCH)

〈G; P 〉 (ττ ′@a)→ 〈G; P ||〈τ c©τ ′〉@a〉

(COM)
〈G; P0〉 ττ ′@a→ 〈G; P ′

0〉 〈G; P1〉 〈τ c©τ ′〉@a→ 〈G; P ′
1〉

〈G; P0||P1〉 ε→ 〈G; P ′
0||P ′

1〉
(PAR)

〈G; P0〉 α→ 〈G′; P ′
0〉

〈G; P0||P1〉 α→ 〈G′; P ′
0||P1〉

Fig. 7. NPC LTS

semantics. When a check input is selected, only envelopes of topic τ in session τ1
can be consumed. Notice that the reception by a check reaction of a topic does
not change the network topology, because the two topics involved by the com-
munication are already known. The reception of a fresh name (τ ′1) by a lambda
reaction, instead, can extend the environment knowledge of the component: the
receiver can discover all the existing linkages involving the received name τ ′1. In
the spirit of early-style semantics, we allow the rule to extend the topology with
any possible graph (T). Differently from SC, these two rules can express external
non-deterministic choice and can involve several components. Rule (ASYNCH)
permits to any NCP state to perform an input, simply storing the received mes-
sage for subsequent usages, allowing to arbitrarily delay the communication.
Rule (COM) allows the communication of a free session name τ ′. Finally, rule
(PAR) has the standard meaning.

The Control Flow Logic for NCP. We develop a Control Flow Analysis for
NCP, with the aim of over-approximating all the possible behaviour of NCP pro-
cesses. The analysis, still specified in two phases, is reported in Table 4, where
sbj(P) collects all the component names included in P . To emphasise the rela-
tion between the two calculi, we overload the analysis component names B and E
and we use the judgement B, E , GS |= 〈G;P 〉 (and, in turn, B, E , GS |= P), that
we make more precise, i.e. BNCP , ENCP , GS |= 〈G;P 〉, when needed. There, GS

stands for the static abstraction of the graph of topics. It includes the initial
graph and all the possible arcs and vertices that can be added during the com-
putation. The clauses rely on the auxiliary function AP , that given a process

Choreography Rehearsal 41

Table 4. Analysis for NCP

AP (
∑

i∈I pi@ai.Pi) =
⋃

i∈I AP (pi@ai.Pi)
AP (p@a.P) = {((p, P), a)}
AP (ττ ′@a.P) = {(ττ ′, a)} ∪ AP (P)
AP (〈τ c©τ ′〉@a) = ∅
AP (fupd(F)@a.P) = {(fupd(F), a)} ∪ AP (P)
AP (P0|P1) = AP (P0) ∪ AP (P1)
AP (ι.P) = AP (P)
AP (P)(a) = {el|(el, a) ∈ AP (P)}
EP (P) =

{ {(τ c©τ ′, a)} if P = 〈τ c©τ ′〉@a
∅ otherwise

EP (P)(a) = {el|(el, a) ∈ EP (P)}
B, E ,GS |= 〈G; P 〉 iff G ⊆ GS ∧ B, E ,GS |= P
B, E ,GS |= P iff ∀a ∈ sbj(P).AP (P)(a) ⊆ B(a) ∧ EP (P)(a) ⊆ E(a)

fupd(F) ∈ B(a) ⇒ AF (F) ⊆ GS(a)
ττ ′ ∈ B(a) ∧ (τ, b) ∈ GS(a) ⇒ τ c©τ ′ ∈ E(b)
τ c©τ ′ ∈ E(a) ∧ (ττ ′, P) ∈ B(a) ⇒ B, E ,GS |= P
τ c©τ ′ ∈ E(a) ∧ (τ (τ ′′), P) ∈ B(a) ⇒ G(τ ′) ⊆ GS ∧ B, E , GS |= {τ ′/τ ′′}P

P , keeps track of the single actions in P , and whose definition is in the upper
part of Table 4. Hereafter, we denote with el the generic element of a set. This
analysis is correct with respect to the given semantics. Furthermore, we prove
that GS captures all the flows arising in the topology.

Theorem 4. (Subject Reduction)

Let S a NPC state 〈G;P 〉. If S α→ S′ and B, E , GS |= S then also B, E , GS |= S′.

Proof Sketch. The proof is by induction on S α→ S′.

Theorem 5. (Flows F) If B, E , GS |= S and S →∗ S′ α→ S′′, such that the
last transition S′ α→ S′′ is derived using the rule (FUPD) on the set F in a
component a, then AF (F) ⊆ GS(a).

Proof Sketch. By Theorem 4, we have that B,R,F , E |= S′. Therefore, the proof
proceeds by induction on the transition rules used to derive S′ α→ S′′.

Note that the above theorem formally represents the projection of the choreog-
raphy over a component. Namely, it provides the local view of the choreography
policy.

The NCP control flow analysis can be used to verify whether certain choreog-
raphy constraints are satisfied, for instance, on the security side. We can assert
when a service does not capture a certain topic, and then statically verify, by
inspecting the analysis results, whether this assertion is not violated.

42 C. Bodei and G.L. Ferrari

Given a policy P and a graph G, let the set of systems reachable from 〈G;P 〉
be defined as Reach(〈G;P 〉) = {〈G′;P ′〉|〈G;P 〉 →∗ 〈G′;P ′〉}. Let the flows
emanating from a in 〈G;P 〉 be defined as Ftopic(〈G;P 〉)(a) = {(τ, b)|(a, τ, b) ∈
G} and Ftopic(〈G;P 〉)(a, τ) = {b|(a, τ, b) ∈ G}.

A service a does not capture a certain topic τ , when the flow projection of τ
for a is empty in the initial graph G and in every graph reachable from it.

Definition 1. Given a process P , a graph G, a topic τ , and component a oc-
curring in P , we say that a does not capture τ if Ftopic(〈G′;P ′〉)(a, τ) = ∅ for
all 〈G′;P ′〉 ∈ Reach(〈G;P 〉).
Again, an analysis component, GS , can be used to predict at compile time
whether the constraint is respected. Actually, because of safety, we can assess
that if the property is statically guaranteed, then it will also be at run time, as
stated by the following result, whose proof is based on Theorem 5.

Theorem 6. Given a process P , a graph G, a topic τ , and component a occur-
ring in P , if GS(a) = ∅ then a does not capture τ .

Proof Sketch. The proof proceeds by contradiction, by assuming that a does
capture τ .

Here, our analysis acts in a descriptive way, i.e. it describes if a property
violation is possible and because of soundness, we can prove that if no violation
is found, no violation can arise at run-time. In the same setting, our approach can
have a prescriptive value. In this case, we aim at preventing violation to arise,
by suggesting how to instrument the code with the necessary checks, e.g. by
enriching the multicast group with a filter discarding the events referring to the
unauthorized topic.

6 Checking Choreography

Consistency between network of SC components and the global coordination
policies expressed by NCP specifications is formally verified in [17]. Verification
is based on the encoding from SC networks to NCP policies, presented in Table 5,
and on bisimilarity. This result can also suggest a model driven development
approach. The designer can define successive SC models for implementing a
choreography model, obtained by incremental refinement.

The basic idea of the encoding is to transform SC reductions into NCP tran-
sitions labeled with ε. The encoding uses the following functions: (i) [[B]]a which
takes an SC behaviour B, localised within a, and maps it into an NCP policy;
(ii) [[R]]a which takes a reaction R, installed in the interface of a, and maps it
into a policy; and (iii) [[N]] which takes a network N and maps it into a state.

Control Flow Analysis provides us with an approximation of behaviours, both
for the choreography model (NCP) and the actual design (SC). The consis-
tency result is reflected by the correspondence between the analysis estimate
(B,R,F , E) of a network N and that (BNCP , ENCP , GS) of its encoding [[N]]. We
need the following auxiliary function that maps each element possibly occurring
in (B,R,F , E), in the corresponding element occurring in (BNCP , ENCP , GS).

Choreography Rehearsal 43

Table 5. Encoding of behaviours, reactions and networks

[[0]]a = 0 [[B|B′]]a = [[B]]a||[[B′]]a
[[ε; B]]a = ι.[[B]]a [[out〈τ c©τ ′〉B]]a = ττ ′@a[[B]]a
[[rupd(R);B]]a = ι.[[R]]a||[[B]]a [[fupd(F);B]]a = fupd(F)@a.[[B]]a

[[0]]a = 0 [[R|R′]]a = [[R]]a || [[R′]]a
[[τ c©τ ′

� B]]a = ττ ′@a.[[B]]a [[τλτ ′
� B]]a = τ (τ ′)@a[[B]]a

[[∅]] = 〈0;0〉 [[〈τ c©τ ′〉@a]] = 〈0; 〈τ c©τ ′〉@a〉
[[N]] = 〈G; P 〉 [[N ′]] = 〈G′; P ′〉

[[N ||N ′]] = 〈G � G′; P ||P ′〉[[
a[B]RF

]]
= 〈G; [[B]]a||[[R]]a〉 where G = a � F

Enc(out〈τ c©τ ′〉) = ττ ′ Enc(fupd(F)) = fupd(F)
Enc((τ c©τ ′, B)) = (ττ ′, Enc(B)) Enc((τλτ ′, B)) = (τ(τ ′), Enc(B))
Enc(τ c©τ ′) = τ c©τ ′ Enc((τ, b)) = (τ, b)

Example 3. We illustrate this correspondence on the following example, given
by a network N having two components: a and b.

N = a[0]τλτ ′
�out〈τ c©τ ′〉

τ�{b} || b[0]τλτ ′
�out〈τ1 c©τ ′〉

τ1�c̃ ||〈τ c©τ ′′〉@a||〈τ c©τ ′′′〉@b

The corresponding encoding is given by the following state S:

S = 〈(∅, {(a, τ, {b}), (b, τ, c̃)}); τ (τ ′)@a.ττ ′@a||τ (τ ′)@b.τ1τ
′@b〉||〈τ c©τ ′′〉@a||〈τ c©τ ′′′〉@b

The analyses of N and of S, reported in Table 6, show the correspondence
between the estimates components.

Table 6. Some Entries of the Analysis of N (upper part) and of S (lower part)

E(a) � τ c©τ ′′ E(b) � τ c©τ ′′′, τ c©τ ′′

B(a) � out〈τ1 c©τ ′′〉 B(b) � out〈τ1 c©τ ′′′〉
R(a) � (τλτ ′, out〈τ c©τ ′〉) R(b) � (τλτ ′, out〈τ1 c©τ ′〉)
F(a) ⊇ {(τ, b)} F(b) ⊇ {(τ1, ci)|ci ∈ c̃}
{(a, τ, {b}), (b, τ, c̃)} ∈ GS G(τ ′′) ∪ G(τ ′′′) ∈ GS

ENCP (a) � τ c©τ ′′ ENCP (b) � τ c©τ ′′′, τ c©τ ′′

BNCP (a) � (τ (τ ′), ττ ′@a), τ τ ′′ BNCP (b) � (τ (τ ′), τ1τ
′@b), τ1τ

′′′

Now, we formally state the correspondence between the two analyses.

Theorem 7. Given a network N and (B,R,F , E), such that B,R,F , E |= N ,
let 〈G;P 〉 = [[N]] and (B, E , GS) such that B, E , GS |= 〈G;P 〉. We have that for
all a in the domain of (B,R,F , E), we have that:

• ∀el ∈ B(a) : Enc(el) ∈ BNCP (a) • ∀el ∈ R(a) : Enc(el) ∈ BNCP (a)
• ∀el ∈ E(a) : Enc(el) ∈ ENCP (a) • ∀(τ, b) ∈ F(a) : Enc(τ, b) ∈ GS(a)

44 C. Bodei and G.L. Ferrari

Proof Sketch. The proof proceeds by structural induction.
The correspondence of the two analyses is made easier by our assumption on

the absence of restriction and scope extrusion in NCP. As a consequence, the
treatment of internal actions is strongly simplified. The more involved reasonings,
needed to cope with the full calculus, require further investigation.

7 Concluding Remarks

We have introduced Control Flow Analysis for the SC-NCP framework for ser-
vice coordination. Our approach is based on a two layer calculus (in the spirit
of [11,12,8]). The abstract level (NCP) provides a declarative framework to spec-
ify the service coordination, while the concrete level (SC) allows us to design the
behavior of services. The distinguished feature of our approach is given by the
mixed descriptive-prescriptive mechanism, offered by the Control Flow Analysis
and experimented to prove security properties of cryptographic protocols [3].
This provides us flexible facilities to manage a wide range of properties.

The SC-NCP programming model has provided the foundational basis to de-
sign and implement the JSCL middleware for services. The correspondence re-
sult, stated in Section 6, provides a further formal hook to freely move inside the
two-level structure of JSCL. Depending on the level of the structure, one can
focus on either the design or the choreography, with the guarantee that the key
features are preserved. Differently from the dynamic mechanism of bisimulation,
used in [17], static analysis predicts the possible interaction patterns of services
in a given choreography, allowing for a sort of choreography rehearsal.

We plan to equip the JSCL framework to include the reasoning machineries
available by implementing the analyses developed in the present paper. We in-
tend to exploit the analysis to statically verify that a design is compliant with
the specification of the choreography demands, and to instrument the code to
avoid the occurrences of certain events at run-time.

References

1. Amadio, R.M., Castellani, I., Sangiorgi, D.: On bisimulations for the asynchronous
pi-calculus. Theor. Comput. Sci. 195(2), 291–324 (1998)

2. Bartoletti, M., Degano, P., Ferrari, G., Zunino, R.: Secure service orchestration. In:
Aldini, A., Gorrieri, R. (eds.) FOSAD 2007. LNCS, vol. 4677, pp. 24–74. Springer,
Heidelberg (2007)

3. Bodei, C., Brodo, L., Degano, P., Gao, H.: Detecting and preventing type flaws at
static time. Journal of Computer Security (to appear, 2009)

4. Bodei, C., Buchholtz, M., Degano, P., Nielson, F., Nielson, H.R.: Static validation
of security protocols. Journal of Computer Security 13(3), 347–390 (2005)

5. Bodei, C., Degano, P., Nielson, F., Nielson, H.R.: Static analysis for the π-calculus
with their application to security. Info. & Computat. 165, 68–92 (2001)

6. Bodei, C., Ferrari, G.L.: Choreography rehearsal. Technical Report TR-09-11, Di-
partimento di Informatica, Univ. Pisa (2009)

Choreography Rehearsal 45

7. Boreale, M., Bruni, R., Caires, L., Nicola, R.D., Lanese, I., Loreti, M., Martins,
F., Montanari, U., Ravara, A., Sangiorgi, D., Vasconcelos, V.T., Zavattaro, G.:
SCC: A service centered calculus. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.)
WS-FM 2006. LNCS, vol. 4184, pp. 38–57. Springer, Heidelberg (2006)

8. Bravetti, M., Zavattaro, G.: A foundational theory of contracts for multi-party
service composition. Fundam. Inform. 89(4), 451–478 (2008)

9. Bruni, R.: Calculi for service oriented computing. In: Bernardo, M., Padovani, L.,
Zavattaro, G. (eds.) SFM 2009. LNCS, vol. 5569, pp. 1–41. Springer, Heidelberg
(2009)

10. Bruni, R., Lanese, I., Melgratti, H.C., Tuosto, E.: Multiparty sessions in soc. In:
Lea, D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 67–82.
Springer, Heidelberg (2008)

11. Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., Zavattaro, G.: Choreography and
orchestration: A synergic approach for system design. In: Benatallah, B., Casati, F.,
Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 228–240. Springer, Heidelberg
(2005)

12. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centred program-
ming for web services. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
2–17. Springer, Heidelberg (2007)

13. Ciancia, V., Ferrari, G.L., Guanciale, R., Strollo, D.: Checking correctness of trans-
actional behaviors. In: Suzuki, K., Higashino, T., Yasumoto, K., El-Fakih, K. (eds.)
FORTE 2008. LNCS, vol. 5048, pp. 134–148. Springer, Heidelberg (2008)

14. Ciancia, V., Ferrari, G.L., Guanciale, R., Strollo, D.: Global coordination policies
for services. In: FACS 2008. Electronic Notes in Theoretical Computer Science.
Elsevier, Amsterdam (2009) (to appear)

15. Ferrari, G.L., Guanciale, R., Strollo, D.: Jscl: A middleware for service coordina-
tion. In: Najm, E., Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006.
LNCS, vol. 4229, pp. 46–60. Springer, Heidelberg (2006)

16. Ferrari, G.L., Guanciale, R., Strollo, D., Tuosto, E.: Refactoring long running trans-
actions. In: Bruni, R., Wolf, K. (eds.) WS-FM 2008. LNCS, vol. 5387, pp. 127–142.
Springer, Heidelberg (2009)

17. Guanciale, R.: The Signal Calculus: Beyond Message-based Coordination for Ser-
vices. PhD thesis, Institute for Advanced Studies, IMT, Lucca (2009)

18. Guidi, C., Lucchi, R., Gorrieri, R., Busi, N., Zavattaro, G.: A calculus for ser-
vice oriented computing. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS,
vol. 4294, pp. 327–338. Springer, Heidelberg (2006)

19. Lapadula, A., Pugliese, R., Tiezzi, F.: A calculus for orchestration of web ser-
vices. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 33–47. Springer,
Heidelberg (2007)

20. Nielson, H.R., Nielson, F.: Flow logic: A multi-paradigmatic approach to static
analysis. In: Mogensen, T.Æ., Schmidt, D.A., Sudborough, I.H. (eds.) The Essence
of Computation. LNCS, vol. 2566, pp. 223–244. Springer, Heidelberg (2002)

21. Strollo, D.: Designing and Experimenting Coordination Primitives for Service Ori-
ented Computing. PhD thesis, Institute for Advanced Studies, IMT, Lucca (2009)

22. Su, J., Bultan, T., Fu, X., Zhao, X.: Towards a theory of web service choreographies.
In: Dumas, M., Heckel, R. (eds.) WS-FM 2007. LNCS, vol. 4937, pp. 1–16. Springer,
Heidelberg (2008)

23. TC, O.: Business process execution language for web services version 2.0,
http://docs.oasis-open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.html

24. Web services choreography description language version 1,
http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/

http://docs.oasis-open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.html
http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/

A Graph Syntax for Processes and Services�

Roberto Bruni, Fabio Gadducci, and Alberto Lluch Lafuente

Department of Computer Science, University of Pisa
{bruni,gadducci,lafuente}@di.unipi.it

Abstract. We propose a class of hierarchical graphs equipped with a sim-
ple algebraic syntax as a convenient way to describe configurations in
languages with inherently hierarchical features such as sessions, fault-
handling scopes or transactions. The graph syntax can be seen as an
intermediate representation language, that facilitates the encodingof struc-
tured specifications and, in particular, of process calculi, since it provides
primitives for nesting, name restriction and parallel composition. The syn-
tax is based on an algebraic presentation that faithfully characterises fami-
lies of hierarchical graphs,meaning that each termof the languageuniquely
identifies an equivalence class of graphs (modulo graph isomorphism).
Proving soundness and completeness of an encoding (i.e. proving that
structurally equivalent processes are mapped to isomorphic graphs) is then
facilitated and canbedoneby structural induction. Summingup, the graph
syntax facilitates the definition of faithful encodings, yet allowing a precise
visual representation. We illustrate our work with an application to a work-
flow language and a service-oriented calculus.

1 Introduction

As witnessed by a large literature, graphs offer a convenient ground for the spec-
ification and analysis of modern software systems with features such as distribu-
tion, concurrency and mobility. Among the graph-based formalisms used for such
purposes, we recall those based on traditional Graph Transformation [14], Bi-
graphical Reactive Systems [17] and Synchronized Hyperedge Replacement [13].
Building a graphical representation of an existing language involves two major
challenges: encoding states and encoding the operational semantics. A correct
state encoding should map structurally equivalent states into equivalent (typi-
cally isomorphic) graphs. In addition, the state encoding should also facilitate
the encoding of the operational semantics, which typically means mimicking
term rewrites via suitable graph rewrites.

The use of graph isomorphism as state equivalence has several advantages.
Visually, it offers an intuitive normal form representation for system states, ab-
stracting from the concrete identity of the single components. Operationally, it
enables graph transformations, which have (sub)graph isomorphism at the base
of the matching mechanism used for the application of rules, for simulating state
evolution. Sometimes, though, capturing equivalence of configurations via graph
� Research supported by the EU FET integrated project Sensoria, IST-2005-016004.

C. Laneve and J. Su (Eds.): WS-FM 2009, LNCS 6194, pp. 46–60, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Graph Syntax for Processes and Services 47

isomorphism it is not always possible or convenient, and additional axioms must
be taken into account. However, also in such situations the reuse of standard
graph transformation techniques may turn to be useful. For instance, one typi-
cal solution is to consider (equivalence classes of) normal forms for graphs and a
set of confluent and terminating rewrite rules that reduce graphs into the normal
form of their equivalence class.

The encoding of states of a process calculus is facilitated by their algebraic
structure (since processes are terms) and it is typically defined inductively on
such structure. However, the syntax of graph formalisms is often not provided
with suitable features for names, name restrictions or hierarchical aspects. Hence,
typical solutions consist in developing ad-hoc algebraic syntaxes that are of-
ten significantly different from those of standard process calculi. They require
advanced skills and are based on sophisticated techniques involving the set-
theoretic definition of graphs with interfaces (e.g. [14,15]), the use of enriched
type systems (e.g. [8,16]) or the representation of hierarchies as trees (e.g. [17,15]),
and they may result in layered specifications and complex correctness proofs.

Our goal is to develop a technique for simplifying the definition of state en-
codings into graphical structures and the proof of their correctness and such
that the associated graph rewriting rules are automatically determined from the
state encoding and the original operational semantics.

In a companion paper [3] we propose to fill the gap between the different
levels of abstraction at which process calculi and graphical structures reside by
introducing a specification formalism made of an algebra of hierarchical graphs,
plus a sound and complete set of axioms equating two terms whenever they rep-
resent essentially the same hierarchical graph. The graph algebra is equipped
with primitives and mechanisms for dealing with names, name restriction, paral-
lel composition and, most importantly, nesting in the same way as they are used
in process calculi. In particular, the nesting mechanism allows for easily defining
graphical presentations for process calculi with inherently hierarchical aspects
such as sessions, transactions or locations: features of fundamental relevance, e.g.
in the area of service-oriented computing. Besides facilitating the visual speci-
fication of processes, the graph algebra simplifies the proofs of correctness: the
algebraic structure of states and graphs enables proofs by structural induction.

In this paper we validate the proposal sketched above by using our graph
algebra (§ 2) to encode the configurations of process calculi with service-inherent
features that have a certain hierarchical nature. In particular, we provide novel,
correct graphical encodings for two languages. The first one (§ 3) is a simple
workflow language, vaguely reminiscent of BPEL: it is used for showing the
basic features of the graph syntax and getting the reader acquainted with the
approach. The second example (§ 4) regards a sophisticated calculus for the
description of service-oriented applications, namely, CaSPiS [2], whose features
pose further challenges to visualisation, due to the interplay of name handling,
nested sessions and a pipeline operator.

48 R. Bruni, F. Gadducci, and A. Lluch Lafuente

2 An Algebra of Hierarchical Graphs

We offer an overview of our algebra of typed, hierarchical (hyper)graphs that we
call designs, referring to [3] for a detailed presentation.

Definition 1 (design). A design is a term of sort D generated by the grammar

D ::= Lx[G]
G ::= 0 | x | l(x) | G | G | (νx)G | D〈x〉

where l and L are respectively drawn from vocabularies T and NT of edge and
design labels, N is the set of nodes, x ∈ N and x ∈ N ∗.

The algebraic reading is as usual, where each syntactical category and vocabulary
is considered as a sort and productions are considered as functions. This allows
us, for instance, to consider open terms (i.e. terms with typed variables), useful
for defining encodings by means of derived operators.

Terms generated by G and D are meant to represent, respectively, hierarchical
graphs and hierarchical graphs with (edge-like) interfaces. The syntax has the
following informal meaning: 0 is the empty graph, x is a discrete graph containing
node x only, l(x) is a graph formed by an l-labelled (hyper-)edge attached to
nodes x (the i-th tentacle to the i-th node in x), G | H is the graph resulting
from the parallel composition of graphs G and H (their disjoint union up to the
coalescing of common nodes), (νx)G is the graph G after making node x not
visible from the environment (borrowing nominal calculus jargon we say that
the node x is restricted), and D〈x〉 is a graph formed by attaching design D to
nodes x (the i-th node in the interface of D to the i-th node in x). A term Lx[G]
is a design of type L, with body graph G and exposing nodes x in its interface.

Restriction (νx)G acts as a binder for x in G and similarly Lx[G] binds x in
G. As usual, restricted and interface nodes lead us to the notion of free nodes.
To this end, we let �x� denote the set of elements of a vector x.

Definition 2 (free nodes). The free nodes of a design or a graph are denoted
by the function fn(·), defined as follows

fn(0) = ∅ fn(x) = x fn(l(x)) = �x� fn(G | H) = fn(G) ∪ fn(H)
fn((νx)G) = fn(G) \ {x} fn(D〈x〉) = fn(D) ∪ �x� fn(Lx[G]) = fn(G) \ �x�

We also use L〈y〉[G{y/x}] as a shorthand for a (well-formed: see Definition 3)
term Lx[G]〈y〉 whenever it holds �y� ∩ fn(G) = ∅, where {y/x} denotes the
pairwise, capture-avoiding substitution mapping of names in x into names in y
(given by the set {x[n] �→ y[n] | n ∈ |x|}).

The example below offers a first glance at the algebra of hierarchical graphs.

Example 1. Let a ∈ T ,A ∈ NT , u, v, w, x, y ∈ N . We depict in Fig. 1 some terms
of our algebra: u (top-left), a(u, v) (top-second), a(u,w) | a(w, v) (top-third),
(νw)(a(u,w) | a(w, v)) (top-right), and A(u,v)[(νw)(a(u,w) | a(w, v))]〈x, y〉

A Graph Syntax for Processes and Services 49

◦u ◦u
�� ���� �	a �� ◦v ◦u

�� ���� �	a �� ◦w
�� ���� �	a �� ◦v ◦u

�� ���� �	a �� ◦ �� ���� �	a �� ◦v

A

◦x
�� ���� �	a �� ◦ �� ���� �	a �� ◦y

A
�� ���� �	a

��

�� ���� �	a

��
◦x ◦w ◦y

A
�� ���� �	a

��

�� ���� �	a

��

Fig. 1. Some terms of the graph algebra

(bottom-left), also abbreviated as A〈x,y〉[(νw)(a(x,w) | a(w, y))] Nodes are repre-
sented by circles, edges by boxes, and designs by dotted boxes. The first tentacle
of an edge is represented by a plain arrow with no head, while the second one is
denoted by a normal arrow. Nodes subscripted with their identities are free.

Note that this representation is informal and aims at offering an intuitive vi-
sualisation. Figure 1 also includes term A〈x,y〉[a(x,w) | a(w, y)] | A〈y,x〉[a(y, w) |
a(w, x)] (bottom-right), where two designs are composed in circle by attaching
them symmetrically to x and y, sharing (as a common name) node w.

Sort D is partitioned over the set NT = {L1, . . . , Ln}, i.e. we consider sorts
L1, . . . , Ln and a membership predicate D : L that holds whenever D = Lx[G] for
some x and G. Thus, design labels play the role of design (sub-)types. Likewise,
we consider the set of nodes N to be partitioned over different sorts.

Each label of T and NT has a fixed arity and for each rank a fixed node type.
Intuitively, the typed arity of a label denotes the ordered and typed tentacles of
edges with that label. We say that a design (or a graph) is well-typed if for each
occurrence of a typed operator Lx[G] we have that the (vectors of) types of x
and L coincide, and similarly for typed operators D〈x〉 and l(x).

Definition 3 (well-formedness). A design or graph is well-formed if (1) it is
well-typed; (2) for each occurrence of design Lx[G] we have �x� ⊆ fn(G); and
(3) for each occurrence of graph Lx[G]〈y〉, the substitution mapping x/y is a
function.

Intuitively, the restriction on the mapping x/y forbids two distinct nodes at the
higher level to be mapped to the same node in G. This is needed for avoiding
implicit name fusions (equivalently, node coalescing, which would require explicit
fusion operators and further axioms not needed here) as the result of applying
a flattening axiom, as shown below. From now on, we restrict our attention to
well-formed designs: all the axioms are going to preserve well-formedness and all
the derived operators used for the encodings will be well-formed.

In order to have a notion of syntactically equivalent designs (i.e. to consider
designs up to isomorphism), the algebra includes the structural graph axioms
of [9] such as associativity and commutativity for | (with identity 0) and name
extrusion (respectively, axioms DA1–DA3 and DA4–DA6). In addition, it includes
axioms to α-rename bound nodes (DA7–DA8), an axiom for making immaterial

50 R. Bruni, F. Gadducci, and A. Lluch Lafuente

the addition of a node to a graph where that same node is already free (DA9)
and another one ensuring that global names are not local (DA10). Finally, note
that, with respect to the laws presented in [3], we included an explicit axiom for
node filtering in designs (DA11): it just states that node restriction may occur
at any level of the graph hierarchy, hence, possibly only at the top level.

Definition 4 (design axioms). The structural congruence≡D over well-formed
designs and graphs is the least congruence satisfying all the axioms

G | H ≡ H | G (DA1)
G | (H | I) ≡ (G | H) | I (DA2)

G | 0 ≡ G (DA3)
(νx)(νy)G ≡ (νy)(νx)G (DA4)

(νx)0 ≡ 0 (DA5)

G | (νx)H ≡ (νx)(G | H) if x �∈ fn(G) (DA6)
Lx[G] ≡ Ly[G{y/x}] if �y� ∩ fn(G) = ∅ (DA7)
(νx)G ≡ (νy)G{y/x} if y �∈ fn(G) (DA8)
x | G ≡ G if x ∈ fn(G) (DA9)

Lx[z | G]〈y〉 ≡ z | Lx[G]〈y〉 if z �∈ �x� (DA10)
L〈x〉[(νy)G] ≡ (νy)L〈x〉[G] if y �∈ |x| (DA11)

where the substitutions are required to be functions (to avoid node coalescing)
in axiom (DA7) and to respects the typing (to preserve well-formedness) in all
axioms.

Structural congruence respect free nodes, i.e. G ≡D H implies fn(G) = fn(H).
We call a graph flat whenever there is no design in its body. Flattening a

design is done by a kind of hyper-edge replacement [12] in the form of axioms
that are sometimes useful to be included in the structural congruence.

Definition 5 (flattening axiom). A flattening axiom flatL for some design
label L is of the form L〈y〉[G] ≡ G

In the following example we see how flattening is fundamental to characterise
classes of graphs by means of derived operators.

Example 2. Suppose that we want to characterise the set of a-labelled, acyclic,
and connected sequences. We can define an algebra with an element α in the
sequence, and a binary sequential composition ; . Both are derived operators
defined by α def= A(u,v)[a(u, v)] and X ;Y def= A(u,v)[(νw)(X〈u,w〉 | Y 〈w, v〉)],
where X and Y have type A. Clearly, the algebra as such constructs hierarchical
sequences, where e.g. (α; (α;α))〈x, y〉 and ((α;α);α)〈x, y〉 are not equivalent
graphs due to different nestings of A-labeled edges. Introducing flatA in the
algebra, instead, we have that the two former terms are identified, and intuitively
correspond to the normal form (νw1, w2)(a(x,w1) | a(w1, w2) | a(w2, y)).

The above example illustrates the two roles of the nesting operator: as a means
to wrap a graph and as a sort of typed interface to enable disciplined graph
compositions. The presence of flattening axioms makes the first role immaterial.

3 Graphical Interpretation of Workflows

This section presents the use of our graph-based language for algebraic workflow
specifications. We consider a minimal language that includes, nonetheless, typical
workflow ingredients and offers an attractive presentation of our technique.

A Graph Syntax for Processes and Services 51

F S
�� ��
�� �	f

��

�� �� • •�� ��

•

�� ��
�� �	d

�

��

				

◦u

• �� ���� �	b ��

��

•

• • �� ���� �	a ��

�� ��

• �� ���� �	e

��

◦
��

�� ���� �	⊕ �� • •		

• �� ���� �	c ��

•

Fig. 2. A simple workflow

A simple language for workflows. Our simple workflow language considers work-
flows of activities that can be composed in sequence, parallel or by branching.
The control flow is restricted to one entry point and two exit points: one for the
successful completion and one for error raising. Error-handling activities and er-
ror scopes are also considered. In addition, we consider synchronisation links as
present in some workflow languages like BPEL.

Figure 2 depicts a very simple example including all the ingredients: we see a
main composed flow with a failure handler f . The main flow starts with activity d
(whose overlining will be explained later) in parallel with a workflow consisting of
activity a, followed by a conditional choice between activities b and c (depending
on some expression e). A data dependency is imposed between b and d.

More precisely, the syntax of the workflow language is formally defined below.

Definition 6 (workflow). Let A be a set of activity names, E a set of expres-
sions, and U a set of synchronisation points. The set W of all workflows is the
set of terms generated by F in following syntax (where a ∈ A, e ∈ E and u ∈ U)

F ::= A | F ;F | if e then F else F | F |F | try F catch F
A ::= a | a(u) | a[u]

Informally, a is an asynchronous activity, a(u) is an activity of type a with
source link u, a[u] is an activity of type a with target link u, G;H is the sequen-
tial composition of structured flows G and H , if e then G else H introduces a
binary branch, i.e. a choice between flows G and H depending on the evalua-
tion of e, G | H is the parallel composition of structured flows G and H , and
try G catch H inserts a new error scope for flow G with fault handler H . As
an example, the workflow of Fig. 2 corresponds to the following workflow term
try d[u] | a; (if e then b(u) else c) catch f .

We consider a structural congruence that basically models the fact that se-
quential composition is associative and parallel composition is associative and
commutative. This is formally defined as follows.

52 R. Bruni, F. Gadducci, and A. Lluch Lafuente

Definition 7 (structural congruence). The structural congruence for work-
flows is the relation ≡W⊆ W × W, closed under workflow construction and
inductively generated by the following set of axioms

G; (H ; I) ≡ (G; H); I (wA1) G | (H | I) ≡ (G | H) | I (wA2) G | H ≡ H | G (wA3)

Workflow encoding. The encoding of our workflow language is depicted in Fig. 3.
We explain our graphical notation of design operations in detail here. An edge
is represented by a rounded box with its label inside. We see that the node
types that we use are • and ◦, which respectively represent control flow and
synchronisation links. We use an encircled circle � to denote an argument of
type ◦ in the encoding of activities. In case of encodings with more than one
argument for a type we denote the argument order explicitly by subscripting (see,
e.g., the two arguments of type F in the encoding of failure handling, sequence,
branching and parallel composition). Terminal edge labels include a, a for each
a ∈ A, e ∈ E and ⊕ which are respectively used to represent activities (with
overline for those with target links), expressions and to denote branch closing
(xor join). To improve visualisation impact, we use different kinds of arrows to
denote tentacles. A plain tentacle represents an entry point, while a simple arrow
indicates an ordinary exit point. A double arrow indicates the fault exit point. In
a conditional choice, the then branch is denoted with an ordinary arrow, while
the else branch is denoted with an arrow with a small circle on its tail. A bar-
ended tentacle denotes the synchronisation link of an activity. Link sources and
targets are respectively represented by concave and bar-ended tentacles. Finally,
we consider the non-terminal type F to stand for workflows. Dotted arrows denote
node exposure and an enclosing dotted box represents a design with its type on
the upper-left corner. All nodes are bound except for the argument names (as
in the case of synchronisation points in the encoding of activities).

The formal definition by means of our graph algebra is as simple as follows.

Definition 8 (workflow interpretation). The interpretation of the operators
of the workflow language over the design algebra is given by:

a def= F(in,out,fail)[a(in , out , fail)]
a(u) def= F(in,out,fail)[a(in , out , fail , u)]
a[u] def= F(in,out,fail)[a(in , out , fail , u)]
G;H def= F(in,out,fail)[(νmid)(G〈in ,mid , fail 〉 | H〈mid , out , fail 〉)]

if e then G else H def= (ν th1 , th2 , el1 , el2)F(in,out,fail)[e(in , th1 , el1)
| G〈th1 , th2 , fail 〉 | H〈el1 , el2 , fail 〉 | ⊕(th2 , el2 , out)]

G | H def= F(in,out,fail)[G〈in , out , fail 〉 | H〈in , out , fail〉]
try G catch H def= F(in,out,fail)[(νmid)FS〈in,out,fail〉[G〈in , out ,mid〉

| H〈mid , out , fail 〉]]

together with axiom flatF.

It is easy to prove that structural congruence amounts to design equivalence,
i.e. equivalent workflows amount to equivalent graphs. Note that thanks to axiom

A Graph Syntax for Processes and Services 53

[] : A× U → F

•

F •

• • �� ���� �	a ��

�

• •��

�

try catch : F × F → F

•

F •

FS •

• �� ��
�� �	

� �

�� ��F2

��

• • • �� ��
�� �	

� �

�� ��F1 ��

• •�� •��

| : F × F → F

•

F •

�� ��
�� �	

� �

�� ��F1

��

�� ��

• • • •��

�� ��
�� �	

� �

�� ��F2

��

�� ��

() : A×U → F

•

F •

• • �� ���� �	a ��

� �

• •��

�

; : F × F → F

•

F •

• • �� ��
�� �	

� �

�� ��F1 ��

�� ��

• �� ��
�� �	

� �

�� ��F2 ��

����

• •��

if then else : E × F × F → F

•

F •

• �� ��
�� �	

� �

�� ��F1 ��

�� ��

•

• • �� ���� �	e

��

◦

��

�� ���� �	⊕ �� • •��

• �� ��
�� �	

� �

�� ��F2 ��

�� ��

•

Fig. 3. Graphical encoding of a simple workflow language

DA11 node restriction can be equivalently placed in the innermost design (see
G;H), at the topmost level (see if e then G else H) or at any intermediate level
of nesting (see try G catch H).

Proposition 1. For any two workflows G and H we have G ≡W H iff G ≡D H.

4 Graphical Interpretation of CaSPiS

This section presents the graphical representation of CaSPiS by defining each
CaSPiS syntactic constructor as a derived operator of our graph algebra. We offer
a minimal presentation of CaSPiS and refer to [2] for a more detailed description.

54 R. Bruni, F. Gadducci, and A. Lluch Lafuente

Definition 9 (CaSPiS syntax). Let R be a set of session names, S a set
of service names and V a set of value names. A CaSPiS process P is a term
generated by the syntax

P ::= 0 | r � P | P > Q | (νw)P | P | P | A.P
A ::= s | s | (?x) | 〈u〉 | 〈u〉↑

where s ∈ S, r ∈ R, u ∈ V, w ∈ V ∪R and x is a value variable.

Service definitions and invocations are written like input and output prefixes in
CCS. Thus s.P defines a service s that can be invoked by s.Q. Synchronisation
of s.P and s.Q leads to the creation of a new session, identified by a fresh name
r that can be viewed as a private, synchronous channel binding caller and callee.
Since client and service may be far apart, a session naturally comes with two
sides, written r�P and r�Q , with r bound somewhere above them by (νr). Rules
governing creation and scoping of sessions are based on those of the restriction
operator in the π-calculus. Note that nested invocations to services will yield
separate sessions and thus hierarchies of nested sessions.

When two partner sides r � P and r � Q are deployed, intra-session communi-
cation is done via output and input actions 〈u〉 and (?x): values produced by P
can be consumed by Q, and vice-versa.

Values can be returned outside a session to the enclosing environment using
the return operator 〈 · 〉↑. Values can be consumed by other sessions, or used
locally to invoke other services, or to start new activities. This is achieved using
the pipeline operator P > Q . Here, a new instance of process Q is activated
each time P emits a value that Q can consume. Notably, the new instance of Q
will run within the same session as P > Q, not in a fresh one.

CaSPiS processes can be considered up to the structural congruence ≡C.

Definition 10 (CaSPiS congruence). The structural congruence ≡C is the
least congruence induced by the following laws

P | (Q | R) ≡ (P | Q) | R) (CA1) P | (νn)Q ≡ (νn)(P | Q) if n �∈ fn(P) (CA6)
P | Q ≡ Q | P (CA2) (νn)P ≡ (νm)P{m/n} if m �∈ fn(P) (CA7)
P | 0 ≡ P (CA3) A.(νn)P ≡ (νn)A.P if n �∈ A (CA8)

(νn)(νm)P ≡ (νm)(νn)P (CA4) r � (νn)P ≡ (νn)r � P if n �= r (CA9)
(νn)0 ≡ 0 (CA5) ((νn)Q) > P ≡ (νn)(Q > P) if n �∈ fn(P) (CA10)

(?x).P ≡ (?y).P{y/x} if y �∈ fn(P) (CA11)

CaSPiS encoding. We first define the alphabets of edge labels and nodes. The set
NT of design labels is composed by P , S,D, I, F and T which respectively stand
for Parallel processes, Sessions, service Definitions, service Invocations and pipes
(From and To). Sort T is further partitioned over 2V∪R (denoting each subsort
as TN) to deal with a common problem when encoding replicated processes (the
target process of a pipe is implicitly replicated for each value generated by the
source). The set T of edge labels contains def (service definition), inv (service
invocation), in (input), out (output) and ret (return). The node sorts considered
are ◦ (channels), • (control points), ∗ (service names, i.e. S) and � (values, i.e.
V). We assume that for each session name r there is a channel node.

A Graph Syntax for Processes and Services 55

The graphical representation of each design and edge label and their respective
types can be found in Fig. 4. For instance, designs of type P are all of the
form P(p,t,o,i)[G] where p is the control point representing the process start of
execution, t is the returning channel, i is the input channel and o is the output
channel. Designs of type D and I only expose the starting point of execution.

Definition 11 (CaSPiS interpretation). The interpretation of CaSPiS con-
structors as derived operators of the design algebra is given by

s.Q def= P(p,t,o,i)[t|o|i|D〈p〉[(νq, t′, o′, i′)(def(p, s, q)|Q〈q, t′, o′, i′〉)]]
s.Q def= P(p,t,o,i)[t|o|i| I〈p〉[(νq, t′, o′, i′)(inv(p, s, q)|Q〈q, t′, o′, i′〉)]]

r � Q def= P(p,t,o,i)[t|i|S〈p,o〉[Q〈p, o, r, r〉]]
Q > R def= P(p,t,o,i)[(νq,m)(F〈p,t,m,i〉[Q〈p, t,m, i〉]

|T fn(R)
〈m〉 [(νq, t′, o′)R〈q, t′, o′,m〉])]

Q|R def= P(p,t,o,i)[Q〈p, t, o, i〉|R〈p, t, o, i〉]
(νw)Q def= P(p,t,o,i)[(νw)Q〈p, t, o, i〉]

0 def= P(p,t,o,i)[p|t|o|i]
〈u〉.Q def= P(p,t,o,i)[(νq)(out(p, q, u, o)|Q〈q, t, o, i〉)]
〈u〉↑.P def= P(p,t,o,i)[(νq)(ret(p, q, u, t)|Q〈q, t, o, i〉)]
(?x).P def= P(p,t,o,i)[(νq, x)(in(p, q, x, i)|Q〈q, t, o, i〉)]

Part of the above definition is graphically represented in Fig. 4. As in Section 3
we use different arrow types to denote the different (ordered, typed) tentacles of
each edge. For example, for a design representing a process, a double arrow rep-
resents its returning channel, an outgoing arrow its output channel, an incoming
arrow its input channel and a plain arrow its control point. Again, arguments of
an operation are denoted by encircling the corresponding symbol. For instance,
double boxes correspond to design variables, while node arguments of type ◦, �
and � are represented by �, � and �, respectively.

We introduce flattening axioms flatP into ≡D, but not flatS, flatD, flatI, flatF
and flatNT. Hence, edges of type P are immaterial (they can be considered as
type annotations) and the only explicit hierarchies are given by session nest-
ing (S), service definition (D), service invocation (I) and pipelining (F and T).
Flattening processes allows for getting rid of the axioms for parallel composi-
tion (see [14]). The explicit embedding of sessions provides an intuitive visual
representation.

We explain just a few representative operations in detail. The session opera-
tions are interpreted as graph operations that wrap a process into a hierarchical
S-typed graph which exposes the control point and a return channel. The first is
associated to the control point of the resulting P -typed design, while the second
is connected to its output channel. Note how session embedding hides the input
and output channels of the embedded process: they are connected directly to the
dedicated inter-communication node of the session. Another interesting operation
is the pipeline. Here, the source and target process of the pipeline are embedded
in F - and T -typed designs. It is worth noting how the input and output channels
of each process are connected in a complementary way. The target process hides

56 R. Bruni, F. Gadducci, and A. Lluch Lafuente

. : S × P → P

� ◦

M ◦

D ◦ ◦ ◦ ◦��

• • • �� ���� �	def

�

�� • �� ���� �	
� �
�� ��P

		

��

◦ ◦ ◦		

〈 〉 . : V × P → P � : R× P → P

� ◦

M

◦ ◦ ◦��

• • �� ���� �	out ��

��

�

• �� ���� �	
� �
�� ��P

		

��

◦ ◦		

◦

P ◦ ◦ ◦��

S ◦

�� ��

◦ ◦		

• • • �� ���� �	
� �
�� ��P

		
��
�

> : P × P → P | : P × P → P

◦

P ◦

T ◦

F ◦

��

◦ �� ◦ ◦�� �� ��
�� �	

� �

�� ��P2

�� �� ◦ ◦ ◦��

�� ��
�� �	

� �

�� ��P1

 ��

		 ◦ • ◦��

• • •

◦

P

◦

�� ��
�� �	

� �

�� ��P1

��
�� ◦ ◦��

�� ��
�� �	

� �

�� ��P2

�� ��

��

��
◦ ◦		

• •

Fig. 4. Graphical representation of some CaSPiS interpreted operators

its control point and communication channels to denote that it is a non-active
process. When the source of the pipe is ready to send a value, a copy of the tar-
get process will be created and the control and channel nodes will be connected
as expected. Moreover, we note that the actual type for the target of the pipe
is T fn(R): in words, the type is indexed with the free names of R. This is neces-
sary to avoid node extrusion in a case in which we have no corresponding name
extrusion (CaSPiS congruence does not allow to extrude restricted names of the
target process of a type). In particular when w ∈ fn(R) the CaSPiS processes (νw)
(Q > R) and Q > (νw)R are not congruent, but neither are their corresponding
graphs P(p,t,i,o)[(νq, m, w)(F〈p,t,m,i〉[Q〈p, t, m, i〉]|T fn(R)

〈m〉 [(νq, t′, i′)R〈q, t′, o′, m〉])] and
P(p,t,i,o)[(νq, m)(F〈p,t,m,i〉[Q〈p, t, m, i〉]|T fn(R)\{w}

〈m〉 [(νq, t′, i′, w)R〈q, t′, o′, m〉])],because
they carry different T subtypes.

A Graph Syntax for Processes and Services 57

•

P S S

S S
�� ��
�� �	

� �

�� ��P1

		
�� a

�� ��
�� �	

� �

�� ��P4��

		

�� ��
�� �	

� �

�� ��P3

		
�� b

�� ��
�� �	

� �

�� ��P2��

		

�� ��

Fig. 5. Example of session nesting

Example 3. Let us illustrate our encoding with a simple example of session nest-
ing. Consider process (νa)(νb)(a � (P1|b �P2)|a �P3|b �P4). Two sessions a and b
have been created (as the result of two service invocations). Agent a � (P1|b �P2)
participates to sessions a and b (assume P1 is the protocol for a and P2 the one
for b), with the b side nested in a. The counter-party protocols for a and b are
P3 and P4, respectively. Figure 5 depicts a simplified graphical representation
of our example, where the graph has been elaborated (e.g. merging nodes for
intra-session communication, omitting isolated nodes and irrelevant tentacles)
to focus on the main issues and make immediate the correspondence with the
process term. It is worth to note that the graph highlights the fact that the return
channel of a nested session is pipelined into the output channel of the enclosing
session. More precisely, the return channel of the immediate session where P2

lives (i.e. b) is connected to the output channel of the session containing it, i.e.
the session channel a.

Example 4. As another illustrative example consider processes P1 > (P2 > P3)
whose (simplified) graphical representation is in Fig. 6. The graphical represen-
tation highlights various aspects of interest: the flow of the information via the
input and output channels, the fact that P2 and P3 are inactive protocols, and
the pipe nesting. Since > is not associative P1 > (P2 > P3) and (P1 > P2) > P3

are not structurally equivalent and this is faithfully reflected in the graphs.

•

P

T

F F • T •

◦ �� ��
�� �	

� �

�� ��P1�� �� ◦ �� ��

�� �	

� �

�� ��P2�� �� ◦ �� ��

�� �	

� �

�� ��P3��

Fig. 6. Example of pipelining

58 R. Bruni, F. Gadducci, and A. Lluch Lafuente

A main result of our work is that structural congruence amounts to design equiv-
alence, i.e. equivalent processes are mapped to isomorphic graphs.

Proposition 2. For any two processes P and Q we have P ≡C Q iff P ≡D Q.

5 Conclusion

We presented a preliminary step towards a general technique for the graphical
presentation of (possibly service-oriented) process calculi.

More precisely, we used our novel specification formalism based on a conve-
nient algebra of hierarchical graphs [3] to define encodings of process calculi
with inherently hierarchical aspects such as sessions, transactions or locations:
features which are of fundamental relevance, e.g. in the area of service-oriented
computing. In particular, together with the encoding of a simple language for
structured workflow with nested scope, we presented a novel graphical encoding
of CaSPiS, a recently proposed session-centered calculus.

The chosen encodings highlight the virtues of our graph algebra. First, its
syntax resembles the standard syntax of a process calculus, thus offering the
possibility of providing intuitive and simple encoding definitions. Second, we
can exploit the algebraic structure of both processes and graphs to show en-
coding properties by structural induction. Indeed, the main result of [3] already
guarantees that equivalent designs correspond to isomorphic graphs.

As explained in [3], the particular model of hierarchical graphs puts on a com-
mon ground other approaches that have been issued for modelling purposes like
the algebra of graphs of Corradini et al. [9], the interface graphs of the second au-
thor [14] (a flat model for encoding process calculi with names), the hierarchical
graphs of Plump et al. [11] (a suitable extension of traditional graph transforma-
tion) and the Bigraphs of Milner et al. [17]. We refer to [3] for a more accurate
comparison and we only remark here that one of the advantages of our model of
graphs regards the use of hierarchical edges over trees to model processes with an
explicit hierarchical structure (thus also recursive processes in the form of repli-
cation operators, pipes, etc.). In unstructured cases the approaches are basically
equivalent, with hierarchies possibly offering a more attractive visualisation.

Our final goal is to completely mimick the operational semantics of encoded
processes and in this line we believe that our model enjoys some good properties,
the main being that (though not shown here) the category of hierarchical graphs
admits pushouts along monos, which puts the basis for a pushout-based graph
rewriting mechanism. While the mimicking of reduction semantics seems rather
straightforward we also point to the more ambitious goal of mimicking labelled
transition system semantics, possibly in the form of SOS rules. For that purpose
we expect that recent approaches based on borrowed contexts [1] or structured
graph transformation [10] can be a good start point. The development of a
suitable dynamics for our algebras, and its characterisation in terms of graph
rewriting mechanisms, is the subject of ongoing work.

A Graph Syntax for Processes and Services 59

We believe that our approach can serve as an inspiration to equip well-known
graphical models of communication with syntactical notations that facilitate
the definition of intuitive and correct encodings of process calculi. We remark
that due to the lack of space we did not discuss the encoding of non-finite
processes in full detail. For instance, dealing with replication operators is by no
means difficult, by exploiting the hierarchical structure. Of course, the axiom
!P ≡!P | P would not hold, since the two terms would have different graphical
representations. However, it would suffice to introduce an unfolding operation,
possibly parametric in the free names of P , as it happens for the encoding of
pipe operators in CaSPiS.

We already applied our technique to other calculi. For instance, we developed
an encoding of the best-known nominal calculus, the π-calculus. The encoding is
roughly equivalent to the one in [14]. We also focused on service oriented calculi
testing our technique on a calculus of transactions called sagas [7], and a calculus
with locations and multi-party sessions called μse [4].

We plan to propose our algebra as primitive syntax for ADR [6], our graph-
based approach to architectural design and reconfiguration. As a matter of fact,
we are working to integrate the presented approach in our prototypical implemen-
tation of ADR [5]. A preliminary version is available in the form of a visualiser
(see www.albertolluch.com/adr2graphs/). We remark that our approach pro-
poses a graphical representation of configurations but it is not intended to be
a visual presentation: the graph structures we propose might be used as the
formal, facilitating support of some particular kind of appealing diagrams. This
issue remains to be investigated.

