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Preface

The 14th International Conference on Developments in Language Theory (DLT
2010) was held in London, Ontario, Canada on the beautiful campus of the
University of Western Ontario. It was a four-day conference starting August 17
and ending August 20, 2010.

The DLT conference series is one of the major international conference series
in language theory. It started in Turku, Finland in 1993. Initially, it was held
once every two years. Since 2001, it has been held every year, odd years in Europe
and even years in other continents.

The papers submitted to DLT 2010 were from 27 countries all over the
world, which include Australia, Austria, Belgium, Canada, Czech Republic,
Denmark, Finland, France, Germany, Hungary, Iceland, India, Italy, Japan,
Latvia, Moldova, The Netherlands, Poland, Portugal, Russian Federation, Slo-
vakia, South Korea, Spain, Sweden, Tunisia, UK, and the USA. Each paper was
reviewed by three referees and discussed by the members of the Program Com-
mittee. Finally, 32 regular papers were selected by the Program Committee for
presentation at the conference. There were six invited talks given at the con-
ference. They were given by (in alphabetic order) Dora Giammarresi (Rome),
Markus Holzer (Giessen), Oscar Ibarra (Santa Barbara), Lila Kari (London, On-
tario), Michel Rigo (Liege), and Grzegorz Rozenber (Leiden). In addition, there
were six posters on display at the conference. This volume includes all the 32
contributed papers, the papers or abstracts from the 6 invited speakers, and a
2-page abstract for each of the 6 poster papers.

We warmly thank all the invited speakers and all the authors of the submitted
papers. Their efforts were the bases of the success of the conference.

We would like to thank all the members of the Program Committee and the
external referees. Their work in evaluating the papers and comments during the
discussions were essential to the decisions on the contributed papers. We would
also like to thank all the members of the DLT Steering Committee, especially
its former Chair Grzegorz Rosenberg, for their ideas and efforts in forming the
Program Committee and selecting the invited speakers.

We wish to thank the conference sponsors: The University of Western On-
tario, the Fields Institute, European Association for Theoretical Computer Sci-
ence, and Academia Europaea.

We would also like to thank the staff of the Computer Science Editorial at
Springer, for their help in making this volume available before the conference.
Their timely instructions were very helpful to our preparation for this volume.

August 2010 Sheng Yu
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Reaction Systems:
A Model of Computation Inspired by

Biochemistry

Andrzej Ehrenfeucht1 and Grzegorz Rozenberg1,2

1 Department of Computer Science, University of Colorado at Boulder

430 UCB, Boulder, CO 80309, USA
2 Leiden Institute of Advanced Computer Science, Leiden University

Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

Natural Computing (see, e.g., [5] or [6]) is concerned with human-designed com-
puting inspired by nature as well as with computation taking place in nature.
In other words, natural computing investigates models and computational tech-
niques inspired by nature as well as it investigates, in terms of information
processing, processes taking place in nature.

Both strands of research are very active. The first strand is perhaps more
established. Well-known research areas here are cellular automata, neural com-
puting, evolutionary computing, molecular computing, quantum computing,
membrane computing, and swarm intelligence. Representative areas for the sec-
ond research strand are computational nature self-assembly, computational
nature of brain processes, computational nature of developmental processes,
computational nature of biochemical reactions, and systems biology approach
to bionetworks. Research in natural computing is gunuinely interdisciplinary,
and it (especially research from the second strand) underscores the important
(but often forgotten in general public) fact that computer science is also the
fundamental science of information processing. As such, it is also a basic science
for other scientific disciplines, e.g., biology.

One of the fascinating goals of natural computing is to understand, in terms
of information processing, the functioning of a living cell. An important step
in this direction is understanding of interactions between biochemical reactions.
Clearly, on a suitable (high) level of abstraction, the functioning of a living cell
is determined by interactions of a huge number of biochemical reactions that
take place in living cells.

An important initial observation is that interactions between biochemical re-
actions as well as the functioning of an individual reaction is determined by two
mechanisms: facilitation and inhibition.

This leads to the formal definition of a reaction as a triplet of finite nonempty
sets b = (R, I, P ), where R is the set of reactions that facilitate (are needed for)
b to take place, I (disjoint from R) is the set of inhibitors each of which forbids
b from taking place, and P is the set of products produced by b if/when it takes

Y. Gao et al. (Eds.): DLT 2010, LNCS 6224, pp. 1–3, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 A. Ehrenfeucht and G. Rozenberg

place. For b to take place in a given state T (a set of biochemical entities), R
must be included in it, while I must be disjoint with it – we say then that b is
enabled in/by T . Then, a finite set of reactions A is enabled in T if any of its
reactions is enabled, and the result of A taking place in T is the union of the
products of all reactions from A that are enabled in T .

A reaction system (see, e.g., [1]) is an ordered pair A = (S, A), where A
is a finite set of reactions and S is a finite set of entities including all entities
involved in reactions from A. The most straightforward view of A is that it
creates a successor state from a given state (where a state of A is a subset of
S): for U, V ⊆ S, V is a successor of U in A if resA (U) ⊆ V , where resA (U)
is the result of applying to U all reactions from A. This transition relation
becomes a function (of two variables) if we consider also the notion of context:
for U, V, C ⊆ S, V is the C-successor of U in A if V = resA (U) ∪ C; we say
then that C is the context part of V , and resA (U) is the result part of V . A
possible interpretation of the context part of the state is that it represents the
influence of “the rest of the system,” hence it is assumed that A is a part of
a bigger (reaction) system. Given a sequence γ = C0, C1, · · · , Cn with n ≥ 1
of contexts, and assuming that W0 = C0 is the initial state of A , one gets
deterministically the state sequence (determined by γ) τ = W0, W1, · · · , Wn,
where for all i ∈ {1, · · · , n}, Wi = resA (Wi−1) ∪ Ci.

Thus the state sequence τ is determined by the interactive process (γ, δ),
where δ is the sequence resA (W0), resA (W1), · · · , resA (Wn) – this interactive
process formalizes the interaction between A and the rest of the system repre-
sented by γ. The notion of an interactive process is a central notion in investi-
gating the behavior of reaction systems.

There are many research lines pursued in the framework of reaction systems.
Here are some examples.

1. Investigation of the relationship between reaction systems and other models
of computation, see, e.g., [1].

2. Investigation of problems intrinsic to biochemical systems, such as formation
of compounds or evolution, see, e.g., [2].

3. Investigation of fundamental notions such as the notion of time in biochem-
ical systems, see, e.g., [3].

4. Investigation of (transition) functions definable by reaction systems, see,
e.g., [4].

In our lecture we will review some of these research lines. The lecture is of an
expository character and it is self-contained.
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A Brief Excursion Inside the Class of Tiling
Recognizable Two-Dimensional Languages�

Dora Giammarresi

Dipartimento di Matematica, Università di Roma “Tor Vergata”
via della Ricerca Scientifica, 00133 Roma, Italy

giammarr@mat.uniroma2.it

Abstract. Tiling recognizable two-dimensional languages, also known as REC,
generalize recognizable string languages to two dimensions and share with them
several theoretical properties. Nevertheless REC is not closed under complemen-
tation and this implies that it is intrinsically non-deterministic. As result, all sub-
classes corresponding to different notion of unambiguity and determinism define
a hierarchy inside REC. Moreover we show that some definitions of unambiguity
are equivalent to corresponding notions of determinism and therefore correspond
decidable classes closed under complementation and linear parsing algorithms.

Keywords: Automata and Formal Languages. Two-dimensional languages.
Tiling systems. Unambiguity, Determinism.

1 Introduction

Two-dimensional languages (or picture languages) are sets of two-dimensional arrays
of symbols chosen in a finite alphabet (called pictures): they generalize to two dimen-
sions (2D for short) the classical string languages. The study of picture languages is
highly motivated by pattern recognition and image processing problems as well as by
all the applications of tiling problems in math, topology, physics and biology. The first
generalization of finite-state automata to two dimensions can be attributed to M. Blum
and C. Hewitt who in 1967 introduced the notion of a four-way automaton moving on
a two-dimensional tape as the natural extension of a one-dimensional two-way finite
automaton (see [5]). The model was not successful since it does not satisfies important
properties. Since then, many approaches have been presented in the literature in order
to find in 2D a counterpart of what regular languages are in one dimension: finite au-
tomata, grammars, logics and regular expressions (see for example [6,10,21,14,23]). In
this paper we focus on the family REC of tiling recognizable picture languages (see
[10,11] that have been widely investigated and that it is considered as a valid candi-
date to represent a counter part to 2D of regular string languages. The definition of
REC takes as starting point a characterization of recognizable string languages in terms
of local languages and projections (cf. [9]): the pair of a local picture language and a
projection is called tiling system.

� This work was partially supported by MIUR Project “Aspetti matematici e applicazioni emer-
genti degli automi e dei linguaggi formali” (2007), by ESF Project “AutoMathA” (2005-2010).

Y. Gao et al. (Eds.): DLT 2010, LNCS 6224, pp. 4–15, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



A Brief Excursion Inside the Class of Tiling Recognizable 2D Languages 5

The definition of REC in terms of tiling systems turns out to be very robust: in [11,13]
it is shown that the family REC has a characterization in terms of logical formulas (a
generalization of Büchi’s theorem for strings to 2D). Moreover in [15], it is proved that
REC have a counterpart as machine models in the two-dimensional on-line tessellation
acceptor (OTA) introduced by K. Inoue and A. Nakamura in [14]. Other models of
automata for REC are proposed in [2,6,20]. Tiling systems can be also simulated by
domino systems [15] and Wang tiles [8] and grammars [7]. A crucial difference lies
in the fact that the definition of recognizability by tiling systems is intrinsically non-
deterministic. Deterministic machine models to recognize two-dimensional languages
have been considered in the literature: they always accept classes of languages smaller
than the corresponding non-deterministic ones (see for example, [5,14,22]). This seems
to be unavoidable when jumping from one to two dimensions. Further REC family
is not closed under complementation and therefore the definition of any constraint to
force determinism in tiling systems should necessary result in a class smaller than REC.
Strictly connected with this problems are the negative results on parsing in REC. The
non-determinism implies that when recognizing a picture of m row and n columns,
once reached a given position one may eventually backtrack on all positions already
visited, that is on O(mn) steps. Moreover in [17] it is proved that the parsing problem
for REC languages is NP-complete.

In formal language theory, an intermediate notion between determinism and non-
determinism is the notion of unambiguity. In an unambiguous model, we require that
each accepted object admits only one successful computation. Both determinism and
unambiguity correspond to the existence of a unique process of computation, but while
determinism is a ”local” notion, unambiguity is a fully ”global” one. Unambiguous
tiling recognizable two-dimensional languages have been introduced in [10], and their
family is referred to as UREC. Informally, a picture language belongs to UREC when
it admits an unambiguous tiling system, that is if every picture has a unique pre-image
in its corresponding local language. In [3], the proper inclusion of UREC in REC is
proved but it is also proved that it is undecidable whether a given tiling system is un-
ambiguous. From a computational side, this implies that the complexity of the parsing
is as in REC i.e. at each step of the computation it can be necessary to backtrack on
all already visited positions. As direct consequence UREC cannot be equivalent to any
deterministic model for REC.

The main goal is then to find subclasses for REC that inherit important properties but
also allow feasible computations. Moreover it could be interesting to prove that some
notion of unambiguity and determinism coincide also in the 2D settings.

Remark that another difference between unambiguity and determinism is that de-
terminism is always related to a scanning strategy to read the input. In the string case
the scanning is implicitly assumed to be left-to right and in fact deterministic automata
are defined related to this direction. Moreover since deterministic, non-ambiguous and
non-deterministic models are all equivalent there is no need to consider determinism
from right-to-left (referred to as co-determinism). Nevertheless it is worthy to remark
that not all regular string languages admits automata that are both deterministic and
co-deterministic. In the two-dimensional case we have to consider all the scanning di-
rections from left, right, top and bottom sides.
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By exploiting the different possibilities of scanning for a two-dimensional array in
[1] there are introduced different notions of unambiguity. We consider tiling systems
whose parsing computations can have at each position a backtracking on at most m+n
steps. Such definitions lie between those of unambiguity and determinism (as long as we
consider that a deterministic computation has zero backtracking steps at each position)
while they all coincide with determinism when pictures degenerate in strings (i.e. when
considering one-row pictures).

The informal definitions are very simple and natural. A tiling system is column-
unambiguous if, when used to recognize a picture by reading it along a left-to-right
or right-to left direction, once computed a local column, there is only one possible next
local column. As consequence in a parsing by a column-unambiguous tiling system of a
picture with m rows, the backtracking at each step is at most of m steps. Similarly there
are defined row-unambiguous and diagonal-unambiguous tiling systems corresponding
to computations that proceed by rows or by diagonals, respectively. The corresponding
families of languages are denoted by Col-UREC, Row-UREC and Diag-UREC. In [1]
there are proved necessary conditions for a language to be in Col-UREC and in Row-
UREC. Using such conditions one can show that families Col-UREC and Row-UREC
are strictly contained in UREC. In a different set-up it is also shown that Diag-UREC is
strictly included both in Col-UREC and Row-UREC.

Very interestingly we can prove that diagonal-unambiguous tiling systems are equiv-
alent to some deterministic tiling systems where the uniqueness of computation is guar-
anteed by certain conditions on the set of local tiles: the corresponding language family
is denoted by DREC ([1]). Similar results hold for classes Col-UREC and Row-UREC
whose union turns to be equivalent to another ”deterministic” class named Snake-DREC
[19]. All those classes are closed under complementation [1,19]. As result, when we
consider this sort of ”line” unambiguity we can prove equivalence with deterministic
models and therefore we guarantee a parsing linear in the size (i.e. number of rows
times number of columns) of the input.

2 Basic Definitions and Notations

We recall some definitions about two-dimensional languages. The notations used and
more details can be mainly found in [11].

A picture (or a two-dimensional string) over a finite alphabet Σ is a two-dimensional
rectangular array of elements of Σ. Given a picture p ∈ Σ∗∗, let p(i,j) denote the
symbol in p with coordinates (i, j), where position (1, 1) corresponds to top-left corner.
A sub-picture of p is a rectangular sub-array of p.

Given a picture p, we let |p|row and |p|col denote the number of rows and columns
of p, respectively, and let |p| = (|p|row, |p|col) denote the picture size. The set of all
pictures over Σ of size (m, n) is denoted by Σm,n. The set of all pictures over Σ
is denoted by Σ∗∗. We remark that set Σ∗∗ includes also all the empty pictures, i.e.
pictures of sizes (m, 0) or (0, n) for all m, n ≥ 0. In this paper we will not be interested
in empty pictures and therefore we will always consider set Σ++.

A two-dimensional (picture) language over an alphabet Σ is a subset of Σ++.
Between pictures and picture languages, there can be defined some kind of concate-

nation operations. Let p and q be two pictures over an alphabet Σ.



A Brief Excursion Inside the Class of Tiling Recognizable 2D Languages 7

The column concatenation of p and q (denoted by p � q) and the row concatenation
of p and q (denoted by p� q) are partial operations, defined only if |p|row = |q|row and
|p|col = |q|col, respectively, and are given by:

p � q = p q p� q =
p
q

.

These definitions can be extended in the usual way to picture languages. Given two
picture languages L1,L2 over an alphabet Σ we can define L1 � L2 and L1 � L2.
Furthermore, by iterating the concatenation operations, we obtain the column and row
closure or star. The column closure of a picture languageL (denoted by L+�) and the
row closure of L (denoted by L+�) are defined respectively as

L+� =
⋃

i

Li � and L+� =
⋃

i

Li�

where L1 � = L, Ln� = L(n−1)�
� L and L1� = L, Ln� = L(n−1)� � L.

To define a picture language it is often necessary to identify the symbols on the
boundary of the pictures. For any picture p with m rows and n columns, we consider the
bordered picture p̂ obtained by surrounding p with a special boundary symbol # �∈ Σ:
positions of p̂ will be indexed in {0, 1, · · · , m + 1} × {0, 1, · · · , n + 1}.

We refer to the parsing problem as the problem of deciding whether a given input
picture p belongs to a language L specified in same way. A parsing algorithm is based
on a reading of the given picture throughout a recognizer model. As in the string case,
some recognizer models can have a sort of built-in scanning strategy while for some
others the way to read the picture should be explicitly specified. We introduce for this
some notations.

Given a picture, the four sides left, right, top and bottom will be referred by the
initial letter while the four corners will be referred to as the tl−, tr−, bl− and br-
corner, respectively. We assume that a scanning strategy starts at one corner and then
explore the picture by following some ”direction”. We consider all side-to-side direc-
tions l2r, r2l, t2b, and b2t. For example, a scanning follows a l2r-direction, if we read
position (x, y) only after all positions to the its left that is after all positions (i, j)
with j < y. Similarly for all the other side-to-side directions. Another possibility is
to put somehow the two dimensions together and consider corner-to-corner directions:
tl2br, tr2bl, bl2tr, br2tl. We say that a scanning of a picture follows a tl2br-direction if
we can read position (x, y) only after all positions to the top and to the left of (x, y) that
is after all positions (i, j) with i ≤ x and j ≤ y. Similarly for the other corner-to-corner
directions. Observe that, unlike the 1D case, once fixed a scanning direction there can
be different reading paths on the picture p along that direction.

2.1 A Small Collection of Examples

In this section we collects some picture languages that will be mentioned in the paper
to better explain the peculiarity of various classes of languages here discussed.

Example 1. Language of squares over a one-letter alphabet Σ = {a}
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Example 2. Language on a two-letters alphabet Σ = {0, 1} of squares whose positions
in the main diagonal contain 1 while all other positions contain 0.

Example 3. LanguageLfc=lc of pictures over Σ = {a, b}, with more than one column,
whose first column is equal to the last one.

From this example we can generate some ”variants” as the followings. Obviously all
those examples can be rewritten using rows instead of columns.

Example 4. Language L∃c=fc of pictures whose first column is equal to some other
one; language L∃c=lc language of pictures whose last column is equal to some other
one; L∃c′=c′′ of pictures that have two equal columns. All languages are defined over
Σ = {a, b} and all pictures have more than one column.

We also mention some examples that are somewhat a two-dimensional version of non-
regular string languages. All languages are defined over a two-letters alphabet.

Example 5. Language L1 of pictures of size (n, 2n) (i.e. as two squares) such that the
left halve is equal to the right one.

Example 6. Language L2 of pictures of size (n, 2n) (i.e. as two squares) such that the
left halve contains all as while the right halve contains all bs (each row is a string anbn).

Example 7. Language L3 of pictures such that first row is a palindrome.

2.2 Local Picture Languages

An interesting simple family of picture languages is the one of local picture languages
( LOC) first introduced in [10]. It will be used to define the class REC of recognizable
picture languages defined in the next section.

We first introduce the following notation: �p� denotes the set all possible sub-pictures
of size (2, 2) of the bordered picture p̂. In the sequel, a picture of size (2, 2) will be also
referred to as a tile.

Informally, a picture language is local if it can be defined by a finite set of allowed
tiles. More precisely, let Γ be a finite alphabet.

Definition 1. A two-dimensional language L ⊆ Γ++ is local if there exists a set Θ of
tiles over Γ ∪ {#} such that L = {p ∈ Γ++| �p� ⊆ Θ} and we will write L = L(Θ).

Notice that this family is a natural generalization to two dimensions of the family of
local string languages defined by means of a set of strings of length 2 over an alpha-
bet that includes also border symbols. As simple example, notice that the language of
squares over two-letter in Example 2 is a local language since it can be described by the
following set of tiles.

Θ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 0
0 1

,
0 0
1 0

,
0 1
0 0

,
0 0
0 0

,
#1
#0

,
#0
#0

,
0 0
##

,
0 1
##

,

0#
1#

,
0#
0#

,
##
0 0

,
##
1 0

,
##
#1

,
##
0#

,
#0
##

,
1#
##

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭
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Notice that we exploit the 1s in the diagonal to verify the square shapes of the pictures
and in fact it is easy to understand that language in Example 1 of squares with only one
symbol is not a local language.

We remark that given a local language L (by means of a finite set of tiles Θ), one
can do the parsing of a picture p of size (m, n) in time linear in mn. A way to do this
computation is to choose any scanning strategy (for example choose the t2b-direction,
and read p from the tl-corner by proceeding row by row reading each row from left
to right, till reaching the br-corner). At each step of the scanning, say reading position

(i, j) in p, check that the sub-picture
p(i,j) p(i+1,j)

p(i,j+1) p(i+1,j+1)
belongs to the set Θ of allowed

tiles.

3 Tiling Recognizable Picture Languages

We now define tiling recognizable picture languages by means of local languages and
projection. We recall first the notion of projection of a language. Let Γ and Σ be two
finite alphabets and let π : Γ → Σ be a mapping we call projection. In the usual way
we extend projections to pictures and to picture languages over Γ . If p = π(p′) we also
refer to p′ as a pre-image of p. Similarly for languages.

Definition 2. A tiling system (TS) is a quadruple (Σ, Γ, Θ, π) where Σ and Γ are finite
alphabets, Θ is a set of tiles over Γ ∪ {#} and π : Γ → Σ is a projection.

Therefore, a tiling system is composed by a local language over a given alphabet Γ and
a projection π : Γ → Σ.

Definition 3. A two-dimensional language L ⊆ Σ∗∗ is recognized by a tiling system
(Σ, Γ, Θ, π) if L = π(L(Θ)). The family of all tiling recognizable picture languages is
denoted by REC.

Tiling systems (Σ, Γ, Θ, π) for picture languages are in some sense a generalization
of automata for string languages. Indeed, in the one-dimensional case, the quadruple
(Σ, Γ, Θ, π) corresponds exactly to the graph of the automaton: Γ represents the edges
set, Θ describes the edges adjacency while π gives the edges labels. A word of the local
language defined by Θ corresponds to an accepting path in the graph and its projection
by π gives the actual word recognized by the automaton (cf. [9]). Then, when rectangles
degenerate in strings the definition of recognizability coincides with the classical one
for strings. Moreover observe that the definition of recognizability in terms of tiling sys-
tems is implicitly non-deterministic. In fact, by referring to the one-dimensional case,
if no particular constraints are given for the set Θ, the tiling system T = (Σ, Γ, Θ, π)
corresponds in general to a non-deterministic automaton.

Let us give first two simple examples.

Example 8. Let L be the language of squares over one letter alphabet Σ = a as in
Example 1. Then L is recognizable by a tiling system that have as local language the
language in Example 2 and a projection π that maps both 0 and 1 to letter a.
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Example 9. Let Lfc=lc be the language of pictures over Σ = {a, b} whose the first
column is equal to the last one. Language Lfc=lc ∈ REC. Informally we can define a
local language where information about first column symbols of a picture p is brought
along horizontal direction, by means of subscripts, to match the last column of p. Tiles
are defined to have always same subscripts within a row while, in the right-border tiles,
subscripts and main symbols should match. Here are some left border, right border and

middle tiles, respectively:
# zz

# tt
,

zz #
tt #

, and
zz sz

tt rt
with r, s, z, t ∈ Σ. Below it is an

example of a picture p ∈ Lfc=lc together with a corresponding local picture p′.

p =

b b a b b
a a b a a
b a a a b
a b b b a

p′ =

bb bb ab bb bb

aa aa ba aa aa

bb ab ab ab bb

aa ba ba ba aa

.

The definition of REC in terms of tiling systems turns out to be very robust: in [11,13]
it is shown that the family REC and the family of languages defined by existential
monadic second order formulas coincide. And this is actually the generalization of
Büchi’s theorem for strings to two-dimensional languages. Moreover in [15], it is proved
that REC have a counterpart as machine models in the two-dimensional on-line tessel-
lation acceptor (OTA) introduced by K. Inoue and A. Nakamura in [14]. Other models
of automata for REC are proposed in [2,6,20]. Tiling systems can be also simulated by
domino systems [15] and Wang tiles [8] and grammars [7].

Furthermore, the family REC is closed with respect to different types of operations
(see [11] for all the proofs): row and column concatenation and their closures, union,
intersection and rotation. As immediate application, consider the following example.

Example 10. All languages in Example 4 are in REC: they can be obtained as:
L∃c=fc = Lfc=lc

�Σ∗∗

L∃c=lc = Σ∗∗ �Lfc=lc

L∃c=c′ = Σ∗∗ �Lfc=lc
�Σ∗∗.

It is interesting to remark that REC contains also some languages whose one-dimensional
version is non regular such as languages in Examples 6 and 7.

All those properties confirm the close analogy with the one-dimensional case. The
big difference with regular string languages regards the complementation operation.
In [11] it is shown that the language in Example 5 does not belong to REC while its
complement does. As result family REC is not closed under complementation and this
suggests that it is not possible to eliminate non-determinism from REC family. Strictly
connected with this problems are the negative results on parsing in REC.

The parsing problem in REC. Let L be a language specified by means of a tiling
system. To check whether a given input picture p belongs to L we have to find one of
the pre-images of p. To do this, we start a computation that takes p and rewrites symbols
in p in the local alphabet, in a way that is compatible with the projection π and with
the allowed set of local tiles. The process is accomplished following some scanning
strategy and ends when all symbols in p are rewritten in the local alphabet. Observe
that a tiling system do not force to any particular scanning strategy to read the picture.
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Moreover note that, as already remarked, such computation process is in general non-
deterministic: at each step there can be several choices; when there is no possible tile
matching the next position, one can go back on already scanned positions, till the last
choice and replace it with another one. This means that during the computation of a
picture of size (m, n), to rewrite a given position one may eventually backtracks on all
positions where tiles were already placed, that is on O(mn) steps.

It can be proved that the parsing problem for REC languages is NP-complete (see
[17]) where TS are called homomorphisms of local lattice languages.

A natural step forward in the investigation of REC family is therefore to consider
subclasses where the computation is feasible. We always pretend that, when pictures
have only one row, all the definitions coincide with corresponding ones in the strings
case. We consider the notions of unambiguity and determinism: recall that unambiguity
prescribes only one accepting computation while determinism admits only one possible
next ”move” at each step of the computation. In some sense the ”uniqueness” is required
globally for unambiguity while it should be also local for determinism. Notice that the
notion of determinism always implies a reading strategy for the input (in the string case
is implicitly assumed from left to right). Recall that for string languages deterministic,
unambiguous and non-deterministic versions of the computational model correspond
to the same class of languages, namely recognizable languages (this also assures that
a deterministic class defined along a right-to-left reading direction would also coincide
with the same class). As discussed before, because of non-closure of REC under com-
plementation we cannot expect same results in two dimensions but we can still hope in
an equivalence between unambiguity and determinism. Let us consider first the notion
of unambiguity.

3.1 Unambiguous Recognizable Two-Dimensional Languages

The definition of unambiguous recognizable two-dimensional language was first given
in [10]. Informally, a tiling system is unambiguous if every picture has a unique local
pre-image.

Definition 4. A tiling system (Σ, Γ, Θ, π) is an unambiguous tiling system for a lan-
guage L ⊆ Σ++ if and only if for any picture p ∈ L there exists a unique local picture
p′ ∈ L(Θ) such that p = π(p′).

A two-dimensional languageL ⊆ Σ∗∗ is unambiguous if and only if it admits an unam-
biguous tiling system and denote by UREC the family of all unambiguous recognizable
two-dimensional languages. Obviously UREC ⊆ REC.

It can be verified that the TS for the language given in Example 9 is unambiguous
and therefore Lfc=lc belongs to UREC. In [3,12] it is proved a necessary condition for
a language to be in UREC. Then, using such condition it is shown that language L∃c=c′

given in Example 4 does not belong to UREC and therefore it is proved that family
UREC is strictly contained in REC. In [4] it is shown that the strict inclusion holds
even in the case of unary alphabet. Remark that from the fact that language L∃c=c′ we
infer also that UREC is not closed under column-concatenation. In [3] it is proved that
UREC is not closed under row and column concatenations and star operations while it is
closed under rotation and intersection operations. The closure under complementation
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of UREC is still an open problem. From a computational side, the parsing for a picture
of size (m, n) seems to be still exponential in mn since at each step of the computation
it could be necessary to backtrack on all already visited positions.

In [3] it is also proved that it is undecidable whether a given tiling system is unam-
biguous. As direct consequence class UREC cannot be equivalent to any deterministic
model for REC.

4 Some Results on Unambiguity-Determinism Equivalences

In [1] there are introduced different notions of unambiguity by exploiting the different
possibilities of scanning for a two-dimensional array. We consider tiling systems whose
parsing computations can have at each position a backtracking on at most O(m + n)
steps. Such definitions lie between those of unambiguity and determinism (as long as we
consider that a deterministic computation has zero backtracking steps at each position)
while they all coincide with determinism when pictures degenerate in strings (i.e. when
considering one-row pictures).

4.1 Column-, Row- and Diagonal-Unambiguous Languages

The informal definitions are very simple and natural. A tiling system is l2r-unambiguous
if, when used to recognize a picture by reading it along a l2r direction, once computed
a local column, there is only one possible next local column. Recall from Section 2 that
a strategy that follows a l2r directions visits position (x, y) only after all positions (i, j)
with j < y and therefore it does a sort of column-by-column visit. Formally we have.

Definition 5. A tiling system (Σ, Γ, Θ, π) is l2r-unambiguous if for any column col′ ∈
Γ m,1 ∪ {#}m,1, and picture p ∈ Σm,1, there exists at most one local column col′′ ∈
Γ m,1, such that π(col′′) = p and �p′� ⊆ Θ where p′ = {#}1,2�(col′�col′′)�{#}1,2.

The r2l-unambiguity is defined likewise. A tiling system is column-unambiguous if it is
d-unambiguous d ∈ {l2r, r2l} and that a language is column-unambiguous if it is rec-
ognized by a column-unambiguous tiling system. Finally, we denote by Col-UREC the
class of column-unambiguous languages. Remark that, a column-unambiguous tiling
system is such that, during the parsing of a picture of size (m, n), the backtracking at
each step is at most m. This is because the next local column is uniquely determined
without ambiguity after backtracking of m steps at most.

Similarly, define d-unambiguous tiling system for d ∈ {t2b, b2t} that bring to defi-
nition of row-unambiguous tiling systems and languages and of class Row-UREC. For
reasonings similar as before, during the parsing of a picture of size (m, n) with a row-
unambiguous tiling system the backtracking at each step is at most n (i.e. inside the
current row).

We consider also corner-to-corner directions. We say that a tiling system is tl2br-
unambiguous if, when used to recognize a picture by reading it along a tl2br direction,
once computed a local diagonal (for this direction it is a counter-diagonal), there is
only one possible next local diagonal. The formal definition can be given following the
footsteps of Definition 5. In fact, consider a set X = {x(i,j) ∈ Σ | (i, j) ∈ I} then
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if we take the indices set I = {(i, k) | i = 0, 1, . . . , m} then X is a column over Σ
while taking I = {(k, i) | i = 0, 1, . . . , n} then X is a row over Σ. Moreover if we
take I = {(i, k − i) | i = 0, 1, . . . , k} then X is a counter-diagonal over Σ. Then a
formal definition should only provide technical conditions for verifying that the kth and
the (k + 1)th diagonals are ”coherent” with the given set of local tiles.

Similar properties define d-unambiguous tiling systems, for any corner-to-corner di-
rection d that correspond all together to definition of diagonal-unambiguous languages
and class Diag-UREC. For reasonings similar as before, during the parsing of a picture
of size (m, n) with a diagonal-unambiguous tiling systems it is at most of min(m, n)
steps (i.e. inside the current diagonal).

In [1] there are proved necessary conditions for a language to be in Col-UREC and
in Row-UREC. Using such conditions one can show that families Col-UREC and Row-
UREC are strictly contained in UREC. In a different set-up it is also shown that Diag-
UREC is strictly included both in Col-UREC and Row-UREC.

4.2 Deterministic Tiling Recognizable Languages

Recall that in a deterministic TS it should be guaranteed the uniqueness of each step in
a computation process; moreover, as in the string case, notion of determinism need to
be related to a particular scanning direction. We consider the corner-to corner directions
and give the following formal definition.

Definition 6. A tiling system (Σ, Γ, Θ, π) is tl2br-deterministic if for any γ1, γ2, γ3 ∈

Γ ∪ {#} and σ ∈ Σ there exists at most one tile
γ1 γ2

γ3 γ4
∈ Θ, with π(γ4) = σ.

Similarly we define d-deterministic tiling systems for any corner-to-cornerdirection d. A
recognizable two-dimensional languageL is deterministic, if it admits a d-deterministic
tiling system for some corner-to-corner direction d. We denote by DREC, the class of
Deterministic Recognizable Two-dimensional Languages.

It is easy to show [1] that it is decidable whether a given tiling system is d-deterministic
for some direction d. Moreover in [1] it is proved that, as one would expect in a deter-
ministic setting, class DREC is closed under complementation.

If we closely observe definition of diagonal unambiguity, we notice that local symbol
in a position on the diagonal does not depend on the other local symbols on the same
diagonal. Then, by techniques as in [15], it can be proved the following theorem.

Theorem 1. DREC = Diag-UREC

Recently in [19] it was given a new definition of determinism for TS called snake-
determinism. For our convenience we rename it here as t2b-snake-determinism. It is in
fact based on a scanning strategy along the side-to-side t2b-direction that starts from
the tl-corner, scans the first row rightwards, then scans the second row leftwards, and so
on. This means that we scan odd rows rightwards and even row leftwards, assigning a
symbol from the local alphabet to each position. Moreover tiles for the odd and for the
even rows are tl2br- and tr2bl- deterministic, respectively.
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Definition 7. A tiling system (Σ, Γ, Θ, π) is t2b-snake-deterministic if Σ, Γ can be
partitioned as Γ = Γ1 ∪ Γ2 , Θ = Θ1 ∪Θ2, where

- (Σ, Γ, Θ1, π) is tl2br-deterministic and Θ1 contains only tiles like
a2 b2

a1 b1

with ai, bi ∈ Γi ∪ {#} for i = 1, 2;

- (Σ, Γ, Θ2, π) is tr2bl-deterministic and Θ2 contains only tiles like
a1 b1

a2 b2

with ai, bi ∈ Γi ∪ {#} for i = 1, 2 and (a1, b1) �= (#, #);

In [19] it is proved the following theorem.

Theorem 2. The class of languages recognized by t2b-snake-deterministic TS and the
class of languages recognized by t2b-unambiguous TS coincide.

Analogous definitions can be given for b2t-, l2r-. r2l-snake-determinism and prove cor-
responding versions of Theorem 2. A recognizable two-dimensional language L is
snake-deterministic, if it admits a d-snake-deterministic tiling system for some side-
to-side direction d. We denote by snake-DREC, the class of Snake Deterministic TS
Recognizable Two-dimensional Languages. (Equivalently: snake-DREC is the closure
under rotation of class of languages recognized by t2b-snake-deterministic TS). In [19]
it is proved that the snake-DREC is closed under complementation and that it holds the
following theorem, analogous of Theorem 1 for the row- and column-unambiguity.

Theorem 3. Snake-DREC= Row-Urec ∪ Col-UREC.

Observe that Theorems 1 and 3 somehow extend to two dimensions the equivalence
between determinism and unambiguity for regular string languages.

Summarizing all the mentioned results we have the following relations that show the
more complex situations we find when we go from one to two dimensions.

Theorem 4. The following inclusion relations are all strict:
DREC=Diag-UREC⊂ (Col-UREC ∪ Row-UREC)=Snake-DREC⊂ UREC ⊂ REC.
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Abstract. We summarize results on the complexity of regular(-like) ex-
pressions and tour a fragment of the literature. In particular we focus
on the descriptional complexity of the conversion of regular expressions
to equivalent finite automata and vice versa, to the computational com-
plexity of problems on regular-like expressions such as, e.g., membership,
inequivalence, and non-emptiness of complement, and finally on the op-
eration problem measuring the required size for transforming expressions
with additional language operations (built-in or not) into equivalent or-
dinary regular expressions.

1 Introduction

Regular expressions were originally introduced in [42] and allow a lovely set-
theoretic characterization of languages accepted by deterministic (DFA) or non-
deterministic finite automata (NFA). The regular expressions over an alphabet Σ
and the languages they describe are defined inductively in the usual way:1 ∅, λ,
and every letter a with a ∈ Σ is a regular expression, and when s and t are
regular expressions, then (s∪ t), (s · t), and (s)∗ are also regular expressions. The
language defined by a regular expression r, denoted by L(r), is defined as follows:
L(∅) = ∅, L(λ) = {λ}, L(a) = {a}, L(s∪t) = L(s)∪L(t), L(s·t) = L(s)·L(t), and
L(s∗) = L(s)∗. Compared to automata, regular expressions are better suited for
human users and therefore are often used as interfaces to specify certain pattern
or languages. For example, in the widely available programming environment
Unix, regular(-like) expressions can be found in legion of software tools like,
e.g., awk, ed, emacs, egrep, lex, sed, vi, etc., to mention a few of them. The
syntax used to represent them may vary, but the concepts are very much the
same everywhere.

Since the regular languages are closed under several more operations, the ap-
proach to add operations like intersection (∩), complementation (∼), or squar-
ing (2) does not increase the expressive power of regular expressions. However,
the descriptional power, that is, the succinctness of such regular-like expressions

1 For convenience, parentheses in regular expressions are sometimes omitted and the
concatenation is simply written as juxtaposition. The priority of operators is specified
in the usual fashion: concatenation is performed before union, and star before both
product and union.

Y. Gao et al. (Eds.): DLT 2010, LNCS 6224, pp. 16–30, 2010.
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can be increased. On the other hand, growing succinctness of the expressions can
increase the computational complexity of decision problems. This motivates the
investigation of regular and regular-like expressions (even with a set of operations
capturing subregular language families only). In general RE(Σ, ϕ), where ϕ is
a set of (regularity preserving) operations, denotes all regular(-like) expressions
over alphabet Σ using only operations from ϕ. Hence RE(Σ, {∪, ·, ∗}) refers to
the set of all ordinary regular expressions, which is sometimes also denoted by
RE(Σ) or simply RE, while, for example, RE(Σ, {∪, ·, ∼}) defines the star-free
languages. This gives rise to our tour on the subjects listed in the abstract of
problems related to the descriptional and computational complexity of regular-
like expressions. It obviously lacks completeness and we give our view of what
constitute the most recent interesting links to the considered problem areas.

There is no general agreement in the literature about the proper measure for
regular expressions. We summarize some important ones: The measure size is de-
fined to be the total number of symbols (including ∅, λ, alphabetic symbols from
alphabet Σ, all operation symbols, and parentheses) of a completely bracketed
regular expression (for example, used in [1], where it is called length). Another
measure related to the reverse polish notation of a regular expression is rpn,
which gives the number of nodes in the syntax tree of the expressions (parenthe-
ses are not counted). This measure is equal to the length of a (parenthesis-free)
expression in postfix notation [1]. The alphabetic width awidth is the total num-
ber of alphabetic symbols from Σ (counted with multiplicity) [14,48]. Relations
between these measures have been studied, e.g., in [14,15,38,24].
Theorem 1. Let L be a regular language. Then
1. size(L) ≤ 3 · rpn(L) and size(L) ≤ 8 · awidth(L) − 3,
2. awidth(L) ≤ 1

2 · (size(L) + 1) and awidth(L) ≤ 1
2 · (rpn(L) + 1), and

3. rpn(L) ≤ 1
2 · (size(L) + 1) and rpn(L) ≤ 4 · awidth(L) − 1,

where size(L) (rpn(L), awidth(L), respectively) refers to the minimum size (rpn,
awidth, respectively) among all ordinary regular expressions denoting L.
Further not so well known measures for the complexity of regular expressions
can be found in [7,14,15,29]. To our knowledge, these latter measures received
far less attention to date.

2 Descriptional Complexity of Regular Expressions

The equivalence of the expressive power of regular expressions and finite automata
dates back to [42]. Originally, Kleene’s proof involved McCulloch-Pitts nerve nets
[45], which are a precursor of the concept of finite automata. An elementary con-
struction given in [50] shows that an n-state DFA over a binary alphabet can be
simulated by a McCulloch-Pitts nerve net with 2n+1 neurons, and by a counting
argument that at least Ω((n · log n)1/3) neurons are required in the worst case [4]
to simulate an n-state DFA. The upper bound was further improved to O(

√
n)

in [34,39], which was shown to be tight under some additional constraints. After
this little detour on McCulloch-Pitts nerve nets now let us focus on the direct
transformation of regular expressions into equivalent finite automata.
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2.1 From Regular Expressions to Finite Automata

A classical way to transform regular expressions into equivalent finite automata
is Thompson’s construction [59], which builds NFAs for trivial regular expres-
sions and then composes them into more complex NFAs by connecting these
automata by λ-transitions in parallel for union, in sequence for concatenation,
and in an iterative fashion for Kleene star. This yields an NFA with λ-transitions
(λ-NFA) with a linear number of transitions. Thompson’s classical construction
went through several stages of optimization (cf. [38]). After a preliminary result
in [38] and a tight bound in terms of reverse polish notation from [30] also a
tight bound in terms of alphabetic width was found in [24]. We summarize the
results from [24,30,38] in the next theorem—here size of a automaton refers to
the sum of the number of states and the number transitions:

Theorem 2. Let n ≥ 1, and r be a regular expression of alphabetic width n.
Then size 22

5 n is sufficient for an equivalent λ-NFA accepting L(r). In terms
of reverse polish length, the bound is 22

15 (rpn(r) + 1) + 1. Furthermore, there are
infinitely many languages for which both bounds are tight.

The aid for the tight bound in terms of the alphabetic width stated in the
previous theorem is a certain normal form for regular expressions, which is a
refinement of the star normal form from [8] and reads as follows—transformation
into strong star normal form preserves the described language, and is weakly
monotone with respect to all usual size measures:

Definition 3. The operators ◦ and • are defined on regular expressions2 over
alphabet Σ. The first operator is given by: a◦ = a, for a ∈ Σ, (r ∪ s)◦ = r◦ ∪ s◦,
r?◦ = r◦, r∗◦ = r◦; finally, (rs)◦ = rs, if λ /∈ L(rs) and r◦ ∪ s◦ otherwise. The
second operator is given by: a• = a, for a ∈ Σ, (r ∪ s)• = r• ∪ s•, (rs)• = r•s•,
r∗• = r•◦∗; finally, r?• = r•, if λ ∈ L(r) and r?• = r•? otherwise. The strong
star normal form of an expression r is then defined as r•.

What about the transformation if λ-transitions are not allowed? One way to
obtain such an NFA directly is to construct the position automaton, or Glushkov
automaton [22]. Intuitively, the states of this automaton correspond to the al-
phabetic symbols or, more precisely, to positions between subsequent alphabetic
symbols in the regular expression. An accessible advantage of this construction
is given, e.g., in [2,6]: for a regular expression of alphabetic width n ≥ 0, the po-
sition automaton always has precisely n+1 states. Simple examples, such as the
singleton set {an}, show that this bound is tight. Nevertheless, several optimiza-
tions give NFAs having often a smaller number of states, while the underlying
constructions are mathematically sound refinements of the basic construction. A
structural comparison of the position automaton with its refined versions, namely
2 Since ∅ is only needed to denote the empty set, and the need for λ can be substituted

by the operator L? = L ∪ {λ}, an alternative is to introduce also the ?-operator and
instead forbid the use of ∅ and λ inside non-atomic expressions. This is sometimes
more convenient, since one avoids unnecessary redundancy already at the syntactic
level [24].
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the so-called follow automaton [38] and the equation automaton, or Antimirov
automaton [5], is given in [3,11].

Despite the mentioned optimizations, all of these constructions share the same
doom on a large number of transitions. An easy upper bound on the number of
transitions in the position automaton is O(n2), independent of alphabet size. It
is not hard to prove that the position automaton for the regular expression

rn = (a1 ∪ λ) · (a2 ∪ λ) · · · (an ∪ λ)

has Ω(n2) transitions. It appears to be difficult to avoid such a quadratic blow-
up in actual size if we stick to the NFA model. Also if we transform the ex-
pression first into a λ-NFA and perform the standard algorithm for removing
λ-transitions, see, e.g., [33], we obtain no better result. This naturally raises the
question of comparing the descriptional complexity of NFAs over regular expres-
sions. For about 40 years, it appears to have been considered as an unproven
factoid that a quadratic number of transitions will be inherently necessary in
the worst case (cf. [35]). A barely superlinear lower bound of Ω(n log n) on the
size of any NFA accepting the language of the expression rn was proved [35].
More interestingly, the main result of that paper is an algorithm transforming a
regular expression of size n into an equivalent NFA with at most O(n · (log n)2)
transitions. In fact, this upper bound made their lower bound look reasonable
at once! Shortly thereafter, an efficient implementation of that conversion algo-
rithm was found [31], and the lower bound was improved in [44] to Ω(n · (log n)2

log log n ).
Later work [56] established that any NFA accepting language L(rn) indeed must
have at least Ω(n · (log n)2) transitions. So the upper bound of O(n · (log n)2)
from [35] is asymptotically tight:

Theorem 4. Let n ≥ 1 and r be a regular expression of alphabetic width n. Then
size n · (log n)2 is sufficient for an equivalent NFA to accept L(r). Furthermore,
there are infinitely many languages for which this bound is tight.

Notice that the example witnessing the lower bound is over an alphabet of grow-
ing size. For alphabets of size two, the upper bound was improved first [17]
to O(n · log n), and then even to n ·2O(log∗ n), where log∗ denotes the iterated bi-
nary logarithm [56]. Thus the question, posed in [36], whether a conversion from
regular expressions over a binary alphabet into NFAs of linear size is possible,
is almost settled by now.

Theorem 5. Let n ≥ 1 and r be a regular expression of alphabetic width n over
the binary alphabet. Then size n · 2O(log∗ n) is sufficient for an equivalent NFA
to accept L(r).

Finally, we briefly discuss the problem of converting regular expressions into
equivalent DFAs. Again, this problem has been studied by many authors. A tax-
onomy comparing many different conversion algorithms is given in [60]. Regard-
ing the descriptional complexity, a tight bound of 2n + 1 in terms of alphabetic
width is already given in [43]. The mentioned work also establishes a matching
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lower bound, but for a rather nonstandard definition of size. In terms of alpha-
betic width, the best lower bound known to date is from [15]. Together, we have
the following result:

Theorem 6. Let n ≥ 1 and r be a regular expression of alphabetic width n
over a binary alphabet. Then size 2n + 1 is sufficient for a DFA to accept L(r).
In contrast, for infinitely many n there are regular expressions rn of alphabetic
width n over a binary alphabet, such that the minimal DFA accepting L(rn) has
at least 5

42
n
2 states.

2.2 From Finite Automata to Regular Expressions

There are a few classical algorithms for converting finite automata into regular
expressions, which look different at first glance. A comparison of the state elim-
ination algorithm [9], algorithms based on Arden’s lemma [12], or McNaughton-
Yamada’s algorithm [48], is given in [55]. There it is pointed out, that all of these
approaches are more or less reformulations of the same underlying algorithmic
idea, and can be recast as variations of the standard state elimination algorithm.
It produces a regular expression of alphabetic width at most |Σ| · 4n, where n is
the number of states of the finite automaton. This exponential bound is known to
be asymptotically tight, because in [14] the existence of languages Ln, for n ≥ 1,
that admit n-state finite automata over an alphabet of size O(n2), but require
regular expression size at least 2Ω(n) was shown. The question whether a com-
parable size blow-up can also occur for constant alphabet size [15] was settled
by two different groups of researchers recently. A lower bound of 2Ω(

√
n/ log n)

for the succinctness gap between DFAs and regular expressions over binary al-
phabets was reported in [20], while a parallel effort [25] resulted in a tight lower
bound of 2Ω(n). We thus have the following result:

Theorem 7. Let n ≥ 1 and A be an n-state DFA or NFA over an alphabet of
size polynomial in n. Then size 2Θ(n) is sufficient and necessary in the worst
case for a regular expression describing L(A). This already holds for constant
alphabets with at least two letters.

We remark that the hidden constant in the lower bound obtained for binary
alphabets is much smaller compared to the lower bound of Ω(2n) previously
obtained in [14] for large alphabets. This is no coincidence. Perhaps surprisingly,
one can prove an upper bound of o(2n) when given a DFA over a binary alphabet:

Theorem 8. Let n ≥ 1 and A be an n-state DFA over a binary alphabet. Then
size O (1.742n) is sufficient for a regular expression describing L(A). Such an
expression can be constructed by state elimination in output polynomial time.

Similar bounds, but with somewhat larger constants in place of 1.742, can be
derived for larger alphabets. Moreover, the same holds for NFAs having a com-
parably low density of transitions. This result is derived using the classical state
elimination algorithm. One simply has to choose a good elimination ordering,
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which is the sequence in which the states are eliminated. Finite automata hav-
ing a simple structure in the underlying undirected graph tend to allow better
elimination orderings. Having a relatively low number of transitions, DFAs over
binary alphabets are nothing but one specific utterance of this more general
phenomenon. The general theorem reads as follows—cycle rank is a structural
measure for regular languages proposed in [13], which measures the degree of
connectivity of directed graphs.

Theorem 9. Let n ≥ 1 and A be an n-state NFA over alphabet Σ, whose un-
derlying directed graph has cycle rank at most r. Then size |Σ| ·4r ·n is sufficient
for a regular expression describing L(A). Such an expression can be constructed
by state elimination.

For the particular cases of finite or unary regular languages, the situation is sig-
nificantly different. Indeed, the case of finite languages was already addressed in
the very first paper on the descriptional complexity of regular expressions [14].
They give a specialized conversion algorithm for finite languages, which is differ-
ent from the state elimination algorithm. Their results imply that every n-state
DFA accepting a finite language can be converted into an equivalent regular ex-
pression of size nO(log n). They also provide a lower bound of nΩ(log log n) when
using an alphabet of size O(n2). The challenge of tightening this gap was set-
tled in [29], where a lower bound technique from communication complexity is
adapted, which originated in the study of monotone circuit complexity.

Theorem 10. Let n ≥ 1 and A be an n-state DFA or NFA over an alphabet Σ
of size nO(1). Then size nΘ(log n) is sufficient and necessary in the worst case for
a regular expression describing L(A). This still holds for constant alphabets with
at least two letters.

The case of unary languages was discussed in [15]. Here the main idea is that
one can exploit the simple cycle structure of unary DFAs and of unary NFAs
in Chrobak normal form. The main results are summarized in the following
theorem.

Theorem 11. Let n ≥ 1 and A be an n-state DFA over an alphabet Σ of
size nO(1). Then size Θ(n) is sufficient and necessary in the worst case for a
regular expression describing L(A). When considering NFAs, the upper bound
changes to O(n2).

3 Computational Complexity of Regular-Like Expressions

We discuss the computational complexity of the decision problems membership
(MEMBER), inequivalence (INEQ), non-empty complement (NEC), for regular-
like expressions over the alphabet Σ and set of operations ϕ. Algorithms that
solve the equivalence problem have been given, for example, in [10,21], where the
former also handles regular expressions extended by the operations intersection
and complementation.
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Key tools for proving lower bounds of computational complexity are reducibil-
ity techniques [54]. We say that a set A is reducible to set B if the ability to
answer questions about B implies the ability to answer questions about A by
effective methods. If the reducibility of A to B can be done efficiently, then the
computational complexity of answering the question for A is a lower bound for
the computational complexity of answering questions for B. In particular, we
consider three reducibilities: A ≤log

m B if there is a many-one function f : A → B
in L such that for all x we have x ∈ A if and only if f(x) ∈ B. Sharper trans-
lational results are obtained for refined reductions [49] by defining A ≤log-lin

m B
if there is a many-to-one function f : A → B in L and a constant c such that
for all x we have x ∈ A if and only if f(x) ∈ B and |f(x)| ≤ c · |x| + c. Addi-
tionally, we consider A ≤p-lin

m B if there is a many-to-one function f : A → B in
P ∩ DLINSPACE and a constant c such that for all x we have x ∈ A if and only
if f(x) ∈ B and |f(x)| ≤ c · |x| + c.

We start to summarize known results about the membership problem. The
tight complexity for MEMBER(Σ, {∪, ·, ∗}), i.e., the problem to decide whether
a word belongs to the language described by a regular-like expression from
the set RE(Σ, {∪, ·, ∗}), has been reported in [40]. In [58] the containment of
the membership problem for regular-like expressions with complementation and
squaring operators in the complexity class P has been derived. Later in [51]
it has been shown that the membership problem for the star-free expressions
RE(Σ, {∪, ·, ∼}) is complete in P. This implies the completeness also for the
former class of regular expressions. We summarize these results in the following
theorem, and since in our settings the symbols of Σ can be encoded by a bi-
nary alphabet without changing the complexity, in the sequel we stick with the
alphabet {0, 1}; this is also valid for the other problems under consideration.

Theorem 12. 1. MEMBER({0, 1}, {∪, ·, ∗}) is ≤log
m -complete in L.

2. Let ϕ ⊆ {∗, 2}. Then MEMBER({0, 1}, {∪, ·, ∼} ∪ ϕ) is ≤log
m -complete in P.

By proving that the recognition problem for context-free languages is ≤log-lin
m -

reducible to the membership problem of regular-like expressions with intersection
operation, its hardness for the complexity class LOGCFL followed [52]. In the
same paper the containment is shown, so that its completeness is obtained:

Theorem 13. Both MEMBER(Σ, {∪, ·, ∗, ∩}) and MEMBER(Σ, {∪, ·, 2, ∩})
are ≤log-lin

m -complete in LOGCFL.

For the special case of unary alphabets the currently known bound is NL [52]:

Theorem 14. NL ≤log
m MEMBER({1}, {∪, ·, ∩}).

Next we consider the problem NEC(Σ, {∪, ·, ∗})—recall that non-empty comple-
ment means that the described language is not equal to Σ∗. The following result
on classical regular expressions is obtained in [49,57].

Theorem 15. NEC({0, 1}, {∪, ·, ∗}) is ≤log-lin
m -complete in NLINSPACE.

In [57] it is shown that adding the squaring operator increases the complexity
significantly:
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Theorem 16. NEC({0, 1}, {∪, ·, ∗, 2}) is ≤log-lin
m -complete in EXPSPACE. In

particular, there is a constant c > 1 such that NEC(Σ, {∪, ·, ∗, 2}) /∈ NSPACE(cn)
and NEC(Σ, {∪, ·, ∗, 2}) ∈ NSPACE(2n).

Basically, the idea to prove the lower bound is to encode computations of a
complexity bounded Turing machine in regular-like expressions. For the upper
bound, given an expression of length n first the squarings are expanded which
gives an expression whose length is at most 2n. Then Theorem 15 is applied
which gives a space bound of O(2n).

Clearly, NEC is a special case of INEQ in the sense that, if a regular-like ex-
pression describes the language Σ∗, then an algorithm which decides INEQ(Σ, ϕ)
immediately yields an algorithm that decides NEC(Σ, ϕ). Formally, we have
NEC(Σ, ϕ) ≤log-lin

m INEQ(Σ, ϕ). A lower bound on the complexity of NEC is
also a lower bound on that of INEQ. We conclude that we can immediately
replace NEC by INEQ in Theorems 15 and 16, which yields the next result.

Theorem 17. INEQ({0, 1}, {∪, ·, ∗}) is ≤log-lin
m -complete in NLINSPACE, and

the set INEQ({0, 1}, {∪, ·, ∗, 2}) is ≤log-lin
m -complete in EXPSPACE.

The proofs of the lower bounds in the previous theorems use reducibilities to
regular-like expressions of star-height one. Therefore, the lower bounds also hold
for the respective NEC or INEQ problems restricted to expressions of star-height
one.

We now turn to show how the removal of the Kleene star operation affects
the complexities of the problems [57,58]. Clearly, these are finite word problems.
If r ∈ RE(Σ, {∪, ·}) or r ∈ RE(Σ, {∪, ·, 2}), the language L(r) described by r
is finite. In fact, if size(r) = n, then w ∈ L(r) implies |w| ≤ 2n. As intuitively
expected in this cases the complexities are better to some extend.

Theorem 18. INEQ({0, 1}, {∪, ·}) is ≤log
m -complete in NP and, moreover, the

problem INEQ({0, 1}, {∪, ·, 2}) is ≤log-lin
m -complete in NEXP. Therefore there are

rational constants c, d > 1 such that INEQ({0, 1}, {∪, ·, 2}) /∈ NTIME(cn) and
INEQ({0, 1}, {∪, ·, 2}) ∈ NTIME(dn).

One reason for considering inequivalence rather than equivalence problems is
that such problems are more suitable to solution by nondeterministic devices,
which simply can guess a word in the symmetric difference. If an inequivalence
problem turns out to be complete in some nondeterministic complexity class
that is not (known to be) closed under complementation, then it may not be im-
mediate (or even true) that the corresponding equivalence problem is complete
in that class. On the other hand, since deterministic time (space) classes are
closed under complementation for constructible bounds, a lower bound on the
deterministic complexity of an inequivalence problem immediately gives a lower
bound on the deterministic complexity of the corresponding inequivalence prob-
lem. Since NP is not known to be closed under complementation, Theorem 18
does not provide an interesting lower bound of INEQ({0, 1}, {∪, ·}). However, it
implies an exponential upper bound: INEQ({0, 1}, {∪, ·}) ∈ DTIME(cn) for some
constant c. The exponential difference between the upper and lower bounds on
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deterministic time is closely related to famous open problems in complexity
theory [57]:

Theorem 19

1. NEC({0, 1}, {∪, ·, ∗}) ∈ P if and only if NLINSPACE ⊆ P.
2. INEQ({0, 1}, {∪, ·}) ∈ P if and only if P = NP.
3. NEC({0, 1}, {∪, ·, ∗}) ∈ DLINSPACE iff DLINSPACE = NLINSPACE (LBA

problem).

Next, we consider regular-like expressions with the additional operation com-
plementation. This includes the class of star-free expressions containing only
the operations union, concatenation, and complementation. Even though star-
free expressions cannot describe all regular languages, they can describe cer-
tain regular languages much more succinctly than classical regular expressions.
Roughly speaking, it is possible to encode computations of one-tape one-head
Turing machines which are tow(logb�, 0) space bounded in star-free expressions
of length O(n), where tow(k, �) is the tower function given by tow(0, �) = � and
tow(k + 1, �) = 2tow(k,�), for k ≥ 0 and real �. So, several decision problems
are enormously difficult. An analysis of the algorithm for checking equivalence
presented in [10] revealed that for no fixed k the running time is bounded above
by tow(k, n). It turned out that this complexity is inherent to the problem. So,
the use of complementations makes decision problems expensive [57]:

Theorem 20. INEQ({0, 1}, {∪, ·, ∗, ∼}) ∈ NSPACE(tow(n, 0)).

The number of levels of the tower function is closely related to the depth of
nesting of complementation operations in the expressions being checked for
equivalence [57]:

Theorem 21. Let k ≥ 1 be a constant integer. If the depth of nesting of
complementation operations in the regular-like expressions is at most k, then
INEQ({0, 1}, {∪, ·, ∗, ∼}) ∈ NSPACE(tow(k, 2 · n)).

Now we turn to the lower bounds for the problems [57]: The next theorem
concerns the case of unlimited complementation nesting.

Theorem 22. NSPACE(tow(logb�, 0)) ≤p-lin
m NEC({0, 1}, {∪, ·, ∼}) and addi-

tionally NEC({0, 1}, {∪, ·, ∼}) /∈ NSPACE(tow(logb�, 0)).

Whether the gap between the upper and lower bound can be decreased is an
open question. Better matching upper and lower bounds are obtained by fixing
the depth of complementation nesting. The next theorem summarizes the results
shown in [57].

Theorem 23. Let k ≥ 1 be a constant integer. In the below given statements
the NEC-problems are restricted to regular-like expressions of nesting depth of
complementation at most k.

1. Then the decision problem NEC({0, 1}, {∪, ·, ∗, ∼}) is ≤p-lin
m -complete in⋃

d≥0 NSPACE(tow(k, d ·n)). In particular, there is a rational constant c > 0
such that NEC({0, 1}, {∪, ·, ∗, ∼}) /∈ NSPACE(tow(k, c · n)) but on the other
hand NEC({0, 1}, {∪, ·, ∗, ∼}) ∈ NSPACE(tow(k, 2 · n)).
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2. Moreover,
⋃

d≥0 NSPACE(tow(k−3, d·√n)) ≤p-lin
m NEC({0, 1}, {∪, ·, ∼}), for

all integers k ≥ 4.
3. NEC({0, 1}, {∪, ·, ∼}) /∈ NSPACE(tow(k − 3, c ·

√
n)), for a rational c > 0.

The remaining operation we consider is the intersection. In [37] several results
concerning various decision problems for regular-like expressions with intersec-
tion operation are obtained. E.g., NEC({0, 1}, {∪, ·, ∗, ∩}) /∈ NSPACE(c

√
n/ log n),

for some c > 1, is shown. Thus the same lower bound follows for INEQ. The
upper bound for the problems is the complexity class EXPSPACE, since it is easy
to build a NFA with 2n states which describes the language of a regular-like ex-
pression with intersections of size n. Then a product construction can be used
for every intersection [16]. Therefore, we obtain an upper bound cn, for some
constant c ≥ 1. The lower bound INEQ has been improved to NSPACE(cn/ log n)
in [57]. Finally, in [16] it has been further improved to match the upper bound
for both problems:

Theorem 24. Both NEC({0, 1}, {∪, ·, ∗, ∩}) and INEQ({0, 1}, {∪, ·, ∗, ∩}) are
≤log-lin

m -complete in EXPSPACE.

The results so far revealed that the complexity of INEQ(Σ, ϕ) or NEC(Σ, ϕ)
does not depend significantly on Σ provided it contains at least two elements.
But the complexity of a problem can drastically be affected by the restriction
to a unary alphabet. For example, Theorem 22 showed an expensive complexity
for INEQ(Σ, {∪, ·, ∼}), while the following results from [57,58] and [52] show
that it becomes much cheaper when Σ is a singleton. The proof relies on the
fact that any expression r from RE({1}, {∪, ·, ∼}) either describes a finite or
co-finite language and, moreover, that the words that are longer than size(r) are
either all in or all not in L(r). On the other hand, trading complementation for
Kleene star makes the problem intractable again.

Theorem 25. 1. INEQ({1}, {∪, ·, ∼}) ∈ P.
2. INEQ({1}, {∪, ·, ∗}) is ≤log

m -complete in NP.
3. NL ≤log

m INEQ({1}, {∪, ·, ∩}) and INEQ({1}, {∪, ·, ∩}) ∈ LOGCFL.
4. INEQ({1}, {∪, ·}) ∈ NL.

In [58] the problem has been raised to determine the computational complexity
of INEQ({1}, {∪, ·, ∗, 2, ∼}), that is, all operations considered so far are allowed.
In particular, the problem can be solved in time tow(k, n), for any fixed k. The
problem has been solved in [53] by reducing the problem under consideration
to Presburger Arithmetic. Removing the Kleene star operation yields a better
complexity [58] and in [16] it is shown that the upper bound is not increased
when the complementation is exchanged by both the Kleene star and intersection
operation. We summarize these results in the following theorem.

Theorem 26

1. There is a constant k ≥ 1 such that INEQ({1}, {∪, ·, ∗, 2, ∼}) is contained in
DTIME(tow(k, n)).

2. INEQ({1}, {∪, ·, 2, ∼}) is ≤log
m -complete in PSPACE.

3. INEQ({1}, {∪, ·, ∗, 2, ∩}) ∈ PSPACE.
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4 Operation Problem for Regular Expressions

Regular languages are closed under various language operations regular expres-
sions are a natural host for dozens of operation problems such as we have already
seen in the previous section. Let ◦ be a fixed operation on languages that pre-
serves regularity. Then the ◦-language operation problem for regular expressions
is defined as follows:

– Given regular expressions s and t over alphabet Σ of size n and m, resp.—
here size refers to one of the measures described earlier.

– How much size is sufficient and necessary in the worst case (in terms of n
and m) to describe language L(s) ◦ L(t) by an ordinary regular expression?

Obviously, this problem generalizes to unary language operations like, for ex-
ample, complementation. Treating the operation ◦ as a built-in function we end
up with regular-like expressions from RE(Σ, {∪, ·, ∗} ∪ {◦}), and one may ask
a similar question as above when converting to equivalent ordinary regular ex-
pressions.

Determining the descriptional complexity of various basic language operations
remained largely open until recently. For instance, it has long been known that
it is non-elementary if we add complementation as built-in operator [58], but it
remained open for a long time, whether the upper bound for the complementa-
tion problem of 22O(n)

, induced by the naive algorithm, which converts first the
given expression into an NFA, determinizes, complements the resulting DFA,
and finally converts back to a regular expression, is asymptotically tight. Pre-
liminary results were reported in [15] were a stunningly large gap between the
lower and upper bound on the effect of complementation remained. Finally, the
problem was solved in [20], and the above mentioned upper bound turned out
to be tight already for binary alphabets [19,28]. The complementation problem
for regular expressions over unary alphabets was already settled in [15].

Theorem 27. Let n ≥ 1 and r be a regular expression of size n over an alpha-
bet Σ with at least two letters. Then size 22Θ(n)

is sufficient and necessary in the
worst case for a regular expressions describing the complement Σ∗ \ L(r). For
unary alphabets, the tight bound reads as 2Θ(

√
n log n).

This and some related results were driven by the introduction of new lower
bound techniques for regular expressions. Properties related to regular expres-
sion size were first subject to systematic study in [14]. There a highly specialized
(pumping) method for proving regular expression lower bounds, which seemingly
requires a largely growing alphabet was developed. Based on this work encod-
ings of the witness languages were proposed in [20] to reduce the alphabet size,
retaining all necessary features required to mimic the original proof. A technique
based on communication complexity that applies only for finite languages is pro-
posed in [29]. The most general technique up to now, introduced in [25], reads
as follows—for the definition of star height we refer to [46,47]:
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Table 1. Lower and upper bounds on alphabetic width of language operations on
languages of alphabetic width m and n, denoted by RE◦RE to RE, and on the required
size for transforming expressions extended with the operator ◦ into ordinary regular
expressions, denoted by RE(Σ, {∪, ·, ∗} ∪ {◦}) to RE. The bounds are for an alphabet
fixed to two letters. All binary operations being symmetric, we assume m ≤ n, and #

stands for counting operators.

Problem description . . .
Operation ◦ RE ◦ RE to RE RE(Σ, {∪, ·, ∗} ∪ {◦}) to RE

∼ 22Θ(n)
non-elementary

∩ 2Ω(m) ≤ · ≤ n · 2O(m·(1+log(n/m))) 22Θ(n)

x 2Ω(m) ≤ · ≤ n · 2O(m·(1+log(n/m)))

{
22Ω(n/ log n) ≤ · ≤ 22O(n)

2Θ(n) for |Σ| ≥ n

# 2Θ(n)

Theorem 28. Every regular language L ⊆ Σ∗ satisfies the inequality

awidth(L) ≥ 2
1
3 ·(height(L)−1) − 1,

where height(L) refers to the star height of the regular language L, which is the
minimum star height among all regular expressions describing L.

The theorem seems difficult to apply, since proving lower bounds on alphabetic
width via lower bounds on star height appears to be trading a hard problem
for an even harder one [32]. But the situation is not hopeless at all, because
already early research done in [46,47] on the star height problem established a
subclass of regular languages for which the star height can be determined easily.
Together with clever encodings by star-height preserving homomorphisms as
demonstrated in [28] makes the above theorem to a general purpose tool for
proving lower bounds on alphabetic width for regular expressions.

Further results on regular expressions enhanced by the operations complemen-
tation, intersection, shuffle or interleaving, and counting (built-in or not) are sum-
marized in Table 1 and are from [18,23,28,41,58]. Also the effect of a few other
language operations on regular expression size has been studied, such as, e.g., half-
removal, circular shift, and quotients. For a definition of these operations and de-
scriptional complexity results we refer to [26,27]. It is worth mentioning that the
latter two operations surprisingly induce a polynomial increase in regular expres-
sion size only. Regarding language operations in subregular language families, only
a few scattered results for regular expressions are known to date [15,20,28].
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Abstract. We introduce what we believe to be the simplest known

classes of language acceptors for which we can prove that decision prob-

lems (like universe, disjointness, containment, etc.) are undecidable. We

also look at classes with undecidable decision problems and show that

the problems become decidable for the “parameterized” versions of the

machines.
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DNA computing is an area of natural computing based on the idea that molecular
biology processes can be used to perform arithmetic and logic operations on
information encoded as DNA strands. The aim of this review is to describe
some of the ways in which DNA computing research has impacted fields in
theoretical computer science. We namely describe how properties of DNA-based
information, and in particular the Watson-Crick complementarity of DNA single
strands, have influenced areas of theoretical computer science such as formal
language theory, coding theory, automata theory and combinatorics on words.

More precisely, we summarize notions and results in formal language theory
and coding theory arising from the problem of design of optimal encodings for
DNA computing experiments: the problem of DNA encodings design, an anal-
ysis of intramolecular bonds (bonds within a given DNA strand), the design of
languages that avoid certain undesirable intermolecular bonds (bonds between
two or more DNA strands), and of languages whose words avoid even imperfect
bindings between their constituent strands. We also present another representa-
tion of DNA partial double strands, as two-line vectors, we describe the sticking
operation that combines them, and two computational models based on this
representation: sticker systems and Watson-Crick automata.

We also describe the influence that properties of DNA-based information have
had on research in combinatorics on words, by enumerating several natural gen-
eralizations of classical concepts of combinatorics of words: pseudo-palindromes,
pseudo-periodicity, Watson-Crick conjugate and commutative words, involu-
tively bordered words, pseudoknot bordered words, pseudo-powers, and pseudo-
DeBruijn sequences. In addition, we outline natural extensions in this context
of two of the most fundamental results in combinatorics of words, namely Fine
and Wilf’s theorem and Lyndon-Schützenberger result.

We conclude by presenting general thoughts on DNA-based information,
bioinformation and biocomputation.
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Université de Liège, Institut de Mathématiques, Grande Traverse 12 (B 37),
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Abstract. We survey facts mostly emerging from the seminal results of

Alan Cobham obtained in the late sixties and early seventies. We do not

attempt to be exhaustive but try instead to give some personal interpre-

tations and some research directions. We discuss the notion of numera-

tion systems, recognizable sets of integers and automatic sequences. We

briefly sketch some results about transcendence related to the represen-

tation of real numbers. We conclude with some applications to combina-

torial game theory and verification of infinite-state systems and present

a list of open problems.

1 Introduction

It is challenging to give a talk about the interactions existing between formal
language theory and number theory. The topic is vast, has several entry points
and many applications. To cite just a few: non-adjacent form (NAF) represen-
tations to speed up computations arising in elliptic curve cryptography [61],
verification of infinite-state systems [23], combinatorial game theory, fractals
and tilings [82,20], transcendence results, dynamical systems and ergodic theory
[19, Chap. 5–7], [13,73]. For instance, there exist tight and fruitful links between
properties sought for in dynamical systems and combinatorial properties of the
corresponding words and languages.

The aim of this paper is to briefly survey some results mostly emerging from
the seminal papers of Cobham of the late sixties and early seventies [35,36,37],
while also trying to give some personal interpretations and some research direc-
tions. We do not provide an exhaustive survey of the existing literature but we
will give some pointers that we hope could be useful to the reader.

When one considers such interactions, the main ingredient is definitely the
notion of numeration system, which provides a bridge between a set of numbers
(integers, real numbers or elements of some other algebraic structures [68,9])
and formal language theory. On the one hand, arithmetic properties of numbers
or sets of numbers are of interest and on the other hand, syntactical properties
of the corresponding representations may be studied. To start with, we consider
the familiar integer base k ≥ 2 numeration system. Any integer n > 0 is uniquely
� Dedicated to the memory of my grandfather Georges Henderyckx 1930–2010.
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represented by a finite word (its k-ary representation) repk(n) = d� · · · d0 over
the alphabet Ak = {0, . . . , k − 1} such that

∑�
i=0 di k

i = n and d� �= 0. Note
that imposing the uniqueness of the representation allows us to define a map
repk : N → A∗

k. Nevertheless, in many contexts it is useful to consider all the
representations of an integer n over a given finite alphabet D ⊂ Z, that is all
the words c� · · · c0 ∈ D∗ such that

∑�
i=0 ci k

i = n. For instance, if w is the k-ary
representation of n and if the alphabet D is simply Ak, then for all j > 0, 0jw
is another representation of n.

In the same way, any real number r ∈ (0, 1) is represented by an infinite word
d1d2 · · · over Ak such that

∑+∞
i=1 di k

−i = r. Uniqueness of the representation
may be obtained by taking the maximal word for the lexicographic ordering on
Aω

k satisfying the latter equality; in this case, the sequence (di)i≥1 is not ulti-
mately constant and equal to k − 1: there is no N such that, for all n ≥ N ,
dn = k − 1. Therefore, to represent a real number r > 0, we take separately
its integer part �r� and its fractional part {r}. Base k-complements or signed
number representations [70] can be used to represent negative elements as well,
the sign being determined by the most significant digit which is thus 0 or k− 1.
By convention, the empty word ε represents 0, i.e., repk(0) = ε. If the numera-
tion system is fixed, say the base k is given, then any integer n (resp. any real
number r > 0) corresponds to a finite (resp. infinite) word over Ak (resp. over
Ak ∪ {�}, where � is a new symbol used as a separator). Therefore any set of
numbers corresponds to a language of representations and we naturally seek for
some link between the arithmetic properties of the numbers belonging to the set
and the syntactical properties of the corresponding representations. Let X be a
subset of N. Having in mind Chomsky’s hierarchy, the set X could be consid-
ered quite “simple” from an algorithmic point of view whenever the set of k-ary
representations of the elements in X is a regular (or rational) language accepted
by a finite automaton. A set X ⊆ N satisfying this property is said to be k-
recognizable. Note that X is k-recognizable if and only if 0∗ repk(X) is regular.
As an example, a DFA (i.e., a deterministic finite automaton) accepting exactly
the binary representations of the integers congruent to 3 (mod 4) is given in
Figure 1. Similarly, a set X ⊆ R of real numbers is k-recognizable if there exists
a finite (non-deterministic) Büchi automaton accepting all the k-representations
over Ak of the elements in X , that is, the representations starting with an arbi-
trary number of leading zeroes, and in particular the ones ending with (k− 1)ω.
Such an automaton is often called a Real Number Automaton [25]. The Büchi
automaton in Figure 2 (borrowed from a talk given by V. Bruyère) accepts all
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1

Fig. 1. A finite automaton accepting 0∗ rep2(4N + 3)
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Fig. 2. A Büchi automaton accepting {2n + (0, 4/3) | n ∈ Z}

the possible binary encodings (using base 2-complement for negative numbers)
of elements in the set {2n+(0, 4/3) | n ∈ Z}. For instance 3/2 is encoded by the
language of infinite words 0+1�10ω ∪0+1�01ω. Note that the transition 3 �−→ 6
(resp. 2 �−→ 4) is considered for an odd (resp. even) integer part and the series∑+∞

i=1 4−i = 1/3 corresponds to the cycle {5, 6}.
To generalize the k-ary integer base system, it is quite natural to consider

an increasing sequence of integers, like the Fibonacci sequence, as a numera-
tion basis to get a greedy decomposition of any integer (see Definition 2) or
the negative powers of a real number β > 1 to develop any real r ∈ (0, 1) as∑+∞

i=1 ci β
−i with the coefficients ci belonging to a convenient finite alphabet. Let

us point out Fraenkel’s paper [54] for some general ideas about representations
of integers in various numeration systems. Among non-standard decompositions
of integers, let us mention the so-called combinatorial numeration system go-
ing back to Lehmer and Katona, where integers are decomposed using binomial
coefficients with some prescribed property, also see [33], and the factorial nu-
meration system [72]. In Frougny and Sakarovitch’s chapter [19, Chap. 2] and
in Frougny’s chapter [76, Chap. 7] many details on recognizable sets and about
the representation of integers and real numbers are given. In particular, Parry’s
β-developments of real numbers [80] are presented in the latter reference. Ab-
stract numeration systems (see Definition 6) are a general framework to study
recognizable sets of integers, see [71] and [19, Chap. 3].

The seminal work of Cobham may be considered as a starting point for the
study of recognizable sets for at least three reasons. Let us sketch these below.
Details and definitions will be given in the next sections.

(i) Cobham’s theorem from 1969 [36] states that the recognizability of a set of
integers, as introduced above, strongly depends on the choice of the base,
e.g., there are sets which are 2-recognizable but not 3-recognizable. The only
subsets of N that are recognizable in all bases are exactly the ultimately pe-
riodic sets, i.e., the finite unions of arithmetic progressions. See Theorem 1
in Section 2 below for the exact statement of the result. It is an easy exer-
cise to show that an arithmetic progression is k-recognizable for all k ≥ 2
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(e.g., Figure 1). See for instance [85, prologue] about the machine à diviser
de Blaise Pascal. In that direction, an interesting question [7] is to obtain the
state complexity of the minimal automaton recognizing a given divisibility
criterion in an integer base. For this state complexity question studied in the
wider context of linear numeration systems (cf. Definition 3), see [32].

Thebasedependenceof recognizability shownbyCobham’s result strongly
motivates the general study of recognizable sets and the introduction of non-
standard or exotic numeration systems based on an increasing sequence sat-
isfying a linear recurrence relation.

For integer base k numeration systems, nice characterizations of recog-
nizable sets are well-known: logical characterization by first order formulas
in a suitable extension of the Presburger arithmetic 〈N,+〉, k-automatic
characteristic sequence generated through a uniform morphism of length
k, characterization in terms of algebraic formal power series for a prime
base. See the excellent survey [29] where the so-called Cobham–Semenov’
theorem, which extends Cobham’s original result from 1969 to subsets
of Nd, d ≥ 2, is also presented. Recall that the characteristic sequence
(xi)i≥0 ∈ {0, 1}N of X ⊆ N is defined by xi = 1 if and only if i ∈ X . It
is not our goal to give here a full list of pointers to the existing bibliogra-
phy on the ramifications of Cobham’s theorem, see for instance [48]. For
presentations of Cobham’s theorem based on Georges Hansel’s work, see
[81,12] together with [84].

(ii) The next paper of Cobham from 1972 [37] introduced the concept of k-
automatic sequences (originally called tag sequences, see Definition 5) and
linked numeration systems with the so-called substitutions and morphic
words (see Definition 4). It is easy to see that a set X ⊆ N is k-recognizable
if and only if the characteristic sequence of X is a k-automatic infinite word
over {0, 1}. For a comprehensive book on k-automatic sequences, see [12].
As we will see, this approach gives another way to generalize the notion
of a recognizable set by considering sets having a morphic characteristic
sequence (see Remark 2). Details will be presented in Section 3.

(iii) As the reader may already have noticed, this survey is mainly oriented
towards sets of numbers (integers) giving rise to a language of representa-
tions. Another direction should be to consider a single real number and the
infinite word representing it in a given base. Alan Cobham also conjectured
the following result proved later on by Adamczewski and Bugeaud. Let α be
an algebraic irrational real number. Then the base-k expansion of α cannot
be generated by a finite automaton. Cobham’s question follows a question
of Hartmanis and Stearns [64]: does it exist an algebraic irrational number
computable in linear time by a (multi-tape) Turing machine? In the same
way, if an infinite word w over the finite alphabet Ak of digits has some
specific combinatorial properties (like, a low factor complexity, or being
morphic or substitutive), is the corresponding real number having w as k-
ary representation transcendental? Let us mention that several surveys in
that direction are worth of reading [77, Chap. 10], [19, Chap. 8], [2,92]. We
will briefly sketch some of these developments in Section 4.
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In Section 5, we sketch some of the links existing between numeration sys-
tems, combinatorics on words and combinatorial game theory. Cobham’s the-
orem about base dependence also appears in the framework of the verification of
infinite state systems, see Section 6. Finally, in Section 7 we give some paths to
the literature that the interested reader may follow and in Section 8, we present
some open questions.

2 Cobham’s Theorem and Base Dependence

Two integers k, � ≥ 2 are multiplicatively independent if the only integers m,n
such that km = �n are m = n = 0. Otherwise stated, k, � ≥ 2 are multiplicatively
independent if and only if log k/ log � is irrational. Recall a classical result in
elementary number theory, known as Kronecker’s theorem: if θ > 0 is irrational,
then the set {{nθ} | n > 0} is dense in [0, 1]. Such result is an important
argument in the proof of the following result.

Theorem 1 (Cobham’s theorem [36]). Let k, � ≥ 2 be two multiplicatively
independent integers. A set X ⊆ N is simultaneously k-recognizable and �-
recognizable if and only if X is ultimately periodic.

Obviously the set P2 = {2n | n ≥ 1} of powers of two is 2-recognizable because
rep2(P2) = 10∗. But since P2 is not ultimately periodic, Cobham’s theorem
implies that P2 cannot be 3-recognizable. To see that a given infinite ordered set
X = {x0 < x1 < x2 < · · · } is k-recognizable for no base k ≥ 2 at all, we can use
results like the following one where the behavior of the ratio (resp. difference)
of any two consecutive elements in X is studied through the quantities

RX := lim sup
i→∞

xi+1

xi
and DX := lim sup

i→∞
(xi+1 − xi).

Theorem 2 (Gap theorem [37]). Let k ≥ 2. If X ⊆ N is a k-recognizable
infinite subset of N, then either RX > 1 or DX < +∞.

Corollary 1. Let a ∈ N≥2. The set of primes and the set {na | n ≥ 0} are
never k-recognizable for any integer base k ≥ 2.

Proofs of the Gap theorem and its corollary can also be found in [50]. It is
easy to show that X ⊆ N is k-recognizable if and only if it is kn-recognizable,
n ∈ N \ {0}. As a consequence of Cobham’s theorem, sets of integers can be
classified into three categories:

– ultimately periodic sets which are recognizable for all bases,
– sets which are k-recognizable for some k ≥ 2, and which are �-recognizable

only for those � ≥ 2 such that k and � are multiplicatively dependent bases,
for example, the set P2 of powers of two,

– sets which are k-recognizable for no base k ≥ 2 at all, for example, the set
of squares.
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Definition 1. An infinite ordered set X = {x0 < x1 < x2 < · · · } such that
DX < +∞ is said to be syndetic or with bounded gaps. Otherwise stated, X is
syndetic if there exists C > 0 such that, for all n ≥ 0, xn+1 − xn < C.

If X ⊆ N is ultimately periodic, then X is syndetic. Note that the converse does
not hold. For instance, consider the complement of the set {2n | n ≥ 0} which
is syndetic, 2-recognizable but not ultimately periodic.

Example 1 (Thue–Morse set). Let n ∈ N. Denote by sk(n) the classical number-
theoretic function summing up the digits appearing in repk(n). As a classical ex-
ample, consider the set T = {n ∈ N | s2(n) ≡ 0 mod 2}. This set is 2-recognizable
and syndetic but not ultimately periodic. It appears in several contexts [11]
and in particular, it provides a solution to Prouhet’s problem (also known as
the Prouhet–Tarry–Escott problem which is a special case of a multi-grade
equation).

The set of squares is k-recognizable for no integer base k but as we shall see this
set is recognizable for some non-standard numeration systems (see Example 4).
One possible extension of k-ary numeration systems is to consider a numeration
basis.

Definition 2. A numeration basis is an increasing sequence U = (Un)n≥0 of
integers such that U0 = 1 and supi≥0 Ui+1/Ui is bounded.

Using the greedy algorithm, any integer n > 0 has a unique decomposition

n =
�∑

i=0

ci Ui

where the coefficients ci belong to the finite set AU = {0, . . . , supUi+1/Ui�−1}.
Indeed there exists a unique � ≥ 0 such that U� ≤ n < U�+1. Set r� = n.
For all i = �, . . . , 1, proceed to the Euclidean division ri = ci Ui + ri−1, with
ri−1 < Ui. The word c� · · · c0 is the (normal) U -representation of n and is denoted
by repU (n). Naturally, these non-standard numeration systems include the usual
integer base k system by taking Un = kn for all n ≥ 0. The numerical value map
valU : A∗

U → N maps any word d� · · ·d0 over AU onto
∑�

i=0 diUi.

Remark 1. By contrast with abstract numeration systems that will be intro-
duced later on, when dealing with a numeration basis we often use the terminol-
ogy of a positional numeration system to emphasize the fact that a digit d ∈ AU

in the ith position (counting from the right, i.e., considering the least significant
digit first) of a U -representation has a weight d multiplied by the corresponding
element Ui of the basis.

Having in mind the notion of k-recognizable sets, a set X ⊆ N is said to be
U -recognizable if repU (X) = {repU (n) | n ∈ X} is a regular language over the
alphabet AU . Note that repU (X) is regular if and only if 0∗ repU (X) is regular.
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Definition 3. A numeration basis U = (Un)n≥0 is said to be linear, if there
exist a0, . . . , ak−1 ∈ Z such that

∀n ≥ 0, Un+k = ak−1Un+k−1 + · · · + a0Un. (1)

If limn→∞ Un+1/Un = β for some real β > 1, then U is said to satisfy the
dominant root condition and β is called the dominant root of the recurrence.

If N is U -recognizable, then U is a linear numeration basis [89,19] (hint: observe
that repU ({Un | n ≥ 0}) = 10∗). For a discussion on sufficient conditions on
the recurrence relation satisfied by U for the U -recognizability of N, see [65]
and [75]. In particular, as shown by the next result, for a linear numeration
basis U , the set N is U -recognizable if and only if all ultimately periodic sets are
U -recognizable.

Theorem 3 (Folklore [19]). Let p, r ≥ 0. If U = (Un)n≥0 is a linear numer-
ation basis, then

val−1
U (pN + r) =

{
c� · · · c0 ∈ A∗

U |
�∑

k=0

ck Uk ∈ pN + r

}

is accepted by a DFA that can be effectively constructed. In particular, if N is
U -recognizable, then any ultimately periodic set is U -recognizable.

Example 2. Consider the Fibonacci numeration system given by the basis F0 =
1, F1 = 2 and Fn+2 = Fn+1 + Fn for all n ≥ 0. For this system, 0∗ repF (N) is
given by the set of words over {0, 1} avoiding the factor 11 and the set of even
numbers is U -recognizable [32] using the DFA shown in Figure 3.

0

1

0

0
1

0
1

0

0

10

0

Fig. 3. A finite automaton accepting 0∗ repF (2N)

To conclude this section, we present a linear numeration basis U such that
the set of squares Q = {n2 | n ∈ N} is U -recognizable. This set will also be used
in Example 4 to get a set having a morphic characteristic sequence.

Example 3. Consider the sequence given Un = (n + 1)2 for all n ≥ 0. This
sequence satisfies, for all n ≥ 0, the relation Un+3 = 3Un+2 − 3Un+1 + Un. In
that case, repU (N)∩ 10∗10∗ = {10a10b | b2 < 2a+ 4} showing with the pumping
lemma that N is not U -recognizable [89]. But trivially, we have repU (Q) = 10∗.
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3 Substitutions and Abstract Numeration Systems

For basic facts on morphisms over A∗ or the usual distance put on Aω (which
gives a notion of convergence), see classic textbooks like [12,19,76]. Let A be a
finite alphabet and σ : A∗ → A∗ be a morphism. If there exist a letter a ∈ A and
a word u ∈ A+ such that σ(a) = au and moreover, if limn→+∞ |σn(a)| = +∞,
then σ is said to be prolongable on a.

Definition 4. Let σ : A∗ → A∗ be a morphism prolongable on a. We have

σ(a) = a u, σ2(a) = a u σ(u), σ3(a) = a u σ(u)σ2(u), . . . .

Since, for all n ∈ N, σn(a) is a prefix of σn+1(a) and because |σn(a)| tends to
infinity when n → +∞, the sequence (σn(a))n≥0 converges to an infinite word
denoted by σω(a) and given by

σω(a) := lim
n→+∞σn(a) = a u σ(u)σ2(u)σ3(u) · · · .

This infinite word is a fixed point of σ. An infinite word obtained in this way by
iterating a prolongable morphism is said to be purely morphic. In the literature,
one also finds the term pure morphic. If x ∈ AN is purely morphic and if τ :
A→ B is a coding (or letter-to-letter morphism), then the word y = τ(x) is said
to be morphic.

Definition 5. Let k ≥ 2. A morphic word w ∈ Bω is k-automatic if there exists
a morphism σ : A∗ → A∗ and a coding τ such that w = τ(σω(a)) and, for
all c ∈ A, |σ(c)| = k. A morphism satisfying this latter property is said to be
uniform.

The link between k-recognizable sets and k-automatic sequences is given by the
following result. In particular, in the proof of this result, it is interesting to note
that an automaton is canonically associated with a morphism.

Theorem 4. [37] An infinite word w = w0w1w2 · · · over an alphabet A is k-
automatic if and only if, for all a ∈ A, the set Xa = {i ∈ N | wi = a} is
k-recognizable.

Otherwise stated, w = w0w1w2 · · · ∈ Aω is k-automatic if and only if there exists
a deterministic finite automaton with output (DFAO) M where Q is the set of
states of M, δ : Q×Ak → Q (resp. τ : Q→ A) is the transition function (resp.
output function) of M, such that τ(δ(q0, repk(n)) = wn for all n ≥ 0.

Remark 2. Using automata as a model of computation, U -recognizable sets nat-
urally raise some interest. On the same level, sets of integers having a morphic
characteristic sequence can be considered as another natural generalization of
the concept of k-recognizability. Iterations of a morphism may be used to get
inductively further elements of the set defined by the morphism and a coding.
As will be shown by Theorem 6, similarly to the case of uniform morphisms (as
given in Definition 5) described above, the computation of a given element can
also be done by using a DFAO and representations of integers in an abstract
numeration system.
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Example 4. Consider the alphabet A = {a, b, c} and the morphism σ : A∗ → A∗

defined by σ : a �→ abcc, b �→ bcc, c �→ c. We get

σω(a) = abccbccccbccccccbccccccccbccccccccccbcc · · · .

It is easy to see that considering the coding τ : a, b �→ 1 and τ : c �→ 0, the word
τ(σω(a)) is the characteristic sequence of the set of squares.

The factor complexity of an infinite word w is the non-decreasing function
pw : N → N mapping n onto the number of distinct factors (or subwords)
occurring in w. See for instance [19, Chap. 4]. For a survey on the factor com-
plexity of morphic words, see [8]. In 1972, Cobham already observed that if w
is k-automatic, then pw is in O(n). For instance, the factor complexity of the
characteristic sequence of the Thue–Morse set T considered in Example 1 is
computed in [27,39].

Theorem 5 (Morse–Hedlund’s Theorem). Let x = x0x1x2 · · · be an infi-
nite word over A. The following conditions are equivalent.

– The complexity function px is bounded by a constant, i.e., there exists C such
that for all n ∈ N, px(n) ≤ C.

– There exists N0 ∈ N such that for all n ≥ N0, px(n) = px(N0).
– There exists N0 ∈ N such that px(N0) = N0.
– There exists m ∈ N such that px(m) = px(m+ 1).
– The word x is ultimately periodic.

In particular, non ultimately periodic sequences with low complexity are the so-
called Sturmian sequences whose factor complexity is p(n) = n+ 1 for all n ≥ 1.
Note that such sequences are over a binary alphabet, p(1) = 2. For a survey
on Sturmian words, see for instance [76]. Since Pansiot’s work [79], the factor
complexity of a non ultimately periodic purely morphic word w is well-known,
see for instance [19, Chap. 4] or the survey [8], there exists constants C1, C2 such
that C1f(n) ≤ pw(n) ≤ C2f(n) where f(n) ∈ {n, n logn, n log logn, n2}.

Remark 3. F. Durand has achieved a lot of work towards a general version of
Cobham’s theorem for morphic words [45,46,47]. Without giving much details
(see for instance [48] for a detailed account), with a non-erasing morphism σ over
A = {a1, . . . , at} (i.e., σ(σi) �= ε for all i) generating a morphic word w (also
using an extra coding) is associated a matrix Mσ (like the adjacency matrix of
a graph) where, for all i, j, (Mσ)i,j is the number of occurrences of the letter ai

in the image σ(aj). Considering the morphism in Example 4, we get

Mσ =

⎛

⎝
1 0 0
1 1 0
2 2 1

⎞

⎠ .

Then considering the irreducible components (i.e., the strongly connected com-
ponents of the associated automaton) of the matrix Mσ and the theorem of
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Perron–Frobenius, a real number β > 0 is associated with the morphism. The
word w is therefore said to be β-substitutive. Let α, β > 1 be two multiplica-
tively independent Perron numbers (the notion of multiplicative independence
extends to real numbers > 1). Under some mild assumptions [48], if w is both
α-substitutive and β-substitutive, then it is ultimately periodic. It is a natural
generalization of the fact that if k, � ≥ 2 are multiplicatively independent, then
a word which is both k-automatic and �-automatic is ultimately periodic.

Example 5. The consecrated Fibonacci word, i.e., the unique fixed point of
σ : 0 �→ 01, 1 �→ 0, is α-substitutive where α is the Golden ratio (1 +

√
5)/2.

Therefore, this infinite word is k-automatic for no integer k ≥ 2. Indeed, k and
the Golden ratio are multiplicatively independent.

In view of Theorem 3, it is desirable for a numeration basis U that the set N be
U -recognizable. In that case, one can use a finite automaton to test whether or
not a given word over AU is a valid U -representation. Taking this requirement
as a basic assumption and observing that for all integers x, y, we have x < y if
and only if repU (x) is genealogically less than repU (y), we introduce the concept
of an abstract numeration system. To define the genealogical order (also called
radix or military order), first order words by increasing length and for words of
the same length, take the usual lexicographical order induced by the ordering of
the alphabet.

Definition 6. Let L be an infinite regular language over a totally ordered alpha-
bet (A,<). An abstract numeration system is the triple S = (L,A,<). Ordering
by increasing genealogical order the words in L provides a one-to-one correspon-
dence between L and N. The nth word in L (starting from 0) is denoted by
repS(n) and the inverse map valS : L → N is such that valS(repS(n)) = n.
Any numeration basis U such that N is U -recognizable is a particular case of an
abstract numeration system. In this respect, a set X ⊆ N is S-recognizable, if
repS(X) is a regular language.

A sequence w = w0w1 · · · is S-automatic if there exists a DFAO M where
δ : Q × Ak → Q (resp. τ : Q → A) is the transition function (resp. output
function) of M, such that τ(δ(q0, repS(n)) = wn for all n ≥ 0.

Example 6. Again the set of squares Q is S-recognizable for the abstract numer-
ation system S = (a∗b∗ ∪ a∗c∗, {a, b, c}, a < b < c). Indeed, we have

a∗b∗ ∪ a∗c∗ = ε, a, b, c, aa, ab, ac, bb, cc, aaa, . . .

and one can check that repS(Q) = a∗ because the growth function of the lan-
guage is #((a∗b∗ ∪ a∗c∗) ∩ {a, b, c}n) = 2n+ 1.

Theorem 4 can be generalized as follows [83] or [19, Ch. 3].

Theorem 6. An infinite word w = w0w1w2 · · · over an alphabet A is morphic
if and only if there exists an abstract numeration system S such that w is S-
automatic.
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Note that for generalization of Theorems 4 and 6 to a multidimensional setting,
see Salon’s work [86,87] and [31] respectively. Moreover, thanks to the above
result, Durand’s work can also to some extent be expressed in terms of abstract
numeration systems. Observe that in Example 6 the abstract numeration system
is based on a regular language having a polynomial growth. This corresponds
to the case where the dominating eigenvalue of the matrix associated with the
morphism is 1. Such a situation (polynomial versus exponential growth) is con-
sidered in [49]. Indeed, note that in the discussion about a morphic version of
Durand–Cobham’s theorem in Remark 3 we only considered morphisms with
exponential growth, i.e., the dominating eigenvalue being > 1.

4 Transcendental Numbers

This short section is based on a lecture given by B. Adamczewski during the
last CANT summer school in Liège [19, Chap. 8] and on [92]. We also refer the
reader to [2]. It illustrates one of the strong links existing between combinatorics
on words and number theory. For a survey on combinatorics on words, see for
instance [17,34]. Recall that a complex number which is a root of a non-zero
polynomial with rational (or equivalently integer) coefficients is said to be alge-
braic. Otherwise, it is said to be transcendental. Since Borel’s work, one thinks
that base-k expansion of algebraic irrational numbers are “complex” and not
much is known about their properties.

With any infinite word w = w1w2 · · · over the alphabet of digits Ak =
{0, . . . , k − 1} is associated the real number

∑+∞
i=1 wi k

−i in [0, 1]. Clearly, a
real number α is algebraic (over Q) if and only if, for all z ∈ Z, α + z is alge-
braic. Indeed, if α is a root of the polynomial P (X) ∈ Q(X), then α + z is a
root of P (X − z) ∈ Q(X). Hence, we can restrict ourselves to numbers in (0, 1).

Transcendence of a number whose binary expansion is Sturmian has been
proved in 1997 [51].

Example 7. Consider again the Fibonacci word f = f1f2f3 · · · = 010010 · · · . The
real number

∑+∞
i=1 fi 2−i is transcendental.

Let k ∈ N \ {0, 1}. The factor complexity of the k-ary expansion w of every
irrational algebraic number satisfies

lim infn→∞(pw(n) − n) = +∞.

The main tool is a p-adic version of the Thue–Siegel–Roth theorem due to Rid-
out.

A combinatorial transcendence criterion obtained in [4] using Schmidt’s sub-
space theorem [88] is used to obtain the following result.

Theorem 7 (Adamczewski and Bugeaud [3]). Let k ∈ N\{0, 1}. The factor
complexity of the k-ary expansion w of a real irrational algebraic number satisfies

lim
n→+∞

pw(n)
n

= +∞.
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Let k ≥ 2 be an integer. If α is a real irrational number whose k-ary expansion has
factor complexity in O(n), then α is transcendental. Since, it is well-known [37]
that automatic sequences have factor complexity p(n) ∈ O(n), we can deduce
that if a real irrational number has an automatic k-ary expansion, then it is
transcendental.

Theorem 8 (Bugeaud and Evertse [30]). Let k ≥ 2 be an integer and ξ be
a real irrational algebraic number with 0 < ξ < 1. Then for any real number
η < 1/11, the factor complexity p(n) of the k-ary expansion of ξ satisfies

lim
n→+∞

p(n)
n(log n)η

= +∞.

In [5], it is shown that the binary expansion of an algebraic number contains
infinitely many occurrences of 7/3-powers. Hence the binary expansion of an
algebraic number contains infinitely many overlaps.

5 Combinatorial Game Theory

Numeration systems, number theory and therefore formal language theory also
have interesting connections with combinatorial game theory. In classical text-
books like [63,15] allusion to the game of Nim is made. See [16,57] for background
on two player combinatorial games: no chance, no hidden information, same op-
tions for the two players who play alternatively, . . . . In particular, in removal
games, we are looking for a winning strategy which allows a player to consum-
mate a win regardless of the moves chosen by the other player. If such a strategy
exists for given initial conditions, it is therefore natural to ask about the algo-
rithmic complexity of the computation of the winning strategy. A first question
to answer is to determine the status N or P of a given position [57].

A N -position, or winning position, is a position for which a winning strat-
egy exists for the player who starts. A P-position is a position for which all
options lead to a N -position, and is thus winning for the second player1. In the
game of Nim played on two piles of tokens, two players play alternatively and
remove a positive number of tokens from one of the piles. The player remov-
ing the last token win. Otherwise stated, the first player unable to move loses
(normal condition). In [12], connections between the game of Nim (values of
the Sprague-Grundy function) and the notion of 2-regular functions in the sense
of Allouche and Shallit is observed (finiteness of the 2-kernel). In the famous
Wythoff’s game, an extra move is allowed: removing the same positive number
of tokens on both piles. The game of Nim can be easily generalized to n piles
of tokens contrarily to Wythoff’s game where extensions have been presented
but no suitable generalization is known: for the P-positions playing with an odd
number of piles is similar to the game of Nim and playing with an even number
1 In the game graph G where vertices are positions and directed edges are the allowed

moves, the set of P-positions is the kernel of G: there is no move between any two

P-positions and from any N -position, there exists a move to a P-position.
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of piles is hard [44,43,53,52]. In the last reference, Wythoff’s game is considered
as a Prime game. Informally, a game whose generalization to more than one or
two piles seems to be very hard.

For instance, A. Fraenkel makes great use of various numeration systems to
get characterizations of P-positions [56] . As an example, in Wythoff’s game, a
position (x, y) is a P-position if and only if the F -representation repF (x) ends
with an even number of zeroes and repF (y) = repF (x)0 is the left shift of the first
component, where F is the numeration basis given by the Fibonacci sequence
from Example 2 [53]. Similarly, (x, y) is a P-position if there exists n such that
(x, y) = (�nα�, �nα2�) where α is the Golden ratio. So complementary Beatty
sequences also enter the picture of combinatorial games [42,53,38].

In [41] moves that can be adjoined without changing the set of P-positions
are characterized using the formalism of morphisms and the fact that the com-
putation of the successor function in the Fibonacci system is realized by a finite
transducer [59]. Let a ∈ N \ {0, 1}. In the parameterized version of Wythoff’s
game where a player can remove k tokens from one pile and � from the other
[53], with the condition |k− �| < a, the Ostrowski numeration system [18] based
on the convergents of a continued fraction is used.

It is interesting to note that obviously the P-positions of Wythoff’s game
are also characterized by the Fibonacci word introduced in Example 7. The nth
P-position is given by the pair of indices of the nth symbol 0 and nth symbol
1 occurring in the Fibonacci word. This simple observation relates combina-
torial properties of morphic words like the Fibonacci or Tribonacci words to
characterizations of P-positions of games [44,43,52]. Morphic characterizations
of P-positions seems to recently raise some interest among combinatorial game
theorists [52].

6 Applications for Verification of Infinite State Systems

Sets of numbers recognized by finite automata arise when analyzing systems
with unbounded mixed variables taking integer or real values. Therefore are
considered systems such as timed or hybrid automata [21]. One needs to develop
data structures representing sets manipulated during the exploration of infinite
state systems. For instance, it is often needed to compute the set of reachable
configurations of such a system.

Let k ≥ 2 be an integer. Recall that A set X ⊆ R is k-recognizable if there
exists a Büchi automaton accepting all the k-representations of the elements
in X . This notion extends to subsets of Rd and to Real Vector Automata or
RVA. Also Büchi–Bruyère’s Theorem giving a first order logical characterization
of k-recognizable sets of integers holds in this context of real numbers for a
suitable structure 〈R,Z,+, 0, <, Vk〉, see [25]. Roughly speaking definability in
〈R,Z,+, 0, <〉 of subsets of Rd is the natural extension of ultimately periodicity
of subsets in N.
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Theorem 9. [24] If a subset X ⊆ Rd is definable by a first-order formula in
〈R,Z,+, 0, <〉, then X written in base k ≥ 2 is recognizable by a weak determin-
istic RVA A.

Weakness means that each strongly connected component of A contains only
accepting states or non-accepting states.

Theorem 10. [22] Let k, � ≥ 2 be two multiplicatively independent integers. If
X ⊆ R is both k- and �-recognizable by two weak deterministic RVA, then it is
definable in 〈R,Z,+, 0, <〉.

The extension of Cobham–Semenov’s theorem for subsets of Rd in this setting
is discussed in [23]. The case of two coprime bases was first considered in [22].
Though written in a completely different language, a similar result was inde-
pendently obtained in [1]. This latter paper is motivated by the study of some
fractal sets.

Remark 4. Weak deterministic RVA have a particular interest from an algorith-
mic point of view. They recognize languages that are recognizable by determin-
istic Büchi and deterministic co-Büchi automata. For instance, minimization
algorithms in O(n logn) exist for this class [74].

7 Abridged Bibliographic Notes

With a gentle introduction to the logical formalism, a good way to start with
integer base numeration systems is to consider [29]. Each time I come back to
this very well written survey, I learn something new. Then, it is a good idea to
move to the “state of the art” linear numeration basis where the characteristic
polynomial of the recurrence is the minimal polynomial of a Pisot number [28].
In parallel, one should consider Frougny’s chapter [76, Chap. 7] and her very
interesting work on the normalization map [58] and beta-expansions [60]. As a
good textbook on some of the aspects presented here, consider [12]. The original
paper of Cobham [37] is also worth of reading. For some general surveys on
factor complexity and the Thue–Morse word, without any required background,
see [8,11].

Then I cannot resist advertising [19] where in the spirit of Lothaire’s series,
we try to present the fruitful links existing between combinatorics on words,
automata theory and number theory. It presents in a self-contained expository
book much more material than is presented in this survey (ergodic theory, Rauzy
fractal, joint spectral radius,. . . ).

For a list of pointers on Cobham’s theorem in various contexts, see [48] for
an updated survey. Accounts of Perron–Frobenius theory can be found in many
classical textbooks, but probably [73] is worth reading.

Connections between symbolic dynamics and formal language theory are fruit-
ful: for the reader with no background in dynamics (for instance, no knowledge
in measure theory is required) and on a very introductory level, consider [90].
Then, move to the survey [13] and [82].
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8 Some Open Problems

We conclude with some general (and probably quite hard) open problems.

– As mentioned in Section 3, the most general version of Cobham’s theorem
still relies on some mild assumptions about the considered morphisms (de-
tails are not given in this survey). F. Durand refers to these as “good sub-
stitutions”. One could hope to relax these hypotheses and still get the same
result with full generality [48]. Up to now there is no proof of a Cobham-like
theorem for a substitution having no main sub-substitution having the same
dominating eigenvalue like a �→ aa0, 0 �→ 01 and 1 �→ 0. In this latter ex-
ample, the dominating eigenvalue is 2 but the substitution restricted to the
alphabet {0, 1} has (1 +

√
5)/2 as dominating eigenvalue.

– Come back again to Cobham’s theorem but this time for Gaussian integers
G = {a + ib | a, b ∈ Z}. Indeed, these numbers have nice representations
using the so-called canonical number systems [68]. For canonical numera-
tion systems in algebraic number fields, every integer has a unique finite
expansion which is computed starting with the least significant digit first. A
Cobham-like conjecture for Gaussian integers [62] is related to the famous
Four Exponentials conjecture: let {λ1, λ2} and {x1, x2} be two pairs of ratio-
nally independent complex numbers. Then, one of the numbers eλ1x1 , eλ1x2 ,
eλ2x1 , eλ2x2 is transcendental, for instance see [91].

– The philosophy of Cobham’s theorem also appears when considering self-
generating sets as introduced by Kimberling [69]. For instance, consider the
affine maps f : N → N, x �→ 2x + 1 and g : N → N, x �→ 4x + 2. A self-
generating set obtained from f and g can be defined as the smallest subset
S of N containing 0 and such that f(S) ⊂ S and g(S) ⊂ S. In our example,
the first few elements in S are

0, 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 21, 23, 26, 27, 29, 30, 31, 42, 43, 47, 53, . . . .

One can therefore study the k-recognizability of S. If one considers maps
where the multiplicative constants are multiplicatively independent, then
Allouche, Shallit and Skordev conjectured that the corresponding set cannot
be k-recognizable [10]. With some technical hypothesis about the multiplica-
tive coefficients when there are at least three affine maps, this conjecture has
been proved to be true in [67]. One could hope to prove this conjecture in full
generality. A possible connection with smooth numbers (having only small
prime factors in their decomposition) has been pointed out by J. Shallit.

– In combinatorial game theory the Sprague-Grundy function g is of great
interest. For instance, the positions for which g vanishes are exactly the P-
position of the game and when considering sums of games (several games are
played simultaneously and at each turn, the player chooses on which of those
games he will made a move), it can be used to distinguish N -positions [16].
For Wythoff’s game, little is known about this function (see for instance
[55]) even if its recursive definition is simple. The value of g(x, y) is the
minimum excluded value (Mex) of the set of g(u, v) where (u, v) is ranging
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amongst the options reachable from (x, y). By definition Mex ∅ = 0 and
MexS = min(N \ S) for all finite set S.

0 1 2 3 4 5 6 7 8 9 · · ·
0 0 1 2 3 4 5 6 7 8 9 · · ·
1 1 2 0 4 5 3 7 8 6 10
2 2 0 1 5 3 4 8 6 7 11
3 3 4 5 6 2 0 1 9 10 12
4 4 5 3 2 7 6 9 0 1 8
5 5 3 4 0 6 8 10 1 2 7
...

. . .

Let F be the Fibonacci numeration basis. As suggested by the developments
considered in [41] could the above infinite array reveal some morphic struc-
ture, like having a finite F -kernel where this set could be defined as the set
of subarrays

(g(x, y))repF (x)∈{0,1}∗u, repF (y)∈{0,1}∗v

for given suffixes u, v? For the generalization of k-kernel, see for instance
[83].

– Theorem 10 is a Cobham-like theorem for sets of real numbers, definabil-
ity in 〈R,Z,+, 0, <〉 being the counterpart to ultimate periodicity of a set
of integers. Can a simpler proof of this result be achieved, for instance by
considering the techniques developed in [1]? Also could this result be ex-
tended to other kind of representations of real numbers. For instance, con-
sidering β-expansions of real numbers, we could define β-recognizable sets
of real numbers and consider two multiplicatively independent real numbers
α, β > 1. As a first step (and to mimic what has chronologically been done
for sets of integers), one could consider a set of real numbers X ⊆ R which
is both k-recognizable and β-recognizable by two weak deterministic RVA,
with k ≥ 2 an integer and β a Pisot number like the Golden ratio, and ask
is X definable in 〈R,Z,+, 0, <〉?

– About abstract numeration systems, several questions about S-recognizable
sets are open. For instance, is there some reasonable logical characterization
of the S-recognizable sets of integers which could be compared to the char-
acterization in the extended Presburger arithmetic 〈N,+, Vk〉. But one can
notice that in general, if X and Y are S-recognizable, there is no reason to
have a S-recognizable set X+Y (even when considering multiplication by a
constant). Another question is to relate the growth function n �→ #(L∩An)
of the regular language L on which the abstract numeration system S is
based and the S-recognizable set. For instance, if P ∈ N[X ] is a polynomial
such that P (N) is S-recognizable, what can be said about the growth func-
tion of the language of numeration. Results like the one found in [14] could
be of interest.

– Recently numeration systems based on the powers of a rational number have
been introduced [6] (motivated by a number theoretic question from Mahler).
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These numerations reveal interesting and intriguing properties. For instance,
little is known about the properties of the language of numeration L3/2. For
a given prefix w, compute the number of words of length n in the quotient
w−1L3/2.

– It is well-known since the work of Cobham [35] that a morphic infinite word
w = τ(σω(a)) where σ and τ are arbitrary morphisms (where both mor-
phisms can be erasing and τ is not necessarily a coding) can be generated by
a non-erasing morphism μ and a coding ν. See for instance [12] for a compre-
hensive proof or [66] for an alternative presentation. All the known proofs
rely on morphisms and are quite long: could one describe in the formalism
of automata theory a somehow simpler proof?

– Let me also mention Hollander’s conjecture when for a linear numeration
basis U , the dominant root condition is not satisfied [65]. He has conjectured
that repU (N) can be regular only if there exists n such that

lim
j→∞

Ujn+k/U(j−1)n+k

exists and is independent of k, and the characteristic polynomial p(X) of
U is such that p(X) = q(Xn) where q(X) is the minimal polynomial for a
recurrence which gives a regular language [26].

– Let p be a prime. Derksen proved that the zero set of a linear recurrence
over a field of characteristic p is p-automatic [40,2]. Could such a result and
Cobham’s theorem be used to get back the classical Skolem–Mahler–Lech
theorem (the zero set of a linear recurrence over a field of characteristic 0 is
ultimately periodic)?

– The reader fond of logic could also look back at the list of open problems
given by Michaux and Villemaire [78]. This survey paper is devoted to prob-
lems related to Büchi’s characterization of sets of natural numbers recogniz-
able by finite automata in base k, as well as to Cobham’s and Semenov’s
extensions of it.
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62. Hansel, G., Safer, T.: Vers un théorème de Cobham pour les entiers de Gauss. Bull.

Belg. Math. Soc. Simon Stevin 10, 723–735 (2003)

63. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 5th edn.

Oxford University Press, Oxford (1985)

64. Hartmanis, J., Stearns, R.E.: On the computational complexity of algorithms.

Trans. Amer. Math. Soc. 117, 285–306 (1965)

65. Hollander, M.: Greedy numeration systems and regularity. Theory Comput. Sys-

tems 31, 111–133 (1998)

66. Honkala, J.: On the simplification of infinite morphic words. Theoret. Comput.

Sci. 410(8-10), 997–1000 (2009)

67. Kärki, T., Lacroix, A., Rigo, M.: On the recognizability of self-generating sets. J.

Integer Sequences, Article 10.2.2 (2010)
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85. Sakarovitch, J.: Éléments de théorie des automates. Vuibert, English corrected

edition: Elements of Automata Theory. Cambridge University Press, Cambridge

(2003/2009)
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Paris 305, 501–504 (1987)

88. Schmidt, W.M.: Diophantine Approximation. LNM, vol. 785. Springer, Heidelberg

(1980)

89. Shallit, J.O.: Numeration systems, linear recurrences, and regular sets. Inform.

Comput. 113, 331–347 (1994)

90. Silva, C.E.: Invitation to ergodic theory. Student Mathematical Library, vol. 42.

American Mathematical Society, Providence (2008)

91. Waldschmidt, M.: Diophantine approximation on linear algebraic groups.

Grundlehren der Mathematischen Wissenschaften, vol. 326. Springer, Berlin

(2000); Transcendence properties of the exponential function in several variables

92. Waldschmidt, M.: Words and transcendence. In: Analytic Number Theory - Es-

says in Honour of Klaus Roth, ch. 31, pp. 449–470. Cambridge University Press,

Cambridge (2009), http://arxiv.org/abs/0908.4034

http://arxiv.org/abs/0908.4034


Algorithmic Properties of Millstream Systems

Suna Bensch, Henrik Björklund, and Frank Drewes

Department of Computing Science, Ume̊a University

90187 Ume̊a, Sweden

{suna,henrikb,drewes}@cs.umu.se

Abstract. Millstream systems have recently been proposed as a formal-

ization of the linguistic idea that natural language should be described

as a combination of different modules related by interfaces. In this pa-

per we investigate algorithmic properties of Millstream systems having

regular tree grammars as modules and MSO logic as interface logic. We

focus on the so-called completion problem: Given trees generated by a

subset of the modules, can they be completed into a valid configuration

of the Millstream system?

1 Introduction

Millstream systems [1] have recently been introduced as a generic mathemati-
cal framework for the description of natural language providing the possibility
to formalize and reason about the relation between different linguistic levels,
such as phonology, morphology, syntax and semantics. Millstream systems are
motivated by contemporary linguistic theories that refrain from the idea of trans-
formational grammars in the Chomskian tradition in which linguistic levels are
hierarchically ordered. The authors in [11,7], for example, propose to view them
as autonomous modules that work simultaneously but are linked with each other
through interfaces that describe the interactions and interdependencies between
these linguistic levels. Both authors argue that the human way of processing lan-
guage is more adequately described by such a non-hierarchical approach, as the
human brain seems to store and process different linguistical levels in parallel, at
the same time linking them according to certain rules in order to create a whole
that is more than the sum of its parts. Matching this view, a Millstream system
consists of several individual modules specifying tree languages L1, . . . , Lk, and
a logical interface relating the (trees yielded by the) modules. A configuration
is a tuple (t1, . . . , tk) ∈ L1 × · · · × Lk, augmented with links as specified by the
interface.

Let us consider an example that illustrates the linguistic ideas that have moti-
vated Millstream systems. Figure 1 shows the syntactic and semantic structure,
depicted as trees (a) and (b), respectively, of the sentence John loves Sarah and
the established interface links which are depicted as dotted lines linking syn-
tactic categories occurring in structure (a) with semantic categories occurring in
structure (b). The syntactic tree (a) divides the sentence S into a nominal phrase
NPS and a verbal phrase VP. The nominal phrase NPS consists of the lexical

Y. Gao et al. (Eds.): DLT 2010, LNCS 6224, pp. 54–65, 2010.
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Fig. 1. Syntactical and semantic structures of John loves Sarah

item John and the verbal phrase VP is divided into a verb V and a nominal
phrase NPO, where V and NPO consist of the lexical items loves and Sarah,
respectively. The semantic tree (b) depicts that the transitive verb loves is of
category F1 which represents a function that is applied to the argument A1 (the
object) whose lexical item is Sarah and yields a function as its result, namely F2.
Function F2 in turn is applied to the argument A2 (the subject) whose lexical
item is John. Thus, the analysis of the sentence John loves Sarah does not only
result in its syntactic and semantic trees, but also includes relationships between
them, namely the links in Figure 1. The syntactic category V, for example, is
linked with the semantic category F1 which illustrates that these particular oc-
currences of V and F1 correspond to each other. The syntactic subject NPS and
the object NPO are linked with the semantic arguments A2 and A1, respectively,
which reflects that the syntactic arguments (subject and object) of a (transitive)
verb correspond to the semantic arguments of the semantic function of that verb.
The conditions that such links have to fulfill are described by the interface. The
reader is referred to [12] for a discussion of the syntax-semantics interface from
the linguistic point of view and to [1] for more a detailed discussion of how this
can be formalized in terms of Millstream systems.

In particular, Millstream systems are of interest for natural language pro-
cessing, and in particular for natural language understanding and natural lan-
guage generation. Simply put, the task of natural language understanding is to
construct a suitable semantic representation of a sentence that has been heard
(phonology) and parsed (syntax). Within the framework of Millstream systems
this corresponds to the problem where we are given a syntactic tree (and pos-
sibly a phonological tree if a phonological module is involved) and the goal is
to construct an appropriate semantic tree. Conversely, natural language gener-
ation can be seen as the problem to construct an appropriate syntactic (and/or
phonological) tree from a given semantic tree.

In abstract terms, the situations just described are identical. In both cases,
a Millstream system is given, the input is a partial configuration consisting of
some of the required trees, and the goal is to complete the configuration by
adding the missing trees and the links between the trees. In this paper, we
study whether and how this problem, called the completion problem, can be
solved for so-called regular MSO Millstream systems, i. e. systems in which the



56 S. Bensch, H. Björklund, and F. Drewes

modules are regular tree grammars (or, equivalently, finite tree automata) and
the interface conditions are expressed in monadic second-order (MSO) logic.
We prove that the emptiness problem (where no tree of the configuration is
known) is undecidable, but the completion problem is decidable if no direct links
exist between the unknown trees. Finally, motivated by the observation that
the completion problem is decidable if the configurations are of bounded tree
width, we establish sufficient conditions under which this is the case. Moreover,
structures of bounded tree-width seem to be of particular interest for natural
language processing. For example, Kornai and Tuza [8] argue that bounded path-
width is related to the bounded capacity of the short-term memory and its
influence on human generation and understanding of language.

The rest of this paper is organized as follows. The next section contains the
definition of Millstream systems and other basic notions. In Section 3, the unde-
cidability of the emptiness problem is shown. Section 4 contains the proof that
the completion problem is decidable in those cases where there are no direct
links between unknown parts of the configuration, and in Section 5 sufficient
conditions for bounding the tree width of configurations are studied. To obey
the page limit, some proofs have been moved into the appendix.

2 Definitions and Preliminaries

The set of natural numbers is denoted by N, and N+ = N\{0}. For k ∈ N, we let
[k] = {1, . . . , k}. For a set S, the set of all nonempty finite sequences (or strings)
over S is denoted by S+; if the empty sequence ε is included, we write S∗.

A ranked alphabet is a finite set Σ of pairs (f, k), where f is a symbol and
k ∈ N is its rank. We denote (f, k) by f (k), or simply by f if k is understood.

We define trees over Σ in one of the standard ways, by identifying the nodes
of a tree t with sequences of natural numbers. Thus, TΣ consists of all mappings
t : V (t)→ Σ (called trees), such that the set V (t) of nodes of t is a finite and non-
empty prefix-closed subset of N∗

+, and, for every node v ∈ V (t), if t(v) = f (k),
then {i ∈ N | vi ∈ V (t)} = [k]. In other words, the children of v are v1, . . . , vk
(and v is their parent). For v, u ∈ V (t) we write v ≤ u if v is a prefix of u and
v < u if v is a proper prefix. A Σ-tree generator is any kind of device G that
specifies a tree language L(G) ⊆ TΣ . We assume familiarity with generators of
regular tree languages, e.g., finite tree automata, regular tree grammars, and
monadic second-order logic (MSO) (see, e.g., [6]).

For a tree t ∈ TΣ , the subtree of t rooted at v (defined in the usual way) is
denoted by t/v. We denote a tree t as f [t1, . . . , tk] if t(ε) = f (k) and t/i = ti for
i ∈ [k], omitting the brackets if k = 0.

For a tuple T ∈ Tk
Σ, we let V (T ) denote the set {(i, v) | i ∈ [k] and v ∈ V (ti)}.

Thus, V (T ) is the disjoint union of the sets V (ti). Furthermore, we let V (T, i)
denote its ith component, i.e., V (T, i) = {i} × V (ti) for all i ∈ [k].

We now define a logical representation of trees, which is fairly standard (see,
e.g., [9]). For this, let Λ be any type of predicate logic that allows us to make
use of n-ary predicate symbols P (n), and let FΛ denote the set of all formulas
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in Λ without free variables (i.e., the set of sentences of Λ). For k ∈ N, we say
that a predicate symbol P (n) is k-typed if it comes with an associated type
(i1, . . . , in) ∈ [k]n. We write P : i1 × · · · × in to specify the type of P .

Given a (finite) set P of predicate symbols, a logical structure 〈D; (ψP )P∈P〉
consists of a set D called the domain and, for each P (n) ∈ P , a predicate ψP ⊆
Dn. If an existing structure Z is enriched with additional predicates (ψP )P∈P′

(where P ∩P ′ = ∅), we denote the resulting structure by 〈Z; (ψP )P∈P′〉. In this
paper, we will only consider structures with finite domains.

A tuple T = (t1, . . . , tk) ∈ Tk
Σ of trees will be represented by the structure

|T | = 〈V (T ); (Vi)i∈[k], (labg)g∈Σ , (↓i)i∈[r]〉,

using the following predicates V (1)
i (i ∈ [k]), lab(1)

g (g ∈ Σ) and ↓(2)i (i ∈ [r]):

– For every i ∈ [k], Vi = V (T, i). Thus, Vi(d) expresses that d belongs to ti.
– For every g ∈ Σ, labg = {(i, v) ∈ V (T ) | i ∈ [k] and ti(v) = g}. Thus,

labg(d) expresses that the label of d is g.
– For every j ∈ [r], ↓j = {((i, v), (i, vj)) | i ∈ [k] and v, vj ∈ V (ti)}. Thus,
↓j(d, d′) expresses that d′ is the jth child of d in one of the trees t1, . . . , tk.
In the following, we write d ↓j d′ instead of ↓j(d, d′).

Note that, in the definition of |T |, we have blurred the distinction between pred-
icate symbols and their interpretation as predicates, because this interpretation
is fixed. In the following, especially in intuitive explanations, we shall sometimes
also identify the logical structure |T | with the tuple T it represents.

To define Millstream systems, we first formalize our notion of interfaces. The
idea is that a tuple T = (t1, . . . , tk) of trees, represented as |T |, is augmented
with additional interface links that are subject to logical conditions.

Definition 1 (Interface). Let Σ be a ranked alphabet. An interface on Tk
Σ

(k ∈ N) is a pair INT = (I, Φ), such that

– I is a finite set of k-typed predicate symbols called interface symbols, and
– Φ is a finite set of formulas in FΛ that may, in addition to the fixed vocabulary

of Λ, contain the predicate symbols in I and those occurring in the structures
|T | (where T ∈ Tk

Σ). These formulas are called interface conditions.

A configuration (w.r.t. INT) is a structure C = 〈|T |; (ψI)I∈I〉 with T ⊆ Tk
Σ

such that ψI ⊆ V (T, i1) × · · · × V (T, il) for each I : i1 × · · · × il in I, and C
satisfies the interface conditions in Φ (if each I ∈ I is interpreted as ψI).

For I ∈ I and nodes v1, . . . , vl, we say that a configuration C as above contains
the link I(v1, . . . , vl) if (v1, . . . , vl) ∈ ψI .

Definition 2 (Millstream system). Let Σ be a ranked alphabet and k ∈ N.
A Millstream system (MS, for short) is a system MS = (M1, . . . ,Mk; INT )
consisting of Σ-tree generators M1, . . . ,Mk, called the modules of MS, and an
interface INT on Tk

Σ. The language L(MS ) generated by MS is the set of all
configurations 〈|T |; (ψI)I∈I〉 such that T ∈ L(M1)× · · · × L(Mk).
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In the remainder of the paper, we mainly consider regular MSO Millstream sys-
tems. This is the special case of Millstream systems where the modules are
regular tree grammars (or equivalent devices) and Λ is monadic second-order
predicate logic. Similarly, we talk about regular FO Millstream systems if only
first-order predicate logic is considered. If we do not want to restrict the type of
modules considered, we speak of Λ Millstream systems. Recall that, in fact, the
regular tree languages are exactly those which can be specified by MSO formulas
over trees, which means that each component language L(Mi) of a regular MSO
Millstream system can, if convenient, be assumed to be equal to TΣ .

3 Emptiness for Millstream Systems Is Undecidable

In this section we show that it is undecidable whether the language of a given
Millstream system is empty. More precisely, we show the following.

Theorem 3. Emptiness for regular FO Millstream systems is undecidable.

Proof sketch. The proof is by reduction from Post’s correspondence problem
(PCP), which is well known to be undecidable [10]. An instance of PCP over a
finite alphabet Σ is a set I = {(u1, w1), . . . , (un, wn)} of pairs of words over Σ,
i.e., ui, wi ∈ Σ∗ for i = 1, . . . , n. The question is whether there exists an integer
m ∈ N and a sequence of indices i1, i2, . . . , im ∈ {1, . . . , n} such that

ui1ui2 · · ·uim = wi1wi2 · · ·wim . (1)

For an instance I = {(u1, w1), . . . , (un, wn)} of PCP over Σ = {a, b}, we show
how to construct a regular FO Millstream system MS I = (M1,M2; INT ) such
that L(MS I) �= ∅ if and only if I has a solution.

The modules M1 and M2 generate monadic trees over the ranked alphabet
Γ = {a(1), b(1), 1(1), 2(1), . . . , n(1),♦(0)}. Thus, we may view L(M1) and L(M2)
as regular string languages. The idea is that these languages contain all possible
indexed left- and right-hand sides of solutions to Equation (1). To be precise, we
let L(M1) = (1 · u1 + · · ·+ n · un)∗♦ and L(M2) = (1 · w1 + · · ·+ n · wn)∗♦.

The interface INT , has two interface symbols, Link1 and Link2, and is used
to ensure that only pairs of trees that satisfy Equation 1 can be produced. For
instance, the following three formulas are used to ensure that the sequence of
indices in the tree produced by M1 is the same as in the tree produced by M2:

φ1 ≡ ∀x∀y : (root1(x) ∧ root2(y))→ Link1(x, y)
φ2 ≡ ∀x∀y : Link1(x, y)→ (index(x) ∧ SameLabel (x, y))
φ3 ≡ ∀x∀y : Link1(x, y)→

∃x′∃y′ : NextIndex1(x, x′) ∧ NextIndex2(y, y′) ∧
(Link1(x′, y′) ∨ (lab♦(x′) ∧ lab♦(y′)))

Here, SameLabel (x, y) and NextIndex1(x, x′) are abbreviations of formulas ex-
pressing that x and y have the same label and that x′ is the first node below x
that has a label in [n], respectively. The full interface definition is given in the
Appendix. ��
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4 The Completion Problem

In this section, the completion problem for regular MSO Millstream systems
is studied. Let us first define this problem. Given a Millstream system MS =
(M1, . . . ,Mk; INT ) over a ranked alphabet Σ and a set K ⊆ [k], the (uniform)
K-completion problem for MS is defined as follows:

Instance. A family κ = (κi)i∈K of trees κi ∈ TΣ .
Question. Is there a completion of κ, i.e., a configuration 〈|(t1, . . . , tk)|, Ψ〉 in

L(MS ) such that ti = κi for all i ∈ K?

Intuitively, the trees κi, i ∈ K, are the “known trees” of an otherwise unknown
configuration in L(MS ), which is sought. Note that there can be zero, one, finitely
or infinitely many such configurations. Thus, one may also wish to compute a
representation of the set of all completions of κ. If we talk about the problem at
a general level, we simply call it the completion problem.

The completion problem is of obvious linguistic relevance, as discussed in the
introduction. There are two extreme cases of the completion problem. The first
is when K = [k], asking whether k given trees can be linked consistently. The
second is when K = ∅, asking whether L(MS ) is nonempty. The first is trivially
decidable by enumeration, provided that a logic is used for which it can be
decided whether a given configuration satisfies a given formula. The second was
studied in the previous section, which yields the following corollary of Theorem 3.

Corollary 4. The completion problem for regular FO Millstream systems is un-
decidable.

Our next goal is to identify conditions under which the completion problem
becomes decidable. For this, we now define a normal form of MSO Millstream
systems, called typed MSO Millstream system, that turns out to be useful. In-
tuitively, in a typed MSO Millstream system with k modules, every variable is
associated with an index i ∈ [k], indicating that this variable is meant to range
only over (sets of) nodes in V (ti). In the definition, we let Vi(X) abbreviate
∀x : (x ∈ X → Vi(x)).