References

1. Bonchi, F., Gadducci, F., Monreale, G.V.: Reactive systems, barbed semantics, and
the mobile ambients. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp.
272–287. Springer, Heidelberg (2009)

2. Boreale, M., Bruni, R., De Nicola, R., Loreti, M.: Sessions and pipelines for struc-
tured service programming. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008.
LNCS, vol. 5051, pp. 19–38. Springer, Heidelberg (2008)

3. Bruni, R., Gadducci, F., Lluch Lafuente, A.: An algebra of hierarchical graphs.
In: Hofmann, M., Wirsing, M. (eds.) TGC 2010. LNCS. Springer, Heidelberg (to
appear 2010), http://www.albertolluch.com/papers/adr.algebra.pdf

4. Bruni, R., Lanese, I., Melgratti, H.C., Tuosto, E.: Multiparty sessions in SOC. In:
Lea, D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 67–82.
Springer, Heidelberg (2008)

5. Bruni, R., Lluch Lafuente, A., Montanari, U.: Hierarchical design rewriting with
maude. In: Rosu, G. (ed.) WRLA 2008. Electronic Notes in Theoretical Computer
Science, vol. 238(3), pp. 45–62. Elsevier, Amsterdam (2009)

6. Bruni, R., Lluch Lafuente, A., Montanari, U., Tuosto, E.: Style Based Architectural
Reconfigurations. Bulletin of the European Association for Theoretical Computer
Science (EATCS) 94, 161–180 (2008)

7. Bruni, R., Melgratti, H.C., Montanari, U.: Theoretical foundations for compensa-
tions in flow composition languages. In: Palsberg, J., Abadi, M. (eds.) POPL 2005,
pp. 209–220. ACM, New York (2005)

www.albertolluch.com/adr2graphs/
http://www.albertolluch.com/papers/adr.algebra.pdf

60 R. Bruni, F. Gadducci, and A. Lluch Lafuente

8. Bundgaard, M., Sassone, V.: Typed polyadic pi-calculus in bigraphs. In: Bossi, A.,
Maher, M.J. (eds.) PPDP 2006, pp. 1–12. ACM, New York (2006)

9. Corradini, A., Montanari, U., Rossi, F.: An abstract machine for concurrent mod-
ular systems: CHARM. Theoretical Computer Science 122(1-2), 165–200 (1994)

10. Drewes, F., Hoffmann, B., Janssens, D., Minas, M., Eetvelde, N.V.: Shaped generic
graph transformation. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007.
LNCS, vol. 5088, pp. 201–216. Springer, Heidelberg (2008)

11. Drewes, F., Hoffmann, B., Plump, D.: Hierarchical graph transformation. Journal
on Computer and System Sciences 64(2), 249–283 (2002)

12. Drewes, F., Kreowski, H.-J., Habel, A.: Hyperedge replacement, graph grammars.
In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph
Transformations. Foundations, vol. 1, pp. 95–162. World Scientific, Singapore
(1997)

13. Ferrari, G.L., Hirsch, D., Lanese, I., Montanari, U., Tuosto, E.: Synchronised hy-
peredge replacement as a model for service oriented computing. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111,
pp. 22–43. Springer, Heidelberg (2006)

14. Gadducci, F.: Term graph rewriting for the pi-calculus. In: Ohori, A. (ed.) APLAS
2003. LNCS, vol. 2895, pp. 37–54. Springer, Heidelberg (2003)

15. Gadducci, F., Monreale, G.V.: A decentralized implementation of mobile ambients.
In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS,
vol. 5214, pp. 115–130. Springer, Heidelberg (2008)

16. Grohmann, D., Miculan, M.: An algebra for directed bigraphs. In: Mackie, I.,
Plump, D. (eds.) TERMGRAPH 2007. Electronic Notes in Theoretical Computuer
Science, vol. 203(1), pp. 49–63. Elsevier, Amsterdam (2008)

17. Jensen, O.H., Milner, R.: Bigraphs and mobile processes. Technical Report 570,
Computer Laboratory, University of Cambridge (2003)

A Formalisation of Adaptable Pervasive Flows�

Antonio Bucchiarone1, Alberto Lluch Lafuente2,
Annapaola Marconi1, and Marco Pistore1

1 FBK-IRST, via Sommarive 18, 38050, Trento, Italy
{bucchiarone,marconi,pistore}@fbk.eu

2 Department of Computer Science, University of Pisa
lafuente@di.unipi.it

Abstract. Adaptable Pervasive Flows is a novel workflow-based paradigm for
the design and execution of pervasive applications, where dynamic workflows
situated in the real world are able to modify their execution in order to adapt to
changes in their environment. In this paper, we study a formalisation of such flows
by means of a formal flow language. More precisely, we define APFoL (Adapt-
able Pervasive Flow Language) and formalise its textual notation by encoding it
in Blite, a formalisation of WS-BPEL. The encoding in Blite equips the language
with a formal semantics and enables the use of automated verification techniques.
We illustrate the approach with an example of a Warehouse Case Study.

1 Introduction

Flows are models defining a set of activities to be done, and their relations with each
other. Flows are deeply seated in many fields, including business processes and service
oriented computing. The flow modeling paradigm is often used either implicitly or ex-
plicitly in many real life situations. In this paper, we concentrate on a novel usage of
flows, which is being investigated by the ALLOW project [1]: the usage of flows as a
new programming paradigm for human-oriented pervasive applications. More precisely,
Adaptable Pervasive Flows (APFs) [10] are proposed as an extension of traditional
workflow concepts [19] in order to make them more flexible with respect to their perva-
sive execution environment. APFs are dynamic workflows situated in the real world that
modify their execution in order to adapt to changes in their environment. This requires
on the one hand that a flow must be context-aware: during execution it must be possi-
ble to obtain information on the underlying environment (e.g. relevant information on
world entities, status of other flows, human activities). On the other hand flow models
must be flexible enough to allow an easy and continuous adaptation. APFs are based on
WS-BPEL [5], a well-known language for specifying flows in a Web Service setting,
and extend it in order to implement all the aspects related to pervasive applications.

In [16] the authors define one of these extensions to WS-BPEL. More precisely, they
define a set of constructs that allow a convenient way of embedding the adaptation
logic within the specification of an APF and show how WS-BPEL can be extended

� Research supported by the EU, STREP project Allow IST-324449 and Sensoria, IST-2005-
016004.

C. Laneve and J. Su (Eds.): WS-FM 2009, LNCS 6194, pp. 61–75, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

62 A. Bucchiarone et al.

to support the proposed constructs. These constructs allow for capturing interesting
cases of adaptation in pervasive applications that are difficult to address with classical
workflows and with the standard WS-BPEL language. In this paper, we extend the work
in [16], by providing a formal model for APFs and for the extensions of WS-BPEL
related to the adaptation logics. This is a significant extension of the previous work
since, due to the high dynamicity of pervasive applications, formal methods become
crucial to drive design disciplines, equip existing languages with well-defined semantics
and increase the reliability by means of automated verification.

Web services are a good example where many efforts are being invested on the de-
velopment and application of formal methods. For instance, there have been various
proposals to define formal semantics for WS-BPEL, typically by means of process cal-
culi (e.g. [12], [15]), Petri nets (e.g. [14], [18]), or graphs (e.g. [7]).

In this paper we propose APFoL, a formal language for adaptable pervasive flows.
Amongst the various formal approaches to flow languages we have chosen Blite [13]
as a starting point. Blite is a process calculus that captures a significant part of the
WS-BPEL language. We build our language as an almost straightforward extension of
Blite. More precisely, we equip the language with abbreviations to deal with adaptation
mechanisms, flow constructs and activity types typical of adaptable pervasive flows.
The formal language proposed permit us to formally specify the built-in adaptation
constructs informally proposed in [16].

This document is structured as follows. Section 2 introduces a scenario from the
Warehouse Case Study of the Allow project [1] while Section 3 presents the background
that is used in section 4 where our flow language is introduced. Section 5 illustrates our
language with an example drawn from the Warehouse Case Study. Finally, Section 6
draws conclusions and outlines current and future work.

2 The Running Example: Warehouse Management

We present a scenario from the Warehouse Case Study of the Allow project [1], namely
the management of a warehouse that we will use as a reference for all the examples
within this document. The main aim of warehouse management is to organize and con-
trol the transport and storage of goods within a warehouse. This is achieved through
the definition and processing of complex transactions, including shipping, receiving,
put-away, picking and issuing of goods. The objective of the warehouse management
system is to provide a set of computerised procedures supporting all the aforementioned
activities: from the handling of goods reception, storage and shipping, to the manage-
ment of all the physical storage facilities.

Warehouse management often utilizes auto AIDC (Automatic Identification and Data)
technology, such as bar-code scanners, mobile computers, wireless LANs and potentially
RFID (Radio Frequency Identification) to efficiently monitor the flow of products. Cur-
rent systems require that, once data has been collected, synchronization with a central-
ized system is performed. The centralized system is in charge of controlling all aspects
of warehouse management. Pervasive flows offer the possibility to distribute the control
logics and hence to improve flexibility and context awareness of the executed processes.

A Formalisation of Adaptable Pervasive Flows 63

Fig. 1. Warehouse structure

The (logical and physical) structure of a warehouse is described by Figure 1. Doors
are the locations where the goods arrive at or leave the warehouse. Trucks drive up to
the doors of a warehouse in order to unload or load goods there. Staging areas are used
for interim storage of goods in the warehouse. These are located in close proximity
to the doors associated to them. The storage area is organized in several zones corre-
sponding to different storage types. Storage types are physical or logical subdivisions
of a warehouse complex, characterized by its warehouse technique, the space used, its
organizational form, or its function.

Warehouse management requires the execution of different procedures which refer to
the different objects and human actors, including good receipt, issuing and transfer. Here
we focus on the first procedure, which describes the three steps (see Figure 2) that have to
be performed when the goods arrive at the warehouse: delivery (a truck has reached the
warehouse and is docked at a door); unload (goods are unloaded and temporally stored
in the staging area); and put-away (goods are moved to the storage area).

Fig. 2. Good receipt procedure

3 Background

Our work is strongly based on a proposal for the extension of WS-BPEL to deal with
adaptation [16] and the process calculus Blite [13].

64 A. Bucchiarone et al.

3.1 WS-BPEL and APFs

Similar to the well-known workflows, APFs consist of a set of activities and a corre-
sponding execution order, which is specified using control elements such as sequence,
choice or parallel operators. After a deep analysis and comparison of todays workflow
standards using criteria such as industry impact, robustness aspect and extensibility [2],
the ALLOW project has chosen WS-BPEL as a nucleus for an APF language.

A particular feature of APFs is that they are situated in the real world. This realizes
the pervasiveness of the flows and is achieved in two ways. First, the flows are logically
attached to physical entities (which can be either objects or humans) and move with
them through different contexts. Secondly, they run on physical devices (e.g. PDAs,
desktops). Todays workflow languages (e.g. WS-BPEL) provide no possibility to ex-
plicitly model the context model and constraints on the workflow environment. The per-
vasiveness of a WS-BPEL workflow can be specified only through ad-hoc interactions
with external context-aware services. Clearly, this solution affects the readability and
transparency of the pervasive aspect within the specified workflow. A first extension [9]
that has been done aims at providing a modeling approach to annotate WS-BPEL pro-
cesses with contextual constraints and an execution model to monitor those constraints
during process execution.

Another important aspect of APFs is their adaptiveness. A flow is a dynamic entity
that modifies its execution in order to adapt to changes in the execution environment. A
key enabling factor for automated adaptation mechanisms is a convenient way of em-
bedding the adaptation logic within the specification of a flow. Adaptation mechanisms
cannot be limited to standard recovery constructs (e.g. fault/event/compensation han-
dlers in WS-BPEL), but should also support the specification of flexible context-aware
reactions to adaptation needs that can be used to handle run-time flow deviations with-
out requiring a flow recovery/failure. The aim of the work in [16] is to present a set of
primitives and principles that can support the encoding of context-aware run-time devi-
ations and changes within a flow model in a secure (from an execution perspective) and
convenient (from a modelling perspective) way. The authors propose a set of built-in
adaptation modeling constructs that can be useful to add dynamicity and flexibility to
flow models and for each construct they define the corresponding WS-BPEL extension.
In particular, the proposed constructs are (i) conditional branches within flows with
context conditions as guard conditions, (ii) context handlers that allow to automatically
react to context conditions violation during the execution of the flow, and (iii) constructs
that allow to specify a set of alternative scopes, each handling a specific execution con-
text, and that allow to jump at run-time from one scope to another, whenever the context
changes or the assumptions on the context turn out to be wrong.

3.2 WS-BPEL and Blite

Blite [13] is a formal language for describing web service orchestrations. It has been
designed as a formal model to capture the essentials of WS-BPEL, a de-facto standard
for describing web services. Blite is a process calculus and as such it has a well-defined
notion of syntax and operational semantics. The language includes features such as

A Formalisation of Adaptable Pervasive Flows 65

Table 1. Syntax of Blite

Basic activities b ::= inv � i o x̄ | rcv � r o x̄ | x := e invoke, receive, assign
| empty | throw | exit empty, throw, exit

Structured activities a ::= b | if(e){a1}{a2} | while(e) {a} basic, conditional, iteration
| a1 ; a2 | ∑ j∈J rcv � r

j o j x̄ j ; a j sequence, choice (with | J |> 1)
| a1 | a2 | [a • a f � ac] parallel, scope

Start activities r ::= rcv � r o x̄ | ∑ j∈J rcv � r
j o j x̄ j ; a j receive, choice

| r ; a | r1 | r2 | [r • a f � ac] sequence, parallel, scope

Services s ::= [r • a f] | μ � a | μ � a , s definition, instance, multiset

Deployments d ::= {s}c | d1‖ d2 deployment, composition

service definition and instantiation, typical flow constructs, communication primitives
and failure handling and compensation mechanisms. We offer here a brief, intuitive
overview of Blite and refer to [13] for a detailed presentation.

The syntax of the Blite language is summarised in Table 1 (borrowed from [13]). Ba-
sic activities include variable assignments, flow success related operations (throw and
exit) and communication primitives to send (inv) or receive (rcv) values from partner
links. Structured activities organise basic activities in flows by using typical flow con-
structs such as branches, sequences, loops, fork&join and (input-prefixed) choices1. In
addition, scopes can be defined with appropriate failure and compensation activities.
Start activities are structured activities starting with a choice of receive operations. The
reason for this is that service definitions are inactive until they receive a request. Ser-
vices already instanced, instead are represented by their memory μ (an assignment of
values to variables) and their flow (a structured activity). Deployments (i.e. the system)
are sets of correlated services.

4 A Formal Language for Adaptable Pervasive Flows

This section presents our formalisation of adaptable pervasive flows in terms of a flow
language that we call APFoL.

We present here our language for adaptable pervasive flows, describing each ingredi-
ent and giving its encoding in Blite. It is worth mentioning that the encoding automati-
cally equips our language with a formal semantics.

We start offering an informal presentation of our visual notation, which we plan to
formalise in the future, possibly by means of a graphical encoding of our language.
Here we just present the informal visual notation as Figures 3, 4 and 5, that act as an
illustration of the textual notation that we shall describe in detail.

We now present the textual notation of APFoL (summarised in Table 2), which ba-
sically extends the syntax of Blite (c.f. Table 1) with ad-hoc constructs for built-in
adaptation mechanisms.

1 Called pick in [13] but choice here to avoid confusion with the pick flow construct of APFoL.

66 A. Bucchiarone et al.

Fig. 3. Visual syntax for Flow Activities of Table 2

Fig. 4. Visual syntax for Flow Instances (Part-I) of Table 2

Fig. 5. Visual syntax for Flow Instances (Part-II) of Table 2

A Formalisation of Adaptable Pervasive Flows 67

The main differences with respect to Blite’s syntax regard basic and structured ac-
tivities. We call them called basic and structured flows in APFoL to avoid confusion
and stick to the APF slang. They include some new constructs to model the relevant
primitives of adaptable pervasive flows. Services and deployments remain identical but,
again, we call them differently (flows and flow systems) to avoid confusion. Finally, we
avoid presenting the productions for start flows for simplicity: they are a straightfor-
ward adaptation of those for start activities in the same way as flow instances are an
adaptation of activity instances.

First, APFoL includes the same control flow constructs of Blite. In addition, even if
not part of the primitive syntax summarised in Table 1, APFoL includes typical control
flow constructs such as different forms of branching (e.g. switch) and looping (e.g. loop-
exit) which are straightforwardly encoded in Blite.

An abstract activity A(x) represents either a partial design-time specification of a
flow model or an abbreviation of a complex activity. Abstract activities are modelled
just as function symbols A of type fa (flow activity) or fr (start activity), thus A(x) : fa∪fr
in Table 2. For each such symbol we assume a definition to exist (for abbreviations) or
to be given at run-time (for partial designs). Refining an abstract activity then means

Table 2. Syntax of APFoL

Flow activities fa ::= sinv l o x̄ | srcv l o x̄ | aτ invoke, receive, internal
| 〈ex〉 | A(x) context event, abstract activity

Flows instances f ::= fa | if(e){f1}{f2} | while(e) {f} basic, conditional, iteration
| f1 ; f2 | f1 | f2 sequence, parallel

| � f �c
a | picki∈J(ei → fi) constrained scope, pick

| cIFi∈J(ci → fi) contextual IF

| �f �

e1

f1�

en

fn�

e′1
f ′1�

e′m
f ′m�

e′′1
f ′′1�

e′′l
f ′′l� context handler

| one − of� f1�
c1
r1 . . . � fn�

cn
rn contextual one-of

Flows ff ::= [fr • f] | μ � f | μ � f , ff definition, instance, multiset

Flow system fs ::= {ff}c | fs1‖ fs2 deployment, composition

Table 3. Blite encoding of the main ingredients of APFoL

Sending activity sinv q o x̄ def
= inv 〈id, q〉 o x̄ ; rcv 〈id〉 o ack

Receiving activity srcv q o x̄ def
= rcv 〈id, q〉 o x̄ ; inv 〈q〉 o ack

Context event 〈e x̄〉 def
= rcv ContextManager gete x̄

Internal event 〈e〉 def
= while(e){empty}

Constrained scope � f �c
a

def
= 〈c〉 [{ f }¬c | (〈¬c〉; throw) • a ∗ empty]

Pick picki∈J(ei x̄i → ai)
def
=
∑

i∈J(〈ei x̄i〉 ; ai)
Contextual IF cIFi∈J(ci → fi)

def
= switchi∈Jci → � fi�

ci
throw

68 A. Bucchiarone et al.

replacing the left-hand side of a definition by its right-hand side. Clearly, this is not a
real extension of the language and is standard machinery of all algebraic specifications.

Communication activities allow for sending (resp. receiving) a message to (resp.
from) another flow. Invoke and receive activities are synchronous. Thus we encode
them as suggested in [13] by the authors of Blite, namely by a pair of receive and in-
voke actions. In the definition, id stands for the flow instance identity. A sending activity
is thus encoded as the invocation of operation o at partner l, where the identity of the
flow is passed to receive the response. Similarly, the receive activity expects to receive
an invocation of operation o at himself (id) together with the invoker’s identity q which
is used to send the response.

Data manipulation activities are internal activities that change the value of local vari-
ables and do not interact with their environment. Data manipulation activities are mod-
elled as structured activities whose component basic activities aτ are all assignments.
Note that the grammar for aτ can be given but, for the sake of a clear presentation, prefer
to avoid adding an ad-hoc syntactical category and its (rather redundant) productions.

Human interaction activities are activities that require an interaction with a human,
e.g. displaying or getting information through a device. Human interaction activities are
modelled as communication operations, since devices are represented by flows.

Context events are a special type of activities for receiving events broadcasted by a
particular entity called Context Manager. More precisely, during this activity the flow
execution waits until the event is received. We model context events as particular receive
operations. More precisely, we shall model context managers as services that broadcast
their events e via replicated sending operations named gete. Thus, the reception of the
event is modelled as a reception operation with the context manager as partner, opera-
tion gete and the corresponding tuple of values.

We shall also use a sort of internal events, denoted by 〈e〉 whose meaning is to wait
until the expression (i.e. a condition or trigger) e is true.

A constrained scope � f �c
a is a flow f enclosed into a scope with unique entry and

exit points, a constraint c and adaptation a (triggered if the constraint is not valid). They
are represented in our syntax by terms of the form � f �c

a, where f is the normal flow, c is
the constraint and a is the adaptation to be performed in case the condition fails inside
the scope. This is modelled in Blite by exploiting the failure mechanism. First, we wait
until the condition is true. Then we open a Blite scope where we put a condition observer
flow in parallel with the normal flow conditioned to ¬c2. Conditioning is necessary to
avoid the normal flow to progess in case the context condition violated. Note that this
semantics does not really interrupt the flow. The exception is raised and the failure code
performs the adaptation activity, only when the observer is executed.

A pick is a branching point in the process where the alternatives are based on events,
rather than the evaluation of expressions. More precisely, it is the receipt of a message or
of a context event that determines which of the paths will be taken. Event-based decision
is modelled by a non deterministic choice of activities preceded by the corresponding
triggering event.

2 This is done by inserting a condition (in form of an internal event) between each activity and
can be easily defined in a recursive manner.

A Formalisation of Adaptable Pervasive Flows 69

�main�

fault1
ff 1 � . . .

faultn
ff n �

event1
ef 1 � . . .

eventm
ef m �

block1

bf 1 � . . .

blockl

bf l � def
=

new done;
done := false;
�{main}suspend

| fault1 → throw
| . . .
| faultn → throw
| event1 → ef 1

| . . .
| eventm → ef m

| block1 → bf 1; done := true
| . . .
| blockl → bf l; done := true

�fault1∨...∨fault1n
switch{fault1→ff1...faultn→ff n}

suspend def
= (¬done ∧ block1) ∨ . . . ∨ (¬done ∧ blockl)

Fig. 6. Context handler in Blite

A contextual IF allows to define several flow fragments as possible branches in the
execution of the flow. Each flow fragment has an associated context condition. We can
define also one flow fragment without a context condition, which will encode the default
behaviour. The operational semantics of this construct is similar to a traditional if: the
first fragment for which the context condition holds will be selected and executed.

A context handler is a particular flow associated to a main flow or flow scope. It spec-
ifies an alternative flow (in the form of a contextual IF) to be applied if a corresponding
scope condition is violated. There are various forms of conditions within the context
handler flow.

– Fault-triggering suspend all active tasks in the main flow and execute the corre-
sponding error-handler. If the main flow is a flow scope, the fault is propagated to
the enclosing scope.

– Event-triggering conditions can be non-blocking (execution of the main flow pro-
ceeds normally and the corresponding flow is executed concurrently) or blocking
(execution of the main flow suspends, then the corresponding flow is executed and
finally the main flow is resumed).

The encoding of context handlers in Blite is defined in Figure 6. The construct consists
of a main flow main and three sets of observers: fault-handlers, non-blocking event
handlers, and blocking event handlers, whose triggers are respectively denoted by fault,
event and block, while the corresponding flows are respectively denoted by ff , ef and
bf . The idea is as follows: the main flow (conditioned to suspend) is put in parallel with
various observers one for each fault and event trigger. When a fault condition triggers,
an error is raised and handled by the error handler which selects a fault and fires the cor-
responding flow. Non-blocking events trigger the corresponding flow. Blocking events
perform similarly, but note that the suspend condition depends on the blocking event

70 A. Bucchiarone et al.

one − of� f1�
c1
r1 . . . � fn�

cn
rn

def
=

new success;
loop

switch
c1 → � f1; success := true�c1

r1

. . .
cn → � fn; success := true�cn

rn

if(success) exit;

Fig. 7. Contextual One-of in Blite

conditions: if one of them is true and the corresponding flow has not been performed,
the main flow remains suspended until done becomes true3.

A contextual one-of consists of a set of alternative flow fragments, each of them asso-
ciated to a contextual condition modeling the contextual assumption for that fragment,
and a rollback flow that can be executed to undo the partial and unsuccessful work of
the fragment. At run-time, the first flow fragment for which the contextual condition
holds is chosen and executed. During the fragment execution, its context condition is
monitored and, as soon as it is violated, the following actions are performed:

1. stop execution: all running activities within the fragment are stopped;
2. undo partial work: the roll-back flow associated to the current fragment is executed;
3. context jump: the first fragment for which the associated context holds is executed

and its context condition is monitored.

Roll-back flows can throw fault/exceptions (e.g. to handle the fact that the work done
within the fragment cannot be undone), and in this case the flow is terminated following
normal flow fault handling. If this is not the case, and the roll-back flow completes
successfully, the main flow is considered successfully running.

The encoding in Blite is rather easy, a loop is used to guarantee that performing a
rollback returns to the selection of one of the choices. The only way to exit a loop is to
successfully finish one of main flows.

When using the contextual one-of, it may be the case that, when jumping from one
execution context to another, we do not want to undo the work done or the complete flow
rollback is not possible. The cross-context link(CL) is designed especially for this case.
CLs connect two activities of different scopes within a contextual one-of. CLs allow
adapting to a context change by jumping from a certain execution state of the current
activity (source activity) to an execution activity (target activity) of another fragment
suitable for the actual context. After the jump the flow instance must be in a consistent
state. Therefore, a CL has an associated flow needed to prepare the flow to the jump. At
runtime, if the contextual condition associated to the running scope turns out to be false,
two possibilities are considered:

3 Note that in order to guarantee a unique done variable we declare it as new at the beginning of
the encoding. This is not a feature of Blite but can be added straightforwardly by considering
the local store μ as a stack of assignment sets instead of a plain set.

A Formalisation of Adaptable Pervasive Flows 71

CL� f1�
c1
r1 . . . � fn�

cn
rn

def
=

new success; new next flow; next flow := any;
loop

switch
c1 ∧ proceed(1)→ � f1; success := true�|c1 |

r1

. . .
cn ∧ proceed(n)→ � fn; success := true�|cn |

rn

if(success) exit;

Fig. 8. Contextual One-of with CLs in Blite

1. if there exists some context link leaving the active activity for which the context
condition holds:

(a) the roll-back flow associated to the cross-context link is executed
(b) the monitoring for the new context condition is activated
(c) the flow execution is re-started from the target activity of the CL

2. otherwise the condition violation is handled as described for the standard contextual
one-of.

The encoding in Blite is similar to the encoding of ordinary contextual one-of. The first
difference is that the guard of each flow fi is enriched with proceed(i) which is an abbre-
viation for next f low = i ∨ next f low = any. This serves to control which flow should
be executed next. The second difference is that each compensation c must take the ad-
hoc roll-back flows for cross-context jumps into consideration. With |c| we denote the
introduction of a choice that decides whether to apply the ordinary compensation c or
the roll-back flow associated to the jump to the next flow.

5 The Box Unloading Example

In this section we present a complete example that summarizes most elements intro-
duced before. For exemplification, we consider the box flow. A first problem that can
occur here is that the box can be damaged. The damage may have occurred either be-
fore, during transportation, but it may also occur at any point while the box is being
unloaded to the staging area, or moved to the storage area.

In Figure 9 we use the Contextual OneOf construct to model the handling of dam-
aged boxes. In case the box is not damaged, the first flow scope is chosen and executed.
If at any point the box gets damaged, the context condition not(b.damaged) is violated
and the onContextChange flow is executed. That is, pending activities for unloading
and/or storing are canceled (e.g. the reserved staging/storage location is made available
for other boxes, the request for unloading/storing sent to workers are revoked). The
specific activities to be performed clearly depend on the state of execution, due to this
abstract activities are specified, namely Cancel Unloading and Cancel Storing and at
run-time they will be refined with context-specific concrete activities. Once the onCon-
textChange flow is executed, the control goes back to the OneOf and the scope handling

72 A. Bucchiarone et al.

Fig. 9. The Box Unloading example

damaged boxes is executed. If at some point in the execution of the flow scope for han-
dling damaged boxes the box is repaired, the context condition associated to the scope
(b.damaged) is violated, the execution stops and the onContextChange flow is executed.
This way, the box is brought to a waiting area and its position is updated, and then the
scope for handling undamaged boxes can start.

Another built-in construct exploited within the example in Figure 9 is the contex-
tHandler. In particular, during the execution of the Unload Me refinement, it may be
the case that the assigned staging location is no more available. If this is the case, the
contextual constraint wa.free(stgLoc), monitored during the whole execution of the re-
finement flow, is violated and the contextHandler is executed. Since the handler is de-
fined as a blocking event, the execution of the main scope is suspended, then the handler
flow is executed and then the main scope is resumed.

The APFoL code of this example is flow Box Unloading shown in Figure 5, while its
WS-BPEL code is listed in [3].

A Formalisation of Adaptable Pervasive Flows 73

Box Unloading def
= one − of�notDamaged�c1

occ1�Damaged�c2
occ2

c1
def
= not(b.damaged)

occ1
def
= CancelUnloading;

CancelS toring
c2

def
= b.damaged

occ2
def
= BringtoUnloadingArea;

U pdateBoxPosition

notDamaged def
= UnloadMe(b, iLoc, stgLoc);

S toreMe(b, stgLoc, strLoc)

UnloadMe(b, iLoc, stgLoc) def
= �main�

blockl

bf l �
S toreMe(b, stgLoc, strLoc) def

= . . .

main def
= 〈PickedU p (∗b,w, cLoc)〉;

sinv w CarryMe (∗w, iLoc, stgLoc);
〈Dropped (∗b,w, cLoc)〉

block1
def
= not(wa. f ree(stgLoc))

b f 1
def
= sinv wa StagingUnavail (∗b, ∗wa, stgLoc) ;
〈NewUnloadingLoc (∗b, ∗wa, stgLoc)〉

Damaged def
= BringtoDamagedArea;
EvaluateDamage;
if(repairable){f1}{f2}

f1
def
= HandleDamagedBox

f2
def
= sinv wa ReportDamage (∗b, ∗wa);

sinv wa ReorderDamagedStock (∗b, ∗wa)

Fig. 10. APFoL encoding of flow Box Unloading

6 Conclusion and Future Work

We have described a preliminary version of APFoL, a language for adaptable pervasive
flows with formal support. More precisely, we have presented a language whose textual
notation is based on Blite [13], a process calculus for WS-BPEL.

The formalisation of the language equips the language with a well-defined (and
hence non-ambiguous) semantics. More precisely, the formalisation as a process cal-
culus (Blite) facilitates the use of automated verification techniques. Some support for
the analysis and verification of Blite specifications exists (an encoding from Blite into
another calculus with tool support [4]), but we are working in a direct implementation
of Blite semantics in the rewrite engine Maude [8], in order to exploit its generic built-
in capabilites in form of analysis tools such as a model checker and a theorem prover.
With suchan implementation at hand, APFoL can be implemented as a derived rewrite
theory in Maude.

Our approach has been illustrated with examples from the Warehouse case study of
the Allow project [1].

74 A. Bucchiarone et al.

We plan to develop a graph-based formalisation of our visual notation, possibly bas-
ing existing techniques for the graphical encoding of process calculi (e.g. [6]). The main
goals of having a formal graph-based representation is formalise the relation betweeen
textual and visual notation and to enable the use of graph transformation techniques,
and their corresponding tools.

In the future we would like to investigate the connection with apparently similar
approaches in the data base community around the notion of business artifacts [17,11],
which are flows attached to physical objects moving through different contexts.

Acknowledgments

The authors would like to thank Roberto Bruni for sharing with us his knowledge on
WS-BPEL formalisations and the authors of Blite (Rosario Pugliese, Francesco Tiezzi
and Alessandro Lapadula) for providing us with useful material.

References

1. EU-FET project 213339 ALLOW, http://www.allow-project.eu/
2. D3.1 Basic flow-model and language for Adaptable Pervasive Flows. ALLOW Project De-

liverable (November 2008)
3. APFoL homepage, http://www.antoniobucchiarone.it/APFoL.html
4. Blite: A formal account of WS-BPEL, http://rap.dsi.unifi.it/blite/
5. OASIS WSBPEL Tecnical Committee. Web Services Business Process Execution Language,

version 2.0 (2007), http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0
6. Bruni, R., Gadducci, F., Lluch Lafuente, A.: A graph syntax for processes and services. In:

9th International Workshop on Web Services and Formal Methods, WS-FM 2009 (2009)
7. Bundgaard, M., Glenstrup, A.J., Hildebrandt, T.T., Højsgaard, E., Niss, H.: Formalizing

higher-order mobile embedded business processes with binding bigraphs. In: Lea, D., Zavat-
taro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 83–99. Springer, Heidelberg
(2008)

8. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı́-Oliet, N., Meseguer, J., Talcott, C.: All
About Maude - A High-Performance Logical Framework. How to Specify, Program and
Verify Systems in Rewriting Logic. LNCS, vol. 4350. Springer, Heidelberg (2007)

9. Eberle, H., Fll, S., Herrmann, K., Leymann, F., Marconi, A., Unger, T., Wolf, H.: Enforce-
ment from the inside: Improving quality of bussiness in process management. In: IEEE 7th
International Conference on Web Services, ICWS 2009 (2009) (to appear)

10. Herrmann, K., Rothermel, K., Kortuem, G., Dulay, N.: Adaptable Pervasive Flows - An
Emerging Technology for Pervasive Adaptation. In: Workshop on Pervasive Adaptation (Per-
Ada), September 2008. IEEE Computer Society, Los Alamitos (2008)

11. Hull, R.: Artifact-centric business process models: Brief survey of research results and chal-
lenges. In: Meersman, R., Tari, Z. (eds.) OTM 2008, Part II. LNCS, vol. 5332, pp. 1152–1163.
Springer, Heidelberg (2008)

12. Laneve, C., Zavattaro, G.: Web-pi at work. In: De Nicola, R., Sangiorgi, D. (eds.) TGC 2005.
LNCS, vol. 3705, pp. 182–194. Springer, Heidelberg (2005)

13. Lapadula, A., Pugliese, R., Tiezzi, F.: A formal account of WS-BPEL. In: Lea, D., Zavat-
taro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 199–215. Springer, Heidelberg
(2008)

http://www.allow-project.eu/
http://www.antoniobucchiarone.it/APFoL.html
http://rap.dsi.unifi.it/blite/
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0

A Formalisation of Adaptable Pervasive Flows 75

14. Lohmann, N.: A feature-complete Petri net semantics for WS-BPEL 2.0. In: Dumas, M.,
Heckel, R. (eds.) WS-FM 2007. LNCS, vol. 4937, pp. 77–91. Springer, Heidelberg (2008)

15. Lucchi, R., Mazzara, M.: A pi-calculus based semantics for WS-BPEL. Journal of Logic and
Algebraic Programming 70(1), 96–118 (2007)

16. Marconi, A., Pistore, M., Sirbu, A., Eberle, H., Leymann, F.: Enabling adaptation of perva-
sive flows: Built-in contextual adaptation. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC
2009. LNCS, vol. 5900, pp. 389–403. Springer, Heidelberg (2009)

17. Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specification. IBM
Systems Journal 42(3), 428–445 (2003)

18. Ouyang, C., Verbeek, E., van der Aalst, W.M.P., Breutel, S., Dumas, M., ter Hofstede,
A.H.M.: Formal semantics and analysis of control flow in WS-BPEL. Science of Computer
Programming 67(2-3), 162–198 (2007)

19. van der Aalst, W.M.P., van Hee, K.M.: Workflow Management: Models, Methods, and Sys-
tems. MIT Press, Cambridge (2002)

Compliance Preorders for Web Services

Michele Bugliesi, Damiano Macedonio, Luca Pino, and Sabina Rossi

Dipartimento di Informatica, Università Ca’ Foscari Venezia
{michele,mace,lpino,srossi}@dsi.unive.it

Abstract. Compliance is a basic property of web-service architectures
that ensures the absence of deadlocks and livelocks during execution.
Following recent attempts in the literature, we interpret compliance as an
experiment, much like the experiments made by a test process in testing
theories, and use it as the basis for a notion of compliance preserving
substitution of components within a composition of web services.

We review the different notions of compliance in the literature, ana-
lyze their relative strengths and weaknesses, and formalize their inter-
relationships by providing a uniform formal framework where we recon-
cile the different perspectives that characterize them.

1 Introduction

Compliance is a basic property that characterizes the correct behavior of con-
current distributed systems. It is used widely in the context of Service Oriented
Architectures (SOA) as a formal device to identify well-formed service composi-
tions, those whose interactions are free of synchronization errors.

Formal theories of compliance have been developed within different settings,
most notably with session types and behavioral contracts. Session types [11] have
originally been conceived as a generalization of channel types [16] for the static
control of interaction patterns in which the same channel is used to send and/or
receive payloads of different types at different times. Recently, systems of session
types have applied widely in the analysis of various kinds of interaction and
conversation structures [6,12,5].

Behavioral contracts, our focus in the present paper, arise in process algebraic
settings, and provide abstract descriptions of system behavior by means of terms
of some process algebra. Formal theories of contracts have first been introduced
in [7], and then further developed along independent lines of research in [13,8,9],
and in [3,4].

All these papers share the main motivations and the overall technical setup,
inspired by the theory of testing in process algebra [15]. In particular, they all in-
terpret compliance as a basic test for investigating services, extract the preorder
relationships induced by the test, and justify a compliance-preserving substitu-
tion principle for services based on that. On the other hand, the approaches differ
significantly in the notion of compliance adopted as well as in the settings where
they apply it. In [13,8,9], compliance is targeted at preventing deadlocks, and
the theory is developed for a client-server setting to provide safety guarantees for

C. Laneve and J. Su (Eds.): WS-FM 2009, LNCS 6194, pp. 76–91, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Compliance Preorders for Web Services 77

the client. Compliant servers are those which will never get their clients stuck:
the compliance preorder is established similarly in terms of the ability of servers
to satisfy their clients. In [3,4], instead, compliance is a stronger condition that
ensures the absence of deadlocks and livelocks, and the application setting is
that of choreographies: compliant choreographies are those whose computations
never get stuck or trapped into infinite loops without chances to exit. The com-
pliance pre-order, in turn, is induced on the component contracts, in terms of
their ability to preserve the compliance of the choreographies they are part of.

In this paper, we review the existing definitions in the literature to formal-
ize their inter-relationships. As a result of our analysis we provide a uniform
framework where we (i) reconcile the different perspectives that characterize the
existing definitions of compliance, (ii) fill some of the existing gaps among them,
and thus (iii) maximize the potential of cross-fertilization among the different
approaches. We start with an analysis of the deadlock-safe notion of compliance
developed in [8,13] for client-server settings, and propose an equivalent formula-
tion that scales naturally to multi-party service compositions. Then, we give a
fully-abstract co-inductive characterization of the induced compliance-preorder
and discuss its use for the safe replacement of services inside multi-party com-
positions. We also analyze the stronger definition of compliance proposed by [4]
for choreographies, showing that it effectively constitutes a conservative gener-
alization of the deadlock-safe definition of [8,13] (when the latter is lifted to
multiparty compositions). We generalize the coinductive construction of the
deadlock-safe preorder to obtain a sound (but not complete) characterization
of the stronger preorder. For both pre-orders, we also show how the filters from
[8] may be employed to achieve a flexible compliance-preserving substitution
principle inside choreographies.

Plan. Section 2 introduces the contract language we use for our analysis. Section
3 analyzes the notions of compliance in the literature, and introduces our own
variations of such notions. Section 4 develops the coinductive characterizations
of the associated compliance preorders. Section 5 discusses generalized versions
of the preorders, and their counductive characterizations. Section 6 concludes
the presentation.

2 A Core Contract Language

We start introducing a small language for contracts and contract compositions
that we use for our analysis. Contracts are represented as (single-threaded) terms
of a CCS-like [14] process calculus that includes recursion and operators for ex-
ternal and internal choice. Parallel composition arises in contract compositions.
We presuppose a denumerable set of action names A, ranged over by a, b, c. Ac-
tions represent the basic units of observable behavior of the underlying services,
namely input, noted a, and output, note a. We let α range over actions and
co-actions, and note α the co-action corresponding to α.

78 M. Bugliesi et al.

Contracts σ ::= 1 | x | α.σ | σ + σ | σ ⊕ σ | rec(x)σ
Compositions C ::= σ | C ‖ C

1 signals that the service has reached a successful state, α;σ describes a service
that performs action α and then behaves as σ; σ+σ′ denotes an external choice,
guided by the environment, while σ ⊕ σ′ indicates a local choice between σ and
σ′ made irrespective of the structure of the interacting environment; rec(x)σ
is a recursively defined contract. We assume a standard contractivity condition
for the recursion operator, requiring that recursion variables be guarded by a
prefix. We let in(σ) and out(σ) note the set of input and output actions in σ,
respectively.

Table 1. Dynamics of contracts and compositions

Contract Satisfaction: σ�

1�
σi �

σ1 + σ2 �

σ{x := rec(x)σ}�

rec(x)σ�

Contract transitions: σ α̇−→ σ′

α.σ
α−→ σ σ1 ⊕ σ2 −→ σi (i = 1, 2)

σi
α̇−→ σ

(i = 1, 2)
σ1 + σ2

α̇−→ σ

σ{x := rec(x)σ} α̇−→ σ′

rec(x)σ α̇−→ σ′

Composition satisfaction and transitions:

C1 � C2 �

C1 ‖ C2 �
C1

α−→ C′
1 C2

α−→ C′
2

C1 ‖ C2 −→ C′
1 ‖ C′

2

C1
α̇−→ C′

1

C1 ‖ C2
α̇−→ C′

1 ‖ C2

Dynamics of contracts and compositions. We define the dynamics of the calculus
with a labelled transition system (and a success predicate), with rules reported
in Table 1: α̇ indicates the label α or no label. The first block of rules defines
the successful states of a contract, i.e., those that expose the success term 1 at
top level, or immediately under an external choice (up-to recursive unfoldings).
The rules in the second and third blocks define the transitions for contracts and
compositions, and are mostly self-explanatory. Notice that a composition reaches
a successful state only when all component contracts are themselves successful.

We write =⇒ to note the reflexive and transitive closure of −→, and σ α=⇒ σ′

for σ =⇒ α−→=⇒ σ′. Similarly, for w = α1 . . . αn the transition σ
w=⇒ σ′ stands

Compliance Preorders for Web Services 79

for σ α1=⇒ · · · αn=⇒ σ′. We omit the target of a (weak) transition when immaterial,
writing σ

α−→ and σ
α=⇒ to signal that σ has a (weak) transition on α to

some σ′, and init(σ) for the set {α | σ α=⇒}. Finally, with σ ↓ r we note that
r ⊆ (A ∪ {�}) is the smallest non-empty set such that σ α−→ implies α ∈ r,
and σ� implies �∈r. Similarly, σ ⇓ r whenever σ =⇒ σ′ with σ′ ↓ r.

A computation for a composition C is a sequence C≡C0 −→ C1 −→ . . . ;
the computation is maximal if either it is infinite or there exists Cn such that
C =⇒ Cn �−→. A composition C is finite if all its maximal computations are
finite. Throughout, we presuppose the following conditions on contracts and
compositions.

Definition 1 (Determinacy). A contract σ is determinate if for every action
α there exists at most one contract σ′ such that σ =⇒ α−→ σ′, and σ′ is itself
determinate. A composition σ1 ‖ . . . ‖ σn is determinate, if so are the σi, and in
addition, in(σi) ∩ in(σj) = ∅ whenever i �= j.

When σ α=⇒, we note σ(α) the unique σ′ such that σ =⇒ α−→ σ′. (σ(α) is always
defined for determinate contracts). Determinacy is technically convenient for our
analysis, and represents a fairly mild assumption (cf. [8] for a similar assumption,
which in that case is enforced directly by the transition relation). Indeed, con-
tracts can be made determinate, by factoring, without affecting their external be-
havior. To illustrate, the non-determinate contract (a.σ1 ⊕ b.σ2)+ (a.σ3 ⊕ b.σ4)
may equivalently be expressed (up to, internal moves) as the determinate con-
tract a.(σ1 ⊕ σ3) ⊕ b.(σ2 ⊕ σ4). As to compositions, determinacy, simply
amounts to interpreting the actions of each contract in a composition as being as-
sociated with services located and accessible at univocally identified ports/sites
(as done, for instance, in [4]).

3 Compliance Tests

We start with a review of the asymmetric, deadlock-safe notion of compliance
(ds-compliance, for short), as proposed by [8,13] for client-server settings, and
introduce its asymmetric and symmetric variants for general, multi-party com-
positions. Then, we discuss the definition of safe compliance, that is sensitive to
both deadlocks and livelocks.

3.1 Deadlock-Safe Compliance

For two contracts ρ and σ, let ρ �� σ signal that ρ and σ may synchronize, pos-
sibly after a sequence of internal moves. Formally ρ �� σ iff init(σ)∩ init (ρ) �= ∅,
where init(ρ) is the set of co-actions corresponding to the actions in init(ρ). The
asymmetric presentation distinguishes two roles (client and server, respectively)
for the contracts involved in the compliance test.

80 M. Bugliesi et al.

Definition 2 (Client-server ds-compliance [8,13]). A client ρ and a server
σ are ds-compliant, written ρ �ds σ iff whenever ρ ‖ σ =⇒ ρ′ ‖ σ′, either
ρ′ �� σ′, or � ∈ r for all r such that ρ′ ⇓ r.

Accordingly, ρ �ds σ if and only if whenever the interaction between ρ and σ gets
stuck (as there is no chance of synchronization) ρ may independently terminate
with success. The asymmetric nature of the definition, and its clear bias in favor
of ρ, is a consequence of the different intended roles of the two contracts in the
composition. In [13], the definition has the following, additional proviso: in case
σ′↑ then for all r such that ρ′ ⇓ r, r = {�}. The intuition here is that if the
interaction between client and server gets the server trapped into an internal
loop (noted σ′↑), then the client must terminate successfully without expecting
any further synchronization with the server. The proviso holds vacuously in our
contract language, given that recursive contracts are formally contractive, hence
they may not loop without interaction.

Definition 2 may be restated equivalently by stipulating that ρ and σ are com-
pliant if whenever ρ ‖ σ =⇒ ρ′ ‖ σ′ �−→, one has ρ′ �. That the two definitions
are equivalent follows again from our formal-contractiveness assumption, which
implies that ρ ��� σ iff ρ ‖ σ =⇒ ρ′ ‖ σ′ �−→. The new formulation is interesting as
it suggests the following, natural lifting of the client-server notion of compliance
to multi-party compositions.

Definition 3 (Asymmetric ds-compliance). A contract ρ is ds-compliant
with a composition C, written ρ �ds C, iff whenever ρ ‖ C =⇒ ρ′ ‖ C′ �−→, one
has ρ′ �.

Asymmetric compliance, in turn, is readily made symmetric by simply removing
the bias in favour of any of the component services.

Definition 4 (Symmetric ds-compliance). A contract composition C is
ds-compliant, noted C↘ds, if whenever C =⇒ C′ �−→, one has C′ �.

3.2 Safe Compliance

One weakness of ds-compliance is that it is insensitive to livelocks. The following
example helps illustrate the problem in the asymmetric setting. Consider the two
contracts σ = rec(x) (a.x ⊕ b.x) and σ′ = rec(x) a.x, and take the contract
ρ = rec(x) (a.x+ b.1). Applying Definition 3, it is a routine check to verify that
ρ is ds-compliant with both σ and σ′, namely ρ �ds σ, and ρ �ds σ′. This is not
exactly desirable, as the two contracts determine quite different behaviors for ρ:
indeed, while σ is acceptable to ρ, as there is always a chance for ρ to reach a
successful state, σ′ is not as it leaves ρ trapped into a livelock.

If livelocks are to be avoided, we need to strengthen the compliance test. The
following definition, that we take verbatim from [4], does the job with a test
inspired by the theory of should-testing [17].

Compliance Preorders for Web Services 81

Definition 5 (Symmetric safe compliance [4]). A contract composition C
is s-compliant, noted C↘s, if for every C′ such that C =⇒ C′ there exists C′′

such that C′ =⇒ C′′ �.

In other words, s-compliance ensures that at each intermediate step of the
computation in a choreography, each component service has a way to reach a
successful state (either autonomously, or via synchronizations within the chore-
ography). This is enough to avoid livelocks. To illustrate, consider the compo-
sition C def= rec(x) (a.x) ‖ rec(x) (ā.x). C is ds-compliant even though it never
reaches any successful state: indeed, the condition imposed by Definition 4 holds
vacuously as C has only infinite computation. This is rectified in Definition 5 by
demanding that all intermediate computation states offer a path to success for
all the services of the composition.

Safe compliance is readily re-cast into an asymmetric presentation, by simply
re-introducing the bias in favour of one component and stipulating that ρ �s C
if for every ρ′ ‖ C′ such that ρ ‖ C =⇒ ρ′ ‖ C′ there exists ρ′′ ‖ C′′ such
that ρ′ ‖ C′ =⇒ ρ′′ ‖ C′′ and ρ′′ �. The new predicate conveys the desired
guarantees for the client-server setting (when C is a single server): if we go back
to our problematic servers σ and σ′ above, we now see that ρ �s σ but ρ ��s σ′,
as desired.

3.3 Symmetric vs Asymmetric Compliance

While there is clearly a strong connection between the two presentations of
compliance (symmetric vs asymmetric), we are not aware of results establish-
ing formal relationships. We give two such results below, first showing that for
deadlock-safe compliance the asymmetric presentation can be defined in terms
of the symmetric one, in the following sense. Given C = σ1 ‖ . . . ‖ σn, we note
C/i the composition “C drop σi”, defined as follows: C/i

def= σ1 ‖ . . . ‖ σi−1 ‖
σi+1 ‖ . . . ‖ σn.

Theorem 6 (Symmetric vs. Asymmetric ds-compliance). Let C be the
composition σ1 ‖ . . . ‖ σn. Then C↘ds if and only if σi �ds C/i for all 1 ≤ i ≤ n.

Proof. (=⇒) From the hypothesis, for every C′ such that C =⇒ C′ �−→ we have
C′ �. This means that each component of C′ is in a success state. Since this is
true of all C′ �−→ reachable from C, it must be the case that σi �ds C/i for all i.
(⇐=) The hypothesis is that for every i, σi �ds C/i. Now, for all the C′ such
that C =⇒ C′ �−→ we have that σ′

i � (where σ′
i is the state corresponding to σi

in C′). Since this is true of every i, it follows that C↘ds. !"

In the forward direction Theorem 6 carries over to the case of safe compliance.
Instead, somewhat surprisingly, this is not true of the backward direction. To
see that, consider the following counter-example. Take σp = rec(x) (ā.(b.x + 1))
and σq = rec(x) (a.b̄.x + 1), and form the composition C = σp ‖ σq. The fol-
lowing diagrams show the transitions for each contract and for the composition:
the success states are marked by the satisfaction predicate.

82 M. Bugliesi et al.

��������1

σp

ā

��
��������2 �

b

��
��������1

σq

�
a

��
��������2

b̄

��
��������1

C

(a)

��
��������2

(b)

��

Now, σp �s σq because, for every state reached by the computation of C, we can
extend the computation to reach the state 2, where the σp reaches its success.
σq �s σp holds for the same reason, because it’s always possible to reach the state
1 where σq reaches its success. However C �↘s because, as outlined by the graph
above, there is not a reachable state where both the contracts are successful.

4 Compliance Preorders

Associated with a compliance test, which we mark as • to generalize1, one de-
fines a corresponding semantics for service contracts. In client-server setting,
this is stated in terms of the sets of the compliant clients [σ]• def= {ρ | ρ �• σ};
in multi-party compositions, it is defined similarly in terms of sets of compliant
compositions: [σ]• def= {C | σ ‖ C↘•}. Then, based on the contract semantics,
one defines the contract preorder, uniformly as follows: σ #• σ′ def= [σ]• ⊆ [σ′]•.
Defined this way, compliance preorders may be employed to justify a substitu-
tion principle for servers, and more generally for services inside choreographies,
namely: given two contracts σ and σ′, it is safe to substitute (a service described
by) σ with (a service described by) σ′ as long as σ #• σ′.

In this section, we give coinductive versions of the two preorders #ds and
#s induced by the compliance tests introduced in the previous section. As we
will show, for the deadlock-safe case, the coinductive version provides a fully
abstract characterization of #ds. For the safe preorder, the characterization is
only sound, not complete. In both cases, being our compositions finite, and our
contracts finite-state, the characterizations provide an effective construction for
deciding the preorders.

4.1 Characterizing the Deadlock-Safe Preorder

We start with the deadlock safe preorder. The definition we give here, and the
full-abstraction proof refine those in [13,9] to account for the symmetric nature
of the compliance test.

Definition 7 (Coinductive ds-preorder). R is a coinductive ds-preorder if
σ R ρ implies that: (i) if ρ −→ ρ′, then σ R ρ′; (ii) if ρ ↓ r, then there exists
s ⊆ r such that σ ⇓ s; (iii) for every action α if ρ α−→ ρ′, then σ

α=⇒ and
σ(α) R ρ′. We note �ds the greatest ds-preorder.

1 In the paper • will stand either for ‘ds’, defined in §3.1, or ‘s’, defined in §3.2.

Compliance Preorders for Web Services 83

The next lemma shows that the coinductive ds-preorder is preserved not only
on single actions, but also on sequences of actions.

Lemma 8. If σ �ds ρ and ρ w=⇒ ρ′, then ∃ σ′ such that σ w=⇒ σ′ and σ′ �ds ρ′.

Proof. By induction on the length of w. !"

Theorem 9 (Soundness). If σ �ds ρ, then σ #ds ρ.

Proof. Take a composition C such that (σ ‖ C)↘ds and let

ρ ‖ C = ρ1 ‖ C1 −→ ρ2 ‖ C2 −→ · · · −→ ρn ‖ Cn

be a maximal computation from C. We must show that (ρn ‖ Cn)�. By
Lemma 8, we know that σ ‖ C =⇒ σn ‖ Cn and σn �ds ρn. Also, ρn ↓ r for some
(non-empty) r, because otherwise ρn −→ and the computation from C we are
considering would not be maximal. Let then s be such that σn ⇓ s and s ⊆ r,
and take σ′

n such that σn =⇒ σ′
n �−→ and σ′

n ↓ s. Obviously σ ‖ C =⇒ σ′
n ‖ Cn;

furthermore, Cn �−→ since Cn is part of the final state of a maximal computation,
and σ′

n �−→ by construction. Then, for all α such that Cn
α−→ it must be the

case that σ′
n �

α−→ because otherwise from s ⊆ r we would derive ρn
α−→, which

is impossible since ρn ‖ Cn �−→. It follows, then, that σ ‖ C =⇒ σ′
n ‖ Cn �−→,

and given that (σ ‖ C)↘ds we have (σ′
n ‖ Cn)�. This, in turn, implies Cn � and

σ′
n �, and hence � ∈ s. Now, from s ⊆ r we know that ρn �, hence (ρn ‖ Cn)�

as desired. !"

A further lemma shows that all contracts may be composed into at least one ds-
compliant choreography. This is a direct consequence of the syntactic structure
of our contracts (all choices in a contract must either end up with 1 or with a
recursion variable) and the definition of ds-compliance.

Lemma 10. For all σ there exists C such that (σ ‖ C)↘ds.

Theorem 11 (Completeness). If σ #ds ρ, then σ �ds ρ.

Proof. We need to manipulate contract compositions in order to force their
behavior. In particular we note α1.C1 + α2.C2 the composition such that if
α1.C1 + α2.C2

γ
=⇒ C, then γ ∈ {α1, α2} and in addition γ = αi implies C ≡ Ci

(for i = 1, 2, respectively). We omit the (rather lengthy) details of how these
compositions can be formed so that they are determinate (in the sense of Defi-
nition 1), and move with the proof of our claim.

We show that R def= {(σ, ρ) |σ #ds ρ} is a coinductive ds-preorder. Assume
(σ, ρ) ∈R: we examine the three clauses of the definition in turn.

Assume ρ −→ ρ′. By our hypothesis we know that for all C (σ ‖ C)↘ds implies
(ρ ‖ C)↘ds, so obviously (ρ′ ‖ C)↘ds and thus (σ, ρ′) ∈R.

Take r such that ρ ↓ r: we reason by contradiction. Assume that there is no
s such that σ ⇓ s and s ⊆ r: we show that σ �#ds ρ. Let then A = {α ∈ A |
σ ⇓ s and α ∈ s \ r}. By Lemma 10, for each α ∈ A there exists Cα such that

84 M. Bugliesi et al.

(σ(α) ‖ Cα)↘ds. Now, let C =
∑

α∈A α.Cα. By construction, (ρ ‖ C)�↘ds, and
similarly (ρ ‖ C + 1)�↘ds if ρ ��. On the other hand, again by construction, one
easily sees that (σ ‖ C+1)↘ds. Furthermore, when ρ�, by our initial assumption
we know that for all s such that σ ⇓ s, it must be the case that s � {�} (for
otherwise s ⊆ r): hence, in this case, we also have (σ ‖ C)↘ds. Summarizing,
when ρ ��, we have (σ ‖ C)↘ds and (ρ ‖ C)�↘ds. When ρ�, the same is true of
C + 1. In both cases we have the desired contradiction.

Let ρ α−→ ρ′. Again we reason by contradiction, on the two possible cases.

– σ � α=⇒. By Lemma 10, there exists a composition C such that C � α=⇒ and (σ ‖
C)↘ds. Now, choose a name c fresh for ρ and C, and form the composition
C′ = C+α.c.1. We have that (σ ‖ C′)↘ds and (ρ ‖ C′)�↘ds, which contradicts
the hypothesis that σ #ds ρ as desired.

– σ
α=⇒ and there exists C such that (σ(α) ‖ C)↘ds but (ρ′ ‖ C)�↘ds. Then we

define

C′ =

⎛⎜⎝ ∑
σ

β
=⇒ and β �=α

β.Cβ

⎞⎟⎠ + α.C

with Cβ such that (σ(β) ‖ Cβ)↘ds. Again, (σ ‖ C′)↘ds and (ρ ‖ C′)�↘ds as
desired. !"

4.2 Characterizing the Safe-Preorder

The coinductive construction of the s-preorder arises as an extension of the
one we just discussed. To motivate the construction, consider the following two
contracts:

σ = rec(x) .(a.(b.x + 1) ⊕ c.1) and σ′ = rec(x) .(a.(b.x + 1)). (1)

Applying Definition 7, one verifies that σ �ds σ′. On the other hand, given the
composition C = rec(x) .(a.(b.x)+c.1) one has (σ ‖ C)↘ds whereas (σ′ ‖ C)�↘ds.

In other words, the example in (1) shows that �ds is not sound for #s. A
closer look at the example shows that the problem is in the second of the clauses
that define �: in particular, to show that σ �ds σ′ it is enough for σ′ to match
(with r) any one of the action sets s such that σ ⇓ s, disregarding the remaining
ones. This is fine as long as we only look at finite maximal computations, as the
choice of any of action sets is arbitrary and effectively excludes the others; it is
unsound, instead, when the computation in σ may go back to the same point of
choice, as a result of a loop, and select another set. This observation suggests
how to rectify the construction, by keeping track of the states reached in the
simulation game, and make a sound choice at the looping states.

A contract-indexed relation over contracts is a binary relation indexed by sets
of contracts. We let H range over sets of contracts, and write σ RH ρ to mean
that σ and ρ are related by R at H .

Compliance Preorders for Web Services 85

Definition 12 (Coinductive safe-preorder). A coinductive s-preorder R is
contract-indexed relation such that σ RH ρ implies the following conditions:

– if ρ −→ ρ′, then σ RH∪{ρ} ρ′

– if ρ ↓ r, then
• if ρ /∈ H, then there exists s ⊆ r such that σ ⇓ s,
• if ρ ∈ H, then for every s such that σ ⇓ s it holds s ⊆ r,

– if ρ α−→ ρ′, then σ
α=⇒ and σ(α) RH∪{ρ} ρ′

We write σRρ when σRHρ for some H, and note �s the greatest s-preorder.

Notice that the coinductive s-preorder is a conservative extension of the corre-
sponding ds-preorder. The next lemma proves the same result as Lemma 8, now
for the �s preorder.

Lemma 13. Let R be a coinductive s-preorder. If σ RH ρ for some H and
ρ

w=⇒ ρ′ �−→, then there exist σ′, H ′ such that σ w=⇒ σ′ with σ′ RH′ ρ′ and
H ⊆ H ′. Furthermore, if ρ′ = ρ (with w non empty), then ρ′ ∈ H ′.

Proof. We show that given σ RH ρ, if ρ α1=⇒ ρ1
α2=⇒ ρ2 · · · ρn−1

αn=⇒ ρn = ρ′,
then σ

α1=⇒ σ1
α2=⇒ σ2 · · ·σn−1

αn=⇒ σn and σi RHi ρi for i = 1 . . . n with
H ⊆ H1 ⊆ . . . ⊆ Hn−1 ⊆ Hn. We proceed by induction on the length n of
the sequence. For the basic step, we have that if ρ =⇒ ρ′, then σ RH′ ρ′ with
H ⊆ H ′ by the first item of Definition 12. For the induction step, assume that
n > 0. Then, by the induction hypothesis, σ α1=⇒ σ1 . . .

αn−1=⇒ σn−1 with σi RHi ρi

for i = 1 . . . n− 1 and H ⊆ H1 ⊆ . . . ⊆ Hn−1. Now, since ρn−1
αn=⇒ ρn = ρ′, by

repeated applications of the first item, and one application of the last item in
Definition 12 we obtain σn−1

αn=⇒ and σn−1(αn) RHn ρ′ with Hn−1 ⊆ Hn. We
are done, as we can choose σn = σn−1(αn).

In case ρ′ = ρ, by Definition 12 we can immediately prove that when w is non
empty ρ ∈ H1, and thus also ρ ∈ Hn. !"

Lemma 14. Let R be a coinductive s-preorder. If σ R ρ and ρ
w1=⇒ ρ′ w2=⇒ ρ′

with ρ′ �−→, then (i) σ
w1,w2=⇒ σ′ with σ′ R ρ′ and (ii) for every α such that

σ′ =⇒ σ̂
α−→ σ′′, then ρ′ α−→ ρ′′ and σ′′ R ρ′′. Furthermore, σ̂� implies ρ′ �.

Proof. Let H be an index such that σ RH ρ for some H . Then item (i) is a
direct consequence of Lemma 13. For item (ii), Lemma 13 applied to ρ′ w2=⇒ ρ′

says that σ′ RH′ ρ′ with ρ′ ∈ H ′. Since ρ′ �−→ we apply the second item of
Definition 12. In particular ρ′ ↓ r with s ⊆ r for all s such that σ′ ⇓ s, and this
proves the thesis. !"

Lemma 15. Let C be a contract composition without finite maximal computa-
tions. Then there exists C′ such that (i) C =⇒ C′ and (ii) for every C′′ such
that C′ =⇒ C′′ then also C′′ =⇒ C′.

Proof. Since a composition expressed as a term of our language is a finite-state
system, we prove the lemma by induction on the number of the different states

86 M. Bugliesi et al.

reachable from C. Basic step, suppose that C can reach a single state. Then the
only maximal computation is C −→ C −→ C −→ · · · and the thesis is verified
with C′ = C. Induction step, assume that C can reach n different states, if
C′ =⇒ C for every C′ such that C =⇒ C′ then the thesis is verified. Otherwise,
there exists C′ such that C =⇒ C′ and C′ �=⇒ C. Then C′ can reach at most n−1
states. Since C has no finite maximal computation, so does C′. Thus we apply
the inductive hypothesis and we have: there exists C′′, with C =⇒ C′ =⇒ C′′

such that if C′′ =⇒ C′′′, then C′′′ =⇒ C′′. Hence we conclude the thesis. !"

Corollary 16. Let C be a contract composition without finite maximal compu-
tations. Then there exists a computation C −→ C1 −→ · · · −→ Cn such that for
every C′ such that Cn =⇒ C′ there exists i ≤ n such that C′ = Ci.

Proof. Lemma 15 says that there exists C′ such that C =⇒ C′ and, if C1, . . . , Cn

are all the states reachable from C′ then Ci =⇒ C′ for i = 1, . . . n. Then consider
the computation C =⇒ C′ =⇒ C1 =⇒ C′ =⇒ C2 =⇒ C′ · · · =⇒ Cn =⇒ C and
conclude the thesis. !"

Theorem 17 (Soundness). If σ �s ρ, then σ #s ρ.

Proof. We reason by contradiction. We assume that there exists C such that
(σ ‖ C)↘s but (ρ ‖ C)�↘s, this means that (i) there exists a computation ρ ‖
C =⇒ ρ′ ‖ C′ such that (ρ′′ ‖ C′′) �� for every ρ′ ‖ C′ =⇒ ρ′′ ‖ C′′.

If there exists a finite computation ρ′ ‖ C′ =⇒ ρ′′ ‖ C′′ with (ii) ρ′′ ‖ C′′ �=⇒
and (ρ′′ ‖ C′′) ��, hence ρ′′ �−→ and C′′ �−→, moreover either ρ′′ �� or C′′ ��.
Now consider the list w of actions such that ρ w=⇒ ρ′′ and C

w̄=⇒ C′′, where w̄
represents the list of actions performed by C to synchronize with w in order to
reduce the whole composition (ρ ‖ C) to (ρ′′ ‖ C′′). From σ �s ρ and Lemma 13,
there exist H,H ′ such that σ RH ρ, σ′ RH′ ρ′ with H ⊆ H ′ and σ w=⇒ σ′. Let r
such that ρ′ ↓ r. Since σ′ RH′ ρ′, then σ′ =⇒ σ′′ �−→ with (iv) σ′′ ↓ s and s ⊆ r.
Hence we found the computation σ ‖ C =⇒ σ′ ‖ C′ =⇒ σ′′ ‖ C′′, where the first
part is the synchronization on w between σ and C. Due to (ii), (iii) and (iv),
then σ′′ ‖ C′′ �−→ and σ′′ ‖ C′′ ��. We have σ ‖ C �↘s, against the hypothesis.

Thus we conclude that ρ′ ‖ C′ has no finite maximal computations. Then
Corollary 16 says that ρ′ ‖ C′ −→ ρ1 ‖ C1 −→ · · · −→ ρn ‖ Cn and for every C∗

such that ρn ‖ Cn =⇒ C∗ there exists i ≤ n with C∗ = ρi ‖ Ci. As done above,
consider the list w = w1, w2 of actions such that ρ w1=⇒ ρ′ w2=⇒ ρn and C w̄=⇒ Cn,
were again w̄ represents the list of actions performed by C to synchronize with
w in order to reduce the whole composition (ρ ‖ C) to (ρn ‖ Cn). Again, by
Lemma 13 (v) there exist H,H ′ such that σ RH ρ, σn RH′ ρn with H ⊆ H ′ and
σ

w=⇒ σn.
We distinguish two cases. (1) If for every C∗ such that ρn ‖ Cn =⇒ C∗

we have C∗ = ρn ‖ Ĉ, thus ρn does not perform any more action along the
computation. Note that ρn �−→, then let r such that ρn ↓ r. Moreover, due
to (i), it holds ρi ‖ Ci �� for i = 1 . . . n, hence (vi) either ρi �� or Ci �� for
i = 1 . . . n. Moreover, consider (v) and let σ′

n such that σn =⇒ σ′
n and σ′

n ↓ s

Compliance Preorders for Web Services 87

with s ⊆ r. Due to the assumption on ρn ‖ Cn and (vi): for every C∗ such that
σn ‖ Cn =⇒ C∗ we have C∗ = σn ‖ Ĉ, and also either σn � � or Ci � � for
i = 1 . . . n. Thus C∗ �� for every C∗ such that σn ‖ Cn =⇒ C∗. We conclude
that σ ‖ C �↘s, against the hypothesis. Thus the only possible case is (2): there
exists at least one ρ̂ �= ρn such that ρn ‖ Cn =⇒ ρ̂ ‖ Ĉ and moreover for every
ρ̂ such that ρn ‖ Cn =⇒ ρ̂ ‖ Ĉ it holds ρ̂ = ρi for some i < n. Thus for every
ρ̂ such that ρn ‖ Cn =⇒ ρ̂ ‖ Ĉ it holds: ρ v1=⇒ ρ̂

v2=⇒ ρn
v3=⇒ ρ̂. Thanks to

Lemma 14 and (v) we conclude the following

Fact 18. For every ρ̂ such that ρn ‖ Cn =⇒ ρ̂ ‖ Ĉ with ρn
ŵ=⇒ ρ̂ and ρ̂ �−→

there exist σ̂ and H ′ such that σn
ŵ=⇒ σ̂ and σn ‖ Cn =⇒ σ̂ ‖ Ĉ with σ̂ RH′ ρ̂

and for every σ̂ =⇒ σ̂′ α−→ σ′′ then also ρ̂ α−→ ρ̂′ and σ̂′′ RH′′ ρ̂′ for some H ′′.
Furthermore σ̂′′ � implies ρ̂′ �.

Since (σ ‖ C↘s) there exists a computation σn ‖ Cn =⇒ σ∗ ‖ C∗ such that

(σ∗ ‖ C∗)�. In particular σn
w∗
=⇒ σ∗. If the sequence w∗ is empty, then Fact 18

says that also ρ̂�. Hence ρn ‖ Cn =⇒ ρn ‖ C∗ and (ρn ‖ C∗)�. In case w∗ is
not empty, we prove that also

ρn
w∗
=⇒ ρ∗ with σ∗ RH∗ ρ∗. (2)

We proceed by induction on the length of w. Fact 18 gives the basis of the
induction. For the induction step, let w = α,w′. Then σn =⇒ σ′

n
α−→ σ′′ and

Fact 18 says that ρn
α−→ ρ′n with σ′′

n RH′′ ρ′n. Now the induction hypothesis
holds for σ′′

n and ρ′n, and we are done. Now, from (2), it follows that ρn ‖ Cn =⇒
ρ∗ ‖ C∗ and the fact that σ∗ RH∗ ρ∗ says that (ρ∗ ‖ C∗)�. Hence we found a
contradiction and we conclude (ρ ‖ C)↘s. !"

The converse of Theorem 17 does not hold. Here is a counter-example. Let:

σ = rec(x) (a.x ⊕ b.1) ρ = rec(x) (a.(a.x ⊕ b.1)) (3)

We can easily see that σ #s ρ, because σ w=⇒ for all w such that ρ w=⇒. In fact,
given an arbitrary C, C must be able to respond to all of these traces, with a
corresponding dual trace in σ ‖ C. Given our observation, the same is true in
the composition ρ ‖ C. On the other hand, σ ��s ρ because, after one round of
the loop, ρ ↓ {a}, whereas σ ⇓ {b} and {b} �⊆ {a}, which breaks the condition
required by the coinductive game. The problem would seemingly be solved by
replacing the third condition with the following, slightly weaker requirement: if
ρ

α−→ ρ′, then there exists σ′ such that σ α=⇒ σ′ and σ′ RH∪{ρ} ρ′. On the other
hand, this coarser definition is unsound: taking the two contracts we discussed
earlier in (1), one verifies that σ �s σ′ even though σ �#ds σ′, hence σ �#s σ′.

As it turns out, characterizing the safe preorder exactly, is hard. Indeed, to
our knowledge, no such characterization exists in the literature. The only related
result we are aware of is the trace-based full-abstract characterization of should
testing in [17]. However, the construction is non-effective, as it requires infinite
sums to characterize the infinite traces that capture the possible test processes.

88 M. Bugliesi et al.

5 Filtered Preorders

As the last step of our analysis, we show how the filters introduced in [8,9] can
be recast into the setting of general service compositions to achieve an expres-
sive compliance-preserving substitution principle inside choreographies. Following
[8,9], we define filters as behavioral coercions that specify the legal flow of actions
for individual contracts. Their syntax is defined by the following productions:

f := 0 | α.f | f × f | f ⊗ f | x | rec(x) f.

Their semantics, in Table 2, is best understood by viewing a filter as a finite-state
automaton accepting possibly infinite strings of actions, with × and ⊗ noting
the intersection and union automata. Then, applying a filter f to a contract σ,
as in f(σ), corresponds to verify that the sequence of visible transitions made
by the contract σ forms a string of the filter’s language.

Table 2. Dynamics of Filtered Contracts

Transitions for filters

α.f
α�−→ f

f{x := rec(x) f} α�−→ f ′

rec(x) f α�−→ f ′
f

α�−→ fα g
α�−→ gα

f ⊗ g α�−→ fα ⊗ gα

f
α�−→ fα g

α�−→ gα

f × g α�−→ fα × gα

f
α�−→ fα g � α�−→
f × g α�−→ fα

f � α�−→ g
α�−→ gα

f × g α�−→ gα

Transitions for filtered contracts

σ
α−→ σ′ f

α�−→ f ′

f(σ) α−→ f ′(σ′)

σ −→ σ′

f(σ) −→ f(σ′)

σ�
f(σ)�

In their original, client-server formulation by [8,9], filters generalize the notion
of contract interface introduced in [13]. Like filters, interfaces are intended to con-
strain the behavior of contracts, by defining the set of actions that a contract
may legally engage in. However, while with filters this set may vary dynami-
cally as the contract unfolds, with interfaces the set is determined statically and
does not change over time. In addition, filters also play a role in strengthening
the substitution principle based on compliance preorders. Specifically, given any
compliance preorder ≤• (whether coinductive or not), one defines a correspond-
ing filtered preorder as the following relation: σ ≤F• ρ if there exists a filter f
such that σ ≤• f(ρ). Thus, even when σ �≤• ρ, one may still rely on a filter f to
justify the replacement of σ with f(ρ), provided that σ ≤• f(ρ). In a client-server
setting,. the filtered preorder of [8,9] generalizes the interface-indexed preorder of
[13], which relates contracts based on a their ability to comply with clients that

Compliance Preorders for Web Services 89

follow the discipline imposed by the indexing interface, disregarding all clients
that do not follow that discipline.

Our present use of filters provides corresponding generalizations of the con-
cepts of input-output sets and input-output indexed preorder by [3,4] that parallel
the notions of interface and interface indexed preorder in the analysis of multi-
party compositions. In [4], the authors provide an effective decision procedure
for their preorder based on the theory of should-testing [17]. In the rest of this
section, we provide an effective construction for the filtered version of the coin-
ductive safe-preorder. The same construction can be given, mutatis mutandis,
for the deadlock-safe preorder.

Definition 19 (filtered s-preorder). A filtered s-preorder is a contract in-
dexed relation F such that if σFHρ, then

1. if ρ −→ ρ′, then σFH′ρ′ with H ′ = H ∪ {ρ},
2. else if ρ ↓ r, then

(a) if ρ /∈ H, then there exists sr ⊆ r such that σ ⇓ sr, and for every α ∈ sr

it is the case that ρ α−→ ρ′ and σ α=⇒ with σ(α)FH′ρ′ and H ′ = H ∪{ρ}.
(b) if ρ ∈ H, then for every s such that σ ⇓ s it holds s ⊆ r, and for

every action α ∈
⋃

σ⇓s s if ρ α−→ ρ′, then σ
α=⇒ with σ(α)FH′ρ′ and

H ′ = H ∪ {ρ}.

We write σFρ whenever σFHρ for some H, and note σ �Fs ρ the greatest filtered
s-preorder.

Theorem 20. σ �Fs ρ iff there exists a filter f such that σ �s f(ρ).

Proof. Define contract bisimilarity, noted ∼, is the greatest symmetric relation
such that σ ∼ ρ implies (i) σ� iff ρ�, and (ii) if σ α̇−→ σ′, then also ρ α̇−→ ρ′

and σ′ ∼ ρ′. Clearly, ∼ ⊆ �F•.
We proceed with the proof of the theorem, in the two directions in turn.

(=⇒) Take a filtered s-preorder F . For every H and (σ, ρ) ∈ FH we define

SetH(σ, ρ) def=

{⋃
ρ⇓r sR if ρ /∈ H and sR is given by item 2.a of Definition 19⋃
σ⇓s s if ρ ∈ H

Then, given a set D of pairs of contracts, we define

fD
σ,ρ,H

def=

{
rec(x(σ,ρ)) ×α∈SetH(σ,ρ) α.f

D∪{(σ,ρ)}
σ(α),ρ(α),H∪{ρ} if (σ, ρ) /∈ D

x(σ,ρ) otherwise

and let fσ,ρ,H = f∅
σ,ρ,H . Since the reachable states are finite, f is well de-

fined. Furthermore note that, if fσ,ρ,H(ρ) α=⇒ f ′(ρ′) and σ
α=⇒, then f ′(ρ′) ∼

fσ(α),ρ′,H∪{ρ}(ρ′). Finally we define the following contract indexed relation:

RH
def= {(σ, f(ρ)) : (σ, ρ) ∈ FH and f(ρ) ∼ fσ,ρ,H(ρ)}

90 M. Bugliesi et al.

We prove that R is a coinductive s-preorder, by a case analysis of the items in
the Definition 12. Given a filter f , and a set r ⊆ A ∪ {�}, let r|f note the set
{α ∈ r | f α�−→}. Let then (σ, f(ρ)) ∈ RH .

If ρ −→ ρ′, then also f(ρ) −→ f(ρ′) and we have (σ, ρ′) ∈ FH′ with H ′ =
H ∪ {ρ}, so (σ, f(ρ′)) ∈RH′ . If instead ρ ↓ r, we distinguishes two cases. (i) If
ρ /∈ H , then, since (σ, ρ) ∈ FH , there exists sR ⊆ r such that σ ⇓ sr and by
definition we have sr ⊆ SetH(σ, ρ); so sr ⊆ r|(fσ,ρ,H). (ii) If ρ ∈ H , then, since
(σ, ρ) ∈ FH , for every s such that σ ⇓ s it holds s ⊆ r and also s ⊆ SetH(σ, ρ),
hence s ⊆ r|(fσ,ρ,H).

Assume now fσ,ρ,H(ρ) α−→. Then there exists ρ′ such that ρ
α−→ ρ′, so

fσ,ρ(ρ)
α−→ f ′(ρ′), where f ′(ρ′) ∼ fσ′,ρ′,H′(ρ′) with σ′ = σ(α) and H ′ = H ∪ ρ.

Since fσ,ρ,H
α�−→ then σ

α=⇒ with (σ(α), ρ′) ∈ FH′ and H ′ = H ∪ {ρ}. We
conclude that (σ(α), f ′(ρ′)) ∈ RH′ .
(⇐=) Let R be a coinductive s-preorder. Given H , we define

FH
def= {(σ, ρ) | there exists f such that (σ, f(ρ)) ∈Rf(H)}

where f(H) = {f(ρ) : ρ ∈ H}. We show that F is a filtered s-preorder. Take
(σ, ρ) ∈ FH , i.e. (σ, f(ρ)) ∈Rf(H).

If ρ −→ ρ′, then f(ρ) −→ f ′(ρ′) and (σ, f ′(ρ′)) ∈Rf(H′) with H ′ = H ∪ {ρ},
hence (σ, ρ′) ∈ FH′ . If instead ρ ↓ r, we distinguishes two cases. (i) If ρ /∈ H ,
then also f(ρ) /∈ f(H) hence there exists s such that s ⊆ r|f . Since r|f ⊆ r

we have s ⊆ r. Take now α ∈ s, then α ∈ r|f so f(ρ) α−→ f ′(ρ′). Now, from
(σ, f(ρ)) ∈Rf(H) we know that (σ(α), f ′(ρ′)) ∈Rf(H′) with H ′ = H ∪{f(ρ)}, so
(σ(α), ρ′) ∈ FH′ . ((ii) If ρ ∈ H , then also f(ρ) ∈ f(H). Now, for every s such
that σ ⇓ s it holds s ⊆ r|f , hence s ⊆ r|f and for every action α ∈

⋃
σ⇓s s if

f(ρ) α−→ f(ρ′), then σ α=⇒ with (σ(α), f(ρ′)) ∈ Rf(H′) and H ′ = H ∪{ρ}, hence
also (σ(α), ρ′) ∈ FH′ . !"

6 Conclusion

We have developed a formal framework for the analysis of different theories of
compliance in the literature. Besides investigating the relationships between the
existing definitions of compliance, we have also shown how to obtain compliance
preorders for multiparty service compositions, by recasting and generalizing the
theory of behavioral coercions from [8,9] to this setting. Our present endeavor
continues on the line of work we initiated in [2]. There, we used filters to provide
a new solution to the problem of web service adaptation within service composi-
tions [18,1,10]. Specifically, we showed how filters may be employed as adapters
to enforce the compliance of a choreography, by blocking the transition paths
in all the components that may get the choreography stuck or trapped into a
livelock. Here, our focus has been on providing effective techniques for the con-
struction of expressive compliance preorders supporting contract replacement.
Collectively, the resulting theory constitutes an elegant support for a formal
analysis of component/service compliance, adaptation and replacement inside
choreographies.

Compliance Preorders for Web Services 91

Acknowledgements. We gratefully acknowledge comments from the anony-
mous referees.

References

1. Berardi, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Mecella, M.: Auto-
matic service composition based on behavioral descriptions. Int. J. Cooperative
Inf. Syst. 14(4), 333–376 (2005)

2. Bernardi, G., Bugliesi, M., Macedonio, D., Rossi, S.: A theory of adaptable
contract-based service composition. In: Global Comp. IEEE Computer Society,
Los Alamitos (2008)

3. Bravetti, M., Zavattaro, G.: Contract based multi-party service composition. In:
Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp. 207–222. Springer,
Heidelberg (2007)

4. Bravetti, M., Zavattaro, G.: Towards a unifying theory for choreography confor-
mance and contract compliance. In: Lumpe, M., Vanderperren, W. (eds.) SC 2007.
LNCS, vol. 4829, pp. 34–50. Springer, Heidelberg (2007)

5. Caires, L., Vieira, H.T.: Conversation types. In: Castagna, G. (ed.) ESOP 2009.
LNCS, vol. 5502, pp. 285–300. Springer, Heidelberg (2009)

6. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centred program-
ming for web services. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
2–17. Springer, Heidelberg (2007)

7. Carpineti, S., Castagna, G., Laneve, C., Padovani, L.: A formal account of contracts
for web services. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006.
LNCS, vol. 4184, pp. 148–162. Springer, Heidelberg (2006)

8. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for web services.
In: POPL 2008, pp. 261–272. ACM Press, New York (2008)

9. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for web services.
ACM Transactions on Programming Languages and Systems (to appear, 2009)

10. De Giacomo, G., Sardiña, S.: Automatic synthesis of new behaviors from a library
of available behaviors. In: Veloso, M.M. (ed.) IJCAI, pp. 1866–1871 (2007)

11. Honda, K., Vasconcelos, V., Kubo, M.: Language primitives and type discipline for
structured communication-based programming. In: Hankin, C. (ed.) ESOP 1998.
LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

12. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL 2008, pp. 273–284. ACM Press, New York (2008)

13. Laneve, C., Padovani, L.: The must preorder revisited. In: Caires, L., Vasconcelos,
V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 212–225. Springer, Heidelberg
(2007)

14. Milner, R.: Communication and Concurrency. Prentice Hall, Englewood Cliffs
(1989)

15. De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theoretical Com-
puter Science 34, 83–133 (1984)

16. Pierce, B.C., Sangiorgi, D.: Typing and subtyping for mobile processes. Mathemat-
ical Structures in Computer Science 6(5), 409–453 (1996)

17. Rensink, A., Vogler, W.: Fair testing. Information and Computation 205(2), 125–
198 (2007)

18. Traverso, P., Pistore, M.: Automated composition of semantic web services into
executable processes. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.)
ISWC 2004. LNCS, vol. 3298, pp. 380–394. Springer, Heidelberg (2004)

A Formal Semantics for the
WS-BPEL Recovery Framework

The π-Calculus Way

Nicola Dragoni1 and Manuel Mazzara2

1 DTU Informatics, Technical University of Denmark, Denmark
ndra@imm.dtu.dk

2 School of Computing Science, Newcastle University, UK
manuel.mazzara@newcastle.ac.uk

Abstract. While current studies on Web services composition are
mostly focused — from the technical viewpoint — on standards and
protocols, this work investigates the adoption of formal methods for de-
pendable composition. The Web Services Business Process Execution
Language (WS-BPEL) — an OASIS standard widely adopted both in
academic and industrial environments — is considered as a touchstone
for concrete composition languages and an analysis of its ambiguous Re-
covery Framework specification is offered. In order to show the use of
formal methods, a precise and unambiguous description of its (simpli-
fied) mechanisms is provided by means of a conservative extension of the
π-calculus. This has to be intended as a well known case study providing
methodological arguments for the adoption of formal methods in soft-
ware specification. The aspect of verification is not the main topic of the
paper but some hints are given.

1 Introduction

Service Oriented Architectures and the related paradigm are modern attempts
to cope with old problems connected to Business-to-Business (B2B) and infor-
mation interchange. Many implementations of this paradigm are possible and
the so called Web services look to be the most prominent, mainly because the
underlying architecture is already there; it is simply the web which has been
extensively used in the last 15 years and where we can easily exploit HTTP [21],
XML [5], SOAP [8] and WSDL [3]. The World Wide Web provides a basic plat-
form for the interconnection on a point-to-point basis of different companies and
customers but one of the B2B complications is the management of causal inter-
actions between different services and the way in which the messages between
them need to be handled (e.g., not always in a sequential way). This area of
investigation is called composition, i.e., the way to build complex services out of
simpler ones [4]. These days, the need for workflow technology is becoming quite
evident and the positive aspect is that we had investigated this technology for
decades and we also have excellent modeling tools providing verification features
that are grounded in the very active field of concurrency theory research.

C. Laneve and J. Su (Eds.): WS-FM 2009, LNCS 6194, pp. 92–109, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Formal Semantics for the WS-BPEL Recovery Framework 93

1.1 BPEL and Its Ambiguous Specification

Several organizations worked on composition proposals. The most important in
the past have been IBM’s WSFL [1] and Microsoft’s XLANG [2]. These two
have then converged into Web Services Business Process Execution Language
[18] (BPEL for short) which is presently an OASIS standard and, given its wide
adoption, it will be used as a touchstone for composition languages in this paper.
BPEL allows workflow-based composition of services. In the committee members’
words the aim is “enabling users to describe business process activities as Web
services and define how they can be connected to accomplish specific tasks”. The
problem with BPEL was that the earlier versions of the language were not very
clear, the specification was huge and many points confusing, especially in relation
to the Recovery Framework (RF) and the interactions between different mech-
anisms (fault handlers and compensation handlers). BPEL indeed represents a
business tradeoff where not necessarily all the single technical choices have been
made considering all the available options. Although in the final version of the
specification (which is lighter and cleaner) fault handling during compensation
has been simplified, we strongly believe that the sophisticated mechanism of
recovery still needs a clarification.

1.2 Contribution of the Paper

In this paper we aim to reduce this ambiguity providing an easily readable formal
semantics of the BPEL Recovery Framework (BPEL RF for short). This goal
requires at least two different contributions:

1. a formal semantics of the framework, focusing on its essential mechanisms
2. an easily readable specification of these mechanisms

We provide both contributions following a “π-calculus way”, that is using the
π-calculus as formal specification language. It is worth noting that here the
actual challenge is to provide not only a formal semantics for the BPEL RF but
also an easily readable specification. Indeed, other attempts might be found in
literature providing the first contribution only. For instance, in [12] such encoding
has been proposed by one of the authors. However, one of the unsatisfactory
aspects about that encoding is that it is hardly readable and complex. The actual
challenge here is to reduce such complexity while keeping a formal and rigorous
approach. As a result, in this paper we contribute with a better understanding
of how the BPEL RF works. Moreover, the case study allows us to show the
real power of the webπ∞ calculus (i.e., the π-calculus based formal language
exploited for the mentioned encoding) not only in terms of simplicity of the
resulting BPEL specification, but also sketching how webπ∞ can contribute to
the implementation of real orchestration engines.

Finally, we would like to stress that different formal models might be chosen
for this goal. As discussed in the next section, our choice is primarily motivated
by the “foundational feature” of the π-calculus, namely mobility, i.e. the possi-
bility of transmitting channel names that will be, in turn, used by any receiving

94 N. Dragoni and M. Mazzara

process. It is worth noting that in the specific contribution of this paper this fea-
ture is not really exploited or totally necessary since the modeled mechanisms
requested us to pay more attention to process synchronization and concurrency
than to full mobility. Anyway, in the general case, we have the strong opinion
that mobility is an essential feature that composition languages should exhibit
[13]. This aspect will be better discussed in section 2.

Outline. The paper is organized as follows. Section 2 will discuss the rationale
behind our “π-calculus way” choice, briefly motivating why the π-calculus could
be considered a formal foundation for dependable Web services composition.
Section 3 will present webπ∞ discussing its syntax and semantics. Sections 4 and
5 will contribute with a clarification of the BPEL RF semantics. In particular,
Section 4 will show how it appears in the original (ambiguous) specification, and
Section 5 will propose the actual simplification and formal specification. Section
6 will add some conclusive remarks.

2 The π-Calculus Way to Dependable Composition

The need for formal foundation has been discussed widely in the last years,
although many attempts to use formal methods in this setting have been spec-
ulative. Some communities, for example, criticized the process algebra options
[19] promoting the Petri nets choice. The question here is whether we need a
formal foundation and, if that is the case, which kind of formalism we need.
While sequential computation has well established foundations in the λ-calculus
and Turing machines, when it comes to concurrency things are far from being
settled. The π-calculus ([17] and [16]) emerged during the eighties as a theory
of mobile systems providing a conceptual framework for expressing them and
reasoning about their behavior. It introduces mobility generalizing the channel-
based communication of CCS by allowing channels to be passed as data through
rendezvous over other channels. In other words, it is a model for prescribing
(specification) and describing (analysis) concurrent systems consisting of agents
which mutually interact and in which the communication structure can dynam-
ically evolve during the execution of processes. Here, a communication topology
is intended as the linkage between processes which indicates who can communi-
cate with whom. Thus, changing the communication links means, for a process,
moving inside this abstract space of linked entities.

A symmetry between λ-calculus and π-calculus could be suggested and the
option to build concurrent languages (and so workflow languages as well) on a
formal basis could actually make sense. It has indeed been investigated in many
works, even in the BPEL context. But, while formal methods are expected to
bring mathematical precision to the development of computer systems (provid-
ing precise notations for specification and verification), so far BPEL — despite
having been subject of a number of formalizations (for example [10], [7] and [22])
— has not yet been proved to be built on an exact and specific mathematical

A Formal Semantics for the WS-BPEL Recovery Framework 95

model, including process algebras (this argument has been carefully developed
in [13]). Thus, we do not have any conceptual and software tools for analysis,
reasoning and software verification. If we are not able to provide this kind of
tools, any hype about mathematical rigor becomes pointless.

It is also worth noting that, although many papers use the term π-calculus
and process algebra interchangeably, there is a difference between them. Algebra
is a mathematical structure with a set of values and a set of operations on the
values. These operations enjoy algebraic properties such as commutativity, asso-
ciativity, idempotency, and distributivity. In a typical process algebra, processes
are values and parallel composition is defined to be a commutative and asso-
ciative operation on processes. The π-calculus is an algebra but it differs from
previous models for concurrency precisely for the fact that it includes a notion of
mobility, i.e. the possibility of transmitting channel names that will be, in turn,
used by receiving processes. This allows a sort of dynamic reconfiguration with
the possibility of creating (and deleting) processes through the alteration of the
process topology (although it can be argued that, even if the link to a process
disappears, the process itself disappears only from “an external point of view”).

The π-calculus looks interesting because of its treatment of component bind-
ings as first class objects, which enables this dynamic reconfiguration to be
expressed simply. So, the question now is: do we need this additional feature of
the π-calculus or should we restrict our choice to models, like CCS, without this
notion of mobility? Why all this hype over the π-calculus and such a rare focus
on its crucial characteristic? We have the strong opinion that mobility is an es-
sential feature that composition languages should exhibit. Indeed, while in some
scenarios services can be selected already at design-time, in others some services
might only be selected at runtime and this selection has then to be propagated
to different parties. This phenomenon is called link passing mobility and it is
properly approached in [6].

It is worth noting that in the specific contribution of this paper this feature is
not really exploited or totally necessary since the modeled mechanisms requested
we pay more attention to process synchronization and concurrency than to full
mobility. This aspect has been instead essential in the full formalization of BPEL.
In [13] it has been shown how it plays an important role in the encoding of
interactions of the kind request-response. Indeed, in that case the invoker must
send a channel name to be used then to return the response. This is a typical
case of the so called output capability of the π-calculus, i.e. a received name is
used as the subject of outputs only. The full input capability of the π-calculus
— i.e. when a received name is used also as the subjects of inputs — has been
not exploited in the BPEL encoding (and neither it is in this work). Indeed in
[13] a specific well-formedness constraint imposes that “received names cannot be
used as subjects of inputs or of replicated inputs”. Thus, at the present moment
we remain agnostic regarding the need of the π-calculus input capability in the
description of BPEL mechanism. We realize that this admission could be an
argument for discussing again the choice of the original model.

96 N. Dragoni and M. Mazzara

2.1 Our Approach

WS-standards for dependability only concerns SOAP when employed as an XML
messaging protocol (e.g. OASIS WS-Reliability and WS-Security), i.e., at the
message level. However, things are more complicated than this since loosely cou-
pled components like Web services, being autonomous in their decisions, may
refuse requests or suspend their functionality without notice, thus making their
behavior unreliable to other activities. Henceforth, most of the web languages
also include the notion of loosely coupled transaction – called web transaction
[11] in the following – as a unit of work involving loosely coupled activities that
may last long periods of time. These transactions, being orthogonal to admin-
istrative domains, have the typical atomicity and isolation properties relaxed,
and instead of assuming a perfect roll-back in case of failure, support the ex-
plicit programming of compensation activities. Web transactions usually contain
the description of three processes: body, failure handler, and compensation. The
failure handler is responsible for reacting to events that occur during the execu-
tion of the body; when these events occur, the body is blocked and the failure
handler is activated. The compensation, on the contrary, is installed when the
body commits; it remains available for outer transactions to require some undo
of previously performed actions. BPEL also uses this approach.

Our approach to recovery is instead described in [13], where it has been shown
that different mechanisms for error handling are not necessary and the BPEL
semantics has been presented in terms of webπ∞, which is based on the idea of
event notification as the unique error handling mechanism. This result allows us
to extend any semantic considerations about webπ∞ to BPEL. webπ∞ (originally
in [14]) has been introduced to investigate how process algebras can be used
as a foundation in this context. It is a simple and conservative extension of
the π-calculus where the original algebra is augmented with an operator for
asynchronous events raising and catching in order to enable the programming
of widely accepted error handling techniques (such as long running transactions
and compensations) with reasonable simplicity. We addressed the problem of
composing services starting directly from the π-calculus and considering this
proposal as a foundational model for composition simply to verify statements
regarding any mathematical foundations of composition languages and not to
say that the π-calculus is more suitable than other models (such as Petri nets)
for these purposes. The calculus is presented in detail in section 3 while in section
4 and 5 it is showed how it can be useful to clarify the BPEL RF semantics.

3 The Composition Calculus

In this section we present a proposal to cope with the issues presented in section
2. Although webπ∞ is ambitious, for sure we do not pretend to solve all the
problems and to give the ultimate answer to all the questions. Giving all the
details about the language and its theory is beyond the scope of this paper
which is giving a brief account about how webπ∞ can be considered in the
overall scenario of formal methods for dependable Web services. You can find all
the relevant details in some previous work, especially in [12], [13] and [15].

A Formal Semantics for the WS-BPEL Recovery Framework 97

3.1 Syntax

The syntax of webπ∞ processes relies on a countable set of names, ranged over
by x, y, z, u, · · ·. Tuples of names are written ũ. We intend i ∈ I with I a finite
non-empty set of indexes.

P ::=
0 (nil)

| x ũ (output)
| ∑

i∈I xi(ũi).Pi (alternative composition)
| (x)P (restriction)
| P |P (parallel composition)
| !x(ũ).P (guarded replication)
| 〈|P ; P |〉x (workunit)

A process can be the inert process 0, an output x ũ sent on a name x that car-
ries a tuple of names ũ, an alternative composition consisting of input guarded
processes that consumes a message xi w̃i and behaves like Pi

{
w̃i/ũi

}
, a restric-

tion (x)P that behaves as P except that inputs and messages on x are prohibited,
a parallel composition of processes, a replicated input !x(ũ).P that consumes a
message x w̃ and behaves like P

{
w̃/ũ

}
| !x(ũ).P , or a workunit 〈|P ; Q|〉x that

behaves as the body P until an abort x is received and then behaves as the event
handler Q.

Names x in outputs, inputs, and replicated inputs are called subjects of
outputs, inputs, and replicated inputs, respectively. It is worth to notice that
the syntax of webπ∞ processes simply augments the asynchronous π-calculus
with workunit process. The input x(ũ).P , restriction (x)P and replicated input
!x(ũ).P are binders of names ũ, x and ũ respectively. The scope of these binders
is the process P . We use the standard notions of α-equivalence, free and bound
names of processes, noted fn(P), bn(P) respectively.

3.2 Semantics

We give the semantics for the language in two steps, following the approach of
Milner [16], separating the laws that govern the static relations between processes
from the laws that rule their interactions. The first step is defining a static
structural congruence relation over syntactic processes. A structural congruence
relation for processes equates all agents we do not want to distinguish. It is
introduced as a small collection of axioms that allow minor manipulation on the
processes’ structure. This relation is intended to express some intrinsic meanings
of the operators, for example the fact that parallel is commutative. The second
step is defining the way in which processes evolve dynamically by means of an
operational semantics. This way we simplify the statement of the semantics just
closing with respect to ≡, i.e., closing under process order manipulation induced
by structural congruence.

Definition 1. The structural congruence≡ is the least congruence satisfying the
Abelian Monoid laws for parallel and summation (associativity, commutativity and
0 as identity) closed with respect to α-renaming and the following axioms:

98 N. Dragoni and M. Mazzara

1. Scope laws:
(u)0 ≡ 0, (u)(v)P ≡ (v)(u)P,

P | (u)Q ≡ (u)(P |Q) , if u �∈ fn(P)
〈|(z)P ; Q|〉x ≡ (z)〈|P ; Q|〉x , if z �∈ {x} ∪ fn(Q)

2. Workunit laws:

〈|0 ; Q|〉x ≡ 0
〈|〈|P ; Q|〉y |R ; R′|〉x ≡ 〈|P ; Q|〉y | 〈|R ; R′|〉x

3. Floating law:

〈|z ũ |P ; Q|〉x ≡ z ũ | 〈|P ; Q|〉x
The scope laws are standard while novelties regard workunit and floating laws.
The law 〈|0 ; Q|〉x ≡ 0 defines committed workunit, namely workunit with 0 as
body. These ones, being committed, are equivalent to 0 and, therefore, cannot
fail anymore. The law 〈|〈|P ; Q|〉y |R ; R′|〉x ≡ 〈|P ; Q|〉y | 〈|R ; R′|〉x moves
workunit outside parents, thus flattening the nesting. Notwithstanding this flat-
tening, parent workunits may still affect the children ones by means of names.
The law 〈|z ũ |P ; Q|〉x ≡ z ũ | 〈|P ; Q|〉x floats messages outside workunit bound-
aries. By this law, messages are particles that independently move towards their
inputs. The intended semantics is the following: if a process emits a message,
this message traverses the surrounding workunit boundaries until it reaches the
corresponding input. In case an outer workunit fails, recoveries for this message
may be detailed inside the handler processes.

The dynamic behavior of processes is defined by the reduction relation where
we use the shortcut:

〈|P ; Q|〉 def= (z)〈|P ; Q|〉z where z �∈ fn(P) ∪ fn(Q)

Definition 2. The reduction relation → is the least relation satisfying the fol-
lowing axioms and rules, and closed with respect to ≡, (x) , | , and 〈| ; Q|〉z:

(com)

xi ṽ | ∑
i∈I xi(ũi).Pi → Pi

{
ṽ/ũi

}
(rep)

x ṽ | !x(ũ).P → P
{
ṽ/ũ

} | !x(ũ).P
(fail)

x | 〈|∏i∈I

∑
s∈S xis(ũis).Pis | ∏

j∈J !xj(ũj).Pj ; Q|〉x → 〈|Q ; 0|〉

whereJ �= ∅ ∨ (I �= ∅ ∧ S �= ∅)

Rules (com) and (rep) are standard in process calculi and models input-output
interaction and lazy replication. Rule (fail) models workunit failures: when a
unit abort (a message on a unit name) is emitted, the corresponding body is
terminated and the handler activated. On the contrary, aborts are not possible
if the transaction is already terminated (namely every thread in the body has
completed its own work), for this reason we close the workunit restricting its
name.

A Formal Semantics for the WS-BPEL Recovery Framework 99

Interested readers may find all the definitions and proofs with an extensive ex-
planation for the extensional semantics, the notions of barb, process contexts and
barbed bisimulation in [13]. Definitions for Labelled Semantics, asynchronous
bisimulation, labelled bisimilarity and the proof that it is a congruence are also
present. Finally, results relating barbed bisimulation and asynchronous labeled
bisimulation as well as many examples are discussed. A core BPEL is encoded
in webπ∞ and a few properties connected to this encoding are proved for it.

4 A Case Study: The BPEL RF

One of the unsatisfactory things about the encoding of the BPEL RF we pre-
sented in [12] is that it was hardly readable for humans. The goal was to capture
in that encoding all the hidden details of the BPEL semantics and working out
the full theory also for verification purpose. But surely we lost something in
readability since the target for that encoding were not humans but machines.
Many people who approached our work justified their problems in understanding
the encoding claiming that was exactly the proof of the BPEL recovery frame-
work complexity. This is definitely true but, in order to be really useful, that
work needs to be understandable also to non-specialists (and humans in gen-
eral). With the goal of better understanding how the BPEL RF works, in this
section we analyze a case study where webπ∞ shows its power. We will firstly
report the description of the mechanisms following the original BPEL specifica-
tion, then we will consider a simplification of the actual mechanisms giving a
simplified semantics and a simplified explanation. In this way some details will
be lost but we will improve readability. The first simplification is considering
only the case in which a single handler exists for each of the three different type
(fault, compensation and event). Furthermore, we do not consider interdepen-
dencies between the mechanisms: default handlers with automatic compensation
of inner scope. This study is an integration of what done before in [12] and [15].
The semantics provided is not the one implemented by the engines supporting
BPEL, we have already given a formalization for the Oracle BPEL Manager in
[13]. While in [12] you can find a complete description, here we want to focus
only on the essence of the single mechanisms to understand at which stage of
the execution they play their role and in which way.

4.1 Details from the BPEL Specification

Instead of assuming a perfect roll-back in case of failure, BPEL supports in
its RF the notion of the so-called loosely coupled transactions and the explicit
programming of compensation activities. This kind of transactions lasts long
periods (atomicity needs to be relaxed wrt ACIDity), crosses administrative
domains (isolation needs to be relaxed) and possibly fails because of services
unavailability etc... They usually contain the description of three processes:

– body
– fault handler
– compensation handler

100 N. Dragoni and M. Mazzara

BPEL also adds the possibility to have a third kind of handler called the event
handler. The whole set of activities is included in a construct called scope in-
troduced as follows in the specification:

“A scope provides the context which influences the execution behavior of
its enclosed activities. This behavioral context includes variables, partner
links, message exchanges, correlation sets, event handlers, fault handlers,
a compensation handler, and a termination handler [...]

Each scope has a required primary activity that defines its normal
behavior. The primary activity can be a complex structured activity, with
many nested activities to arbitrary depth. All other syntactic constructs
of a scope activity are optional, and some of them have default semantics.
The context provided by a scope is shared by all its nested activities.”

In the following, we report the way in which the concepts of the Recovery Frame-
work and the need for it are motivated in [18].

Compensation Handler

“Business processes are often of long duration. They can manipulate
business data in back-end databases and line-of-business applications.
Error handling in this environment is both difficult and business critical.
The use of ACID transactions is usually limited to local updates because
of trust issues and because locks and isolation cannot be maintained for
the long periods during which fault conditions and technical and business
errors can occur in a business process instance. As a result, the overall
business transaction can fail or be cancelled after many ACID transac-
tions have been committed. The partial work done must be undone as
best as possible. Error handling in BPEL processes therefore leverages
the concept of compensation, that is, application-specific activities that
attempt to reverse the effects of a previous activity that was carried out
as part of a larger unit of work that is being abandoned. There is a his-
tory of work in this area regarding the use of Sagas and open nested
transactions. BPEL provides a variant of such a compensation mecha-
nism by providing the ability for flexible control of the reversal. BPEL
achieves this by providing the ability to define fault handling and com-
pensation in an application-specific manner, in support of Long-Running
Transactions (LRT’s) [...] BPEL allows scopes to delineate that part of
the behavior that is meant to be reversible in an application-defined way
by specifying a compensation handler. Scopes with compensation and
fault handlers can be nested without constraint to arbitrary depth.[...]
A compensation handler can be invoked by using the compensateScope
or compensate (together referred to as the “compensation activities”). A
compensation handler for a scope MUST be made available for invocation
only when the scope completes successfully. Any attempt to compensate a
scope, for which the compensation handler either has not been installed
or has been installed and executed, MUST be treated as executing an
empty activity. [...]”