Definition 5 (Typed MSO Millstream system). Let MS = (M1, . . . ,Mk;
INT ) be an MSO Millstream system. An interface condition ϕ of MS is typed
if each quantified subformula of ϕ is of one of the forms ∃ξ : (Vi(ξ) ∧ ϕ′) and
∀ξ : (Vi(ξ) → ϕ′), where ξ is an individual or set variable and i ∈ [k]. We
abbreviate such formulas by ∃ξ(i) : ϕ′ and ∀ξ(i) : ϕ′, respectively, and call i the
type of ξ. MS is typed if each of its interface conditions is typed.

The following lemma states that MSO Millstream systems can, without loss of
generality, be assumed to be typed. The rather straightforward proof, which can
be found in the appendix, is based on a recursive construction that replaces
every variable ξ by k variables ξ(1)1 , . . . , ξ

(k)
k .

Lemma 6. Every MSO Millstream system can effectively be turned into a typed
MSO Millstream system MS ′, such that L(MS ′) = L(MS ).
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In the following, we assume that variables of type i occur only in the “right
places” in typed formulas. For example, if I contains I : 2× 1 and I(x, y) occurs
in a typed formula, then x and y are of types 2 and 1, respectively. This is no
restriction, because I(x, y) would necessarily be false, otherwise.

Let C = 〈(t1, . . . , tk), Ψ〉 be a configuration of MS = (M1, . . . ,Mk; INT ),
where INT = (I, Φ), and let K ⊆ [k]. We now define the configuration C/K
which is obtained by removing the trees with indices in K and their nodes from
the interface links, but memorizing the latter by attaching subscripts to the
interface symbols, thus hard coding the information into the interface symbol
itself. In particular, we make use of a new alphabet of interface symbols which
depends on the trees ti, i ∈ K. Before defining C/K formally, we introduce some
convenient notation. For a finite number of indexed elements a1, . . . , an, and a
condition ϕ that is true or not for each of the ai, we denote by (ai | ϕ(ai)) the
tuple (ai1 , . . . , aim) such that i1 < · · · < im and {i1, . . . , im} = {i ∈ [n] | ϕ(ai)}.

Now, we let C/K = 〈(ti | i /∈ K), Ψ ′〉, where Ψ ′ is obtained from Ψ , as follows.
For every interface symbol I : i1 × · · · × il in I, every interface link I(v1, . . . , vl)
in C is replaced with Iu1...um(v′1, . . . , v

′
l−m), where (u1, . . . , um) = (vj | j ∈

[l] and ij ∈ K) and (v′1, . . . , v
′
l−m) = (vj | j ∈ [l] and ij /∈ K). We define

L(MS)/K = {C/K | C = 〈(t1, . . . , tk), Ψ〉 ∈ L(MS ) and ti = κi for all i ∈ K}.

Lemma 7. Let MS = (M1, . . . ,Mk; INT ) with INT = (I, Φ) be an MSO Mill-
stream system over Σ, and let κi ∈ TΣ for all i ∈ K, where K ⊆ [k]. Then one
can effectively construct an MSO Millstream system MS ′ = (M ′

1, . . . ,M
′
k−|K|;

INT ′), with (M ′
1, . . . ,M

′
k−|K|) = (Mi | i ∈ [k] \K) and L(MS ′) = L(MS )/K.

Proof. By induction, and since the statement is trivially true for K = ∅, it
suffices to prove the lemma for |K| = 1. Suppose without loss of generality
that K = {k} and, by Lemma 6, that MS is typed. Furthermore, assume that
i1 ≤ · · · ≤ il, for all I : i1 × · · · × il in I, and let m(I) = |{j ∈ [l] | ij = k}|. In
the following, we denote κk by κ.

The new alphabet of interface symbols contains all Iv1...vm(I) : i1×· · ·×il−m(I),
such that I : i1×· · ·× il is in I and v1, . . . , vm(I) ∈ V (κ). It remains to define the
interface conditions of MS ′. We do this by recursively turning each individual
interface condition ϕ ∈ Φ into an appropriate interface condition ϕ′ for MS ′.
In fact, ϕ′ will in general contain atomic subformulas (not involving interface
symbols) in which variables x(k) or X(k) have been replaced with constants, i.e.,
nodes or sets of nodes of κ. Clearly, these constants can be removed by replacing
the corresponding subformulas with either true or false, because κ is fixed.

Consider a (typed) MSO formula φ without free variables of type k. We define
φ′ as follows.

– If φ is atomic, then φ′ = φ unless φ = I(x1, . . . , xl−m(I), v1, . . . , vm(I)) for
some interface symbol I : i1 × · · · × il, variables x1, . . . , xl−m(I), and nodes
v1, . . . , vm(I) ∈ V (κ). In the latter case, φ′ = Iv1···vm(I)(x1, . . . , xl−m(I)).

– If φ = φ1∧φ2, then φ′ = φ′1∧φ′2, and similarly for φ = φ1∨φ2 and φ = ¬φ1.
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– If φ = ∀x(i) : φ1, there are two cases. Either i < k, in which case φ′ =
∀x(i) : φ′1, or i = k, in which case φ′ =

∧
v∈V (κ)

φ1〈x ← v〉′. Here, φ1〈x ← v〉′

is the formula obtained by substituting v for all free occurrences of x in φ1.
– If φ = ∀X(i) : φ1, then φ′ = ∀X(i) : φ′1 if i < k, and φ′ =

∧
V ⊆V (κ)

φ1〈X ← V 〉′.

– The cases φ = ∃x(i) : φ1 and φ = ∃X(i) : φ1 are similar, the only difference
being that

∧
is replaced with

∨
.

By structural induction on φ, it can be shown that, for every assignment of (sets
of) nodes of t1, . . . , tk−1 to the free variables in φ and for every configuration
C = 〈(t1, . . . , tk−1, κ), Ψ〉, C satisfies φ if and only if C/K satisfies φ′. ��

Given a Millstream system MS = (M1, . . . ,Mk; INT ) with INT = (I, Φ), we
call a set U ⊆ [k] unlinked (with respect to MS ) if, for all interface symbols
I : i1 × · · · il in I, we have |{j ∈ [l] | ij ∈ U}| ≤ 1. In other words, U is unlinked
if there are no interface symbols that could establish direct links between the
nodes of the trees generated by the modules Mi, i ∈ U .

Theorem 8. Let MS = (M1, . . . ,Mk; INT ) be a regular MSO Millstream sys-
tem. For all K ⊆ [k], if [k] \ K is unlinked, then a K-completion of κ can
be computed for every κ = (κi)i∈K , κi ∈ TΣ. In particular, the K-completion
problem for MS is decidable.

Proof sketch. Let l = k − |K|. By Lemma 7, we can effectively construct a reg-
ular MSO Millstream system MS ′ = (M ′

1, . . . ,M
′
l ; INT ′) such that L(MS ′) =

L(MS )/K. Since [k]\K is unlinked, all interface symbols in INT ′ are of rank≤ 1.
Adding an additional root symbol on top of every configuration C = 〈(t1, . . . , tl),
Ψ〉 of MS ′, this shows that L(MS ′) is essentially a regular tree language (using
the fact that the regular tree languages are exactly the MSO-definable ones
[14,5]). Consequently, we can check whether L(MS ′) is empty and compute a
configuration C ∈ L(MS ′) if it is not. From C, one can easily construct a con-
figuration C0 = 〈(t1, . . . , tk), Ψ〉 ∈ L(MS) with C0/K = C and ti = κi for all
i ∈ K, by reversing the construction of C0/K. This completes the proof. ��

Under the assumptions of the theorem and abstracting from some irrelevant de-
tails, L(MS)/K is a regular tree language. Hence, even finiteness can be decided.

Corollary 9. Given a regular Millstream system MS = (M1, . . . ,Mk; INT ) and
K ⊆ [k] s.t. [k] \K is unlinked, it can be decided whether L(MS )/K is finite.

5 Configurations of Bounded Tree Width

We have seen that the emptiness problem is undecidable, but that the completion
problem is decidable in certain cases. Another way to achieve positive results in
situations such as those studied here is to consider structures of bounded tree
width. Readers who are unfamiliar with this notion may consult, e.g., [2]. In
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the following, we use tree width to find restrictions under which the completion
problem can be solved more efficiently. For this, we regard a configuration 〈|T |, Ψ〉
as an undirected graph on V (T ). More precisely, we say that Ψ contains a link
(v1, . . . , vl) and write (v1, . . . , vl) ∈ Ψ , if I(v1, . . . , vl) = true for some interface
symbol I. Two distinct nodes u, v are considered to be connected by an edge if
one is a child of the other or u, v ∈ {v1, . . . , vl} for some link (v1, . . . , vl) ∈ Ψ . We
say that a set L of configurations has bounded tree width if there is a constant
w ∈ N such that every configuration in L is of tree width at most w.

By the results of [4,3], we have the following.

Theorem 10. Let MS = (M1, . . . ,Mk; INT ) be a regular MSO Millstream sys-
tem. If L(MS ) is of bounded tree width, then

– the membership problem for L(MS ) can be solved in linear time,
– the K-completion problem for MS is decidable for every K ⊆ [k], and
– for every MSO formula ϕ, it can be decided whether all configurations in
L(MS ) satisfy ϕ.

Thus, Millstream systems MS for which L(MS) is of bounded tree width are of
particular interest. In the rest of this section, we establish two conditions that
guarantee that L(MS ) is of bounded tree width.

Let MS = (M1, . . . ,Mk; INT ) be an MSO Millstream system and C =
〈|(t1, . . . , tk)|, Ψ〉 a configuration of MS . We say that a node v ∈ ti is linked
if it occurs in a link in Ψ .

Definition 11 (Simple configuration). Let C = 〈|(t1, . . . , tk)|, Ψ〉 be a con-
figuration. For nodes x, x′ ∈ V (ti), let gcp(x, x′) be the greatest common prede-
cessor of x and x′, i.e. the largest (w.r.t. <) node v in ti such that v < x and
v < x′. C is simple if it satisfies the following conditions:

1. No node in any of the trees t1, . . . , tk is involved in more than one link, i.e.,
each node v ∈ ti occurs in at most one link in Ψ .

2. For every x1, x2, x3 ∈ ti and every y1, y2, y3 ∈ tj such that x1 is linked to y1,
x2 is linked to y2, and x3 is linked to y3, gcp(x1, x2) ≥ gcp(x1, x3) if and
only if gcp(y1, y2) ≥ gcp(y1, y3).

The intuition behind the second condition is that the links have to respect the
branching structure of the tree. Figure 2 illustrates how a configuration can
violate the criterion for simplicity.

Next, we prove that every simple configuration of a Millstream system with
two modules has bounded tree-width.

Theorem 12. If C = 〈|(t1, t2)|, Ψ〉 is a simple configuration of MS = (M1,M2;
INT ), then C has tree-width at most 2.

Proof sketch. For the proof, we use a graph search game by Seymour and Thomas
[13]. The game is played between a robber and k cops on an undirected graph.
The robber stands on a vertex v of the graph and can at any time run to any
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x1 x2 x3 y1 y2 y3

t1 t2

Fig. 2. The above configuration is not simple, since the branches of x1 and x2 come

together before the branches of x2 and x3, while the branches of y1 and y2 come together

after the branches of y2 and y3

vertex u such that there is a cop-free path from v to u. Each cop is at any time
either placed on a vertex or is in a helicopter. The objective of the cops is to
land a cop on a vertex occupied by the robber. The robber can, however, see
the helicopter approaching and has time to flee to another vertex. Thus the cops
have to corner the robber, i.e., create a situation where the robber is on vertex
v, all neighbors of v are occupied by cops, and there is a cop in the helicopter
available to land on v and capture the robber.

A graph has tree-width k if and only if k + 1 is the minimal number of cops
that have a winning strategy against the robber on the graph [13]. Thus our
aim is to show that 3 cops can catch a robber on any simple configuration
C = 〈|(t1, t2)|, Ψ〉. The strategy will be to place one cop in each tree ti, make
sure that the robber can never again get to any node in ti outside the subtree of
the node on which the cop is placed, and in each round move the cop one step
down in one of the subtrees. Thus the robber is caught in at most 2 · h steps,
where h is the maximal height of any tree in C.

The cops will use the following strategy:

1. In the first step, two cops are placed on the two roots of t1, t2.
2. After m steps, one cop will be placed in each tree, say on the nodes c1 and
c2. The robber will be in one of the subtrees t1/c1, t2/c2 and there will be no
links from nodes within these subtrees to nodes outside them. Assume that
the robber is in subtree t1/c1. We distinguish two cases:
(a) If there is a child node w of c2 such that no node of t2 outside of t2/w

is accessible to the robber, and there is no link from any node in t1/c1
to c2, then the free cop is placed on w and the cop on c2 is removed.

(b) Otherwise the free cop is placed on the child v of c1 such that the robber
is in t1/v and the cop on c1 is removed.

The proof that this strategy works is given in the appendix. ��

Let us now define a second notion that can be used to bound the tree width of
L(MS ). In this definition and in the remainder of the section, if u, u1, . . . , un are
nodes in a configuration of a Millstream system, we write u > {u1, . . . , un} to
express that u > ui for some i ∈ [n]. We say that a node v is a successor of u if
v is a minimal linked node such that u > v.
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Definition 13 (Nested Millstream system). A Millstream system MS =
(M1, . . . ,Mk; INT ) is nested if there is a constant h ∈ N such that the following
hold for every configuration C = 〈|(t1, . . . , tk)|, Ψ〉 ∈ L(MS ).

(1) There are at most h links in Ψ containing a minimal linked node (i.e., a
node that is not a successor of another node).

Furthermore, for every link (u1, . . . , ul) ∈ Ψ ,

(2) there are at most h links (v1, . . . , vm) ∈ Ψ such that vi is a successor of uj

for some i ∈ [m] and j ∈ [l], and
(3) for each of the links (v1, . . . , vm) in (2) and every i ∈ [m], vi > {u1, . . . , ul}.

For a given configuration C = 〈|T |, Ψ〉 and distinct nodes u, u′ ∈ V (T ), we
say that u is linked with u′ if there is a link (v1, . . . , vl) ∈ Ψ such that u, u′ ∈
{v1, . . . , vl}. A (u, u′)-path in C is a sequence u0 · · ·un ∈ V (T )∗ such that u0 = u,
un = u′, and for every i ∈ [n], one of ui−1, ui is a child of the other or ui−1 is
linked with ui. Such a path is said to use each of the nodes u0, . . . , un. The proof
of the next lemma can be found in the appendix.

Lemma 14. Let C = 〈|T |, Ψ〉 ∈ L(MS), where MS is a nested Millstream sys-
tem, and let (v1, . . . , vl) ∈ Ψ and u, u′ ∈ V (T ). If u > {v1, . . . , vl} and there is a
(u, u′)-path in C that does not use any of v1, . . . , vl, then u′ > {v1, . . . , vl}.

Theorem 15. L(MS ) is of bounded tree width for every nested Millstream sys-
tem MS.

Proof. Let h be the constant in Definition 13, and let r ≥ 1 be the maximum rank
of interface symbols of MS = (M1, . . . ,Mk; INT ). Without loss of generality, we
may assume that all configurations in L(MS ) contain a link (v1, . . . , vk) such
that v1, . . . , vk are the roots of the trees in the configuration. This assumption
removes the need for condition (1) in Definition 13, as it becomes an instance
of (2).

Using the cops-and-robbers game, we show that the configurations in L(MS)
are of tree width at most r̂ = (h + 1)r + 2. The winning strategy for the cops
works as follows.

Maintained invariant: During the game, the cops will always completely oc-
cupy at least one link (u1, . . . , ul), in the sense that cops are placed on each
of u1, . . . , ul. This link is called the guarding link. Moreover, the strategy will
guarantee that the robber sits on a node v > {u1, . . . , ul}. Consequently, the
robber cannot move to any node v′ �> {u1, . . . , ul} (by Lemma 14).

Initially, cops are placed on the roots of the trees, making sure that the in-
variant holds. Now, the following is repeated, where (u1, . . . , ul) is the guarding
link and v denotes the current position of the robber at any instant in time:

We use the still available cops to occupy all links (u′1, . . . , u′m) such that u′i is
a successor of uj for some i ∈ [m] and j ∈ [l]. By Definition 13(2), this requires
at most hr cops in addition to those occupying the guarding link. (Note that, as
the cops still occupy the guarding link, the invariant still holds.)
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Now, let U be the set of all nodes u > {u1, . . . , ul} such that there is no
successor u′i of ui with u > u′i. (In other words, U is the set of descendants of
u1, . . . , ul that can be reached on a path not using one of the newly occupied
nodes.) There are two cases.

If v ∈ U , then the robber can only move within the tree that is given by the
connected component of U that v belongs to. (All nodes of links he could reach
for travelling along them are occupied by cops.) Thus, the two remaining cops
can be used to corner the robber, while keeping the at most h+1 links occupied.

If v /∈ U , then we have v > {u′1, . . . , u′m}, for (at least) one of the newly
occupied links (u′1, . . . , u

′
m). We choose this link as the new guarding link, making

all other cops available again, and continue. Note that, by Definition 13(3), the
sum of the sizes of the subtrees rooted at the nodes of the guarding link has
become strictly smaller. Thus, the robber will eventually be caught. ��
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Abstract. Recently, Carpi and D’Alessandro [3] have formulated a con-

jecture whose validity would imply an O(n2) upper bound for the mini-

mum length of reset words for synchronizing automata with n states. We

refute this conjecture as well as a related conjecture by Rystsov [13] and

suggest a weaker version that still suffices to achieve a quadratic upper

bound.

1 Strong Transitivity and the Černý Conjecture

Suppose A is a complete deterministic finite automaton whose input alphabet
is Σ and whose state set is Q. The automaton A is called synchronizing if there
exists a word w ∈ Σ∗ whose action resets A , that is, w leaves the automaton in
one particular state no matter at which state in Q it is applied: q.w = q′.w for all
q, q′ ∈ Q. Any such word w is called reset or synchronizing for the automaton.

Synchronizing automata serve as transparent and natural models of error-
resistant systems in many applications (coding theory, robotics, testing of reac-
tive systems) and also reveal interesting connections with symbolic dynamics and
other parts of mathematics. For a brief introduction to the theory of synchroniz-
ing automata we refer the reader to the recent survey [20]. Here we discuss one of
the main problems in this theory: proving an upper bound of magnitude O(n2)
for the minimum length of reset words for n-state synchronizing automata.

In 1964 Černý [5] constructed for each n > 1 a synchronizing automaton with
n states whose shortest reset word has length (n− 1)2. Soon after that he con-
jectured that those automata represent the worst possible case, thus formulating
the following hypothesis:

Conjecture 1 (Černý). Each synchronizing automaton with n states has a
reset word of length at most (n− 1)2.

By now this simply looking conjecture is arguably the most longstanding open
problem in the combinatorial theory of finite automata. The best upper bound
known so far is due to Pin [12] (it is based upon a combinatorial theorem conjec-
tured by Pin and then proved by Frankl [8]): for each synchronizing automaton
with n states, there exists a reset word of length n3−n

6 . Since this bound is cubic
and the Černý conjecture claims a quadratic value, it is of certain importance
to prove quadratic (upper) bounds for some classes of synchronizing automata.

Y. Gao et al. (Eds.): DLT 2010, LNCS 6224, pp. 66–75, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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In the rest of the paper, we assume that A is a synchronizing n-state au-
tomaton whose input alphabet is Σ and whose state set is Q. We also assume A
is strongly connected because finding reset words of length O(n2) can be easily
reduced to this case (see [11] for example). For S ⊆ Q and v ∈ Σ∗, we denote
by S.v and S.v−1 the image and respectively the preimage of the subset S under
the action of the word v, i.e.

S.v = {q.v | q ∈ S} and S.v−1 = {q | q.v ∈ S}.

A majority of existing methods for proving upper bounds for the minimal length
of reset words can be classified into two types: top-down (or merge) and bottom-
up (or extension) methods. Each of these methods constructs a finite sequence of
words V = (v1, v2, . . . , vm) such that the concatenation v1v2 · · · vm of the words
in the sequence is a reset word for A . We call m = |V | the size of the sequence
V and LV = maxi |vi| the length of V . In methods of the merge type, the words
in the sequence V subsequently merge the set Q to some state p, i.e.

|Q| > |Q.v1| > |Q.v1v2| > · · · > |Q.v1v2 · · · vm| = |{p}|.

In methods of the extension type, the words in V subsequently extend some
state p to the set Q, i.e.

|{p}| < |p.v−1
m | < |p.v−1

m v−1
m−1| < · · · < |p.v−1

m v−1
m−1 · · · v−1

1 | = |Q|.

In both cases, the size of V cannot exceed n−1 whence a quadratic upper bound
for the minimum length of reset words can be achieved as soon as one gets a
linear upper bound for the length of V .

A merge method was used in [12] to prove the aforementioned upper bound
n3−n

6 for the general case. Some merge methods were used to prove the Černý
conjecture for a few special classes of automata, see, for instance [7,14,15,19,21].
However, there are examples showing that in general the length LV of a merging
sequence V cannot be bound by a linear function of n so it is hard to believe
that a quadratic upper bound for the minimum length of reset words can be
obtained via merging methods.

Extension methods have become popular over the last 15 years and brought
a number of impressive achievements. Using an approach of this sort, Rystsov
proved quadratic upper bounds for automata in which each letter either permutes
the states or fixes all but one states [16] and for so-called regular automata [13]
whose definition we shall recall below. Dubuc [6] proved the Černý conjecture for
circular automata, i.e. automata with a letter that acts as a cyclic permutation of
the state set. He used an extension method combined with skilful linear algebra
techniques. Also via an extension method, Kari [10] proved the Černý conjec-
ture for Eulerian automata, i.e. automata whose underlying digraph is Eulerian.
Recently, quadratic upper bounds have been obtained for so-called one-cluster
automata (see [1,2]) that can be defined as automata for which there exists a
letter labelling precisely one cycle.

In DLT 2008 conference Carpi and D’Alessandro [3] (see also the journal ver-
sion [4]) introduced a new idea for constructing extension sequences of linear
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length. The idea is based on the notion of an independent set of words. A set of
words W = {w1, w2, . . . , wn} ⊆ Σ∗ is said to be independent with respect to a
fixed n-state automaton A if for every two given states s and t, there exists an
index i such that s.wi = t. The automaton A is called strongly transitive if it ad-
mits some independent set of words. It is easy to check that each synchronizing
strongly connected automaton is strongly transitive [4, Corollary 2]. Moreover,
if u is a reset word for A , then A has an independent set of length at most
|u|+ n− 1, and this bound is tight [4, Proposition 3]. Carpi and D’Alessandro
also proved [4, Theorem 2] that if an n-state automaton A is strongly transi-
tive with some independent set W , then it has a reset word of length at most
(n− 2)(n+ LW − 1) + 1 and conjectured that each synchronizing automaton
has an independent set of linear length. Formally, let us say that A satisfies the
k-Independent-Set property for some number k if it has an independent set of
words of length less than kn. Then the conjecture of Carpi and D’Alessandro
can be formulated as follows.

Conjecture 2 (Carpi and D’Alessandro). There exists some number k such
that each strongly connected synchronizing automaton satisfies the k-Independent-
Set property.

Since k is a constant, in view of the quoted result from [4], the validity of the
conjecture implies a quadratic upper bound for the minimum length of reset
words for all synchronizing automata.

Quite similar ideas were developed earlier by Rystsov [13]. Rystsov called a
finite set W ⊆ Σ∗ regular for an n-state automaton whose input alphabet is
Σ if W contains the empty word, the length of each word in W is less than n
and there is a positive integer r such that for each pair of states s, t there exist
exactly r words in W which map s to t. An automaton is said to be regular if it
admits a regular set of words. Rystsov proved [13, Theorem 7] the upper bound
2(n − 1)2 for the minimum length of reset words for n-state regular automata
and proposed the following hypothesis:

Conjecture 3 (Rystsov). Each strongly connected automaton is regular.

Again, the validity of this conjecture implies a quadratic upper bound for the
minimum length of reset words for all synchronizing automata. However, in this
paper we refute both Conjecture 2 and Conjecture 3. The interested readers are
also invited to read the Steinberg’s paper [17] where a clever generalization of
results [4,13] is presented.

In Section 2 of this paper we present a general extension algorithm, introduce
two related properties: the k-Extension property and the k-Balance property,
and prove that the latter one follows from the k-Independent-Set property as
well as from the property of being regular in Rystsov’s sense. In Section 3 we
construct a series of automata for which the k-Extension property fails for each
k < 2 and the k-Balance property fails for each k. Thus, this series refutes
both the conjecture by Carpi and D’Alessandro and the conjecture by Rystsov.
Finally, in Section 4 we relax the above properties to a “local” form and discuss
perspectives of extension methods.
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2 Extension Algorithm and Related Properties

Here we describe the essence of extension methods implicity used in
[1,2,3,6,10,13,16] and some other papers. Recall that A is an n-state strongly
connected synchronizing automaton. Suppose Cs, Ce are some nonempty subsets
of Q such that Cs ⊆ Ce, and vs, ve are some words such that Q.ve = Ce and
|Cs.vs| = 1. Then the following algorithm returns a reset word by constructing
an extension sequence of words.

Extension Algorithm (EA)

input A , Cs, Ce, vs, ve

initialization v ← vs

S ← Cs

while |S ∩Ce| < |Ce|, find a word u ∈ Σ∗ of minimum length with
|S.u−1 ∩Ce| > |S ∩ Ce|; if none exists, return Failure
v ← uv
S ← S.u−1

return vev

It is easy to show that the algorithm EA is correct. First, the main loop iterates
at most |Ce|− |Cs| times because each iteration expands the set S∩Ce by one or
more elements. Let us show that EA does not fail, i.e. some word u exists for each
iteration. Consider a generic iteration of the main loop. We have |S ∩Ce| < |Ce|
by the loop condition. Since A is synchronizing, there exists a reset word w, i.e.
Q.w = {p} for some state p ∈ Q. Moreover, since A is strongly connected, the
word w can be chosen to satisfy p ∈ S. Then Q = p.w−1 ⊆ S.w−1 ⊆ Q whence
S.w−1 = Q and

|S.w−1 ∩ Ce| = |Q ∩Ce| = |Ce| > |S ∩ Ce|.

Thus, there is a word w satisfying |S.w−1 ∩Ce| > |S ∩Ce|, and therefore, there
exists also a word u of minimum length with the same property. Hence, after
the last iteration we have Ce ⊆ S and S = p.v−1 for some state p ∈ Q. Since
Ce.ve

−1 = Q, we have

p.(vev)−1 = p.v−1ve
−1 = S.ve

−1 = Q.

This implies that vev is a reset word.
Since the loop of EA iterates at most |Ce|− |Cs| times, the length of the word

vev does not exceed

|ve|+ |vs|+ (|Ce| − |Cs|) max
S⊂Ce

|u(S)|.

Thus, in order to prove an upper bound, we have to estimate the maximal
possible length of the extension words (the length of the extension sequence).
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A subset S ⊆ Q is called m-extendable in the subset Ce ⊆ Q, if there exists
some (extension) word v of length at most m such that

|S.v−1 ∩ Ce| > |S ∩ Ce|.

We say that A possesses the Extension property if every proper subset S is
n-extendable (in Ce = Q). It is known (and easy to see) that automata with
the Extension property satisfy the Černý conjecture. Indeed, suppose that A
satisfies the Extension property. Let us set Ce = Q and ve = 1. Since A is syn-
chronizing, there exists a letter vs and a subset Cs such that |Cs| > |Cs.vs| = 1.
Applying EA for these input data, we get a reset word vev as a result. Since

|vev| ≤ |ve|+ |vs|+ (|Ce| − |Cs|) max
S⊂Ce

|u(S)| ≤ 0 + 1 + (n− 2)n = (n− 1)2,

we see that A satisfies the Černý conjecture. This argument was used in [6]
and [10] to prove the Černý conjecture for circular and Eulerian automata
respectively.

There are automata that do not satisfy the Extension property. For instance,
it can be verified that the 6-state automaton discovered by Kari [9] contains a
proper subset which is not 6-extendable and even not 7-extendable. In the next
section we present an infinite series of simple examples of automata that do not
satisfy the Extension property1.

We now consider a generalization of the Extension property. Given a fixed
number k, we say that an automaton A possesses the k-Extension property if
every proper subset S is kn-extendable in Q. Clearly, for such an automaton,
the algorithm EA returns a reset word of length at most (n − 2)kn + 1, thus
providing a quadratic upper bound for the minimum length of reset words.

One further related property is formulated in terms of a natural linear struc-
ture associated with automata. We fix a numbering q1, . . . , qn of the states of
A and then assign to each subset T ⊆ Q its characteristic vector [T ] in the
linear space Rn defined as follows: the i-th entry of [T ] is 1 if qi ∈ T , otherwise
it is equal to 0. As usually, for any two vectors g1, g2 ∈ Rn we denote the inner
product of these vectors by (g1, g2). Now we say that A satisfies the k-Balance
property if each proper subset S of Q admits a collection of words v1, v2 . . . vm

(some of them may be equal) such that |vi| < kn and the vector equality

m∑

i=1

[S.v−1
i ] = m

|S|
|Q| [Q].

holds in Rn. One can show that a synchronizing automaton satisfying the (k−1)-
Balance property also satisfies k-Extension property, see [1,2,3,13]. Thus, the k-
Balance property also implies a quadratic upper bound for the minimum length
of reset words.
1 One of the anonymous referees of this paper has informed us that an infinite series

of automata that does not satisfy the Extension property has been independently

constructed by John Dixon (unpublished).
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Lemma 1. If a synchronizing n-state automaton A satisfies the k-Independ-
ent-Set property, then A also satisfies the k-Balance property. Furthermore, if
A is regular in Rystsov’s sense, then A satisfies the 1-Balance property.

Proof. Suppose r is a positive integer and W = {w1, w2, . . . wm} is a set of words
of length less than kn such that for each two given states s and t there are exactly
r different words w1(s, t), w2(s, t), . . . , wr(s, t) ∈ W such that s.wi(s, t) = t for
each i ∈ {1 . . . r}. Observe that A satisfies the k-Independent-Set property when
m = n and r = 1 and A is regular in Rystsov’s sense when k = 1. Let us
fix an arbitrary state t. Then for each s ∈ Q and each i ∈ {1 . . . r} we have
s.wi(s, t) = t. Since the automaton is deterministic, wi(s, t1) �= wj(s, t2) for all
numbers i, j ∈ {1 . . . r} and all states s, t1, t2 such that t1 �= t2. Hence, m = rn
and, for each subset S ⊆ Q, we have

m∑

i=1

[S.w−1
i ] =

m∑

i=1

∑

t∈S

[t.wi
−1] =

∑

t∈S

m∑

i=1

[t.wi
−1]

=
∑

t∈S

r[Q] = r|S|[Q] = m
|S|
|Q| [Q].

Thus, A satisfies the k-Balance property.

3 Examples

The automaton A (m, k) for m ≥ 2, k ≥ 1 with the input alphabet
Σ = {a, b} is shown in Figure 1. The state set Q of the automaton con-
sists of elements q0, q1, . . . , qm, s1, s2, . . . , sk. The letter a generates the cycle
Ca = (q0, q1, . . . , qm) and maps the other states to q2, i.e.

q.a =

⎧
⎪⎨

⎪⎩

qi+1, if q = qi, 0 ≤ i ≤ m− 1;
q0, if q = qm;
q2, if q = sj , 1 ≤ j ≤ k.

(1)

The letter b generates the cycle Cb = (q0, s1, s2, . . . , sk) and fixes the other states,
i.e.

q.b =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

sj+1, if q = sj , 1 ≤ j ≤ k − 1;
q0, if q = sk;
s1, if q = q0;
qi, if q = qi, 1 ≤ i ≤ m.

(2)

The following lemma can be easily checked.

Lemma 2. A (m, k) is an (m + k + 1)-state strongly connected synchronizing
automaton and the word a(bam)m−1ba is a reset word for the automaton.

The next lemma directly follows from the construction of the automaton and
shows when the letter b can appear in the shortest extension word.
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q1

b

q0 q2

b

s1 s2 sk

a a
a

b

b

a a q3

b

q4

b

. . . qm

b

a a qm−1

b

a

b

. . .. . .

a

b b

Fig. 1. Automaton A (m, k)

Lemma 3. Suppose S ⊂ Q is such that S.b−1 �= S. Then Cb ∩ S �= ∅ and
Cb � S.

For every n > 3, let Bn = A (n− 2, 1).

Theorem 1. For each c < 2, the automaton Bn does not satisfy the c-Extension
property provided that n > 3

2−c . In particular, the automaton Bn does not satisfy
the Extension property for each n > 3.

Proof. By Lemma 2 the automaton Bn is an n-state strongly connected syn-
chronizing automaton. We set S = Cb and let v be a word of minimal length such
that |S.v−1| > |S|. Recall that k = 1 and m = n− 2. Our aim is to prove that
v = ambam. We denote by v(i) the letter in the i-th position of the word v. Since
S = Cb, by Lemma 3 we have v(1) = a and S1 = S.v(1)−1 = S.a−1 = {qm}.
Further, since Cb ∩ S1 = ∅, we have v(2) = a. Applying these arguments m
times, we obtain

Sm = S.(v(1) · · · v(m))−1 = S.(am)−1 = {q1, s1, s2, . . . , sk}.

Since Sm.a
−1 = {q0} ⊆ S, we have

v(m+ 1) = b and Sm.b
−1 = {q0, q1, s1, s2, . . . , sk−1}.

It is clear that v(m+2) = a, since v has been chosen to be the shortest extension
word. If we repeat these arguments, we get v = ambam. Thus, Bn = A (n−2, 1)
is an n-state synchronizing automaton, the shortest extension word for the subset
S is v and its length is 2m+1 = 2n−3. Therefore the set S is not cn-extendable
in Bn for every c such that n > 3

2−c .

Now, for any given integer k > 1, we denote by Cn the automaton A (n−k−1, k).
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Theorem 2. For each k ∈ N, the automaton Cn with n > k2+k does not satisfy
the (k− 1)-Balance property, and thus, refutes both the conjecture by Carpi and
D’Alessandro and the conjecture by Rystsov.

Proof. By Lemma 2 we have that the automaton Cn is an n-state strongly con-
nected synchronizing automaton. Arguing by contradiction, suppose that the
(k−1)-Balance property holds true for Cn and let S = Cb. Then there are words
v1, v2 . . . vr such that |vi| < (k−1)n and the following vector equality holds true.

r∑

i=1

[S.v−1
i ] = r

|S|
|Q| [Q].

Arguing by contradiction, suppose ([S.v−1
j ], [Ca]) ≤ k for each j ∈ {1 . . . r}.

Then if we multiply the equation through by [Ca], we have

rk ≥
r∑

i=1

[S.v−1
i ] = (r

|S|
|Q| [Q], [Ca]) = r

(k + 1)(n− k)
n

.

It is easy to check that the last inequality contradicts the condition n > k2 + k.
Hence there exists a number j such that ([S.v−1

j ], [Ca]) ≥ k + 1. Since [S.v−1
j ]

and [Ca] are zero-one vectors, we have |S.v−1
j ∩Ca| ≥ k + 1.

The argument in the proof of Theorem 1 shows that amb is the shortest word
v with the property that two states q0, q1 from Ca lie in S.v−1. Basically the
same argument shows that (amb)k is the shortest word w with the property that
at least k + 1 states from the set Ca lie in S.w−1. Hence we have

|vj | ≥ |(amb)k| = k(m+ 1) = k(n− k).

Since n > k2 +k, we have |vj | = k(n−k) > (k−1)n and we get a contradiction.
Hence the (k−1)-Balance property fails for Cn. By Lemma 1 so does the (k−1)-
Independent-Set property, whence the conjecture of Carpi and D’Alessandro
cannot hold for Cn. Also by Lemma 1 Cn cannot be regular in Rystsov’s sense.

4 Conclusion

We have refuted the conjecture by Carpi and D’Alessandro and the conjecture
by Rystsov and have shown that some arbitrarily large synchronizing automata
do not satisfy the k-Extension property for each k < 2. However, this does not
mean that extension methods can not be applied to prove the Černý conjecture
or quadratic upper bounds for the minimum length of reset words in the general
case. In terms of the notation of the algorithm EA, our examples only show that
extension methods with Ce = Q can be hardly successful.

This suggests to relax the k-Extension property to the following
k-Local-Extension property: there are subsets Cs, Ce ⊆ Q and words vs, ve ∈ Σ∗

such that
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|Cs.vs| = 1, Ce.v
−1
e = Q, Cs ⊆ Ce,

|vs| ≤ k + kn(|Cs| − 2), |ve| ≤ kn(n− |Ce|)
and each proper subset S of Ce is kn-extendable in Ce, i.e.

|S.v−1 ∩ Ce| > |S ∩ Ce|

for some word v with |v| ≤ kn.
If an n-state synchronizing automaton A satisfies the k-Local-Extension prop-

erty, then it has a reset word of length at most

kn(n− |Ce|) + k + kn(|Cs| − 2) + (|Ce| − |Cs|)kn = k(n− 1)2.

In particular, if k = 1, then the Černý conjecture holds true for A . Similarly,
the k-Balance property can be relaxed to the following k-Local-Balance property:
each proper subset S of Ce admits a collection of words v1, v2 . . . vr such that
|vi| < kn and

r∑

i=1

[S.v−1
i ] = r

|S|
|Q| [Q].

The k-Local-Balance property implies the “main part” of the (k + 1)-Local-Ex-
tension property, i.e. each proper subset S of Ce can be extended in Ce by using a
word v of length at most (k+1)n. One can easily prove this fact using techniques
from [1,2]. In fact, to prove a quadratic upper bound for the minimum length
of reset words in one-cluster automata, the authors of [1,2] have actually proved
2-Local-Extension property, using the 1-Local-Balance property as an auxiliary
statement.

It is easy to see that the 1-Local-Extension property holds true for the au-
tomaton A (n− k − 1, k) with

Cs = {q0, q1}, vs = ba

Ce = {q0, q1, . . . , qm}, ve = a.

Moreover, by running the algorithm EA on this input we get as a result the reset
word a(bam)m−1ba = v of length m2 + 2 = (n − k − 1)2 + 2. Using Lemma 3,
one can easily prove that this word is a reset word of minimum length for the
automaton. It is also easy to see that A (n− k − 1, k) with the same Cs, vs, Ce

and ve satisfies the k-Local-Balance property. Thus, our examples, which have
been designed to demonstrate that “global” versions of some synchronization
properties fail, do satisfy slightly relaxed versions of the same properties. We
hope that these relaxed version may be useful for further work in the direction
towards proving a quadratic upper bound for the minimum length of reset words
for arbitrary synchronizing automata.

The author acknowledges support from the Federal Education Agency of Rus-
sia, grant 2.1.1/3537, and from the Russian Foundation for Basic Research,
grants 09-01-12142 and 10-01-00793. The author is extremely grateful to the
anonymous referees for their detailed remarks and useful suggestions.
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Abstract. Observability concepts allow to focus on the observable be-

haviour of a system while abstracting internal details of implementation.

In this context, formal verification techniques use behavioural equiva-

lence notions formalizing the idea of indistinguishability of system states.

In this paper, we investigate the relation between two behavioural equiv-

alences: the algebraic observational equivalence in the framework of ob-

servational algebras with many hidden sorts and automata bisimulation.

For that purpose, we propose a transformation of an observational al-

gebra into an infinite deterministic automaton. Consequently, we obtain

a subclass of deterministic automata, equivalent to (infinite) Mealy au-

tomata, which we call Observational Algebra Automata (OAA). We use

a categorical setting to show the equivalence between bisimulation on

OAA and algebraic observational equivalence. Therefore we extend the

hidden algebras result concerning observational equivalence and bisimu-

lation coincidence to the non-monadic case.

1 Introduction

The increasing importance of programming has led to the development of for-
mal methods of specification and verification. Classically, a program -or more
generally a system- is correct if it is proved that it satisfies all the properties
enounced in its specification. However, it has appeared that this is not neces-
sary: it is sufficient that the system satisfies only observable properties which
determine its external behaviour. Based on this viewpoint, different notions of
behavioural equivalence have emerged, formalizing the idea of indistinguishabil-
ity of system states or objects. In formal approaches, there are two important
notions: algebraic observational equivalence in the context of ”behavioural al-
gebraic specification” (Hidden Algebra [10], coherent hidden algebra [8], Coal-
gebra [25], Observational Logic [11], etc...), and bisimulation in the context of
process algebras (π-calculus [20], CCS [19], CSP [12], etc ...).

Algebraic observational equivalence, that have been introduced by
H. Reichel [22], is the key notion on which is based the observational algebraic
frameworks to build observational semantics. These frameworks rely on the ob-
servational algebras which introduce the notion of non observable elements (also

Y. Gao et al. (Eds.): DLT 2010, LNCS 6224, pp. 76–87, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Linking Algebraic Observational Equivalence and Bisimulation 77

called states or objects). In literature, one can distinguish two main definitions of
observational equivalence. One is defined between elements of an observational
algebra (e.g [10, 11]), through experiments with observable results (w.r.t a set
of observable sorts). These experiments are formalized by a notion of context,
which is a term containing a distinguished variable to be replaced by some ob-
jects. Thus, two objects are observationally equivalent (or equal) if they cannot
be distinguished by a context of observable result. Other approaches define ob-
servational equivalence between algebras (e.g [5,21,28]). The basic idea is that
two algebras are considered to be observationally equivalent if they cannot be
distinguished by a set of observations (also w.r.t a set of observable sorts). These
observations are formalized by equations between terms.

Bisimulation is a rich concept which appears in various areas of theoretical
computer science. It was introduced by R. Milner in CCS language [19]. Bisim-
ulation of automata (or transition systems) have been considered after the work
of R. Milner [19]. Many variants of automata have been proposed with a suitable
definition of bisimulation (e.g [15, 6, 7, 27]). In all models, the bisimulation ex-
presses the equivalence behaviour of states in response to a sequence of actions.
Intuitively, two states are bisimilar if each action starting from one state can be
done by the other and leads again to bisimilar states.

As related works, some links were observed between bisimulation and obser-
vational equivalence in some contexts which consider one hidden sort; hidden
algebra [17], coalgebra framework [26] and object-oriented algebraic specifica-
tion [13]. Moreover, in [16] the author showed that the bisimilarity defined by
means of open maps [14] coincides with behavioural equivalence between regular
and standard algebras.

In this paper, we are interested in studying the relation between bisimulation
and the observational equivalence following observational logic framework [11],
that generalizes hidden algebra by dropping the monadicity requirement which
stipulates that operations may take at most one hidden argument. For hidden
algebra, it is already known that observational equivalence and bisimulation co-
incide [17]. Moreover, in [4] the authors have argued the coincidence between ob-
servational equivalence following [11] and bisimulation, but they have required
a restriction forbidding some operations (called direct observers) with more
than one hidden argument. In this work, we don’t require any restriction on the
non-monadicity property: all operations defined in the framework of observa-
tional logic are allowed. Our work can be considered also as related work to [10]
(Section 3.4) in which the authors showed that models of anemic signature 1

correspond to labeled transition systems, and consequently have proved the co-
incidence between the observational equivalence and bisimulation. We propose
an explicit construction which transforms a given observational algebra into an
infinite deterministic automaton. This defines a subclass of infinite deterministic
automata which we call ”Observational Algebra Automata” (OAA). Regardless
of infiniteness, our automaton is ). equivalent to Mealy automaton [18]. The idea

1 An anemic signature is a hidden signature with no hidden constants and with just

two sorts, h hidden and v visible.
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is to correspond a state to each non observable element and a sequence of tran-
sitions to each context. We formalize this transformation in categorical setting
via a functor. This is useful since it allows us in further work, to recognize the
connection between observational algebras and automata theory, moreover many
results about observational equivalence can be translated across this functor to
give results about bisimulation. Finally, we show the coincidence between obser-
vational equivalence (between elements and between algebras) and bisimulation.
The main conceptual advance of this paper is to extend the hidden algebra result
concerning observational equivalence and bisimulation coincidence to the non-
monadic case. To the best of our knowledge, no study on the relation between
the notion of observational equivalence between algebras and bismulation has
yet been done in literature. The interest of such work is to link proof techniques
based on both notions.

The paper is organized as follows: Section 1 introduces the main concepts
related to algebraic observational equivalence. Section 2 presents our transfor-
mation of observational algebra into an OAA and defines the bisimulation. Sec-
tion 3 formalizes this transformation using a functor and gives the main ideas for
proving the equivalence between bisimulation and observational equivalence. The
paper concludes in Section 6. We suppose the reader is familiar with algebraic
specifications [9] and category theory [1].

2 Algebraic Observational Equivalence

In this section, we introduce the main definitions and concepts related to the
notion of algebraic observational equivalence following [11].

An Σ-algebra A = ((As)s∈S , (opA)op∈OP ) over a signature Σ = (S,OP ),
with a set S of sorts and a set OP of operation symbols, is a family (As)s∈S

of sets As for all s ∈ S called supports, and a family (opA)op∈OP of functions
opA : As1 ×As2 × . . .×Asn → As if op has the profile op : s1, s2, . . . , sn → s. A
particular algebra is the term algebra T (Σ,X). An interpretation in an algebra
A is a function Iα from T (Σ,X) to A defined w.r.t a valuation α : X → A. A
Σ-congruence relation on a Σ-algebra A, denoted by �A, is a family (�s)s∈S of
equivalence relations which is compatible with the operations of A. A quotient
of an Σ-algebra A by a Σ-congruence � is defined by A/ �= {[a] | a ∈ A}
where [a] = {a′ ∈ A | a � a′}. We use the following notation: let ai ∈ Asi for
i = 1..n, we write a1..n instead of a1, . . . , an. Similarly, we write f(a1..n) instead
of f(a1), . . . , f(an) for some symbol function f .

Observational algebraic specifications are algebraic specifications equipped
with an observation technique [2], allowing to specify the observed terms.

Definition 1 (Observational signature). An observational signature ΣObs

is defined by (Sstate, SObs, OP ) where Sstate is the set of non-observable sorts,
SObs is the set of observable sorts and OP is the set of operations specified by
their profiles. We also denote an observational signature by ΣObs = (S,OP )
where S = SObs ∪ SState.
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An algebra over an observational signature ΣObs is called observational ΣObs-
algebra. Given an observational signatureΣObs = (S,OP ), we use meta-variables
A,B,C to range over ΣObs-algebras.

Definition 2 (Observational specification). An observational specification
is a pair (ΣObs, Ax) such that ΣObs is an observational signature and Ax is a
set of equations.

Example 1. The following is a simple observational specification for sets, with
in as membership, add placing a data to a set, U gives the union of two sets,
and & giving the intersection of two sets.

Spec SET
Sorts {Set, Data, Bool } Axioms : Var N, N’ : Int Var X X’ : Set
Observable sorts {Bool, Data} in(N, empty) = false
Operations : in(N, add(N ′, X)) = (N == N ′)or(in(N,X))
a, b, c :→ Data in(N,U(X,X ′) = (in(N,X))or(in(N,X ′))
empty :→ Set in(N,U(X,X ′) = (in(N,X))and(in(N,X ′))
true :→ Bool
false :→ Bool
in : Data× Set→ Bool
add : Data× Set→ Set
U : Set× Set→ Set
& : Set× Set→ Set

Definition 3 (Observer). An observer is a pair (op, i) where op ∈ OP has the
profile op : s1, . . . , si, . . . , sn → s and i is an argument position of non observable
sort. An observer (op, i) is direct if s ∈ SObs otherwise it is indirect (s ∈ SState).

In the following, we denote by OPObs the set of all observers, by OPObs−D the
set of direct observers and by OPObs−I the set of indirect observers.

Definition 4 (Context). A context c[�s] is a non ground term c ∈ T (ΣObs, OP )
containing only one occurrence of a distinguished variable called context variable
and denoted by �s (where s is the sort of �). The arity of a context c[�s] is s → s′

where s′ is result sort of c and s is its argument sort. The application of a context
c[�s] of an arity s→ s′ to a term t of sort s, denoted par c[t], is the term obtained
by substituting �s by t. An empty context is a context which is a context variable.

Definition 5 (Observable context). An observable context is a context c of
arity s→ s′ where s′ ∈ SObs. We denote by C(ΣObs)s→SObs

the set of observable
contexts with argument sort s.

Elements which can not be distinguished by experimentations with observable
result are considered observationally equivalent (or equal). This equivalence ex-
presses an indistinguishability relation between non observable elements.

Definition 6 (Observational ΣObs-equivalence). [11] Let ΣObs be an obser-
vational signature. For any ΣObs-algebra A the observational ΣObs-equivalence
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(or equality) on A, denoted by ≈A, is defined by: For all s ∈ S, two elements
a, b ∈ As are observationally equivalent (equal) w.r.t. ΣObs, i.e. a ≈A b, if and
only if for all observable contexts c ∈ C(ΣObs)s → SObs and for all valuations
α, β : X ∪ {�s} → A with α(x) = β(x) if x ∈ X,α(�s) = a, β(�s) = b, we have
Iα(c) = Iβ(c). Obviously, if s is an observable sort, then for all a, b ∈ A, a ≈A b
is equivalent to a = b.

As mentioned in [11], ≈A is an equivalence relation on A, but in general not
ΣObs-congruence.

3 Observational Algebra Automata (OAA)

The idea of modeling an observational algebra by an automaton, is to consider
non observable elements as states of the automaton and observable elements as
the output alphabet. Moreover, transitions represent contexts built from indirect
observers, and the results of output functions represent the results of applying
observable contexts. Note that such a modeling gives rise to our definition of
an infinite deterministic automaton. Regardless of infiniteness, our automaton
is equivalent to Mealy automaton [18].

Definition 7 (Observational Algebra Automata). Let A be an observa-
tional ΣObs-algebra defined over ΣObs = (SState, SObs, OP ) and aj ∈ Asj for
j = 1..n. The observational ΣObs-algebra automata (simply written ΣObs-OAA)
associated to A, denoted by AA, is defined by the 5-tuple (IA, OA, EA, δA, λA)
where:

– IA is a set of elements of the form opA(a1..j−1, �sj , aj+1..n) where (op, j) ∈
OPObs.

– OA = ASObs
, where ASObs

= (As)s∈SObs
.

– EA = ASState , where ASState = (As)s∈SState .
– λA : EA× IA → OA ∪{ε} is defined by: for each a of sort sj and i ∈ IA with
i =def op

A(a1..j−1, �sj , aj+1..n);

λA(a, i) =

{
a′ if opA(a1..j−1, a, aj+1..n) = a′,
ε otherwise.

– δA : EA × IA → EA is defined by: for each a of sort sj and i ∈ IA with
i =def op

A(a1..j−1, �sj , aj+1..n);

δA(a, i) =

{
a′ if opA(a1..j−1, a, aj+1..n) = a′,
a otherwise.

Due to the infinity of elements of observational algebras, the sets IA, EA and OA

are infinite. Therefore, we can consider observational algebra automata among
the infinite-branching automata. Moreover, according to above definition, we
remark that the input alphabet relies on the corresponding algebra, then we
derive that each OAA has its own input alphabet.
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Example 2. To illustrate the construction of an OAA, consider the SET spec-
ification of example 1. Consider the observational algebra A representing an
implementation of Data using characters, Bool using strings and Set using a
infinite lists of Data: thus, empty is the empty list, add(d, s) placing a data d at
the front of list s, U(s1, s2) appending s2 at the end of s1, and &(s1, s2) giving
a list containing each element in s1 and also in s2. Note that in this example
the output alphabet is finite. The OAA corresponding to algebra A is defined as
follows:

– OA = {true, false, a, b, c}
– EA = {e0, e1, e2, e3, e4, e5, ...} with e0 = empty, e1 = add(a, empty), e2 =
add(b, empty), e3 = add(c, empty), e4 = add(a, add(b, empty)) and
e5 = add(b, add(a, empty)).

– IA = {i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, ...} with i0 = in(a, �Set), i1 =
in(b, �Set), i2 = in(c, �Set), i3 = add(a, �Set), i4 = add(b, �Set), i5 =
add(c, �Set), i6 = U(e1, �Set), i7 = U(e2, �Set), i8 = U(�Set, e2), i9 =
U(�Set, e1) and i10 = &(�Set, e4).

– λ(e0, i0) = false, λ(e1, i0) = true, λ(e1, i3) = ε, etc...
– δ(e0, i3) = e1, δ(e0, i4) = e2, δ(e0, i5) = e3, δ(e1, i8) = e4, δ(e1, i7) = e5,
δ(e2, i6) = e4, δ(e2, i9) = e5, etc....

Bisimulation on OAA is a SState-sorted relation that takes into account the
difference of input alphabets.

Definition 8 (Bisimulation). A bisimulation between two ΣObs-OAA AA =
(IA, OΣObs

, EA, δA, λA) and AB = (IB , OΣObs
, EB , δB, λB) is a SState-sorted re-

lation R ⊆ EA × EB such that there exists a symmetric relation RI ⊆ IA × IB
defined by (i, i′) ∈ RI if f(i) = i′ for some function f : IA → IB, and for all
a ∈ EA, b ∈ EB: if (a, b) ∈ R then:

1. ∀ i ∈ IA and i′ ∈ IB: λA(a, i) = λB(b, i′) whenever (i, i′) ∈ RI .
2. ∀ i ∈ IA: if δA(a, i) = a′, then there exist b′ ∈ EB and i′ ∈ IB such that

δB(b, i′) = b′, (a′, b′) ∈ R and (i, i′) ∈ RI .
3. ∀ i ∈ IB: if δB(b, i) = b′, then there exist a′ in EA and i′ ∈ IA such that

δA(a, i′) = a′, (a′, b′) ∈ R and (i, i′) ∈ RI .

A bisimulation relation between AA and itself is called a bisimulation on AA.
Union and composition of two bisimulations are bisimulations. We write a ∼AA a′

whenever there exists a bisimulation R on AA with (a, a′) ∈ R. This relation is
called bisimilarity relation and it is the union of all bisimulations; so it is the great-
est bisimulation. It is easy to see that bisimilarity is an equivalence relation. Two
OAA AA = (IA, OΣObs

, EA, δA, λA) and AB = (IB , OΣObs
, EB , δB, λB) are said

to be bisimilar, denoted byAA ∼ AB , if exists a bisimulation relationR such that
for each a ∈ EA exists b ∈ EB with (a, b) ∈ R, and for each b ∈ EB exists a ∈ EA

with (a, b) ∈ R, i.e the projections p1 : R→ EA and p1 : R→ EB are surjective.
It is easy to verify that, if AA and AB have the same input alphabet, then

by choosing f the identity function, the bismulation between two OOA becomes
equivalent to the usual definition of bisimulation in classical automata theory.
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4 Relating Observational Equivalence and Bisimulation

The aim of this section is to formally link observational equivalence on observa-
tional algebras with bisimulation on associated OAA. For this purpose, we define
a functor from the category of observational algebras to the category of OAA.
Functoriality proves that the construction has been properly formalized and it
can be surprisingly helpful in practice.

From now on, we assume that the observational ΣObs-algebras have common
observable elements; in typical applications, observable elements might include
natural numbers, booleans, character strings, etc... However, there could be mul-
tiple representations for observable elements with translations among them, but
our assumption can easily be relaxed to cover such cases.

4.1 The Transformation Functor

A homomorphism between two observational algebras is a function that preserves
algebraic structure. It is defined as usual:

Definition 9 (ΣObs-homomorphism). Let A,B two ΣObs-algebras. A ΣObs-
homomorphism h : A→ B is a S-sorted function such that hs(opA(a1, . . . , an)) =
opB(hs1(a1), . . . , hsn(an)) for op ∈ OP and ai ∈ Asi when op has the profile
op : s1, . . . , sn → s.

Given an observational signatureΣObs, we consider the category ofΣObs-algebras,
denoted byAlg(ΣObs), where objects areΣObs-algebras and morphisms areΣObs-
homomorphisms. The identity functions are ΣObs-homomorphisms and the func-
tional composition of two ΣObs-homomorphisms is a ΣObs-homomorphism.

Since we deal with ΣObs-algebras having the same observable elements, the
ΣObs-homomorphisms are identity functions on observable elements, i.e. for each
ΣObs-homomorphism h : A → B, hs : As → Bs are identity functions for all
s ∈ SObs. Hence, we deal with OAA of ΣObs-algebras having the same output
alphabet, that we denote by OΣObs

.
A homomorphism between OAA is a function that preserves transitions and

outputs. Let AA = (IA, OΣObs, EA, δA, λA) and AB = (IB , OΣObs, EB, δB, λB)
be two OAA. We mean by a function from AA to AB a function f : EA ∪ IA →
EB ∪ IB such that for each e ∈ EA ∪ IA:

f(e) =

{
e′ ∈ EB if e ∈ EA,
e′ ∈ IB if e ∈ IA.

Definition 10 (OAA-homomorphism ). Let ΣObs be an observational sig-
nature, AA = (IA, OΣObs, EA, δA, λA) and AB = (IB , OΣObs, EB, δB, λB) be
two ΣObs-OAA. A ΣObs-OAA-homomorphism from AA to AB is a function
f : AA → AB such that for all e ∈ EA and i ∈ IA the following hold:

– f(δA(e, i)) = δB(f(e), f(i)),
– λA(e, i) = λB(f(e), f(i)).
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Proposition 1. Let f : AA → AB and g : AB → AC be two OAA-
homomorphisms. Then the composition g ◦ f : AA → AC is an OAA-
homomorphism.

For any ΣObs-OOA AA = (IA, OΣObs, EA, δA, λA), we have the automaton
identity function idAA : EA ∪ IA → EA ∪ IA. It is immediate that this in-
deed defines an OAA-homomorphism. Then, the ΣObs-OAA with ΣObs-OAA-
homomorphisms form a category, denoted by OAA(ΣObs).

The mapping from observational algebras structures to OAA structures is re-
alized by a functorial function associating to each observational ΣObs-algebra its
corresponding ΣObs-OAA, and to each ΣObs-homomorphism its corresponding
ΣObs-OAA-homomorphism.

Definition 11 (Transformation functor FΣObs
). Let ΣObs be an observa-

tional signature, AA =(IA, OΣObs, EA, δA, λA) and AB =(IB , OΣObs, EB, δB, λB)
be two ΣObs-OOA. The functor FΣObs

: Alg(ΣObs)→ OAA(ΣObs) is defined by:
For each A ∈ Alg(ΣObs); FΣObs

(A) =def AA, For each ΣObs-homomorphism
h : A→ B; FΣObs

(h) =def f : AA → AB defined by: f(a) = b if h(a) = b for all
a ∈ EA,
f(opA(a1..i−1, �si , ai+ 1..n)) = opB(h(a1..i−1), �si , h(ai+1..n)) for all
opA(a1..i−1, �si , ai+1..n) ∈ IA.

It easy to verify that the mapping from IA to IB is induced by the ΣObs-
homomorphism. We omit the subscript ΣObs whenever there is no confusion.

Proposition 2. The functor F is well-defined.

The functor F establishes a one-to-one correspondence between ΣObs-
homomorphisms and OAA-homomorphisms. This interesting property is ex-
pressed in category theory by the following notion:

Lemma 1. The functor F is full and faithful.

4.2 Observational Equivalence versus Bisimulation

Our main contribution is to prove observational equivalence and bisimulation coin-
cidence. We first state and prove some preliminary results. The next lemma shows
the strong connection between OAA-bisimulation and OAA-homomorphism. This
connection is alreadyknown in coalgebraic setting [26] and for this reason, the coal-
gebras homomorphism are sometimes called functional bisimulation.

Lemma 2. Let ΣObs be an observational signature, AA,AB ∈ OAA(ΣObs) and
f : AA → AB be any function. The following are equivalent:

1. f is an OAA-homomorphism.
2. For all a ∈ EA and i ∈ IA,

(a) If δA(a, i) = a′ for some a′ ∈ EA, then δB(f(a), f(i)) = f(a′).
(b) If λA(a, i) = o for some o ∈ OΣObs

, then λB(f(a), f(i)) = o.
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(c) If δB(f(a), f(i)) = b for some b ∈ EB, then there exists a′ ∈ EA such
that δA(a, i) = a′ and f(a′) = b.
(d) If λB(f(a), f(i)) = o for some o ∈ OΣObs

, then λA(a, i) = o.

Proof. Immediate from the observation that the first condition of the definition
of an OAA-homomorphism (Definition 10) is equivalent to clauses (a) and (c),
and the second condition is equivalent to clauses (b) and (d). �

Let f : AA → AB be an OAA-homomorphism. The kernel K(f) and the graph
G(f) of f are defined as follows:

K(f) = {(a, a′) ∈ EA × EA | f(a) = f(a′)},

G(f) = {(a, b) ∈ EA × EB | f(a) = b}.

Proposition 3. Let ΣObs be an observational signature, AA,AB ∈ OAA(ΣObs)
and f : AA → AB be any function, then we have:
1. f is an OAA-homomorphism iff G(f) is bisimulation between AA and AB.
2. If f is an OAA-homomorphism then K(f) is a bisimulation on AA.

Proof. By choosing (i, i′) ∈ RI if f(i) = i′ with i ∈ IA and i′ ∈ IB , the state-
ment 1 becomes immediate by the Definition 8 and Lemma 2. The statement 2
follows from the observation that K(f) = G(f) ◦ G(f)−1 and the fact that a
bisimulation is symmetric and the composition of two bisimulations is again a
bisimulation. �
Since we are interested to observational equivalence between non-observable el-
ements, we consider a ΣObs-congruence as a family � = (�s)s∈SState of equiva-
lence relations. The next result shows the correspondence between a bisimulation
on OAA and a ΣObs-congruence on its corresponding observational algebra.

Theorem 1. Let ΣObs be an observational signature, A ∈ Alg(ΣObs), a, b ∈
A be two non-observable elements, and AA ∈ OAA(ΣObs) such that AA =
(IA, OΣObs

, EA, δA, λA) and F(A) =def AA. We have a �A b iff there exists
a bisimulation R ⊆ EA × EA such that (a, b) ∈ R.

Proof. In this proof, we use the notion of the kernel which describes the notion
of congruence. Let A be an observational algebra and assume that there exists
a ΣObs-congruence � on A. We describe this congruence by K(f) with f : A→
A/ � is mapping quotient. It is easy to see that f is a ΣObs-homomorphism.
Then we have F(f) : F(A) → F(A/ �) is an OAA-homomorphism. Thus, by
the Proposition 3, we conclude that K(F(f)) is a bisimulation. The converse is
straightforward since F is full and faithful. �

We deduce that every ΣObs-congruence on an observational algebra gives rise to
a bisimulation on the corresponding OAA, and vice versa.

In [24], has been proved for non-monadic signature that observational equiv-
alence, when it is a congruence, is the greatest congruence. Then, it follows that
observational equivalence, when it is a congruence, coincides with the bisimilarity.
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Corollary 1. Let ΣObs be an observational signature, A ∈ Alg(ΣObs) and AA ∈
OAA(ΣObs) such that F(A) =def AA. If ≈A is a ΣObs-congruence, then we
have ≈A=∼AA .

Proof. Immediate from the Theorem 1 and the observation that observational
equivalence is the greatest ΣObs-congruence, and bisimilarity is the greatest
bisimulation. �

Example 3. Consider again the algebra A and its corresponding OAA defined in
Example 2. We have the states e4 and e5 are bisimilar. These states correspond
respectively to the elements UA(addA(a, empty), addA(b, empty)) and
UA(addA(b, empty), addA(a, empty)) which are observationally equivalent. This
means that two lists are observationally equivalent iff contain exactly the same
data, without regard to order or number of occurrences.

Our second main contribution, is to link bisimulation and observational equiv-
alence between algebras which have been widely studied in the frameworks of
many-sorted algebras. As mentioned earlier, one considers two algebras to be
observationally equivalent if they cannot be distinguished by a predefined set of
observations given by an appropriate set of terms. Several definitions have been
proposed, e.g [5, 21, 28]. We use the definition of [5] that is a generalization of
the notion of observational equivalence between algebras.

Definition 12. Let A,B two observational ΣObs-algebras. Then A and B are
called observationally equivalent w.r.t SObs and SIn, denoted by A ≡SObs,SIn B,
if there exists a S-sorted family YIn of sets (YIn)s of variables of sort s with
(YIn)s = ∅ for all s /∈ SIn, (YIn)s �= ∅ for all s ∈ SIn and if there exist
two valuations α1 : YIn → A and β1 : YIn → B with surjective mappings
α1s : (YIn)s → As and β1s : (YIn)s → Bs for all s ∈ SIn such that for all terms
t, r ∈ T (ΣObs, YIn)s of observable sort s ∈ SObs the following holds: Iα1(t) =
Iα1(r) iff Iβ1(t) = Iβ1(r).

Given an observational signature ΣObs = (S,OP ), it can be shown that ob-
servational equivalence between algebras, when SIn = S, corresponds to the
bisimilarity between their corresponding OAA. For the proof, we will need to
the next lemma which expresses the bisimilarity between two OAA in terms of
OAA-homomorphisms.

Lemma 3. LetΣObs be an observational signature andAA,AB,AC ∈OAA(ΣObs).
If there exist f : AC → AA and g : AC → AB two surjectiveOAA-homomorphisms,
then AA ∼ AB.

We are now ready to state the result concerning observational equivalence be-
tween algebras and bisimulation coincidence.

Theorem 2. Let ΣObs be an observational signature, A,B ∈ Alg(ΣObs) and
AA, AB ∈ OAA(ΣObs) such that F(A) =def AA and F(B) =def AB. We have
A ≡SObs,S B iff AA ∼ AB.
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5 Conclusion

In this work, our aim was to study the link between two concepts of behavioural
equivalence: bisimulation and algebraic observational equivalence. We proposed
a transformation of observational algebras into infinite deterministic automata.
One can consider these automata as infinite Mealy automata. Therefore, we char-
acterized a subclass of deterministic automata which we called Observational
Algebra Automata (OAA). The formulation of the transformation of observa-
tional algebras to OOA in the categorical setting via a functor, allowed us to
establish elegant connection between two fields of research, observational alge-
braic specification and automata theory. This connection is useful (in further
works) for discovering and exploiting relations between the two fields. Based on
the transformation functor and elementary constructions, we have proved that
bisimulation plays the role of observational equivalence between non-observable
elements. This result can be viewed as a generalization of the result of [17]
for hidden algebra. We have also proved the coincidence between observational
equivalence between algebras and bisimulation. If such a comparison appears
natural, to our knowledge, no proof has been formally written using automata.

It would be also interesting to extend this work by considering partial obser-
vational equivalence [5] and other observation techniques based on operations or
terms [2]. Another future work would be to develop proof techniques combining
those for automata theory and those for frameworks related to observational
algebras as Observational Logic [11], COL [3], etc...
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Abstract. Parallel communicating finite automata (PCFAs) are sys-

tems of several finite state automata which process a common input

string in a parallel way and are able to communicate by sending their

states upon request. We consider deterministic and nondeterministic

variants and distinguish four working modes. It is known that these sys-

tems in the most general mode are as powerful as one-way multi-head

finite automata. It is additionally known that the number of heads corre-

sponds to the number of automata in PCFAs in a constructive way. Thus,

undecidability results as well as results on the hierarchies induced by the

number of heads carry over from multi-head finite automata to PCFAs

in the most general mode. Here, we complement these undecidability

and hierarchy results also for the remaining working modes. In particu-

lar, we show that classical decidability questions are not semi-decidable

for any type of PCFAs under consideration. Moreover, it is proven that

the number of automata in the system induces infinite hierarchies for

deterministic and nondeterministic PCFAs in three working modes.

1 Introduction

In the beginning of computer science, all understanding of computing was based
on the von Neumann architecture. Thus, processes have been viewed to be
strictly sequential, and the theoretical models used for describing and analyzing
them were mainly devices working in a sequential way. Since the late 1960-ies
also parallel and distributed processes have gained more and more importance.
Correspondingly, the theory of formal languages and automata developed a se-
ries of devices reflecting features such as parallelism, cooperation, distribution
and concurrency.

One of the most intuitive approaches towards such devices might have been the
development of suitable extensions of the most fundamental sequential machine
model, namely that of finite state automata. Multi-head finite automata [18] are
in some sense the simplest model of cooperating finite state automata, which are
provided with a fixed number of reading heads. At any computational step each

Y. Gao et al. (Eds.): DLT 2010, LNCS 6224, pp. 88–99, 2010.
� Springer-Verlag Berlin Heidelberg 2010
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head processes some input symbol, and the global state is updated according
to these pieces of information and the current state. Thus, we have some model
with one finite state control, and the cooperation between the finite state control
and the single components is the reading of the input and positioning the heads.
This model has been generalized to multi-head two-way finite automata [10]
and multi-head pushdown automata [8]. Further instances of systems of coop-
erating sequential automata appear in the literature in many facets, see, for
example, [2,3,6,7,12]. Another approach is to consider systems of cooperating
formal grammars [5].

Here, we will deal with parallel communicating finite automata (PCFAs)
which were introduced in [17]. In this model, the input is read and processed
in parallel by several finite automata. The communication between automata
is defined in such a way that an automaton can request the current state from
another automaton. Similarly to parallel communicating systems of formal gram-
mars, the system can work in returning or non-returning mode. In the former
case each automaton which sends its current state is reset to its initial state
after this communication step. In the latter case the state of the sending au-
tomaton is not changed. We also distinguish between centralized systems where
only one designated automaton, called master, can request information from
other automata, and non-centralized systems where every automaton is allowed
to communicate with others. Altogether we obtain four different working modes.
One fundamental result shown in [17] is that nondeterministic (deterministic)
non-centralized systems working in the non-returning mode are equally pow-
erful as one-way multi-head nondeterministic (deterministic) finite automata.
Recently, it has been shown in [4] that the returning and non-returning work-
ing modes coincide for nondeterministic non-centralized systems, and in [1] that
this result is also valid in the deterministic case. Moreover, the authors proved
in [1] that nondeterminism is strictly more powerful than determinism for all
the four working modes, and that deterministic centralized returning systems
are not weaker than deterministic centralized non-returning ones. Also some in-
comparability results with respect to certain classes of the Chomsky hierarchy
and the family of Church-Rosser languages have been obtained there.

Due to the constructive proofs of the equivalences between one-way multi-head
finite automata and non-centralized PCFAs, any decidability or undecidability
result obtained for the one model is equally valid for the other one. Thus, it is
known that classical decidability questions such as emptiness, universality, inclu-
sion, equivalence, finiteness and infiniteness are undecidable for non-centralized
PCFAs. But only little is known for the centralized variants. In [16] it has been
shown that universality, inclusion and equivalence of centralized PCFAs are un-
decidable only for the nondeterministic and non-returning case and if at least
five components are involved. The decidability status of the problems for nonde-
terministic centralized non-returning PCFAs with two, three or four components
as well as the status of the emptiness and finiteness problems are formulated as
open problems. Furthermore, no decidability results have been obtained so far
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for centralized PCFAs which are deterministic or returning, and are left as open
problems in [16] as well.

In this paper, we answer most of these open problems: We prove that empti-
ness, universality, inclusion, equivalence, finiteness and infiniteness are not semi-
decidable1 for centralized PCFAs which are deterministic, nondeterministic, re-
turning, or non-returning. In most cases, the results are obtained for systems with
at least two components; only the non-semi-decidability of emptiness, finiteness
and infiniteness for the centralized returning cases are based on systems with at
least three components. The novelty in the proofs is that they rely on the concept
of valid and invalid computations of one-way cellular automata (OCAs).

Another fundamental property of one-way multi-head finite automata is that
the number of reading heads induces infinite strict hierarchies, both in the deter-
ministic and nondeterministic cases. As it is known that the number of heads in
one-way multi-head automata corresponds to the number of components needed
in PCFAs, these hierarchy results carry over to the non-centralized variants. In
this paper, we prove infinite strict inclusion hierarchies also for deterministic and
nondeterministic centralized PCFAs working in the non-returning mode.

2 Preliminaries and Definitions

We denote the powerset of a set S by 2S . The empty word is denoted by λ, the
reversal of a word w by wR, and for the length of w we write |w|. We use ⊆ for
inclusions and ⊂ for strict inclusions.

Next we turn to the definition of the devices in question, which have been
introduced in [17]. A parallel communicating finite automata system of degree k
is a device of k finite automata working in parallel, synchronized according to
a universal clock, on a common one-way read-only input tape. The k automata
communicate by states, that is, when some automaton enters a query state qi
it is set to the current state of automaton Ai. Concerning the next state of
the sender Ai, we distinguish two modes. In non-returning mode the sender
remains in its current state, whereas in returning mode the sender is set to
its initial state. Moreover, we distinguish whether all automata are allowed to
request communications, or whether there is just one master allowed to request
communications. The latter types are called centralized.

One of the fundamental results obtained in [17] is the characterization of the
computational power of (unrestricted) parallel communicating finite automata
systems by multi-head finite automata. Due to this relation, we present a formal
definition of language acceptance that suits to the definition given in [19] for one-
way multi-head finite automata. To this end, we provide tape inscriptions which
are input words followed by an endmarker. Whenever the transition function
of (at least) one of the single automata is undefined the whole systems halts.
Whether the input is accepted or rejected depends on the states of the automata

1 A decidability problem is said to be semi-decidable if the set of all instances for

which the answer is “yes” is recursively enumerable.
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having undefined transitions. The input is accepted if at least one of them is in
an accepting state. Following [1], the formal definition is as follows.

A nondeterministic parallel communicating finite automata system of degree k
(PCFA(k)) is a construct A = 〈Σ,A1, A2, . . . , Ak, Q,�〉, where Σ is the set of
input symbols, each Ai = 〈Si, Σ, δi, s0,i, Fi〉, 1 ≤ i ≤ k, is a nondeterministic
finite automaton with state set Si, initial state s0,i ∈ Si, set of accepting states
Fi ⊆ Si, and transition function δi : Si×(Σ∪{λ,�})→ 2Si , Q = {q1, q2, . . . , qk}
is the set of query states, and � /∈ Σ is the end-of-input symbol.

The automata A1, A2, . . . , Ak are called components of the system A. A con-
figuration (s1, x1, s2, x2, . . . , sk, xk) of A represents the current states si as well
as the still unread parts xi of the tape inscription of all components 1 ≤ i ≤ k.
System A starts with all of its components scanning the first square of the
tape in their initial states. For input word w ∈ Σ∗, the initial configuration is
(s0,1, w�, s0,2, w�, . . . , s0,k, w�).

Basically, a computation of A is a sequence of configurations beginning with
an initial configuration and ending with a halting configuration. Each step
can consist of two phases. In a first phase, all components are in non-query
states and perform an ordinary (non-communicating) step independently. The
second phase is the communication phase during which components in query
states receive the requested states as long as the sender is not in a query
state itself. This process is repeated until all requests are resolved, if possi-
ble. If the requests are cyclic, no successor configuration exists. As mentioned
above, we distinguish non-returning communication, that is, the sender remains
in its current state, and returning communication, that is, the sender is re-
set to its initial state. For the first phase, we define the successor configura-
tion relation � by (s1, a1y1, s2, a2y2, . . . , sk, akyk) � (p1, z1, p2, z2, . . . , pk, zk), if
Q ∩ {s1, s2, . . . , sk} = ∅, ai ∈ Σ ∪ {λ,�}, pi ∈ δi(si, ai), and zi = � for ai = �
and zi = yi otherwise, 1 ≤ i ≤ k. For non-returning communication in the sec-
ond phase, we set (s1, x1, s2, x2, . . . , sk, xk) � (p1, x1, p2, x2, . . . , pk, xk), if, for all
1 ≤ i ≤ k such that si = qj and sj /∈ Q, we have pi = sj , and pr = sr for
all the other r, 1 ≤ r ≤ k. Alternatively, for returning communication in the
second phase, we set (s1, x1, s2, x2, . . . , sk, xk) � (p1, x1, p2, x2, . . . , pk, xk), if, for
all 1 ≤ i ≤ k such that si = qj and sj /∈ Q, we have pi = sj , pj = s0,j, and
pr = sr for all the other r, 1 ≤ r ≤ k.

A computation halts when the successor configuration is not defined for the
current situation. In particular, this may happen when cyclic communication
requests appear, or when the transition function of one component is not defined.
(We regard the transition function as undefined whenever it maps to the empty
set.) The language L(A) accepted by a PCFA(k) A is precisely the set of words w
such that there is some computation beginning with w� on the input tape and
halting with at least one component having an undefined transition function
and being in an accepting state. Let �∗ designate the reflexive and transitive
closure of the successor configuration relation � and set L(A) = {w ∈ Σ∗ |
(s0,1, w�, s0,2, w�, . . . , s0,k, w�) �∗ (p1, a1y1, p2, a2y2, . . . , pk, akyk), such that
pi ∈ Fi and δi(pi, ai) is undefined for some 1 ≤ i ≤ k }.
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If all components Ai are deterministic finite automata, that is, for all s ∈ Si

the transition function δi(s, a) maps to a set of at most one state and is undefined
for all a ∈ Σ, whenever δi(s, λ) is defined, then the whole system is called deter-
ministic, and we add the prefix D to denote it. The absence or presence of an R
in the type of the system denotes whether it works in non-returning or returning
mode. Finally, if there is just one component, say A1, that is allowed to query for
states, that is, Si∩Q = ∅, for 2 ≤ i ≤ k, then the system is said to be centralized.
In this case, we refer to A1 as the master component and add a C to the notation
of the type of the system. Whenever the degree is missing we mean systems of
arbitrary degree. The family of languages accepted by devices of type X (with
degree k) is denoted by L (X) (L (X(k))). L (NFA(k)) (L (DFA(k))) are the
families of languages accepted by nondeterministic (deterministic) multi-head
finite automata with k heads.

3 Decidability Questions

The decidability status of the emptiness, universality, inclusion, equivalence,
finiteness and infiniteness problems shall be settled. Due to the effective coinci-
dence of the language classes L (PCFA(k)) and L (RPCFA(k)) with L (NFA(k))
as well as of L (DPCFA(k)) and L (DRPCFA(k)) with L (DFA(k)), for any
k ≥ 1, we know that the aforementioned questions are undecidable for nondeter-
ministic and deterministic non-centralized PCFAs with at least two components.

Thus, it is left to investigate the decidability questions with respect to the
centralized variants. From [16] we only know that universality, inclusion and
equivalence are undecidable for CPCFA(k)s with k ≥ 5. We complement these
results by proving that all the decidability questions listed above are not semi-
decidable for CPCFA(k)s and DCPCFA(k)s, for k ≥ 2, and for RCPCFA(k)s
and DRCPCFA(k)s, for k ≥ 3. Furthermore, the non-semi-decidability of uni-
versality, inclusion and equivalence can be shown for RCPCFA(k)s with degree
k ≥ 2.

To prove our results we use the technique of valid computations which is
described, e.g., in [9]. The goal is to prove undecidability results in a certain
model. Now, the main idea is to effectively construct in the investigated model
a set of strings which represent histories of accepting computations of a given
Turing machine. Then, certain properties such as, e.g., emptiness or finiteness of
the constructed set can be related to properties of the language accepted by the
Turing machine. Since due to Rice’s Theorem almost all decidability questions for
Turing machines are undecidable, also undecidability results for the investigated
model can be derived.

Since it is not clear yet in which way a DCPCFA or DRCPCFA could ac-
cept the set of valid computations of a Turing machine, we are considering here
the valid computations of one-way cellular automata which is a parallel com-
putational model (see, e.g., [13,14]). The same way as the valid computations
of a Turing machine help to reduce decidability questions to decidability ques-
tions of Turing machines, we can reduce decidability questions for DCPCFAs
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and DRCPCFAs to those of one-way cellular automata. Since it is shown in [15]
that for one-way cellular automata the questions of emptiness, universality, in-
clusion, equivalence, finiteness and infiniteness are not semi-decidable, we obtain
the non-semi-decidability of all these questions for DCPCFAs or DRCPCFAs as
well.

A one-way cellular automaton (OCA) consists of many identical deterministic
finite automata, called cells, which are arranged in a line. The next state of a
cell depends on the current state of the cell itself and the current state of its
neighboring cell to the left. The transition rule is applied synchronously to each
cell at the same time. The input is given to the OCA where each input symbol
is written into one cell. The input is bounded by some boundary symbols. An
OCA accepts an input when the rightmost cell enters an accepting state.

More formally, an OCA is a system M = 〈S, #, T, δ, F 〉, where S �= ∅ is the
finite set of cell states, # �∈ S is the boundary state, T ⊆ S is the input alphabet,
F ⊆ S is the set of accepting cell states and δ : (S ∪ {#}) × S → S is the local
transition function. A configuration of an OCA at some time step t ≥ 0 is a
description of its global state. Formally, for any input w, it is a mapping ct,w :
{1, 2, . . . , n} → S for n ≥ 1. If there is no danger of confusion, we will omit the
subscript w in that notation. The initial configuration at time 0 on the input w =
x1x2 . . . xn is defined by c0,w(i) = xi, 1 ≤ i ≤ n. During a computation the OCA
steps through a sequence of configurations whereby successor configurations are
computed according to the global transition function Δ: Let ct, t ≥ 0, be a
configuration, then its successor configuration is defined as follows:

ct+1 = Δ(ct)⇐⇒
ct+1(1) = δ(#, ct(1))
ct+1(i) = δ(ct(i− 1), ct(i)), i ∈ {2, . . . , n}

Thus, Δ is induced by δ. An input string w is accepted by an OCA if at some
time step i during its computation the rightmost cell enters a state from the set
of accepting states F ⊆ S. Without loss of generality and for technical reasons,
one can assume that any accepting computation has at least three steps. The
language accepted by some OCA M is defined as the set of all accepted input
strings and is denoted by L(M).

LetM = 〈S, #, T, δ, F 〉 be an OCA. The successor configuration ct+1 of ct on
some input w of length n is computed in all cells in parallel by applying the
transition rule δ to each cell and its left neighbor simultaneously. We now want
to write down the computation of the successor configuration in a sequential way.
Thus, we are computing ct+1 cell by cell from left to right instead of computing
ct+1 in one step from ct. That is, we are concerned with subconfigurations of the
form ct+1(1) . . . ct+1(i)ct(i+1) . . . ct(n). For technical reasons, in ct+1(i) we have
to store both the successor state, which is assumed in time step t + 1 by cell i,
and additionally its former state. In this way, the computation of the successor
configuration of M can be written as a sequence of n subconfigurations. Thus,
a configuration ct+1 of M can be represented by w(t+1) = w

(t+1)
1 . . . w

(t+1)
n ,

where, for 1 ≤ i ≤ n, w(t+1)
i is contained in #S∗(S × S)S∗ with w

(t+1)
i =

#ct+1(1) . . . ct+1(i− 1)(ct+1(i), ct(i))ct(i+ 1) . . . ct(n).
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The set of valid computations VALC(M) is now defined to be the set of
words of the form w(0)w(1) · · ·w(m), where m ≥ 3, w(t) ∈ (#S∗(S × S)S∗)+

are configurations ofM, 1 ≤ t ≤ m, w(0) is an initial configuration carrying the
input having the form #(T ′)+, where T ′ is a primed copy of the input alphabet T
with T ′∩S = ∅, w(m) is an accepting configuration, that is, w(m) is contained in
(#S∗(S × S)S∗)∗#S∗(F × S), and w(t+1) is the successor configuration of w(t),
for 0 ≤ t ≤ m− 1.

For constructing the DCPCFAs and DRCPCFAs which are accepting the set
VALC(M), we need an additional technical transformation of the input alpha-
bet. Let S′ = S∪T ′ and A = {#}∪S′∪S′2 be the alphabet over which VALC(M)
is defined. We consider the mapping f : A+ → (A × A)+ which is defined for
words of length at least two by f(x1x2 . . . xn) = [x1, x2][x2, x3] . . . [xn−1, xn].
From now on we consider VALC(M) ⊆ (A×A)+ to be the set of valid computa-
tions to which f has been applied. The set of invalid computations INVALC(M)
is then the complement of VALC(M) with respect to the alphabet A×A.

Lemma 1. Let M be an OCA. Then the sets VALC(M) and INVALC(M)
belong to L (DCPCFA(2)) as well as to L (DRCPCFA(3)).

Proof. (Sketch) We first describe the construction for accepting the set VALC(M)
in the centralized and returning mode with three components. Let us call them
the master, component1 and component2. The latter component reads one input
symbol in every time step and is used as a DFA which checks the correct format
of the input string. In particular, it has to be checked whether for every two sub-
sequent input symbols [x1, x2] and [x3, x4] holds that x2 = x3 and that no primed
symbols appear to the right of the first ’unprimed’ symbol. Obviously, this can
be realized by some DFA. It is additionally checked whether the input starts with
an initial configuration and ends with an accepting configuration. Finally, when
component2 reaches the endmarker, it stores in its state whether or not the input
format was correct.

The master and component1 are used to verify that from every subconfigura-
tion the correct successor subconfiguration is computed. Due to the checking of
component2 we may assume that the input is correctly formatted. The principal
behavior of component1 is to read one input symbol, to store it in its state, and
then to wait as long as it is queried by the master. After the master requested
communication, component1 is reset to its initial state, reads the next input sym-
bol, stores it in its state, and waits to be queried again. In the beginning, master
and component1 are at the first symbol of f(w(0)). Here, the master performs
λ-transitions and queries component1 until it obtains the first input symbol from
the set {#}×S. Then, the master knows that component1 is at the beginning of
the next subconfiguration and the master starts to check the correct computation
of the successor subconfiguration. This is realized as follows. The master queries
component1 and gets the information about the current symbol of the next sub-
configuration. Subsequently, component1 returns to its initial state. In the next
time step, component1 reads the next input symbol and the master checks with
the help of the next input symbol from the first subconfiguration whether the
information from component1 is a part of the correct successor subconfiguration.
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If the checking was successful, then the master queries again component1 and
tries to check the next part of the successor subconfiguration. This behavior
is iterated as long as the checks between subconfiguration and successor sub-
configuration are successful. Otherwise, some error has occurred and the master
assumes a certain state rej ′ which forces the master to move to the right end and
to assume a non-accepting state rej.2 Since all subconfigurations have the same
length, which is due to the fact that we consider valid computations of OCAs, we
observe that after having checked that w(t+1)

i+1 is the correct successor of w(t+1)
i ,

the master is at the beginning of w(t+1)
i+1 and component1 is at the beginning of

w
(t+1)
i+2 . Thus, the next check can be started subsequently. The successor relation

between w(t+1)
n and w(t+2)

1 is checked in the same manner.
If an accepting configuration has been checked correctly, the master assumes

some state acc′, moves to the right end and finally queries component2. If the
input was correctly formatted, an accepting state is assumed and the input is
accepted. Otherwise, the input is rejected.

To accept the set INVALC(M) we use the identical construction, but we
define rej to be an accepting state as well as the states of component2 which say
that the input was not correctly formatted.

In the centralized non-returning mode, the construction is nearly identical. We
use again the alphabet T ′ to bring component1 in position at the beginning of the
second subconfiguration. Now, the construction to check the correct computation
of the successor subconfiguration is the same as in the returning mode. Since
we are here in the non-returning mode, component1 is not reset to its initial
state after being queried. Thus, component1 can be additionally used to check
the correct formatting of the input. Acceptance and rejection of the input is
defined analogously. Altogether, we need only two components in contrast to
the returning mode. The considerations to accept INVALC(M) are similar. ��
Theorem 2. Emptiness, finiteness, infiniteness, universality, inclusion, equiv-
alence, regularity and context-freeness are not semi-decidable for DRCPCFA(k)s
and RCPCFA(k)s of degree k ≥ 3 and DCPCFA(k))s and CPCFA(k)s of degree
k ≥ 2.

Proof. LetM be an OCA. By Lemma 1 we can construct DCPCFA(2))s as well
as DRCPCFA(3)s accepting VALC(M) and INVALC(M), respectively. It is easy
to observe that VALC(M) = ∅ if and only if L(M) = ∅ as well as VALC(M)
is finite if and only if L(M) is finite. Since emptiness, finiteness and infiniteness
are not semi-decidable for OCAs [15], the questions are not semi-decidable for
DCPCFA(2))s and DRCPCFA(3)s as well.

Since INVALC(M) = (A×A)∗ if and only if VALC(M) = ∅, we obtain that
universality is not semi-decidable for DCPCFA(2))s and DRCPCFA(3)s as well.
This implies immediately that also the questions of inclusion and equivalence
are not semi-decidable.
2 The moving to the right end of the input in the state rej ′ is part of the construction

in order to simplify the proof with respect to the set INVALC(M). It is dispensable

here.
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By standard pumping arguments, it can be shown that VALC(M) is regu-
lar (context-free) if and only if L(M) = ∅. This implies that the questions of
regularity and context-freeness are not semi-decidable.

The results for DCPCFAs and DRCPCFAs of larger degrees as well as for
their nondeterministic variants follow immediately. ��

Similar to the proof of Theorem 2, the following lemma helps to obtain non-
semi-decidability results.

Lemma 3. Let M be an OCA. Then the set INVALC(M) belongs to the lan-
guage class L (RCPCFA(2)).

Theorem 4. Universality, inclusion, and equivalence are not semi-decidable for
RCPCFA(k)s of degree k ≥ 2.

4 Degree Hierarchy

In this section we investigate the question for which variants of PCFAs k + 1
components give rise to more computational power than k do. We shall find
infinite strict hierarchies induced by the degree of parallel communicating finite
automata in six cases, namely for PCFAs, RPCFAs, CPCFAs and their deter-
ministic variants.

Since L (DRPCFA(k)) = L (DPCFA(k)) (L (RPCFA(k)) = L (PCFA(k)))
coincides, for k ≥ 1, with the family of languages accepted by deterministic
(nondeterministic) one-way k-head finite automata, we inherit the degree hier-
archies immediately from the head hierarchies shown in [19]. In order to prove a
strict hierarchy dependent on the number of components for the non-returning
centralized types of devices, we show that there are languages accepted by the
weaker devices of degree k + 1, that is by some DCPCFA(k + 1), but cannot be
accepted by the stronger device of degree k, that is by any CPCFA(k). To this
end, for k ≥ 1 we define the witness language

Lk = { v1�v2� · · · �vk�
muvk� · · · �v2�v1 | m ≥ 1,

u ∈ {a, b}∗, vi ∈ {a, b}+, for 1 ≤ i ≤ k }.

First we construct a deterministic non-returning centralized system of degree
k + 1 accepting Lk.

Lemma 5. Let k ≥ 1 be a constant. Then the language Lk belongs to the family
L (DCPCFA(k + 1)).

Proof. (Sketch) For easier writing we divide the input into two halves, namely
the halves to the left and to the right of the block �

m, and write left vi and
right vi for the subwords of the first and second half. The principal idea of the
construction is that the master and each of the k non-master components is
used to compare one pair of matching subwords. To this end, the non-master
components move to their right subwords, while the master waits until the first
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component has reached the right v1. Then the master queries the first component
and receives information about the current symbol of the right v1, which is
matched against the current symbol read be the master itself. After comparing
the subwords vi the master continues by comparing the next subword vi+1 by
querying the component i+1. The crucial point is to let the components move in
such a way that they are at the beginning of their right subwords exactly when
the master starts to compare that subword. We start to construct the master and
the first non-master component, and subsequently the remaining components.
Then we explain how these constructions fit together in order to form the desired
DCPCFA(k + 1).

The first non-master component moves to the right while it checks whether
all subwords vi are non-empty. When it passes the (2k − 1)st border between
subwords it starts to represent the symbol read by its state. The component
counts the borders between subwords passed through up to 2k− 1. Whenever it
moves on the first symbol of a subword it is in some unprimed state. All other
symbols a and b are read in a primed state except for the symbols of the right
subword v1. So, it is ensured that every subword has at least one symbol. While
reading the right v1 the first component stores the symbol read in its state.
Finally, it loops on the endmarker.

Next we turn to the master. The master waits until the first component has
reached the right v1, that is, has entered a state sx,1 for the first time. Then
it continues to query the first component and matches the received information
about the current symbol of the right v1 against the symbol currently read
by itself. If the endmarker is matched against the � between the left v1 and the
left v2, the comparison of the v1 was successful and the master starts to compare
the next subwords. Similarly, the other subwords are compared by querying the
components 2 to k. Finally, if the comparison of the vk was successful, the master
enters the accepting state and blocks the computation accepting.

Next, we construct the remaining non-master components. Basically, compo-
nent 2 ≤ i ≤ k passes through the left subwords v1, v2, . . . , vi, whereby it waits
one time step on every symbol of v1� and vi�, and two time steps on every sym-
bol of v2�v3� · · · �vi−1�. Then it starts to store every symbol read in its state.
Finally, it loops on the endmarker.

Finally, we give evidence that the master and the components form the desired
DCPCFA(k+1). When the comparison of the subwords v1 and v′1 starts, the first
component has ensured that it has passed through 2k − 1 non-empty subwords
before. If the comparison is successful, the structure of the input is correct and,
moreover, v1 matches v′1. So, the input is of the form v1�v2� · · · �vk�

mv′k� · · ·
�v′2�v1.

The second component is delayed by |v1�v2�| time steps against the first one.
So, when the comparison of the v1 is finished, it reads the first symbol of the
input suffix v̂�v1, where v̂ ∈ {a, b, �}∗ and |v̂| = |v2|, while the master starts to
read v2. After a successful comparison of v̂ and v2 it has been verified that the
input is of the form v1�v2� · · · �vk�

mv′k� · · · �uv2�v1, where u ∈ {a, b}∗.
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Proceeding inductively, the ith component is delayed by |vi−1�vi�| time steps
against the (i − 1)st one. So, it reads the first symbol of the input suffix
v̂�uvi−1� · · · �v1, where v̂ ∈ {a, b, �}∗ and |v̂�u| = |vi| + 1, while the master
starts to read vi. After a successful comparison it has been verified that the
input is of the form v1� · · · �vi−1�vi� · · · �vk�

mv′k� · · ·�uvi�vi−1� · · · �v1. Setting
i = k verifies that the input accepted belongs to Lk. ��

Finally, by proving that Lk cannot be accepted by a CPCFA(k) we obtain the
infinite strict degree hierarchies. The proof of the following theorem is omitted
due to space restrictions.

Theorem 6. Let X ∈ {PCFA,DPCFA,RPCFA,DRPCFA, CPCFA,DCPCFA}
and k ≥ 1 be a constant. Then the family L (X(k)) is properly included in
L (X(k + 1)).

5 Concluding Remarks

In this paper, hierarchy and undecidability results for parallel communicating
finite automata systems are proved. It is left open whether the number of com-
ponents induces infinite hierarchies also for centralized systems working in the
returning mode. Another open question is whether there are reasonable sub-
classes of PCFAs for which some problems treated here become decidable. For
the stateless variant of the closely related multihead automata [11], some decid-
ability results have been obtained.
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Abstract. We study the inclusion problems for pattern languages that

are generated by patterns with a bounded number of variables. This

continues the work by Freydenberger and Reidenbach (Information and

Computation 208 (2010)) by showing that restricting the inclusion prob-

lem to significantly more restricted classes of patterns preserves unde-

cidability, at least for comparatively large bounds. For smaller bounds,

we prove the existence of classes of patterns with complicated inclusion

relations, and an open inclusion problem, that are related to the Collatz

Conjecture. In addition to this, we give the first proof of the undecidabil-

ity of the inclusion problem for NE-pattern languages that, in contrast

to previous proofs, does not rely on the inclusion problem for E-pattern

languages, and proves the undecidability of the inclusion problem for

NE-pattern languages over binary and ternary alphabets.

1 Introduction

Patterns – finite strings that consist of variables and terminals – are compact
and natural devices for the definition of formal languages. A pattern generates a
word by a substitution of the variables with arbitrary strings of terminals from
a fixed alphabet Σ (where all occurrences of a variable in the pattern must be
replaced with the same word), and its language is the set of all words that can
be obtained under substitutions. In a more formal manner, the language of a
pattern can be understood as the set of all images under terminal-preserving
morphisms; i. e., morphisms that map variables to terminal strings, and each
terminal to itself. For example, the pattern α = x1x1 a bx2 (where x1 and x2

are variables, and a and b are terminals) generates the language of all words
that have a prefix that consists of a square, followed by the word a b.

The study of patterns in strings goes back to Thue [20] and is a central topic
of combinatorics on words (cf. the survey by Choffrut and Karhumäki [3]), while
the investigation of pattern languages was initiated by Angluin [1]. Angluin’s
definition of pattern languages permits only the use of nonerasing substitutions
(hence, this class of pattern languages is called NE-pattern languages). Later,
Shinohara [19] introduced E-pattern languages (E for ‘erasing’ or ‘extended’),
were erasing substitutions are permitted.
� Corresponding author.
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This small difference in the definitions leads to immense differences in the
properties of these two classes. For example, while the equivalence problem
for NE-pattern languages is trivially decidable, the equivalence problem for E-
pattern languages is a hard open problem. Although both classes were first
introduced in the context of inductive inference (which deals with the problem
of learning patterns for given sets of strings, for a survey see Ng and Shino-
hara [15]), they have been widely studied in Formal Language Theory (cf. the
surveys by Mitrana [13], Salomaa [18]). Due to their compact definition, pat-
terns or their languages occur in numerous prominent areas of computer science
and discrete mathematics, including unavoidable patterns (cf. Jiang et al. [8]),
practical regular expressions (cf. Câmpeanu et al. [2]), or word equations and the
positive theory of concatenation (cf. Choffrut and Karhumäki [3]).

One of the most notable results on pattern languages is the proof of the
undecidability of the inclusion problem by Jiang et al. [9], a problem that was
open for a long time and is of vital importance for the inductive inference of
pattern languages. Unfortunately, this proof heavily depends on the availability
of an unbounded number of terminals, which might be considered impractical,
as pattern languages are mostly used in settings with fixed (or at least bounded)
alphabets. But as shown by Freydenberger and Reidenbach [6], undecidability
holds even if the terminal alphabet is bounded. As the proof by Jiang et al.
and its modification by Freydenberger and Reidenbach require the number of
variables of the involved patterns to be unbounded, we consider it a natural
question whether the inclusion problems remain undecidable even if bounds are
imposed on the number of variables in the pattern; especially as bounding the
number of variables changes the complexity of the membership problem from
NP-complete to P (cf. Ibarra et al. [7]). Similar restrictions have been studied
in the theory of concatenation (cf. Durnev [4]).

Apart from potential uses in inductive inference or other areas, and the search
for an approach that could provide the leverage needed to solve the equivalence
problem for E-pattern languages, our main motivation for deeper research into
the inclusion problems is the question how strongly patterns and their languages
are connected. All known cases of (non-trivial) decidability of the inclusion prob-
lem for various classes of patterns rely on the fact that for these classes, inclusion
is characterized by the existence of a terminal-preserving morphism mapping one
pattern to the other. This is a purely syntactical condition that, although NP-
complete (cf. Ehrenfeucht and Rozenberg [5]), can be straightforwardly verified.
Finding cases of inclusion that are not covered by this condition, but still de-
cidable, could uncover (or rule out) previously unknown phenomena, and be of
immediate use for related areas of research.

Our results can be summarized as follows: We show that the inclusion prob-
lems for E- and NE-patterns with a bounded (but large) number of variables
are indeed undecidable. For smaller bounds, we prove the existence of classes of
patterns with complicated inclusion relations, and an open inclusion problem.
Some of these inclusions can simulate iterations of the Collatz function, while
others could (in principle) be used to settle an important part of the famous
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Collatz Conjecture. In contrast to the aforementioned previous proofs, our proof
of the undecidability of the inclusion problem for NE-pattern languages is not
obtained through a reduction of the inclusion problem for E-pattern languages.
Apart from the technical innovation, this allows to prove the undecidability of
the inclusion problem for NE-pattern languages over binary and ternary alpha-
bets, which was left open by Freydenberger and Reidenbach.

2 Preliminaries

2.1 Basic Definitions and Pattern Languages

Let N1 := {1, 2, 3, . . .} and N0 := N1 ∪{0}. The function div denotes the integer
division, and mod its remainder. The symbols ⊆, ⊂, ⊇ and ⊃ refer to subset,
proper subset, superset and proper superset relation, respectively. The symbol \
denotes the set difference, and ∅ the empty set.

For an arbitrary alphabet A, a string (over A) is a finite sequence of symbols
from A, and λ stands for the empty string. The symbol A+ denotes the set of
all nonempty strings over A, and A∗ := A+ ∪ {λ}. For the concatenation of two
strings w1, w2 we write w1 ·w2 or simply w1w2. We say a string v ∈ A∗ is a factor
of a string w ∈ A∗ if there are u1, u2 ∈ A∗ such that w = u1vu2. If u1 = λ (or
u2 = λ), then v is a prefix of w (or a suffix, respectively).

For any alphabet A, a language L (over A) is a set of strings over A, i. e.
L ⊆ A∗. A language L is empty if L = ∅; otherwise, it is nonempty.

The notation |K| stands for the size of a set K or the length of a string K;
the term |w|a refers to the number of occurrences of the symbol a in the string
w. For any w ∈ Σ∗ and any n ∈ N0, wn denotes the n-fold concatenation of w,
with w0 := λ. Furthermore, we use · and the regular operations ∗ and + on sets
and strings in the usual way.

For any alphabets A,B, a morphism is a function h : A∗ → B∗ that satisfies
h(vw) = h(v)h(w) for all v, w ∈ A∗. A morphism h : A∗ → B∗ is said to be
nonerasing if h(a) �= λ for all a ∈ A. For any string w ∈ C∗, where C ⊆ A and
|w|a ≥ 1 for every a ∈ C, the morphism h : A∗ → B∗ is called a renaming (of
w) if h : C∗ → B∗ is injective and |h(a)| = 1 for every a ∈ C.

Let Σ be a (finite or infinite) alphabet of so-called terminals and X an infinite
set of variables with Σ ∩ X = ∅. We normally assume {a, b, . . .} ⊆ Σ and
{x1, x2, x3 . . .} ⊆ X . A pattern is a string over Σ ∪X , a terminal-free pattern is
a string over X and a terminal-string is a string over Σ. For any pattern α, we
refer to the set of variables in α as var(α). The set of all patterns over Σ ∪X is
denoted by PatΣ; the set of all terminal-free patterns is denoted by Pattf . For
every n ≥ 0, let Patn,Σ denote the set of all patterns over Σ that contain at
most n variables; that is, Patn,Σ :={α ∈ PatΣ | | var(α)| ≤ n}.

A morphism σ : (Σ ∪X)∗ → (Σ ∪X)∗ is called terminal-preserving if σ(a) =
a for every a ∈ Σ. A terminal-preserving morphism σ : (Σ ∪X)∗ → Σ∗ is called
a substitution. The E-pattern language LE,Σ(α) of α is given by

LE,Σ(α) := {σ(α) | σ : (Σ ∪X)∗ → Σ∗ is a substitution},
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and the NE-pattern language LNE,Σ(α) of a pattern α ∈ PatΣ is given by

LNE,Σ(α) := {σ(α) | σ : (Σ ∪X)∗ → Σ∗ is a nonerasing substitution}.

If the intended meaning is clear, we write L(α) instead of LE,Σ(α) or LNE,Σ(α)
for any α ∈ PatΣ. Furthermore, let ePATΣ denote the class of all E-pattern
languages over Σ, and nePATΣ the class of all NE-pattern languages over Σ.
Likewise, we define ePATtf,Σ as the class of all LE,Σ(α) with α ∈ Pattf , and, for
any n ≥ 0, ePATn,Σ as the class of all LE,Σ(α) with α ∈ Patn,Σ. The classes
nePATtf,Σ and nePATn,Σ are defined accordingly. Let P1, P2 be two classes of
patterns, and PAT1,PAT2 be the corresponding classes of pattern languages (ei-
ther the class of all E-pattern languages or the class of all NE-pattern languages
over some alphabet Σ that are generated by patterns from P1 or P2). We say
that the inclusion problem for PAT1 in PAT2 is decidable if there exists a total
computable function χ such that, for every pair of patterns α ∈ P1 and β ∈ P2, χ
decides on whether or not L(α) ⊆ L(β). If no such function exists, this inclusion
problem is undecidable. If both classes of pattern languages are the same class
PAT�,Σ, we simple refer to the inclusion problem of PAT�,Σ.

The concepts contained in the following two Sections are a vital part of our
considerations.

2.2 A Universal Turing Machine

Let U be the universal Turing machine U15,2 with 2 symbols and 15 states de-
scribed by Neary and Woods [14]. This machine has the state setQ = {q1, . . . , q15}
and operates on the tape alphabet Γ = {0, 1} (where 0 is the blank symbol). In or-
der to discuss configurations of U , we adopt the following conventions. The tape
content of any configuration of U is characterized by the two infinite sequences
tL = (tL,n)n≥0 and tR = (tR,n)n≥0 over Γ . Here, tL describes the content of what
we shall call the left side of the tape, the infinite word that starts at the position
of the machine’s head and extends to the left. Likewise, tR describes the right side
of the tape, the infinite word that starts immediately to the right of the head and
extends to the right.

Next, we define the function e : Γ → N0 as e(0):=0 and e(1):=1, and extend
this to an encoding of infinite sequences t = (tn)n≥0 over Γ by e(t):=

∑∞
i=0 2i e(ti).

As we consider only configurations where all but finitely many cells of the tape
consist of the blank symbol 0 (which is encoded as 0), e(t) is always finite and
well-defined. Note that for every side t of the tape, e(t)mod 2 returns the encod-
ing of the symbol that is closest to the head (the symbol under the head for tL,
and the symbol to the right of the head for tR). Furthermore, each side can be
lengthened or shortened by multiplying or dividing (respectively) its encoding
e(t) by 2. The encodings encE and encNE of configurations of U are defined by

encE(qi, tL, tR):=0 0e(tR)#0 0e(tL)#0i,

encNE(qi, tL, tR):=07 0e(tR)#07 0e(tL)#0i+6,
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for every configuration (qi, tL, tR). Note that both functions are almost identical;
the only difference is that encNE adds six additional occurrences of 0 to each of
the three continuous blocks of 0.

We extend each of these encodings to an encoding of finite sequences of
configurations C = (Ci)n

i=1 by enc(C):=## enc(C1)## . . .## enc(Cn)## for
enc = encE or enc = encNE. Let I be any configuration of U . A valid computa-
tion from I is a finite sequence C = (Ci)n

i=1 (with n ≥ 2) of configurations of U
such that C1 = I, Cn is a halting configuration, and Ci+1 is a valid successor
configuration of Ci for every i with 1 ≤ i < n. We adopt the convention that
any possible configuration where both tape sides have a finite value under e is a
valid successor configuration of a halting configuration. This extended definition
of succession does not change the acceptance behavior of U . Finally, let

VALCE(I):={encE(C) | C is a valid computation from I},
VALCNE(I):={encNE(C) | C is a valid computation from I}.

Each of the two sets is nonempty if and only if U accepts the input of the initial
configuration I, and can thus be used to decide the halting problem of U . As U
is universal, there can be no recursive function that, on input I, decides whether
VALCE(I) is empty or not (the same holds for VALCNE(I)).

2.3 Collatz Iterations

The Collatz function C : N1 → N1 is defined by C(n):=1
2n if n is even, and

C(n) := 3n + 1 if n is odd. For any i ≥ 0 and any n ≥ 1, let C0(n):=n and
Ci+1(n):=C(Ci(n)). A number n leads C into a cycle if there are i, j with 1 ≤ i < j
and Ci(n) = Cj(n). The cycle is non-trivial if Ck(n) �= 1 for every k ≥ 0;
otherwise, it is the trivial cycle.

The Collatz Conjecture states that every natural number leads C into the
trivial cycle 4, 2, 1. Regardless of the considerable effort spent on this problem
(see the bibliographies by Lagarias [10,11]), the conjecture remains unsolved, as
the iterated function often behaves rather unpredictably. For this reason, itera-
tions of the Collatz function have been studied in the research of small Turing
machines. Margenstern [12] conjectures that every class of Turing machines (as
characterized by the number of states and symbols) that contains a machine that
is able to simulate the iteration of the Collatz function, also contains a machine
that has an undecidable halting problem.

Similar to the definition of VALCE(I) and VALCNE(I), we encode those iter-
ations of the Collatz function that lead to the number 1 (and thus, to the trivial
cycle) in languages over the alphabet {0,#}. For every N ∈ N1, let

TRIVE(N):={#0C
0(N)#0C

1(N)# . . .#0C
n(N)# | n ≥ 1, Cn(N) = 1},

TRIVNE(N):={#06+C0(N)#06+C1(N)# . . .#06+Cn(N)# | n ≥ 1, Cn(N) = 1}.

By definition, TRIVE(N) (and TRIVNE(N)) are empty if and only if N does
not lead C into the trivial cycle. As we shall see, our constructions are able to



Inclusion Problems for Patterns 105

express an even stronger problem, the question whether there are any numbers
that lead C to a non-trivial cycle. We define NTCCE as the set of all strings

#0C
0(N)#0C

1(N)# . . .#0C
n(N)#,

where n,N ≥ 1, Ci(N) �= 1 for all i ∈ {0, . . . , n}, and Cj(N) = Cn(N) for some
j < n. Analogously, NTCCNE is defined to be the set of all strings

#06+C0(N)#06+C1(N)# . . .#06+Cn(N)#,

with the same restrictions on n and N . Obviously, both sets are nonempty if
and only if there exist non-trivial cycles in the iteration of C. This is one of the
two possible cases that would disprove the Collatz Conjecture, the other being
the existence of a number N with Ci(N) �= Cj(N) for all i �= j.

3 Main Results

In this section, we study the inclusion problems of various classes of pattern
languages generated by patterns with a bounded number of variables.

As shown by Jiang et al. [9], the general inclusion problem for pattern lan-
guages is undecidable, both in the case of E- and NE-patterns:

Theorem 1 (Jiang et al. [9]). Let Z ∈ {E,NE}. There is no total computable
function χZ which, for every alphabet Σ and for every pair of patterns α, β ∈
PatΣ, decides on whether or not LZ,Σ(α) ⊆ LZ,Σ(β).

The proof for the E-case uses an involved construction that relies heavily on the
unboundedness of the terminal alphabet Σ. For the NE-case, Jiang et al. give
a complicated reduction of the inclusion problem for ePATΣ to the inclusion
problem for nePATΣ2 , where Σ2 is an alphabet with two additional terminals.
As shown by Freydenberger and Reidenbach [6], the inclusion problem remains
undecidable for most cases of a fixed terminal alphabet:

Theorem 2 (Freydenberger and Reidenbach [6]). Let Σ be a finite alpha-
bet. If |Σ| ≥ 2, the inclusion problem of ePATΣ is undecidable. If |Σ| ≥ 4, the
inclusion problem of nePATΣ is undecidable.

The proof for the E-case consists of a major modification of the construction for
the general inclusion problem for E-pattern languages, and relies on the presence
of an unbounded number of variables in one of the patterns. The NE-case of the
result follows from the same reduction as in the proof of Theorem 1 (thus, the
difference in |Σ|), and also relies on an unbounded number of variables.

As patterns with an arbitrarily large number of variables might seem some-
what artificial for many applications, we consider it natural to bound this number
in order to gain decidability of (or at least further insights on) the inclusion of
pattern languages. We begin our considerations with an observation from two
classical papers on pattern languages:
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Theorem 3 (Angluin [1], Jiang et al. [8]). The inclusion problem fornePATΣ

in nePAT1,Σ and the inclusion problem for ePATΣ in ePAT1,Σ are decidable.

The proofs for both cases of this theorem rely on the following sufficient condition
for inclusion of pattern languages:

Theorem 4 (Jiang et al. [8], Angluin [1]). Let Σ be an alphabet and α, β ∈
PatΣ. If there is a terminal-preserving morphism φ : (Σ ∪X)∗ → (Σ ∪X)∗ with
φ(β) = α, then LE,Σ(α) ⊆ LE,Σ(β). If φ is also nonerasing, then LNE,Σ(α) ⊆
LNE,Σ(β).

In fact, the proofs of both parts of Theorem 3 show that, for every alphabet
Σ and all patterns α ∈ PatΣ, β ∈ Pat1,Σ, L(α) ⊆ L(β) holds if and only if
there is a terminal-preserving (and, in the NE-case, nonerasing) morphism φ
with φ(β) = α. As the existence of such a morphism is a decidable property
(although in general NP-complete, cf. Ehrenfeucht and Rozenberg [5]), the re-
spective inclusion problems for these classes are decidable.

There are numerous other classes of pattern languages where this condition is
not only sufficient, but characteristic; e. g. the terminal-free E-pattern languages
(cf. Jiang et al. [9]), some of their generalizations (cf. Ohlebusch and Ukko-
nen [16]), and pattern languages over infinite alphabets (cf. Freydenberger and
Reidenbach [6]). As far as we know, all non-trivial decidability results for pattern
languages over non-unary alphabets rely on this property1. Contrariwise, the ex-
istence of patterns where inclusion is not characterized by the existence of an
appropriate morphism between them is a necessary condition for an undecidable
inclusion problem for this class.

The same phenomenon as in Theorem 3 does not occur if we swap the bounds.
For the nonerasing case, this is illustrated by the following example:

Example 1 (Reidenbach [17], Example 3.2). Let Σ = {a1, . . . , an} with n ≥
2, and consider the pattern αn:=x a1 x a2 x . . . x an x, β:=xyyz. Then there is
no terminal-preserving morphism φ with φ(β) = αn, but every word from
LNE,Σ(αn) contains an inner square. Thus, LNE,Σ(αn) ⊆ LNE,Σ(β). �

Thus, regardless of the size of |Σ|, even the inclusion problem of nePAT1,Σ in
nePAT3,Σ is too complex to be characterized by the existence of a nonerasing
terminal-preserving morphism between the patterns.

A similar phenomenon can be observed for E-pattern languages:

Proposition 1. For every finite alphabet Σ with |Σ| ≥ 2, there are patterns
α ∈ Pat1,Σ and β ∈ Pat2|Σ|+2,Σ such that LE,Σ(α) ⊆ LE,Σ(β), but there is no
terminal-preserving morphism φ : (Σ ∪X)∗ → (Σ ∪X)∗ with φ(β) = α.

The proof for Proposition 1 is omitted due to space constraints.
The proof also shows that, if Σ has an odd number of letters, the bound on

the number of variables in the second class of patterns can be lowered to 2|Σ|.
1 Non-trivial meaning that the involved classes are neither finite, nor restricted in

some artificial way that leads to trivial decidability.
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We do not know whether this lower bound is strict, or if there are patterns
α ∈ Pat1,Σ , β ∈ Patn,Σ with n < 2|Σ| such that LE,Σ(α) ⊆ LE,Σ(β), but there
is no terminal-preserving morphism mapping β to α.

For |Σ| = 2, according to Proposition 1, the inclusion of ePAT1,Σ in ePAT6,Σ

is not characterized by the existence of such a morphism. As this bound (and
the bound on NE-patterns from Example 1) are the lowest known bounds for
‘morphism-free’ inclusion, we want to emphasize the following problem:

Open Problem 1 Let |Σ| = 2. Is the inclusion problem of ePAT1,Σ in ePAT6,Σ

decidable? Is the inclusion problem of nePAT1,Σ in nePAT3,Σ decidable?

In principle, both inclusion problems might be undecidable; but comparing these
bounds to the ones in the following results, this seems somewhat improbable,
and suggests that if these problems are undecidable, the proof would need to be
far more complicated than the proofs in the present paper. On the other hand,
these classes are promising candidates for classes of pattern languages where the
inclusion is decidable, but not characterized by the existence of an appropriate
morphism.

As evidenced by our first two main theorems, bounding the number of vari-
ables preserves the undecidability of the inclusion problem:

Theorem 5. Let |Σ| = 2. The following problems are undecidable:

1. The inclusion problem of ePAT3,Σ in ePAT2854,Σ,
2. the inclusion problem of ePAT2,Σ in ePAT2860,Σ.

Theorem 6. Let |Σ| = 2. The following problems are undecidable:

1. The inclusion problem of nePAT3,Σ in nePAT3541,Σ,
2. the inclusion problem of nePAT2,Σ in nePAT3549,Σ.

Note that the cases of all larger (finite) alphabets are handled in Section 4.1.
The bounds presented in these two theorems are not optimal. Through additional
effort and some encoding tricks, it is possible to reduce each bound on the number
of variables in the second pattern by a few hundred variables. As the resulting
number would still be far away from the bounds presented in the theorems further
down in this section, we felt that these optimizations would only add additional
complexity to the proofs, without providing deeper insight, and decided to give
only the less optimal bounds present above.

The proofs for both theorems use the same basic approach as the proofs of the
E-case in Theorems 1 and 2. We show that, for a given configuration I of U , one
can effectively construct patterns α, β in the appropriate classes of patterns such
that L(α) ⊆ L(β) if and only if U halts after starting in I. As this would decide
the halting problem of the universal Turing machine U , the inclusion problems
must be undecidable.

For the E-case, we show this using a nontrivial but comparatively straightfor-
ward modification of the proof for the E-case of Theorem 2. As this construction
is still very complicated, a brief sketch can be found in Section 3.1, while the
full construction is omitted due to space constraints.
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For the NE-case, we show that a comparable construction can be realized
with NE-patterns. This observation is less obvious than it might appear and re-
quires extensive modifications to the E-construction. As previous results on the
non-decidability of the inclusion problem for NE-patterns rely on an involved
construction from [9], we consider the construction used for our proof of The-
orem 6 a significant technical breakthrough; especially as this result (together
with its extension following from the modification in Section 4.1) allows us to
solve Open Problem 1 in [6], concluding that the inclusion problem for NE-
patterns over binary and ternary alphabets is undecidable. Some remarks on the
construction are sketched in Section 3.2, while the full construction is omitted.

Although encoding the correct operation of a Turing machine (or any simi-
lar device) in patterns requires a considerable amount of variables, the simple
structure of iterating the Collatz function C can be expressed in a more compact
form. With far smaller bounds, we are able to obtain the following two results
using the same constructions as for the proof of Theorems 5 and 6:

Theorem 7. Let Σ be a binary alphabet. Every algorithm that decides the inclu-
sion problem of ePAT2,Σ in ePAT74,Σ can be converted into an algorithm that,
for every N ∈ N1, decides whether N leads C into the trivial cycle.

Theorem 8. Let Σ be a binary alphabet. Every algorithm that decides the in-
clusion problem of nePAT2,Σ in nePAT145,Σ can be converted into an algorithm
that, for every N ∈ N1, decides whether N leads C into the trivial cycle.

The proofs are sketched in Sections 3.1 and 3.2. As mentioned in Section 2.3, this
demonstrates that, even for these far tighter bounds, the inclusion problems are
able to express comparatively complicated sets. Moreover, a slight modification
of the result allows us to state the following far stronger results:

Theorem 9. Let Σ be a binary alphabet. Every algorithm that decides the in-
clusion problem for ePAT4,Σ in ePAT80,Σ can be used to decide whether any
number N ≥ 1 leads C into a non-trivial cycle.

Theorem 10. Let Σ be a binary alphabet. Every algorithm that decides the
inclusion problem for nePAT4,Σ in nePAT153,Σ can be used to decide whether
any number N ≥ 1 leads C into a non-trivial cycle.

The proofs are sketched in Sections 3.1 and 3.2. These two results need to be
interpreted very carefully. Of course, the existence of non-trivial cycles is triv-
ially decidable (by a constant predicate); but these results are stronger than
mere decidability, as the patterns are constructed effectively. Thus, deciding the
inclusion of any of the two pairs of patterns defined in the proofs would allow us
to prove the existence of a counterexample to the Collatz Conjecture, or to rule
out the existence of one important class of counterexamples, and thus solve ‘one
half’ of the Collatz Conjecture. More pragmatically, we think that these results
give reason to suspect that the inclusion problems of these classes of pattern
languages are probably not solvable (even if effectively, then not efficiently), and
definitely very complicated.
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3.1 Sketch of the Construction for E-Patterns

As the construction is rather involved, we only give a basic sketch, and omit the
full technical details. In each of the proofs, our goal is to decide the emptiness
of a set V, which is one of TRIVE(N) (for some N ≥ 1), NTCCE, or VALCE(I)
(for some configuration I). For this, we construct two patterns α and β such
that LE,Σ(α) \ LE,Σ(β) �= ∅ if and only if V �= ∅. The pattern α contains two
subpatterns α1 and α2, where α2 is a terminal-free pattern with var(α2) ⊆
var(α1) ∪ {y}, and y is a variable that occurs exactly once in α2, but does not
occur in α1.

Glossing over details (and ignoring the technical role of α2), the main goal is
to define β in such a way that, for every substitution σ, σ(α) ∈ LE,Σ(β) if and
only if σ(α1) ∈ V. More explicitly, the subpattern α1 generates a set of possible
strings, and β encodes a disjunction of predicates on strings that describe the
complement of V through all possible errors. If one of these errors occurs in
σ(α1), we can construct a substitution τ with τ(β) = σ(α). If V = ∅, every σ(α)
belongs to LE,Σ(β). Otherwise, any element of V can be used to construct a word
σ(α) /∈ LE,Σ(β). The proof of Theorem 2 in [6] can be interpreted as a special
case of this construction, using α1:=x and α2:=y. Through our modification, we
are able to exert more control on the elements of LE,Σ(α1), and use this to define
required repetitions, prefixes or suffixes for all σ(α1) with σ(α) /∈ LE,Σ(β). The
variables in var(α2) \ {y} are even further restricted, and can only be mapped
to 0∗.

3.2 Sketch of the Construction for NE-Patterns

The detailed definition of the construction, and the associated proofs, are omitted
due to space constraints. Describing the NE-construction on the same level of
detail as the E-construction, both appear to be identical, including the presence
and the role of subpatterns α1 and α2 in α. But as evidenced in the full proof,
the peculiarities of NE-patterns require considerable additional technical effort.
For example, the E-construction heavily depends on being able to map most
variables in β to the empty word; dealing with these ‘superfluous’ variables is
the largest difficulty for the modification. In order to overcome this problem,
the pattern α contains long terminal-strings, which makes it possible to map
every variable in β to at least one terminal. These terminal-strings complicate
one of the main proofs for the E-construction, as we have to ensure that these
terminal-strings do not prevent a necessary mapping, while not allowing any
unintended mappings. The E-construction uses a set of variables xi of which,
under some preconditions, all but one have to be mapped to the empty word.
That variable is then used to enforce certain decompositions of β in a way
that allows us to encode the predicates in a system of word equations. In the
NE-construction, we use a more complicated prefix-construction to obtain a set
of variables, which (again under some preconditions) all but one have to be
mapped to the terminal 0, while the single remaining variable has to be mapped
to the terminal #. Some minor changes make sure that the number of different
variables in β does not increase too much in comparison to the E-construction
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– this is one reason for the different definitions of the encoding sets for the
erasing and the nonerasing case in Sections 2.2 and 2.3. On the other hand, the
modifications of the construction and the use of nonerasing substitutions make
the implementation of the extensions in Section 4 simpler than for the erasing
case.

4 Extensions of the Main Theorems

In this section, we extend the main theorems of the previous section to larger
alphabets (Section 4.1), and show that all patterns from the second class can be
replaced with terminal-free patterns (Section 4.2).

4.1 Larger Alphabets

As mentioned in Lemma 5 in [6], the construction for E-patterns can be adapted
to all finite alphabets |Σ| with |Σ| ≥ 3. This modification is comparatively
straightforward, but would require 2(|Σ|−2) additional predicates, and increase
the number of required variables in β by |Σ| − 2 for each predicate. With addi-
tional effort, both constructions can be adapted to arbitrarily large alphabets:

Theorem 11. Let Σ be a finite alphabet with |Σ| ≥ 3. The following problems
are undecidable:

1. The inclusion problem of ePAT2,Σ in ePAT2882,Σ,
2. the inclusion problem of nePAT2,Σ in nePAT3563,Σ.

The required modifications and the proof of their correctness for the E- and the
NE-construction are omitted. Using the same modifications to the constructions,
the remaining cases from Theorems 5 and 6 and Theorems 7 to 10 can also be
adapted to ternary (or larger) alphabets, using only 22 additional variables.

4.2 Inclusion in ePATtf ,Σ or nePATtf ,Σ

Both constructions can also be adapted to use terminal-free patterns β:

Theorem 12. Let |Σ| = 2. The following problems are undecidable:

1. The inclusion problem of ePAT2,Σ in ePATtf,Σ,
2. the inclusion problem of nePAT2,Σ in nePATtf,Σ.

Again, the technical details are omitted for space reasons. Note that the number
of variables in the patterns from Pattf remains bounded. Although one might ex-
pect that this result could be modified to show that the open inclusion problem
for nePATtf,Σ is undecidable, we consider this doubtful, as the modified NE-
construction relies heavily on the terminal symbols in α. Furthermore, although
it is considerably easier to modify the NE-construction, the fact that the inclu-
sion problem for ePATtf,Σ is decidable casts further doubt on that expectation.
As in Section 4.1, all other results that are based on one of the two constructions
can be adapted as well.
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Abstract. The partial derivative automaton (Apd) is usually smaller

than other non-deterministic finite automata constructed from a regular

expression, and it can be seen as a quotient of the Glushkov automaton

(Apos). By estimating the number of regular expressions that have ε as

a partial derivative, we compute a lower bound of the average number of

mergings of states in Apos and describe its asymptotic behaviour. This

depends on the alphabet size, k, and its limit, as k goes to infinity, is 1
2
.

The lower bound corresponds exactly to consider the Apd automaton for

the marked version of the regular expression, i.e. where all its letters are

made different. Experimental results suggest that the average number of

states of this automaton, and of the Apd automaton for the unmarked

regular expression, are very close to each other.

1 Introduction

There are several well-known constructions to obtain non-deterministic finite au-
tomata from regular expressions. The worst case analysis of both the complexity
of the conversion algorithms, and the size of the resulting automata, are well
studied. However, for practical purposes, the average case analysis can provide
a much more useful information. Recently, Nicaud [Nic09] presented an average
case study of the size of the Glushkov automata, proving that, on average, the
number of transitions is linear in the size of the expression. This analysis was
carried out using the framework of analytic combinatorics.

Following the same approach, in this paper we focus on the partial derivative
automaton (Apd), which was introduced by Antimirov [Ant96], and is a non-
deterministic version of the Brzozowski automaton [Brz64]. In order to have an
inductive definition of the set of states of Apd, we consider Mirkin’s formulation
of prebases. The equivalence of the two constructions, Mirkin’s prebases, and
sets of partial derivatives, was pointed out by Champarnaud and Ziadi [CZ01].
We briefly revisit Mirkin’s algorithm, due to an inaccuracy in that presentation.
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In 2002, Champarnaud and Ziadi [CZ02] showed that the partial derivative
automaton is a quotient of the Glushkov automaton. As such, theApd automaton
can be obtained from the Apos automaton by merging states. The number of
states in Apd, which never exceeds the number of states in Apos, appears to
be significantly smaller in practice. In this work we are particularly interested
in measuring this difference. By estimating the number of regular expressions
that have ε as a partial derivative, we compute a lower bound for the average
number of mergings of states in Apos, and study its asymptotic behaviour. This
behaviour depends on the alphabet size, k, and its limit, as k goes to infinity,
is half the number of states in Apos. Our experimental results suggest that this
lower bound is very close to the actual value.

2 Regular Expressions and Automata

In this section we briefly review some basic definitions about regular expressions
and finite automata. For more details, we refer the reader to Kozen [Koz97] or
Sakarovitch [Sak09].

Let Σ = {σ1, . . . , σk} be an alphabet (set of letters) of size k. A word w over
Σ is any finite sequence of letters. The empty word is denoted by ε. Let Σ� be
the set of all words over Σ. A language over Σ is a subset of Σ�. The set R of
regular expressions over Σ is defined by:

α := ∅ | ε | σ1 | · · · | σk | (α + α) | (α · α) | α� (1)

where the operator · (concatenation) is often omitted. The language L(α) associ-
ated to α is inductively defined as follows: L(∅) = ∅, L(ε) = {ε}, L(σ) = {σ} for
σ ∈ Σ, L((α+ β)) = L(α) ∪L(β), L((α · β)) = L(α) · L(β), and L(α�) = L(α)�.
The size |α| of α ∈ R is the number of symbols in α (parentheses not counted);
the alphabetic size |α|Σ is its number of letters. We define ε(α) by ε(α) = ε if
ε ∈ L(α), and ε(α) = ∅ otherwise. If two regular expressions α and β are syntac-
tically identical we write α ≡ β. Two regular expressions α and β are equivalent
if L(α) = L(β), and we write α = β. With this interpretation, the algebraic
structure (R,+, ·, ∅, ε) constitutes an idempotent semiring, and with the unary
operator �, a Kleene algebra.

A non-deterministic automaton (NFA) A is a quintuple (Q,Σ, δ, q0, F ), where
Q is a finite set of states, Σ is the alphabet, δ ⊆ Q×Σ×Q the transition relation,
q0 the initial state, and F ⊆ Q the set of final states. The size of a NFA is |Q|+|δ|.
For q ∈ Q and σ ∈ Σ, we denote the set {p | (q, σ, p) ∈ δ} by δ(q, σ), and we can
extend this notation to w ∈ Σ�, and to R ⊆ Q. The language accepted by A is
L(A) = {w ∈ Σ� | δ(q0, w) ∩ F �= ∅}.