A Formal Semantics for the WS-BPEL Recovery Framework 101

Fault Handler

“Fault handling in a business process can be thought of as a mode switch
from the normal processing in a scope. Fault handling in BPEL is de-
signed to be treated as “reverse work” in that its aim is to undo the
partial and unsuccessful work of a scope in which a fault has occurred.
The completion of the activity of a fault handler, even when it does not
rethrow the handled fault, is not considered successful completion of the
attached scope. Compensation is not enabled for a scope that has had an
associated fault handler invoked.

Explicit fault handlers, if used, attached to a scope provide a way
to define a set of custom fault-handling activities, defined by catch and
catchAll constructs. Each catch construct is defined to intercept a specific
kind of fault, defined by a fault QName. An optional variable can be
provided to hold the data associated with the fault. If the fault name is
missing, then the catch will intercept all faults with the same type of fault
data. The fault variable is specified using the faultVariable attribute in a
catch fault handler. The variable is deemed to be implicitly declared by
virtue of being used as the value of this attribute and is local to the fault
handler. It is not visible or usable outside the fault handler in which it is
declared. A catchAll clause can be added to catch any fault not caught
by a more specific fault handler.”

Event Handler

“Each scope, including the process scope, can have a set of event han-
dlers. These event handlers can run concurrently and are invoked when
the corresponding event occurs [...] There are two types of events. First,
events can be inbound messages that correspond to a WSDL operation.
Second, events can be alarms, that go off after user-set times.”

5 Formal Semantics of a (Simplified) BPEL RF

The plain text description of these mechanisms taken from the specification
should give an idea of the complexity of this framework. The main difficulty
we have found at the beginning of this investigation was to clarify the basic
difference between failure and compensation handlers, since many words have
been spent on this but the true essence of these mechanisms has never been
given in a concise and simple way. In the past we also promoted a complete
explanation of the mechanisms focusing on inessential minor details. Here we
want to give the basic idea explaining that failure and compensation handlers
differ mainly because they play their role at different stages of computation:
failure handler is responsible for reacting to signals that occur during the normal
execution of the body; when these occur, the body is interrupted and the failure
handler is activated. On the contrary, compensation handler is installed only
when the body successfully terminates. It remains available if another activity

102 N. Dragoni and M. Mazzara

requires some undo of the committed activity. In some sense, failures regard
“living” (not terminated) processes, while compensation is only for “successfully
terminated process”. The key point regarding event handlers is instead bound to
the sentence reported above: they are invoked concurrently to the body of a scope
that meanwhile continues running. This is very different from what happens for
failures that interrupt the main execution and compensations which run only
after the completion of the relative body.

The difficulty of the encoding we gave in [12] lies in the nontrivial interactions
between the different mechanisms and it is due to the sophisticated implicit
mechanism of recovery activated when designer-defined fault or compensation
handlers are absent. Indeed, in this case, BPEL provides backward compensation
of nested activities on a causal dependency basis relying on two rules:

– control dependency: links and sequence define causality
– peer-scope dependency: the basic control dependency causality is reflected

over peer scopes

These two rules resemble some kind of structural inductive definition, as is usu-
ally done in process algebra. It is exactly our goal to skip these details here and
to clarify the semantics.

5.1 Syntax

Let (A; H)s be a scope named s where A is the main activity (body) and H a
handler. Both A and H have to be intended as BPEL activities coming from a
subset of the ones defined in [12]. Practically, that work was limited to basic
activities, structured activities and error handling. The idea now is to represent
a simplified BPEL scope called s having a single handler H, so we are providing a
semantics for the error handling mechanisms alternative to the previous one. For
the sake of simplicity, we start considering a single handler at a time. Afterward
we will consider the full scope construct. In the following subsection the formal
semantics derived from webπ∞ will be presented, here we just define the syntax
giving an informal explanation.

Definition 3 (Compensation Handler). We define the compensation han-
dler as follows:

(A; COMP s→ C)s

If s is invoked after the successful termination of A, then run the allocated com-
pensation C.

Definition 4 (Fault Handler). We define the fault handler as follows:

(A; FAULT f → F)s

If f is invoked in A, then abort immediately the body A and run F.

Definition 5 (Event Handler). We define the event handler as follows:

(A; EVENT e→ E)s

If e is invoked in A then run E in parallel while the body A continues running still
listening for another event e.

A Formal Semantics for the WS-BPEL Recovery Framework 103

5.2 Semantics

The formal semantics of the three mechanisms is defined here in terms of webπ∞.
These constructs are encoded in webπ∞ which has a formal semantics, as a
consequence the semantic of the constructs themselves is given. The continuation
passing style technique is used like in [12]. Briefly, [[[A]]]y means that the encoding
of the BPEL activity A completes with a message sent over the channel y. More
details can be found also in [13]. In that work the function [[[A]]]y : ABPEL →
Process has been used to map BPEL activities into webπ∞ processes flagging
out y to signal termination.

5.3 Compensation Handler

Definition 6 (Compensation Handler). The semantics of the single Com-
pensation Handler scope is defined in terms of webπ∞ as follows:

(A; COMP s→ C)s
def= (y)(y′)(〈|[[[A]]]y ; s().[[[C]]]y′ |〉y)

The reader will realize that there are two new names y and y′ defined at the
outer level. This means that all the interactions related to this name are local
to this process, i.e., interferences from the outside are not allowed (they are
restricted names). Then you have a workunit containing the main process and
the compensation handler. Both these processes are, in turn, contained by the
double brackets, which means that their encodings need to be put here. As you
can see the compensation is blocked until a message on s (the name of the
scope) is received and C will be available only after the successful termination
of A signaled on the local channel y. This expresses exactly the fact that the
compensation is available only after the successful termination of the body as
required in the BPEL specification. The reason for which C is activated after the
termination of A stands in the webπ∞ rule (fail) which activates the workunit
handler s().[[[C]]]y′ when the signal y (the workunit name) is received. This name
is precisely sent by A when it terminates (because of the continuation passing
style encoding).

5.4 Fault Handler

Definition 7 (Fault Handler). The semantics of the single Fault Handler
scope is defined in terms of webπ∞ as follows:

(A; FAULT f → F)s
def= (f)(y)(y′)(〈|[[[A]]]y ; [[[F]]]y′ |〉f)

The fault handler has a semantic very close to the webπ∞ workunit. For this
reason the encoding here is basically an isomorphism. The handler is triggered
when receiving the signal f which interrupts the normal execution of the body.
Since the activation of the fault handler is internal to the scope itself, the scope
name is not relevant in the right hand side.

104 N. Dragoni and M. Mazzara

5.5 Event Handler

Definition 8 (Event Handler). The semantics of the single Event Handler
scope is defined in terms of webπ∞ as follows:

(A; EVENT e→ E)s
def= (e)(y)(y′)(〈|[[[A]]]y ; 0|〉y | !e().[[[E]]]y′)

The event handler is interesting. The main point here is that the body execution
is not interrupted when e is received. Consider indeed that E is outside the
workunit and it is triggered only by e. The handler, receiving e and activating
E, will run in parallel with A without interrupting it. It is worth noting also that
the presence of the replication allows e to be received many times during the
execution of A, each time running a new handler. The event handler will stay
active without any risk of being stopped by other scopes since all the names
inside the handler are local to E (bound names) due to the way in which BPEL
activities are encoded by the function [[[A]]]y. This is a simplification to clarify the
mechanism, it actually represents a deviation from the BPEL standard where
the events are not restricted in this way.

5.6 BPEL Scope

Now that we have understood each mechanism let us put all together. We define
a scope construct including all the three handlers. Again, we consider single
handlers of each type with no interactions, no default handler and no automatic
compensation of inner scopes.

Definition 9 (Full Scope Construct). The semantics of the full scope con-
struct is defined in terms of webπ∞ as follows:

(A; FAULT f → F; EVENT e→ E; COMP s→ C)s
def=

(e)(f)(y)(y′)(y′′)(y′′′)(〈|[[[A]]]y ; [[[F]]]y′ |〉f
| !e().[[[E]]]y′′ | 〈|(x)x() ; s().[[[C]]]y′′′ |〉y)

It is worth noting that here the name s is a free global name (undefined) available
to all the scopes which possibly run in parallel. The technical problem is that,
in this way, the encoding is not compositional. Actually, this problem is easily
fixed when the encoding is extended to the complete set of BPEL constructs,
including the top level process where all the scopes are defined since there you
can restrict all the names of the inner scopes. This has been done previously in
[12]. The purpose of this work is just to explain in a clearer way the differences
between the mechanisms of the recovery framework without presenting again the
whole encoding. A synergy between this result and what we have done in [12] is
left as future work.

5.7 Example

Let us now show an example of how this mechanism works in practice. To do
this we will run a process description on the “reduction semantics machine”

A Formal Semantics for the WS-BPEL Recovery Framework 105

of webπ∞. This example serves as a clarification for all the concepts presented
in this paper, especially for those readers who are not very familiar with the
mathematical tools exploited in our investigation. Let us consider the following
process where, for simplicity, the body and the handlers are already presented
in terms of webπ∞:

((z)(f | z().0); FAULT f → warning ; EVENT e→ 0; COMP s→ 0)s

Looking at the previous encoding it results in the following full webπ∞ process:

(e)(f)(y)(y′)(y′′)(y′′′)(〈|(z)(f | z().0) | y ; warning | y′ |〉f
| !e().y′′ | 〈|(x)x() ; s().y′′′ |〉y)

where warning is some global channel handling the actual warning (for example
displaying a message on the screen). This is a specific instance of the Full Scope
Construct as defined above where event and compensation handlers are empty
while the fault handler sends an empty message on the warning channel. The
process z().0 expresses the fact that we want the process to fail without allo-
cating the compensation handler and it has to be the standard encoding when
raising a failure signal to indicate that there is no successful termination. Now,
applying the (fail) rule and the floating law, we have:

(e)(f)(y)(y′)(y′′)(y′′′)(〈|warning | y′ ; 0|〉
| !e().y′′ | 〈|(x)x() ; s().y′′′ |〉y)

which will lead to a warning on the appropriate channel without activating the
compensation (which would need a message on y) since the scope did not suc-
cessfully complete. It is worth noting that the event handler remains ready to
accept events but it never activates in this scenario. This happens because the
channel on which the event handler listens is restricted, and this is consistent
with the expected behaviour.

5.8 Is It Really Simpler?

The intention of this work is to demonstrate, in real life scenarios, the added
value of formal methods. We believe that what has been introduced so far can
been really useful in the clarification of the BPEL RF semantic. Just to stress
better this point, let us recall only the complete Event Handler compilation
presented in [12]:⎛⎝EH(Se, yeh) = (y′)({ex | x ∈ he(Se)})

eneh().(〈|
∏

(x,ũ,A)∈Se
! x(ũ).ex ũ ; yeh |〉diseh

|
∏

(x,ũ,Ax)∈Se
! ex(ũ).[[[Ax]]]y′)

⎞⎠
while the new one is:

(A; EVENT e→ E)s
def= (e)(y)(y′)(〈|[[[A]]]y ; 0|〉y | !e().[[[E]]]y′)

For the proper background please refer to [13] where you can find a detailed ex-
planation of the encodings and all the theory. Here the idea is just to give a flavor
of how this work contributes (in terms of simplification) to the improvement of
the BPEL specification.

106 N. Dragoni and M. Mazzara

5.9 Design of BPEL Orchestration Engines

Although this paper has to be intended as investigating a well known case study
and providing methodological arguments for the adoption of formal methods in
software specification, the aspect of verification is not alien to our work and here
we intend to give some hints in this regard. The most common formalization
of behavioral equivalence is through barbed congruence, which guarantees that
equated processes are indistinguishable by external observers, even when put in
arbitrary contexts. For instance, equivalent Web services remain indistinguish-
able also when composed to form complex business transactions. The barbed
congruence in this scenario has been presented in [15]. The proposed encoding,
based on the function [[[A]]]y : ABPEL → Process, can be used to test the equiv-
alence of BPEL processes on the basis of the barbed congruence developed in
the theory. The idea is to inherit the equivalence notion from webπ∞ to decide
BPEL processes equivalence. Here, as a further contribution, we want to show
that, despite its simplicity, there are many ways in which BPEL can benefit
from this work exploiting this idea of behavioral equivalence. For example, our
proposal can contribute to the implementation of real orchestration engines. The
application example comes from one of the theorems proved in [13]:

〈|!z(u).P |Q ; v |〉x ≈a (y)(〈|!z(u).P ; y |〉x | 〈|Q | (w)w(u) ; v |〉y)

where the symbol ≈a has to be intended as barbed congruence, i.e. the process
on its left and the one on its right exhibit the same behavior. It is worth noting
that the process (w)w(u) is necessary to prevent v from disappearing in the case
the workunit on the right would terminate succesfully. This theorem suggests a
transformation where it is always possible to separate the body and the recovery
logics of the workunit expressing, for example, the event handler behavior. This is
possible not only when the recovery logic is a simple output (as in this case) but
in all the other cases, on the basis of another theorem showed in the same work:

〈|P ; Q|〉x ≈a (x′)(〈|P ; x′ |〉x | 〈|x
′().Q ; 0|〉)

Now we have the design option to compile the mechanism in an alternative way
allowing a logical separation of code which can lead to an actual physical sepa-
ration. For example, different workunits could be loaded on different machines.
Although BPEL typically allows a centralized control and a local compilation,
this result gives us further insights in the direction of distribution. Consider, for
example, the case in which different scopes can share instances of the same han-
dler loaded on a specific dedicated machine. This result can also be interpreted
in a choreographic perspective.

6 Summary, Related Works and Criticisms

The goal of this paper was to show how a variant of the π-calculus can be of
some use in the context of dependable Web services composition. The specific

A Formal Semantics for the WS-BPEL Recovery Framework 107

case study presented aimed at reducing the ambiguity of the BPEL RF providing
a (simplified) formal semantics opposed to the complete one already given in [12].
This is what we have called the “π-calculus way”, i.e., using the π-calculus as
formal specification language. As we have already underlined, several different
formal notations might have been chosen for this purpose. Our choice depended
on the “foundational feature” of mobility. It has been noted that in the specific
contribution the mobility feature has not been fully exploited since the modeled
mechanisms required us to pay more attention to process synchronization and
concurrency than to full mobility. Anyway, we have realized that, in the general
case, mobility is an essential feature of composition languages and this point is
discussed more in detail in [13].

Although before this work [15] and [12] have been earlier attempts at defin-
ing a formal semantics for WS-BPEL and unifying and simplifying its recovery
mechanisms, those papers are far from being complete and from providing the ul-
timate BPEL formal semantics. Many other works have been presented recently
that significantly improved what has been done there. For example, Blite [10] is
a “lightweight BPEL” with formal semantics taking into account also dynamic
aspects (e.g. dynamic compensations) that have not been directly part of our
investigation. Another relevant work adding dynamic compensation features is
[20]. In this paper the interested reader can find a comparison between different
compensation mechanisms presented in the recent literature. The criticism in
this work is that in webπ∞ completed transactions cannot be compensated. This
is of course true but, as shown in this paper, this aspect can be easily modeled
(look for example at the encoding of the BPEL compensation handler). The basic
idea behind webπ∞ is indeed to provide a unifying theory for Web services com-
position as discussed in [15] where different mechanisms can be easily mapped
without being directly supported. A good analysis of fault, compensation and
termination (FCT) in WS-BPEL is also discussed in [7]. Here the BPEL ap-
proach to FCT with related formal semantics is given, thus covering termination
handler that has not been part of our work. Furthermore, the authors in [22]
recognize that in [12] the lack of support for control links has to be seen as a
major drawback. And this is a criticism that we do not hide and we find relevant.
The same paper proposes an alternative formalization of WS-BPEL 2.0 based
on the π-calculus and then compares different approaches (including the one in
[12]) from the complexity point of view for verification purposes. The authors
found out that their approach presents a smaller number of states deriving from
the neglect of internal activity states. Indeed, while the encoding in [12] requires
every activity to signal (at least) its termination (due to the continuation passing
style technique used), in [22] the activity lifecycle is not modeled. Apart from
the criticisms presented in the recent literature (the list included here is not
exhaustive anyway), other interesting questions have been asked regarding this
approach to the BPEL RF, for example if we intend to capture fault tolerance
behavior depending on external factors, for example timeout. This topic indeed
has not been central to our investigation. Other authors worked on these aspects,
in particular [9] discusses timed transactions.

108 N. Dragoni and M. Mazzara

Although we know that much needs to be done yet, we are confident that
the issues we have identified are worth investigating. We have to admit that
sometimes we have doubts regarding what we are doing and the solution we
are adopting, so we usually look for some reassurance in the famous words of
Descartes: “Dubium Sapientiae initium”, i.e. “Doubt is the origin of wisdom”.

Acknowledgments. The paper has been improved during the useful conversa-
tions with Cliff Jones, Alexander Romanovsky and Ani Bhattacharyya. For some
of the ideas discussed here we have to thank Cosimo Laneve, Roberto Lucchi,
Claudio Guidi and Gianluigi Zavattaro. Very useful comments came also by Joey
Coleman, Felix Loesch and Michael Jastram that kindly provided other written
reviews for this work (Ani Bhattacharyya also provided a written review). Fi-
nally, we have also to thank the anonymous WSFM reviewers for their contri-
bution. This work has been partially funded by the EU FP7 DEPLOY Project
(Industrial deployment of system engineering methods providing high depend-
ability and productivity). More details at http://www.deploy-project.eu/.

References

1. Web services flow language (wsfl 1.0), http://www.ebpml.org/wsfl.htm
2. Xlang: Web services for business process design,

http://www.ebpml.org/xlang.htm

3. Chinnici, R., Moreau, J.J., Ryman, A., Weerawarana, S.: Web services description
language (wsdl 1.1), W3C Recommendation (June 26, 2007),
http://www.w3.org/TR/wsdl20/

4. Chris, P.: Web services orchestration and choreography. Computer 36(10), 46–52
(2003)

5. World Wide Web Consortium. Extensible markup language (xml) 1.0. W3C Rec-
ommendation: http://www.w3.org/XML/

6. Decker, G., Leymann, F., Weske, M.: Bpel4chor: Extending bpel for modeling
choreographies. In: Proceedings International Conference on Web Services, ICWS
(2007)

7. Eisentraut, C., Spieler, D.: Fault, compensation and termination in ws-bpel 2.0 – a
comparative analysis. In: Bruni, R., Wolf, K. (eds.) WS-FM 2008. LNCS, vol. 5387,
pp. 107–126. Springer, Heidelberg (2009)

8. Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.J., Nielsen, H.F., Karmarkar,
A., Lafon, Y.: Simple object access protocol (soap) 1.1, W3C Recommendation
(April 27, 2007), http://www.w3.org/TR/soap12-part1/

9. Laneve, C., Zavattaro, G.: Foundations of web transactions. In: Sassone, V. (ed.)
FOSSACS 2005. LNCS, vol. 3441, pp. 282–298. Springer, Heidelberg (2005)

10. Lapadula, A., Pugliese, R., Tiezzi, F.: A formal account of WS-BPEL. In: Lea,
D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 199–215.
Springer, Heidelberg (2008)

11. Little, M.: Web services transactions: Past, present and future,
http://www.jboss.org/dms/jbosstm/resources/presentations/XML2003.pdf

12. Lucchi, R., Mazzara, M.: A pi-calculus based semantics for ws-bpel. Journal of
Logic and Algebraic Programming 70(1), 96–118 (2007)

13. Mazzara, M.: Towards Abstractions for Web Services Composition. PhD thesis,
Department of Computer Science, University of Bologna (2006)

http://www.ebpml.org/wsfl.htm
http://www.ebpml.org/xlang.htm
http://www.w3.org/TR/wsdl20/
http://www.w3.org/XML/
http://www.w3.org/TR/soap12-part1/
http://www.jboss.org/dms/jbosstm/resources/presentations/XML2003.pdf

A Formal Semantics for the WS-BPEL Recovery Framework 109

14. Mazzara, M., Govoni, S.: A case study of web services orchestration. In: Jacquet,
J.-M., Picco, G.P. (eds.) COORDINATION 2005. LNCS, vol. 3454, pp. 1–16.
Springer, Heidelberg (2005)

15. Mazzara, M., Lanese, I.: Towards a unifying theory for web services composition.
In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184,
pp. 257–272. Springer, Heidelberg (2006)

16. Milner, R.: Functions as processes. Mathematical Structures in Computer Sci-
ence 2(2), 119–141 (1992)

17. Milner, R.: Communicating and Mobile Systems: the Pi-Calculus. Cambridge Uni-
versity Press, Cambridge (1999)

18. OASIS Web Services Business Process Execution Language (WSBPEL) TC. Web
services business process execution language version 2.0.,
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

19. van der Aalst, W.M.P.: Pi calculus versus Petri nets: Let us eat humble pie rather
than further inflate the Pi hype (2004),
http://is.tm.tue.nl/research/patterns/download/pi-hype.pdf

20. Vaz, C., Ferreira, C., Ravara, A.: Dynamic recovering of long running transactions.
In: Kaklamanis, C., Nielson, F. (eds.) TGC 2008. LNCS, vol. 5474, pp. 201–215.
Springer, Heidelberg (2009)

21. W3C. Http - hypertext transfer protocol, http://www.w3.org/protocols
22. Weidlich, M., Decker, G., Weske, M.: Efficient analysis of bpel 2.0 processes using

pi-calculus. In: APSCC 2007: Proceedings of the 2nd IEEE Asia-Pacific Service
Computing Conference, Washington, DC, USA, 2007, pp. 266–274. IEEE Com-
puter Society, Los Alamitos (2007)

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://is.tm.tue.nl/research/patterns/download/pi-hype.pdf
http://www.w3.org/protocols

Realizability Is Controllability

Niels Lohmann and Karsten Wolf

Universität Rostock, Institut für Informatik, 18051 Rostock, Germany
{niels.lohmann,karsten.wolf}@uni-rostock.de

Abstract. A choreography describes the interaction between services. It
may be used for specification purposes, for instance serving as a contract
in the design of an inter-organizational business process. Typically, not
all describable interactions make sense which motivates the study of the
realizability problem for a given choreography.

In this paper, we show that realizability can be traced back to the
problem of controllability which asks whether a service has compatible
partner processes. This way of thinking makes algorithms for controlla-
bility available for reasoning about realizability. In addition, it suggests
alternative definitions for realizability. We discuss several proposals for
defining realizability which differ in the degree of coverage of the specified
interaction.

1 Introduction

When designing an inter-organizational business process, the involved parties
(e.g., enterprises or business units) need to agree on many aspects of their in-
teraction. One of these aspects is the order of exchanged messages between the
parties. To this end, choreographies have been proposed. A choreography speci-
fication aims at specifying the interaction without revealing unnecessary details
about the internal control flow of the involved parties. Keeping internals secret
may have several reasons. On the one hand, trade secrets may be involved as
the parties may be competitors. On the other hand, an internal control flow may
not exist when the choreography is specified in a design-by-contract scenario.

Several languages have been proposed for specifying choreographies (see [1]
for a survey). They all have in common that they permit to specify unreasonable
interactions. An example for a potentially unreasonable interaction is to require
that a message from party A to party B must be exchanged before another
message from C to D. As long as no other messages are passed between A and
C or B and C this requirement cannot be satisfied. For distinguishing between
reasonable and unreasonable interaction, the concept of choreography realizability
was introduced for example in [2,3].

In this paper, we address the following issues in existing approaches to chore-
ographies and realizability notions. First, several approaches seem to focus on
synchronous interaction. Asynchronous interaction is either not considered at all,
or is brought into the approach as a derivative of the synchronous approach. For
instance, some approaches specify only the order in which messages are sent but

C. Laneve and J. Su (Eds.): WS-FM 2009, LNCS 6194, pp. 110–127, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Realizability Is Controllability 111

say nothing about the order in which they should be received. Consequently, we
propose a formalism for modeling choreographies where synchronous and asyn-
chronous communications are both first-class citizens. In our setting, causality
between the receipt of a message and sending another one can be specified. Sec-
ond, there appear to be several proposals for defining realizability. Consequently,
we propose a hierarchy of realizability notions that includes and extends exist-
ing concepts. The hierarchy is systematically obtained by relating the problem
of realizability to the problem of controllability in the sense of [4].

Controllability asks whether a given service has compatible partners. Existing
techniques for answering the controllability problem are capable of synthesizing a
compatible partner if it exists. Hence, third, we suggest techniques to synthesize
internals of realizing partners. By relating the realizability problem to controlla-
bility, we, fourth, get the opportunity to study specifications that involve both a
choreography and the specification of the internal behavior of some of the parties.
This way, we marry the choreography approach with the orchestration approach.
Both approaches have so far been conceived as complementary paradigms for
building up complex processes from services.

The rest of this paper is organized as follows. In Sect. 2, we introduce a
formal framework which allows us to reason about choreographies in a formal and
language-independent manner. In Sect. 3, we recall different realizability notions
and introduce the novel concept of distributed realizability, which seamlessly
complements existing notions. The main contribution of the paper is presented in
Sect. 4: the realizability problem can be formulated in terms of controllability and
algorithms for controllability can be used to prove realizability by synthesizing
realizing services. Section 5 is dedicated to issues arising when asynchronous
communication is considered. In Sect. 6, we show how the relationship between
controllability and realizability can be used to combine aspects from interaction
modeling and interconnected models. Section 7 discusses related work and Sect. 8
concludes the paper and gives directions for future research.

2 A Formal Framework for Choreographies

To formally reason about choreographies, we first introduce a formal framework
that employs automata to model single services as well as whole service chore-
ographies. Throughout this paper, fix a finite set of message channels M that is
partitioned into asynchronous message channels MA and synchronous message
channels MS. From M , derive a set of message events E := !E ∪ ?E ∪ !?E, con-
sisting of asynchronous send events !E := {!x | x ∈ MA}, asynchronous receive
events ?E := {?x | x ∈ MA}, and synchronization events !?E := {!?x | x ∈ MS}.
Furthermore, we distinguish a non-communicating event τ /∈ E. In this paper, we
assume that asynchronous messages may overtake each other. We claim that this
is — compared to FIFO queues for communicating finite state machines [5] — a
more natural approach to model asynchronicity, because it makes less assump-
tions about the underlying infrastructure.

112 N. Lohmann and K. Wolf

Definition 1 (Peer, collaboration). A peer P = [I,O] consists of a set of
input message channels I ⊆ M and a set of output message channels O ⊆ M ,
I ∩ O = ∅. A collaboration is a set {[I1, O1], . . . , [In, On]} of peers such that
Ii ∩ Ij = ∅ and Oi ∩Oj = ∅ for all i �= j, and

⋃n
i=1 Ii =

⋃n
i=1Oi.

A collaboration is a set of bilaterally communicating peers and can be seen as
the structure or syntactic signature of a choreography, because the internal be-
havior of the peers is left unspecified and only their message channels are given.
Figure 1(a) shows the graphical notation we use in this paper to depict collabo-
rations. The desired observable behavior of a collaboration can be specified with
a finite state automaton whose transitions are labeled with message events.

Definition 2 (Peer automaton). A peer automaton A = [Q, δ, q0, F,P] is
a tuple such that Q is a finite set of states, δ ⊆ Q × (EI ∪ EO ∪ {τ}) × Q
is a transition relation, q0 ∈ Q is an initial state, F ⊆ Q is a set of final
states, and P = {[I1, O1], . . . , [In, On]} is a nonempty set of peers. Thereby,
EI := {?x | x ∈ MA ∩

⋃n
i=1 Ii} ∪ {!?x | x ∈ MS ∩

⋃n
i=1 Ii} are the input events

of A and EO := {!x | x ∈MA ∩
⋃n

i=1Oi} ∪ {!?x | x ∈MS ∩
⋃n

i=1Oi} are output
events of A.
A implements the peers P, and for (q, x, q′) ∈ δ, we also write q x−→ q′. A is

called a single-peer automaton, if |P| = 1. A is called a multi-peer automaton, if
|P| > 1 and P is a collaboration. A is called τ -free if q x−→ q′ implies x �= τ for all
q, q′ ∈ Q. A run of A is a sequence of events x1 · · ·xm such that q0

x1−→ · · · xm−−→ qf
with qf ∈ F .

We use the standard graphical representation for automata (cf. Fig. 1(b)). A τ -
free peer automaton can be used to define a choreography.

Definition 3 (Choreography). Let A = [Q, δ, q0, F,P] be a multi-peer au-
tomaton. A run ρ of A is a conversation if no τ transition occurs in ρ and, for all
x ∈MA, #!x(ρ) = #?x(ρ) and for every prefix ρ′ of ρ holds: #!x(ρ′) ≥ #?x(ρ′).
Thereby, #x(ρ) denotes the number of occurrences of the message event x in
the run ρ. A choreography is a set of conversations. For a run ρ, define the
event sequence of ρ as ρ|E (i.e., ρ without τ-steps). The language of A, denoted
L(A), is the union of the event sequences of all runs of A. A is a choreography
automaton, if A is τ-free and L(A) is a choreography.

The requirements for a conversation state that asynchronous events are always
paired (messages do not get lost), and a send event always occurs before the
respective receive event.

A mapping from existing interaction modeling languages such as interaction
Petri nets [6], Let’s Dance [7], message sequence charts [3], collaboration dia-
grams [8], or iBPMN [9] to choreography automata is straightforward. While
these languages differ in syntax and semantics, concepts such as an underlying
collaboration (i.e., the peers and their message channels) and the choreography
(i.e., the intended global behavior) can be easily derived from these languages.
Figure 1 shows different models specifying the same globally observable behavior.

Realizability Is Controllability 113

A B C
x

y

z

(a) collaboration
!?z!?x

!?x!?y

(b) choreography automaton

A B C

x

y

z

A B C

x

z

(c) message sequence charts

2:x

1:y ?

3:z

:A :B :C

(d) collaboration diagram

A B
x

B C
z

AB
y

A B
x

(e) Let’s Dance model

B

CA

x
xy

z

(f) iBPMN model

Fig. 1. Different models specifying the choreography {!?x !?z, !?y !?x !?z}

A B
x

y

(a) collaboration

!x?x

(b) dependency violation

!y ?y
!x ?x

(c) unbounded message buffer

Fig. 2. The multi-peer automata (b) and (c) do not specify a choreography

We decided to use an automaton model, because it lacks structural restrictions
and is naturally linked to regular languages.

However, not every τ -free multi-peer automaton specifies a choreography. Fig-
ure 2(b) depicts a peer automaton that violates the causal dependency between
an asynchronous send and the respective receive event. Another problem arises
in settings such as shown in Fig. 2(c) in which an arbitrary number of x messages
needs to be buffered. In Sect. 5, we will show how bounded message buffers can
be enforced and all runs that are not conversations can be removed from a peer
automaton.

Finally, not every choreography can be expressed by a multi-peer automaton,
for example the context-free choreography(!?d)i(!?e)i={ε, !?d!?e, !?d!?d!?e!?e, . . . }.
In this paper, we only consider regular choreographies, because language equiv-
alence and language containment is undecidable for context-free languages, and
hence realizability is undecidable for context-free choreographies.

3 Realizability Notions

As discussed in the introduction, not every choreography can be implemented by
peers. To relate the specified interactions of a choreography and the interactions
between peers, we first define the behavior of composed single-peer automata.

In the composition, pending asynchronous messages are represented by a mul-
tiset. Denote the set of all multisets overMA with Bags(MA), the empty multiset
with [], and the multiset containing only one instance of x ∈ MA with [x]. Ad-
dition of multisets is defined pointwise.

114 N. Lohmann and K. Wolf

Definition 4 (Composition of single-peer automata). Let A1, . . . , An be
single-peer automata (Ai = [Qi, δi, q0i , Fi, {Pi}] for i = 1, . . . , n) such that their
peers form a collaboration. Define the composition A1 ⊕ · · · ⊕ An as the multi-
peer automaton [Q, δ, q0, F, {P1, . . . , Pn}] with Q := Q1 × · · · ×Qn ×Bags(MA),
q0 := [q01 , . . . , q0n , []], F := F1 × · · · × Fn × {[]}, and, for all i �= j and B ∈
Bags(MA) the transition relation δ contains exactly the following elements:

– [q1, . . . , qi, . . . , qn, B] τ−→ [q1, . . . , q′i, . . . , qn, B],
iff [qi, τ, q′i] ∈ δi (internal move by Ai),

– [q1, . . . , qi, . . . , qn, B] !x−→ [q1, . . . , q′i, . . . , qn, B + [x]],
iff [qi, !x, q′i] ∈ δi (asynchronous send by Ai),

– [q1, . . . , qi, . . . , qn, B + [x]] ?x−→ [q1, . . . , q′i, . . . , qn, B],
iff [qi, ?x, q′i] ∈ δi (asynchronous receive by Ai), and

– [q1, . . . , qi, . . . , qj , . . . , qn, B] !?x−→ [q1, . . . , q′i, . . . , q
′
j , . . . , qn, B],

iff [qi, !?x, q′i] ∈ δi and [qj , !?x, q′j] ∈ δj (synchronization between Ai and Aj).

The composition of single-peer automata yields a multi-peer automaton (see
Fig. 3 for an example). Its behavior can be related to a specified choreography
which leads to the concept of complete realizability [1,2,3,6,8].

B C
x

y

z
A

(a) collaboration

τ !x

(b) peer A

?x

?y !?z

(c) peer B

!y !?z

(d) peer C

τ

τ
!y !y !y !y

!x

!x ?x

?x

?y

!?z

(e) composition A ⊕ B ⊕ C

Fig. 3. Composition of single peer automata (unreachable states are omitted)

Definition 5 (Complete realizability). Let C be a choreography automaton
implementing the peers {P1, . . . , Pn}. The single-peer automata A1, . . . , An com-
pletely realize C if, for all i, Ai implements {Pi} and L(A1 ⊕ · · · ⊕An) = L(C).

Complete realizability is a strong requirement, because it demands that the ob-
servable behavior of the endpoints exactly matches the choreography. In reality,
it is often the case that not all aspects of a choreography can be implemented.
To this end, Zaha et al. [10] introduce the notion local enforceability (also called
partial realizability or weak realizability) which only demands that a subset of
the choreography is realized by the peer implementations:

Definition 6 (Partial realizability). Let C be a choreography automaton im-
plementing the peers {P1, . . . , Pn}. The single-peer automata A1, . . . , An par-
tially realize C if, for all i, Ai implements {Pi} and ∅ �= L(A1⊕· · ·⊕An) ⊆ L(C).

Obviously, complete realizability implies partial realizability. Though this weaker
notion ensures that all constraints of the choreography are fulfilled, it still only

Realizability Is Controllability 115

considers a single tuple of peer automata. If there does not exist such tuple of
automata that realizes the complete choreography, there might still exist a set of
tuples — each partially realizing the choreography—which distributedly realizes
the complete choreography:

Definition 7 (Distributed realizability). Let C be a choreography automa-
ton implementing the peers {P1, . . . , Pn}. The tuples of single-peer automata
[A11 , . . . , An1], . . . , [A1m , . . . , Anm] distributedly realize C if, for i = 1, . . . , n
and j = 1, . . . ,m, (i) Aij implements {Pi}, (ii) ∅ �= L(A1j ⊕ · · · ⊕Anj) ⊆ L(C),
and (iii)

⋃m
j=1 L(A1j ⊕ · · · ⊕Anj) = L(C).

Distributed realizability allows for design time coordination between peers: From
a set of different possible implementations, we can choose a specific tuple of peer
implementations that are coordinated in the sense that each peer can rely on
the other peer’s behavior. In addition, every conversation that is specified by
the choreography can be realized by at least one tuple of implementing peers;
that is, the choreography does not contain “dead code”. While being a stronger
notion than partial realizability (i.e., more of the choreography’s behavior is
implemented), it is still a weaker notion than complete realizability.

As an example, consider the collaboration depicted in Fig. 4(a). The choreog-
raphy in which the peers communicate synchronously (b) is completely realizable
by a set of peers which synchronize at runtime via message x or y. In case the
messages are sent asynchronously (c), this is no longer possible. This choreog-
raphy is not completely realizable, because there does not exist a single pair of
peer automata that implement the specified behavior. However, the implemen-
tations can be coordinated at design time: either peer A sends a message and
peer B is quiet or the other way around. These two pairs distributedly realize the
whole choreography (cf. Fig. 5). Finally, choreography (d) can only be partially
realized, because the conversation !x!y?x?y cannot be implemented by the peers
without also producing the unspecified conversations !y!x?x?y or !y!x?y?x.

In this paper, the different realizability notions are defined in terms of
trace containment. This is motivated by existing literature [1,2,3,8,10]. Other

A B
x

y

(a)

!?x

!?y

(b)

!x

!y ?y

?x

(c)

!x
!y ?x ?y

?x !y

(d)

Fig. 4. For the collaboration (a), the choreography (b) is completely realizable, (c) is
distributedly realizable, and (d) is partially realizable

!x ?x

A B

!y?y

A B

Fig. 5. Two pairs of peers which distributedly realize the choreography of Fig. 4(c)

116 N. Lohmann and K. Wolf

approaches such as [6] also consider branching (i. e., a conversation is a tree).
This conflicts our understanding of a choreography to specify observable behav-
ior, because branching cannot be easily observed. Finally, we only consider finite
conversations rather than infinite words. This again is motivated by existing
literature and decidability issues.

4 From Choreographies to Orchestrations

In this section, we link realizability to controllability [4], a correctness criterion
that was originally defined for service orchestrations [11]. We first recall how
choreography conformance can be checked using a monitor. Then, we derive an
orchestration service from this monitor and show how its partner services are
related to peer implementations. Finally, we show how the algorithm to check
controllability can be used to synthesize peer implementations.

4.1 Choreography Monitor Service

Choreography realization plays an important rule in inter-organizational busi-
ness processes where a choreography is used to specify a business protocol the
parties agreed to follow. In this setting, it is not sufficient to prove realizability of
the choreography alone, but also to constantly monitor whether the agreed proto-
col is followed by the peers. In that setting, an enterprise service bus [12] is used
to provide the connection between the individual peers. It monitors the message
exchanges between the peers. Protocol violations can then be later prosecuted
by examining log files or even during runtime as proposed in [13].

In this setting, it is important that the interactions are monitored in an un-
obtrusive way; that is, the interactions must not be altered by the monitor and
the peers must not be aware of the monitor. By definition, the choreography au-
tomaton exactly determines the desired interactions. However, it blocks unspeci-
fied interactions and hence lacks the monitor property. To this end, the states of
the choreography automaton needs to be made deterministic. This is a standard
operation for regular automata and does not restrict generality. It ensures that in
every state q and for each event x there is exactly one x-labeled edge leaving q.
In case such a transition was not specified, the new introduced edge leads to a
non-final deadlock state. A composition of peers is monitored as follows.

Definition 8 (Monitored composition). Let C = [QC , δC , q0C , FC ,P] be a
deterministic choreography automaton with P = {P1, . . . , Pn} and let A1, . . . , An

be single-peer automata (Ai = [Qi, δi, q0i , Fi, {Pi}] for i = 1, . . . , n) such that
their peers form a collaboration. Define the monitored composition C ⊗ (A1 ⊕
· · · ⊕An) as the multi-port peer automaton [Q, δ, q0, F,P] with Q := QC ×Q1 ×
· · · ×Qn×Bags(MA), q0 := [q0C , q01 , . . . , q0n , []], F := FM ×F1× · · · ×Fn × []],
and, for all i �= j and Bags(MA), the transition relation δ contains exactly the
following elements:

Realizability Is Controllability 117

– [q, q1, . . . , qi, . . . , qn, B] τ−→ [q, q1, . . . , q′i, . . . , qn, B], iff [qi, τ, q′i] ∈ δi (internal
move by Ai, invisible to C),

– [q, q1, . . . , qi, . . . , qn, B] !x−→ [q′, q1, . . . , q′i, . . . , qn, B + [x]], iff [qi, !x, q′i] ∈ δi
and [q, !x, q′] ∈ δC (asynchronous send by Ai, monitored by C),

– [q, q1, . . . , qi, . . . , qn, B + [x]] ?x−→ [q′, q1, . . . , q′i, . . . , qn, B], iff [qi, ?x, q′i] ∈ δi
and [q, !?x, q′] ∈ δC (asynchronous receive by Ai, monitored by C),

– [q, q1, . . . , qi, . . . , qj , . . . , qn, B] !?x−→ [q′, q1, . . . , q′i, . . . , q
′
j , . . . , qn, B], iff

[qi, !?x, q′i] ∈ δi, [qj , !?x, q′j] ∈ δj, and [q, !?x, q′] ∈ δC (synchronization between
Ai and Aj, monitored by C).

The monitor synchronizes with the message events of the single-peer automata,
but does not constrain their behavior. The monitor only has an effect on the
final states of the composition. Only if all single-peer automata and the monitor
reach a final state, this state is final in the monitored composition.

We can now change the point of view and regard the monitor as a service
that is communicating with several other services by synchronous message events.
Again, this service will reach a final state iff the message events from the environ-
ment are observed in the correct order. Note that a choreography only considers
message events (i.e., sending or receipt of a message) rather than the messages
itself (e.g., asynchronously sent messages that are pending on a channel). Hence,
all message events of the monitor service automaton are synchronous.

Definition 9 (Monitor service). Let C = [Q, δ, q0, F,P] be a deterministic
choreography automaton. Define the monitor service MC := [Q, δM , q0, F,P]
with the transition relation δM ⊆ Q× {!?〈x〉 | x ∈ E} ×Q with [q, !?〈x〉, q′] ∈ δM
iff (q, x, q′) ∈ δ.

The monitor service of a choreography can now be interpreted as an orches-
trator that communicates synchronously with its peers. The introduction of a
synchronous event !?〈x〉 for event x is a technical necessity to “encode” the origi-
nal nature of the event x. In the final peer implementations, we will later replace
the message event !?〈x〉 by x again. For example, an asynchronous event ?a is
monitored as !?〈?a〉.

4.2 Link to Controllability

In this section, we show how the different realizability notions are related to
controllability [4]. Controllability is a correctness criterion for services: a service
A is controllable iff there exists a compatible service B (i.e., A⊕ B is deadlock
free). Controllability can be extended to multi-port services.

Definition 10 (Decentralized controllability [4]). Let A be a multi-peer
automaton implementing the peer {[I1, O1], . . . , [In, On]}. A is decentralized con-
trollable iff there exists a tuple of single-peer automata [B1, . . . , Bn] (called strat-
egy of A) such that Bi implements the peer {[Oi, Ii]} and A⊕B1 ⊕ · · · ⊕Bn is
deadlock free; that is, every reachable state q /∈ F has a successor.

118 N. Lohmann and K. Wolf

Note that the single-peer automata B1, . . . , Bn only communicate with A and
do not share message channels. Hence, they cannot communicate directly with
each other during runtime. Only during design time of B1, . . . , Bn it is possible
to coordinate their behavior.

While realizability notions require the existence of single-peer automata whose
composition realizes a certain parts of a given choreography, decentralized con-
trollability requires the existence of single-peer automata which, when composed
to a given service, result in deadlock-free communication. When considering the
monitor automaton of a choreography, controllability and realizability coincide
which is the main result of this paper:

Theorem 1 (Realizability is controllability). Let C be a choreography au-
tomaton implementing the peers {P1, . . . , Pn} and MC a monitor service automa-
ton for C.

(1) C is partially realizable iff MC is decentralized controllable.
(2) C is distributedly realizable iff MC is decentralized controllable and for the

set of strategies S holds:
⋃

[A1,...,An]∈S L(A1 ⊕ · · · ⊕An) = L(C).
(3) C is completely realizable iff MC is decentralized controllable and there exists

a strategy [A1, . . . , An] such that L(A1 ⊕ · · · ⊕An) = L(C).

The proof of Thm. 1 follows immediately from the definition of decentralized
controllability, the definition of the monitor service (any unspecified behavior
will lead to a deadlock) and the definitions of partial, distributed, and complete
realizability.

Theorem 1 links several notions of realizability, the central correctness crite-
rion for choreographies, to controllability. The latter was originally proposed as a
“soundness notion for services” and was used to analyze service orchestrations [11].

4.3 Synthesizing Realizing Peers

In the remainder of this section, we sketch the algorithm from [4] to check for
decentralized controllability. It consists of four steps: (1) peer overapproximation,
(2) removal of reachable deadlocks, (3) resolution of dependencies between peers,
and (4) peer projection. We will explain the steps in more detail below.

Firstly, an over-approximation of the possible interactions with the given
multi-peer automaton is calculated. This step is necessary in the setting of asyn-
chronous communication, because the decoupling of sending and receiving ac-
tions limits the observability of actions. When considering a monitor automaton,
we can skip this step, because the monitor automaton communicates entirely
synchronously (cf. Def. 9).

In a second step, all reachable deadlocks and states from which no final state
is reachable are removed. Thereby, a deadlock is considered unreachable if the
event leading to it is impossible in the respective state. An example would be
a receipt of an asynchronous message in the initial state, for instance an edge
labeled with “!? 〈?x〉”. Keeping these states is a technical necessity and is further
discussed in [4].

Realizability Is Controllability 119

From the remaining automaton, we have to make sure that message events
that cannot be coordinated by the peers are independent, meaning they can
occur in any order. We call two message events distant if there exists no peer
that can observe both:

Definition 11 (Distant message events). Let A = [Q, δ, q0, F,P] be a chore-
ography automaton. Two message events a, b ∈ E are distant iff there exist no
peer [I,O] ∈ P such that {a, b} ⊆ (EI ∪ EO).

No we can define independence between distant events as follows.

Definition 12 (Independence [4]). Let A = [Q, δ, q0, F,P] be a τ-free multi-
peer automaton and a, b ∈ E be distant message events.

– a activates b (b /∈ ?E) in q ∈ Q, if there exist states qa, qab ∈ Q with
q

a−→ qa
b−→ qab, but there exists no state qb ∈ Q with q b−→ qb.

– a disables b in q ∈ Q, if there exist states qa, qb ∈ Q with q
a−→ qa, q

b−→ qb,
but there exists no state qab ∈ Q with qa

b−→ qab.
– Two states q1, q2 ∈ Q are equivalent iff L([Q, δ, q1, F,P])=L([Q, δ, q2, F,P]).
– a and b are independent iff, for all states q ∈ Q holds: a neither activates

nor disables b in q and, if q a−→ qa
b−→ qab and q b−→ qb

a−→ qba, then qab and qba
are equivalent.

These independence requirements are weaker than the lossless-join property pro-
posed in [2] and the well-informed property proposed in [8] which both aim
at complete realizability only. They are, however, very similar the autonomous
property [2]. If all distant events are independent and the removal of deadlocking
states did not yield an empty automaton, we can finally project the remaining
multi-peer automaton to the single-peer automata.

Definition 13 (Peer projection). Let A = [Q, δ, q0, F,P] be a multi-peer au-
tomaton and [I,O] ∈ P be a peer implemented by A. For a set of states S ⊆ Q,
define closure [I,O](S) := {q′ | q ∈ S, q

x1···xn−−−−→ q′, xi /∈ (I ∪ O)}. Define the
projection of A to the peer [I,O], denoted A|[I,O], as the single-peer automaton
[Q′, δ′, q′0, F

′, {[I,O]}] with the initial state q′0 := closure [I,O]({q0}) and Q′, δ′,
and F ′ inductively defined as follows:

– q′0 ∈ Q′.
– If q ∈ Q′ with q1 ∈ q, (q1, x, q2) ∈ δ, and x ∈ I ∪ O, then q′ ∈ Q′ with
q′ := closure [I,O](q2) ∈ Q′ and (q, x, q′) ∈ δ′. q′ ∈ F ′ iff q′ ∩ F �= ∅.

The set closure [I,O](S) contains all states reachable with a (possibly empty)
sequence from a state of S that does not contain an event from (I ∪ O). The
definition is basically taken from the controllability decision algorithm [4] and
was first proposed to be used as a projection algorithm by Decker in [14].

In a final step, we have to “restore” the original message model of the peer im-
plementations that was set to synchronous communication in Def. 9. To this end,
we replace each message event “!?〈x〉” by “x” (e.g., the event !?〈?a〉 observed by

120 N. Lohmann and K. Wolf

A B C
x

y

z

(a) collaboration
!?z!?x

!?x!?y

q1

q2 q3 q4

(b) choreography

{q1}

{q2} {q3, q4}
!?y

!?x

!?x

(c) peer A

{q1}

{q2} {q4}{q3}
!?y

!?x

!?x

!?z

(d) peer B

{q1, q2, q3} {q4}
!?z

(e) peer C

Fig. 6. A choreography and its projection to its peers

the monitor is changed to ?a in the peer projection). This step from synchronous
to possibly asynchronous is valid, because we ensured that any distant events
are independent. Figure 6 shows an example.

In order to synthesize single-peer automata, potential dependencies between
distant message events need to be resolved. The resolution of dependencies is the
most important part of the synthesis algorithm for decentralized controllability.
Independency can be achieved by removing those edges and states from the
automaton that are dependent. In the case of disabling of events, this removal
contains nondeterminism: if, for instance, an event a disables an event b in a state
q, we can decided whether to remove the a-successor or the b-successor of q [4].
This mutually exclusive deletion yields two different tuples of implementing peers.
In the following definition, we introduce a global decision event χ to express the
different outcomes of this nondeterminism.

Definition 14 (Resolution of dependency). Let A = [Q, δ, q0, F,P] be a
τ-free multi-peer automaton and a, b ∈ E be distant message events.

1. If a disables b in a state q ∈ Q, then introduce two new states qa and qb with
q

χ−→ qa, q
χ−→ qb such that qa has all outgoing edges of q that are not labeled

with b and qb has all outgoing edges of q that are not labeled with a. Then
remove all outgoing edges of q that are not labeled with χ.

2. If a enables b in a state q ∈ Q, then delete the state qab with q a−→ qa
b−→ qab.

3. If the states qab, qba ∈ Q with q a−→ qa
b−→ qab and q b−→ qb

a−→ qba are not equiv-
alent, then delete qab, qba and unite A with the τ-free multi-peer automaton
A′ = [Q′, δ′, q′0, F

′,P] with L(A′) = L([Q, δ, qab, F,P]) ∩ L([Q, δ, qba, F,P])
and add the edges qa

b−→ q′0 and qb
a−→ q′0.

The first step introduces the global decision events in case of disabling of an
event. The second step removes states to avoid the enabling of an event. In the
third step, equivalence of states that are reached by different interleavings of
events is enforced by intersecting the runs reachable from these states. As we
consider regular languages, the automaton having this intersection as language
can be constructed easily.

Figures 7(b)–(d) depict examples for each step. To increase legibility, the edges
of the monitor services are labeled with the original event “x” instead of the
encoded event “!?〈x〉”. Note that the removal of states and edges can introduce
new deadlocks and make other states unreachable from the initial state. Such
states need to be removed before projection. A multi-peer automaton is not
decentralized controllable if all states are removed.

Realizability Is Controllability 121

A B C
x y z

D

(a) collaboration

!?z !?x

!?y
!?y

!?z

!?y

(b) !?z enables !?x in the gray state

!?x !?y

!?z

!?x
!?y

!?z

χ

χ

(c) !?x disables !?z in the gray state

!?x
!?z

!?z
!?x

!?y

!?y
!?z

!?x
!?z

!?z
!?x

!?y

!?y

(d) the gray states are not equivalent

Fig. 7. Examples for the resolution of dependencies

!?z !?x !?y !?z !?x !?y !?x !?y !?z

· · ·
Fig. 8. Resolutions of the global decisions in the automaton depicted in Fig. 7(b)

A multi-peer automaton with global decision events (cf. Fig. 7(c)) implicitly
characterizes a set of multi-peer automata in which these decisions have been re-
solved. Each resolution of these decisions results in a tuple of implementing peers
which can be derived using the projection defined in Def. 13. For the example
of Fig. 7(c), the global decision is resolved independently each time the initial
state is reached. Figure 8 depicts the different resolutions of the global decisions
(again, “x” is used as label rather than “!?〈x〉”). Each resolution represents a
design-time coordination between the peers A and C on how often the !?x!?y
loop should be traversed. As the peers A and C cannot communicate with each
other, this coordination cannot be done during runtime. The set of all possible
implementations distributedly realize the choreography.

With the presented approach, we are able to synthesize single-peer automata
that control a given monitor service in a decentralized manner. Using Thm. 1,
we can use the same algorithm to synthesize peers for the different realizabil-
ity notions. It is worthwhile to mention that the approach aims at finding the
strongest applicable realizability notion. In case a state need to be deleted due
to dependencies (cf. Def. 14), we can derive diagnosis information:

– If a state is deleted by step 2 or 3, the choreography is neither completely
realizable nor distributedly realizable.

– If a global decision is introduced by step 1, the choreography is not com-
pletely realizable, because the considered events are mutually exclusive.

– If the initial state is removed, the choreography is not partially realizable.

In any case, the respective state and the events that require state deletion can
be used to diagnose the choreography and to introduce messages that restore
independency. The presented algorithm has been prototypically implemented.1

1 Available at http://service-technology.org/rebecca.

http://service-technology.org/rebecca

122 N. Lohmann and K. Wolf

5 Asynchronous Communication

Many interaction modeling languages (e.g., WS-CDL or interaction Petri nets)
assume atomic and hence synchronous message exchange; that is, the sending
and receiving of a message is specified to occur at the same time. Peers real-
izing such a choreography model inherit this synchronous message model. In
implementations, however, asynchronous communication is often preferred over
synchronous communication as a “fire and forget” send action is more efficient
than a blocking handshaking.

To this end, we studied in [15] how synchronous peers that realize a choreogra-
phy can be “desynchronized”; that is, atomic message exchange is decoupled to
a pair of asynchronous send and receive actions. This desynchronization in turn
might introduce deadlocks, and the correction towards deadlock freedom results in
refinements of the choreographywhich require domain information and can hardly
be automatized. Fu et al. [16] propose a reverse approach and study “synchroniz-
ability” of choreographies— a property under which asynchronous communica-
tion can be safely abstracted to synchronous communication. Synchronizability
can help to detect problems introduced by asynchronous communication, but is
only a sufficient criterion and offers only limited support in resolving these issues.

To avoid both restrictions during the design time of a choreography and a
later change of the communication model, we allow to individually define, for
each message, whether it should be transfered in an asynchronous or synchronous
manner (cf. Def. 2). We claim that the nature of the message transfer is usually
known in an early design phase and helps to refine the choreography model.

Unlike related work on collaboration diagrams or conversation protocols, we
thereby do not just specify the order in which send events occur, but also de-
scribe the moment of the respective receive events. This is crucial to be able to
specify dependencies between asynchronous messages. For instance, one is able
to express that a customer must not send an order message to a shop before
he received the terms of payment. If modeled synchronously, the shop would be
blocked as long as the customer reads the terms of payment.

In addition, the precise specification of message receipt ensures that the mes-
sage exchange between the peers can be realized with bounded message buffers.
This is not only motivated by implementation issues, but also in the fact that
unbounded queues would result in an infinite state automaton for which control-
lability and hence realizability would be undecidable [17].

In Def. 3, we restricted choreographies to only consist of conversations. This
does not constrain synchronous message events, but only the asynchronous mes-
sage events. The following definition manipulates an arbitrary multi-peer au-
tomaton such that every run is a conversation; that is, its collaboration language
is a choreography. Furthermore, no run will exceed a given message bound k.

Definition 15 (k-bounded peer automaton). Let A = [Q, δ, q0, F,P] be
a peer automaton and k ∈ IN. Define the k-bounded peer automaton Ak :=
[Q′, δ′, q′0, F ′,P] with Q′ := Q×Bagsk(MA), q′0 := [q0, []], F ′ := F ×{[]} and δ′

contains exactly the following elements (B ∈ Bagsk):

Realizability Is Controllability 123

–
[
[q,B], !?x, [q′, B]

]
∈ δ′ iff q

!?x−→ q′,
–

[
[q,B], τ, [q′, B]

]
∈ δ′ iff q

τ−→ q′,
–

[
[q,B], !x, [q′, B + [x]]

]
∈ δ′ iff q

!x−→ q′ and B(x) < k, and
–

[
[q,B + [x]], ?x, [q′, B]

]
∈ δ′ iff q

?x−→ q′.

Thereby, Bagsk(MA) denotes the set of multisets such that m ∈ Bagsk(MA)
implies m(x) ≤ k for all x ∈MA.

The bound k can also be used as a parameter for realizability:

Definition 16 (k-realizability). Let C be a choreography automaton and
k ∈ IN. C is (completely/distributedly/partially) k-realizable iff Ck is
(completely/distributedly/partially) realizable.

Figure 9(a) shows the unbounded choreography from Fig. 2(c) is transformed
into a 2-bounded choreography which is completely 2-realizable, cf. Fig. 9(b).

!x

?x

!y

!y

!y

?y

?y

?y

?x

!x

(a) 2-bounded choreography

?y!x

!x

!y

!y

!y

?y

?y
?x

?x

A B

(b) completely 2-realizing peers

Fig. 9. Enforcing a message bound to achieve 2-realizability

6 Combining Choreographies and Local Models

There are two approaches to model a choreography. The first approach focuses
on the interaction between services and uses message exchange events as basic
building blocks. These interaction models have already been discussed in Sect. 2.
Interaction models are a means to quickly specify a choreography by only mod-
eling the desired observable behavior instead of the local control flow of each
peer. With the notion of realizability, these missing local behaviors can then be
derived from the choreography. To this end, interaction models are best suited if
all peer implementations are unknown. Interaction modeling follows a top-down
approach from an abstract global model to concrete peer implementations.

In contrast, the second approach is to specify the choreography implicitly
by providing a set of peer implementation and information on their intercon-
nection. As these interconnected models specify both the local behavior of the
participating services and their interaction, they are close to implementation.
Examples of specification languages that follow this modeling style are BPMN
and BPEL4Chor [18]. Interconnected models aim at reusing existing peers in
new settings. Though first approaches exist to synthesize individual peers [19],
this modeling style can only be used in a late stage of development.

124 N. Lohmann and K. Wolf

However, a setting in which the local behaviors of some peers are completely
specified whereas other peers are not specified at all is not supported by nei-
ther modeling style. By linking realizability to controllability by transforming a
choreography into an orchestration, we left the classical domain of interaction
models. Instead, we derived a monitor service that orchestrates the peers. In case
some peers are already implemented, they can be composed to the monitor ser-
vice. This composition then specifies the remaining choreography which can be
analyzed for realizability as described in Sect. 4. Figure 10 diagrams this mixed
modeling style, in which choreographies and inter-organizational business pro-
cesses with arbitrary levels of abstraction can be modeled. By combining both
classical BPMN constructs together with iBPMN extensions [9] (i.e., modeling
processes both inside and and outside pools), this mixed choreography modeling
approach can be presented to modelers with a unique graphical representation.

monitor service
composed

to given peer

controllability peer projection
already

implemented peer

implemented/
realizing peer

synthesized
partner service

choreography
specification

transformation

unimplemented peer

1.

2.

3. 4.

given artifactunknown artifactlegend: constructed artifact

Fig. 10. A mixed approach to combine interaction and interconnected modeling

7 Related Work

This is an extended version of the informal workshop paper [20]. Compared to
that paper, the contributions of this paper to partner synthesis, asynchronous
communication, and the combination of interaction and interconnected models
are original.

Realizability received much attention in recent literature, and was studied
for most of the aforementioned interaction modeling languages, see [1] for a
survey. Beside the different specification languages, the approaches differ in (i)
the expressiveness of the specification language (the main differences concern
the support of arbitrary looping) and (ii) the nature of the message exchange
(synchronous vs. asynchronous) of the realizing peers. In the following, we classify
related approaches into these two groups.

Structural restrictions. Alur et al. [3] present necessary and sufficient criteria to
realize a choreography specified by a set of message sequence charts (MSCs) with
a set of concurrent automata. Both synchronous and asynchronous communica-
tion is supported. Their proposed algorithms are very efficient, but are limited
to acyclic choreography specifications since the MSC model used in the paper
does not support arbitrary iteration which excludes models such as Fig. 7(c).

Realizability Is Controllability 125

In [21], complete and partial realizability of choreographies specified by collab-
oration diagrams is investigated. The authors express the realizability problem in
terms of LOTOS and present a case study conducted with a LOTOS verification
tool. Their approach tackle both synchronous and asynchronous communication
(using bounded FIFO queues). Collaboration diagrams, however, have only lim-
ited support for repetitive behavior (only single events can be iterated and cycles
such as in Fig. 7(c) cannot be expressed) and choices (events can be skipped,
but complex decisions cannot be modeled). These restrictions also apply to [8] in
which sufficient conditions for complete realizability of collaboration diagrams
are elaborated.

Communication models. Realizability of conversation protocols by asynchronous-
ly communicating Büchi automata is examined in [2]. The authors show decid-
ability of the problem and define a necessary condition for complete realizabil-
ity. One of the prerequisites, synchronous compatibility, heavily restricts asyn-
chronous communication.

Algorithms to check choreographies for partial realizability are discussed in [10].
Both the global and local model are specified in Let’s Dance and only atomic mes-
sage exchanges considered. Decker and Weske [6] study realizability of interaction
Petri nets. To the best of our knowledge, it is the only approach in which (com-
plete and partial) realizability is not defined in terms of complete trace equivalence
(cf. Def. 5). Instead, the authors require the peer implementations and the choreog-
raphy to be branching bisimilar. Message exchange specified by interaction Petri
nets is, however, inherently synchronous.

Kazhamiakin and Pistore [22] study a variety of communication models and
their impact on realizability. They provide an algorithm that finds the “simplest”
communication model under which a given choreography can be completely re-
alized. Their approach is limited to complete realizability and gives no diagnosis
information in case the choreography cannot be implemented by peers. Further-
more, they fix the communication model for all messages instead of allowing
different communication models for each message.

The original contribution of this paper is an automaton framework to specify
arbitrary regular choreographies, check for various realizability notations (The-
orem 1 states necessary and sufficient criteria), and to synthesize peer services
that implement as much behavior as possible. Thereby, it is possible to define the
message model individually for each message. Additionally, the defined synthe-
sis algorithm provides diagnosis information that can help to fix choreographies
towards complete realizability.

8 Conclusion

In this paper, we linked the realizability problem of choreographies to the control-
lability problem of orchestrations. The close relationship between these problems
offers a uniform way to analyze and model arbitrary interacting services. By trans-
forming a choreography specification into a service orchestration, we were able to
reuse techniques that were originally proposed to check for controllability. These

126 N. Lohmann and K. Wolf

techniques resulted in a formal framework that allows to specify and analyse chore-
ographies with both synchronous and asynchronous communication. In addition,
we refined the existing hierarchy of realizability notions by defining the novel no-
tion of distributed realizability. Finally, we proposed to combine interaction mod-
els and interconnected models.

In future work, further consequences of the relationship between controllabil-
ity and realizability need to be examined. For instance, controllability is used in a
number of applications such as test case generation [23] or service mediation [24].
We expect these techniques to be similarly applicable to choreographies.

Acknowledgements. This work is funded by the DFG project “Operating
Guidelines for Services” (WO 1466/8-1). The authors wish to thank Stephan
Mennicke for his work on the prototype.

References

1. Su, J., Bultan, T., Fu, X., Zhao, X.: Towards a theory of Web service choreographies.
In: Dumas, M., Heckel, R. (eds.) WS-FM 2007. LNCS, vol. 4937, pp. 1–16. Springer,
Heidelberg (2008)

2. Fu, X., Bultan, T., Su, J.: Conversation protocols: a formalism for specification
and verification of reactive electronic services. Theor. Comput. Sci. 328(1-2), 19–
37 (2004)

3. Alur, R., Etessami, K., Yannakakis, M.: Inference of message sequence charts. IEEE
Trans. Software Eng. 29(7), 623–633 (2003)

4. Wolf, K.: Does my service have partners? In: Jensen, K., van der Aalst, W.M.P.
(eds.) Transactions on Petri Nets, Part II. LNCS, vol. 5460, pp. 152–171. Springer,
Heidelberg (2009)

5. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983)

6. Decker, G., Weske, M.: Local enforceability in interaction Petri nets. In: Alonso,
G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 305–319.
Springer, Heidelberg (2007)

7. Zaha, J.M., Barros, A.P., Dumas, M., ter Hofstede, A.H.M.: Let’s dance: A lan-
guage for service behavior modeling. In: Meersman, R., Tari, Z. (eds.) OTM 2006.
LNCS, vol. 4275, pp. 145–162. Springer, Heidelberg (2006)

8. Bultan, T., Fu, X.: Specification of realizable service conversations using collabo-
ration diagrams. SOCA 2(1), 27–39 (2008)

9. Decker, G., Barros, A.P.: Interaction modeling using BPMN. In: ter Hofstede,
A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM Workshops 2007. LNCS, vol. 4928,
pp. 208–219. Springer, Heidelberg (2008)

10. Zaha, J.M., Dumas, M., ter Hofstede, A.H.M., Barros, A.P., Decker, G.: Service
interaction modeling: Bridging global and local views. In: EDOC 2006, pp. 45–55.
IEEE Computer Society, Los Alamitos (2006)

11. Lohmann, N., Massuthe, P., Stahl, C., Weinberg, D.: Analyzing interacting BPEL
processes. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS,
vol. 4102, pp. 17–32. Springer, Heidelberg (2006)

12. Leymann, F.: The (service) bus: Services penetrate everyday life. In: Benatallah, B.,
Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 12–20. Springer,
Heidelberg (2005)

Realizability Is Controllability 127

13. Kopp, O., Lessen, T.v., Nitzsche, J.: The need for a choreography-aware service
bus. In: YR-SOC, 28–34, Imperial College, London (2008)

14. Decker, G.: Realizability of interaction models. In: ZEUS 2009. CEUR Workshop
Proceedings, vol. 438, CEUR-WS.org, pp. 55–60 (2009)

15. Decker, G., Barros, A., Kraft, F.M., Lohmann, N.: Non-desynchronizable service
choreographies. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008.
LNCS, vol. 5364, pp. 331–346. Springer, Heidelberg (2008)

16. Fu, X., Bultan, T., Su, J.: Synchronizability of conversations among Web services.
IEEE Trans. Software Eng. 31(12), 1042–1055 (2005)

17. Massuthe, P., Serebrenik, A., Sidorova, N., Wolf, K.: Can I find a partner? Un-
decidablity of partner existence for open nets. Inf. Process. Lett. 108(6), 374–378
(2008)

18. Decker, G., Kopp, O., Leymann, F., Weske, M.: BPEL4Chor: Extending BPEL for
modeling choreographies. In: ICWS 2007, pp. 296–303. IEEE Computer Society,
Los Alamitos (2007)

19. Lohmann, N., Kopp, O., Leymann, F., Reisig, W.: Analyzing BPEL4Chor: Verifi-
cation and participant synthesis. In: Dumas, M., Heckel, R. (eds.) WS-FM 2007.
LNCS, vol. 4937, pp. 46–60. Springer, Heidelberg (2008)

20. Lohmann, N., Wolf, K.: Realizability is controllability. In: ZEUS 2009. CEUR Work-
shop Proceedings, vol. 438, CEUR-WS.org, pp. 61–67 (2009)

21. Salaün, G., Bultan, T.: Realizability of choreographies using process algebra en-
codings. In: Leuschel, M., Wehrheim, H. (eds.) IFM 2009. LNCS, vol. 5423, pp.
167–182. Springer, Heidelberg (2009)

22. Kazhamiakin, R., Pistore, M.: Analysis of realizability conditions for Web service
choreographies. In: Najm, E., Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.)
FORTE 2006. LNCS, vol. 4229, pp. 61–76. Springer, Heidelberg (2006)

23. Kaschner, K., Lohmann, N.: Automatic test case generation for interacting services.
In: ICSOC 2008. LNCS, vol. 5472, pp. 66–78. Springer, Heidelberg (2008)

24. Gierds, C., Mooij, A.J., Wolf, K.: Specifying and generating behavioral service
adapter based on transformation rules. Preprint CS-02-08, Universität Rostock,
Rostock, Germany (2008) (submitted to a journal)

Specification and Verification of Multi-user
Data-Driven Web Applications

Monica Marcus

Indiana State University, Math and Computer Science
monica.marcus@yahoo.com

Abstract. We propose a model for multi-user data-driven communi-
cating Web applications. An arbitrary number of users may access the
application concurrently through Web sites and Web services. A Web ser-
vice may have an arbitrary number of instances. The interaction between
users and Web application is data-driven. Synchronous communication
is done by shared access to the database and global application state.
Private information may be stored in a local state. Asynchronous commu-
nication is done by message passing. A version of first-order linear time
temporal logic (LTL-FO) is proposed to express behavioral properties
of Web applications. The model is used to formally specify a significant
fragment of an e-business application. Some of its desirable properties
are expressed as LTL-FO formulas. We study a decision problem, namely
whether the model satisfies an LTL-FO formula. We show the undecid-
ability of the unrestricted verification problem and discuss some restric-
tions that ensure decidability.

Keywords: business process modeling, decision problem, infinite-state
system, model checking, temporal logic.

1 Introduction

Web applications are interactive applications available across the Internet. They
are intended for use by humans, through Web sites, and by Web services. A
Web service is a self-describing, self-contained software module available via
Internet, that executes tasks as service to Web applications and facilitates the
communication between them. Web applications are driven by user input and
by data organized in large databases. Some examples of Web applications are
e-commerce, e-goverment and scientific portals.

The complexity of Web applications easily leads to malfunctioning. To elimi-
nate errors and increase the confidence in the well functioning of Web applica-
tions, one may build a formal specification before the implementation. Then it is
possible to verify whether the formal specification meets the correctness require-
ments. A tool for the automatic verification of Web application specifications,
called WAVE, was presented in [6]. WAVE may be used to find and correct errors
in the formal specification and then to generate the application code consistent
with the specification. As formal specification of Web applications, WAVE uses
the models presented in [3,4] and [5].

C. Laneve and J. Su (Eds.): WS-FM 2009, LNCS 6194, pp. 128–146, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Specification and Verification of Multi-user Data-Driven Web Applications 129

In this paper we propose a model of Web applications, called multi-user data-
driven Web application, in short DDWA∗, that extends both models of [4,5]. A
DDWA∗ specifies a Web application by modeling the interaction with an arbi-
trary number of users that may access the application through Web sites and
Web services. Users may log on and off arbitrarily. Their identity is not known in
advance. Arbitrarily many and not-known-in-advance Web service instances may
communicate through asynchronous message passing. Synchronous communica-
tion is modeled by allowing shared access to the database and global application
state. Private user information may be stored in a local state.

Intuitively, a Web application meets the correctness requirements if all its
possible behaviors verify these requirements. The behavior of Web applications is
modeled as a sequence of consecutive global configurations ofDDWA∗, called run.
A configuration is like a snapshot of the Web application at a particular moment.
The next configuration in a run is triggered by user input and determined by
the current configuration, results of database queries and received messages.

To exemplify the use of DDWA∗ as formal specification we revisit the Bank
Loan Web Application example of [5] and show that the DDWA∗ specification
captures interesting behaviors that cannot be represented by the models of [4,5].
We provide also a formal language to express correctness requirements of Web
applications as first-order linear temporal logic (LTL-FO) formulas. We study
a decision problem, namely whether all runs of a DDWA∗ satisfies an LTL-
FO formula. The answer to the decision problem provides an answer to the
question whether a Web application meets the correctness requirements. We
prove that the unrestricted decision problem is undecidable, and find reasonable
restrictions to obtain decidability. We refer informally to the decision problem
as the verification problem.

Next we discuss related work. We compare the DDWA∗ model with the single-
user Web application model of [4] and the composition model proposed in [5].
These are all relational models. A composition involves a bounded number of
peers (Web services) interacting asynchronously by message passing. There is
no distinction of the type local/global state and only one instance of each peer
interacts. There is no straightforward way to express multiple users interactions
in the models of [4,5].

The idea that the flow of information between Web services can occur not
only via message passing, but also via shared access to first-order logic predi-
cates whose value may change in time (e.g., an inventory database, a reservations
database) appears in [2] (see also [10]) where a First-Order Logic Ontology for
Web Services (FLOWS) is presented. In [12] a first-order logic (situation calcu-
lus) is used to provide semantics for a service description language (predecessor
of FLOWS). Service descriptions are translated to Petri Nets, which constitute
another type of formal specification. The verified properties are restricted to a
subclass of propositional LTL and data values are not explicit.

For a review of Web service and Web application models see e.g. the surveys
[9,10]. These models are message-based, the number of users is bounded, and
the users’ identity is known in advance. Some models include a database, but in

130 M. Marcus

a restricted way. A recent work reported in [7] proposes a model of synthesized
Web service (SWS) as a uniform formalism to characterize various prior Web
service and Web application models, including the relational models of [4,5].
SWS is a data-driven model and allows communication by message passing.
The behavior of an SWS is modeled as a tree, allowing parallel processing of
database queries, as opposed to a DDWA∗ that models behaviors as sequences,
usually infinite. The SWS model features neither an arbitrary number of users
nor communication based on global/local state.

Section 2 presents the DDWA∗ model and an example of Web application.
Section 3 presents the formal language for property specification and states the
verification problem. The undecidability of the verification problem is discussed
in Section 4. Section 5 identifies reasonable restrictions that ensure decidability.
Section 6 contains some conclusions.

2 Specification of Multi-user Web Applications

In this section we present the multi-user model and use it to specify formally a
bank loan Web application.

We model a Web application as a collection of components. Each component
may specify a Web site and/or a Web services and it is thought of as having
multiple “copies”, one for each Web application user (human or Web service
instance). Informally, a component consists of:

– a database that do not change
– a database called state that may change in response to user inputs and

received messages. We distinguish between local state and global state. Local
state represents private data (e.g., the contents of the shopping cart). Global
state represents data of general interest, not associated with a particular
user (e.g., the flight/hotel reservations made so far), and may be accessed
and updated by all users. Local state can be accessed and updated by owner
only. The database and the global state may be shared by several components
facilitating synchronous communication.

– input provided by user when choosing among several options generated by
the application, as well as arbitrary input e.g. passwords.

– communication channels facilitating asynchronous message passing between
components. These are one-way FIFO queues connecting one sender and one
receiver. We assume that messages arrive in the same order they were sent.

– a set of rules that specify
• how the current input choices are generated as a result of querying the

database, the current local and global state, the most recent previous
input, and the received messages;
• how the local/global state may be updated in response to user’s input

and received messages;
• actions to be taken (e.g pop-up message window, send e-mail), and
• sending of messages.

Specification and Verification of Multi-user Data-Driven Web Applications 131

The behavior of a Web application as determined by its interaction with users is
specified as a set of runs. Intuitively, a single-user run is an infinite sequence of
steps, called transitions. Each transition begins with the user’s choice of input
and the receiving of messages, if any. This is followed by updates of the local
and global state, and the sending of messages. The transition ends with actions.
All input options are generated by the system, except for a fixed set of input
constants representing specific user information (e.g. name, password, account
number, etc.) The user provides values for these constants throughout the run,
as requested. The user chooses at most one tuple among the options provided
for each input. To model multi-user runs we employ the interleaving semantics
used to model concurrent systems, as done for instance in [11]. Intuitively, a
multi-user run is an interleaving of single-user runs, such that at each point in
time only one user performs a transition. Transitions are atomic.

We next formalize the above model as a relational model. We assume a fixed
and infinite set dom∞ of elements. A relational schema is a finite set of relation
symbols with associated arities, together with a finite set of constant symbols. A
queue schema is a finite set of queue symbols with associated arities. We assume
three distinct sets of relational, constant, and queue symbols. The arity of a
relation/queue symbol R is denoted ar(R). Relation symbols with arity zero are
called propositions. A relational instance D over a relational schema consists of
a finite subset Dom of dom∞, and a mapping associating with each relation
symbol R of positive arity a finite relation D(R) of the same arity over Dom,
to each propositional symbol a truth value, and to each constant symbol c an
element D(c) of Dom. A queue instance D over a queue schema consists of a
finite subset Dom of dom∞, and a mapping associating with each queue symbol
R a finite sequence D(R) of finite relations over Dom, each of arity ar(R). We
denote by f(D), l(D), the first, respectively, last relation in every queue. That
is, for a queue symbol R, f(D)(R) (l(D)(R)) is the first (last) relation in D(R).
An empty instance ∅ of a relational (queue) schema has all the relations (queues)
empty and the propositions false.

We define next the notion of parameterized schema. Parameters are special-
purpose variables specifying users’ identity as perceived by the Web application.
We model the Web application such that every user is assigned an ID, but the
ID does not uniquely identify the user. The same ID may be assigned to different
users at different times, or the same user may receive a different ID each time
the user becomes active. This is consistent with the practice of distinguishing
between different sessions of the same user by means of session keys. Correlation
IDs are used to distinguish between different transactions of a Web service (see
[13]). Moreover, a user interacting simultaneously with two Web sites may be per-
ceived by the Web application as two users. Parameters are intended to associate
parts of a Web application component with users. For instance, the local state is
asociated with its owner. A queue is associated with the sender and the receiver.

A parameterized relational schema is a relational schema where each symbol is
tagged by a parameter. A parameterized queue schema is a queue schema where
each queue symbol is tagged by two distinct parameters. Parameterized symbols

132 M. Marcus

are written c[u], R[u], Q[u][u′], for a constant symbol c, relation symbol R, queue
symbol Q, and parameters u, u′. If S is a relational schema, we write S[u] to refer
to the parameterized version of S. Similarly, Q[u][u′] denotes a parameterized
version of the queue schema Q. A relational instance D over a parameterized
relational schema consists of a finite subset Dom of dom∞, a possibly infinite set
ID ⊆ dom∞ of IDs, and a mapping associating with each parameterized relation
symbol R[u] of positive arity a family {D(R)[i] | i ∈ ID} of finite relations of
arity ar(R) overDom, to each propositional symbol a family of truth values, and
to each constant symbol c[u] a family {D(c)[i] | i ∈ ID} of elements of Dom.
Likewise, a relational instance D over a parameterized queue schema associates
with each queue symbol R a family {D(R)[l][j] | l, j ∈ ID, l �= j} of finite
sequences of finite relations over Dom, each of arity ar(R). For fixed j ∈ ID
and arbitrary l �= j we say that Q[l][j] is in-queue and Q[j][l] is out-queue.

We assume familiarity with first-order logic (FO) over relational vocabularies.
We adopt here an active domain semantics for FO formulas, as commonly done
in database theory (e.g., see [1]).

We define next our model of Web applications as a set of n components
W1, . . . ,Wn, each specifying a Web site and/or Web service. A component con-
sists of relational and queue schemas, some of which are parameterized, and a
set of parameterized rules. We use n distinct parameters u1, . . . , un. The set of
natural numbers {1, 2, . . . , n} is denoted [1 : n].

Definition 1. A multi-user data-driven Web application (in short DDWA∗) is a
set {Wj}1≤j≤n consisting of n components Wj = 〈Dj ,Gj ,Sj [uj], Ij [uj],Aj [uj],
{Qlj[ul][uj]}l∈[1:n]−{j}, {Qjl[uj][ul]}l∈[1:n]−{j},Rj ,ACTj〉, where

– Dj, Gj are relational schemas called database and global state schemas.
Sj [uj], Ij [uj], Aj [uj] are parameterized relational schemas called local state,
input, and action schemas, respectively.

– For all distinct l, j ∈ [1 : n], Qlj [ul][uj] and Qjl[uj][ul] are disjoint param-
eterized queue schemas. Qlj [ul][uj] is in-queue and Qjl[uj][ul] is out-queue
for Wj.

– For each j, the schemas Dj, Gj, Sj [uj], Ij [uj], Aj [uj] are disjoint. For
l �= j, the schemas Dj, Dl may share symbols, and so do Gj and Gl.

– We refer to constant symbols in Ij as input constants and denote them
const(Ij). The constant symbols in Dj are called database constants. We
call Sj [uj] ∪ Ij [uj] ∪Aj [uj] the local schema and its symbols are called lo-
cal symbols. We denote by PrevIj the relational vocabulary {prevR | R ∈
Ij − const(Ij)} where prevR has the same arity as R. The sets of local sym-
bols of distinct components are disjoint.

– Rj is a set of parameterized rules using parameterized and unparameterized
relation symbols of the schema of Wj and parameterized queue symbols of
the schemas of W1, . . . ,Wn, namely:
• for each global state symbol R ∈ Gj, one, both, or none of the following

global state rules:
- an insertion rule R(x̄)← ϕ+

R[ū](x̄)
- a deletion rule ¬R(x̄)← ϕ−

R [ū](x̄)

Specification and Verification of Multi-user Data-Driven Web Applications 133

• for each local state symbol R ∈ Sj, one, both, or none of the following
local state rules:

- an insertion rule R[uj](x̄)← ϕ+
R[ū](x̄)

- a deletion rule ¬R[uj](x̄)← ϕ−
R[ū](x̄)

• for each input symbol R ∈ Ij, an input rule OptionsR[uj](x̄)← ψR[ū](x̄)
• for each action symbol R ∈ Aj, an action rule R[uj](x̄)← ϕR[ū](x̄)
• for each out-queue R in {Qjl}l∈[1:n]−{j}, a send rule R[uj][ul](x̄) ←
ϕR[ū](x̄)

where the arity of R is k, x̄ is a k-tuple of distinct variables, OptionsR[uj]
is a parameterized symbol of arity k, ψR[ū](x̄) is a FO formula over schema
Dj ∪Gj ∪ Sj [uj] ∪ const(Ij[uj]) ∪PrevIj [uj] ∪ {Qlj [ul][uj]}l∈[1:n]−{j}, with
free variables x̄, while ϕ+

R[ū](x̄), ϕ−
R[ū](x̄) and ϕR[ū](x̄) are FO formulas

over schema Dj ∪Gj ∪Sj [uj]∪ Ij [uj]∪PrevIj [uj] ∪ {Qlj [ul][uj]}l∈[1:n]−{j},
with free variables x̄. All parameters are free.

– ACTj is a global state relation symbol.

Each component Wj may be thought of as specifying a “type” of users, namely
the humans currently browsing the Web site specified byWj and/or the current
instances of the Web service specified byWj . The users will become apparent in
the later definitions, by instanciating the parameters with elements of dom∞.
The relation ACTj is meant to specify the finite (unbounded) set of current (or
active) users of “type” Wj .

The body of a rule of Rj is the formula on the right hand side of the arrow.
On the left hand side of the arrow, the head of the rule specifies a single relation
or queue symbol. At most two parameters may appear in the head because a
rule may change either a local relation or an out-queue with respect to j. The
local state symbols that appear in the body are tagged by uj. The body may
contain any in-queue symbol with respect to j. Thus a rule of Rj may specify
messages received(sent) by one user of “type” Wj from (to) other “types” of
users. This syntax allows for the definition of a transition (see Definitions 4 and
5) specifying changes due to a single user.

Intuitively, prevI refers to the most recent non-empty input I. Input con-
stants represent the user’s ability to type in arbitrary data (e.g. name, password.)
Database constants represent the possibility of presenting sets of predefined val-
ues (e.g. menus) for the user to choose (e.g. by clicking on a button or hiperlink).
A DDWA∗ with one component is called a simple DDWA∗.

We distinguish between flat and nested queues as done in [5]. A flat queue
message contains one tuple only. A nested queue message contains an arbitrary
number of tuples. We denote by Qf

lj (Qn
lj) the flat (nested) queues connecting

W l and Wj .
A bank loan Web application is modeled in [5] as the composition of four

communicating Web services: Loan Officer (O), Loan Manager (M), Credit Re-
porting Agency (CR), and Applicant Customer (A). The model represents only
one instance of each Web service and the communication is done exclusively by
message passing. We specify now this Web application as a DDWA∗. The Web
services may have arbitrarily many instances. Both O andM may have several

134 M. Marcus

users, sharing information about the bank customers. A may have arbitrarily
many users. Once a loan officer starts reviewing a loan application, additional
dynamic information (regarding, for instance, credit reports) is maintained lo-
cally and is not shared with other loan officers. The distinction between local
and global state allows the users to interact and view selectively the database.
The Web service instances may exchange messages.

Example 1. For convenience, we refer to Web pages as done in [4]. Technically,
Web pages are represented by local state propositions (e.g. homeP , ackP .) A
user is currently on a Web page iff the corresponding proposition is true. Some el-
ements of dom∞ like “home” or “submitApp”, represent buttons or menu choices
on Web pages, others like “excellent” or “poor” represent database constants.
For better readability we write the parameters when they appear in rules only.
An out-queue symbol R is written !R and an in-queue symbol R is written ?R.

The four components W1, W2, W3, W4 of the DDWA∗ specify, respectively,
A and the bank customer Web site, O and the loan officer Web site, CR,M and
the loan manager Web site. The parameters are denoted a, o, r, m respectively.

We specify first W1: D1 = ∅, G1 = {applications(cid, loan)}, S1 =
{homeP, ackP}, I1 = {cId, loanType(loan), click(button)}, A1 = {ack}, Q12 =
Qf

12 = {apply(cid, loan)} The queue schemas Q21, Q13, Q31, Q14, Q41 are
empty. Some of the parameterized rules of R1 are:
(1) homeP [a]← ¬homeP [a]
(2) Options loanType[a](loan)← homeP [a] ∧ (loan = “home” ∨ loan = “car”)
(3) Optionsclick[a](x)← homeP [a] ∧ (x = “submitAppl”∨ x = “status”)
(4) !apply[a][o](cid, l)← loanType[a](l)∧ cId[a] = cid ∧ click[a](“submitAppl”)
(5) ack[a]← ∃ l homeP [a] ∧ loanType[a](l)∧ click(“submitAppl”)
(6) ackP [a]← homeP [a] ∧ click[a](“submitAppl”)
(7) ¬homeP [a]← homeP [a] ∧ click[a](“submitAppl”)

Once she is on the home page (rule 1), a bank customer applying for a loan must
provide a bank identifier (input constant cId) and choose a loan type (input rule
2). A click on a button (rule 3) starts the application process by sending a
singleton message {(cid, l)} to O on a flat queue. This is done using the send
rule 4 with the queue symbol apply in the head. The three inputs in the body are
parameterized by a, as they belong to the local schema of W1. The out-queue
symbol in the head is parameterized by a and o to signify the sender “type”
W1 and the receiver “type”W2. An action rule (5) displays an acknowledgment
on a new page (rules 6, 7). The loan applications follow a business process that
involves the other three components of the Web application. We will see later
that the global state applications is shared by W1 and W2.

The behavior of a Web application is expressed as an infinite sequence of schema
instances. A schema instance consists of all the database, global and local state,
input, previous input, action, in-queue and out-queue instances associated with
all the active users of the Web application, and represents the configuration of
the Web application at a certain moment. Next we formalize the notion of con-
figuration. A DDWA∗ has individual configurations (consisting of instances of

Specification and Verification of Multi-user Data-Driven Web Applications 135

the parameterized local, in-queue and out-queue schemas) and global configu-
rations (consisting of instances of the database, the global state, the set of all
individual configurations of active users, and the sets of active IDs, for each
component Wj).

Let W∗ = {Wj}1≤j≤n be a DDWA∗. Let IDj ⊆ dom∞ for j ∈ [1 : n] be sets
of IDs, assumed disjoint.

Definition 2. An individual W∗-configuration is a tuple K = 〈i, S[i], I[i], P [i],
A[i], {Qlj[i′][i]}l∈[1:n]−{j},i′∈IDl

, {Qjl[i][i′]}l∈[1:n]−{j},i′∈IDl
〉 for some index j ∈

[1 : n] and ID i ∈ IDj. S[i], I[i], P [i], A[i] are instances over the parameterized
schemas Sj [uj], Ij [uj], PrevIj [uj], Aj [uj], respectively. For l ∈ [1 : n] − {j}
and i′ ∈ IDl, Qlj [i′][i] and Qjl[i][i′] are instances over the parameterized queue
schemas Qlj [ul][uj], Qjl[uj][ul], respectively, such that only finitely many of them
are non-empty.

We say that K is an individualW∗-configuration ofWj with ID i. K communi-
cates with an individualW∗-configuration ofW l with ID i′ if Qlj [i′][i] or Qjl[i][i′]
is non-empty, for some l ∈ [1 : n]− {j}. An initial individual W∗-configuration
has all instances empty, except possibly input and in-queue instances.

The queue instances in Qlj [i′][i] (Qjl[i][i′]) specify channels for messages received
(sent) by a user with ID i from (to) a user with ID i′. If it is clear from the context
we may abbreviate “an individual W∗-configuration of Wj with ID i” by “an
ID i”.

Example 2. The tuple 〈a1, {true, false}, {“23”, {(“home”)}, {(“submitAppl”)}},
∅, ∅, ∅, {(“23”, “home”)[a1][o1]}〉 is an individualW∗-configuration ofW1 with ID
a1 ∈ ID1 that communicates with an ID o1 of W2. It specifies a customer cur-
rently on the home page of the bank Web site. The customer inputs the bank ID
23 and submits a home loan application. The previous input, action and in-queue
instances are empty. The loan officer ID o1 is chosen arbitrarily from the set of
active IDs ofW2, specified by the global configuration of aDDWA∗, to be defined.

Definition 3. A global W∗-configuration is a set {〈Dj, Gj , Cj , Actj〉|1 ≤ j ≤
n}, where Dj is an instance of the database schema Dj , Gj is an instance of
the global state schema Gj, Cj is a finite set of individual W∗-configurations of
Wj with distinct IDs, such that Actj ⊆ IDj is the set of all IDs in Cj and it is
also an instance of ACTj. In addition, for each l ∈ [1 : n]−{j}, Cj satisfies the
following conditions:

(*) If K ∈ Cj has ID i and communicates with an ID i′ ofW l, then Cl contains
an individual W∗-configuration K′ of W l, with ID i′, such that for every
queue symbol R ∈ Qjl (Qlj) the out-queue (in-queue) instance of R in K
and the in-queue (out-queue) instance of R in K′ coincide and are tagged
by both IDs i and i′.

(**) If R is a global state (database) relation symbol shared by Wj and Wl then
its instances in Gj and Gl (Dj and Dl) coincide.

136 M. Marcus

For an individual W∗-configuration K ∈ Cj, the tuple 〈Dj , Gj ,K〉 is called aWj-
configuration. An initial global W∗-configuration has all global state instances
empty, and all the individual W∗-configurations are initial.

Every queue instance in a global W∗-configuration is both an out-queue in
the sender’s individual W∗-configuration and an in-queue in the receiver’s W∗-
individual configuration.

Example 3. The W1-configuration corresponding to the individual
W∗-configuration in Example 2 is 〈−, G, 〈a1, {true, false}, {“23”, {(“home”)},
{(“submitAppl”)}}, ∅, ∅, ∅, {(“23”, “home”)[a1][o1]}〉〉. It has no database
instance for the empty schema D1. The global state instance G is a set of tuples
(cid, loan) specifying applications already received.

An atomic transition that updates the global configuration is due to a single user
of some component Wj . All the changes appear in this user’s Wj -configuration
and in the queues of those users (at most one for each W l, l �= j) commu-
nicating with the Wj user during the transition. The transition relation of a
component Wj defines for every current Wj-configuration its legal successor
Wj-configurations, reachable in one atomic step.

Definition 4. Let 〈D,G,K〉 and 〈D′, G′,K′〉 be two Wj-configurations, where
K = 〈i, S[i], I[i], P [i], A[i], {Qlj[i′][i]}l∈[1:n]−{j},i′∈IDl

, {Qjl[i][i′]}l∈[1:n]−{j},

i′∈IDl
〉 and K′ = 〈i, S′[i], I ′[i], P ′[i], A′[i], {Q′

lj[i
′][i]}l∈[1:n]−{j},i′∈IDl

,

{Q′
jl[i][i

′]}l∈[1:n]−{j},i′∈IDl
〉 for an ID i ∈ IDj. We say that 〈D′, G′,K′〉

is a legal successor of 〈D,G,K〉 in Wj iff D = D′ and for some IDs il ∈ IDl

for l ∈ [1 : n]− {j} the following hold:

– For each symbol R ∈ Ij of arity k > 0, I ′(R) ⊆ {v} for some v ∈ OptionsR,
where OptionsR is the result of evaluating ψR[ū](x̄) on D, G, S[i], P [i], and
{f(Qlj)[il][i]}l∈[1:n]−{j}. For each proposition R ∈ Ij, I ′(R) is a truth value,
and for each constant symbol c ∈ Ij , I ′(c) is an element of dom∞.

– For each symbol R ∈ Sj, S′(R) is the result of evaluating (ϕ+
R[ū](x̄) ∧

¬ϕ−
R [ū](x̄)) ∨ (R[uj](x̄) ∧ ϕ−

R[ū](x̄) ∧ ϕ+
R[ū](x̄)) ∨ (R[uj](x̄) ∧ ¬ϕ−

R [ū](x̄) ∧
¬ϕ+

R[ū](x̄)) on D, G, S[i], I[i], P [i], and {f(Qlj [il][i])}l∈[1:n]−{j} where
ϕε

R[ū](x̄) is taken to be false if not provided, ε ∈ {+,−}. R remains un-
changed if no insertion or deletion rule is specified for it. For each symbol
R ∈ Gj, G′(R) is obtained likewise, except R is not parameterized.

– For each symbol R ∈ Aj, A′(R) is the result of evaluating ϕR[ū](x̄) on D,
G, S[i], I[i], P [i], and {f(Qlj)[il][i]}l∈[1:n]−{j}.

– For each symbol prevR in PrevIj , P
′(prevR) = I ′(R) if I ′(R) is non-empty,

otherwise P ′(prevR) = P (R).
– For each symbol R ∈ Qjl, let mR be the result of evaluating ϕR[ū](x̄) on D,
G, S[i], I[i], P [i], and {f(Qlj[il][i])}l∈[1:n]−{j}. If R ∈ Qn

jl, then Q′
jl(R)[i][il]

is obtained by enqueuing mR into Qjl(R)[i][il]. If R ∈ Qf
jl, then if mR is

non-empty, Q′
jl(R)[i][il] is obtained by enqueuing into Qjl(R)[i][il] a sin-

gleton containing a non-deterministically picked tuple v ∈ mR. If mR is

Specification and Verification of Multi-user Data-Driven Web Applications 137

empty, Q′
jl(R)[i][il] = Qjl(R)[i][il] (the queue does not change). For i′ �= il,

Q′
jl(R)[i][i′] = Qjl(R)[i][i′].

– For each symbol R ∈ Qlj, if R is mentioned in the rules Rj, then Q′
lj(R)[il][i]

is obtained by dequeuing the first message from Qlj(R)[il][i]. Otherwise,
Q′

lj(R)[il][i] = Qlj(R)[il][i]. For i′ �= il, Q′
lj(R)[i′][i] = Qlj(R)[i′][i].

Notice that when evaluating a rule body, the parameters u1, . . . , un are instan-
tiated by the IDs i1, . . . ij−1, i, ij+1, . . . , in.

Example 4. The rules in Example 1 yield the following successorW1-configuration
to theW1-configuration in Example 3: 〈−, G, 〈a1, {false, true}, ∅, {{(“home”)},
{(“submitAppl”)}}, {true}, ∅, {(“23”, “home”)[a1][o1]}〉〉. It shows: changed Web
page, empty input, action ack performed, and the singleton message still in the
out-queue.

The transition relation for W∗ defines for each current global W∗-configuration
its legal successor global W∗-configurations, reachable in one atomic step. This
step is performed by aWj user with an ID in IDj , for some j ∈ [1 : n]. There are
three kinds of steps, according to whether the user is active and stays active, or
just logs on or off. By firing the Rj rules tagged by IDs, the global state in Wj ,
and the individual configuration of the performing ID may change according to
Definition 4. The set of active Wj IDs may also change, if the user (with the
performing ID) logs on or off. We assume that in one step, for each pair Wj ,
W l of components, an instance of Wj may exchange messages with only one
instance of Wl, but in subsequent transitions it may exchange messages with
other instances of W l. This assumption is consistent with the general model for
concurrency based on interleaving.

Definition 5. A globalW∗-configuration {〈D′
l, G

′
l, C

′
l, Act

′
l〉|1 ≤ l ≤ n} is a legal

successor of {〈Dl, Gl, Cl, Actl〉|1 ≤ l ≤ n} in W∗ iff D′
l = Dl for each l ∈ [1 : n],

and for some j ∈ [1 : n], one of the following holds:

1. [active user step] Act′j = Actj and C′j = Cj − {K}∪ {K′} for individual W∗-
configurations K,K′ ∈ Cj with ID i ∈ Actj , such that 〈D′

j , G
′
j ,K′〉 is a legal

successor of 〈Dj , Gj ,K〉 in Wj, for some IDs il ∈ Actl for l ∈ [1 : n]− {j}.
2. [log on step] Act′j = Actj ∪ {i} for some non-active ID i ∈ IDj − Actj,
C′j = Cj ∪ {K}, K is the individual W∗-configuration of Wj with ID i such
that 〈D′

j , G
′
j ,K〉 is a legal successor of 〈Dj , Gj ,K0〉 in Wj for some IDs

il ∈ Actl for l ∈ [1 : n]−{j}, and K0 is an initial individual W∗-configuration
of Wj.

3. [log off step] Act′j = Actj − {i} for some ID i ∈ Actj , C′j = Cj − {K},
K is the individual W∗-configuration of Cj with ID i, and G′

j is the global
state in a legal successor of 〈Dj , Gj ,K〉 in Wj, for some IDs il ∈ Actl for
l ∈ [1 : n]− {j}.

In addition, for each l ∈ [1 : n] − {j}, Act′l = Actl, G′
l = Gl, and the set C′l

is obtained from Cl by updating each queue tagged by IDs i, il in the individual
W∗-configuration of W l with ID il, with one exception: a log off step does not
update the in-queues.

138 M. Marcus

Notice that all Wj instances share the database Dj and global state Gj . For
j �= l, Dj and Dl are not necessarily disjoint, and so are Gj and Gl. Hence
several components may share (part of) the database and global state. Local
state, as well as input, action, in-queue and out-queue cannot be shared because
they are tagged by the user’s id. It is understood that the global state relations
shared by two components change accordingly at each transition.

Definition 6. A run of W∗ is an infinite sequence ρ = {ρt}t≥0 of global W∗-
configurations, such that ρ0 is initial, and for every t ≥ 0, ρt+1 is a legal successor
of ρt in W∗. We denote by D the union of all database instances Dj, for 1 ≤
j ≤ n, that appear in every ρt. We say that ρ is a run on database D.
The choice of ID to perform the next step in a W∗ run (and hence the choice
of next global W∗-configuration) is non-deterministic. Notice that at each step,
if ik ∈ IDk is the ID that performs the transition, then all the rules in Rk

are simultaneously interpreted over the current database Dk, global state Gk,
and individual configuration with ID ik. The input used in a transition from
ρi to ρi+1 belongs to ρi, while the action “happens” in ρi+1. If some IDj is
infinite, there may be infinitely many IDs in a run, even though in each global
W∗-configuration there are only finitely many IDs.

Each input constant may be assigned an arbitrary value from dom∞ only
once for each active ID. An input constant may be assigned different values by
different IDs in a run. Also, since users may log on and off, an input constant
may be assigned different values by the same ID. Database constants have fixed
values for the whole run.

Example 5. We specify O and the loan officer Web site together as a component
W2. The loan officer service assigns non-deterministically a loan officer ID to
receive a new loan application, which is immediately stored both in the global
state applications and in the local state newAppl tagged by the parameter o.
Simultaneously, a message is sent automatically to the credit reporting service,
on a flat out-queue:

!getRating[o][r](ssn)←
∃ cid, loan, name ?apply[a][o](cid, loan) ∧ customer(cid, name, ssn)

This message is parameterized by o and r, and contains the applicant customer’s
SSN obtained by querying the database customer. The credit reporting service
sends back the credit rating category on the flat queue rating, which is in-queue
for W2. The Web application implements a bank policy requiring that loan
applications from customers with excellent rating are automatically approved,
and those with poor rating are automatically denied. Other credit ratings require
further processing. The action rule

letter[o](cid, name, loan, dec)← ∃ ssn customer(cid, name, ssn) ∧
[newAppl[o](cid, loan) ∧
(?rating[r][o](ssn, “excellent”) ∧ dec = “approved”
∨?rating[r][o](ssn, “poor”) ∧ dec = “denied”)]
∨ [applications(cid, loan)∧?decision[m][o](cid, name, dec)]

Specification and Verification of Multi-user Data-Driven Web Applications 139

specifies the sending of letters to applicants. If the credit rating is neither ex-
cellent nor poor then a decision comes from a manager on the flat in-queue
decision.

Web applications specified using the multi-user model feature interesting be-
haviors that are not expressible in the previous models [4,5]. For example:

1. The bank loan DDWA∗ involves several loan officers and managers process-
ing applications received concurrently from an unlimited number of cus-
tomers. When a component’s rules are fired, the parameters are instantiated
by IDs and each rule body is evaluated over local and queue instances tagged
by the same IDs.

2. By using both global and parameterized local state relations, as well as
parameterized send rules, the multi-user specification can implement a bank
policy that requires each loan application to be dealt with by a single loan
officer. Once a bank customer applies for a loan, the system chooses non-
deterministically a loan officer ID and stores the application data in this
officer’s local state. Subsequently, this ID is used by all W2 rules specifying
the workflow this loan application goes through.

3. The ID is non-deterministically chosen from among all active loan officer
IDs. This makes sense if the bank employs a policy of assigning new loan
applications arbitrarily to any loan officer. In practice such a policy may be
unfair, unless there is a mechanism in place that keeps track of current work
loads. In our high-level specification, global state propositions can be used
to specify the availability of loan officers. These propositions may be set to
true/false by the loan officers themselves.

4. By allowing the loan officer service and the customer Web site to share the
global state applications, the customers can keep track of the status of their
applications. The local state relation myAppl(cid, loan, status) is added to
S1 and the following state updating rules are added to R1:

myAppl[a](cid, l, “sent”)← loanType[a](l)∧ cId[a]=cid ∧ click[a](“submitAppl”)
myAppl[a](cid, l, “received”) ← myAppl[a](cid, l, “sent”) ∧ applications(cid, l)
myAppl[a](cid, l, “processed”) ← myAppl[a](cid, l, “received”)∧

¬applications(cid, l)

An action rule allows customers to view the status of their applications:
showStatus[a](cid, l, st) ← homeP [a] ∧ click[a](“status”) ∧ myAppl[a](cid, l, st)

Example 6. Some desirable properties of the bank loan Web application are: (1)
Every bank customer applying for a loan receives a written answer. (2) Only
one loan officer is in charge with reviewing an application. (3) Every applicant
customer whose credit rating is neither excellent nor poor requires a manager’s
decision before a letter is sent to the applicant. (4) A request for credit rating
must be sent before a message tagged by the same loan officer ID and containing
a credit rating is received. (5) It is never the case that the same loan application
is assigned to two loan officers. In Section 3 we show how to express these
properties in a formal language.

140 M. Marcus

The model of [5] could be used to specify a bounded number of users (or in-
stances), identified by new database constants. Our model is defined for the more
realistic situation of an unbounded number of users. Even though in general this
leads to undecidability (see Section 4) thus making algorithmic verification im-
possible, the model can still be used for the formal specification of complex Web
applications, whose correctness could be checked using a theorem prover e.g.
PVS [8]. Moreover, algorithmic verification is possible with some restrictions, as
shown in Section 5 where Theorem 3 holds for an unbounded number of users of
Web services with empty queue schemas, in the presence of a bounded number of
users of Web services with non-empty queue schemas. DDWA∗ properties allow
quantification over ID variables, which is not possible if database constants were
used to refer to users.

Users may log on/off at any time. If a message is sent to a user that has logged
off, the message stays in the sender’s out-queue until the ID becomes active again.
As this is not guaranteed to happen, messages may never be received.

3 Linear Time Temporal Properties

We use first-order linear time temporal logic (in short, LTL-FO) to express
properties of runs ofDDWA∗s. LetW∗ = {Wj}1≤j≤n be aDDWA∗. FO formulas
over the schema ofW∗ may contain two types of variables: ID variables and non-
ID (usual) variables. The ID variables appear inside square brackets next to a
local relation or queue symbol. We assume two disjoint, infinite sets: a set V
of non-ID variables and a set Vid = ∪1≤j≤nVid

j of ID variables, partitioned
into infinite sets of Wj-ID variables. For each j ∈ [1 : n], let Cj be the set of
constants in the Wj schema, and C = ∪1≤j≤nCj . Any occurrence of an input
constant c ∈ Cj in a formula is of the form c[u] for some u ∈ Vid

j . The following
are atomic FO formulas: R[u](x̄), S(ȳ), ?P [v][v′](x̄), !P [v][v′](x̄), y1 = y2 where
for some j, l ∈ [1 : n], j �= l, R ∈ Sj ∪ Ij ∪ Aj , S ∈ Dj ∪ Gj , P ∈ Qjl,
u, v ∈ Vid

j ∪Cj , v′ ∈ Vid
l ∪Cl, x̄, ȳ are tuples of variables in Vid∪V or constants

in C, of appropriate arity, and y1, y2 ∈ Vid∪V∪C. The FO formulas are obtained
as usual from atomic formulas using negation, disjunction and quantifiers. The
language LTL-FO is obtained by closing FO under negation, disjunction, and the
following formula formation rule: If ϕ and ψ are formulas, then Xϕ and ϕUψ are
formulas. Free and bound variables are defined in the obvious way. An LTL-FO
formula with free ID variables ū and free non-ID variables x̄ is denoted ϕ[ū](x̄).
The universal closure of an LTL-FO formula ϕ[ū](x̄) is the formula ∀x̄[ū]ϕ[ū](x̄).
An LTL-FO sentence is the universal closure of an LTL-FO formula. Notice
that quantifiers cannot be applied to formulas containing temporal operators,
except by taking the universal closure of the entire formula, yielding an LTL-FO
sentence.