3 The Partial Derivative Automaton

Let S ∪ {β} be a set of regular expressions. Then S � β = {αβ |α ∈ S} if
β �∈ {∅, ε}, S � ∅ = ∅, and S � ε = S. Analogously, one defines β � S.
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For a regular expression α and a letter σ ∈ Σ, the set ∂σ(α) of partial deriva-
tives of α w.r.t. σ is defined inductively as follows:

∂σ(∅) = ∂σ(ε) = ∅

∂σ(σ′) =
{
{ε} if σ′ ≡ σ
∅ otherwise

∂σ(α�) = ∂σ(α)� α�

∂σ(α+ β) = ∂σ(α) ∪ ∂σ(β)

∂σ(αβ) =
{
∂σ(α) � β ∪ ∂σ(β) if ε(α) = ε
∂σ(α) � β otherwise.

This definition can be extended to sets of regular expressions, to words, and
to languages by: given α ∈ R and σ ∈ Σ, ∂σ(S) = ∪β∈S∂σ(β) for S ⊆ R;
∂ε(α) = {α}, ∂wσ(α) = ∂σ(∂w(α)) for w ∈ Σ�; and ∂L(α) = ∪w∈L∂w(α) for
L ⊆ Σ�. The set of partial derivatives of α, {∂w(α) | w ∈ Σ�}, is denoted by
PD(α). The partial derivative automaton Apd(α), introduced by Antimirov, is
defined by

Apd(α) = (PD(α), Σ, δpd, α, {q ∈ PD(α) | ε(q) = ε}),

where δpd(q, σ) = ∂σ(q), for all q ∈ PD(α) and σ ∈ Σ.

Proposition 1 (Antimirov). L(Apd(α)) = L(α).

Example 1. Throughout the paper we will use the regular expression τ = (a +
b)(a� + ba� + b�)�, given by Ilie and Yu [IY03]. This example illustrates per-
fectly the purpose of our constructions in Section 5.1. For τ one has, PD(τ) =
{τ, τ1, τ2, τ3}, where τ1 = (a� + ba� + b�)�, τ2 = a�τ1 and τ3 = b�τ1. The corre-
sponding automaton Apd(τ) is the following:

τ τ1

τ2

τ3

a, b
a, bb

a, b

b

a, b

b

3.1 Mirkin’s Formulation

Champarnaud and Ziadi [CZ01] showed that partial derivatives and Mirkin’s pre-
bases [Mir66] lead to identical constructions of non-deterministic automata. In
order to do this, they proposed a recursive algorithm for computing the Mirkin’s
prebases. However, that algorithm has an inaccuracy for the concatenation rule.
Here, we give the corrected version of the algorithm.

Let α0 be a regular expression. A set π(α0) = {α1, . . . , αn}, where α1, . . . , αn

are non-empty regular expressions, is called a support of α0 if, for i = 0, . . . , n,
there are αil ∈ R ( l = 1, . . . , k), linear combinations of the elements in π(α0),
such that αi = σ1 ·αi1 + . . .+σk ·αik + ε(αi), where, as above, Σ = {σ1, . . . , σk}
is the considered alphabet. If π(α) is a support of α, then the set π(α) ∪ {α} is
called a prebase of α.
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Proposition 2 (Mirkin/Champarnaud&Ziadi1). Let α be a regular expres-
sion. Then the set π(α), inductively defined by

π(∅) = ∅
π(ε) = ∅
π(σ) = {ε}

π(α + β) = π(α) ∪ π(β)
π(αβ) = π(α)� β ∪ π(β)
π(α�) = π(α)� α�,

is a support of α.

In his original paper Mirkin showed that |π(α)| ≤ |α|Σ . Furthermore, Cham-
parnaud and Ziadi established that PD(α) = π(α) ∪ {α}. Thus |PD(α)| ≤
|α|Σ + 1.

3.2 The Glushkov Automaton

To review the definition of the Glushkov automaton, let Pos(α) = {1, 2, . . . , |α|Σ}
be the set of positions for α ∈ R, and let Pos0(α) = Pos(α) ∪ {0}. We consider
the expression α obtained by marking each letter with its position in α, i.e.
L(α) ∈ Σ�

where Σ = {σi | σ ∈ Σ, 1 ≤ i ≤ |α|Σ}. The same notation is used to
remove the markings, i.e., α = α. For α ∈ R and i ∈ Pos(α), let first(α) = {i |
∃w ∈ Σ�

, σiw ∈ L(α)}, last(α) = {i | ∃w ∈ Σ�
, wσi ∈ L(α)} and follow(α, i) =

{j | ∃u, v ∈ Σ�
, uσiσjv ∈ L(α)}. The Glushkov automaton for α is Apos(α) =

(Pos0(α), Σ, δpos, 0, F ), with δpos = {(0, σj , j) | j ∈ first(α)} ∪ {(i, σj , j) | j ∈
follow(α, i)} and F = last(α) ∪ {0} if ε(α) = ε, and F = last(α), otherwise. We
note that the number of states of Apos(α) is exactly |α|Σ +1. Champarnaud and
Ziadi [CZ02] showed that the partial derivative automaton is a quotient of the
Glushkov automaton. The right-invariant equivalence relation used in showing
that the Apd is a quotient of Apos relates the sets first and last with (multi-)sets
of partial derivatives w.r.t a letter.

Example 2. The Glushkov automaton for τ , Apos(τ), is the following:

0

1

2

3

4 5

6

a

b

a
b

b

a
b
b

b
a

b

a

b

b

a

b

a

b

a

a

b

b

1 The rule for concatenation in [CZ01] is π(αβ) = π(α) � β ∪ ε(α) � π(β), which, e.g.,

produces π(ab) = {b}. But, PD(ab) = {ab, b, ε}, thus π(ab) ⊇ {b, ε}.
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4 Generating Functions and Analytic Methods

A combinatorial class C is a set of objects on which a non-negative integer
function (size) | · | is defined, and such that for each n ≥ 0, the number of objects
of size n, cn, is finite. The generating function C(z) of C is the formal power
series

C(z) =
∑

c∈C

z|c| =
∞∑

n=0

cnz
n.

The symbolic method (Flajolet and Sedgewick [FS08]) is a framework that
allows the construction of a combinatorial class C in terms of simpler ones,
B1,. . . ,Bn, by means of specific operations, and such that the generating function
C(z) of C is a function of the generating functions Bi(z) of Bi, for 1 ≤ i ≤ n.
For example, given two disjoint combinatorial classes A and B, with generating
functions A(z) and B(z), respectively, the union A ∪B is a combinatorial class
whose generating function is A(z)+B(z). Other usual admissible operations are
the cartesian product and the Kleene closure.

Usually multivariate generating functions are used in order to obtain estimates
about the asymptotic behaviour of various parameters associated to combina-
torial classes. Here, however, we consider cost generating functions, as Nicaud
did. Given f : C → N, the cost generating function F (z) of C associated to f is
F (z) =

∑
c∈C f(c)z|c| =

∑
n≥0 fnz

n, with fn =
∑

c∈C,|c|=n f(c). With [zn]F (z)
denoting the coefficient of zn, the average value of f for the uniform distribution
on the elements of size n of C is, obviously,

μn(C, f) =
[zn]F (z)
[zn]C(z)

.

For the regular expressions given in (1), but without ∅, an average case analysis
of different descriptional measures, including the number of letters or the size
of its Glushkov automaton, has been presented by Nicaud. In particular, it was
shown that, for the generating function for regular expressions, Rk(z), which
satisfies

Rk(z) =
1− z −

√
Δk(z)

4z
, where Δk(z) = 1− 2z − (7 + 8k)z2, (2)

one has

[zn]Rk(z) ∼
√

2(1− ρk)
8ρk
√
π

ρn
kn

−3/2, where ρk =
1

1 +
√

8k + 8
. (3)

Here [zn]Rk(z) is the number of regular expressions α with |α| = n.
Nicaud also showed that the cost generating function for the number of letters

in an element α ∈ R is

Lk(z) =
kz√
Δk(z)

, (4)
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and satisfies
[zn]Lk(z) ∼ kρk√

π(2 − 2ρk)
ρ−n

k n−1/2. (5)

From this he deduced that

[zn]Lk(z)
[zn]Rk(z)

∼ 4kρ2
k

1− ρk
n. (6)

For k = 2 this results in approximately 0.277n (and not 0.408n, as stated by
Nicaud), and it is easy to see that

lim
k→∞

4kρ2
k

1− ρk
↗ 1

2
. (7)

This means that the average number of letters in a regular expression grows to
about half its size, for large alphabets. In particular, for k = 10, 100, 1000 we
have 4kρ2

k

1−ρk
= 0.467, 0.485, 0.494 respectively.

4.1 Analytic Asymptotics

Generating functions can be seen as complex analytic functions, and the study of
their behaviour around their dominant singularities gives us access to the asymp-
totic form of their coefficients. We refer the reader to Flajolet and Sedgewick for
an extensive study on this topic. Here we only state the propositions and lemmas
used in this paper. Let R > 1 and 0 < φ < π/2 be two real numbers, the domain
Δ(φ,R) at z = ξ is Δ(φ,R) = {z ∈ C | |z| < R, z �= ξ, and |Arg(z − ξ)| > φ},
where Arg(z) denotes the argument of z ∈ C. A domain is a Δ-domain at ξ if it
is a Δ(φ,R) at ξ for some R and φ. The generating functions we consider have
always a unique dominant singularity, and satisfy one of the two conditions of
the following proposition, given by Nicaud.

Proposition 3. Let f(z) be a function that is analytic in some Δ-domain at
ρ ∈ R+. If at the intersection of a neighborhood of ρ and its Δ-domain,

1. f(z) = a− b
√

1− z/ρ+ o
(√

1− z/ρ
)
, with a, b ∈ R, b �= 0, then [zn]f(z) ∼

b
2
√

π
ρ−nn−3/2.

2. f(z) = a√
1−z/ρ

+ o

(
1√

1−z/ρ

)
, with a ∈ R, and a �= 0, then [zn]f(z) ∼

a√
π
ρ−nn−1/2.

The following straightforward lemma was used though out our analytic
computations.

Lemma 1. If f(z) is an entire function with lim
z→ρ

f(z) = a and r ∈ R, then

f(z)(1− z/ρ)r = a(1− z/ρ)r + o((1− z/ρ)r).
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5 The Average Number of State Mergings

5.1 Regular Expressions with ε as a Partial Derivative

Since Apd(α) is a quotient of the Glushkov automaton, we know that it has at
most |α|Σ + 1 states. But this upper bound is reached if and only if, in every
step, during the computation of π(α), all unions are disjoint. There are however
two cases in which this clearly does not happen. Whenever ε ∈ π(β) ∩ π(γ),

|π(β + γ)| = |π(β) ∪ π(γ)| ≤ |π(β)| + |π(γ)| − 1, (8)

and also

|π(βγ�)| = |π(β)� γ� ∪ π(γ�)| = |π(β) � γ� ∪ π(γ)� γ�|
≤ |π(β)| + |π(γ)| − 1. (9)

In this section we will estimate the number of non-disjoint unions formed during
the computation of π(α), that are due to either one of the above cases. This
corresponds to the merging of states in the Glushkov automaton. Notice that
there might be additional mergings resulting from other identical elements in
the support of the regular expressions. Therefore our estimation is only a lower
bound of the actual number of state mergings, that turns out to be surprisingly
tight as shown in Section 6.

Example 3. In order to illustrate the effect of ε being a partial derivative of a
subexpression, we consider the marked version of τ , τ = (a1+b2)(a�

3+b4a�
5+b�6)�.

In Apos(τ) each position corresponds to a state. Now, note that, for instance,
one has

π(a1 + a2) = π(a1) ∪ π(a2) = {ε} ∪ {ε} = {ε},
and

π(b4a�
5) = π(b4)� a�

5 ∪ π(a5)� a�
5 = {ε} � a�

5 ∪ {ε} � a�
5.

These two cases originate the mergings of states 1 and 2, as well as 4 and 5 of
Apos(τ). There is another state merging that is due to neither of the above cases.
In fact,

π(a�
3 + b4a

�
5) = π(a3)� a�

3 ∪ π(b4)� a�
5 = {ε} � a�

3 ∪ {ε} � a�
5.

Since the Apd(τ) is computed for the unmarked τ , there is also the merging of
states 3 and 4. This is not the case for Apd(τ ), as can be seen in the following
diagrams:

0 1, 2

3, 4, 5

6

a, b
a, bb

a, b

b

a, b

b

0 1, 2

3

6

4, 5
a, b

b

a

b

b

ba

a, b

b

a

b

a

b

Apd(τ) Apd(τ )
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As this example suggests, the lower bound for the number of mergings of states
that is computed in this paper is precisely the number of mergings that arise
when obtaining Apd(α) from Apos(α).

From now on, α will denote regular expressions given in (1), but without ∅,
and its generating function, Rk(z) is given by (2). As mentioned, the number of
mergings for an expression α depends on the number of subexpressions with ε
in its support. We will estimate this number first. The grammar

αε := σ ∈ Σ | αε + α | αε + αε | α · αε | αε · ε

generates the set of regular expressions for which ε ∈ π(αε), that is denoted by
Rε. The remaining regular expressions, that are not generated by this grammar,
are denoted by αε.
The generating function for Rε, Rε,k(z), satisfies

Rε,k(z) = kz + zRε,k(z)Rk(z) + z (Rk(z)−Rε,k(z))Rε,k(z)
+zRk(z)Rε,k(z) + z2Rε,k(z),

which is equivalent to

zRε,k(z)2 −
(
z2 + 3zRk(z)− 1

)
Rε,k(z)− kz = 0,

and from which one gets

Rε,k(z) =

(
z2 + 3zRk(z)− 1

)
+
√

(z2 + 3zRk(z)− 1)2 + 4kz2

2z
. (10)

One has

8zRε,k(z) = −b(z)− 3
√
Δk(z) +

√
ak(z) + 6b(z)

√
Δk(z) + 9Δk(z), (11)

with
ak(z) = 16z4 − 24z3 + (64k + 1)z2 + 6z + 1
b(z) = −4z2 + 3z + 1. (12)

and Δk(z) as in (2). Using the binomial theorem, Lemma 1 and Proposition 3,
one gets

[zn]Rε,k(z) ∼ 3
16
√
π

(
1− b(ρk)√

ak(ρk)

)
√

2(1− ρk) ρ−(n+1)
k n−3/2. (13)

Therefore
[zn]Rε,k(z)
[zn]Rk(z)

∼ 3
2

(
1− b(ρk)√

ak(ρk)

)
. (14)

Note that lim
k→∞

ρk = 0, lim
k→∞

ak(ρk) = 9 and lim
k→∞

b(ρk) = 1, and so the asymp-

totic ratio of regular expressions with ε on their derivatives approaches 1 as
k →∞.
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5.2 The Generating Function of Mergings

Let i(α) be the number of non-disjoint unions appearing, due to (8) or (9),
during the computation of π(α), α ∈ R. These correspond to state mergings of
Glushkov automata. Splitting the regular expressions into the disjoint classes αε

and αε, i(α) verifies

i(ε) = 0
i(σ) = 0

i(αε + αε) = i(αε) + i(αε) + 1
i(αε + αε) = i(αε) + i(αε)
i(αε + α) = i(αε) + i(α)
i(αε · α�

ε) = i(αε) + i(αε) + 1
i(αε · α�

ε) = i(αε) + i(α�
ε)

i(αε · α) = i(αε) + i(α)
i(α�) = i(α),

where α�
ε denotes regular expressions that are not of the form α�

ε . Clearly, the
generating function for these expressions is Rk(z)− zRε,k(z).

The cost generating function of the mergings, Ik(z), can now be obtained from
these equations by adding the contributions of each single one of them. These
contributions can be computed as here exemplified for the contribution of the
regular expressions of the form (αε + αε):

∑

(αε+αε)

i(αε + αε)z|(αε+αε)| = z
∑

αε

∑

αε

(i(αε) + i(αε) + 1)z|αε|z|αε|

= z
∑

αε

∑

αε

(i(αε) + i(αε))z|αε|z|αε|

+ z
∑

αε

∑

αε

z|αε|z|αε|

= 2zIε,k(z)Rε,k(z) + zRε,k(z)2,

where Iε,k(z) is the generating function for the mergings coming from αε.
Applying this technique to the remaining cases, we obtain

Ik(z) =
(z + z2)Rε,k(z)2√

Δk(z)
. (15)

The asymptotic value of the coefficients of this generating function can now be
computed using (11), and again Lemma 1 and Proposition 3, yielding

[zn]Ik(z) ∼ 1 + ρk

64

(
ak(ρk) + b(ρk)2 − 2b(ρk)

√
ak(ρk)

)

√
π
√

2− 2ρk
ρ
−(n+1)
k n−1/2. (16)
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Table 1. Accuracy of the approximation

n = 10 20 50 100 200 400

k = 2 1.34 1.14 1.05 1.03 1.01 1.01
k = 3 1.35 1.12 1.05 1.02 1.01 1.01
k = 5 1.38 1.12 1.04 1.02 1.01 1.01
k = 10 — 1.13 1.04 1.02 1.01 1.01
k = 20 — — 1.04 1.02 1.01 1.01
k = 50 — — — 1.02 1.01 1.01
k = 100 — — — — 1.01 1.04

Table 1 exhibits the ratio between the approximation given by this computa-
tion and the actual coefficients of the power series of Ik(z), for several values of
k and n.

From (3) and (16) one easily gets the following asymptotic estimate for the
average number of mergings

[zn]Ik(z)
[zn]Rk(z)

∼ λk n, (17)

where λk = (1+ρk)
16(1−ρk)

(
ak(ρk) + b(ρk)2 − 2b(ρk)

√
ak(ρk)

)
. Using again the fact

that lim
k→∞

ρk = 0, lim
k→∞

ak(ρk) = 9 and lim
k→∞

b(ρk) = 1, one gets that

lim
k→∞

λk =
1
4
.

This means that, for a regular expression of size n, the average number of state
mergings is, asymptotically, about n

4 .
In order to obtain a lower bound for the reduction in the number of states

of the Apd automaton, as compared to the ones of the Apos automaton, it is
enough to compare the number of mergings for an expression α with the number
of letters in α. From (5) and (17) one gets

[zn]Ik(z)
[zn]Lk(z)

∼ 1− ρk

4kρ2
k

λk. (18)

It is easy to see that

lim
k→∞

1− ρk

4kρ2
k

λk =
1
2
.

In other words, asymptotically, the average number of states of the Apd automa-
ton is about one half of the number of states of the Apos automaton, and about
one quarter of the size of the corresponding regular expression, by (7). As shown
in Table 2 the actual values are close to these limits already for small alphabets.

6 Comparison with Experimental Results

In order to compare our estimates with the actual number of states in a Apd au-
tomaton we ran some experiments. We used the FAdo library [AAA+09, fad09],



122 S. Broda et al.

Table 2. Experimental results for uniform random generated regular expressions

k |α| |α|Σ |Pos0| |δpos| |PD| |δpd| |PD| |α|Σ−|PD|
|α|Σ

|α|Σ
|α|

[zn]I(z)
n×[zn]R(z)

[zn]I(z)
[zn]L(z)

2 1000 276 277 3345 187 1806 190 0.323 0.276
0.084 0.304

2 2000 553 554 7405 374 3951 380 0.324 0.277

3 1000 318 319 2997 206 1564 208 0.352 0.318
0.107 0.337

3 2000 638 639 6561 410 3380 416 0.357 0.319

5 1000 364 365 2663 223 1339 226 0.387 0.364
0.135 0.372

5 2000 728 729 5535 446 2768 451 0.387 0.364

10 1000 405 406 2203 236 1079 238 0.417 0.405
0.168 0.409

10 2000 809 810 4616 471 2235 475 0.418 0.405

20 1000 440 441 1842 245 875 246 0.443 0.44
0.192 0.435

20 2000 880 881 3735 489 1768 492 0.444 0.44

30 1000 453 454 1676 247 796 248 0.455 0.453
0.203 0.447

30 2000 906 907 3380 496 1603 498 0.453 0.453

50 1000 466 467 1516 250 718 251 0.464 0.466
0.214 0.459

50 2000 933 934 3065 499 1441 500 0.465 0.467

100 — — — — — — — — — 0.225 0.471

1000 — — — — — — — — — 0.242 0.491

that includes algorithms for computing the Glushkov automaton and the par-
tial derivatives automaton corresponding to a given regular expression. For the
results to be statistically significant, regular expressions must be uniformly ran-
dom generated. The FAdo library implements the method described by Mair-
son [Mai94] for the uniform random generation of context-free languages. The
random generator has as input a grammar and the size of the words to be gener-
ated. To obtain regular expressions uniformly generated in the size of the syntac-
tic tree (i.e. parentheses not counted), a prefix notation version of the grammar
(1) was used. For each size, n, samples of 1000 regular expressions were gen-
erated. Table 2 presents the average values obtained for n ∈ {1000, 2000} and
k ∈ {2, 3, 5, 10, 20, 30, 50}, and the two last columns give the asymptotic ratios
obtained in (17) and (18) for the corresponding values of k.

As can be seen from the columns with bold entries, the asymptotic averages
obtained with the analytic methods are very close to the values obtained experi-
mentally. In general, even for small values of n, the ratio of the number of states
of Apd to the number of states of Apos coincide (within an error of less than 3%)
with our (asymptotic) estimates. These results indicate that occurrences of ε in
the set of partial derivatives are the main reason for a smaller number of states
in the Apd automaton, when compared with the one in the Apos automaton.
This is confirmed by comparing the column containing the number of states of
Apd (|PD|) with the one containing those of its marked version (|PD|).
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7 Final Remarks

In this paper we studied, using analytic methods, the average number of states of
partial derivative automata. We proved this number to be, on average, half the
number of states when considering the Glushkov automata case. An approach
similar to the one applied here can be used to estimate the average number
of transitions of Apd. According to Table 2, this number also seems to be half
the number of transitions of Apos. At first sight, one would expect that the
use of alternative grammars for the generation of regular expressions, with less
redundancy, such as the ones presented by Lee and Shallit [LS05], would lead to
different results. However, experimental studies do not support this expectation,
since they do not show significant differences from the results here presented.
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Piazzale Aldo Moro 2, 00185 Roma, Italy

dalessan@mat.uniroma1.it
3 Department of Mathematics, Boğaziçi University
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1 Introduction

An important concept in Computer Science is that of synchronizing automa-
ton. A deterministic automaton is called synchronizing if there exists an input-
sequence, called synchronizing or reset word, such that the state attained by the
automaton, when this sequence is read, does not depend on the initial state of
the automaton itself. Two fundamental problems which have been intensively in-
vestigated in the last decades are based upon this concept: the Černý conjecture
and the Road coloring problem.

The Černý conjecture [10] claims that a deterministic synchronizing n-
state automaton has a reset word of length not larger than (n − 1)2. This
conjecture has been shown to be true for several classes of automata (cf.
[2,3,4,8,9,10,12,14,15,16,17,18,20,23]). The interested reader is refered to [23] for
a historical survey of the Černý conjecture and to [7] for synchronizing unam-
biguous automata. In this theoretical setting, two results recently proven in [9]
and [4] respectively, are relevant to us.
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In [9], the authors have introduced the notion of local strong transitivity. An
n-state automaton A is said to be locally strongly transitive if it is equipped by
a set W of k words and a set R of k distinct states such that, for all states s
of A and all r ∈ R, there exists a word w ∈ W taking the state s into r. The
set W is called independent while R is called the range of W. The main result of
[9] is that any synchronizing locally strongly transitive n-state automaton has a
reset word of length not larger than (k−1)(n+L)+ �, where k is the cardinality
of an independent set W and L and � denote respectively the maximal and the
minimal length of the words of W .

In the case where all the states of the automaton are in the range, the automa-
ton A is said to be strongly transitive. Strongly transitive automata have been
studied in [8]. This notion is related with that of regular automata introduced
in [18].

A remarkable example of locally strongly transitive automata is that of 1-
cluster automata introduced in [4]. An automaton is called 1-cluster if there
exists a letter a such that the graph of the automaton has a unique cycle labelled
by a power of a. Indeed, denoting by k the length of the cycle, one easily verifies
that the words

an−1, an−2, . . . , an−k

form an independent set of the automaton whose range is the set of vertices of
the cycle. In [4] it is proven that every 1-cluster synchronizing n-state automaton
has a reset word of length not larger than 2(n− 1)(n− 2) + 1.

The second problem we have mentioned above is the well-known Road coloring
problem. This problem asks to determine whether any aperiodic and strongly
connected digraph, with all vertices of the same outdegree (AGW-graph, for
short) has a synchronizing coloring, that is, a labeling of its edges that turns
it into a synchronizing deterministic automaton. The problem was formulated
in the context of Symbolic Dynamics by Adler, Goodwyn and Weiss and it is
explicitly stated in [1]. In 2007, Trahtman [21] has positively solved it. The
solution by Trahtman has electrified the community of formal language theories
and recently Volkov has raised in [22] the problem of evaluating, for any AGW-
graph G, the minimal length of a reset word for a synchronizing coloring of G.
This problem has been called the Hybrid Černý–Road coloring problem. It is
worth to mention that Ananichev has found, for any n ≥ 2, an AGW-graph of
n vertices such that the length of the shortest reset word for any synchronizing
coloring of the graph is (n − 1)(n − 2) + 1 (see [22]). In [9], the authors have
proven that, given an AGW-graph G of n vertices, without multiple edges, such
that G has a simple cycle of prime length p < n, there exists a synchronizing
coloring of G with a reset word of length (2p− 1)(n− 1). Moreover, in the case
p = 2, that is, if G contains a cycle of length 2, then, also in presence of multiple
edges, there exists a synchronizing coloring with a reset word of length 5(n− 1).

In this paper, we continue the investigation of the Hybrid Černý–Road col-
oring problem on a very natural class of digraphs, those having a Hamiltonian
path. The main result of this paper states that any AGW-graph G of n vertices
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with a Hamiltonian path admits a synchronizing coloring with a reset word of
length

2(n− 1)(n− 2) + 1. (1)

The proof of the theorem above is based upon some techniques on independent
sets of words and on some results on synchronizing colorings of graphs.

A set K of states of an automaton A is reducible if there exists a word w ∈ A∗

taking all the states of K into a fixed state. The least congruence ρ ofA such that
any congruence class is reducible is called stability. This congruence, introduced
in [11], plays a fundamental role in the solution [21] of the Road coloring problem.
Even if A is not a synchronizing automaton, it is natural to ask for the minimal
length of a word w taking all the states of a given stability class K into a single
state. In Section 3, we prove that if A is a locally strongly transitive n-state
automaton which is not synchronizing, then the minimal length of such a word
w is at most (

k

2
− 1
)

(n + L− 1) + L,

where k is the cardinality of any independent set W and L denotes the maximal
length of the words of W. In the case where A is synchronizing, we obtain for
the minimal length of a reset word of A the upper bound

(k − 1)(n + L− 1) + � (2)

where k and L are defined as before and � denotes the minimal length of the
words of W . This bound refines the quoted bound of [9].

We close the introduction with the following remark. By using a more sophis-
ticated and laborious technique similar to that of [19], the bound (2) can be
lowered to (k − 1)(n + L − 2) + �. Moreover, a recent improvement [5] of the
bound obtained in [4] should allow to slightly refine the bound (1).

2 Preliminaries

We assume that the reader is familiar with the theory of automata and rational
series. In this section we shortly recall a vocabulary of few terms and we fix the
corresponding notation used in the paper.

Let A be a finite alphabet and let A∗ be the free monoid of words over the
alphabet A. The identity of A∗ is called the empty word and is denoted by ε.
The length of a word w ∈ A∗ is the integer |w| inductively defined by |ε| = 0,
|wa| = |w| + 1, w ∈ A∗, a ∈ A. For any positive integer n, we denote by A<n

the set of words of length smaller than n.
For any finite set of words, W , we denote respectively by LW and �W the

maximal and minimal lengths of the words of W .
A finite automaton is a triple A = 〈Q,A, δ〉 where Q is a finite set of elements

called states and δ is a map

δ : Q×A −→ Q.
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The map δ is called the transition function of A. The canonical extension of the
map δ to the set Q×A∗ is still denoted by δ.

If P is a subset of Q and u is a word of A∗, we denote by δ(P, u) and δ(P, u−1)
the sets:

δ(P, u) = {δ(s, u) | s ∈ P}, δ(P, u−1) = {s ∈ Q | δ(s, u) ∈ P}.

With any automaton A = 〈Q,A, δ〉, we can associate a directed multigraph
G = (Q,E), where the multiplicity of the edge (p, q) ∈ Q × Q is given by
Card({a ∈ A | δ(p, a) = q}. If the automaton A is associated with G, we also
say that A is a coloring of G. An automaton is transitive if the associated graph
is strongly connected. If n = Card(Q), we will say that A is a n-state automaton.
A synchronizing or reset word of A is any word u ∈ A∗ such that
Card(δ(Q, u)) = 1. A synchronizing automaton is an automaton that has a
reset word. The following conjecture has been raised in [10].

Černý Conjecture. Each synchronizing n-state automaton has a reset word of
length not larger than (n− 1)2.

Let K be a field. We recall that a formal power series with coefficients in K
and non-commuting variables in A is a mapping of the free monoid A∗ into K.
According to Kleene-Schützenberger theorem on formal power series (see [6]), a
series S : A∗ → K is rational if there exists a triple (α, μ, β) where

– α ∈ K1×n, β ∈ Kn×1 are a row vector and a column vector respectively,
– μ : A∗ → Kn×n is a morphism of the free monoid A∗ in the multiplicative

monoid Kn×n of matrices with coefficients in K,
– for every u ∈ A∗, S(u) = αμ(u)β.

The triple (α, μ, β) is called a linear representation of S and the integer n is
called its dimension. The minimal dimension of a linear representation of S is
called the dimension of S. Let A = 〈Q,A, δ〉 be any n-state automaton. One can
associate with A a morphism

ϕA : A∗ → QQ×Q,

of the free monoid A∗ in the multiplicative monoid QQ×Q of matrices over the
field Q of rational numbers, defined as: for any u ∈ A∗ and for any s, t ∈ Q,

ϕA(u)st =
{

1 if t = δ(s, u)
0 otherwise.

Let R and K be subsets of Q and consider the rational series S with rational
coefficients having the linear representation (α, ϕA, β), where, for every s ∈ Q,

αs =

{
1 if s ∈ R,

0 otherwise,
βs =

{
1 if s ∈ K,

0 otherwise.

It is easily seen that, for any u ∈ A∗, one has

S(u) = Card(δ(K,u−1) ∩R). (3)



128 A. Carpi and F. D’Alessandro

We say that a linear representation (α, μ, β) is uniform if there exists a vector γ ∈
Kn×1 such that μ(a)γ = γ for all a ∈ A. For instance, the linear representation
(α, ϕA, β) above is uniform, since ϕA(a)γ = γ for all a ∈ A, with γ = t(1 1 · · · 1).

The following result refines a fundamental theorem by Moore and Conway on
automata equivalence (see [6,13]) in the case of uniform linear representations.
The proof is inspired to some ideas of [3,4].

Theorem 1. Let S1, S2 : A∗ → K be two rational series with coefficients in K,
having uniform linear representations of dimension n1 and n2 respectively. If,
for every u ∈ A∗ such that |u| ≤ n1 + n2 − 2, S1(u) = S2(u), the series S1 and
S2 are equal.

Proof. It is sufficient to verify that the series S = S1 −S2 has a linear represen-
tation of dimension n = n1 + n2 − 1. Indeed, in such a case, since S(u) = 0 for
all u ∈ A<n, a classical result on rational formal power series (see [6]) ensures
that S is the null series, that is, S1 = S2.

Let (αi, μi, βi) be the uniform linear representations of Si of dimension ni,
i = 1, 2. Then the series S = S1−S2 has the linear representation (α, μ, β) with

α = (α1 α2), β =
(

β1

−β2

)
, μ(a) =

(
μ1(a) 0

0 μ2(a)

)
, a ∈ A .

By a well known result on rational power series (see [6]), the dimension of S is
upper bounded by the linear dimension of the space generated by the vectors
αμ(w), w ∈ A∗.

The matrices μ(a) have two common right eigenvectors (γ1 0) and (0 γ2)
both associated with the eigenvalue 1. Among the linear combinations of these
eigenvectors, there is an eigenvector γ orthogonal to α. One obtains

αμ(w)γ = αγ = 0 , w ∈ A∗ .

This equation shows that the vectors αμ(w) lie in a proper subspace of Kn+1.
Consequently, the dimension of S is not larger than n. The conclusion follows.

	


We end this section by introducing the important notion of stability [11]. Let
A = 〈Q,A, δ〉 be an automaton. Given two states p, q of A, we say that the pair
(p, q) is stable if, for all u ∈ A∗, there exists v ∈ A∗ such that δ(p, uv) = δ(q, uv).
The set ρ of stable pairs is a congruence of the automaton A, which is called
stability relation. It is easily seen that an automaton is synchronizing if and only
if the stability relation is the universal equivalence.

3 Independent Systems of Words

In this section, we will present some results that can be obtained by using some
techniques on independent systems of words. We begin by recalling a definition
introduced in [9].
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Definition 1. Let A = 〈Q,A, δ〉 be an automaton. A set of k words W =
{w0, . . . , wk−1} is called independent if there exist k distinct states q0, . . . , qk−1

of A such that, for all s ∈ Q,

{δ(s, w0), . . . , δ(s, wk−1)} = {q0, . . . , qk−1}.

The set R = {q0, . . . , qk−1} will be called the range of W.

An automaton is called locally strongly transitive if it has an independent set of
words. The following useful properties can be derived from Definition 1 (see [9],
Section 3).

Lemma 1. Let A be an automaton and let W be an independent set of A with
range R. Then, for every u ∈ A∗, the set uW is an independent set of A with
range R.

Proposition 1. Let A = 〈Q,A, δ〉 be an automaton and consider an indepen-
dent set W of A with range R. Then, for every subset P of R,

∑

w∈W

Card(δ(P,w−1) ∩R) = Card(W )Card(P ).

A remarkable example of locally transitive automata is that of 1-cluster au-
tomata, recently investigated in [4]. A n-state automaton is called 1-cluster if
there exists a letter a such that the graph of the automaton has a unique cycle
labelled by a power of a. Indeed, denoting by k the length of the cycle, one easily
verifies that the words

an−1, an−2, . . . , an−k

form an independent set of the automaton whose range is the set of vertices of
the cycle. We recall that the following result has been proven in [4].

Theorem 2. Let A be a synchronizing n-state automaton. If A is 1-cluster,
then it has a reset word of length 1 + 2(n− 1)(n− 2).

Let A = 〈Q,A, δ〉 be a n-state automaton. We say that a set of states K of A
is reducible if, for some word w, δ(K,w) is a singleton. A set K ⊆ Q is stable if
for any p, q ∈ K, the pair (p, q) is stable. Any stable set K is reducible. Thus,
even if A is not synchronizing, one may want to evaluate the minimal length of
a word w such that Card(δ(K,w)) = 1.

In the sequel, we assume that W is an independent set of A with range R
and denote by M the maximal cardinality of reducible subsets of R. Moreover,
for any set of states K and any w ∈ A∗, we denote by Kw−1 the set δ(K,w−1).
The following lemma holds.

Lemma 2. Let K be a non-empty reducible subset of R. The following condi-
tions are equivalent:

1. Card(K) = M ,
2. for all w ∈ W , v ∈ A<n, Card(K(vw)−1 ∩R) ≤ Card(K),
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3. for all w ∈ W , v ∈ A<n, Card(K(vw)−1 ∩R) = Card(K),
4. for all w ∈ W , v ∈ A∗, Card(K(vw)−1 ∩R) = Card(K).

Proof. Implication 1. ⇒ 2. is trivial, since K(vw)−1 ∩ R is reducible. Let us
verify 2. ⇒ 3. First we recall that, by Lemma 1, for any v ∈ A∗, the set vW is
independent. By Proposition 1, one has:

∑

w∈W

Card(K(vw)−1 ∩R) = Card(W )Card(K).

In view of Condition 2, one obtains Condition 3.
Now let us prove 3.⇒ 4. Consider the series S1, S2 defined respectively by

S1(v) = Card((Kw−1)v−1 ∩R), S2(v) = Card(K), v ∈ A∗ .

In view of (3), S1 has a uniform linear representation of dimension n. Moreover,
S2 has a uniform linear representation of dimension 1. By Condition 3, S1(v) =
S2(v) for all v ∈ A∗ such that |v| < n. By Theorem 1, it follows that S1 = S2.
Thus Condition 4 holds true.

Finally, let us prove implication 4.⇒ 1. Let X be a reducible subset of R with
Card(X) = M . One has δ(X, v) = {q} and δ(q, w) ∈ K for some q ∈ Q, w ∈ W .
Hence, X ⊆ K(vw)−1 ∩R so that Card(K) = Card(K(vw)−1 ∩R) ≥M . 	


Lemma 3. There exist K ⊆ R and v ∈ A∗ such that

Card(K) = M , Card(δ(K, v)) = 1 , |v| ≤ (M − 1)(n + LW − 1) .

Proof. Using Condition 2 of Lemma 2, one can prove the following claim by
induction on m:

For 1 ≤ m ≤ M , there exist K ⊆ R and v ∈ A∗ such that Card(K) ≥ m,
Card(δ(K, v)) = 1, |v| ≤ (m− 1)(n + LW − 1). 	


Lemma 4. Let K be a reducible subset of R of maximal cardinality. There is
no stable pair in K × (R \K).

Proof. By contradiction, let (p, q) ∈ K × (R \ K) be a stable pair. Then,
δ(K, v) = {δ(p, v)} and δ(p, vu) = δ(q, vu) = s, s ∈ Q for some u, v ∈ A∗.
Thus δ(K ∪ {q}, vu) = {s}, contradicting the maximality of K. 	


Proposition 2. For any stable set C there exists a word v such that

Card(δ(C, v)) = 1 , |v| ≤ (M − 1)(n + LW − 1) + LW .

Proof. By Lemma 3, there exist K ⊆ R and u ∈ A∗ such that Card(K) = M ,
Card(δ(K,u)) = 1, |u| ≤ (M−1)(n+LW−1). Since W is an independent set with
range R, there is w ∈ W such that δ(C,w)∩K �= ∅. Moreover, δ(C,w) is a stable
subset of R. By Lemma 4, one derives δ(C,w) ⊆ K, so that Card(δ(C,wu)) =
Card(δ(K,u)) = 1. The statement is thus verified for v = wu. 	
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If A is synchronizing, then Q itself is a stable set. Thus, with some minor changes
in the proof of Proposition 2, one obtains the following result which refines the
bound of [8].

Proposition 3. Any synchronizing n-state automaton with an independent set
W has a reset word of length

(Card(W )− 1)(n + LW − 1) + �W .

Corollary 1. If A is not synchronizing, then for any stable set C there exists a
word v such that

Card(δ(C, v)) = 1 , |v| ≤
(

Card(W )
2

− 1
)

(n + LW − 1) + LW .

Proof. There are K ⊆ R, v ∈ A∗, w ∈ W , q ∈ Q such that Card(K) = M ,
δ(K, v) = {q}, δ(q, w) /∈ K. In view of Lemma 2, K and K(vw)−1∩R are disjoint
subsets of R of cardinality M . One derives M ≤ Card(W )/2. The conclusion
follows from Proposition 2. 	


Corollary 2. Let C be a stable set of a 1-cluster n-state automaton which is
not synchronizing. There exists a word v such that Card(δ(C, v)) = 1 and |v| ≤
(n− 1)2.

Proof. Any 1-cluster n-state automaton has an independent set W with LW =
n − 1. Taking into account that Card(W ) ≤ n, the statement follows from
Corollary 1. 	


4 The Hybrid Černý-Road Coloring Problem

In the sequel, with the word graph, we will term a finite, directed multigraph
with all vertices of the same outdegree. A graph is aperiodic if the greatest
common divisor of the lengths of all cycles of the graph is 1. A graph is called an
AGW-graph if it is aperiodic and strongly connected. A synchronizing automaton
which is a coloring of a graph G will be called a synchronizing coloring of G.
The Road coloring problem asks for the existence of a synchronizing coloring
for every AGW-graph. This problem was formulated in the context of Symbolic
Dynamics by Adler, Goodwyn and Weiss and it is explicitly stated in [1]. In
2007, Trahtman has positively solved this problem [21]. Recently Volkov has
raised the following problem [22].

Hybrid Černý–Road coloring problem. Let G be an AGW-graph. What is
the minimum length of a reset word for a synchronizing coloring of G?

4.1 Relabeling

In order to prove our main theorem, we need to recall some basic results
concerning colorings of graphs. Let A = 〈Q,A, δ〉 be an automaton. A map
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δ′ : Q× A −→ Q is a relabeling of A if, for each q ∈ Q, there exists a permuta-
tion πq of A such that

δ′(q, a) = δ(q, πq(a)), a ∈ A .

It is clear that δ′ is a relabeling of A if and only if the automata A and A′ =
〈Q,A, δ′〉 are associated with the same graph.

Let A = 〈Q,A, δ〉 be an automaton, α be a congruence on Q and δ′ be a
relabeling of A. According to [11], δ′ respects α if for each congruence class C
there exists a permutation πC of A such that

δ′(q, a) = δ(q, πC(a)) , q ∈ C , a ∈ A .

In such a case, for all v ∈ A∗ there is a word u ∈ A∗ such that |u| = |v| and
δ′(q, u) = δ(q, v) for all q ∈ C.

As α is a congruence, we may consider the quotient automaton A/α. Any
relabeling δ̂ of A/α induces a relabeling δ′ of A which respects α. This means
that

1. α is a congruence of A′ = 〈Q,A, δ′〉 and A′/α = 〈Q/α,A, δ̂〉,
2. for all α-class C and all v ∈ A∗, there exists u ∈ A∗ such that |v| = |u| and

δ′(C, u) = δ(C, v).

We end this section by recalling the following important result proven in [11].

Proposition 4. Let ρ be the stability congruence of an automaton A associated
with an AGW-graph G. Then the graph G′ associated with the quotient automa-
ton A/ρ is an AGW-graph. Moreover, if G′ has a synchronizing coloring, then
G has a synchronizing coloring as well.

4.2 Hamiltonian Paths

In this section we give a partial answer to the Hybrid Černý–Road coloring
problem. Precisely we prove that an AGW-graph of n vertices with a Hamiltonian
path admits a synchronizing coloring with a reset word of length not larger that
2(n − 2)(n − 1) + 1. In order to prove this result, we need to establish some
properties concerning automata with a monochromatic Hamiltonian path.

Let a be a letter. The graph of a-transitions of an automaton A consists of
disjoint cycles and trees with root on the cycles. The level of a vertex in such
a graph is its height in the tree to which it belongs. The following proposition
was implicitly proved in [21, Theorem 3].

Proposition 5. If in the graph of a-transitions of a transitive automaton A all
the vertices of maximal positive level belong to the same tree, then A has a stable
pair.

As an application of the previous proposition, we obtain the following.
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Proposition 6. If an AGW-graph G with at least 2 vertices has a Hamiltonian
path, then there is a coloring of G with a stable pair and a monochromatic
Hamiltonian path.

Proof. Let G be an AGW-graph with n ≥ 2 vertices. Let us show that one can
find in G a Hamiltonian path (q0, q1, . . . , qn−1) and an edge (qn−1, q) with q �= q0
(see fig.).

�������	 �������	�� �� �������	�� �� �������	�� �������	����· · · · · ·

Indeed, if G has no Hamiltonian cycle, it is sufficient to take a Hamiltonian path
(q0, q1, . . . , qn−1) and any edge outgoing from qn−1: such an edge exists because
G has positive constant outdegree.

On the contrary, suppose that G has a Hamiltonian cycle (q0, q1, . . . , qn−1, q0).
Since G is aperiodic, there is an edge (p, q) of G which does not belong to the
cycle. We may assume, with no loss of generality, p = qn−1, so that q �= q0. Thus,
(q0, q1, . . . , qn−1) is a Hamiltonian path and (qn−1, q) is an edge of G.

Choose a coloring A of G where the edges of the path (q0, q1, . . . , qn−1, q) are
labeled by the same letter a. In such a way, there is a monochromatic Hamilto-
nian path. Moreover, the graph of a-transitions has a unique tree, so that, by
Proposition 5, A has a stable pair. 	


Lemma 5. If an automaton A has a monochromatic Hamiltonian path, then
any quotient automaton of A has the same property.

Proof. With no loss of generality, we may reduce ourselves to the case that A is
a 1-letter automaton. Now, a 1-letter automaton has a Hamiltonian path if and
only if it has a state q from which all states are accessible. The conclusion follows
from the fact that the latter property is inherited by the quotient automaton. 	


We are ready to prove our main result.

Theorem 3. Let G be an AGW-graph with n > 1 vertices. If G has a Hamil-
tonian path, then there is a synchronizing coloring of G with a reset word w of
length

|w| ≤ 2(n− 2)(n− 1) + 1 . (4)

Proof. The proof is by induction on the number n of the vertices of G.
Let n = 2. Since G is aperiodic, G has an edge (q, q) which immediatly

implies the statement. Suppose n ≥ 3. By Proposition 6, among the colorings of
G, there is an automaton A = 〈Q,A, δ〉 with a stable pair and a monochromatic
Hamiltonian path. In particular, A is a transitive 1-cluster automaton. If A is
synchronizing, then the statement follows from Theorem 2. Thus, we assume
that A is not synchronizing.

Let ρ be the stability congruence of A, k be its index and Gρ be the graph of
A/ρ respectively. Since A is not synchronizing, one has k > 1. By Proposition 4
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Gρ is an AGW-graph with k vertices and k < n. Moreover, by Lemma 5, Gρ has
a Hamiltonian path. By the induction hypothesis, we may assume that there is
a relabeling δ̂ of A/ρ such that the automaton Â = 〈Q/ρ,A, δ̂〉 has a reset word
u such that

|u| ≤ 2(k − 2)(k − 1) + 1.

As viewed in Section 4.1, δ̂ induces a relabeling δ′ of A which respects ρ. More-
over, since u is a reset word of Â, C = δ′(Q, u) is a stable set of A.

First, we consider the case n ≥ 2k. By Corollary 2, there is a word v such
that |v| ≤ (n − 1)2 and Card(δ(C, v)) = 1. Since δ′ respects ρ, there is a word
v′ such that |v′| = |v| and δ′(C, v′) = δ(C, v). Set w = uv′. Then δ′(Q,w) =
δ′(Q, uv′) = δ′(C, v′) = δ(C, v) is reduced to a singleton. Hence, w is a reset
word of A′ = 〈Q,A, δ′〉 and

|w| ≤ 2(k − 2)(k − 1) + (n− 1)2 + 1.

As n ≥ 2k, one easily obtains (4).
Now, we consider the case n < 2k. In such a case, there is a ρ-class K of

cardinality 1. Moreover, by the transitivity of Â, there is a word v ∈ A∗ such
that δ′(C, v) = K and |v| ≤ k− 1. Hence, w = uv is a reset word of A′ of length

|w| ≤ 2(k − 2)(k − 1) + k.

As n > k, one easily obtains (4). This concludes the proof. 	
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fyz. cas SAV 14, 208–215 (1964)

11. Culik II, K., Karhumäki, J., Kari, J.: A note on synchronized automata and road

coloring problem. Internat. J. Found. Comput. Sci. 13, 459–471 (2002)

12. Dubuc, L.: Sur les automates circulaires et la conjecture de Cerny. RAIRO Inform.
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Abstract. Blocker and coblocker sets are regular languages involved in the al-
gorithmic solution of the Regular Post Embedding Problem. We investigate the
computability of these languages and related decision problems.

1 Introduction

Post’s Embedding Problem (shortly PEP, named by analogy with Post’s Correspon-
dence Problem) is the question whether two morphisms on words u,v : Σ∗ → Γ∗ agree
non-trivially on some input, i.e., whether u(x) is a (scattered) subword of v(x) for some

x ∈ Σ+. The subword ordering, also called embedding, is denoted “�”: x � y
def⇔ x can

be obtained from y by erasing some letters, possibly all of them, possibly none.
PEP is trivial if there are no restrictions on the form of solutions. But when one looks

for solutions x as above belonging to a regular language R⊆ Σ∗, the problem (hereafter
called the Regular Post Embedding Problem, or PEPreg) becomes very interesting: de-
cidable but surprisingly hard [1].

The Regular Post Embedding Problem was introduced in [1,2] where it is shown
that PEPreg is expressive enough to encode problems on lossy channel systems. In fact,
encodings in both directions exist, hence PEPreg is exactly at level Fωω in the Fast
Growing Hierarchy. Thus, although it is decidable, PEPreg is not primitive-recursive,
and not even multiply-recursive (see [3] and the references therein). Finally, PEPreg

is an abstract problem that is inter-reducible with a growing list of decidable problems
having the same Fωω complexity: metric temporal logic [4], alternating one-clock timed
automata [5,6], leftist grammars [7,8], products of modal logics [9], etc.

Blockers and coblockers. The original decision algorithm for PEPreg relies on so-called
“blocker” and “coblocker” sets [1]. Write SolL for the set {x ∈ L | u(x) � v(x)} of
solutions in some constraint language L⊆ Σ∗ and define:

XL
def={α ∈ Γ∗ | ∀x ∈ L,α.u(x) �� v(x)}, (left L-blockers)

X ′L
def={α ∈ Γ∗ | ∀x ∈ L,u(x).α �� v(x)}, (right L-blockers)

YL
def={α ∈ Γ∗ | ∀x ∈ L,u(x) �� α.v(x)}, (left L-coblockers)

Y ′L
def={α ∈ Γ∗ | ∀x ∈ L,u(x) �� v(x).α}. (right L-coblockers)
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A key observation is that, in order to decide whether SolL is empty or not, it is sim-
pler to reason about blocker and coblocker sets (see [1, Section 3] for more details
on the decision algorithm). Rather than considering what are the solutions, the blocker
and coblocker sets provide information on what latitude is allowed/required by the so-
lutions, in particular by the most permissive ones. As a special case, they can tell us
whether a given PEPreg instance is solvable since

SolL = ∅ iff ε ∈ XL iff ε ∈ X ′L iff ε ∈ YL iff ε ∈ Y ′L. (1)

Working with blocker sets rather than solutions sets has two main advantages:

– First, blocker and coblocker sets behave smoothly as a function of the constraint set
L. This allows compositional reasoning w.r.t. L. The “Stability Inequations” (see
long version of this paper) is the main example, but there are more. For instance,
assume L is the product (concatenation) of two languages: L = L1.L2. Clearly SolL
contains SolL1 .SolL2 . However the containment is strict in general, and it is not
possible to express SolL as a function of SolL1 and SolL2 . By contrast, the following
holds:

XL1.L2 = Γ∗ iff
(
X ′L1
∪YL2

)
∩
(
Y ′L1
∪XL2

)
= Γ∗. (2)

– Second, blocker and coblocker sets are always regular languages, unlike the SolL
sets [10]. This makes them easier to handle algorithmically, representing them via
FSA’s or regular expressions. In particular, compositional reasoning as exemplified
in Equation (2) can easily be turned into simple and effective algorithms.

Our contribution. In this paper we consider the computability of the blocker and
coblocker sets XR and YR for R a regular constraint language. This is a natural ques-
tion in view of the decision algorithm for PEPreg, where lower approximations of these
sets are enumerated. More importantly, and as we explain in Section 7, it is another
step in our attempts at enlarging the class of known decidable problems that combine
Post-embedding and regular constraints.

We prove that blocker sets are not computable1 while, quite unexpectedly, coblocker
sets are computable. Concerning blocker sets, and since they cannot be computed, we
consider decision problems that are weaker than computability, e.g., whether a blocker
set is empty, infinite, whether is it contained in (“safety”), or contains (“cosafety”), a
given set. A summary of our results will be found in Fig. 3 (section 3). In addition,
we answer a question raised by [10] and prove that the regularity of Post-embedding
languages is undecidable.

Comparison with existing work. This work continues our exploration of the Regular
Post Embedding Problem. The problem was introduced and proved decidable in [1].
The links between lossy channels and PEPreg are clarified in [2] where it is also shown
that looking for infinite solutions within an ω-regular constraint set can be reduced to

1 Here, and in the rest of the paper, we say informally that regular sets like XL are “computable’”
when we really mean that an index for them can be computed uniformly from an index for L.
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looking for finite solutions. In [10] it is shown how to count solutions, and how to check
whether a regular property entails Post embedding. That blocker sets are not computable
was claimed in [1, Remark 3.8] without any details or proofs (nor comments on the
difference between blocker and coblocker sets).

Outline of the paper. Section 2 recalls the necessary definitions and notations, and
proves a few useful lemmas on subwords. Section 3 formally introduces the problems
we address. Then Section 4 shows how to compute coblocker sets, while Section 5 con-
siders what can be computed on blocker sets. The undecidability results in that section
are proved by a reduction from lossy counter machines described in Section 6. Proofs
omitted in the main text can be found in the full version of this extended abstract.

2 Notations and Definitions

Words and their morphisms. We write x,y,w,t,σ,ρ,α,β, . . . for words, i.e., finite se-
quences of letters such as a,b, i, j, . . . from alphabets Σ,Γ, . . .. With x.y, or xy, we de-
note the concatenation of x and y. With ε we denote the empty word. The length of x is
written |x|.

A morphism from Σ∗ to Γ∗ is a map u : Σ∗ → Γ∗ that respects the monoidal structure,
i.e., with u(ε) = ε and u(x.y) = u(x).u(y). A morphism u is completely defined by its
image u(a), u(b), . . . , on Σ = {a,b, . . .}. Most of the time, we shall write ua,ub, . . ., and
ux, instead of u(a),u(b), . . ., and u(x).

The mirror image of a word x is denoted x̃, e.g., ãbc = bca. The mirror image of a

language L is L̃
def= {x̃ | x ∈ L}. The mirror image of a morphism u, denoted ũ, is defined

by ũ(a) def= ũ(a), so that ũ(x) = ũ(x̃).

Subword ordering. Given two words x and y, we write x � y when x is a (scattered)
subword of y, i.e., when x can be obtained by erasing some letters (possibly none)
from y. For example, abba� abracadabra. The subword relation is a partial ordering,
compatible with the monoidal structure: ε � x, and xy � x′y′ when x � x′ and y � y′.
Higman’s Lemma further states that, over a finite alphabet, the subword relation is a
well-quasi-ordering, i.e., it is well-founded and all antichains (sets of incomparable
words) are finite.

Section 6 relies on the following lemma (see long version of this paper for a proof):

Lemma 2.1 (Elimination Lemma)
If xw� y and x′ � wy′ then xx′ � yy′.

If x� yw and wx′ � y′ then xx′ � yy′.

Upward-closed and downward-closed languages. A language L⊆ Γ∗ is upward-closed
if x ∈ L and x � y imply y ∈ L. It is downward-closed if x ∈ L and y � x imply
y ∈ L (equivalently, if its complement is upward-closed). Higman’s Lemma entails that
upward-closed languages and downward-closed languages are regular [11]. In fact,
upward-closed languages can be denoted by very simple regular expressions since
they obviously reside at level 1/2 of the Straubing-Thérien Hierarchy [12]. Downward-
closed languages too can be denoted by simple regular expressions [13,14]. In Section 4
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we use “∗-products”, defined as concatenations of atoms that are either of the form
a + ε for some a ∈ Γ, or of the form A∗ for some sub-alphabet A ⊆ Γ. For example,
with Γ = {a,b,c}, the set of subwords of abac is (a+ ε).(b+ ε).(a+ ε).(c+ ε) and the
set of words that do not have ab as a subword is {b,c}∗.{a,c}∗. Any downward-closed
language is, in a unique way, a finite union of maximal ∗-products.

3 Blockers and Coblockers

In the rest of the paper, we consider a generic PEP instance given by some u,v : Σ∗ →
Γ∗. Recall that, for a regular constraint set R⊆ Σ∗, the (left) blocker and coblocker sets
XR and YR are defined by:

XR
def={α ∈ Γ∗ | ∀x ∈ R,α.ux �� vx}, YR

def={α ∈ Γ∗ | ∀x ∈ R,ux �� α.vx}.

Observe that XR is upward-closed and YR is downward-closed. Hence both are regular.

Remark 3.1. In the rest of the paper, starting with Def. 3.2 below, we restrict our atten-
tion to the left sets XL and YL. This is no loss of generality in view of the symmetry be-
tween the left-handed and the right-handed notions: α is a right L-blocker (or coblocker)
if, and only if, α̃ is a left L̃-blocker (resp., coblocker) in the mirror instance ũ, ṽ. 	

For blocker and coblocker sets, we consider questions that range in generality from just
checking one α for membership, to computing the whole set.

Definition 3.2 (Decision problems for blocker and coblocker sets). We consider
questions where one is given two morphisms u,v : Σ∗ → Γ∗ and a regular language
R⊆ Σ∗ as inputs, with possibly some additional input in the form of a word α ∈ Γ∗, or
a regular “safe” set S ⊆ Γ∗.

• Blockers_Membership: does α ∈ XR?
• Blockers_Emptiness: does XR = ∅?
• Blockers_Universality: does XR = Γ∗?
• Blockers_Safety: does XR ⊆ S?
• Blockers_Cosafety: does S⊆ XR?
• Blockers_Finiteness: is XR finite?
• Blockers_Cofiniteness: is XR cofinite?, i.e., is Γ∗� XR finite?

The same decision problems CoBlockers_Membership, CoBlockers_Safety, . . . , are de-
fined for coblocker sets.

Finally, Blockers_Computation and CoBlockers_Computation ask one to compute
a representation of XR (resp., YR) under the form of a regular expression or a FSA.
(These are not decision problems).

Remark 3.3. The restriction to regular safe sets S is a natural assumption that is both
expressive and tractable. However, in our setting where blocker and coblocker sets are
upward-closed (resp., downward-closed), the expressive power is even larger. Indeed,
for any L, XR ⊆ L iff XR ⊆ S where S is the upward-closure of L. Thus, and since
the upward-closure of L is always regular, our positive results automatically apply to
any class of safe sets for which the upward and downward closures can be effectively
computed (e.g., context-free languages [15]). 	
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Blockers Coblockers

Membership decidable (Coro. 4.2) decidable (Coro. 4.2)
Safety undecidable (Theo. 5.3) decidable (Theo. 4.3)
Cosafety decidable (Coro. 4.2) decidable (Coro. 4.2)
Emptiness undecidable (Theo. 5.3) decidable (Theo. 4.3)
Universality decidable (Coro. 4.2) trivial
Finiteness undecidable (Theo. 5.3) decidable (Theo. 4.3)
Cofiniteness undecidable (Theo. 5.2) trivial

Computation no yes (Theo. 4.3)

Fig. 1. Computability for blocker and coblocker sets. See Remark 3.5 about complexity.

Remark 3.4 (Relations among problems). Safety is a general problem that subsumes
Emptiness and Membership. Cosafety subsumes Universality and (non-)Membership.
Blockers_Universality reduces to Blockers_Membership since XR = Γ∗ iff ε ∈ XR. Co-
Blockers_Universality is trivial since YR = Γ∗ iff R = ∅. Finiteness and Cofiniteness are
natural counting questions. Finiteness coincides with Emptiness for blocker sets (assum-
ing Γ is not empty) and more generally for all upward-closed sets (Cofiniteness and Uni-
versality coincide for downward-closed sets in general, and coblocker sets in particular).

There are no other obvious reductions between the above decision problems (e.g.,
Finiteness and Cofiniteness are in general unrelated).

Regarding computability of the blocker and coblocker sets, observe that since these
sets are regular, the decidability of Safety and Cosafety would entail their computability
(see also Section 4). Conversely, all the decision problems listed above can easily be
answered from an FSA description of the sets. Hence our decision problems can be
seen as different special cases of the general Blockers_Computation and CoBlockers_-
Computation problems. 	


Remark 3.5 (On the complexity of blocker and coblocker problems). All the non-trivial
problems listed in Def. 3.2 are more general than PEPreg. This was made precise in
Remark 3.4 except for CoBlockers_Finiteness, but it is easy to provide a reduction from
CoBlockers_Emptiness to CoBlockers_Finiteness: add one extra symbol to Γ, ensuring
that YR is finite iff it is empty. Hence all the above problems are at least as hard as
PEPreg and none of them is multiply-recursive. 	


4 Computing Coblocker Sets

We start with the computability results. They can be obtained via reductions to PEPreg:

Lemma 4.1. Blockers_Cosafety and CoBlockers_Cosafety many-one reduce to (the
complement of) PEPreg.

Proof. Blockers_Cosafety: with u, v, R and S we associate a PEPreg instance u′,v′ :
Σ′∗ → Γ∗ and a regular constraint R′ ⊆ Σ′∗. Assume w.l.o.g. that Σ and Γ are disjoint

alphabets and let Σ′ def= Σ∪Γ. u′ and v′ are extensions of u and v with u′(γ) = γ and

v′(γ) = ε for all γ ∈ Γ. Finally let R′
def= S.R, this is indeed a regular subset of Σ′∗.
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Now, u′,v′,R′ is a positive PEPreg instance iff u′x � v′x for some x ∈ R′, iff u′αy � v′αy
for some α ∈ S and some y ∈ R, iff u′α.u

′
y � v′α.v

′
y, iff α.uy � vy for some α ∈ S and y,

i.e., iff some α ∈ S is not in XR, i.e., S �⊆ XR.

CoBlockers_Cosafety: the same idea works provided we let u′(γ) = ε and v′(γ) = γ. 	


Since PEPreg is decidable, and thanks to Remark 3.4, Lemma 4.1 entails:

Corollary 4.2. For blocker and coblocker sets, Cosafety, Universality and Member-
ship are decidable.

We are now ready to proceed to the main computability result:

Theorem 4.3. The coblocker sets YR and Y ′R are computable.

Our proof simply leverages the decidability of CoBlockers_Cosafety (Coro. 4.2) with
the VJGL Lemma (here specialized to words with embeddings).

Lemma 4.4 (VJGL Lemma, see Theo. 2 of [16]). Let (Ui)i be an enumeration of
upward-closed languages on some finite alphabet. One can compute a finite represen-
tation for the Ui’s if, and only if, one can decide whether Ui∩P = ∅ for ∗-products P
(when i and P are inputs).

Here, computing “a finite representation” means computing the finite basis, i.e, the set
of minimal words, but this can easily be transformed into a regular expression or an FSA
representation. The VJGL-Lemma is based on a generic algorithm that, in the case of
words with embedding, computes such finite bases using an oracle for non-intersection
with ∗-products.

Another wording of the VJGL-Lemma is given by the following corollary.

Corollary 4.5. 1. If (Ui)i are upward-closed languages with a decidable safety prob-
lem, then they are computable.
2. Equivalently, if (Vi)i are downward-closed languages with a decidable cosafety prob-
lem, then they are computable.

Proof. Ui∩P = ∅ is equivalent to Ui ⊆ (Σ∗� P), a safety question. 	


We now prove Theorem 4.3: The coblocker sets YR are downward-closed and have a
decidable cosafety problem (Coro. 4.2). Hence they are computable by Coro. 4.5.2.
Then Theorem 4.3 accounts for all the positive results on coblocker sets in Fig. 3.

5 Blocker Sets Are Not Computable

It is not possible to effectively compute the blocker sets XR from given u,v,R, even
though XR is known to be regular. This is shown with Lemma 5.1, our main negative
result (proved in Section 6):

Lemma 5.1. Blockers_Cofiniteness is Σ0
1-hard and Blockers_Emptiness is Π0

1-hard.

With Lemma 5.1, we are in a position to prove all the undecidability results in Fig. 3:
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Theorem 5.2. Blockers_Cofiniteness is Σ0
1-complete.

Proof (Sketch). Membership in Σ0
1 can be seen by writing the cofiniteness of XR un-

der the form ∃n ∈ N,Γ≥n ⊆ XR and relying on the decidability of Blockers_Cosafety
(Coro. 4.2). 	


Theorem 5.3. Blockers_Safety, Blockers_Emptiness and Blockers_Finiteness are Π0
1-

complete.

Proof. The Π0
1-hardness of Blockers_Emptiness (Lemma 5.1) also applies to Blockers_-

Finiteness (since the two problems coincide) and Blockers_Safety (a more general prob-
lem), see Remark 3.4.

For upper bounds, we observe that Blockers_Safety (hence also Blockers_Empti-
ness) is in Π0

1 since it can be written under the form ∀α ∈ Γ∗,(α ∈ S∨α �∈ XR) (recall
that α �∈ XR is decidable). 	


6 Lossy Counter Machines

Lossy counter machines or, for short, LCM’s, were introduced by R. Mayr [17]. They
are a variant of Minsky counter machines (with zero-test, increments and decrements)
where counters are lossy, i.e., they may decrease non-deterministically. We only give a
streamlined presentation of LCM’s here and refer to [17,18] for more details.

Let M = (Q,C,Δ,qinit) be a Minsky counter machine with finite set of control states
Q � qinit, finite set of counters C, and finite set of transitions rules Δ. Four counters are
sufficient for our purposes so we fix C = {c1,c2,c3,c4}. A configuration of M is some

τ = (q,n1,n2,n3,n4) ∈ Conf (M) def= Q×N4, with size, denoted |τ|, being n1 +n2 +n3 +
n4. We (partially) order Conf (M) with

(q,n1,n2,n3,n4)≤ (q′,n′1,n
′
2,n

′
3,n

′
4)

def⇔ q = q′ ∧n1 ≤ n′1∧·· ·∧n4 ≤ n′4.

An initial state qinit ∈ Q is fixed, and the initial configuration is τinit
def= (qinit,0,0,0,0).

Observe that the only way to have τ≤ τinit is with τ = τinit.
A transition rule δ is a directed edge between states of M, labeled by an operation

op ∈ OP
def= C×{++,--,=0?}, and denoted (q,op,q′). The rules in Δ give rise to two

different transition relations between configurations. First, steps τ δ−→ τ′ are defined in

the expected way. Formally, with δ = (q1,op,q2), there is a step (q,n1,n2,n3,n4)
δ−→

(q′,n′1,n
′
2,n

′
3,n

′
4) if, and only if, the following three conditions are satisfied:

1. q1 = q and q2 = q′;
2. op is some ck++ or ck-- or ck=0?, and n′i = ni for all i �= k;
3. if op is ck++ then n′k = nk + 1; if op is ck-- then n′k = nk − 1; if op is ck=0? then
0 = nk = n′k.
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These so-called perfect steps describe the operational semantics of M when its coun-
ters are not assumed to be lossy. Then a second operational semantics, with transitions

denoted τ δ−→lossy τ′, is derived2 in the following way:

τ δ−→lossy τ′ def⇔ τ δ−→ τ′′ for some τ′′ ≥ τ′. (3)

These lossy steps describe the behavior of M when its counters are assumed to be lossy.
In the usual way, the δ superscript on transitions is omitted when irrelevant. Lossy runs,
denoted τ0

∗−→lossy τn, are sequences of chained lossy steps τ0 −→lossy τ1 −→lossy · · ·τn. We
write Reachlossy(M) for the set of configurations that can be reached via lossy runs of
M, starting from τinit.

We rely on known undecidability results on LCM’s and use the following two
problems:

LCM_Infinite: the question whether Reachlossy(M) is infinite, for a given LCM M;
LCM_Unbounded_Counter: the question whether Reachlossy(M) contains configura-

tions with arbitrarily large values for the first counter c1.

These two problems are a variant of one another, and they are easily seen to be inter-
reducible. The following theorem is from [17,18]:

Theorem 6.1. LCM_Infinite and LCM_Unbounded_Counter are Π0
1-complete.

6.1 From Lossy Counters to Post-Embedding

With a LCM M = (Q,C,Δ,qinit) we associate a PEP instance u,v : Σ∗ → Γ∗ that will
be used in three different reductions (with different constraint languages R1,R2,R3 ⊆
Σ∗). Here Γ def= Q∪C is used to encode the configurations of M: a configuration τ =
(q,n1,n2,n3,n4) is encoded by the word cn1

1 cn2
2 cn3

3 cn4
4 q, denoted �τ�. Observe that �τ� �

�τ′� iff τ≤ τ′.
We further let Σ def= Γ∪Δ∪OP∪Q∪C where Q = {q | q∈Q} and C = {c1,c2,c3,c4}

are copies of Q and C, with new symbols obtained by overlining the original symbols
from Q∪C. We define two morphisms u,v : Σ∗ → Γ∗ with

u((q,op,q′)) def= q, v((q,op,q′)) def= q′, u(ci)
def= ci, v(ci)

def= ci,

u(ci++)
def= ε, v(ci++)

def= ci, u(ci--)
def= ci, v(ci--)

def= ε.

How u and v evaluate on the rest of Σ will be defined later when it becomes relevant.
With every transition rule δ = (q,op,q′) in Δ, we associate a language Rδ ⊆ Σ∗ given

via the following regular expressions:

Rδ
def=
{

c1
∗ · · ·ck−1

∗ ·op · ck
∗ · · ·c4

∗ ·δ if op is ck++ or ck--,
c1
∗ · · ·ck−1

∗ · ck+1
∗ · · ·c4

∗ ·δ if op is ck=0?.

2 Lossy steps could also be defined directly without deriving them from perfect steps, but the
indirect definition is very convenient as it permits reasoning simultaneously on both kinds of
steps for the same counter machine.
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These definitions ensure that, when x ∈ Rδ, ux and vx are the encodings of related con-
figurations. We let the reader check that the following more precise statement holds:

Lemma 6.2
1. If x ∈ Rδ, then ux = �τ� and vx = �τ′� for some configurations τ,τ′ such that τ δ−→ τ′.
2. Reciprocally, if τ δ−→ τ′, then �τ�= ux and �τ′�= vx for some (unique) x ∈ Rδ.

We further define RΔ
def=
⋃

δ∈Δ Rδ and RM
def= (RΔ)∗: these languages are regular.

Lemma 6.3. Let α ∈ Γ∗. If ux.α � �τinit�.vx for some x ∈ RM, then α � �τ� for some
τ ∈ Reachlossy(M).

Proof. We assume α �= ε and x �= ε, otherwise α� �τinit� trivially. Thus x∈ RM must be
of the form x = x1 . . .xn with n > 0 and xi ∈ RΔ for all i = 1, . . . ,n. By Lemma 6.2, ux is
some �τ0�.�τ1� . . .�τn−1� and vx is some �τ′1�.�τ′2� . . .�τ′n� such that, for all i = 1, . . . ,n,
τi−1 −→ τ′i is a perfect step of M.

We now use the assumption that ux.α � �τinit�.vx. Since α �= ε, ux embeds into a
strict prefix, denoted w, of �τinit�.vx. Note that ux contains n > 0 symbols from Q and
ends with one of them, while w has at most n (it is shorter than �τinit�.vx that has n + 1
symbols from Q and ends with one of them). Hence w necessarily has n symbols from Q
and ux.α� �τinit�.vx can be decomposed as �τi� � �τ′i� (i.e., τi ≤ τ′i) for all i = 1, . . . ,n−
1, with also �τ0� � �τinit� (hence τ0 = τinit) and α� �τ′n�. Combining with τi−1 −→ τ′i we
deduce τi−1−→lossy τi for i = 1, . . . ,n−1. Finally τinit = τ0 −→lossy τ1 · · · −→lossy τn−1−→ τ′n
is a lossy run of M, so that τ′n ∈ Reachlossy(M). 	


There is a converse to Lemma 6.3:

Lemma 6.4. If τ∈Reachlossy(M), there exists some x∈RM such that ux.�τ�� �τinit�.vx.

Proof. Since τ∈Reachlossy(M) there exists a lossy run τinit = τ0−→lossy τ1−→lossy · · ·τn =
τ. We show, by induction on i = 0,1, . . . ,n, that uxi .�τi� � �τinit�.vxi for some xi ∈ RM .

The base case, i = 0, is dealt with x0 = ε since τ0 = τinit.
For the case i > 0, we know by ind. hyp. that there is some xi−1 ∈ RM with

uxi−1 .�τi−1� � �τinit�.vxi−1 . (4)

The lossy step τi−1−→lossy τi implies the existence of a perfect step τi−1−→ τ′ with τ′ ≥ τi

(Equation (3)). Thus �τi−1�= uy and �τ′�= vy for some y ∈ RΔ (Lemma 6.2).
From τi ≤ τ′, we deduce

uy.�τi� � �τi−1�.vy. (5)

We now put together Equations (4) and (5). The Elimination Lemma yields

uxi−1 .uy.�τi� � �τinit�.vxi−1 .vy, (6)

so that setting xi
def= xi−1.y concludes our proof. We observe that xi ∈ RM since xi−1 ∈ RM

and y ∈ RΔ. 	
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6.2 Reducing LCM_Infinite and LCM_Unbounded_Counter to Blockers Problems

For the next step in the reduction, we extend u and v on Q∪C (= Γ) with

u(γ) def= π1(γ) =

{
c1 if γ = c1,

ε if γ ∈ Γ �{c1},
v(γ) def= γ for all γ ∈ Γ.

When α ∈ Γ∗, we shall write π1(α) rather than uα to emphasize the fact that u only re-
tains the c1 symbols of α and erases the rest. Below, we rely on a few obvious properties
of this erasing morphism, such as π1(α)� α, or π1(αβ) = π1(βα), and in particular the
following:

Fact 6.5. For all β ∈ Γ∗ and x,y ∈ Σ∗, x.c1.π1(β)� y.β implies x.c1 � y.

Finally, we let R1
def= qinit.RM and R2

def= R1.Γ∗. This provides two different reductions,
with properties captured by Lemmas 6.6 and 6.8.

Lemma 6.6. Let α ∈ Γ∗. The following are equivalent:
(1) α �∈ X ′R1

,
(2) there exists x ∈ R1 such that ux.α� vx,
(3) there exists τ ∈ Reachlossy(M) such that α� �τ�.

Proof (Sketch). (1)⇔ (2) by definition of X ′R1
. Then, given the definitions of R1, u and

v, Lemma 6.3 shows “(2) ⇒ (3)” (note that u(qinit) = ε and v(qinit) = qinit = �τinit�).
Finally, Lemma 6.4 shows “(3)⇒ (2)”. 	


In particular, X ′R1
is cofinite iff M does not satisfy LCM_Infinite.

Corollary 6.7. Blockers_Cofiniteness is Σ0
1-hard.

Lemma 6.8. Let α ∈ Γ∗. The following are equivalent:
(1) α �∈ X ′R2

,
(2) there exists y ∈ R2 such that uy.α� vy,
(3) there exists τ ∈ Reachlossy(M) such that π1(α)� π1(�τ�).

Proof. (1)⇔ (2) by definition of X ′R2
.

(3)⇒ (2): Assume π1(α)� π1(�τ�) for some τ ∈ Reachlossy(M). Then, π1(α)� �τ� so
that, by Lemma 6.6, there exists some x ∈ R1 with ux.π1(α) � vx. Appending α to the

right yields ux.π1(α).α = ux.uα.α� vx.α = vx.vα. Letting y
def= x.α (∈ R2) proves (2).

(2)⇒ (3): Assume uy.α� vy for some y∈R2 of the form x.β with x∈R1 and β∈Γ∗. We
assume π1(α) �= ε since otherwise π1(α) � π1(�τinit�) holds trivially. From uy.α � vy,
we deduce

ux.π1(α).π1(β) = ux.π1(β).π1(α) = uy.π1(α)� uy.α� vy = vx.vβ = vx.β.

From ux.π1(α).π1(β) � vx.β, one deduces ux.π1(α) � vx (using Fact 6.5 and the as-
sumption that π1(α) �= ε). Thus there exists a τ ∈ Reachlossy(M) with π1(α) � �τ�
(Lemma 6.3), hence π1(α)� π1(�τ�). 	
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In other words, α �∈ X ′R2
iff there is a reachable configuration where the c1 counter is

larger than, or equal to, the number of c1 symbols in α. Thus X ′R2
= ∅ iff M satisfies

LCM_Unbounded_Counter.

Corollary 6.9. Blockers_Emptiness is Π0
1-hard.

As an aside, the reduction from LCM’s can be used to prove Theo. 6.11 below. The
regularity problem for Post-embedding languages is a natural question since SolR is not
always regular, and since comparisons with a regular S are possible:

Theorem 6.10 ([10]). The questions, for S⊆ Σ∗ a regular language, whether S⊆ SolR,
and whether SolR ⊆ S, are decidable.

Theorem 6.11. The question whether, for u,v : Σ∗ → Γ∗ and a regular R⊆ Σ∗, SolR is
a regular language, is Σ0

1-complete.

The proof for Σ0
1-hardness simply adapts our previous reduction, providing u, v and R

such that SolR is regular iff Reachlossy(M) is finite, then relying on Theo. 6.1.

7 Concluding Remarks

The decidability of PEPreg is the decidability of existential questions of the form

∃x ∈ R : u(x)� v(x) (Q1)

for regular R’s. This result is fragile and does not extend easily. When one looks for
solutions satisfying more expressive constraints, e.g., deterministic context-free, or also
Presburger-definable, the problem becomes undecidable [1]. In another direction, com-
bining two embeddings quickly raises undecidable questions, e.g., the following ques-
tions are undecidable [10, Theo. 4.1]:

∃x ∈ Σ+ : (u1(x)� v1(x)∧u2(x)� v2(x)), (Q2)

∃x ∈ Σ+ : (u1(x)� v1(x)∧u2(x) �� v2(x)). (Q3)

Remark that, by Theorem 6.10, the following universal question is decidable [10]:

∀x ∈ R : u(x)� v(x). (Q4)

This suggests considering questions like

∀x ∈ R ∃x′ ∈ R′ : u(xx′)� v(xx′), (Q5)

∃x ∈ R ∀x′ ∈ R′ : u(xx′)� v(xx′). (Q6)

The undecidability of (Q5) is clear since already Blockers_Emptiness is undecidable.
The (un?)decidability of (Q6) is still open. We believe blockers and coblockers may
play a useful role here. Indeed, by analogy with blockers, we may define

AR
def= {α | ∀x ∈ R,α.u(x)� v(x)}, BR

def= {β | ∀x ∈ R,u(x)� β.v(x)}.
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Note that membership in AR (or in BR), being an instance of (Q5), is decidable. Fur-
thermore, BR is upward-closed and AR is finite (unless R is empty). Now, the following
observation:

(
∃x ∈ R ∀x′ ∈ R′ : u(xx′)� v(xx′)

)
iff
(
(AR′ �YR)∪ (BR′ � XR) �= ∅

)

provides a direct link between (Q6) and blocker-like languages. We leave this as a
suggestion for future investigations.
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Abstract. We consider the fragments FO2, Σ2 ∩FO2, Π2 ∩FO2, and Δ2

of first-order logic FO[<] over finite and infinite words. For all four frag-

ments, we give characterizations in terms of rankers. In particular, we

generalize the notion of a ranker to infinite words in two possible ways.

Both extensions are natural in the sense that over finite words they co-

incide with classical rankers, and over infinite words they both have the

full expressive power of FO2. Moreover, the first extension of rankers

admits a characterization of Σ2 ∩ FO2 while the other leads to a charac-

terization of Π2 ∩ FO2. Both versions of rankers yield characterizations

of the fragment Δ2 = Σ2 ∩Π2. As a byproduct, we also obtain character-

izations based on unambiguous temporal logic and unambiguous interval

temporal logic.

1 Introduction

We consider fragments of two-variable first-order logic FO2. Formulas are in-
terpreted over words which may be finite or infinite. Over finite words only, a
large number of different characterizations of FO2 is known, see e.g. [8] or [2]
for an overview. Some of the characterizations have been generalized to infinite
words in [3]. We continue this line of work. For this paper the main difference
between finite word models and infinite word models is the following: Over finite
words, FO2 and the fragment Δ2 = Σ2 ∩ Π2 have the same expressive power
[9], whereas Δ2 is a strict subclass of FO2 over infinite words. Moreover, in the
case of infinite words, FO2 is incomparable to Σ2 and Π2. By definition, Σ2

is the class of formulas in prenex normal form with two blocks of quantifiers
starting with a block of existential quantifiers, and Π2 is the class of negations
of Σ2-formulas. Here and throughout the paper, we identify a logical fragment
with the class of languages definable in the fragment.

An important concept in this paper are rankers which have been introduced
by Immerman and Weis [10] in order to give a combinatorial characterization of
quantifier alternation within FO2 over finite words. Casually speaking, a ranker
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is a sequence of instructions of the form “go to the next a-position” and “go to
the previous a-position” for some letters a. For every word, a ranker is either
undefined or it determines a unique position. We generalize rankers to infinite
words in two possible ways. The main difference to finite words is that we have
to define the semantics of “go to the last a-position” if there are infinitely many
occurrences of the letter a. The first solution is to say that the position is unde-
fined. The second approach is to stay at an infinite position. For example, if a
word has infinitely many a-positions but only two b-positions, then in the first
semantics “go to the last a-position and from there, go to the previous b-position”
would be undefined while in the second semantics it would determine the last
b-position. By delaying the interpretation of instructions until some letter with
finite occurrence is met, the second semantics is reminiscent of the lazy evalu-
ation principle, and we therefore call it lazy rankers. If we want to emphasize
that we use the first semantics, then we often use the term eager ranker. The
language L(r) generated by a ranker r consists of all words on which r is defined.
A ranker language is a Boolean combination of languages of the form L(r).

In both ways, rankers admit natural combinatorial characterizations of the
first-order fragments FO2 (Theorems 1 and 5) and Δ2 (Theorem 3) over finite
and infinite words. Moreover, the eager semantics yields a characterization of
Σ2∩FO2 (Theorem 2) while lazy rankers lead to a characterization of Π2∩FO2

(Theorem 4). We note that the decidability results for the first-order fragments
lead to decidability results for the respective ranker fragments [3].

It turns out that unambiguous temporal logic [4] and unambiguous interval
temporal logic [5] allow natural intermediate characterizations on the way from
first-order logic to rankers. In particular, this yields temporal logic counterparts
of the first-order fragments. Moreover, we show that it is possible to convert
formulas in unambiguous interval temporal logic into equivalent formulas in un-
ambiguous temporal logic, without introducing new negations (Propositions 1
and 2). This also leads to a new characterization of FO2 over finite words in
terms of restricted ranker languages (Corollary 1).

Due to lack of space, most proofs are omitted. For complete proofs, we refer
to the full version of this paper [1].

2 Preliminaries

In the following Γ denotes a finite alphabet. For A ⊆ Γ , we denote by A∗ the
set of finite words over A. The set of infinite words is Aω and A∞ = A∗ ∪Aω is
the set of finite and infinite words. The empty word is ε and we have {ε} = ∅∞.
For a word α and a position x of the word, α(x) is the x-th letter of α. By
|α| ∈ N ∪ {∞} we denote the length of α. Therefore α = α(1) · · ·α(|α|) if α
is finite and α = α(1)α(2) · · · if α is infinite. We call alph(α) the alphabet of
α, i.e., the set of letters occurring in α. For a ∈ Γ , a position labeled by a is
called an a-position. By im(α) we mean the imaginary alphabet of α, i.e., the
set of letters occurring infinitely often in α. For A ⊆ Γ , the set of words with
imaginary alphabet A is denoted by Aim. In particular, Γ ∗ = ∅im. A monomial
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(of degree k) is a language of the form A∗
1a1 · · ·A∗

kakA
∞
k+1 for letters ai ∈ Γ

and sets Ai ⊆ Γ . It is unambiguous if each word of the monomial has a unique
factorization u1a1 · · ·ukakβ with ui ∈ A∗

i and β ∈ A∞
k+1. A polynomial is a finite

union of monomials. It is called unambiguous if it is a finite union of unambiguous
monomials.

We denote by FO = FO[<] the first-order logic over words interpreted as
labeled linear orders (without ∞). As atomic formulas, FO comprises � (for
true), the unary predicate λ(x)= a for a ∈ Γ , and the binary predicate x < y
for variables x and y. The idea is that variables range over the linearly ordered
positions of a word, and λ(x)= a means that x is an a-position. Apart from the
Boolean connectives, we allow composition of formulas using existential quan-
tification ∃x : ϕ and universal quantification ∀x : ϕ for ϕ ∈ FO. The semantics is
as usual. Every formula in FO can be converted into a semantically equivalent
formula in prenex normal form by renaming variables and moving quantifiers to
the front. This observation gives rise to the fragment Σ2 (resp. Π2) consisting
of all FO-formulas in prenex normal form with only two blocks of quantifiers,
starting with a block of existential quantifiers (resp. universal quantifiers). Note
that the negation of a formula in Σ2 is equivalent to a formula in Π2 and vice
versa. The fragments Σ2 and Π2 are both closed under conjunction and disjunc-
tion. Furthermore, FO2 is the fragment of FO containing all formulas which use
at most two different names for the variables. This is a natural restriction, since
FO with three variables already has the full expressive power of FO. A sentence
in FO is a formula without free variables. The language defined by ϕ, denoted
by L(ϕ), is the set of words α ∈ Γ∞ for which ϕ is true. We frequently identify
logical fragments with the classes of languages they define (as in the definition
of the fragment Δ2 = Σ2 ∩Π2 for example).

Example 1. Consider the formulas

ϕ = ∃x∀y : y ≤ x ∨ λ(y) �= a and ψ = ∀x∃y : y > x ∧ λ(y)= a.

The formula ϕ ∈ Σ2∩FO2 states that after some position there is no a-position,
i.e., L(ϕ) contains all words with finitely many a-positions. Its negation ψ ∈
Π2 ∩FO2 says that for all positions there is a greater a-position, i.e., L(ψ) is set
of all words α with a ∈ im(α). Surprisingly, L(ϕ) is not definable in Π2, while
L(ψ) is not definable in Σ2, cf. [3]. ♦

3 Rankers and Unambiguous Temporal Logics

For finite words, rankers have been introduced by Immerman and Weis [10].
They can be seen as a generalization of turtle programs used by Schwentick,
Thérien, and Vollmer [7] for characterizing FO2-definable languages over finite
words. The main difference between rankers and turtle programs is that rankers
either uniquely determine a position in a word or they are undefined, whereas
turtle programs mainly distinguish between being defined and being undefined.
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1 2 3 · · · ∞
a1 a2 a3 im(α)

Fig. 1. Signature of α = a1 a2 a3 · · · over lazy rankers

Extending rankers with Boolean connectives yields unambiguous temporal
logic (unambiguous TL). It is called unambiguous since each position considered
by some formula in this logic is unique. Unambiguous TL has been introduced
for Mazurkiewicz traces [4] which are a generalization of finite words.

All of our characterizations of first-order fragments rely on so-called unam-
biguous polynomials. A natural intermediate step from polynomials to temporal
logic is interval temporal logic. Unambiguous interval temporal logic (unambigu-
ous ITL) has been introduced by Lodaya, Pandya, and Shah [5] for finite words.
They showed that over finite words it has the same expressive power as FO2.

In this section, we generalize all three concepts (rankers, unambiguous TL, and
unambiguous ITL) to infinite words. In fact, for each concept we shall give two
natural generalizations. Surprisingly, it turns out that one of the two extensions
can be used for the characterization of the first-order fragment Σ2∩FO2 over Γ∞

while the other yields a characterization of Π2 ∩FO2. Moreover, both semantics
can be used to describe FO2 and Δ2. In fact, for Δ2 we use some fragment of
rankers which conceals the difference between the two versions.

3.1 Rankers

A ranker is a finite word over the alphabet {Xa,Ya | a ∈ Γ}. It can be interpreted
as a sequence of instructions of the form Xa and Ya. Here, Xa (for neXt-a) means
“go to the next a-position” and Ya (for Yesterday-a) means “go to the previous
a-position”. Below, we shall introduce a second variant of rankers called lazy
rankers. If we want to emphasize the usage of this first version of rankers we
refer to eager rankers. For a word α and a position x ∈ N ∪ {∞} we define

Xa(α, x) = min {y ∈ N | α(y) = a and y > x} ,
Ya(α, x) = max {y ∈ N | α(y) = a and y < x} .

As usual, we set y < ∞ for all y ∈ N. The minimum and the maximum of ∅ as
well as the maximum of an infinite set are undefined. In particular, Xa(α,∞)
is always undefined and Ya(α,∞) is defined if and only if a ∈ alph(α) \ im(α).
We extend this definition to rankers by setting Xa r(α, x) = r(α,Xa(α, x)) and
Ya r(α, x) = r(α,Ya(α, x)), i.e., rankers are processed from left to right. If r(α, x)
is defined for some non-empty ranker r, then r(α, x) �= ∞.

Next, we define another variant of rankers as finite words over the alphabet
{X�

a,Y
�

a | a ∈ Γ}. The superscript � is derived from lazy, and such rankers are
called lazy rankers, accordingly. The difference to eager rankers is that lazy
rankers can point to an infinite position∞. The idea is that the position∞ is not
reachable from any finite position and that it represents the behavior at infinity.
We imagine that ∞ is labeled by all letters in im(α) for words α. Therefore, it
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α · · ·

Ya

a

Yb

b

Xc

c
· · ·

no ano b

no c

α · · · ∞

Y�
d

X�
d

Y�
a

a

Y�
b

b

X�
c

c
im(α)· · ·

no ano b

no c

Fig. 2. An eager and a lazy ranker

is often adequate to set ∞ < ∞, since the infinite position simulates a set of
finite positions, see Fig. 1. For a word α and a finite position x ∈ N we define
X�

a(α, x) = Xa(α, x) and Y�

a(α, x) = Ya(α, x). For the infinite position we set

X�

a(α,∞) =

{
∞ if a ∈ im(α)
undefined else

Y�

a(α,∞) =

{
∞ if a ∈ im(α)
Ya(α,∞) else

i.e., Y�

a(α,∞) is undefined if a �∈ alph(α), and Y�

a(α,∞) = Ya(α,∞) is a finite
position if a ∈ alph(α) \ im(α). As before, we extend this definition to rankers
by setting X�

a r(α, x) = r(α,X�

a(α, x)) and Y�

a r(α, x) = r(α,Y�

a(α, x)). We denote
by alphΓ (r) the set of letters a ∈ Γ such that r contains a modality using the
letter a. It can happen that r(α,∞) = ∞ for some non-empty lazy ranker r.
This is the case if and only if r is of the form Y�

a s and alphΓ (r) ⊆ im(α).
If the reference to the word α is clear from the context, then for eager and

lazy rankers r we shorten the notation and write r(x) instead of r(α, x).
An eager ranker r is an X-ranker if r = Xa s for some ranker s and a ∈ Γ ,

and it is a Y-ranker if r is of the form Ya s. Lazy X�-rankers and Y�-rankers are
defined similarly. We proceed to define r(α), the position of α reached by the
ranker r by starting “outside” the word α. The intuition is as follows. If r is
an X-ranker or an X�-ranker, we imagine that we start at an outside position in
front of α; if r is a Y-ranker or a Y�-ranker, then we start at a position behind
α. Therefore, we define

r(α) = r(α, 0) if r is an X-ranker or an X�-ranker,
r(α) = r(α,∞) if r is a Y-ranker or a Y�-ranker.

On the left hand side of Fig. 2, a possible situation for the eager ranker YaYb Xc

being defined on some word α is depicted. The right hand side of the same figure
illustrates a similar situation for the lazy ranker Y�

d X�

d Y�

a Y�

b X�

c with d ∈ im(α)
and a ∈ alph(α) \ im(α). Note that the eager version of the same ranker is not
defined on α since d ∈ im(α).

For an eager or lazy ranker r the language L(r) generated by r is the set of
all words in Γ∞ on which r is defined. A (positive) ranker language is a finite
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(positive) Boolean combination of languages of the form L(r) for eager rankers
r. A (positive) lazy ranker language is a finite (positive) Boolean combination
of languages of the form L(r) for lazy rankers r. Finally, a (positive) X-ranker
language is a (positive) ranker language using only X-rankers. At the end of the
next section, we extend rankers by some atomic modalities.

3.2 Unambiguous Temporal Logic

Our generalization of rankers allows us to define unambiguous temporal logic
(unambiguous TL) over infinite words. As for rankers, we have an eager and a
lazy variant. The syntax is given by:

� | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | Xa ϕ | Ya ϕ | Gā | Hā | X�

a ϕ | Y�

a ϕ | G�

ā | H�

ā

for a ∈ Γ and formulas ϕ, ψ in unambiguous TL. The atomic formulas are �
(which is true), and the eager modalities Gā (for Globally-no-a) and Hā (for
Historically-no-a), as well as the lazy modalities G�

ā (for lazy-Globally-no-a) and
H�

ā (for lazy-Historically-no-a). We now define, when a word α with a position
x ∈ N ∪ {∞} satisfies a formula ϕ in unambiguous TL, denoted by α, x |= ϕ.
The atomic formula � is true for all positions, and the semantics of the Boolean
connectives is as usual. For Z ∈ {Xa,Ya,X

�

a,Y
�

a | a ∈ Γ} we define

α, x |= Zϕ iff Z(x) is defined and α,Z(x) |= ϕ.

The semantics of the atomic modalities is given by

Gā = ¬Xa�, Hā = ¬Ya�, G�

ā = ¬X�

a�, H�

ā = ¬Y�

a�.

In order to define when a word α models a formula ϕ, we have to distinguish
whether ϕ starts with a future or with a past modality:

α |= Xa ϕ iff α, 0 |= Xa ϕ, α |= Ya ϕ iff α,∞ |= Ya ϕ,

α |= Gā iff α, 0 |= Gā, α |= Hā iff α,∞ |= Hā,

α |= X�

a ϕ iff α, 0 |= X�

a ϕ, α |= Y�

a ϕ iff α,∞ |= Y�

a ϕ,

α |= G�

ā iff α, 0 |= G�

ā, α |= H�

ā iff α,∞ |= H�

ā .

The modalities on the left are called future modalities, while the modalities on
the right are called past modalities. The atomic modalities Gā and G�

ā differ only
for the infinite position, but the semantics of Hā and H�

ā differs a lot: α |= Hā if
and only if a ∈ im(α) or a �∈ alph(α) whereas α |= H�

ā if and only if a �∈ alph(α).
Every formula ϕ defines a language L(ϕ) = {α ∈ Γ∞ | α |= ϕ}.

Finally, for C ⊆ {Xa,Ya,Gā,Hā,X
�

a,Y
�

a,G
�

ā,H
�

ā} we define the following frag-
ments of TL:

– TL[C] consists of all formulas using only �, Boolean connectives, and tem-
poral modalities in C,

– TL+[C] consists of all formulas using only �, positive Boolean connectives
(i.e., no negation), and temporal modalities in C,
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– TLX[C] consists of all formulas using only �, Boolean connectives, and tem-
poral modalities in C such that all outmost modalities are future modalities,

– TL+
X [C] consists of all formulas in TL+[C] ∩ TLX[C].

Example 2. Consider the language L ⊆ Γ∞ consisting of all non-empty words
with a as the first letter. This language is defined by each of following formulas:

ϕ1 = Xa� ∧
∧

b∈Γ

¬Xa Yb� ∈ TLX[Xa,Ya],

ϕ2 =
∧

b∈Γ

Xa Hb̄ ∈ TL+
X [Xa,Hā],

ϕ3 = Xa� ∧
∧

b∈Γ\{a}

(
Gb̄ ∨ Xb Ya�

)
∈ TL+

X [Xa,Ya,Gā]. ♦

Inspired by the atomic logical modalities, we extend the notion of a ranker by
allowing the atomic modalities Gā and Hā as well as G�

ā and H�

ā. We call r
a ranker with atomic modality Gā (Hā, G�

ā, H�

ā, resp.) if r = sGā (r = sHā,
r = sG�

ā, r = sH�

ā, resp.) for some ranker s. In this setting, r = Gā is an X-
ranker, and r = Hā is a Y-ranker. Similarly, r = G�

ā is an X�-ranker, and r = H�

ā

is a Y�-ranker. Note that any ranker with some atomic modality is also a formula
in unambiguous TL. We can therefore define the domain of an extended ranker
r with some atomic modality by

r(α, x) is defined iff α, x |= r.

If r ∈ s {Gā,Hā,G
�

ā,H
�

ā | a ∈ Γ} is an extended ranker with r(α, x) being de-
fined, then we set r(α, x) = s(α, x), i.e., r(α, x) is the position reached after the
execution of s. The reinterpretation of rankers as formulas also makes sense for
a ranker r ∈ {Xa,Ya,X�

a,Y
�

a}
∗ without atomic modality by identifying r with

r� in unambiguous TL. This is justified since r is defined on α if and only if
α |= r�.

Let C ⊆ {Gā,Hā,G�

ā,H
�

ā}. A language is a ranker language with atomic modal-
ities C if it is a Boolean combination of languages L(r) such that r is either a
ranker without atomic modalities or a ranker with some atomic modality in C.
Similarly, the notions of lazy /positive / X-ranker languages are adapted to the
use of atomic modalities.

3.3 Unambiguous Interval Temporal Logic

We extend unambiguous interval temporal logic (unambiguous ITL) to infinite
words in such a way that it coincides with FO2. Again, we have two extensions
with this property, one being eager and one being lazy. The syntax of unambigu-
ous ITL is given by Boolean combinations and:

� | ϕ Fa ψ | ϕ La ψ | Gā | Hā | ϕ F�

a ψ | ϕ L�

a ψ | G�

ā | H�

ā
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with a ∈ Γ and formulas ϕ, ψ in unambiguous ITL. The name Fa derives
from “First-a” and La from “Last-a”. As in unambiguous temporal logic, the
atomic formulas are �, the eager modalities Gā and Hā, and the lazy modal-
ities G�

ā and H�

ā. We now define, when a word α together with an interval
(x; y) = {z ∈ N ∪ {∞} | x < z < y} satisfies a formula ϕ in unambiguous ITL,
denoted by α, (x; y) |= ϕ. Remember that we have set ∞ < ∞. In particular
(∞;∞) = {∞}. The atomic formula � is true for all intervals, and the seman-
tics of the Boolean connectives is as usual. The semantics of the binary modalities
is as follows:

α, (x; y) |= ϕ Fa ψ iff Xa(x) is defined, Xa(x) < y,

α,
(
x; Xa(x)

)
|= ϕ and α,

(
Xa(x); y

)
|= ψ,

α, (x; y) |= ϕ La ψ iff Ya(y) is defined, Ya(y) > x,

α,
(
x; Ya(y)

)
|= ϕ and α,

(
Ya(y); y

)
|= ψ.

The semantics of F�
a and L�

a is defined analogously using X�

a and Y�

a, respectively.
The semantics of the atomic modalities is given by

Gā = ¬(� Fa �), Hā = ¬(� La �),

G�

ā = ¬(� F�

a �), H�

ā = ¬(� L�

a �) ∨
∨

b∈Γ

((� L�

b �) F�

b �).

In the definition of H�

ā, the disjunction on the right-hand side ensures that
α, (∞;∞) |= H�

ā for every infinite word α ∈ Γω and every a ∈ Γ . It will turn out
that the inability of specifying the letters not in im(α) is crucial in the charac-
terization of the fragment Π2 ∩FO2. Observe that only for the interval (∞;∞),
there can be a b before the “first” b. Also note that for every finite interval,
the formula Gā is true if and only if Hā is true and that G�

ā is equivalent to
¬(� L�

a �). Whether a word α models a formula ϕ in unambiguous ITL (i.e.,
α |= ϕ) is defined by

α |= ϕ iff α, (0;∞) |= ϕ.

The language defined by ϕ is L(ϕ) = {α ∈ Γ∞ | α |= ϕ}.

α · · ·

Ya

a

Xc

c

Xb

b

La

Fb Fc

· · ·

ϕ1 ψ1 ϕ2 ψ2
· · ·

Fig. 3.

Fig. 3 depicts the situation for the formula
(ϕ1 Fb ψ1) La (ϕ2 Fc ψ2) being defined on α.
The main difference to rankers and unambigu-
ous TL is that there is no crossing over in
unambiguous ITL, e.g., in the situation de-
picted on the left side of Fig. 2, the formula
(� Lb (� Fc �)) La � is false even though the
ranker YaYb Xc is defined.

In unambiguous ITL, the modalities Fa, Gā,
F�

a, G�

ā are future modalities and La, Hā, L�
a,

H�

ā are past modalities. A formula ϕ is a future
formula if in the parse tree of ϕ, every past
modality occurs on the left branch of some future modality, i.e., if it is never
necessary to interpret a past modality over an unbounded interval.
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For C ⊆ {Fa, La,Gā,Hā,F�
a, L

�
a,G

�

ā,H
�

ā} we define the following fragments of
ITL:

– ITL[C] consists of all formulas using only �, Boolean connectives, and tem-
poral modalities in C,

– ITL+[C] consists of all formulas using only �, positive Boolean connectives
(i.e., no negation), and temporal modalities in C,

– ITLF[C] consists of all future formulas using only �, Boolean connectives,
and temporal modalities in C,

– ITL+
F [C] consists of all formulas in ITL+[C] ∩ ITLF[C].

The proofs of the following two propositions give a procedure for converting
unambiguous ITL formulas into unambiguous TL formulas without introducing
new negations. A similar relativization technique as in our proof has been used
by Lodaya, Pandya, and Shah [5] for the conversion of ITL over finite words into
so-called deterministic partially ordered two-way automata (without the focus
on not introducing negations).

Proposition 1. We have the following inclusions:

ITL[Fa, La] ⊆ TL[Xa,Ya],

ITL+[Fa, La,Gā,Hā] ⊆ TL+[Xa,Ya,Gā,Hā],

ITL+[Fa, La,Gā] ⊆ TL+[Xa,Ya,Gā],

ITL+
F [Fa, La,Gā,Hā] ⊆ TL+

X [Xa,Ya,Gā],
ITLF[Fa, La] ⊆ TLX[Xa,Ya].

Proposition 2. We have the following inclusions:

ITL[F�

a, L
�

a] ⊆ TL[X�

a,Y
�

a],
ITL+[F�

a, L
�

a,G
�

ā,H
�

ā] ⊆ TL+[X�

a,Y
�

a,G
�

ā,H
�

ā],
ITL+[F�

a, L
�

a,H
�

ā] ⊆ TL+[X�

a,Y
�

a,H
�

ā].

4 Main Results

We start this section with various ITL, TL, and ranker characterizations using
the eager variants. We postpone characterizations in terms of the lazy fragments
to Theorem 4 and Theorem 5.

Theorem 1. For L ⊆ Γ∞ the following assertions are equivalent:

1. L is definable in FO2.
2. L is definable in ITL+[Fa, La,Gā,Hā].
3. L is definable in ITL[Fa, La].
4. L is definable in TL[Xa,Ya].
5. L is definable in TL+[Xa,Ya,Gā,Hā].
6. L is a positive ranker language with atomic modalities Gā and Hā.
7. L is a ranker language.
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Every FO2-definable language is a Boolean combination of unambiguous mono-
mials and languages of the form Aim, see [3]. The language Aim is definable by
the formula ∧

a∈A

(� Fa �) ∧ Hā ∈ ITL+[Fa,Hā].

Hence, the following lemma provides the missing part in order to show that every
language in FO2 is definable in unambiguous ITL.

Lemma 1. Every unambiguous monomial L = A∗
1a1 · · ·A∗

kakA
∞
k+1 is definable

in ITL+[Fa, La,Gā].

Proof. We perform an induction on k. For k = 0 we have L
(∧

a�∈A1
Gā

)
=

A∞
1 . Let k ≥ 1. Since L is unambiguous, we have {a1, . . . , ak} �⊆ A1 ∩ Ak+1;

otherwise (a1 · · · ak)2 admits two different factorizations showing that L is not
unambiguous. First, consider the case ai �∈ A1 and let i be minimal with this
property. Each word α ∈ L has a unique factorization α = uaiβ such that
ai �∈ alph(u). Depending on whether the first ai of α coincides with the marker
ai or not, we have

u ∈ A∗
1a1 · · ·A∗

i , β ∈ A∗
i+1ai+1 · · ·A∗

kakA
∞
k+1 or

u ∈ A∗
1a1 · · ·A∗

j , ai ∈ Aj , β ∈ A∗
jaj · · ·A∗

kakA
∞
k+1

with 2 ≤ j ≤ i. In both cases, since L is unambiguous, each expression containing
u or β is unambiguous. Moreover, each of these expressions is strictly shorter than
L. By induction, for each 2 ≤ j ≤ k, there exist formulas ϕ, ψ ∈ ITL+[Fa, La,Gā]
such that L(ϕ) = A∗

1a1 · · ·A∞
j and L(ψ) = A∗

jaj · · ·A∗
kakA

∞
k+1. By the above

reasoning, we see that L is the union of (at most i) languages of the form
(
L(ϕ) ∩ (Γ \ {ai})∗

)
ai L(ψ)

and each of them is defined by ϕ Fai ψ.
For ai �∈ Ak+1 with i maximal, we consider the unique factorization α = uaiβ

with ai �∈ alph(β) and, again, we end up with one of the two cases from above,
with the difference that 1 ≤ i < j ≤ k in the second case. Inductively L is
defined by a disjunction of formulas ϕ Lai ψ. 	

Theorem 2. Let L ⊆ Γ∞. The following assertions are equivalent:

1. L is definable in Σ2 and FO2.
2. L is definable in ITL+[Fa, La,Gā].
3. L is definable in TL+[Xa,Ya,Gā].
4. L is a positive ranker language with atomic modality Gā.

Theorem 5 shows that the same characterizations for FO2 hold using the lazy
variants. Note that we cannot use lazy counterparts in the characterizations for
Σ2 ∩ FO2, since for example Y�

a X�

a is defined if and only if there are infinitely
many a’s, but this property is not Σ2-definable.

Over finite words, the fragments FO2 and Δ2 coincide [9]. In particular, FO2∩
Σ2 = FO2 over finite words. Since finiteness of a word is definable in FO2 ∩Σ2,
we obtain the following corollary of Theorem 2.
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Corollary 1. A language L ⊆ Γ ∗ of finite words is definable in FO2 if and only
if L is a positive ranker language with atomic modality Gā.

Over infinite words, the fragment Δ2 is a strict subclass of FO2. The next theo-
rem says that Δ2 is basically FO2 with the lack of past formulas and Y-rankers.
Since eager future formulas and X-rankers coincide with their lazy counterparts,
all of the characterizations in the next theorem could be replaced by their lazy
pendants.

Theorem 3. Let L ⊆ Γ∞. The following assertions are equivalent:

1. L is definable in Δ2.
2. L is definable in ITL+

F [Fa, La,Gā].
3. L is definable in ITLF[Fa, La].
4. L is definable in TLX[Xa,Ya].
5. L is definable in TL+

X [Xa,Ya,Gā].
6. L is a positive X-ranker language with atomic modality Gā.
7. L is an X-ranker language.

In the next theorem we give characterizations of the fragment Π2∩FO2 in terms
of the lazy variants of ITL, TL, and rankers. We cannot use the eager variants,
since Ya says that there are only finitely many a’s, but this property is not Π2-
definable. Also note that α, (∞;∞) |= Ĥā for Ĥā = ¬(� L�

a �) if and only if
a �∈ im(α), i.e., if and only if a occurs at most finitely often. As before, this
property is not Π2-definable. This is the reason why we did not define H�

ā simply
as Ĥā.

Theorem 4. Let L ⊆ Γ∞. The following assertions are equivalent:

1. L is definable in Π2 and FO2.
2. L is definable in ITL+[F�

a, L
�
a,H

�

ā].
3. L is definable in TL+[X�

a,Y
�

a,H
�

ā].
4. L is a positive lazy ranker language with atomic modality H�

ā.

For completeness, we give a counterpart of Theorem 1 using the lazy versions of
ITL, TL, and rankers.

Theorem 5. For L ⊆ Γ∞ the following assertions are equivalent:

1. L is definable in FO2.
2. L is definable in ITL+[F�

a, L
�
a,G

�

ā,H
�

ā].
3. L is definable in ITL[F�

a, L
�
a].

4. L is definable in TL[X�

a,Y
�

a].
5. L is definable in TL+[X�

a,Y
�

a,G
�

ā,H
�

ā].
6. L is a positive ranker language with atomic modalities G�

ā and H�

ā.
7. L is a lazy ranker language.
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5 Open Problems

Rankers over finite words have been introduced for characterizing quantifier
alternation within FO2. We conjecture that similar results for infinite words can
be obtained using our generalizations of rankers.

Over infinite words, the class of X-ranker languages corresponds to the frag-
ment Δ2. Over finite words however, X-ranker languages form a strict subclass
of Δ2 (which for finite words coincides with FO2). An algebraic counterpart of
X-ranker languages over finite words is still missing. The main problem is that
over finite words X-rankers do not define a variety of languages.

A well-known theorem by Schützenberger [6] implies that over finite words,
arbitrary finite unions of unambiguous monomials and finite disjoint unions of
unambiguous monomials describe the same class of languages. In the case of
infinite words, it is open whether one can require that unambiguous polynomials
are disjoint unions of unambiguous monomials without changing the class of
languages.

Acknowledgments. We thank Volker Diekert for a suggestion which led to Theo-
rem 2. We also thank the anonymous referees for several useful suggestions which
helped to improve the presentation of this paper.
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Abstract. We show that L-weighted automata, L-rational series, and

L-valued monadic second-order logic have the same expressive power,

for any bounded lattice L and for finite and infinite words. This extends

classical results of Kleene and Büchi to arbitrary bounded lattices, with-

out any distributivity assumption that is fundamental in the theory of

weighted automata over semirings. In fact, we obtain these results for

large classes of strong bimonoids which properly contain all bounded

lattices.

Introduction

Most of Mathematics and Computer Science are usually based on classical two-
valued logic. However, already �Lukasiewicz [33] and Post [40] investigated logics
with different degrees of certainty, and Birkhoff and von Neumann [3] introduced
quantum logic with values in orthomodular lattices as the logic of quantum me-
chanics. In general distributivity fails in quantum logics; therefore, orthomodular
lattices are not required to satisfy the distributivity law. Recently, quantum au-
tomata and quantum logic with values in orthomodular lattices were investigated
in [32,41,42,49,50]. On a different strand, the concept of multi-valued logics and
automata over distributive De Morgan algebras led to the development of new
practical tools for multi-valued model checking, cf. [6,12,27,31]. The importance
of non-distributive De Morgan algebras for multi-valued model checking was
stressed in [34].

The topic of this paper are general lattice-valued versions of the fundamental
results of Kleene [28] and Büchi [7,8] characterizing the behaviors of classical
finite automata by rational languages and by logic, respectively. We make no
distributivity assumptions about the lattices. In contrast, weighted automata as
introduced by Schützenberger [47] are based on semirings where by definition
multiplication distributes over addition; this led to a theory of semiring-based
weighted automata, cf. [22,46,30,1,29,17]. A semiring-based weighted logic with
the same expressive power as weighted automata was presented in [14,15].

Here, we will consider automata and logics with weights taken in arbitrary
bounded lattices. A lattice is bounded, if it contains a smallest and a greatest

Y. Gao et al. (Eds.): DLT 2010, LNCS 6224, pp. 160–172, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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element, which model the classical truth values 0 and 1. We note that this is a
much more general class of lattices than the distributive lattices, cf. [2,26] for
background. Given a bounded lattice L and an alphabet Σ, the behavior of an
L-weighted finite automaton M is a function from Σ∗ to L, assigning to each
word w ∈ Σ∗ its value which is computed in L, just as for semiring-weighted
automata, by calculating the values of successful runs. We also obtain the class
of L-rational series in analogy to rational languages and rational power series.
We call a function s : Σ∗ → L a recognizable step function if s has finite image
and for each a ∈ L the language s−1(a) is recognizable. We define the class
MSO(L, Σ) of monadic second-order formulas over L and Σ simply by enriching
classical MSO-logic by arbitrary elements from L as constants, and by adding
conjunction and universal quantification (both first- and second-order) to our
syntax. The existential fragment of this logic is denoted by EMSO(L, Σ). As
usual, the semantics of such MSO(L, Σ)-formulas is defined inductively, using the
supremum operation of the lattice for disjunction and existential quantifications,
and the infimum operation for conjunction and universal quantifications. In order
to define the semantics of negations of formulas, we assume that the lattice is
equipped with a unary complement function interchanging 0 and 1. We note
that any bounded lattice can be equipped with such a function by choosing the
complement of elements of L not equal to 0 or 1 arbitrarily; hence, this is no
essential restriction on the bounded lattice L. Muller and Büchi recognizability
and EMSO(L, Σ)-definability of infinitary power series s : Σω → L are defined
as, e.g., in [45]; ω-rational infinitary power series can be defined as in [23]. Our
first aim is the following result.

Theorem A. Let L be any bounded lattice, Σ any alphabet, and s : Σ∗ → L
(resp., s : Σω → L) a series. Then the following are equivalent:

(1) s is the behavior of some L-weighted finite automaton (resp., Muller
automaton).

(2) s is L-rational (resp., ω-rational).
(3) s is a recognizable step function (resp., Muller recognizable step function).

If L has a complement function, then (1) is also equivalent to the following:

(4) s is definable by some sentence from MSO(L, Σ).
(5) s is definable by some sentence from EMSO(L, Σ).

Here, for L = {0, 1}, we obtain the fundamental results of Kleene and Büchi.
Note that corresponding results in the standard theory of semiring-weighted
automata (cf. [1,22,30,46,14,15]) heavily use the distributivity in semirings of
multiplication over addition. Our result shows that for lattices, the distributivity
assumption is, somewhat surprisingly, not needed. Also, the class of MSO(L, Σ)-
definable series does not depend on the complement function of L.

Due to lack of space we only sketch the proof for the finitary case. However,
we prove the equivalences of Theorem A even for more general structures than
bounded lattices: they hold for any bi-locally finite strong bimonoid A. A strong
bimonoid (A,+, ·, 0, 1) can be viewed as ”semiring without distributivity”, and
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it is bi-locally finite if each finitely generated submonoid of the monoids (A,+, 0)
or (A, ·, 1) is finite. For instance, the unit interval [0, 1] ⊂ R with �Lukasiewicz
t-norm and t-conorm forms a non-distributive bi-locally finite strong bimonoid.
Such non-standard operations for the semantics of the logical connectives often
occur in multi-valued logics, e.g., in Gödel-logics, �Lukasiewicz-logics, Post-logics,
cf. [25]. We show that our bimonoid results also apply to an interesting new
class of weighted automata recently investigated in a series of papers [9,10,11]
modeling, e.g., peak power consumption of energy.

In Theorem A and its general version for arbitrary bi-locally finite strong
bimonoids, the equivalence between (1) and (3) for finite words is due to [19].
The implications (3)⇒ (2) and (1)⇒ (5) are easy to see. The main contribution
of Theorem A is the proof of the implications (2) ⇒ (1) and (4) ⇒ (1) (cf.
Theorems 2 and 3, resp.). For this we use the equivalence (1)⇔ (3) and we follow
the lines of [14,15,22], but with explicit automata constructions since the theory
of semiring-based weighted automata cannot be used. In particular, the general
model of weighted automata is employed in the proofs concerning the Cauchy-
product and the Kleene-iteration of series and the universal quantification of
formulas. We show that the implication (2)⇒(1) fails in general without the
assumption of bi-local finiteness, even for commutative right-distributive strong
bimonoids.

We also characterize the recognizability of series for arbitrary strong bi-
monoids. As shown in [14], for this we have to restrict our MSO-logic. We define
a class srMSO(A,Σ) of syntactically restricted MSO(A,Σ)-formulas and show:

Theorem B. Let A be any strong bimonoid with complement function, and let
s : Σ∗ → A be a series. Then the following are equivalent:

(1) s is recognizable.
(2) s is definable by some sentence from srMSO(A,Σ).

Similar equivalence results for weighted automata and suitably restricted
weighted MSO-logics have been obtained recently, with semirings as weight struc-
tures, for words [14,15], trees [20,21], infinite words [18], infinite trees [44], pic-
tures [24], traces [37], distributed processes [5], texts [35], nested words [36], and
timed words [43]. Semirings may be viewed as quantitative weight structures
which allow us to count. In contrast, lattices as employed here may be viewed
as a logical counterpart. For lattices, we do not need to restrict the weighted
logic as in the above papers but we can employ the full logic. For bounded
distributive lattices this equivalence was obtained in [16]. All our proofs are con-
structive, yielding therefore decision procedures for MSO(L, Σ)-sentences. We
remark that our results also hold, correspondingly, for automata and L-valued
MSO-logic formulas over ranked trees, instead of words. Whether they hold for
the other classes of structures mentioned above remains open at present.

We have also obtained an equivalence between aperiodic, star-free, weighted
first-order, and weighted LTL-definable series, extending the classical equivalence
results for languages [48,13] to arbitrary bi-idempotent commutative strong bi-
monoids, but also this is not included here because of lack of space.
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1 Lattices and Bimonoids

Let (L,≤) be a partially ordered set. If two elements a, b ∈ L have a least upper
bound in L, this element is called the supremum of a and b, denoted by a ∨ b.
Dually, the infimum of a and b is defined to be the greatest lower bound of a
and b (provided it exists) and is denoted by a∧ b. If any two elements of L have
both a supremum and an infimum, then (L,≤) is called a lattice. This lattice is
often denoted as (L,∨,∧) (compare [2,26]).

A lattice L is called bounded if it contains a smallest and a greatest element,
denoted by 0 and 1, respectively. The lattice L is distributive if a ∧ (b ∨ c) =
(a∧b)∨(a∧c) for all a, b, c ∈ L. This is equivalent to a∨(b∧c) = (a∨b)∧(a∨c)
for all a, b, c ∈ L.

As is well known from lat- 1 1 1

c

a b a b c a

b

0 0 0
B2 M3 N5

Fig. 1. Three lattices

tice theory (cf. [2,26]), there
is an abundance of lattices
which are not distributive.
In fact, a lattice is non-
distributive iff it contains one
of the two lattices M3 and N5

(cf. Figure 1). Note that B2

is the four-element Boolean
algebra {0, 1} × {0, 1} which
has two incomparable com-
plementary truth values a and b. In comparison, in M3 we have three pairwise
incomparable truth values any two of which have supremum 1 and infimum 0.
Moreover, N5 could be considered as a refinement of B2 where the truth value b
of B2 was refined into two values b and c, each having the same relationship to
a as the original element before.

A bounded lattice L together with a complement function ¯ : L → L is
called an Ockham algebra, if it satisfies the de Morgan identities a ∨ b = a ∧ b
and a ∧ b = a ∨ b for all a, b ∈ L, and 0 = 1 and 1 = 0; and an Ockham
algebra is called a de Morgan algebra, if a = a. Distributive de Morgan algebras
have been intensively investigated for multi-valued model checking including
the development of new practical tools (cf. [6,12,27,31]). In this context, let us
consider the non-distributive lattice M3. We define¯: M3 →M3 by letting 0 = 1,
1 = 0, a = c, c = a, and b = b. Then (M3,∨,∧,̄ ) is a de Morgan algebra. We
just note that N5 becomes a (non-distributive) Ockham algebra if we put 0 = 1,
1 = 0, b = c = a, and either a = b or a = c.

In fact, we will prove our main results for even more general structures than
lattices. A bimonoid is a structure (A,+, ·, 0, 1) consisting of a set A, two binary
operations + and · on A and two constants 0, 1 ∈ A such that (A,+, 0) and
(A, ·, 1) are monoids. As usual, we identify the structure (A,+, ·, 0, 1) with its
carrier set A. We call A a strong bimonoid if the operation + is commutative and
0 acts as multiplicative zero, i.e., a·0 = 0 = 0·a for every a ∈ A. The bimonoid A
is commutative if the multiplication operation is commutative. A strong bimonoid
in which multiplication distributes (from both sides) over addition is called a



164 M. Droste and H. Vogler

semiring. For a range of examples of strong bimonoids which are not semirings
we refer the reader to [19].

For our logics, in order to deal with negation of formulas, we will need strong
bimonoids with complement function (A,+, ·, ,̄ 0, 1). They consist of a strong
bimonoid (A,+, ·, 0, 1) and a function¯: A→ A such that 0 = 1 and 1 = 0. Note
that trivially any strong bimonoid A can be equipped with such a complement
function ¯ by choosing a arbitrarily, for any a ∈ A \ {0, 1}.

We call the strong bimonoid A additively locally finite (multiplicatively locally
finite, respectively) if for every finite B ⊆ A, the smallest submonoid of (A,+, 0)
(of (A, · , 1), respectively) containing B is finite. Moreover, A is called bi-locally
finite if it is additively locally finite and multiplicatively locally finite. We call
A additively idempotent, if a + a = a for each a ∈ A, and bi-idempotent, if
a + a = a = a · a for each a ∈ A. Clearly, every bi-idempotent, commutative
strong bimonoid is bi-locally finite.

Example 1

1. Every bounded lattice (L,∨,∧, 0, 1) is a bi-idempotent, commutative strong
bimonoid.

2. Let 0 < ε < 1. Let A = ([ε, 1] ∪ {0},+, ·, 0, 1) with the interval [ε, 1] ⊆ R
and the usual addition and multiplication on R, which however are truncated to
1 and 0 if, respectively, larger values than 1 or smaller values than ε occur. Then
A is bi-locally finite and commutative but obviously not bi-idempotent and not
a semiring.

3. Let (A,+) be a commutative semigroup and (A, ·) be a semigroup. Combin-
ing these two structures we obtain a strong bimonoid structure on A by adding
constants 0 and 1. Formally, let 0, 1 �∈ A and put A′ = A ∪ {0, 1}. Then we
define binary operations ⊕ and  on A′ by letting ⊕ |A×A= +,  |A×A= ·,
and 0 ⊕ x = x ⊕ 0 = x, 1 ⊕ x = x ⊕ 1 = x if x �= 0, 0  x = x  0 = 0, and
1  x = x  1 = x for all x ∈ A′. Then (A′,⊕, , 0, 1) is a strong bimonoid.
For example, if (A, ·) = (A,+) = (A,∨) is a join-semilattice, then the result-
ing bimonoid A′ is a bi-idempotent, commutative semiring. Note that here the
two bimonoid operations of A′ coincide on A ∪ {1}. As another example, let
(A,+) = (A,∨) be a join-semilattice and let · on A be given by a · b = b for all
a, b ∈ A. Then the resulting bimonoid A′ is bi-idempotent and bi-locally finite,
but not commutative and not a semiring if |A| ≥ 2. We will come back to these
examples below.

2 Weighted Finite Automata over Finite Words

In all of this paper, let Σ be an alphabet and (A,+, ·, 0, 1) be a strong bi-
monoid. We recall the definition of weighted automata and their basic prop-
erties. A weighted finite automaton over A and Σ (for short: WFA, or
A-weighted automaton) is a quadruple M = (Q, in,wt, out) where Q is a fi-
nite set of states, wt : Q × Σ × Q → A is the transition weight function, and
in, out : Q → A are weight functions for entering and leaving a state, respec-
tively. The value wt(p, σ, q) ∈ A indicates the weight of the transition p

σ→ q.
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If w = σ1 . . . σn ∈ Σ∗ where n ≥ 0 and σi ∈ Σ, a path P over w is a sequence
P : q0

σ1→ q1 . . .
σn→ qn where q0, q1, . . . , qn ∈ Q. The weight of P is the product

wt(P ) = in(q0) ·wt(q0, σ1, q1) · . . .·wt(qn−1, σn, qn) ·out(qn). The behavior of M is
the series ||M || : Σ∗ → A such that for every w ∈ Σ∗, (||M ||, w) =

∑
P path
over w

wt(P ).
Note that, if A is a semiring, then this definition of the behavior of M is precisely
the one used for semiring-weighted automata, compare [22].

We also note that a large (powerful and elegant) part of the theory of semiring-
based weighted automata employs matrices of transition weights and the fact
that they form a monoid under usual matrix multiplication. As is easy to see, the
multiplication of n×n-matrices (n ≥ 2) over a strong bimonoid A is associative
iff A is a semiring. Therefore these semiring-based methods of weighted automata
(as well as other particular proofs) are not applicable in our general bimonoid
setting, and we convert to direct automata-theoretic arguments.

We let A〈〈Σ∗〉〉 comprise all formal power series, for short: series, from Σ∗ to
A. A series s ∈ A〈〈Σ∗〉〉 is recognizable if there is a WFA M such that s = ||M ||.
If s ∈ A〈〈Σ∗〉〉 is a series and w ∈ Σ∗, as usual we write (s, w) for s(w).

Now let s, s′ ∈ A〈〈Σ∗〉〉 be series and a ∈ A. We define the scalar product a · s
and the sum s+s′ by letting (a ·s, w) = a ·(s, w) and (s+s′, w) = (s, w)+(s′, w),
for each w ∈ Σ∗. For L ⊆ Σ∗, we define the characteristic series �L ∈ A〈〈Σ∗〉〉
by (�L, w) = 1 if w ∈ L, and (�L, w) = 0 otherwise.

We recall that s ∈ A〈〈Σ∗〉〉 is a recognizable step function if there are n ≥ 0,
recognizable languages L1, . . . , Ln ⊆ Σ∗, and a1, . . . , an ∈ A such that s =∑n

i=1 ai · �Li . Since the class of recognizable languages is closed under Boolean
operations, we can assume that the family (Li | 1 ≤ i ≤ n) forms a partitioning
of Σ∗. By Lemma 8 of [19] every recognizable step function is recognizable. The
following result will be crucial for us.

Theorem 1 ([19], Theorem 11). Let A be any bi-locally finite strong bimonoid
and s ∈ A〈〈Σ∗〉〉. If s is recognizable, then s is a recognizable step function.

Now we point out a relationship between weighted automata over strong bi-
monoids and two weighted automata models investigated recently in a series of
papers [9,10,11]. Chatterjee, Doyen, and Henzinger consider weighted automata
where A = Q, the set of rational numbers, together with a value function Val :
Q+ → R. The weight of a path is given by the value of Val applied to the sequence
of weights of the transitions composing the path. The value (||M ||, w) of M for a
word w ∈ Σ∗ is defined as the supremum of the weights of all successful paths
over w. In particular, they consider the value functions Val = Max and Val = Last
where Max(v) = max{vi | 1 ≤ i ≤ n} and Last(v) = vn for every finite sequence
v = v1 . . . vn ∈ Q+. For instance, peak power consumption can be modelled as
the maximum of a sequence of weights representing power usage [9,11].

These two automata models can be viewed as weighted automata over strong
bimonoids in the following way. In both cases, we let the addition operation on
A = Q be the usual supremum operation for pairs of rational numbers. For the
value function Max, we let the multiplication operation on A also be the supre-
mum operation, and for the value function Last, we use the multiplication given
by a·b = b for a, b ∈ Q. Now let A′ be the bimonoid constructed in Example 1(3).
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Observe that A′ is bi-locally finite and bi-idempotent and is a semiring in the
Max-case. Then the behavior of Max-, resp., Last-automata coincides with the
behavior of the weighted automaton M over the corresponding bimonoid A′.
This shows that all our results are applicable to Max- and Last-automata. For
instance, Theorems 2 and 3 show that the behaviors of Max- and Last-systems
can be specified equivalently also by rational expressions or by weighted MSO-
formulas.

3 Recognizability, Rationality, and MSO-Definability

In this section we prove the equivalence between recognizable, rational, and
(E)MSO-definable series over strong bimonoids.

Let s, s′ ∈ A〈〈Σ∗〉〉 be series, a ∈ A, and m ≥ 0. We define the Cauchy
product s · s′ and the m-th power sm (m ≥ 1) by letting, for each w ∈ Σ∗,
(s · s′, w) =

∑
w=uv(s, u) · (s′, v) and (sm, w) =

∑
w=u1...um

(s, u1) · . . . · (s, um).
Also, let s0 = �{ε}. We say that s is proper if (s, ε) = 0. In this case we define the
star s∗ ∈ A〈〈Σ∗〉〉 by letting (s∗, w) =

∑|w|
m=0(s

m, w). Given a ∈ A and w ∈ Σ∗,
the series a · �{w} is called a monomial. A series s ∈ A〈〈Σ∗〉〉 is called rational if
it can be constructed from finitely many monomials using the operations sum,
Cauchy product, and star where the latter is applied only to proper series. First
we will show the following result:

Theorem 2. Let A be any bi-locally finite strong bimonoid and s ∈ A〈〈Σ∗〉〉.
Then s is recognizable iff s is rational.

Proof. (sketch) Let s be recognizable. By Theorem 1, s is a recognizable step
function. Since a · �L = (a · �{ε}) · �L, it suffices to prove that �L is rational
for every recognizable language L. We construct L from finitely many singletons
using the operations unambiguous union, unambiguous product, and unambigu-
ous star. Then we can obtain �L in the same way as L by the corresponding
rational operations.

Conversely, we show that every rational series is a recognizable step function.
Trivially, the class of recognizable step functions contains all monomials and
is closed under sum. For two recognizable steps functions s, s′ ∈ A〈〈Σ∗〉〉 we
construct (according to Lemma 8 of [19]) deterministic automata M,M ′ with
s = ||M || and s′ = ||M ′||; moreover, M and M ′ have the property that the weight
of each of their transitions is either 1 or 0. Then, a usual sequential product
automaton of M and M ′ recognizes s · s′. Next let s be proper. We can choose
M with s = ||M || such that M has exactly one initial state and this state is not
reachable by a transition with non-zero weight; then a looping of M with itself
recognizes s∗. So, s · s′ and s∗ are recognizable, and hence again recognizable
step functions by Theorem 1. 	

Next we show that for arbitrary commutative strong bimonoids, rationality of
series does not imply recognizability.

Example 2. Let A be the free commutative bimonoid freely generated by {a, b}.
Note that the elements of A can be obtained from the generators by alternating
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two constructions, which are: (1) taking products of powers of different elements,
and (2) forming sums of multiples of different elements. Now consider Σ = {σ}
and the series s = (a · �{σ})∗ + (b · �{σ})∗ ∈ A〈〈Σ∗〉〉. Then s is rational (and
recognizable by a WFA with two states). We have (s, σn) = an + bn for each
n ∈ N, and (s · s, σk) =

∑
m,n≥0
m+n=k

(am + bm) · (an + bn) for each k ∈ N. We claim
that s · s is not recognizable.

Let M = (Q, in,wt, out) be any WFA. Choose m,n ≥ 1 such that an +
bn �∈ I and (am + bm)(an + bn) �∈ I, where I = im(in) ∪ im(wt) ∪ im(out) and
im(f) denotes the image of a function f . The values of ‖M‖ arise by performing
construction (1) on the elements of I, followed by construction (2). We cannot
obtain (am + bm)(an + bn) by construction (1) on the elements of I. Hence, if
k = m + n, we have (s · s, σk) �∈ im(‖M‖), showing s · s �= ‖M‖, and our claim
follows. A similar argument works if we replace A by the free commutative right-
distributive bimonoid generated freely by {a, b}. In this case, we have (s·s, σk) =∑

m,n≥0
m+n=k

(am · (an + bn) + bm · (an + bn)) for k ∈ N.

Next let (A,+, ·, ,̄ 0, 1) be a strong bimonoid with complement function.

Definition 1. The syntax of formulas of the weighted MSO-logic over A and Σ
is given by the grammar

ϕ ::= a | Rσ(x) | x ≤ y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃x.ϕ | ∃X.ϕ | ∀x.ϕ | ∀X.ϕ

where a ∈ A, σ ∈ Σ, x, y are first-order variables, and X is a second-order
variable. We let Free(ϕ) be the set of all free variables of ϕ. We denote by
MSO(A,Σ) the collection of all such weighted MSO-formulas.

In the sequel, for w ∈ Σ∗ and n = |w|, the length of w, we also write w =
w(1) . . . w(n) with w(i) ∈ Σ, and dom(w) = {1, . . . , n}. Now let V be a finite
set of first-order and second-order variables and w ∈ Σ∗. A (V , w)-assignment ρ
maps first-order variables in V to elements of dom(w) and second-order variables
in V to subsets of dom(w). Then we encode such a pair (w, ρ) as a word u with
|u| = |w| over the extended alphabet ΣV = Σ × {0, 1}V as usual, and we call
a word u ∈ Σ∗

V valid if u corresponds to such a pair. Clearly, the language
NV = {u ∈ Σ∗

V | u is valid} is recognizable.
Let (w, ρ) ∈ NV , x be a first-order variable, and i ∈ dom(w). Then ρ[x→ i] is

the (V ∪{x}, w)-assignment which maps x to i and acts as ρ on each of the other
variables. If u corresponds to (w, ρ), we also write u[x → i] for (w, ρ[x → i]).
Similarly, ρ[X → I] and u[X → I] are defined for I ⊆ dom(w).

Definition 2 (compare [14]). Let ϕ ∈ MSO(A,Σ) and V be a finite set of
variables containing Free(ϕ). The V-semantics of ϕ is a formal power series
[[ϕ]]V ∈ A〈〈Σ∗

V 〉〉. Let u = (w, ρ) ∈ Σ∗
V . If u �∈ NV , then we put ([[ϕ]]V , u) = 0.

Otherwise, we define ([[ϕ]]V , u) ∈ A inductively as follows:

([[a]]V , u) = a ([[Rσ(x)]]V , u) =

{
1 if w(ρ(x)) = σ

0 otherwise

([[x ≤ y]]V , u) =

{
1 if ρ(x) ≤ ρ(y)

0 otherwise
([[x ∈ X]]V , u) =

{
1 if ρ(x) ∈ ρ(X)

0 otherwise
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([[¬ϕ]]V , u) = ([[ϕ]]V , u)

([[ϕ ∨ ψ]]V , u) = ([[ϕ]]V , u) + ([[ψ]]V , u) ([[ϕ ∧ ψ]]V , u) = ([[ϕ]]V , u) · ([[ψ]]V , u)

([[∃x.ϕ]]V , u) =
∑

i∈dom(u)

([[ϕ]]V ∪{x}, u[x → i]) ([[∀x.ϕ]]V , u) =
∏

i∈dom(u)

([[ϕ]]V ∪{x}, u[x → i])

([[∃X.ϕ]]V , u) =
∑

I⊆dom(u)

([[ϕ]]V ∪{X}, u[X → I ])

([[∀X.ϕ]]V , u) =
∏

I⊆dom(u)

([[ϕ]]V ∪{X}, u[X → I ])

where in the product over dom(u) we follow the natural order, and we fix some
order on the power set of {1, . . . , |u|} so that the last product is defined. We let
[[ϕ]] = [[ϕ]]Free(ϕ).

We let EMSO(A,Σ) contain all existential MSO(A,Σ)-formulas ϕ, i.e., ϕ is of
the form ∃X1 . . . ∃Xn.ψ with ψ ∈MSO(A,Σ) containing no set quantifications.
Let Z ⊆ MSO(A,Σ) and s ∈ A〈〈Σ∗〉〉. We say that s is Z-definable if there is a
sentence (i.e., a formula without free variables) ϕ ∈ Z such that s = [[ϕ]].

Theorem 3. Let A be any bi-locally finite strong bimonoid with complement
function, and let s ∈ A〈〈Σ∗〉〉. Then the following are equivalent:

(1) s is recognizable.
(2) s is EMSO(A,Σ)-definable.

If A is commutative, then conditions (1) and (2) are also equivalent to:

(3) s is MSO(A,Σ)-definable.

Following [4], we call a formula ϕ ∈ MSO(A,Σ) Boolean if it does not contain
constants a (with a ∈ A \ {0, 1}) and does not use disjunction or existential first
or second order quantification. Clearly, the Boolean formulas capture the full
power of classical (unweighted) MSO logic. In particular, for every recognizable
language L ⊆ Σ∗ there is a Boolean sentence ϕ such that �L = [[ϕ]].

A formula ϕ ∈ MSO(A,Σ) is almost unambiguous if it is constructed from
constants a (a ∈ A) and Boolean formulas, using disjunction, conjunction, and
negation. One can show that the almost unambiguous formulas define precisely
the recognizable step functions.

Definition 3 (compare [15]). A formula ϕ ∈ MSO(A,Σ) is called syntacti-
cally restricted, if it satisfies the following conditions:

1. Whenever ϕ contains a conjunction ψ∧ψ′ as subformula but not in the scope
of a universal first order quantifier, then ψ or ψ′ is Boolean.

2. Whenever ϕ contains ∀X.ψ as a subformula, then ψ is a Boolean.
3. Whenever ϕ contains ∀x.ψ or ¬ψ as a subformula, then ψ is almost

unambiguous.

We let srMSO(A,Σ) denote the set of all syntactically restricted formulas of
MSO(A,Σ).
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We note that condition (1) of Definition 3 is slightly more restrictive than con-
dition (1) of Definition 4.6 of [15]. This provides all technical definitions for our
second main result of this section, see Theorem B in the introduction.

For our proofs we will need preservation properties of recognizability under
morphisms. Let Σ,Γ be alphabets and h : Σ∗ → Γ ∗ be a length-preserving
morphism. For every series s ∈ A〈〈Σ∗〉〉 we define h(s) ∈ A〈〈Γ ∗〉〉 by (h(s), v) =∑

w∈h−1(v)(s, w) for every v ∈ Γ ∗. In the theory of semiring-weighted automata
there are very short algebraic proofs that length-preserving morphisms preserve
recognizability (cf., e.g., Theorem II.4.3 of [46]) which, however, ultimately rest
on the distributivity of the semiring. In our setting we cannot use these methods;
therefore we give a direct automata-theoretic proof.

Lemma 1. Let Σ,Γ be alphabets and h : Σ∗ → Γ ∗ be a length-preserving
monoid morphism. Then h : A〈〈Σ∗〉〉 → A〈〈Γ ∗〉〉 preserves recognizability.

Proof. Let M = (Q, in,wt, out) be a WFA over A and Σ. Choose σ0 ∈ Σ. We
construct the WFA M ′ = (Q′, in′,wt′, out′) over A and Γ by letting Q′ = Q×Σ;
in′(q, σ) = in(q) for every (q, σ) ∈ Q′; for every γ ∈ Γ and (p, σ), (q, σ′) ∈ Q′ we
put wt′((p, σ), γ, (q, σ′)) = wt(p, σ, q) if h(σ) = γ, and wt′((p, σ), γ, (q, σ′)) = 0
otherwise, and for every (q, σ) ∈ Q′ we let out′(q, σ) = out(q) if σ = σ0, and 0
otherwise. One can show that h(||M ||) = ||M ′||. 	

Using Lemma 1 we can show that for ϕ ∈ MSO(A,Σ), the semantics [[ϕ]]V (V
a finite set of variables containing Free(ϕ)) are consistent , i.e., ([[ϕ]]V , (w, ρ)) =
([[ϕ]], (w, ρ| Free(ϕ))) for each (w, ρ) ∈ NV (cf. [15], Prop. 3.3). In particular, [[ϕ]]
is recognizable iff [[ϕ]]V is recognizable, and [[ϕ]] is a recognizable step function
iff [[ϕ]]V is a recognizable step function.

Proof of Theorem 3 and Theorem B, (1)⇒ (2): Let s = ||M || for some WFA M .
The proof of Theorem 5.7 of [15] explicitly describes an EMSO(A,Σ)-sentence
ξ such that ||M || = [[ξ]]. For Theorem B, we construct M with initial and final
weights in {0, 1}; then ξ is syntactically restricted.

(2) ⇒ (1), (3) ⇒ (1) if A is commutative: (sketch). By induction over the
structure of a formula ϕ we show that [[ϕ]] is recognizable. In case of Theorem
B, for atomic formulas and for disjunction and conjunction of formulas, we use
automata constructions; for the case of Theorem 3 and for negation, this is easy
using Theorem 1 and recognizable step functions. For existential quantifications
we apply Lemma 1. For universal first-order respectively second-order quantifi-
cations we apply the arguments of Lemmas 5.4 of [15] resp. Proposition 6.3
of [14]. 	
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Abstract. We define context-free grammars with Müller acceptance

condition that generate languages of countable words. We establish sev-

eral elementary properties of the class of Müller context-free languages

including closure properties and others. We show that every Müller

context-free grammar can be transformed into a normal form grammar

in polynomial space without increasing the size of the grammar, and

then we show that many decision problems can be solved in polynomial

time for Müller context-free grammars in normal form. These problems

include deciding whether the language generated by a normal form gram-

mar contains only well-ordered, scattered, or dense words. In a further

result we establish a limitedness property of Müller context-free gram-

mars: If the language generated by a grammar contains only scattered

words, then either there is an integer n such that each word of the lan-

guage has Hausdorff rank at most n, or the language contains scattered

words of arbitrarily large Hausdorff rank. We also show that it is decid-

able which of the two cases applies.

1 Introduction

In a general setting, a word over an alphabet Σ is an isomorphism class of a
linear order labeled in Σ. In this paper, we consider languages of countable words
including scattered and dense words, i.e., words whose underlying linear order
is scattered or dense, cf. [16].

Whereas finite automata over ω-words and more generally countable and even
uncountable words have been studied since the 1960’s, cf. e.g., [7,8,1,18,19,2,5],
context-free grammars generating infinite words received little attention.

Context-free grammars have been used to generate languages of ω-words in
[9] and [4,15]. Context-free grammars generating languages of countable words
equipped with Büchi acceptance condition were considered in [11]. At the end
of [11], we have also defined context-free grammars with Müller acceptance con-
dition and showed that they generate a strictly larger class of languages. In this
paper, our aim is to study Müller context-free languages in a systematic way.

We establish several elementary properties of the class of Müller context-free
languages including closure properties and others. We show that every Müller
context-free grammar can be transformed into a normal form grammar in poly-
nomial space with only a linear increase in the size of the grammar, and then we
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show that many decision problems can be solved in polynomial time for Müller
context-free grammars in normal form. These problems include deciding whether
the language generated by a normal form grammar contains only well-ordered,
scattered, or dense words. In a further result we establish a limitedness property
of Müller context-free grammars: If the language generated by a grammar con-
tains only scattered words, then either there is an integer n such that each word
of the language has Hausdorff rank at most n, or the language contains scattered
words of arbitrarily large Hausdorff rank. We also prove that it is decidable which
of the two cases applies and show that if the rank of the words in the language
is bounded by some integer, then the least such bound is computable. Again, we
give a polynomial time algorithm for grammars in normal form.

Countable words were first investigated in [10], where they were called “ar-
rangements”. Any countable word can be represented as the frontier of an infinite
tree. Accordingly, any Müller context-free language can be seen as the frontier
language of a tree language recognized by a Müller tree automaton, cf. [17].
Many of our decidability results can thus alternatively be proved using certain
closure properties and decidability results on Müller automata and some specific
constructions, but these general arguments do not provide the simple charac-
terizations developed in the paper and usually yield higher complexity. See also
Section 4.

2 Notation

In this section we recall some concepts for linear orders and words and introduce
the notion of Müller context-free grammars and languages.

2.1 Linear Orders and Words

We make use of the standard notions concerning linear orderings, see e.g. [16].
A linear order (P,≤) is a well-order if each nonempty subset of P has a least

element, and is dense if it has at least two elements and for any x < y in P
there is some z with x < z < y.1 A quasi-dense linear order is a linear order
(P,≤) containing a dense linear sub-order, so that P has a subset P ′ such that
(P ′,≤) is a dense order. A scattered linear order is a linear order which is not
quasi-dense. The order type of a linear order is the isomorphism class of the
linear order.

It is clear that every finite linear order is a well-order, every well-order is a
scattered order, and every dense order is quasi-dense. It is well-known that up
to isomorphism there are 4 countable dense linear orders: the rationals Q with
the usual order and possibly endowed with either a least or a greatest element
(or both).

An ordinal is the order type of a well-order. The finite ordinals n are the
order types of the finite linear orders. As usual, we denote by ω the least infinite
ordinal which is the order type of the finite ordinals and of the natural numbers
1 In [16], a singleton linear order is also called dense.
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N = {1, 2, . . .} equipped with the usual order. The order type of Q will be
denoted η.

An alphabet is a finite nonempty set Σ. A word over an alphabet Σ is a labeled
linear order, i.e., a triple u = (dom(u),≤u, λu), where (dom(u),≤u) is a linear
order and λu is a labeling function dom(u) → Σ. The underlying linear order
dom(ε) of the empty word ε is the empty linear order. We say that a word is
finite (infinite or countable, respectively), if its underlying linear order is finite
(infinite or countable, respectively). An isomorphism of words is an isomorphism
of the underlying linear orders that preserves the labeling. Embeddings of words
are defined in the same way. We usually identify isomorphic words. We will say
that a word u is a subword of a word v if there is an embedding u ↪→ v. When
in addition the image of the underlying linear order of u is an interval of the
underlying linear order of v we call u a factor of v.

The order type of a word is the order type of its underlying linear order. Thus,
the order type of a finite word is a finite ordinal. A word whose order type is
ω is called an ω-word. Suppose that u = (P,≤u, λu) and v = (Q,≤v, λv) are
words over Σ. Then their concatenation uv is the word over Σ whose underlying
linear order is the ordered sum P + Q (cf. [16]) and whose labeling function
agrees with λu on points in P , and with λv on points in Q. More generally,
when I is a linear order and ui is a word over Σ with underlying linear order
Pi = (dom(ui),≤i), for each i ∈ I, then the generalized concatenation

∏
i∈I ui

is the word whose underlying linear order is the generalized sum
∑

i∈I Pi (cf.
[16]) and whose labeling function agrees with the labeling function of Pi on the
elements of each Pi. In particular, when u0, u1, . . . , un, . . . are words over Σ and
I is the linear order ω or its reverse −ω, then

∏
i∈I ui is the word u0u1 . . . un . . .

or . . . un . . . u1u0, respectively. When ui = u for each i, these words are denoted
uω and u−ω, respectively.

Some examples of words over the alphabet Σ = {a, b} are the finite word aab
which is the (isomorphism class of the) 3-element labeled linear order {0 < 1 < 2}
whose points are labeled a, a and b, in this order. Examples of infinite words are
aω and a−ω, whose order types are ω and −ω, respectively, such that each point
is labeled a. For another example, consider the linear order Q of the rationals
and label each point a. The resulting word of order type η is denoted aη. More
generally, let Σ contain the (different) letters a1, . . . , an. Then up to isomorphism
there is a unique labeling of the rationals such that between any two points
there are n points labeled a1, . . . , an, respectively. The resulting word is denoted
(a1, . . . , an)η, cf. [12].

We call a word over an alphabet Σ well-ordered, scattered, dense, or quasi-
dense if its underlying linear order has the appropriate property. For example,
the words aω, aωbωa, (aω)ω over the alphabet {a, b} are well-ordered, the words
aωa−ω, a−ωaω are scattered but not well-ordered, the words aη, aηbaη, (a, b)η

are dense, and the words (ab)η, (aω)η, (aηb)ω are quasi-dense but not dense.
As already mentioned, we will usually identify isomorphic words, so that a

word is an isomorphism type (or isomorphism class) of a labeled linear order.
When Σ is an alphabet, we let Σ∗, Σω and Σ∞ respectively denote the set of
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all finite words, ω-words, and countable words over Σ. Σ+ is the set of all finite
nonempty words, and Σ+∞ = Σ∞ΣΣ∞ is the set of all countable nonempty
words over Σ. The length of a finite word w will be denoted |w|.

A language over Σ is any subset L of Σ∞. When L ⊆ Σ∗ or L ⊆ Σω, we
sometimes call L a language of finite words or an ω-language (or a language of
ω-words).

When A is a set, P (A) stands for {X : X ⊆ A}, the power set of A.

2.2 Tree Domains and Müller Context-Free Grammars

We follow standard notions concerning trees and tree domains.
A tree domain is an arbitrary nonempty, prefix closed subset T of {1, . . . , k}∗

for some k ≥ 1 (whose elements are usually referred to as nodes of T ). The
lexicographic order on {1, . . . , k}∗ is defined by u ≤lex v if and only if u = v, or
u = xiy and v = xjz for some x, y, z ∈ {1, . . . , k}∗ and 1 ≤ i < j ≤ k.

A context-free grammar with Müller acceptance condition, or MCFG for short,
is a system G = (V,Σ, P, S,F) where V is the finite, nonempty set of nonter-
minals (or variables), Σ is the terminal alphabet with V ∩Σ = ∅, S ∈ V is the
start symbol, P is the finite set of productions (or rules) of the form A→ α with
A ∈ V and α ∈ (V ∪Σ)∗, and F ⊆ P (V ) is the Müller acceptance condition.

A derivation tree of the above grammar G is a mapping t : dom(t) → Σ∪V ∪
{ε} where T = dom(t) is a tree domain satisfying the following conditions:

– Each inner node x ∈ T is labeled by some nonterminal A, i.e., t(x) = A for
some A ∈ V ;

– For any node x ∈ T and i ∈ N, x · i ∈ T if and only if 1 ≤ i ≤ deg(x);
– For any inner node x ∈ T exactly one of the following cases holds:

1. either there exists a production A → X1 . . . Xk in P , where A = t(x),
for each 1 ≤ i ≤ k, Xi = t(x · i) is a member of V ∪ Σ, and for each
i ≥ 1, x · i is in T if and only if i ≤ k;

2. or x · i ∈ T if and only if i = 1, t(x · 1) = ε and A → ε is in P , where
A = t(x).

– Finally, t satisfies the Müller acceptance condition F : for each infinite (max-
imal) path π of T the set

InfLabt(π) = {A ∈ V : A = t(x) for infinitely many x ∈ π}

is a member of F .

The frontier of a derivation tree t is the word fr(t) = (U,≤, λ) where U ⊆ dom(t)
is the set of those leaves of t which are labeled in V ∪Σ, ≤ is the restriction of
the lexicographic order to U , and λ is the restriction of t onto U .

We write X ⇒∞
G u for a symbol X ∈ V ∪ Σ and a word u ∈ (V ∪ Σ)∞ if

there exists a derivation tree t with root symbol X and fr(t) = u. If there is
a finite derivation tree with these properties, we write X ⇒∗

G u. When G is
clear from the context, we omit the subscripts. For a nonterminal A ∈ V , let
L∞(G,A) stand for the set {w ∈ Σ∞ : A⇒∞ w}. The language generated by G
is L∞(G) = L∞(G,S).
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Definition 1. A language L ⊆ Σ∞ is a Müller context-free language or an
MCFL if L = L∞(G) for some MCFG G = (V,Σ, P, S,F).

In [11], we studied Büchi context-free languages : a Büchi context-free grammar,
or BCFG is a system G = (V,Σ, P, S, F ) where V,Σ, P and S are the same as in
the case of an MCFG and F ⊆ V is a Büchi acceptance condition. In this case,
a derivation tree t of G has to satisfy the condition that InfLab(π) ∩ F �= ∅ for
each infinite path π of t. The Büchi context-free language, or BCFL generated
by the above BCFG G is L∞(G) = {fr(t) ∈ Σ∞ : t is a derivation tree of G}.
Example 1. The BCFG G = (V,Σ, P, S, {S}) where P = {S → SS, S → ε} ∪
{S → a : a ∈ Σ} generates Σ∞, the set of all countable words over Σ.

It is clear that the class of BCFLs is contained in the class of MCFLs; in [11], it
has been shown that the inclusion is strict. Below we give two further examples
that are MCFLs but not BCFLs.

Example 2. Let Σ be an alphabet and consider the MCFG

G = ({S, I}, Σ, P, S, {{I}}) where
P = {S → a : a ∈ Σ ∪ {ε}} ∪ {S → I} ∪ {I → SI}.

Then L∞(G) is the set of all countable well-ordered words over Σ.
To see this, we show that for each countable ordinal α, the set of those words

u ∈ Σ∞ having order type α is a subset of L. For α = 0 and α = 1 the statement
holds, since S → ε and S → a, a ∈ Σ are productions of G. Assume the claim
holds for each ordinal less than α and let u ∈ Σ∞ be a word having order type
α. Since α can be written as a sum α0 + α1 + . . . of ordinals αi < α, for all
i < ω, u =

∏
i<ω ui for some (possibly empty) words ui, each having order type

less than α. Applying the induction hypothesis we get that S ⇒∞ ui for each
i < ω, and by S ⇒∞ Sω we have S ⇒∞ u proving the claim.

We do not show here that L contains well-ordered words only: in Section 4 we
give a decision procedure using which one can check whether an MCFL given
by an MCFG consists of well-ordered words only.

Example 3. Let Σ be an alphabet and consider the MCFG

G = ({S, I−, I+}, Σ, P, S, {{I−}, {I+}}) where
P = {S → a : a ∈ Σ ∪ {ε}} ∪ {S → I−I+} ∪ {I+ → SI+} ∪ {I− → I−S}.

Then L∞(G) is the set of all countable scattered words over Σ.

By Corollary 5 in [11] it follows that neither the set of all well-ordered words,
nor the set of all scattered words over Σ is a BCFL.

3 A Normal Form

In this section we introduce a notion of normal form for MCFGs, into which
each MCFG can be transformed in polynomial space without increasing the size
of the grammar.
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Given an MCFG G = (V,Σ, P, S,F), we say that a nonterminal A ∈ V is

– accessible from a nonterminal B if B ⇒∞ uAv for some words u, v ∈ Σ∞;
it is called accessible if it is accessible from S;

– (+)-productive if A⇒∞ u for some (nonempty) u ∈ Σ∞;
– useful if it is either productive and accessible; or A = S and P ⊆ {S → ε};
– useless if it is not useful.

Observe that L∞(G) is empty for an MCFG G = (V,Σ, P, S,F) with P �⊆ {S →
ε} if and only if S is useless.

An MCFG G = (V,Σ, P, S,F) is in normal form if it satisfies the following
conditions:

– Either V = {S} and P ⊆ {S → ε}, or G only contains nonterminals which
are both +-productive and accessible;

– If A ∈ V is a nonterminal with A⇒∞ ε, then A→ ε is a production in P .

In view of the following Theorem 1, it is already PSPACE-hard to decide whether
a nonterminal A of an MCFG G is useless or not.

Theorem 1. The following problem is complete for PSPACE: given an MCFG
G, does it hold that L∞(G) = ∅?

This result easily follows from the PSPACE-completeness of the corresponding
problem for Müller tree automata, cf. [13].

Remark 1. Note that the emptiness problem is solvable in polynomial time for
BCFGs, cf. [11].

Since for an MCFG G in normal form we have that L∞(G) = ∅ if and only if
its set of productions is empty, a polynomial space algorithm is the best one we
can hope for, under standard assumptions of complexity theory, for computing
a normal form for an MCFG G. Our next theorem states that this lower bound
is achievable.

Theorem 2. Given an arbitrary MCFG G, one can construct an equivalent
MCFG G′ in normal form using polynomial space, moreover, the size of the
resulting G′ is at most linear in terms of the size of G.

4 Decision Problems

In this section we investigate the complexity of the following decision problems:
given an MCFG G in normal form, decide whether L∞(G) is empty; whether it
contains at least one infinite word; whether it contains only well-ordered words;
whether it contains only finite and ω-words; whether it contains only scattered
words; whether it contains only dense words.

Each of these problems can be shown to be decidable by using the fact that
languages recognized by Müller tree automata are effectively closed under cer-
tain operations such as the Boolean operations together with the fact that the
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emptiness problem is decidable for Müller tree automata. For example, con-
sider the problem of deciding whether L∞(G) contains only finite words, where
G = (V,Σ, P, S,F). One way of solving this problem is by showing that the
tree language L of all derivation trees whose frontier is a finite word in Σ∗ is
Müller recognizable, and then checking whether L ∩ L′ holds, where L′ is the
collection of all derivation trees of G whose root is labeled S and whose frontier
is in Σ∞. However, this general method does not provide the simple characteri-
zations obtained by the direct methods developed in this section and the simple
polynomial time algorithms. Our main results give a nontrivial upper bound for
the complexity of the above questions: all are solvable in polynomial time (in
most cases even linear) if the grammar G is in normal form. By Theorem 2 this
yields a polynomial space upper bound for these questions in the general case.

The first result of this section deals with the complexity of the emptiness
problem, which is trivial when the grammar is in normal form, since if G is
an MCFG is in normal form, then L∞(G) is empty if and only if G has no
productions. For the sake of completeness we record:

Proposition 1. The following problem can be decided in polynomial time: given
an MCFG G = (V,Σ, P, S,F) with no useless nonterminals, is L∞(G) empty?

When G = (V,Σ, P, S,F) is an MCFG, let L∗(G) stand for the language {w ∈
Σ∗ : S ⇒∗ w}. In general, L∗(G) �= L∞(G)∩Σ∗. However, when G is in normal
form, equality holds:

Theorem 3. If G = (V,Σ, P, S,F) is an MCFG in normal form, then L∗(G) =
L∞(G)∩Σ∗. Hence, it can be decided in polynomial time whether an MCFL given
by an MCFG in normal form contains at least one finite word.

Theorem 3 has the following important consequence:

Corollary 1. A language L ⊆ Σ∗ of finite words is context-free if and only if
it is an MCFL.

Next we describe a construction that will be often used in the sequel. Given
an MCFG G = (V,Σ, P, S,F), we define a finite edge-labeled multigraph ΓG as
follows. The set of vertices of ΓG is V ∪Σ. The edge labels are pairs of the form
(α, β) with α, β ∈ (V ∪Σ)∗. There exists an edge from A ∈ V ∪Σ to B ∈ V ∪Σ
labeled (α, β), in notation A

α,β−→B if and only if A→ αBβ is in P .
For an arbitrary set X ⊆ V ∪Σ of symbols let ΓG|X stand for the restriction

of ΓG onto the set X , i.e., for the edge-labeled multigraph with vertex set X and
edges A

α,β−→B with A,B ∈ X and A → αBβ ∈ P . Observe that a symbol B is
accessible from a symbol A (i.e., A ⇒∗ αBβ for some α, β ∈ (V ∪ Σ)∗) if and
only if there exists a path from A to B in ΓG.

Let us call a set F ∈ F of nonterminals viable if there exists a derivation tree
t of G with root symbol S which has an infinite path π such that InfLab(π) = F .

Our first observation concerning ΓG is that viability of a set F ∈ F can be
checked in polynomial time using well-known graph theoretic algorithms.
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Proposition 2. Let G = (V,Σ, P, S,F) be an MCFG without useless nonter-
minals. A set F ∈ F is viable in G if and only if ΓG|F is strongly connected.
Hence, viability of a set F ∈ F can be decided in polynomial time.

Based on that viability and accessibility are both decidable in polynomial time,
we get polynomial time algorithms for deciding whether an MCFL contains an
infinite word; whether it contains a word which is not well-ordered; or whether
it contains an infinite word which is not an ω-word, as stated in the following
characterization theorems.

Theorem 4. Let G = (V,Σ, P, S,F) be an MCFG in normal form and let X ∈
V be a nonterminal. L∞(G,X) contains an infinite word if and only if there
exists an viable set F ∈ F such that some (hence each) member of F is accessible

from X and there is an edge A
α,β−→B in ΓG|F and αβ �= ε.

Hence, it can be decided in polynomial time whether an MCFL given by an
MCFG in normal form contains finite words only.

Theorem 5. Let G = (V,Σ, P, S,F) be an MCFG in normal form. L∞(G)
contains a word which is not well-ordered if and only if there exists a viable set
F ∈ F and an edge A

α,β−→B in ΓG|F with β �= ε.
Hence, it can be decided in polynomial time whether an MCFL given by an

MCFG in normal form contains well-ordered words only.

Theorem 6. Let G = (V,Σ, P, S,F) be an MCFG in normal form. L∞(G)
contains an infinite word which is not an ω-word if and only if there exists a
viable set F ∈ F , nonterminals A,B ∈ V satisfying the following conditions:

– there exists an edge A
α,β−→B with β �= ε;

– some (and hence each) member of F is accessible from B in ΓG;

– there exists some edge C
α′,β′
−→ D in ΓG|F with α′β′ �= ε.

Hence, it can be decided in polynomial time whether an MCFL given by an
MCFG in normal form contains finite and ω-words only.

It is also decidable in polynomial time whether an MCFL given by an MCFG in
normal form contains scattered words only, as stated in the following theorem.

Theorem 7. Let G = (V,Σ, P, S,F) be an MCFG in normal form. The follow-
ing are equivalent:

1. L∞(G) contains a quasi-dense word (i.e., a word which is not scattered).
2. There is a derivation tree t (whose frontier is in Σ∞) such that the full

(infinite) binary tree can be embedded in t, and each infinite subtree of t
contains a leaf labeled by a terminal.

3. There is a derivation tree t (whose frontier is in Σ∞) such that the full
(infinite) binary tree can be embedded in t.

4. There is a nonterminal A and a finite derivation tree t with root label A
which has two leaves x1 and x2 labeled A with the following property: there
is a set F ∈ F such that the set of labels of nonterminals along the path from
the root to xi is equal to F , for i = 1, 2.
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Hence, it is decidable in polynomial time whether L∞(G) contains scattered
words only.

Finally, it is also decidable in polynomial time whether an MCFG generates
dense words only.

Theorem 8. It can be decided in polynomial time whether an MCFL given by
an MCFG in normal form contains dense words only.

5 MCFLs of Scattered Words

For each countable ordinal α we define a set Hα of order types of scattered
countable linear orders as follows. H0 consists of the finite nonzero order types
and for any α > 0, Hα is the smallest set of order types which is closed under
finite sums and contains all the order types of the form

∑
i∈I

τi, where I is either

finite or one of the order types ω, −ω or −ω +ω, and each τi is in Hβi for some
ordinal βi < α.

It is known, cf. [16] that a nonempty countable linear order is scattered if and
only if it is contained in someHα for some (countable) ordinalα. Given a nonempty
countable scattered linear order P , let H(P ) stand for its rank, i.e. the smallest
ordinalα for which the order type of P belongs to Hα. When u is a scattered word,
its rank H(u) is defined as the rank of its underlying linear order.

This section aims at stating the following property of MCFLs: if L is an MCFL
consisting of scattered words, then one of the following cases holds: either there
exists an integer n such that the rank of each member of L is at most n, or L
contains words having rank at least α for every countable ordinal α. Moreover,
it can be decided in polynomial time whether i) or ii) holds, and if i) holds, a
least such integer n can also be computed, still in polynomial time (if L is given
by an MCFG in normal form).

In the rest of this section we consider MCFLs consisting of scattered words
only. For an MCFG G = (V,Σ, P, S,F) and symbols X,Y ∈ V ∪Σ, let us write
X �∞ Y if X ⇒∞ u for some u ∈ (V ∪Σ)∞ with Y occurring infinitely many
times in u. We call a nonterminal A ∈ V reproductive if A �∞ A.

Our first result is that the relation �∞ is computable in polynomial time.

Proposition 3. Suppose G = (V,Σ, P, S,F) is an MCFG in normal form.
Then A �∞ B holds for the symbols A and B if and only if there exists a
viable set F ∈ F such that some (and hence each) member of F is accessible
from A, moreover, B is accessible from some symbol occurring in at least one of
the edge labels of ΓG|F .

The next proposition states that if there exists a reproductive nonterminal, then
words of arbitrarily large rank are contained in the generated language.

Proposition 4. Suppose G = (V,Σ, P, S,F) is an MCFG in normal form such
that L = L∞(G) contains only scattered words. If some nonterminal A ∈ V
is reproductive, then for each countable ordinal α, L contains a word uα with
H(uα) ≥ α.
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On the other hand, if there is no such a nonterminal, then there exists a finite
and computable upper bound of the rank of the members of the language:

Proposition 5. Suppose G = (V,Σ, P, S,F) is an MCFG in normal form con-
taining no reproductive nonterminals such that L = L∞(G) contains scattered
words only.

Then the rank of each nonempty word in L = L∞(G) is at most |V |. Moreover,
for each symbol X ∈ V ∪ Σ, the maximal rank #(X) = max{H(w) : w ∈
L∞(G,X)} can be computed in polynomial time.

Propositions 4 and 5 immediately yield:

Theorem 9. Suppose L is an MCFL containing only scattered words. Then one
of the following cases holds:

i) either there exists a finite bound n such that each word in L has rank at most
n;

ii) or for any countable ordinal α, there exists a word in L with rank at least α.

Moreover, it can be decided in polynomial time whether i) or ii) holds, and if i)
holds, the least such bound n can be computed in polynomial time, if L is given
by an MCFG in normal form.

6 Closure Properties

Most of the closure properties of this section are rather standard, but we include
them for completeness. Set theoretic operations on languages in Σ∞ have their
standard meaning. Suppose that Σ = {a1, . . . , an}, L ⊆ Σ∞ and Li ⊆ Δ∞ for
all 1 ≤ i ≤ n. Then the substitution L[a1 ← L1, . . . , an ← Ln] is defined in the
expected way. Below we define some other operations.

Let L,L1, L2, . . . , Lm ⊆ Σ∞. Then we define:

1. L1L2 = {ab}[a← L1, b← L2] = {uv : u ∈ L1, v ∈ L2}.
2. L∗ = {a}∗[a← L] = {u1 . . . un : n < ω, ui ∈ L}.
3. Lω = {aω}[a← L] = {u0u1 . . . un . . . : ui ∈ L}.
4. L−ω = {a−ω}[a← L] = {. . . un . . . u1u0 : ui ∈ L}.
5. (L1, . . . , Lm)η = {(a1, . . . , am)η}[a1 ← L1, . . . , am ← Lm].
6. L∞ = {a}∞[a← L].

The above operations are respectively called concatenation, star, ω-power, −ω-
power, η-power, and ∞-power.

The class of MCFLs enjoys closure properties similar to the class CFL of
context-free languages (of finite words). In particular, it is closed under substi-
tution (thus it is closed under the operations defined above).

Proposition 6. The class of MCFLs is effectively closed under substitution,
i.e., when L ⊆ {a1, . . . , an}∞, L1, . . . , Ln ⊆ Σ∞ are MCFLs each given by an
MCFG, then an MCFG G with L∞(G) = L[a1 ← L1, . . . , an ← Ln] can be given
effectively.

In particular, the class of MCFLs is closed under binary set union, concate-
nation, star, ω-, η-, ∞-, and (−ω)-power.
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It is well-known that CFL is neither closed under intersection nor under com-
plementation. Hence, by Corollary 1 we have:

Proposition 7. The class of MCFLs is neither closed under intersection nor
under complementation.

Proposition 8. If L is an MCFL, then the languages Lr = {ur : u ∈ L},
Pre(L) = {u : ∃v uv ∈ L}, Suf(L) = {u : ∃v vu ∈ L}, In(L) = {u : ∃v, w vuw ∈
L} and Sub(L), the collection of all words u such that there is an embedding
u ↪→ v for some v ∈ L are also MCFLs.

7 Conclusion, Open Questions

We have defined Müller context-free grammars (MCFGs) generating languages
of countable words, called MCFLs. The class of MCFLs is clearly closed under
substitution and thus enjoys good closure properties. We have studied several
decision problems for MCFLs, mainly motivated by order theoretic properties,
and in each case we have found a polynomial time algorithm for MCFGs in
normal form. The transformation of an arbitrary grammar into normal form
requires polynomial space, but the size of the grammar produced by the algo-
rithm is linear in the size of the input grammar. Among the decision problems,
we showed that it is decidable in polynomial time whether an MCFG in normal
form generates a language of well-ordered, or scattered, or dense words. We have
established a limitedness property: If an MCFL contains only scattered words,
then either the rank of each word of the language is bounded by a fixed integer
n, or for each countable ordinal α there is a word in the language of rank at least
α. Moreover, we have shown that it is decidable which of the two cases applies.

In an earlier paper we studied Büchi context-free languages, or BCFLs. While
every BCFL is an MCFL, there exists an MCFL of scattered, or even well-ordered
words that is not a BCFL. It remains for future research to answer the question
whether there is an MCFL consisting of dense words that is not a BCFL. On
the other hand, it is not difficult to show that every MCFL consisting of finite
or ω-words is a BCFL. By a result in [11], it then follows that an ω-language is
an MCFL if and only if it is context-free in the sense of Cohen and Gold [9].

The equality problem for BCFLs is undecidable, [11], thus it is also undecid-
able for MCFLs. We have not yet studied the question of deciding whether an
MCFG generates a BCFL. Also, it would be interesting to know whether there
is an MCFL of scattered words of rank bounded by an integer n that is not a
BCFL.
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Deterministic Bottom-Up Tree Transducers
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Abstract. We show that for every deterministic bottom-up tree transducer, a
unique equivalent transducer can be constructed which is minimal. The construc-
tion is based on a sequence of normalizing transformations which, among others,
guarantee that non-trivial output is produced as early as possible. For a determin-
istic bottom-up transducer where every state produces either none or infinitely
many outputs, the minimal transducer can be constructed in polynomial time.

Keywords: Bottom-up Tree Transducers, Minimization, Normal form.

1 Introduction

Top-down and bottom-up tree transducers were invented in the 1970s by Rounds and
Thatcher [21,23], and Thatcher [24], respectively. Their expressive powers are incom-
parable, both for nondeterministic and deterministic transducers [4], similar to the fact
that left-to-right and right-to-left string transducers are incomparable (see Section IV.2
in [2]). In 1980 it was shown that equivalence for deterministic transducers is decid-
able both in the top-down [11] and bottom-up case [25]. Later, a polynomial-time al-
gorithm for single-valued bottom-up transducers has been provided [22]. Recently, it
was shown that for total deterministic top-down tree transducers, equivalence can be
decided in polynomial time [10]. The proof relies on a new canonical normal form
for such transducers, called the earliest normal form (inspired by the earliest string
transducers of Mohri [20]). The question arises whether deterministic bottom-up tree
transducers (btt’s) also allow for a similar canonical normal. In this paper we give an
affirmative answer to this question.

We show that for every btt there is a unique equivalent bottom-up transducer in nor-
mal form. The main idea is to unite states which are equivalent with respect to their
behavior on contexts. There are several obstacles for this basic approach. Finite sets
of output trees for a given state could be assembled in several different ways. Even if
infinitely many outputs may occur, still bounded parts of it could be produced earlier
or later. Due to the tree structure of outputs, the output for contexts of states could
agree only for one particular pair of output subtrees. In order to remove these obstacles,
we present a sequence of normal forms of increasing strength. Generating the unique
normal form for a given btt therefore proceeds in four steps: (1) first, we make the trans-
ducer proper, i.e., we remove all output from states which only produce finitely many
different outputs. The output for such states is postponed until a state with infinitely
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many different outputs or the final function at the root of the input tree. This is similar
to the proper normal form of [1,8] (which removes states that produce finitely many
outputs, using regular look-ahead). (2) We make the transducer earliest, i.e., every state
with infinitely many outputs produces output as early as possible during the translation.
(3) We remove pairwise ground context unifiers. It is only in step (4) that we can apply
minimization in the usual way by merging states that are isomorphic. Steps (2)–(4) can
be done in polynomial time, i.e., given a proper transducer, its unique minimal trans-
ducer is constructed in polynomial time. Constructing a proper transducer (Step 1) may
take double-exponential time in the worst case.

Besides equivalence checking, there are many more applications of a canonical nor-
mal form. For instance, it allows for a Myhill-Nerode style theorem, which, in turn can
be used to build a Gold-style learning algorithm; see [19] where both were done for
deterministic top-down tree transducers (ttt’s). As another example, the normal form
can be used to decide certain (semantic) subclasses of btt’s; e.g., we can decide whether
a given btt is equivalent to a relabeling, using the normal form. This provides an alter-
native proof of [16], for the deterministic case.

Related Work. A valid generalization of both, btt’s and ttt’s is the deterministic top-
down tree transducer with regular look-ahead [5]. Even though the equivalence problem
for ttt’s with regular look-ahead is easily reduced to the one for ttt’s [10], it is an intrigu-
ing open problem whether ttt’s with regular look-ahead have a canonical normal form.
Another related model of transformation is the attribute grammar [17], seen as a tree
transducer [13,15]. For attributed tree transducers, decidability of equivalence is still an
open problem, but, for the special subclass of “nonnested, separated” attribute gram-
mars (those which can be evaluated in one strict top-down phase followed by one strict
bottom-up phase) equivalence is known to be decidable [3]. This class strictly includes
ttt’s (but not btt’s [14]).

There are several other interesting incomparable classes of tree translations for which
equivalence is known to be decidable, but no normal form (and no complexity) is
known. For instance, MSO-definable tree translations [9]. This class coincides with
single-use restricted attribute grammars or macro tree transducers with look-ahead [7].
Is there a canonical normal form for such transducers? Another interesting general-
ization are tree-to-string transducers. It is a long standing open problem [6] whether
or not deterministic top-down tree-to-string transducers (ttst’s) have decidable equiva-
lence. Recently, for the subcase of non-copying ttst’s, a unique normal form similar to
the earliest normal form was presented [18]. Can their result be extended to the finite-
copying case? Another recent result states that functional visibly pushdown transducers
have decidable equivalence [12]. This class is closely related to non-copying ttst’s. It
raises the question whether our normal form for btt’s can be extended to functional (but
nondeterministic) bottom-up tree transducers.

2 Preliminaries

Bottom-up tree transducers work on ranked trees. In a ranked tree, the number of chil-
dren of a node is determined by the rank of the symbol at that node. A ranked alphabet
Σ consists of finitely many symbols. Each symbol a ∈ Σ is equipped with a rank in
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{0, 1, . . .}, where rank 0 indicates that a is the potential label of a leaf. We assume that
a ranked alphabet contains at least one symbol of rank 0. The set TΣ of ranked trees
over Σ is the set of strings defined by the EBNF with rules t ::= a(t, . . . , t︸ ︷︷ ︸

k times

) for all

k ≥ 0 and a ∈ Σ of rank k. We also write a for the tree a(). Note that, since there is at
least one symbol of rank 0, TΣ �= ∅. We use the words tree and term interchangeably.

We consider trees possibly containing a dedicated variable y �∈ Σ (of rank 0). Let
TΣ(y) denote this set. On TΣ(y), we define a binary operation “·” by: t1 · t2 = t1[t2/y],
i.e., the substitution by t2 of every occurrence of the variable y in t1. Note that the result
is a ground tree, i.e., does not contain y, iff either t1 ∈ TΣ or t2 ∈ TΣ . Moreover, the
operation “·” is associative with neutral element y. Therefore, the set TΣ(y) together
with the operation “·” and y forms a monoid. Let T̂Σ(y) denote the sub-monoid con-
sisting of all trees which contain at least one occurrence of y. Then TΣ(y) = T̂Σ(y) ∪
TΣ .

Proposition 1. [6]

1. Let s, s′, t1, t2, t′1, t
′
2 ∈ TΣ(y) with t1 �= t2 and t′1 �= t′2. Assume that the two

equalities s · t1 = s′ · t′1 and s · t2 = s′ · t′2 hold. Then one of the following two
assertions are true:
(a) s, s′ ∈ TΣ and s = s′; or
(b) Both trees s and s′ contain an occurrence of y, i.e., are from T̂Σ(y), and

s · u = s′ or s = s′ · u for some u ∈ T̂Σ(y).
2. The sub-monoid T̂Σ(y) is free.

Consider the set T̂Σ(y)⊥ = T̂Σ(y)∪{⊥} of all trees containing at least one occurrence
of the variable y enhanced with an extra bottom element ⊥ (not in Σ ∪ {y}). On this
set, we define a partial ordering by ⊥ � t for all t, and t1 � t2 for t1, t2 ∈ T̂Σ(y) iff
t1 = t′ · t2 for a suitable t′ ∈ T̂Σ(y). The greatest element with respect to this ordering
is y while the least element is given by ⊥. With respect to this ordering, we observe:

1. Every t ∈ T̂Σ(y) has finitely many upper bounds.
2. For every t1, t2 ∈ T̂Σ(y)⊥, there exists a least upper bound t1 
 t2 in T̂Σ(y)⊥.

Since T̂Σ(y)⊥ also has a least element, namely ⊥, we conclude that T̂Σ(y)⊥ is a com-
plete lattice satisfying the ascending chain condition, i.e., every set X ⊆ T̂Σ(y)⊥ has
a least upper bound t =

⊔
X , and there are no infinite strictly ascending sequences

⊥ � t1 � t2 � . . .. We call a tree t ∈ T̂Σ(y) irreducible if t �= y and t � t′ only holds
for t′ ∈ {y, t}.

Let � /∈ Σ ∪ {y} be a new symbol. Assume that c1, c2 ∈ TΣ(y) are trees, and that
there are trees s1, s2 ∈ TΣ(y) ∪ {�} such that c1 · s1 = c2 · s2. Note, that ci · si = ci,
if ci ∈ TΣ . We call c1, c2 unifiable and 〈s1, s2〉 a unifier of c1, c2.

We consider the set D = ({y} × T̂Σ(y)) ∪ (T̂Σ(y)× {y})∪ (TΣ ∪ {�})2 ∪ {⊥} of
candidate unifiers. The set D forms a complete lattice w.r.t. the ordering≤ defined by

– ⊥ ≤ d ≤ 〈�,�〉 for all d ∈ D,
– (d1, d2) ≤ (d′1, d′2) if di = d′i · s for all i ∈ {1, 2} for some tree s ∈ TΣ ∪ {y}, and
– (d1, d2) ≤ (d1,�) and (d1, d2) ≤ (�, d2) if d1, d2 ∈ TΣ .
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The most general unifier mgu(c1, c2) ∈ D for trees c1, c2 ∈ TΣ(y) is the greatest unifier
of c1, c2 w.r.t. the ordering ≤. It is ⊥, if c1, c2 are not unifiable. Furthermore, for a set
of pairs C ⊆ TΣ(y)2 the most general unifier mgu(C) is the least upper bound of the
unifiers of pairs in C, i.e., mgu(C) =

∨
{mgu(c1, c2) | (c1, c2) ∈ C}.

For k ∈ {0, 1, . . .} we denote the set {x1, . . . , xk} of k distinct variables by Xk. We
consider trees with variables at leaves, i.e., trees in TΣ∪Xk

where each variable xi has
rank 0. Let z ∈ TΣ∪Xk

be such a tree. We abbreviate by z[z1, . . . , zk] the substitution
z[z1/x1, . . . , zk/xk] of trees zi for the variables xi (i = 1, . . . , k) in the tree z.

2.1 Bottom-Up Tree Transducers

A deterministic bottom-up tree transducer (btt for short) is a tuple T =(Q,Σ,Δ,R, F ),
where

– Q is a finite set of states,
– Σ and Δ are ranked input and output alphabets, respectively, disjoint with Q,
– R is the (possibly partial) transition function, and
– F : Q→ TΔ(y) is a partial function mapping states to final outputs.

For every input symbol a ∈ Σ of rank k and sequence q1, . . . , qk of states, the transition
function R contains at most one transition, which is denoted by a(q1, . . . , qk) → q(z)
where q ∈ Q and z ∈ TΔ∪Xk

.
For every input symbol a ∈ Σ of rank k and sequence of states q1 . . . qk of Q, let

R(a, q1 . . . qk) be the right-hand side of the transition for a and q1 . . . qk, if it is defined,
and let R(a, q1 . . . qk) be undefined otherwise.

The transducer is total if R(a, q1 . . . qk) is defined for all k ≥ 0, a ∈ Σ of rank k,
and sequences of states q1 . . . qk. The size of T , denoted by |T |, is the sum of sizes (=
number of symbols) of its final outputs and of the left-hand sides and right-hand sides
of its transitions.

Assume that t ∈ TΣ(y) and q ∈ Q. The result [[t]]Tq of a computation of T on input t
when starting in state q at variable leaves y is defined by induction on the structure of t:

[[y]]Tq = q(y)
[[a(s1, . . . , sk)]]Tq = q′(z[z1, . . . , zk])

if ∀i [[si]]Tq = qi(zi) and R(a, q1 . . . qk) = q′(z) .

If [[t]]Tq = q′(z′), then z′ is called the output produced for t. Note that the function [[ . ]]Tq
may not be defined for all trees t. The superscript T can be omitted if T is clear from
the context. If t ∈ TΣ we also omit the subscript q, i.e., we write [[t]]T for [[t]]Tq .

The image τT
q (t) of the tree t is then defined by τT

q (t) = z′ · z iff [[t]]Tq = q′(z) for
some state q′ with F (q′) = z′. We omit the subscript q if the tree t does not contain the
variable y.

We say that two btt’s T and T ′ are equivalent when they describe the same transfor-
mation, i.e., for all t ∈ TΣ , τT (t) is defined iff τT ′

(t) is defined and are equal.
We also use the following notation. The language LT (q) of a state q is the set of all

ground input trees by which q is reached, i.e., LT (q) = {t | ∃s ∈ TΔ : [[t]]T = q(s)}.
A context c is a tree c ∈ T̂Σ(y) which contains exactly one occurrence of y. Let CΣ be
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the set of all contexts. A tree c ∈ CΣ is a context of a state q, if τT
q (c) is defined. Let

CT (q) denote the set of all contexts of state q. The length of a context c is the length
of the path from the root to y. If context c has length n, then there are irreducible trees
c1, . . . , cn such that c = c1 · c2 · . . . · cn.

3 Trim Transducers

Transducers may contain useless transitions or states and we want to get rid of these
while preserving the described transformation. A state q of a btt is reachable, if the
languageLT (q) is non-empty. A state q is meaningful, if q has at least one context, i.e.,
CT (q) is non-empty. Furthermore, the output at state q is potentially useful, if there is a
context c of q such that the image τT

q (c) contains the variable y. Otherwise, the output
at q is called useless. A bottom-up tree transducer T is called trim if T has the following
properties: (1) every state is reachable, (2) every state is meaningful, (3) if the output at
a state q is useless, then for each transition a(q1, . . . , qk) → q(z) leading into state q,
z = ∗. In this definition, ∗ is a special output symbol which does not occur in any image
produced by T . It is well-known that each btt is equivalent to a trim btt.

Proposition 2. For every bottom-up tree transducer T a bottom-up tree transducer T ′

can be constructed in polynomial time with the following properties:

1. T ′is equivalent to T ;
2. |T ′| ≤ |T | ;
3. T ′ is trim.

In the remainder of the paper we consider trim transducers only. For a trim transducer
T with set Q of states, we denote by Q∗ the set of states with useless output, i.e., for
which the output is always ∗.

4 Proper Transducers

For a given trim transducer, there is not necessarily a unique minimal equivalent btt.
Finite outputs of subtrees may be distributed over different states.

Example 3. Assume that Σ = {A,C,H,K,L}, Δ = {a, b, h, l, ∗}, Q1 = {q0, q1, q2},
and Q2 = {q′0, q′1, q′2}. Consider the following transducers:

T1 = (Q1, Σ,Δ,R1, F1) with | T2 = (Q2, Σ,Δ,R2, F2) with
A(q1) → q0(x1) H → q1(b) | A(q′1) → q′0(b) H → q′1(h)
A(q2) → q0(b) K → q1(a) | A(q′2) → q′0(a) K → q′2(∗)
C(q1) → q0(h) L→ q2(∗) | C(q′1) → q′0(x1) L→ q′1(l)
C(q2) → q0(l) F1(q0) = y | C(q′2) → q′0(h) F2(q′0) = y

The transducer T1 to the left produces different outputs for H and K while leading to
the same state, and produces no output for L while leading into a different state. The
transducer T2 to the right, on the other hand, produces different outputs for H and L
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leading into the same state and produces no output for K while leading into a different
state. Both transducers are trim and describe the same transformation τ :

A(H) → b A(L)→ b A(K)→ a C(H) → h C(L)→ l C(K)→ h

It is not clear how a unique normal form for τ with less than three states could look
like. 	

Let T denote a trim transducer with set of states Q. A state q ∈ Q is called essential if
the set of results {[[t]]T | t ∈ LT (q)} for input trees reaching q is infinite. Otherwise, q
is called inessential. Note that all states of the transducers in Example 3 are inessential.

A proper transducer postpones outputs at inessential states. The trim transducer T is
called proper if every inessential state does not produce any output, i.e., is in Q∗. For
every trim transducer there exists an equivalent proper transducer:

Proposition 4. [1,8] For every trim btt T a btt T ′ can be constructed with the following
properties:

1. T ′ is equivalent to T ;
2. T ′ is proper.
3. |T ′| ≤ Γ · |T |

where Γ is the sum of sizes of all outputs produced for inessential states of T .

In the worst case, an inessential state may have exponentially many outputs – even if
the input alphabet has maximal rank 1. In case, that both input and output alphabets
have symbols of ranks greater than 1, doubly exponentially many outputs of inessential
states are possible.

Proof (of Proposition 4 - Sketch). The inessential states are determined by considering
the dependence graph GT = (V,E) where V is the set of states of T , and (qi, q) ∈ E
if there is a transition a(q1, . . . , qk) → q(z) in T and xi occurs in z. We split each
inessential state q into new states 〈q, z〉 where q(z) is a possible result for some input
tree t ∈ LT (q). If q occurs on a left-hand side of a transition as the state for the i-th
argument where the state in the right-hand side is essential, a new transition is generated
where q is replaced with 〈q, z〉 and the corresponding variable xi is replaced with z.
Also, the final function F ′ should be modified accordingly for inessential states. 	

Example 5. Consider again the transducer T1 (to the left) of Example 3. The depen-
dence graph GT1 is ({q0, q1, q2}, {(q1, q0)}). We determine that all states are inessen-
tial. The equivalent proper btt T ′

1 = (Q′
1, Σ,Δ,R′

1, F
′
1) has the following set of states:

Q′
1 = {〈q0, a〉 , 〈q0, b〉 , 〈q0, h〉 , 〈q0, l〉 , 〈q1, a〉 , 〈q1, b〉 , 〈q2, ∗〉} .

Since every state of Q′
1 is inessential, the output is postponed to the final function.

Whereas, the right-hand sides of the transitions R′
1 are of the form 〈q, z〉 (∗), e.g.,

H → 〈q1, b〉 (∗) A(〈q1, b〉) → 〈q0, b〉 (∗) C(〈q1, b〉) → 〈q0, h〉 (∗) .
For the final function, we get

F ′
1(〈q0, b〉) = b F ′

1(〈q0, a〉) = a F ′
1(〈q0, h〉) = h F ′

1(〈q0, l〉) = l .

If we construct T ′
2 for the transducer T2 to the right of Example 3, we get an isomorphic

transducer. Both transducers are proper and realize the transformation τT1 . 	
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5 Earliest Transducers

Assume that we are given a proper btt T . We now want this transducer to produce the
output at essential states as early as possible. Thereto, we compute the greatest common
suffix of all non-ground images of contexts for a state q and produce it at q directly.

For an essential state q, let D(q) denote the set of images z ∈ T̂Δ(y) produced for
contexts of q. Thus, every tree in D(q) contains an occurrence of the variable y. The
greatest common suffix of all trees in D(q) is denoted by gcs(q), i.e.,

gcs(q) =
⊔
D(q)

with respect to the order � on T̂Δ(y) from Section 2.

Proposition 6. For a proper btt T , the trees gcs(q) for all essential states q of T can
be computed in polynomial time.

Proof. Assume that z ∈ TΔ(Xk) and that xi occurs in z. Then suffi(z) denotes the
largest subtree zi of z[y/xi] with the following properties:

– y is the only variable occurring in zi, i.e., zi ∈ T̂Δ(y);
– z[y/xi] = z′ · zi for some z′, i.e., z′ ∈ T̂Δ∪Xk\{xi}(y).

Then the trees gcs(q) are the least solution of the inequations

gcs(qi) $ suffi(gcs(q) · z), a(q1, . . . , qk) → q(z) ∈ R and xi occurs in z,
gcs(q) $ z, F (q) = z and y occurs in z.

Since T is proper, this system contains inequations only for essential states q. Since
the right-hand sides are monotonic, the system has a unique least solution. Since the
complete lattice T̂Δ(y)⊥ satisfies the ascending chain condition, this least solution can
effectively be computed. Using a standard worklist algorithm, it can be shown that each
inequation is evaluated at most O(|T |) times. If we represent elements from T̂Δ(y)
as sequences of irreducible trees, then each right-hand side also can be evaluated in
polynomial time. This proves the complexity bound stated in the proposition. 	


A proper bottom-up tree transducer T is called earliest if the greatest common suffix of
every essential state q equals y.

Theorem 7. For each proper tree transducer T , a tree transducer T ′ can be con-
structed in polynomial time with the following properties:

– T ′ is equivalent to T ;
– T ′ is earliest.

Proof (Sketch). Let T be a proper transducer. According to Proposition 6, we can com-
pute the greatest common suffix gcs(q) for every essential state q of T . The correspond-
ing earliest transducer T ′ has the same set of states as T as well as the same input and
output alphabets, but only differs in the transition function and the final function.

For a right-hand side q(z) of a transition in T , we construct the output of the cor-
responding transition in T ′ in two steps. First, we add to z the greatest common suffix
corresponding to q, i.e., we define z̄ = gcs(q) · z. Then we remove from z̄ the greatest
common suffices of all states corresponding of all variables occurring in z̄ (and z). 	




192 S. Friese, H. Seidl, and S. Maneth

Example 8. Assume that Σ = {A,B,C,E} and Δ = {d, e}. Consider the proper
btt T = (Q,Σ,Δ,R, F ) with set of (essential) states Q = {q1, q2} where the final
function is F = {q1 %→ d(d(y, e), d(y, e))} and the transition function R is given by:

A(q1, q2)→ q1(d(x2, d(x1, e))) E → q1(e)
B(q2)→ q2(d(x1, d(d(e, e), e))) C → q2(e)

To compute the greatest common suffices, we consider the following inequations:

gcs(q1) $ suff1(gcs(q1) · d(x2, d(x1, e))) = d(y, e)
gcs(q2) $ suff2(gcs(q1) · d(x2, d(x1, e))) = y
gcs(q2) $ suff1(gcs(q2) · d(x1, d(d(e, e), e))) = gcs(q2) · d(y, d(d(e, e), e))
gcs(q1) $ F (q1) = d(d(y, e), d(y, e))

For q2, we obtain gcs(q2) = y. Moreover since d(y, e) 
 d(d(y, e), d(y, e)) = d(y, e),
we have gcs(q1) = d(y, e). The final function of the earliest btt for T ′ thus is given by
F ′ = {q1 %→ d(y, y)}. In order to construct the new transition function, first consider
the right-hand side for A(q1, q2) in R′ where R(A(q1, q2)) = q1(d(x2, d(x1, e))). In
the first step, we construct

z̄ = gcs(q1) · d(x2, d(x1, e)) = d(y, e) · d(x2, d(x1, e)) = d(d(x2, d(x1, e)), e) .

From this tree, we remove the suffices for q1 and q2 at the variables x1 and x2, respec-
tively. This results in the tree u = d(d(x2, x1), e). Therefore, we obtain the transition

A(q1, q2)→ q1(d(d(x2, x1), e)) .

Analogously, we obtain the transitions

E → q1(d(e, e)) B(q2) → q2(d(x1, d(d(e, e), e))) C → q2(e) .

6 Unified Transducers

For an earliest btt, contexts of states may disagree except for a pair of output trees.

Example 9. Assume that Σ = {A, . . . , E,G} and Δ = {b, d, e, f, g,⊥}. Consider the
earliest btt T = (Q,Σ,Δ,R, F ) with Q = {q0, q1, q′1, q2, q′2, q3} and R, F given by:

A→ q0(b) B(q0)→ q0(e(x1)) F (q1) = f(y, b)
C(q0)→ q1(x1) D(q0)→ q′1(x1) F (q′1) = f(e(y), y)
E(q0)→ q2(x1) G(q0)→ q′2(x1) F (q2) = y
C(q2)→ q1(e(b)) C(q′2)→ q′1(b) F (q′2) = y
D(q1)→ q3(d(g, x1)) D(q′1)→ q3(d(g, e(x1))) F (q3) = y

For each context c of q2, i.e., c ∈ {C(y), D(C(y))}, the two states q2 and q′2 induce the
same image: τT

q2
(c) = τT

q′
2
(c). But unfortunately, the successor states q1 and q′1 do not

have this property. Both states are essential and have the same contexts. The images of
the context D(y), τT

q1
(D(y)) = d(g, y) and τT

q′
1
(D(y)) = d(g, e(y)), differ only in the

suffix e(y). The images of the context y are τT
q1

(y) = f(y, b) and τT
q′
1
(y) = f(e(y), y).

If y is substituted by b in the image at q′1 and e(b) at q1, they become equal. Thus, for
each context c of q1, we get τT

q1
(c) · e(b) = τT

q′
1
(c) · b. 	
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Assume that T = (Q,Σ,Δ,R, F ) is an earliest btt and that q1, q2 ∈ Q are states.
Assume that q1 and q2 have the same contexts, i.e., CT (q1) = CT (q2). Then, we define
the most general unifier of q1, q2, mgu(q1, q2), as the most general unifier of the set
C = {(τT

q1
(c), τT

q2
(c)) | c ∈ CT (q1)} of pairs of images of contexts of q1 and q2, i.e.,

mgu(q1, q2) = mgu(C). Otherwise, we set mgu(q1, q2) = ⊥. We call q1, q2 unifiable
if the most general unifier is not⊥.

The most general unifier mgu(q1, q2) = 〈s1, s2〉 for unifiable states q1, q2 has the
following properties:

– If qi is inessential, then for every context c of qi, τT
qi

(c) ∈ TΔ. Therefore, si = �.
– Moreover, s1 contains y iff s2 contains y. If both s1 and s2 contain y, the mgu must

equal 〈y, y〉, otherwise T would not be earliest.

A ground term s is called realizable in a state q if s is contained in the set of outputs of
q. Note that the ground terms s occurring in most general unifiers of states are, however,
not necessarily realizable. The earliest btt T is called unified earliest if no ground term
in most general unifiers of states of T is realizable. In the following, we show that for
every earliest btt, a unified earliest btt can be constructed in polynomial time. For this
construction, we require the following observation.

Theorem 10. Assume that T is an earliest bottom-up tree transducer. Then all most
general unifiers mgu(q1, q2) can be constructed in polynomial time.

Assume now that we are given the most general unifier of an earliest btt T . Then we
can construct a unified earliest transducer T ′ which is equivalent to T . We have:

Theorem 11. For each earliest btt T , a btt T ′ can be constructed in polynomial time
with the following properties:

– T ′ is equivalent to T ;
– T ′ is unified earliest.

Proof (Sketch). Let T be an earliest btt. We construct the unified earliest btt T ′.
First, we introduce new states. Whenever an output s of an input t at state q is pro-

duced by T which will contribute to a ground unifier of q, then the computation on t is
redirected to a new state 〈q, s〉which memorizes s and does produce ∗ only. Instead, the
output s is delayed to the images of the contexts. This implies that the new state 〈q, s〉
is inessential. Furthermore, for states q′ used to evaluate subtrees of t whose outputs s′

may contribute to s, further states 〈q′, s′〉 should be introduced.
Some of the new states 〈q, s〉 now may be unreachable. The transducer T ′ therefore

is defined as the trim transducer, obtained according to Proposition 2. 	


Example 12. Consider again the transducer T = (Q,Σ,Δ,R, F ) of Example 9. The
most general unifiers are

mgu(q1, q′1) = 〈e(b), b〉 , mgu(q2, q′2) = 〈�,�〉 ,

and mgu(q, q′) = ⊥, otherwise. We get the set S = {e(b), b,⊥} of subterms of terms
occurring as ground unifiers of states or ⊥. All states of Q× S are possible new states.
Except from 〈q3, b〉 and 〈q3, e(b)〉 all are reachable.
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Starting with left-hand side A, we get the new transitionA→ 〈q0, b〉 (∗), because b ∈
S. Furthermore, for the transitionB(q0)→ q0(e(x1)) we get the transitionB(〈q0, b〉)→
〈q0, e(b)〉 (∗), because e(x1)[b/x1] = e(b) ∈ S. Now, consider the left-hand side
B(〈q0, e(b)〉). The potential output e(x1)[e(b)/x1] = e(e(b)) is not in S. Thus, the
right-hand side should be 〈q0,⊥〉 (e(e(b))). And for the left-hand side B(〈q0,⊥〉), we
get the transition B(〈q0,⊥〉) → 〈q0,⊥〉 (e(x1)). 	


7 Minimal Transducers

Last, we merge equivalent states by preserving the properties of an unified earliest btt.
Let ∼′ denote the smallest equivalence relation with the following properties:

– If mgu(q, q′) = 〈y, y〉 or mgu(q, q′) = 〈�,�〉 then q ∼′ q′;
– Assume that mgu(q, q1) = 〈�, s1〉 for some ground term s1. If for all q2 with

mgu(q, q2) = 〈�, s2〉 for some s2 �= �, mgu(q1, q2) = 〈y, y〉 holds then q ∼′ q1.

The relation ∼ is the greatest equivalence relation which is a refinement of ∼′ such
that, q1 ∼ q2 whenever for every symbol a ∈ Σ of rank k, every 1 ≤ i ≤ k,
and all states p1, . . . , pi−1, pi+1, . . . , pk ∈ Q, the following holds. There is a transition
a(p1, . . . , pi−1, q1, pi+1, . . . , pk)→ q′1(z1) in R iff there is a transition in R of the form
a(p1, . . . , pi−1, q2, pi+1, . . . , pk)→ q′2(z2). If such two transitions exist then q′1 ∼ q′2.

A unified earliest transducer T = (Q,Σ,Δ,R, F ) is said to be minimal iff all dis-
tinct states q1, q2 ∈ Q are not equivalent, i.e., q1 �∼ q2.

Theorem 13. For each unified earliest btt T a unified earliest btt T ′ can be constructed
in polynomial time with the following properties:

– T ′ is equivalent to T ;
– T ′ is minimal;
– |T ′| ≤ |T |.

Proof. Let T = (Q,Σ,Δ,R, F ) be an earliest btt. By fixpoint iteration, we compute
the equivalence relation ∼ on Q. Now, we build a transducer T ′ with the equivalence
classes of ∼ as states. Let [q] = {q′ | q ∼ q′} the equivalence class of q. We call [q]
inessential, if all states in [q] are inessential. Otherwise, it is called essential. For each
class [q] we mark a representative state pq ∈ Q, which is essential iff [q] is essential.

Formally, we get T ′ = (Q′, Σ,Δ,R′, F ′) with Q′ = {[q] | q ∈ Q}. The function F ′

is given by F ′([q]) = F (pq). And for R′, assume that q1, . . . , qk ∈ Q are representa-
tives of their equivalence classes and that a(q1, . . . , qk) → q(z) ∈ R.

– If q is essential, then a([q1], . . . , [qk]) → [q](z) ∈ R′.
– If pq is inessential, then a([q1], . . . , [qk]) → [q](z) ∈ R′.
– Otherwise, if mgu(q, pq) = 〈�, s〉, then a([q1], . . . , [qk]) → [q](s) ∈ R′.

By induction on the depth of input trees t and length of contexts c, we obtain:

– ∀t ∈ TΣ : [[t]]T
′
= [q](z) iff ∃q′ ∈ [q] with [[t]]T =

⎧
⎨

⎩

q′(z) mgu(q′, pq) = 〈y, y〉
q′(z) mgu(q′, pq) = 〈�,�〉
q′(∗) mgu(q′, pq) = 〈�, z〉
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– ∀c ∈ T̂Σ(y) : τT ′
[q] (c) = z iff τT

pq
(c) = z.

It follows that τT = τT ′
and that T ′ is trim, proper, earliest, and unified. 	


In the following, we show that the equivalent minimal btt for a given earliest unified btt
is unique. Let T1 = (Q1, Σ,Δ,R1, F1) and T2 = (Q2, Σ,Δ,R2, F2) be two equiv-
alent minimal btt’s, i.e. τT1 = τT2 . We abbreviate the output of a tree t ∈ TΣ in a
transducer Ti as outTi(t), i.e., it exists a state q in Qi with [[t]]Ti = q(outTi(t)).

For each state q ∈ Q1 a state rq ∈ Q2 is said to be related to q, if both are reached
by at least one same input tree, i.e., ∃t ∈ LT1(q) ∩ LT2(rq). If the transducers are
trim, for each state q ∈ Q1 exists at least one related state rq: If q is reachable, there
exists t ∈ LT1(q). Since q is meaningful, there should also exist a state rq ∈ Q2 with
t ∈ LT2(rq). We will show that there exists exactly one related state for each q ∈ Q1.
That will give us a mapping from T1 to T2.

Lemma 14. Assume T1 and T2 are two minimal transducers which are equivalent.
Then for each state q of T1 there exists exactly one related state rq in T2. And the
following holds:

– Every context c of q is a context of rq and τT1
q (c) = τT2

rq
(c);

– LT1(q) = LT2(rq) and for each input tree t holds [[t]]T1 = q(z) iff [[t]]T2 = rq(z).

Theorem 15. The minimal transducer T for a transformation τ is unique.

Proof (Sketch). Assume T1 and T2 are minimal transducers with τT1 = τT2 , and define
a mapping ϕ : Q1 → Q2 by ϕ(q) = rq where rq is the related state of q. By the
previous lemma, this mapping is well-defined and bijective. It remains to show that ϕ
is an isomorphism w.r.t. the transition and final functions, i.e.,

1. F1(q) is defined iff F2(ϕ(q)) is defined, and if they are defined, F1(q) = F2(ϕ(q)),
2. a(q1, . . . , qk)→ q0(z0) ∈ R1 ⇔ a(ϕ(q1), . . . , ϕ(qk)) → ϕ(q0)(z0) ∈ R2. 	


Summarizing, we obtain from Propositions 2, 4 and Theorems 7, 11, 13 and 15:

Theorem 16. For each btt T an equivalent minimal transducer can be constructed
which is unique up to renaming of states. If the btt T is already proper, the construction
can be performed in polynomial time. 	


8 Conclusion

We have provided a normal form for deterministic bottom-up tree transducers which
is unique up to renaming of states. In case that the btt is already proper, i.e., does only
produce output at essential states, the construction can be performed in polynomial time
— given that we represent right-hand sides compactly. Though similar in spirit as the
corresponding construction for top-down deterministic transducers, the given construc-
tion for btt’s is amazingly involved and relies on a long sequence of transformations of
the original transducer to rule out anomalies in the behavior of the transducer.

It remains to future work to evaluate in how far our novel normal-form can be
applied, e.g., in the context of learning tree-to-tree transformations.
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Abstract. We show that each n-state unary 2nfa (a two-way nonde-

terministic finite automaton) can be simulated by an equivalent 2ufa
(an unambiguous 2nfa) with a polynomial number of states. Moreover,

if L = NL (the classical logarithmic space classes), then each unary 2nfa
can be converted into an equivalent 2dfa (a deterministic two-way au-

tomaton), still keeping polynomial the number of states. This shows a

connection between the standard logarithmic space complexity and the

state complexity of two-way unary automata: it indicates that L could

be separated from NL by proving a superpolynomial gap, in the number

of states, for the conversion from unary 2nfas to 2dfas.
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1 Introduction

Already in 1959, in the period of the early research on finite automata, Rabin and
Scott [14] and Shepherdson [19] independently discovered that the capability of
moving the input head in both directions does not increase the recognition power
of finite memory devices, namely, of two-way deterministic or nondeterministic
finite automata (2dfas or 2nfas, for short). Both these devices can recognize
only regular languages, exactly as their one-way deterministic and nondeter-
ministic counterparts (1dfas and 1nfas). Since then, several results comparing
the succinctness of the description of regular languages by different kinds of
automata have been obtained. (Further references can be found in [2]).

However, despite all this effort, the question posed by Sakoda and Sipser
in 1978 [17] about the existence of a polynomial simulation of 2nfas by 2dfas
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is still open.1 Several authors attacked this problem, obtaining some results for
restricted models (e.g, sweeping automata [13,20], oblivious automata [6], unary
automata [4], deterministic moles [8]). However, a solution to the general problem
seems to be very far.

In this paper we consider two-way unary automata, i.e., two-way automata
with a single-letter input alphabet. We first show how to reduce the membership
problem for a unary language, represented by a 2nfa, to the graph accessibility
problem (GAP), which is the problem of deciding whether a directed graph con-
tains a path connecting two designated vertices. GAP is known to be a complete
problem for logarithmic space [18]. That is, GAP belongs to NL, the class of lan-
guages accepted by O(log n) space bounded nondeterministic Turing machines,
and its membership in L, the analogous class for deterministic machines, would
imply L = NL, solving a longstanding open problem in space complexity. Thus,
our reduction provides a bridge between the state complexity of two-way unary
automata and the classical space complexity. This allows us to derive the main
contributions.

One of our contributions concerns two-way unambiguous automata (2ufas).
We recall that a nondeterministic device is called unambiguous if it presents
at most one accepting computation on each input. Comparisons between deter-
ministic, unambiguous, and nondeterministic computational models have been
widely considered in the literature. ([11,15,16] are just three examples.) Unam-
biguous representation of languages is not only of theoretical interest, but plays
also an important role in applications, e.g., in parser construction. In the con-
text of nonuniform space complexity, Reinhardt and Allender [16] proved that
nondeterministic computations in logarithmic space can be made unambiguous.
Combining this with our reduction from 2nfa languages to GAP, we obtain a
polynomial simulation of unary 2nfas by 2ufas. In other words, each unary
2nfa can be made unambiguous with a polynomial increasing in the number of
the states.

The other contribution presented in our paper relates the above mentioned
Sakoda-Sipser’s question to the L ?= NL problem. To the best of authors’ knowl-
edge, the only connection at the moment seems to be the one stated by Berman
and Lingas in 1977 [1]:

If L = NL, then there exists a polynomial p such that, for each integer m
and each k-state 2nfa A, there exists a p(mk)-state 2dfa A′ accepting a
language L(A′) ⊆ L(A) such that L(A′) and L(A) agree on all strings of
length smaller than or equal to m, i.e., L(A′) ∩Σ≤m = L(A) ∩Σ≤m.

In the invited paper of Kapoutsis at DLT’09 [9, p.51], the same result is presented
by replacing “k-state 2nfa A” with an automaton recognizing the language Ck,
presented in the paper of Sakoda and Sipser [17]. This language (actually, this se-
quence of languages) is “complete” for the reduction of 2nfas to 2dfas. (Kapout-
sis calls this language two-way-livenessk):

1 Unless otherwise stated, “polynomial simulation” means polynomial in the number

of the states throughout the paper.
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If L = NL, then there exists a polynomial p such that, for each integer k, there
exists a p(k)-state 2dfa able to decide the two-way-livenessk correctly on
every p(k)-long input.

In the paper of Sipser on sweeping automata [20], a similar condition is presented
for one-way-livenessk, which is a complete problem for the reduction from
1nfas to 2dfas, and sweeping automata:

If L = NL, then there exists a polynomial p such that, for each integer k,
there exists a p(k)-state sweeping automaton accepting the set of strings of
length at most k in one-way-livenessk.

All these conditions can be rewritten as sufficient conditions for L �= NL. The
resulting conditions require the separation of 2dfas from 2nfas of polynomial
size on “short” inputs (of polynomial length).2

In this paper, we shall prove that L = NL would imply a polynomial simula-
tion of unary 2nfas by 2dfas. Hence, also this result gives a sufficient condition
for L �= NL. This condition, compared with that of Berman and Lingas [1],
restricts the set of candidates to unary automata, but completely removes the
restriction on the input length. So it seems not to be comparable with the pre-
vious conditions, but it seems more natural and understandable.

In [4], it was shown that each n-state unary 2nfa can be simulated by a 2dfa
with O(n�log(n+1)+3�) states. Hence, the cost of the simulation of unary 2nfas
by 2dfas is subexponential. In the light of our new result, an argument showing
the tightness of this upper bound or a different (but still superpolynomial) lower
bound would imply L �= NL. At the moment, the best known lower bound is
quadratic [3].

2 Preliminaries

Let us start by briefly recalling some basic definitions from automata theory.
For a detailed exposition, we refer the reader to [5]. Given a set S, |S| denotes
its cardinality and 2S the family of all its subsets.

A two-way nondeterministic finite automaton (2nfa, for short) is defined as
a quintuple A = (Q,Σ, δ, qI, F ), in which Q is a finite set of states, Σ is a finite
input alphabet, δ : Q × (Σ ∪ {',(}) → 2Q×{−1,0,+1} is a transition function,
where ',( /∈ Σ are two special symbols, called the left and the right endmarkers,
respectively, qI ∈ Q is an initial state, and F ⊆ Q is a set of final states. The
input is stored onto the input tape surrounded by the two endmarkers, the left
endmarker being at the position zero. In one move, A reads an input symbol,
changes its state, and moves the input head one position forward, backward, or
keeps it stationary depending on whether δ returns +1, −1, or 0, respectively.
The machine accepts the input, if there exists a computation path from the
initial state qI with the head on the left endmarker to some final state q ∈ F .
2 Kapoutsis [8,9] observes that even a separation with exponentially long strings ap-

pears to be hard.
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The language accepted by A, denoted by L(A), consists of all input strings that
are accepted.

The 2nfa A is said to be deterministic (2dfa), whenever |δ(q, σ)| ≤ 1, for any
q ∈ Q and σ ∈ Σ ∪ {',(}. As an intermediate model between 2nfa and 2dfa,
the 2nfa A is called unambiguous (2ufa), if there exists at most one accepting
computation path for each input. It is said to be sweeping [20], if it is deter-
ministic and input head reversals are allowed only at the endmarkers. This last
notion can be relaxed by allowing nondeterministic choices at the endmarkers,
but keeping the other restrictions. In this case the 2nfa is said to be quasi
sweeping [12].

An automaton A is almost equivalent to an automaton A′, if the languages
accepted by A and A′ coincide, with the possible exception of a finite number of
strings. If there are no exceptions, then A and A′ are (fully) equivalent.

An automaton working over a single letter alphabet is called unary. For such
automata, we shall fix the input alphabet to Σ = {a}.

We assume that the reader is familiar with the standard Turing machine
model and the basic facts from space complexity theory. Our Turing machine
(both deterministic and nondeterministic) is equipped with a finite state control,
a two-way read-only input tape, with input enclosed in between two endmarkers,
and a separate semi-infinite two-way read-write worktape, initially empty. Such
machine is s(n)-space bounded, if no computation uses more than s(n) worktape
cells, for each input of length n.

The class of languages accepted in s(n) ≤ O(log n) space by deterministic
Turing machines is denoted by L, while the corresponding classes for nondeter-
ministic and unambiguous machines by NL and UL.

A deterministic transducer is an ordinary s(n)-space bounded Turing ma-
chine, equipped with an additional one-way write-only output tape, initially
empty.

We also assume that the reader is familiar with basic notions from graph
theory, in particular, with the notion of labeled and directed graph and the notion
of a path in a directed graph.

The graph accessibility problem is the problem of deciding, for a given directed
graph G = (V,E), with V = {v1, . . . , vN}, whether there exists a path from v1

to vN . We assume that the graph is presented on the input tape of a Turing ma-
chine in the form of a binary adjacency matrix, written row by row, in which gi,j

(the element at row i and column j) is equal to 0 or 1 depending on whether
(vi, vj) ∈ E. Clearly, the size of this matrix is N ×N , its length is N2, and gi,j is
written at the bit position (i−1) ·N + j. As customary for decision problems,
the set of all directed graphs coded in this way, for which the graph accessibility
problem has a positive answer, will be denoted by GAP.

It is an open problem whether L = NL. In [18], it was shown that GAP is an
NL-complete problem. Hence, GAP ∈ NL and, moreover, GAP ∈ L if and only
if L = NL.



Two-Way Unary Automata versus Logarithmic Space 201

3 Reducing Unary 2NFA Acceptance to GAP

In this section we show how to reduce the membership problem for a language
accepted by a given unary 2nfa to the graph accessibility problem in a given
directed graph. To this aim, we shall use the following result, which allows us to
consider 2nfas in a special form:

Theorem 1 ([4, Thm. 2]). Each n-state unary 2nfa A can be transformed
into a 2nfa M such that:

– M has at most N ≤ 2n+ 2 states.
– M is quasi-sweeping (i.e., input head reversals and nondeterminism are per-

formed only at the endmarkers).
– M and A are almost equivalent, in particular, the accepted languages coincide

for all inputs of length greater than 5n2.

By Theorem 1, an accepting computation of M is a sequence of deterministic
traversals of the input, ending in a final state. Nondeterministic decisions are
taken only when the input head is visiting one of the endmarkers. Actually, the
statement of Theorem 1 does not show all the features of the automaton M . We
now present further details about its structure. These details, shown in [4], will
turn out to be useful to state our results.

Let M be denoted as a quintuple (Q, {a}, δ, qI, {qF}). (As explained below,
M has a unique final state.) According to Theorem 1, n denotes the number of
the states in the original automaton A from which M is derived. Thus, |Q| =
N ≤ 2n + 2.

The set of states of M is the union of s + 1 disjoint nonempty sets {qI, qF},
Q1, . . . , Qs, for some s, such that:

– The set {qI, qF} consists of the initial and final states only, with qI �= qF.
– Each of the sets Q1, . . . , Qs represents either a “positive” or a “negative”

loop, used to traverse the input tape from the left endmarker (right, re-
spectively) to the opposite endmarker. Essentially, during each traversal of
the input, one of these sets is used to count the input length modulo one
integer. More precisely, for each i = 1, . . . , s, there exist some �i > 0 and
di ∈ {−1,+1} such that:
• Qi = {qi,0, qi,1, . . . , qi,�i−1},
• δ(qi,j , a) = {(qi,(j+1) mod �i

, di)}, for j = 0, . . . , �i−1.
Note that the transitions from the states in Qi are deterministic in the middle
of the input. However, at the endmarkers, there may exist other transitions
from these states. If di = +1 (di =−1, respectively), the set Qi is called a
positive loop of length �i (negative, respectively) and its states are called
positive (negative).

– Let Q+ and Q−, respectively, denote the sets of positive and negative states,
i.e., Q+ =

⋃
di=+1 Qi and Q− =

⋃
di=−1 Qi. In [4], it was shown that |Q+| ≤

n and |Q−| ≤ n.
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Now we can give further details concerning the transition function of M and
the structure of accepting computations:

– The initial state qI is used only at the beginning of the computation. From
this state, scanning the left endmarker, the machine switches to some positive
state, to start its first left-to-right traversal. Hence, δ(qI, σ) � (q, d) implies
that σ =', q ∈ Q+, and d=+1.

– As already described, in a left-to-right traversal, only states from some pos-
itive loop Qi ⊆ Q+ are used, until the machine reaches the right endmarker.
At this endmarker, by a nondeterministic transition, the machine chooses
a negative state and moves the head one position to the left, to start a
right-to-left traversal. Hence, for q ∈ Q+, δ(q, σ) � (p, d) implies that either
σ = a, with p ∈ Q+ and d=+1 (deterministic transition in the course of a
left-to-right traversal), or σ =(, with p ∈ Q− and d=−1 (switching from a
left-to-right traversal to some right-to-left traversal at the right endmarker).

– In a right-to-left traversal, one negative loop is used in a similar way. The
only difference is at the left endmarker, where the machine can also switch
to the final state qF without moving the head, in order to accept the input.
Hence, for q ∈ Q−, δ(q, σ) � (p, d) implies one of the following three cases:
σ = a, with p ∈ Q− and d=−1 (deterministic transition in the course of a
right-to-left traversal), or σ =', with p ∈ Q+ and d=+1 (switching from a
right-to-left traversal to some left-to-right traversal at the left endmarker),
or σ =', with p = qF and d=0 (acceptance at the left endmarker).

– For completeness, no moves are defined from the final state qF, in which the
machine halts and accepts. Note also that qF can only be reached at the left
endmarker.

By the previous description, one can observe that the behavior of M while scan-
ning “real” input symbols is very restricted. In order to formalize this point and,
at the same time, to simplify the discussion, it is useful to introduce a further
notation.

Let p, q be two states of a unary two-way automaton M in the “normal form”
introduced by Theorem 1. Then, for an integer m ≥ 0, we write p

m

� q (q
m

� p,
respectively) if and only if M , starting from the state p with the input head
scanning the left (right, respectively) endmarker, can reach the state q with the
head scanning first symbol to the right (to the left) of am, by a sequence of moves
that keep the head inside the tape segment 'am (inside am() in the meantime.

Lemma 2. Given p, q ∈ Q and an integer m ≥ 0, the following statements hold:

– p
m

� q if and only if p ∈ Q− ∪ {qI}, q ∈ Qi for some positive loop Qi ⊆ Q+

of length �i, and p
r

� q, where r = m mod �i.
– q

m

� p if and only if p ∈ Q+, q ∈ Qi for some negative loop Qi ⊆ Q− of
length �i, and q

r

� p, where r = m mod �i.

We can now introduce a directed labeled graph G = (Q,E, Ψ) which provides a
different description of M and of its computations. This will play a fundamental
role in proving the main results.



Two-Way Unary Automata versus Logarithmic Space 203

– The vertex set of G coincides with the set Q of the states in M , the set of
edges is E = Q×Q.

– The edge (p, q) is labeled by a pair Ψp,q = (�, R), for some integer � ≥ 1 and
some R ⊆ {0, . . . , �−1}.

We first describe the labeling function in an informal way. For our purposes, the
“significant” part of E is restricted to ({qI}×Q+) ∪ (Q+×Q−) ∪ (Q−×Q+) ∪
(Q−×{qF}). Given p, q ∈ Q, we want to use the label Ψp,q to characterize the set
of all integers m such that M , scanning the left/right endmarker of the input
tape 'am( in the state p, can reach the state q with the head scanning one of the
endmarkers again, by a sequence of moves that do not visit any of the endmarkers
in the meantime. Typically, p, q are placed at the opposite endmarkers and hence
Ψp,q characterizes the set of all integers m such that p

m

� q or q
m

� p, depending
on whether p ∈ Q−∪{qI} or p ∈ Q+, respectively, i.e., on whether we characterize
a left-to-right or right-to-left traversal. By Lemma 2, such integers m are exactly
those satisfying a condition of the form m mod � = r, where � depends only on q
while r depends on both p and q. Namely, if q ∈ Qi, then � = �i. However,
transitions from p at one of the endmarkers may be nondeterministic, possibly
choosing several different states within the same loop Qi. Hence, there may exist
several different values of r for the same pair p, q. For these reasons, Ψp,q keeps
a single value � but uses a set of possible values r ∈ R.

As a special case, for δ(p,') � (qF, 0) and q = qF, the label Ψp,q does not de-
pend on the length of the input and should characterize the set of all integers m.
This can be accomplished by taking Ψp,q = (1, {0}), since m mod 1 = 0 for each
m ≥ 0. Similarly, if M can never get from p to q by a computation not visiting
any of the endmarkers in the meantime (as an example, if both p and q belong
to Q+), we can take Ψp,q = (1, ∅), since m mod 1 /∈ ∅ for any m.

Formally, Ψ is defined as follows:

Ψp,q =

⎧
⎪⎪⎨

⎪⎪⎩

(�i, {r ∈ {0, . . . , �i−1} | p r

� q}), if p ∈ Q− ∪ {qI} and q ∈ Qi ⊆ Q+,

(�i, {r ∈ {0, . . . , �i−1} | q r

� p}), if p ∈ Q+ and q ∈ Qi ⊆ Q−,
(1, {0}), if p ∈ Q−, q=qF, and δ(p,')�(qF, 0),
(1, ∅), otherwise.

Notice that we can also obtain Ψp,q = (�i, ∅) if, from the state p at one of the
endmarkers, it is not possible to switch to any state in the loop Qi containing q.

The main property of the graph G is given in the following lemma, which is
an immediate consequence of Lemma 2, combined with the definition of Ψ :

Lemma 3. Given p, q ∈ Q and an integer m ≥ 0, the automaton M , scanning
one of the endmarkers of the input tape ' am ( in the state p, can reach the
state q with the head scanning one of the endmarkers again, by a sequence of
moves that do not visit any of the endmarkers in the meantime, if and only if
Ψp,q = (�, R) and m mod � ∈ R.

As a consequence of Lemma 3, computations of M can be described by paths in
the graph G, where only some of the edges are allowed, depending on the input
length, and vice versa.
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For each given input am, we can restrict G to the edges that are valid for am.
To this aim, we now introduce another graph G(m) = (Q,E(m)), depending on
the input am. The graph G(m) uses the same set of vertices, namely, the state
set Q. The edges are not labeled, but filtered as follows:

E(m) = {(p, q) ∈ Q×Q | Ψp,q = (�, R) with m mod � ∈ R} .

Theorem 4. For each m ≥ 0, the input am is accepted by M if and only if qF

is reachable from qI in the graph G(m).

Proof. Consider an accepting computation of M on the input tape ' am ( and
the sequence of all the states qI, p1, . . . , pt, qF reached with the input head visiting
one of the endmarkers. With the exception of the final state qF, we can observe
that the state ph is reached at the left endmarker, if the value of h is even, while
it is reached at the right endmarker, if h is odd, taking qI = p0. Since the final
state can be reached from pt only via a stationary move at the left endmarker,
t must be even and pt ∈ Q−. Summing up:

– The initial state qI coincides with p0.
– For each h = 1, . . . , t, M gets from the state ph−1 to ph by making a traversal

across the input am, and hence ph−1
m

� ph or ph
m

� ph−1, depending on
whether h is odd or even, respectively. In both cases, by Lemma 3, we get
(ph−1, ph) ∈ E(m).

– δ(pt,') � (qF, 0). Hence, Ψpt,qF = (1, {0}), which gives (pt, qF) ∈ E(m), for
each m.

So, we easily conclude that there is a path from qI to qF in G(m).
Conversely, given a path qI, p1, . . . , pt, qF in the graph G(m), using Lemma 3

again, we can observe that, for each h = 1, . . . , t, the edge (ph−1, ph) represents a
left-to-right or a right-to-left traversal of the input, depending on the parity of h.
Combining these traversals together, we get an accepting computation of M for
the input am. 	


In Theorem 4, we provided a reduction from L(M) to GAP. This is enough for
our purposes. However, for the sake of completeness, we mention how to get a
reduction to GAP for the original 2nfa A. Recall that M , obtained by the use of
Theorem 1, is only almost equivalent to the original A: the languages accepted
by A and M may differ in finitely many “exceptions”, the length of which is
bounded by 5n2, where n denotes the number of states in A. Hence, for m ≤ 5n2,
we can replace the graph G(m), defined above, by a graph consisting just of two
vertices qI, qF. Depending on whether am ∈ L(A), they are (are not) connected
by the edge (qI, qF).

We conclude this section by observing that the existence of each edge in E(m)
can be determined using a finite control with at most n states:

Lemma 5. For each two states p, q of M , there exists a unary deterministic fi-
nite automaton Ap,q with at most n states, such that for each m ≥ 0, Ap,q accepts
am if and only if (p, q) ∈ E(m).
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4 Polynomial Deterministic Simulation (Assuming
L=NL)

Under the hypothesis L = NL, we prove here that each unary n-state 2nfa A
can be simulated by an equivalent 2dfa with a number of states polynomial in n.
Roughly speaking, we shall use a 2dfa which computes the reduction presented
in Section 3 and simulates, in its finite control, a deterministic logarithmic space
bounded machine accepting GAP. The next lemma describes such a simulation.

Here we use the same notation as in Section 3, in particular, n and N denote,
respectively, the number of states in the original 2nfa A and in the almost
equivalent M obtained according to Theorem 1, with N ≤ 2n+2. The set of
states in M will be enumerated by Q = {v1, . . . , vN}, with qI = v1 and qF = vN .

Lemma 6. If L = NL, then there exists a polynomial p such that the 2nfa M
can be simulated by a 2dfa M ′ with at most p(N) states.

Proof. If L = NL, there must exist DGAP, a deterministic logarithmic space
bounded Turing machine accepting GAP. We can assume that DGAP has a two-
way read-only input tape which contains a representation of a graph with N
vertices, given by its adjacency matrix.

Now, our goal is to devise a 2dfa M ′ such that, for a given input string am,
m ≥ 0, it decides whether or not am ∈ L(M). To this aim, consider the
graph G(m). By Theorem 4, am ∈ L(M) if and only if G(m) ∈ GAP. Thus,
by presenting the adjacency matrix of G(m) as an input to the machine DGAP,
M ′ can correctly decide whether am ∈ L(M).

Since the length of G(m) coded by the adjacency matrix is N2, the machine
DGAP works in space O(log(N2)) ≤ K·logN , for a suitable constant K. However,
N does not depend on the input length m, and hence this amount of space is
fixed. This allows us to encode the entire worktape of DGAP in the control of a
finite state machine.

The critical point of the simulation is that the input tape of M ′ contains
the input string am, while the input tape of the simulated machine DGAP must
contain the adjacency matrix of G(m), which uses N2 bits. Keeping this matrix
in the finite control of M ′ would require an exponential number of states.

To overcome this problem, M ′ does not keep the matrix itself in its finite
control, but only the input head position of DGAP, which is an integer h ∈
{0, . . . , N2+1}. The corresponding bit in the adjacency matrix of G(m) is com-
puted “on demand”, each time the simulation of a single step of DGAP needs
it. After that, this bit can be “forgotten”, to make room for another bit. Recall
that the demanded bit at the input position h corresponds to a fixed entry gi,j

in the adjacency matrix for G(m), with i, j satisfying h = (i−1)·N + j, which
in turns corresponds to a fixed pair of states in M , namely, to vi, vj . Hence, the
hth input bit is 1 if and only if (vi, vj) ∈ E(m).

Thus, in order to compute the hth input bit and to simulate the next step
of DGAP, the machine M ′ uses the corresponding automaton Avi,vj as a subrou-
tine (see Lemma 5), where i = 1 + )h/N* and j = 1 + (h mod N).
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Summing up, the 2dfa M ′ keeps the following information in its final control:

– the input head position of DGAP (2+N2 possible values),
– one bit of G(m), currently scanned by the input head of DGAP (2 possible

values),
– the worktape head position (2+K ·logN possible values),
– the worktape content (2K·log N ≤ NK possible values),
– the finite control of DGAP (some H states, a fixed constant not depending

on N),
– the finite control for each automaton Avi,vj (at most N2 ·n ≤ N3 states).

By multiplying all these amounts, we conclude that the total number of states
in M ′ is bounded by O(NK+5 logN). 	


Note that O(NK+5 logN) ≤ O(nK+5 logn). That is, the deterministic simula-
tion presented in the lemma above is polynomial in the number of states of the
original 2nfa A. The degree of this polynomial depends on K, a constant spec-
ifying K ·logN , the upper bound on the number of cells required by the (hypo-
thetical) deterministic Turing machine DGAP on its binary worktape. However,
M and M ′ agree with A only on input strings of length greater than 5n2. (See
Theorem 1.)

Now we are able to state one of our main results:

Theorem 7. If L = NL, then each n-state unary 2nfa A can be simulated by
an equivalent deterministic 2dfa with a polynomial number of states.

Proof. A 2dfa M ′′ fully equivalent to the original 2nfa A can now be obtained
by a small modification of M ′ presented in Lemma 6. First, M ′′ makes a scan
of the input and checks whether its length does exceed 5n2. Short inputs are ac-
cepted or rejected directly, according to the membership in L(A). For sufficiently
long inputs, the membership is resolved by the use of M ′. Clearly, the number
of the states in M ′′ is 5n2 + 1 + O(nK+5 logn) ≤ O(nK+5 logn). 	


5 Polynomial Unambiguous Simulation (Unconditional)

Finally, we are ready to show that each unary n-state 2nfa A can be simulated
by an unambiguous 2nfa with a number of states polynomial in n. Compared
with Theorem 7, unambiguous 2nfas are more powerful devices than 2dfas, but
this simulation does not require any additional assumptions, such as L = NL.

Reinhardt and Allender [16] proved that, in the context of nonuniform com-
plexity, nondeterministic logarithmic space bounded computations can be made
unambiguous. Our simulation combines this result with the reduction from a
unary 2nfa language to GAP.

Given a complexity class C, let us denote [10] by C/poly the class of lan-
guages L for which there exist a sequence of binary “advice” strings {α(n) |n≥0}
of polynomial length and a language B ∈ C such that L = {x | (x, α(|x|)) ∈ B}.

Theorem 8 ([16]). NL ⊆ UL/poly.
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As a consequence of this theorem, there exists a nondeterministic Turing ma-
chine UGAP such that:

– UGAP works in logarithmic space and has at most one accepting path on
each input string,

– there exists a sequence of binary strings {α(n) | n ≥ 0} and a polynomial q,
such that |α(n)| ≤ q(n) for each n ≥ 0, and

– for each graphG with N vertices, encoded in the form of the binary adjacency
matrix, UGAP accepts the string G�α(N2) if and only if G ∈ GAP. Here
� /∈ {0, 1} denotes a new separator symbol.

Theorem 9. Each n-state unary 2nfa A can be simulated by an equivalent
unambiguous 2ufa with a polynomial number of states.

Proof. (outline) The argument is very similar to that of Lemma 6. For the given
N -state 2nfa M obtained by Theorem 1, we construct a 2nfa M ′ that for in-
put am simulates the machine UGAP on input G(m) � α(N2). M ′ does not keep
the input tape of UGAP in its finite control but only the input head position
of UGAP. M ′ computes the corresponding input symbol “on demand” each time
the simulation of the next step of UGAP requires it. However, since the ad-
vice α(N2) is fixed, that is, it does not depend on the input of M , only on N ,
the number of states in M , the information about bits from α(N2) can be kept
directly in the transition function of M ′. 	


6 Final Remarks

In Section 4, we proved that L = NL implies the existence of a polynomial con-
version from unary 2nfas to 2dfas. It is natural to ask whether the converse
implication holds as well. Here we are able to prove a partially different impli-
cation. On one hand, even a polynomial conversion from one-way unary 1nfas
to 2dfas (hence, also from unary 2nfas to 2dfas) implies L = NL. However, as
an additional assumption, such conversion must be constructive and, moreover,
we must be able to construct the resulting 2dfa by the use of a deterministic
transducer working with O(log n) space.

We recall that the membership problem for unary 1nfas is known to be NL-
complete [7]. As a consequence, we can prove the following:

Theorem 10. If there exists a deterministic O(log n) space bounded transduc-
er T transforming each given n-state unary 1nfa into an equivalent nO(1)-state
2dfa, then L = NL.

As shown by Chrobak [3], each n-state unary 1nfa can be transformed into a
2dfa with O(n2) states. Actually, provided that the given 1nfa is in a special
form, the Chrobak normal form, such transformation is very simple and can be
computed by an O(log n) space bounded transducer. Hence, the “difficult” part
in the conversion from unary 1nfas to 2dfas is the transformation of a unary
1nfa into the Chrobak normal form. As remarked in [21], such transformation
cannot be done in logarithmic space, unless that L = NL.
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Abstract. Given a morphism h prolongable on a and an integer p, we

present an algorithm that calculates which letters occur infinitely of-

ten in congruent positions modulo p in the infinite word hω(a). As a

corollary, we show that it is decidable whether a morphic word is ulti-

mately p-periodic. Moreover, using our algorithm we can find the smallest

similarity relation such that the morphic word is ultimately relationally

p-periodic. The problem of deciding whether an automatic sequence is

ultimately weakly R-periodic is also shown to be decidable.

Keywords: automatic sequence, decidability, morphic word, periodicity,

similarity relation.

1 Introduction

Periodicity is one of the main concepts in combinatorics on words and an im-
portant subject also from the application point of view [11]. The most famous
periodicity results in word combinatorics are probably the theorem of Fine and
Wilf, the Critical Factorization Theorem, and the theorem of Morse and Hed-
lund. The theorem of Fine and Wilf considers two simultaneously occurring
periods in one word [6], the Critical Factorization Theorem relates the period of
a word with the local repetitions [3,5], and the theorem of Morse and Hedlund
characterizes ultimately periodic words in terms of subword complexity [9].

It is an interesting and important question how to recognize periodicity and
ultimate periodicity of infinite words. This depends heavily on the way the in-
finite word is generated. For example, in 1986, J. Honkala proved that it is
decidable whether a given automatic sequence is ultimately periodic [10]. Such
a sequence, produced by a finite automaton with output, can also be generated
using a uniform morphism and a coding. Recently, a new method for solving
the ultimate periodicity problem for automatic sequences was given by J.-P. Al-
louche, N. Rampersad and J. Shallit [1]. A more general result showing the
decidability of the ultimate periodicity question for pure morphic words was
given by T. Harju and M. Linna [8] and, independently, by J.-J. Pansiot [12].
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However, if we replace pure morphic words of the form hω(a) by general morphic
words of the form g(hω(a)) where g is a coding, then the decidability status of
the ultimate periodicity problem remains unknown.

In this paper, we solve the decision problem of the ultimate p-periodicity
of morphic words. For given integer p and morphism h prolongable on a, i.e.,
h(a) = ax and hn(x) �= ε for every n ≥ 0, we present an algorithm that calculates
which letters occur infinitely often in congruent positions modulo p in the given
infinite word hω(a). It follows from this that, for any coding g, it is decidable
whether g(hω(a)) is ultimately p-periodic. We then consider relational periodicity
of morphic words. Relational periods were introduced in [7] as a generalization of
periods in partial words. Using our algorithm we can find the smallest similarity
relation such that the infinite word is ultimately relationally p-periodic. Finally,
we show that given a similarity relation R it is decidable whether an automatic
sequence is ultimately weakly R-periodic.

2 Preliminaries

Let A be a finite alphabet and denote the empty word by ε. The free monoid A∗

is the set of finite words over A with the operation of concatenation. The length
of a finite word w is denoted by |w|. The set of letters occurring in a word w is
denoted by Alph(w). An infinite word over A is a sequence x = (xn)n≥0 where
xn ∈ A for every n ≥ 0. Denote the set of all infinite words over A by Aω. Let also
A∞ = A∗ ∪Aω . A word v is a factor of w ∈ A∞ if w = xvy for some word x ∈ A∗

and y ∈ A∞. The factor v is called a prefix of w if x = ε and it is called a suffix
of w if y = ε. The set of factors of length n of a word w is denoted by Fn(w).

A mapping h : A∗ → A∗ is a morphism if h(uv) = h(u)h(v) for every u, v ∈
A∗. A morphism h on A∗ is prolongable on a letter a if h(a) = ay and hn(y) �= ε
for all integers n ≥ 0. In this case, hn(a) is a prefix of hn+1(a) and the following
fixed point of h exists:

hω(a) = lim
n→∞ hn(a) = ayh(y)h2(y) · · · .

An infinite word of the above form x = hω(a) is called a pure morphic word. A
morphic word is an image of a pure morphic words by a coding, i.e., it is of the
form g(hω(a)) for some morphism h prolongable on a and for some coding, i.e.,
a letter-to-letter morphism g : A∗ → B∗.

An infinite word x is ultimately periodic if it is of the form x = uvω =
uvvv · · · , where u and v are finite words. The length |u| is a preperiod and the
length |v| is a period of x. An infinite word x is ultimately p-periodic if |v| = p.
The smallest period of x is called the period of x.

A similarity relation R is a relation on finite words induced by a reflexive
and symmetric relation on letters. A word u = u1 · · · um is R-similar to a word
v = v1 · · · vn if n = m and ui R vi for all letters ui, vi ∈ A. Note that a similarity
relation need not be transitive. For example, if a R c, b R c and (a, b) �∈ R, then
abba Rcbca, but abba and caca are not R-similar since the second letters are not
related.
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Threekindsof relationalperiodswithrespect toagivensimilarity relationRwere
introduced in [7]. An infinite word x = (xn)n≥0 is weakly R-periodic if xi R xi+p

for every i ≥ 0 and for some integer p > 0, which is called a weak R-period of x.
It is externally R-periodic with an external R-period p > 0 if there exists a word
v = v0 · · · vp−1 such that xi R vj if i ≡ j (mod p). The word x is strongly R-periodic
with a strong R-period p > 0 if i ≡ j (mod p) implies xi R xj . It is shown in [7]
that all these relational periods are different, and any strong R-period of x is also
a weak and an external R-period. An infinite word x is ultimately weakly (resp.
externally, strongly)R-periodic if x = uv where u is a finite word (a preperiod) and
the infinite word v is weakly (resp. externally, strongly) R-periodic. We say that
an infinite word is ultimately relationally p-periodic if p ∈ N is a weak, external or
strong R-period of some suffix of the word.

Let k ≥ 2 be an integer. An infinite word x = (xn)n≥0 ∈ Bω is k-automatic if
there exists a finite deterministic automaton with output M = (Q, q0, Σk, δ, B, τ)
such that τ(δ(q0, repk(n))) = xn for all n ≥ 0. Here repk(n) denotes the base-
k representation of the integer n, Q is the finite set of states, q0 is the initial
state, Σk = {0, . . . , k − 1} is the input alphabet, δ is the transition function and
τ : Q → B is the output function. By the result of Cobham [4], an infinite word is
k-automatic if and only if it is of the form g(hω(a)) for a k-uniform morphism h
prolongable on a and a coding g. A morphism h : A∗ → A∗ is k-uniform if
|h(b)| = k for all letters b ∈ A.

3 Algorithm on k-Sets

Let x = (xn)n≥0 be an infinite word over A. Let k ∈ {0, 1, . . . , p − 1}. We say
that a letter a ∈ A belongs to the k-set of x modulo p if there exist infinitely
many integers n such that

xn = a and n ≡ k (mod p).

In this section, we show that given integers k and p, it is decidable whether
a letter a belongs to the k-set of a given purely morphic word x modulo p.
Consequently, we give an algorithm that counts all k-sets of x modulo p. First,
let us prove the following lemma concerning iteration of morphisms.

Lemma 1. Let h : A∗ → A∗ be a morphism, and let p be a positive integer.
There exist integers r and q > 0 such that

|hr(b)| ≡ |hr+q(b)| (mod p) (1)

for all b ∈ A.

Proof. If p = 1, then the claim is trivial. Let p > 1. Let M = M(h) be the
incidence matrix of the morphism h on the alphabet A = {a1, a2, . . . , ad}, i.e.,

M = (mi,j)1≤i,j≤d,

where mi,j denotes the number of occurrences of ai in h(aj). Now

|hn(aj)| = vtM
nvT

j ,
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for vt = (1, . . . , 1) and vj = (δij)1≤i≤d, where δjj = 1 and δij = 0 for i �= j.
There are only finitely many matrices Mn mod p, where the entries are the
residues modulo p. Hence the infinite sequence (uj,n)n≥0 of the lengths uj,n =
|hn(aj)| mod p is ultimately periodic. Denote the preperiod of (uj,n)n≥0 by rj

and the period of (uj,n)n≥0 by qj . Set r = max rj and q = lcm(q1, . . . , qd). By
the periodicity of the sequences (uj,n)n≥0, we conclude that |hr(aj)| ≡ |hr+q(aj)|
(mod p) for any aj ∈ A. ��

Using the above lemma, we now prove our main result.

Theorem 1. Let x = (xn)n≥0 = hω(a) ∈ Aω for a morphism h prolongable
on a, and let b be a letter in A. Given positive integers k and p, it is decidable
whether there exist infinitely many n such that xn = b and n ≡ k (mod p).

Proof. Let r and q be the integers satisfying (1) for the morphism h and the given
integer p. Consider the directed graph Gh = (V, E) where the set of vertices V
is {(a, i) | a ∈ A, 0 ≤ i < p} and there is an edge from (c, i) to (d, j) if there
exist a letter b ∈ A and integers m and m′ such that

hr(b) = y1 · · · yn and ym = c with 1 ≤ m ≤ n, (2)
hq(c) = z1 · · · zn′ and zm′ = d with 1 ≤ m′ ≤ n′, (3)
j − i ≡ |hq(y1 · · · ym−1)| + m′ − m (mod p). (4)

By Lemma 1, this means that if c is at position i mod p in x and it is the mth
letter of the image hr(b) for some b in x, then there is d at position j mod p of x
and it is the m′th letter of the image hq(c); see Figure 1. Namely, consider the
position of d modulo p. If xl = b, then

i ≡ |hr(x0 · · · xl−1)| + m − 1 (mod p), (5)
j ≡ |hr+q(x0 · · · xl−1)| + |hq(y1 · · · ym−1)| + m′ − 1 (mod p). (6)

By (1), we have |hr+q(x0 · · · xl−1)| ≡ |hr(x0 · · · xl−1)| (mod p), which together
with (5) and (6) implies (4).

Recall that h is prolongable on a. We say that a vertex (c, i) ∈ V is an initial
vertex if there exists a letter b = xl such that 0 ≤ l < |hr(a)|, c is the mth
letter of hr(b) and i satisfies (5). The set of the initial vertices is denoted by VI .
Moreover, if there exist infinitely many paths in Gh starting from some vertex
of VI and ending in v ∈ V , we say that v is a recurrent vertex. The set of recurrent
vertices is denoted by VR.

Let (v0, v1, . . . , vn) be a path from some vertex v0 ∈ VI to vn, where vi = (bi, ki)
for i = 0, . . . , n. By induction, there exists l < |hr(a)| such that bi occurs in the
image hr+iq(xl), and in x there is a position of bi between |hr+iq(x0 · · · xl−1)| and
|hr+iq(x0 · · · xl)| + 1, which is congruent to ki modulo p. Note that if bi occurs in
the image hr+iq(xl), then it occurs in the image hr(xm) for some letter xm oc-
curring in the image of hiq(xl). The letter xm corresponds to b occurring in (2)
in the definition of the graph Gh. Note also that, for any position n, we can find
i and l < |hr(a)| such that xn is in a position between |hr+iq(x0 · · ·xl−1)| and
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hr+q(x0 · · · xl−1) hq(y1 · · · ym−1) z1 · · · zm′ · · · zn′ hq(ym+1 · · · yn)

hq

hr(x0 · · · xl−1) y1 · · · ym−1 ym ym+1 · · · yn

hr

x0 · · · xl−1 xl

Fig. 1. Image of xl

|hr+iq(x0 · · · xl)| + 1. Hence, we conclude that (b, k) is in VR if and only if there
exist infinitely many n such that xn = b and n ≡ k (mod p). This proves the
claim. ��

The proof of the previous theorem gives us an algorithm for finding the k-sets
of hω(a) modulo p.

Algorithm. INPUT: morphism h prolongable on a and integer p > 0.

1. Find r and q satisfying (1).
2. Using r and q, construct the graph Gh = (V, E) defined in Theorem 1.
3. Find the set of recurrent vertices VR.
4. For each letter b and integer k ∈ {0, 1, . . . , p − 1}, set b ∈ Ck if (b, k) ∈ VR.

OUTPUT: k-sets Ck of hω(a) modulo p.

4 Periodicity Results

In this section we show how the algorithm of the previous section can be used for
solving two periodicity problems. First, let us consider a decidability question
on morphic words.

Theorem 2. Given a positive integer p, it is decidable whether a morphic word
g(hω(a)) is ultimately p-periodic.

Proof. Consider a morphic word y = (yn)n≥0 = g(hω(a)), where h : A∗ → A∗ is
a morphism prolongable on a and g : A∗ → B∗ is a coding. Let x = (xn)n≥0 =
hω(a). By Theorem 1, all k-sets of x modulo p can be found algorithmically. We
claim that the word y is ultimately p-periodic if and only if g(b) = g(c) for all
pairs of letters (b, c) such that b and c belong to the same k-set of x modulo p.

First assume that g(b) = g(c) for all pairs (b, c) belonging to some k-set of x
modulo p. Consider the subsequence (xpn+k)n≥0 for some k ∈ {0, 1, . . . , p − 1}.
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After a finite prefix the subsequence contains only letters belonging to the k-set
of x modulo p. Now g maps all these letters to a common letter bk ∈ B. Since
this holds for every k ∈ {0, 1, . . . , p − 1}, it follows that y = g(x) = uvω where
v = (b0 · · · bp−1)ω and u is some finite word.

Conversely, assume that b and c belong to some k-set of x modulo p and
g(b) �= g(c). Thus, there exist two increasing sequences (in)n≥1 and (jn)n≥1

such that xin = b, xjn = c and in ≡ k ≡ jn (mod p). This means that, for
any N , there are positions i, j > N such that yi �= yj and i ≡ j (mod p). Hence,
y is not ultimately p-periodic. ��

Another application of Theorem 1 is the following results concerning relational
periods.

Theorem 3. Given a positive integer p, a morphic word y and a similarity rela-
tion R, it is decidable whether y is ultimately strongly (resp. externally, weakly)
R-periodic with period p.

Proof. Let y = (yn)n≥0 = g(hω(a)), where h : A∗ → A∗ is a morphism pro-
longable on a and g : A∗ → B∗ is a coding. Denote x = (xn)n≥0 = hω(a). By
Theorem 1, all k-sets of x modulo p can be found algorithmically.

Similarly to the proof of the previous theorem, we can show that y is ultimately
strongly R-periodic with period p if and only if g(b)R g(c) for all pairs of letters
(b, c) belonging to some k-set of x modulo p.

The case of external R-periodicity is a little bit different. We claim that y
is ultimately externally R-periodic with period p if and only if for each k ∈
{0, 1, . . . , p − 1} there exists a letter bk ∈ B such that bk R g(c) for every letter c
in the k-set of x modulo p.

First assume that such letters bk can be found. Then bk is related to all letters
occurring infinitely many times in the subsequence (ypn+k)n≥0 = (g(xpn+k))n≥0.
Hence, (ypn+k)n≥0 is ultimately externally R-periodic with period 1. Since this
holds for every k ∈ {0, 1, . . . , p − 1}, we conclude that after a finite prefix the
morphic word y is R-similar to (b0 . . . bp−1)ω , i.e., y is ultimately externally R-
periodic with period p.

Assume next that y is ultimately externally R-periodic with period p. Then
for each k ∈ {0, 1, . . . , p − 1}, there exists a letter vk such that yi R vk if i ≡ k
(mod p) and i > N for some integer N large enough. Take a letter c from the
k-set of x modulo p. By definition, there are infinitely many positions i such that
xi = c and i ≡ k (mod p). Hence, there are infinitely many position i such that
yi = g(c) and i ≡ k (mod p). By assumption, we have g(c)R vk and the claim
holds.

Finally, consider the weak R-periodicity of y. Here it suffices to find out all
words of length p + 1 that occur infinitely often in y. Denote the set of these
factors by Wp+1. The word y is ultimately weakly R-periodic with period p if
and only if the first and the last letter of every w ∈ Wp+1 are R-similar. The
set Wp+1 can be constructed effectively. By the result of Cobham [2, Theorem
7.5.1], we may assume that h is non-erasing.
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First, we find the set of all factors of x of length at most p + 1. Set

Un =
p+1⋃

j=1

Fj(hn(a))

for n ≥ 0. Since hn(a) is a prefix of hn+1(a) and x = hω(a), we have Un ⊆
Un+1 ⊆ ∪p+1

j=1Fj(x) for every n ≥ 0. Since there are only finitely many factors of
length at most p+1, there must be an integer N such that UN = UN+1. Since h
is non-erasing, a factor v of x of length at most p+1 is a factor of h(u) for some
word u ∈ Fj(x) with j ≤ p+1. This implies that Un = UN for every n ≥ N and,
consequently,

Fp+1 = UN ∩ Ap+1.

Let Vp+1 be the set of factors of x of length p+1 that occur infinitely often in x.
To find the subset Vp+1 of Fp+1 we suggest a graph construction similar to that
in Theorem 1. Let G = (V, E) be a directed graph, where V = Fp+1 and there
is an edge from u to v if v is a factor of h(u). By the definition of the graph, a
word v belongs to Vp+1 if and only if there exist a vertex u such that there are
infinitely long paths from u to v. The existence of such u can be easily verified.
Hence, we can construct the set Vp+1 and, clearly, we have Wp+1 = g(Vp+1). ��

For a relation R on the alphabet A, let

sz(R) = |{(a, b) | a R b}|.

A relation R is smaller than a relation S if sz(R) < sz(S). We can measure the
degree of periodicity of an infinite word x ∈ Aω by considering the smallest sim-
ilarity relation Rx,p such that x is ultimately strongly (resp. externally, weakly)
Rx,p-periodic with period p. It is clear that such a relation is unique. We have
the following obvious corollary of Theorem 3.

Corollary 1. Given a positive integer p and a morphic word x, we can effec-
tively find the smallest similarity relation Rx,p such that x is ultimately strongly
(resp. externally, weakly) Rx,p-periodic with period p.

Unfortunately, the general ultimate periodicity problem (without specifying the
period p) for morphic words remains unsolved. Note that this very difficult
and challenging problem is a special case of the ultimate relational periodicity
problem:

Given a pure morphic word x and a similarity relation R, decide whether
x is ultimately strongly (resp. externally, weakly) R-periodic.

The ultimate periodicity problem for a morphic word g(hω(a)) is the above
problem where the relation R is defined by the coding g as follows: a R b if an
only if g(a) = g(b). Note that in this case R is an equivalence relation and the
definitions of strong, weak and external periods coincide.

However, using the method from [1] we can solve the ultimate relational peri-
odicity problem restricted to automatic sequences and weak relational periods.
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The proof of Theorem 4 is similar to corresponding result in [1]. For completeness
sake, we give the proof.

Theorem 4. Given a k-automatic sequence x over A and a similarity relation R
on A, it is decidable whether x is ultimately weakly R-periodic.

Proof. Let x = (xn)n≥0 be an infinite k-automatic sequence. The sequence x is
ultimately weakly R-periodic if there exists P ≥ 1, N ≥ 0 such that xi R xi+P

for all i ≥ N .
First, construct a nondeterministic finite automaton (NFA) that on input

(P, N) successively “guesses” the base-k digits of I starting with the least signif-
icant digit and accepts if I ≥ N and (xI , xI+P ) �∈ R. Let M = (Q, q0, Σk, δ, B, τ)
be the finite automaton with output that generates the sequence x, i.e., xn =
τ(δ(q0, repk(n))) for all n ≥ 0. Then define M1 = (Q′, q′0, Σk × Σk, δ′, F ′), where

Q′ = {<, =, >} × {0, 1} × Q × Q,

q′0 = [=, 0, q0, q0],
F ′ = {[b, 0, q, r] | b ∈ {>, =} and (τ(q), τ(r)) �∈ R}.

Here F ′ is the set of accepting states, and the input is actually a sequence of
pairs

(p0, n0)(p1, n1)(p2, n2) · · · (pj , nj),

where pjpj−1 · · · p0 is a base-k representation of P and njnj−1 · · ·n0 is a base-k
representation of N , either one or both padded with leading zeros to ensure that
their lengths are equal.

In order to verify that I ≥ N , we have a flag {<, =, >} that tells us how the
digits of the guessed I seen so far are in relation to the digits of the input N
read so far. Let i′ be the next guessed digit of I and let n′ be the next read digit
of N . We update the flag as follows:

u(<, i′, n′) =
{

<, if i′ ≤ n′ ;
>, if i′ > n′ ;

u(=, i′, n′) =

⎧
⎨

⎩

<, if i′ < n′ ;
=, if i′ = n′ ;
>, if i′ > n′ ;

u(>, i′, n′) =
{

<, if i′ < n′ ;
>, if i′ ≥ n′ .

In a state [b, c, q, r] ∈ Q′ the component b is the flag, c is the carry bit in the
computation I +P , q is the state in M reached by the digits of I guessed so far,
and r is the state in M reached by the digits of I + P calculated so far. Hence,
the transitions δ′ : Q′ × (Σk × Σk) → 2Q′

are defined by

δ′([b, c, q, r](p′, n′)) =
{[

u(b, i′, n′),
⌊

i′ + p′ + c

k

⌋
, δ(q, i′), δ(r, (i′ + p′ + c) mod k)

]∣∣∣∣ 0 ≤ i′ < k

}
.
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We must ensure that the acceptance of (P, N) does not depend on the num-
ber of leading zeros and that the calculation is correct in the case where the
guessed I is longer than the input. Hence, we modify the accepting states of M1

by constructing a new NFA M̂1 = (Q′, q′0, Σk ×Σk, δ′, F̂ ) where a state [b, c, q, r]
belongs to F̂ if there exists j ≥ 0 such that δ′([b, c, q, r], (0, 0)j) contains a state
in F ′.

Then convert M̂1 to a deterministic finite automaton (DFA) M2 using the
subset construction. By interchanging accepting and non-accepting states we
obtain a DFA M3 that accepts (P, N) if and only if xI R xI+P for all I ≥ N .
Now x is ultimately weakly R-periodic if and only if M3 accepts some input
(P, N) with P ≥ 1. This can be checked by creating a DFA M4 that accepts
Σ∗

k(Σk \ {0})Σ∗
k × Σ∗

k and forming the direct product DFA M5 that accepts
exactly the words accepted by both M3 and M4. Thus, the word x is ultimately
weakly R-periodic if and only if the language accepted by M5 is not empty. This
can be easily checked. ��
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Abstract. It is shown that for graph groups (right-angled Artin groups) the con-
jugacy problem as well as a restricted version of the simultaneous conjugacy
problem can be solved in polynomial time even if input words are represented in
a compressed form. As a consequence it follows that the word problem for the
outer automorphism group of a graph group can be solved in polynomial time.

1 Introduction

Automorphism groups and outer automorphism groups of graph groups received a lot
of interest in the past few years. A graph group G(Σ, I) is given by a finite undirected
graph (Σ, I) (without self-loops). The set Σ is the set of generators of G(Σ, I) and ev-
ery edge (a, b) ∈ I gives rise to a commutation relation ab = ba. Graph groups are also
known as right-angled Artin groups or free partially commutative groups. Graph groups
interpolate between finitely generated free groups and finitely generated free Abelian
groups. The automorphism group of the free Abelian group Zn is GL(n,Z) and hence
finitely generated. By a classical result of Nielsen, also automorphism groups of free
groups are finitely generated, see e.g. [14]. For graph groups in general, it was shown by
Laurence [10] (building up on previous work by Servatius [19]) that their automorphism
groups are finitely generated. Only recently, Day [4] has shown that Aut(G(Σ, I)) is
always finitely presented. An overwiew on structural results on automorphism groups
of graph groups can be found in [1].

In this paper, we continue the investigation of algorithmic aspects of automorphism
groups of graph groups. In [13] it was shown that the word problem for Aut(G(Σ, I))
can be solved in polynomial time. The proof of this result used compression techniques.
It is well-known that the word problem for G(Σ, I) can be solved in linear time. In [13],
a compressed (or succinct) version of the word problem for graph groups was studied. In
this variant of the word problem, the input word is represented succinctly by a so-called
straight-line program. This is a context free grammar A that generates exactly one word
val(A), see Sec. 2.1. Since the length of this word may grow exponentially with the size
(number of productions) of the SLP A, SLPs can be seen indeed as a succinct string rep-
resentation. SLPs turned out to be a very flexible compressed representation of strings,
which are well suited for studying algorithms for compressed data, see e.g. [6,11,17].
In [13,18] it was shown that the word problem for the automorphism group Aut(G) of
a group G can be reduced in polynomial time to the compressed word problem for G,
where the input word is succinctly given by an SLP. In [18], it was shown that the com-
pressed word problem for a finitely generated free group F can be solved in polynomial

Y. Gao et al. (Eds.): DLT 2010, LNCS 6224, pp. 218–230, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Compressed Conjugacy and the Word Problem 219

time and in [13] this result was extended to graph groups. It follows that the word prob-
lem for Aut(G(Σ, I)) can be solved in polynomial time. Recently, Macdonald [15] has
shown that also the compressed word problem for every fully residually free group can
be solved in polynomial time.

It is not obvious to carry over these complexity results from Aut(G(Σ, I)) to the
outer automorphism group Out(G(Σ, I)) = Aut(G(Σ, I))/Inn(G(Σ, I)) (see Sec. 2.3
for the definition). Nevertheless, Schleimer proved in [18] that the word problem for the
outer automorphism group of a finitely generated free group can be decided in polyno-
mial time. For this, he used a compressed variant of the simultaneous conjugacy prob-
lem in free groups. In this paper, we generalize Schleimer’s result to graph groups: For
every graph (Σ, I), the word problem for Out(G(Σ, I)) can be solved in polynomial
time. Analogously to Schleimer’s approach for free groups, we reduce the word prob-
lem for Out(G(Σ, I)) to a compressed variant of the simultaneous conjugacy problem
in G(Σ, I). In this problem, we are given an SLP Aa for every generator a ∈ Σ, and the
question is whether there exists x ∈ G(Σ, I) such that a = x val(Aa)x−1 for all a ∈ Σ.
A large part of this paper develops a polynomial time algorithm for this problem. More-
over, we also present a polynomial time algorithm for the compressed version of the
classical conjugacy problem in graph groups: In this problem, we are given two SLPs A
and B and we ask whether there exists x ∈ G(Σ, I) such that val(A) = x val(B)x−1 in
G(Σ, I). For the non-compressed version of this problem, a linear time algorithm was
presented in [21] based on [12]. In [3] this result was generalized to various subgroups
of graph groups.

Missing proofs can be found in the full version [9] of this extended abstract.

2 Preliminaries

Let Σ be a finite alphabet. For a word s = a1 · · ·am (ai ∈ Σ) let |s| = m, alph(s) =
{a1, . . . , am}, s[i] = ai for 1 ≤ i ≤ m, and |s|a = |{k | s[k] = a}| for a ∈ Σ. We use
Σ−1 = {a−1 | a ∈ Σ} to denote a disjoint copy of Σ and let Σ±1 = Σ ∪Σ−1. Define
(a−1)−1 = a. This defines an involution −1 : Σ±1 → Σ±1, which can be extended to
an involution on (Σ±1)∗ by setting (a1 · · · an)−1 = a−1

n · · · a−1
1 .

2.1 Straight-Line Programs

We are using straight-line programs as a succinct representation of strings with reoccur-
ring subpatterns. A straight-line program (SLP) over the alphabet Γ is a context free
grammar A = (V, Γ, S, P ), where V is the set of nonterminals, Γ is the set of termi-
nals, S ∈ V is the initial nonterminal, and P ⊆ V × (V ∪Γ )∗ is the set of productions
such that (i) for every X ∈ V there is exactly one α ∈ (V ∪ Γ )∗ with (X,α) ∈ P and
(ii) there is no cycle in the relation {(X,Y ) ∈ V ×V | ∃α : (X,α) ∈ P, Y ∈ alph(α)}.
These conditions ensure that the language generated by the straight-line program A con-
tains exactly one word val(A). Moreover, every nonterminal X ∈ V generates exactly
one word that is denoted by valA(X), or briefly val(X), if A is clear from the context.
The size of A is |A| =

∑
(X,α)∈P |α|. An SLP can be transformed in polynomial time

into an equivalent SLP in Chomsky normal form, which means that all productions have
the form A → BC or A → a with A,B,C ∈ V and a ∈ Γ . For an SLP A over Σ±1



220 N. Haubold, M. Lohrey, and C. Mathissen

(w.l.o.g. in Chomsky normal form) we denote with A−1 the SLP that has for each ter-
minal rule A → a from A the terminal rule A → a−1 and for each nonterminal rule
A → BC from A the nonterminal rule A → CB. Clearly, val(A−1) = val(A)−1. Let
us state some simple algorithmic problems that can be easily solved in polynomial time:

– Given an SLP A, calculate |val(A)| and alph(val(A)).
– Given an SLP A and a number i ∈ {1, . . . , |val(A)|}, calculate val(A)[i].
– Given an SLP A (let val(A) = a1 · · · an) and two numbers 1 ≤ i ≤ j ≤ n, compute

and SLP B with val(B) = ai · · · aj .