We define next the semantics of LTL-FO. Let ρ = {ρt}t≥0 be a run ofW∗. Let
Dom(ρ) be the active domain of ρ, which consists of all the elements of dom∞
occurring in relations or as interpretations of constants in ρ, together with all
active IDs of ρ. We define first the satisfaction of an FO formula ψ by a global

Specification and Verification of Multi-user Data-Driven Web Applications 141

W∗-configuration ρt = {〈Dj, G
t
j , Ct

j , Act
t
j〉|1 ≤ j ≤ n} of ρ. For 1 ≤ j ≤ n

and t ≥ 0, the set Ct
j consists of individual W∗-configurations of the form

〈i, S[i], I[i], P [i], A[i], {Qkj[i′][i]}k∈[1:n]−{j},i′∈IDk
, {Qjk[i][i′]}k∈[1:n]−{j},i′∈IDk

〉
where i ∈ Acttj .

Definition 7. We associate with ρt an FO structure S over the vocabulary V =
∪1≤j≤nVj∪{R∗

α|R ∈ Qjk, α ∈ {f, l}, k ∈ [1 : n]−{j}, ar(R∗
α) = ar(R)+2}, where

Vj = Dj∪Gj∪{ACTj}∪{cu|c ∈ const(Ij), u ∈ V id
j }∪{R∗|R ∈ (Ij−const(Ij))∪

prevIj
∪Sj∪Aj , ar(R∗) = ar(R)+1}. The domain of S is Dom(ρ). The symbols

of V are interpreted in S as follows. For each 1 ≤ j ≤ n, S(ACTj) = Acttj and

– for a symbol R ∈ Dj ∪Gj, S(R) = Dj(R), respectively S(R) = Gt
j(R).

– For a symbol R ∈ Sj ∪ Aj, S(R∗) = ∪i∈Actt
j
({i} × S[i](R)), respectively

S(R∗) = ∪i∈Actt
j
({i} ×A[i](R)).

– For a relational symbol R ∈ Ij , if the transition from ρt to ρt+1 is a log on
step with input I and ID i′ �∈ Acttj, then S(R∗) = ∪i∈Actt

j
({i} × I[i](R)) ∪

({i′} × I(R)) and S(prevR∗) is empty, otherwise S(R∗) = ∪i∈Actt
j
({i} ×

I[i](R)) and S(prevR∗) = ∪i∈Actt
j
({i} × P [i](R)).

– For a constant symbol c ∈ Ij, if S(u) ∈ Acttj, then S(cu) = IS(u)(c), other-
wise S(cu) is undefined.

– For k, k′ ∈ [1 : n], k �= k′, for a queue symbol R ∈ Qkk′ , S(R∗
f) =

∪i∈Actt
k
∪i′∈Actt

k′ ({(i, i′)} × f(Qkk′ [i][i′])(R)); S(R∗
l) = ∪i∈Actt

k
∪i′∈Actt

k′
({(i, i′)} × l(Qkk′ [i][i′])(R)).

For a variable y ∈ V, S(y) ∈ Dom(ρ). For an ID variable u ∈ Vid
j , S(u) ∈

IDj . Quantifiers range over Dom(ρ) if they bound non-ID variables, and over
Acttj if they bound Wj-ID variables. Let ψ∗ be the FO formula obtained by
replacing in ψ each local atom R[u](ȳ) by R∗(u, ȳ), each occurrence c[u] of an
input constant c, by cu, each queue atom ?R[u][v](ȳ) by R∗

f (u, v, ȳ), and each
queue atom !R[u][v](ȳ) by R∗

l (u, v, ȳ). Then ρt |= ψ iff ψ∗ is true in S.
The suffix ρt satisfies an LTL-FO sentence ∀x̄ūϕ[ū](x̄) iff for every valuation

ν of x̄ on Dom(ρ) and for every valuation μ of ū on ID1 × . . . × IDn, ρt |=
ϕ[μ(ū)](ν(x̄)). The latter is defined inductively on t and on the structure of the
formula:

– For an FO sentence ψ, ρt |= ψ iff ρt |= ψ;
– ρt |= Xψ iff ρt+1 |= ψ;
– ρt |= ψ1Uψ2 iff for some s ≥ t, ρs |= ψ2 and for every r, t ≤ r < s, ρr |= ψ1.

We use common temporal operators F (eventually), G (always) and B (before),
defined in terms of the others: Fψ = trueUψ (“eventually ψ holds”), Gψ =
¬F¬ψ (“ϕ generally holds”), and ψ1Bψ2 = ¬(¬ψ1U¬ψ2) (“ψ1 holds before ψ2

fails”).
A run ρ ofW∗ satisfies ∀x̄ūϕ[ū](x̄) iff ρ0 |= ∀x̄ūϕ[ū](x̄).W∗ satisfies ∀x̄ūϕ[ū](x̄)

iff every run ofW∗ satisfies ∀x̄ūϕ[ū](x̄).

142 M. Marcus

Example 7. The properties in Example 6 can be expressed as LTL-FO formulas
over the schema of the bank loan Web application.

(1) ∀a, o, cid, l, ssn, nm G (p→ F q)
(2) ∀a, o, o′, r, r′, cid, l, ssn, nm G ((p ∧ F s)→ o = o′)
(3) ∀a, o, cid, l, ssn, nm, dec G (p→ (t ∨ u)B v)
(4) ∀o, r, r′, ssn, ctg G (!getRating[o][r](ssn)B ¬?rating[r′][o](ssn, ctg))
(5) ∀o1, o2, a, cid, l G((F w1 ∧ F w2)→ o1 = o2), where

p = !apply[a][o](cid, l) ∧ customer(cid, nm, ssn),
q = letter[o](cid, nm, l, “approved”) ∨ letter[o](cid, nm, l, “denied”),
s = !getRating[o′][r](ssn)∨!getHistory[o′][r′](ssn),
t = ∃r?rating[r][o](ssn, “excellent”)∨?rating[r][o](ssn, “poor”)
u = ∃m ?decision[m][o](cid, nm, dec),
v = ¬letter[o](cid, nm, l, dec), wk =?apply[a][ok](cid, l) for k = 1, 2.

Properties (2), (4), (5) are not expressible in the composition model [5]. In the
rest of the paper we study the following decision problem:

Definition 8. Given a DDWA∗ W∗ and an LTL-FO sentence ∀x̄ūϕ[ū](x̄) over
the schema of W∗, the verification problem is the problem whether W∗ satisfies
∀x̄ūϕ[ū](x̄).

This is an infinite-state model checking problem [14], because the underlying
database and the number of users are not fixed apriori.

4 Undecidability Results

The ASM+ transducer defined in [4] is a particular case of a simple DDWA∗

with no input constants, where the single user does not log off, and there is
no distinction between local and global state. The problem whether an ASM+

transducer satisfies an LTL-FO sentence is undecidable [4]. As a corollary, we
obtain the following result:

Corollary 1. It is undecidable whether a DDWA∗ satisfies an LTL-FO sen-
tence.

Our DDWA∗ model is also an extension of the composition model [5]. To obtain
decidability, we have to impose at least the restrictions that ensure decidability
for the models of [4,5]. One of these is a restriction called input-boundedness.
It essentially reduces the range of the quantifiers that appear in the property
and in state, send, and action rules to the active domain of the current inputs,
previous inputs, and flat queue messages. It is a natural restriction based on
the observation that Web applications are driven by user’s input and incoming
messages. We extend this notion to the multi-user model.

Definition 9. Let W = {Wj}1≤j≤n be a DDWA∗. The set of input-bounded
FO formulas over the schema of W∗ is obtained by replacing in the definition of
FO the quantification formation rule with the following:

Specification and Verification of Multi-user Data-Driven Web Applications 143

If ϕ is an input-bounded FO formula, α is a flat queue, current or previous
input atom using a symbol from Qf

jl∪Ij∪PrevIj for some j, l ∈ [1 : n], j �= l,
x̄ ⊆ free(α)∩ (V∪Vid), and x̄∩ free(β) = ∅ for every state, nested queue,
or action atom β in ϕ, then ∃x̄(α ∧ ϕ) and ∀x̄(α → ϕ) are input-bounded
FO formulas.

An LTL-FO sentence over the schema of W∗ is input-bounded iff all of its FO
subformulas are input-bounded. W∗ is input-bounded iff

– all formulas in local and global state, action, and send rules into nested
queues are input-bounded,

– all input rules and send rules into flat queues use ∃∗FO formulas in which
all state and nested in-queue atoms are ground.

Example 8. The bank loan application DDWA∗ and the properties in Example 7
are input-bounded.

Input-boundedness is necessary to ensure decidability for each of the two models
of [4,5]. The composition model of [5] requires also that all queues are bounded
and the flat ones are lossy. Lossy queues may allow messages to be lost in transit.
If every sent message is received, then the queue is perfect.

The following theorem shows that input-boundedness and bounded queues do
not ensure decidability for the multi-user model.

Theorem 1. It is undecidable whether a simple input-bounded DDWA∗ without
queue symbols satisfies an input-bounded LTL-FO sentence.

The proof is by reduction from the halting problem. In the following section we
consider additional restrictions to render the verification problem decidable.

5 Decidable Versions of the Verification Problem

In practice, the number of simultaneous users of a Web application is bounded
by the servers’ capacity, although this may be a big number. This observation
suggests to bound the number of active IDs of a DDWA∗. This implies a bound
on the number of simultaneous users, but the opposite is not true because a user
who repeatedly logs on and off may be assigned a different ID each time. It is
often the case that users choose the same values for the input constants, each
time they log on a Web site. If the number of users is finite, all these values can
be stored in the database, and so they may be modeled as database constants
rather than input constants.

It is therefore natural to restrict our attention to DDWA∗ without input
constants and with a bounded number of active IDs, in addition to the restric-
tions needed for the models of [4,5]. This ensures decidability of the verification
problem.

144 M. Marcus

Theorem 2. It is decidable whether an input-bounded DDWA∗ with a bounded
number of active IDs, no input constants, bounded queues with lossy flat channels
and perfect nested channels, satisfies an input-bounded LTL-FO sentence. The
problem is PSPACE complete for schemas with fixed bound on the arity, and
EXPSPACE otherwise.

The proof is by a polynomial time reduction to the verification of an input-
bounded LTL-FO sentence by an input-bounded ASM+ transducer, which is
known to be PSPACE complete for schemas with fixed bound on the arity, and
EXPSPACE otherwise [4].

Another way to obtain decidability is by allowing an unbounded number of
IDs, but further restricting the property language.

Definition 10. A restricted input-bounded LTL-FO formula is an input-
bounded LTL-FO formula of the form ϕ[ū](x̄), with all the ID variables free. A
restricted input-bounded LTL-FO sentence is the universal closure of a restricted
input-bounded LTL-FO formula.

All properties in Example 7 are restricted input-bounded, except (3). However,
the sentence ∀a, o, o′, r,m, cid, l, nm, ssn, ctg, dec G([p ∧ G¬?rating[r][o](ssn,
“excellent”) ∧G¬?rating[r][o](ssn, “poor”) ∧ ¬F ?decision[m][o](cid, nm, dec)]
→ ¬F letter[o′](cid, nm, l, dec)) is restricted input-bounded, and equivalent to
(3) assuming that: all CR instances provide the same rating for each SSN, all
managers take the same decision for each application, and an application is no
longer available after a response letter is sent.

Theorem 3. It is decidable whether an input-bounded DDWA∗ with no input
constants, bounded queues with lossy flat channels and perfect nested channels, a
bounded number of active IDs for the components with non-empty queue schema,
but an unbounded number of active IDs for the components with empty queue
schema, satisfies a restricted input-bounded LTL-FO sentence. The problem is
PSPACE complete for schemas with fixed bound on the arity, and EXPSPACE
otherwise.

The proof reduces the problem to the verification of a finite set of so called
pseudoruns, by extending a method used in [4]. The proof is long, tedious, and
it is difficult to provide an intuitive explanation.

6 Conclusions

In this paper we propose a model for interactive, multi-user data-driven and
communicating Web applications. We use our model to specify a well known ex-
ample of e-business application that has interesting behaviours that cannot be
captured by the models of [4,5]. A variant of first-order temporal logic is defined
to express properties of multi-user data-driven Web applications, some of which

Specification and Verification of Multi-user Data-Driven Web Applications 145

are not expressible in the composition model. We study the problem whether the
multi-user model satisfies an LTL-FO property. Although this problem is unde-
cidable in general, we identify two sets of restrictions that ensure decidability. In
addition to restrictions that ensure decidability for the composition model of [5],
we require either a bound on the number of all active IDs, or a more restricted
property language while queue-less components may have an unbounded number
of active IDs and only components with queues must have a bounded number
of active IDs. The e-business application example in Section 2 satisfies these
restrictions.

The decidability results for the multi-user model have the same complexity
(PSPACE complete) as those obtained for the models of [4,5]. The verification
problem considered here is an infinite-state model checking problem. The classic
model checking problem for transition systems (finite-state machines or Kripke
structures) and propositional LTL (see e.g. [14]) is PSPACE complete. Thus
it is rather surprising to obtain the same complexity for models based on the
relational ASM+ transducer and LTL-FO.

The feasability of verification based on the ASM+ transducer model is demon-
strated in [6]. We expect to use the model proposed in this paper to specify and
verify a richer class of Web applications. By extending previous models, our work
demonstrates the strength of the original model of [4].

Acknowledgment. I thank the anonymous reviewers for useful comments.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

2. SWSF Committee (2005), http://www.w3.org/Submission/SWSF-SWSO/
3. Deutsch, A., Sui, L., Vianu, V.: Specification and verification of data-driven web

services. In: PODS Proceedings, pp. 71–82 (2004)
4. Deutsch, A., Sui, L., Vianu, V.: Specification and verification of data-driven web

applications. Journal of Computer and Systems Sciences 73(3), 442–474 (2007)
5. Deutsch, A., Sui, L., Vianu, V., Zhou, D.: Verification of communicating data-

driven web services. In: PODS Proceedings, pp. 90–99 (2006)
6. Deutsch, A., Sui, L., Vianu, V., Zhou, D.: A system for specification and verification

of interactive, data-driven web applications. In: SIGMOD Conference, pp. 772–774
(2006)

7. Fan, W., Geerts, F., Gelade, W., Neven, F., Poggi, A.: Complexity and composition
of synthesized web services. In: PODS Proceedings, pp. 231–240 (2008)

8. http://pvs.csl.sri.com/

9. Hull, R., Benedikt, M., Christophides, V., Su, J.: E-services: A look behind the
curtain. In: PODS Proceedings, pp. 1–14 (2003)

10. Hull, R., Su, J.: Tools for composite web services: a short overview. SIGMOD
Record 34(2), 86–95 (2005)

http://www.w3.org/Submission/SWSF-SWSO/
http://pvs.csl.sri.com/

146 M. Marcus

11. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer, Heidelberg (1992)

12. Narayanan, S., McIlraith, S.A.: Simulation, verification, and automated composi-
tion of web services. In: Proc. Int. World-Wide Web Conference (2002)

13. Papazoglou, M.P.: Web Services: Principles and Technology. Prentice-Hall, Engle-
wood Cliffs (2008)

14. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: Symp. on Logic in Computer Science (1986)

Automated Composition of Nondeterministic Stateful
Services

Giuseppe De Giacomo and Fabio Patrizi

Dipartimento di Informatica e Sistemistica
SAPIENZA - Università di Roma

Via Ariosto 25 - 00185 Roma, Italy
{degiacomo,patrizi}@dis.uniroma1.it

Abstract. This paper addresses the automated composition of nondeterministic
available services modeled as transition systems. Nondeterminism stems natu-
rally when the results of client-service interactions cannot be foreseen, and calls
for specific orchestration strategies able to deal with partial controllability. We
show how to build a set of orchestrators, by resorting to a variant of the sim-
ulation relation’s formal notion, by exploiting recent results on LTL formulas’
synthesis and by reducing our technique to the search for a safety game winning
strategy. The resulting technique is sound, complete and optimal w.r.t. computa-
tional complexity, and generates all possible solutions at once.

1 Introduction

Web services are modular applications that can be described, published, located, in-
voked and composed over a variety of networks (including the Internet): any piece of
code and any application component deployed on a system can be wrapped and trans-
formed into a network-available service, by using standard (XML-based) languages
and protocols (e.g., WSDL, SOAP, etc.)- see e.g., [1]. The promise of Web services
is to enable the composition of new distributed applications/solutions: when available
services cannot satisfy a desired specification, they, or their parts, can be composed
and orchestrated in order to realize the specification. Service composition involves two
different phases [13]: the composition synthesis, where the specification of an orches-
trator, which coordinates the available services to fulfill a target service specification,
is synthesized, and the composition deployment, i.e., the actual implementation of the
orchestrator specification in a given technology (such as BPEL) 1. Here, we focus on
the former.

Most of the research on composition synthesis, e.g., [27,8], has considered atomic
services, essentially abstracting away from their dynamic behavior (a.k.a. possible con-
versations). Notable exceptions are, e.g., [17,7,21,5,14,20,10] where stateful services,
and their dynamic behavior, are considered explicitly. A survey on composition synthe-
sis approaches can be found in [13].

1 http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

C. Laneve and J. Su (Eds.): WS-FM 2009, LNCS 6194, pp. 147–160, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

148 G. De Giacomo and F. Patrizi

In this paper, we follow the general approach first proposed in [5], called, in [13],
“Roman Model”, and recently further investigated in the context of agent behavior com-
position, in AI [9,25,24]. We address the automatic composition of nondeterministic,
partially controllable, available services, modeled as transition systems that capture the
possible conversations that services can have with clients. When the result of interac-
tions cannot be foreseen, nondeterminism naturally stems. For instance, think of a ser-
vice for buying tickets: the service cannot know in advance whether seats are available
for a selected performance. In other words, service behavior is partially controllable: a
property an orchestrator needs to cope with. We assume that orchestrators can observe
available services’ states, and hence take advantage of this in choosing how to continue
a certain task. This assumption is quite natural in this context 2, as transition systems
represent available services’ “public” behavior.

Our composition technique is based on the formal notion of simulation relation [18].
It follows the lines drawn in [6,24], in the presence of nondeterminism, which calls for
a specific simulation relation’s variant, that considers available services’ partial control-
lability. The variant presented here can be proven equivalent to the one in [24].

Our main contribution is relating the service composition problem to the literature
on synthesis of reactive systems (cf., e.g., [22]). In particular, we show that the problem
can be solved by exploiting safety-games and propose an implementation based on
the system TLV. This is a major step toward practical implementation of engines for
orchestrator synthesis. Notably, the proposed technique not only is sound, complete,
and optimal w.r.t. computational complexity, but also, in a precise formal sense (see
later), produces all (infinite) possible solutions at once.

In Section 2, we introduce the formal setting; in Section 3, we develop our technique;
in Section 4, we show how the technique can exploit safety games; in Section 5, we
propose an implementation based on the system TLV and, finally, in Section 6 we draw
some conclusions.

2 The Framework

The framework adopted here is based on [5,9,24], and is sometime referred to as the
”Roman Model” [13].

Data box. We assume to have an accessible shared system, called data box, which
allows client services to store and retrieve shared data. We describe it as a nondeter-
ministic transition system, where (i) states represent an abstract finite description of the
data content, and (ii) transitions represent the execution of operation, including data in-
sertion/deletion or retrieval. Nondeterministic transitions model those operations whose
outcome is a-priori unknown.

A data box is a tuple DB = 〈O, D, d0, ρ〉 where:

• O is the finite set of shared operations, i.e., the whole set of operations clients can
perform, each of which may or may not affect data box’ state;

2 The reader should observe that also the standard proposal WSDL 2.0 has a similar point of
view: the same operation can have multiple output messages (the out message and var-
ious outfault messages), and the client observes how the service behaved only after
receiving a specific output message.

Automated Composition of Nondeterministic Stateful Services 149

• D is the finite set of data box’ states;
• d0 ∈ D is the initial state;
• ρ ⊆ D ×O ×D is the transition relation among states: 〈d, o, d′〉 ∈ ρ, or d

o−→ d′

in DB, denotes that execution of operation o in state d may lead the data box to a
successor state d′.

Available Services. An available service, at each step, offers to its clients a choice of
operations, based upon its own and data box’ state; the client chooses one of them, and
the service executes it, resulting in a new state of the service and a new state of the
data box. The available service can take into account data box’ influence on available
services by putting guards on transitions –i.e., conditions on current state of the databox,
which restricts the set of transitions that can actually take place.

Formally, an available service over a data box DB = 〈O, D, d0, ρ〉 is a tuple S =
〈O, S, s0, Sf , G, 	〉, where:

• O is the same set of operations as in O;
• S is the finite set of service’s states;
• s0 ∈ S is the initial state;
• Sf ⊆ S is the set of final states, i.e., those where the execution can be legally

stopped (if desired);
• G is a set of boolean functions g : D → {true, false} called guards;
• 	 ⊆ S ×G×O × S is the service’s transition relation.

When 〈s, g, o, s′〉 ∈ 	, we say that transition s
g,o−→ s′ is in S. Given a state s ∈ S,

if there exists a transition s
g,o−→ s′ in S (for some g and s′) and the data box is in a

state d such that g(d) = true then operation o is said to be executable in s. A transition
s

g,o−→ s′ in S denotes that s′ is a possible successor state of s, when operation o is
executed in s, provided g(d) = true, d being current data box state.

Available services are, in general, nondeterministic, that is, they allow many transi-
tions to take place under execution of a same operation. So, when choosing the oper-
ation to execute next, the client of the service cannot be certain of which choices will
be available later on, this depending on which transition actually takes place. In other
words, nondeterministic behaviors are only partially controllable.

We say that a service S over a data box DB is deterministic iff there is no DB state
d ∈ D for which there exist, in S, two distinct transitions s

g1,o−→ s′ and s
g2,o−→ s′′ such

that s′ �= s′′ and g1(d) = g2(d) = true. Notice that given a deterministic service’s
state and a legal operation in that state, the unique next service state is always known.
That is, deterministic services are indeed fully controllable by selecting operations.

Community and Target Service. A community C={S1, . . . ,Sn,DB} is a set contain-
ing (i) a data box DB and (ii) n nondeterministic available services over DB. In our
framework, we also define the so-called target service, which is the deterministic ser-
vice one aims at building by properly composing available services. A target service
has the same form as any other service defined over DB, with the only requirement of
being deterministic.

Trace and History. Given S=〈O, S, s0, Sf , G, 	〉 over data boxDB=〈O, D, d0, ρ〉,
a trace for S on DB is a possibly infinite sequence, alternating configurations and op-

erations, of the form 〈s0, d0〉 o1

−→ 〈s1, d1〉 o2

−→ · · · , such that (i) 〈s0, d0〉 = 〈s0, d0〉,

150 G. De Giacomo and F. Patrizi

and (ii) for all j > 0, if 〈sj , dj〉 oj+1

−→ 〈sj+1, dj+1〉 , then sj g,oj+1

−→ sj+1 in S with

g(dj) = true for some g, and dj oj+1

−→ dj+1 in DB.
Similarly, letC={S1, . . . ,Sn,DB}be a community, whereSi=〈O, Si, si0, S

f
i , Gi, 	i〉

(i = 1, . . . , n) andDB as above. A community trace for C is a possibly infinite sequence

of the form 〈s01, . . . , s0n, d0〉 o1,k1

−→ 〈s11, . . . , s1n, d1〉 o2,k2

−→ · · · , such that (i) 〈s01, . . . , s0n, d0〉
= 〈s10, . . . , sn0, d0〉, and (ii) for all j > 0, if 〈sj

1, . . . , s
j
n, d

j〉 oj+1,kj+1

−→ 〈sj+1
1 , . . . , sj+1

n ,

dj+1〉, then sj
kj+1

g,oj+1

−→ sj+1
kj+1 in Skj+1 with g(dj) = true for some g, sj+1

i = sj
i for

i �= kj+1, and dj oj+1

−→ dj+1 in DB.
We call (community) history every finite prefix of a (community) trace ending with

a configuration. Given a history h, we denote by last(h) the last configuration, and
by length(h) the number of alternations between configurations and operations in h.
Notice that the history of length 0 is simply the initial configuration of a trace (which is
the same for every trace).

Orchestrator. The orchestrator is a component able to activate, stop and resume each
of the available services, and select one to perform an executable operation. The or-
chestrator has full observability on available service states, that is, it can keep track (at
runtime) of the current state of each available service. Let C = {S1, . . . ,Sn,DB} be a
community and H be the set of its community service histories. An orchestrator for a
community C is a function P : H×O → {1, . . . , n, u} that, given a history h ∈ H and
an operation o ∈ O, selects an available service, i.e., returns its index, to which delegate
o. Special value u is introduced for technical convenience, to make function P total.

Definition 1. Let C = 〈S1, . . . ,Sn,DB〉 be a community and St a target service over
DB, where, Si = 〈Si, si0, S

f
i , Gi, 	i〉 (i = t, 1 . . . , n) and DB = 〈O, D, d0, ρ〉. Let

P : H×O → {1, . . . , n, u} be an orchestrator for C. Given a trace τ = 〈s0, d0〉 o1

−→
〈s1, d1〉 o2

−→ · · · of St onDB, we say that the orchestrator P realizes the trace τ if and
only if:

– for all community service histories h ∈ Hτ , P (h, olength(h)+1) �= u and H�
τ �= ∅

(see below), whereHτ =
⋃

�H�
τ is a set of community service histories, inductively

defined as follows:

• H0
τ = {〈s10, . . . , sn0, d0〉};

• Hj+1
τ is the set of community histories of length j + 1 having the form h′ =

h
oj+1,kj+1

−→ 〈sj+1
1 , . . . , sj+1

n , dj+1〉 such that:
• h ∈ Hj

τ , with last(h) = 〈sj
1, . . . , s

j
n, d

j〉;
• oj+1 and dj+1 are the operation and the data box state in history of length
j + 1 obtained from τ .
• P (h, oj+1)=k, that is, the orchestrator states that operation oj+1 in the

trace τ after community history h should be executed by available service
Sk;

• sj
k

g,oj+1

−→ sj+1
k in Sk with g(dj) = true for some g, that is, the available

service Sk can evolve according to the history h′.
• sj+1

i = sj
i for each i �= k

Automated Composition of Nondeterministic Stateful Services 151

– if a configuration 〈s�
t, d

�〉 of τ is such that s�
t ∈ S

f
t , then every configuration

〈s�
1, . . . , s

�
n, d

�〉 = last(h), with h ∈ H�
τ , is such that s�

i ∈ S
f
i , for i = 1, . . . , n.

Definition 2. An orchestrator P for C is a composition of the target service St on data
box DB iff it realizes all traces of St on DB.

Intuitively, the orchestrator realizes a target service if for all target service traces over
the data box, at every step, it returns the index of an available service that can actually
perform the requested operation. Observe that since available services and data box are
nondeterministic, the orchestrator must be always able to execute the next operation,
no matter how the activated service and the data box happen to evolve after each step.
Finally, note that the orchestrator can observe available services’ and data box’ states
(in fact, the whole community service history so far), in order to decide which available
service to select next. This makes orchestrators akin to an advanced form of conditional
plans [11].

The Composition Problem. This work addresses the following problem: given a com-
munity C = {S1, . . . , Sn,DB} and a deterministic target service St over DB, synthe-
size an orchestrator for C which is a composition of St on data boxDB.

3 Composition via Simulation

Following [6,24], we present a composition technique based on the formal notion of
simulation [18,12]. Since the devilish nondeterminism of both data box and available
services prevents the possibility to use the off-the shelf notion of simulation, a more
general variant is needed, called ND-simulation.

Definition 3. Let C = 〈S1, . . . ,Sn,DB〉 be a community and St a target service over
DB, where, Si = 〈Si, si0, S

f
i , Gi, 	i〉 (i = t, 1 . . . , n) and DB = 〈O, D, d0, ρ〉. An

ND-simulation relation of St by C is a relation R ⊆ St × S1 × . . .× Sn ×D such that
〈st, s1, . . . , sn, d〉 ∈ R implies:

1. if st ∈ Sf
t then si ∈ Sf

i , for i = 1, . . . , n;
2. for each o ∈ O, there exists a k ∈ {1, . . . , n} such that for all 〈st, d〉 o−→ 〈s′t, d′〉

such that st
g,o−→ s′t in St with g(d) = true and d

o−→ d′ in DB , then both the
followings hold:
(a) there exists a transition sk

g,o−→ s′k in Sk with g(d) = true;

(b) for all sk
g,o−→ s′k in Sk with g(d) = true we have that 〈s′t, s1, . . . , s′k, . . . ,

sn, d
′〉 ∈ R.

An ND-simulation is essentially a simulation between St and the asynchronous product
of the services Si in C. With respect to the usual notion of simulation relation, we need
to deal with data box DB in C that acts as a parameter, and, more importantly, we need
to take into account available services’ nondeterminism. To this end, we require that
(i) for each target service’s transition an available service k can be selected to perform
St labeling operation and (ii) all possible successor states (under selected service and
current operation) are still included in the ND-simulation relation.

152 G. De Giacomo and F. Patrizi

A state st is ND-simulated by 〈s1, . . . , sn, d〉 (or 〈s1, . . . , sn, d〉 ND-simulates st),
denoted st � 〈s1, . . . , sn, d〉, iff there exists an ND-simulation R of St by C such that
〈st, s1, . . . , sn, d〉 ∈ R. Observe that this is a coinductive definition. As a result, the
relation � is itself an ND-simulation, and is in fact the largest ND-simulation relation.

Next result shows that checking for the existence of a composition can be reduced to
checking whether there exists an ND-simulation relation between the target service and
the community, containing their respective initial states.

Theorem 1. Let C = 〈S1, . . . ,Sn,DB〉 be a community and St a target service over
DB as above. An orchestrator P for C that is a composition of target service St over
DB exists if and only if st0 � 〈s10, . . . , sn0, d0〉.

Theorem 1 provides a straightforward method to check for the existence of a composi-
tion, namely:
1. compute the largest ND-simulation relation�;
2. check whether 〈st0, s10, . . . , sn0, d0〉 ∈ �.

From the computational point of view, the largest ND-simulation relation� between St

and C can be computed in polynomial time wrt the size of St and C. Since the number
of states in C is exponential in the number of available services n, � can be computed
in exponential time. More precisely, it is polynomial wrt the size of St, DB and each
service Si, but exponential in the number of available services n. Thus, observing that
the problem is EXPTIME-hard [19], we get that this technique is optimal wrt worst-case
complexity.

Once we have computed the ND-simulation, synthesizing an orchestrator becomes
an easy task. As a matter of fact, there is a well-defined procedure that, given an ND-
simulation, builds a finite state program that returns, at each point, the set of available
behaviors capable of performing a target-conformant operation. We call such a program
orchestrator generator, or simply PG. Formally:

Definition 4. Let C=〈S1, . . . ,Sn,DB〉 be a community and St a target service overDB
as above. The orchestrator generator (PG) of C for St is a tuple PG=〈O, {1, . . . , n},
Σ, ∂, ω〉, where:

1. O is the finite set of operations;
2. {1, . . . , n} is the set of available behavior indexes;
3. Σ = {〈st, s1, . . . , sn, d〉 | st � 〈s1, . . . , sn, d〉} is the set of states of PG,
formed by the tuples belonging to the largest ND-simulation relation;
4. ∂ ⊆ Σ ×O× {1, . . . , n} ×Σ is the transition relation, where 〈σ, o, k, σ′〉 ∈ ∂,

or σ
o,k−→ σ′ is in PG, if and only if all of the followings hold:

• σ = 〈st, s1, . . . , sk, . . . , sn, d〉 and σ′ = 〈s′t, s1, . . . , s′k, . . . , sn, d
′〉

• st
g,o−→ s′t in St with g(d) = true;

• there exists a transition sk
g,o−→ s′k in Sk with g(d) = true;

• for all transitions sk
g,o−→ s′′k in Sk with g(d)=true we have 〈s′t, s1, . . . , s′′k, . . . ,

sn, d
′〉 ∈ Σ;

5. ω : Σ ×O �→ 2{1,...,n} is the output function, where:

• ω(σ, o) = {k | ∃ σ′ s.t. σ
o,k−→ σ′ in PG}.

Automated Composition of Nondeterministic Stateful Services 153

Intuitively, PG is a finite state transducer that, given an operation o (compliant with the
target service), outputs, through ω, the set of all available services able to perform o
next, according to the largest ND-simulation �. Observe that computing PG from the
relation � is easy, since it involves checking for local conditions only.

If there exists a composition of St by C, then st0 � 〈s10, . . . , sn0, d0〉 and PG does
include state σ0 = 〈st0, s10, . . . , sn0, d0〉. In such case, all the actual orchestrators that
are compositions of St by C can be obtained by just picking up, at each step, one among
the services returned by ω. Being, in fact, generated from a given structure (i.e., PG),
they are called generated orchestrators. Prior to provide their formal definition, some
preliminary notions are needed.

A trace for PG starting from σ0 is a finite or infinite sequence of the form σ0 o1,k1

−→
σ1 o2,k2

−→ · · · , such that σj
oj+1,kj+1

−→ σj+1 is in PG, for all j. A history for PG starting
from state σ0 is a prefix of a trace starting from state σ0. By using histories, one can in-
troduce PG-orchestrators, which are functions PGP CHOOSE : HPG×O → {1, . . . , n, u}
where HPG is the set of PG histories starting from any state in Σ and defined as fol-
lows: PGP CHOOSE(hPG, o) = CHOOSE(ω(last(hPG), o)), for all hPG ∈ HPG, where
CHOOSE stands for a choice function that chooses one element among those returned
by ω(last(hPG), o)).

We can now relate a PG to compositions, through the following characterizing
theorem.

Theorem 2. If PG includes the state σ0 = 〈s10, . . . , sn0, d0〉 then every orchestrator
generated by PG is a composition of the target service St by the community C. Moreover,
every orchestrator that is a composition of the target service St by the community C can
be generated by PG (which, indeed, includes σ0).

Notably, while each specific composition may be an infinite state program, PG, which
includes them all, is always finite. We conclude the section with an interesting obser-
vation. Let us consider the generated orchestrator PGP jit, with CHOOSE resolved at
run-time. PGP jit (and PG for the matter) can be computed on-the-fly by storing only
the ND-simulation �. Indeed, at each point, the only information we need for the next
choice is ω(σ, o) where σ ∈ Σ = �. Now, in order to compute ω(σ, o) we only need to
know�.

4 Simulation and Safety Games

In this Section, we show how a service composition problem instance can be encoded
into a game structure and how searching for a composition is equivalent to searching
for a winning strategy for the corresponding game (cf. [3,4,22]). The main motivation
behind this approach is the increasing availability of software systems, such as TLV [23],
Lily [15], Anzu [16] or MOCHA [2], which provide (i) efficient procedures for strategy
computation and (ii) convenient languages for representing the problem instance in a
modular, intuitive and straightforward way.

154 G. De Giacomo and F. Patrizi

4.1 Safety-Game Structures

We specialize the game structures proposed in [22] to deal with synthesis problems for
invariant properties. Throughout the rest of the paper, we assume to deal with infinite-
run TSs, possibly obtained by introducing fake loops, as customary in LTL verifica-
tion/synthesis.

Starting from [22], we define a safety-game structure (or �-game structure or �-GS,
for short) as a tuple G = 〈V ,X ,Y, Θ, ρe, ρs,�ϕ〉, where:

– V = {v1, . . . , vn} is a finite set of state variables, ranging over finite domains
V1, . . . , Vn, respectively. V = V1, . . . , Vn represents the set of all possible valua-
tions of variables in V . We assume that V = {X ,Y}, i.e., V is partitioned into sets
X and Y , the former referred to as set of environment variables and the latter as set
of system variables. Let X (resp. Y) be the set of all possible valuations for vari-
ables in X (Y). Then, x ∈ X (y ∈ Y) is called environment state (system state). A
game state s ∈ V is a complete assignment of values to variables. Without loss of
generality, we assume that s = 〈x,y〉 ∈ X × Y .

– Θ is a formula representing the initial states of the game. It is a boolean combination
of expressions (vk = v̄k), where vk ∈ V and v̄k ∈ Vk (k ∈ {1, . . . , n}) (partial
assignments are allowed). For such formulae, given a state 〈x,y〉 ∈ V , we write
〈x,y〉 |= Θ if state s satisfies the assignments specified by Θ.

– ρe(X ,Y,X ′) is the environment transition relation which relates a current (un-
primed) game state to a possible next (primed) environment state.

– ρs(X ,Y,X ′,Y ′) is the system transition relation, which relates a game state plus
a next environment state to a next system state.

– �ϕ is a formula representing the invariant property to be guaranteed, where ϕ has
the same form as Θ.

We assume variables in X (respectively Y) are ordered, so that valuations in X (Y) can
be conveniently represented as tuples x = 〈x1, . . . , xn〉 (y = 〈y1, . . . , ym〉). In unary
tuples, we omit angle brackets when no ambiguity arises.

A game state 〈x′,y′〉 is a successor of 〈x,y〉 iff ρe(x,y,x′) and ρs(x,y,x′,y′).
A play of G is a maximal sequence of states η : 〈x0,y0〉〈x1,y1〉 · · · satisfying (i)
〈x0,y0〉 |= Θ, and (ii) for each j ≥ 0, 〈xj+1,yj+1〉 is a successor of 〈xj ,yj〉. Given a
�-GSG, in a given state 〈x,y〉 of a game play, the environment chooses an assignment
x′ ∈ X such that ρe(x,y,x′) holds and the system chooses assignment y′ ∈ Y such
that ρs(x,y,x′,y′) holds.

A play is said to be winning for the system if it is infinite and satisfies the winning
condition �ϕ. Otherwise, it is winning for the environment. A strategy for the system is
a partial function f : (X×Y)+×X → Y such that for every λ : 〈x0,y0〉 · · · 〈xn,yn〉
and for every x′ ∈ X such that ρe(xn,yn,x

′), ρs(xn,yn,x
′, f(λ,x′)) holds. A play

η : 〈x0,y0〉〈x1,y1〉 · · · is said to be compliant with a strategy f iff for all i ≥ 0,
f(〈x0,y0〉 · · · 〈xi,yi〉,xi+1) = yi+1. A strategy f is winning for the system from a
given state 〈x,y〉 iff all plays starting from 〈x,y〉 and compliant with f are so. When
such a strategy exists, 〈x,y〉 is said to be a winning state for the system. A �-GS is
said to be winning for the system if all initial states are so. Otherwise, it is said to be
winning for the environment.

Automated Composition of Nondeterministic Stateful Services 155

Our objective is to encode a composition problem into a �-GS and, then, exploit
tools available for the latter to compute the orchestrator generator PG (cf. Section 3).
Essentially, as it will be clear soon, one can extract the maximal ND-simulation relation
–and, from this, directly compute the PG–, from the maximal set of states that are
winning for the system. Let us show how such winning set can be computed in general
on a �-GS. The core of the algorithm is the following operator (cf. [3,22]):

Definition 5. Let G = 〈V ,X ,Y, Θ, ρe, ρs,�ϕ〉 be a �-GS as above. Given a set P ⊆
V of game states 〈x,y〉, the set of P ’s controllable predecessors is

π(P) .= {〈x,y〉 ∈ V | ∀ x′.ρe(x,y,x′)→
∃ y′.ρs(x,y,x′,y′) ∧ 〈x′,y′〉 ∈ P}

Intuitively, π(P) is the set of states from which the system can force the play to reach
a state in P , no matter how the environment evolves. Based on this, Algorithm 1 com-
putes the set of all system’s winning states of a �-GS G = 〈V ,X ,Y, Θ, ρe, ρs,�ϕ〉, as
Theorem 3 shows.

Algorithm 1. WIN – Computes system’s maximal set of winning states in a �-GS
1: W := {〈x, y〉 ∈ V | 〈x, y〉 |= ϕ}
2: repeat
3: W ′ := W ;
4: W := W ∩ π(W);
5: until (W ′ = W)
6: return W

Theorem 3. LetG = 〈V ,X ,Y, Θ, ρe, ρs,�ϕ〉 be a �-GS as above andW be obtained
as in Algorithm 1. Given a state 〈x,y〉 ∈ V , a system’s winning strategy f starting from
〈x,y〉 exists iff 〈x,y〉 ∈ W .

In fact, one can define a system’s winning strategy f(〈x0,y0〉, . . . , 〈xi,yi〉,x) = y,
by picking up, for each x such that ρe(xi,yi,x) holds, any 〈x,y〉 ∈W .

4.2 From Composition to Safety Games

In order to encode the composition problem as a �-GS, we need first to individuate
which place each abstract component, e.g., target, available services, data box, occu-
pies in the game representation. Conceptually, our goal is to refine an automaton capa-
ble of selecting, at each step, one among all the available services, in a way such that
the community is always able to satisfy target service requests. So, the orchestrator,
i.e., the object of the synthesis, plays as system and, consequently, the other entities,
properly combined, form the environment. In addition, according to our purposes, the
winning condition requires to satisfy two properties: (i) if the target service is in a final
state, all community services are in a final state as well; (ii) the service selected by the
orchestrator is able to perform the action currently requested by the target service.

Let C = 〈S1, . . . ,Sn,DB〉 be a community and St a target service over DB, where,
Si = 〈Si, si0, S

f
i , Gi, 	i〉 (i = t, 1 . . . , n) and DB = 〈O, D, d0, ρ〉. We derive a �-GS

G = 〈V ,X ,Y, Θ, ρe, ρc,�ϕ〉, as follows:

156 G. De Giacomo and F. Patrizi

– V = {st, s1, . . . , sn, d, o, ind}, where:
• si ranges over Si ∪ {init} (i = t, 1, . . . , n);
• d ranges overD ∪ {init};
• o ranges overO ∪ {init};
• ind ranges over {1, . . . , n} ∪ {init};

with an intuitive semantics: each complete valuation of V represents (i) the current
state of community (variables s1, . . . , sn,), data box (d) and target service (st), (ii)
the operation to be performed next (o) and (iii) the available service selected to
perform it (ind). Special value init has been introduced for convenience, so as to
have fixed initial state;

– X = {st, s1, . . . , sn, d, o} is the set of environment variables;
– Y = {ind} is the (singleton) set of system variables;
– Θ = (

∧
i=t,0,...,n(si = init)) ∧ (d = init) ∧ (o = init) ∧ (ind = init);

– ρe(X ,Y,X ′) is defined as follows:

• 〈〈init, . . . , init〉, init, 〈st, s1, . . . , sn, d, o〉〉∈ρe iff si = si0, for i = t, 1, . . . ,
n, d=d0, and there exists a transition 〈st0, g, o, s

′
t〉 ∈ 	t such that g(d0)=true;

• if si �= init, with i = t, 1, . . . , n,, d �= init, o �= init and ind �= init then
〈〈st, s1, . . . , sn, d, o〉, ind, 〈s′t, s′1, . . . , s′n, d′, o′〉〉 ∈ ρe iff the followings hold
in conjunction:

1. there exists a transition st
g,o−→ s′t in 	t with g(d) = true;

2. either there exists a transition sind
g,o−→ s′ind in 	ind with g(d) = true or

s′ind = sind (service wrongly makes no move, and the error violates the
safety condition ϕ, see below);

3. si = s′i, for all i = 1, . . . , n such that i �= ind;
4. there exists a transition d

o−→ d′ in DB;

5. there exists a transition s′t
g′,o′
−→ s′′t in 	t for some s′′t , with g′(d′) = true;

– 〈〈st, s1, . . . , sn, d, o〉, ind, 〈s′t, s′1, . . . , s′n, d′, o′〉, ind′〉∈ρs iff ind′ ∈ {1, . . . , n};
– Formula ϕ is defined depending on current state, operation and service selection as

ϕ
.= Θ ∨ (

n∧
i=1

¬faili) ∧ (finalt →
n∧

i=1

finali),

where:
• faili .= (ind = i) ∧ (

∧
〈s,g,op,s′〉∈�i

(g(d) = false ∨ si �= s ∨ op �= o)),
encodes the fact that service i has been selected but, in its current state, no
transition can take place which executes the requested operation;
• finali .=

∨
s∈Sf

i
(si = s) encodes the fact that service i = t, 1, . . . , n is

currently in one of its final states.

We can now show how the so-obtained game structure allows for computing an or-
chestrator generator. Recall that, in order to define the PG, one needs to build an ND-
simulation (see Definition 4). The following Theorem shows that this can be equiva-
lently done by computing the maximal system’s set of winning states for G.

Automated Composition of Nondeterministic Stateful Services 157

Theorem 4. Let C = 〈S1, . . . ,Sn,DB〉 be a community and St a target service over
DB where Si = 〈O, Si, si0, S

f
i , Gi, 	i〉 (i = t, 1 . . . , n) andDB = 〈O, D, d0, ρ〉. From

C and St derive: a �-GS G = 〈V ,X ,Y, Θ, ρe, ρs,�ϕ〉 as shown above. Let W ⊆ V
be the maximal set of system’s winning states for G. Then 〈init, . . . , init〉 ∈ W if and
only if st0 � 〈s10, . . . , sn0, d0〉.

Based on this, the following Theorem gives us an actual procedure to build up an or-
chestrator generator and, hence, all possible compositions.

Theorem 5. Let C = 〈S1, . . . ,Sn,DB〉, St and G = 〈V ,X ,Y, Θ, ρe, ρc,�ϕ〉 be
as above (hypothesis of Theorem 4). Let W be the system’s winning set for G with
〈init, . . . , init〉 ∈W . Then the orchestrator generator PG = 〈O, {1, . . . , n}, Σ, ∂, ω〉
of C for St can be built from W , as follows:

– O is the usual set of operations and {1, . . . , n} the set of available services’ in-
dexes;

– Σ ⊆ St × S1 × . . . × Sn × D is such that 〈st, s1, . . . , sn, d〉 ∈ Σ if and only
if there exists a game state 〈st, s1, . . . , sn, d, o, ind〉 ∈ W , for some o ∈ O and
ind ∈ {1, . . . , n};

– ∂ ⊆ (Σ ×O × {1, . . . , n} ×Σ) is such that 〈〈st, s1, . . . , sn, d〉, o, k, 〈s′t, s′1, . . . ,
s′n, d

′〉〉∈∂ if and only if 〈st, s1, . . . , sn, d, o, k〉 ∈W and there exist o′∈O and k′ ∈
{1, . . . , n} such that 〈〈st, s1, . . . , sn, d, o, k〉, 〈s′1, . . . , s′n, s′t, d′, o′, k′〉〉 ∈ ρs;

– ω : Σ × O → 2{1,...,n} is defined as ω(〈s1, . . . , sn, st, d〉, o) = {i ∈ {1, . . . , n}
| 〈s1, . . . , sn, st, d, o, i〉 ∈W}.

The above theorems show how one can exploit tools from system synthesis for computing
all compositions of a given target service. In details, starting fromC = 〈S1, . . . ,Sn,DB〉
and St one can build the corresponding game structureG, then compute the set W and,
if it contains G’s initial state, use such set to generate the PG. In fact, this last step is
not really needed. Indeed, it is not hard to convince oneself that given a current state
〈st, s1, . . . , sn, d〉 and an operation to be executed o ∈ O, a service selection ind is
”good” (i.e, the selected service can actually execute the operation and the whole commu-
nity can still simulate the target service) if and only ifW contains a tuple 〈st, s1, . . . , sn,
d, o, ind〉, for some ind ∈ {1, . . . , n}. Consequently, at each step, on the basis of the cur-
rent state st of the target service, the states s1, . . . , sn of available services, the state d of
data box, and the operation o requested, one can select a tuple from W , extract the ind
component, and use it for next service selection.

Finally, observe that time complexity of Algorithm 1 in polynomial in |V |, that
is the size of input �-GS’ state space. Since in our encoding |V | is polynomial in
|S1|, . . . , |Sn|, |St|, |D| and exponential in n, we get:

Theorem 6. Let C = {S1, . . . ,Sn,DB} be a community and St a target service over
DB. Checking the existence of compositions by reduction to safety games can be done
in polynomial time wrt |S1|, . . . , |Sn|, |St|, |D| and exponential time in n.

That is, the technique is actually optimal wrt worst-case time complexity, the composi-
tion problem being EXPTIME-hard [19].

158 G. De Giacomo and F. Patrizi

5 Using TLV for Computing Compositions

Searching for a winning strategy is a problem solvable by several implemented systems
(e.g., [16,15,23]). We focus on TLV [23], the basic concepts being valid for all others.

TLV is a software for verification and synthesis of LTL specifications, based on sym-
bolic manipulation of states, by using Binary Decision Diagrams (BDDs). It takes two
inputs: (i) a synthesis procedure and (ii) an LTL specification, encoded in SMV [23], to
be manipulated by the procedure. In particular, we refer to a TLV-BASIC procedure for
safety games which takes as input an LTL specification that encodes a �-GS and derives
from the system’s maximal winning set, if non empty, a structure representing the PG,
as shown in Theorem 5. For a detailed description of TLV, TLV-BASIC and SMV, we
refer to [23], here introducing some essentials only.

Our approach consists in deriving, from the composition problem specification, i.e.,
community and target service, the SMV encoding of the respective �-GS, as shown in
Section 4.2, then execute TLV against this input and obtain, if the problem is feasible,
the respective PG.

Figure 1 shows the basic blocks of a sample encoding for a composition problem
with 3 available services. Module Main wraps up all other modules and represents the
whole game. It consists of two submodules (here declared as system), sys and env,
which encode, respectively, the environment and the system in the game structure. Goal
formula good (i.e., the invariant property) is a combination of subformulae initial
and failure of modules sys and env, directly obtained from the goal formula in
the �-GS representation. Observe that env and sys evolve synchronously, the former
choosing the operation and the latter selecting the service for its execution. The tran-
sition relation in module Sys encodes an unconstrained controller, able to output, at
each step, any available service index in the interval [1, n]. The synthesis’ objective is
to restrict such a relation so to obtain a winning strategy.

As for module Env, it contains all basic blocks the �-GS environment consists of.
Observe that its behavior depends on the value of module sys’ index variable, as
prescribed by Main. According to SMV semantics, modules db,target,s1, . . . ,sn
execute synchronously. However, each of them can be encoded so to emulate asyn-
chrony, by looping when not selected. In particular, the encoding is such that, at each
step, db, target and only one among s1,s2, . . . ,sn move, according to the �-GS
description. Env behavior is as follows. At each step, the available service selected
by the current value of index, executes the operation requested by target, which
is stored in operation. All other services loop in their current state. At the same
time, db moves according to operation, target selects next operation, according
to its specification, and sys selects a new service. Note that, in general, there may
exist states where the selected service cannot perform the requested operation, due to
either operation precondition failure (i.e., db state) or service’s current state. In such
cases, expression failure of selected service becomes true and, consequently, so
does env.failure. Avoiding such situations, by properly constraining sys transi-
tion relation, is exactly the synthesis procedure aim.

Automated Composition of Nondeterministic Stateful Services 159

MODULE Main
VAR
env: system Env(sys.index);
sys: system Sys;

DEFINE
good :=

(sys.initial & env.initial)|
!(env.failure);

MODULE Sys
VAR
index : 0..3; --num of services, 0 used for init

INIT
index = 0

TRANS
case

index=0 : next(index)!=0;
index!=0 : next(index)!=0;

esac
DEFINE
initial := (index=0);

MODULE Env(index)
VAR
operation : {start_op,pick,store,play,display_content,free_mem};
db : Databox(operation);
target : Target(operation,db.state);
s1 : Service1(index,operation,db.state);
s2 : Service2(index,operation,db.state);
s3 : Service3(index,operation,db.state);

DEFINE
initial := (db.initial & s1.initial & s2.initial & s3.initial &

target.initial & operation=start_op);
failure := (s1.failure | s2.failure | s3.failure) |

(target.final & !(s1.final & s2.final & s3.final));

Fig. 1. A TLV sample fragment encoding

6 Conclusions

We presented a new technique for composition of partially controllable available ser-
vices, which exploits the relationships between (i) building a simulation relation and
(ii) checking invariant properties in temporal-logic-based model checkers and synthesis
systems (cf., e.g., [26,4]). We showed that all compositions can be computed at once,
as solutions to safety games and developed an implementation for the synthesis system
TLV (http://www.cs.nyu.edu/acsys/tlv/ and cf., e.g., [22]). Another option would be
to exploit ATL-based verifiers, such as Mocha (http://www.cis.upenn.edu/∼mocha/),
which can check game-structures for properties such as invariants, and extract winning
strategies for them.