In [17], Plandowski presented a polynomial time algorithm for testing whether val(A)
= val(B) for two given SLPs A and B. A cubic algorithm was presented by Lifshits
[11]. In fact, Lifshits gave an algorithm for compressed pattern matching: given SLPs
A and B, is val(A) a factor of val(B)? His algorithm runs in time O(|A| · |B|2).

2.2 Trace Monoids and Graph Groups

We introduce some notions from trace theory, see [5] for more details. An independence
alphabet is a pair (Σ, I) where Σ is a finite alphabet and I ⊆ Σ ×Σ is an irreflexive
and symmetric relation. The complementary graph (Σ,D) with D = (Σ × Σ) \ I is
called a dependence alphabet. The trace monoid M(Σ, I) is defined as the quotient
M(Σ, I) = Σ∗/{ab = ba | (a, b) ∈ I} with concatenation as operation and the empty
word as the neutral element. This monoid is cancellative and its elements are called
traces. The trace represented by the word s ∈ Σ∗ is denoted by [s]I . For a ∈ Σ let
I(a) = {b ∈ Σ | (a, b) ∈ I} be the letters that commute with a. For traces u, v
we denote with uIv the fact that alph(u) × alph(v) ⊆ I . For Γ ⊆ Σ we say that Γ
is connected if the subgraph of (Σ,D) induced by Γ is connected. For a trace u let
max(u) = {a | u = va for a ∈ Σ, v ∈ M(Σ, I)} be the set of possible last letters of u
and min(u) = {a | u = av for a ∈ Σ, v ∈ M(Σ, I)} be the set of possible first letters.

A convenient representation for traces are dependence graphs, which are node-
labeled directed acyclic graphs. For a word w ∈ Σ∗ the dependence graph Dw has
vertex set {1, . . . , |w|} where the node i is labeled with w[i]. There is an edge from
vertex i to j if and only if i < j and (w[i], w[j]) ∈ D. It is easy to see that for two
words w,w′ ∈ Σ∗ we have [w]I = [w′]I if and only if Dw and Dw′ are isomorphic.
Hence, we can speak of the dependence graph of a trace.

For background in combinatorial group theory see [14]. The free group generated by
Σ can be defined as the quotient monoid F (Σ) = (Σ±1)∗/{aa−1 = ε | a ∈ Σ±1}.
For an independence alphabet (Σ, I) the graph group G(Σ, I) is the quotient group
G(Σ, I) = F (Σ)/{ab = ba | (a, b) ∈ I}. From the independence alphabet (Σ, I)
we derive the independence alphabet (Σ±1, {(ai, bj) | i, j ∈ {−1, 1}, (a, b) ∈ I}).
Abusing notation, we denote the independence relation of this alphabet again with I .
Note that (a, b) ∈ I implies a−1b = ba−1 in G(Σ, I). Thus, we have G(Σ, I) =
M(Σ±1, I)/{aa−1 = ε | a ∈ Σ±1}. Graph groups are also known as right-angled
Artin groups and free partially commutative groups.

2.3 (Outer) Automorphism Groups

The automorphism group Aut(G) of a group G is the set of all automorphisms of G
with composition as operation and the identity mapping as the neutral element. An
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automorphism ϕ is called inner if there is x ∈ G such that ϕ(y) = xyx−1 for all
y ∈ G. The set of all inner automorphisms of G forms the inner automorphism group
Inn(G) of G. This is easily seen to be a normal subgroup of Aut(G) and the quotient
group Out(G) = Aut(G)/Inn(G) is called the outer automorphism group of G.

Assume that Aut(G) is finitely generated (which, in general, won’t be the case, even
if G is finitely generated) and let Ψ = {ψ1, . . . , ψk} be a monoid generating set for
Aut(G), i.e., every automorphism of G can be composed from the automorphisms in Ψ .
Then Ψ also generates Out(G) where we identifyψi with its coset ψi·Inn(G) ∈ Out(G)
for i ∈ {1, . . . , k}. Then the word problem for the outer automorphism group can be
viewed as the following decision problem:

INPUT: A word w ∈ Ψ∗.
QUESTION: Does w = 1 in Out(G)?
Since an automorphism belongs to the same coset (w.r.t. Inn(G)) as the identity if and
only if it is inner, we can rephrase the word problem for Out(G) as follows:

INPUT: A word w ∈ Ψ∗.
QUESTION: Does w represent an element of Inn(G) in Aut(G)?
Building on results from [19], Laurence has shown in [10] that automorphism groups of
graph groups are finitely generated. Recently, Day [4] proved that automorphism groups
of graph groups are in fact finitely presented. In this paper, we present a polynomial time
algorithm for the word problem for Out(G(Σ, I)).

3 Main Results

In this section we will present the main results of this paper, the proofs of which are
subject to the rest of the paper. Our group theoretical main result is:

Theorem 1. Let (Σ, I) be a fixed independence alphabet. Then, the word problem for
the group Out(G(Σ, I)) can be solved in polynomial time.

In order to solve the word problem for Out(G(Σ, I)) in polynomial time, we will
consider (following Schleimer’s approach for free groups [18]) compressed conjugacy
problems in G(Σ, I). The most general of these compressed conjugacy problems is the
simultaneous compressed conjugacy problem for G(Σ, I):
INPUT: SLPs A1,B1, . . . ,An,Bn over Σ±1.
QUESTION: ∃x ∈ (Σ±1)∗ ∀i ∈ {1, . . . , n} : val(Ai) = x val(Bi)x−1 in G(Σ, I)?
The simultaneous (non-compressed) conjugacy problem also appears in connection
with group-based cryptography [16]. Unfortunately, we don’t know, whether the simul-
taneous compressed conjugacy problem can be solved in polynomial time. But, in order
to deal with the word problem for Out(G(Σ, I)), a restriction of this problem suffices,
where the SLPs B1, . . . ,Bn from the simultaneous compressed conjugacy problem are
the letters from Σ. We call this problem the restricted simultaneous compressed conju-
gacy problem, briefly RSCCP(Σ, I):
INPUT: SLPs Aa (a ∈ Σ) over Σ±1.
QUESTION: ∃x ∈ (Σ±1)∗ ∀a ∈ Σ : val(Aa) = xax−1 in G(Σ, I)?
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An x such that val(Aa) = xax−1 in G(Σ, I) for all a ∈ Σ is called a solution of the
RSCCP(Σ, I)-instance. The following theorem will be shown in Sec. 5:

Theorem 2. Let (Σ, I) be a fixed independence alphabet. Then, RSCCP(Σ, I) can be
solved in polynomial time. Moreover, in case a solution exists, one can compute an SLP
for a solution in polynomial time.

Proof of Thm. 1 using Thm. 2. Fix a finite monoid generating set Φ for Aut(G(Σ, I)).
Let ϕ = ϕ1 · · ·ϕn with ϕ1, . . . , ϕn ∈ Φ be the input. By [18] we can compute in
polynomial time SLPs Aa (a ∈ Σ) over Σ±1 with val(Aa) = ϕ(a) in G(Σ, I) for all
a ∈ Σ. The automorphism ϕ is inner iff there exists x such that val(Aa) = xax−1 in
G(Σ, I) for all a ∈ Σ. This can be decided in polynomial time by Thm. 2. 	

Finally, we will also consider a compressed variant of the classical conjugacy problem
for G(Σ, I). Recall that the conjugacy problem for a finitely generated group G asks,
whether two given elements g, h ∈ G are conjugated, i.e., whether there exists x ∈ G
with g = xhx−1. The compressed conjugacy problem for the graph group G(Σ, I),
CCP(Σ, I) for short, is the following problem:

INPUT: SLPs A and B over Σ±1.
QUESTION: Are val(A) and val(B) conjugated in G(Σ, I)?

Theorem 3. Let (Σ, I) be a fixed independence alphabet. Then, CCP(Σ, I) can be
solved in polynomial time.

We will prove Thm. 3 in Sec. 7. It is important in Thm. 1–3 that we fix the independence
alphabet (Σ, I). It is open whether these results also hold if (Σ, I) is part of the input.

4 Further Facts for Traces

In this section, we state some simple facts on trace monoids, which will be needed later.
Fix the trace monoid M(Σ, I). A trace u is said to be a prefix of a trace w, briefly
u + w, if uv = w for some trace v. The prefixes of a trace w correspond to the
downward-closed node sets of the dependence graph of w. Analogously, a trace v is a
suffix of a trace w if uv = w for some trace u. For two traces u, v, the infimum u 	 v is
the largest trace s w.r.t. + such that s + u and s + v; it always exists [2]. With u \ v
we denote the unique trace t such that u = (u 	 v)t; uniqueness follows from the fact
that M(Σ, I) is cancellative. Note that u \ v = u \ (u 	 v). The supremum u 
 v of
two traces u, v is the smallest trace s w.r.t. + such that u + s and v + s if any such
trace exists. We can define the supremum of several traces w1, . . . , wn by induction:
w1 
 · · · 
 wn = (w1 
 · · · 
 wn−1) 
 wn.

Lemma 4 ([2]). The trace u 
 v exists if and only if (u \ v) I (v \ u), in which case we
have u 
 v = (u 	 v) (u \ v) (v \ u).

Example 5. We consider the following independence alphabet (Σ, I) and the corre-
sponding dependence alphabet (Σ,D):

(Σ, I) c a
e d b

(Σ,D) a e
b c d
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Consider the words u = aeadbacdd and v = eaabdcaeb. The dependence graphs Du

and Dv look as follows, where we label the vertex i with the letter u[i] (resp. v[i]):

Du

a
e

d

a

b

a

c d d

Dv

a
e

d

a

b

a

c

b
e

Then we have u 	 v = aeadbac =: p. Since u \ p = dd and v \ p = eb we have
(u \ p)I(v \ p) and hence the supremum s = u 
 v = aeadbacddeb is defined. The
dependence graphs for p and s are:

Dp

a
e

d

a

b

a

c

Ds

a
e

d

a

b

a

c

b
e

d d

The following lemma is a basic statement for traces, see for example [5, Sec. 1.3]:

Lemma 6 (Levi’s Lemma). Let u1, u2, v1, v2 be traces with u1u2 = v1v2. Then there
exist traces x, y1, y2, z such that y1Iy2, u1 = xy1, u2 = y2z, v1 = xy2, and v2 = y1z.

A trace rewriting system R over M(Σ, I) is just a finite subset of M(Σ, I) ×M(Σ, I)
[5]. The one-step rewrite relation→R ⊆ M(Σ, I)×M(Σ, I) is defined as: x→R y if
and only if there are u, v ∈ M(Σ, I) and (�, r) ∈ R such that x = u�v and y = urv. A
trace u is R-irreducible if no trace v with u →R v exists. The set of all R-irreducible
traces is denoted by IRR(R). If R is Noetherian and confluent (see e.g. [5, Sec. 5.1]
for definitions), then for every trace u, there exists a unique normal form NFR(u) ∈
IRR(R) such that u

∗−→R NFR(u).
Let us now work in the trace monoid M(Σ±1, I). For a trace u = [a1 · · · an]I ∈

M(Σ±1, I) we denote with u−1 the trace u−1 = [a−1
n · · ·a−1

1 ]I . It is easy to see that this
definition is independent of the chosen representative a1 · · · an of the trace u. It follows
that we have [val(A)]−1

I = [val(A−1)]I for an SLP A. For the rest of the paper, we
fix the trace rewriting system R = {([aa−1]I , [ε]I) | a ∈ Σ±1} over the trace monoid
M(Σ±1, I). This system is Noetherian (trivial) and, by [5,20], also confluent. For traces
u, v ∈ M(Σ±1, I) we have u = v in G(Σ, I) if and only if NFR(u) = NFR(v). Using
these facts, it was shown in [5,20] that the word problem for G(Σ, I) can be solved in
linear time (on the RAM model).

We close this section with some results concerning SLP-compressed traces. A simple
observation is that for given SLPs A and B one can decide in polynomial time whether
[val(A)]I = [val(B)]I . The projection lemma for traces [5, Cor. 1.4.8] allows to reduce
this question to equality testing for SLP-compressed strings [17]. Much harder to prove
is:

Theorem 7 ([13]). For a given SLP A over Σ±1 one can compute in polynomial time
an SLP B with [val(B)]I = NFR([val(A)]I).

Thm. 7 implies that the compressed word problem for a graph group can be solved in
polynomial time.

Theorem 8 ([13]). For given SLPs A0 and A1 over Σ±1, we can compute in polyno-
mial time SLPs P, D0, D1 with [val(P)]I = [val(A0)]I 	 [val(A1)]I and [val(Di)]I =
[val(Ai)]I \ [val(A1−i)]I for i ∈ {0, 1}.
An immediate corollary of Thm. 8 and Lemma 4 is:
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Corollary 9. Let r be a fixed constant. Then, for given SLPs V1, . . . ,Vr over Σ±1, one
can check in polynomial time whether [val(V1)]I 
 · · · 
 [val(Vr)]I exists, and in case
it exists one can compute an SLP S with [val(S)]I = [val(V1)]I 
 · · · 
 [val(Vr)]I in
polynomial time.

It is important that we fix the number r of SLPs in Cor. 9: Each application of Thm. 8
increase the size of the SLP polynomially. Hence, a non-fixed number of applications
might lead to an exponential blow-up.

5 Restricted Simultaneous Compressed Conjugacy

A double a-cone (a ∈ Σ±1) is an R-irreducible trace of the form uau−1 with u ∈
M(Σ±1, I). We first state several results on double a-cones, which will be used in the
proof of Thm. 2. The following characterization can be easily shown:

Lemma 10. A trace uau−1 is a double a-cone if and only if u ∈ IRR(R) and max(u)∩
({a, a−1} ∪ I(a)) = ∅.

It follows that every letter in a double a-cone either lies before or after the central letter
a. Its dependence graph always has the following form:

au u−1

By the following lemma, each double a-cone has a unique factorization of the form
u1bu2 with |u1| = |u2|.

Lemma 11. Let v = uau−1 be a double a-cone and let v = u1bu2 with b ∈ Σ±1 and
|u1| = |u2|. Then a = b, u1 = u and u2 = u−1.

Lemma 11 together with standard techniques for SLP-compressed strings (in particular,
the polynomial equality test for SLP-compressed strings [11,17]) implies:

Lemma 12. For a given SLP A with [val(A)]I ∈ IRR(R) and a ∈ Σ±1, one can check
in polynomial time whether [val(A)]I is a double a-cone, and in case it is, one can
compute in polynomial time an SLP V with [val(A)]I = [val(V) a val(V−1)]I .

Lemma 13. Let w ∈ M(Σ±1, I) be R-irreducible and a ∈ Σ±1. Then there exists
x ∈ M(Σ±1, I) with w = xax−1 in G(Σ, I) if and only if w is a double a-cone.

Lemma 13 can be shown by induction on the number of R-rewrite steps from xax−1 to
w ∈ IRR(R). Finally, our main lemma on double a-cones is:

Lemma 14. Let wa, va ∈ M(Σ±1, I) (a ∈ Σ) be R-irreducible such that wa =
vaav

−1
a in M(Σ±1, I) for all a ∈ Σ (thus, every wa is a double a-cone). If there is

a trace x ∈ M(Σ±1, I) with ∀a ∈ Σ : xax−1 = wa in G(Σ, I), then s =
⊔

a∈Σ va

exists and sas−1 = wa in G(Σ, I) for all a ∈ Σ.

Now we are in the position to prove Thm. 2: Let Aa (a ∈ Σ) be the input SLPs. We
have to check whether there exists x such that val(Aa) = xax−1 in G(Σ, I) for all
a ∈ Σ. Thm. 7 allows us to assume that [val(Aa)]I ∈ IRR(R) for all a ∈ Σ. We first
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check whether every trace [val(Aa)]I is a double a-cone. By Lemma 12 this is possible
in polynomial time. If there exists a ∈ Σ such that [val(Aa)]I is not a double a-cone,
then we can reject by Lemma 13. Otherwise, we can compute (using again Lemma 12)
SLPs Va (a ∈ Σ) such that [val(Aa)]I = [val(Va) a val(V−1

a )]I in M(Σ±1, I). Finally,
by Lemma 14, it suffices to check whether s =

⊔
a∈Σ [val(Va)]I exists and whether

NFR(sas−1) = [val(Aa)]I for all a ∈ Σ. This is possible in polynomial time by Thm. 7
and Cor. 9 (recall that |Σ| is a constant in our consideration). Moreover, if the supremum
s exists, then we can compute in polynomial time an SLP S with [val(S)]I = s, which
is a solution for our RSCCP(Σ, I)-instance. 	


6 A Pattern Matching Algorithm for Connected Patterns

For the proof of Thm. 3 we need a pattern matching algorithm for compressed traces.
For traces v, w we say that v is a factor of w if there are traces x, y with w = xvy. We
consider the following problem and show that it can be solved in polynomial time if the
independence alphabet (Σ, I) satisfies certain conditions.

INPUT: An independence alphabet (Σ, I) and two SLPs T and P over Σ.
QUESTION: Is [val(P)]I a factor of [val(T)]I?

We write alph(T) and alph(P) for alph(val(T)) and alph(val(P)), respectively. We as-
sume in the following that the SLPs T = (V,Σ, S, P ) and P are in Chomsky nor-
mal form. Let Γ ⊆ Σ. We denote by πΓ the homomorphism πΓ : M(Σ, I) →
M(Γ, I ∩ (Γ × Γ )) with πΓ (a) = a for a ∈ Γ and πΓ (a) = ε for a ∈ Σ \ Γ .
Let V Γ = {XΓ | X ∈ V } be a disjoint copy of V . For each production p ∈ P
define a new production pΓ as follows. If p is of the form X → a (a ∈ Σ), then
let pΓ = (XΓ → πΓ (a)). If p ∈ P is of the form X → Y Z (Y, Z ∈ V ) de-
fine pΓ = (XΓ → Y ΓZΓ ). We denote with TΓ the SLP (V Γ , Γ, SΓ , PΓ ) where
PΓ = {pΓ | p ∈ P}. Obviously, val(TΓ ) = πΓ (val(T)).

In order to develop a polynomial time algorithm for the problem stated above we
need a succinct representation for an occurrence of P in T. Since [val(P)]I is a factor
of [val(T)]I iff there is a prefix u + [val(T)]I such that u[val(P)]I + [val(T)]I , we will
in fact compute prefixes with the latter property and represent a prefix u by its Parikh
image (|u|a)a∈Σ . Hence, we say a sequence O = (Oa)a∈Σ ∈ NΣ is an occurrence of
a trace v in a trace w iff there is a prefix u + w such that uv + w, and O = (|u|a)a∈Σ .
Note that our definition of an occurrence of P in T does not exactly correspond to the in-
tuitive notion of an occurrence as a convex subset of the dependence graph of [val(T)]I .
In fact, to a convex subset of the dependence graph of [val(T)]I , which is isomorphic
to the dependence graph of [val(P)]I , there might correspond several occurrences O,
since for an a ∈ Σ that is independent of alph(P) we might have several possibilities
for the value Oa. However, if we restrict to letters that are dependent on alph(P), then
our definition of an occurrence coincides with the intuitive notion. For Γ ⊆ Σ we write
πΓ (O) for the restriction (Oa)a∈Γ . Furthermore, we say that O is an occurrence of P
in T if O is an occurrence of [val(P)]I in [val(T)]I .

Let X be a nonterminal of T with production X → Y Z and let O be an occurrence
of [val(P)]I in [val(X)]I . If there are a, b ∈ alph(P) with Oa < |val(Y )|a and Ob +
|val(P)|b > |val(Y )|b, then we say that O is an occurrence of P at the cut of X . Assume
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w.l.o.g. that |val(P)| ≥ 2, otherwise we simply have to check whether a certain letter
occurs in val(T). By this assumption, [val(P)]I is a factor of [val(T)]I iff there is a
nonterminal X of T for which there is an occurrence of P at the cut of X .

Lemma 15 ([12]). Let v, w ∈ M(Σ, I). A sequence (na)a∈Σ ∈ NΣ is an occurrence
of v in w iff (na, nb) is an occurrence of π{a,b}(v) in π{a,b}(w) for all (a, b) ∈ D.

An arithmetic progression is a subset of NΣ of the form {(ia)a∈Σ + k · (da)a∈Σ | 0 ≤
k ≤ �}. This set can be represented by the triple ((ia)a∈Σ , (da)a∈Σ , �). The descrip-
tional size |((ia)a∈Σ , (da)a∈Σ, �)| of the arithmetic progression ((ia)a∈Σ , (da)a∈Σ , �)
is log2(�) +

∑
a∈Σ(log2(ia) + log2(da)). We will use Lemma 15 in order to compute

the occurrences of P in T in form of a family of arithmetic progressions. To this aim,
we follow a similar approach as Genest and Muscholl for message sequence charts [7].
In particular Lemma 16 below was inspired by [7, Prop. 1]. For the rest of this section
we make the following assumption:

alph(P) = alph(T) = Σ is connected. (1)

Whereas alph(P) = alph(T) is a real restriction, the assumption that Σ = alph(T) is
connected is not a real restriction; we simply solve several pattern matching instances if
it is not satisfied. Let X be a nonterminal of T and let O be an occurrence of P at the cut
of X . Since the pattern is connected there must be some (a, b) ∈ D such that π{a,b}(O)
is at the cut of X{a,b}. We will therefore compute occurrences of π{a,b}(val(P)) at
the cut of X{a,b}. It is well known that the occurrences of π{a,b}(val(P)) at the cut of
X{a,b} form an arithmetic progression ((ia, ib), (da, db), �) and that π{a,b}(val(P)) is
of the form unv for some n ≥ � and strings u, v ∈ {a, b}∗ with v + u, |u|a = da

and |u|b = db. Moreover, the arithmetic progression ((ia, ib), (da, db), �) can be com-
puted in time |T|2|P| (see [11]1). Now suppose we have computed the occurrences of
π{a,b}(val(P)) at the cut of X{a,b} in form of an arithmetic progression. The problem
now is how to find (for the possibly exponentially many occurrences in the arithmetic
progression) matching occurrences of projections onto all other pairs in D. The fol-
lowing lemma states that either there is a pair (a, b) ∈ D such that the projection onto
{a, b} is the first or the last element of an arithmetic progression, or all projections lie
at the cut of the same nonterminal.

Lemma 16. Let X be a nonterminal of T and let O be an occurrence of P at the cut of
X . Then either (i) π{a,b}(O) is at the cut of X{a,b} for all (a, b) ∈ D with a �= b, or
(ii) there are (a, b) ∈ D such that π{a,b}(O) is the first or last element of the arithmetic
progression of occurrences of π{a,b}(val(P)) at the cut of X{a,b}.

Lemma 16 motivates that we partition the set of occurrences into two sets. Let O be an
occurrence of P in T at the cut of X . We call O single (for X) if there is (a, b) ∈ D such
that the projection π{a,b}(O) is the first or the last element of the arithmetic progression
of occurrences of π{a,b}(val(P)) at the cut of X{a,b}. Otherwise, we call O periodic

1 In fact, in [11] it was shown that the arithmetic progression (ia+ib, da+db, �) can be computed
in polynomial time. From this the arithmetic progression, ((ia, ib), (da, db), �) can easily be
computed.
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(for X). By Lemma 16, if O is periodic, then π{a,b}(O) is an element of the arithmetic
progression of occurrences of val(P{a,b}) at the cut of X{a,b} for all (a, b) ∈ D (but
neither the first nor the last element). Prop. 17 below shows that we can decide in
polynomial time whether there are single occurrences of P in T. The basic idea is that
due to assumption (1), an occurrence of val(P) in val(T) is completely determined as
soon as we have determined the position of a single node of the dependence graph of
[val(P)]I in the dependence graph of [val(T)]I .

Proposition 17. Given (a, b) ∈ D, a nonterminal X of T and an occurrence (Oa, Ob)
of π{a,b}(val(P)) at the cut of X{a,b}, one can decide in time (|T| + |P|)O(1) whether
this occurrence is a projection of an occurrence of P at the cut of X .

It remains to show that for every nonterminal X of T we can compute in polynomial
time the periodic occurrences. To this aim we define the amalgamation of arithmetic
progressions. Let Γ, Γ ′ ⊆ Σ with Γ ∩ Γ ′ �= ∅. Consider two arithmetic progressions
p = ((ia)a∈Γ , (da)a∈Γ , �) and p′ = ((i′a)a∈Γ ′ , (d′a)a∈Γ ′ , �′). The amalgamation of p
and p′ is p ⊗ p′ = {v = (va)a∈Γ∪Γ ′ | πΓ (v) ∈ p and πΓ ′(v) ∈ p′}. The following
lemma follows from elementary facts about simultaneous congruences:

Lemma 18. Let Γ, Γ ′ ⊆ Σ with Γ ∩ Γ ′ �= ∅, and let p = ((ia)a∈Γ , (da)a∈Γ , �)
and p′ = ((i′a)a∈Γ ′ , (d′a)a∈Γ ′ , �′) be two arithmetic progressions. Then p ⊗ p′ is an
arithmetic progression which can be computed in time (|p|+ |p′|)O(1).

The next proposition can be shown using Lemma 15 and 18.

Proposition 19. Let X be a nonterminal of T. The periodic occurrences of P at the cut
of X form an arithmetic progression which can be computed in time (|T|+ |P|)O(1).

We now get the following theorem easily.

Theorem 20. Given an independence alphabet (Σ, I), and two SLPs P and T over Σ
such that alph(P) = alph(T), we can decide in polynomial time whether [val(P)]I is a
factor of [val(T)]I .

Proof. Let X be a nonterminal of T. Using [11] we compute for each pair (a, b) ∈ D
the arithmetic progression of occurrences of πa,b(val(P)) at the cut of X{a,b}. By apply-
ing Prop. 17 to the first and to the last elements of each of these arithmetic progressions,
we compute in polynomial time the single occurrences at the cut of X . The periodic oc-
currences can be computed in polynomial time using Prop. 19. The result follows, since
[val(P)]I is a factor of [val(T)]I iff there is a nonterminal X of T for which there is a
single occurrence of P at the cut of X or a periodic occurrence of P at the cut of X . 	


In [9], a slight generalization of Theorem 20 is shown.

7 Compressed Conjugacy

In order to prove Thm. 3 we need some further concepts from [20]. If for a trace x we
have NFR(x) = uyu−1 in M(Σ±1, I) for traces y, u such that min(y)∩min(y−1) = ∅,
then we call y the core of x, core(x) for short; it is uniquely defined [20]. Note that a
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trace t is a double a-cone if and only if t ∈ IRR(R) and core(t) = a. The following
result, which follows by combining results from [12] and [21], allows us to transfer the
conjugacy problem in G(Σ, I) to a problem on traces:

Theorem 21 ([12,21]). Let u, v ∈ M(Σ±1, I). Then u is conjugated to v in G(Σ, I) if
and only if: (i) |core(u)|a = |core(v)|a for all a ∈ Σ±1 and (ii) core(u) is a factor of
core(v)2|Σ|.

In order to apply Thm. 21 to SLP-compressed traces, we need a polynomial time al-
gorithm for computing an SLP that represents core([val(A)]I) for a given SLP A. The
following lemma is crucial:

Lemma 22. Let x ∈ IRR(R) and d = x 	 x−1. Then NFR(d−1xd) = core(x).

Example 23. We take the independence alphabet from Example 5 and consider the
trace x = [c−1d−1a−1ba−1cabdc−1d−1a−1b−1dca]I ∈ M(Σ±1, I), whose depen-
dence graph looks as follows:

c−1 d−1 c d c−1 d−1 d c

a−1 b a−1 a b a−1 b−1 a

We have NFR(x) = [c−1d−1a−1bcbdc−1a−1b−1ca]I :

c−1 d−1 c d c−1 c

a−1 b b a−1 b−1 a

Hence, the core of x is core(x) = [d−1cbdc−1a−1]I (the middle part in the above
diagram). Note that we have NFR(x) 	 NFR(x−1) = c−1a−1b. This trace occurs as a
prefix of NFR(x) and its inverse occurs as a suffix of NFR(x). By cyclically cancelling
c−1a−1b in NFR(x), we obtain d−1cbdc−1a−1 = core(x).

Thm. 7 and 8 and Lemma 22 imply:

Corollary 24. Fix an independence alphabet (Σ±1, I). Then, for a given SLP A over
the alphabet Σ±1 one can compute in polynomial time an SLP B with [val(B)]I =
core([val(A)]I).

We can now infer Thm. 3: Let A and B be two given SLPs over Σ±1. We want to
check, whether val(A) and val(B) represent conjugated elements of the graph group
G(Σ, I). Using Cor. 24, we can compute in polynomial time SLPs C and D with
[val(C)]I = core([val(A)]I) and [val(D)]I = core([val(B)]I). By Thm. 21, it suffices
to check, whether (i) |core([val(C)]I)|a = |core([val(D)]I)|a for all a ∈ Σ±1 and (ii)
whether core([val(C)]I) is a factor of core([val(D)]I)2|Σ|. Condition (i) can be easily
checked in polynomial time, since the number of occurrences of a symbol in a com-
pressed string can be computed in polynomial time. Moreover, condition (ii) can be
checked in polynomial time by Thm. 20, since (by condition (i)) we can assume that
alph(val(C)) = alph(val(D)). 	
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8 Open Problems

Though we have shown that some cases of the simultaneous compressed conjugacy
problem for graph groups (see Sec. 3) can be decided in polynomial time, it remains
unclear whether this holds also for the general case. It is also unclear to the authors,
whether the general compressed pattern matching problem for traces, where we drop
restriction alph(T) = alph(P), can be decided in polynomial time. Finally, it is not
clear, whether Thm. 1–3 also hold if the independence alphabet is part of the input.
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Abstract. We design and implement highly parallel algorithms that use

light as the tool of computation. An ordinary xerox machine and a box

of transparencies constitutes our computer. We find the maximum in a

list of n-bit numbers of arbitrary length using at most n xerox copying

steps. We decide, for any graph having n vertices and m edges, whether a

3-coloring exists in at most 2n+4m copying steps. For large instances of

problems such as the 3-color problem, this solution method may require

the production of transparencies that display challengingly high densities

of information. Our ultimate purpose here is to give hand tested ‘ultra-

parallel’ algorithmic procedures that may provide useful suggestions for

future optical technologies.

Keywords: Unconventional computing, photo-computing, light-based

computing, optical computing, xerography.

1 Introduction

We show how to design and implement by hand highly parallel algorithms that
use light as the central tool for computing. An ordinary xerox machine accom-
panied with a box of plastic transparencies constitutes the hardware of our com-
puter. Each computation involves a sequence of xerox operations in each of which
a new transparency is formed from a previous transparency that may be overlaid
with other transparencies or with masking rectangles. We have carried out by
hand on a standard xerox machine all the operations we discuss and any reader
can do the same. We hasten to recognize that there is a practical limit to the
size of problem instances that can be treated with the technology we have used
thus far. This limitation is discussed in Section 6. Nevertheless we hope that our
work may contribute to some future light based technology.

We represent binary information using the contrast between opaque and trans-
parent squares on a plastic transparency. Each opaque square will be represented
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as and each transparent square will be represented as a blank square space
which we make visible by writing . In Section 2 our first elementary illustra-
tive algorithm will deal with 6-bit binary numbers and in this case the bit 1 is
represented as and the bit 0 as . Thus in this setting the number 101001 is
represented as . Our computations will be carried out by overlaying
fixed length columns of symbols and and will use the fact that any stack of
such symbols is transparent if and only if every symbol in the stack is transpar-
ent. We define a complementation operation, ′ , by: ′ = and ′ = . Standard
xerox machines make negative copies as well as positive copies. Consequently
the operation ′ comes already implemented on xerox machines.

In a logical context with TRUE encoded as and FALSE as , overlaying sym-
bols computes Boolean AND. Moreover complementation, ′ , gives the Boolean
NOT. We regard Boolean Algebra as at the core of mathematical and computa-
tional thought. Consequently we regard all of our efforts in computing with xe-
rography as (thinly disguised) Boolean Algebra. It is parallel (or vector) Boolean
Algebra because many operations are carried out simultaneously as we work with
columns of Boolean values.

In previous publications [3,4,5,1] we have defined and illustrated our tech-
niques using xerography to treat three standard algorithmic problems: the satis-
fiability of sets of disjunctive Boolean clauses, the determination and study of the
independent subsets of an undirected graph, and the determination and study
of the subcovers of a set covering. The complexity of our algorithmic procedures
can be measured by the number of xerox operations they require. The number
of steps required in our algorithms grows only linearly or at most quadratically
in the length of the presentation required for each instance. Since the standard
computation of addition is accomplished using symmetric difference, Boolean
AND, and left shift, the usual addition algorithm is immediately implementable
with xerography - but with no reduction of complexity. The only possible ad-
vantage in adding xerographicly is that an arbitrary number of such additions
can be performed simultaneously with no additional steps required.

We show in Section 2, as a simple ‘warm-up’ exercise, how to determine the
largest number in a list of n-bit binary numbers using at most n xerox operations.
This implements with light the classical concept of content addressable mem-
ory. Our major effort here is the presentation in Sections 3, 4, 5 of a method of
deciding the 3-colorability [2] of an arbitrary undirected graph. We illustrate in
complete detail the solution of a specific instance for the 3-coloring of a small
graph. Deciding the 3-colorability of a graph having n vertices and m edges re-
quires at most 2n + 4m xerox operations. The key tool for our solution is the
creation in Section 4 of a potentially general purpose procedure that uses only
three xerox operations in the construction of a pointer to those rows of two
congruent rectangular displays which are identical.

Other interesting schemes for using light as a computational tool have been
introduced in [10] and [9]. Light has also been used in [8]. See [7] and con-
sult www.ece.arizona.edu/∼ocppl/ for optical computation. Our approach to
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computing with light arose as a transformation of our approach to biomolecular
computing using DNA molecules in aqueous solution [6].

2 Finding the Largest Number in a List

This Section must be read with constant reference to Figure 1 which displays in
its leftmost six columns a list of 36 non-negative 6-bit integers. In this table the
bit 0 is represented as an opaque square and the bit 1 as the transparent square
. Thus, for example, the first row displays the number 010011. As the simplest

illustration of our xerographic computing we solve the problem of finding the
maximum number in the given list of 6-bit integers.

We understand that the table of 36 integers is given on a single transparency
having dimensions appropriate for use on our xerox machine. Here are the steps
of the computation:

1. We mask all but column 1 and ask whether any light passes through column
1. In the present case we answer ‘Yes’. This tells us that the first bit in the
maximum number is a 1. Since the answer is Yes, we make a xerox copy 1x

of column 1 after masking all columns other than column 1.
2. Place column 1x over column 2 of the table of numbers. We indicate the

column created by laying 1x over 2 as 1x/2 When all other columns are
masked, does light show through 1x/2? Yes. This tells us that the second bit
of the maximum number is 1. Make a xerox copy 2x of 1x/2.

3. Place column 2x over column 3, producing 2x/3. Light through 2x/3? No.
This tells us that no number in the table that has 1 as each of its first two
bits has a 1 as its third bit. Consequently the third bit in the maximum
number is 0. No xerox copy of 2x/3 is made.

4. Place column 2x over column 4, producing 2x/4. Light through 2x/4? Yes.
The fourth bit of the maximum is therefore 1. Make a xerox copy 4x of 2x/4.

5. Place 4x over 5, producing 4x/5. Light through 4x/5? No. The fifth bit is 0.
No xerox is made.

6. Place 4x over 6, producing 4x/6. Light through 4x/6? Yes. The sixth bit is
1. We have accumulated the bits of the maximum entry, which is 110101. If
a permanent record of the final result of the computation is desired, make
a xerox copy 6x of 4x/6. When 6x is placed adjacent to the original table
it constitutes a ‘pointer’ to the occurrences of the maximum values in the
table.

If in the first step of the procedure above, light had not passed through column
1 then we would have concluded that the first bit of the maximum is 0 and we
would not have made a xerox copy of column 1. Instead we would have tested for
light through column 2 and proceeded with column 2 playing the role previously
played by column 1.

If one wishes to find the minimum number in a list, De Morgan’s Law tells us
that this can be done with two extra xerox operations: Make a negative xerox
copy of the original list. Find the maximum of this second list. Form a negative
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Fig. 1. (As Explained in Section 2) Finding the Maximum in a list of non-negative

integers and the locations in the list where it occurs
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xerox copy of the maximum of the second to obtain the minimum of the original
list. It seems amusing that we can find the maximum and the minimum of the
list without even reading the list.

In any future instrumental implementation the decision as to whether a col-
umn does or does not admit light might made by replacing the human eye with
a photon detector. The appropriately masked transparency, exposing only the
column of interest, could be tested by laying it over any glowing panel of light. A
xerox machine will provide an adequate source of light: Leave the cover off and
punch the control to produce one sweep of light that will activate/not-activate
the photon detector appropriately. If this is done then each light test can be
counted as equivalent to making a xerox copy.If light steps are counted as xerox
operations then finding the maximum would have complexity 2n rather than n.

We operate only with columns and never with rows! In the problems it is
our purpose to treat we expect to deal with rectangular tables with relatively
few columns but with vastly many rows. Commonly we deal with tables having n
columns and 2n, 3n, or more rows. Our purpose is to provide solutions that require
only O(n) or O(n2) steps as compared to the O(2n) steps in known algorithms.
Consequently any inspection of a substantial percentage of the rows would push
our solutions into O(2n) steps defeating the purpose of our procedures.

In this Section we have assumed that a rectangular array is given to us initially.
In the problem we are about to treat we must begin by constructing the initial
array.

3 Deciding the 3-Colorability of an Undirected Graph

The ideal published report of our computations would include plastic pages that
are the actual transparencies used in the computation process. Since this is not
practical, we have simulated in Section 2 on paper the appearance of such trans-
parencies. When thinking with paper simulations there is one point that must
be kept in mind: On paper white squares can obscure underlying black squares
but (happily) this is not possible with transparencies. We make one more simpli-
fication in our representations: Once one has a clear mental vision of the actual
transparencies being used, it takes less space to ‘encode’ the transparencies with-
out the cumbersome representations and . For the remainder of this article
we will allow ourselves to indicate the presence of an opaque rectangle by
writing the bit 1 and the presence of a transparent rectangle by writing the
bit 0. Thus the display: will be now communicated by writing:
1000101001. The reader is requested to ‘see’ in his/her mind an opaque square
when reading a 1 and a transparent square when reading a 0.

Recall that the classical k-coloring problem for a given graph is a decision
problem with a yes/no answer [2]. The question is: Given a finite graph and a
finite set of k colors, can the vertices of the graph be colored in such a way that
the two endpoints of each edge in the graph have distinct colors? A more intricate
problem is to specify either one (or all) explicit coloring(s) that meet(s) this
condition. We will illustrate xerographic procedures for deciding 3-colorability
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Fig. 2. (As Explained in Section 3) The construction of the table of all potential 3-

colorings of a graph having vertices {a, b, c, d, e}. The colors are red (encoded as 00),

yellow (encoded as 01) and blue (encoded as 10).

of a simple graph G having 5 vertices {a, b, c, d, e} and 6 edges: {a, b}, {a, c},
{a, e}, {b, c}, {c, d} and {d, e}.

This Section is devoted to the construction of an appropriate list of potential
colorings. It must be read with constant reference to Figure 2. We shorten the
required list we construct by choosing one edge, in this case {d, e}, and assigning
its endpoints distinct colors. In Section 5 the remaining edges are attended to and
the solution is completed. The reader who has understood our treatment of this
instance of the 3-color problem will be able to make the very small adjustments
needed to solve k-coloring problems.

Let K = red, yellow, blue be our set of colors. We choose a binary encoding for
K: red = 00, yellow = 01, blue = 10. We observe first that there is at least one
edge, for example: {d, e}. We construct the table, given in Figure 2, of all those
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3(5−2) = 27 colorings having d blue and e yellow. One such coloring is: a red, b
red, c red, d blue, e yellow which we encode as the binary word 0000001001
where we will understand that the first two bits encode the color for a, the second
two bits the color for b, and so on. We construct a table of all such possibilities
using only 2(5 − 2) = 6 xerox operations following an initialization of the first
word to 0000001001.

Let a rectangle of width w and height h be prescribed on a transparency
appropriate for reading by the xerox machine to be used. In this w by h rectangle
we will construct a table that is 10 bits wide and 3(5−2) = 27 bits high. As the
initialization step we reserve a top row of width 10(1/27)h and height (1/27)h.
We then initialize this top row to contain the ten bits 0000001001 expressed
on the actual transparency, of course, with the bits represented as and . This
gives the first row of the table of colorings in Figure 2. We obtain the second
row by masking the bit in position 5 of the first row and making a xerox copy of
the result. We obtain the third row by masking the bit in position 4 of the first
row and making a xerox copy of the result. We have now created the leftmost
column of Fig.2. The two xeroxes are placed under the initial row as displayed
in the second column of Fig. 2. We now treat this three row block in a manner
parallel to the way we treated row 1. Thus we mask bit 3 of this three row block
and xerox the result. We then mask bit 2 of the three row block and xerox the
result. We have now created the second column of Fig. 2. The two xeroxes are
placed under the initial three row block as displayed in the third column of Fig.
2. We now treat the resulting nine row block as we did the three row block. We
make two xeroxes of the nine row block, one with bit 1 masked and one with bit
0 masked. This gives column 3 of Fig. 2. The fourth column of Fig. 2 is formed
by placing the two new xeroxes under the the first nine row block giving the
desired 27 row Table. This table can now be used to decide 3-colorability of any
graph having five nodes that contains at least one edge.

We have also provided, as the fifth column of Fig. 2, Table′ which was obtained
from Table by taking one negative xerox copy of Table. Table and Table′ are
equally fundamental tools for use in Section 5. To complete the solution of the
3-color problem we need the ‘subroutine’ provided in the next Section.

Note that in making constructions such as the Table of Fig. 2, it is possible to
avoid creating a very long display that is of comparatively tiny width. This can
be done by laying newly constructed segments to the side, rather than below the
previously constructed portion of the display. We have previously explained this
point and the slight complications it creates in the context of our discussions of
Boolean satisfiability (Head, 2007, 2009).

4 Pointing to Pairs of Identical Words in Parallel Tables

For a graph that has {a, b} as an edge, no acceptable 3-coloring of the graph
can have a and b both red, both yellow, or both blue. Thus we need a procedure
that works only with the columns of Table and marks as unacceptable all those
rows of Table that have as initial four bits either 0000, 0101, or 1010. We give
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a very general procedure that requires only three xerox operations to mark all
such rows. We present this procedure and the confirmation of its validity by
listing all 16 of the 4-bit words and verifying that for every 4-bit word the equal-
ity/inequality of its first bit pair with its second bit pair is correctly determined.
We discuss this procedure by referring to Figure 3. The leftmost column pair in
Fig. 3 gives all 16 pairs of two bit words in columns headed as a and b. Suppose
this 16 line table lies on a transparency. Here is the procedure for constructing
a 16 bit column which, when laid beside the table, has 0 adjacent to every equal
pair and 1 adjacent to every unequal pair. Thus the column we construct ‘points
to’ each of the equal pairs with a 0. Here are the steps of this construction:

1. Make a negative xerox copy of the original four column table headed by a
and b. This gives the second four column table in Fig. 3 headed by a′ and b′.

2. Lay column a over column b to produce the two column table a/b′. Make a
negative xerox copy of a/b′ producing the column headed (a/b′)′.

3. Lay column b over column a′ to produce the two column table b/a′. Make a
negative xerox copy of b/a′ producing the column headed (b/a′)′.

4. Lay the column headed (a/b′)′ over the column headed (b/a′)′ to produce
the column headed (a/b′)′/(b/a′)′. We have given separate headings, L and
R, to the left and right bits of this column.

5. Make a positive xerox copy of column L. Lay this copy of L over column R
to produce the column headed L/R.

Inspect the 16 rows of the column L/R to confirm that it is the desired ‘pointer’
to the equal pairs.

Note that the construction of the equality pointer has required, once the
columns for a′ and b′ are available, only three xerox operations. In Section 5
we will need an inequality pointer. Consequently we have included the column
headed (L/R)′. This column is obtained by making a negative xerox copy of
L/R. Thus the construction of the inequality pointer requires only four xerox
operations.

Addendum. The procedure meticulously illustrated in this figure is carried out
five times in the completion of the solution of our instance of the 3-color problem
given in Section 5 and illustrated in Figure 4. The illustration here justifies our
presenting only the results of the five applications of this procedure in Section 5
as shown in Figure 4. However, the validity of this procedure for pairs of n-bit
words, for every positive integer n is easily justified: Let u and v be n-bit words
having bits expressed as and . Let u′ and v′ be the complements of u and
v. If u and v are identical, then so are u′ and v′. Thus both u/v′ and v/u′ are
entirely opaque. Consequently both (u/v′)′ and (v/u′)′ are entirely transparent
and so is (u/v′)′/(v/u′)′. Thus when all n bits are ‘stacked’ into a single stack
the result is transparent. On the other hand if, for some k, the k-th bits of u
and v differ then the k-th bits of u′ and v′ also differ. Then the k-th bit of one
of u/v′ and v/u′ is transparent and consequently the k-th bit of one of (u/v′)′

and (v/u′)′ is opaque. Thus when all n bits are ‘stacked’ into a single stack the
result is opaque.
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Fig. 3. (As Explained in Section 4) The construction of a pointer ( = ) to the rows

of paired tables in which the entries are identical. The validity of the procedure is

confirmed here for all 16 possible pairs of 2-bit words a & b.

5 Completing the 3-Coloring Decision

Can the graph G having vertex set {a, b, c, d, e} and edges {a, b}, {a, c}, {a, e},
{b, c}, {c, d} and {d, e} be 3-colored? We discuss the completion of this decision
by referring to Figure 4. The leftmost column of Fig. 4 lists again the Table of
27 potential 3-colorings (with d blue and e yellow). For ease of making visual
confirmations we have listed this same table with spacing that isolates the five
bit-pairs in each row. The four-xerox procedure for detecting inequality of pairs
is now applied once for each of the edges {a, b}, {a, c}, {a, e}, {b, c} and {c, d}.
The edge {d, e} need not be treated since we set d and e with distinct colors in
the construction of Table. Applying the procedure of Section 4 to {a, b} gives
the column headed a �= b. The next four columns headed a �= c, a �= e, b �= c and
c �= d are produced in the same manner. The compound overlay a �= b/ a �= c/
a �= e/ b �= c/ c �= d gives the column P that points to the acceptable 3-colorings
by exhibiting a 0 in the row corresponding to each acceptable coloring.

Recall that the classical 3-coloring problem [2] asks for a yes/no answer to
the question: Is there at least one 3-coloring. In the context of our xerographic
computing procedures this question is equivalent to the question: Does light pass
through column P (of Fig. 4)? In this instance we answer ‘Yes’ to both forms
of the question. We are reasonably satisfied with the procedure given here for
making this yes/no decision. The more subtle request for a specific acceptable
3-coloring becomes the more subtle question of individualizing a location on the
pointer P through which light passes and reading the corresponding color from
Table. We are less satisfied with our procedure for providing a specific coloring.
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Fig. 4. (As Explained in Section 5) The construction of the pointer to those rows of

the table in Figure 2 that give acceptable colorings. The edges of the graph being

considered here are {a, b}, {a, c}, {a, e}, {b, c}, {c, d}, and {d, e}.

For tiny problem instances such as the one treated here, listing a coloring when
one exists is not challenging. In the problem instance we have treated here three
specific colorings are easily read. However as the size of problem instances grows
the transparent squares become so tiny that, although light through P can be
detected, it may be very difficult to individualize the location of a ‘dot’ of light.
We have made some progress on this problem previously in Section 7 of [1]. But
here we have drifted into the topic of Section 6.

Here is an exact accounting of the xerox operations our procedures require in
solving any 3-color decision problem for a graph having n vertices and m edges.
We assume n > 2 and m > 1.



Using Light to Implement Parallel Boolean Algebra 241

Creating the initial row of Table: 1 xerox - of 0000000000 with
bits 7 & 10 masked.

Construction of Table: 2(n− 2) xerox operations.
Creating Table′: 1 xerox operation.
Applying Equality tests: 4(m− 1) xerox operations.
Keeping a record of the solution P: 1 xerox operation.
Total: 2n+ 4m− 5 xerox operations.

Why should counting the number of xerox operations made be accepted as
a measure of complexity? Because the number of transparency maskings and
overlayings associated with each xerox operation is bounded. Other operations,
initialization and light testing, are performed only once.

6 Can the Present Suggestions Contribute to a Future
Practical Technology Using Light?

In this article most of the space has been devoted to the treatment of a tiny case
of an NP-complete algorithmic problem. Previous articles on ‘transparent com-
puting’ have been devoted entirely to the treatment of NP-complete problems.
In all these treatments there has been an analog of ‘buying time with space’.
We have ‘bought time with density of information representation’. We have kept
the actual physical space (the area of a transparency) constant, but the density
of information in this restricted area grows without bound as the size of the
description of instances grows. A human could solve only toy-scale NP-complete
problems using a xerox machine as illustrated. (A SAT with ten variables could
be treated, but probably not one with 11.) On the bright side, once one has the
Table for a ten variable SAT one can solve almost immediately any SAT using
10 or fewer variables (only one xerox needed for each clause). The operations
used (sliding transparencies left & right, testing for light through a column, &
copying) can surely be carried out roboticly, but even a robot imitating hand op-
erations would probably quickly hit a density limit. I do not know how the bound
on workable density may grow as new light technologies (free of xerography) are
developed. My hope is merely that my ideas for transparent computing suggest
something of value to future designs for computing with light. Alternatively, the
procedures used here may suggest procedures that can be implemented in other
technologies not based on light.

The most pleasing feature for me of the present article is the elegance of the
three step determination of equality of two multi-bit columns given in Section 4.
Likewise, the most pleasing feature of [5] is the constructing, from an n-column
table T having arbitrarily many rows, using only O(n2) steps, the two tables: (1)
‘LShift’ which is T with all its shifted to the left of all its and (2) ‘Cardinals’
which, for each k (1 < k < n), has a column that is a pointer to those rows
of T in which occurs exactly k times. Such general purpose tools for handling
columns of data may prove valuable for processing data stored as n-bit words.
Moreover, the work in Section 2 of this article gives a hint for quickly locating
all words in such a data base that have any specific values in any specified
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columns. A practical development from transparent computing might arise from
the application of these tools and others to access, query and process in parallel
data stored as fixed-length binary words.
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Abstract. Tilings and tiling systems are an abstract concept that arise
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Introduction

The model of tilings was introduced by Wang [22] in the 60s to study decision
problems on some classes of logical formulas. Roughly speaking, we are given
some local constraints (a tiling system), and we consider colorings of the plane
that respect these constraints (a tiling).

Tilings are both a simple and powerful model: the definitions are quite easy
to grasp, however most decision problems on tilings are computationally in-
tractable, starting from the most important one: decide whether a given tiling
system tiles the plane [3]. This is due in part to a straightforward encoding of
Turing machines in tilings (see e.g. [5,21]) and to the existence of aperiodic tiling
systems, i.e. that produce many tilings, but none of them being periodic. In fact,
Harel [12] and van Emde Boas [21] give strong evidence that tilings are more
suitable than Turing machines and satisfiability problems to express hardness in
both complexity and recursivity theory.

In a similar manner, we will show in this paper how to do descriptive complex-
ity [8] with tilings. More precisely, we will prove that sets of periods of tilings cor-
respond exactly to non-deterministic exponential time, hence to spectra of first
order formulas [14]. As a consequence, the problems whether non-deterministic
exponential time, first order spectra, or sets of periods are closed under comple-
mentation are equivalent.

The result is in itself not surprising: in fact, the proof of Jones and Selman [14]
on spectra of first order formulas uses a multi-dimensional generalization of finite
automata which may be interpreted as a kind of tiling system. Furthermore, the
encoding of Turing machines in tilings, in particular in periodic tilings, is well
known. This paper makes use of the fact that n steps of a Turing machine can

Y. Gao et al. (Eds.): DLT 2010, LNCS 6224, pp. 243–254, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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be encoded into a tiling of period exactly n. Usual proofs [1,11] have a quadratic
blowup, which is unsuitable for our purpose.

1 Tilings, Periodicity and Computations

For any dimension d ≥ 1, a tiling of Zd with a finite set of tiles T is a mapping
c : Zd → T . A Zd-tiling system is the pair (T, F ), where F is a finite set
of forbidden patterns F ⊂ TN , where N is a finite subset of Zd called the
neighborhood. A tiling c is said to be valid if and only if none of the patterns
of F ever appear in c. Since the number of forbidden patterns is finite, we could
specify the rules by allowed patterns as well. We give an example of such a tiling
system with the tiles of figure 1a and the forbidden patterns of figure 1b. The
allowed tilings are shown in figure 1c.

a) b)

c)

Fig. 1. The set of tiles (a) and the forbidden patterns (b) can only form tilings of the

forms shown in (c)

The cartesian product of two tiling systems τ1 and τ2 is the tiling system
obtained by superimposing the tiles of τ1 to the tiles of τ2 with the rules of τ1 on
the layer of τ1 and the rules of τ2 on the layer of τ2. We will sometimes restrict
the resulting tiling system by removing some superimposition of tiles.

A tiling c of dimension d = 2 is said to be horizontally periodic if and only if
there exists a period p ∈ N∗ such that for all x, y ∈ Z, c(x, y) = c(x + p, y). A
tiling c of Zd is periodic if it has the same period on all its dimensions:

c(x1, x2, . . . , xd) = c(x1 + p, x2, . . . , xd) = · · · = c(x1, x2, . . . , xd + p)

The smallest such p is called the (horizontal) eigenperiod of c.
A tiling system is aperiodic if and only if it tiles the plane but there is no valid

periodic1 tiling. Such tiling systems have been shown to exist [3] and are at the
core of the undecidability of the domino problem (decides if a given tiling system
tiles the plane). J. Kari [15,17] gave such a tiling system with an interesting
property: determinism. A tiling system is NE-deterministic (for North-East) if
given two tiles respectively at the southern and western neighbour of a given cell,
there is at most one tile that can be put in this cell so that the finite pattern is
valid. The mechanism is shown in figure 2a.
1 On none of the dimensions.
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(a) (b)

Fig. 2. North-East (NE) determinism (a) and East (E) determinism (b) in a tiling

system

It is easy to change some details in order to have an other form of determinism:
two tiles vertically adjacent will force their lower right neighboring tile as shown
in figure 2b. This type of determinism will be called East-determinism. With
such a tiling system, if a column of the plane is given, the half plane on its right
is then determined.

As said earlier, tilings and recursivity are intimately linked. In fact, it is quite
easy to encode Turing machines in tilings. Such encodings can be found e.g. in
[16,7]. Given a Turing machine M , we can build a tiling system τM in figure 3.
The tiling system is given by Wang tiles, i.e., we can only glue two tiles together
if they coincide on their common edge. This tiling system τM has the following
property: there is an accepting path for the word u in time (less than) t using
space (less than) w if and only if we can tile a rectangle of size (w + 2)× t with
white borders, the first row containing the input. Note that this method works
for both deterministic and non-deterministic machines.

2 Recognizing Languages with Tilings

Let τ be a Zd-tiling system. Then we define

Lτ = {n | there exists a tiling by τ of eigenperiod n}

If τ is a Z2-tiling system, we define

Lh
τ = {n | there exists a tiling by τ of horizontal eigenperiod n}

Definition 1. A set L ⊆ N� is in T if L = Lτ for some Zd-tiling system τ and
some d. A set L ⊆ N� is in H if L = Lh

τ for some Z2-tiling system τ .
T and H are the classes of languages recognized by tiling and recognized hor-

izontally by tiling respectively.

We say that a language L is recognized by a tiling system τ if and only if L = Lh
τ

or L = Lτ , depending on the context. It is easy to see that T and H are closed
under union. It is not clear whether they are closed under intersection: if τ and
τ ′ are tiling systems, a natural way to do intersection is to consider the cartesian
product of τ and τ ′. However, if for example Lτ = {2} and Lτ ′ = {3}, then there
exists in τ a tiling of eigenperiod 2, hence of period 6, and the same is true for
τ ′, so that in this example τ × τ ′ will contain a tiling of eigenperiod 6 whereas
Lτ ∩ Lτ ′ = ∅.
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Fig. 3. A tiling system, given by Wang tiles, simulating a Turing machine. The meaning

of the labels are the following:

– label s0 represents the initial state of the Turing machine.

– The top-left tile corresponds to the case where the Turing machine, given the state

s and the letter a on the tape, writes a′, moves the head to the left and to change

from state s to s′. The two other tiles are similar.

– h represents a halting state. Note that the only states that can appear in the last

step of a computation (before a border appears) are halting states.

In this paper, we prove the following:

Theorem 1. H is closed under union, intersection and complementation.

Theorem 2. T is closed under intersection. T is closed under complementation
if and only if NE = coNE.
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Here NE is the class of languages recognized by a (one-tape) non-deterministic
Turing machine in time 2cn for some c > 0. Note that for theorem 2 we need to
work in any dimension d. That is, if L1,L2 are the sets of periods of the Zd-tiling
systems τ1, τ2, then there exists a Zd′

-tiling system τ ′ that corresponds to the
set of period L1 ∩ L2. However d′ can be larger than d.

To prove these theorems, we will actually give a characterization of our classes
H and T in terms of structural complexity. This will be the purpose of the next
two sections.

3 H and NSPACE(2n)

To formulate our theorem, we consider sets of periods, i.e. subsets of N�, as
unary or binary languages. If L ⊂ N� then we define un(L) = {1n−1|n ∈ L}. We
define bin(L) to be the set of binary representations (missing the leading one) of
numbers of L. As an example, if L = {1, 4, 9}, then un(L) = {ε, 111, 11111111}
and bin(L) = {ε, 00, 001}. Note that any language over the letter 1 (resp. the
letters {0, 1}) is the unary (resp. binary) representation of some subset of N�.

We now proceed to the statement of the theorem:

Theorem 3. Let L be a language, the following statements are equivalent:

i) L ∈ H
ii) un(L) ∈ NSPACE(n)
iii) bin(L) ∈ NSPACE(2n)

Recall that NSPACE(n) is the set of languages recognized by a (one-tape)
non-deterministic Turing machine in space O(n).

The (ii) ⇔ (iii) is folklore from computational complexity theory. The fol-
lowing two lemmas will prove the equivalence (ii)⇔ (i) hence the result.

Lemma 1. For any tiling system τ , un(Lh
τ ) ∈ NSPACE(n).

Proof. Let τ = (T, F ) be a tiling system. We will construct a non-deterministic
Turing machine accepting 1n if and only if n + 1 is a horizontal eigenperiod of
τ . The machine has to work in space O(n), the input being given in unary.

Let r > 0 be an integer such that all patterns in the neighborhood N are
smaller than a r× r square. Then a configuration c is correctly tiled if and only
if all r × r blocks of c are correctly tiled. Furthermore, we can prove that if a
horizontally periodic tiling of period n exists, then we can find such a tiling which
is also vertically periodic of period at most |T |rn. Now we give the algorithm,
starting from n as an input:

– Initialize an array P of size n so that P [i] = 1 for all i.
– First choose non-deterministically p ≤ |T |rn

– Choose r bi-infinite rows (ci)0≤i≤r−1 of period n (that is, choose r×n tiles).
– For each r+1 ≤ i ≤ p, choose a bi-infinite row ci of period n (that is, choose

n tiles), and verify that all r× r blocks in the rows ci . . . ci−r+1 are correctly
tiled. At each time, keep only the last r rows in memory (we never forget
the r first rows though).



248 E. Jeandel and P. Vanier

– (Verification of the eigenperiod) If at any of the previous steps, the row ci is
not periodic of period k < n, then P [k] := 0

– For i ≤ r, verify that all r × r blocks in the rows cp−i . . . cpc0 . . . ci−r−1 are
correctly tiled

– If there is some k such that P [k] = 1, reject. Otherwise accept.

This algorithm needs to keep only 2r rows at each time in memory, hence is in
space O(n). 	


Lemma 2. For any unary language L ∈ NSPACE(n), then {n ∈ N� | 1n−1 ∈
L} ∈ H.

Proof. Let L ∈ NSPACE(n), there exists then a non-deterministic Turing ma-
chine M accepting L in linear space. Using traditional tricks from complexity
theory, we can suppose that on input 1n the Turing machine uses exactly n + 1
cells of the tape (i.e. the input, with one additional cell on the right) and works
in time exactly cn for some constant c.

We will build a tiling system τ so that 1n ∈ L if and only if n+4 is a period of
the tiling τ . The modification to obtain n+ 1 rather that n+ 4, and thus prove
the lemma, is left to the reader (basically “fatten” the gray tiles presented below
so that they absorb 3 adjacent tiles), and serve no interest other than technical.

The proof may basically be split into two parts: First produce a tileset so
that every tiling of horizontal period n looks like a grid of rectangles of size n
by cn delimited by gray cells (see fig. 6b). Then encode the Turing machine M
inside these rectangles. The main difficulty is in the first part, the second part
being relatively straightforward. Note however, that as M is nondeterministic,
the computation in different rectangles might be different. To not break the
periodicity, we will have to synchronize all the machines.

The tiling system will be made of several components (or layers), each of
them having a specific goal. The components and their rules are as follows:

– The first component A is composed of an aperiodic E-deterministic tiling
system, whose tiles will be called ”whites”. We take the one from section 1.
We add a ”gray” tile. The rules forbid any pattern containing a white tile
above or below a gray tile. Hence a column containing a gray tile can only
have gray tiles. We also forbid for technical reasons two gray tiles to appear
next to each other horizontally.

p p

Fig. 4. A periodic tiling with the tiling system A
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Fig. 5. a) The transducer doing the addition of one bit and the corresponding tiles. A

valid tiling with these tiles is given in c).

With this construction, a periodic tiling of period p must have gray
columns, as the white tiles form an aperiodic tileset.

For the moment nothing forbids more than one gray column to appear
inside a period. Figure 4 shows a possible form of a periodic tiling at this
stage.

– The second component D = P × {R,B} will produce gray rows so that the
(horizontally periodic) tiling will consist of n× cn white rectangles delimited
by these gray columns and rows.

The idea is as follows: suppose each word between two gray columns is a
word over the alphabet {0, . . . c−1}, that is, represents a number k between
0 and cn− 1. Then it is easy with a tiling system to ensure that the number
on the next line is k + 1 (with the convention (cn − 1) + 1 = 0). See figure 5
for a transducer in the case c = 2 and its realization as a tiling system.

With the {R,B} subcomponent, we mark the lines corresponding to the
number 0, so that one line out of cn is marked. We proceed as follows. First,
horizontal bi-infinite lines are uniform: that is a tile is R if and only if its
left neighbour is R. Next, a gray tile is R if and only if it is at the west of a
0-tile and at the north-west of a c− 1-tile. That is, lines that are colored in
R represent the time when the number is reinitialized from cn − 1 to 0.

Figure 6a shows some typical tiling at this stage: The period of a tiling
is not necessarily the same as the distance between the rectangles, it may be
larger. Indeed, the white tiles in two consecutive rectangles may be different.

– Component T is only a copy of A (without the same rules) which allows us
to synchronize the first white columns after the gray columns: synchronis-
ing these columns ensures that the aperiodic components between two gray
columns are always the same, since the aperiodic tiles are E-deterministic.
The rules are simple, two horizontal neighbors have the same value on this
component and a tile having a gray tile on its left has the same value in A
as in T .

At this stage, we have regular rectangles on all the plane, whose width
correspond to the period of the tiling, as shown in figure 6b.

– The last component M is the component allowing us to encode Turing ma-
chines in each rectangle. We use the encoding τM we described previously
in section 1. We force the computation to appear inside the white tiles: the



250 E. Jeandel and P. Vanier

a)

2n

n n b)

2n

n n

Fig. 6. a) The form after adding the component D, the aperiodic components between

two gray columns can be different. b) After adding also the component T , the aperiodic

components are exactly the same.

white bottom borders must appear only in the row R, and the row below
will have top borders. And the two tiles between the row R and the gray
tiles are corner tiles. Finally, the input of the Turing machine (hence the row
above the row R) consists of only “1” symbols, with a final blank symbol.

The Turing machines considered here being non-deterministic, there could
be different valid transitions on two horizontally adjacent rectangles, that
is why we synchronize the transitions on each row. The method for the
synchronization of the transition is almost the same as the method for the
synchronisation of the aperiodic components, and thus not provided here.

Now we prove that 1n ∈ L if and only if n+ 4 is a period of the tiling system τ .
First suppose that n is a period and consider a tiling of period n.

– Due to component A, a gray column must appear. The period is a succession
of either gray and white columns.

– Due to the component D, the gray columns are spaced by a period of p,
p < n.

– Due to component T the tiling we obtain is (horizontally) p-periodic when
restricted to the components D,T,A.

– For the component M to be correctly tiled, the input 1p−4 (4 = 1 (gray) +
1 (left border) + 1 (right border) + 1 (blank marker)) must be accepted by
the Turing machine, hence 1p−4 ∈ L

– Finally, due to the synchronization of the non-deterministic transition, the
M component is also p-periodic. As a consequence, our tiling is p-periodic,
hence n = p− 4. Therefore 1n+4 ∈ L

Conversely, suppose 1n ∈ L. Consider the coloring of period n + 4 obtained as
follows (only a period is described):

– The component A consists of n + 3 correctly tiled columns of our aperiodic
E-deterministic tiling systems, with an additional gray column. As the E-
deterministic tiling system tiles the plane, such a tiling is possible
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– The component M corresponds to a successful computation path of the Tur-
ing machine on the input 1n, that exists by hypothesis. As the computation
lasts exactly than cn steps, the computation fits exactly inside the n × cn

rectangle.
– We then add all other layers according to the rules to obtain a valid config-

uration, thus obtaining a valid tiling of period exactly n + 4. 	


Corollary 1. The languages recognized horizontally by tiling are closed under
intersection and complementation.

Proof. Immerman-Szelepczenyi’s theorem [13,2] states that non-deterministic
space complexity classes are closed under complementation. The result is then
a consequence of theorem 3. 	


This theorem could be generalized to tilings of dimension d by considering tilings
having a period n on d− 1 dimensions, as explained in [4].

4 T and NE

We now proceed to total periods rather than horizontal periods. We will prove:

Theorem 4. Let L ⊂ N� be a language, the following statements are equivalent:

i) There exists a Zd-tiling system τ for some d so that L = Lτ

ii) un(L) ∈ NP
iii) bin(L) ∈ NE

In these cases, L is also the spectrum of a first order formula, see [14].
We will obtain as a corollary theorem 2. Note the slight difference in formula-

tion between theorem 4 and theorem 3. While we can encode a Turing machine
working in time n in a tiling of size n2, we cannot check the validity of the
tiling in less than O(n2) time steps. More generally, it is unclear whether we
can encode a Turing machine working in time nc in a tiling of size less than
n2c. To overcome this gap, we need to work in any dimension d: A language
L ∈ NTIME(nd) will be encoded into a tiling in dimension 2d and a tiling in
dimension d will be encoded into a language L in NTIME(nd).

The gap here is not surprising: while space complexity classes are usually
model independent, this is not the case for time complexity, where the exact
definition of the computational model matters. An exact characterization of
periodic tilings for d = 2 is in fact possible, but messy: it would involve Turing
machines working in space O(n) with O(n) reversals, see e.g [6].

Proof. The statements (i) ⇒ (ii) ⇔ (iii) were already explained. So we only
have to prove (ii)⇒ (i). We will see how a language L ∈ NTIME(nd) will be
encoded as periods in dimension 2d. The proof is similar to the previous one,
and we provide only a sketch due to the lack of space. There are two steps:

– Build a tileset τ so that every tiling of period n looks like a lattice of hyper-
cubes of size n delimited by gray cells.

– Encode the computation of the Turing Machine inside the cubes.
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a)

p

p

p p b)

p

p

p p

Fig. 7. Transmission of the first row in a) and of the first column in b)

First step. We will work in dimension 2, as it is relatively straightforward to
adapt the technique to higher dimensions.

The idea is to take an aperiodic NE-deterministic tiling system as white tiles.
Then we add in this component three gray tiles: a cross tile, a horizontal tile and
a vertical tile: gray horizontal (resp. vertical) lines consist of horizontal (resp.
vertical) tiles, and they can intersect only on cross tiles.

Let A be this component. Now consider a periodic tiling. This tiling cannot
contain only white tiles. Hence, it contains a horizontal tile, a vertical tile or a
cross tile. The problem is that the presence of a horizontal(resp. vertical) tile
does not imply the presence of a vertical (resp. horizontal) tile. The idea is to
use in the next component an unary counter in both directions, so that it creates
horizontal lines between vertical columns, and conversely.

The next components are also simple. The key point is that we use a NE-
deterministic tiling system (rather than an E-deterministic) to ensure that all
white squares contain the same tiles: in a NE-deterministic tiling, a square is
entirely determined by its first row and its first column. Hence it is sufficient to
synchronize the first row and the first column of all squares to synchronize the
aperiodic components. A way to do this is given in figure 7.

Second step We now have to explain how to encode the computation of a
Turing Machine working in time nd into a cube of size n in dimension 2d. The
idea is to fold the space-time diagram of the Turing machine so that if fits
into the cube. Each cell of the space-time diagram has coordinates (t, s) with
t ≤ nd, s ≤ nd. We now have to transform each cell (t, s) into a cell of the
hypercube of size n in dimension 2d so that two consecutive (in time or space)
cells of the space-time diagram correspond to two adjacent cells of the cube, so
that we can verify locally that the cube indeed encodes the computation of the
Turing machine. This is exactly what a reflected n-ary Gray code [10,18] does.

Such a folding has already been described by Borchert [4] and can also be
deduced from [14]. Basically, the cell at position (t0, . . . , td−1) ∈ [0, n− 1]d will
represent the integer t =

∑
ain

i where ai = ti if
∑

j>i tj is even, and ai =
n−1−ti otherwise (formula (51) in [18]). The noticeable fact is that the direction
in which to look for the next positition is given by the parity of the sum of the
stronger bits. Hence, we will encode these parity layers in the tiling, an example
for a three dimensional folding can be seen on figure 8.
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Fig. 8. Folding of a three dimensional cube, the red on the parity layer stands for +1

and the white for -1. The direction where to look for the next cell is given by the parity

layer.

However recall that Turing machines are non-deterministic, so we have to
synchronize the transitions between the different hypercubes, as was done in the
previous theorem. Similar techniques can be used. 	


Concluding Remarks

The results presented in this paper establish a link between computational com-
plexity and tilings, in particular between the complexity classes NSPACE(2n),
NE and the sets of periods of the tilings. The result is very different from the
sets of periods we can obtain for 1-dimensional tilings (subshifts of finite type,
see [20])

For 1-dimensional tilings, the number cn of tilings of period n is enclosed in
the zeta function: ζ(z) = exp

(∑ cn

n zn
)

The zeta function is well understood in
dimension 1 [20]. A zeta function for tilings of the plane has been described by
Lind [19]. To be thorough, one needs to count not only tilings of period n as we
did in this article, but tilings of period Γ , where Γ is any lattice. We think a
complete characterization of sets of periods for general lattices Γ of Z2 is out
of reach. If we accept to deal only with square periods (that is with the lattices
nZ × nZ), as we did here, preliminary work suggests we can characterize the
number of periodic tilings via the class #E.
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1 Mathematical Institute, Slovak Academy of Sciences
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Abstract. We continue the investigation of union-free regular languages

that are described by regular expressions without the union operation.

We also define deterministic union-free languages as languages recognized

by one-cycle-free-path deterministic finite automata, and show that they

are properly included in the class of union-free languages. We prove that

(deterministic) union-freeness of languages does not accelerate regular

operations, except for the reversal in the nondeterministic case.

1 Introduction

Regular languages are the simplest languages in the Chomsky hierarchy. They
have been intensively investigated due to their practical applications in various
areas of computer science, and for their importance in the theory as well.

In recent years, several special subclasses have been deeply examined: fi-
nite languages that can be described by expressions without the star operation
[6,7,32], suffix- and prefix-free languages that are used in codes [12], star-free
and locally testable languages, ideal, closed, and convex languages, etc.

Here we continue this research and study union-free regular languages that
can be represented by regular expressions without the union operation. Nagy
in [26] described one-cycle-free-path nondeterministic finite automata, in which
from each state, there is exactly one cycle-free path to the final state. He showed
that such automata accept exactly the class of union-free languages. We first
complement his results with some closure properties. Then, in Section 3, we
investigate the nondeterministic state complexity of operations in the class of
union-free languages. Quite surprisingly, we show that all known upper bounds
can be reached by union-free languages, except for the reversal, where the tight
bound is n instead of n + 1. In Section 4, we define deterministic union-free
languages as languages accepted by deterministic one-cycle-free-path automata,
and show that they are properly included in the class of union-free languages. We
study the state complexity of quite a number of regular operations, and prove
that deterministic union-freeness of languages does not accelerate any of them.
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To conclude this section, we mention three more related works. Crvenković,
Dolinka, and Ésik [9] investigated algebraic properties of union-free languages.
Nagy [25] and Afonin and Golomazov [2] studied union-free decompositions of
regular languages.

2 Preliminaries

We assume familiarity with basic concepts of finite automata and regular lan-
guages. For all unexplained notions, we refer the reader to [29,31,32].

If Σ is a finite alphabet, then Σ∗ denotes the set of all strings over the alphabet
Σ including the empty string ε. A language over an alphabet Σ is any subset of
Σ∗. We denote the size of a finite set A by |A| and its power-set by 2A.

A nondeterministic finite automaton (nfa) is a quintuple M = (Q,Σ, δ, S, F ),
where Q is a finite non-empty set of states, Σ is an input alphabet, S is the set
of initial states, F is the set of accepting states, and δ is the transition function
that maps Q × (Σ ∪ {ε}) into 2Q. The transition function is extended to the
domain 2Q × Σ∗ in a natural way. The language accepted by the nfa M is the
set of all strings accepted by M . The automaton M is deterministic (dfa) if it
has a single initial state, no ε-transitions, and |δ(q, a)| = 1 for all states q in Q
and symbols a in Σ. In this case, we usually write δ : Q×Σ → Q.

A language is regular if there exists an nfa (or a dfa) accepting the language.
The state complexity of a regular language L, denoted by sc(L), is the smallest
number of states in any dfa accepting the language L. The nondeterministic state
complexity of a regular language L, nsc(L), is defined as the smallest number of
states in any ε-free nfa that accepts L and has a single initial state.

A path from state p to state q in an nfa/dfa M is a sequence p0a1p1a2 · · · anpn,
where p0 = p, pn = q, and pi ∈ δ(pi−1, ai) for i = 1, 2, . . . , n. The path is called
accepting cycle-free if pn is an accepting state, and pi �= pj whenever i �= j.
An nfa/dfa is a one-cycle-free-path (1cfp) nfa/dfa if there is a unique accepting
cycle-free path from each of its states.

A regular expression over an alphabet Σ is defined inductively as follows: ∅,
ε, and a, for a in Σ, are regular expressions. If r and t are regular expressions,
then also (s∪ t), (s · t), and (s)∗ are regular expressions. A regular expression is
union-free if no symbol ∪ occurs in it. A regular language is union-free if there
exists a union-free regular expression describing the language.

Let K and L be languages over Σ. We denote by K∩L,K∪L, K−L,K⊕L the
intersection, union, difference, and symmetric difference of K and L, respectively.
To denote complement, Kleene star, and reversal of L, we use Lc, L∗, and LR.
The left and right quotient of a language L with respect to a string w is the set
w\L = {x | wx ∈ L} and L/w = {x | xw ∈ L}, respectively. The cyclic shift of a
language L is defined as Lshift = {uv | vu ∈ L}. The shuffle of two languages is
K L = {u1v1u2v2 · · ·umvm | m � 1, ui, vi ∈ Σ∗, u1 · · ·um ∈ K, v1 · · · vm ∈ L}.
For the definition of positional addition, K + L, we refer to [18]: informally,
strings are considered as numbers encoded in a |Σ|-adic system, and automata
read their inputs from the least significant digit.
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3 Union-Free Regular Languages

A regular language is union-free if it can be described by a union-free regular
expression. Nagy in [26] proved that the class of union-free regular languages
coincides with the class of languages recognized by one-cycle-free-path nfa’s. He
also showed that union-free languages are closed under concatenation, Kleene-
star, and substitution by a union-free language. Using an observation that the
shortest string of a union-free language is unique, he proved not closeness under
union, complementation, intersection, and substitution by a regular language.
Our first result complements the closure properties.

Theorem 1 (Closure Properties). The class of union-free regular languages
is closed under reversal, but not closed under cyclic shift, shuffle, symmetric
difference, difference, left and right quotients, and positional addition.

Proof. We prove the closeness under reversal by induction on the structure of a
regular expression. If r is ∅, or ε, or a, then the reversal is described by the same
expression. If r = st, or r = s∗, then the reversal is L(t)RL(s)R or (L(s)R)∗,
respectively, which are union-free due to closeness under concatenation and star.

To prove the non-closure properties, we give union-free languages such that the
shortest string in the resulting language is always of length two, and we show
that there are at least two such strings in all cases: {ab}shift = {a} {b} =
{ab}⊕{ba} = {ab, ba}; a(b∪c)∗−a∗ = {ab, ac, . . .}; g\(ge∪gf)∗b = {eb, fb, . . .}
and a(eb∪fb)∗/b = {ae, af, . . . }; 88∗+33∗ = {11, 19, . . .}. As the shortest strings
are not unique, the resulting languages are not union-free. 	

The subset construction assures that every nfa of n states can be simulated by
a dfa of at most 2n states. The worst case binary examples are known for a long
time [20,22,24]. In addition, Domaratzki et al. [10] have shown that there are at
least 2n−2 distinct binary languages recognized by nfa’s of n states that require
2n deterministic states. However, none of the above mentioned automata is one-
cycle-free-path nfa. The following theorem shows that the bound 2n is tight in
the class of union-free regular languages as well.

Theorem 2 (NFA to DFA Conversion). For every positive integer n, there
exists a binary one-cycle-free-path nfa of n states whose equivalent minimal dfa
has 2n states.

Proof. Consider the binary 1cfp nfa with states 0, 1, . . . , n − 1, of which 0 is
the initial state, and n− 1 is the sole accepting state. By a, each state i goes to
{i+1}, except for state n−1 which goes to the empty set. By b, each state i goes
to {0, i}. Let us show that the corresponding subset automaton has 2n reachable
and pairwise inequivalent states. Each singleton {i} is reached from the initial
state {0} by ai, and the empty set is reached by an. Each set {i1, i2, . . . , ik},
where 0 � i1 < i2 < · · · < ik � n − 1, of size k (2 � k � n) is reached from
the set {i2 − i1, i3 − i1, . . . , ik − i1} of size k − 1 by the string bai1 . This proves
the reachability of all subsets. For inequivalence, notice that the string an−1−i

is accepted by the nfa only from state i. Two different subsets must differ in a
state i, and so the string an−1−i distinguishes the two subsets. 	
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We next study the nondeterministic state complexity of regular operations in
the class of union-free languages. Quite surprisingly, all upper bounds can be
reached by union-free languages, except for the reversal where the upper bound
is n instead of n + 1. To prove the results we use a fooling set lower-bound
technique [3,4,5,11,14].

A set of pairs of strings {(x1, y1), (x2, y2), . . . , (xn, yn)} is called a fooling set
for a language L if (1) for all i, the string xiyi is in the language L, and (2) if
i �= j, then at least one of the strings xiyj and xjyi is not in the language L.

It is well-known that the size of a fooling set for a regular language provides a
lower bound on the number of states in any nfa for this language. The argument
is simple. We can fix accepting computations of any nfa on strings xiyi. The
states on these computations reached after reading xi must be pairwise distinct,
otherwise the nfa would accept both xiyj and xjyi for two distinct pairs.

The next lemma shows that sometimes one more state is necessary. The lemma
can be used to simplify some proofs from the literature, for example, the results
on union, reversal, and cyclic shift of nfa languages.

Lemma 1. Let L be a regular language. Let A and B be sets of pairs of strings
and let u and v be two strings such that A∪B, A∪{(ε, u)}, and B∪{(ε, v)} are
fooling sets for L. Then every nfa for L has at least |A|+ |B|+ 1 states.

Proof. Consider an nfa for L, and let A = {(xi, yi) | i = 1, 2, . . . ,m} and B =
{(xm+j , ym+j) | j = 1, 2, . . . , n}. Since the strings xkyk are in L, we can fix an
accepting computation of the nfa on each string xkyk. Let pk be the state on
this computation that is reached after reading xk. Since A ∪ B is a fooling set
for L, the states p1, p2, . . . , pm+n must be pairwise distinct. Since A ∪ {(ε, u)}
is a fooling set, the initial state must be distinct from all states p1, p2, . . . , pm.
Since B ∪ {(ε, v)} is a fooling set, the initial state must also be distinct from all
states pm+1, pm+2, . . . , pm+n. Thus the nfa has at least m + n + 1 states. 	


Theorem 3 (Nondeterministic State Complexity). Let K and L be union-
free regular languages over an alphabet Σ accepted by an m-state and an n-state
one-cycle-free-path nfa, respectively. Then
1. nsc(K ∪ L) � m + n + 1, and the bound is tight if |Σ| � 2;
2. nsc(K ∩ L) � mn, and the bound is tight if |Σ| � 2;
3. nsc(KL) � m + n, and the bound is tight if |Σ| � 2;
4. nsc(K L) � mn, and the bound is tight if |Σ| � 2;
5. nsc(K + L) � 2mn + 2m + 2n + 1, and the bound is tight if |Σ| � 6;
6. nsc(L2) � 2n, and the bound is tight if |Σ| � 2;
7. nsc(Lc) � 2n, and the bound is tight if |Σ| � 3;
8. nsc(LR) � n, and the bound is tight if |Σ| � 1;
9. nsc(L∗) � n + 1, and the bound is tight if |Σ| � 1;

10. nsc(Lshift) � 2n2 + 1, and the bound is tight if |Σ| � 2;

Proof. 1. To get an nfa for the union, we add a new initial state that goes
by the empty string to the initial states of the given automata. For tightness,
consider binary union-free languages (am)∗ and (bn)∗ [13], and the following
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sets of pairs of strings: A = {(ai, am−i) | i = 1, 2, . . . ,m − 1} ∪ {(am, am)}
and B = {(bj , bn−j) | j = 1, 2, . . . , n − 1} ∪ {(bn, bn)}. Let L = (am)∗ ∪ (bn)∗,
and let us show that the set A ∪ B is a fooling set for the language L. The
concatenation of the first and the second part of each pair results in a string
in {am, a2m, bn, b2n}, and so is in the language L. Next, the concatenation of
the first part of a pair and the second part of another pair results in a string in
{ar, am+r, bs, bn+s, arbs, bsar, ambn, bnam | 0 < r < m, 0 < s < n}, and so is not
in L. Finally, both sets A ∪ {(ε, bn)} and B ∪ {(ε, am)} are fooling sets for L as
well. By Lemma 1, every nfa for L has at least m + n + 1 states.

2. Standard cross-product construction provides the upper bound mn on the
intersection. To prove that the bound is tight consider binary 1cfp nfa’s that
count the number of a’s modulo m and the number of b’s modulo n, respectively.
Then the set {(aibj, am−ibn−j) | 0 � i � m− 1, 0 � j � n− 1} is a fooling set
of size mn for the intersection of the languages accepted by the two automata.

3. To get an nfa for the concatenation from two given nfa’s, we only need to
add an ε-transition from all final states in the first automaton to the initial state
in the second automaton. For tightness, consider languages (am)∗ and (bn)∗.
The set {(ai, am−ibn) | i = 0, 1, . . . ,m− 1} ∪ {(ambj, bn−j) | j = 1, 2, . . . , n} is a
fooling set of size m + n for the concatenation of the two languages.

4. The state set of an nfa for the shuffle is the product of the state sets of given
nfa’s, and its transition function δ is defined using transitions functions δA and
δB of the given automata by δ((p, q), a) = {(δA(p, a), q), (p, δB(q, a))} [8]. This
gives the upper bound mn. The bound is reached by the shuffle of the languages
(am)∗ and (bn)∗ since the set {(aibj , am−ibn−j) | 0 � i � m− 1, 0 � j � n− 1}
is a fooling set of size mn for the shuffle.

5. The nfa for positional addition in [18] consists of 2mn+2m+2n+1 states,
and it is shown here that the bound is reached by the positional addition of
union-free languages ((1∗5)m)∗ and ((2∗5)n)∗ over the alphabet {0, 1, 2, 3, 4, 5}.

6. Since L2 is the concatenation of the language L with itself, the upper bound
2n follows from part 3. To prove tightness consider the 1cfp nfa shown in Fig. 1.
Construct an nfa with the state set Q = {p0, p1, . . . , pn−1} ∪ {q0, q1, . . . , qn−1}
for the language L2 from two copies of the nfa for L by adding an ε-transition
from the final state in the first copy to the initial state in the second copy. The
initial state of the resulting nfa is p0, the only final state is qn−1. For each state
s in Q, define strings xs and ys as follows (notice that for each state s, the initial
state p0 goes to s by xs, and each s goes to the accepting state qn−1 by ys):

xs =
{
ai if s = pi,
a2n−2bn−1−i if s = qi,

ys =

⎧
⎨

⎩

a2n−2−i if s = pi and i �= n− 1,
bn−1a2n−2 if s = pn−1,
an−1−i if s = qi.

Then the set {(xs, ys) | s ∈ Q} is a fooling set for the language L2 of size 2n.

...
a a a a

b b bb
0 1 n−1n−2

Fig. 1. The one-cycle-free nfa reaching the bound 2n on square
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a a a...a
b c

c c

b,c b,c
b,c

b,c
b b

0 1 n−2 n−1

Fig. 2. The one-cycle-free nfa reaching the bound 2n on complement

7. After applying subset construction to a given nfa and interchanging the
accepting and rejecting states, we get an nfa (even a dfa) of at most 2n states
for the complement of the language recognized by the given nfa. The bound has
been proved to be tight for a growing alphabet in [28], for a four-letter alphabet
in [5], and for a binary alphabet in [16]. However, the binary witness nfa’s in
[16] are not 1cfp. We prove the tightness of the bound also in the class of 1cfp
automata. To this aim consider the ternary language L recognized by the 1cfp
nfa in Fig. 2; denote the state set {0, 1, . . . , n− 1} by Q. By c, state n− 1 goes
to {0, 1, . . . , n − 1}, and each other state i goes to {i}. Transitions by a and b
are the same as in the automaton in the proof of Theorem 2. Therefore, in the
corresponding subset automaton, each subset S of the state set Q is reached
from the initial state {0} by a string xS in {a, b}∗. We are now going to define
strings yS so that the set {(xS , yS) | S ⊆ Q} would be a fooling set for Lc.

Let S be a subset of Q. If S = {0, 1, . . . , n − 2}, let yS = c, otherwise let
yS = y1y2 · · · yn, where for each i in Q, yn−i = a if i ∈ S, and yn−i = ca if i /∈ S.
Then the set {(xS , yS) | S ⊆ Q} is a fooling set for the language Lc of size 2n.

8. To get an n-state nfa for the reversal of a language accepted by an n-state
1cfp nfa, we reverse all transitions, make the initial state final, and (the only)
final state the initial. The unary union-free language an−1 reaches the bound.

9. The standard construction of an nfa for the Kleene star that adds a new
initial (and accepting) state connected through an ε-transition to the initial
state of the given nfa as well as ε-transitions from each final state to the initial
state, provides the upper bound n + 1. For tightness, consider the union-free
language an−1(an)∗. The set {(ε, ε)} ∪ {(ai, an−1−i) | i = 1, 2, . . . , n − 2} ∪
{(an−1, an), (an, an−1)} is a fooling set of size n+1 for the star of this language.

10. The nfa for cyclic shift in consists of 2n2 + 1 states, and the one-cycle-
free-free nfa in Fig. 1 reaches the bound [17]. To prove the result, a fooling set
of size 2n2 is described in [17], and then Lemma 1 is used to show that one more
state is necessary. 	


4 Deterministic Union-Free Regular Languages

We now turn our attention to deterministic union-free languages, that is, to lan-
guages that are recognized by one-cycle-free-path deterministic finite automata.
We first show that deterministic union-free languages are properly included in
the class of union-free languages. Then we study the state complexity of regular
operations in the class of deterministic union-free languages.
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Theorem 4 (1cfp DFAs vs. 1cfp NFAs). The class of deterministic union-
free languages is a proper subclass of the class of union-free regular languages.

Proof. Let k � 3. We show that there exists a unary union-free regular language
such that every dfa for this language has at least k final states, and so the
language is not deterministic union-free. Set n = k(k − 1)/2.

Define a unary 2n-state dfa with states 0, 1, . . . , 2n−1, of which 0 is the initial
state. The set of final states is {0, n, n+(k−1), n+(k−1)+(k−2), . . . , 2n−1}.
Each state i goes by a to state i + 1, except for state 2n− 1 that goes to itself.
Let L be a language recognized by this dfa. Since

n + (k − 1) + (k − 2) + · · ·+ (k − (k − 2)) = 2n− 1,

there are k − 2 final states greater than n, and so the dfa has k final states.
Moreover, state 2n−2 is not final. We now show that the automaton is minimal.
Let i and j be two states with i < j. Then there exists an integer m such that by
the string am, state j goes to state 2n−1, while state i goes to state 2n−2. Since
state 2n− 1 is final and state 2n− 2 is not, the states i and j are inequivalent
and the dfa is minimal. It turns out that every dfa for the language L must have
at least k final states, and so the language L is not deterministic union-free.

To prove that the language L is union-free, we describe a 1cfp nfa for L. The
only initial and final state of the nfa is state 0. Next, construct k+n cycles that
are pairwise disjoint, except for state 0. The length of the cycles is consequently
n, n+ (k − 1), n+ (k − 1) + (k − 2), . . . , 2n− 1, and then 2n, 2n+ 1, . . . , 3n− 1.
The automaton is 1cfp nfa, accepts all strings in L of length less that 2n, as well
as all strings of length at least 2n, but no other strings since going through more
than one cycle results in a string of length at least 2n. 	


The next theorem shows that deterministic union-freeness of languages does
not accelerate basic regular operations. This contrasts with the results in previ-
ously studied subclasses of regular languages such as finite, unary, prefix-, suffix-,
factor-, subword-free (or closed, or convex) etc. In the case of intersection and
square, the known witness languages are deterministic union-free [33,27]. Slightly
changed Maslov’s automata [21] provide lower bounds for star and concatena-
tion, while a modification of the hardest dfa in [17] gives a lower bound for cyclic
shift. In the case of reversal, the paper [30] claims that there is a binary n-state
dfa language whose reversal requires 2n deterministic states. Although the wit-
ness automaton is one-cycle-free-path dfa, the result cannot be used because the
proof is not correct. If n = 8, then the resulting dfa has only 252 states instead
of 256, as the reader can verify using a software, for example, in [1].

Theorem 5 (State Complexity). Let K and L be deterministic union-free
regular languages over an alphabet Σ accepted by an m-state and an n-state
one-cycle-free-path dfa, respectively. Then
1. sc(K ∪ L) � mn, and the bound is tight if |Σ| � 2;
2. sc(K ∩ L) � mn, and the bound is tight if |Σ| � 2;
3. sc(K − L) � mn, and the bound is tight if |Σ| � 2;
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4. sc(K ⊕ L) � mn, and the bound is tight if |Σ| � 2;
5. sc(KL) � m2n − 2n−1 (m � 2, n � 3), and the bound is tight if |Σ| � 2;
6. sc(L2) � n2n − 2n−1, and the bound is tight if |Σ| � 2;
7. sc(Lc) � n, and the bound is tight if |Σ| � 1;
8. sc(L∗) � 2n−1 + 2n−2 (n � 2), and the bound is tight if |Σ| � 2;
9. sc(LR) � 2n (n � 2), and the bound is tight if |Σ| � 3;

10. sc(Lshift) � 2n2+n log n. The bound 2n2+n log n−5n can be reached if |Σ| � 4.

Proof. 1.-4. The cross-product construction gives the upper bound mn. For all
four operations, the bound is reached by deterministic union-free binary lan-
guages ((b∗a)m)∗ and ((a∗b)n)∗: the strings aibj with 0 � i � m − 1 and
0 � j � n−1 are pairwise inequivalent in the right-invariant congruence defined
by the intersection (union, difference, symmetric difference, respectively).

5. The upper bound is m2n − 2n−1 [21,33]. Notice that neither the ternary
witness automata in [33] nor binary witness automata in [15] are 1cfp dfa’s.
However, Maslov [21] claimed the result for two binary languages accepted by
automata, the first of which is 1cfp dfa, while the second one can be made to
be 1cfp dfa by changing its accepting state from n− 1 to n− 2. Since no proof
is provided in [21], we recall the two automata and show that they reach the
upper bound. Consider languages accepted by the 1cfp dfa’s shown in Fig. 3.
Construct an nfa for the concatenation of the two languages from these dfa’s
by adding an ε-transition from state qm−1 to state 0. The initial state of the
nfa is state q0, the sole accepting state is n − 2. We first prove by induction
on the size of subsets that each set {qi} ∪ S, where 0 � i � m − 2 and S is a
subset of {0, 1, . . . , n − 1}, as well as each set {qm−1} ∪ T , where T is a subset
of {0, 1, . . . , n − 1} containing state 0, is reachable. Each singleton {qi} with
i � m − 2 is reached from the initial state {q0} by ai. Assume the reachability
of all appropriate sets of size k. Let S = {qi, j1, j2, . . . , jk} be a subset of size
k + 1. First, let i = m − 1, and so j1 = 0. Since the symbol a is a permutation
symbol in the second dfa, we can use j- r to denote the state that goes to state
j by ar. Consider the set S′ = {qm−2, j2 - 1, . . . , jk - 1} of size k. The set S′ is
reachable by the induction hypothesis, and since S′ goes to S by a, the set S is
reachable as well. Now let i � m− 2 and j1 = 0. Then the set S is reached from
the set {qm−1, 0, j2 - (i + 1), . . . , jk - (i + 1)} by ai+1. Finally, if i � m− 2 and
j1 > 0, then S is reached from the set {qi, 0, j2 − j1, j3 − j1, . . . , jk − j1} by bj1 .

q q ...a a a

a

a a a

b b b... b

b

a,b

a

b b b

0 1 m−1q

10 n−2 n−1n−3

Fig. 3. The one-cycle-free-path dfa’s reaching the bound m2n −2n−1 on concatenation
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...
a a a a

b b bb

b

a

0 n−2 n−11

Fig. 4. The one-cycle-free-path dfa reaching the bound 2n−1 + 2n−2 on star

This concludes the proof of reachability. Now let {qi} ∪ S and {qj} ∪ T be two
different reachable sets. If i < j, then the string bam−j−1bn−2 distinguishes the
two subsets. If i = j, then S and T differ in a state j, and moreover, j > 0 if
i = m− 1. Then either the string bn−j−2 (if j � n− 3), or the empty string (if
j = n− 2), or the string a (if j = n− 1) distinguishes the two subsets.

6. The upper bound follows from the upper bound on concatenation, and, as
shown in [27], is reached by the binary language recognized by the 1cfp dfa with
states 0, 1, . . . , n−1, of which 0 is the initial state, and n−1 is the sole accepting
state; by a, each state i goes to state i+ 1 mod n, and by b, each state i goes to
itself except for state 1 that goes to state 0 by b.

7. To get a dfa for the complement we only need to exchange the accepting
and rejecting states. The bound is reached by the language (an)∗.

8. The upper bound is 2n−1 + 2n−2 [33]. The witness language in [33] is not
deterministic union-free. However, Maslov [21] provides deterministic union-free
witness example shown in Fig. 4. Since there is no proof in [21], we give it here.
Construct an nfa for the star of the language accepted by the 1cfp dfa in Fig. 4
by adding a new initial and accepting state q0 that goes to state 1 by a and to
state 0 by b, and by adding the transition by a from state n− 2 to state 0. The
initial state {q0} and all singletons {i} are reachable. Assume that all subsets of
size k−1 containing state 0, or containing neither 0 nor n−1 are reachable. Let
S = {i1, i2, . . . , ik} be a subset of size k with 0 � i1 < i2 < · · · < ik � n−1 (and
if i1 > 0 then ik < n−1). First, let i1 = 0. Then the set S is reached from the set
{i2 +(n−1)− ik−1, i3 +(n−1)− ik−1, . . . , ik−1 +(n−1)− ik−1, n−2} of size
k−1, containing neither 0 nor n−1, by the string abn−1−ik . Now let i1 > 0. Then
ik < n− 1, and the set S is reached from the set {0, i2 − i1, i3 − i1, . . . , ik − i1},
which contains state 0, by a. To prove inequivalence notice that the initial (and
accepting) state {q0} cannot be equivalent to any state not containing state
n − 1. However, the string an is accepted by the nfa from state n − 1 but not
from state q0. Two different subsets of the state set of the given dfa differ in a
state i, and the string an−1−i distinguishes the two subsets.

9. The reversal of a dfa language is accepted by the nfa obtained from the
given dfa by reversing all transitions, making all accepting states initial, and
the initial state accepting. The subset construction gives a dfa of at most 2n

states. As pointed out by Mirkin [23], the Lupanov’s ternary worst-case example
for nfa-to-dfa conversion in [20] is, in fact, a reversed dfa. Leiss [19] presented a
ternary and a binary dfa’s that reach the the upper bound. Since none of these
automata is 1cfp dfa, let us consider the 1cfp dfa shown in Fig. 5. Construct
the reversed nfa. Notice that in this nfa each state i goes to state (i+ 1) mod n
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...

c

a,ba,ba,ba,bb,c

a

a,b
10 n−3 n−1

c c c c c
2 n−2

Fig. 5. The one-cycle-free-path dfa reaching the bound 2n on reversal

by ca. It turns out that in the subset automaton, each subset not containing
state 0 is reached from a subset containing state 0 by a string in (ca)∗. Let
us show by induction on the size of subsets that each subset of the state set
{0, 1, . . . , n − 1} containing state 0 is reachable in the subset automaton. The
singleton {0} is reached from the initial state {1} of the subset automaton by
a. The subset {0, i1, i2, . . . , ik}, where 1 � i1 < i2 < · · · < ik � n − 1, of size
k + 1 is reached from the set {0, i2 − i1 + 1, i3 − i1 + 1, . . . , ik − i1 + 1} of size
k by the string bci1−1. Finally, the empty set is reached from state {1} by b.
For inequivalence, notice that the string cn−1−i is accepted by the nfa only from
state i for i = 1, 2, . . . , n− 1, and the string acn−2 only from state 0.

10. The upper bound is from [21,17]. The work [17] proves the lower bound
2n2+n log n−5n for the language recognized by the dfa over the alphabet {a, b, c, d}
with states 0, 1, . . . , n − 1, of which 0 is the initial state and n − 1 is the sole
accepting state, and transitions are defined as follows: By a, states 0 and n− 1
go to itself and there is a circle (1, 2, . . . , n− 2); by b, state 0 goes to itself and
there is a circle (1, 2, . . . , n − 1); by c, all states go to itself except for state 0
that goes to 1 and state 1 that goes to 0; by d, all states go to state 0 except
for state n − 1 that goes to state 1. This automaton is not one-cycle-free-path
dfa. Therefore, let us change transitions on symbol b so that in a new dfa by b,
all states go to itself except for state n − 2 that goes to n − 1 and state n − 1
that goes to n − 2. The resulting automaton is a 1cfp dfa, and moreover, the
transitions by old symbol b are now implemented by the string ba. It turns out
that the proof in [17] works for the new 1cfp dfa if we replace all occurrences of
b in the proof by the string ba. 	


5 Conclusions

We investigated union-free regular languages that can be described by regular
expressions without the union operation. Using known results of Nagy [26] on
characterization of automata accepting those languages, we proved some closure
properties, and studied the nondeterministic state complexity of regular oper-
ations. We showed that all known upper bounds can be reached by union-free
languages, except for the reversal, where the tight bound is n instead of n + 1.
We also defined deterministic union-free languages as languages recognized by
deterministic one-cycle-free-path automata, and proved that they are properly
included in the class of union-free languages. We examined the state complexity
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of quite a number of regular operations, and showed that deterministic union-
freeness of languages accelerates none of them. This contrasts with the results on
complexity of operations in previously studied subclasses of regular languages.

Some questions remain open. We conjecture that for the difference of two
union-free languages, nfa’s need m2n states, and we do not now the result on
the shuffle of deterministic union-free languages. A description of deterministic
union-free regular languages in terms of regular expressions or grammars, as well
as the case of unary union-free languages, is of interest too.
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14. Hromkovič, J.: Communication complexity and parallel computing. Springer, Hei-

delberg (1997)
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16. Jirásková, G.: State complexity of some operations on binary regular languages.

Theoret. Comput. Sci. 330, 287–298 (2005)
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Abstract. Wepropose a general framework for parallel insertion/deletion

operations based on p-schemata. A p-schema is a set of tuples of words.

When being used for parallel insertion of a language into a word, an

element of a p-schema specifies how to split the given word into fac-

tors between which the insertion of the language will take place. Parallel

deletion based on a p-schema is defined as an “inverse” operation of

parallel insertion based on the p-schema. Several well-known language

operations are particular cases of p-schema-based insertions or deletions:

catenation, Kleene star, reverse catenation, sequential insertion, paral-

lel insertion, insertion next to a given letter, contextual insertion, right

and left quotient, sequential deletion, parallel deletion. Additional oper-

ations that can be defined using p-schemata include contextual parallel

insertion, as well as parallel insertion (deletion) of exactly n words, at

most n words, an arbitrary number of words. We also consider the decid-

ability and undecidability of existence of solutions of language equations

involving p-schema-based parallel insertion/deletion.

1 Introduction

Since Adleman’s success [1] in solving the Directed Hamiltonian Path Prob-
lem purely by biological means, which threw new light on fundamental research
on operations in formal language theory, various bio-operations have been in-
tensively investigated. Examples include hairpin inversion [2], circular inser-
tion/deletion [3], excisions of loop, hairpin, and double-loop [4], and contextual
insertion/deletion [5], to name a few.

The fact that one can experimentally implement in the laboratory some vari-
ants of insertions and deletions into/from DNA sequences [6], and use these as
the sole primitives for DNA computation, gives practical significance to the re-
search on insertion and deletion. Contextual insertion and deletion are also of
theoretical interest because they have been proved to be Turing-universal [5]. In
this paper, we will parallelize contextual insertion and deletion. For words x and
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y, the (x, y)-contextual insertion of a language L into a word w [5] results in the
language ⋃

w1,w2 with w=w1xyw2

w1xLyw2.

In other words, one considers all the possibilities of cutting w into two segments,
such that the first segment ends with x and the second segment begins with
y, and for each such possibility L is inserted between these segments. This op-
eration suggests that for any positive integer n, an n-tuple (w1, w2, . . . , wn) of
words may be used to control the parallel insertion of n− 1 instances of L into
w = w1w2 · · ·wn to generate the language w1Lw2L · · ·Lwn−1Lwn. A set of such
tuples is called a parallel operation schema or p-schema for short, and we call
the parallel insertion thus determined parallel insertion based on the p-schema.
A p-schema can be used to control not only parallel insertion but parallel dele-
tion as well. Parallel deletion of L from a word w based on a given n-tuple
(u1, u2, . . . , un) deletes n−1 non-overlapping elements of L from w so as to leave
this n-tuple, and concatenates them to generate the word u = u1u2 · · ·un. As
we shall see in Section 3, various well-known sequential as well as parallel oper-
ations (catenation, Kleene star, reverse catenation, sequential insertion, parallel
insertion, insertion next to a given letter, contextual insertion, right and left
quotient, sequential deletion, parallel deletion) are special instances of paral-
lel operations based on p-schemata. Additional operations that can be defined
using p-schemata are contextual parallel insertion, as well as parallel insertion
(deletion) of exactly n words, at most n words, an arbitrary number of words.

Besides being proper generalizations of existing language operations, parallel
operations based on p-schemata lead to some interesting results when studied in
the context of language equations. Equations of the form X1.X2 = X3 have been
intensely studied in the literature, where . is a binary operation on languages,
and some of X1, X2, X3 are fixed languages, while the others are unknowns (see,
e.g., [5,7,8,9,10,11,12,13,14]). In this paper, we focus on such language equations
with . being p-schema-based insertion or deletion. Since these two operations
are parameterized by p-schemata, we can also consider the problem of deciding
whether L1 .X L2 = L3 has a solution, i.e., whether there exists a p-schema
F such that parallelly inserting L2 into (deleting from) L1 based on F results
in L3.

In general, procedures do not exist for solving such equations when they in-
volve a context-free language. Therefore, we focus on solving equations of the
form (1) X �F R2 = R3, (2) R1 �X R2 = R3, (3) R1 �F X = R3, and their
p-schema-based deletion variants, where all of R1, R2, R3, F are regular1. Among
these equations, the equations of the first or second form can be solved using
the technique of [14]. The application of this technique presumes the property
that the union of all the solutions to the given equation is the unique maximal
solution. As we shall see, the third-type equations do not have this property,
1 By catenating words in a tuple of words via a special symbol #, we can naturally

associate a set of tuples of words with a language, and as such we can establish a

Chomsky-hierarchy for the sets of tuples of words.
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that is, they may have multiple maximal solutions. Algorithms to solve these
equations are one of the main contributions of this paper. Our algorithms work
not only as a procedure to decide the existence of solutions, but as a procedure
to enumerate all maximal solutions (Theorems 6 and 7). Moreover, combining
these algorithms with the algorithms to solve the equations of the first or sec-
ond form (outlined in Section 5) enables us to solve two-variables equations of
the form X �F Y = R3 (Theorem 9), R1 �X Y = R3 (Theorem 10), and
R1 	X Y = R3 (Theorem 11). The proposed algorithms can be modified to
also solve inequality (set inclusion) variants of the above-mentioned equations
with maximality condition on variables.

2 Preliminaries

By Σ we denote a finite alphabet, and the set of words over Σ is denoted by
Σ∗ which includes the empty word λ. For a given word w, its length is denoted
by |w|, and its reversal is denoted by wR. For an integer n ≥ 0, Σn, Σ≤n, and
Σ≥n denote the sets of all words of length exactly n, at most n, and at least n,
respectively. A word u is called a factor (prefix, suffix) of a word w if w = xuy
(resp. w = uy, w = xu) for some words x, y. Let us denote the set of all prefixes
(suffixes) of w by Pref(w) (resp. Suf(w)). For a language L ⊆ Σ∗, Lc = Σ∗ \ L.

Regular languages are specified by (non-deterministic) finite automata (NFA)
A = (Q,Σ, δ, s, F ), where Q is a finite set of states, s ∈ Q is the start state,
F ⊆ Q is a set of final states, and δ is a map from Q×Σ to 2Q. For notational
convenience, we employ the notation NFA also to denote a language accepted by
an NFA (we use this slight abuse of notation for other kinds of acceptors). The
family of languages accepted by NFAs is denoted by REG. An NFA is said to be
deterministic if δ is a function. The deterministic property of a machine is stated
explicitly by using the capital letter D. A language is said to be effectively regular
if there exists an algorithm to construct an NFA which accepts this language.

A characterization of languages can be given in terms of syntactic semigroups.
For a language L ⊆ Σ∗, there exists a maximal congruence≡L which saturates L
(i.e., L is a union of equivalence classes). This is called the syntactic congruence
of L, which is formally defined as follows: for u, v ∈ Σ∗,

u ≡L v ⇐⇒ for any x, y ∈ Σ∗, xuy ∈ L if and only if xvy ∈ L.

For a word w ∈ Σ∗, a set [w]≡L = {u ∈ Σ∗ | w ≡L u} is called an equivalence
class with w as its representative. The number of equivalence classes is called
the index of ≡L.

Theorem 1 ([15]). Let L ⊆ Σ∗ be a language. The index of ≡L is finite if and
only if L is regular.

For technical reasons, we define a function called saturator with respect to a
language L1. Let σL1 be a function from a word w into the equivalence class
[w]≡L1

. The saturator w.r.t. L1 is its extension defined as σL1(L) =
⋃

w∈L[w]≡L1
.
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We can choose an arbitrary word in [w]≡L as a representative of this class. By
taking a representative from every class, we can construct a subset of Σ∗ called
a complete system of representatives of Σ∗/ ≡L. In particular, for a regular lan-
guage R, there exists a complete system of representatives which is computable.
Let A = (Q,Σ, δ, s, F ) be the (unique) minimal-DFA for R. Then u ≡R v if and
only if δ(q, u) = δ(q, v) for any q ∈ Q. Hence, the index of ≡L is at most |Q||Q|.

Theorem 2. Let R be a regular language and A = (Q,Σ, δ, s, F ) be the min-
DFA for R. Each equivalence class in Σ∗/ ≡R is regular, and contains a word
of length at most |Q||Q|.

Corollary 1. For a regular language R, there exists a computable complete sys-
tem of representatives of Σ∗/ ≡L.

3 Parallel Insertion and Deletion Schema

Imagine that we will insert a language L into a word u in parallel. Let
∏n

i=1 Σ
∗

be the Cartesian product of Σ∗ with itself n times; that is to say, the set of
all n-tuples of words. Let F =

⋃
n≥1 Σ

∗ ×Σ∗ × · · · ×Σ∗
︸ ︷︷ ︸

n times

. A subset F of F

can be used to control the parallel insertion of a language L in a sense that
if (u1, u2, . . . , un) ∈ F , then the word u = u1u2 · · ·un is split in the manner
dictated by the n-tuple in F , and L is inserted between ui and ui+1 for all
1 ≤ i < n to generate the language u1Lu2L · · ·un−1Lun. The set can be also
used to control a parallel deletion. For this intended end-usage, we call a subset
of F a parallel schema, or shortly p-schema, over Σ.

As abstracted above, a p-schema F enables us to define the (parallel) insertion
�F as: for a word u ∈ Σ∗ and a language L ⊆ Σ∗,

u �F L =
⋃

n≥1,u=u1···un,(u1,...,un)∈F

u1Lu2L · · ·un−1Lun.

Note that an n-tuple in F parallel-inserts n−1 words from L into u. Similarly, we
define the (parallel) deletion 	G based on a p-schema G as: for a word w ∈ Σ∗

and a language L ⊆ Σ∗,

w 	G L = {u1 · · ·un | n ≥ 1, x1, . . . , xn−1 ∈ L,

(u1, . . . , un) ∈ G,w = u1x1u2x2 · · ·un−1xn−1un},

These operations are extended to languages in a conventional manner: for a
language L1, L1 �F L =

⋃
u∈L u �F L and L1 	G L =

⋃
w∈L w 	G L.

Many of the well-known operations are particular cases of p-schema-based
operations. We list instances of p-schema-based insertion:

catenation Fcat = Σ∗ × λ,
reverse catenation Frcat = λ×Σ∗,
(sequential) insertion Fsins = Σ∗ ×Σ∗,
parallel insertion Fpins =

⋃
n≥0(λ ×

∏n
i=1 Σ × λ).
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Deletions based on Fcat, Frcat, Fsins, and Fpins correspond to right and left
quotient, (sequential) deletion, and parallel deletion, respectively.

Parallel insertion (deletion) of exactly n words, at most n words, or arbitrary
number of words are important instances of insertion (deletion) based on:

Fpins(n) =
n+1∏

i=1

Σ∗, Fpins(≤n) =
n⋃

i=0

Fpins(i), F∗ =
∞⋃

i=0

Fpins(i),

respectively. Using for instance F∗, one can implement Kleene-star, the most
well-studied unary operation in formal language theory, as L∗ = λ �F∗ L.

The p-schemata introduced so far are “syntactic” in a sense, while many of
semantic (letter-sensitive) operations are known. For a letter b ∈ Σ, parallel
insertion next to b [13] is the insertion based on Fpinsb = {(u1, u2, . . . , un) | n ≥
1, u1, . . . , un ∈ (Σ\{b})∗b}. For a context C ⊆ Σ∗×Σ∗, C-contextual (sequential)
insertion [5] is the insertion based on Fscins(C) =

⋃
(x,y)∈C Σ∗x × yΣ∗. This

operation is naturally parallelized as C-contextual parallel insertion with the p-
schema Fpcins(C) = {(u1, . . . , un) | n ≥ 1, ∀1 ≤ i < n,

(
Suf(ui) × Pref(ui+1)

)
∩

C �= ∅}.
It may be worth noting that the descriptional powers of our framework and of

I-shuffle proposed by Domaratzki, Rozenberg, and Salomaa [16] (a generalization
of semantic shuffle proposed by Domaratzki [11]) are incomparable. Indeed, only
I-shuffle can specify contexts not only on the left operand but also on the right
operand, while p-schema-based operations can insert/delete multiple copies of
right operand. Thus, insertion/deletion based on a p-schema which contains 2-
tuples and/or 1-tuples is a special instance of I-shuffle.

4 Hierarchy of p-Schemata and Closure Properties

In this section, we investigate closure properties of abstract families of accep-
tors augmented with reversal-bounded counters under the p-schema-based op-
erations. Such an acceptor was proposed by Ibarra [17] as the counter machine.
For k ≥ 0, let NCM(k) be the class of NFAs augmented with k reversal-bounded
counters, and NCM be the union of such classes over all k’s. By augmenting
an NCM with an unrestricted pushdown stack, we obtain a non-deterministic
pushdown counter machine (NPCM). For k ≥ 0, let NPCM(k) be an NPCM
with k reversal-bounded counters. DCM(k), DPCM(k), DCM, and DPCM are
the deterministic analogs of NCM(k), NPCM(k), NCM, and NPCM. A desirable
property specific to these deterministic classes is proved by Ibarra [17] as follows:

Theorem 3. For L1 ∈ DCM and L2 ∈ DPCM, it is decidable whether L1 = L2.

It is natural to encode a tuple (u1, u2, . . . , un) as a word u1#u2# · · ·#un using
a special symbol #. Denoting this (one-to-one) encoding by ψ, we can encode a
p-schema F as ψ(F ) = {ψ(f) | f ∈ F}. Furthermore, we say that a p-schema
F is in a language class L if ψ(F ) ∈ L. For instance, F is regular if ψ(F ) is a
regular language over Σ ∪ {#}.
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First of all, we prove that NCM is closed under insertion/deletion based on
an NCM p-schema with an analysis on how many reversal-bounded counters are
required.

Proposition 1. Let L1 ∈ NCM(k1), L2 ∈ NCM(k2), and F be a p-schema in
NCM(kψ). Then both L1 �F L2 and L1 	F L2 are in NCM(k1 + k2 + kψ).

Proof. We show only a construction of an NCM M for L1 �F L2, and omit the
construction of an NCM for L1 	F L2.

Let M1,M2,Mψ be NCMs with k1, k2, kψ counters for L1, L2, ψ(F ), respec-
tively. M expects its input to be of the form u1x1u2x2 · · ·xn−1xn for some integer
n ≥ 1, u1u2 · · ·un ∈ L1, x1, x2, . . . , xn−1 ∈ L2, and u1#u2# · · ·#un ∈ ψ(F ). M
simulates M1 and Mψ simultaneously. Guessing non-deterministically that the
prefix u1x1 · · ·xi−1ui has been read, M pauses the simulation of both M1 and
Mψ and instead activates the simulation of M2 on xi after having Mψ make a
#-transition. When M2 is in one of its accepting states, M non-deterministically
resumes the simulation of M1 and Mψ on the suffix ui+1xi+1 · · ·xn−1un of the
input. The simulation of M2 is initialized every time it is invoked. 	


In the previous proof, the resulting NCM does not require more counters than
required for the operands, and thus, the case of k1 = k2 = kψ = 0, i.e., where
all languages are regular, is a corollary.

Corollary 2. For regular languages R1, R2 and a regular p-schema F , both
R1 �F R2 and R1 	F R2 are effectively regular.

We can prove an analogous result of Proposition 1 for NPCM. By enlarging
some of the respective language classes which L1, L2, and F belong to, up to
NPCM, we can ask whether or not L1 �F L2 or L1 	F L2 are in NPCM.
In the following we only address some non-closure properties of DPCM with
implications to language equation solvability in the next section.

Let us define the balanced language Lb over Σ = {a, $} as follows:

Lb = {ai1$ai2$ · · · $aik$aik+1$ · · · $ain | n ≥ 2, i1, . . . , in ≥ 0 and
∃1 ≤ k < n such that i1 + i2 + · · ·+ ik = ik+1 + · · ·+ in}.

In other words, a word in Lb has a central marker $ so that the number of
a’s to the left of this marker is equal to the number of a’s to its right. For
L1 = {an$an | n ≥ 1}, we obtain L1 �F∗ $ = Lb. Recall the definition of
F∗; in this case it scatters an arbitrary number of $’s into any word in L1.
We can generate Lb also by deletion. Let L1 =

⋃
n≥0(a

n ∃ $∗)$#(an ∃ $∗) and
F = {a, $}∗ × {a, $}∗, where ∃ denotes shuffle operation. Then Lb = L1 	F #.
These L1’s are DCM(1). Lb is clearly in NCM(1) because the non-determinism
makes it possible for the reversal-bounded counter to guess when it should transit
into its decrementing mode. In contrast, Lb is proved not to be DPCM (see, e.g.,
[18]). Consequently we have the following non-closure property.

Proposition 2. There exist L1 ∈ DCM(1), a regular p-schema F , and a sin-
gleton language L2 such that L1 �F L2 �∈ DPCM.
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Proposition 3. There exist L1 ∈ DCM(1), a regular p-schema F , and a sin-
gleton language L2 such that L1 	F L2 �∈ DPCM.

By swapping the roles of L1 and F in the above example, we can also obtain the
following non-closure property.

Proposition 4. There exist a regular language R1, a singleton language L2,
and a DCM(1) p-schema F such that R1 	F L2 �∈ DPCM.

5 Language Equations with p-Schemata-Based
Operations

In this section, we consider language equations involving p-schema-based opera-
tions. The simplest equations to be studied are one-variable equations of the form
X �F L2 = L3, L1 �X L2 = L3, L1 �F X = L3, and their deletion variants.
Such equations with special instances of p-schema-based operations (catenation,
insertion, etc.) as well as incomparable operations (shuffle, etc.) have been inten-
sively studied for the last decades [8,9,11,12,13,14,19]. These papers mainly dealt
with language equations with the property that the union of all their solutions
(if any) is also their solution (maximum solution). For instance, if XL = R and
Y L = R, then (X ∪ Y )L = R. For such equations, we can employ a technique
established in [14]; assuming a given equation has a solution, firstly construct the
candidate of its maximum solution, and then substitute it into the equation to
check whether it is actually a solution. Since X �F L2 = L3, L1 �X L2 = L3,
and their deletion variants have this property, this technique can solve these
equations. We will now see how to construct the candidate for each.

In [9], Cui, Kari, and Seki defined the left-l-inverse relation between operations
as: the operation • is left-l-inverse of the operation ◦ if for any words u,w ∈ Σ∗

and any language L ⊆ Σ∗, w ∈ u ◦ L ⇐⇒ u ∈ w • L. This is a symmetric
relation. By definition, insertion and deletion based on the same p-schema are
left-l-inverse to each other. There they proved that for operations ◦, • which are
left-l-inverse to each other, if X ◦ L2 = L3 has a solution, then (Lc

3 • L2)c is its
maximum solution.

Theorem 4. For regular languages R2, R3 and a regular p-schema F , the exis-
tence of a solution to both X �F R2 = R3 and X 	F R2 = R3 is decidable.

Proof. Both (Rc
3 	F R2)c �F R2 and (Rc

3 �F R2)c 	F R2 are regular
according to Corollary 2 and the fact that REG is closed under complement.
Now it suffices to employ Theorem 3 for testing the equality. 	

For L1 �X L2 = L3, the candidate is Fmax = {f ∈ F | L1 �f L2 ⊆ L3}. For
L1 	X L2 = L3, Fmax should be rather {f ∈ F | L1 	f L2 ⊆ L3}. When
L1, L2, L3 are all regular, we can construct an NFA for ψ(F \ Fmax), which is
equal to (Σ ∪ #)∗ \ ψ(Fmax). A similar problem was studied in [12], and our
construction originates from theirs. As such, the proof of next result is omitted.

Theorem 5. For regular languages R1, R2, R3, the existence of a solution to
both R1 �X R2 = R3 and R1 	X R2 = R3 is decidable.
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5.1 Solving L1 �F X = L3

In contrast, the equations L1 �F X = L3 and L1 	F X = L3 may not
have a maximum solution. For example, let L1 = L3 = {a2n | n ≥ 1}, and
F = Fpins(2) ∪ Fpins(0). Both Leven = {a2m | m ≥ 0} and Lodd = {a2m+1 |
m ≥ 0} are (maximal) solutions to L1 �F X = L3. On the other hand,
L1 �F (Leven ∪ Lodd) can generate a3, which is not in L3. For deletion, let
F = {(λ, aba), (λ, λ, λ), (aba, λ)}, and L1 = {ababa}. Then L1 	F {ab} =
L1 	F {ba} = {aba}, but L1 	F {ab, ba} = {aba, a}. These examplify that we
cannot apply the previously-mentioned approach to solving language equations
with the second operand being unknown.

We propose an alternative approach based on an idea from Conway (Chapter 6
of [8]) to solve f(Σ ∪ {X1, X2, . . .}) ⊆ R, where f is a regular function over
Σ and variables X1, X2, . . ., and R is a regular language. The idea shall be
briefly explained in terms of p-schema-based operations in order to step into
more general cases than the case when all the involved languages are regular.

Lemma 1. Let L,L1 be languages. Then (L1 �F (L2 ∪w))∩L �= ∅ if and only
if (L1 �F (L2 ∪ [w]≡L)) ∩ L �= ∅ for any word w and language L2.

By replacing L in this lemma with Lc
3, we can see that if L1 �F (L2 ∪w) ⊆ L3,

then L1 �F (L2∪ [w]≡L3
) ⊆ L3. Thus, it makes sense to introduce the notion of

a syntactic solution. For a language L, we say that a solution to a one-variable
language equation is syntactic with respect to L if it is a union of equivalence
classes in Σ∗/ ≡L.

Proposition 5. For languages L1, L3, the equation L1 � X = L3 has a solu-
tion if and only if it has a syntactic solution with respect to L3.

Thus, in order to determine whether L1 �F X = L3 has a solution, it suffices
to test whether it has a syntactic solution. On condition that this test can be
executed, this problem becomes decidable. If L3 is regular, then the number
of candidates of syntactic solution is finite (Theorem 1), and they are regular
(Theorem 2). Let ß = {σR3(L) | L ⊆ Σ∗}, the set of all candidates of syntactic
solution. A pseudocode to solve L1 �F X = R3 is given below:

Algorithm to solve L1 �F X = R3

1. Order the elements of ß in some way (let us denote the i-th element of
ß by ß[i]).

2. for each 1 ≤ i ≤ |ß|, test whether L1 �F ß[i] is equal to R3.

With the further condition that L1 and F are chosen so that any language
obtained by substituting a candidate into L1 �F X is comparable with R3 for
equality, this algorithm becomes executable. One such condition of significance
is that both L1 and F are regular. In this case, the algorithm, Theorem 3, and
Corollary 2 lead us to the next theorem, which is stronger than decidability. It
should be noted that maximal solutions are syntactic.
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Theorem 6. For regular languages R1, R3 and a regular p-schema F , the set
of all syntactic solutions to R1 �F X = R3 is computable.

The regularity of R3 is necessary for the algorithm to work, whereas such con-
dition is not imposed on L1. If a condition on L1, F under which L1 �F ß[i] ∈
DPCM for any 1 ≤ i ≤ |ß| were found, we could solve L1 �F X = R3 under
it using Theorem 3. This is an unsettled question, but as suggested in Proposi-
tion 2, weakening the condition on L1 slightly can make L1 �F X non-DPCM.
It is probably more promising to broaden the class of F .

5.2 Solving L1 	F X = L3

Let us continue the investigation on the existence of right operand by changing
the operation to p-schema-based deletion.

Lemma 2. Let L1 be a language. Then L1 	F ({w} ∪L2) = L1 	F ([w]≡L1
∪

L2) for any word w, language L2, and a p-schema F .

Proof. Let u ∈ L1 	F ([w]≡L1
∪ L2); that is, there exist v ∈ L1, n ≥ 0,

(u1, u2, . . . , un+1) ∈ F , and x1, . . . , xn ∈ [w]≡L1
∪L2 such that u = u1u2 · · ·un+1

and v = u1x1u2x2 · · ·unxnun+1. Now on v if xi ∈ [w]≡L1
, then we replace xi

with w, and this process converts v into a word v′. Note that this replacement
process guarantees that v′ ∈ L1 because the replaced factors are equal to w with
respect to the syntactic congruence of L1. Moreover, u ∈ v′ 	F ({w} ∪ L2).
Thus, L1 	F ({w} ∪ L2) ⊇ L1 	F ([w]≡L1

∪ L2). 	


This lemma provides us with two approaches to determine whether a given
equation with p-schema-based deletion has a solution. The first approach is based
on syntactic solutions. Given a language L2, Lemma 2 implies that L1 	F L2 =
L1 	F σL1(L2). Therefore, as in the case of insertion, the existence of a solution
to L1 	F X = L3 is reduced to that of its syntactic solutions, but with respect
to L1 (not L3). Moreover, maximal solutions are syntactic.

Proposition 6. For languages L1, L3 and a p-schema F , the equation L1 	F

X = L3 has a solution if and only if it has a syntactic solution with respect to
L1. Furthermore, its maximal solution (if any) is syntactic.

With a straightforward modification, the algorithm presented in Sect. 5.1 can be
used to output all syntactic solutions to R1 	F X = L3 with F being a regular
p-schema. Thus, we have the following result, analogous to Theorem 6.

Theorem 7. For a regular language R1, L3 ∈ DPCM, and a regular p-schema
F , the set of all syntactic solutions to R1 	F X = L3 is computable.

Note that even if L3 is DPCM, the equation above is solvable due to Corollary 2
and Theorem 3.

The existence of the second approach provided by Lemma 2 is due to the
essential difference between Lemma 2 and its analog for insertion (Lemma 1).



276 L. Kari and S. Seki

A word obtained by deleting some words in L2 from a word in L1 can be also
obtained by deleting their representatives in a complete system of representatives
with respect to L1 from the word in L2 based on the same schema; this is not
true for insertion. Since its choice is arbitrary, we fix R(L1) to be the set of
smallest words according to the lexicographical order in each equivalence class.
We say that a solution to L1 	F X = L3 is representative if it is a subset of
R(L1).

Proposition 7. For languages L1, L3 and a p-schema F , the equation L1 	F

X = L3 has a solution if and only if it has a representative solution.

If L1 is regular, then R(L1) is a finite computable set due to Theorem 1 and
Corollary 1, and hence, our argument based on representative solution amounts
to the second approach.

Theorem 8. For a regular language R1, L3 ∈ DPCM, and a regular p-schema
F , the set of all representative solutions of R1 	F X = L3 is computable.

With Theorem 1, Lemma 2 also leads us to a corollary about the number of
distinct languages obtained by p-schema-based deletion from a regular language.
Namely, given a regular language R1 and a p-schema F , there exist at most a
finite number of languages which can be represented in the form R1 	F L2 for
some language L2. This result is known for sequential deletion [13].

5.3 Solving Two-Variables Language Equations and Inequalities

There is one thing which deserves explicit emphasis: the set of all candidates
of syntactic solutions is solely determined by only one of L3, L1, and does not
depend on the other or F at all. This property paves the way to solving two-
variables language equations of the form X �F Y = L3, L1 �X Y = L3,
and L1 	X Y = L3. The first equation with F = Fcat (catenation) has been
investigated under the name of decomposition of regular languages and proved
to be decidable [19,20].

Let us assume that (L1, L2) is a solution of X �F Y = L3. Then σL3(L2) is a
solution of L1 �F Y = L3, and hence, (L1, σL3(L2)) is also a solution of X �F

Y = L3. This means that if the equation has a solution (pair of languages), then
it also has a solution whose second element is a sum of equivalence classes in
Σ∗/ ≡L3 . Therefore, solving X �F ß[i] = L3 for all 1 ≤ i ≤ |ß| using Theorem 4
amounts to solving the two-variables equation. For a regular language R3 and a
regular p-schema F , the above method works effectively to solve X �F Y = R3.

Theorem 9. It is decidable whether the equation X �F Y = R3 has a solution
or not if both R3 and F are regular.

Undertaking the same “two-staged” strategy but using Theorem 5 instead, we
can solve the equations of second and third forms.

Theorem 10. For regular languages R1, R3, it is decidable whether the equation
R1 �X Y = R3 has a solution or not.
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Theorem 11. For a regular language R1 and a DPCM L3, it is decidable
whether the equation R1 	X Y = L3 has a solution.

Unlike p-schema-based insertion, this strategy does not work to solve the equa-
tion of the form X 	F Y = L3. This is because in this case it is not L3 but L1

that determines the syntactic solutions of L1 	F Y = L3.
The usage of the proposed algorithm is not exclusive to solving language

equations. By replacing the equality test in Step 2 with the following inclusion
test “for each 1 ≤ i ≤ |ß|, test whether L1 �F ß[i] is a subset of R3”, the
proposed algorithm can answer the problem of finding maximal solutions to the
language inequality L1 �F X ⊆ R3, and with the two-staged strategy, this
further enables us to solve X �F Y ⊆ R3 and L1 �X Y ⊆ R3. Now it should
be trivial how to approach R1 	F X ⊆ L3 and R1 	X Y ⊆ L3.