References

1. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services. In: Concepts, Architectures
and Applications, Springer, Heidelberg (2004)

2. Alur, R., Henzinger, T.A., Mang, F.Y.C., Qadeer, S., Rajamani, S.K., Tasiran, S.: MOCHA:
Modularity in model checking. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 521–
525. Springer, Heidelberg (1998)

3. Asarin, E., Maler, O., Pnueli, A.: Symbolic controller synthesis for discrete and timed sys-
tems. In: Antsaklis, P.J., Kohn, W., Nerode, A., Sastry, S.S. (eds.) HS 1994. LNCS, vol. 999,
pp. 1–20. Springer, Heidelberg (1995)

4. Asarin, E., Maler, O., Pnueli, A., Sifakis, J.: Controller synthesis for timed automata. In:
IFAC Symposium on System Structure and Control, pp. 469–474. Elsevier, Amsterdam
(1998)

160 G. De Giacomo and F. Patrizi

5. Berardi, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Mecella, M.: Automatic Compo-
sition of e-Services that Export their Behavior. In: Proc. of ICSOC 2003, pp. 43–58 (2003)

6. Berardi, D., Cheikh, F., De Giacomo, G., Patrizi, F.: Automatic service composition via sim-
ulation. Int. J. Found. Comput. Sci. 19(2), 429–451 (2008)

7. Bultan, T., Fu, X., Hull, R., Su, J.: Conversation Specification: A New Approach to Design
and Analysis of E-Service Composition. In: Proc. of WWW 2003 (2003)

8. Cardose, J., Sheth, A.P.: Introduction to semantic web services and web process composition.
In: Cardoso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 1–13. Springer,
Heidelberg (2005)

9. De Giacomo, G., Sardiña, S.: Automatic synthesis of new behaviors from a library of avail-
able behaviors. In: Proc. of IJCAI 2007, pp. 1866–1871 (2007)

10. Gerede, C.E., Hull, R., Ibarra, O.H., Su, J.: Automated composition of e-services: Looka-
heads. In: Proc. of ICSOC 2004 (2004)

11. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice. Morgan Kauff-
man, San Francisco (2004)

12. Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing simulations on finite and infinite
graphs. In: Proc. of FOCS 1995, pp. 453–462 (1995)

13. Hull, R.: Web services composition: A story of models, automata, and logics. In: Proc. of
SCC 2005 (2005)

14. Hull, R., Benedikt, M., Christophides, V., Su, J.: E-Services: a Look Behind the Curtain. In:
Proc. of PODS 2003, pp. 1–14 (2003)

15. Jobstmann, B., Bloem, R.: Optimizations for LTL synthesis. In: Proc. FMCAD 2006, pp.
117–124 (2006)

16. Jobstmann, B., Galler, S., Weiglhofer, M., Bloem, R.: Anzu: A tool for property synthesis.
In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 258–262. Springer,
Heidelberg (2007)

17. McIlraith, S., Son, T.C.: Adapting Golog for programming the semantic web. In: Proc. of KR
2002 (2002)

18. Milner, R.: An algebraic definition of simulation between programs. In: Proc. of IJCAI 1971,
pp. 481–489 (1971)

19. Muscholl, A., Walukiewicz, I.: A lower bound on web services composition. In: Seidl, H.
(ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 274–286. Springer, Heidelberg (2007)

20. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented computing: State
of the art and research challenges. IEEE Computer 40(11), 38–45 (2007)

21. Pistore, M., Traverso, P., Bertoli, P., Marconi, A.: Automated Synthesis of Composite
BPEL4WS Web Services. In: Proc. of ICWS 2005 (2005)

22. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: Emerson, E.A.,
Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer, Heidelberg
(2005)

23. Pnueli, A., Shahar, E.: The TLV system and its applications. Technical report, Weizmann
Institute (1996)

24. Sardiña, S., De Giacomo, G., Patrizi, F.: Behavior composition in the presence of failure. In:
Proceedings of KR 2008 (2008)

25. Sardiña, S., Patrizi, F., De Giacomo, G.: Automatic synthesis of a global behavior from mul-
tiple distributed behaviors. In: Proc. of AAAI 2007, pp. 1063–1069 (2007)

26. Vardi, M., Fisler, K.: Bisimulation and model checking. In: Pierre, L., Kropf, T. (eds.)
CHARME 1999. LNCS, vol. 1703, pp. 338–341. Springer, Heidelberg (1999)

27. Wu, D., Parsia, B., Sirin, E., Hendler, J., Nau, D.: Automating DAML-S Web Services Com-
position using SHOP2. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS,
vol. 2870, pp. 195–210. Springer, Heidelberg (2003)

Towards Compensation Correctness in
Interactive Systems

Cátia Vaz1 and Carla Ferreira2

1 INESC-ID / DEETC, ISEL, Instituto Politécnico de Lisboa, Portugal
cvaz@cc.isel.ipl.pt

2 CITI / Departamento de Informática, FCT, Universidade Nova de Lisboa, Portugal
carla.ferreira@di.fct.unl.pt

Abstract. One fundamental idea of service-oriented computing is that
applications should be developed by composing already available ser-
vices. Due to the long running nature of service interactions, a main chal-
lenge in service composition is ensuring correctness of failure recovery. In
this paper, we use a process calculus suitable for modelling long running
transactions with a recovery mechanism based on compensations. Within
this setting, we discuss and formally state correctness criteria for com-
pensable processes compositions, assuming that each process is correct
with respect to failure recovery. Under our theory, we formally interpret
self-healing compositions, that can detect and recover from failures, as
correct compositions of compensable processes.

1 Introduction

Service-oriented computing is an emerging paradigm for creating new services
by composing available ones, usually in distributed and heterogeneous envi-
ronments. This paradigm is particularly suited for describing loosely coupled
systems, i.e., systems composed by interacting parts that exchange most infor-
mation through messages (shared information is minimal). Additionally, in these
systems, transactions may last long periods of time. Thus, solutions based on
locking are not feasible, contrary to traditional ACID transactions. So, long run-
ning transactions and recovery mechanisms based on compensations are used
instead.

A main challenge in service composition is ensuring the correctness of fail-
ure recovery. In particular, because of the long running nature of transactions,
usually it is only possible to partially recover a transaction after a failure. Com-
pensations are activities programmed to recover full or partial executions of
transactions, bringing the system again to consistency. A relevant issue is ensur-
ing compensation correctness. Moreover, a notion of compensation correctness
is needed for interaction based systems, namely a notion that takes into account
the specificities of failure recovery for a given application context.

In this paper, we introduce a notion of compensation correctness within a
process calculus suitable for modelling long running transactions, with a recov-
ery mechanism based on compensations. In this setting, we discuss correctness

C. Laneve and J. Su (Eds.): WS-FM 2009, LNCS 6194, pp. 161–177, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

162 C. Vaz and C. Ferreira

criteria for compensable process compositions, assuming that each process is
correct with respect to failure recovery. A compensation is said to be correct if
its execution has the expected behaviour in the sense that it restores the con-
sistency of the transaction. Since the expected behaviour is dependent on the
application context, our model expects a correctness map provided by the pro-
grammer, expressing how meaningful interactions can be compensated. Hence,
the programmer must provide a set of possible sequences of interactions that
compensate each meaningful interaction. Notice that this approach is more gen-
eral than the insurance by the programmer for cancelling or reversing each action
made [2,4,5,6]. In some applications, ensuring transaction consistency will in fact
mean that the execution of compensations will revert the effect of each action
done before failure. But in other cases, some actions cannot be cancelled, so the
programmer will only be interested in approximating the effect of cancellation,
bringing the transaction back to consistency.

One of the main contributions of our work is the insurance that composition
of correct compensable processes is also a correct compensable process, under
reasonable correctness criteria. Our correctness criteria are stateless, i.e., we as-
sume that all information needed is exchanged through messages. This is known
as contextualisation and exchanged messages describe the state of the overall
system.

The developed theory also provides interesting insights on an important issue
in the service oriented approach, namely the reliable automated composition of
distributed services. In particular, one important challenge is the self-healing
composition of services, i.e., compositions that automatically detect that some
service composition requirements are no longer satisfied and react recovering
from the requirement violations. Thus, self-healing implies that when a failure
occurs, the system should automatically recover, bringing it back to consistency.
Within this setting, we will formally interpret self-healing compositions, relating
this concept with the correctness of composition of compensable processes.

In the paper realm, we have chosen to build the calculus upon the core of
asynchronous π-calculus, with a notion of transaction scope and other primi-
tives to allow dynamic recovery based on compensations. In our calculus, when
transactions fail, they know what interaction context they belong to, i.e., the
underlying interaction session. Since this paper aims at tackling the problem of
consistency of compensable transactions, we only focus on the interaction among
transactions occurring within sessions, not in primitives such as service defini-
tion and instantiation. However, the calculus could be extended to include these
kind of primitives, in a similar way of the work of Honda et al. [9].

In Section 2 we introduce the syntax of the compensating calculus, the la-
belled transition semantics and a well-formedness criteria. Then, in Section 3,
we give some illustrative examples and motivate some key ideas of the correct-
ness criteria. In Section 4 we define the correctness criteria and show the main
results. Section 5 concludes with related work and future issues.

Towards Compensation Correctness in Interactive Systems 163

2 A Compensating Calculus

In order to reason about a correctness criteria on compensable transactions, we
propose a compensating calculus for modelling long running transactions with a
recovery mechanism based on compensations.

This calculus is inspired on dcπ-calculus [17] and the calculus presented in [11],
but is focused on the relevant primitives for reasoning about the correctness of
compensations. The language recovery mechanism allows to incrementally up-
date the compensations of transactions, within each interaction. To achieve that,
we associate to each input a compensation function that updates the compen-
sation of the transaction upon message reception. We have decided not to allow
messages to perform compensation updates since in an asynchronous setting,
messages cannot be observed.

A transaction t[P,Q]r occurs within session r and behaves as process P until
an error is notified by an output t on the name t of the transaction. In case of
failure, which can be either external or internal to the transaction, P is killed
and compensation Q is activated and protected against nested external failures.
The transaction name t identifies the failure unit. Note that we must know the
context session for each transaction, since our correctness notion relies on the
analysis of the communicated names within each session.

The calculus allows for nested transactions, but only if it is within different
interaction sessions - see ahead. The failure handling occurs in a nested way, i.e.,
while the abortion of a transaction is silent to its parent, it causes the abortion of
all proper subtransactions and the activation of compensations installed either by
the transaction or by all of its subtransactions. Notice that the level of granularity
of the scope of the interaction sessions is very flexible. In our model, the system
designer can choose from defining each two compensable transactions within a
different interaction session, to define all the compensable transactions within a
unique session.

2.1 Syntax

The syntax of our language relies on: a countable set of channel names N , ranged
over by a, b, x, y, a1, b1, x1, y1 . . .; a countable set of transaction identifiers T ,
ranged over by t, u, t1, u1, . . .; a countable set of session names S, ranged over
by s, r, s1, r1, . . .; and natural numbers, ranged over by i, j, k, i1, j1, k1, The
sets N , T and S are disjoint and identifiers v, w, z, v1, w1, z1 . . . are used to refer
to elements of both sets N and T when there is no need to distinguish them.
The tuple v denotes a sequence v1 · · · vn of such identifiers, for some n ≥ 0, and
{v} denotes the set of elements of that sequence.

Definition 1. The grammar in Figure 1 defines the syntax of processes.

The calculus includes the core of asynchronous π-calculus processes [15], namely
inaction, output, parallel composition and scope restriction. A new primitive is
the transaction scope t[P,Q]r, that within session r behaves as process P until

164 C. Vaz and C. Ferreira

P, Q ::= 0 (Inaction) | ∑
i∈I ai(xi)�λXi.Qi�.Pi (Input guarded choice)

| a〈v〉 (Output) | (P | Q) (Parallel composition)
| X (Variable) | (ν x) P (Restriction)
| t (Failure) | t[P, Q]r (Transaction scope)

| 〈P 〉r (Protected block)

Fig. 1. Syntax of processes

an error is notified by an output t on the name t of the transaction. In case of
error, P is killed and compensation Q is executed. Error signal t, that sends a
failure message to a transaction identified by t, may come both from the internal
process P or from an external process. The protected block 〈P 〉r, that behaves
as P within session r, cannot be interrupted even if it occurs in the scope of a
failing transaction.

Process P in transaction t[P,Q]r can update the compensation Q. Compen-
sation update is performed by input prefixes. As said before, we have chosen not
to associate compensations with the message sender, since in an asynchronous
context there are limited guarantees about the state of the receiver. A compen-
sation update takes the form of a function λX.Q′, where process variable X can
occur inside process Q′. Applying such a compensation update to compensation
Q produces a new compensation Q′{Q/X}. Note that Q may not occur in the
resulting compensation, or it may occur more than once. Thus the form of in-
put prefix is a(x)�λX.Q′�.P , which upon reception of message a〈v〉 updates the
compensation with (λX.Q′){v/x} and continues as P{v/x}.

The compensation mechanism of the calculus allows for both dynamic gener-
ation and static definition of compensations. In fact, if all compensation updates
have the form λX.X , then the compensation is never changed. We will use id
to denote the identity function λX.X . The prefix a(x).P can thus be seen as a
shortcut for a(x)�id�.P .

Since the goal of this paper is to reason about correctness criteria on com-
pensable transactions, we excluded the input guarded replication primitive. The
inclusion of this primitive would require the calculus to have primitives for ses-
sion and transaction initiation, which is not the focus of this paper. Nevertheless
our calculus could be extended to include these kind of primitives, following the
approach of Honda et al. [9]. Such primitives would initiate a new session and
ensure the generation of fresh names, such as fresh transaction names. Another
alternative for including input guarded replication would be to add a well formed
property as used in the work of Lucchi and Mazzara [13], expressing that received
names cannot be used as subjects of inputs or of replicated inputs. In both ap-
proaches we must ensure that, after each session initiation, the session name is
unequivocally identified. This is a requirement for our notion of correctness.

In the following, we denote the channel names, the session names and the
transaction names of a process P as cn(P), sn(P) and tn(P), respectively. The
names of P , denoted by n(P), are the union of the three sets.

Towards Compensation Correctness in Interactive Systems 165

nl(n,0) = ∅
nl(n, t) = ∅

nl(n, a〈v〉) =

{ {a} ∪ {v | v ∈ v} if n = 0
∅ if n �= 0

nl(n, X) = ∅
nl(n, 〈P 〉r) = nl(n, P)

nl(n, t [P, Q]r) = nl(n, P) ∪ nl(n-1, Q)
nl(n, P | Q) = nl(n, P) ∪ nl(n, Q)

nl(n, (ν x) P) = nl(n, P)

nl(n,
∑

i∈I ai(xi)�λYi.Qi�.Pi) =

{∪i∈I({ai} ∪ nl(n, Pi)) if n = 0
∪i∈I(nl(n, Pi) ∪ nl(n-1, Qi)) if n �= 0

Fig. 2. Channel names of P at level n

2.2 Well-Formedness

For simplicity of the correctness criteria, we introduce a well-formedness criteria
to rule out some wrong processes designs. To this aim, we first introduce some
terminology.

A context is a process term C[•] which is obtained by replacing in a process
an occurrence of 0 with a placeholder •. Process C[P] is obtained by replacing
inside C[•] the • with P . The notion of context can be generalised to n-holes
contexts as expected. In particular, generic 2-holes contexts will be denoted by
C[•1, •2], with C[P,Q] defined as the process obtained by replacing •1 with P
and •2 with Q.

Definition 2. A session context C[•] is a context such that the hole occurs
within a transaction scope or within a protected block. We denote by Cr a session
context that includes a transaction scope or a protected block within session r.

Definition 3. Let P be a process and r, r′ ∈ sn(P) two interaction session
names. We write r ≺P r′ if there are two contexts C and C′ such that P =
Cr[C

′
r′ [Q]], for some process Q.

Function nl assigns to a natural number n and a process P the channel names
that occur at level n in P . Differentiation of names by levels is required to ensure
compositional correctness. The goal is the separation, under arbitrary nesting,
of normal flow messages from compensation flow messages.

Definition 4. The function nl : � × P −→ 2N , which gives the set of free
channel names of a process P occurring at level n, is defined in Fig. 2.

The need for this kind of differentiation by level is also pointed out by Car-
bone et al. [7]. However, in contrast to our calculus where compensations are
compensable, their exception handlers never fail.

We now define well-formed processes.

Definition 5 (well-formedness). A compensable process P is well formed if
the following conditions hold:

1. Transaction names are distinct. Different transactions cannot share the same
activation name and every failure message is able to activate only a single
compensation.

166 C. Vaz and C. Ferreira

2. Communication outside sessions or among distinct sessions is not allowed to
install compensations. If two transactions belong to different sessions, their
communications cannot be compensated. Also, if the process does not occur
within a transaction scope, it cannot install compensations (i.e. compensa-
tion updates are id).

3. relation ≺P is acyclic for all s ∈ sn(P) (that is, ≺+
P is irreflexive).

4. There is no interaction between channel names of different levels, i.e., a ∈
nl(n, P)⇒ ∀m �=n a /∈ nl(m,P)

5. All bound names are pairwise distinct and disjoint from the set of free names.

The first property is needed to avoid ambiguity on scope names. The sec-
ond and third properties are for simplicity of the correctness criteria. Namely,
the third property is to avoid processes like t[k[P,Q]r, S]r and t[k[P,Q]r′ , S]r |
t′[k′[P ′, Q′]r, S′]r′ . The purpose of using levels, namely not allowing interaction
between channel names of different levels, is to rule out communication between
the normal flow with the compensation flow of a process. Since we allow nesting
of compensable transactions, the same idea has to be applied to all levels. The
last property is for simplicity of correct compensable processes definition.

2.3 Operational Semantics

The dynamic behaviour of processes is defined by a labelled transition system
which takes into account transaction scope behaviour. Upon transaction failure,
stored compensations must be activated while preserving all inner protected
blocks. Therefore, one has to extract the stored compensations and place them
in a protected block, and also preserve already existing protect blocks. The
extraction is done by function extr which is defined next.

The definition of function extr(P) considers a nested failure approach, i.e.,
when a parent transaction is killed, all its subtransactions have to be killed.
This is, for instance, the approach of BPEL and others. Notice also that if the
compensation is defined for a transaction scope within session r, the failure of
the transaction will place the corresponding compensation into a protected block
also within session r. The function extr(•) is defined in Fig. 3.

With respect to bindings, names in x and z are bound in ai(xi)�λXi.Qi�.Pi

and in (ν z)P , respectively. The other names are free. Furthermore, we use the
standard notions of free names of processes. We write bn(P) (respectively fn(P))
for the set of names that are bound (respectively free) in a process P . Bound
names can be α-converted as usual. Also, variable X is bound in λX.Q. We

extr(0) = 0
extr(t) = 0

extr(a〈v〉) = 0
extr(

∑
i∈I ai(xi)�λYi.Qi�.Pi) = 0

extr(〈P 〉r) = 〈P 〉r
extr(t [P, Q]r) = extr(P) | 〈Q〉r

extr(P | Q) = extr(P) | extr(Q)
extr((ν x)P) = (ν x) extr(P)

Fig. 3. Extraction function with nested failure

Towards Compensation Correctness in Interactive Systems 167

α ::= label tuples
| (r, αi, αc)
| (r, αo)

αi ::= input
| t
| a(v)
| τ (a)

αc ::= compensation
| λX.R
| (w)λX.R

αo ::= output
| (w)a〈v〉
| t
| a〈v〉

Fig. 4. Transition labels

consider only processes with no free variables. As usual, the term (ν x)P ab-
breviates (ν x1) ...(ν xn)P , for some n ≥ 0. Before presenting the rules of the
labelled transition system, we first introduce the transition labels.

Labels α have the syntax and informal meaning defined in Figure 4. Notice
that in internal moves, we keep track of the names that are used as subject of
a communication. Also, we keep the session names where the interaction has
occurred. If the interaction occurs within different sessions, we keep the name of
the session that has received the message. These extra information is necessary
for defining correct compensable processes. We use ⊥ whenever an interaction
occurs outside a session.

The operational semantics of the language is given in terms of the labelled
transition system (P ,L, α−→), with L the set of labels within the set N of names,
the set S of session names and the set T of transaction identifiers.

Definition 6. The operational semantics of compensable processes CP is the
minimum LTS closed under the rules in Figure 5 (symmetric rules are considered
for L-Par, L-Comm).

Rule L-Out sends a message and rule L-Fail sends a failure message. Rule
L-Inp executes an input-guarded choice. Note that the substitution of the re-
ceived name is applied both to the continuation and to the compensation to be
installed. Note also that labels for inputs (and internal moves) are composed by
an extra part, the update to the compensation. Rule L-Par allows one of the
components of parallel composition to progress. Rule L-Comm allows commu-
nication, and propagates the compensation update coming from the input. As
already said, we keep track of the names that are used as subject. Notice that if
the communication does not occur within the same interaction session, the com-
pensation update can only be the identity id. This feature is given by condition
r �= s ⇒ R = X in the rule L-Comm, i.e. there is no real installation of com-
pensations. If we allowed installation between different sessions, we would need
more information about the interaction. For instance, we would need informa-
tion about the communicated names and both the sessions where the message
was received and where the message was sent. Such additional information is
required to analyse the correctness of both sessions, making the setting more
complex and always evolving session merging. Rule L-Res is the classic rule for
restriction. Note that session names are not restricted. Rule L-Open allows to
extrude bound names. Rule L-Open2 allows to extrude names occurring in the
compensation update.

168 C. Vaz and C. Ferreira

(L-Out)

a〈v〉 (⊥,a〈v〉)−−−−−→ 0

(L-Inp)

j ∈ I∑
i∈I

ai(xi)�λXi.Ri�.Pi

(⊥,aj(v),λXj .Rj{v/xj})−−−−−−−−−−−−−−−−→ Pj{v/xj}

(L-Par)

P
α−→ P ′ bn(α) ∩ fn(Q) = ∅

P | Q α−→ P ′ | Q

(L-Open)

P
(r,(w)x〈v〉)−−−−−−−→ P ′ z �= x z ∈ {v} \ {w}

(ν z)P
(r,(zw)x〈v〉)−−−−−−−−→ P ′

(L-Fail)

t
(⊥,t)−−−→ 0

(L-Open2)

P
(r,αi,(w)λX.R)−−−−−−−−−−→ P ′ (αi = a(v) ⇒ z /∈ n(αi)) z ∈ fn(R) \ {w}

(ν z) P
(r,αi,(zw)λX.R)−−−−−−−−−−−→ P ′

(L-Comm)

P
(r,x(v),(w)λX.R)−−−−−−−−−−−→ P ′ Q

(s,(z)x〈v〉)−−−−−−−→ Q′ {z} ∩ fn(P)={w} ∩ fn(Q)=∅ r �=s ⇒ R=X

P | Q (r,τ(x),(w)λX.R)−−−−−−−−−−−→ (ν z) (P ′ | Q′)
(L-Scope-out)

P
(⊥,(w)a〈v〉)−−−−−−−−→ P ′ {w} ∩ (fn(Q) ∪ {t}) = ∅

t[P, Q]s
(s,(w)a〈v〉)−−−−−−−→ t[P ′, Q]s

(L-Res)

P
α−→ P ′ x /∈ n(α)

(ν x)P
α−→ (ν x)P ′

(L-Scope-in)

P
(⊥,αi,(z)λX.R)−−−−−−−−−−→ P ′ {z} ∩ (fn(Q) ∪ {t}) = ∅
t[P, Q]s

(s,αi,id)−−−−−→ (ν z) t[P ′, R{Q/X}]s

(L-recover-out)

t[P, Q]s
(s,t,id)−−−−→ extr(P) | 〈Q〉s

(L-Scope)

P
α−→ P ′ α ∈ {(s, αo), (s, αi, αc)} s �= ⊥

t[P, Q]r
α−→ t[P ′, R]r

(L-Recover-in)

P
(r,t)−−−→ P ′

t[P, Q]s
(s,τ(t),id)−−−−−−→ extr(P ′) | 〈Q〉s

(L-Block)

P
α−→ P ′ α ∈ {(s, αo), (s, αi, αc)} s �= ⊥

〈P 〉r α−→ 〈P ′〉r

(L-Block-s)

P
α−→ P ′ α ∈ {(⊥, αo), (⊥, αi, αc)}
〈P 〉r α′−→ 〈P ′〉r α′ = α{r/⊥}

Fig. 5. LTS for compensable processes

Transaction failures are modelled by L-Recover-out and L-Recover-in.
Rule L-Recover-out allows external processes to kill a transaction via a signal
t. Notice that the remaining process is composed by two parts: the first one ex-
tracted from P , and the second one corresponding to compensation Q, which will
be executed inside a protected block. Rule L-Recover-in is similar, but in this
case the failure message is internal to the transaction, i.e. comes from P . Rule
L-Scope-in updates the compensation of a transaction. Rule L-Scope-out al-
lows outputs to go outside transactions, provided that they are not termination
signals for the transaction itself. Rule L-Scope is used when input or output

Towards Compensation Correctness in Interactive Systems 169

OrderTransaction1
def
= Client | Shop1 | Bank

Client
def
= u

[
client | (ack .t + ack .recp.okShop),0]r0

Shop1
def
= t

[
client .(ack | initchg) | Charge | okShop.ok ,0

]
r0

Charge
def
= c

[
initchg .bank | (valid�λX .refunded | X �.(recp | ok .end1) + invalid .t)|
ended1 �λX .0� , q

]
r1

Bank
def
= q

[
bank .(ν y) (y | (y�λX .refunded | X �.valid + y.invalid)|

end1 �λX .0�).ended1 , 0
]
r1

Fig. 6. Ordering system example

is from an inner transaction scope. Finally, rules L-Block and L-Block-s de-
fine the behaviour of a protection block, both when an interaction occurs within
different sessions or within its own session, respectively.

We call reduction any transition P
(r,τ(a),αc)−−−−−−−→ P ′, with r ∈ S and a ∈ N ∪ T

and αc a compensation function.

Lemma 1. Well-formedness is preserved by reductions.

3 Examples

This section illustrates the expressiveness of the calculus through two Web Ser-
vices case studies, while motivating the needed for a correctness criteria.

3.1 Order Transaction

The first example consists of an ordering system. We can think of it as a web
shop that accepts orders from clients. Whenever a client submits an order, the
system must take care of payments. The system is modelled as depicted in Figure
6, which for simplicity only considers one client and one order. Notice that the
generalisation of this example, where the shop has to interact with several clients,
implies the use of a session initiation mechanism, as discussed in Section 2.1.

The Client submits an order to the Shop and waits for order confirmation.
The Shop receives the message and tries to charge the Client. The payment
is done by the Bank, therefore the Shop sends a message to the Bank and it
starts a new interaction session. Notice that the Client may cancel the Shop
transaction, causing the execution of the compensation of this transaction. If
charging is successfully accomplished, the Shop sends a message to the Client.
The Client confirms to the shop the receipt delivery. The Shop informs the Bank
that the transaction within the Client has ended, removing all the compensa-
tions of the Shop transaction. Then, after the ending notification, the Bank also
removes its compensations. Notice that compensations are incrementally built.

170 C. Vaz and C. Ferreira

OrderTransaction2
def
= Client2 | Shop2 | Bank | Warehouse

Client2
def
= u

[
client | (ack .t + ack .(recp.okShop | delivered .yesShop)),0]r0

Shop2
def
= t

[
client .(ack | initchg | initpck) | Charge | Pack | okShop.ok | yesShop.yes,0

]
r0

Pack
def
= p

[
initpck .pack | (exists�λX .unpacked | X �.(delivered | yes.end2)+

notExists.t) | ended2�λX .0� , q
]
r2

Warehouse
def
= q

[
pack .(ν z) (z | (z�λX .unpacked | X �.exists + z.notExists)|

end2�λX .0�).ended2 , 0
]
r2

Fig. 7. Ordering system with unexpected behaviour

For example, when the bank starts to interact with the shop, it installs the com-
pensation λX .refunded | X and, when it receives the end1 message, it installs
the compensation λX .0. The ability of changing compensations within the exe-
cution of the process is an important feature of dynamic installation mechanism.
For instance the compensation for the Bank transaction is only removed when
the Bank receives a terminating message from the subtransaction Charge, the
only transaction that is interacting with it. The installation of λX .0 can be re-
garded as a transaction commit, since compensations are cleaned and recovery
is no longer possible. Notice that the interactions between Client and Shop1 is
done within session r0, and Charge and Bank is within session r1. Also, commu-
nications within transactions belonging to different interaction sessions do not
install compensations. In this example, it is natural for the programmer to ex-
pect the following behaviour of the system: if the subtransactions of the Shop1
have ended, then compensations are not expected to occur; if the client chooses
to cancel Shop1 transaction after the bank has validated the purchase but before
the transaction ending, refunding must be processed.

3.2 Order Transaction with Warehouse

This example extends the previous one by adding order packing to the ordering
system. The system is modelled as depicted in Figure 7, and similarly to the
previous example only considers one client and one order. In this case, after re-
ceiving the message from the Client, the Shop starts, within different interaction
sessions, two subtransactions, one to charge the Client and another to pack the
order. Notice that transactions Charge and Bank are the same as in the previ-
ous example. The interaction session of Pack and Warehouse transactions has
a similar behaviour to the interaction session of transactions Charge and Bank,
but with different actions. In this example, the Client may also cancel the Shop
transaction. In this case, the Shop transaction fails and its compensations are
executed. However, if subtransaction Pack has been successfully accomplished,
it may not be possible to compensate it (after ended2 message has been commu-
nicated). In this case, the behaviour of the system is not the expected one, since

Towards Compensation Correctness in Interactive Systems 171

the client can get the goods for free. Later we shall see how under our formal
framework we can detect such wrong behaviour.

A possible solution for overcoming the unexpected behaviour described above
is presented in Figure 8. Later, we shall see how our notion of correctness asserts
that this is valid.

OrderTransaction3
def
= Client3 | Shop3 | Bank | Warehouse

Client3
def
= u

[
client | (ack .t + ack .done),0]r0

Shop3
def
= t

[
client .(ack | Charge | Pack | delivered .recp .(done | ok | yes)),0]

r0

Fig. 8. Ordering system with expected behaviour

4 Process Correctness

A programmer expects that communicating programs should realise a correct
conversation, even when one of the interacting partners fails due to an unex-
pected event. Ensuring the correctness of a compensable process is a challenging
task. In this section we define a notion of correctness for compensable processes.
The proposed notion takes into account that in real world scenarios some ac-
tions are not compensable and compensations can be much more than a simple
“undo”.

Definition 7. Let P be a process and s ∈ Ln. We say that P has s as a computa-
tion, P s−→, if s = α1...αn and P α1−→ P1...

αn−−→ Pn. We also define L∗ = ∪i∈NLi.

Definition 8. Let P be a process. We define L(P) = {s ∈ L∗ | P s−→}.

Given s, s′ ∈ L∗, we write s ≺ s′ whenever the trace s is a subsequence of the
trace s′.

Definition 9. The function sn : L∗ −→ 2N , which gives the set of session
names occurring in a trace, is defined as:

sn(ε) = ∅ sn((r, αo).s) = {r} ∪ sn(s) sn((r, αi, αc).s) = {r} ∪ sn(s)

Definition 10. The function com : L∗×S −→ N ∗, which maps each trace s to
the sequence of communicated names within session r, is defined as:

com(ε, r) = ε
com((r, αo).s, r) = com(s, r)

com((r, a(v), αc).s, r) = com(s, r)
com((r, τ(a), αc).s, r) = a. com(s, r)

We require the programmer to provide a correctness map that expresses how
meaningful interactions can be compensated, i.e., the programmer gives a set
of possible finite sequences of interactions that compensate each meaningful in-
teraction. This map and the possible sequences are defined over the set of free
names. Notice that the correctness mapping may not be directly equivalent to
the compensation pairs that can be extracted from a compensable process.

172 C. Vaz and C. Ferreira

Definition 11. A correctness mapping ϕ : N −→ 2N
∗

maps each name n ∈ N
to a set of sequences of names.

Consider the previous examples. In OrderTransaction1 , a feasible correctness
map could be defined as: ϕ(valid) = {refunded}; ϕ(ok) = ∅; and ϕ(x) = {ε} for
each x ∈ fn(OrderTransaction1) such that x /∈ {valid , ok}. Notice that a map-
ping to set {ε} or mapping to the empty set have completely different meanings.
Mapping to {ε} means that the programmer does not expect to see a compensa-
tion trace for that action. However, the mapping to the empty set will mean, as
we shall see, that after the communication of ok , the programmer is not expect-
ing to see the previous defined compensations. In fact, this is coherent with this
example, since after doing ok the client was notified with a receipt and confirmed
the receipt delivery. Thus, in this situation, it would not make sense to execute
any compensation.

However, in the case of example OrderTransaction2 a feasible correctness map
could be defined as: ϕ(valid) = {refunded}; ϕ(pack) = {unpacked}; ϕ(x) = {ε}
for each x ∈ fn(OrderTransaction2) such that x /∈ {valid , unpacked}. Notice
that in this case, it does not make sense to define ϕ(ok) = ∅ and ϕ(yes) = ∅,
since a client may cancel the transaction after Packing has been successfully
accomplished. Thus, under our correctness criteria, this process would not be
correct.

Definition 12. Let ⊕ : L∗×L∗ −→ 2L
∗

be a commutative operator, defined as:

ε⊕ ε = {ε} ε⊕ α = {α} α.s⊕ β.r = α.(s⊕ β.r) ∪ β.(s⊕ β.r)

We further extend ⊕ to sets as an associative operator, ⊕ : 2L
∗ × 2L

∗ −→ 2L
∗
,

as follows:
S ⊕ S′ = ∪(s,s′)∈S×S′s⊕ s′,

where S, S′ ⊂ L∗.

The intuition behind the operator ⊕ is that, given two traces, we are able to
generate their interleaving. Clearly, the interleaving is not unique and thus we
may have several different alternative interleaved traces.

Definition 13. A process is passive if it can only perform an input labelled
transition as a first possible action (no internal moves or outputs).

Definition 14. Let P be a well formed compensable process, ϕ a correctness

mapping and r ∈ sn(P). P is ϕ-correct with respect to r if, whenever P s−→ α−→ s′
−→

Q, with s and s′ traces, α = (r, t, id) or α = (r, τ(t), id), t a failure unit of
session r and Q a passive process, exists s∗ ≺ s′ such that com(s∗, r) = β1...βn ∈
⊕m

i=1ϕ(αi) and β1, ..., βn ∈ nl(k, P), with com(s, r) = α1...αm and α1, ..., αm ∈
nl(k − 1, P), for k > 0.

Towards Compensation Correctness in Interactive Systems 173

s=(r0, τ (client), id) (r2, τ (initPack), id) (r2, τ (pack), id) (r2, τ (y), id)
(r2, τ (initchg), id) (r2, τ (bank), id) (r2, τ (exists), id) (r0, τ (ack), id) (r0, τ (delivered), id)
(r0, τ (yesShop), id) (r2, τ (yes), id) (r2, τ (ended2), id) (r1, τ (y), id)) (r1, τ (invalid), id))

Fig. 9. Trace

Definition 15. Let ϕ be a correctness mapping. A well formed process P is
ϕ-correct if it is ϕ-correct with respect to all r ∈ sn(P) sessions.

We can verify that the feasible consistency map defined previously for process
OrderTransaction2 is not ϕ-correct. For instance, the trace in Figure 9 is a
witness that after the execution of trace s, if a failure occurs, it will not be
possible to observe the compensation unpacked within session r2.

In the following, we will present the conditions that should be preserved to
ensure that the composition of correct compensable processes is also a correct
process. The first condition describes a notion of independence, which is neces-
sary for parallel composition.

Definition 16. Two processes P and Q are independent if sn(P) ∩ sn(Q) = ∅,
inp(P) ∩ fn(P) ∩ inp(Q) ∩ fn(Q) = ∅ and out(P) ∩ fn(P) ∩ out(Q) ∩ fn(Q) = ∅.

Clearly, if some of the above conditions were false, it could not be assured that
each trace of P | Q would be ϕ-correct, for a given correctness mapping ϕ.
For instance, non-empty intersection of inputs could raise undesirable internal
communications compromising the compensating trace of P or Q. With this
definition we can state the following property.

Proposition 1. Let P and Q be independent compensable processes such that
P |Q is a well formed process. Then, the parallel composition P |Q is ϕ-correct
if both P and Q are ϕ-correct.

Proof. Let r ∈ sn(P |Q) and P | Q s−→ α−→ s′
−→ R, with R a passive process,

α = (r, t, id) or α = (r, τ(t), id), and t a failure unit of r. Since P and Q are inde-
pendent, we know that r /∈ sn(P)∩sn(Q). Let us assume without loss of generality
that r ∈ sn(P) and let s1.α.s′1 ∈ L(P) be the underlying trace of P within s.α.s′.
Since P and Q are independent, we know that com(s1.α.s′1, r) = com(s.α.s′, r).
Moreover, since P is ϕ-correct, we know that it exists a trace s∗1 ≺ s′1 such that
com(s∗1, r) = β1...βn ∈ ⊕m

i=1ϕ(αi), with com(s1, r) = α1...αm. Then, consider
s∗ ≺ s′ such that s∗1 is the underlying trace of P within s∗. Since P and Q are
independent, s∗ is such that com(s∗, r) = com(s∗1, r) = β1...βn ∈ ⊕m

i=1ϕ(αi),
with com(s, r) = com(s1, r) = α1...αm. Therefore, the thesis holds.

Proposition 2. Let P and Q be independent compensable processes such that
t[P,Q]r is a well formed process. Then, t[P,Q]r is ϕ-correct if both P and Q are
ϕ-correct.

174 C. Vaz and C. Ferreira

Cϕ�•� ::= • ∣∣ Cϕ�•�|P ∣∣ P |Cϕ�•� ∣∣ 〈Cϕ�•�〉s
∣∣ t [Cϕ�•�, P]r

∣∣
(ν x) Cϕ�•� if x /∈ dom(ϕ) ∪ img(ϕ)

Dϕ�•, •� ::= C1
ϕ�•�|C2

ϕ�•�

Fig. 10. ϕ-safe contexts

Proof. Let r′ ∈ sn(P |Q) ∪ {r} and t[P,Q]r
s−→ α−→ S

s′
−→ R, with R a passive

process, α = (r, p, id) or α = (r, τ(p), id), and p a failure unit of r′. (1) If r = r′,
since t[P,Q]r is a well formed process, r /∈ sn(P |Q) and p is a failure unit of
session r, i.e., p = t. Moreover, it can be easily proved by induction that, if
r /∈ sn(P), then r /∈ sn(s), for all s ∈ L(P). In particular, com(s, r) = ε and,
therefore, the thesis holds choosing s∗ = ε accordingly to Definition 14. (2) We
have three cases, (2.1) t does not occur in s or s′, (2.2) t occurs in s′ or (2.3)
t occurs in s. (2.1) If t does not occur in s or s′, then r′ ∈ sn(P) and p is a
failure unit of r′. Thus, since s is a trace of P and P is ϕ-correct, the thesis
holds. (2.2) If t occurs in s′, then t does not occur in s and r′ ∈ sn(P) with p

a failure unit of r′. Since t has occurred within s′, we have t[P,Q]r
s−→ α−→ S

s′
1−→

t[P ′, Q]r
α′
−→ extr(P ′) | 〈Q〉r

s′
2−→ R, with s′ = s′1.α

′.s′2 and either α′ = (r, t, id)
or α′ = (r, τ(t), id). As in the previous case, s is a trace of P and let s′′ be
the underlying trace of P within s′1.α

′.s′2. By Definition 14 and because P is
ϕ-correct, there is s∗ such that s∗ ≺ s′′ and com(s∗, r′) = β1...βn ∈ ⊕m

i=1ϕ(αi),
with com(s, r′) = α1...αm. Moreover, β1, ..., βn ∈ nl(k, t[P,Q]r) and α1...αm ∈
nl(k−1, t[P,Q]r), for some k > 0. Thus, com(s∗, r′) occurs at an higher level and
is part of the traces of compensations found within P ′. Since these compensations
are protected, they are not interrupted by t. Because P and Q are independent,
extr(P ′) and 〈Q〉r are also independent since extr does not introduce names.
Thus, there is s∗∗ ≺ s′1.α′.s′2 such that com(s∗∗, r′) = com(s∗, r′), and the thesis

holds. (2.3) If t occurs in s, then t[P,Q]r
s1−→ α′
−→ extr(P ′) | 〈Q〉r

s2−→ α−→ S
s′
−→ R,

with s = s1.α
′.s2 and either α′ = (r, t, id) or α′ = (r, τ(t), id). Again, because

P and Q are independent, extr(P ′) and 〈Q〉r are also independent since extr
does not introduce names. Moreover, extr(P ′) is equivalent to trigger a set of
failure units within P ′. Thus, since P and 〈Q〉 are ϕ-correct and independent,
by Proposition 1, the thesis holds.

Interactions can happen in different execution contexts. Since all our interactions
are binary, we introduce double execution contexts, i.e., two execution contexts
that can interact. The grammar in Figure 10 generates the ϕ-safe execution
contexts for the correctness mapping ϕ.

Definition 17. The grammar in Figure 10 inductively defines ϕ-safe contexts,
denoted by Cϕ�•�, and double ϕ-safe contexts, denoted by Dϕ�•, •�.

The Propositions 3 and 4 shows that for safe contexts with respect to a correct-
ness map ϕ, the composition of correct processes is also a correct process.

Towards Compensation Correctness in Interactive Systems 175

Proposition 3. Let ϕ be a correctness mapping, P be ϕ-correct process and
Cϕ[•] be a safe context such that Cϕ[P] is a well formed process. If Cϕ[0] is
ϕ-correct and independent with respect to P , then Cϕ[P] is ϕ-correct.

Proof. The proof is by induction on the contextCϕ and by Propositions1 and 2.

Proposition 4. Let ϕ be a correctness mapping, P and Q be a ϕ-correct and
independent processes , and Dϕ[•, •] be a safe double context such that Dϕ[P,Q]
is a well formed process. If Dϕ[0,0] is ϕ-correct and independent with respect to
process P and Q, then Dϕ[P,Q] is ϕ-correct.

Proof. The proof is by induction on the contextDϕ and by Propositions1 and 3.

In some cases, we are interested in a more relaxed notion of composition. Con-
sider the example OrderTransaction3 and the previous correctness mapping ϕ.
We can see that both process Warehouse | Pack and Bank | Charge, within
session r2 and session r1 respectively, are ϕ-correct. Also, they are independent
processes. However, we cannot apply the previous results to prove that their
composition is also ϕ-correct, because Pack and Charge are subtransactions of
Shop, but Warehouse and Bank are not. So, the following results generalise
the idea of composition in order to extend the correctness result to this kind of
generalised composition.

Lemma 2. Let ϕ be a correctness mapping, P | Q be a ϕ-correct compensable
process, and Cϕ[•] be a ϕ-safe context such that P | Cϕ[Q] is a well formed
process, Cϕ[0] is independent of P and Cϕ[•] does not bind x ∈ fn(P). If Cϕ[0]
is ϕ-consistent, then P | Cϕ[Q] is ϕ-consistent.

Proof. The proof is by induction on context Cϕ[•].

Theorem 1. Let ϕ be a correctness mapping, P1 |Q1 and P2 |Q2 be independent
and ϕ-correct compensable processes, and Dϕ[•, •] be a safe double context such
that Dϕ[P1 | P2, Q1 | Q2] is a well formed process. If Dϕ[0,0] is ϕ-correct, then
Dϕ[P1 | P2, Q1 |Q2] is ϕ-correct.

Proof. The proof is by induction on the context Dϕ and by Proposition 1 and
Lemma 3.

We are now able to interpret the notion self-healing systems [16], i.e. systems
that can detect and recover from failures, as correct compensable processes. Such
a system should perceive that is not operating correctly and make the necessary
adjustments to restore itself to consistency. Thus, for this interpretation, it is
necessary to express the behaviour the system should have in case of failure.
Within our setting, this is done by a correctness mapping. We define self-healing
with respect to a correctness mapping as follows.

Definition 18. Let P be a process and ϕ a correctness mapping. P is self-
healing with respect to ϕ if P is ϕ-correct.

176 C. Vaz and C. Ferreira

Moreover, a self-healing composition should be able to automatically detect that
some service composition requirements are no longer satisfied by the implementa-
tion and react to requirement violations [16]. Our notion of correctness describes
the idea of restoring the consistency of these kind of systems. In particular, our
results provide a first attempt to build self-healing compositions from existing
ones.

From the above results, if the programmer of a system ensures correctness
of compensable transactions (or of a self-healing system), then by satisfying the
conditions defined above, many kinds of compositions are also correct under our
theory.

5 Related Work and Concluding Remarks

We have developed a notion of compensation correctness within a setting for
analysing structured compensable transactions. Moreover, in this setting, we
discuss correctness criteria for compensable process compositions.

There are other approaches for reasoning about the correctness of compen-
sations. Korth et al. [10] have defined compensation soundness in terms of the
properties that compensations have to guarantee. The correctness notions are
based on the existence of state and state equivalence. Nevertheless, the authors
do not provide a formal framework for specifying their definitions. Caires et al.
[6] proposed a formal framework to reason about correctness of compensating
transactions, which is also based on the existence of an appropriate notion of
equivalence on system states. Even though their approach supports distributed
transactions, the compensable processes do not interact. A different approach is
given by Butler et al. [5], that proposes a notion of compensation soundness and
a stateless equivalence notion. They define a cancellation semantics based on a
cancellation function that analysis traces, extracting forward and compensation
actions from process traces.

Due to the stateless assumption of the service oriented paradigm, our correct-
ness criteria are not based on the existence of an equivalence notion on states.
Hence, the proposed criteria could be used on other paradigms based on a min-
imal shared knowledge among the interacting parts.

Regarding future work, we plan to develop a type system to guarantee the
properties needed to ensure correctness of compensable transactions. It would
also be challenging to verify our results in an extended calculus with primitives
for instantiation and definition of multiparty asynchronous sessions, taking in
account input guarded replication. We plan to investigate the use of our correct-
ness criteria and setting to other calculi with a recovery mechanism based on
compensations [1,3,8,12,14].

Acknowledgements. We thank the reviewers for their comments. Cátia Vaz is
partially supported by the Portuguese FCT, via SFRH/BD/45572/2008. Re-
search supported by the Project FET-GC II IST-2005-16004 Sensoria.

Towards Compensation Correctness in Interactive Systems 177

References

1. Bocchi, L., Laneve, C., Zavattaro, G.: A calculus for long-running transactions. In:
Najm, E., Nestmann, U., Stevens, P. (eds.) FMOODS 2003. LNCS, vol. 2884, pp.
124–138. Springer, Heidelberg (2003)

2. Bruni, R., Butler, M.J., Ferreira, C., Hoare, C.A.R., Melgratti, H.C., Montanari,
U.: Comparing two approaches to compensable flow composition. In: Abadi, M.,
de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 383–397. Springer, Hei-
delberg (2005)

3. Bruni, R., Melgratti, H.C., Montanari, U.: Nested commits for mobile calculi: Ex-
tending join. In: IFIP TCS, pp. 563–576. Kluwer, Dordrecht (2004)

4. Bruni, R., Melgratti, H.C., Montanari, U.: Theoretical foundations for compensa-
tions in flow composition languages. In: Palsberg, J., Abadi, M. (eds.) POPL 2005,
pp. 209–220. ACM, New York (2005)

5. Butler, M.J., Hoare, C.A.R., Ferreira, C.: A trace semantics for long-running trans-
actions. In: Abdallah, A.E., Jones, C.B., Sanders, J.W. (eds.) 25 Years Commu-
nicating Sequential Processes. LNCS, vol. 3525, pp. 133–150. Springer, Heidelberg
(2005)

6. Caires, L., Ferreira, C., Vieira, H.T.: A process calculus analysis of compensations.
In: Kaklamanis, C., Nielson, F. (eds.) TGC 2008. LNCS, vol. 5474, pp. 87–103.
Springer, Heidelberg (2009)

7. Carbone, M., Honda, K., Yoshida, N.: Structured interactional exceptions for ses-
sion types. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201,
pp. 402–417. Springer, Heidelberg (2008)

8. Guidi, C., Lanese, I., Montesi, F., Zavattaro, G.: On the interplay between fault
handling and request-response service invocations. In: 8th International Conference
on Application of Concurrency to System Design, pp. 190–199. IEEE Computer
Society, Los Alamitos (2008)

9. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL, pp. 273–284. ACM, New York (2008)

10. Korth, H.F., Levy, E., Silberschatz, A.: A formal approach to recovery by compen-
sating transactions. In: VLDB, pp. 95–106 (1990)

11. Lanese, I., Vaz, C., Ferreira, C.: On the expressive power of primitives for compen-
sation handling. Technical report (2009)

12. Laneve, C., Zavattaro, G.: Foundations of web transactions. In: Sassone, V. (ed.)
FOSSACS 2005. LNCS, vol. 3441, pp. 282–298. Springer, Heidelberg (2005)

13. Lucchi, R., Mazzara, M.: A pi-calculus based semantics for ws-bpel. J. Log. Algebr.
Program. 70(1), 96–118 (2007)

14. Mazzara, M., Lanese, I.: Towards a unifying theory for web services composition.
In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184,
pp. 257–272. Springer, Heidelberg (2006)

15. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I and II. Inf.
Comput. 100(1), 1–77 (1992)

16. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented com-
puting: a research roadmap. Int. J. Cooperative Inf. Syst. 17(2), 223–255 (2008)

17. Vaz, C., Ferreira, C., Ravara, A.: Dynamic recovering of long running transactions.
In: Kaklamanis, C., Nielson, F. (eds.) TGC 2008. LNCS, vol. 5474, pp. 201–215.
Springer, Heidelberg (2009)

Small Specifications for Tree Update

Philippa Gardner and Mark Wheelhouse

Imperial College London
{pg,mjw03}@doc.ic.ac.uk

Abstract. O’Hearn, Reynolds and Yang introduced Separation Logic to provide
modular reasoning about simple, mutable data structures in memory. They were
able to construct small specifications of programs, by reasoning about the local
parts of memory accessed by programs. Gardner, Calcagno and Zarfaty gener-
alised this work, introducing Context Logic to reason about more complex data
structures. In particular, they developed a formal, compositional specification of
the Document Object Model, a W3C XML update library. Whilst keeping to the
spirit of local reasoning, they were not able to retain small specifications. We in-
troduce Segment Logic, which provides a more fine-grained analysis of the tree
structure and yields small specifications. As well as being aesthetically pleasing,
small specifications are important for reasoning about concurrent tree update.

1 Introduction

Separation Logic [14], introduced by O’Hearn, Reynolds and Yang, provides modular
reasoning about mutable data structures in memory. The idea is to reason about the
small, local parts of memory (the footprint) that are accessed by a program. The result-
ing modular reasoning has been used to notable success for verifying memory safety
properties of large C-programs [1], and for reasoning about concurrent imperative pro-
grams [13]. Calcagno, Gardner and Zarfaty generalised this work to more complex
data structures, such as those found on the Web, by introducing Context Logic for rea-
soning about arbitrary structured data update [3]. Their original work applied Context
Logic reasoning to a simple tree update language. With Smith and Zarfaty, Gardner and
Wheelhouse have since applied Context Logic reasoning to the W3C Document Object
Model (DOM) [6], a library for in-place XML update [18].

Our goal is to design and formally specify a concurrent XML update language. Such
a language will enable web applications to make the most of the dynamic nature of
XML. For example, with Wikipedia, users currently copy articles on to their browsers,
before updating and returning them to Wikipedia to be integrated with the main site.
They cannot view Wikipedia (or a scientific database or information in the Cloud) as a
shared XML memory store that can be concurrently updated by many clients, because
methods for safely performing such operations are poorly understood. We almost have
the technology to develop a safe, formally specified language for concurrent XML up-
date, drawing on our experience experience with sequential DOM [6] and O’Hearn’s
Concurrent Separation Logic [13]. However, we are missing one ingredient.

In our DOM work, we were not able to provide small specifications for all our DOM
programs. In particular, our reasoning for the basic move commands, such as DOM’s

C. Laneve and J. Su (Eds.): WS-FM 2009, LNCS 6194, pp. 178–195, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Small Specifications for Tree Update 179

Fig. 1. Splitting up the Working Tree using Multi-holed Contexts

appendChild, used axioms which required a substantial over-approximation of the
footprint. Whilst this over-approximation was acceptable for reasoning about sequential
programs, it is a serious limitation when reasoning about concurrent programs. In this
paper, we solve this limitation, by introducing Segment Logic to provide a more fine-
grained analysis of structured data update in general, and tree update in particular. We
provide small axioms for all the basic commands of a simple tree update language; it
is straightforward to extend our ideas to DOM [6]. Although this paper focuses on a
sequential tree update language, we believe it provides the technology necessary for
our future work on reasoning about concurrent tree update.

To motivate Segment Logic, consider the DOM command appendChild (n, m) which
moves the tree with top node identified by m to be the last child of the tree identified by n.
Fig. 1 indicates how the working tree splits in the two cases where appendChild(n, m)
does not fault: it succeeds when n and m are in different parts of the tree and when m
is under n; it faults when m is above n. The axiom for appendChild(n, m) using multi-
holed Context Logic [2] is 1:

{(C ◦α n[c1]) ◦β m[tree(c2)]}
appendChild (n, m)

{(C ◦α n[c1 ⊗ m[tree(c2)]]) ◦β ∅}
The precondition specifies that the working tree can be split into a subtree with top
node m, and a tree context with hole variable β (y in Fig. 1) satisfying the separating
application formula C ◦α n[c1]. This formula states that the context can be further split
into a subcontext with top node n and an unspecified context with hole α (x in Fig. 1)
given by context variable C. The postcondition states that the tree at m is moved to be
the last child of n and is replaced by the empty tree. The surrounding context, denoted
by variable C, remains the same.

The problem with this appendChild axiom is that it is not small. The precondition
is not the intuitive footprint. The only part of the tree that appendChild(n, m) requires
is the tree at m which is being moved, and the tree or context with top node n (actually

1 In [6], the axiom for appendChild is given using single-holed Context Logic. The multi-holed
Context Logic axiom is simpler, but still not suitable for concurrent reasoning.

180 P. Gardner and M. Wheelhouse

Fig. 2. Splitting up the Working Tree using Tree Segments

node n is enough) whose children are being extended by m. However, our precondition
does not just use m and n. It also requires the surrounding context denoted by C. It is
possible to put additional constraints on C to insist that the context is minimal. But this
is not the point. We need a finer way of analysing the tree in order to capture the intuitive
footprint of the command.

Instead of basing our reasoning on multi-holed tree contexts and application, we base
our reasoning on tree segments. With multi-holed contexts, the working tree is split into
a context and subtrees which have lost the information about where they originated
from; the application function determines which holes get filled. With segments, the
working tree is split into tree segments which still ‘know’ how to join back together
again. As well as unique hole labels, tree segments have unique hole addresses which
determine which holes the segments fill. For example, consider Fig. 2. In both cases,
the working tree is split into a bunch of tree segments. The hole labels (in the holes)
and the hole addresses (on the arrows) determine how the tree segments join back up to
form the original tree. Notice that hole labels and addresses have brackets around them,
denoting that they are bound. In the syntax, we will use a hiding operator (x), analogous
to the restriction operator of Milner’s π-calculus [12].

Moreover, consider the right-hand equalities of Fig. 2. In both cases, the tree segment
with top node identified by n has been split into just the node n at the same address and
fresh hole label z, plus another tree segment at address z which contains the children of
node n. We shall see that the node n and the tree with top node m are all that is required to
provide the small axiom for appendChild. Fig. 2 thus indicates how we can uniformly
separate the minimal data required in order to reason about appendChild. It is possible
to take this separation to the extreme, by cutting up the tree structure into a collection
of nodes, with the hole labels and addresses showing how the nodes are joined together
(a spaghetti of wires analogous to a heap representation). However, this is not how we
use the hole information. We only cut up the tree in a minimal way in order to provide
the right segment about which to reason.

We introduce Segment Logic for reasoning about our tree segments. It is like Con-
text Logic in that it reasons directly about high-level trees. It is like Separation Logic in
that it uses a commutative separating conjunction ∗, rather than the non-commutative

Small Specifications for Tree Update 181

separating application of Context Logic. Using Segment Logic, the small axiom for
appendChild(n, m) is:

{α�n[γ] ∗ β�m[tree(c)]}
appendChild(n, m)

{α�n[γ ⊗ m[tree(c)]] ∗ β�∅T}
The precondition specifies two tree segments: a node n at address variable α (x in Fig.
2) and a complete tree whose top node is m at address β (y in Fig 2). The postcon-
dition states that the tree at m moves to be the last child of n and is replaced by the
empty tree. The axiom is small, with the precondition capturing the intuitive footprint
of appendChild(n, m). We can extend the axiom to larger tree segments using the nor-
mal separation frame rule, a rule for the hiding quantification, and the rule for logical
consequence. In fact, instead of using the hiding quantifier as primitive, we use the basic
revelation connective (and a revelation frame rule), the revelation magic wand (the rev-
elation right adjoint), and the fresh label quantification (and a fresh variable elimination
rule), inspired by the work of Gabbay and Pitts [5], and Cardelli and Gordon [4]. Inter-
estingly, we shall see that these more primitive constructs are important for describing
the weakest preconditions.

2 Tree Update Language

We study a simple, but expressive, high-level tree update language for manipulating
finite, ordered, unranked trees, with unique node identifiers for specifying the loca-
tions of updates as in DOM. Our tree structures are left intentionally simple. It is
straightforward to incorporate (and reason about) additional data such as text data
and attributes (see [6]). To simplify our exposition, we work with multi-holed tree
contexts [2]. Throughout this paper we use countably infinite and disjoint sets Id =
{m, n, ...} for location names and X = {x, y, z, ...} for hole identifiers.

Definition 1 (Tree Contexts). Multi-holed tree contexts c ∈ CId,X are defined by:

tree context c ::= ∅C empty tree context
x hole identifier x used as a hole label

n[c] tree context with top node n
c ⊗ c composition of tree contexts

with the restriction that each hole identifier, x ∈ X, and location name, n ∈ Id, occur
at most once in a tree context c, and subject to an equivalence c1≡c2 stating that ⊗ is
associative with identity ∅C. The set of hole identifiers that occur in tree context c is
denoted f ree(c). A tree context with no context holes (a complete tree) is denoted t.

Definition 2 (Context Application). Context Application is defined as a set of partial
functions apx : CId,X × CId,X ⇀ CId,X indexed by hole labels x:

apx(c1, c2) =

{
c1[c2/x] if x ∈ f ree(c1) and f ree(c1) ∩ f ree(c2) = {}
undefined otherwise

182 P. Gardner and M. Wheelhouse

We abbreviate apx(c1, c2) by c1◦xc2. We often omit the ∅C leaves from a tree context to
make it more readable, writing n[m ⊗ p] instead of n[m[∅C] ⊗ p[∅C]].

Our update language is a high-level, stateful, sequential, imperative language, based
on variable assignment and update commands as in DOM. The program state is made
up of two components: the working tree which contains all of the nodes we will be
manipulating with our programs; and a high-level variable store containing variables
for node identifiers.

Definition 3 (Variable Store). The variable store σ ∈ Σ is a finite partial function

σ : VarId ⇀fin Id ∪ {null}
mapping location name variables VarId = {m, n, ...} to location names or null. We write
σ[n �→ n] for the variable store σ overwritten with σ(n) = n.

To specify location name values, our language uses simple expressions. Location names
are specified either with location name variables or the constant null; we forbid direct
reference to constant location names other than null. We also require simple Boolean
expressions for conditional tests in our language.

Definition 4 (Expressions). Location name expressions N ∈ ExpId and Boolean ex-
pressions B ∈ Exp

B
are defined by:

N ::= n | null n ∈ VarId

B ::= N = N | false | B⇒ B
The valuation of an expression E in a store σ is written �E�σ and has the obvious
semantics. The classical Boolean connectives true, ¬, ∧ and ∨ are derivable.

DOM commands tend to update whole trees although, for example, the DOM com-
mands getNodeName and createNode manipulate single nodes. Since our reasoning
analyses tree segments, we explore a language for manipulating tree segments with
primitive commands that update either a single node n or the whole subtree beneath
some node n; the commands for updating whole trees are derivable (Example 1).

Definition 5 (Tree Update Language). The commands of the tree update language
consist of the node update commands CnodeUp, the tree update commands CtreeUp and
the standard skip, assignment, local, sequencing, if-then-else and while-do commands:

CnodeUp ::= n′ := getUp(n) get parent of node n and record it in n′
n′ := getLeft(n) get previous sibling of node n
n′ := getRight(n) get next sibling of node n
n′ := getFirst(n) get first child of node n
n′ := getLast(n) get last child of node n
insertNodeAbove(n) insert a new node above node n
deleteNode(n) delete node n
moveNodeAbove(n, m) move node m above node n
moveNodeLeft(n, m) move node m to the left of node n
moveNodeRight(n, m) move node m to the right of node n
prependNode(n, m) prepend node m to children of node n
appendNode(n, m) append node m to children of node n

Small Specifications for Tree Update 183

CtreeUp ::= deleteSubtree(n) delete subtree (subforest) beneath node n
moveSubLeft(n, m) move children of node m to the left of node n
moveSubRight(n, m) move children of node m to the right of node n
prependSub(n, m) prepend children of node m to children of node n
appendSub(n, m) append children of node m to children of node n

The set of free variables of a command C is denoted free(C), and the set of variables
modified by C is denoted mod(C).

The behavior of these commands should be self-explanatory. The node update com-
mands consist of get commands that return a neighboring node in the tree, a node
insertion command that puts a fresh node into the tree above node n (the other node
insertion commands are derivable), a delete command that removes a node from the
tree, and node move commands that take a node out of the tree and put it in a new posi-
tion. These node move commands leave the children of the moved node m as children of
m’s old parent. The tree update commands work on subtrees of an identified node. They
consist of a delete command that removes an entire subtree from the tree, and subtree
move commands that take a subtree out of the tree and put it in a new position.

These commands are sufficient to express a wide range of tree manipulation, as il-
lustrated by the examples below. Our command set is not minimal: for example, we
could derive the deleteSubtree command using a combination of get commands,
node deletion and recursion. However, we believe the commands chosen provide a nat-
ural and expressive tree update language. We give the operational semantics in Section
3 using tree segments, rather than trees or tree contexts, as this simplifies the description
of our reasoning in Section 5.

In [8], there are also commands for inserting whole trees. This is achieved by in-
cluding tree shapes (trees without identifiers) in the variable store. Here we avoid such
complications by omitting commands for tree insertion and copying. The reasoning
presented here extends simply to these extra commands.

We now give example programs which will be used to illustrate our reasoning in
Section 5. In all of these examples, σ(n) = 1 and σ(m) = 2.

Example 1 (Move). DOM has the command appendChild, whereas our language has
appendNode and appendSub. We implement the standard appendChild as:

appendChild(n, m) � local temp := null in {
insertNodeAbove(m) ;
temp := getUp(m) ;
appendNode(n, m) ;
appendSub(m, temp) ;
deleteNode(temp)
}

The diagrams illustrate the intuitive effect of the program on the working tree. For the
program above not to fault, it requires the node n = 1 and the complete tree at node
m = 2 (the left-hand diagram and the intuitive footprint). The complete tree at m ensures
that m is not an ancestor of n. The result of the program is to move the tree at m = 2 to
be under the node n = 1 (the right-hand diagram). Our reasoning captures the intuition
illustrated by these diagrams.

184 P. Gardner and M. Wheelhouse

Example 2 (Simple Swap). Our node update commands enable us to define programs
that act on arbitrary segments of the tree. For example, consider the program simple(n)
which swaps a node n with its first child:

simple(n) � local temp := null, first := null in {
insertNodeAbove(n) ;
temp := getUp(n) ;
first := getFirst(n) ;
moveNodeAbove(first, n) ;
moveNodeAbove(temp, first) ;
deleteNode(temp)
}

Example 3 (General Swap). The program nodeSwap(n, m) swaps the positions of arbi-
trary nodes n and m of a tree leaving their subtrees stationary:

nodeSwap(n, m) � local temp := null in {
insertNodeAbove(n) ;
temp := getUp(n) ;
moveNodeAbove(m, n) ;
moveNodeAbove(temp, m) ;
deleteNode(temp)
}

Example 4 (Node Rotate). The program nodeCycle(n) takes the node n, its first and
last child, and rotates these nodes with n taking the place of first child, first child taking
the place of last child, and last child taking the place of n:

nodeCycle(n) � local first := null, last := null in {
first := getFirst(n) ;
last := getLast(n) ;
nodeSwap(n, last) ;
nodeSwap(n, first)
}

Example 5 (Combining Move and Node Swap). Consider a simple cyclic list of pic-
tures used, for example, to view properties on an estate agent’s web page. It can be
implemented as a tree structure, with the root node of the tree containing the ID of the
picture currently being displayed, the picture itself being stored beneath the last of its
children (under node 3 below), and the other pictures in the list being stored beneath
their ID nodes as the rest of the root node’s children. The program queuePop(n) cycles
the pictures so that the current picture moves to the back of the list and the next picture
is displayed. Notice the use of appendChild which includes the complete tree t in the
footprint.

Small Specifications for Tree Update 185

queuePop(n) � local next := null, info := null in {
next := getFirst(n) ;
info := getLast(n) ;
nodeSwap(n, info) ;
nodeSwap(next, info) ;
appendChild(next, info)
}

3 Tree Segments

We are not able to provide a small specification of the appendChild command (and the
appendSub command) using tree contexts. We are able to provide small specifications
for all our tree update commands using tree segments.

Definition 6 (Tree Segments). Tree segments s ∈ SId,X are defined by:

tree segment s ::= ∅S empty tree segment
x�c tree context c addressed by hole identifier x
s + s disjoint union

(x)(s) hiding, hole identifier x bound in tree segment s

with the restriction that each hole identifier x ∈ X occurs free at most once as a hole
label and at most once as a hole address in tree segment s, and each location name,
n ∈ Id, occurs at most once in s. The set f ree(s) denotes the set of free hole identifiers
in s.

With tree contexts, we have the application (1[x⊗ 3])◦x2 = 1[2⊗ 3]. The application ◦x

binds x, and declares that hole x is filled by the argument 2. With tree segments, we have
the equivalence (x)(z�1[x⊗ 3]+ x�2) ≡ z�1[2⊗ 3]. In this case, it is the segment x�2
with address x that declares that 2 should go into the hole x, and the hiding operator (x)
which binds x in the segment.

Definition 7 (Tree Segment Equivalence). An equivalence relation ≡ over tree seg-
ments is defined by the following axioms and the natural structural rules:

s + ∅S ≡ s
(x)(∅S) ≡ ∅S

s1 + s2 ≡ s2 + s1

s1 + (s2 + s3) ≡ (s1 + s2) + s3

(x)(y)(s) ≡ (y)(x)(s)
(x)(s) ≡ (y)(s[y/x]) if y � f ree(s)

(x)(y�c + s) ≡ y�c + (x)(s) if x � y and x � f ree(c)
(x)(y�c1 + x�c2) ≡ y�(c1◦x c2) if x ∈ f ree(c1)

Most of the axioms involving hiding follow from analogous axioms for the restriction
operator of the π-calculus [12]. The last hiding axiom is specific to tree segments. It
enables us to pull apart and compress segments, as illustrated in Fig. 3. A tree segment
is in its compressed form if it cannot be further compressed using this last axiom. A
tree segment is well-formed if and only if its compressed form is cycle free; that is, the

186 P. Gardner and M. Wheelhouse

Fig. 3. Equivalent Tree Segments: (x) and (y) denote hidden hole labels and addresses

hole labels and hole addresses are disjoint in its compressed form. We only work with
well-formed tree segments in this paper.

Fig. 3 demonstrates a graphical interpretation of segments. The left-hand side of Fig.
3 will come as no surprise to those familiar with graphical process models: for example,
Milner’s work on process graphs [11]. Here, the hole identifiers describe the edges of
the graph (wires). However, this is not the only use of hole identifiers. Consider the
right-hand side of Fig. 3. Here, the hole identifier y is used to address multiple edges of
a graph. More than this, consider the appendChild command in Example 1. The tree
segment z�1[x] + y�2[t] updates to z�1[x ⊗ 2[t]] + y�∅C: before update the segment
y�2[t] states that a tree is at address y; after update y�∅C states that the empty tree
is at address y. This example illustrates that edge arity is not necessarily preserved by
update. Our hole identifiers should therefore not be regarded as describing graph edges.
Instead, they describe tree fragments.

Notice that our language manipulates nodes and complete trees. It does not refer to
hole identifiers in any way. However, the operational semantics is greatly simplified by
using either tree contexts or tree segments. We choose tree segments, as this leads to a
simpler interpretation of Hoare triples in Section 5.

Definition 8 (Operational Semantics). We give the operational semantics for the ba-
sic commands of the tree update language in Fig. 4 using an evaluation relation �
relating configuration triples C, σ, s, terminal states σ, s, and faults, where C is a com-
mand, σ is a variable store and s is a tree segment. The set of variables of a command
C is denoted free(C) and is contained within the domain of σ, denoted dom(σ). We omit
the standard cases for skip, assignment, local, sequencing, if-then-else and while-do.

Our style of local Hoare reasoning about programs requires that the commands of our
language be local. A command is local if it satisfies two properties, initially introduced
in [10], known as the safety-monotonicity property and the frame property. The safety-
monotonicity property specifies that, if a command is safe (does not fault) in a given
state, then it is safe in a larger state. The frame property specifies that, if a command is
safe in a given state, then any execution on a larger state can be tracked to an execution
on the smaller state. The commands of our language presented here (and the DOM
commands [6]) are local. For example, consider the behavior of n′ := getRight(n). If
the right sibling of n exists, then its identifier is stored at n’. If n is the last child of some
parent node (meaning n can never obtain a right sibling via segment composition), then
n’ stores the value null. However, if the node n is not present in the tree, or n has no
right sibling or parent, then the command must fault in order to be local.

Small Specifications for Tree Update 187

σ(n) = n s ≡ (w,x,y,z)(s′+ x�m[y ⊗ n[w] ⊗ z])
n′ := getUp(n), σ, s� σ[n′ �→ m], s

σ(n) = n s ≡ (x,y,z)(s′+ x�n[y] ⊗m[z])
n′ := getRight(n), σ, s� σ[n′ �→ m], s

σ(n) = n s ≡ (x,y,z)(s′+ x�m[z ⊗ n[y]])
n′ := getRight(n), σ, s� σ[n′ �→ null], s

σ(n) = n s ≡ (x,y,z)(s′+ x�n[y ⊗m[z]])
n′ := getLast(n), σ, s� σ[n′ �→ m], s

σ(n) = n s ≡ (x)(s′+ x�n[∅C])
n′ := getLast(n), σ, s� σ[n′ �→ null], s

σ(n) = n s ≡ (x,y)(s′′+ x�n[y])
m fresh id s′ ≡ (x,y)(s′′+ x�m[n[y]])
insertNodeAbove(n), σ, s� σ, s′

σ(n) = n s ≡ (x,y)(s′′+ x�n[y])
s′ ≡ (x,y)(s′′+ x�y)

deleteNode(n), σ, s� σ, s′

σ(n) = n s ≡ (x)(s′′+ x�n[t])
s′ ≡ (x)(s′′+ x�n[∅C])

deleteSubtree(n), σ, s� σ, s′

σ(n) = n σ(m) = m
s ≡ (w,x,y,z)(s′′+ x�n[z] + y�m[w])
s′ ≡ (w,x,y,z)(s′′+ x�n[z⊗m] + y�w)
appendNode(n, m), σ, s� σ, s′

σ(n) = n σ(m) = m
s ≡ (x,y,z)(s′′+ x�n[z] + y�m[t])
s′ ≡ (x,y,z)(s′′+ x�n[z⊗t] + y�m)
appendSub(n, m), σ, s� σ, s′

σ(n) = n σ(m) = m
s ≡ (w,x,y,z)(s′′+ x�n[z] + y�m[w])
s′ ≡ (w,x,y,z)(s′′+ x�m[n[z]] + y�w)
moveNodeAbove(n, m), σ, s� σ, s′

For get and move, only some of the cases are given; the other cases are analogous. Our commands
fault when the program state does not satisfy any of the preconditions for that command.

Fig. 4. Operational Semantics for the Basic Tree Update Commands

4 Segment Logic

We introduce Segment Logic. First, we present the logical environment which contains
logical variables for tree contexts, tree segments and hole identifiers. Location name
variables have the standard dual role as both program variables and logical variables.
They are declared in the variable store, but can be quantified like logical variables.

Definition 9 (Logical Environment). An environment e ∈ E is a set of functions

e : (LVarC → CId,X) × (LVarS → SId,X) × (LVarX → X)

mapping tree context variables LVarC = {c, ...} to tree contexts, tree segment variables
LVarS = {s, ...} to tree segments, and hole identifier variables LVarX = {α, β, γ, δ...} to
hole identifiers. We write e[lvar �→ val] for e overwritten with e(lvar) = val.

Segment Logic for trees consists of segment formulae and tree formulae. Just as in
Separation Logic and Context Logic, segment formulae consist of classical formulae,
structural formulae and specific formulae for describing the structure of data (in this
case trees). For this paper, we have chosen to use tree formulae in the style of Ambient
Logic [4], although we do not see a reason why PT could not be first-order logic formu-
lae for describing trees or even XDuce types [9]. Note that adapting this work to other
data structures, such as sequences, just involves changing the tree formulae (or types)
to sequence formulae (or types).

Definition 10 (Formulae). The formulae of Segment Logic for trees consist of the seg-
ment formulae PS and tree formulae PT given by:

188 P. Gardner and M. Wheelhouse

PS,QS ::= PS ⇒ PS | falseS

| ∅S | PS ∗ PS | PS−∗PS | α�PS | α−�PS

| ∃var. PS | ∃lvar. PS | Nα. PS

| α�PT

| s | B

PT,QT ::= PT ⇒ PT | falseT Classical

Structural

| ∃var. PT | ∃lvar. PT Quantifiers

| ∅T | α | n[PT] | PT ⊗ PT Specific

| c | B |@Tα Expression

Let f ree(PS) and f ree(PT) denote the appropriate sets of free variables: α is free in
α�PS α−�PS, α�PT and @Tα, bound in Nα. PS. var is a location name variable and
lvar is a logical variable. The binding precedence, strongest first, is: ⊗, �, ∗, �, −∗,
−�,⇒.

The separating connective ∗, its unit∅S and its right adjoint (the separating magic wand)
−∗, are structural formulae which are known from the Separation Logic literature: for-
mula PS∗QS describes a segment that can be separated into a segment satisfying PS and
a disjoint segment satisfying QS; formula∅S describes the empty segment; and formula
PS −∗ QS describes a segment that, whenever it is joined to a segment satisfying PS,
results in a segment satisfying QS.

Before explaining the other structural formulae, we explain the specific segment for-
mulae: the formula α�PT describes a tree segment with hole address given by the value
of variable α and tree context satisfying tree formula PT. The tree formulae follow the
style of reasoning given by Ambient Logic. For the specific tree formulae, we have ∅T

specifying the empty tree context, α specifying a hole label given by the value of vari-
able α, n[PT] specifying a tree context with top node denoted by node variable n and
subtree satisfying PT, and the composition formula PT ⊗ QT describing a tree context
which can be split into one context satisfying PT and the other disjoint context satisfy-
ing QT. The tree expression formulae include the formula @Tα which describes a tree
that contains α free; the analogous formula for tree segments is derivable.

The other structural connectives are the revelation connective, �, and its right ad-
joint, the revelation magic wand −�. As far as we are aware, these connectives have
not been used in the local reasoning setting before. Together with the freshness quanti-
fier Nα, they have been used in the Ambient Logic [4], following the work of Pitts and
Gabbay [5]. The freshness quantifier enables us to pick a completely new hole identi-
fier. The formula α�PS describes a segment with a top-level hiding binder given by the
value of α such that, after the hiding is removed, the remaining segment satisfies PS.
Consider the tree segment z�1[2 ⊗ 3] ≡ (x)(z�1[x ⊗ 3] + x�2). It satisfies the formula
α�(β�1[α ⊗ trueT] + α�2), when α = x, β = z. The revelation connective α� strips
off the hiding binder, disconnecting the tree into the fragments z�1[x ⊗ 3] + x�2 as
illustrated in Fig. 5. By contrast, the formula α −� PS describes a segment which satis-
fies PS if it is extended with a hiding binder over the hole identifier stored in variable α.
For example, the tree segment z�1[x⊗3]+x�2 satisfies the formula α−�(β�1[2 ⊗ 3])
when α = x. The revelation magic wand α −� adds the binder (x) to the segment
to obtain the tree segment (x)(z�1[x ⊗ 3] + x�2) ≡ z�1[2 ⊗ 3], thus connecting the
fragmented tree into the whole tree as illustrated in Fig. 5. Analogous to the separating
magic wand, we shall see that the revelation magic wand is important for giving the
weakest preconditions of commands.

Small Specifications for Tree Update 189

Fig. 5. Connection and Disconnection of Tree Segments

e, σ, s |=S ∅S ⇔ s ≡ ∅S

e, σ, s |=S PS ∗ QS ⇔ ∃s1, s2. s ≡ s1 + s2 ∧ e, σ, s1 |=S PS ∧ e, σ, s2 |=S QS
e, σ, s |=S PS −∗ QS ⇔ ∀s′. e, σ, s′ |=S PS ∧ (s + s′)�⇒ e, σ, s + s′ |=S QS

e, σ, s |=S α�PS ⇔ ∃x, s′ . e(α) = x ∧ s ≡ (x)(s′) ∧ e, σ, s′ |=S PS
e, σ, s |=S α −� PS ⇔ ∃x, s′ . e(α) = x ∧ s′ ≡ (x)(s) ∧ e, σ, s′ |=S PS
e, σ, s |=S Nα.PS ⇔ ∃x. x#e,s∧ e[α �→ x], σ, s |=S PS

e, σ, s |=S α�PT ⇔ ∃c, x. e(α) = x ∧ s ≡ x�c ∧ e, σ, c |=T PT
e, σ, s |=S s ⇔ s ≡ e(s)
e, σ, s |=S B ⇔ �B�σ = true

e, σ, c |=T ∅T ⇔ c ≡ ∅C

e, σ, c |=T α ⇔ c ≡ e(α)
e, σ, c |=T n[PT] ⇔ ∃c1. c ≡ σ(n)[c1]

∧ e, σ, c1 |=T PT

e, σ, c |=T PT ⊗ QT ⇔ ∃c1, c2. c ≡ c1 ⊗ c2
∧ e, σ, c1 |=T PT

∧ e, σ, c2 |=T QT
e, σ, c |=T c ⇔ c ≡ e(c)
e, σ, c |=T B ⇔ �B�σ = true
e, σ, c |=T @Tα ⇔ e(α) ∈ f ree(c)

(s)� denotes that s is well formed. x#s denotes that x is fresh with respect to s.
We omit the standard semantics for P⇒ Q, false and ∃v.P.

Fig. 6. Satisfaction Relations of Segment Logic for Trees

Definition 11 (Satisfaction Relation). Given a logical environment e and a variable
store σ, the semantics of Segment Logic is given in Fig. 6 by two satisfaction relations
e, σ, s |=S PS and e, σ, c |=T PT defined on tree segments and tree contexts respectively.

Definition 12 (Derived Formulae). The standard classical logic connectives are de-
rived from false and⇒ as usual, and the following useful formulae are defined:

tree(PT) � PT ∧ ¬∃α.@Tα
n � n[∅T]

◦[PT] � ∃m. m[PT]

@Sα � Hβ. (trueS ∗ (α�β ∨ β�α))
♦PS � trueS ∗ PS

Hα. PS � Nα. α�PS

Formula tree(PT) describes a complete tree satisfying PT. Formula n describes a leaf
node identified by n. Formula ◦[PT] allows us to drop the identifier of a node. Formula
@Sα describes a tree segment that contains α free. Formula ♦PS allows us to express
that somewhere in the tree segment there is a segment satisfying PS. Finally, formula
Hα. PS provides the standard hiding quantification [4] allowing us to quantify over hid-
den (restricted) labels.

Example 6 (Segment Logic Examples).
(a) The segment formula α�n[γ] ∗ β�m[δ] describes a tree segment consisting of a

node n with address α and context hole γ, and node m with address β and context
hole δ. The variables n and m cannot denote the same node identifier: similarly, α,
β cannot denote the same hole identifier; neither can γ, δ.

(b) The segment formula α�n[γ] ∗ β�m[tree(c)] describes a tree segment consisting
of a single node n at address α and a complete tree (a tree with no holes) with top
node m at address β. This formula is the safety precondition for the small axiom of
the appendSub(n, m) command. In particular, the formula states that m cannot be an
ancestor of n, as n is disjoint from the tree c.

190 P. Gardner and M. Wheelhouse

(c) The segment formula Hα, β. (δ�r[α ⊗ β] ∗ α�n[γ] ∗ β�m[tree(c)]) describes a tree
segment consisting of a node r at address δ whose children are given by the holes α
and β, and a tree segment satisfying the formula in Example (b). The labels α,β are
under the hiding quantification, and hence denote fresh, unequal, identifiers. This
formula is equivalent to δ�r[n[γ] ⊗ m[tree(c)]], which states that there is a node r
at address δ whose children are n and m.

(d) To specify our language, it is enough to work with the hiding quantifica-
tion. However, to describe the weakest preconditions, we must use revelation.
For example, the weakest precondition of the deleteSubtree(n) command is
∃c. Nα. α�((α�n[∅T] −∗ (α −� PS)) ∗ α�n[tree(c)]). This formula describes
a tree segment which can be separated into a complete tree, with top node n at a
fresh address x denoted by α, and a segment s satisfying (α�n[∅T]) −∗ (α −� PS).
The segment s, when extended to (x)(x�n[∅T] + s), satisfies PS.

5 Local Hoare Reasoning

We use Segment Logic to provide local Hoare reasoning about programs written in
the language given in Definition 5. First, we give a fault avoiding, partial correctness
interpretation of local Hoare triples following [19]. Informally, {PS} C {QS}means that,
when PS holds for a tree segment s, then command C does not fault when run on s and
the result, if C terminates, satisfies QS.

Definition 13 (Local Hoare Triples). Recall the evaluation relation� relating con-
figuration triples C, σ, s, terminal states σ, s and faults in Fig. 4. The fault-avoiding
partial correctness interpretation of local Hoare Triples is given below:

{PS} C {QS} ⇔ ∀e, σ, s. f ree(C) ⊆ dom(σ) ∧ f ree(PS) ∪ f ree(QS) ⊆ dom(σ) ∪ dom(e)
∧ e, σ, s |=S PS ⇒ C, σ, s �� fault ∧ ∀σ′, s′.C, σ, s� σ′, s′⇒ e, σ′, s′ |=S QS

{α�m[β ⊗ n[δ] ⊗ γ] ∧ (n′= n0)} n′ := getUp(n) {(α�m[β ⊗ n[δ] ⊗ γ])[n0/n′] ∧ (n′= m)}
{α�n[δ] ⊗ m[β] ∧ (n′= n0)} n′ := getRight(n) {(α�n[δ] ⊗ m[β])[n0/n′] ∧ (n′= m)}
{α�m[β ⊗ n[δ]] ∧ (n′= n0)} n′ := getRight(n) {(α�m[β ⊗ n[δ]])[n0/n′] ∧ (n′= null)}
{α�n[δ ⊗ m[β]] ∧ (n′= n0)} n′ := getLast(n) {(α�n[δ ⊗ m[β]])[n0/n′] ∧ (n′= m)}

{α�n[∅T] ∧ (n′= n0)} n′ := getLast(n) {(α�n[∅T])[n0/n′] ∧ (n′= null)}
{α�n[β]} insertNodeAbove(n) {α�◦[n[β]]}
{α�n[β]} deleteNode(n) {α�β}

{α�n[tree(c)]} deleteSubtree(n) {α�n[∅T]}
{α�n[γ] ∗ β�m[δ]} moveNodeAbove(n, m) {α�m[n[γ]] ∗ β�δ}
{α�n[γ] ∗ β�m[δ]} appendNode(n, m) {α�n[γ ⊗ m[∅T]] ∗ β�δ}

{α�n[γ] ∗ β�m[tree(c)]} appendSub(n, m) {α�n[γ ⊗ tree(c)] ∗ β�m[∅T]}
n′ and n0 are distinct. The omitted commands have analogous or standard axioms.

Fig. 7. A Selection of the Small Axioms for the Basic Tree Update Commands

Small Specifications for Tree Update 191

Definition 14 (Small Axioms). The Small Axioms for the basic tree update commands
from Fig. 4 are given in Fig. 7.

With Raza, Gardner has developed the formal definitions of footprints and small spec-
ifications for abstract local functions using Abstract Separation Logic [15]. It would
be interesting to extend this abstract theory to the tree segments and reasoning studied
here, and prove that the axioms really are small.

Definition 15 (Inference Rules). The local reasoning inference rules include the stan-
dard Hoare Logic Rules for Sequencing, Consequence, Disjunction, Local Variable, If-
Then-Else, While-Do, and the rules for Separation Frame, Revelation Frame, Auxiliary
Variable Elimination and Fresh Label Elimination given by:

Separation Frame:
{PS} C {QS}

{PS ∗ RS} C {QS ∗ RS} mod(C) ∩ free(RS) = {}
Revelation Frame:

{PS} C {QS}
{α�PS} C {α�QS}

Auxiliary Variable Elimination:
{PS} C {QS}

{∃n. PS} C {∃n.QS} n � free(C)

Fresh Variable Elimination:
{PS} C {QS}

{ Nα. PS} C { Nα.QS}
Recall that the set of variables modified by a command C is denoted mod(C).

The Separation Frame rule is standard from Separation Logic and allows us to extend
the working tree with tree segments that are not used by the command. The Revelation
Frame rule is similar. It allows us to add hiding binders to the working tree, since hole
identifiers are not used by any of our commands. The Fresh Variable Elimination rule is
analogous to the standard Auxiliary Variable Elimination rule. To see how we use these
rules, consider again the small axiom of appendSub. We can extend this axiom using
our inference rules to obtain:

{Hα, β. (ε�r[α ⊗ β] ∗ α�n[γ] ∗ β�m[tree(c)])}
appendSub(n, m)

{Hα, β. (ε�r[α ⊗ β] ∗ α�n[γ ⊗ tree(c)] ∗ β�m[∅T])}
This triple can be simplified using the consequence rule following the discussion in
Example 6(c). In this example, it is natural to use the derived hiding quantification.
Following the discussion in Example 6(d) we can see that the primitive revelation con-
nectives are, however, necessary to obtain the weakest preconditions, a selection of
which are shown in Fig. 8.

Theorem 1 (Soundness and Completeness). The small axioms and inference rules
are sound. For straight line code, they are also complete.

Proof Sketch. Soundness is straightforward to prove. Completeness for straight line
code follows from the derivability of the the weakest preconditions (Fig. 8) from the
small axioms (Fig. 7). See the full paper [7] for further details.

192 P. Gardner and M. Wheelhouse

{∃m, n0.Hα,β,γ,δ.♦α�m[β ⊗ n[δ] ⊗ γ] ∧ (n′= n0) ∧ (α,β,γ,δ −� PS[m/n′])} n′ := getUp(n) {PS}{
∃m, n0.Hα,β,δ.

♦α�n[δ] ⊗ m[β] ∧ (n′= n0) ∧ (α,β,δ −� PS[m/n′])
∨ ♦α�m[β ⊗ n[δ]] ∧ (n′= n0) ∧ (α,β,δ −� PS[null/n′])

}
n′ := getRight(n) {PS}{

∃m, n0.Hα,β,δ.
♦α�n[δ ⊗ m[β]] ∧ (n′= n0) ∧ (α,β,δ −� PS[m/n′])
∨ ♦α�n[∅T] ∧ (n′= n0) ∧ (α −� PS[null/n′])

}
n′ := getLast(n) {PS}

{Hα,β. ((α�◦[n[β]] −∗ (α,β −� PS)) ∗ α�n[β])} insertNodeAbove(n) {PS}
{Hα,β. ((α�β −∗ (α,β −� PS)) ∗ α�n[β])} deleteNode(n) {PS}

{∃c.Hα. ((α�n[∅T] −∗ (α −� PS)) ∗ α�n[tree(c)])} deleteSubtree(n) {PS}
{Hα,β,γ,δ. (((α�m[n[γ]] ∗ β�δ) −∗ (α,β,γ,δ −� PS)) ∗ (α�n[γ] ∗ β�m[δ]))} moveNodeAbove(n, m) {PS}

{Hα,β,γ,δ. (((α�n[γ ⊗ m[∅T]] ∗ β�δ) −∗ (α,β,γ,δ −� PS)) ∗ (α�n[γ] ∗ β�m[δ]))} appendNode(n, m) {PS}
{∃c.Hα,β,γ. (((α�n[γ ⊗ tree(c)] ∗ β�m[∅T]) −∗ (α,β,γ −� PS)) ∗ (α�n[γ] ∗ β�m[tree(c)]))} appendSub(n, m) {PS}

Fig. 8. A Selection of the Weakest Preconditions for our Basic Tree Update Commands

Example 7 (Specifying appendChild). In Example 1 we gave the appendChild pro-
gram. The command’s specification and its derivation are:

{α�n[γ] ∗ β�m[tree(c)]}
appendChild(n, m)

{α�n[γ ⊗ m[tree(c)]] ∗ β�∅T}

{α�n[γ] ∗ β�m[tree(c)]}
local temp := null in {
{α�n[γ] ∗ β�m[tree(c)] ∧ (temp = null)}
{Hδ. α�n[γ] ∗ β�m[δ] ∗ δ�tree(c) ∧ (temp = null)}
insertNodeAbove(m) ;

{Hδ. α�n[γ] ∗ β�◦[m[δ]] ∗ δ�tree(c) ∧ (temp = null)}
temp := getUp(m) ;

{Hδ. α�n[γ] ∗ β�temp[m[δ]] ∗ δ�tree(c)}
{Hε, δ. α�n[γ] ∗ β�temp[ε] ∗ ε�m[δ] ∗ δ�tree(c)}
appendNode(n, m) ;

{Hε, δ. α�n[γ ⊗ m[∅T]] ∗ β�temp[ε] ∗ ε�δ ∗ δ�tree(c)}
{α�n[γ ⊗ m[∅T]] ∗ β�temp[tree(c)]}
{Hε, δ. α�n[γ ⊗ ε] ∗ ε�m[δ] ∗ δ�∅T ∗ β�temp[tree(c)]}
appendSub(m, temp) ;

{Hε, δ. α�n[γ ⊗ ε] ∗ ε�m[δ ⊗ tree(c)] ∗ δ�∅T ∗ β�temp[∅T]}
{α�n[γ ⊗ m[tree(c)]] ∗ β�temp[∅T]}
deleteNode(temp) }

{α�n[γ ⊗ m[tree(c)]] ∗ β�∅T}

Throughout the proof, we use the rules to separate out the footprint of a command,
apply the appropriate small axiom, then use the rules to compress the result back into
the original tree.

Example 8 (Specifying Node Manipulation). In Examples 2, 3 and 4 we gave three node
manipulation programs: simple(n), nodeSwap(n, m) and nodeCycle(n). The specifica-
tions for each of these programs are:

{α�n[m[β] ⊗ γ]}
simple(n)

{α�m[n[β] ⊗ γ]}

{α�n[γ] ∗ β�m[δ]}
nodeSwap(n, m)
{α�m[γ] ∗ β�n[δ]}

{α�n[m[β] ⊗ γ ⊗ l[δ]]}
nodeCycle(n)

{α�l[n[β] ⊗ γ ⊗ m[δ]]}
The derivations of these specifications are shown in Fig. 9.

Example 9 (Specifying queuePop). In a similar way, we can derive the following spec-
ification for the queuePop program from Example 5:

{α�n[m[tree(c)] ⊗ γ ⊗ i[β]]}
queuePop(n)

{α�m[γ ⊗ n[β] ⊗ i[tree(c)]]}

Small Specifications for Tree Update 193

simple derivation:

{α�n[m[β] ⊗ γ]}
local temp, first := null in {{
α�n[m[β] ⊗ γ] ∧ (temp = null)

∧ (first = null)

}

insertNodeAbove(n) ;{
α�◦[n[m[β] ⊗ γ]] ∧ (temp = null)

∧ (first = null)

}

temp := getUp(n) ;
{α�temp[n[m[β] ⊗ γ]] ∧ (first = null)}
first := getFirst(n) ;

{α�temp[n[first[β] ⊗ γ]] ∧ (first = m)}
moveNodeAbove(first, n) ;

{α�temp[n[first[β]] ⊗ γ] ∧ (first = m)}
moveNodeAbove(temp, first) ;

{α�first[temp[n[β] ⊗ γ]] ∧ (first = m)}
deleteNode(temp) }

{α�first[n[β] ⊗ γ] ∧ (first = m)}
{α�m[n[β] ⊗ γ]}

nodeSwap derivation:

{α�n[γ] ∗ β�m[δ]}
local temp := null in {{
α�n[γ] ∗ β�m[δ]
∧ (temp = null)

}

insertNodeAbove(n) ;{
α�◦[n[γ]] ∗ β�m[δ]
∧ (temp = null)

}

temp := getUp(n) ;
{α�temp[n[γ]] ∗ β�m[δ]}
moveNodeAbove(m, n) ;

{α�temp[γ] ∗ β�n[m[δ]]}
moveNodeAbove(temp, m) ;

{α�m[temp[γ]] ∗ β�n[δ]}
deleteNode(temp) }

{α�m[γ] ∗ β�n[δ]}

nodeCycle derivation:

{α�n[m[β] ⊗ γ ⊗ l[δ]]}
local first, last := null in {{
α�n[m[β] ⊗ γ ⊗ l[δ]]
∧ (first = null) ∧ (last = null)

}

first := getFirst(n) ;{
α�n[first[β] ⊗ γ ⊗ l[δ]]
∧ (first = m) ∧ (last = null)

}

last := getLast(n) ;{
α�n[first[β] ⊗ γ ⊗ last[δ]]
∧ (first = m) ∧ (last = l)

}

nodeSwap(n, last) ;{
α�last[first[β] ⊗ γ ⊗ n[δ]]
∧ (first = m) ∧ (last = l)

}

nodeSwap(n, first) }{
α�last[n[β] ⊗ γ ⊗ first[δ]]
∧ (first = m) ∧ (last = l)

}

{α�l[n[β] ⊗ γ ⊗ m[δ]]}

Fig. 9. Derivations of the Specifications for simple, nodeSwap and nodeCycle

6 Conclusion

We have introduced Segment Logic for reasoning about structured data update in gen-
eral, and tree update in particular. Using Segment Logic, we have demonstrated that it is
possible to give small axioms for tree update commands such as DOM’s appendChild
command. In this paper, we have concentrated on a simple, lightweight tree update lan-
guage. It is straightforward to transfer the techniques developed here to Featherweight
DOM [6]. We do not envisage difficulties with extending the approach to the full DOM
specification [16].

A typical Segment Logic proof separates the working tree into segments, identifying
the tree segment which corresponds to the footprint of a command. It applies a small
axiom to this segment, and compresses the updated fragment back into the original tree.
This separation and compression is key to our Segment Logic reasoning. It is not unlike
the unfolding and folding of abstract predicates, due to Parkinson and Vafeiadis [17].
The difference is that reasoning using Separation Logic with abstract predicates is im-
plementation dependent: the formula slist(l, i) describes a list l implemented as a singly-
linked list with heap address i; the formula dlist(l, i, j) describes a list l implemented
as a doubly-linked list with heap addresses i and j. By contrast, reasoning using Seg-
ment Logic is implementation independent: the formula α�P describes e.g. a list or
tree identified and satisfying formula or data type P at abstract address α.

Our next step is to design and formally specify a concurrent XML update lan-
guage, combining ideas from Featherweight DOM, Concurrent Separation Logic [13]
and Segment Logic. We believe that Segment Logic provides us with crucial technol-
ogy for achieving this goal. For example, consider the program deleteTree(n) ||
deleteTree(m) , which should succeed if the two trees being called are disjoint. A
Segment Logic specification of this program is:

194 P. Gardner and M. Wheelhouse

{α�n[tree(c1)] ∗ β�m[tree(c2)]}
deleteTree(n) || deleteTree(m)

{α�∅T ∗ β�∅T}
Segment Logic allows us to establish such natural disjointness properties, since it com-
bines reasoning directly about the abstract tree structure with using the separating con-
junction ∗. Our goal is to extend the update language presented here with parallel com-
position and critical regions, and adapt the Concurrent Separation Logic reasoning to
provide a formal, compositional specification of a concurrent XML update language.

Acknowledgments. We thank Thomas Dinsdale-Young for many interesting discus-
sions regarding this work and Viktor Vafeiadis for the name Segment Logic. Gardner
acknowledges support of a Microsoft/RAEng Senior Research Fellowship. Wheelhouse
acknowledges support of an EPSRC DTA award.

References

1. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: Modular automatic assertion checking
with separation logic. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.)
FMCO 2005. LNCS, vol. 4111, pp. 115–137. Springer, Heidelberg (2006)

2. Calcagno, C., Dinsdale-Young, T., Gardner, P.: Adjunct elimination in context logic for trees.
In: Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp. 255–270. Springer, Heidelberg (2007)

3. Calcagno, C., Gardner, P., Zarfaty, U.: Context logic and tree update. In: POPL, vol. 40,
ACM, New York (2005)

4. Cardelli, L., Gordon, A.D.: Ambient logic. Mathematical Structures in Computer Science (in
press, 2006)

5. Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable binding. Formal
Aspects of Computing 13 (2002)

6. Gardner, P., Smith, G., Wheelhouse, M., Zarfaty, U.: Local Hoare reasoning about DOM. In:
PODS, vol. 27, ACM, New York (2008)

7. Gardner, P., Wheelhouse, M.: Small specifications for tree update (extended version) (2009),
http://www.doc.ic.ac.uk/˜mjw03/PersonalWebpage/pdfs/moveFull.pdf

8. Gardner, P., Zarfaty, U.: Reasoning about high-level tree update and its low-level implemen-
tation. Technical Report DTR09-9, Imperial College (2009)

9. Hosoya, H., Pierce, B.C.: Xduce: A statically typed XML processing language. In: TOIT
2003, vol. 3, ACM, New York (2003)

10. Ishtiaq, S., O’Hearn, P.W.: BI as an assertion language for mutable data structures. In: POPL
2001, vol. 36, ACM, New York (2001)

11. Milner, R.: Pi-nets: A graphical form of π-calculus. In: Sannella, D. (ed.) ESOP 1994. LNCS,
vol. 788, Springer, Heidelberg (1994)

12. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes I & II. Information and
Computation 100 (1992)

13. O’Hearn, P.W.: Resources, concurrency and local reasoning. Theoretical Computer Sci-
ence 375 (2007)

14. O’Hearn, P.W., Reynolds, J., Yang, H.: Local reasoning about programs that alter data struc-
tures. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142, p. 15. Springer,
Heidelberg (2001)

15. Raza, M., Gardner, P.: Footprints in local reasoning. In: Amadio, R.M. (ed.) FOSSACS 2008.
LNCS, vol. 4962, pp. 201–215. Springer, Heidelberg (2008)

http://www.doc.ic.ac.uk/~mjw03/PersonalWebpage/pdfs/moveFull.pdf

Small Specifications for Tree Update 195

16. Smith, G.: Providing a formal specification for DOM core level 1. PhD Thesis, (to be sub-
mitted) (December 2009)

17. Vafeiadis, V.: Modular fine-grained concurrency verification. Technical Report UCAM-CL-
TR-726, Cambridge (2008)

18. W3C. Dom: Document object model. W3C recommendation (2005),
http://www.w3.org/DOM/

19. Yang, H., O’Hearn, P.W.: A semantic basis for local reasoning. In: Nielsen, M., Engberg, U.
(eds.) FOSSACS 2002. LNCS, vol. 2303, p. 402. Springer, Heidelberg (2002)

http://www.w3.org/DOM/

Author Index

Bodei, Chiara 29
Bruni, Roberto 46
Bucchiarone, Antonio 61
Bugliesi, Michele 76

De Giacomo, Giuseppe 147
de’Liguoro, Ugo 1
Dezani-Ciancaglini, Mariangiola 1
Dragoni, Nicola 92

Ferrari, Gian Luigi 29
Ferreira, Carla 161

Gadducci, Fabio 46
Gardner, Philippa 178

Lafuente, Alberto Lluch 46, 61
Lohmann, Niels 110

Macedonio, Damiano 76
Marconi, Annapaola 61
Marcus, Monica 128
Mazzara, Manuel 92

Patrizi, Fabio 147
Pino, Luca 76
Pistore, Marco 61

Rossi, Sabina 76

Vaz, Cátia 161

Wheelhouse, Mark 178
Wolf, Karsten 110

	Title
	Preface
	Organization
	Table of Contents
	Sessions and Session Types: An Overview
	Introduction
	Basic Concepts and Systems
	Extensions
	Extensions of the Calculus
	Extensions of the Typing
	Other Extensions

	Session Embedding in Programming Paradigms
	Functional Paradigm
	Object-Oriented Paradigm

	Implementations
	Functional Languages
	Object-Oriented Languages

	Related Concepts and Formalisms
	Generic Process Types
	Contracts
	Conversation Calculus
	Calculi for Web Services

	Conclusions
	References

	Choreography Rehearsal
	Introduction
	The Calculus
	The Control Flow Analysis for SC
	Managing Session: A New Version of SC and a New Version of the Analysis
	The Network Coordination Policies Calculus and Its Analysis
	Checking Choreography
	Concluding Remarks
	References

	A Graph Syntax for Processes and Services
	Introduction
	An Algebra of Hierarchical Graphs
	Graphical Interpretation of Workflows
	Graphical Interpretation of CaSPiS
	Conclusion
	References

	A Formalisation of Adaptable Pervasive Flows
	Introduction
	The Running Example: Warehouse Management
	Background
	WS-BPEL and APFs
	WS-BPEL and Blite

	A Formal Language for Adaptable Pervasive Flows
	The Box Unloading Example
	Conclusion and Future Work
	References

	Compliance Preorders for Web Services
	Introduction
	A Core Contract Language
	Compliance Tests
	Deadlock-Safe Compliance
	Safe Compliance
	Symmetric vs Asymmetric Compliance

	Compliance Preorders
	Characterizing the Deadlock-Safe Preorder
	Characterizing the Safe-Preorder

	Filtered Preorders
	Conclusion
	References

	A Formal Semantics for the WS-BPEL Recovery Framework
	Introduction
	BPEL and Its Ambiguous Specification
	Contribution of the Paper

	The π-Calculus Way to Dependable Composition
	Our Approach

	The Composition Calculus
	Syntax
	Semantics

	A Case Study: The BPEL RF
	Details from the BPEL Specification

	Formal Semantics of a (Simplified) BPEL RF
	Syntax
	Semantics
	Compensation Handler
	Fault Handler
	Event Handler
	BPEL Scope
	Example
	Is It Really Simpler?
	Design of BPEL Orchestration Engines

	Summary, Related Works and Criticisms
	References

	Realizability Is Controllability
	Introduction
	A Formal Framework for Choreographies
	Realizability Notions
	From Choreographies to Orchestrations
	Choreography Monitor Service
	Link to Controllability
	Synthesizing Realizing Peers

	Asynchronous Communication
	Combining Choreographies and Local Models
	Related Work
	Conclusion

	Specification and Verification of Multi-user Data-Driven Web Applications
	Introduction
	Specification of Multi-user Web Applications
	Linear Time Temporal Properties
	Undecidability Results
	Decidable Versions of the Verification Problem
	Conclusions
	References

	Automated Composition of Nondeterministic Stateful Services
	Introduction
	The Framework
	Composition via Simulation
	Simulation and Safety Games
	Safety-Game Structures
	From Composition to Safety Games

	Using tlv for Computing Compositions
	Conclusions
	References

	Towards Compensation Correctness in Interactive Systems
	Introduction
	A Compensating Calculus
	Syntax
	Well-Formedness
	Operational Semantics

	Examples
	Order Transaction
	Order Transaction with Warehouse

	Process Correctness
	Related Work and Concluding Remarks
	References

	Small Specifications for Tree Update
	Introduction
	Tree Update Language
	TreeSegments
	Segment Logic
	Local Hoare Reasoning
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