5.4 Undecidability

We conclude this section and this paper by complementing the decidability re-
sults obtained so far with some undecidability results for one-variable equations.
Usually, the existence of solutions to a language equation of this type is decid-
able if all known languages are regular, and undecidable if at least one of the
known languages is context-free. The results of this section bring down, for sev-
eral cases, the limit for undecidability of existence of solutions of such language
equations from the class of context-free languages to NCM(1). The equation
L1 �F X = L3 is solvable in the case of L1, F, L3 being regular, i.e., NCM(0).
Actually, we shall prove that once one of them becomes NCM(1), then this
problem immediately turns into undecidable.

Proposition 8. For languages L1, L3 and a p-schema F , if one of L1, L3, F is
in NCM(1) and the others are regular, it is undecidable whether L1 �F X = L3

has a solution or not.

Proof. We employ the reduction of universe problem (whether a given NCM(1)
is Σ∗) into these problems. The universe problem is known to be undecidable for
the class NCM(1) [17]. Because of space limitations, we can consider here only
the case when F is an NCM(1) p-schema.

Let �, $ be special symbols not included in Σ. Based on a given L ∈ NCM(1),
we define a p-schema F = λ × $L, which is in NCM(1), too. Then for regular
languages $Σ∗ and �$Σ∗, we claim that $Σ∗ �F X = �$Σ∗ has a solution ⇐⇒
L = Σ∗. Indeed, the left-hand side of the above equation is X$L so that its
only one possible solution is X = �. Thus, the existence of the solution leads us
immediately to that L is universe. 	


For the equation L1 	F X = L3, the similar undecidability result holds.

Proposition 9. For languages L1, L3 and a p-schema F , if one of L1, L3, F is
in NCM(1) and the others are regular, it is undecidable whether L1 	F X = L3

has a solution or not.
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On Schützenberger Products of Semirings
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Abstract. The Schützenberger product of (ordered) monoids is an es-

sential tool when studying the polynomial operators on Boolean and

positive varieties of languages and concatenation hierarchies. Here we

consider rather disjunctive varieties of languages and therefore the recog-

nition of languages is by finite idempotent semirings. We define a product

of finite idempotent semirings and we show similar results to those con-

cerning Schützenberger products of monoids and ordered monoids.

Keywords: Polynomial operators on classes of languages, idempotent

semirings, Schützenberger product.

1 Introduction

In the algebraic theory of regular languages a significant role is played by lan-
guages of the form

L0a1L1a2 . . . anLn , (∗)

where ai’s are letters and Li’s are from a fixed class of languages. Such a product
of languages is essential ingredient when considering concatenation hierarchies
of regular languages. In Pin’s survey paper [5] one can find a detailed overview
and complete references.

In this area a method of studying properties of a given class of languages
via properties of syntactic monoids of these languages is used. For example,
here we can, for a given sequence of regular languages K0, . . . ,Km, consider
the sequence of (syntactic) monoids recognizing corresponding languages and
construct the so-called Schützenberger product of monoids which recognizes the
languages K0a1K1a2 . . . amKm, where ai’s are letters. Moreover, the constructed
monoid is not unnecessarily huge, because every language which is recognized by
this monoid can be written as a Boolean combination of languages of the form
(∗), where the languages Li’s are recognized by the same monoids as the given
languages Kj ’s – see Theorems 1.4, 1.5 of Pin’s book [3] where the results are
attributed to Schützenberger, Straubing, Reutenauer and Pin. An alternative
proof can be found in Simon [10]. The main application of this result for second
level of the Straubing-Thérien concatenation hierarchy can be found in [7].
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A significant progress was made by Pin in [6] where he introduced the
Schützenberger products of ordered monoids. Note that the latter products of
ordered monoids is a generalization of the previous Schützenberger products of
(unordered) monoids.

Later on, the second author initiated a study of the so-called disjunctive
varieties of regular languages in [8]. These classes are not necessarily closed
under taking finite intersections. In that theory languages are recognized by
idempotent semirings instead of (ordered) monoids. The authors studied certain
subhierarchies of concatenation hierarchies in [1]; we refer to that paper for a
short overview on differences among Boolean, positive and disjunctive varieties
of languages. In connection with the languages of the form (∗), it is natural
to consider classes of languages which are finite unions of such languages. For
such considerations an analogue of Schützenberger product of (ordered) monoids
for idempotent semirings would be very useful. A suitable definition and basic
properties are the subject of this paper.

Our definition of Schützenberger product of semirings was inspired by such
products of (ordered) monoids. Nevertheless our construction is not a simple
generalization as it would seem to be. First of all, our definition is based on cer-
tain closure operators which makes this concept a bit tricky. And surprisingly the
definition of our product of semirings is not a generalization of Schützenberger
products of (ordered) monoids in the sense that Schützenberger products of (or-
dered) monoids can be obtained from our product for specially chosen semirings.
When we compare Schützenberger products of monoids and such products of or-
dered monoids then the situation is quite simple: each monoid can be equipped
by ordering, namely =, in such a way that the resulting ordered monoid recog-
nized the same languages as the original monoid. This is not true for idempotent
semirings; it is not possible to construct an idempotent semiring recognizing the
same languages as a given finite (ordered) monoid. This fact is connected with
the observation that the (ordered) syntactic monoid is a substructure of the
syntactic semiring of a given language but we could not exactly identify it.

In future investigations one should relate our product with the triangular
product of Rhodes and Steinberg [9] used in their q-theory.

Our paper is structured as follows. After this introductory section we place
preliminaries in Section 2. We define our product in the next section and we also
formulate the main results there. Section 4 is devoted to proofs – it is possible to
skip it during the first look into our contribution. In the last section we iniciate
applications of our main results to disjunctive varieties of languages.

2 Preliminaries

An idempotent semiring is a structure (S, ·,+, 1) where

– (S, ·) is a monoid with the neutral element 1,
– (S,+) is a semilattice,
– ( ∀ a, b, c ∈ S ) ( a(b + c) = ab + ac, (a + b)c = ac + bc ).



On Schützenberger Products of Semirings 281

Let A� denote the set of all finite non-empty subsets of A∗. For U, V ∈ A�, we
define U · V = { uv | u ∈ U, v ∈ V }. Then (A�, ·,∪, {λ}) is a free idempotent
semiring over A.

On each idempotent semiring (S, ·,+, 1) we define an order ≤ by

a ≤ b if and only if a + b = b .

It is a compatible order, i.e. it satisfies

( ∀ a, b, c ∈ S ) a ≤ b implies ac ≤ bc and ca ≤ cb .

An ideal m of (S, ·,+, 1) is a subset of S satisfying

– if a ∈ m, b ∈ S, b ≤ a, then b ∈ m,
– if a, b ∈ m, then a + b ∈ S.

Notice that an ideal of a finite idempotent semiring is either empty or it is of the
form (a] = { b ∈ S | b ≤ a }, a ∈ S. We will denote by Id(S, ·,+, 1) (or briefly
Id(S)) the set of all ideals of (S, ·,+, 1).

A semiring homomorphism of (S, ·,+, 1) into (T, ·,+, 1) is a mapping ϕ : S →
T satisfying ϕ(1) = 1 and, for all a, b ∈ S, we have ϕ(ab) = ϕ(a)ϕ(b) and
ϕ(a + b) = ϕ(a) + ϕ(b).

A language L ⊆ A∗ is recognized by a finite idempotent semiring (S, ·,+, 1)
if there exists an ideal m ⊆ S and a monoid homomorphism ϕ : A∗ → (S, ·, 1)
such that

L = { v ∈ A∗ | ϕ(v) �∈ m } .

Note that such ϕ can be uniquely extended to a semiring homomorphism ϕ :
A� → (S, ·,+, 1). We are going to study rather the disjunctive varieties of lan-
guages; the analogous version of recognizability, i.e. L = { v ∈ A∗ | ϕ(v) ∈ m },
would be suitable for conjunctive varieties - see [8].

3 The Schützenberger Product of Finite Idempotent
Semirings: Definition and the Main Results

Let (S0, ·,+, 1), . . . , (Sn, ·,+, 1) be finite idempotent semirings (often we write
only S0, . . . , Sn). For 0 ≤ i ≤ j ≤ n, we write

Si,j = Si × · · · × Sj and Idi,j = Id(S1)× · · · × Id(Sj)

and we define on subsets of each Si,j an operator [ ]i,j . In all situations the indices
(i, j) would be known from the context; so we write only [ ]. For X ⊆ Si,j , we
put

[X ] = { (si, . . . , sj) ∈ Si,j |

( ∀ (mi, . . . ,mj) ∈ Idi,j such that si �∈ mi, . . . , sj �∈ mj )

( ∃ (ti, . . . , tj) ∈ X such that ti �∈ mi, . . . , tj �∈ mj ) } .
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We will use a “compact” notation: (si, . . . , sj) ∝ (mi, . . . ,mj) would mean
that si �∈ mi, . . . , sj �∈ mj .

These closure operators deserve a careful study – see Lemma 2. Nevertheless we
introduce the crucial notion of our contribution already now. The Schützenberger
product �n(S0, . . . , Sn) (briefly �(S0, . . . , Sn)) of finite idempotent semirings
S0, . . . , Sn is defined as follows:

(i) Elements are all n + 1 times n + 1 matrices P where
- Pi,j = ∅ for i > j, and
- for i ≤ j, Pi,j is a closed subset of Si,j , i.e. [Pi,j ] = Pi,j .

Moreover, for i = 0, . . . , n, we have Pi,i �= ∅ (which means Pi,i = (si] for
some si ∈ Si by Lemma 2).

(ii) We define addition and multiplication in �(S0, . . . , Sn) by:
for P,Q ∈ �(S0, . . . , Sn) and 0 ≤ i ≤ j ≤ n,

(P + Q)i,j = [Pi,j ∪Qi,j ] ,

(P ·Q)i,j = [
⋃

i≤k≤j

Pi,k ◦Qk,j ] where Pi,k ◦Qk,j =

= { (pi, . . . , pk−1, pk · qk, qk+1, . . . , qj) | (pi, . . . , pk) ∈ Pi,k, (qk, . . . , qj) ∈ Qk,j } .
(iii) The neutral element for the multiplication is the matrix E with Ei,j = ∅ for

i �= j and Ei,i = (1], for i, j ∈ {0, . . . , n}.

We formulate the main results now. Their proofs are postponed into the next
section.

Proposition 1. The structure (�(S0, . . . , Sn), ·,+, 1) is a (finite) idempotent
semiring.

Theorem 1. Let the language Li ⊆ A∗ be recognized by a finite idempotent
semiring (Si, ·,+, 1) for i = 0, . . . , n and let a1, . . . , an ∈ A. Then the language
L = L0a1L1a2 . . . anLn is recognized by the semiring (�(S0, . . . , Sn), ·,+, 1).

Theorem 2. Let (Si, ·,+, 1), for i = 0, . . . , n, be a finite idempotent semiring.
Let the language L ⊆ A∗ be recognized by the semiring (�(S0, . . . , Sn), ·,+, 1).
Then L is a finite union of the languages Li0a1Li1a2 . . . akLik

where 0 ≤ i0 <
· · · < ik ≤ n, a1, . . . , ak ∈ A and Lip is recognized by (Sip , ·,+, 1) for p =
0, . . . , k.

4 Auxiliary Results and Proofs of Theorems

Lemma 1. Let (S, ·,+, 1) be a finite idempotent semiring and let s ∈ S, m ∈
Id(S). Then there exist m′,m′′ ∈ Id(S) such that

{ x ∈ S | xs �∈ m } = { x ∈ S | x �∈ m′ }, {x ∈ S | sx �∈ m} = {x ∈ S | x �∈ m′′} .

We write m′ = ms−1, m′′ = s−1m.
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Proof. For m = ∅ we put also m′ = ∅. So let m = (t], t ∈ S. If the set
{ x ∈ S | xs ≤ t } is empty, then { x ∈ S | xs �∈ m } = S and we put m′ = ∅.
Otherwise let u =

∨
{ x ∈ S | xs ≤ t } (the supremum in (S,≤)). Then { x ∈

S | xs ≤ t } = { x ∈ S | x ≤ u } and we put m′ = (u]. The proof of the second
equality is analogous. 	


Lemma 2. Let 0 ≤ i ≤ k ≤ j ≤ n.Then
(i) [ ] is a closure operator on Si,j; i.e. it is extensive ( X ⊆ [X ] ), isotone (

X ⊆ Y implies [X ] ⊆ [Y ] ) and idempotent ( [ [X ] ] = [X ] ),

(ii) a closed subset X of Si,j is hereditary; that is,

(si, . . . , sj) ∈ X, (ti, . . . , tj) ∈ Si,j , ti ≤ si, . . . , tj ≤ sj implies (ti, . . . , tj) ∈ X ,

(iii) for a closed subset X of Si,j we have

if (si, . . . , sj), (si, . . . , sk−1, s
′
k, sk+1, . . . , sj) ∈ X

then (si, . . . , sk−1, sk + s′k, sk+1, . . . , sj) ∈ X ,

(iv) the closed subsets of Si,i = Si are exactly ideals, i.e. they are equal to ∅
or to [{si}] = (si] for some si ∈ Si,

(v) for X,Y ⊆ Si,j, we have

[ [X ] ∪ [Y ] ] = [ X ∪ [Y ] ] = [ [X ] ∪ Y ] = [ X ∪ Y ] ,

(vi) for X ⊆ Si,k and Y ⊆ Sk,j , we have

[ [X ] ◦ [Y ] ] = [ X ◦ [Y ] ] = [ [X ] ◦ Y ] = [ X ◦ Y ] ,

(vii) for X1, . . . , Xp ⊆ Si,k and Y1, . . . , Yp ⊆ Sk,j, we have

[ [X1 ] ◦ [Y1 ] ∪ · · · ∪ [Xp ] ◦ [Yp ] ] = [ X1 ◦ Y1 ∪ · · · ∪Xp ◦ Yp ] .

Proof. The items (i) – (v) are clear.
(vi) We need to prove that [ [X ] ◦ Y ] ⊆ [ X ◦ Y ]. So let s ∈ [ [X ] ◦ Y ] and

let s ∝ m = (mi, . . . ,mj) ∈ Idi,j . We are looking for t ∈ X ◦ Y with t ∝ m.
There exists u = (ui, . . . , uk−1, ukvk, vk+1, . . . , vj) ∈ [X ] ◦ Y such that

(ui, . . . , uk−1, uk) ∈ [X ], (vk, vk+1, . . . , vj) ∈ Y ,

(ui, . . . , uk−1) ∝ (mi, . . . ,mk−1), ukvk �∈ mk, (vk+1, . . . , vj) ∝ (mk+1, . . . ,mj) .

Using Lemma 1, we can write uk �∈ mk(vk)−1 instead of ukvk �∈ mk. Thus there
exist

(wi, . . . , wk) ∈ X such that (wi, . . . , wk−1) ∝ (mi, . . . ,mk−1), wk �∈ mk(vk)−1 .

The last relation is equivalent to wkvk �∈ mk and thus we have found

t = (wi, . . . , wk−1, wkvk, vk+1, . . . , vj) ∝ m, t ∈ X ◦ Y .

Item (vii) follows from the two preceding ones. 	
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Proof of Proposition 1. The commutativity and the idempotency of the operation
+ is clear. Associativity of + and · follow from Lemma 2(v) - (vii). The neutral
element for the multiplication is really the matrix E. The distributivity laws
follow from Lemma 2(v) and (vi). 	

Proof of Theorem 1. Let the language Li ⊆ A∗ be recognized by the semiring
(Si, ·,+, 1) using mi ∈ Id(Si) and ϕi : A∗ → Si, for i = 0, . . . , n.

Define a mapping ϕ : A∗ → �(S0, . . . , Sn) where, for 0 ≤ i ≤ j ≤ n, u ∈ A∗,

(ϕ(u))i,j ⊆ Si × · · · × Sj is given by

[ { (ϕi(ui), . . . , ϕj(uj)) | u = uiai+1ui+1ai+2 . . . ajuj, ui, . . . , uj ∈ A∗ } ] .

We will show that ϕ is a monoid homomorphism. One can check that ϕ(1) = E.
Let 0 ≤ i ≤ j ≤ n and let u, v ∈ A∗. We have

(ϕ(uv))i,j =

[ { (ϕi(wi), . . . , ϕj(wj)) | uv = wiai+1wi+1ai+2 . . . ajwj , wi, . . . , wj ∈ A∗ } ]

= [
⋃

i≤k≤j

{ (ϕi(ui), . . . , ϕk−1(uk−1), ϕk(uk)ϕk(vk), ϕk+1(vk+1), . . . , ϕj(vj)) |

| u = uiai+1 . . . akuk, v = vkak+1 . . . ajvj , ui, . . . , uk, vk, . . . , vj ∈ A∗ } ] .

Using Lemma 2 (vii), we have

(ϕ(u) · ϕ(v))i,j = [
⋃

i≤k≤j

(ϕ(u))i,k ◦ (ϕ(v))k,j ] =

= [
⋃

i≤k≤j

[ { (ϕi(ui), . . . , ϕk(uk)) | u = uiai+1 . . . akuk, ui, . . . , uk ∈ A∗ } ]

◦[ { (ϕk(vk), . . . , ϕj(vj)) | v = vkak+1 . . . ajvj , vk, . . . , vj ∈ A∗ } ] ] =

= [
⋃

i≤k≤j

{ (ϕi(ui), . . . , ϕk(uk)) | u = uiai+1 . . . akuk, ui, . . . , uk ∈ A∗ }

◦{ (ϕk(vk), . . . , ϕj(vj)) | v = vkak+1 . . . ajvj , vk, . . . , vj ∈ A∗ } ]

and the claim follows.
Notice that, for a ∈ A, we have (ϕ(a))i,i = (ϕi(a)], (ϕ(a))i,i+1 = ((1, 1)] if

a = ai and (ϕ(a))i,j = ∅, otherwise.
Let P ∈ �(S0, . . . , Sn) be defined by

Pi,j = ∅ for i > j ,

P0,n = m0 × S1 × · · · × Sn ∪ S0 ×m1 × · · · × Sn ∪ · · · ∪ S0 × · · · × Sn−1 ×mn ,

Pi,j = Si × · · · × Sj , otherwise.

Notice that s �∈ P0,n if and only if s ∝ (m0, . . . ,mn). Thus P0,n is closed and
P ∈ �(S0, . . . , Sn).
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Now u ∈ A∗ is in the language L recognized by �(S0, . . . , Sn) using ϕ and
the ideal (P ] if and only if

ϕ(u) �≤ P, which is (ϕ(u))0,n �⊆ P0,n .

The last condition is equivalent to the existence of a decomposition of the word
u as u = u0a1u1a2 . . . anun, u0, . . . , un ∈ A∗ satisfying (ϕ0(u0), . . . , ϕn(un)) �∈
P0,n. This means that ϕi(ui) �∈ mi, for i = 0, . . . , n, which is exactly the fact
that ui ∈ Li and u ∈ L0a1L1a2 . . . anLn. 	

Proof of Theorem 2. Let ϕ : A∗ → �(S0, . . . , Sn). The empty ideal recognizes the
language A∗ which is also of the form from the theorem. Hence we may assume
that L �= A∗. So let P ∈ �(S0, . . . , Sn) and let

L = { v ∈ A∗ | ϕ({v}) �≤ P } .

Since ϕ(A�) is a subsemilattice of �(S0, . . . , Sn) and L �= A∗, we can take Q to
be the greatest element of ϕ(A�) which is less or equal to P . Then

L = { v ∈ A∗ | ϕ({v}) �≤ Q } .

We write often ϕi,j(V ) instead of (ϕ(V ))i,j , simply ϕi,j(v) for ϕi,j({v}) and ϕi

for ϕi,i.
For each 0 ≤ i0 < · · · < ik ≤ n, a1, . . . , ak ∈ A and U ∈ A�, we define the set

Seqi0,...,ik
a1,...,ak

(U) = { (m0, . . . ,mk) ∈ Id(Si0)× · · · × Id(Sik
) | there exists u ∈ U,

u = u0a1u1a2 . . . akuk, u0, . . . , uk ∈ A∗ and ϕip(up) �⊆ mp for p = 0, . . . , k } .
Further, we define a relation ≡ on A� by:

V ≡W if and only if ( ∀ 0 ≤ i0 < · · · < ik ≤ n, a1, . . . , ak ∈ A )

Seqi0,...,ik
a1,...,ak

(V ) = Seqi0,...,ik
a1,...,ak

(W ) .

In our proof we will use a couple of auxiliary results.

Lemma 3. The relation ≡ is a congruence relation on the semiring A� of finite
index.

Proof. Let U, V,W ∈ A� be such that U ≡ V . Clearly, (U ∪W ) ≡ (V ∪W ).
We have to show that also U ·W ≡ V ·W and W · U ≡ W · V . It is enough

to show these equalities for W = {a}, a ∈ A.
The first formula would follow from the fact that, for 0 ≤ i1 < · · · < ik ≤ n

and a1, . . . , ak ∈ A, ak = a, we have

Seqi0,...,ik
a1,...,ak

(U{a}) =

= { (m0, . . . ,mk) | (m0, . . . ,mks
−1
k ) ∈ Seqi0,...,ik

a1,...,ak
(U) } ∪

∪ { (m0, . . . ,mk) | (m0, . . . ,mk−1) ∈ Seqi0,...,ik−1
a1,...,ak−1

(U), 1 �∈ mk } ,
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where ϕik
(a) = sk. In case of ak �= a the right-side of the last formula will consist

only from the first summand.
To get the second formula one will consider {a}U instead of U{a}.
Clearly, the relation ≡ is of finite index. 	


Lemma 4. Let ϕ : A� → (�(S0, . . . , Sn), ·,+, 1) be a semiring homomorphism,
let V ∈ A� and let 0 ≤ i ≤ j ≤ n. Then

ϕi,j(V ) = [
⋃

ϕi0 (v0)◦ϕi0,i1(a1)◦ϕi1 (v1)◦ϕi1,i2(a2) · · ·ϕik−1,ik
(ak)◦ϕik

(vk) ] ,

where the union is indexed by all

i = i0 < · · · < ik = j, v ∈ V, v = v0a1v1 . . . akvk, a1, . . . , ak ∈ A, v0, . . . , vk ∈ A∗ .

Proof. It suffices to prove the formula for V = {v}. Let v = b1 . . . br, b1, . . . , br ∈
A. Due to ϕp,q = ∅ for q < p and Lemma 2 we can write

ϕi,j(v) = [
⋃

i=i0≤i1≤···≤ir=j

ϕi0,i1(b1) ◦ ϕi1,i2(b2) ◦ · · · ◦ ϕir−1,ir (br) ] .

Since each ϕi = ϕi,i is a monoid homomorphism we can group together the
product ϕi(bp) . . . ϕi(bp+q) to get ϕi(bp . . . bp+q). 	


For each sets B and C and a mapping ϕ : B → C, we define the relation kernel
of ϕ on the set B by

(b, b′) ∈ ker(ϕ) if and only if ϕ(b) = ϕ(b′) .

Lemma 5. For the relation ≡ on A� and the kernel of ϕ, it holds

≡ ⊆ ker(ϕ).

Proof. Let V,W ∈ A� satisfy V ≡ W . It is enough to show that ϕ(V ) ≤ ϕ(W )
(the opposite relation can be proved analogously). Let 0 ≤ i ≤ j ≤ n and
consider ϕi,j(V ). Using Lemma 4, we choose

i ≤ i0 < · · · < ik ≤ j, v ∈ V, v = v0a1v1a2 . . . akvk,

a1, . . . , ak ∈ A, v0, . . . , vk ∈ A∗ .

Let
ϕi0(v0) = (s0], (t1,i0 , . . . , t1,i1) ∈ ϕi0,i1(a1),

ϕi1 (v1) = (s1], (t2,i1 , . . . , t2,i2) ∈ ϕi1,i2(a2), . . .

We will show that

x = (s0t1,i0 , t1,i0+1, . . . , t1,i1−1, t1,i1s1t2,i1 , t2,i1+1, . . . , t2,i2−1, . . . ) ∈ ϕi,j(W ) .

Choose ideals (mi0 ,mi0+1, . . . ,mik
) ∈ Id(Si0)× · · · × Id(Sik

) such that

x ∝ (mi0 ,mi0+1, . . . ,mik
) .
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Then using Lemma 1 we have

s0 �∈ mi0t
−1
1,i0

, s1 �∈ t−1
1,i1

(mi1t
−1
2,i1

), . . . .

The last sequence of ideals is in Seqi0,...,ik
a1,...,ak

(v) and thus also in Seqi0,...,ik
a1,...,ak

(W ).
Therefore there exist

w ∈W, w = w0a1w1a2 . . . akwk, w0, . . . , wk ∈ A∗

such that

(u0] = ϕi0(w0) �⊆ mi0t
−1
1,i0

, (u1] = ϕi1(w1) �⊆ t−1
1,i1

(mi1t
−1
2,i1

), . . . .

Now again by Lemma 1 we have

u0t1,i0 �∈ mi0 , t1,i0+1 �∈ mi0+1, . . . , t1,i1−1 �∈ mi1−1,

t1,i1u1t2,i1 �∈ mi1 , t2,i1+1 �∈ mi1+1, . . . , t2,i2−1 �∈ mi2−1, . . . .

and therefore

x ∈ [{(u0t1,i0 , t1,i0+1, . . . , t1,i1−1, t1,i1u1t2,i1 , t2,i1+1, . . . , t2,i2−1, . . . )}] ⊆

⊆ [{u0 ◦ (t1,i0 , t1,i0+1, . . . , t1,i1−1, t1,i1) ◦ u1 ◦ (t2,i1 , t2,i1+1, . . . , t2,i2−1) ◦ . . . }] ⊆
⊆ [ ϕi0 (w0)◦ϕi0,i1(a1)◦ϕi1 (w1)◦ϕi1,i2(a2)◦· · ·◦ϕik−1,ik

(ak)◦ϕik
(wk) ] ⊆ ϕi,j(W ).

	


A continuation of the proof of Theorem 2. Due to Lemma 3 we can form the
(finite !) quotient structure A�/≡ and consider the natural semiring homomor-
phism κ : V %→ V ≡, V ∈ A�. Due to Lemma 5, the homomorphisms ϕ factorizes
through κ, i.e., there is a homomorphism ψ : A�/≡ → �(S0, . . . , Sn) such that
ϕ = ψκ.

Let U/ ≡ be the supremum of the finite set {V/ ≡ | ψ(V/ ≡) ≤ Q }. Then
U/≡ is the greatest element of A�/≡ with ψ(U/≡) = Q and we can write

L = { v ∈ A∗ | U ∪ {v} �≡ U } .

Now v ∈ L if and only if there exist 0 ≤ i0 < · · · < ik ≤ n, a1, . . . , ak ∈ A and

(m0, . . . ,mk) ∈ Seqi0,...,ik
a1,...,ak

(v) \ Seqi0,...,ik
a1,...,ak

(U) .

Let
K =

⋃
Li0a1Li1a2 . . . akLik

where the union is indexed by all

0 ≤ i0 < · · · < ik ≤ n, a1, . . . , ak ∈ A, (m0, . . . ,mk) �∈ Seqi0,...,ik
a1,...,ak

(U)

and where
Lip = {w ∈ A∗ | ϕip(w) �⊆ mp } for p = 1, . . . , k .

Clearly, L = K. 	
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5 Applications

Well-established classes of regular languages are varieties and positive varieties.
By the Eilenberg correspondences there are natural bijections between such
classes and pseudovarieties of finite monoids (ordered monoids, respectively)
– see, for instance, Pin [4],[5]. Here we consider the disjunctive varieties of lan-
guages introduced in [8] and studied among other in [1].

A disjunctive variety of languages D associates to every finite alphabet A a
class D(A) of regular languages over A in such a way that

– A∗ ∈ D(A),
– D(A) is closed under finite unions (in particular ∅ ∈ D(A) ),
– D(A) is closed under derivatives, i.e. L ∈ D(A), u, v ∈ A∗ implies u−1Lv−1 =
{w ∈ A∗ | uwv ∈ L } ∈ D(A),

– D is closed under preimages in semiring homomorphisms, i.e. f : B� →
A�, L ∈ D(A) implies f−1(L) = { u ∈ B∗ | f(u) ∩ L �= ∅ } ∈ D(B).

Again, an Eilenberg-type correspondence relates such varieties to pseudovarieties
of finite idempotent semirings. For a disjunctive variety of languages D, the
corresponding pseudovariety D is generated by syntactic semirings of languages
from D – see [1].

In the third part of this section we formulate general results concerning the
polynomial operator and disjunctive varieties. Before that we look at two special
cases where we consider relatively simple disjunctive varieties.

We denote by T the trivial semiring, which has only one element. It is natural
to denote this element by 1 because it is neutral (with respect to both opera-
tions). The next example of idempotent semiring is the semiring consisting of all
subsets of T . Here we have two elements ∅ = 0 and {1} = 1 and the operations
on the set U = {0, 1} are given by rules 0 · 0 = 0 · 1 = 1 · 0 = 0, 1 · 1 = 1,
0 + 0 = 0, 0 + 1 = 1 + 0 = 1 + 1 = 1. We apply Schützenberger products of
semirings to these examples in this section.

5.1 Starting from the Trivial Semiring

The trivial semiring T contains exactly two ideals, namely ∅ and T . Therefore,
for each alphabet A, it recognizes exactly two languages, A∗ and ∅.

For a fixed natural number n we consider the semiring �n(T, . . . , T ). By
our main result this semiring recognizes (over an alphabet A) exactly the finite
unions of languages of the form A∗a1A

∗a2 . . . akA
∗, where a1, . . . , ak ∈ A, k ≤ n.

These languages form a disjunctive variety of languages, denoted by DVn in [1].
It follows that the semiring �n(T, . . . , T ) generates the corresponding pseudova-
riety of finite semirings DVn, i.e. we have an alternative proof of Proposition 3
(iii) from [1].

Proposition 2 ([1]). The pseudovariety DVn is generated by a single idempo-
tent semiring.
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If we look at the definition of �n(T, . . . , T ) more carefully, we see that Sij is
a one-element set and consequently there are exactly two closed subsets of Sij ,
namely the empty set and the whole set Sij . From that reason elements of
�n(T, . . . , T ) can be viewed as matrices over the semiring U . Thus �n(T, . . . , T )
is isomorphic to the semiring of all upper triangular matrices (n + 1) times
(n + 1) over the semiring U with 1’s at the diagonal and with usual operations
of matrices.

5.2 Starting from Two Element Idempotent Semiring U

The semiring U contains exactly three ideals ∅, {0} and U . Thus U recognizes
(over an alphabet A) exactly the empty language and languages of the form
B∗, where B ⊆ A. For a fixed natural number n we consider the semiring
�n(U, . . . , U) which recognizes (over an alphabet A) exactly finite unions of
languages of the form B∗

0a1B
∗
1a2 . . . akB

∗
k , where a1, . . . , ak ∈ A, B0, . . . , Bk ⊆ A,

k ≤ n. One can check that these languages form a disjunctive variety (to verify
the last condition from the definition is not completely trivial). In accordance
with [2] we denote the considered class of languages by DPoln(S+)..

From our main result we obtain the following statement for the corresponding
pseudovariety of idempotent semirings DPoln(S+).

Proposition 3. For each n, the class DPoln(S+) is a disjunctive variety of lan-
guages and the corresponding pseudovariety of idempotent semirings DPoln(S+)
is generated by �n(U, . . . , U). 	

In this result, in a similar way to the case of Schützenberger products of monoids
(see [7]), we can replace the semiring �n(U, . . . , U) by a simpler structure,
namely by the semiring Dn of all upper triangular (n + 1) times (n + 1) matri-
ces over the semiring U with usual operations of multiplication and addition of
matrices.

Proposition 4. The pseudovariety DPoln(S+) is generated by the idempotent
semiring Dn.

Proof. First we define a mapping α : �n(U, . . . , U)→ Dn by the rule

(α(P ))i,j = 1 if and only if (1, 1, . . . , 1) ∈ Pi,j .

One can check that α is a surjective semiring homomorphism from �n(U, . . . , U)
onto Dn. Hence each language which is recognized by the idempotent semiring
Dn is also recognized by the idempotent semiring �n(U, . . . , U).

Thus, it is enough to prove that Dn recognizes each language L of the form
L = B∗

0a1B
∗
1a2 . . . akB

∗
k , where a1, . . . , ak ∈ A, B0, . . . , Bk ⊆ A, k ≤ n. Each B∗

i

is recognized by ϕi : A∗ → U using the ideal {0}. In the proof of Theorem 1 we
constructed ϕ : A∗ → �n(U, . . . , U) which recognizes L using a certain ideal. In
our situation where m0 = · · · = mn = {0} we have P0,n = Un+1 \ {(1, 1, . . .1)}.
Hence we can consider a homomorphism α ◦ ϕ : A∗ → Dn and we can consider
the ideal consisting of all matrices M ∈ Dn such that (M)0,n = 0. We see that
α ◦ ϕ recognizes the language L. 	
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5.3 Schützenberger Product of Varieties of Languages

Let V be a class of languages and let n be a natural number. We define the
class DPoln(V) of polynomials of length at most n of languages from the class V .
Namely, for a finite alphabet A, the class (DPoln(V))(A) consists of finite unions
of languages of the form

L0a1L1a2 . . . a�L�, where � ≤ n, a1, . . . , a� ∈ A, L0, . . . , L� ∈ V(A) .

Further, the union of all DPoln(V), n = 1, 2, . . . , is denoted by DPol (V).
The following propositions are direct consequences of our main results.

Proposition 5. If V is a disjunctive variety of languages then DPoln(V) is a
disjunctive variety of languages and the corresponding pseudovariety of idempo-
tent semirings is generated by the set of all semirings �n(S0, . . . , Sn), where Si

are syntactic semirings of languages from V.

Proposition 6. If V is a disjunctive variety of languages then DPol (V) is a dis-
junctive variety of languages and the corresponding pseudovariety of idempotent
semirings is generated by the set of all semirings �n(S0, . . . , Sn), where Si are
syntactic semirings of languages from V and n = 1, 2, . . . .
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Abstract. It is shown that the recently discovered computational uni-

versality in systems of language equations over a unary alphabet occurs

already in systems of the simplest form, with one unknown X and two

equations XXK = XXL and XM = N , where K, L, M , N ⊆ a∗ are

four regular constants. Every recursive (r.e., co-r.e.) set can be encoded

in a unique (least, greatest) solution of a system of such a form. The

proofs are carried out in terms of equations over sets of numbers.

1 Introduction

Language equations are among the basic notions of formal language theory, first
encountered in connection with defining the context-free grammars. In the recent
decade, some further applications have been found, and a lot of theoretical stud-
ies have been conducted [10]. In particular, many connections between language
equations and computability have been found [9,14,15]. Until recently, nothing
was known about the special case of language equations over a one-letter alpha-
bet, beyond the fact that they are nontrivial: this was demonstrated by Leiss [12],
who constructed a single example of an equation X = ϕ(X) with a non-periodic
solution, where ϕ uses concatenation, complementation and constant {a}.

Recently Jeż [2] has introduced a new method of constructing systems of
equations of the form ⎧

⎪⎨

⎪⎩

X1 = ϕ1(X1, . . . , Xn)
...

Xn = ϕn(X1, . . . , Xn)

where Xi are unknown unary languages and ϕi are expressions containing the
operations of union, intersection and concatenation, as well as singleton constant
sets. These equations correspond to conjunctive grammars [13] over a one-letter
alphabet, and an example of a conjunctive grammar generating {a4n | n � 0},
discovered by Jeż [2], has contributed much to the understanding of the expres-
sive power of these grammars. The method of Jeż [2] was further explored by Jeż
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Y. Gao et al. (Eds.): DLT 2010, LNCS 6224, pp. 291–302, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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and Okhotin [3,6], who have subsequently used it [4] to establish computational
completeness of equations over sets of numbers of a more general form

⎧
⎪⎨

⎪⎩

ϕ1(X1, . . . , Xn) = ψ1(X1, . . . , Xn)
...

ϕm(X1, . . . , Xn) = ψm(X1, . . . , Xn)

where both left-hand and right-hand sides may use union, concatenation and
singleton constants. To be precise, it was proved that a unary language L ⊆ a∗

is represented by a unique (least, greatest) solution of such a system if and only
if it is recursive (r.e., co-r.e., respectively).

The next result due to Jeż and Okhotin [5] was a simulation of a system
with union and concatenation by a system using concatenation only, such that
every solution Xi = Li of the original system is represented by a solution Xi =
L′

i = σ(Li) of the new system, with a16n+13 ∈ L′
i if and only if an ∈ Li. This, in

particular, leads to a representation of a language σ(L) by unique (least, greatest)
solutions of systems, for every recursive (r.e., co-r.e., respectively) language L ⊆
a∗. On the other hand, it was proved by Lehtinen and Okhotin [11] that some
quite simple languages cannot be specified as they are (without any encoding)
by equations using only concatenation, and therefore language equations with
concatenation only are slightly less powerful than equations with union and
concatenation.

This paper continues exploring simple cases of language equations over a unary
alphabet by demonstrating computational universality of systems with only two
equations of the form {

XXK = XXL
XM = N

(*)

where X is the unique unknown and K,L,M,N ⊆ a∗ are regular constant
languages. The final result is stated as follows: for every recursive (r.e., co-r.e.)
language L ⊆ a∗ there is a system of two equations of the above form with a
unique (least, greatest, respectively) solution L′, satisfying anp+d ∈ L′ if and
only if an ∈ L, for some constants p � 1 and d � 0. It is proved by further
transforming a system using concatenation only, as produced according to the
theorem of Jeż and Okhotin [5]. In Section 3, all variables are encoded into
one. Then, in Section 4, all equations for this variable are encoded into two
equations (*). The consequences of this encoding are summarized in Section 5,
including the following results on the decision problems for systems (*): testing
whether such a system has a solution (has a unique solution) is co-r.e.-complete
(Π0

2 -complete, respectively).
Some further limitations of the expressive power of these restricted equations

are exposed in Sections 6–7. It is shown that some sets are representable by sys-
tems with multiple variables using addition only, but not by univariate systems.
There are also sets representable by univariate systems of multiple equations,
yet not by any individual equation.

The last contribution of the paper concerns with a generalization of language
equations over a unary alphabet to the case of a monogenic free group of “strings”
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a� with � ∈ Z, concatenated as a�am = a�+m. The resulting equations over sets
of integers have recently been studied by Jeż and Okhotin [7], who determined
the expressive power of systems of a general form. In Section 8, this result is
subjected to the same encoding as in the case of ordinary language equations,
obtaining an encoding of every hyperarithmetical set in a unique solution of a
system of the form XXK = XXL, XM = N with K,L,M,N ⊆ {a� | � ∈ Z}.

2 Sets of Numbers and Their Encodings

Languages over a unary alphabet can be regarded as sets of natural numbers,
with a unary language L ⊆ a∗ corresponding to the set {n | an ∈ L}. This is
just a different, more compact notation for the same object, and it will be used
in all arguments throughout this paper. In this notation, a concatenation of
two languages is represented by an elementwise addition of two sets, defined as
follows: for any sets S, T ⊆ N, their sum is the set S+T = {m+n|m ∈ S, n ∈ T }.

Vectors of sets of numbers are partially ordered by componentwise inclusion,
that is (S1, . . . , Sn) � (S′

1, . . . , S
′
n) if Si ⊆ S′

i for all i. This order is typically
applied to the set of solutions of a system of equations, and one is interested in
the least or the greatest solutions with respect to this order.

Equations over sets of numbers using two operations, union and addition,
have recently been proved computationally complete.

Proposition 1 (Jeż, Okhotin [4]). For every recursive (r.e., co-r.e.) set S ⊆
N there exists a system of equations over sets of natural numbers

⎧
⎪⎨

⎪⎩

ϕ1(X1, . . . , Xn) = ψ1(X1, . . . , Xn)
...

ϕm(X1, . . . , Xn) = ψm(X1, . . . , Xn)

with ϕj , ψj using singleton constants and the operations of union and addition,
which has a unique (least, greatest, respectively) solution with X1 = S.

As a matching upper bound, unique (least, greatest) solutions of equations over
sets of numbers with any Boolean operations and addition are known to be
recursive (r.e., co-r.e., respectively), so this result precisely characterizes the
families of sets representable by solutions of such equations.

For systems of equations over sets of numbers with addition as the only op-
eration, a computational universality result was recently established by Jeż and
Okhotin [5]. The idea behind the proof is taking any system as in Proposition 1
(that is, with the operations of union and addition), and simulating it by another
system using addition only, so that there is a bijection between the solutions of
these systems, with the solutions of the new system encoding the corresponding
solutions of the original system. The constructed system manipulates encod-
ings of sets instead of the sets in their original form, and thus simulates both
operations in the original system using addition only.
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The encoding of a set S ⊆ N is another set σ(S) ⊆ N. In general, there is
a number p � 1, and the numbers in σ(S) are represented in the form pn + i,
with i ∈ {0, . . . , p− 1} referred as the number of a track. One designated track d
contains the encoded set S, in the sense that pn+ d ∈ σ(S) if and only if n ∈ S.
The rest of the tracks are ultimately periodic; typically, they would be either
empty (with pn + i /∈ σ(S) for all n � 0) or full (if pn + i ∈ σ(S) for all n � 0).

This kind of encoding requires the following notation: for each S ⊆ N, p � 1
and i ∈ {0, 1, . . . , p− 1}, define

τp
i (S) = {pn + i | n ∈ S}.

A set of this form will be called a track, and it will be said that the set S is
encoded on the i-th track. Full tracks can then be denoted by τp

i (N).
The actual encoding used by Jeż and Okhotin [5] uses pre-defined values

p = 16 and t = 13, with the encoding function σ defined as follows:

σ(S) = {0} ∪ τ16
6 (N) ∪ τ16

8 (N) ∪ τ16
9 (N) ∪ τ16

12 (N) ∪ τ16
13 (S),

for every set S ⊆ N.

Proposition 2 (Jeż, Okhotin [5]). For every recursive (r.e., co-r.e.) set S ⊆
N there exists a system of equations

⎧
⎪⎨

⎪⎩

ϕ1(X1, . . . , Xn) = ψ1(X1, . . . , Xn)
...

ϕm(X1, . . . , Xn) = ψm(X1, . . . , Xn)

with ϕj , ψj using the operation of addition and ultimately periodic constants,
which has a unique (least, greatest, respectively) solution with Xi = σ(Si) for
some Si ⊆ N, of which S1 = S.

Given a Turing machine recognizing S (the complement of S in the case of a
greatest solution), such a system can be effectively constructed.

This paper builds upon this result to construct systems of an even more restricted
form that encode computationally universal solutions.

3 Encoding into One Variable

The goal of this section is to simulate any given system of equations over multiple
variables (such as a system constructed in Proposition 2) by a system with only
one variable.

For technical reasons, some assumptions on the form of the simulated system
are made. Assume that it has m variables X1, X2, . . . , Xm. The equations with a
constant-side are Xi = Ei for i = 1, 2, . . . , c, where Ei is an ultimately periodic
constant containing zero. The rest of the equations contain only variables and
are of the form Xk +X� = Xk′ +X�′ . Any given system using addition only can
be transformed to this form by introducing new variables.
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The simulation uses the same idea of encoding in tracks as in the proof of Jeż
and Okhotin [5] described in the previous section, though this time m sets of
numbers shall be encoded in a single set of numbers. Every solution X1 = S1, . . . ,
Xm = Sm of the original system is encoded into a solution X = π(S1, . . . , Sm)
of the new system of equations. Only those solutions that have zero in all the
sets Si are considered, other solutions are not represented in the new system.
This loss of generality is irrelevant, because this simulation shall be applied only
to systems with all solutions containing zeroes,

The sets S1, . . . , Sm are encoded with p = 2m+2 tracks so that the set Sj will
be on the track dj = 3p

8 + 2j−1 − 1. The encoding is given by:

π(S1, . . . , Sm) =

p
4−1⋃

i=0

τp
i (N) ∪

m⋃

j=1

τp
dj

(Sj). (1)

The next sketch illustrates this encoding for m = 3, where p = 32 and d1 = 12,
d2 = 13 and d3 = 15.

For instance, the membership of 0 in S3 is encoded by the number 15 in
π(S1, S2, S3).

This encoding has the following three properties ensuring a correct simulation.
The first property is that a set of numbers can be checked for being a valid π-
encoding of some m sets by the means of an equation of the form X +C1 = C2,
for the following ultimately periodic constants C1 and C2:

Lemma 1. A set S ⊆ N is of the form S = π(S1, . . . , Sm) for some
S1, . . . , Sm ⊆ N with 0 ∈ Si for all i if and only if it satisfies the equation

X + (τp
0 (N) ∪ { 3p

4 }) =

p
4−1⋃

i=0

τp
i (N) ∪

m⋃

j=1

τp
dj

(N) ∪
p−1⋃

k= 3p
4

τp
k (N).

Since every set Si contains zero by assumption, the addition of τp
0 (N) overwrites

each data track to a full track, and preserves the rest of the numbers. Adding 3p
4

duplicates all tracks, shifting them by this offset. Thus an addition of τp
0 (N)∪{ 3p

4 }
to a correct encoding yields the given result:
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Conversely, it can be checked that every set satisfying the equation must be
a valid π-encoding.

All equations with a constant side in the original system are checked by the
following single equation:

Lemma 2. The sets 0 ∈ Si ⊆ N for i = 1, . . . , c satisfy the equations X� = E�

for � = 1, . . . , c if and only if π(S1, . . . , Sm) satisfies the equation

X + (τp
0 (N) ∪ {p− 1− dc}) =

=

p
4−1⋃

i=0

τp
i (N) ∪

m⋃

j=1

τp
dj

(N) ∪
p−1−dc+

p
4−1⋃

k=p−1−dc

τp
k (N) ∪

c⋃

�=1

τp
p−1−dc+d�

(E�).

The equation is similar to the one in Lemma 1; this time the intended values of
the constants are embedded in the right-hand side.

Each equation Xk +X� = Xk′ +X�′ has a corresponding equation in the new
system:

Lemma 3. The sets S1, . . . , Sm ⊆ N satisfy the equation Xk + X� = Xk′ + X�′

if and only if π(S1, . . . , Sm) satisfies the equation

X + X + {0, p
4 , p− 1− dk − d�} = X + X + {0, p

4 , p− 1− dk′ − d�′}.

Consider the sum of a π-encoding with itself, in which every sum Sk + S� gets
to the track dk + d�:

π(S1, . . . , Sm) + π(S1, . . . , Sm) =

3p
4 −2⋃

i=0

τp
i (N) ∪

⋃

k��

τdk+d�
(Sk + S�).

Note that the numbers dk + d� are pairwise different for different (k, �) (cf. the
encoding for conjunctive grammars due to Jeż and Okhotin [6], which has the
same property), and thus all m(m+1)

2 sums Sk + S� get on distinct tracks, as
illustrated in the following figure:

Next, the sum π(S1, . . . , Sm)+π(S1, . . . , Sm)+{0, p
4} has the empty track p−1,

with the rest of the tracks full. This empty track is populated by the data from
the track dk + d� by the sum with p− 1− dk − d�, and hence the result reflects
the set Sk + S� and this set alone.

To sum up the construction, the original system has variables X1, . . . , Xm,
equations with constants

Xi = Ei, for i = 1, . . . , c

and equations without constants

Xk + X� = Xk′ + X�′ , (k, �, k′, �′) ∈ V.
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The new system has only one variable X , equations X +E1 = F1, X +E2 = F2,
where Ei and Fi are given in Lemmas 1 and 2, and equations

X + X + {0, p
4 , p− 1− dk − d�} = X + X + {0, p

4 , p− 1− dk′ − d�′}

for all (k, �, k′, �′) ∈ V . The correctness of the construction is stated as follows:

Proposition 3. A set S is a solution of the constructed system if and only if
there are sets 0 ∈ Si ⊆ N for i = 1, . . . ,m such that S = π(S1, . . . , Sm) and
Xi = Si is a solution of the original system.

4 Encoding into Two Equations

The equations produced in the previous section are defined uniformly and differ
only by the constants. They can be merged into four constants as follows.

The system concerned is of the form {X + X + Ci = X + X + Di | 0 � i <
m} ∪ {X + Ei = Fi | 0 � i < m′} with m � 0, m′ � 1 and Ci, Di, Ei, Fi ⊆ N,
and assume Ei �= ∅ for all i. This system is simulated by a system with only
two equations. To do this, let p = max(m,m′ + 1) and define the constants

C =
m−1⋃

i=0

{pn + i | n ∈ Ci}, D =
m−1⋃

i=0

{pn+ i | n ∈ Di},

E =
m′−1⋃

i=0

{pn+ i | n ∈ Ei}, F =
m′−1⋃

i=0

{pn + i | n ∈ Fi}.

The new system has equations

X + X + C = X + X + D,

X + E = F

that simulate all the equations of the original system:

Lemma 4. The original system has X = S as a solution if and only if X =
S′ = {np |n ∈ S} is a solution of the new system. All solutions of the new system
are of the latter form.

First, the equation X +E = F implicitly checks that X = S′ is a valid encoding
of some set, that is, all numbers in S′ are zero modulo p, and accordingly S′ =
{np |n ∈ S} for some set S ⊆ N. Then the correspondence between the solutions
of the original system and of the new pair of equations is ensured in the following
way. Each i-th track of the sum S′ +S′ +C encodes the set S+S+Ci, and thus
the equation X +X +C = X +X +D implements all equations X +X +Ci =
X+X+Di in the original system. All equations with a constant side are similarly
checked by the equation X + E = F .
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5 Representable Sets and Decision Problems

Theorem 1. For every recursive (r.e., co-r.e.) set S ⊆ N there exist numbers
p, d � 1, finite sets C,D ⊆ N and ultimately periodic sets E,F ⊆ N, such that
the system of two equations

{
X + X + C = X + X + D

X + E = F

with an unknown X ⊆ N has a unique (least, greatest, respectively) solution
X = S′, such that n ∈ S if and only if pn + d ∈ S′.

Given a Turing machine recognizing S (the complement of S in the case of a
greatest solution), such p, d, C, D, E and F can be effectively constructed.

Proof. Consider the system given by Proposition 2 for S, which has variables
X1, . . . , Xm̃ and all equations of the form Xk1+. . .+Xks+C = Xks+1+. . .+Xkt+
D. The unique (least, greatest) solution of this system is (S1, . . . , Sm̃), where
p0n + d0 ∈ S1 if and only if n ∈ S, where p0 = 16 and d0 = 13. Furthermore,
since each Si is a σ-encoding (as in Proposition 2) of some set, it is known that
0 ∈ Si.

This system can be transformed to a system in variables X1, . . . , Xm for some
m � m̃, and with equations of the form Xk1+Xk2 = Xk3+Xk4 and X1 = Ci, . . . ,
Xm′ = Cm′ for some 1 � m′ � m. This is done by separating subexpressions into
extra variables, and by permuting the variables so that variables with equations
of the form Xi = C have smaller numbers. The unique (least, greatest) solution
of the latter system is (S′

1, . . . , S
′
m), with all S′

i containing zero, and there is an
index i0 with S′

i0
= S1.

By the constructions in Section 3, there exists a system with a unique variable
X and with all equations of the form X+X+Ci = X+X+Di and X+Ei = Fi,
and its solutions correspond to the solutions of the previous system in variables
(X1, . . . Xm) as stated in Proposition 3. In particular, if the previous system has
a unique (least, greatest) solution Xi = Si, then X = Ŝ = π(S′

1, . . . , S
′
m) will be

the unique (least, greatest) solution of the constructed system, with p1n+d1 ∈ Ŝ
if and only if n ∈ S′

i0
, for some p1 � 1 and d1 � 0.

Finally, applying Lemma 4 to the latter system gives the system of two equa-
tions X + X + C = X + X + D and X + E = F , which has a unique (least,
greatest) solution X = S′, with p2n + d2 ∈ S′ if and only if n ∈ Ŝ.

Now n ∈ S if and only if p0n + d0 ∈ S1 if and only if p1(p0n + d0) + d1 ∈ Ŝ
if and only ig p2(p1(p0n + d0) + d1) + d2 ∈ S′, and setting p = p0p1p2 and
d = d0p1p2 + d1p2 + d2 proves the theorem. 	


Since the constructions preserve the cardinality of the set of solutions, the deci-
sion problems about this cardinality maintain their level of undecidability:

Theorem 2. The problem of whether a given system of two equations
{
X + X + C = X + X + D

X + E = F
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with an unknown X ⊆ N has a solution (unique solution, finitely many solutions)
is Π1-complete (Π2-complete, Σ3-complete), respectively.

These results can be equivalently phrased in terms of language equations over a
unary alphabet:

Corollary 1. For every recursive (r.e., co-r.e.) language S ⊆ a∗ there exist
numbers p, d � 1, finite languages K,L ⊂ a∗ and regular languages M,N ⊆ a∗,
such that the system of two language equations

{
XXK = XXL
XM = N

with a variable X ⊆ a∗ has a unique (least, greatest, respectively) solution X =
S′, such that an ∈ S if and only if apn+d ∈ S′.

Given a Turing machine recognizing S (the complement of S in the case of a
greatest solution), such p, d, K, L, M and N can be effectively constructed.

Testing whether a given system of the above form has a solution (unique so-
lution, finitely many solutions) is Π1-complete (Π2-complete, Σ3-complete).

The full path from a Turing machine to a system of two equations involves
representing the set of its computation histories by a cellular automaton working
on positional notations [3], representing the corresponding set of numbers by
equations with union and addition [4], simulating them by a system with addition
only [5], and then encoding the latter in two equations as described in this paper.

6 Limitations of One Variable

It was recently proved by the authors [11] that systems of equations with multiple
variables using addition only cannot represent any sets satisfying the following
two conditions. The first condition is being prime, in the sense of having no
nontrivial representation as a sum of two sets:

Definition 1. A set S ⊆ N is prime if S = S1 + S2 implies S1 = {0} or
S2 = {0}.

The second condition is being fragile, which means that the sum of this set with
any set containing at least two elements is co-finite.

Definition 2. A set S ⊆ N is fragile if S+{n1, n2} is co-finite for all n1, n2 ∈ N
with n1 �= n2.

This definition is equivalent to the statement that for every k � 1 there are only
finitely many numbers n ∈ N with n, n + k /∈ S.

Proposition 4 (Lehtinen, Okhotin [11]). No set that is prime and fragile is
representable by systems of equations over sets of natural numbers with operation
of addition and ultimately periodic constants. There exist recursive (and in fact
computationally easy) sets that are prime and fragile.
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At the same time, some fragile sets that are not prime can be represented [11].
It turns out that none of these sets are representable using a single variable.

Lemma 5. If a fragile set is the greatest solution of a univariate system, then
it is co-finite.

Lemma 6. If a fragile set is the least solution of a univariate system, then it is
co-finite.

Since the sum of a fragile set with anything nontrivial is a co-finite set, a number
large enough can be included or removed from this fragile set without affecting
the value of the sum. The proofs of both lemmata proceed by supposing that
there is such a greatest (least) solution, and by constructing a greater (lesser)
solution according to this property of fragile sets, thus coming to a contradiction.

Theorem 3. There exists a set of natural numbers representable by a unique
solution of a multivariate system of equations with addition, which, however, is
not a unique (least, greatest) solution of any univariate system.

7 Limitations of One Equation

Systems of two equations
{
X + X + C = X + X + D

X + E = F

constructed in Theorems 1 and 2 have one equation with a constant side and
one equation without constant sides. It turns out that systems with all equations
of the same type (that is, either all with constant sides or all without constant
sides) have quite limitated expressive power.

If all equations in a system are without constant sides, their least solution is
trivial: Xi = ∅. Greatest solutions are bound to be trivial as well: as shown in
the next lemma, they are always co-finite.

Lemma 7. If a system of equations of the form Xi1 + . . . + Xi�
+ C = Xj1 +

. . .+Xjm +D has a solution (S1, . . . , Sn), then (S1 +N, . . . , Sn +N) is a solution
as well.

Proof. Consider the smallest number in Si1 + . . . + Si�
+ C. Then (Si1 + N) +

. . .+ (Si�
+ N) +C contains this number and all numbers that are greater. The

claim follows, since all equations have the same smallest numbers in the both
sides. 	


The other type of systems have all equations with constant sides. It can be shown
that every non-periodic solution can be extended to a greater periodic solution,
which will have the same period as the common period of the constant sides.

Lemma 8. If a system of equations of the form X1 + . . . + Xm + E = F has
a solution (S1, . . . , Sn), then it has an ultimately periodic solution (S′

1, . . . , S
′
n)

with Si ⊆ S′
i.
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Such a statement holds in a much more general case of language equations, and
can be inferred from the syntactic monoid and Conway’s [1] results.

Proof. Let p and d be numbers, such that for every equation X1+. . .+Xm+E =
F , the set F has period p starting from d. Define S′

i = Si ∪
(
[Si ∩ (N+d)]+

{np | n � 0}
)
. Then it is easy to check that Xi = S′

i is still a solution. 	


Such an argument does not work for least solutions. In fact, it is easy to construct
an equation with uncountably many pairwise incomparable solutions [8]: the
equation

X + {0, 1} = N

has the following sets as minimal solutions:

{n | the (n + 1)-th bit of w is 1} (for any w ∈ {10, 110}ω).

All these solutions are pairwise incomparable. In case there exists a least solution
(or at least countably many solutions), no examples of nontrivial expressive
power are known.

8 On Equations over Sets of Integers

Consider systems of equations over set of numbers, in which the constants and
the unknowns may contain negative numbers as well, that is, can be any sub-
sets of Z. Such equations have recently been studied by Jeż and Okhotin [7],
who determined the expressive power of systems using the operations of union
and addition, and ultimately periodic constants. The unique solutions of these
equations can represent exactly the hyperarithmetical sets, Σ1

1 ∩Π1
1 [16, Ch. 16],

which strictly include the sets representable in first-order Peano arithmetic, and
form the bottom of the analytical hierarchy.

This result is a variant of Proposition 1 for equations over sets of integers.
There is an analogue of Proposition 2 as well, which allows encoding any hyper-
arithmetical set in a unique solution of a system of equations over sets of integers
with addition and ultimately periodic constants [7]. Since the general course of
the argument is the same as for natural numbers, the methods of this paper can
be used to encode the resulting systems further to the following simple form as
in Theorem 1:

Theorem 4. For every hyperarithmetical set S ⊆ Z there exist numbers p, d �
1, finite sets C,D ⊆ N and ultimately periodic sets E,F ⊆ Z, such that the
system of two equations

{
X + X + C = X + X + D

X + E = F

with an unknown X ⊆ Z has a unique solution X = S′, such that n ∈ S if and
only if pn + d ∈ S′.
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Some limitations of equations over sets of integers using addition only have
recently been established by the authors [11]: analogously to Proposition 4, if
a set S ⊆ Z is prime and its positive part S ∩ N is fragile, then it cannot be
represented by a least solution of a system with addition.

For the univariate case, the argument in Lemma 6 can be applied to show
that no set of integers with a fragile positive part can be represented as least
solution of a system with a single variable using addition.
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Abstract. It is known that the languages definable by formulae of the logics
FO2[<,S], Δ2[<,S], LTL[F,P,X,Y] are exactly the variety DA ∗D. Automata for
this class are not known, nor is its precise placement within the dot-depth hierar-
chy of starfree languages. It is easy to argue that Δ2[<,S] is included in Δ3[<];
in this paper we show that it is incomparable with B(Σ2)[<], the boolean com-
bination of Σ2[<] formulae. Using ideas from Straubing’s “delay theorem”, we
extend our earlier work [LPS08] to propose partially-ordered two-way determin-
istic finite automata with look-around (po2dla) and a new interval temporal logic
called LITL and show that they also characterize the variety DA ∗D. We give ef-
fective reductions from LITL to equivalent po2dla and from po2dla to equivalent
FO2[<,S]. The po2dla automata admit efficient operations of boolean closure and
the language non-emptiness of po2dla is NP-complete. Using this, we show that
satisfiability of LITL remains NP-complete assuming a fixed look-around length.
(Recall that for LTL[F,X], it is PSPACE-hard.)

A rich set of correspondences has been worked out between diverse mechanisms for
defining the first-order definable word languages and their subclasses (a recent survey
is [DGK08]). In the following, CFA refers to counter-free automata, SFRE to star-free
regular expressions and Ap refers to the variety of aperiodic monoids [Pin86].

CFA≡ SFRE ≡ Ap≡ FO[<]≡ LTL[U,S]≡ ITL

Further, Thomas showed [Tho82] that by restricting the quantifier-alternation depth in
the FO[<] formulae a strict dot-depth hierarchy of star-free languages is obtained, see
the paper by Pin and Weil [PW97] for details. For example, B(Σ2)[<] is the class of
languages defined by the boolean combination of Σ2[<] formulae, which are the ones
which have one block of existential quantifiers followed by one block of universal quan-
tifiers followed by a quantifierless formula.

For the FO formulations below, given an alphabet A and a ∈ A, the unary predicate
Qa(x) holds iff the letter at position x is a. The binary predicate S(x,y) denotes the
successor relation on positions, and < is, as usual, its transitive closure.

Example 1. Let A = {a,b} be the alphabet described by φA
def= ∀x. Qa(x)∨Qb(x),

which will be an additional conjunct below, not explicitly mentioned.

– φ1
def= ∃x∃y. S(x,y)∧Qa(x)∧Qa(y) is a B(Σ1)[S] formula defining L1 = A∗aaA∗.

– φ2
def= ∃x∃y. Qa(x)∧Qa(y)∧∀z. (x < z⊃ y≤ z) is a Σ2[<] formula defining L1.
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– Let φ3
def= (∀x. f irst(x) ⊃ Qa(x))∧ (∀x. last(x)⊃ Qb(x))∧

(∀x,y. ((x < y)∧Qa(x)∧Qa(y)⊃ ∃z. x < z∧ z < y∧Qb(z)))∧
(∀x,y. ((x < y)∧Qb(x)∧Qb(y)⊃ ∃z. x < z∧ z < y∧Qa(z)))

.

Then, φ3 is a Π2[<] formula defining the language L2 = (ab)∗. 	

More recently, Thérien and Wilke [TW98] showed that the 2-variable fragment FO2[<]
[Mor75] (where only two variables occur, quantified any number of times), is expres-
sively equivalent to the unambiguous languages and variety DA of Schützenberger
[Sch76, TT02] and the subset Δ2[<] in the dot-depth hierarchy. Etessami, Vardi and
Wilke [EVW02] identified the unary temporal logic LTL[F,P] and Schwentick, Thérien
and Vollmer [STV02] identified partially-ordered 2-way deterministic finite automata
(these are also called linear [LT00]) as equivalent formalisms. In [LPS08], we added
to these correspondences a “deterministic” interval temporal logic called UITL. The
papers [TW98, EVW02] also characterized FO2[<,S], which can define languages not
definable in the logic FO2[<] such as those in Example 1. For a detailed study of these
logics, see the recent papers of Weis and Immerman [WI07], and of Kufleitner and Weil
[KW09].

PO2DFA≡UL≡ DA≡ FO2[<]≡ Δ2[<]≡ LTL[F,P]≡ UITL

DA∗D≡ FO2[<,S]≡ Δ2[<,S]≡ LTL[F,P,X,Y]

It is clear that Δ2[<,S] ⊆ Δ3[<] since successor can be defined using < and one
quantifier. In this paper we provide an automaton characterization and an interval logic
characterization for this class of languages, and we separate it from B(Σ2)[<], the lan-
guages defined by the boolean combination of Σ2[<] formulae. This also shows that
FO2[<,S] is a proper subset of Δ3[<], as diagrammatically depicted below.

Δ2[<,S] = FO2[<,S]

������������������������������

Π2[<]

���������������

Δ2[<] = FO2[<] ��

�����������������

������������������������
Σ2[<] �� B(Σ2)[<] �� Δ3[<]

Our automaton and logic characterizations are based on Rhodes expansions [Til76]; the
two-sided variant below is inspired by Straubing’s theorem DA∗D≡ DA∗LI [Str85].

Definition 1. Let A be a finite alphabet, A′ = A∪{�, } be its extension with two end-
markers �, /∈ A, and Aρ

d = (A′)2d+1 the alphabet whose letters are actually words of
length 2d +1 over A. Let w = w1w2 . . .wn be a given word, where wi ∈ A is a letter. Let
aroundd(w, i) = wi−d . . .wi . . .wi+d denote the two-sided d-lookaround string at position
i. Note that if the position i is near one of the endpoints then aroundd(w, i) is padded
by repeating the endmarker at that end. We define the Rhodes-Straubing d-expansion
of w (and for a language L pointwise) for d ≥ 1 to be wρ

d = u1u2 . . .un, where each
ui = aroundd(w, i). This is a word over Aρ

d . When d = 0 we let wρ
0 be w. For example,

(abcab)ρ
2 is (� � abc)(�abca)(abcab)(bcab )(cab  ). 	
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Straubing’s delay theorem shows that a language, or in our context a formula φ of
FO2[<,S], can be seen as a formula φ′ of FO2[<] over a Rhodes-Straubing d-expansion
where d is the number of occurrences of successor predicates in φ. Carrying this intu-
ition to automata, we extend po2dfa to partially-ordered 2-way deterministic finite state
automata with lookaround (po2dla) which essentially make transitions on the Rhodes-
Straubing expansion of the word. We also extend our unambiguous interval logic UITL
to an unambiguous interval logic with lookaround called LITL. With some amount of
technical hacking, we are able to show that LITL and po2dla have the expressive power
of FO2[<,S].

The resulting automata and interval logic have many interesting features. A signif-
icant property of po2dla is that the boolean operations (including complementation)
can be done within po2dla with a linear blowup in size. Language emptiness of po2dla
is NP-complete and inclusion between po2dla is CoNP-complete, assuming a fixed
lookaround size k.

The logic LITL inherits the desirable properties of its ancestor UITL [LPS08]. It
admits unique parsability of models and exploiting this we can provide an efficient
PTIME reduction from LITL to po2dla. This immediately gives us a small model prop-
erty for the logic. Moreover, given a formula of length n with alphabet size m and
lookaround length k, we can show that the satisfiability problem is in nondeterministic
time O((mk)×n). Assuming fixed lookaround size k, satisfiability is NP-complete. By
comparison, the satisfiability of the logic LTL[F,X] is PSPACE-hard, although an action-
indexed version was shown NP-complete by Muscholl and Walukiewicz [MW05].

The rest of the paper is organized as follows: the next section defines our automata,
Section 2 the logic and the reductions from logic to automata and from automata to
FO2[<,S]. Section 3 deals with expressiveness and finally brings us back from FO2[<,S]
to our logic.

1 Partially-Ordered Two-Way DFA with Look-Around

Fix an alphabet A and its extension A′ = A∪{�, }with two endmarkers �, /∈ A. Given
w ∈ A∗, let dom(w) = {1, . . . , |w|}. In recognizing w, the two-way automaton actually
scans the string w′ = �w with letters � and  at positions 0 and |w|+ 1 respectively.
Thus, dom(w′) = {0, . . . , |w|+ 1}.

Let a ∈ A′ and let u,v ∈ A∗. We shall consider patterns of the form uav with an
underlined distinguished position. Given a pattern uav and a word w′, a position i ∈
dom(w′) matches the pattern, denoted (w′[∗, i,∗] = uav), if the letter in w′ at position i
is a and this is followed by the string v (forward lookaround) and also this a is preceded
by the string u (backward lookaround). Formally, (w′[∗, i,∗] = uav) iff w′[i] = a and
∀k ∈ dom(v). i + k ∈ dom(w′)∧w′[i + k] = v[k] and ∀k ∈ dom(u). i− k ∈ dom(w′)∧
w′[i− k] = u[k]. (When clear from the context, uav will be written as uav).

For a string u, let Pre(u) and Su f (u) be the set of all prefixes and suffixes (respec-
tively) of u. Given two patterns u1a1v1 and u2a2v2, we say that they are overlapping iff
(i) a1 = a2, (ii) u1 ∈ Su f (u2) or u2 ∈ Su f (u1), and (iii) v1 ∈ Pre(v2) or v2 ∈ Pre(v1).
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1.1 Automaton Definition

Partially ordered two-way DFA were introduced by Schwentick, Thérien and Vollmer
[STV02] to characterize the unambiguous languages. We present a generalization with
forward and backward lookaround. The transitions of the automaton are labelled by
patterns over the alphabet, instead of letters. There is a default else transition associ-
ated with each state which is taken if no other transition is applicable. This makes our
automata total.

Definition 2. A partially ordered 2DFA (po2dla) with lookaround size k over A′ is a
tuple M = (Q,≤,δ,s,t,r) where (Q,≤) is a finite partial order of states with distinct
start, accept and reject states s, t and r where r and t are the only minimal elements
of the poset and s is the only maximal element. Let P be the set of all patterns with
a maximum lookaround of size k, i.e. the set of all uav such that u,v ∈ A∗, a ∈ A′ and
|u|, |v| ≤ k. The transition function δ has two types of transitions: the matching tran-
sitions form a partial function δm : (Q \ {t,r}×P )→ (Q×{L,R,X}) where the first
component q′ of δm(q,u) satisfies q′ < q, and the default else transition is a total func-
tion δelse : (Q\ {t,r})→ (Q×{L,R}) where the first component q′ satisfies q′ ≤ q.

Further, for determinism we have that, for all q ∈ Q, and u1a1v1,u2a2v2 ∈ P , if
δm(q,u1a1v1) = q1 and δm(q,u2a2v2) = q2 such that q1 �= q2, then u1a1v1 and u2a2v2

are not overlapping. To ensure that the head of the automaton does not ”fall beyond”
the end-markers, we have an additional syntactic condition:

∀q ∈ Q\ {t,r} . ∃q′,q′′ ∈ Q. δm(q,�) = (q′,R) and δm(q′′, ) = (q′′,L). 	


A configuration of automaton M running on word w′ is a pair (q, p) with q ∈ Q, p ∈
dom(w′). The automaton in a configuration (q, p) takes the unique δm transition from
q, whose label is matched at the position p. If such a transition does not exist, then the
automaton takes the default transition δelse where it must change position.

Run. The run of the automaton M on a word w′ and starting at a position p0, is a
sequence of state-position configurations (q0, p0),(q1, p1)...(qn, pn), where

– q0 = s and qn ∈ {t,r}. The run is accepting if qn = t and rejecting if qn = r.
– For all i ≥ 0, if there exists (unique) uav such that δm(qi,uav) = (q′,d) for some

(q′,d) and (w[∗, i,∗] = uav), then (a) qi+1 = q′ and (b) pi+1 = pi + 1 if d = R,
pi+1 = pi−1 if d = L and pi+1 = pi if d = X .

– Otherwise, qi+1 = q′, where δelse(qi) = (q′,d), and pi+1 = pi + 1 if d = R and
pi+1 = pi−1 otherwise.

The outcome of the run is given by the total function [ [M] ] such that for any w ∈ A∗

and i ∈ dom(w′) is given by [ [M] ](w, i) = (qn, pn), the final configuration of the run. A
word w is accepted by M if the unique run of M on w′ = �w starting at position 1 is
accepting. The language L(M)⊆ A∗ is the set of words accepted by M. 	

Since the states of M are partially ordered, the only loops allowed are self-loops on the
default else transitions. During a sequence of such self-loop transitions the automaton
moves in the same direction. Moreover, the automaton must change state on reaching
an endmarker. So, because of the partial order, a po2dla cannot loop infinitely: it has
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at most |Q|−1 reversals and all its runs are bounded by length |Q|× |w|. Since δelse is
a total function, the automaton always has a terminating run on every word: hence the
automaton is complete.

Example 2. Figure 1 gives the po2dla for the languages (ab)∗ and A∗aaA∗. The default
else transitions are shown with just a direction. In the automaton A1, two consecutive
a’s or b’s lead to rejection from state s1, and in state s2 which is reached at the end of
the word, we check that it ends with b.

s s1
a/X

s2
 /L

aa/X

a/X

b/X

r t

 /L

Automaton A1 accepting (ab)∗

s
aa/X

 /L

t

r

AutomatonA2 accepting A∗aaA∗

bb/X

R

R

R

Fig. 1.

Proposition 1. The po2dla are closed under sequential composition and Boolean op-
erations, constructible with automata of linear size (number of states).

The proofs follow our earlier paper [LPS08]. Just as we have there, the automata can be
described by a syntax of extended turtle expressions going beyond those of Schwentick,
Thérien and Vollmer [STV02]. We omit these because of lack of space.

1.2 Small Model Property and Decision Problems

We let INTV (w) = {[i, j] | i, j ∈ dom(w), i≤ j} be the set of intervals over w, and w[i, j]
(or w, [i, j] in the next section) denote the factor of w corresponding to the interval [i, j].
We will extend this notation to open and semi-open intervals as usual, as well as to their
unions.

Consider a po2dla M over an alphabet A with n states and a maximum lookaround of
k. Recall that A′ = A∪{�, } and for w∈ A∗ we have w′ = �w . Recall also the defintion
of aroundd(w, i) given in Definition 1. When clear from the context, we will abbreviate
this by around(w, i) or around(i).

Lemma 1 (Membership). Given a word w ∈ A∗, checking whether w ∈ L(M) can be
carried out by simulating the automaton in deterministic time O(mnk) where m is the
number of states of M, n is the length of the word w′ and k is the lookaround size.
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Proof. Lookaround is handled by maintaining an array of length 2k + 1 storing the
factor around the current head position. Note that there can be at most m− 1 reversals
in the po2dla. The algorithm requires space logm+ logn +(2k + 1) log|A′|. 	


Now consider the unique run of M accepting w. We say that a position p ∈ dom(w′)
is purely-self-looping (PSL) if for all configurations of the form (q, p) in the run having
position p, the (unique) enabled transition of M is the self-looping else transition (which
does not result in change of state).

Call an interval [m1,m2] ∈ INTV (w) a tunnel if all j ∈ [m1,m2] are purely-self-
looping (PSL) and around(w′,m1) = around(w′,m2). If the automaton makes a right
move at position m1, it continues moving right without change of state till it reaches
m2; and similarly for a left move at m2. The following lemma is a direct result of the
above and the fact that around(m1) = around(m2).

Lemma 2. Given w′ and a tunnel [m1,m2], let v′ = w′[0,m1)[m2, |w′|] be the word ob-
tained by replacing the tunnel by its last letter. Then, w ∈ L(M) iff v ∈ L(M). 	


From the above lemma, it is clear that every tunnel in word w′ can be collapsed into
a single letter preserving membership. Thus, in a word without tunnels, there can be a
consecutive sequence of PSL positions which has length at most |A′|2k+1 (the number
of distinct around(i)). Every such sequence must be separated by a non-PSL position.
There can be at most n−1 non-PSL positions in a run since there can be at most n−1
state changing transitions in an n state po2dla. Hence, we get the following theorem.

Theorem 1 (Small model). If L(M) �= /0 then there exists a word w ∈ L(M) of length
at most (|A′|2k+1 + 1)(n−1). 	


Corollary 1. Assuming lookaround k to be constant, the language non-emptiness of
po2dla is NP-complete and the language inclusion of po2dla is CoNP-complete.

Proof. The technique is to guess the member word of size (|A′|2k+1 + 1)(n− 1) non-
deterministically, and to use the PTIME membership checking algorithm on this. Thus,
non-emptiness is in NP. The non-emptiness problem for po2dfa is shown to be NP-hard
[SP09]. Since po2dla are extension of po2dfa, we conclude that their non-emptiness
problem is NP-complete. We also conclude that the language inclusion problem is CoNP-
complete as intersection and complementation of po2dla cause only linear blowup in the
automaton size, and L1 ⊆ L2 iff L1∩L2 = /0. 	


2 Logic LITL

Interval temporal logic is based on a chop operator which divides an interval into two.
Although this yields succinct formulae, the complexity of satisfiability is nonelemen-
tary. We proposed unambiguous interval temporal logic [LPS08] replacing chops by
marked chop operators Fa and La, dividing a given interval at the first/last occurrence
of the letter a. Satisfiability of UITL is NP-complete. Here we have a simple general-
ization, chopping an interval at the first/last occurrence of a given pattern uav.
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Fix an alphabet A. Let a ∈ A and u,v ∈ A∗. Let D,D1,D2 range over formulas in
LITL. The abstract syntax of LITL is given below. Here � denotes the formula true.

� | pt | D1∨D2 | ¬D | D1FuavD2 | D1LuavD2 | ⊕D | -D

The satisfaction of a formula D is defined over intervals of a word model w as fol-
lows. As usual, w |= D iff w, [1, |w|] |= D and L(D) def= {w | w |= D} is the language
defined by D. The derived operators ∧,⊃,⇔ have their usual definitions.

w, [i, j] |= pt iff i = j
w, [i, j] |= D1FuavD2 iff for some k : k ∈ [i, j]. (w[∗,k,∗] = uav) and

for all m : i≤ m < k. ¬(w[∗,m,∗] = uav) and
w, [i,k] |= D1 and w, [k, j] |= D2

w, [i, j] |= D1LuavD2 iff for some k : k ∈ [i, j]. (w[∗,k,∗] = uav) and
for all m : k < m≤ j. ¬(w[∗,m,∗] = uav) and
w, [i,k] |= D1 and w, [k, j] |= D2

w, [i, j] |=⊕D iff i < j and w, [i+ 1, j] |= D
w, [i, j] |=-D iff i < j and w, [i, j−1] |= D

Example 3. The LITL formula �Faa� precisely specifies the language A∗aaA∗. The
formula (pt Fa�) ∧ (�Lb pt) ∧ ¬(�Faa�) ∧ ¬(�Fbb�) specifies the language
(ab)+ over alphabet {a,b}. The first and the second conjunct state that the word begins
with a and it ends with b. The last two conjuncts state that subwords aa or bb do not
occur within the word.

2.1 Unique Parsability and Reduction to Automata

As for its ancestor UITL [LPS08], every word model of a LIT L formula can be uniquely
parsed. Fix an LITL formula φ. Consider its subformula ψ occuring in context λ; we
denote this by φ = λ(ψ). For any w ∈ A+, we can uniquely determine if ψ is relevant
in determining truth of φ over w. Moreover, if relevant, we can uniquely assign an
interval Intvw(ψ) such that the truth value of ψ only over this interval is relevant in
determining the truth of φ over w. The interval Intvw(ψ) actually depends only on the
context λ and not on ψ. Moreover, it is possible to construct po2dla L(ψ) and R (ψ)
which accept at the left and right interval boundaries of Intvw(ψ) respectively if the
subformula is relevant. Using these automata, we can further construct an automaton
M(ψ) which accepts if ψ is relevant and it evaluates to true on Intvw(ψ). Exploiting
this unique parsability, the following theorem can be established as a straightforward
generalization of the similar theorem for logic UITL [LPS08].

Theorem 2. For any D ∈ LIT L we can effectively construct a po2dla M(D) in polyno-
mial time such that w ∈ L(D)⇔ w ∈ L(M(D)). The size |M(D) | = O(|D |2).
Proof (sketch). The construction of M(D) is inductive and proceeds bottom-up on the
structure of D. Consider D = ψ1Fuavψ2. The corresponding po2dla M(D) first moves to
the left boundary of Intvw(D), then it checks in a single pass (moving in one direction
only), for the existence of first uav, and also checks whether it lies within the right
boundary of the interval Intvw(ψ). It then invokes the automata M(ψ1) and M(ψ2) in
sequence. The details of the construction can be found in the full paper. 	
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Decision problems. The above translation gives a PTIME reduction from LITL formula
of size n to a language equivalent automaton of size (i.e. number of states) O(n2). More-
over, the lookaround size in automaton is at most the pattern size in the LITL formula.
Combining this with NP-complete non-emptiness checking of po2dla, we conclude that
satisfiability of LITL is NP-complete assuming a fixed lookaround size. Our previous
paper [LPS08] gave a LOGDCFL procedure for checking membership for logic UITL.
This procedure extends to logic LITL with the same complexity.

2.2 From po2dla to FO2[<,S]

In this section, we outline a language preserving translation from po2dla to FO2[<,S].
Essentially the automaton is a dag with self-loops added on some nodes. For each
progress edge e = (p,α,q,dir), p �= q, we define FO2[<,S] formulae Ate(x) and
A f tere(x) with one free variable x. These formulae satisfy the lemma below. By substi-
tuting these formulae as we go along the dag, we get a formula for the words accepted.

Lemma 3. – �w , i |= Ate(x) iff there exists a partial run of M (starting with (s,1))
which ends in configuration (p, i) and (w[∗, i,∗] = α).

– �w , i |= A f tere(x) iff there exists a partial run ending with last two configurations
(p, j)(q, i) where the last edge of the automaton taken is e.

Construction. It is easy to construct A f tere(x) given Ate(x). For edge e = (p,α,q,dir)

we have A f tere(x)
def= ∃y. S(x,y)∧Ate(y) if dir = L; A f tere(x)

def= ∃y. S(y,x)∧Ate(y)
if dir = R; and A f tere(x)

def= Ate(x) if dir = X .
Given α, there is a FO2[<,S] formula α(x) stating that the position x matches α. E.g.

dabc(x) def= b(x)∧ (∃y. S(y,x)∧a(y)∧ (∃x. S(x,y)∧d(x))) ∧ (∃y. S(x,y)∧ c(y)).
Now we give the construction of Ate(x), by induction on the depth of the edge. Con-

sider an edge e = (p,α,q,dir) where the labels of other progress edges from state p are
α1, . . . ,αk. Let the incoming progress edges to p be e1, . . . ,er. We consider here the case
that δelse(p) = (p,R), i.e. a self-loop scanning rightwards. The case δelse(p) = (p,L) is
symmetric.

Ate(x)
def= α(x)∧∨ei∈{e1...er}[

(∃y. y≤ x∧A f terei(y))∧
(∀y. y < x⇒ ((¬α(y)∧¬α1(y)∧ . . .∧¬αk(y))∨

(∃x. y < x∧A f terei(x))))]

For the start state s we assume that there is a dummy incoming edge einit such that
A f tereinit (x) is a formula which holds exactly at position 1 in w. The formula φ(M) for
the whole automaton M is the disjunction of the formulae Atei(x) for each incoming
edge ei to the accepting state t. Note that the size of φ(M) is exponential in size of M.

Theorem 3. Every po2dla can be effectively reduced to a language equivalent formula
of FO2[<,S] of exponential size.
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Hence, using Theorem 2, every LITL formula can be effectively reduced to a language
equivalent FO2[<,S] formula, but a direct quadratic translation from LITL to FO2[<,S]
generalizing the one in [Shah07] can also be worked out. In this paper, Theorem 5 will
show that we can go from FO2[<,S] to LITL.

3 Games and Expressiveness

We now investigate the expressiveness of FO2[<,S] with respect to the dot-depth hier-
archy. Since a successor predicate can be replaced by < with an additional nesting of a
quantifier, we get that FO2[<,S]⊆ Δ3[<].

Theorem 4. (i) Π2[<] �⊆ FO2[<,S]
(ii) Σ2[<] �⊆ FO2[<,S]

(iii) FO2[<,S] �⊆ B(Σ2)[<]

To prove the above results, we use Ehrenfeucht-Fraı̈ssé games [Fra50, Ehr61]. The
signature has unary predicates Qa,Qb,Qc and < and S are the binary predicates, with
their usual definitions. Let Sig be a signature, and u,v be two word structures over Sig.
An EF game G(u,v, p,r) is a game played by 2 players, the Spoiler and Duplicator,
over the word models u,v. A play of the game has r rounds with each player playing
p pebbles. The pebbles are colored with p different colors, each player having exactly
one pebble of each color.

In each round the Spoiler picks (any) one of the words, and places his p pebbles on it.
The Duplicator then places his corresponding p pebbles on the other word. Duplicator
wins the game if at the end of r rounds there exists a partial isomorphism between the
pebble positions, with respect to all the relations of Sig. Note that this can only hap-
pen if each of the intermediate configurations is also a partial isomorphism. Weis and
Immerman [WI07] proved the following version of the Ehrenfeucht-Fraı̈ssé theorem.

Definition 3. Two words u,v are said to be r-FO2[<,S] equivalent if for any FO2[<,S]
formula φ with quantifier depth ≤ r, u |= φ⇔ v |= φ, and p-B(Σ2)[<] equivalent if for
any B(Σ2)[<] formula φ with ≤ p variables, u |= φ⇔ v |= φ.

Lemma 4. (a) Two word models u,v over the signature [<,S] are r-FO2[<,S] equiva-
lent iff for the game G(u,v,2,r), the Duplicator always has a winning strategy.
(b) Two word models u,v over the signature [<] are p-B(Σ2)[<] equivalent iff for the
game G(u,v, p,2), the Duplicator always has a winning strategy.

Proof (of Theorem 4). We note that since FO2[<,S] is a boolean closed logic, (i) of
the theorem will imply (ii) (or vice versa). We consider words over the alphabet A =
{a,b,c} described by a conjunct φA = ∀x(Qa(x)∨Qb(x)∨Qc(x)).
(i) We consider the language (ac∗bc∗)∗. This language may be expressed by the con-
juncts below giving a Π2[<] formula:
∀x(∀y(y < x⇒ x = y))⇒Qa(x)
∀x∃y(Qb(y)∧ (x > y⇒Qc(x)))
∀x∀y((Qa(x)∧Qa(y)∧ x < y)⇒ (∃z.(x < z < y∧Qb(z)))) and
∀x∀y((Qb(x)∧Qb(y)∧ x < y)⇒ (∃z.(x < z < y∧Qa(z))))
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For some r > 0, consider two word models over the signature [<,S]:
u : (acrbcr)2r, and v : (acrbcr)rbcr(acrbcr)r

Here, u ∈ (ac∗bc∗)∗ and v /∈ (ac∗bc∗)∗. We can show that for any 2-pebble, r-round EF
game G(u,v,2,r), the Duplicator always has a winning strategy, and hence u,v are r-
FO2[<,S] equivalent. This is evident from the observation that the two b’s in v that do
not have an a between them are separated by r c’s and hence can be duplicated by the
rth bcr in u. It is straightforward to see that any of the moves on a’s or b’s by the Spoiler
can be duplicated in the other word. So the language (ac∗bc∗)∗ cannot be expressed in
FO2[<,S].
(iii) We show that the language given by the LITL formula (¬(�Fbb�))Faa� is
not definable in B(Σ2)[<]. Over the signature [<], we first claim that no formula
using less than p variables can distinguish in one round between the words u1 =
(ab)pbb(ab)paa(ab)p and v1 = (ab)paa(ab)pbb(ab)p. This is because any subsequence
of length p in one word can be matched in the other word.

Now consider the pair of words u2 = up
1 and v2 = vp

1 formed by taking p copies of
the earlier ones. Now any placement of p pebbles in one word can be matched in the
other word so that the subwords of length at most p−2 between any two pebbles (or a
pebble and an end of the word) are the same. This means that Duplicator has a winning
strategy for the second round as well.

Since for every p, the first word u2 is not in the language given by (¬(�Fbb�))Faa�
and the second word v2 is in the language, this shows that any B(Σ2)[<] formula (using,
say, p variables) fails to define the language. 	


3.1 Using Unambiguity on Rhodes-Straubing Expansions

We now show that the expressiveness of FO2[<,S] is no more than that of LITL. Since
the proofs of the lemmas are refinements of those in [TW98], they are omitted here. Let
RSd be the set of all words obtained as Rhodes-Straubing d-expansions (see Definition
1) of words over A, i.e. let RSd = (A∗)ρ

d . Our use of it is reminiscent of the rôle of
Dyck languages in CFLs.

Lemma 5. If a language L is defined by an FO2[<,S] sentence with at most r quantifier
alternations and upto d successor formulas, then its d-expansion Lρ

d is the intersection
of RSd with a language definable by a sentence of FO2[<] with at most r quantifier
alternations.

The letters occurring in a word x (more generally, in a set of words) are called its
content. We will use ‖x‖ to denote the size of the content of x. If the letter a is in ‖x‖,
the left a-chop of x is vaw where x = v1av2 and a is not in the content of v1 (not in ithe
content of v2, respectively, for a right a-chop).

Definition 4 (Thérien and Wilke). Let n≥‖x,y‖. Any two words x and y are said to be
n,0-equivalent. Two words x and y are n,k +1-equivalent if they have the same content
and for every letter a in the content, if their left a-chops are x1ax2,y1ay2 respectively,
then x1 and y1 are n−1,k + 1-equivalent and x2 and y2 are n,k-equivalent, as well as
a symmetric condition for right chops. The n,k-choppable languages are those which
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are a union of n,k-equivalence classes. The unambiguously choppable languages are
those which are n,k-choppable for some n,k > 0.

The next result combines the earlier proposition with the result of Thérien and Wilke
[TW98] that an FO2[<]-definable language is unambiguously choppable.

Corollary 2. If a language L is defined by an FO2[<,S] sentence with upto d successor
formulas, then its d-expansion Lρ

d is the intersection of RSd with an unambiguously
choppable language.

We now traverse the path back to our logic LITL.

Theorem 5. The languages defined by sentences of FO2[<,S] can be defined in LITL.

Proof. From Corollary 2, we know that for an FO2[<,S]-definable language L (using
d successors) over the alphabet A, its Rhodes-Straubing d-expansion Lρ ⊆ RSd is un-
ambiguously choppable over the alphabet (A′)2d+1. We construct LITL formulae for
{w | wρ ∈ Cρ} and for each n,k-equivalence class Cρ ⊆ Lρ, by induction on n and k.
Taking the disjunction of the formulae for the finitely many equivalence classes saturat-
ing Lρ gives an LITL formula for L.

For the base case, an n,0-equivalence class determines a content B of letters over
(A′)2d+1. The language recognized by words which map to this equivalence class is B∗,
defined by the intersection below. Although B∗ is a language over (A′)2d+1, the LITL
formula is over the alphabet A since existence of a letter uav in wρ is equivalent to
validating w |= trueFuavtrue.

– For lookarounds uav ∈ (A′)2d+1 \ B without padding, the conjunct is
¬(trueFuavtrue).

– For �iaubv ∈ (A′)2d+1 \ B where i > 0 and |au| + i = d, the conjunct is
¬(ptFaubvtrue).

– For uavb i ∈ (A′)2d+1 \ B where i > 0 and |vb| + i = d, the conjunct is
¬(trueLuavbpt).

For the induction step, an n,k +1-equivalence class determines a content B as well as a
set of left and right α-chops for α ∈ B. The required formula for an n,k+1-equivalence
class is given by the following intersection, where in both cases we go through the
endmarker analysis above and shift position as required.

– Formulae D1FαD2 (D′1LαD′2, respectively) and all allowed left (right, resp.) α-
chops, where the lookarounds α range over the content.

– Negations of such formulae for the α-chops in (A′)2d+1 which are not allowed.

The formulae D1,D2,D′1,D
′
2 for n,k-classes over content B and for n−1,k + 1-classes

over content B\ {α} are obtained from the induction hypothesis. Consider for instance
that xρ = vραwρ is a left α-chop over a Rhodes-Straubing expansion. The induction
hypothesis gives us v |= D1 and w |= D2 and so we have x |= D1FαD2 using α as a
lookaround rather than a letter. 	
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Abstract. A weighted tree transformation is a function τ : TΣ×TΔ → A
where TΣ and TΔ are the sets of trees over the ranked alphabets Σ and Δ,

respectively, and A is the domain of a semiring. The input and output

product of τ with tree series ϕ : TΣ → A and ψ : TΔ → A are the weighted

tree transformations ϕ � τ and τ � ψ, respectively, which are defined by

(ϕ � τ )(t, u) = ϕ(t) · τ (t, u) and (τ � ψ)(t, u) = τ (t, u) · ψ(u) for every

t ∈ TΣ and u ∈ TΔ. In this contribution, input and output products of

weighted tree transformations computed by weighted extended top-down

tree transducers (wxtt) with recognizable tree series are considered. The

classical approach is presented and used to solve the simple cases. It is

shown that input products can be computed in three successively more

difficult scenarios: nondeleting wxtt, wxtt over idempotent semirings,

and weighted top-down tree transducers over rings.

1 Introduction

Top-down tree series transducers [1,2,3] are a weighted version of top-down tree
transducers [4,5,6,7,8]. Here we consider weighted extended top-down tree trans-
ducers (wxtt) [9,10,11], which are a generalization of top-down tree series trans-
ducers to allow several symbols in the left-hand side of rules. The framework
Tiburon [12] implements wxtt over various weight semirings like the Boolean
semiring ({⊥,�},∨,∧,⊥,�), the arctic semiring (IN ∪ {−∞},max,+,−∞, 0),
and the probability semiring (IR≥0,+, ·, 0, 1), where elements outside the inter-
val [0, 1] are included because a semiring is closed under addition.

In this contribution, we will consider two standard operations for wxtt: in-
put and output product. Given a wxtt M and a (suitable) recognizable tree
series ϕ [13,14,15,16,3], their input product1 should be a wxtt that computes
the weight (ϕ, t) · τM (t, u) for every input tree t and output tree u, where τM is
the weighted tree transformation computed by M . In other words, the obtained
wxtt shall scale the weight τM (t, u) assigned by M with the weight (ϕ, t) as-
signed by ϕ to the input tree. The output product is defined analogously. For
� Financially supported by Ministerio de Educación y Ciencia grants JDCI-2007-760

and MTM-2007-63422.
1 Formally, the input product is a weighted tree transformation that might or might

not be computable by another wxtt. In applications the former case is very desirable.

Y. Gao et al. (Eds.): DLT 2010, LNCS 6224, pp. 316–327, 2010.
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completeness’ sake, we note that those products are partial; i.e., there exist wxtt
and recognizable tree series whose product cannot be computed by a wxtt.

Input and output product have several applications. First, they offer the pos-
sibility to integrate a stand-alone parser into a wxtt M . We can encode the
parser (e.g., the Collins parser [17]) as a recognizable tree series and then per-
form the input product. The obtained wxtt will multiply the parse weight of
the input tree to the weight of each tree pair in M . Another common usage
is restriction, in which we want to limit the input (or output) trees to be of a
given (recognizable) shape. For every recognizable tree language L [18,19] we
can obtain a recognizable tree series 1L that assigns the weight 1 (neutral ele-
ment of the multiplication) to each tree of L and weight 0 (neutral element of
the addition) to each remaining tree. The input product with 1L then restricts
the weighted tree transformation to input trees of L. More precisely, the weight
of any tree pair (t, u) will be 0 if t /∈ L, whereas the weight of the tree pair re-
mains τM (t, u) if t ∈ L. This particular use of the input product is also known as
(generalized) Bar-Hillel construction, which originally restricts (or intersects)
a context-free grammar with a regular language [20]. If L is a singleton, then the
Bar-Hillel construction essentially yields a representation of the parses of the
element of L. Consequently, the Bar-Hillel construction can be understood
as a parser. This use is explained in detail in [21]. Finally, the input product is
equivalent to recognizable look-ahead [8,11], so that devices with such look-ahead
can be simulated by an input product. This can be used to prove that certain
devices with recognizable look-ahead are as powerful as without. For example,
Theorem 2 of Sect. 4 easily yields a generalization to the weighted case of [11,
Theorem 4.4], which shows that nondeleting wxtt have recognizable look-ahead
in the unweighted case (i.e., over the Boolean semiring).

The output product can easily be obtained with existing composition con-
structions [22,7,2,23]. The same applies to the input product if the wxtt is linear
and nondeleting [2,11]. The main results of this paper concern nonlinear wxtt
and we obtain input product constructions for:

– nondeleting wxtt over commutative semirings,
– some-copy nondeleting wxtt over idempotent commutative semirings, and
– some-copy nondeleting wxtt over commutative rings.

The first construction is rather standard. Some-copy nondeleting wxtt are de-
fined such they fully explore at least one copy of each input subtree. In contrast,
in a nondeleting wxtt every copy of an input subtree is fully explored. Whenever
the wxtt copies a subtree, the second construction nondeterministically guesses
a copy that fully explores the subtree. The idempotence of the semiring guaran-
tees that the correct weight is obtained even if several copies are fully explored
(i.e., several guesses are successful). The final construction for rings (note that
no nontrivial idempotent commutative semiring is a commutative ring) is more
involved because a scheme needs to be developed such that several successful
explorations cancel each other out in a systematic way. The main problem is
that it cannot be enforced with the state behavior alone that only one guess is
successful.
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2 Preliminaries

The set IN is the set of nonnegative integers. We let [k] = {i | 1 ≤ i ≤ k} for
every k ∈ IN. Note that [0] = ∅. The set of all strings over a set Q is denoted
by Q∗, of which the empty string is ε. The length |w| of a string w ∈ Q∗ is
the number of occurrences of symbols. The ith symbol in w is denoted by wi.
We use a fixed set X = {xi | i ∈ IN} of formal variables and its finite subsets
Xk = {xi | i ∈ [k]} for every k ∈ IN. Consequently, X0 = ∅.

A ranked alphabet (Σ, rk) is a finite set of symbols Σ together with a rank
mapping rk : Σ → IN, which associates a rank to each symbol. We often just
write Σ instead of (Σ, rk) and write Σk for the set of all symbols in Σ that have
rank k. The set of Σ-trees indexed by a set V , which is denoted by TΣ(V ), is the
smallest set such that (i) V ⊆ TΣ(V ) and (ii) σ(t1, . . . , tk) ∈ TΣ(V ) for every
σ ∈ Σk and t1, . . . , tk ∈ TΣ(V ). We write α for α() with α ∈ Σ0. In addition,
we write TΣ for TΣ(∅). Let t ∈ TΣ(V ) be a tree. The set pos(t) of positions (or
nodes) in t is inductively defined by pos(v) = {ε} for every v ∈ V and

pos(σ(t1, . . . , tk)) = {ε} ∪ {iw | i ∈ [k], w ∈ pos(ti)}

for every σ ∈ Σk and t1, . . . , tk ∈ TΣ(V ). We write t(w) for the label of t at
position w. Moreover, pos�(t) = {w ∈ pos(t) | t(w) = �} for every � ∈ Σ ∪ V .
The tree t is linear (respectively, nondeleting) in V if |posv(t)| ≤ 1 (respectively,
|posv(t)| ≥ 1) for every v ∈ V . We write CΣ(Xk) for the subset of all trees
of TΣ(X) that are linear and nondeleting in Xk.

Clearly, the positions pos(t) ⊆ IN∗ are lexicographically ordered. Thus, the
occurrences posv(t) of a variable v ∈ V in t are also ordered. Given n pairwise
distinct variables v1, . . . , vn ∈ V and tvi1, . . . , tvimi ∈ TΣ(V ) for every i ∈ [n]
with mi = |posvi

(t)|, the substitution

t[v1 ← (tv11, . . . , tv1m1), . . . , vn ← (tvn1, . . . , tvnmn)]

or just t[vi ← (tvi1, . . . , tvimi) | i ∈ [n] ] denotes the tree obtained by replac-
ing, for every i ∈ [n], the mi occurrences of vi in t by (tvi1, . . . , tvimi) in order;
i.e., the leftmost occurrence of vi is replaced by tvi1 and the rightmost occur-
rence is replaced by tvimi . If t ∈ CΣ(Xn) and Xn = {v1, . . . , vn}, then we just
write t[tx11, . . . , txn1] instead of the cumbersome t[x1 ← (tx11), . . . , xn ← (txn1)].
Moreover, for every t ∈ TΣ, let match(t) be the finite set

match(t) = {(l, t1, . . . , tk) | l ∈ CΣ(Xk), t1, . . . , tk ∈ TΣ , l[t1, . . . , tk] = t} .

A (commutative) semiring A = (A,+, ·, 0, 1) is an algebraic structure such that
(A,+, 0) and (A, ·, 1) are commutative monoids, a · (b + c) = (a · b) + (a · c) for
every a, b, c ∈ A, and a ·0 = 0 = 0 ·a for every a ∈ A. It is idempotent if 1+1 = 1.
In an idempotent semiring A the natural order ≤ ⊆ A × A, which is given by
a ≤ b if and only if a + b = b for every a, b ∈ A, is a partial order for which
the operations + and · are monotone. Finally, the semiring A is a ring if there
exists an element (−1) ∈ A such that 1 + (−1) = 0. For the rest of the paper,
let A = (A,+, ·, 0, 1) be a commutative semiring.
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Let Σ be a ranked alphabet. Every mapping ϕ : TΣ → A is a tree series,
which is also expressed by ϕ ∈ A〈〈TΣ〉〉. For every t ∈ TΣ the value ϕ(t) of t in ϕ
is usually written as (ϕ, t). Next, we recall recognizable tree series [13,24,3]. A
weighted tree automaton (wta) [24] is a system N = (P,Σ, F, μ) where (i) P is a
finite set of states, (ii) Σ is a ranked alphabet of input symbols, (iii) F : P → A
is a final weight vector, and (iv) μ = (μk)k∈IN is a family of weighted transitions
with μk : P k × Σk × P → A for every k ∈ IN. We generalize our wta to work
on trees of TΣ(Xn) with n ∈ IN. Note that TΣ = CΣ(X0) ⊆ TΣ(Xn). For all
p1, . . . , pn ∈ P we extend μ to a mapping hp1···pn

μ : TΣ(Xn) → AP by

hp1···pn
μ (xi)p =

{
1 if p = pi

0 otherwise

hp1···pn
μ (σ(t1, . . . , tk))p =

∑

q1,...,qk∈P

μk(q1 · · · qk, σ, p) ·
k∏

i=1

hp1···pn
μ (ti)qi

for every i ∈ [n], σ ∈ Σk, t1, . . . , tk ∈ TΣ(Xn), and p ∈ P . The wta N recognizes
the tree series ‖N‖ ∈ A〈〈TΣ〉〉, which is given by (‖N‖, t) =

∑
p∈P F (p) · hμ(t)p

for every t ∈ TΣ . Recall that A is commutative, so F (p) · hμ(t)p = hμ(t)p ·F (p).
A tree series that is recognized by some wta is recognizable.

Next, we define our main tree transducer model: the weighted extended top-
down tree transducer [9,10,11]. Our definition will be slightly non-standard, but
the particular syntax will prove useful for our constructions. We assure the reader
that our semantics will be equivalent to the existing definitions [9,10,11,25]. A
weighted extended top-down tree transducer (wxtt) is a system (Q,Σ,Δ, I,R)
where (i) Q is a finite set of states, (ii) Σ and Δ are ranked alphabets of input
and output symbols, respectively, (iii) I : Q → A is an initial weight vector, and
(iv) R is a finite set of rules of the form (q, l) a→ (w, r) with q ∈ Q, l ∈ CΣ(Xk),
a ∈ A, w ∈ (Q∗)k, and r ∈ TΔ(Xk) such that |wi| = |posxi

(r)| for every i ∈ [k].
Intuitively speaking, a rule (q, l) a→ (w, r) consists of a state q, a left-hand side l,
a weight a ∈ A, a control word w, and a right-hand side r. The control word
consists of k words w1, . . . , wk of states. For each i ∈ [k], the ith word records the
states (in order) that are associated to the occurrences (in lexicographic order)
of the variable xi in r. A more classical rule shape, which we use in graphi-
cal representations, assumes that the states have rank 1 and presents the rule
(q, l) a→ (w, r) as q(l) a→ r[xi ← ((wi)1(xi), . . . , (wi)|wi|(xi)) | 1 ≤ i ≤ |w| ]. An
example is displayed in Fig. 1 (left). The rule (q, l) a→ (w, r) ∈ R is linear (re-
spectively, nondeleting) if |wi| ≤ 1 (respectively, |wi| ≥ 1) for every 1 ≤ i ≤ |w|.
The wxtt M is linear (respectively, nondeleting) if every rule ρ ∈ R is so. It is
a weighted top-down tree transducer (wtt) if for every (q, l) a→ (w, r) ∈ R there
exists σ ∈ Σk such that l = σ(x1, . . . , xk). The example rule of Fig. 1 (left) is
nondeleting, but not linear. Any wxtt with that rule is not a wtt.

In the following, let M = (Q,Σ,Δ, I,R) be a wxtt. To simplify the develop-
ment, we assume henceforth that l �= x1 for every rule (q, l) a→ (w, r) ∈ R. In
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Fig. 1. Left: Graphical representation of the example rule (q, l)
a→ ((pq, q, p), r) where

l = σ(σ(x1, x2), x3) and r = δ(σ(x1, x2), σ(x1, x3)). Right: Example of deleting rules.

other words, we disallow ε-rules.2 We use the symbol q with and without addi-
tional subscripts for elements of Q. Consequently, if we write w = q1 · · · qn, then
implicitly qi ∈ Q for every i ∈ [n]. The semantics of the wxtt M (without epsilon
rules) is defined as follows: Let hR : TΣ × TΔ → AQ be the mapping defined for
every t ∈ TΣ, u ∈ TΔ, and q ∈ Q by

hR(t, u)q =
∑

(q,l)
a→(q11···q1n1 ,...,qk1···qknk

,r)∈R

(l,t1,...,tk)∈match(t),∀i∈[k],∀j∈[ni] : uij∈TΔ

u=r[xi←(ui1,...,uini
)|i∈[k]]

a ·
∏

i∈[k]
j∈[ni]

hR(ti, uij)qij .

The wxtt M computes the tree transformation τM : TΣ×TΔ → A, which is given
by τM (t, u) =

∑
q∈Q I(q) · hR(t, u)q for every t ∈ TΣ and u ∈ TΔ.

3 Input and Output Product

In this section, we formally define input and output product and then dis-
cuss the standard approach to solve the associated algorithmic problems. Let
τ : TΣ × TΔ → A, ϕ ∈ A〈〈TΣ〉〉, and ψ ∈ A〈〈TΔ〉〉. The input product ϕ  τ of τ
with ϕ and the output product τ � ψ of τ with ψ are (ϕ  τ)(t, u) = (ϕ, t) · τ(t, u)
and (τ � ψ)(t, u) = τ(t, u) · (ψ, u) for every t ∈ TΣ and u ∈ TΔ.

Classical solutions to the problems of input and output products are spe-
cialized Bar-Hillel constructions [20,21] or compositions [22,7]. The composi-
tion approach first embeds a tree series ϕ ∈ A〈〈TΣ〉〉 into the identity mapping
idϕ : TΣ × TΣ → A, which is defined by idϕ(t, t′) = (ϕ, t) if t = t′ and 0 other-
wise for every t, t′ ∈ TΣ. Given two tree transformations τ1 : TΣ × TΔ → A and
τ2 : TΔ × TΓ → A, the composition τ1 ; τ2 : TΣ × TΓ → A of τ1 and τ2 is given
by (τ1 ; τ2)(t, v) =

∑
u∈TΔ

τ1(t, u) · τ2(u, v) for every t ∈ TΣ and v ∈ TΓ . Note
that, in general, the sum in the definition of τ1 ; τ2 may be infinite, but in our
compositions τ1 ; τ2 one of the tree transformations τ1 or τ2 will always be an
2 Aside from well-definedness issues, there is no additional complexity with ε-rules. All

our constructions can easily be adapted to work for general wxtt with well-defined

semantics, but we would like to avoid an in-depth discussion of well-definedness.
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identity mapping idϕ. This yields that the sum in the definition of the composi-
tion τ1 ; τ2 essentially degenerates into a single summand. Thus, we can express
input and output product as ϕ  τ = idϕ ; τ and τ � ψ = τ ; idψ, respectively.

In this contribution, we consider input and output products of tree transfor-
mations that are computed by wxtt with recognizable tree series. The identity
mappings idϕ and idψ can be computed by linear and nondeleting wtt for all
recognizable tree series ϕ ∈ A〈〈TΣ〉〉 and ψ ∈ A〈〈TΔ〉〉. Thus, the main question
with regard to the composition approach is whether the given compositions for
input and output product can be computed by another wxtt.

First, let us discuss the question for an unweighted (i.e., Boolean weighted3)
wtt M [5,4]. By the composition results of [22,7], the composition approach
works for: (i) the output product and (ii) the input product if M is linear and
nondeleting. Further results can be obtained for special recognizable tree series
such as deterministic top-down recognizable tree series [26,18], but we will focus
on general recognizable tree series in this contribution. The two mentioned results
generalize to wtt over commutative semirings [2,23] and can easily be extended
to wxtt as well. If we were to discuss input and output product also for weighted
extended bottom-up tree transducers [9,2,27], then the roles would essentially
exchange. The input product would be easy with the help of the composition
approach and output products could be achieved following our approaches for
input products of wxtt.

4 Nondeleting Transducers

From now on, let M = (Q,Σ,Δ, I,R) be a wxtt and N = (P,Σ, F, μ) be a wta.
The aim of this and the following sections is to present constructions of M ′ such
that τM ′ = ‖N‖  τM . This problem is simple if M is nondeleting. Each input
subtree is visited at least once by M due to nondeletion, and we can arbitrarily
select one call4 to perform the input product. We select the first call here. As a
notational convenience, we sometimes use angled brackets ‘〈’ and ‘〉’ instead of
parentheses ‘(’ and ‘)’.

Definition 1. The input product N  nM is the wxtt (Q′, Σ,Δ, I ′, R∪R′) where

– Q′ = Q ∪ (Q× P ),
– I ′(q) = 0 and I ′(〈q, p〉) = I(q) · F (p) for every q ∈ Q and p ∈ P , and

– (〈q, p〉, l) a·a′
−→ (〈q11, p1〉q12 · · · q1n1 , . . . , 〈qk1, pk〉qk2 · · · qknk

, r) ∈ R′ for every
nondeleting rule (q, l) a→ (q11 · · · q1n1 , . . . , qk1 · · · qknk

, r) ∈ R and all states
p, p1, . . . , pk ∈ P where a′ = hp1···pk

μ (l)p.

Mind that in a nondeleting wxtt all rules are nondeleting, which allows us to
arbitrarily select any call because each call will fully explore its subtree.
3 The Boolean semiring is B = ({⊥, �}, ∨, ∧, ⊥, �).
4 In a rule (q, l)

a→ (w, r) ∈ R any (wi)j ∈ Q with 1 ≤ i ≤ |w| and 1 ≤ j ≤ |wi| is also

called ‘call ’ to the subtree represented by xi. If |wi| ≥ 2, then there are several calls

to the same subtree.
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Theorem 2. If M is nondeleting, then τ(N�nM) = ‖N‖  τM .

Our construction can easily be generalized to settings, where based on the rule
shape, the call that fully explores its subtree can be infered. The next sections
will deal with cases, in which such a prediction is not possible.

5 Idempotent Semirings

In this and the next section, we develop successively more complicated input-
product constructions for deleting wxtt. Clearly, if M deletes a particular input
subtree in all copies, then we cannot obtain a general input-product construction
because the deleted subtree might be essential for the wta N . Consequently, we
restrict our attention to wxtt that visit each input subtree at least once. In
principle, algorithms for the input product can be imagined in this setting, but
such an algorithm would require extensive book-keeping. This is due to the fact
that we would need to record which subtree is visited by which call, which seems
unfeasible in a general-purpose construction. Nevertheless such a construction
should eventually be established for the particular wxtt that are the result of
binarizing nondeleting wxtt.

Let us consider the rules of Fig. 1 (right). Each subtree in the tree γ(σ(α, α)) is
visited at least once starting with state q. The first rule creates two copies of the
input subtree σ(α, α), of which the first call explores the node labeled ‘σ’ and the
left subtree α (and deletes the right subtree α). The second call explores the ‘σ’-
node and the right subtree α. Consequently, there is no single call that explores
the full subtree σ(α, α), which yields that the product construction needs to
keep track which parts are explored by which call. To avoid this additional book-
keeping, we introduce some-copy nondeletion, which demands that for each input
subtree there is at least one call that fully explores the whole subtree.

Definition 3. A state q ∈ Q is t-nondeleting with t ∈ TΣ if for every rule
(q, l) a→ (w, r) ∈ R, (l, t1, . . . , tk) ∈ match(t), and 1 ≤ i ≤ |w| there exists
1 ≤ j ≤ |wi| such that (wi)j is ti-non-deleting. The wxtt M is some-copy non-
deleting if q is t-nondeleting for every t ∈ TΣ and q ∈ Q such that I(q) �= 0.

Note that any rule fulfilling the premise in Definition 3 must be nondeleting,
however, not all rules R need to be nondeleting for M to be some-copy non-
deleting. Classical nondeletion might be called “all-copies nondeletion” in anal-
ogy. We further note that some-copy nondeletion is a semantic property. It is
decidable (because for every state q ∈ Q the set of all trees t ∈ TΣ such that
q is t-nondeleting is a recognizable tree language [18,19]), but it might not be
a practical property. However, it encompasses several interesting forms of “non-
deletion” (such as the ones mentioned at the end of the previous section), and
thus allows us to present one construction (and its proof of correctness) for
several “nondeletion” properties. We already argued that the state q with the
rules of Fig. 1 (right) is not γ(σ(α, α))-nondeleting because neither q1 nor q2
are σ(α, α)-nondeleting. However, the wxtt with the rules of Fig. 2 is some-copy
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Fig. 2. Rules of a some-copy nondeleting wxtt

nondeleting if q is the only initial state. Note that the call that fully explores
a subtree here depends on the input tree. For example, the first call created in
the first rule fully explores the subtree σ1(α, α) in the tree γ(σ1(α, α)), whereas
the second call fully explores σ2(α, α) in the tree γ(σ2(α, α)). The example also
demonstrates that it is not sufficient that one (non-deterministic) choice fully
explores a subtree. Although the state q2 can fully explore the subtree σ1(α, α),
it is not σ1(α, α)-nondeleting because of the last rule of Fig. 2.

Since we cannot infer the correct call that fully explores a subtree from the
information present in a rule, we have to guess it. If M is some-copy nondeleting,
then we know that at least one such guess must be correct. However, it might
happen that several calls eventually fully explore the same subtree. The author
is unaware of any method to exclude this behavior with the help of the states
alone. Consequently, we only prove that our construction is correct in idempotent
semirings A. The idempotency yields that several equivalent (or even partial)
explorations can be performed without effect on the weight.

Definition 4. The input product N  i M is the wxtt (Q′, Σ,Δ, I ′, R∪R′) where

– Q′ = Q ∪ (Q× P ),
– I ′(q) = 0 and I ′(〈q, p〉) = I(q) · F (p) for every q ∈ Q and p ∈ P , and

– (〈q, p〉, l) a·a′
−→ (q11 · · · 〈q1j1 , p1〉 · · · q1n1 , . . . , qk1 · · · 〈qkjk

, pk〉 · · · qknk
, r) ∈ R′

for every nondeleting rule (q, l) a→ (q11 · · · q1n1 , . . . , qk1 · · · qknk
, r) ∈ R, all

states p, p1, . . . , pk ∈ P , and j1 ∈ [n1], . . . , jk ∈ [nk] where a′ = hp1···pk
μ (l)p.

Note that only one state of each part in the control word is replaced. Let us
illustrate the construction on the rules of Fig. 2.

Example 5. Suppose thatA = (IN∪{−∞},max,+,−∞, 0) is the arctic semiring,
which is idempotent. Moreover, suppose that M is given by the rules of Fig. 2
and that N is the trivial wta with P = {p} such that (‖N‖, t) = 0 for every
t ∈ TΣ . Clearly, ‖N‖  τM = τM , so we would not need a construction at all, but
let us consider the input tree t = σ1(α, α) and the output tree u = σ(α, α). A
simple calculation shows that hR(t, u)q1 = 3 and hR(t, u)q2 = max(3, 6). Now,
let N  i M = (Q′, Σ,Δ, I ′, R′). Then hR′(t, u)〈q1,p〉 = 3 and hR′(t, u)〈q2,p〉 = 3,
which shows that the derivation with weight 6 is not possible in R′ with a paired
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state because the last rule (which resulted in the weight 6) of Fig. 2 is deleting
and thus no new rules (with a paired state) are created for it.

Theorem 6. If M is some-copy nondeleting and A an idempotent semiring,
then τ(N�iM) = ‖N‖  τM .

6 Rings

In this final section, we will discuss the input product for wxtt over rings. From
here on, we assume that A is a ring. To keep the presentation simple, we make
the additional restriction that M is a wtt. This will make the discussion of
the t-nondeletion property easier. We note that the restriction is done only for
convenience. More elaborate versions of our construction could easily overcome
the restriction. In the previous section we could easily allow spurious derivations
because idempotence would “hide” the wrong weights corresponding to those
spurious derivations. This is no longer possible in rings because no non-trivial
(i.e., 0 �= 1) ring is idempotent. Consequently, our final construction needs to
take care of those spurious derivations. To this end, we use a simple elimination
pattern. Let Q × C be such that (Q × C) ∩ Q = ∅ for some set C. For every
set Q′ such that Q ⊆ Q′ and w ∈ (Q′)∗, we let |w|Q = |{i | wi ∈ Q}| be the
number of Q-symbols in w. Our elimination pattern f : (Q′)∗ → A is given by
f(w) = 1 if |w| − |w|Q is odd, and f(w) = −1 otherwise. Intuitively speaking,
an elimination mapping is a strategy such that the derivations properly cancel
to just one derivation irrespective of the set of calls that fully explore a certain
subtree. This set of calls is non-empty because we will again assume some-copy
nondeletion. Let us illustrate this for Q′ = Q∪ (Q×C). For every w ∈ (Q′)∗ let
base(w) be the unique word such that base(ε) = ε and

base(q′w′) =

{
q′ base(w′) if q′ ∈ Q

q base(w′) if q′ = 〈q, c〉

for every q′ ∈ Q′ and w′ ∈ (Q′)∗. Let q ∈ Q be an arbitrary state and c ∈ C.
Given a nonempty set J ⊆ [n] with m = |J |, which represents the calls that fully
explore a given subtree, w ∈ Qn, and c1, . . . , cn ∈ C we have

∑

w′∈(Q′)∗\Q∗

base(w′)=w
∀i∈[n] : w′

i=〈wi,ci〉 if w′
i /∈Q

∀i∈[n]\J : w′
i∈Q

f(w′) =
∑

w′∈{q,〈q,c〉}m\{q}m

f(w′) = 1 ,

where the last step is a trivial consequence of Pascal’s triangle. Consequently,
for any choice of calls that fully explore a certain subtree, our elimination strat-
egy ensures that all but one cancel.

Before we proceed, let us consider the negation of t-nondeletion for wtt. Let
t = σ(t1, . . . , tk) for some σ ∈ Σk and t1, . . . , tk ∈ TΣ. A state q ∈ Q is t-deleting
if there exist a rule (q, σ(x1, . . . , xk)) a→ (w, r) ∈ R and i ∈ [k] such that (wi)j is
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ti-deleting for every 1 ≤ j ≤ |wi|. Consequently, a state q is σ(t1, . . . , tk)-deleting
for one of two reasons: (i) It has a deleting rule (q, σ(x1, . . . , xk)) a→ (w, r) ∈ R, or
(ii) it has a nondeleting rule (q, σ(x1, . . . , xk)) a→ (w, r) ∈ R such that all states
called on a subtree ti are ti-deleting. In the first case, the subtrees t1, . . . , tk are
obviously irrelevant. This characterization yields a simple check of t-deletion in-
side a wtt, which will be coded in the next construction. We need some additional
notation. Let C = P(P(Q)) where P(S) denotes the powerset of S. Moreover,
for every σ ∈ Σk, i ∈ [k], S ⊆ Q, C ∈ C, and q ∈ Q, let

nexti(σ, q) = {{(wi)1, . . . , (wi)|wi|} | (q, σ(x1, . . . , xk)) a→ (w, r) ∈ R}

nexti(σ, S) = {
⋃

q∈S
wq | ∀q ∈ S : wq ∈ nexti(σ, q)}

nexti(q, σ, C) =
⋃

S∈C

nexti(σ, S) ∪ nexti(σ, q) .

Definition 7. The input product N  r M is the wtt (Q′, Σ,Δ, I ′, R′′) where

– Q′ = Q ∪ (Q× C) ∪ (Q× C × P ) and R′′ = R ∪R ∪R′,
– for every q ∈ Q, C ∈ C, and p ∈ P , let I ′(q) = I ′(〈q, C〉) = 0 and

I ′(〈q, C, p〉) =

{
I(q) · F (p) if C = {{q}}
0 otherwise,

– for every q ∈ Q, C ∈ C such that ∅ /∈ C, σ ∈ Σk, and every nondeleting rule
(q, σ(x1, . . . , xk)) a→ (w, r) ∈ R, let

(〈q, C〉, σ(x1 , . . . , xk))
a·f(w′

1)·...·f(w′
k)−−−−−−−−−−−→ (w′

1 · · ·w′
k, r) ∈ R

for every w′
1, . . . , w

′
k ∈ (Q ∪ (Q× C))∗ \Q∗ such that for every i ∈ [k]

w′
i =

{
wi if w′

i ∈ Q

(wi, nexti(q, σ, C)) otherwise,

– for every rule (〈q, C〉, σ(x1, . . . , xk)) a→ (w, r) ∈ R and p, p1, . . . , pk ∈ P let
a′ = hp1···pk

μ (l)p and

(〈q, C, p〉, σ(x1, . . . , xk)) a·a′
−→ (w′

1 · · ·w′
k, r) ∈ R′ ,

where, for every i ∈ [k], the control word w′
i is obtained from wi by replacing

the first paired state 〈q′, C′〉, by 〈q′, C′, pi〉.

In other words, the paired states guess the calls that fully explore their sub-
trees. Note that if there exists any deleting rule (q, l) a→ (w, r) ∈ R with
l = σ(x1, . . . , xk) and wi = ε for some i ∈ [k], then for every (〈q, C〉, l) e→ (w′, r′)
in R there exists 1 ≤ j ≤ |w′

i| such that (w′
i)j = 〈q′, C′〉 or (w′

i)j = 〈q′, C′, p〉 with
∅ ∈ C′. This is due to the fact that ∅ ∈ nexti(q, σ, C) because ∅ ∈ nexti(σ, q).
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Fig. 3. Some constructed rules of R where R is the set of rules of Fig. 2. We use a

string notation for the elements of C here.

A similar statement holds for R′. In essence, this blocks the computations, in
which the guess was wrong because a deletion would be possible. It is not quite
obvious that (aside from one) the various correct guesses cancel each other out.
Let us illustrate the construction on the example rules of Fig. 2.

Example 8. Suppose that A = (ZZ,+, ·, 0, 1) is the ring of integers, and let M be
given by the rules of Fig. 2. To keep the example short, Fig. 3 only presents some
relevant rules of R that are constructed in the third item of Definition 7. For
t = γ(σ1(α, α)) and u = σ(σ(α, α), σ(α, α)) we can compute that

hR(t, u)q = 1 + 6 = hR∪R(t, u)〈q,{{q}}〉 .

Now, let S be the set R without the rule with weight 6, and let S be the
corresponding rule set constructed in the third item of Definition 7. Then

hS(t, u)q = 1 = 1 + 1− 1 = hS∪S(t, u)〈q,{{q}}〉 .

Theorem 9. If M is a some-copy nondeleting wtt and A is a ring, then

τ(N�rM) = ‖N‖  τM .
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Abstract. We consider the factorization problem of regular hedge lan-

guages. This problem is strongly related to the type checking problem

in rule based transformations of valid XML documents. We propose the

representation of regular hedge languages by reduced, complete, and de-

terministic linear hedge automata, and indicate algorithms for the com-

putation of right factors and factor matrix.

1 Motivation

Regular hedge languages, or simply RHLs, are a natural generalization of regular
languages where strings are replaced by sequences of unranked trees, also known
as hedges. They were first studied by Thatcher [8,9], who developed the basic
theory of unranked tree automata and investigated their regular extensions. In-
terest in their study was reignited by the advent of XML as the de facto standard
for the exchange and manipulation of data on the Web [1], and by the recogni-
tion of the fact that RHLs are a suitable formalism to specify restrictions on the
structure of XML documents. Hedge automata [7] were invented to type check
(or validate) input data against specifications of RHLs, and regular expression
types were introduced in XML processing languages [4] as a means to specify
membership constraints to RHLs.

Several results from the theory of regular languages carry over nicely to regular
hedge languages. In particular, the factorization theory of regular languages
[2] has a natural generalization to regular hedge languages [6,5]. One of the
motivations behind the study of regular hedge language factorizations is the type
checking problem that arises in the context of XML transformation. Assume we
are given a transformation rule P → r for input documents ranging over an RHL
Hin, and we want to check if the result belongs to an output type given by an
RHL Hout. This problem amounts to inferring the types of the pattern variables
of P when matching input documents from Hin, using them to infer the type (or
type over-approximation) H of the result r, and then checking if H is a subtype
of Hout. We mention two possible approaches:

1. Type inference for pattern variables, used in the XML programming language
XDuce [3]. Certain syntactic restrictions and a pattern matching strategy
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are imposed in order to enable an easy static type reconstruction algorithm
for the variables of P when matched against inputs of a given type. The
types inferred for the pattern variables can be used to compute an over-
approximation of the type of output r, and check if it is a subtype of Hout.

2. Type inference for the tuple of all variables of a pattern. In this case, we
compute for every pattern P with variables x1, . . . , xn a finite set

Hp = {Hi,1 × . . .×Hi,n | i ∈ {1, . . . , p}}

of cartesian products of RHLs such that: {x1 %→ h1, . . . , xn %→ hn} is a
matcher of P against some input from Hin iff (h1, . . . , hn) belongs to some
cartesian product from Hp. Alternatively, we could say that we infer the
type

∑p
i=1(Hi,1 × . . .×Hi,n) for the tuple of pattern variables (x1, . . . , xn).

There are p possibilities for the type of (x1, . . . , xn), which can be used to
compute an over-approximation of the type of output r and then check if it
is a subtype of Hout.

This type inference approach works for the class of patterns1 proposed
by us in [5]. They are similar to the patterns of XDuce, but lack features
such as global pattern names and pattern bindings. However, these patterns
have some extra features that are desirable for XML querying: (a) they can
be nonlinear, (b) variables can occur below iteration, and (c) there is no
predefined matching strategy.

The first type checking approach is easier, but the second approach is more accu-
rate and relies on factorizations of regular hedge languages, which are described
in Sect. 2.1. The following example illustrates a situation when the second type
checking approach is more accurate.

Example 1. Consider the type checking problem for input type f(a� b�)�, output
type f(a�b�a�b�a�), and transformation rule f(x y) f(y x) → f(x y x).

The first type checking approach infers that x is of type a�b�, and y is of type
a�b�. Therefore f(x y x) is of type f(a�b�a�b�a�b�). Since this is not a subtype
of the output type f(a�b�a�b�a�), type checking fails.

The second approach works by noting that f(x y) f(y x) matches an input
from f(a�b�)� if and only if both x y and y x match inputs from a�b�. Then,
instead of computing the types for x and y independently of each other, we
compute the type of a pair (x, y). From the type of (x, y), by easy simplifications
we obtain that the type of f(x y x) is f(a�b�a�b�). Since this is a subtype of
the output type f(a�b�a�b�a�), type checking succeeds. The crucial step in this
approach is the computation the type of the tuple (x, y), which heavily relies on
factorization computations: First factorizing f(a�b�)�, then factorizing a�b�. We
will return to this example at the end of the paper to see how the computations
are done. �

Regular hedge language factorization algorithms have been described in [6,5]. In
this paper we propose a significant improvement over those, by developing a new
1 They are called regular hedge expressions in [5].
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algorithm to compute the factor matrix of an RHL that is more efficient and
easier to analyze. The improvement is based on a new representation of RHLs,
by deterministic, reduced, and complete linear hedge automata.

The paper is structured as follows. Section 2 introduces the main notions we
use in the investigation of regular hedge language factorization, and recalls some
well known results. Section 3 presents a simple algorithm for the computation of
automaton representations for all right factors of an RHL. In Sect. 4 we propose
an algorithm to compute automata representations for the elements of the factor
matrix of an RHL. The algorithm makes use of the automaton representations
of the right factors of the RHL, and of their corresponding specification by
linear systems of hedge language equations. Section 5 concludes by comparing
the algorithms presented here with those presented in [6] and [5].

2 Preliminaries

Hedges over an unranked alphabet Σ of hedge labels and finite set of constants
K are finite sequences of trees generated by the grammar

h ::= ε | k | a(h)h

where ε denotes the empty sequence, k ∈ K, and a ∈ Σ. A tree over Σ and K is a
hedge of the form k or a(h). Trees of the form a(ε) are abbreviated by a. We write
H(Σ,K) for the set of hedges over Σ and K, and T (Σ,K) for the set of trees over
Σ and K. Also, we abbreviate H(Σ, ∅) by H(Σ), and T (Σ, ∅) by T (Σ). A hedge
language over Σ is a subset of H(Σ). From now on we assume implicitly that H ,
possibly subscripted, denotes regular hedge languages. The concatenation of H1

and H2 is the hedge language H1 H2 := {h1 h2 | h1 ∈ H1, h2 ∈ H2}; and the as-
terate of H is the hedge language H∗ := {ε}∪

⋃∞
n=1{h1 . . . hn | h1, . . . , hn ∈ H}.

A regular hedge language (RHL) over an unranked alphabet Σ is a language
accepted by a hedge automaton (HA). According to [7], such an automaton is
a tuple M = (Q,Σ, F,ΔM ) where: Q is a finite set of states; ΔM is a set of
transition rules of the form a(R) → q where q ∈ Q and R is a regular language
over Q; and F is a regular set over Q, called the final state sequence set of M . If
we write →M for the rewrite relation induced on H(Σ,Q) by the rewrite system
{a(w) → q | a(R) → q ∈ ΔM , w ∈ R}, then the language accepted by M is
L(M) := {h ∈ H(Σ) | ∃w ∈ F. h→∗

M w}.
In this paper we propose another representation of RHLs, by so called linear

hedge automata. A linear hedge automaton (LHA) over an unranked alphabet
Σ is a tuple A = (Q,Σ,Qf, Δ) where: Q is a finite set of states; Δ is a set of
transition rules of the form ε→ q or a(q1) q2 → q with q, q1, q2 ∈ Q and a ∈ Σ;
and Qf ⊆ Q is the set of final states of A. An ε-transition is a transition rule of
the form ε → q. A is deterministic if there are no two transition rules with the
same left hand side.

Let →A be the rewrite relation induced by the rewrite system Δ on H(Σ,Q).
Then the language accepted by A in a state q ∈ Q is L(A, q) := {h ∈ H(Σ) |
h→∗

A q}. For every Q′ ⊆ Q we define L(A, Q′) :=
⋃

q∈Q′ L(A, q). The language
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accepted by A is L(A) := L(A, Qf). A state q of an LHA A is accessible if
L(A, q) �= ∅. The LHA A is reduced if all its states are accessible. A is complete
if for every a ∈ Σ and q1, q2 ∈ Q there exists a transition rule a(q1) q2 → q ∈ Δ.

A convenient representation of LHAs is by a linear system of hedge language
equations (LSH). The LSH representation of an LHAA = ({q1, . . . , qn}, Σ,Qf, Δ)
is the pair (Qf, S) where

S :

⎧
⎪⎨

⎪⎩

q1 = c1 + �1,1 q1 + · · ·+ �1,n qn

...
qn = cn + �n,1 q1 + · · ·+ �n,n qn

with ci :=
{

1 if ε→ qi ∈ Δ,
0 otherwise

and �i,j :=
∑

a(q) qj→qi∈Δ a(q) for all 1 ≤ i, j ≤ n. The variables of this system
of equations are q1, . . . , qn, and they correspond to the states of the LHA that
is being represented. Therefore, from now on, we will refer to the elements of Q
either as states of the LHA or as variables of the corresponding LSH.

The equations of S are between expressions which belong to the larger class
of regular hedge expressions HReg(Σ,Q) defined by the grammar

e ::=0 | 1 | q | a(e) | e + e | e e | e�.

Such expressions are interpreted with respect to an assignment for Q, which is
a mapping σ : Q → 2H(Σ). The interpretation of e ∈ HReg(Σ,Q) with respect
to an assignment σ is defined as follows: [[0]]σ := ∅, [[1]]σ := {ε}, [[q]]σ := σ(q),
[[a(e)]]σ := {a(h) | h ∈ [[e]]σ}, [[e1 + e2]]σ := [[e1]]σ ∪ [[e2]]σ, [[e1 e2]]σ := [[e1]]σ [[e2]]σ,
and [[e�]]σ := [[e]]∗σ. A solution of S is an assignment σ such that σ(qi) =
[[ci + �i,1 q1 + . . . + �i,n qn]]σ for all 1 ≤ i ≤ n. We recall from [6] that an LSH
S has a unique solution σS , and that σS binds the elements of Q to RHLs. In
general, L(A, q) = σS(q) for all q ∈ Q.

Example 2. Let A = ({q1, q2, q3}, {a, b}, {q1}, Δ) with

Δ := {ε→ q1, a(q1) q2 → q1, b(q2) q2 → q1, a(q1) q1 → q2,

a(q1) q2 → q2, a(q3) q2 → q3}.

Then A is nondeterministic because the transition rules a(q1) q2 → q1 and
a(q1) q2 → q2 have the same left hand side. The LSH representation of A is
the pair ({q1}, S) where S is the LSH

S :

⎧
⎨

⎩

q1 = 1 + (a(q1) + b(q2)) q2
q2 = 0 + a(q1) q1 + a(q1) q2
q3 = 0 + a(q3) q2

It is not hard to see from the structure of S that state q3 is not accessible,
therefore A is not a reduced LHA. 	


The subset construction of a deterministic, complete, and reduced finite tree
automaton equivalent to a nondeterministic finite tree automaton can be easily
adapted to linear hedge automata, so we can conclude the following lemma.
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Lemma 1. For every LHA A there exists a deterministic, complete, and reduced
LHA Ad such that L(A) = L(Ad).

Thus we can represent any RHL by a deterministic, complete, and reduced LHA.

Example 3. The determinization of the LHA A from Example 2 produces the de-
terministic, complete, and reduced LHA Ad := ({s1, s2, s3, s4}, Σ, {s1, s4}, Δd)
whose LSH representation is ({s1, s4}, S) with

S :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

s1 = 1 + (b(s2) + b(s4)) s2 + (b(s2) + b(s4)) s4

s2 = 0 + (a(s1) + a(s4)) s1

s3 = 0 + (a(s2) + a(s3) +
∑4

i=1 b(si)) s1

+ (a(s2) + a(s3) + b(s1) + b(s3)) s2

+ (
∑4

i=1 a(si) +
∑4

i=1 b(si)) s3

+ (a(s2) + a(s3) + b(s1) + b(s3)) s4

s4 = 0 + (a(s1) + a(s4)) s2 + (a(s1) + a(s4)) s4.

2.1 Factorizations of Regular Hedge Languages

The factorization theory of RHLs [5] is a natural generalization of the factoriza-
tion theory of regular languages [2]. We recall here main definitions and results
from [5]. An n-subfactorization of an RHL H is a tuple (H1, . . . , Hn) of hedge
languages such that the concatenation H1 · · ·Hn is a subset of H . If we define
the relation

(H1, . . . , Hn) < (H ′
1, . . . , H

′
n) :⇔ Hi ⊆ H ′

i for all i ∈ {1, . . . , n} and
Hj �= H ′

j for some j ∈ {1, . . . , n}

then we can talk about <-maximal n-subfactorizations of H , also known as n-
factorizations of H . The components of such n-factorizations are called factors.
A left factor of H is the first factor of an n-factorization of H , and a right factor
is the last factor of an n-factorization of H . For the rest of this section we assume
implicitly that H,L,M are RHLs, F(H) is the set of factors of H , LF(H) is the
set of left factors of H and RF(H) is the set of right factors of H .

Example 4. The RHL H = {a(ε)m b(ε)na(ε)p | m,n, p ∈ N} over signature Σ =
{a, b, c} has five possible 2-factorizations (H1, H2): either (H({a, b, c}), ∅), or
({a(ε)m | m ∈ N}, H), or ({a(ε)mb(ε)n | m,n ∈ N}, {b(ε)na(ε)p | n, p ∈ N}), or
(H, {a(ε)p | p ∈ N}), or (∅,H({a, b, c})). In this case we have

LF(H) = {H({a, b, c}), {a(ε)m | m ∈ N}, {a(ε)mb(ε)n | m,n ∈ N}, H, ∅} and
RF(H) = {∅, H, {b(ε)na(ε)p | n, p ∈ N}, {a(ε)p | p ∈ N},H({a, b, c})}.

A remarkable fact is that the factors of an RHL H are finitely many [5]. Moreover,
the factors of H can be indexed such that F(H) = {Fi,j | 1 ≤ i, j ≤ p} and:
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– Fi,k Fk,j ⊆ Fi,j for all i, j, k ∈ {1, . . . , p}, and
– There exist l, r ∈ {1, . . . , p} such thatFl,r = H and, for any k-subfactorization

(H1, . . . , Hk) of H there exist u1, . . . , uk+1 ∈ {1, . . . , p} with u1 = l and
uk+1 = r, such that Hi ⊆ Fui,ui+1 for all i ∈ {1, . . . , k}.

The matrix (Fi,j)1≤i,j≤p is called the factor matrix of H .
In order to achieve a better characterization of the factors of an RHL, we

introduce the following auxiliary notions:

– h−1H := {h′ ∈ H(Σ) | hh′ ∈ H} is the left quotient of H with respect to a
hedge h,

– H h−1 := {h′ ∈ H(Σ) | h′ h ∈ H} is the right quotient of H with respect to
a hedge h,

– L 
 M := {h′ ∈ H(Σ) | ∀h ∈ L. h h′ ∈ M} is the product derivative of M
with respect to L,

– M � L := {h′ ∈ H(Σ) | ∀h ∈ L. h′ h ∈ M} is the product antiderivative of
M with respect to L.

– The set of hedge derivatives of H is ∂(H) := {h−1H | h ∈ H(Σ)}.

We recall from [5,6] that for any RHLs H,M,L we have:

– ∂(H) is a finite set of RHLs,
– RF(H) is the closure of ∂(H) under intersection, i.e., R ∈ RF(H) iff R ∈ ∂(H)

or there exist M1, . . . ,Mp ∈ ∂(H), p > 1, such that R = M1 ∩ · · · ∩Mp,
– M � L is an RHL, and M � L =

⋂
h∈L(M h−1),

– If LF(H) = {L1, . . . , Lp} then we can define Fi,j := Li 
 Lj,
– If RF(H) = {R1, . . . , Rp} then we can define Fi,j := Ri � Rj .

In the rest of this paper we will investigate how to compute the factor matrix of
an RHL by making use of these properties and of the representation of RHLs by
deterministic, complete, and reduced LHAs. Our approach is to compute first
{R1, . . . , Rp} := RF(H) and then to define the factor matrix by Fi,j := Ri � Rj

for all i, j ∈ {1, . . . , p}.

3 Computation of Right Factors

In this section we investigate the problem of computing all right factors of an
RHL H accepted by a deterministic, complete, and reduced LHA A. We solve
this problem in two steps. First, we compute LHAs for the RHLs of the finite
set ∂(H). Then, we compute LHAs for the right factors by using the automata
computed in the first step.

Suppose A = (Q,Σ,Qf, Δ) with Q = {q1, . . . , qn}, and let (Qf, S) be the LSH
representation of A. To simplify the analysis of the structure of ∂(H), we define
for every q, q′ ∈ Q, Q′ ⊆ Q, and a ∈ Σ the sets

cutΔ(q, a(q′)) :={q′′ ∈ Q | a(q′) q′′ → q ∈ Δ},

cutΔ(Q′, a(q′)) :=
⋃

q∈Q′
cutΔ(q, a(q′)).
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These notions will help us to identify a finitary characterization of the set of
RHLs ∂(H). The key observation is the following lemma.

Lemma 2. a(h)−1L(A, Q′) = L(A, cutΔ(Q′, a(q))) holds for all a ∈ Σ, q ∈ Q,
Q′ ⊆ Q, and h ∈ L(A, q).

The following result is an easy corollary of Lemma 2.

Corollary 1. Let GΔ be the directed graph whose nodes are the subsets of Q,
and set of edges is {Q′ → Q′′ | a ∈ Σ, q ∈ Q,Q′′ = cutΔ(Q′, a(q))}. Then

∂(H) = {L(A, Q′) | there exists a path from Qf to Q′ in GΔ}.

Once we know ∂(H), we can compute RF(H) as the closure of ∂(H) under in-
tersections. At this stage, it is very useful to recall that, since A is determin-
istic, we have L(A, q) ∩ L(A, q′) = ∅ whenever q, q′ ∈ A and q �= q′. Therefore
L(A, Q1) ∩ L(A, Q2) = L(A, Q1 ∩Q2) for all subsets Q1 and Q2 of Q. Thus, if
∂(H) = {L(A, Qi) | 1 ≤ i ≤ m}, then

RF(H) =
{
L(A,

⋂

i∈I

Qi) | ∅ �= I ⊆ {1, . . . ,m}
}
.

Example 5. Let Ad = ({s1, s2, s3, s4}, Σ,Δd, {s1, s4}) be the LHA from Exam-
ple 3, and H = L(Ad). The set of nodes reachable from {s1, s4} in GΔd is
{Q1, Q2, Q3} where Q1 := ∅, Q2 := {s2, s4}, and Q3 := {s1, s2, s4}. There-
fore ∂(H) = {L(Ad, Qi) | 1 ≤ i ≤ 3}. Since

{⋂
i∈I Qi | ∅ �= I ⊆ {1, 2, 3}

}
=

{Q1, Q2, Q3}, we conclude that RF(H) = {L(Ad, Qi) | 1 ≤ i ≤ 3}.
A slightly surprising fact is that L(Ad, {s1, s4}) = H ∈ RF(H) but {s1, s4} �∈

{Q1, Q2, Q3}. As it turns out, we have L(Ad, {s1, s4}) = L(Ad, Q3). 	


4 Factor Matrix Computation

In this section we address the problem of computing the factor matrix of an RHL
represented by an LHA. To be more specific, from now on we assume H = L(A)
where A = (Q,Σ,Qf, Δ) with Q = {q1, . . . , qn} is a deterministic, complete, and
reduced LHA. We saw in the previous section how to compute Q1, . . . , Qp ⊆ Q
such that RF(H) = {L(A, Qi) | 1 ≤ i ≤ p}. Then we can define the factor matrix
(Fi,j)1≤i,j≤p where Fi,j := L(A, Qi) � L(A, Qj).

In the following two subsections we will show how to compute LHAs for
the product antiderivatives L(A, Qi) � L(A, Qj) when 1 ≤ i, j ≤ p. First, we
indicate in Subsect. 4.1 a simple algorithm to compute LHAs for the product
antiderivatives L(A, Q′) � L(A, q) when q ∈ Q and Q′ ⊆ Q. Then, in Subsect.
4.2 we propose an algorithm that computes LHAs for the RHLs of the product
antiderivatives L(A, Qi) � L(A, Qj), 1 ≤ i, j ≤ p from LHAs for the product
antiderivatives L(A, Qi) � L(A, q), 1 ≤ i ≤ p, where q ∈ Q.
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From now on we assume that the LSH representation of A is (Qf, S) where

S :

⎧
⎪⎨

⎪⎩

q1 = c1 + �1,1 q1 + · · ·+ �1,n qn

...
qn = cn + �n,1 q1 + · · ·+ �n,n qn

and that σ is the unique solution of S. Also, we assume that Q′ is subset of Q.

4.1 LHA Computation for L(A, Q′) � L(A, q)

Let Q = {q1, . . . , qn}. We fix arbitrarily a state q ∈ Q. Then for every 1 ≤ i ≤ n
and h ∈ L(A, q) we have

[[qi]]σ h−1 = [[ci + �i,1 q1 + · · ·+ �i,n qn]]σ h−1 = [[di + �i,1 r
(q)
1 + · · ·+ �i,n r(q)

n ]]θq

where

– di = 1 if h ∈ [[qi]]σ and di = 0 otherwise,
– θq is the extension of σ with the following bindings for the fresh variables

r
(q)
1 , . . . , r

(q)
n : θq(r

(q)
i ) := [[qi]]σ h−1 for all 1 ≤ i ≤ n.

Since A is deterministic, we have L(A, qi)∩L(A, q) = ∅ whenever qi �= q. There-
fore di = 1 iff h ∈ [[qi]]σ iff ∅ �= [[qi]]σ ∩ [[q]]σ iff qi = q. Thus, if we define for all
q′, q′′ and 1 ≤ i ≤ n:

ρq(qi) := r
(q)
i , ρq(Q′) := {ρq(q′) | q′ ∈ Q′}, δq′,q′′ :=

{
1 if q′ = q′′

0 otherwise , and

Sq :
{
r
(q)
l = δql,q + �l,1 r

(q)
1 + · · ·+ �l,n r

(q)
n (1 ≤ l ≤ n)

ql = cl + �l,1 q1 + · · ·+ �l,n qn (1 ≤ l ≤ n)

then (Sq, ρq(Q′)) is an LSH representation for L(A, Q′)h−1. Since

L(A, Q′) � L(A, q) =
⋂

h∈L(A,q)

L(A, Q′)h−1 and

L(A, Q′)h−1
1 = L(A, Q′)h−1

2 for all h1, h2 ∈ L(A, q),

we learn that L(A, Q′) � L(A, q) = L(A, Q′)h−1. Let Rq := {r(q)
1 , . . . , r

(q)
n } and

Aq := (Q∪Rq, Σ, ρq(Qf), Δq) be the LHA whose LSH representation is (Q,Sq).
Then L(A, Q′) � L(A, q) = L(Aq, ρq(Q′)).

Note that the computation of the LSH representation of Aq involves only
duplications of the equations of S followed by some trivial variable renamings
and alterations of their constant parts. Another useful observation is that every
LHA Aqi with 1 ≤ i ≤ n is almost deterministic, because the only transition
rules of Δqi with same left hand side are ε → r

(qi)
i and the ε-transition of Δ.

The following lemma is an easy consequence of this observation.

Lemma 3. L(Aq, r
(q)
i ) ∩ L(Aq, r

(q)
j ) = ∅ for all i, j ∈ {1, . . . , n} and i �= j.



336 M. Marin and T. Kutsia

4.2 LHA Computation for L(A, Qi) � L(A, Qj)

In order to compute an LHA for L(A, Qi) � L(A, Qj), we can proceed as follows.
If Qj = ∅ then L(A, Qj) = ∅ and (L(A, Qi) � ∅) = H(Σ) = L(A, Q), where the
last equality follows from the fact that A is complete. If Qj �= ∅ then

L(A, Qi) � L(A, Qj) =
⋂

q∈Qj

(L(A, Qi) � L(A, q)) =
⋂

q∈Qj

L(Aq, ρq(Qi)).

Let Qj := {qk1 , . . . , qkd
} with d ≥ 1, and Ii := {l | ql ∈ Qi}. For every q ∈ Qj ,

the system of equations Sq can be rewritten as follows:

Sq :
{
r
(q)
l = δql,q +

∑
a∈Σ

∑n
u=1 a(qu) ea(qu),l,q (1 ≤ l ≤ n)

ql = cl +�l,1 q1 + · · ·+ �l,n qn (1 ≤ l ≤ n)

where ea(qu),l,q =
∑

r∈cutΔq (r
(q)
l ,a(qu))

r. Suppose θq is the unique solution of Sq

for every q ∈ Qj. Then

L(A, Qi) � L(A, Qj) =
⋂

q∈Qj
L(Aq, ρq(Qi))

=
⋂

q∈Qj

⋃
l∈Ii

[[r(q)
l ]]θq =

⋃
(l1,...,ld)∈Id

i

⋂d
s=1[[r

(qks )
ls

]]θqks
.

where Id
i = Ii × · · · × Ii︸ ︷︷ ︸

d times

. At this stage, we can start generating an LSH rep-

resentation for the product antiderivative L(A, Qi) � L(A, Qj). Our algorithm
works in stages, by keeping track of (1) a list E of equations generated so far,
(2) a set Vp of variables produced so far, and (3) a set Va of variables assigned
so far. In addition to the variables from Q and the equations of S, the algorithm
produces fresh variables of the form r

(qk1 ,...,qkd
)

(l1,...,ld) with l1, . . . , ld ∈ {1, . . . , n}, and
corresponding equations such that the solution of the new system of equations
binds r

(qk1 ,...,qkd
)

(l1,...,ld) to
⋂d

s=1[[r
(qks )
ls

]]θqks
. The main goal is to produce equations for

all variables of the set {r(qk1 ,...,qkd
)

(l1,...,ld) | (l1, . . . , ld) ∈ Id
i } and the other fresh vari-

ables that show up in the construction process. The initial values of Vp and Va

are Vp = Q∪{r(qk1 ,...,qkd
)

(l1,...,ld) | (l1, . . . , ld) ∈ Id
i }, Va = Q, and E consists of the equa-

tions of S. At every stage, the algorithm enlarges Vp, Va, and E by performing
the following operations:

– Select r
(qk1 ,...,qkd

)

(l1,...,ld) ∈ Vp \ Va; Va := Va ∪ {r
(qk1 ,...,qkd

)

(l1,...,ld) }
– Produce an equation for r

(qk1 ,...,qkd
)

(l1,...,ld) such that E extended with it has a

solution that binds r
(qk1 ,...,qkd

)

(l1,...,ld) to
⋂d

s=1[[r
(qks )
ls

]]θqks
. The right hand side of

the equation for r
(qk1 ,...,qkd

)

(l1,...,ld) is produced by intersecting the right hand sides
of the equations

(r(qk1 )

l1
= δql1 ,qk1

+
∑

a∈Σ

∑n
u=1 a(qu) ea(qu),l1,qk1

) ∈ Sqk1
with solution θk1

...
(r

(qkd
)

ld
= δqld

,qkd
+
∑

a∈Σ

∑n
u=1 a(qu) ea(qu),ld,qkd

) ∈ Sqkd
with solution θkd
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and using the facts that [[a(qu) ea(qu),ls,qks
]]θqks

= [[a(qu)]]σ [[ea(qu),ls,qks
]]θqks

,
and [[a(q)]]σ∩[[b(q′)]]σ = ∅ whenever (a, q) �= (b, q′). It follows that [[a(q) e]]θqki

∩[[b(q′) e′]]θqkj
= ∅ whenever (a, q) �= (b, q′). We obtain

r
(qk1 ,...,qkd

)

(l1,...,ld) =

d∏

s=1

δqls ,qks
+
∑

a∈Σ

n∑

u=1

a(qu)

( ∑

(m1,...,md)∈S
a(qu)
(l1,...,ld)

r
(qk1 ,...,qkd

)

(m1,...,md)

)
(1)

where

S
a(qu)
(l1,...,ld) =

{
(m1, . . . ,md) | ∀s ∈ {1, . . . , d}. r(qks )

ms ∈ cutΔqks
(r(qks )

ls
, a(qu))

}
.

– Append equation (1) to E;
Vp := Vp ∪

⋃
a∈Σ

⋃n
u=1

{
r
(qk1 ,...,qkd

)

(m1,...,md) | (m1, . . . ,md) ∈ S
a(qu)
(l1,...,ld)

}
.

– If Vp = Va, then stop and return ({r(qk1 ,...,qkd
)

(l1,...,ld) | (l1, . . . , ld) ∈ Id
i }, E). This

is the LSH representation of an LHA for L(A, Qi) � L(A, Qj).

The algorithm will eventually stop because Vp and Va are subsets of the finite

set Q ∪
{
r
(qk1 ,...,qkd

)

(l1,...,ld) | l1, . . . , ld ∈ {1, . . . , n}
}
, therefore they can not increase

forever. �
Let us now look back at Example 1 and see how factorization theory helps

there to infer the type of the tuple (x, y) of variables of pattern f(x y) f(y x)
when matched against inputs of type f(a�b�)�. Let’s write P 5 T for the type
inference problem of the tuple (x1, . . . , xn) of variables of a pattern P when
matched against inputs of type T . This problem can be solved by recursion
on the structure of P . In this example, we have P1 P2 5 T where P1 = f(x y),
P2 = f(y x), and T = f(a� b�)�. This problem can be reduced to solving the prob-
lems P1 5 T1 and P2 5 T2, where T1, T2 are nonempty and ⊆-maximal types
such that T1 T2 ⊆ T . Such tuples (T1, T2) are called 2-factorizations of T , and can
be computed effectively. The only such 2-factorization of f(a�b�)� is (T1, T2) =
(f(a�b�)�, f(a�b�)�), therefore P 5 f(a�b�)� is reduced to f(x y) 5 f(a�b�)�

and f(y x) 5 f(a�b�)�. The first subproblem is equivalent to x y 5 a�b�, and
the second subproblem is equivalent to y x 5 a� b�. To solve these subprob-
lems, we look for nonempty types T3, T4 such that (T3, T4) is a 2-factorization
of a�b�. There are two possibilities: either (T3, T4) = (a�, a�b�), or (T3, T4) =
(a�b�, b�). Thus x y 5 a�b� reduces to (x 5 T3 and y 5 T4) where (T3, T4) ∈
{(a�, a�b�), (a�b�, b�)}. This means (x, y) is of type (a�×a�b�)+(a�b�×b�) where
× denotes cartesian product and + denotes union. Similarly, the second subprob-
lem y x5 a�b� reduces to the fact that (x, y) is of type (a�b�×a�)+(b�×a�b�).
We conclude that (x, y) is of type

((a� × a�b�) + (a�b� × b�)) ∩ ((a�b� × a�) + (b� × a�b�))
= (a� × a�) + (1 × a�b�) + (a�b� × 1) + (b� × b�).

From here, one can easily compute an over-approximation of the type of x y x as
a�a�a� + 1 a�b� 1 + a�b� 1a�b� + b� b� b� = a�b�a�b�, therefore f(x y x) is of type
f(a�b�a�b�).
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5 Discussion

The approach to compute the factor matrix of an RHL proposed in this paper is
more efficient than that from our previous works [5,6]. Our main insight is that,
if we want to compute the factor matrix of an RHL, it is better to start with a
representation by a deterministic, reduced, and complete LHA. Next, we noticed
that the computation of the factor matrix of an RHL is easier to compute via
computations of product antiderivatives between right factors than via product
derivatives between left factors.

The following discussion aims at explaining the main differences between our
former algorithms and those given in this paper. In [5,6], we considered an RHL
H with an LSH representation of the form ({x1}, S). Such a representation
corresponds to a nondeterministic LHA with one final state. The computation
of the factor matrix is achieved in 3 steps. Step 1 computes representations for the
elements of the finite set {H h−1 | h ∈ H(Σ)}. Step 2 computes representations
for the elements of LF(H) by using the fact that LF(H) coincides with the closure
of {H h−1 | h ∈ H(Σ)} under intersection. Step 3 makes use of the fact that,
if we know {L1, . . . , Lp} := LF(H), then the factor matrix of H is (Fi,j)1≤i,j≤p

with Fi,j := Li 
 Lj. Step 1 amounts to the computation of the least fixed point
of a monotone operator on the set 22X×2X

where X is the set of variables of
S. The construction of LSHs for the elements of LF(H) performs intersections
of equations in a similar way as the construction of product antiderivatives of
right factors, except for the fact that it must account for the possible nonempty
intersections [[a(x)]]σ∩[[b(x′)]]σ when (a, x) �= (b, x′). Finally, step 3 finds the LSH
representations of the factor matrix of H via product derivative computations
between the left factors of H .

Our new approach is to compute the factor matrix of H starting from a
reduced, complete, and deterministic LHA A = (Q,Σ,Qf, Δ) for H . To achieve
a fair comparison with our former approach, we should account for the fact that
the determinization algorithm of a nondeterministic LHA with n states has, in
the worst case, 2n states. Thus, we assume the worst situation: we compare
the former approach when X has n elements, with the new approach when Q
has 2n states. The newly proposed computation of the factor matrix is carried
out in 3 steps. The first step computes a set {Q1, . . . , Qp} of subsets of Q such
that ∂(H) = {L(A, Qi) | i ∈ {1, . . . , p}}. The sets {Q1, . . . , Qp} are the nodes
reachable from Qf in a directed graph GΔ whose nodes are the subsets of Q,
thus, a graph with 22n

nodes.
We claim that new step 1 is more efficient than former step 1 because

– Former step 1 computes at most 2n LSH representations for the RHLs in
{H h−1 | h ∈ H(Σ)} via the computation of the least fixed point of a mono-
tone operator over a set of size 222n

.
– New step 1 computes at most 2n sets Q1, . . . , Qp ⊆ Q such that ∂(H) =
{L(A, Qi) | i ∈ {1, . . . , p}}.
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– The computation of Q1, . . . , Qp is straightforward, whereas the operations
required to compute the LSH representations for {H h−1 | h ∈ H(Σ)} are
much more involved.

Also, we claim that new step 2 is more efficient then former step 2 because

– Former step 2 computes LSHs for left factors as intersections of at most 2n

RHLs represented by the nondeterministic LSHs computed in former step 1.
– In new step 2, a right factor is L(A, Q′) where Q′ is an intersection of sets

from {Q1, . . . , Qp}. Since p ≤ 2n, Q′ is obtained by intersecting at most 2n

sets. This is more efficient than intersecting at most 2n RHLs represented
by nondeterministic LHSs.

New step 3 computes the factor matrix of H via product antiderivatives of right
factors, whereas former step 3 computes it via product derivatives of left factors.
The new approach is more efficient than the former one, mainly because both
of them rely on computing representations for intersections of RHLs, but these
computations can be simplified under the assumption L(A, q) ∩ L(A, q′) = ∅
whenever q �= q′, which follows from the fact that A is deterministic.
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Abstract. The well-known parsing algorithm for the context-free gram-

mars due to Valiant (“General context-free recognition in less than cubic

time”, Journal of Computer and System Sciences, 10:2 (1975), 308–314)

is refactored and generalized to handle the more general Boolean gram-

mars. The algorithm reduces construction of the parsing table to com-

puting multiple products of Boolean matrices of various size. Its time

complexity on an input string of length n is O(BMM (n) log n), where

BMM (n) is the number of operations needed to multiply two Boolean

matrices of size n × n, which is O(n2.376) as per the current knowledge.

1 Introduction

Context-free grammars are the universally accepted mathematical model of syn-
tax, and their status is well-justified. On the one hand, their expressive means
are natural, in the sense whatever they define is intuitively seen as the syntax
of something. On the other hand, they can be implemented in a variety of effi-
cient algorithms, including a straightforward cubic-time parser, as well as many
practical parsing algorithms working much faster in special cases.

The main idea of the context-free grammars is inductive definition of syn-
tactically correct strings. For example, a context-free grammar S → aSb | ε
represents a definition of the form: a string has the property S if and only
if either it is representable as awb for some string w with the property S, or
if it is the empty string. Note that the vertical line in the above grammar is
essentially a disjunction of two syntactical conditions. Boolean grammars, intro-
duced by the author [7], are an extension of the context-free grammars, which
maintains the main principle of inductive definition, but allows the use of any
Boolean operations to combine syntactical conditions in the rules. At the same
time, they inherit the basic parsing algorithms from the context-free grammars,
including the Cocke–Kasami–Younger [7] along with its variant for unambigu-
ous grammars [10], the Generalized LR [8], as well as the linear-time recursive
descent [9].

The straightforward upper bound on the complexity of parsing for Boolean
grammars is the same as in the context-free case: O(n3), where n is the length of
� Supported by the Academy of Finland under grants 134860 and 218315.

Y. Gao et al. (Eds.): DLT 2010, LNCS 6224, pp. 340–351, 2010.
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the input string [7]. However, for the context-free grammars, there also exists an
asymptotically faster parsing algorithm due to Valiant [12]: this algorithm com-
putes the same parsing table as the simple Cocke–Kasami–Younger algorithm,
but does so by offloading the most intensive computations into calls to a Boolean
matrix multiplication procedure. The latter can be efficiently implemented in a
variety of ways. Given two n×n Boolean matrices, a straightforward calculation
of their product requires n3 conjunctions and (n − 1)n2 disjunctions. An im-
proved algorithm by Arlazarov et al. [2] reduces the number of bit operations to
O
(

n3

log n

)
, which is achieved by pre-computing products of all bit vectors of length

logn with certain submatrices. An asymptotically more significant acceleration
is obtained by using fast algorithms for multiplying n × n numerical matrices,
such as Strassen’s [11] algorithm that requires O(n2.81) arithmetical operations,
or the algorithm of Coppersmith and Winograd [3] with the theoretical running
time O(n2.376). These algorithms can be applied to multiplying n × n Boolean
matrices by calculating their product in the ring of residues modulo n + 1 [1].

Taking a closer look at Valiant’s algorithm, one can see that first the entire
grammar is encoded in a certain semiring, then the notion of a transitive closure
of a Boolean matrix is extended to matrices over this semiring, so that the
desired parsing table could be obtained as a closure of this kind, and finally it
is demonstrated that such a closure can be efficiently computed using Boolean
matrix multiplication. This approach essentially relies on having two operations
in a grammar, concatenation and union, which give rise to the product and the
sum in the semiring. Because of that, Valiant’s algorithm as it is cannot be
applied to Boolean grammars.

This paper aims at refactoring Valiant’s algorithm to make it work in the
more general case of Boolean grammars. It is shown that using matrices over a
semiring as an intermediate abstraction is in fact unnecessary, and it is sufficient
to employ matrix multiplication to compute the concatenations only, with the
Boolean operations evaluated separately. Furthermore, the proposed algorithm
maintains one fixed data structure, the parsing table, and whenever the matrix
is to be cut as per Valiant’s divide-and-conquer strategy, the new algorithm only
distributes the ranges of positions in the input string among the recursive calls.
This leads to an improved parsing algorithm, which, besides being applicable
to a larger family of grammars, is also better understandable than Valiant’s
algorithm, has a succinct proof of correctness and is ready to be implemented.

2 Boolean Grammars

Let Σ be a finite nonempty set used as an alphabet, let Σ∗ be the set of all finite
strings over Σ. For a string w = a1 . . . a� ∈ Σ∗ with ai ∈ Σ, the length of the
string is denoted by |w| = �. The unique empty string of length 0 is denoted by
ε. For a string w ∈ Σ∗ and for every its partition w = uv, u is a prefix of w
and v is its suffix ; furthermore, for every partition w = xyz, the string y is a
substring of w.

Any subset of Σ∗ is a language over Σ. The basic operations on languages are
the concatenation K ·L = { uv | u ∈ K, v ∈ L } and the Boolean set operations:
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union K ∪ L, intersection K ∩ L, and complementation L. Boolean grammars
are a family of formal grammars in which all these operations can be explicitly
specified.

Definition 1. [7] A Boolean grammar is a quadruple G = (Σ,N, P, S), where
Σ and N are disjoint finite non-empty sets of terminal and nonterminal symbols
respectively; P is a finite set of rules of the form

A→ α1& . . .&αm&¬β1& . . .&¬βn, (1)

where m+ n � 1, αi, βi ∈ (Σ ∪N)∗; S ∈ N is the start symbol of the grammar.

If negation is not allowed, that is, m � 1 and n = 0 in every rule, the resulting
grammars are known as conjunctive grammars [6]. If conjunction is also prohib-
ited, and thus every rule must have m = 1 and n = 0, then the context-free
grammars are obtained.

The intuitive semantics of a Boolean grammar is fairly clear: a rule (1) spec-
ifies that every string that satisfies each of the conditions αi and none of the
conditions βi is therefore generated by A. However, formalizing this definition
has proved to be rather nontrivial in the general case. In the case of conjunctive
grammars (including the context-free grammars), the semantics can be equiva-
lently defined by a least solution of language equations and by term rewriting.
The definition by language equations carries on to Boolean grammars of the
general form as follows.

A grammar is interpreted as a system of language equations in variables N ,
in which the equation for each A ∈ N is

A =
⋃

A→α1&...&αm&¬β1&...&¬βn∈P

[ m⋂

i=1

αi ∩
n⋂

j=1

βj

]
(2)

The vector (. . . , LG(A), . . .) of languages generated by the nonterminals of the
grammar is defined by a solution of this system. In general, such a system may
have no solutions (as in the equation S = S corresponding to the grammar
S → ¬S) or multiple solutions (with S = S being the simplest example), but
the below simplest definition of Boolean grammars dismisses such systems as ill-
formed, and considers only systems with a unique solution; to be more precise,
a subclass of such systems:

Definition 2. Let G = (Σ,N, P, S) be a Boolean grammar, let (2) be the asso-
ciated system of language equations. Suppose that for every number � � 0 there
exists a unique vector of languages (. . . , LC , . . .)C∈N (LC ⊆ Σ��), such that a
substitution of LC for C, for each C ∈ N , turns every equation (2) into an
equality modulo intersection with Σ��.

Then G complies to the semantics of a strongly unique solution, and, for every
A ∈ N , the language LG(A) can be defined as LA from the unique solution of
this system. The language generated by the grammar is L(G) = LG(S).
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This fairly rough restriction ensures that the membership of a string in the
language depends only on the membership of shorter strings, which is essential
for the grammars to represent inductive definitions.

Example 1. The following Boolean grammar generates the language { ambncn |
m,n � 0,m �= n }:

S → AB&¬DC
A→ aA | ε
B → bBc | ε
C → cC | ε
D → aDb | ε

The rules for the nonterminals A, B, C and D are context-free, and they define
LG(AB) = { aibncn | i, n � 0 } and LG(DC) = { ambmcj | j,m � 0 }. Then the
propositional connectives in the rule for S specify the following combination of
the conditions given by AB and DC:

L(AB) ∩ L(DC) = { aibjck | j = k and i �= j } = { ambncn | m,n � 0,m �= n }︸ ︷︷ ︸
L(S)

Assuming Definition 2, every Boolean grammar can be transformed to an equiv-
alent grammar in binary normal form [7], in which every rule in P is of the
form

A→ B1C1& . . .&BnCm&¬D1E1& . . .&¬DnEn&¬ε
(m � 1, n � 0, Bi, Ci, Dj , Ej ∈ N)

A→ a

S → ε (only if S does not appear in right-hand sides of rules)

In the general case, the transformation requires an exponential blowup in the
size of the grammar.

An alternative, more general definition of the semantics of Boolean grammars
will be presented in Section 7.

3 Simple Cubic-Time Parsing

Let G = (Σ,N, P, S) be a Boolean grammar in binary normal form, let w =
a1 . . . an be an input string. The simple cubic-time parsing algorithm constructs
a table T ∈ (2N )n×n, with

Ti,j = {A ∈ N | ai+1 . . . aj ∈ LG(A) }

for all 0 � i < j � n. The elements of this table can be computed inductively on
the length j−i of the substring, starting with the elements Ti,i+1 each depending



344 A. Okhotin

only on the symbol ai+1, and continuing with larger and larger substrings, until
the element T0,n is computed. The induction step is given by the equality

Ti,j = f
( j−1⋃

k=i+1

Ti,k × Tk,j

)
,

where the function f : 2N×N → 2N is defined by

f(R) = {A | ∃A→ B1C1& . . .&BmCm&¬D1E1& . . .&¬Dm′Em′ ∈ P :
(Bt, Ct) ∈ R and (Dt, Et) /∈ R for all t}.

In total, there are Θ(n2) elements, and each of them takes Θ(n) operations to
compute, which results in a cubic time complexity.

The full algorithm can be stated as follows:

Algorithm 1 (Extended Cocke–Kasami–Younger [6,7]). Let G = (Σ, N ,
P , S) be a Boolean grammar in the binary normal form. Let w = a1 . . . an,
where n � 1 and ai ∈ Σ, be an input string. For all 0 � i < j � n, let Ti,j be a
variable ranging over subsets of N . Let R be a variable ranging over subsets of
N ×N .
1: for i = 1 to n do
2: Ti−1,i = {A | A→ ai ∈ P }
3: for � = 2 to n do
4: for i = 0 to n− � do
5: R = ∅
6: for all k = i + 1 to i + �− 1 do
7: R = R ∪ (Ti,k × Tk,i+�)
8: Ti,i+� = f(R)
9: accept if and only if S ∈ T0,n

The most time-consuming operation in the algorithm is computing the unions
Ri,j =

⋃j−1
k=i+1 Ti,k × Tk,j , in which Ri,j represents all concatenations BC that

generate the substring ai+1 . . . aj and the index k is a cutting point of this
substring, with B generating ai+1 . . . ak and with C generating ak+1 . . . aj . If
each union is computed individually, as it is done in the above algorithm, then
spending linear time for each Ri,j is unavoidable. However, if such unions are
computed for several sets Ti,j at a time, much of the work can be represented as
Boolean matrix multiplication. This is illustrated in the following example:

Example 2. Let w = a1a2a3a4a5 be an input string and consider the partially
constructed parsing table depicted in Figure 1, with Ti,j constructed for 1 �
i < j � 3 and for 3 � i < j � 5, that is, for the substrings a1a2a3 and a3a4a5

together with their substrings. Denote by TA
i,j the Boolean value indicating

whether A is in Ti,j or not. Then the following product of Boolean matrices
(
TB

0,2 TB
0,3

TB
1,2 TB

1,3

)
×
(
TC

2,4 TC
2,5

TC
3,4 TC

3,5

)
=
(
X0,4 X0,5

X1,4 X1,5

)
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Fig. 1. Product of two Boolean matrices in Example 2

represents partial information on whether the pair (B,C) should be in the fol-
lowing four elements:

(
R0,4 R0,5
R1,4 R1,5

)
. To be precise, X1,4 computes the member-

ship of (B,C) in R1,4 exactly; X0,4 does not take into account the factorization
a1·a2a3a4, which actually requires knowing whether C is in T1,4; the element X1,5

is symmetrically incomplete; finally, X0,5 misses the factorizations a1 · a2a3a4a5

and a1a2a3a4 · a5, which can be properly obtained only using T0,4 and T1,5. In
total, this matrix product computes 8 conjunctions out of 12 needed for these
four elements of R.

Already in this small example, using one matrix product requires changing the
order of computation of the elements {Ti,j}: the elements T0,3 and T2,5 need
to be calculated before T1,4. In the next section, the whole algorithm will be
restated as a recursive procedure, which arranges the computation so that as
much work as possible is offloaded into products of the largest possible matrices.

4 Parsing Reduced to Matrix Multiplication

Let w = a1 . . . an be an input string. For the time being, assume that n+ 1 is a
power of two, that is, the length of the input string is a power of two minus one;
this restriction can be relaxed in an implementation, which will be discussed in
the next section.

The algorithm uses the following data structures. First, there is an (n+ 1)×
(n + 1) table T with Ti,j ⊆ N , as in Algorithm 1, and the goal is to set each
entry to Ti,j = {A | ai+1 . . . aj ∈ L(A) } for all 0 � i < j � n. The second table
R has elements Ri,j ⊆ N×N each corresponding to the value of R computed by
Algorithm 1 in the iteration (� = j − i, i). The target value is Ri,j = { (B,C) |
ai+1 . . . aj ∈ L(B)L(C) } for all 0 � i < j � n.

Initially, the elements of the tables are set as follows: Ti−1,i = {A | A→ ai ∈
P } for all 1 � i � n, and the rest of values of T are undefined; Ri,j = ∅. The
rest of the entries are gradually constructed using the following two recursive
procedures:

– The first procedure, compute(�,m), constructs the correct values of Ti,j for
all � � i < j < m.
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– The other procedure, complete(�,m, �′,m′), assumes that the elements Ti,j

are already constructed for all i and j with � � i < j < m, as well as for all
i, j with �′ � i < j < m′; it is furthermore assumed that for all � � i < m
and �′ � j < m′, the current value of Ri,j is

Ri,j = { (B,C) | ∃k (m � k < �′) : ai+1 . . . ak ∈ L(B), ak+1 . . . aj ∈ L(C) },

which is a subset of the intended value of Ri,j .
Then complete(�,m, �′,m′) constructs Ti,j for all � � i < m and �′ � j < m′.

– Matrix multiplication is performed by one more procedure,
product(d, �, �′, �′′), whose task is to add to each Ri,j , with � � i < � + d,
and �′′ � j < �′′ + d, all such pairs (B,C), that B ∈ Ti,k and C ∈ Tk,j for
some k with �′ � k < �′ + d. This can generally be done by computing |N |2
products of d× d Boolean matrices, one for each pair (B,C).

Algorithm 2 (Parsing through matrix multiplication)
Main procedure:
1: for i = 1 to n do
2: Ti−1,i = {A | A→ ai ∈ P }
3: compute(0, n+ 1)
4: Accept if and only if S ∈ T0,n

Procedure compute(�,m):
5: if m− � > 4 then
6: compute(�, �+m

2 )
7: compute( �+m

2 ,m)
8: complete(�, �+m

2 , �+m
2 ,m)

Procedure complete(�,m, �′,m′), which requires m− � = m′ − �′:
9: if m− � > 1 then /* see Figure 2 */

10: /* compute C */
11: complete( �+m

2 ,m, �′, �′+m′
2 )

12: /* compute D1 */
13: product(m−�

2 , �, �+m
2 , �′) /* D1 ← B1 × C */

14: complete(�, �+m
2 , �′, �′+m′

2 )
15: /* compute D2 */
16: product(m−�

2 , �+m
2 , �′, �′+m′

2 ) /* D2 ← C × B2 */
17: complete( �+m

2 ,m, �′+m′
2 ,m′)

18: /* compute E */
19: product(m−�

2 , �, �+m
2 , �′+m′

2 ) /* E ← B1 ×D2 */
20: product(m−�

2 , �, �′, �′+m′
2 ) /* E ← D1 × B2 */

21: complete(�, �+m
2 , �′+m′

2 ,m′)
22: else if m �= �′ then
23: T�,�′ = f(R�,�′)

The partition of the matrix in complete() is illustrated in Figure 2.
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Fig. 2. Matrix partition in complete(�,m, �′, m′)

Lemma 1. Let � < m � �′ < m′ with m− � = m′− �′ being a power of two, and
assume that Ti,j = {A | ai+1 . . . aj ∈ L(A) } for all i and j with � � i < j < m,
as well as for all i, j with �′ � i < j < m′. Furthermore, assume that, for all
� � i < m and �′ � j < m′,

Ri,j = { (B,C) | ∃k (m � k < �′) : ai+1 . . . ak ∈ L(B), ak+1 . . . aj ∈ L(C) }.

Then complete(�,m, �′,m′) returns with Ti,j = {A | ai+1 . . . aj ∈ L(A) } for all
� � i < m and �′ � j < m′.

Lemma 2. The procedure compute(�,m), executed on � and m with m−� being a
power of two, returns with Ti,j = {A | ai+1 . . . aj ∈ L(A) } for all � � i < j < m.

In order to determine the algorithm’s complexity on an input of length 2k − 1,
consider how many times the procedures compute() and complete() are called
for subproblems of each size. For each i ∈ {1, . . . , k − 1}, compute(�,m) with
m−� = 2k−i is called exactly 2i times; complete(�,m, �′,m′) with m−� = 2k−i is
called exactly 22i−1− 2i−1 times; product() is called for 2k−i× 2k−i submatrices
exactly 22i−1 − 2i times, and multiplies O(|G|) pairs of Boolean matrices.

Theorem 1. For every Boolean grammar G in binary normal form, Algorithm 2
constructs the parsing table for a string of length n in time O(|G|·BMM (n) logn),
where BMM (n) is the time needed to multiply two n × n Boolean matrices.
Assuming BMM (n) = Ω(n2+ε), the complexity is Θ(|G| · BMM (n)).

5 Notes on Implementation

The restriction on the length of the string being a power of two minus one is
convenient for the algorithm’s presentation, but it would be rather annoying for
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any implementation. This essential condition can be circumvented as follows.
Let w = a1 . . . an be an input string of any length n � 1. The algorithm shall
construct a table of size (n + 1) × (n + 1), yet while doing so, it will imagine a
larger table of size rounded up to the next power of two. Whenever a subroutine
call is concerned entirely with the elements beyond the edge of the table, this call
is skipped. The matrix products with one of the matrices split by the edge are
changed to products of rectangular matrices fitting into the table. More details
shall be presented in the full version of the paper.

Another question concerns the possible data structures for the algorithm. In
general, not everything mentioned in the theoretical presentation of the algo-
rithm would need to be computed for an actual grammar. First assume that the
grammar is context-free. In this case, whenever a pair (B,C) is added to Ri,j , it
will eventually make all nonterminals A with a rule A → BC be added to Ti,j .
Accordingly, the data structure R is not needed, and all matrix multiplication
procedures can output their result directly into the appropriate elements of T .

If the grammar is conjunctive or Boolean, there is a genuine need for using R,
yet only for the rules involving multiple conjuncts. Simple context-free rules with
a unique conjunct can be treated in the simplified way described above, with all
matrix products being directly flushed into T . If there exists a rule A→ BC& . . .
with at least two conjuncts, or any rule A→ ¬BC& . . ., then all data about the
pair (B,C) needs to be stored in R as described in the algorithm. This data
shall be used in the calculation of f , which takes into account the complex rules.

With this optimization of the algorithm, the following data structures natu-
rally come to mind:

– For each nonterminal A ∈ N , an (n+ 1)× (n+ 1) upper-triangular Boolean
matrix TA, with TA

i,j representing the membership of A in the set Ti,j. All
matrix products computed in the algorithm shall have some submatrices of
this matrix as the arguments.

– For every such pair (B,C) ∈ N × N that occurs in multiple-conjunct rules
A→ BC& . . . or is negated in any rule A→ ¬BC& . . ., the algorithm shall
maintain an (n + 1)× (n + 1) upper-triangular Boolean matrix RBC .

6 Generalized Algorithm

The original Valiant’s algorithm was presented in a generalized form, in which
it computes a certain kind of closure of a matrix over a semiring. While the
updated algorithm no longer uses any semiring, its computation can also be
generalized to operations over abstract structures.

Let X and Y be two sets, let ◦ : X ×X → Y be a binary operator mapping
pairs of elements of X to elements of Y , let 
 : Y × Y → Y be an associative
and commutative binary operator on Y , and let f : Y → X be any function.
Let x = x1 . . . xn with xi ∈ X be a sequence of elements of X and consider the
matrix T = T (x) ∈ Xn×n defined by the following equations:



Fast Parsing for Boolean Grammars: A Generalization of Valiant’s Algorithm 349

Ti−1,i = xi

Ti,j = f
( j−1⊔

k=i+1

Ti,k ◦ Tk,j

)

Theorem 2. There is an algorithm, which, given a string x = x1 . . . xn of length
n, computes the matrix T (x) in time O(BMM (n) log n).

In this generalized form, the algorithm can be applied to different families of
grammars. For example, for context-free grammars in the binary normal form
one can set X = 2N , Y = 2N×N , ◦ = ×, 
 = ∪, xi = {A ∈ N | A → ai ∈ P }
and f(y) = {A ∈ N | ∃A→ BC ∈ P : (B,C) ∈ y }. For Boolean grammars, the
only difference is in f , which has to take into account more complicated Boolean
logic in the rules.

The same extended algorithm can be applied to probabilistic context-free
grammars, as well as to the fuzzy generalization of Boolean grammars defined
by Ésik and Kuich [4]. The next section presents one more application.

7 Application to the Well-Founded Semantics

The well-founded semantics of Boolean grammars was proposed by Kountouri-
otis, Nomikos and Rondogiannis [5]. This semantics is applicable to every syn-
tactically valid Boolean grammar, and defines a three-valued language generated
by each nonterminal symbol.

Three-valued languages are mappings from Σ∗ to {0, 1
2 , 1}, where 1 and 0 indi-

cate that a string definitely is or definitely is not in the language, while 1
2 stands for

“undefined”. Equivalently, three-valued languages can be defined by pairs (L,L′)
with L ⊆ L′ ⊆ Σ∗, where L and L′ represent a lower bound and an upper bound
on a language that is not known precisely. A string in both L and L′ definitely is in
the language, a string belonging to neither of them definitely is not, and if a string
is in L′ but not in L, its membership is not defined. In particular, if L = L′, then
the language is completely defined, and a pair (∅, Σ∗) means a language about
which nothing is known. The set of such pairs shall be denoted by 3Σ∗

.
Boolean operations and concatenation are generalized from two-valued to

three-valued languages as follows:

(K,K ′) ∪ (L,L′) = (K ∪ L,K ′ ∪ L′)
(K,K ′) ∩ (L,L′) = (K ∩ L,K ′ ∩ L′)

(L,L′) = (L′, L)
(K,K ′)(L,L′) = (KL,K ′L′)

Two different partial orderings on three-valued languages are defined. First,
they can be compared with respect to the degree of truth:

(K,K ′)�T (L,L′) if K ⊆ L and K ′ ⊆ L′.
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The other ordering is with respect to the degree of information:

(K,K ′)�I(L,L′) if K ⊆ L and L′ ⊆ K ′.

It represents the fact that (K,K ′) and (L,L′) are approximations of the same
language, and that (L,L′) is more precise, in the sense of having fewer uncertain
strings.

Both orderings are extended to vectors of three-valued languages. The truth-
ordering has a bottom element ⊥T =

(
(∅,∅), . . . , (∅,∅)

)
, For the information-

ordering, the bottom element is ⊥I =
(
(∅, Σ∗), . . . , (∅, Σ∗)

)
.

As in the two-valued case, concatenation, union and intersection, as well as ev-
ery combination thereof, are monotone and continuous with respect to the truth
ordering; complementation is not monotone. With respect to the information or-
dering; concatenation and all Boolean operations, including complementation, are
monotone and continuous, which extends to any combinations of these operations.

Definition 3 (Well-founded semantics [5]). Let G = (Σ,N, P, S) be a
Boolean grammar, let N = {A1, . . . , An}. Fix any vector K = ((K1,K

′
1), . . . ,

(Kn,K
′
n)) ∈ (3Σ∗

)n and define a function ΘK : (3Σ∗
)n → (3Σ∗

)n by substituting
its argument into positive conjuncts and K into negative conjuncts:

[ΘK(L)]A =
⋃

A→α1&...&αm&¬β1&...&¬βn∈P

[ m⋂

i=1

αi(L) ∩
n⋂

j=1

βj(K)
]
,

for each A ∈ N . Define Ω(K) = T
⊔

��0

Θ�
K(⊥T ) and let M = I

⊔

k�0

Ωk(⊥I). Then,

according to the well-founded semantics of Boolean grammars, LG(A) = [M ]A.

The main result justifying the correctness of the well-founded semantics, is that
M is a solution of the following system of equations in three-valued languages:

A =
⋃

A→α1&...&αm&¬β1&...&¬βn∈P

[ m⋂

i=1

αi(L) ∩
n⋂

j=1

βj(L)
]

(for A ∈ N).

The binary normal form is generalized to the well-founded semantics:

Proposition 1 (Kountouriotis et al. [5]). Every Boolean grammar, as in
Definition 3, can be effectively transformed to a grammar in the binary normal
form, in which every rule is of the form

A→ B1C1& . . .&BnCm&¬D1E1& . . .&¬DnEn&¬ε
(m � 1, n � 0, Bi, Ci, Dj, Ej ∈ N)

A→ a (a ∈ Σ)
A→ a&U (a ∈ Σ)
U → ¬U (a special symbol generating uncertainty)
S → ε (only if S does not appear in right-hand sides of rules)

The transformation maintains the generated three-valued language.
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Kountouriotis et al. [5] used this normal form to construct an extension of
the cubic-time parsing algorithm to the well-founded semantics, which, given
an input string w, computes its membership status as a value in {0, 1

2 , 1}.
The data constructed in that algorithm can be computed more efficiently us-
ing matrix multiplication, which will now be demonstrated by encoding it
into the abstract form of the proposed algorithm. Let X = 3N , Y = 3N×N ,
(U1, V1)◦ (U2, V2) = (U1×U2, V1×V2), (Q1, R1)
(Q2, R2) = (Q1∪Q2, R1∪R2),
I(a) = ({A | A → a ∈ P }, {A | A → a ∈ P or A → a&U ∈ P }), and fi-
nally f(Q,R) =

(
{A | ∃A→ B1C1& . . .&BmCm&¬D1E1& . . .&¬Dm′Em′&¬ε :

(Bi, Ci) ∈ Q and (Dj , Ej) /∈ R for all applicable i, j}, {A | ∃A →
B1C1& . . .&BmCm&¬D1E1& . . .&¬Dm′Em′&¬ε : (Bi, Ci) ∈ R and (Dj , Ej) /∈
Q for all applicable i, j}

)
. This establishes an analogue of Theorem 1 for the

well-founded semantics, that is, the three-valued membership in L(G) of a given
string w ∈ Σ∗ can be computed in time Θ(BMM (n) logn) = O(n2.376).

Thus, one more key algorithm for the context-free grammars has been ex-
tended to the general case of Boolean grammars, and its clarity has even been
improved in the process. This provides further evidence for the author’s long-
time claim that Boolean grammars are the proper general case of the context-free
grammars.
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Abstract. We introduce lexicalized well-behaved restarting automata

as a model of the gradual lexicalized syntactic disambiguation of natural

languages. This model presents a non-correctness preserving counter-part

to the (correctness preserving) models of analysis by reduction of natural

languages. We study two types of gradual relaxations of the correctness

preserving property for monotone automata of this type. They lead to

two infinite hierarchies of language classes. The basic levels of these hi-

erarchies coincide with the class LRR of left-to-right regular languages,

and the hierarchies exhaust the class of context-free languages.

1 Introduction

The restarting automaton was introduced in [2] to model the so-called analy-
sis by reduction of natural languages. To each sentence of the language consid-
ered, a restarting automaton associates all possible derivations that are obtained
through sequences of reduction steps. These reduction steps satisfy the so-called
‘error preserving property!.’ This is an important property that imitates a simi-
lar property of analytical grammars. It states that any cycle of any computation
of a restarting automaton M that starts from a word not belonging to the char-
acteristic language LC(M) accepted by M necessarily yields a word that does
not belong to this language, either. On the other hand, it is only deterministic
restarting automata that in general also satisfy the complementary property of
being correctness preserving, which states that any cycle of M that starts from
a word belonging to the language LC(M) will again give a word from that lan-
guage. A nondeterministic restarting automaton is called correctness preserving
if it satisfies the correctness preserving property.

A restarting automaton as defined in [2] begins its computations with pure
input words, while analysis by reduction is performed in a correctness preserving
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way on sentences that have already been enriched unambiguously by lexical cat-
egories (that is, nonterminal symbols). In order to bridge this gap we introduce
the so-called lexicalized well-behaved restarting automaton to formalize the pro-
cedure of gradual disambiguation of sentences of a natural language by lexical
(that is, morphological, syntactic, or semantic) categories.

As the procedure of lexical disambiguation is highly ambiguous, it cannot
generally be modelled by a correctness preserving automaton. Accordingly, we
consider two gradual relaxations of this property, the phase relaxation and the
error relaxation. The former is a variant of the cyclic relaxation, which was intro-
duced together with the error relaxation by the current authors in [6]. Both these
relaxations can be interpreted as measuring the degree of nondeterminism of a
restarting automaton (or a characteristic language) that is responsible for erro-
neous computations. In contrast to many studies of the degree of nondeterminism
for various types of automata (see, e.g., [13]), we are not interested in nondeter-
ministic steps that distinguish between different accepting computations. In [6]
an infinite two-dimensional hierarchy of classes of restarting automata and their
characteristic languages was derived. Here we carry these investigations over
to proper languages of lexicalized well-behaved restarting automata. The proper
language is obtained from the characteristic language by simply deleting all aux-
iliary symbols, and a restarting automaton is called well-behaved, if its proper
language coincides with its input language. This requirement places serious re-
strictions on the way in which such a restarting automaton can use its auxiliary
symbols for lexical disambiguation, restrictions that are well motivated by the
way in which categories are used in European linguistics. It is expected that
the categories obtained in this way correspond to those that are derived by
the analysis by reduction as used in the development of the well-known ‘Func-
tional (Generative) Description (of Czech)’ (see [4] and some previous work of
P. Sgall). We establish two infinite hierarchies of language classes of lexicalized
well-behaved restarting automata that are monotone. The basic levels of these
hierarchies coincide with the class LRR of left-to-right regular languages [1], and
they exhaust the class of context-free languages.

This paper is structured as follows. After giving some basic definitions in Sec-
tion 2, we define the notion of lexicalized well-behaved restarting automaton in
Section 3, and we prove that all context-free languages are recognized by mono-
tone automata of this type. In Section 4 we define the notions of phase relaxation
of degree i and of error relaxation of degree j, and we establish the announced
hierarchies based on the degree of phase relaxation and the degree of error relax-
ation. In the concluding section we shortly discuss the corresponding hierarchies
for lexicalized well-behaved restarting automata that are non-monotone. In this
paper proofs will mostly only be outlined to meet the page limit.

2 Basic Definitions and Notation

Here we describe in short the type of restarting automaton we will be dealing
with. More details on restarting automata in general can be found in [9,10].



354 F. Otto, M. Plátek, and F. Mráz

A two-way restarting automaton, RLWW-automaton for short, is a nondeter-
ministic machine M = (Q,Σ, Γ, c, $, q0, k, δ) with a finite set Q of (internal)
states, a flexible tape, and a read/write window of a fixed size k ≥ 1. The work
space is limited by the left sentinel c and the right sentinel $, which cannot be
removed from the tape. The tape alphabet Γ contains the input alphabet Σ and
possibly a finite number of so-called auxiliary symbols. The behaviour of M is
described by the transition relation δ that associates a finite set of transition
steps to each pair (q, u) consisting of a state q and a possible content u of the
read/write window. There are five types of transition steps: move-right (MVR)
and move-left steps (MVL), which shift the window one position to the right or
to the left, respectively, and change the internal state, rewrite steps that replace
the content u of the window by a shorter word v, thereby also shortening the
tape, and change the internal state, restart steps (Restart) that place the window
over the left end of the tape, and reset the internal state to the initial state q0,
and accept steps that cause M to halt and accept.

If δ(q, u) = ∅ for some pair (q, u), then M necessarily halts, and we say
that M rejects in this situation. Further, it is required that, when ignoring move
operations, rewrite and restart steps alternate in each computation of M , with a
rewrite step coming first. In general, the automaton M is nondeterministic, that
is, there can be two or more instructions with the same left-hand side (q, u). If
that is not the case, the automaton is deterministic.

A configuration of M is a string αqβ where q is a state, and either α = λ
(the empty string) and β ∈ {c} · Γ ∗ · {$} or α ∈ {c} · Γ ∗ and β ∈ Γ ∗ · {$}; here
q represents the current state, αβ is the current content of the tape, and it is
understood that the window contains the first k symbols of β or all of β when
|β| ≤ k. A restarting configuration is of the form q0cw$.

Any finite computation of M consists of certain phases. A phase, called a cycle,
starts in a restarting configuration. The window is moved along the tape by MVR
and MVL operations and a single rewrite operation until a restart operation is
performed and thus a new restarting configuration is reached. The part after the
last restart operation is called a tail. By u 'c

M v we denote a cycle of M that
transforms the restarting configuration q0cu$ into the restarting configuration
q0cv$. By 'c∗

M we denote the reflexive and transitive closure of 'c
M .

A word w ∈ Γ ∗ is accepted by M , if there is a computation which, starting with
the restarting configuration q0cw$, finishes by executing an accept instruction.
By LC(M) we denote the language consisting of all words accepted by M ; this
is the characteristic language accepted (or recognized) by M . When we restrict
attention to input words only, then we obtain the language L(M) = LC(M)∩Σ∗,
which is the input language recognized (accepted) by M . Finally, the proper
language LP(M) is obtained from the characteristic language LC(M) by deleting
all auxiliary symbols, that is, LP(M) = PrΣ(LC(M)), where PrΣ : Γ ∗ → Σ∗ is
the morphism defined by a %→ a (a ∈ Σ) and A %→ λ (A ∈ Γ � Σ). Obviously,
L(M) is always a subset of LP(M).

If u �∈ LC(M) and u 'c∗
M v, then v �∈ LC(M), either. This fact is the so-called

error preserving property of restarting automata (see, e.g, [2]). However, it is
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only deterministic restarting automata that in general also satisfy the following
complementary property.

Definition 1. (Correctness Preserving Property)
An RLWW-automaton M is (strongly) correctness preserving if u ∈ LC(M) and
u 'c∗

M v imply that v ∈ LC(M).

We are also interested in various restricted types of restarting automata. An
RLWW-automaton is called an RRWW-automaton, if it does not use any move-
left operations, and an RLWW- (or RRWW-) automaton is called an RL- (or RR-)
automaton, if it has no auxiliary symbols (that is, Γ = Σ), and if each rewrite
step is simply a deletion. For each type X of restarting automaton, we use L(X)
to denote the class of input languages that are accepted by restarting automata
of type X.

For an RRWW-automaton M , the relation 'c
M can be described more trans-

parently by a finite sequence of meta-instructions of the form (El, u → v,Er),
where El, Er are regular languages, and u → v is a rewrite step of M (see,
e.g., [10]). On trying to execute this meta-instruction, M will get stuck (and so
reject) starting from the configuration q0cw$, if w does not admit a factoriza-
tion of the form w = w1uw2 such that cw1 ∈ El, and w2$ ∈ Er. On the other
hand, if w does have factorizations of this form, then one such factorization is
chosen nondeterministically, and q0cw$ is transformed into q0cw1vw2$. In order
to describe the tails of accepting computations we use meta-instructions of the
form (c ·E · $,Accept), which accept the strings from the regular language E.

Example 1. Let Lpal := {wwR | w ∈ {a, b}∗ }, and let M1 be the RRWW-
automaton that is given by the following meta-instructions, where x ∈ {a, b}:

(1) (c · {a, b}∗, xx→ C, {a, b}∗ · $), (3) (c · {λ,C} · $,Accept).
(2) (c · {a, b}∗, xCx→ C, {a, b}∗ · $),

Then LC(M1) = Lpal ∪ {wCwR | w ∈ {a, b}∗ }, and L(M1) = Lpal = LP(M1).

Each cycle C of a computation of an RLWW-automaton M contains a unique
configuration of the form αqβ in which a rewrite step is executed. By Dr(C) we
denote the right distance |β| of this cycle. A sequence of cycles C1, C2, . . . , Cn

is called monotone if Dr(C1) ≥ Dr(C2) ≥ · · · ≥ Dr(Cn) holds, and a com-
putation of M is called monotone if the corresponding sequence of cycles is
monotone. Observe that the tail of the computation is not taken into account
here. An RLWW-automaton is called monotone if each of its computations is
monotone. We use the prefix mon- to denote this property. Observe that the
RRWW-automaton M1 in the above example is monotone.

3 Lexicalized Well-Behaved RLWW-Automata

We are interested in restarting automata which may use auxiliary symbols only
in a rather restricted manner.
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Definition 2. An RLWW-automaton M = (Q,Σ, Γ, c, $, q0, k, δ) is called

- lexicalized if, for each word w ∈ LC(M) and each factorization w = xyv,
|y| ≥ k implies that y contains at least one input symbol;

- well-behaved if L(M) = LP(M).

We use the prefix wbl- to denote classes of restarting automata that are lexical-
ized and well-behaved.

Theorem 1. For each context-free language L, there exists a lexicalized well-
behaved RRWW-automaton M such that M is monotone and L = L(M).

As monotone RLWW-automata accept only context-free languages (see, e.g.,
[10]), this result yields the following characterization.

Corollary 1. CFL = L(mon-wbl-RRWW) = L(mon-wbl-RLWW).

Proof of Theorem 1. Let L ⊆ Σ∗ be a context-free language, and let G =
(V,Σ, S, P ) be a context-free grammar in Chomsky normal form for L. From G
we construct an RRWW-automaton M = (Q,Σ, Γ, c, $, q0, k, δ) with the required
properties. Its window size k will be fairly large, and accordingly it will simply
accept all words from L of length at most k − 2. Thus, we can assume that all
productions of G are of the form (A→ BC) or (A→ a), where A,B,C ∈ V and
a ∈ Σ, and that G does not contain any superfluous nonterminals, that is, the
language L(G,A) = {w ∈ Σ+ | A ⇒+

G w } is nonempty for all nonterminals A.
For each A ∈ V , let wA ∈ L(G,A) be a shortest word from L(G,A). Further, let
L̂(G,A) = {α ∈ (V ∪Σ)+ | A⇒∗

G α }.
For the window size of M we take k := 3 · 23m, where m be the number of

nonterminals of G. The idea underlying the behaviour of M is the following. If
w ∈ L, |w| > k, then there exists a factorization w = uxv and a nonterminal
A such that S ⇒∗

G uAv and x ∈ L(G,A) satisfying |x| > |wA| + 2. Thus, M
can replace the factor x of w by the word wA, in this way shortening the word.
However, it must be ensured that there really is a G-derivation of the form
S ⇒∗

G uAv. Therefore, we need to store the information on A within the new
word uwAv. This is achieved as follows.

The tape alphabet Γ of M contains the input alphabet Σ and the auxiliary
letters ΓV := { (A, )A | A ∈ V }. The above transformation is realized by re-
placing the factor x by the word (AwA)A of length |wA|+ 2 < |x|. Observe that
PrΣ(u(AwA)Av) = uwAv ∈ L, if S ⇒∗

G uAv holds.
In the general case the tape already contains some auxiliary letters. However,

it will be ensured that it always satisfies the following invariant, where F denotes
the finite language F := { (AwA)A | A ∈ V }:

∀w ∈ Σ∗ ∀α ∈ Γ ∗ : if w 'c∗
M α, then α ∈ Σ∗ · (F ·Σ∗)∗ .

We define a transformation ι : Γ ∗ → (V ∪ Σ)∗ by taking, for all n ≥ 0,
u0, . . . , un ∈ Σ∗, and A1, . . . , An ∈ V ,

ι(u0(A1wA1)A1u1 . . . un−1(AnwAn)Anun) = u0A1u1 . . . un−1Anun. (1)
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The word ι(w) is the sentential form associated with w. If w is not of the form
required by (1), then ι(w) is undefined. Clearly ι is a rational relation.

Given a word α ∈ Γ ∗ of length |α| > 3 · 23m, M looks for a factorization
α = uxv such that all of the following conditions are satisfied simultaneously:

(a) u ∈ Σ∗ · (F ·Σ∗)∗ ,
(b) x ∈ Σ∗ · (F ·Σ∗)∗ ,
(c) ι(x) ∈ L̂(G,A) and |wA|+ 2 < |PrΣ(x)| ≤ 23m for some A ∈ V,
(d) v ∈ Σ∗.

Conditions (b) and (c) together imply that |x| ≤ 3 · 23m = k. Observe that
properties (a) to (c) can be checked internally, while the read/write window
of M moves across the prefix ux of α.

Whenever M finds a factor x satisfying conditions (a) to (c), then it nonde-
terministically chooses either to just continue moving to the right, or it replaces
the factor x by the word (AwA)A, thereby shortening the tape contents. In the
latter case it then scans the remaining suffix of the tape contents to verify that
also condition (d) is satisfied. In the affirmative, it restarts at the right delim-
iter $, while in the negative the computation fails. It follows immediately that
the new tape contents u(AwA)Av is of the form required in (1). As each rewrite
operation creates an occurrence of a symbol )A, which marks the position on the
tape at which this rewrite operation was performed, property (d) ensures that
no rewrite operation can be executed to the left of the place where a previous
rewrite operation was performed. Thus, each computation of M is monotone.

Claim. If α ∈ Σ∗ · (F ·Σ∗)∗ such that |α| > 3 · 23m and ι(α) ∈ L̂(G,S), then
there exist a nonterminal A and a factorization α = uxv such that conditions
(a) to (c) above are satisfied.

Proof. Let α ∈ Σ∗ · (F ·Σ∗)∗ such that |α| > 3 · 23m and ι(α) ∈ L̂(G,S). Then
there exists a derivation S ⇒+

G ι(α), which can be extended to a derivation
S ⇒+

G PrΣ(α) by appending the derivation A ⇒+
G wA for each nonterminal A

occurring in ι(α). As |PrΣ(α)| ≥ 1
3 · |α| > 23m, the corresponding derivation

tree T has height h ≥ 3m + 2. Thus, T contains a path p of length h. All
nodes along this path are labelled with nonterminals but the last one, which is
labelled with a terminal. Hence, p contains h ≥ 3m + 2 nodes that are labelled
with nonterminals, and hence, there exists a nonterminal that occurs at least
four times on this path. From among all nonterminals with this property let
A be the one for which the suffix p2 of p containing four occurrences of A
is of shortest length. Then we see from the arguments above that p2 is of
length at most 3m + 1. Now the word α can be factored as α = uxv such that
A⇒+

G PrΣ(x) is the derivation that corresponds to the subtree TA of T that is
rooted at the first node of the path p2, and S ⇒∗

G uAv is the derivation that
corresponds to the tree T ′ that is obtained by removing the subtree TA (without
its root) from T . Then ι(x) ∈ L̂(G,A), PrΣ(x) ∈ L(G,A), and |PrΣ(x)| ≤ 23m.
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Further, the root of p2 is labelled with A, and p2 contains three additional nodes
labelled with A. Thus, TA describes a derivation of the following form:

A⇒+
G u1Av1 ⇒+

G u1u2Av2v1 ⇒+
G u1u2u3Av3v2v1 ⇒+

G u1u2u3yv3v2v1 = PrΣ(x).

Hence, y ∈ L(G,A) implying that |y| ≥ |wA|, and |u1u2u3|+ |v3v2v1| ≥ 3, that
is, |PrΣ(x)| ≥ |wA| + 3. Thus, the above factorization satisfies conditions (a)
to (c). �

If starting with a word w ∈ L satisfying |w| > 3 · 23m, M always chooses a
nonterminal A, and the leftmost factor x such that conditions (a) to (c) are
satisfied and ι(u)Av ∈ L̂(G,S) holds, then it is guaranteed that also condition
(d) is satisfied. Hence, for each word w ∈ L of length |w| > 3 · 23m, there exists
a computation of M that reduces w to a word w′ such that PrΣ(w′) ∈ L and
|w′| ≤ k, and conversely, if M accepts a word w ∈ Σ∗, then w belongs to the
language L. It is easily seen that M is well-behaved and lexicalized. �

4 Relaxations of the Correctness Preserving Property

For each correctness preserving RLWW-automaton M , there exists a determin-
istic RLWW-automaton M ′ satisfying L(M ′) = L(M) [5]. Actually, M ′ just
executes some of the possible computations of M . Accordingly, we have the
following consequence.

Corollary 2. For each correctness preserving wbl-RLWW-automaton M , there
exists a deterministic wbl-RLWW-automaton M ′ satisfying L(M ′) = L(M).

While L(det-mon-RR) = L(det-mon-RRWW) = DCFL (see [10]), it has been
shown in [11] that L(det-mon-RL) = L(det-mon-RLWW) = LRR, where LRR
denotes the class of left-to-right regular languages [1]. As RR- and RL-automata
are lexicalized and well-behaved, we have the following consequence, where cp-
denotes the property of being correctness preserving.

Corollary 3. (a) DCFL = L(det-mon-wbl-RRWW).
(b) LRR = L(det-mon-wbl-RLWW) = L(cp-mon-wbl-RRWW).

Thus, for monotone wbl-RRWW-automata, by relaxing the requirement of being
deterministic to that of being correctness preserving, we enlarge the class of
accepted languages from DCFL to LRR. Next we introduce two notions that
relax the strong requirements of the correctness preserving property.

Definition 3. Let M = (Q,Σ, Γ, c, $, q0, k, δ) be an RLWW-automaton.

(a) We say that M is correctness preserving on a word w ∈ LC(M), if, for all
z ∈ Γ ∗, w 'c∗

M z implies that z ∈ LC(M), too.
(b) Let j ∈ N. A word w ∈ LC(M) has error relaxation of degree j for M , if

m ≤ j holds, whenever w 'c
M wi, 1 ≤ i ≤ m, such that w1, . . . , wm �∈ LC(M)

and wr �= ws for all 1 ≤ r < s ≤ m. We say that M has error relaxation of
degree j, if each w ∈ LC(M) has error relaxation of degree j for M .
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(c) Let i ∈ N. We say that M has phase relaxation of degree i, if, for all
words w ∈ LC(M), all m ≥ i, and each sequence of cycles of the form
w = w0 'c

M w1 'c
M · · · 'c

M wm, wm ∈ LC(M) implies that at most i words
from {w0, · · · , wm} have error relaxation of degree larger than 0 for M .

Obviously, the property of being correctness preserving corresponds to error
relaxation of degree 0 and to phase relaxation of degree 0. The error relaxation
was already introduced in [6], while the phase relaxation is a variant of the cyclic
relaxation of [6].

Let A be a class of RLWW-automata. By p(i)-A we denote the subclass of auto-
mata of A with phase relaxation of degree i, and by e(j)-A we denote the subclass
of automata of A with error relaxation of degree j. The corresponding classes of
input languages are denoted by L(p(i)-A) and by L(e(j)-A), respectively.

It has been observed in [12] that, for each RLWW-automaton ML, there exists
an RRWW-automaton MR that executes exactly the same cycles as ML. Thus,
we have the following result.

Proposition 1. Let i, j ≥ 0, and let X ∈ {p(i),e(j)}. For each X-wbl-RLWW-
automaton M , there exists an X-wbl-RRWW-automaton M ′ that executes exactly
the same cycles as M , and so LC(M ′) = LC(M) and L(M ′) = L(M).

Hence, in the following we can restrict our attention to RRWW-automata.

Example 1 (cont.) M1 is lexicalized, well-behaved, and monotone. For all w ∈
{a, b}∗ and all d ∈ {a, b}, the only accepting computation of M1 that begins
with the restarting configuration q0cwd(wd)R$ is wddwR 'c

M1
wCwR 'c∗

M1
C.

As M1 is correctness preserving on all words from the sublanguage {wCwR |
w ∈ {a, b}∗ }, it follows that M1 has phase relaxation of degree 1.

However, M1 does not have error relaxation of bounded degree. Let wm :=
(aabb)ma, where m is sufficiently large. Then wmwR

m = (aabb)2maa ∈ Lpal.
However, starting from the restarting configuration q0cwmwR

m$, M1 has 4m+ 1
options to apply meta-instruction (1), that is, there are 4m + 1 possible cycles
wmwR

m 'c
M1

y, but only one of them yields a word from LC(M1).

The language Lpal is not accepted by any deterministic RRWW-automaton,
as L(det-RRWW) coincides with the class CRL of Church-Rosser languages
(see [10]), while Lpal is not Church-Rosser [3]. For proving that Lpal is not
accepted by any lexicalized well-behaved RRWW-automaton with error relax-
ation of bounded degree we will use the following modification of a pumping
lemma for restarting automata (see, e.g., [7]).

Proposition 2. For any RRWW-automaton M , there exists a constant p such
that the following holds. Assume that uvw 'c

M uv′w, where u = u1u2 · · ·un

for some non-empty words u1, . . . , un and a constant n > p. Then there exist
r, s ∈ N, 1 ≤ r < s ≤ p, such that

u1 · · ·ur−1(ur · · ·us−1)ius · · ·unvw 'c
M u1 · · ·ur−1(ur · · ·us−1)ius · · ·unv

′w

holds for all i ≥ 0, that is, ur · · ·us−1 is a ‘pumping factor’ in the above cycle.
Similarly, such a pumping factor can be found in any factorization of length
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greater than p of w. Such a pumping factor can also be found in any factorization
of length greater than p of a word accepted in a tail computation.

Lemma 1. The language Lpal is not accepted by any lexicalized well-behaved
RRWW-automaton with error relaxation of finite degree.

Proof. Let Σ = {a, b}, and assume that M = (Q,Σ, Γ, c, $, q0, k, δ) is a well-
behaved RRWW-automaton such that L(M) = LP(M) = Lpal.

Let n0 > 0 be an integer. We will show that there exist a word z ∈ Lpal and
cycles (reductions) z 'c

M zi, 1 ≤ i ≤ n0, such that z1, . . . , zn0 �∈ LC(M) and
zj �= zr for all 1 ≤ j < r ≤ n0. That is, for the first cycle on some word from
L(M), there are at least n0 different mistakes that M can make.

For m ≥ 1, let Am := { (a2mb2m)na2m(b2ma2m)n | n > 0 }. Obviously, Am ⊂
Lpal. Further, the following property is easily verified:

(∗) Let uyw be a factorization of a word x ∈ Am such that |y| < m. If there
exists a word y′ satisfying |y′| < |y| such that PrΣ(uy′w) ∈ Lpal, then
|u| > 1

2 |x| − 2m and |w| > 1
2 |x| − 2m.

Let p be the constant for M from Proposition 2, and let m > max{k, p}, n > p,
and v := (a2mb2m)na2m(b2ma2m)n ∈ L(M). We consider an accepting compu-
tation of M on input v. From Proposition 2 it follows easily that v cannot be
accepted by a tail computation of M . Thus, the accepting computation consid-
ered begins with a cycle of the form v 'c

M ω for some word ω ∈ LC(M), which
implies that w := PrΣ(ω) ∈ Lpal. From (∗) it follows that the corresponding
rewrite operation occurs at a position in the range [12 |v| − 2m, 1

2 |v|+ 2m], that
is, a factor of the middle part bma2mbm is being rewritten. The word v has a
factorization of the form v = α1α2 · · ·αnyβ1 · · ·βn such that αt = a2mb2m for
all t = 1, . . . , n− 1, αn = a2mbm, y = bma2mbm, β1 = bma2m, and βt = b2ma2m

for all t = 2, . . . , n. Thus, according to Proposition 2 there exist indices r, s,
1 ≤ r < s ≤ p < n such that

α1 · · ·αr−1(αr · · ·αs−1)iαs · · ·αnyβ1 · · ·βn 'c
M

α1 · · ·αr−1(αr · · ·αs−1)iαs · · ·αny
′β1 · · ·βn,

for some word y′ and all exponents i ≥ 0. Obviously, the length of the pumping
factor αr · · ·αs−1 divides the number 4m ·p!. Analogously a pumping factor with
corresponding properties can be found in the suffix β2 · · ·βn of v. Hence, there
exist words vi,j and ωi,j obtained by pumping the cycle v 'c

M ω independently
on the left and on the right of the rewritten factor y such that

vi,j = (a2mb2m)n+ip!a2mbmybma2m(b2ma2m)n+jp!,
ωi,j = (a2mb2m)n+ip!a2mbmy′bma2m(b2ma2m)n+jp!,

and vi,j 'c
M ωi,j for all i, j ∈ N. Consider the words v� := v�,n0−� =

(a2mb2m)2n+n0p!+2a2m and ω� := ω�,n0−� for � = 0, . . . , n0. For any �1, �2,
0 ≤ �1 < �2 ≤ n0, ω�1 �= ω�2 , as these words arise by rewriting v� at different
places. Since at most one of the words PrΣ(ω0), . . . ,PrΣ(ωn0) is a palindrome, M
can make at least n0 mistakes in the first cycle on the word v� from L(M). 	
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This lemma yields the following consequences.

Corollary 4. Lpal ∈ L(p(1)-mon-wbl-RRWW) �
⋃

j≥0 L(e(j)-wbl-RRWW).

Actually we obtain an infinite hierarchy of language classes based on the degree
of phase relaxation of lexicalized well-behaved restarting automata.

Theorem 2. For all i ≥ 1 and all X ∈ {wbl, mon-wbl}, L(p(i− 1)-X-RLWW) �
L(p(i)-X-RLWW) .

Proof. It remains to show that these inclusions are proper. By Proposition 1 we
only need to consider RRWW-automata. Let

L
(i)
pal := {dwwRdw1w

R
1 dw2w

R
2 d...dwi−1w

R
i−1 | w,w1, . . . , wi−1 ∈ {a, b}∗}.

In the first cycle a monotone RRWW-automaton M can guess the middle of
the first syllable wwR, which is a non-deterministic step of unbounded degree
of error relaxation. Then it deletes the syllable wwR completely in the next
cycles, which is a sequence of deterministic steps. Thereafter it processes the
next syllables in the same manner. Thus, M is also lexicalized and well-behaved,
and it has phase relaxation of degree i. On the other hand, even a non-monotone
wbl-RRWW-automaton has to guess the middle of all i syllables, that is, it will
also have phase-relaxation of degree at least i (see the proof of Lemma 1). 	


Corresponding hierarchy results also hold for the degree of error relaxation.

Theorem 3. For all j ≥ 1 and all X ∈ {wbl, mon-wbl}, L(e(j − 1)-X-RLWW) �
L(e(j)-X-RLWW).

Proof. For proving that these inclusions are proper, we consider another family
of example languages. For m ≥ 1, let Σ := {a, b}, Γm := {a, b, C0, . . . , Cm}, and
Le1,m := { anb2

i·n | 0 ≤ i ≤ m, n ≥ 1 }. Then Le1,m is accepted by the monotone
RRWW-automaton M1,m that is specified as follows, where 0 ≤ i ≤ m:

(1.i) (c · a+, ab2
i → Ci, (b2

i

)+ · $), (3.i) (c · a · {λ,Ci} · b2
i · $,Accept).

(2.i) (c · a+, aCib
2i → Ci, (b2

i

)+ · $),

Then LC(M1,m) = Le1,m∪L′
1,m, where L′

1,m := { anCib
2i·n | 0 ≤ i ≤ m, n ≥ 1 }.

Thus, M1,m is lexicalized and well-behaved.
Starting from an initial configuration q0canb2

m·n$, there are m+1 possible cy-
cles that M1,m can execute, but only one of them yields a word from LC(M1,m),
and this word actually belongs to the subset L′

1,m. As M1,m is correctness pre-
serving on L′

1,m, it follows that M1,m has phase relaxation of degree 1 and error
relaxation of degree m.

However, it can be shown that the language Le1,m is not accepted by any
well-behaved RRWW-automaton with error relaxation of degree lower than m.
Assume that M is a well-behaved RRWW-automaton for Le1,m. Given an in-
put of the form anb2

m·r ∈ Le1,m, where n is sufficiently large, M has an
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accepting computation. However this cannot simply be a tail computation.
Thus, it begins with a cycle of the form anb2

m·r 'c
M an−sαb2

m·r−t, where
1 ≤ s, t < k and |α| < s + t ≤ k. Here k denotes the window size of M .
As the computation considered is accepting, we have an−sαb2

m·r−t ∈ LC(M),
which in turn implies that PrΣ(an−sαb2

m·r−t) ∈ Le1,m. Hence, we see that
PrΣ(an−sαb2

m·r−t) = an−s′
b2

m·r−2i·s′
for some number i ∈ {0, . . . ,m} and a

small number s′ ≥ 1. By a technique similar to the one used in the proof of
Lemma 1 we can show that there are m + 1 possible values for i, each of which
could be the correct one, while all others are wrong. Therefore, in this situation
M has at least m options, and so it has error relaxation of degree at least m. 	


In analogy to the RRWW-automaton M1,1 from the proof of Theorem 3, an e(1)-
mon-wbl-RRWW-automaton can be designed for the language (Le1,1)+, but it can
be shown that there is no well-behaved RRWW-automaton with bounded phase
relaxation for it. In addition, the language Lpal,+ := { dwwR | w ∈ {a, b}∗ }+,
which is easily seen to be accepted by a monotone wbl-RRWW-automaton with
phase relaxation of unbounded degree, is not accepted by any non-monotone wbl-
RRWW-automaton with phase relaxation of bounded degree, either. Together
with Lemma 1 and Corollary 4 this yields the following results.

Corollary 5. For all X ∈ {wbl, mon-wbl}:
(a)
⋃

i≥0 L(p(i)-X-RLWW) � L(X-RLWW).
(b)
⋃

j≥0 L(e(j)-X-RLWW) � L(X-RLWW).
(c) L(p(i)-X-RLWW) and L(e(j)-X-RLWW) are incomparable under inclusion

for all i, j ≥ 1.

5 Conclusion

We have seen that the two relaxations of the notion of correctness preservation for
lexicalized well-behaved restarting automata yield infinite hierarchies of language
classes, both in the monotone and in the non-monotone case. The hierarchies for
the monotone classes are depicted in Figure 1.

p(0) �� p(1) �� p(2) �� · · · �� ⋃
i≥0p(i)

��
DCFL �� LRR L(mon-wbl-RLWW) CFL

e(0) �� e(1) �� e(2) �� · · · �� ⋃
j≥0e(j)

		

Fig. 1. Infinite hierarchies of classes of input languages of monotone lexicalized well-

behaved restarting automata based on the degrees of phase relaxation and error relax-

ation. Here p(i) stands for the language class L(p(i)-mon-wbl-RLWW), and analogously

for e(j). Each arrow denotes a proper inclusion. If there is no oriented path between two

language classes in the picture, then these classes are incomparable under inclusion.
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All example languages considered so far are context-free. Thus, the question
arises of whether the language classes defined above do only contain context-free
languages. This, however, is not the case.

In fact, in [10] it is shown that already the class L(det-RL) ⊆ L(cp-wbl-RLWW)
contains an encoding of the copy language {w#w | w ∈ {a, b}∗ }, which is
not even growing context-sensitive. On the other hand, the Church-Rosser lan-
guage { a2n | n ≥ 0 } is not the proper language of any lexicalized RRWW-
automaton [8], and hence, it is not contained in L(wbl-RLWW). Thus, all
language classes L(p(i)-wbl-RLWW) (i ≥ 0) and L(e(j)-wbl-RLWW) (j ≥ 0)
are incomparable under inclusion to the class of growing context-sensitive lan-
guages. However, it remains to classify L(det-wbl-RLWW) and L(wbl-RLWW),
which form the bottom and the top of the non-monotone hierarchies.
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10. Otto, F.: Restarting automata. In: Ésik, Z., Martin-Vide, C., Mitrana, V. (eds.)

Recent Advances in Formal Languages and Applications. SCI, vol. 25, pp. 269–303.

Springer, Berlin (2006)

11. Otto, F.: Left-to-right regular languages and two-way restarting automata. RAIRO

Theor. Inf. Appl. 43, 653–665 (2009)
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Abstract. We prove that uniform and semi-uniform families of P sys-

tems with active membranes using only communication and nonelemen-

tary division rules are not computationally universal. However, they are

powerful enough to solve exactly the problems solvable by Turing ma-

chines operating in time and space that are “tetrational” (i.e., bounded

by a stack of exponentials of polynomial height) with respect to the size

of the input.

1 Introduction

Membrane systems, usually called P systems, have been introduced in [4] as
computing devices inspired by the internal working of biological cells. The main
feature of P systems is a structure of membranes dividing the space into regions,
inside which multisets of objects describe the molecular environment. A set of
rules describe how the molecules (and often the membranes themselves) evolve
during the computation; usually, the rules are applied in a maximally parallel
way, i.e., each component of the P system must be subject to a rule during each
computation step, if a suitable rule exists. When multiple rules may be applied
to an object or membrane, one of them is nondeterministically chosen. The
computation, starting from an initial configuration, proceeds until no further
rule can be applied. For an introduction to membrane computing, we refer the
reader to [7,8], and for the latest information to the P Systems Webpage [14],
where an extensive bibliography on the topic can be found.

Families of P systems can be used as language recognizers, by associating
with each input string (or with each input length) a P system; this association
is subject to a uniformity condition (i.e., it must be computed by a Turing
machine operating in polynomial time). The constructed P systems can then
accept or reject, thus deciding the membership of strings to the language. The
computational complexity of recognizer P systems with active membranes [5],
where the membranes themselves play an important role during the computation,
has been subject to extensive investigation, due to their ability of solving NP-
complete [5] and even PSPACE-complete problems [13] in polynomial time: this
efficiency is due to the possibility of creating in polynomial time an exponential

Y. Gao et al. (Eds.): DLT 2010, LNCS 6224, pp. 364–375, 2010.
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number of membranes, which then evolve in parallel, using membrane division
(a process found in nature, e.g., in cell mitosis).

From the computability standpoint, this class of P systems is known to be
equivalent to Turing machines [6]: this result, however, is proved by using object
evolution rules, which can increase the number of objects an arbitrary num-
ber of times. In this paper, we analyze the case in which only communication
rules (which move an object from a region to another) and nonelementary divi-
sion rules (which only apply to membranes containing other membranes) are al-
lowed, and prove that the resulting P systems are not computationally universal;
nonetheless, they are very powerful, as they characterize the class of languages
decidable by Turing machines using time (or, equivalently, space) bounded by
an exponential function iterated polynomially many times (known as tetration).

The paper is organized as follows. In Section 2 we define P systems with active
membranes, their use as language recognizers and their space complexity; we also
recall the notion of tetration and introduce a class of languages having that kind
of complexity. In Section 3 we prove that P systems with active membranes
using only communication and nonelementary division rules are not universal,
by showing how they can be simulated by tetrational-space bounded Turing
machines. In Section 4 we introduce a P system module which will then be used
in Section 5 in order to prove that the reverse simulation is also possible, thus
characterizing exactly the power of our class of P systems. Section 6 concludes
the paper and describes possible future research.

2 Definitions

Let us start by recalling the definition of the model of P systems we will use in
this paper.

Definition 1. A P system with active membranes with polarizations (using only
communication and nonelementary division rules) of degree m ≥ 1, is a tuple

Π = (Γ,Λ, μ, w1, . . . , wm, R)

where:

– Γ is a finite alphabet of symbols, also called objects;
– Λ is a finite set of labels for the membranes;
– μ is a membrane structure (i.e., a rooted unordered tree) consisting of m

membranes enumerated by 1, . . . ,m. Furthermore, each membrane is labeled
by an element of Λ, non necessarily in an injective way;

– w1, . . . , wm are strings over Γ , describing the multisets of objects placed in
the m initial regions of μ;

– R is a finite set of rules.

The membrane corresponding to the root of μ is called the skin, the ones cor-
responding to the leaves elementary membranes, whereas the others are called
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nonelementary. Each membrane possesses a further attribute, named polariza-
tion or electrical charge, which is either neutral (represented by 0), positive (+)
or negative (−).

The rules are of the following kinds:

– Send-in communication rules, of the form a [ ]αh → [b]βh
They can be applied to a membrane labeled by h, having polarization α and
such that the external region contains an occurrence of the object a; the
object a is sent into h becoming b and, simultaneously, the polarization of h
is changed to β.

– Send-out communication rules, of the form [a]αh → [ ]βh b
They can be applied to a membrane labeled by h, having polarization α and
containing an occurrence of the object a; the object a is sent out from h to
the outside region becoming b and, simultaneously, the polarization of h is
changed to β.

– Non-elementary division rules, of the form
[
[ ]+h1

· · · [ ]+hk
[ ]−hk+1

· · · [ ]−hn

]α
h
→
[
[ ]δh1

· · · [ ]δhk

]β
h

[
[ ]εhk+1

· · · [ ]εhn

]γ
h

They can be applied to a membrane labeled by h, having polarization α, con-
taining the positively charged membranes h1, . . . , hk, the negatively charged
membranes hk+1, . . . , hn, and possibly some neutral membranes. The mem-
brane h is divided into two copies having polarization β and γ, respectively;
the positive children are placed inside the former, their polarizations changed
to δ, while the negative ones are placed inside the latter, their polarizations
changed to ε. Any neutral membrane inside h is duplicated (together with the
objects and membranes it contains) and placed inside both copies.

A configuration in a P system with active membranes is described by its mem-
brane structure, together with its polarizations and the multisets of objects con-
tained in its regions. The initial configuration is given by μ, all membranes having
polarization 0 and the initial contents of the membranes being w1, . . . , wm. A
computation step changes the current configuration according to the following
principles:

– Each object and membrane can be subject to at most one rule per compu-
tation step.

– The rules are applied in a maximally parallel way: each object which appears
on the left-hand side of applicable communication rules must be subject to
exactly one of them; the same holds for each membrane which can be involved
in a communication or nonelementary division rule. The only objects and
membranes which remain unchanged are those associated with no rule, or
with unapplicable rules.

– When more than one rule can be applied to an object or membrane, the
actual rule to be applied is nondeterministically chosen; hence, in general,
multiple configurations can be reached from the current one.

– Every object which is sent out from the skin membrane cannot be brought
in again.
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A halting computation C of a P system Π is a finite sequence of configurations
(C0, . . . , Ck), where C0 is the initial configuration of Π , every Ci+1 can be reached
from Ci according to the principles just described, and no further configuration
can be reached from Ck (i.e., no rule can be applied). P systems might also
perform non-halting computations; in this case, we have infinite sequences C =
(Ci : i ∈ N) of successive configurations.

We can use families of P systems with active membranes as language recog-
nizers, thus allowing us to solve decision problems [9].

Definition 2. A recognizer P system with active membranes Π has an alphabet
containing two distinguished objects yes and no, used to signal acceptance and
rejection respectively; every computation of Π is halting and exactly one object
among yes, no is sent out from the skin membrane during the last step of each
computation.

In what follows we will only consider confluent recognizer P systems with active
membranes, in which all computations starting from the initial configuration
agree on the result.

Definition 3. Let L ⊆ Σ� be a language and let Π = {Πx : x ∈ Σ�} be a family
of recognizer P systems. We say that Π decides L, in symbols L(Π) = L, when
for each x ∈ Σ�, the result of Πx is acceptance iff x ∈ L.

Usually some uniformity condition, inspired by those applied to families of
Boolean circuits, is imposed on families of P systems. Two different definitions
are used:

Definition 4. A family of P systems Π = {Πx : x ∈ Σ�} is said to be polyno-
mially semi-uniform when the mapping x %→ Πx can be computed in polynomial
time, with respect to |x|, by a deterministic Turing machine.

Definition 5. A family of P systems Π = {Πx : x ∈ Σ�} is said to be polyno-
mially uniform when there exist two polynomial-time Turing machines M1 and
M2 such that, for each n ∈ N and each x ∈ Σn

– M1, on input 1n (the unary representation of the length of x), outputs the
description of a P system Πn with a distinguished input membrane;

– M2, on input x, outputs a multiset wx (an encoding of x);
– Πx is Πn with wx added to the multiset located inside its input membrane.

In other words, the P system Πx associated with string x consists of two parts;
one of them, Πn, is common for all strings of length |x| = n (in particular, the
membrane structure and the set of rules fall into this category), and the other
(the input multiset wx for Πn) is specific to x. The two parts are constructed
independently and, only as the last step, wx is inserted in Πn.

In this paper we denote by MCD (resp., MC�
D) the class of languages that

can be decided by uniform (resp., semi-uniform) families of confluent P systems
of type D (e.g., AM denotes P systems with active membranes) without any
restriction on time complexity. The space complexity of P systems [10] is defined
as follows:
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Definition 6. Let C be a configuration of a P system Π. The size |C| of C
is defined as the sum of the number of membranes in the current membrane
structure and the total number of objects they contain. If C = (C0, . . . , Ck) is a
halting computation of Π, then the space required by C is defined as

|C| = max{|C0|, . . . , |Ck|}

or, in the case of a non-halting computation C = (Ci : i ∈ N),

|C| = sup{|Ci| : i ∈ N}.

Indeed, non-halting computations might require an infinite amount of space (in
symbols |C| = ∞): for example, if the number of objects strictly increases at each
computation step.

The space required by Π itself is then

|Π | = sup{|C| : C is a computation of Π}.

Notice that |Π | = ∞ might occur if either Π has a non-halting computation
requiring infinite space (as described above), or Π has an infinite set of halting
computations, such that for each bound b ∈ N there exists a computation requiring
space larger than b.

Finally, let Π = {Πx : x ∈ Σ�} be a family of recognizer P systems; also let
f : N → N. We say that Π operates within space bound f iff |Πx| ≤ f(|x|) for
each x ∈ Σ�.

Next, we recall the definition of (deterministic) register machines.

Definition 7. A deterministic n-register machine is a construct R = (n, I,m),
where n > 0 is the number of registers, I is a finite sequence of instructions (pro-
gram) bijectively labeled with the elements of the set {1, 2, . . . ,m}, 1 is the label
of the first instruction to be executed, and m is the label of the last instruction
of I. Registers contain non-negative integer values. The instructions of I have
the following forms:

– “i : inc(r), j”with i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . ,m+1}and r ∈ {1, 2, . . . , n}.
This instruction, labeledwith i, increments the value contained in register r, and
then jumps to instruction j.

– “i : dec(r), j, k” with i ∈ {1, 2, . . . ,m}, j, k ∈ {1, 2, . . . ,m + 1} and r ∈
{1, 2, . . . , n}. If the value contained in register r is positive then decrement it
and jump to instruction j. If the value of r is zero then jump to instruction
k, without altering the contents of the register.

Computations start by executing the first instruction of I (labeled with 1), and
halt when the instruction currently executed tries to jump to label m + 1.

Formally, a configuration is a (n+1)-tuple whose components are the contents of
the n registers, and the label of the next instruction of I to be executed. In the
initial configuration this label is set to 1, whereas it is equal to m+1 in any final
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configuration. A computation starts in the initial configuration and proceeds by
performing computation steps, i.e., executing the current instruction, modifying
accordingly the contents of the affected register and the pointer to the next
instruction. A computation halts if it reaches a final configuration. The contents
of the registers in the initial configuration are regarded as the input, and those
in the final one as the output of the computation. A non-halting computation
does not produce a result.

We will also use the operation of tetration (iterated exponentiation) to de-
scribe upper bounds on time and space complexity:

Definition 8. For n ∈ N, let tetration be defined by

nb =

{
1 if n = 0
b(

n−1b) if n > 0
, that is, nb = bbb··

·b

︸ ︷︷ ︸
n times

We denote by PTETRA the class of languages decidable by deterministic Turing
machines in time p(n)2 for some polynomial p.

This class is trivially closed under union, intersection, complement and polyno-
mial time reductions; furthermore, since a TM operating in space f(n) can be
simulated in time 2O(f(n)), PTETRA is also the class of languages decidable
in space p(n)2 for some polynomial p (we will make use of this characterization
later). It is important to notice that PTETRA, despite being a very large class,
does not contain all recursively enumerable (or even recursive) languages, as a
consequence of the hierarchy theorems [3] for Turing machines.

3 Proof of Non-universality

We begin by providing an upper bound on the size that can be reached by
the membrane structure of a P system not using elementary division. If we ig-
nore labels and polarizations, any membrane structure of size m is a subtree
of the complete m-ary tree of depth m − 1.1 For the sake of finding the up-
per bound, we can thus assume that the membrane structure we are consider-
ing has exactly this shape. A distinctive feature of this tree is uniformity [1],
that is, the number of descendants of each node (hence the size and shape of
the subtree rooted in it) only depends on its level. Since we only deal with
uniform trees in this section, we denote them by T (n1, . . . , nk−1) as in [1],
where ni is the number of nodes on level i (the 0-th level implicitly contains
only the root node). The complete tree we just described is then denoted by
T (m,m2, . . . ,mm−2,mm−1).

Since nonelementary division rules separate the positively and negatively
charged children membranes (explicitly listed on the left-hand side of the rules

1 Smaller trees containing all subtrees of m nodes are known to exist, but none of

them is substantially (i.e., exponentially) smaller than this one [1].
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themselves) while duplicating the neutral ones, it should be clear that the
number of newly created membranes can be maximized by using only one posi-
tive and one negative membrane, as follows:

[
[ ]+h1

[ ]−h2

]α
h
→
[
[ ]δh1

]β
h

[
[ ]εh2

]γ
h

Suppose this rule is applied to a membrane h having k ≥ 2 children (among
these, a positively charged instance of h1 and a negatively charged instance of
h2, while all the other children membranes are neutral). As a result, membrane
h is doubled, and each of the two resulting instances of h possesses k−1 children
(one of the two charged ones, and a copy of all the neutral ones). For the rest of
this section, we ignore polarizations and labels, and assume that nonelementary
division rules (all of the above form) are always applicable when needed, as this
is the worst-case scenario. Under these assumptions, a membrane can divide as
long as it has at least two children. Notice that communication rules play no
role here, as they cannot increase the number of membranes.

The number of membranes created during the computation is maximized when
division rules are applied in a bottom-up fashion, that is, by first applying all
of them to membranes on the lowest possible level of the tree, until no further
division is possible, and only then proceeding to the upper level. Indeed, so doing
the membranes on the upper level will have more children, and so will be, in turn,
susceptible to more division rules. Notice that membranes on the same level are,
instead, independent as far as nonelementary division is concerned: we can thus
apply division rules to all membranes of the current level simultaneously, in a
maximally parallel way, in order to simplify the calculations.

According to the principles described thus far, each node on level m − 2 of
the tree

T (m,m2, . . . ,mm−2,mm−1),

which is the lowest where nonelementary division can be applied, is doubled
m − 1 times by applying every possible division rules in a maximally parallel
way; the first few steps are

T
(
m,m2, . . . , 2 ·mm−2, 2 ·mm−2(m− 1)

)

T
(
m,m2, . . . , 22 ·mm−2, 22 ·mm−2(m− 2)

)

T
(
m,m2, . . . , 23 ·mm−2, 23 ·mm−2(m− 3)

)

and the resulting tree is

T
(
m,m2, . . . ,mm−3, 2m−1 ·mm−2, 2m−1 ·mm−2

)
.

Repeating the whole process at level m− 3 yields

T
(
m,m2, . . . ,mm−4, 22m−1·m−1 ·mm−3, 22m−1·m−1 ·mm−3, 22m−1·m−1 ·mm−3

)
.
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In general, the number of nodes of level m− 1 − k of tree T (m,m2, . . . ,mm−1)
after applying all division rules on the lowest k levels (excluding the leaves) is
mm−1−k ·N(k) where

N(k) =

{
1 if k = 0
2N(k−1)m−1 if m− 2 ≥ k > 0.

After all possible division rules have been applied on level k, the number of nodes
is also mm−1−k · N(k) in all levels below it. Hence the final tree, obtained by
applying all division rules on all m − 2 levels below the root (in a bottom-up
fashion), has a total of 1 + (m− 1) ·m ·N(m− 2) nodes, and it can be proved
that this amount is O(m2)2. As a consequence, the following statement holds.

Lemma 1. Let Π be a P system that does not use elementary division rules,
with an initial membrane structure of size m. The maximum number of mem-
branes of Π, in any of its computations, is bounded by O(m2)2. 	


Now suppose that only communication and nonelementary division rules are
allowed. The only way to create new objects is, then, dividing a membrane, thus
duplicating all objects inside it. An upper bound on the maximum number of
objects which can be generated by a P system of this kind can be computed as
follows.

Lemma 2. Let Π be a P system using only communication and nonelementary
division rules, with an initial membrane structure of size m, and k objects in
its initial configuration. The maximum number of objects of Π, in any of its
computations, is bounded by O(m2)2 · k.

Proof. Suppose that, before each application of a nonelementary division rule
to a membrane, all objects are moved inside that membrane, so that they are
doubled when it divides: this hypothetical situation is the worst case. Clearly,
the number of applications of division rules which may occur during the whole
computation is bounded by the final number of membranes, which is, in turn,
bounded by O(m2)2 (Lemma 1). Then, the number of objects is bounded by

2(O(m2)2) · k, that is, by O(m2)2 · k. 	


Lemmata 1 and 2 allow us to prove that recognizer P systems using only com-
munication and nonelementary division rules are not universal, as they can be
simulated by Turing machines operating in tetrational space.

Theorem 1. Let D be the class of recognizer P systems using only communica-
tion and nonelementary division rules. Then MC�

D ⊆ PTETRA.

Proof. Let L ∈ MC�
D. Then L is decided by a semi-uniform family Π = {Πx :

x ∈ Σ�} of P systems of type D. Since there exists a polynomial-time Turing
machine constructing each Πx, there is a polynomial p such that each P system
Πx has a description of size at most p(n), where n = |x|. But then both the



372 A.E. Porreca, A. Leporati, and C. Zandron

size of the initial membrane structure and the initial number of objects in each
P system of Π are bounded by p(n). Hence, by Lemmata 1 and 2, the family
Π requires O(p(n)2)2 · p(n) space; since a family of P systems can be simulated
by a Turing machine using asymptotically the same space [12], the statement of
the theorem follows. 	


4 A Useful Gadget

The absence of object evolution rules (i.e., rules such as [a → w]αh which trans-
form an object into a multiset of objects without using the membrane structure)
from the class of P systems we are considering makes the process of designing
membrane algorithms a daunting task. In this section we introduce a gadget
that can be adapted for several uses, in particular as a timer (to generate a
specific object after a certain number of time steps) and as a generator of ex-
ponentially or even tetrationally many copies of an object (which is useful to
increase the polynomial amount of objects available in the initial configuration),
thus partially fulfilling the role of evolution rules. These features will be needed
in Section 5 in order to simulate a register machine using tetrational space.

The gadget is a P system “module” Πd,w with a membrane structure having
a tree representation with w + d − 1 nodes; d − 1 of them are arranged in a
chain, while the remaining w are children of the lowest node in the chain, thus
they correspond to the innermost membranes. The membranes are labeled by
h1, . . . , hd according to the level of the tree they belong to. We give here just an
informal description of the inner working of the gadget; a complete description
involves a number of other purely technical details (for instance, a constant
number of extra membranes per level must be added in order to provide a way
of delaying the action of objects, without using object evolution rules).

Two objects named � and r, initially located inside hd−1, enter two of the
membranes labeled by hd and set their charge to positive and negative respec-
tively; at this point, a nonelementary division rule can be applied to hd−1, which
splits in two copies containing all the neutral membranes hd and one of the two
charged membranes; the objects � and r are also duplicated. Both copies of hd−1

are now in a configuration analogous to the initial one (only with one less child),
and the process is repeated in parallel inside both of them. The procedure stops
when each of the 2w−1 resulting copies of hd−1 has a unique child, at which
point an object c is sent to hd−2 to signal that the operations on level d−1 have
been completed; object c activates the objects � and r of the level above, and
the whole process is repeated there. When an object c finally reaches h1 (the
root of the membrane structure), another object e is produced, thus signaling
the completion of the division procedure on all the levels.

Choosing w = 3 is sufficient to produce at least d−22 membranes on the level
immediately below the root (and on every level below it). This requires at least
d−32 steps of nonelementary divisions on that level: as a consequence, the object
e is only produced after this amount of time steps have passed. By choosing an
appropriate value of d, we can use Πd,3 as a clock, when we need a certain object
e to appear only after some other operations have been carried out.
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Similarly, by adding a child membrane containing a copy of the object a to
each membrane labeled by hd in Πd,3 we can obtain at least d−22 copies of
a, located inside the elementary membranes. When the object e is produced,
it can be used to release the copies of a (by changing the polarization of the
membranes that contain them), which can then travel upwards and be sent out
from h1. Notice that, by modifying Π3,w this way instead, we obtain exactly
2w−1 copies of object a.

5 Solving PTETRA Problems

We defined the complexity class PTETRA in terms of Turing machines, op-
erating in time or space p(n)2, but the class remains the same when register
machines are used. Indeed, register machines can simulate TMs by using asymp-
totically the same space (understood as the number of bits needed to represent
the values of the registers) by interpreting the tape of the TM as two binary
integers corresponding to the portions of the tape on the left and on the right of
the head, respectively [2]. A register machine recognizes a set of natural num-
bers by computing its characteristic function. Since strings may have meaningful
leading 0s, before feeding them as input to the register machines we prefix them
by 1 (this operation is, obviously, a bijection between {0, 1}� and 1{0, 1}�). By
simulating these register machines via P systems, using only communication and
nonelementary division rules, we can prove the reverse inclusion of Theorem 1.

It is known [11] that a register machine can be simulated by a uniform family
of P systems using only communication rules as long as the values stored in the
registers can be represented in unary using a polynomial number of symbols.
Each register r is represented by a membrane having label r and containing a
number of occurrences of object a equal to the value of the register; increment
and decrement operations are performed by sending in or out another occurrence
of a when the polarization of r is changed via a program-counter object (with a
subscript denoting the current instruction).

In our case, however, the unary encoding of an input string x ∈ 1{0, 1}n

requires exponentially many objects; furthermore, tetrationally many auxiliary
objects are required during the computation. We can solve both these problems
by using the gadget described in the previous section, only requiring the addition
of nonelementary division rules.

Let L ∈ PTETRA, and let R be a register machine accepting all integers
with binary encoding 1x for x ∈ L, and rejecting integers with binary encoding
1x for x /∈ L; assume that R works in space p(n)2 for some polynomial p. We
simulate R via a uniform family of P systems Π = {Πx : x ∈ {0, 1}�}.

The membrane structure of all systems Πx with |x| = n is the following one:

μn =
[
[μ′

0 · · ·μ′
n]01[ ]02 · · · [ ]0kμ

′′μ′′′[ ]0z
]0
0

where k is the number of registers of R, 1 is the input register, μ′′ is the mem-
brane structure of a P system module sending out p(n)2 copies of object a (thus
providing the auxiliary objects needed to carry out the computation), μ′′′ is the
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membrane structure of a module generating object p1 after O(p(n)2) steps, and
z is an auxiliary membrane (used to simulate “waiting” without using object
evolution rules [11]). Membrane μ′

i (for 0 ≤ i ≤ n) sends out 2i copies of object
a inside the input membrane 1 if and only if is activated by an object yi entering
its outermost membrane; this process is used to convert the binary input into
unary notation. The membrane structure μn, together with the associated set
of rules and initial objects, can be constructed from 1n by a Turing machine
operating in polynomial time.

The encoding of x = xn−1 · · ·x0, to be placed inside the input membrane 1,
is constructed as follows: for all i ∈ {0, . . . , n− 1}, object yi is part of the input
multiset iff xi = 1; furthermore, yn is also part of the input multiset. Clearly, this
encoding can be computed from x by a Turing machine working in polynomial
time; hence, the family of P systems Π is uniform.

Each P system Πx of Π operates as follows. As described above, the object
yi enters the membrane structure μ′

i which activates and sends out 2i copies of
object a to membrane 1. When the process is completed for all yi, the multi-
plicity of a inside membrane 1 is exactly the same as the number having binary
representation 1x. Simultaneously, inside μ′′ we produce enough copies of a to
carry out the simulation of the register machine, which are then sent out to the
skin membrane one at a time. Finally, we use μ′′′ to delay the appearance of
the program counter object p1 until all the instances of object a (both those
encoding the input and the auxiliary ones) have been generated and moved to
their initial position (membrane 1 and the skin, respectively).

When p1 is sent out to the skin membrane, the real simulation (which is de-
scribed in detail in [11]) begins. The object pi, where i is the currently simulated
instruction, moves between regions and changes the polarizations of the mem-
branes, thus activating rules that bring in or send out a copy of object a to one
of the register membranes, i.e., performing increment and decrement operations.
For instance, the following rules simulate the instruction “i : inc(r), j”:

pi [ ]0r → [p′i]
+
r a [ ]+r → [a]0r [p′i]

0
r → [ ]0r pj

Decrement instructions “i : dec(r), j, k” are implemented similarly, only with
the difference that the program counter object pi must wait at least one step in
order to let a copy of object a (that possibly occurs inside r) be sent out, thus
changing the charge of membrane r; now pi is sent out of r as pj or pk depending
on whether an a was actually sent out (i.e., the value of register r was nonzero).

The computation halts when the object yes (resp., no) is sent out from the
skin membrane of Πx if the simulated register machines accepts (resp., rejects),
that is, if x ∈ L (resp., x /∈ L). Thus, the family Π recognizes L.

Since L is an arbitrary PTETRA language, and given the space requirements
of Π and the result of Theorem 1, we proved the following statement:

Theorem 2. Let D be the class of P systems with active membranes using only
communication and elementary division rules. Then PTETRA = MCD =
MC�

D. 	
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6 Conclusions

We proved that P systems with active membranes using only communication and
nonelementary division rules are computationally weaker than Turing machines.
In particular, they characterize the class PTETRA of languages decided by
Turing machines whose resources are bounded by p(n)2 for some polynomial p.
This statement is proved by extending a recently published simulation of register
machines [11].

The fact that this kind of P systems, despite their non-universality, are able
to decide such a large class of languages suggests some topics for future research.
Are there any other classes of P systems (and, more generally, of classic or bio-
inspired computing devices) that exhibit a similar behavior? If this is not the
case, how can universal computing devices be restricted (in a different way than
simply imposing a resource bound) or enriched in order to achieve it?
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Abstract. We consider four operators on a regular language. Each of

them is a tool for constructing a code (respectively prefix, suffix, bifix
and infix) out of a given regular language. We give the precise values of

the (deterministic) state complexity of each of these operators.

1 Background and Motivation

Let Σ be a finite alphabet and Σ∗ denote the set of all words over the alphabet
Σ. By Σ+ we denote the set of all non-empty words in Σ∗. A word u ∈ Σ+

is a factor (prefix or suffix respectively) of a word w if w can be decomposed
as w = xuy (w = uy or w = xu respectively) for some x, y ∈ Σ∗. A language
over Σ is any subset of Σ∗. A subset X of Σ∗ is said to be a code, if any word
w ∈ X∗ can be written uniquely as a concatenation of words in X , namely
w = x1x2 · · ·xn with x1, x2, . . . xn ∈ X . A language L is said to be prefix-
free (suffix-free, infix-free respectively) if no word in L is a prefix (suffix, factor
respectively) of any other word in L. Obviously a prefix-free (respectively suffix-
free, infix-free) language consisting of non-empty words is a code, and such a
code is called prefix (respectively suffix, infix ). A code which is both prefix and
suffix is called bifix.

Codes play an important role in many areas such as information processing,
data compression and cryptography. In the applications different types of codes
are used. For example, widely-used Huffman codes are prefix-free languages, and
their advantage is that a given encoded word can be decoded deterministically.
From the formal language theory point of view codes are languages, but not vice
versa. In this paper we consider four operators on a regular language, each of
them is a tool for constructing a code (prefix, suffix, bifix or infix respectively)
out of a given regular language L. The obtained codes are maximal with respect
to inclusion among all the codes contained in L with a given property. Moreover
they contain all the words of minimal length in L. The prefix operator deletes
all the words w in L having a prefix (different from w) which is an element of L.
The language obtained is denoted by Lp and obviously is a prefix code. Formally
we define Lp = L \ LΣ+. Analogously the suffix operator deletes all the words
w in L having a suffix (different from w) belonging to L. The corresponding

Y. Gao et al. (Eds.): DLT 2010, LNCS 6224, pp. 376–386, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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language is denoted by Ls and it is a suffix code. Formally Ls = L \Σ+L. The
language Lb obtained by the bifix operator is the intersection Lb = Ls ∩Lp, and
clearly it is a bifix code. The infix operator builds the language Lι of all the
words of L such that none of their inner factors is in L. The formal definition is
Lι = L \ (Σ+LΣ∗ ∪ Σ∗LΣ+). By the closure properties of the class of regular
languages it is clear that if L is a regular language, all the languages Lp, Ls, Lb

and Lι are also regular.
Recall that a deterministic finite automaton (DFA for short) is a tuple A =

〈Q,Σ, δ, q0, F 〉, where Q is the set of states, Σ is the alphabet, δ : Q×Σ → Q is
the transition function, q0 ∈ Q is the initial state, F ⊆ Q is the set of final states.
Note that we assume that δ is defined in each state for all letters (such automata
are usually called complete). The language L(A ) recognized by a DFA A is the
set of words corresponding to the labels of paths starting at the initial state and
ending in some final state. If A is a DFA recognizing the language L, the words in
Lb represent efficient tasks of the automaton A since they are accepted without
useless first and last computation, while the language Lι represents optimal
computations. Thus it makes sense studying the state complexity of each of the
operators ·p, ·s, ·b and ·ι. Recall that the (deterministic) state complexity of a
regular language L (denoted by sc(L)) is the number of states of its minimal
DFA. The state complexity of an operator ·x on a regular language is the number
of states that are necessary and sufficient in the worst-case for the minimal
DFA that accepts the language obtained after applying the operator. Formally
scx(n) = max{sc(Lx) | sc(L) = n}. The state complexity of different operations
on regular languages has been widely studied in the recent years. For instance
Câmpeanu et al. [4] studied the state complexity in the case of finite languages,
Pighizzini and Shallit [12,13] examined the state complexity of unary language
operations, Jirásková [10] investigated the state complexity of some operations
on binary regular languages. For a comprehensive survey of the state complexity
of regular languages see [17]. A number of recent papers were dedicated to the
study of the state complexity of different operations on prefix-free and suffix-
free languages. In [6] Han and Salomaa studied the state complexity of basic
operations on suffix-free regular languages. Results concerning the deterministic
and nondeterministic state complexity of some operations on prefix-free regular
languages were obtained by Han et al. [7,8,9]. In [11] Kao, Rampersad and Shallit
et al. study a complementary problem, that is the state complexity of prefix-
closed, suffix-closed, or factor closed languages.

Note, that in particular case when L is a two-sided ideal in Σ∗, we have
Lb = Lι and this language consists of the generators of L, i.e. L = Σ∗LbΣ∗.
Moreover in this case we have simply Ls = L \ΣL, Lp = L \LΣ and Lb = Lι =
L \ (ΣL ∪ LΣ). Such a case arises for instance when we deal with the language
of synchronizing words of a synchronizing automaton. See [15] for more details
and the surveys [14,16] on synchronizing automata. The four operators and their
state complexities in the case of languages which are ideals were recently studied
by Brzozowski, Jiraskova and Li [3].
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2 State Complexity of the Prefix Operator

Let L = L(A ) be a regular language recognized by the minimal DFA A =
〈Q,Σ, δ, q0, F 〉. Some combinatorial properties of the language Lp were studied in
[1, Chaper 3], where it was introduced as a tool for constructing prefix codes. The
following statement is rather trivial. We put it here for the sake of completeness.

Proposition 1. scp(n) = n + 1.

Proof. Clearly if q0 ∈ F , then Lp consists of just the empty word, so we may
assume that q0 /∈ F . Then we modify the automaton A to accept the language
Lp in the following way. We redirect all the outgoing edges from all the final
states to the sink state s not belonging to F (if such a state exists, otherwise
it is added). Formally, we obtain the automaton A p = 〈Q ∪ {s}, Σ, δ′, q0, F 〉
where for all a ∈ Σ we have δ′(q, a) = δ(q, a) if q /∈ F , and for all q ∈ F we
put δ′(q, a) = s, δ′(s, a) = s. It is straightforward to check that L(A p) = Lp.
Therefore n + 1 states are sufficient. They are also necessary. Indeed, consider
the language L = Σ≥n−1 of all the words over the alphabet Σ of length at least
n−1 for n ≥ 2. Clearly the minimal DFA recognizing this language has n states.
Then using the previous construction we get that Lp = Σn−1 is accepted by the
minimal DFA with n + 1 states. �

3 State Complexity of the Suffix Operator

Since Ls = L \ Σ+L a naive construction from a DFA with n states accepting
L, leads to a DFA accepting Ls with at most n2n+1 states. In this section we
improve this bound and show that the new bound is tight.

Proposition 2. Let A = 〈Q,Σ, δ, q0, F 〉 be the n-state minimal DFA. The lan-
guage L(A )s is recognized by a DFA with at most (n− 1)2n−2 + 2 states.

Proof. We can suppose without loss of generality that q0 /∈ F otherwise L(A )s

would consist of just the empty word. Let Â be the automaton obtained from
A by erasing all the ingoing edges of q0. Then clearly L(Â ) consists of the set
of words in L(A ) which label paths in the automaton A passing through the
state q0 only once. Moreover L(A )s = L(Â )s. Thus to simplify the notations
we assume from the beginning that there are no cycles on the state q0 in A
(for the construction itself it does not matter whether the initial automaton is
complete).

Consider the following automaton P = 〈P,Σ, δP , iP , FP 〉 with the state set
P = {s, (q0,∅)} ∪ {(q,H) | q ∈ Q \ {q0}, H ⊆ Q}, the initial state iP = (q0,∅),
the set of final states is FP = {(q,H) | q ∈ F,H ∩ F = ∅} and the transition
function for all a ∈ Σ is defined in the following way:

δP ((q,H), a) =
{

(δ(q, a), δ(H, a) ∪ {q0}) if δ(q, a) is defined,
s otherwise;

δP (s, a) = s
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(here δ(H, a) =
⋃

h∈H δ(h, a)). Note that the automaton P is complete and s is
its sink state. Now we prove that L(P) = L(A )s. Let w = a1a2 · · · an ∈ L(A )s.
Since w ∈ L(A ), we have δP (iP , w) �= s. Then it is easy to see by induction

that δP (iP , w) = (q,H) where q ∈ F and H =
n⋃

i=2

{δ(q0, ai · · · an)} ∪ {q0}. Since

q0 /∈ F and none of the suffixes ai · · · an i > 1 is in L(A ), we have H ∩ F = ∅.
Hence w ∈ L(P).

Conversely, let w = a1a2 · · ·an ∈ L(P). This means that δP (iP , w) = (q,H)

with q ∈ F and H ∩ F = ∅. As we have seen H =
n⋃

i=2

{δ(q0, ai · · · an)} ∪ {q0},

hence w ∈ L(A ) and none of its suffixes different from w is in L(A ), thus
w ∈ L(A )s.

Clearly the automaton P has (n−1)2n+2 states. However a simple inspection
shows that if a state (q,H) is reachable from iP then q0 ∈ H . Thus the trimmed
automaton has at most (n− 1)2n−1 + 2 states. Moreover the right language of a
state (q,H) with q ∈ H is empty since if for some word w ∈ Σ∗ δP ((q,H), w) =
(q′, H ′) with q′ ∈ F , then clearly q′ ∈ H ′ and H ′∩F �= ∅, so (q′, H ′) /∈ FP . Thus
in the minimal automaton recognizing L(P) all the states (q,H) with q ∈ H
are identified with the sink state s. There are (n− 1)2n−2 such states (for each
q �= q0 we have all the subsets H of Q containing q0 and q, and there are 2n−2

such subsets), and so we get that the minimal DFA A s accepting L(A )s has at
most (n− 1)2n−1 + 2− (n− 1)2n−2 = (n− 1)2n−2 + 2 states. �

Proposition 3. For every n ≥ 4 there exists an n-state DFA An over a 4-letter
alphabet such that the minimal DFA recognizing the language L(An)s has exactly
(n− 1)2n−2 + 2 states.

Proof. For n ≥ 3 consider the DFA An+1 = 〈Qn+1, Σ, δ, 0, {1}〉 where Qn+1 =
{0, 1, . . . , n}, the alphabet consists of four elements Σ = {a, b, c, d}, the transi-
tion function is defined by the following rules (see Fig. 1):
δ(i, a) = i + 1 for 0 ≤ i ≤ n− 1, δ(n, a) = 1;
δ(0, b) = 0, δ(i, b) = i + 1 for 1 ≤ i ≤ n− 1, δ(n, b) = 1;
δ(0, c) = 0, δ(1, c) = 1, δ(n, c) = 2 and δ(i, c) = i + 1 for 2 ≤ i ≤ n− 1;
δ(i, d) = i for i �= 2, δ(2, d) = 1.

Consider the automaton Pn+1 built from An+1 as in Proposition 2. We prove
that the minimal DFA A s

n+1 accepting the language L(An+1)s has n2n−1 + 2
states. First we show that in the automaton A s

n+1 all the pairs (q,H) with
q �= 0, q /∈ H and 0 ∈ H are reachable. Indeed consider the state (q,H) with
H = {0, h1, . . . , hr}, h1 > h2 > · · · > hr. Then applying the word

w(q,H) = ab(q−h1−1)modnabh1−h2−1abh2−h3−1 · · · abhr−1−hr−1abhr−1

to the initial state (0,∅) we get exactly the state (q,H). Indeed, we have

δP ((0,∅), a) = (1, {0});
δP ((1, {0}), b(q−h1−1)modn) = ((q − h1)modn, {0}).
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Fig. 1. Automaton An+1

Denote (q1, H1) = ((q−h1)modn, {0}) and let (qi, Hi) = ((q−hi)modn, {0, h1−
hi, h2−hi, . . . , hi−1−hi}) for 2 ≤ i ≤ r−1. Then it is easy to check by induction
that

δP ((qi, Hi), abhi−hi+1−1) = (qi+1, Hi+1).

Finally we have (qr, Hr) = ((q − hr)modn, {0, h1 − hr, . . . , hr−1 − hr}), thus
δP ((qr , Hr), abhr−1) = (q,H).

Now let us prove that the right languages of two different reachable pairs
(q,H), (q′, H ′) are different. Let us denote these languages respectively by L(q,H)

and L(q′,H′). If q �= q′ suppose without loss of generality that q < q′, then it easy
to see that the word bn−q′+1 belongs to L(q′,H′) \ L(q,H), since δ(q′, bn−q′+1) =
1 �= δ(q, bn−q′+1) and in A s

n+1 any state of the form (1,K) with 1 /∈ K, 0 ∈ K is
final. Therefore we can suppose q = q′ and so H �= H ′. After applying the word
bn−q+1 the states (q,H), (q,H ′) move to the states (1,K), (1,K ′) respectively,
where K �= K ′ and both K, K ′ do not contain 1. We can suppose without loss
of generality that there is an element i ∈ K \K ′ (note that i �= 1). Thus after
applying the word cn−i+1 to the states (1,K) and (1,K ′) we obtain the states
(1,K1), (1,K ′

1), and since δ(i, cn−i+1) = 2 we have 2 ∈ K1 \K ′
1. Therefore after

applying the letter d to both states (1,K1), (1,K ′
1) we obtain the states (1,K2)

and (1,K ′
2), where 1 ∈ K2 (it means that in the minimal automaton A s

n+1 this
state is the sink s), while 1 /∈ K ′

2. Thus the word u = bn−q+1cn−i+1d belongs to
L(q,H′) \ L(q,H). �

As a corollary of Propositions 2 and 3 we have the following result:

Theorem 1. scs(n) = (n− 1)2n−2 + 2.

4 State Complexity of the Bifix Operator

In this section we consider the bifix operator Lb = Ls∩Lp = L \ (Σ+L∪LΣ+).

Proposition 4. Let A = 〈Q,Σ, δ, q0, F 〉 be the n-state minimal DFA. The lan-
guage L(A )b is recognized by a DFA with at most (n− 1− |F |)2n−2 + 3 states.
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Proof. The automaton P from Proposition 2 can be easily modified to accept
the language L(A )b. Indeed consider P ′ = 〈P,Σ, δ′P , iP , FP 〉 obtained from P
by redirecting all the transitions outgoing from the states (q,H) with q ∈ F
to the sink state s, i.e. for all states (q,H) with q ∈ F and for all a ∈ Σ
we put δ′P ((q,H), a) = s. Let us prove that L(P ′) = L(A )b. Indeed let w =
a1a2 · · · an ∈ L(A )b. Since δ(q0, a1 · · ·ai) /∈ F for all 1 ≤ i < n and δ(q0, w) ∈ F ,
we have δ′P (iP , w) �= s in the modified automaton P ′. Hence as in the proof of

Proposition 2 we have δ′P (iP , w) = (q,H) with q ∈ F , H =
n⋃

i=2

{δ(q0, ai · · · an)}∪

{q0} and H∩F = ∅. Thus w ∈ L(P ′). Conversely, let w = a1a2 · · · an ∈ L(P ′).
Then w ∈ L(A )s. Moreover by the definition of the modified transition function
if there were 1 ≤ i < n such that δ(q, a1 · · · ai) ∈ F , then we would have
δ′P (iP , w) = s which is not final. Hence none of the prefixes of w is in L(A ),
therefore w ∈ L(A )s ∩ L(A )p = L(A )b.

Note that in the new automaton P ′ all the states (q,H) with q ∈ F and
H ∩F = ∅ are equivalent to the unique final state, whereas all the states (q,H)
with q ∈ F and H ∩ F �= ∅ are equivalent to the sink state s. Since there are
|F |2n−2 states (q,H) with q ∈ F , the minimal automaton accepting L(P ′) has
at most (n− 1− |F |)2n−2 + 3 states. �

Obviously the maximum of the function (n−1−|F |)2n−2 +3 is obtained in case
|F | = 1. Let us prove that the bound (n− 2)2n−2 + 3 is tight.

Proposition 5. For every n ≥ 4 there exists an n-state DFA Bn over a 4-letter
alphabet such that the minimal DFA recognizing L(Bn)b has (n − 2)2n−2 + 3
states.

Proof. Consider the following automaton Bn+1 = 〈Qn+1, Σ, δ, 0, {n}〉with Qn+1

= {0, 1, . . . , n}, Σ = {a, b, c, d} and the transition function defined as follows (see
Fig. 2):
δ(i, a) = i + 1 for 0 ≤ i < n− 1, δ(n− 1, a) = 1, δ(n, a) = n;
δ(0, b) = 0, δ(i, b) = i + 1 for 1 ≤ i < n− 1, δ(n− 1, b) = 1, δ(n, b) = n;
δ(i, c) = i for i �= n− 1, δ(n− 1, c) = n;
δ(i, d) = i for i �= n, δ(n, d) = 0.

We apply the construction from Proposition 4. First we show that all the states
of the form (q,H) with q /∈ {0, n}, 0 ∈ H and q /∈ H are reachable from the
initial state (0,∅) in the minimal automaton Bb

n+1. Let H = {0, h1, h2, . . . , hr}
with h1 > h2 > · · · > hr. Suppose first that n /∈ H . Then it is not hard to see in
the same way as in the proof of Proposition 3 that the word

w(q,H) = ab(q−h1−1) mod(n−1)abh1−h2−1a · · ·abhr−1−hr−1abhr−1

brings the initial state (0,∅) to the state (q,H). Now we assume that n ∈ H :
H = {0, n, h1, . . . , hr} with h1 > h2 > · · · > hr. Consider the word

w′
(q,H) = a2bn−2cab(q−h1−1) mod(n−1)abh1−h2−1a · · ·abhr−1−hr−1abhr−1.
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Fig. 2. Automaton Bn+1

Its prefix a2bn−2c brings the initial state (0,∅) to the state (1, {0, n}). Further
since n is fixed by the letters a, b and c, applying the rest of the word w′

(q,H) we
obtain the state (q,H).

Note that in the minimal automaton Bb
n+1 there is only one final state f

which is a Myhill-Nerode equivalence class containing all the states of the form
(n,H) with 0 ∈ H and n /∈ H . We prove that all the pairs of non-final reachable
states have different right languages. Let us consider the two states (q1, H1),
(q2, H2) such that q1, q2 �= n, 0 ∈ H1 ∩H2, q1 /∈ H1 and q2 /∈ H2. After applying
the letter d to both states we obtain the states (q1, H ′

1) and (q2, H ′
2) such that

H ′
1 = H1 \ {n} and H ′

2 = H2 \ {n}.
Case 1. Assume first q1 �= q2. Without loss of generality assume q2 > q1.

After applying the word bn−q1−1c to both states (q1, H ′
1) and (q2, H ′

2) we obtain
respectively the states (n,H ′′

1 ) and (q2 − q1, H
′′
2 ). Since q1 /∈ H ′

1 and n /∈ H ′
1 we

have n /∈ H ′′
1 . Hence (n,H ′′

1 ) is equivalent to the final state f , while (q2−q1, H
′′
2 )

is not. Thus dbn−q1−1c ∈ L(q1,H1) \ L(q2,H2).
Case 2. Let q1 = q2 = q �= n. Then obviously H ′

1 �= H ′
2. Let i ∈ H ′

1 \H ′
2 (note

that i /∈ {0, n}). Apply the word bn−i−1c. Since δ(i, bn−i−1c) = n, we will obtain
the two states (q′, H ′′

1 ) and (q′, H ′′
2 ) such that n ∈ H ′′

1 \ H ′′
2 . After applying

the word bn−q′−1c we will have the states (n,H ′′′
1 ) and (n,H ′′′

2 ) such that n ∈
H ′′′

1 \H ′′′
2 . Thus the state (n,H ′′′

2 ) is equivalent to the final state f , while the
state (n,H ′′′

1 ) is equivalent to the sink state s. Thus dbn−i−1cbn−δ(q,bn−i−1c)−1c ∈
L(q,H2) \ L(q,H1). �

From Propositions 4 and 5 we deduce the following

Theorem 2. scb(n) = (n− 2)2n−2 + 3.

5 State Complexity of the Infix Operator

Lemma 1. For any language L the following equality holds: Lι = (LpΣ∗)b.
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Proof. It is easy to see that LpΣ∗ = LΣ∗. Thus (LpΣ∗)b = (LΣ∗)b. By the
definition we have

(LpΣ∗)b = (LΣ∗)b = LΣ∗ \ (Σ+LΣ∗∪LΣ∗Σ+) = LΣ∗ \ (Σ+LΣ∗∪LΣ+). (1)

On the other hand, by definition we have Lι = L \ (Σ+LΣ∗ ∪ Σ∗LΣ+). Since
Σ∗LΣ+ = Σ+LΣ+ ∪ LΣ+ and Σ+LΣ+ ⊆ Σ+LΣ∗ we get

Lι = L \ (Σ+LΣ∗ ∪ LΣ+). (2)

Comparing (1) and (2) we get Lι ⊆ (LpΣ∗)b. Conversely, let w ∈ (LpΣ∗)b. By
(1) we have in particular w ∈ LΣ∗ \LΣ+, hence w ∈ L and w /∈ Σ+LΣ∗∪LΣ+,
so w ∈ Lι. �

Proposition 6. Let A = 〈Q,Σ, δ, q0, F 〉 be the n-state minimal DFA. The lan-
guage L(A )ι is recognized by a DFA with at most (n − |F | − 1)2n−|F |−2 + 3
states.

Proof. Since Lι ⊆ Lb ⊆ Ls, we can assume, as in Proposition 2, that there are no
cycles on the state q0 in A and q0 /∈ F . We modify the automaton A to obtain
the automaton A ′ recognizing the language LpΣ∗. To this aim we erase all the
outgoing edges from the final states as in Proposition 1 and add loops labelled
by all the elements of Σ on each final state. Obviously the right languages of
all the final states are now equal, thus the minimized automaton A ′ recognizing
the language LpΣ∗ will have at most n − |F | + 1 states and only one of them
(denote it by f) is final. Now we apply the construction of Proposition 4 to the
automaton A ′. By this Proposition the resulting automaton will have at most
(n− |F | − 1)2n−|F |−1 + 3 states. Moreover since f is fixed by all the letters, the
right languages of all the states (q,H) (such that q �= q0, q �= f , q0 ∈ H , q /∈ H)
with f ∈ H are empty. Thus in the minimal DFA all of them are identified with
the sink state s. There are (n−|F |−1)2n−|F |−2 such states. Thus in the minimal
DFA recognizing the language Lι there are at most (n − |F | − 1)2n−|F |−2 + 3
states. �

It is easy to see that the maximum of the function (n− |F | − 1)2n−|F |−2 + 3 is
achieved in the case |F | = 1.

Proposition 7. For every n ≥ 4 there exists an n-state DFA Cn over a 3-letter
alphabet such that the minimal DFA recognizing L(Cn)ι has exactly (n−2)2n−3+
3 states.

Proof. For each n ≥ 3 consider the automaton Cn+1 = 〈Qn+1, Σ, δ, 0, {n}〉 with
Qn+1 = {0, 1, . . . , n}, Σ = {a, b, c} and the transition function defined as follows
(see Fig. 3):
δ(i, a) = i + 1 for 0 ≤ i ≤ n− 2, δ(n− 1, a) = 1, δ(n, a) = n;
δ(0, b) = 0, δ(i, b) = i + 1 for 1 ≤ i ≤ n− 2, δ(n− 1, b) = 1, δ(n, b) = n;
δ(i, c) = i for 0 ≤ i ≤ n, i �= n− 1, δ(n− 1, c) = n.
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Fig. 3. Automaton Cn+1

The automaton Cn+1 is obtained from the automaton Bn+1 from Proposition 5
by deleting the letter d. Note that the language L recognized by the automaton
Cn+1 is a right ideal of Σ∗, i.e. L = LΣ∗ = LpΣ∗. Thus we can immediately
apply the construction from Proposition 4. Let C ι

n+1 be the minimal DFA ob-
tained by this construction. In Proposition 5 it is shown that all the non-final
states (q,H) are reachable from the initial state (0,∅). By Proposition 5 the
right languages of two different non-final reachable states (q1, H1) and (q2, H2)
are different in case n /∈ H1 ∪ H2 (we do not have to apply the letter d first
to guarantee that n belongs to neither H1 nor H2). Thus we have (n − 2)2n−3

inequivalent states of the form (q,H) with q /∈ {0, n}, 0 ∈ H , q /∈ H and n /∈ H .
There are also three additional states: the initial state, the unique final state f ,
and the sink state s. Thus in the minimal DFA C ι

n+1 there are (n− 2)2n−3 + 3
states. �

By Propositions 6 and 7 we have the following result:

Theorem 3. scι(n) = (n− 2)2n−3 + 3.

6 Open Problems

In our examples showing that the bounds for the state complexity are attained,
we consider automata over a 4- or 3-lettered alphabet. We are not aware if there
exist series of DFA’s over smaller alphabets giving same lower bounds.

Since the state complexities of suffix, bifix and infix operators are exponen-
tial, it is natural to ask whether there exist classes of languages for which the
state complexities of these operators are polynomial. Some partial results on this
question have been obtained recently in [3].
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10. Jirásková, G.: State complexity of some operations on binary regular languages.

Theoret. Comput. Sci. 330, 287–298 (2005)

11. Kao, J.-Y., Rampersad, N., Shallit, J.: On NFAs where all states are final, initial,

or both. Theoret. Comput. Sci. 410, 5010–5021 (2009)

12. Pighizzini, G.: Unary language concatenation and its state complexity. In: Yu, S.,
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Abstract. A morphism h is called ambiguous for a string s if there

is another morphism that maps s to the same image as h; otherwise,

it is called unambiguous. In this paper, we examine some fundamental

problems on the ambiguity of erasing morphisms. We provide a detailed

analysis of so-called ambiguity partitions, and our main result uses this

concept to characterise those strings that have a morphism of strongly

restricted ambiguity. Furthermore, we demonstrate that there are strings

for which the set of unambiguous morphisms, depending on the size of

the target alphabet of these morphisms, is empty, finite or infinite. Fi-

nally, we show that the problem of the existence of unambiguous erasing

morphisms is equivalent to some basic decision problems for nonerasing

multi-pattern languages.

1 Introduction

The research on the ambiguity of morphisms is based on the following, elemen-
tary questions: Given a string s and a morphism h, do there exist morphisms g
with g(s) = h(s), but g(x) �= h(x) for a symbol x in s? If so, what properties do
these morphisms g have? For example, let s := AABBCC, and let the morphism
h : {A, B, C}∗ → {a, b}∗ be given by h(A) := h(C) := a and h(B) := b. Then it can
be easily verified that there is no morphism g satisfying g(s) = aabbaa = h(s)
and g(x) �= h(x) for an x ∈ {A, B, C}. Therefore, we call h unambiguous for s.
On the other, if we consider the morphism h′ : {A, B, C}∗ → {a, b}∗, defined by
h′(A) := h′(B) := h′(C) := (ab)10, then there are various other morphisms g that
map s to h′(s) = (ab)60. Hence, h′ is ambiguous for s. Furthermore, for every
n with 0 ≤ n ≤ 30 and for every symbol x ∈ {A, B, C}, there exists at least one
morphism g satisfying g(s) = h′(s) and g(x) = (ab)n. Thus, the ambiguity of h′

for s is largely unrestricted. In the present paper, we wish to investigate this phe-
nomenon, and we shall mainly focus on the question of whether, for any string,
there exists a morphism with a restricted ambiguity. To this end, we distinguish
between two types of restrictions: maximally restricted ambiguity (i. e., unambi-
guity) and so-called moderate ambiguity, a sophisticated yet natural concept to
be introduced below.
� Corresponding Author.

Y. Gao et al. (Eds.): DLT 2010, LNCS 6224, pp. 387–398, 2010.
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The existence of unambiguous and moderately ambiguous nonerasing mor-
phisms has already been intensively studied (see, e. g., Freydenberger et al. [1],
Reidenbach [9]), and characteristic criteria have been provided. These criteria
reveal that the existence of such morphisms is alphabet-independent, i. e., for
any string s over some alphabet A and for any alphabets Σ,Σ′ with at least
two letters each, s has an unambiguous or moderately ambiguous nonerasing
morphism h : A∗ → Σ∗ if and only if there is a morphism h′ : A∗ → Σ′∗

with the equivalent property. In the present work, we study the ambiguity of
all morphisms, including erasing morphisms, which map a symbol in s to the
empty string. As pointed out by Schneider [13], here the existence of unambigu-
ous erasing morphism does not only depend on the structure of the string, but
also on the size of the target alphabet of the morphism, which turns the search
for characteristic conditions into a rather intricate problem.

The examination of the ambiguity of morphisms is not only of intrinsic in-
terest, but, due to the simplicity of the concept, also shows various connections
to other topics in theoretical computer science and discrete mathematics. This
primarily holds for those approaches where several morphisms are applied to one
finite string, including pattern languages (see, e. g., Mateescu and Salomaa [8])
as well as equality sets (and, thus, the Post Correspondence Problem, cf. Harju
and Karhumäki [2]). Particularly well understood are the relations to pattern
languages, where several prominent problems have been solved using insights
into the ambiguity of morphisms (see, e. g., Reidenbach [10]). Moreover, there
are further connections of the ambiguity of morphisms to various concepts that
involve morphisms such as fixed points of morphisms, avoidable patterns and
word equations.

Our work is organised as follows: After giving some definitions and basic re-
sults, we provide a detailed analysis of ambiguity partitions (as introduced by
Schneider [13]), which are a vital concept when investigating the ambiguity of
erasing morphisms. In Section 4, we introduce and study moderate ambiguity,
i. e., an important type of strongly restricted ambiguity. We characterise those
strings for which there exist moderately ambiguous erasing morphisms, and this
is the main result of our paper. In Section 5, we deal with unambiguous mor-
phisms, and we study the number of such morphisms for certain strings. Finally,
in Section 6, we reveal that the existence of unambiguous erasing morphisms
can be characterised through basic decision problems for so-called nonerasing
multi-pattern languages. This insight might be a worthwhile starting point for
future research. Note that, due to space constraints, all proofs are omitted from
this paper.

2 Definitions and Basic Notes

In the present section we give some basic definitions and results. For notations
not explained explicitly, we refer the reader to Rozenberg and Salomaa [12].

Let IN := {1, 2, . . .} be the set of natural numbers. The power set of a set S is
denoted by P(S). An alphabet A is an enumerable set of symbols. A string (over
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A) is a finite sequence of symbols taken fromA. By |X | we denote the cardinality
of a set X or the length of a string X . The empty string ε is the unique sequence
of symbols of length 0. For the concatenation of strings s, t we write s · t (or st
for short). The string that results from the n-fold concatenation of a string s is
denoted by sn. The notation A∗ refers to the set of all strings over A, i. e., more
precisely, the free monoid generated by A; furthermore, A+ := A∗ \ {ε}. The
number of occurrences of a symbol x ∈ A in a string s ∈ A∗ is written as |s|x.
With regard to arbitrary strings s, t ∈ A∗, we write s = t . . . if there exists an
u ∈ A∗ such that s = tu, we write s = . . . t if there exists an u ∈ A∗ such that
s = ut, and, finally, s = . . . t . . . if there exist u, v ∈ A∗ such that s = utv. We
call t a prefix, suffix and factor of s, respectively. In contrast to this notation,
if we omit some parts of a canonically given string, then we henceforth use the
symbol [. . .]; e. g., s = . . . a b [. . .] f means that s ends with the string a b c d e f .

We often use IN as an infinite alphabet of symbols. In order to distinguish
between strings over IN and strings over a (possibly finite) alphabet Σ, we call
the former patterns. Given a pattern α ∈ IN∗, we call symbols occurring in α
variables and denote the set of variables in α with var(α). Hence, var(α) ⊆ IN.
We use the symbol · to separate the variables in a pattern, so that, for instance,
1 · 1 · 2 is not confused with 11 · 2.

Given arbitrary alphabets A,B, a morphism is a mapping h : A∗ → B∗ that
is compatible with the concatenation, i. e., for all v, w ∈ A∗, h(vw) = h(v)h(w).
Hence, h is fully defined for all v ∈ A∗ as soon as it is defined for all symbols in
A. We call h erasing if and only if h(a) = ε for an a ∈ A; otherwise, h is called
nonerasing. If we call a morphism h (non)erasing with a certain input string s
in mind, we only demand h to be (non)erasing for the symbols occurring in s.

A pattern α ∈ IN+ is called a fixed point (of a morphism h) if h(α) = α. A
morphism h : IN∗ → IN∗ is said to be nontrivial if h(x) �= x for an x ∈ IN. Let
V ⊆ IN. We call h : IN∗ → IN∗ nontrivial for V if h(x) �= x for an x ∈ V . The
morphism πV : IN∗ → IN∗ is given by πV (x) := x if x ∈ V and πV (x) := ε if
x �∈ V .

For any alphabet Σ, for any morphism σ : IN∗ → Σ∗ and for any pattern
α ∈ IN+ with σ(α) �= ε, we call σ unambiguous (for α) if and only if there is
no morphism τ : IN∗ → Σ∗ satisfying τ(α) = σ(α) and, for some x ∈ var(α),
τ(x) �= σ(x). If σ is not unambiguous for α, it is called ambiguous (for α). We
extend this definition to any word w ∈ Σ∗ in the natural way, i. e., w is said to
be unambiguous (for α) if there is an unambiguous morphism σ : IN∗ → Σ∗ with
σ(α) = w, and w is called ambiguous (for α) if there is an ambiguous morphism
σ : IN∗ → Σ∗ satisfying σ(α) = w. Furthermore, with regard to the E-pattern
language of α to be introduced in the subsequent paragraph, we say that a word
w ∈ LE,Σ(α) is (un-)ambiguous if w is (un-)ambiguous for α.

Basically, the set of all images of a pattern α ∈ IN+ under morphisms σ :
IN∗ → Σ∗, where Σ is an arbitrary alphabet of so-called terminal-symbols, is
called the pattern language (generated by α). Formally, two main types of pat-
tern languages of α are considered: its E-pattern language LE,Σ(α) := {σ(α) |
σ : IN∗ → Σ∗ is a morphism} and its NE-pattern language LNE,Σ(α) := {σ(α) |
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σ : IN∗ → Σ∗ is a nonerasing morphism}. Note that, in literature, pattern lan-
guages as defined above are usually called terminal-free, since, in a more general
understanding of the concept, a pattern may additionally contain terminal sym-
bols. The morphisms σ : (IN∪Σ)∗ → Σ∗ applied to such a pattern α ∈ (IN∪Σ)+

when generating its pattern language must then be terminal-preserving, i. e., for
any a ∈ Σ, σ(a) = a must be satisfied.

We conclude the definitions in this section with a partition of the set of all
patterns subject to the following criterion:

Definition 1. Let α ∈ IN+. We call α prolix if and only if there exists a fac-
torisation α = β0 γ1 β1 γ2 β2 . . . γn βn with n ≥ 1, βi ∈ IN∗, 0 ≤ i ≤ n, and
γi ∈ IN+, 1 ≤ i ≤ n, such that

1. for every i ∈ {1, 2, . . . , n}, |γi| ≥ 2,
2. for every i ∈ {0, 1, . . . , n}, for every j ∈ {1, 2, . . . , n}, var(βi) ∩ var(γj) = ∅,
3. for every i ∈ {1, 2, . . . , n}, there exists an yi ∈ var(γi) such that yi occurs

exactly once in γi and, for every i′ ∈ {1, 2, . . . , n}, if yi ∈ γi′ then γi = γi′ .

We call α ∈ IN+ succinct if and only if it is not prolix.

A succinct pattern is the shortest generator of its respective E-pattern language,
i. e., for any Σ, |Σ| ≥ 2, and any succinct pattern α, there is no pattern β
with |β| < |α| and LE,Σ(β) = LE,Σ(α). Furthermore, the set of prolix patterns
exactly corresponds to the class of finite fixed points of nontrivial morphisms
(cf. Head [3]). Note that set of succinct patterns is also equivalent to the set of
morphically primitive words (as introduced by Reidenbach and Schneider [11]).

Regarding the unambiguity of nonerasing morphisms, the classification of
patterns into succinct and prolix patterns is vital:

Theorem 1 (Freydenberger, Reidenbach, and Schneider [1]). Let α ∈
IN+, let Σ be an alphabet, |Σ| ≥ 2. There exists an unambiguous nonerasing
morphism σ : IN∗ → Σ∗ for α if and only if α is succinct.

According to this result, for any prolix pattern α, every nonerasing morphism
is ambiguous. In contrast to this negative insight, there are prolix patterns that
have unambiguous erasing morphisms (as pointed out by Schneider [13]). How-
ever, this is not a universal property of prolix patterns; thus, certain prolix
patterns do not have any unambiguous morphism at all. This phenomenon is
the main topic of our paper.

3 Ambiguity Partitions

Previous results show that ambiguity partitions as introduced by Schneider [13]
are a crucial notion when investigating the ambiguity of erasing morphisms, and
the main result of our paper, given in Section 4, further illustrates their impor-
tance. In the present section, we therefore study some fundamental properties
of this concept.



Restricted Ambiguity of Erasing Morphisms 391

Definition 2. We inductively define an ambiguity partition (for any α ∈ IN+):

(i) (∅, var(α)) is an ambiguity partition for α.
(ii) If (E,N) is an ambiguity partition for α and there exists a morphism h :

IN∗ → IN∗ that is nontrivial for N and satisfies h(α) = πN (α), then (E′, N ′)
is an ambiguity partition with E′ := E ∪ {x ∈ N | h(x) = ε}, N ′ := {x ∈
N | h(x) �= ε}.

According to [13], Definition 2 permits a number of fundamental insights into
the ambiguity of erasing morphisms to be established. They directly or indirectly
result from the following, slightly technical fact:

Theorem 2 (Schneider [13]). Let Σ be an alphabet. Let α ∈ IN+ and let
(E,N) be an ambiguity partition for α. Then every morphism σ : IN∗ → Σ∗

satisfying σ(x) �= ε for an x ∈ E is ambiguous for α.

Consequently, for any pattern α, an ambiguity partition (E,N) for α gives us
valuable information on the set S of variables in α which must be erased by
unambiguous morphisms, since S ⊇ E. Thus, the larger the set E becomes, the
more information we get. Therefore, we name ambiguity partitions with a set E
of maximal size in the following definition:

Definition 3. Let α ∈ IN+. An ambiguity partition (E,N) for α is called max-
imal if and only if every ambiguity partition (E′, N ′) for α satisfies |E′| ≤ |E|
and |N ′| ≥ |N |.
This definition supports some of our proofs, and we can use it to express vital
statements on the (non-)existence of morphisms with a restricted ambiguity.

From Definition 2, it is not obvious whether or not a maximal ambiguity
partition for a pattern α is unique. However, it can be shown that, for any
pattern, there is exactly one maximal ambiguity partition:

Theorem 3. Let α ∈ IN+ and (E,N) be a maximal ambiguity partition for α.
Then (E,N) is unique.

Evidently, the uniqueness of the maximal ambiguity partition (E,N) of a pattern
α is a nontrivial property only if E �= var(α). On the other hand, if (var(α), ∅)
is the maximal ambiguity partition of α, then it is known that the following
statement on the existence of unambiguous morphisms holds true:

Corollary 1 (Schneider [13]). Let Σ be an alphabet, and let α ∈ IN+. If
(var(α), ∅) is an ambiguity partition for α, then every morphism σ : IN∗ → Σ∗

is ambiguous for α.

While Corollary 1, in the case of arbitrary alphabets Σ, uses ambiguity partitions
(var(α), ∅) to establishes a sufficient criterion on the nonexistence of unambigu-
ous morphisms (note that [13] gives examples demonstrating that this criterion
is not characteristic), an even stronger result is known for infinite Σ:

Theorem 4 (Schneider [13]). Let Σ be an infinite alphabet, and let α ∈ IN+.
Then (var(α), ∅) is an ambiguity partition for α if and only if every morphism
σ : IN∗ → Σ∗ is ambiguous for α.
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Thus, when investigating the existence of unambiguous erasing morphisms, the
question of whether or not (var(α), ∅) is an ambiguity partition for α leads to
an important (and sometimes even characteristic) partition of IN+. Therefore,
we now introduce a new terminology reflecting this question:

Definition 4. Let α ∈ IN+. We call α morphically erasable if and only if
(var(α), ∅) is an ambiguity partition for α. Otherwise, α is called morphically
unerasable.

Thus, referring to Definition 4, Corollary 1 demonstrates that, for finite alpha-
bets Σ, the search for patterns with unambiguous morphisms can be narrowed
down to the morphically unerasable ones. Therefore, and since our main result
in Section 4 again is based on this property, we now give a nontrivial charac-
terisation of such patterns. To this end, we use a condition that is based on the
inclusion of E-pattern languages, which is a well-investigated problem (see Jiang
et al. [6]).

Condition 1. A pattern α ∈ IN+ satisfies Condition 1 if and only if there exists
a set N ⊆ var(α) such that, for every M ⊆ var(α) with M �⊇ N and for any
alphabet Σ with |Σ| ≥ 2, LE,Σ(πM (α)) �⊇ LE,Σ(πN (α)).

Lemma 1. A pattern α ∈ IN+ satisfies Condition 1 if and only if α is morphi-
cally unerasable.

Summarising the above statements, we can note the following sufficient condition
on the nonexistence of unambiguous erasing morphisms, that is equivalent to
Corollary 1:

Theorem 5. Let Σ be an alphabet. If an α ∈ IN+ does not satisfy Condition 1,
then every morphism σ : IN∗ → Σ∗ with σ(α) �= ε is ambiguous for α.

The original motivation for investigating the ambiguity of morphisms is derived
from inductive inference of E-pattern languages – i. e., the problem of computing
a pattern from the words in its pattern languages –, which strongly depends
on the inclusion relation between E-pattern languages. In this context, certain
morphisms with a restricted ambiguity are known to generate words that contain
reliable and algorithmically usable information about their generating pattern
(cf. Reidenbach [10]) and, thus, are a vital input to any inference procedure.
Theorem 5 further illustrates this close connection between the two topics.

The techniques used in [10] are based on the notion of an ambiguity of spe-
cific nonerasing morphisms that is restricted in a particular manner. We now
introduce and study an equivalent concept for erasing morphisms.

4 Moderate Ambiguity

Theorem 4 shows that, in case of an infinite alphabet Σ, the property of a
pattern α being morphically unerasable is characteristic for the existence of a
morphism σ : IN∗ → Σ∗ that is unambiguous for α. However, concerning finite
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target alphabets Σ, there are morphically unerasable patterns for which there
exists no unambiguous morphism (see the examples given by Schneider [13]).
Although we are, hence, not able to achieve unambiguity for every morphically
unerasable pattern, we shall demonstrate below that a certain restricted ambi-
guity is possible, which can be interpreted as unambiguity of a morphism with
regard to particular factors of σ(α). As briefly mentioned above, a similar prop-
erty of nonerasing morphisms is used for many fundamental results on inductive
inference of E-pattern languages, and an extensive analysis of this phenomenon
is provided by Reidenbach [9].

In accordance with [9], we call the said type of ambiguity moderate ambiguity.
Intuitively, it can be understood as follows: A morphism σ : IN∗ → Σ∗ is called
moderately ambiguous for a pattern α if, for every variable position j of a variable
x in α with σ(x) �= ε, there exists a certain factor wj of σ(α) at a certain
position (between the ljth and rjth letter in σ(α)) such that every morphism
τ : IN∗ → Σ∗ with τ(α) = σ(α) maps the variable x at position j to a word
which covers at least the factor wj at this particular position. We illustrate this
type of ambiguity in the following example:

Example 1. Let Σ := {a, b} and α := i1 · i2 · i3 · i4 · i5 · i6 · i7 · i8 · i9 · i10 :=
1 · 2 · 1 · 1 · 2 · 1 · 1 · 3 · 1 · 3. Let σ : IN∗ → Σ∗ be a morphism defined by
σ(1) := ε, σ(2) := aba, σ(3) := abb. The morphism σ is ambiguous for α since
τ : IN∗ → Σ∗, defined by τ(1) := a, τ(2) := b, τ(3) := bb, satisfies τ(α) = σ(α).
Hence, the situation looks as follows:

σ(2)︷ ︸︸ ︷ σ(2)︷ ︸︸ ︷ σ(3)︷ ︸︸ ︷ σ(3)︷ ︸︸ ︷
σ(α) = a︸︷︷︸

τ(1)

b︸︷︷︸
τ(2)

a︸︷︷︸
τ(1)

a︸︷︷︸
τ(1)

b︸︷︷︸
τ(2)

a︸︷︷︸
τ(1)

a︸︷︷︸
τ(1)

bb︸︷︷︸
τ(3)

a︸︷︷︸
τ(1)

bb︸︷︷︸
τ(3)

= τ(α).

However, we call σ moderately ambiguous since all morphism τ ′ with τ ′(α) =
σ(α) map every variable ik with σ(ik) �= ε to a certain factor wk of σ(ik) at a
particular position. In this example, we have w2 = w5 = b and w8 = w10 = bb
– and the only morphisms τ ′ with τ ′(α) = σ(α) are σ itself and τ which satisfy
σ(ik) = . . . wk . . . = τ(ik) for k = 2, 5, 8, 10.

We now formalise moderate ambiguity. As explained above, we consider this a
very natural way of slightly relaxing the requirement of unambiguity, and the im-
portance of this approach has been demonstrated in the context of inductive in-
ference of pattern languages. Nevertheless, our definition is quite involved, since
we do not only postulate that, for a given pattern α and for every x ∈ var(α),
there exists a string wx such that, for every morphism τ with τ(α) = σ(α), τ(x)
contains wx as a factor (which could be called factor-preserving ambiguity), but
we also demand that these factors are located at fixed positions for all τ . This
means that we need to identify and mark the positions of the factors.

Definition 5. Let Σ be an alphabet, let α = i1 ·i2 · [. . .] ·in with n, i1, i2, . . . , in ∈
IN, and let σ : IN∗ → Σ∗ be a morphism satisfying σ(α) �= ε. Then σ is called
moderately ambiguous (for α) provided that there exist l2, l3, . . . , ln, r1, r2, . . . ,
rn−1 ∈ IN ∪ {0} such that, for every morphism τ : IN∗ → Σ∗ with τ(α) = σ(α),
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(i) if σ(i1) �= ε then r1 ≥ 1,
(ii) if σ(in) �= ε then ln ≤ |σ(α)|,
(iii) for every k ∈ {2, 3, . . . , n− 1} with σ(ik) �= ε, lk ≤ rk,
(iv) for every k with 1 ≤ k ≤ n− 1, |τ(i1 · i2 · [. . .] · ik)| < lk+1, and
(v) for every k with 1 ≤ k ≤ n− 1, |τ(i1 · i2 · [. . .] · ik)| ≥ rk.

We call σ strongly ambiguous (for α) if and only if it is not moderately ambiguous
(for α).

In the definition, for any pattern α and any moderately ambiguous morphism
σ for α, a pair (lk, rk) for some ik ∈ var(α) with σ(ik) �= ε “marks” the factor
wk from position lk to rk in σ(α). This factor must be covered by the image
of ik under every morphism τ with τ(α) = σ(α) – this is guaranteed by the
conditions (iv) and (v). Considering Example 1, we choose the following markers
li, rk: Let r1 := 0, (l2, r2) := (2, 2), (l5, r5) := (5, 5), (l8, r8) := (8, 9), l10 := 11
and finally (lk, rk) := (|σ(α)| + 1, 0) for k ∈ {1, 3, 4, 6, 7, 9} since, for these k,
σ(ik) = ε, and, thus, no factor has to be marked. It can be verified that these
values of lj , 2 ≤ j ≤ n, and rk, 1 ≤ k ≤ n− 1 meet the requirements (i)–(v) of
Definition 5.

The following lemma is useful when studying moderate ambiguity since, in
certain cases, it circumvents a check of the minutiae of Definition 5.

Lemma 2. Let Σ be an alphabet, α ∈ IN+ and σ : IN∗ → Σ∗ be a morphism. If
there exists a morphism τ : IN∗ → Σ∗ such that τ(α) = σ(α), but τ(x) = ε �=
σ(x) for an x ∈ var(α), then σ is not moderately ambiguous for α.

As suggested by the definitions and further substantiated by Example 1, for any
given morphism, the requirement of being moderately ambiguous is less strict
than that of being unambiguous:

Proposition 1. Let Σ be an alphabet, let σ : IN∗ → Σ∗ be a morphism, and let
α ∈ IN+. If σ is unambiguous for α, then σ is moderately ambiguous for α. In
general, the converse does not hold.

This directly implies that if there exists no moderately ambiguous morphism for
a pattern α, then there exists no unambiguous morphism for α and, thus, every
morphism is strongly ambiguous for α.

With these new terms of ambiguity, we can give a stronger version of
Theorem 2:

Theorem 6. Let Σ be an alphabet. Let α ∈ IN+ and let (E,N) be an ambiguity
partition for α. Then every morphism σ : IN∗ → Σ∗ satisfying σ(x) �= ε for an
x ∈ E is strongly ambiguous for α.

The main result of our paper characterises those patterns that have a moderately
ambiguous morphism. More precisely, it states that moderate ambiguity can be
achieved if and only if the pattern is morphically unerasable:

Theorem 7. Let Σ be an alphabet, |Σ| ≥ 2, let α ∈ IN+. There exists a mor-
phism σ : IN∗ → Σ∗ that is moderately ambiguous for α if and only if α is
morphically unerasable.
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In addition to the facts that Theorem 7 provides an algorithmically verifiable
characteristic condition on a vital problem regarding the existence of morphisms
with a restricted ambiguity and, furthermore, implies the equivalent result for
the weaker requirement of factor-preserving ambiguity, we consider two other
aspects of it quite remarkable. Firstly, it confirms that ambiguity partitions are
indeed a crucial tool when investigating the ambiguity of erasing morphisms,
since they cannot only be used to give sufficient criteria on the subject (cf.
Corollary 1) and characteristic criteria for special cases (cf. Theorem 4), but are
also capable of expressing a key phenomenon in this field of study.

Secondly, it establishes a quite remarkable and counter-intuitive difference
between the ambiguity of erasing and nonerasing morphisms. As demonstrated
by Freydenberger et al. [1], the existence of a moderately ambiguous nonerasing
morphism σ for a pattern implies the existence of an unambiguous nonerasing
morphism σ′. More technically, it can be shown that σ can be turned into σ′

by applying some minor yet sophisticated changes that depend on the structure
of the pattern in question (see Reidenbach [9] for a detailed discussion of this
topic). It is also important to note that the morphism σ and σ′ both use a binary
target alphabet; hence, the existence of such morphisms – which characterises
the succinct patterns, cf. Theorem 1 – exclusively depends on the pattern and
not on the size of Σ (provided that Σ contains at least two letters). In contrast
to these observations, Theorem 7 demonstrates that the existence of moderately
ambiguous erasing morphisms does not imply the existence of unambiguous eras-
ing morphisms:

Corollary 2. Let Σ be an alphabet. There exists an α ∈ IN+ and a morphism
σ : IN∗ → Σ∗ such that σ is moderately ambiguous for α, but no morphism is
unambiguous for α.

Hence, the main result of our paper also shows that the technical concepts used
by Freydenberger et al. [1] to turn a moderately ambiguous morphism into an
unambiguous one necessarily fail for erasing morphisms. Since this insight is
rather unexpected, it is also surprising that Theorem 7 is alphabet-independent,
whereas any characterisation of the set of those patterns that have an unam-
biguous erasing morphism must depend on the size of Σ (as shown by Schneider
and to be further addressed by Section 5).

We wish to conclude this section with an insight into the complexity of the
problem of deciding on the existence of moderately ambiguous morphisms:

Corollary 3. Let Σ be an alphabet, |Σ| ≥ 2. The problem of deciding, for any
given α ∈ IN+, on whether there is an erasing morphism σ : IN∗ → Σ∗ that is
moderately ambiguous for α, is NP-complete.

This nicely contrasts with the recent result by Holub [4], which implies that
there is a polynomial-time procedure deciding on the existence of unambiguous
nonerasing morphisms.

As briefly mentioned above, we now study another fundamental property of
those patterns that can be used to prove Corollary 2.



396 D. Reidenbach and J.C. Schneider

5 Patterns with Finitely Many Unambiguous Morphisms

Once the existence of morphisms with a restricted ambiguity has been estab-
lished for a given pattern, it is a natural problem to investigate the number of
such morphisms. Since the existence of one moderately ambiguous morphism for
a given pattern immediately implies an infinite number of such morphisms (the
morphism used to prove Theorem 7 can easily be generalised), we now study the
above-mentioned topic with regard to a maximal restriction of ambiguity, i. e.
unambiguity. To this end, we introduce the following notation:

Definition 6. Let Σ be an alphabet and α ∈ IN+. Then UNAMBΣ(α) is the set
of all σ(α), where σ : IN∗ → Σ∗ is a morphism that is unambiguous for α, and
UNAMBNE,Σ(α) is the set of all σ(α), where σ : IN∗ → Σ∗ is a morphism that
is nonerasing and unambiguous for α.

We wish to point out that the sets UNAMBΣ(α) and UNAMBNE,Σ(α) do not
consist of morphisms, but of morphic images. This makes sure that all unambigu-
ous morphisms indirectly collected by these sets necessarily differ on variables
that are contained in var(α).

We first consider the case of nonerasing morphisms.

Theorem 8. Let α ∈ IN+. Then either, for all alphabets Σ with |Σ| ≥ 2,
UNAMBNE,Σ(α) is empty or, for all alphabets Σ with |Σ| ≥ 2, UNAMBNE,Σ(α)
is infinite.

If we study the equivalent question for the ambiguity of erasing morphisms, we
can observe a novel phenomenon that establishes a further difference to the case
of nonerasing morphisms. More precisely, for certain patterns α, the cardinality
of UNAMBΣ(α) can be finite, and this essentially depends on the size of Σ:

Theorem 9. Let k ∈ IN. Let Σk, Σk+1, Σk+2 be alphabets with k, k + 1, k + 2
letters, respectively. There exists an αk ∈ IN+ such that |UNAMBΣk

(αk)| = 0,
|UNAMBΣk+1(αk)| = m for an m ∈ IN, and UNAMBΣk+2(αk) is an infinite set.

6 Connections to NE-Pattern Languages

In this final main section of our paper we wish to study a topic that, after the
particularly strong result in Theorem 7, remains as the most fundamental open
problem on erasing morphisms with a restricted ambiguity, namely a charac-
terisation of those patterns that have an unambiguous erasing morphism. As a
matter of fact, the main result of the present section can be understood as such
a characterisation, but the immediate usefulness of the result is limited. Never-
theless, our examinations reveal some enlightening and rather counter-intuitive
insights that might be useful for further investigations.

While the existence of a relation between the ambiguity of erasing morphisms
and certain properties of E-pattern languages (as, e. g., demonstrated by Con-
dition 1 and Theorem 5) is by no means surprising, our characterisation shall
demonstrate likewise deep connections between the main subject of our paper
and vital properties of NE-pattern languages. It reads as follows:
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Theorem 10. Let Σ be an alphabet, and let α ∈ IN+. For any partition (U, V ) of
P(var(α)) \ {∅}, let Lα,U,V :=

⋃
u∈U LNE,Σ(πu(α))∩

⋃
v∈V LNE,Σ(πv(α)). There

is no unambiguous word in LE,Σ(α) \ {ε} if and only if there is no unambiguous
word in LE,Σ(α) \ ({ε} ∪ Lα,U,V ).

It is a noteworthy property of Theorem 10 that it covers the ambiguity of both
erasing and nonerasing morphisms and, hence, allows a unified view on both
topics. However, for the latter case, Theorem 1 already gives a definite answer,
indirectly stating that, for every succinct pattern α, there is no partition (U, V )
of P(var(α))\{∅} such that every word in LE,Σ(α)\ ({ε}∪Lα,U,V ) is ambiguous
for α. Thus, we can completely concentrate on prolix patterns when investigating
applicability and consequences of Theorem 10.

From a practical point of view, Theorem 10 is not too helpful yet, as it merely
reduces the number of words that need to be examined with regard to their
ambiguity. Thus, it cannot be seen as an applicable characterisation of those
patterns that have an unambiguous erasing morphism. On the other hand, it
constitutes a promising starting point for further research on that topic, asking
how U and V have to be be chosen such that Lα,U,V has maximal size and what
a maximal Lα,U,V looks like for a given α. In this regard, it is worth mentioning
that example patterns α and sets U, V ⊆ P(var(α)) \ {∅} can be given where
Lα,U,V is a nonempty subset of LE,Σ(α) or even equals LE,Σ(α) \ {ε}.

Since, for any pattern α, LE,Σ(α) is equivalent to a finite union of NE-pattern
languages (see Theorem 2.1 by Jiang et al. [5]), Theorem 10 shows that the
existence of unambiguous erasing morphisms strongly depends on equivalence
and inclusion of certain finite unions of NE-pattern languages (or nonerasing
multi-pattern languages, as they are called by Kari et al. [7]). This is not only
a rather counter-intuitive insight, but it also gives an idea of how difficult the
problem of the existence of unambiguous erasing morphisms might be. More
precisely, even the decidability of the inclusion problem for ordinary terminal-free
NE-pattern languages is open and includes some prominent open problems on
pattern avoidability (cf. [5]). The inclusion of terminal-free NE-pattern languages
is also known to depend on the size of the target alphabet, which fits very well
with what is known for the subject of our paper (see, e. g., Theorem 9).

The following sufficient condition illustrates how Theorem 10 can be used to
find criteria on the nonexistence of unambiguous erasing morphisms:

Corollary 4. Let Σ be an alphabet, and let α ∈ IN+. If there exists a par-
tition (U, V ) of P(var(α)) \ {∅} with LE,Σ(α) \ {ε} =

⋃
u∈U LNE,Σ(πu(α)) =⋃

v∈V LNE,Σ(πv(α)), then there is no unambiguous word in LE,Σ(α) \ {ε}.
We finally wish to mention that Theorem 10 and Corollary 4 do not need to be
based on a partition (U, V ) of P(var(α)) \ {∅}. Alternatively, they could refer to
arbitrary disjoint subsets U and V of P(var(α)) \ {∅}.

7 Conclusion and Open Problems

Concerning the ambiguity of erasing morphisms, the partition of patterns into
morphically unerasable and erasable patterns (introduced and studied in
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Section 3) has similar importance as the partition into succinct and prolix pat-
terns regarding the ambiguity of nonerasing morphisms: Both partitions char-
acterise a vital property of strings, namely the (non-)existence of moderately
ambiguous morphisms (cf. Theorem 7 and Reidenbach [9]). While, in the case
of nonerasing morphisms, this restricted ambiguity can additionally be turned
into unambiguity, this does not hold for erasing morphisms since their ambigu-
ity essentially depends on the size of the target alphabet (cf. Corollary 2 and,
featuring a rather unexpected insight, Theorem 9).

A characterisation of those patterns that have an unambiguous erasing mor-
phism is the main remaining open problem on the subject of the present paper,
and even its mere decidability is still unresolved. Due to the insights summarised
above, it seems evident that any solution to it requires concepts that significantly
differ from the techniques used regarding moderate ambiguity. Section 6 reveals
fundamental and quite surprising connections between the ambiguity of erasing
morphisms and decision problems for nonerasing multi-pattern languages. An
examination of these topics might be a helpful starting point for future studies.
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Abstract. It is well known that the minimality of a deterministic finite

automaton (DFA) depends on the set of final states. In this paper we

study the minimality of a strongly connected DFA by varying the set of

final states. We consider, in particular, some extremal cases. A strongly

connected DFA is called uniformly minimal if it is minimal, for any choice

of the set of final states. It is called never-minimal if it is not minimal, for

any choice of the set of final states. We show that there exists an infinite

family of uniformly minimal automata and that there exists an infinite

family of never-minimal automata. Some properties of these automata

are investigated and, in particular, we consider the complexity of the

problem to decide whether an automaton is uniformly minimal or never-

minimal.

1 Introduction

It is well known that the minimization problem of deterministic finite automata
(DFAs) is related to the indistinguishability notion of states (cf. [12]). Indeed,
a well known technique to minimize a DFA, essentially, consists in finding pairs
of states that are equivalent (or indistinguishable), namely pairs of states (p, q)
such that it is impossible to assert the difference between p and q only by starting
in each of the two states and asking whether or not a given input string leads to
a final state. Since, in the testing states equivalence, the notion of initial state
is irrelevant, some of the main techniques for minimization of automata, such
as Moore’s algorithm [15] and Hopcroft’s algorithm [11], do not care what is
the initial state of the automaton provided that all states can be reached from
the initial state. Therefore a natural question that arises is, for these automata,
on what does minimality depend? Obviously, it depends on both the automata
transitions and the set of final states. In this paper, our main focus is to inves-
tigate to what extent minimality depends on the choice of the subset of final
states. So we consider DFAs of the form A = (Q,Σ, δ), where initial and final
states are not specified, and such that the state graphs are strongly connected.
This last condition is required since we are interested to study the minimality of
such automata by varying the subset of final states: by the hypothesis of strong
connectivity we avoid that there are states not accessible or not coaccessible.
Note that such automata occur also in the study of the synchronization problem
and the Černý’s conjecture (cf. [4,17]), or in Symbolic Dynamics (cf. [14,1]).

Y. Gao et al. (Eds.): DLT 2010, LNCS 6224, pp. 399–410, 2010.
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In order to investigate the dependence of the minimality of the automaton A
on the choice of final states, we introduce the state-pair graph G(A). The choice
of a set F of final states defines a coloring γF of G(A), and we prove that the
minimality of A corresponds, essentially, to a property of the colored graph. In
this way, in order to check whether A is minimal with respect to various sets of
final states, we need to compute the graph G(A) only once, and then analyze the
various cases by considering the colorings on G(A) corresponding to the various
choices of final states.

We next consider some extremal cases. We introduce the family of uniformly
minimal automata, i.e. (non-necessary complete) automata which are minimal
for any choice of the set of final states. We provide a characterization of such
a family of automata in term of the state-pair graph, from which one derives
a polynomial algorithm to decide whether a given DFA is uniformly minimal.
Another characterization shows interesting relations between uniformly minimal
automata, multi-entry automata (cf. [10]) and Symbolic Dynamics (cf. [14,1]).
In the case the automaton is complete, the notion of uniform minimality turns
out to be trivial. So we introduce, for complete automata, the weaker notion of
almost uniform minimality and we show that there exists an infinite family of
almost uniformly minimal automata. However, contrary to the previous case, we
do not know, at present, a polynomial algorithm to check whether a complete
automaton is almost uniformly minimal. Later we consider the opposite extremal
case, i.e. automata that are never-minimal, for any choice of the set of final states.
Also in this case we prove that there exists an infinite family of never-minimal
automata. We show a sufficient condition for an automaton to be never-minimal,
and we leave as an open problem whether such a condition is necessary too. An
affirmative answer could provide a polynomial algorithm for checking whether
an automaton is never-minimal.

Finally we consider the case of unary alphabet. We show that there do not
exist never-minimal automata and we give a complete characterization of almost
uniformly minimal automata.

As a concluding remark, we show some relations between the problem to
decide whether an automaton is never-minimal and the “syntactic monoid prob-
lem”(cf. [8]).

2 Preliminaries

In this section we give some basic notations and terminology concerning finite
automata and refer the reader to the literature for more details (cf. [5,12]). A
deterministic finite automaton, or DFA, A = (Q,Σ, δ) is defined by specifying a
finite state set Q, a finite input alphabet Σ, and a (partial) transition function
δ : Q×Σ → Q. The action of the letters in Σ on the states in Q can be extended
in a natural way to Σ∗, where Σ∗ is the free monoid over the alphabet Σ; this
extension is here denoted by δ∗. An automaton A = (Q,Σ, δ) is said strongly
connected if for every ordered pair of states q, q′ ∈ Q there exists w ∈ Σ∗

such that δ∗(q, w) = q′. An automaton is complete when its transition function
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is total. A DFA with a partial transition function can be transformed into a
complete one by adding a single new state, the sink state usually denoted by s,
and transitions from all other states to that sink for all symbols for which they
have no transitions. The sink itself is made complete by adding loop transitions
for all symbols. The automaton obtained in this way is called the completion of
A and is denoted by Â = (Q̂, Σ, δ̂). It is clear that an automaton with a sink
state is not strongly connected.

Let A = (Q,Σ, δ) a DFA. If we designate a certain state i ∈ Q as initial
state, and a non-empty subset F ⊆ Q as set of final (or accepting) states, then
we say that the DFA, that we now denote by Ai,F , recognizes a language. The
language recognized by Ai,F is the set L(Ai,F ) = {w ∈ Σ∗ : δ∗(i, w) ∈ F}.
Two automata that recognize the same language are called equivalent. Finally
a DFA is minimal if it has the minimum number of states among all its equiv-
alent DFAs. For any finite deterministic automaton Ai,F there is a unique (up
to labeling of the states) minimal automaton that recognizes the same language
as the automaton Ai,F . As already mentioned in the introduction, the minimal
automaton equivalent to a given DFA, can be computed essentially by using the
indistinguishable equivalence I. More precisely, we say that two states p and q
are indistinguishable if, for all input strings w, δ∗(p, w) ∈ F iff δ∗(q, w) ∈ F .
One can prove that this is an equivalence relation compatible with the transi-
tions of the automaton, i.e. for any a ∈ Σ, pIq implies δ(p, a)Iδ(q, a). A state
is accessible (resp. coaccessible) if there is a path from the initial state to this
state (resp. from this state to a final state). Hence, a schematic description of
the minimization algorithm consists of two steps: first, eliminate states that
are not accessible, then merge states that are equivalent (cf. [12]). With the
sole object of answering the question if a given DFA is minimal, free from the
choice of the initial state, in this paper we consider strongly connected DFAs
in which the initial state is not specified. On the other hand, we want to inves-
tigate the connections between minimality and the particular choice of the set
of final states. Thus, in our objects of study, also the set of final states is not
specified.

3 State-Pair Graph

In this section we introduce the state-pair graph of an automaton, that is a tool
that turned out to be useful in our investigations.

Definition 1. Given a deterministic finite automaton A = (Q,Σ, δ), the state-
pair graph of A is the graph G(A) = (VG, EG) defined as follows:

i. the set VG of vertices consists of all unordered pairs of distinct states of A;
ii. EG = {((p, q), (p′, q′)) | δ(p, a) = p′, δ(q, a) = q′ and a ∈ Σ}.

Figure 1 illustrates a DFA and the corresponding state-pair graph.
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Fig. 1. A DFA A and the corresponding state-pair graph G(A)

As regards the complexity of the state-pair graph G(A), one can verify that:
if A has n states, then

| VG |=
(
n
2

)

and
| EG |≤| Σ | · | VG | .

A similar tool has already been used in the literature (cf. [2,3,6,9]). However,
besides being used in a different topic, it has here some remarkable differences,
especially in the definition of the set of vertices VG.
Given a set F ⊆ Q of final states for the automaton A, we associate with F a
map

γF : VG → {B,W}

from the set of vertices VG of the state-pair graph G(A) into the set of colors
{B,W}, defined as follows: for any (p, q) ∈ VG,

γF (p, q) =
{
B if p ∈ F and q /∈ F , or vice versa;
W otherwise.

Thus, we have a non bijective mapping that assigns to every set F ⊆ Q of final
states a coloring of G(A). Figure 2 illustrates two colorings, for the state-pair
graph of the automaton depicted in Fig. 1, related to two different sets of final
states. An automaton Ai,F is said to be trim if all its states are both accessible
and coaccessible. If we call distinguishable a pair of states that are not equivalent
with respect to the indistinguishability relation, we have that a trim DFA Ai,F

is minimal iff every pair of its states is distinguishable. In other words, Ai,F is
minimal if and only if for every two states p and q there is at least one string
w such that one of δ∗(p, w) and δ∗(q, w) is final and the other is not. This fact
together with the crucial property of the state-pair graph that, if there is an
input string w such that δ∗(q, w) = q′ and δ∗(p, w) = p′ where q, q′, p, p′ ∈ Q
and p′ �= q′, then there is a path from (p, q) to (p′, q′) in G(A), leads to the
following result.
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Theorem 1. Let A = (Q,Σ, δ), i ∈ Q and F ⊆ Q such that Ai,F is a trim
DFA. Then Ai,F is minimal iff for every vertex v of G(Â) with γF (v) = W ,
there is a path, in G(Â), from v to a vertex v′ such that γF (v′) = B.

The remarkable thing about the use of the state-pair graph is that to check
whether a DFA A is minimal for some initial state i and various sets F of final
states, we need to compute G(Â) only once. Then, for any F ⊆ Q, we have to
check if Ai,F is trim and consider the various colorings on G(Â) corresponding
to the sets of final states.

In particular, since the automaton A depicted in Fig. 1 is complete, then
G(A) = G(Â). Thus from Fig. 2 we note that Ai,F , for any i ∈ {1, ..., 4}, is
minimal if we choose F = {1, 2} as set of final states, but it isn’t with respect
to F ′ = {1, 3}.

12 23

3414

13

24

12 23

3414

13

24

Fig. 2. Two colorings of G(A) relate to the sets F = {1, 2} and F ′ = {1, 3}, respec-

tively. Vertices that are mapped by γF to the element B are drawn in black.

4 Uniformly Minimal Automata

In the previous section we have observed that, in general, an automaton can be
minimal with respect to some set of final states but not with respect to others.
At this point, the following question arises: do there exist minimal automata
whose minimality is not affected by the choice of the final states?

Remark 1. It is easy to see that, given a DFA A = (Q,Σ, δ), Ai,F is trim for
some i ∈ Q and for all F ⊆ Q if and only if A is strongly connected. Thus, the
above question makes sense only if we consider strongly connected automata.

A strongly connected automaton A = (Q,Σ, δ) is called uniformly minimal if,
for all F ⊆ Q, it is minimal. Remark that, if A is complete and F = Q, then A
is minimal only if it corresponds to the trivial automaton with only one state.
So a nontrivial uniformly minimal automaton is not complete. The following
lemma provides a characterization of a uniformly minimal DFA A in terms of
the state-pair graph G(Â) of the completion of A.

Lemma 1. A strongly connected (incomplete) automaton A is uniformly mini-
mal if and only if, for any vertex v in the state-pair graph G(Â), there is a path
from v to a vertex of the form (q, s), where s is the sink state.



404 A. Restivo and R. Vaglica

Remark 2. As a consequence of the lemma, one obtains a polynomial algorithm
to decide whether a given DFA is uniformly minimal.

The next theorem provides another characterization of uniformly minimal au-
tomata. In order to state this theorem, it is useful to introduce the following
notation. Let A = (Q,Σ, δ) a deterministic finite automaton. If I, F ⊆ Q, de-
note by A(I, F ) the (non deterministic) automaton

A(I, F ) = (Q,Σ, δ, I, F ),

where I is a set of initial states and F is a set of final states. If | I |≤ k, A(I, F )
is called a k-entry DFA (cf. [10]). The language recognized by a k-entry DFA
A(I, F ) is the set of words w such that w corresponds to a path in A from
some state of I to some state of F . Denote by L(A(I, F )) such a language. A
k-entry DFA A is minimal if it has a minimum number of states among all
k-entry DFAs recognizing L(A(I, F )). Remark that, given a regular language
L, the minimal k-entry DFA recognizing L is not, in general, unique. Moreover
the minimization problem for k-entry DFAs is PSpace-complete (cf. [10]). By
using previous notation, one has that a strongly connected DFA A = (Q,Σ, δ)
is uniformly minimal if A({q}, F ) is minimal for some q ∈ Q and for all
F ⊆ Q.

Theorem 2. Let A = (Q,Σ, δ) a strongly connected DFA. The following con-
ditions are equivalent:

1. A({q}, F ) is minimal for some q ∈ Q and for all F ⊆ Q, i.e. A is uniformly
minimal.

2. A({q}, F ) is minimal for all q ∈ Q and for all F ⊆ Q.
3. A({q}, Q) is minimal for some q ∈ Q.
4. A({q}, Q) is minimal for all q ∈ Q.
5. A(I, F ) is minimal for all I ⊆ Q and for all F ⊆ Q.
6. A(Q,Q) is minimal.

Proof. The equivalence between 1) and 2), and the equivalence between 3) and
4), are trivial consequences of the strongly connectedness of A and of the notion
of minimal automaton.

The implication 1) ⇒ 3) is trivial, whereas the implication 3) ⇒ 1) is a
consequence of Lemma 1. Actually, note that the vertices of the form (q, s),
where s is the sink state, form a strongly connected component of G(Â).

The implication 3) ⇒ 6) is a consequence of a result in Symbolic Dynam-
ics. More precisely, it is well known that, given a language L recognized by a
strongly connected automaton A(Q,Q), the minimal deterministic automaton,
recognizing L, among the automata in which all states are both initial and fi-
nal, is unique up to the labeling of the states. Moreover, this automaton (called
Fisher cover in Symbolic Dynamics) can be obtained from A by merging the
indistinguishable states, like in the minimization algorithm for DFA (cf. Prop.
3.3.9 and Theorem 3.3.18 of [14]). Now, suppose there exists a trim automaton
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A′(Q′, Σ, δ′), with | Q′ |<| Q |, such that L(A′(I ′, F ′)) = L(A(Q,Q)). Ob-
serve that, for any language L recognized by a k-entry trim automaton A(I, F ),
L(A(Q,Q)) = F (L), where F (L) denotes the set of the factors of all words of L.
It follows that L(A′(I ′, F ′)) = F (L(A′(I ′, F ′))) = L(A′(Q′, Q′)), hence A′ = A.

The implication 5)⇒ 1) is trivial.
Finally, for the implication 6)⇒ 5), assume by contradiction that there exists

A′ = (Q′, Σ, δ′) such that L(A′(I ′, F ′)) = L(A(I, F )) with | I ′ |≤| I | and
| Q′ |<| Q |. Since L(A(Q,Q)) = L(A′(Q′, Q′)) = F (L(A(I, F ))), then, from the
minimality of A(Q,Q), we deduce Q = Q′, a contradiction. 	


Remark 3. As a consequence of Theorem 2, uniformly minimal automata corre-
spond to Fisher covers of irreducible sofic shifts in Symbolic Dynamics. Thus,
there are infinitely many uniformly minimal automata.

We have observed that the unique uniformly minimal complete automaton is
the trivial automaton with only one state. Therefore, in the case of complete
automata, one introduces a notion which is weaker than uniform minimality.
A complete DFA A = (Q,Σ, δ) is almost uniformly minimal if, for all proper
subsets F ⊂ Q, it is minimal.

Theorem 3. There is an infinite sequence of almost uniformly minimal DFAs
(Mn)n≥3, where n is the number of states.

This assertion can be verified by considering the automaton Mn = (Q,Σ, δ),
where Q = {1, 2, ..., n}, n ≥ 3, Σ = {a, b} and the transition defined as follows.
For input a we have

δ(i, a) =
{

i+1, if 1 ≤ i < n;
1, if i = n.

As regards input b, if n is an even number

δ(i, b) =

⎧
⎨

⎩

i, for i ∈ {1, n};
i+1, if i = 2k for 1 ≤ k ≤ n

2 − 1;
i-1, if i = 1 + 2k for 1 ≤ k ≤ n

2 − 1;

else

δ(i, b) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

i, for i ∈ {1, n};
i, if i = 2k for n+1

4 ≤ k ≤ n+3
4 ;

i+1, if i = 2k for 1 ≤ k < n+1
4 ;

i-1, if i = 1 + 2k for 1 ≤ k < n+1
4 ;

i+1, if i = n− 2k for 1 ≤ k ≤ n−3
4 ;

i-1, if i = n + 1− 2k for 1 ≤ k ≤ n−3
4 .

See Fig. 3 for the state transition diagram of M5.
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Fig. 3. The automaton M5
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Fig. 4. The state-pair graph G(M5)
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Fig. 5. An almost uniformly minimal automaton A whose state-pair graph G(A) is

not strongly connected

Proposition 1. The state-pair graph G(Mn) is strongly connected.

Fig. 4 shows the state-pair graph of M5. From Proposition 1 we have that, for
any F ⊂ Q, there exists at least one vertex v in G(Mn) such that γF (v) = B.
So, from Theorem 1, it follows that Mn is almost uniformly minimal.

Remark 4. In previous example the state-pair graph is strongly connected. Note
however that, in general, the strong connectedness of the state-pair graph of a
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complete automaton is not a necessary condition for the almost uniform min-
imality. An example is shown in Fig. 5. One can check that, in that case, the
automaton is almost uniformly minimal but its state-pair graph is not strongly
connected. Obviously, if this condition was necessary, then we could have a poly-
nomial time algorithm to test whether a complete automaton is almost uniformly
minimal. However at present, a polynomial-time algorithm to solve the uniform
minimality problem for complete automata is not known.

5 Never-Minimal Automata

In this section we consider the opposite extremal case. In particular we ask
whether there exist strongly connected DFAs which aren’t minimal for any choice
of their final states. A positive answer to the question is given by next theorem.
We call never-minimal a strongly connected DFA which isn’t minimal for any
choice of their final states.

Theorem 4. There is an infinite sequence of never-minimal automata (Nn)n≥4,
where n is the number of states.

Proof. Let n ≥ 4. Consider the automatonNn = (Q,Σ, δ) where Q={1, 2, ..., n},
Σ = {a, b} and the transition function is given by

δ(i, a) =
{

1, if i ≤ 3;
i-1, if 4 ≤ i ≤ n.

δ(i, b) =

⎧
⎨

⎩

4, if i ≤ 3;
i+1, if 3 < i ≤ n− 1;
2, if i = n.

The state graph of N6 is depicted in Fig. 6.
We suppose by contradiction that there exists a set F of final states that

makes Nn a minimal DFA. We observe that from the vertices (1, 2), (1, 3) and
(2, 3) of G(Nn) there aren’t outgoing edges. Thus from Theorem 1 it follows
γF (1, 2) = γF (1, 3) = γF (2, 3) = B. Without loss of generality, assume 1 ∈ F . If
we look at the pair (1, 2), we have that 2 /∈ F . Analogously, since γF (2, 3) = B,

1 2

43 5 6
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a a

b b

b
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a

b

Fig. 6. The automaton N6
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we have that 3 ∈ F . However the conditions 1 ∈ F and 3 ∈ F contradict the
hypothesis γF (1, 3) = B. 	


We now consider the problem to characterize never-minimal automata. Let A =
(Q,Σ, δ) a DFA. For a ∈ Σ, denote by δa the application δa : Q → Q defined
as follows: δa(q) = δ(q, a), for all q ∈ Q.

Definition 2. We say that a DFA A = (Q,Σ, δ) satisfies condition Ch if there
is Qh ⊆ Q, with | Qh |= h, such that, for all a ∈ Σ, the restriction of δa to Qh

is a constant or an identity function.

Theorem 5. Let A = (Q,Σ, δ) a DFA. If A satisfies C3 then it is never-
minimal.

This assertion can be proved by using a similar argument as that in the proof of
Theorem 4. Indeed, we have only to say that if Q3 = {p, q, r}, then the vertices
of G(A) that involve states belonging to Q3 are in the same situation of vertices
(1, 2), (2, 3) and (1, 3) of the proof of Theorem 4.

Remark 5. The previous theorem shows that condition C3 is a sufficient condi-
tion for an automaton to be never-minimal.

Now a natural and interesting question arises: for strongly connected DFA, is
condition C3 also necessary? If the answer were affirmative, one could derive
a polynomial-time algorithm for testing if a strongly connected DFA is never-
minimal. Unfortunately, however, this problem is still open:

Open problem: Does every never-minimal automaton satisfy condition C3?

6 Automata over a Unary Alphabet

The situation for automata over a unary alphabet is slightly different from that
for automata on larger alphabet. First of all, note that a strongly connected DFA
A = (Q,Σ, δ) over a one letter alphabet Σ = {σ} is simply a cyclic automaton.
The corresponding state-pair graph, although similar to those of an element of
the family (Mn)n≥3, consists of separated cyclic components. Moreover, it can
be seen that for each q ∈ Q there is at least one vertex in any cyclic component
of G(A) that contains q. It follows that A is minimal for every choice of the set
of final states F with | F |= 1. Consequently, in the case of one letter alphabet,
there do not exist never-minimal automata.

As regards the family of uniformly minimal automata, we have the following
result.

Theorem 6. Let A = (Q, {σ}, δ) be a cyclic DFA with | Q |= n. A is almost
uniformly minimal if and only if n is a prime number.

Proof. If n = hk for some natural numbers h and k, with regard to the set of
final states we may consider the set F = {q1, ..., qh} such that

δ∗(qi, σ
k) =
{
qi+1, if i ∈ {1, ..., h− 1};
q1, if i = h.
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Thus, if we consider as initial state a state of F , it follows that A recognizes the
set of all words over {σ} whose length is a multiple of k. However, it is easy to
see that this language can be recognized also by a DFA over {σ} with k states.
Now, suppose that n is a prime number and let F be a set of final states with
cardinality m < n. For any initial state, L(A) is given by all words over {σ}
whose length belongs to the union of exactly m equivalence classes modulo n.
Since n is prime, this resulting set of integer numbers cannot be equal to the
union of classes modulo different integers. It follows that L(A) cannot be recog-
nized by a DFA with less than p states, hence the thesis. 	


7 Concluding Remarks

The problem to decide whether a strongly connected DFA is never-minimal is
related to the “syntactic monoid problem”. If M is a finite monoid and P a
subset of M , there is a largest congruence σP saturating P defined by:

xσP y ⇔ ∀s, t ∈M (sxt ∈ P ⇔ syt ∈ P ).

The set P is called disjunctive if σP is the equality in M . A monoid M is
syntactic if it has a disjunctive subset. The syntactic monoid problem is to decide
whether a finite monoid is syntactic (cf. [8]). It is an open problem whether
the syntactic monoid problem is polynomial or not. Now, if a monoid M is the
transition monoid of a DFA A, and M is not syntactic, then A is a never-minimal
automaton. It is not clear whether such implication could be reversed. In any
case, a positive solution of the open problem in Sect. 5 gives, as a consequence,
a polynomial algorithm for deciding whether a DFA is never-minimal, and this
could provide some insight on the syntactic monoid problem.
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On the Existence of Minimal β-Powers

Arseny M. Shur

Ural State University

Abstract. If all proper factors of a word u are β-power-free while u itself

is not, then u is a minimal β-power. We consider the following general

problem: for which numbers k, β, and p there exists a k-ary minimal β-

power of period p? For the case β ≥ 2 we completely solve this problem. If

the number β < 2 is relatively “big” w.r.t. k, we show that any number p
can be the period of a minimal β-power. Finally, for “small” β we describe

some sets of forbidden periods and provide a numerical evidence that for

k ≥ 9 these sets are almost exhaustive.

Introduction

The study of repetition-free words and languages, which remains one of the
central topics in combinatorics of words, is closely connected to the study of
minimal repetitions. A word avoids a repetition (say, a square) if it contains
no minimal squares. Minimal squares generate the monoid ideal which is the
complement of the square-free language in the corresponding free monoid. To
estimate the growth rate of a repetition-free language, one needs to list relatively
short minimal repetitions (see, e.g., [5,12,16,17]), and so on. As one will see, the
minimal repetitions are also closely connected to repetition-free circular words.

The repetitions studied in this paper are fractional powers. If a word w of
length n has the minimal period p, then w is an n

p -power. Studying minimal
repetitions, it is convenient to treat the notion of fractional power in a loose
way: we say that w is a β-power for all β such that n−1

p < β ≤ n
p . The β-power

is minimal, if it contains no other β-powers. Thus, a word avoids β-powers if and
only if it contains no minimal β-powers.

The general problem which we study here is to determine all triples (k, β, p)
such that a minimal β-power with the period p exists over the k-letter alphabet.
Note that a particular question, concerning the existence of the minimal squares
over the ternary alphabet, was asked in the book [3]. In this paper we provide
an answer in a much broader context.

It is decidable by brute force whether a given triple (k, β, p) generates a
minimal power. It is also decidable, due to the proof of Dejean’s conjecture
(see [6, 8, 10, 13]), whether a given pair (k, β) generates infinitely many minimal
powers. Recall that this conjecture states that the set of k-ary words avoiding β-
powers is infinite if and only if β > RT (k), where the repetition threshold RT (k)
equals 7

4 for k = 3, 7
5 for k = 4, and k

k−1 for k = 2 and k ≥ 5. We study only
the pairs (k, β) generating infinitely many minimal powers, because the other
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case is trivial. For any pair (k, β), our goal is to determine all periods of minimal
powers or at least to find some “forbidden” periods, if any.

The general problem can be subdivided into two big cases: β ≥ 2 (“true”
powers) and β < 2 (“sesquipowers”). We study both of them. In Sect. 2 we give
the full solution to the case of true powers. The binary alphabet provides the
most nontrivial part of the problem in this case. As a corollary of our results,
we complete the classification of binary power-free circular words w.r.t. length,
strengthening the result of [2]. In Sect. 3 we study sesquipowers. We give a
sufficient condition on β w.r.t. k to generate minimal powers of all positive
periods and describe some sets of forbidden periods for small β. Finally, in
Sect. 4 we discuss some numerical results obtained by computer and give a
conjecture which classifies all sesquipowers on the base of obtained theoretic
and experimental results.

1 Preliminaries

We recall some notation and definitions on words, see [11] for more background.
An alphabet Σ is a nonempty finite set, the elements of which are called

letters. Words are finite sequences of letters. As usual, we write Σ∗ for the set
of all words over Σ, including the empty word λ. A word u is a factor (resp.,
prefix, suffix) of a word w if w can be represented as v̄uv̂ (resp., uv̂, v̄u) for some
(possibly empty) words v̄ and v̂. A factor (prefix, suffix) of w is called proper if
it does not coincide with w. Words u and w are conjugates if u = v̄v̂, w = v̂v̄
for some words v̄ and v̂. Conjugacy is obviously an equivalence relation.

A word w ∈ Σ∗ can be viewed as a function {1, . . . , n} → Σ. Then a period
of w is any period of this function. The exponent of w is given by exp(w) =
|w|/ per(w), where per(w) is the minimal period of w, |w| is the length of w.
The word w is said to be β-free (β+-free) if all its factors have exponents less
than β (resp., at most β). Following [5], we use only the term β-free, assuming
that β belongs to the set of “extended rationals”. This set consists of all rational
numbers and all such numbers with a plus; the number x+ covers x in the usual
≤ order such that the inequalities y ≤ x and y < x+ are equivalent.

If exp(w) > 1, then w is a fractional power. The prefix of w of length per(w)
is called the root of w. If (|w|−1)/ per(w) < β ≤ exp(w) for some extended
rational β, we say that w is a β-power and write w = uβ, where u is the root of
w. (Thus, (yo)(3/2)+= (yo)5/3 = (yo)2 = yoyo.) The 2-powers are called squares.
The β-power is minimal if it contains no other β-powers as factors. A period p
is forbidden for the pair (k, β), if no minimal k-ary β-powers of period p exist.

The Thue-Morse word t is the infinite binary word obtained by iteration of
the morphism θ defined by θ(a) = ab, θ(b) = ba. The word t is 2+-free, and each
square in it has the period 2m or 3·2m for an appropriate integer m.

If we replace the linear ordering of letters in a word w with a cyclic ordering
such that the last letter precedes the first one, we get a circular word, denoted by
(w). There is an obvious one-to-one correspondence between circular words and
conjugacy classes of ordinary words. The factors of circular words are ordinary
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words, including w and its conjugates. Thus, the definition of β-freeness naturally
extends to circular words.

2 Minimal Powers of the Exponent β ≥ 2

In this section we completely describe the periods of minimal β-powers. The case
of binary alphabet is quite nontrivial, so we start with larger alphabets.

Proposition 1. If k ≥ 4, then each positive integer is the period of some k-ary
minimal square.

Proof. To obtain a minimal square u2 over the alphabet {a1, . . . , ak} with the
given period p = |u|, take an arbitrary 2-free word z of length p over {a1, a2, a3}
and change the last letter of z to a4 to get u. Indeed, let v2 be a factor of u2.
Since z is 2-free, the word v2 contains the letter a4. Hence, v contains a4, and v2

contains both occurrences of a4 in u2. The distance between these occurrences
is p, whence p is the period of v2, implying v = u. ��

Proposition 2. If k ≥ 3 and β ≥ 2+, then each positive integer is the period of
some k-ary minimal β-power.

Proof. Repeat the argument from the proof of Proposition 1, replacing the
ternary 2-free word z with a binary β-free word. ��

Proposition 3. A positive integer p is the period of some ternary minimal
square if and only if p �= 5, 7, 9, 10, 14, 17.

Currie [7] proved that ternary 2-free circular words of length p exist for all p
except 5, 7, 9, 10, 14, and 17. Hence, Proposition 3 immediately follows from

Lemma 1. Let β ≥ 2. If the word uβ is a minimal β-power, then the circular
word (u) is β-free. If β = 2, then the converse is also true.

Proof. The first statement is trivial, because uβ contains all conjugates of u as
factors. To prove the converse, assume that the circular word (u) is 2-free but
u2 is not a minimal square. Hence, u2 contains a proper factor v2. If |v2| ≤ |u|,
then v2 is a factor of a conjugate of u, contradicting to the 2-freeness of (u).
Now examine the case |v2| > |u|. Then uu = xvvy and w.l.o.g. |x| ≥ |y|. So,
we have v = v1v2, u = xv1 = v2v1v2y. Moreover, the prefix v2v1v2 and the
suffix v1 overlap in u. The occurrences of v1 cannot overlap, because u is square-
free. Thus, the suffix v1 intersects only with the second occurrence of v2 in the
considered prefix. Hence, some word z is a prefix of v1 and simultaneously a
suffix of v2. Then the prefix v2v1 of u contains z2, which is impossible. ��

Remark 1. In general, the converse to the first statement of Lemma 1 is not
true, compare Theorem 2 and Lemma 4 below.

For the rest of this section we fix the binary alphabet {a, b}. The squares cannot
be avoided over {a, b}, while for β > 2 the description of the minimal β-powers
is given by the following theorems.
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Theorem 1. Let β ≥ (5/2)+. A binary minimal β-power with the period p exists
for any positive integer p.

Theorem 2. Let β ∈ [(7/3)+, 5/2]. A binary minimal β-power with the period
p exists for any positive integer p except 5, 9, 11, 17, and 18.

Theorem 3. Let β ∈ [2+, 7/3]. A binary β-power is minimal if and only if its
root is a conjugate of one of the words θm(a), θm(b), θm(aba), θm(bab) for some
m ≥ 0. In particular, the period of any minimal β-power equals 2m or 3 · 2m.

The “only if” part of the last theorem follows from [9, Theorem 2.2] (see also [4,
Lemma 6]). Further, the β-powers of the words a, b, aba, and bab are obviously
minimal. Applying the following two lemmas, we are done with the “if” part.

Lemma 2 ( [14]). For any word u ∈ {a, b}∗ (a) if exp(u) > 1 then exp(u) =
exp(θ(u)); (b) for any β > 2, u is β-free if and only if θ(u) is β-free.

Lemma 3 ( [15]). Let β ≥ 2 and w be the root of a minimal β-power. Then
any conjugate of w is also the root of a minimal β-power.

Proof (of Theorem 1). The result by Aberkane and Currie [1] says that the Thue-
Morse word t contains a factor u of any given length n such that the circular word
(u) is 5

2

+-free. This result remains true if we require u to be primitive (i. e., not
an integral power of another word). Indeed, t avoids cubes and contains squares
of lengths 2m and 3·2m only. By Theorem 3, (θm(a)) is a 5

2

+-free circular word
of length 2m, while (θm(aba)) is a 5

2

+-free circular word of length 3 · 2m.
Take a primitive factor u of length n of t such that (u) is 5

2

+-free, and let
β ≥ 5

2

+. Let us prove that the word uβ is a minimal β-power. Arguing by
contradiction, let uβ have a proper factor vβ . Then |vβ | > n, since all factors of
length n in uβ are conjugates of u, and hence are β-free. We also note that vβ is
a prefix of the word ūβ for some conjugate ū of u. Consider the mutual location
of parts of the words vβ and ūβ.

Note that |v| �= n/2, because ū is primitive as u is. First consider the case
|v| > n/2. The word vβ has the periods |v| and n, but no period gcd(n, |v|),
since ū is primitive. By Fine and Wilf’s theorem (cf. [11]), we have |vβ | <
n+ |v| − gcd(n, |v|), whence |vβ | −n < |v|. Thus, for some nonempty words x, y,
and z we have v = xyz, ū = xyzxy, vβ = xyzxyzx, and in addition |x| > |yz|.
Both words xyz and zx are prefixes of ū, and these two occurrences of x overlap in
ū, since |x| > |z|. Using another basic property of words [11], we get zx = (qr)nq
for some n ≥ 2 and the words q �= λ and r. Moreover, rq is a prefix of yz.
Consider the word zxyz. Its length is less than n = |xyzxy|, because |z| < |x|,
so it should be 5

2

+-free as a factor of a conjugate of u. But zxyz has the prefix
(qr)3q, a contradiction.

Now let |v| < n/2. First suppose that β ≥ 3. Then for some nonempty words
x, y we have v = xy, ū = xyxyx, (xy)3 is a prefix of vβ , and |x| ≤ |y|. Both
words y and xy are prefixes of ū. Hence, x is a prefix of y. We see that ū has
the prefix xx and the suffix x. Thus, ūβ has the factor x3 whose length is less
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than n, a contradiction with the choice of u. Therefore, β < 3. Then there exist
nonempty words x, y, z such that v = xyz, ū = xyzxyzx, vβ = xyzxyzxy, and
|x| ≤ |yz|. As in the previous case, both words y and xy are prefixes of ū, and
if x is a prefix of y, then the existence of the factor x3 leads to a contradiction.
Hence, x = ys for a nonempty word s. Consider the word

ū2 = ysyzysyzys ysyys ysyys ysyzysyzys .

The 2+-free word u is among the factors of length n of ū2. Since in the middle of
ū2 we see the factor ysysy, whose length is less than n, u is the factor either of the
word ysyzysyzysys, or of the word sysyzysyzys. But in both cases any factor
of length n contains a 2+-power with the period |ysyz| = |v|. This contradiction
completes the proof. ��

Now turn to the proof of Theorem 2. It is based on two key lemmas.

Lemma 4. There exist no binary (5/2)-free circular words of length 5, 9, 11, and
18. The only such words of length 17 are (aabbabbaabbabbaab) and its automor-
phic image (bbaabaabbaabaabba).

Proof. Try to construct a (5/2)-free circular word (u) of the required length.
W.l.o.g., we assume that at least a half of the letters in u are a’s. Each binary
circular word can be encoded by the sequence of distances between consequtive
b’s (this sequence is a circular word also). If such a distance is greater than 3,
then the original word contains a3. Hence the codeword of a (5/2)-free circular
word contains only 1’s, 2’s, and 3’s. Moreover, such a codeword satisfies the
following restrictions:
(i) no factor 11 (this factor encodes bbb);
(ii) no factor 22 (this factor encodes babab);
(iii) any 2 is preceded or followed by 1 (to avoid ababa in the original word);
(iv) any 33 (encodes baabaab) is preceded and followed by 1;
(v) no factor 2121 (this factor encodes babbabb, which cannot be extended

to the right); symmetrically, no factor 1212;
(vi) similar to (v), no factors 3131 (this factor encodes baabbaabb) and 1313.

Considering the codewords of the circular words of required lengths, one can
check that these words are not (5/2)-free except for (bbaabaabbaabaabba). Due
to space constraints, we examine here only one case. We also note that this
lemma can be proved by a brute-force computer search.

The set of distances 33332111 (length 17): since the codeword contains 21 or
12 (iii), it also contains 33, and then 1331 (iv). This factor cannot be extended
by 1 (i). Since there is only one digit 2, 1331 should be extended by 3 (w.l.o.g.,
to the factor 13313). By (vi), the factor 13313 is followed either by 2 or by
3. If it is followed by 2, the next digit is 1 (iii), and we get the circular word
(13313213), violating (vi). Hence the codeword has the factor 133133. By (iv),
we get a unique codeword (13313312). Note that this circular word coincides
with its reversal. The coded word is (u) = (bbaabaabbabbaabaa), mentioned in
the conditions of the lemma. It can be directly verified that (u) is 5

2 -free. ��
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Lemma 5. For any β ∈ [(7/3)+, 5/2] and any positive even number n �= 6 there
exists a word u ∈ {a, b}∗ of length n such that the word v = abbaabaabba u is the
root of a minimal β-power.

Proof. Let vβ have a proper factor of the form wβ . Note that aabaa is a factor
of v. If aabaa occurs only once in the word va, then aabaa cannot occur in wβ .
Indeed, if wβ has only one occurrence of aabaa, then the two factors aa of aabaa
belong to different w’s, implying |w| = 3. But the longest 3-periodic factor of vβ

containing aabaa has the exponent 7/3 only. Further, if wβ has two occurrences
of aabaa, then |w| = |v|, which is impossible. Thus, if the word u satisfies the
conditions (a) the word va has a unique occurrence of aabaa and (b) the word
abaabba u abbaaba is β-free, then the β-power vβ is minimal.

We set z = baabba u abbaab (then the word mentioned in (b) is aza) and
u = θ(ū). Then z = θ(z̄), where z̄ = bab ū aba. Note that if z is 2+-free, then
both (a) and (b) are satisfied. Taking u = ba (resp., u = baab), we see that z is
a factor of θ2(bbaa) (resp., θ2(aabaa) ), and hence a 2+-free word by Lemma 2.
So, for the rest of the proof we assume |u| ≥ 8, whence |ū| ≥ 4. To build the
words u and z, we consider four cases.

1. |ū| = 4n. We put ū = θ(¯̄u), where the word ¯̄u has even length. Then
az̄b = θ(aa¯̄uaa). So, by Lemma 2 it is enough to find the word ¯̄u such that the
word ¯̄z = aa¯̄uaa is 2+-free. If we choose ¯̄u in such a way that ¯̄z is a factor of t,
we are done. Note that for any n ≥ 0 there exists a word x such that the word
baabxb (and hence the word bxb) is a factor of t. To see this, take m such that
2m > n and θm(a) ends with baab. Both words θm(aa), θm(ab) are factors of t,
and one of the words θm(a), θm(b) contains b in the (n+1)th position.

If |¯̄u| = 4n′+2, consider the factor of t of the form θ2(bxb) = baab θ2(x) baab,
where |x| = n′. Deleting the first and the last letters, we get the required
word ¯̄z. If |¯̄u| = 4n′+8, take the factor of t of the form θ2(baabxb) =
baababbaabbabaab θ2(x) baab, where |x| = n′, and delete the last letter and the
first seven letters to get ¯̄z. Finally, if |¯̄u| = 4, take ¯̄z = aabbabaa (it is a factor of
θ4(b)). Thus, we have built the word ¯̄z in all cases.

2. |ū| = 4n+2. Set ū = aθ(¯̄u)b, where the word ¯̄u has even length. Hence
z̄ = θ(bb¯̄ubb), and the argument symmetric to that of case 1 holds.

3. |ū| = 4n+1. Set ū = θ(¯̄u)b. Similar to the above, the length of ¯̄u is even, we
have az̄ = θ(aa¯̄ubb), and it is enough to choose ¯̄u such that the word ¯̄z = aa¯̄ubb
is 2+-free. As in case 1, one can show that for any n ≥ 0 there exists a word x
such that the word baabxa (and hence the word bxa) is a factor of t. Further, if
|¯̄u| = 4n′+2 (resp., |¯̄u| = 4n′+8) we let |x| = n′ and take an appropriate factor of
the word θ2(bxa) (resp., θ2(baabxa)) as ¯̄z. Finally, if |¯̄u| = 4, we take ¯̄z = aabbaabb.

4. |ū| = 4n+3. Set ū = baabab θ(¯̄u)b. The length of the word ¯̄u is even (possibly
zero). We also have az̄ = θ(¯̄z), where ¯̄z = aabaa¯̄ubb. As in case 3, we choose the
word ¯̄u such that z′ = aa¯̄ubb is a 2+-free word (¯̄u = λ also satisfies this condition).
Now we consider all possible 2+-powers in the word ¯̄z = aabz′ and verify that
the word aza is always (7/3)+-free.
Adding b before the word z′ = aabbaabb, we prolong the period 4 to get a 2+-
power, but this period gets broken when we add aa. So, ¯̄z ends with (baab)9/4
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and contains no other 2+-powers. Thus, z ends with (θ4(b))9/4 and aza ends
with (θ4(b))37/16. So, aza is (7/3)+-free.

If z′ �= aabbaabb, then z′ is a factor of t, and so is bz′. Since bz′ is not a square
(because of the odd length), the word abz′ is not a 2+-power. If abz′ begins with
a 2+-power axx, then |x| ≥ 6. (Since x is a factor of t, its length equals 2m or
3·2m for some m. The word bz′ begins with baabab or baabba.) Since aabaa is
not a factor of t, the word aaxx has no period |x|. Hence, axx cannot induce a
(7/3)+-power in the word aza. It remains to consider the case when a 2+-power
is a prefix of ¯̄z = aabz′. But since aabaa is not a factor of t, this 2+-power is
exactly aabaaba. Then the word z begins with a (13/6)-power ba(θ2(aba))2, and
aza is obviously (7/3)+-free. The case examination is finished. ��

Proof (of Theorem 2). By Lemmas 1, 4, the minimal powers of lengths 5, 9, 11,
and 18 do not exist. Consider the 5

2 -free circular word (u)=(bbaabaabbaabaabba)
mentioned in Lemma 4. None of the conjugates of u is the root of a minimal
β-power. Indeed, one of these conjugates is the word w = abbaaba abbaaba abb,
having the period 7. The word wa has the same period and is a (5/2)+-power.
Since a is the first letter of w, the word wa is a factor of the word ūβ for any
conjugate ū of u. Thus, the minimal powers of length 17 do not exist also.

By Lemma 2, if a word u is the root of a minimal β-power, then so is the word
θ(u). Hence the existence of the minimal binary β-power of period n implies the
existence of such a power of period 2n. Lemma 5 gives us minimal β-powers of
any odd period n ≥ 13, except for n = 17. Thus, to prove the theorem it suffices
to find minimal β-powers with the periods 1, 3, 7, 10, 22, 34, and 36. The words

a, aba, aabaabb, aabaabbabb, aabaabbaababbabaabbabb,
aabaabbaababbaabbabaababbabaabbabb, aabaabbaababbaabaabbabaabbaabaabbabb

are roots of minimal β-powers, as one can check directly. The theorem is proved.

As a corollary, we strengthen the result of [2] which states the existence of
binary (7/3)+-free circular words of any length n ≥ 210. Thus, we complete the
classification of possible lengths of binary β-free circular words (all other cases
are covered by [1, 2]).

Corollary 1. Let β ∈ [(7/3)+, 5/2]. A binary β-free circular word of length p
exists if and only if p /∈ {5, 9, 11, 18}.

3 Minimal Powers of the Exponent β < 2

This section contains several results towards the dichotomy of all triples (k, β, p)
w.r.t. the existence of a minimal k-ary β-power of period p. Note that any β-
power has the form xyx and the period |xy|. By Proposition 1, for k ≥ 4 there
exist minimal squares of any period. The following theorem shows that for k ≥ 6
the square can be replaced by a smaller exponent depending on k.

Theorem 4. If β > RT (	k/2
), then a minimal k-ary β-power with the period
p exists for any positive integer p.
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Proof. We partition the alphabet into two parts, containing 	k/2
 and �k/2�
letters respectively, and build the word xy of the length p such that xyx = (xy)β

is a minimal β-power. From p and β we calculate the length p1 of x and the
length p2 of y. If p2 = 0 (this can happen if p is small and β is close to 2), then
zβ = z2 for all z such that |z| ≤ p1. Hence, the minimal β-power of length p is a
minimal square. Such a square exists by Proposition 1. For the rest of the proof
we assume that p2 > 0. Take an arbitrary β-free word of the length p1 (resp.,
p2) over the first (resp., second) part of the alphabet as x (resp., y). Such words
exist by the restriction on β. Now let us prove that the β-power xyx is minimal.

Assume that the word xyx has a proper factor ztz = (zt)β . Since the letters
in x and y are distinct, the left (resp., right) z is a factor of the left (resp.,
right) x. Since |zt| < |xy|, the word x contains at least two occurrences of z.
These occurrences neither overlap nor touch, because x is β-free and β < 2.
Hence we can write x = x1zx2zx3, where x2 �= λ. From this equality we get
|z| ≤ (|x|−1)/2. Using the inequality

|z|+ |y|
|z| = 1 +

|y|
|z| ≥ 1 +

2|y|
|x|−1

≥ 1 +
|y|+1
|x|−1

=
|x|+|y|
|x|−1

,

we estimate the exponent of the word ztz:

β ≤ exp(ztz) =
|ztz|
|zt| = 1 +

|z|
|zx3yx1|

≤ 1 +
|z|

|z|+ |y| ≤ 1 +
|x|−1
|x|+|y| =

|xyx|−1
|xy| .

The last fraction is exactly the exponent of the maximal proper prefix of xyx.
By the definition of β-power, this exponent is less than β, a contradiction. Thus,
the β-power xyx is minimal by definition. ��

Now consider the values of β which are close to the repetition threshold. We as-
sume k ≥ 5, so that RT (k) = k

k−1 . We use the term m-repetition for the minimal
β-powers xyx such that |x| = m. First, let β ∈

[
k

k−1
+, k−1

k−2

]
. Then any successive
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Fig. 1. The existence of short minimal k-ary β-powers (k = 10). Black (resp., white,

grey) squares mark the periods which are allowed (resp., forbidden by Theorems 5–7;

forbidden and found by computer). Light (resp., dark) grey color marks the periods

forbidden for all (resp., for some) exponents in the given range.
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k−1 letters in a β-free word are different (in particular, ifm < k then all letters in
x are different). The distribution of periods of minimal β-powers is illustrated by
Fig. 1, a. Some short forbidden periods are described by the following theorem.

Theorem 5. Let β ∈
[

k
k−1

+, k−1
k−2

]
. If an integer p satisfies one of the conditions

(a) k < p <
⌈

k+1
2

⌉
(k−1) and p mod k �= 0,

(b) p ∈ [(m−2)(k+1)+1,m(k−1)−1] for an integer m ≥
⌈

k+3
2

⌉
and p mod k �= 0,

(c) p = 3k or p = 4k,
then no minimal k-ary β-powers of period p exist.

The following simple observation is very useful.

Remark 2. The distance between two closest occurrences of a letter in a β-free
word is k−1, k, or k+1.

Let xyx be an m-repetition. We refer to the letters occurring in x as to X-letters.
If all X-letters have the same number of occurrences in xy then we say that the
repetition is uniform. We begin with the case β = k

k−1
+. The following lemma

collects some results of [18].

Lemma 6 ( [18]). (a) The set of all possible periods of 1- and 2-repetitions
coincides with the interval [1, k];
(b) any m-repetition such that 3 ≤ m ≤

⌈
k+1
2

⌉
is uniform;

(c) the period of any uniform m-repetition satisfying 3≤m<k is divisible by k;
(d) uniform 4- and 5-repetitions do not exist.

Since the condition m ≤
⌈

k+1
2

⌉
is equivalent to p <

⌈
k+1
2

⌉
(k−1), the statements

(a)–(c) of Lemma 6 imply the statement (a) of Theorem 5 for the case β = k
k−1

+.
The statement (c) for this case is implied by Lemma 6(d), while the statement
(b) readily follows from the next lemma concerning non-uniform repetitions.

Lemma 7. If m ≤ k, then the period of a non-uniform m-repetition belongs to
the interval [(m−1)(k−1), (m−2)(k+1)].

Proof. First suppose that all X-letters are different. Note that the period of any
m-repetition xyx (|x| = m) belongs to the interval [(m−1)(k−1),m(k−1) − 1].
Indeed, the exponent of a longer word xyx with |x| = m is too small, while a
shorter word has a proper prefix which is a β-power. The period coincides with the
distance between the two marginal occurrences of any X-letter a. By Remark 2,
the number of a’s in the word xyx is at most m (for (m+1) a’s, the distance be-
tween the two marginal ones is at least m(k−1)). On the other hand, the number
of a’s is at least m−1 (for m−2 a’s, the distance between the two marginal ones
is at most (m−3)(k+1) < (m−1)(k−1)). Since the considered repetition is non-
uniform, someX-letter a occursm times in xyx, while some otherX-letter b occurs
only m−1 times. By Remark 2, the distance between the two marginal a’s (resp.,
b’s) is at least (m−1)(k−1) (resp., at most (m−2)(k+1)), whence the result.

Now let some X-letters coincide. Since m ≤ k, we have m = k and x =
a1a2 . . . ak−1a1, where the letters a1, . . . , ak−1 are different. Suppose that p =
|xy| > (k−2)(k+1). Then the letter a1 (resp., each of the letters a2, . . . , ak−1)
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occurs at least k+1 (resp., k) times in xyx. Consider the letter ak: by Remark 2,
it occupies the first and the last positions of the word y. The distance between
these positions is |xy| − |x| − 1 = p− (k+1) > (k−3)(k+1). Hence, by Remark 2
ak occurs in y at least k−1 times. We get |xyx| ≥ k+1 + (k−2)k + k−1 = k2,
yielding exp(xyx) = |xyx|/(|xyx|−k) ≤ k/(k−1), which is impossible, because
xyx is a k-repetition. The lemma is proved. ��

The proofs of both Lemma 6 (in [18]) and Lemma 7 refer to Remark 2 only. But if
a k

k−1
+-power xyx is not minimal because of Remark 2, then any bigger β-power

(xy)β is not minimal by the same reason. Hence, all statements of Theorem 5
hold for all β ∈

[
k

k−1
+, k−1

k−2

]
. By a mere computation, we have

Corollary 2. If β ∈
[

k
k−1

+, k−1
k−2

]
, then minimal k-ary β-powers of period p do

not exist for at least 3k2−10k+16−(k mod 2)
4 different values of p.

Now choose β from the interval
[

k−1
k−2

+
, k−2

k−3

]
. It is not so close to repetition

threshold but still admits forbidden periods. Note that any successive k−2 letters
in a β-free word are different.

Theorem 6. Let β ∈
[

k−1
k−2

+
, k−2

k−3

]
. If p ∈ [(m−1)(k+1)+1,m(k−2)−1] for some

integers m ∈ [2, k−2] and p, then no minimal k-ary β-powers of period p exist.

Proof. First, let β = k−1
k−2

+
. Take anm-repetition xyx. Note that |xy| < m(k−2),

because for |xy| = m(k−2) we have exp(xyx) = k−1
k−2 . Since m ≤ k−2, all letters

in x are different. Moreover, each of the X-letters occurs in y at most m−2
times. Indeed, the distance between the closest occurrences of a letter is at least
k−2, while the distance between the marginal occurrences of an X-letter is |xy|,
which is less than m(k−2).

Any factor of y of length k contains at least k−1 different letters (and then, at
least m−1 X-letters). If p = |xy| ≥ (m−1)(k+1)+1, then |y| ≥ (m−1)k. Hence,
y contains at least (m−1)2 occurrences of X-letters. On the other hand, we have
m X-letters, each one occurring at most m−2 times in y. This contradiction
proves that an m-repetition of period p cannot exist.

Now note that if a k-ary k−1
k−2

+
-power of period p certainly contains k−2 suc-

cessive letters which are not all distinct, than any bigger k-ary power of the same
period also contains such letters. Hence, the periods that are forbidden for the
exponent k−1

k−2

+
, are forbidden for any exponent β ∈

[
k−1
k−2

+
, k−2

k−3

]
. ��

Corollary 3. If β ∈
[

k−1
k−2

+
, k−2

k−3

]
and k ≥ 7, then the minimal k-ary β-powers

of period p do not exist for some values of p. The number of such values is at
least k2−9k+q

6 , where q = 18 if k is divisible by 3 and q = 20 otherwise.

We also found one period which remains forbidden for even bigger exponents:

Theorem 7. If k ≥ 9 and β ∈
[

2k−5
2k−7

+
, k−3

k−4

]
, then no minimal k-ary β-powers

of period 2k−7 exist.
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Remark 3. It is quite interesting that for smaller exponents (namely, for all
β ∈
[

k−2
k−3

+
, 2k−5

2k−7

]
) the k-ary minimal β-powers of the period 2k−7 exist.

Proof (of Theorem 7). The period 2k−7 corresponds to a 3-repetition, since
2k−5
2k−7 < β. Assume that such a 3-repetition xyx exists. Note that each successive
k−3 letters in xyx are distinct. Then all X-letters are different and do not
occur in y, since otherwise the distance between two occurrences of an X-letter
would be less than k−3. Hence at most k−3 different letters occur in y (and
each successive k−3 letters are distinct). Thus, |y| ≤ k−2. We then have a
contradiction, because |xy| ≤ k+1 < 2k−7. ��

4 Computer-Assisted Results and the Conjecture

The results of Sect. 3 cover only part of all possible triples (k, β, p) with β < 2.
Using computer, we shed some light on the following questions:
(1) for the exponents that are not mentioned in Theorems 5–7, are there any
forbidden periods?
(2) for the exponents studied in Theorems 5–7, what forbidden periods were not
mentioned there?

We studied β-powers over the alphabets from 3 to 15 letters and get the
following. For β ≥ k−2

k−3
+, no forbidden period except the one mentioned in

Theorem 7, was found. The same is true for β = k−1
k−2

+, but some additional
forbidden periods appear with the growth of β within the interval

[
k−1
k−2

+, k−2
k−3

]
,

e. g., the period 7 for k = 6, β > 9
7 , and the period 22 for k = 10, β > 25

22 , see
Fig. 1, b. These forbidden periods reflect the situation when the period of an
m-repetition becomes the period of an (m+1)-repetition with increasing β.

In the “lowest” interval
[

k
k−1

+, k−1
k−2

]
we discovered some forbidden periods for

m-repetitions with m ≤ k other than the periods mentioned in Theorem 5. For
example, there are seven “additional” forbidden periods for k = 10, see Fig. 1, a.
The “square” 64, 65, 74, 75 was found for other even-size alphabets also, while
the periods 70, 77, 83 are sporadic. Concerning the case m > k, we present a
table with some statistics on the forbidden periods for β = (RT (k))+:

k β range #P (k, β) max p
3 (7/4)+ 4 − 66 8 22
4 (7/5)+ 10 − 205 78 165
5 (5/4)+ 20 − 113 28 64
6 (6/5)+ 30 − 93 14 52
7 (7/6)+ 42 − 97 9 59
8 (8/7)+ 56 − 104 4 61
9 (9/8)+ 72 − 103 0

10 (10/9)+ 90 − 104 0

Third to fifth column con-
tain the range of examined
periods, the number of for-
bidden periods found, and
the maximum of these pe-
riods, respectively.

So, these computer-assisted results suggest that Theorems 5–7 list all the ex-
ponents for which forbidden periods exist, and describe the most part of these
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forbidden periods for large enough alphabets. Hence we finish with a conjec-
ture which summarizes our knowledge of minimal β-powers obtained from the
theoretic results of Sect. 3 and computer experiments.

Conjecture 1. Let k ≥ 3.

1) A forbidden period for the pair (k, β) exists if and only if one of the following
conditions is satisfied: (a) β ≤ k−1

k−2 ; (b) k = 6 and β ∈ [97
+
, 4

3 ], or k ≥ 7 and

β ∈
[

k−1
k−2

+
, k−2

k−3

]
; (c) k ≥ 9 and β ∈

[
2k−5
2k−7

+
, k−3

k−4

]
.

2) For any pair (k, β) the set of all forbidden periods is finite.
3) If k ≥ 9, then a forbidden period for any pair (k, β) cannot exceed k(k−1)−1.

Note that the period k(k−1)−1 is forbidden for any β ≤ k−1
k−2 by Theorem 5.
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Abstract. The results of several papers concerning the Černý conjec-

ture are deduced as consequences of a simple idea that I call the averag-

ing trick. This idea is implicitly used in the literature, but no attempt

was made to formalize the proof scheme axiomatically. Instead, authors

axiomatized classes of automata to which it applies.

1 Introduction

Recall that a (complete deterministic) automaton A = (Q,Σ) with state set
Q and alphabet Σ is called synchronizing if there is a word w ∈ Σ∗ such that
|Qw| = 1. The word w is called a synchronizing word. The main conjecture in
this area is:

Conjecture 1 (Černý [1]). An n-state synchronizing automaton admits a syn-
chronizing word of length at most (n− 1)2.

There is a vast literature on this subject. See for example [2,3,4,5,1,6,7,8,9,10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. The best known upper bound
is cubic [26], whereas it is known that one cannot do better than (n− 1)2 [1].

My goal here in this note is not to prove the Černý conjecture for a new class
of automata, but rather to give a no-frills, uniform approach to an argument
that underlies a growing number of results in the Černý conjecture literature
(cf. [7,13,24,20,21,22]). Underlying all these results (as well as the more difficult
results of [5] and [17]) are two simple ideas:

– if a finite sequence of numbers is not constant, then it must at some place
exceed its average;

– finite dimensional vector spaces satisfy the ascending chain condition on
subspaces.

The latter idea is often cloaked in the language of rational power series.
The paper is organized as follows. In the next section I state what I call the

“Averaging Lemma.” It is a method, with a probabilistic flavor, for obtaining
� The author gratefully acknowledges the support of NSERC.

Y. Gao et al. (Eds.): DLT 2010, LNCS 6224, pp. 423–431, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



424 B. Steinberg

bounds on lengths of synchronizing words. Before proving the lemma, I show
how to deduce from it Kari’s solution of the Černý conjecture for Eulerian au-
tomata, as well as recent results of Béal and Perrin [20] for one-cluster automata
and Carpi and d’Alessandro [21, 22] for (locally) strongly transitive automata.
We also recover an old result of Rystsov [7] on regular automata (which is es-
sentially the same thing as strongly transitive automata). In fact, we obtain
new generalizations of all these results. The final section proves the Averaging
Lemma.

2 The Averaging Trick

Let Σ be an alphabet. Denote by Σ∗ the free monoid on Σ and put

Σ≤d =
d⋃

m=0

Σm.

The ring of polynomials with real coefficients in the non-commuting variables Σ
is denoted RΣ. By a (finitely supported) probability on Σ∗, we mean an element

P =
∑

w∈Σ∗
P (w)w ∈ RΣ

such that: P (w) ≥ 0 for all w ∈ Σ∗, and
∑

w∈Σ∗
P (w) = 1.

The support of P is
σ(P ) = {w ∈ Σ∗ | P (w) > 0}.

Notice that if P1 and P2 are probabilities, then so is P1P2. Also note that
σ(P1P2) = σ(P1)σ(P2).

If X : Σ∗ → R is a random variable, then the expected value of X (with respect
to the probability P ) is:

EP (X) =
∑

w∈Σ∗
P (w)X(w) =

∑

w∈σ(P )

P (w)X(w). (1)

The fundamental property of a random variable that we exploit in this paper is
that either it is almost surely constant (and equal to its expectation), or with
positive probability it exceeds it expectation. More precisely, it is immediate
from (1) and the definition of a probability that either X(w) = EP (X) for all
w ∈ σ(P ), or there is a value w ∈ σ(P ) with X(w) > EP (X).

Suppose now that A = (Q,Σ) is an automaton with |Q| = n. We view
elements of RQ as row vectors. Let π : RΣ → Mn(R) be the corresponding
matrix representation (cf. [27]); so if

f =
∑

w∈Σ∗
f(w)w,
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and q, r ∈ Q, then
π(f)q,r =

∑

{w∈Σ∗|qw=r}
f(w).

We shall usually omit π from the notation and view RΣ as acting on row and
column vectors. If S ⊆ Q, then [S] denotes the characteristic row vector of S;
e.g., [Q] is the all ones row vector. We use [S]T to denote the transpose vector.
A key fact is that w[S]T = [Sw−1]T for w ∈ Σ∗, where as usual Sw−1 = {q ∈
Q | qw ∈ S}.

Lemma 2 (Averaging Lemma). Let A = (Q,Σ) be a synchronizing au-
tomaton with n states, let P1 be a probability on Σ∗ and let R ⊆ Q. Set c = 2
if, for each proper non-empty subset S � R, there exist w1, w2 ∈ σ(P1) with
Sw−1

1 �= Sw−1
2 and otherwise put c = 1. Suppose that there exists a probability

P2 with support Σ≤n−c such that:

1. [R]P2P1 = [R];
2. R ⊆ qΣ∗ for all q ∈ R;
3. there exists w0 ∈ Σ∗ with Qw0 ⊆ R.

Then A has a synchronizing word of length at most:

– c+ (n− 2)(n− c+ L) if R = Q;
– (r − 1)(n− c+ L) + �+ c− 1 if R � Q

where r = |R|, L is the maximum length of a word in σ(P1) and � = |w0|.

Remark 3. If r is odd, then the proof shows that the bounds in Lemma 2 can
be improved to 1 + (n− 2)(n− c+ L) and (r − 1)(n− c+ L) + �, respectively.

Before, proving the lemma, let us use it to derive anew some results from the
literature. The first is a result of Kari on synchronizing Eulerian automata [13].
An automaton is Eulerian if its underlying graph admits an Eulerian directed
path, or equivalently, it is strongly connected and the in-degree of every vertex
is the same as the out-degree (and hence is the alphabet size). Actually, we can
generalize his result.

Let us say that a strongly connected automaton A = (Q,Σ) is pseudo-
Eulerian if we can find a probability P with support Σ such that the matrix
π(P ) is doubly stochastic (i.e., each row and column of P adds up to 1). For
instance, if A is Eulerian with adjacency matrix A and d = |Σ|, then we can set

P =
∑

a∈Σ

d−1a.

One checks that π(P ) = d−1A, and hence is doubly stochastic by the Eulerian
hypothesis. Thus every Eulerian automaton is pseudo-Eulerian. It is easy to
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Fig. 1. A pseudo-Eulerian automaton

check whether a strongly connected automaton is pseudo-Eulerian: one just needs
to look for a strictly positive solution to the system of |Q|+ 1 linear equations

1 =
∑

a∈Σ

pa

1 =
∑

a∈Σ

pa · |qa−1| (q ∈ Q).

The automaton in Figure 1 is pseudo-Eulerian but not Eulerian. Indeed, if we
put P = a/2 + b/6 + c/3, then

π(P ) =

⎡

⎢⎢⎣

1
2

1
6

1
3 0

1
6

1
2

1
3 0

0 1
6

1
3

1
2

1
3

1
6 0 1

2

⎤

⎥⎥⎦

is doubly stochastic.

Theorem 4. An n-state synchronizing pseudo-Eulerian automaton has a syn-
chronizing word of length at most 1 + (n− 2)(n− 1).

Proof. Let A = (Q,Σ) and suppose that P is a probability with support Σ
such that π(P ) is doubly stochastic. Let P1 be the probability with support
concentrated on the empty word and take R = Q. As pseudo-Eulerian automata
are strongly connected, Q ⊆ qΣ∗ for all q ∈ Q. Put

P2 =
1
n

n−1∑

m=0

Pm;

it is a probability with support Σ≤n−1. The condition that π(P ) is doubly
stochastic is equivalent to [Q]P = [Q]. Thus

[Q]P2P1 = [Q] · 1
n

n−1∑

m=0

Pm = [Q].

The Averaging Lemma now yields the upper bound of 1 + (n− 2)(n− 1) on the
length of a synchronizing word. ��
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The next result simultaneously generalizes results of Rystsov [7] on regular au-
tomata, Béal [24] on circular automata, Béal, Berlinkov and Perrin [20, 28] on
one-cluster automata and Carpi and d’Alessandro [21,22] on strongly and locally
strongly transitive automata.

Theorem 5. Let A = (Q,Σ) be a synchronizing automaton. Suppose there is
a set of words W ⊆ Σ∗ and k ≥ 1 so that, for each state q ∈ Q and each state
s ∈ R = QW , there are exactly k elements of W taking q to s. Let � be the length
of the shortest word in W and L be the length of the longest. If R = Q, then there
is a synchronizing word for A of length at most 2+(n−2)(n−2+L); if R � Q,
then there is a synchronizing word of length at most (r − 1)(n− 2 + L) + �+ 1
where r = |R|.

Proof. A straightforward counting argument establishes that |W | = kr. It re-
mains to define our probabilities in order to apply the Averaging Lemma. Take
P1 to be the uniform distribution on W (so P1(w) = 1/|W | for w ∈ W and is
otherwise 0). To verify that c = 2, let ∅ �= S � R and suppose that s ∈ S and
q ∈ R \ S. Then by the hypothesis on W , there exist w1, w2 ∈ W with rw1 = s
and qw2 = q. Then q ∈ Sw−1

1 but q /∈ Sw−1
2 .

Now let P2 be an arbitrary probability with support Σ≤n−c. The only condi-
tion remaining to check in order to apply the Averaging Lemma is that [R]P2P1 =
[R]. First observe that the columns of π(P1) corresponding to elements of Q \R
are zero, while if s ∈ R, then the corresponding column of π(P1) is (k/|W |)[Q]T =
(1/r)[Q]T . Since π(P2) is a stochastic matrix (each of its rows sum to 1), this
means that π(P2P1) = π(P1). Next observe that if s ∈ R, then s

∑
w∈W w =

k[R]. Thus

[R]
∑

w∈W

w =
∑

s∈R

s
∑

w∈W

w = rk[R] = |W |[R].

Therefore, [R]P1 = [R] and hence [R]P2P1 = [R], as required. ��

For example, Béal and Perrin [20] call A = (Q,Σ) a one-cluster automaton if
there exists a ∈ Σ so that a has only one cycle R on Q; see Figure 2. Suppose
that the cycle has size r. Then each state of Q is taken to exactly one element of
R by the set of words W = {an−r, . . . , an−1}. Theorem 5 then yields the bound
of 2n2−7n+8. This should be compared with the bound of 2n2−7n+7 from [28],
which improves on the earlier bound of 2n2 − 6n+ 5 from [20]. Indeed, if r = n,
Theorem 5 immediately yields a bound of 2 + (n − 2)(2n − 3) = 2n2 − 7n + 8.
Otherwise, using L = n− 1 and � = n− r, we obtain a bound of

(r − 1)(2n− 3) + n− r + 1 = r(2n− 4)− n+ 4
≤ (n− 1)(2n− 4)− n+ 4

= 2n2 − 7n+ 8.

Similarly, one recovers the results of Rystsov [7] and the results of Carpi and
d’Alessandro [21,22] with an improved bound. Indeed, the locally strongly tran-
sitive automata of [22] constitute the special case of Theorem 5 where k = 1.
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Fig. 2. a-skeleton of a one-cluster automaton with n = 15 and r = 5

Rystsov’s notion of a regular automaton is essentially (but slightly more rigid)
than the case R = Q.

The proof of Theorem 5 can easily be adapted to obtain the same bound if W
is an arbitrary set of words such that there is a probability P1 supported on W
so that each column of π(P1) corresponding to an element of Q\R is 0, whereas
each column corresponding to an element of R is 1/r[Q]T .

3 Proof of the Averaging Lemma

The proof of the Averaging Lemma rests on our observation about expectations
of random variables and the ascending chain condition for finite dimensional
vector spaces. Suppose that Σ∗ acts on the left of a vector space V by linear
maps. Let X ⊆ Σ∗ and let W be a subspace. Then by XW , we mean the span
of all vectors xw with x ∈ X and w ∈W .

Lemma 6. Let π : Σ∗ → Mn(K) be a matrix representation with K a field.
Suppose that one has subspaces W,V ⊆ Kn of column vectors with W ⊆ V , but
Σ∗W � V . Let S be a spanning set for W . Then there exist s ∈ S and w ∈ Σ∗

with |w| ≤ dimV − dimW + 1 and ws /∈ V .

Proof. Put Wm = Σ≤mW . Then there is an ascending chain of subspaces

W = W0 ⊆W1 ⊆W2 ⊆ · · ·

and moreover as soon as this chain stabilizes it equals Σ∗W . By our assumption,
there is a greatestm ≥ 0 withWm ⊆ V . In particular, the chain does not stabilize
until after m steps and so

W0 � W1 � · · · � Wm ⊆ V

and hence dimW0 +m ≤ dimV , that is, m+1 ≤ dimV −dimW +1. Therefore,
there is a word w ∈ Σ∗ with |w| ≤ dimV − dimW + 1 and wW � V . But W is
spanned by S, so we can find s ∈ S with ws /∈ V .
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Proof (of the Averaging Lemma). For convenience, put X = σ(P1). We show
that for each ∅ �= S � R, there exists w ∈ Σ∗ of length at most n − c + L
with |Sw−1 ∩ R| > |S| except for when c = 2 and |S| = r/2, in which case
we can only guarantee that w has length at most n − 1 + L. If R = Q, the
result is then immediate: one can find a state q ∈ Q and a letter a ∈ Σ so that
|qa−1| > 1; now we expand by inverse images n− 2 times with words of length
at most n−c+L (except for when c = 2 and |S| = r/2, in which case we expand
by n − 1 + L) to obtain the result. If R � Q, we can find w of length at most
(r−1)(n−c+L)+c−1 with |Rw| = 1 using the same idea. Then as Qw0 ⊆ R, it
follows |Qw0w| ≤ |Rw| = 1. This yields the bound of (r−1)(n−c+L)+ �+c−1
on the length a synchronizing word.

Consider the probability P = P2P1 on Σ∗ and define a random variable
ZS : Σ∗ → R by

ZS(w) = |Sw−1 ∩R| = [R][Sw−1]T = [R][w][S]T .

Let us compute the expected value of this random variable:

EP (ZS) =
∑

w∈Σ∗
P (w)|Sw−1 ∩R| =

∑

w∈Σ∗
P (w)[R]w[S]T

= [R]P [S]T = [R]P2P1[S]T = [R][S]T

= |S|

where we have used [R]P2P1 = [R]. The support of P is σ(P2)σ(P1) = Σ≤n−cX .
If we can find v ∈ Σ≤n−cX with ZS(v) = |Sv−1 ∩ R| �= |S|, then we can find
w ∈ Σ≤n−cX with |Sw−1 ∩ R| = ZS(w) > |S| by our discussion earlier on
random variables that are not almost surely constant. As |w| ≤ n − c+ L, this
will finish the proof.

If |Sx−1 ∩ R| �= |S| for some x ∈ X , then we are done. Otherwise, we may
assume |Sx−1 ∩ R| = |S| for all x ∈ X . Let γ be the column vector [S]T −
(|S|/r)[Q]T . Notice that if w ∈ Σ∗, then one has wγ = [Sw−1]T − (|S|/r)[Q]T

and so [R]wγ = |Sw−1 ∩R|− |S|. In particular, if x ∈ X our assumption implies
[R]xγ = 0. Moreover, xγ �= 0 as |S| < r. Thus if W is the subspace spanned by
the column vectors xγ with x ∈ X , then 0 �= W ⊆ [R]⊥.

Our next goal is to verify that dimW ≥ c unless c = 2 and |S| = r/2 (in which
case it is at least 1). The only non-trivial case is when c = 2 and |S| �= r/2. Then we
can find w1, w2 ∈ X with Sw−1

1 �= Sw−1
2 . We claim that w1γ and w2γ are linearly

independent elements of W . Indeed, if they were linearly dependent, then since
both vectors are non-zero we must have w1γ = kw2γ for some k ∈ R. Moreover,
k �= 1 because Sw−1

1 �= Sw−1
2 . Thus [Sw−1

1 ]T − k[Sw−1
2 ]T = (|S|/r)(1 − k)[Q]T .

Since [Q]T is the all ones column vector and [Sw−1
1 ]T , [Sw−1

2 ]T are column vectors
of zeroes and ones, it follows that k = −1 andSw−1

1 , Sw−1
2 are complementary sub-

sets ofQ. Then we obtain [Q]T = (2|S|/r)[Q]T , whence |S| = r/2, a contradiction.
We conclude that w1γ and w2γ are linearly independent and so dimW ≥ 2 = c.

Our next claim is that Σ∗W � [R]⊥. Indeed, let w be a synchronizing word.
Then ww0 synchronizes A to an element of q ∈ R. But qΣ∗ ⊇ R, so we can
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synchronize to any state of R. In particular, we can synchronize A via some
word y into Sx−1 ∩ R for some x ∈ X . Then Sx−1y−1 = Q and so [R]yxγ =
|Sx−1y−1 ∩ R| − |S| > 0. This shows that yxγ /∈ R⊥ and hence Σ∗W � [R]⊥.
As dimW ≥ c and dim[R]⊥ = n − 1, Lemma 6 now provides u ∈ Σ≤n−c and
z ∈ X with uzγ /∈ [R]⊥. Putting v = uz ∈ Σ≤n−cX , we have 0 �= [R]vγ =
|Sv−1 ∩R| − |S|. This completes the proof. ��

Remark 7. The above proof and the proof of the main result of [28] give an
improved bound for one-cluster automata. It is shown in [28] that if we have
an n-state one-cluster automaton with unique a-cycle R of length r, then we
can find a state q ∈ R and a word w of length at most 2n − r − 1 such that
|qw−1 ∩R| > 1. Since the Černý conjecture is proved for the case r = n [5], we
may assume r ≤ n− 1. Combining this with the above proof yields a bound of

(r − 2)(2n− 3) + 2n− r − 1 + n− r + 1 = (r − 2)(2n− 3) + 3n− 2r
= r(2n− 5)− n+ 6
≤ (n− 1)(2n− 5)− n+ 6

= 2n2 − 8n+ 11.
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Since Thue’s work [10] in the early 1900’s, repetition avoidance has been intensely
studied [9,8,7,4]. From the point of view of DNA computing [5], we study another
type of repetition, called a pseudo-power, inspired by the property of the Watson-
Crick complementarity in molecular biology.

A deoxyribonucleic acid (DNA) single strand can be viewed as a string over
the four-letter alphabet {A,C,G, T }, wherein A is the complement of T , while
C is the complement of G. Such a DNA single strand will bind to a reverse
complement DNA single strand, called its Watson-Crick complement, to form a
helical double-stranded DNA molecule. The Watson-Crick complement of a DNA
strand is deducible from, and thus informationally equivalent to, the original
strand. We use this fact to generalize the notion of the power of a word by
relaxing the meaning of “sameness” to include the image through an antimorphic
involution (also called an involutory antimorphism in the literature), the model
of DNA Watson-Crick complementarity. Similar generalizations exists in the
literature for other concepts in combinatorics on words, such as pseudo-primitive
words [2] and pseudo-palindromes [3,6,1].

Given a finite alphabet Σ, an antimorphic involution is a function θ : Σ∗ −→
Σ∗ which is an involution, i.e., θ2 equals the identity, and an antimorphism, i.e.,
θ(uv) = θ(v)θ(u), for all u, v ∈ Σ∗. For a positive integer k, we call a word w a
pseudo-kth-power with respect to θ if it can be written as w = u1 . . . uk, where
for 1 ≤ i, j ≤ k we have either ui = uj or ui = θ(uj). The classical kth-power of
a word is a special case of a pseudo-kth-power, where all the repeating units are
identical.

We classify the alphabets Σ and the antimorphic involutions θ for which there
exist arbitrarily long words that do not contain pseudo-kth-powers as a factor
(pseudo-kth-power-free). We show that, for any Σ with |Σ | ≥ 4 (resp., |Σ | ≥ 3),
and any antimorphic involution θ over Σ, there exist pseudo-square-free (resp.,
pseudo-cube-free) infinite words with respect to θ. No pseudo-square-free infinite
word exists over Σ with |Σ | ≤ 2 and the existence of pseudo-square-free infinite
words depends on θ for |Σ | = 3. No pseudo-cube-free infinite word exists over
Σ with |Σ | ≤ 2. For any integer k ≥ 4, pseudo-kth-power-free infinite words
exist except when either |Σ | = 1 or |Σ | = 2 and θ transposes the two letters.
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We discuss algorithms for testing whether a word w of length N is pseudo-kth-
power-free. For arbitrary integer k, we provide an O(N2 logN)-time algorithm
to find all pseudo-kth-powers in w. In addition, we provide an O(N)-time algo-
rithm and an O(N2)-time algorithm for testing whether w is pseudo-square-free
and pseudo-cube-free, respectively. The computational complexity of an optimal
algorithm for testing whether w is pseudo-kth-power-free is still unknown.
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In context-free grammars, each derivation step can be characterized so that (i) a
nonterminal of the current sentential form is chosen and (ii) rewritten by a rule.
However, it is well-known that context-free grammars are not able to cover all
aspects of natural languages and/or programming languages. Therefore, there
were defined many grammars with context-free rules and some mechanism con-
trolling the application of rules, e. g., in random context grammars and their
variants, a rule is only applicable if the current sentential form contains some
letters or subwords and some letters or words do not occur in it. Therefore,
in grammars controlled by context, each derivation step can be characterized
so that (i) subsets of applicable nonterminals and rules are determined accord-
ing to the symbols appearing in the current sentential form, (ii) an applicable
nonterminal is chosen and (iii) rewritten by an applicable rule.

In [2] a simpler type of context-free grammars with a controlled derivation
process was introduced, which is formally defined as follows.

A restricted context-free grammar is a tuple G = (N,T, P, S, f) where N is
the alphabet of nonterminals, T is the alphabet of terminals such that N ∩T = ∅,
S ∈ N is the axiom or start symbol, P is a finite set of context-free rules (i. e.,
each rule has the form A → w with A ∈ N and w ∈ (N ∪ T )∗), and f : N →
{+,−}×N is a function which maps any nonterminal to a signed nonterminal.

We say that x directly derives y in G, written as x =⇒ y, if the following two
conditions are satisfied:
– x = x1Ax2, y = x1wx2, A→ w ∈ P ,
– f(A) = (+, B) implies that x contains B, and
f(A) = (−, B) implies that x does not contain B.
The language L(G) of a restricted context-free grammar G = (N,T, P, S, f)

is defined by L(G) = {z | z ∈ T ∗, S =⇒∗ z}, where =⇒∗ is the reflexive and
transitive closure of the relation =⇒.

In the case of restricted context-free grammars the derivation step can be char-
acterized so that (i) a set of applicable nonterminals is determined according to the
symbols appearing in the current sentential form, (ii) an applicable nonterminal
is chosen and (iii) rewritten by an arbitrary rule rewriting this nonterminal.
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We also consider the special case of permitting and non-erasing restricted
context-free grammars where we require that f : N → {+} × N holds and P
does not contain rules of the form A→ λ, respectively.

We denote the families of languages generated by restricted context-free gram-
mars, non-erasing restricted context-free grammars, permitting restricted context-
free grammars, and permitting non-erasing restricted context-free grammars by
L(rCF), L(rCF − λ), L(rCF+), and L(rCF+ − λ), respectively.

The families of context-free, context-sensitive and recursively enumerable lan-
guages are denoted by L(CF), L(CS) and L(RE), respectively. Furthermore, we
designated the families of languages generated by random context grammars,
non-erasing random context grammars, permitting random context grammars,
and permitting non-erasing random context grammars by L(RC), L(RC − λ),
L(P ), and L(P−λ), respectively. For the definition of random context grammars,
their variants and matrix grammars, we refer to [1] and [3].

Our first result characterizes the generative power of restricted context-free
grammars. Essentially, their capacity coincides with that of the corresponding
type of random context-grammars.

Theorem 1. i) L(CF) ⊂ L(rCF+) = L(P ) ⊂ L(rCF) = L(RC) = L(RE).
ii) L(CF) ⊂ L(rCF+ − λ) = L(P − λ) ⊂ L(rCF − λ) = L(RC − λ) ⊂ L(CS).

As a consequence we obtain new normal form results for random context gram-
mars and matrix grammars where we use only rules, which are much simpler
than those in other known normal forms.

Corollary 1. For any language L ∈ L(RE) (L ∈ L(RC − λ)), there is a (non-
erasing) random context grammar G = (N,T, P, S) with the following properties:
– L(G) = L,
– if (A→ w,Q,R) ∈ P , then |w| ≤ 2 and #(Q ∪R) = 1, and
– if (A→ w1, Q1, R1) ∈ P and (A→ w2, Q2, R2) ∈ P , then Q1 = Q2 and
R1 = R2.

Corollary 2. For any language L ∈ L(RE) (L ∈ L(RC − λ)), there is a (non-
erasing) matrix grammar G = (N ∪ {Z}, T,M, S, F ), Z /∈ N ∪ T , with the
following conditions:
– L(G) = L,
– any matrix has the form [A→ A,B → x] with A,B ∈ N , |w| ≤ 2 or

[A→ Z,B → x] with A,B ∈ N , |w| ≤ 2, and
– F consists of all rules of the form A→ Z occurring in matrices of M .
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3. Meduna, A., Švec, M.: Grammars with Context Conditions and Their Applications.

John Wiley & Sons, New York (2005)



Graphs Capturing Alternations in Words
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A graphG = (V,E) is representable if there exists a wordW over the alphabet V
such that letters x and y alternate in W if and only if (x, y) ∈ E for each x �= y.
If W is k-uniform (each letter of W occurs exactly k times in it) then G is called
k-representable. A graph is representable if and only if it is k-representable for
some k [1].

In this note, we introduce the applicability of representable graphs, and answer
several open questions from [1].

Circular precedence constraints: Consider a scenario with n recurring tasks with
requirements on the alternation of certain pairs of tasks. This captures typical
situations in periodic scheduling, where there are recurring precedence require-
ments, e.g., “before each ignition, check the oil level”. When tasks occur only
once, the pairwise requirements form precedence constraints, which are modeled
by partial orders. When the directionality of the constraints is omitted, the re-
sulting pairwise constraints form comparability graphs. We consider here graphs
formed by pairwise alternation constraints

Execution sequences of recurring tasks can be viewed as words over an al-
phabet V , where V is the set of tasks. Thus, when tasks recur, the resulting
alternation relationship forms a representable graph.

Proposition 1 ([1]). Let W = AB be a k-uniform word representing a graph G.
Then the word W ′ = BA also k-represents G.

Representability of the Petersen graph: It was shown in [3] to be 3-representable:
- 1, 3, 8, 7, 2, 9, 6, 10, 7, 4, 9, 3, 5, 4, 1, 2, 8, 3, 10, 7, 6, 8, 5, 10, 1, 9, 4, 5, 6, 2
- 1, 3, 4, 10, 5, 8, 6, 7, 9, 10, 2, 7, 3, 4, 1, 2, 8, 3, 5, 10, 6, 8, 1, 9, 7, 2, 6, 4, 9, 5
We can show that it is not 2-representable. Let W be a word 2-representing it.
Some letter x must appear with the exactly three distinct letters between its
two appearances. By symmetry and Prop. 1, x = 1 and W starts with 1. By
symmetry and independence of 2,5,6, we can write W = 12561W16W25W32W4.
To alternate with 6 but not to with 5, both W1 and W2 contain 8. To alternate
with 2 but not with 5, bothW3 andW4 contain 3. But then 8833 is a subsequence
in W , so 8 and 3 are non-adjacent in the graph, a contradiction.

1

6
5 10 7 2

4 3

9 8

Y. Gao et al. (Eds.): DLT 2010, LNCS 6224, pp. 436–437, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Graphs Capturing Alternations in Words 437

On forming non-representable graphs: The following open problem was posed in
[1]: Are there any non-representable graphs that do not satisfy the conditions of
Theorem 1 below?
Theorem 1. ([1]) If G is representable, then for every x ∈ V (G) the graph in-
duced by N(x) is permutationally representable, where N(x) is the set of neigh-
bors of x in G.
We give a positive answer. A counterexample to the converse of Theorem 1 is
given by the graph below called co-(T2) in [4]. It is easy to check that the induced
neighborhood of any node of the graph co-(T2) is a comparability graph.

6

3 4

5 7
2

1

Theorem 2. The graph co-(T2) is non-representable.

Proof. Assume that co-(T2) is k-representable for some k and W is a word rep-
resenting it. The vertices 1,2,3,4 form a clique; so, their appearances 1i, 2i, 3i, 4i

in W must be in the same order for each i = 1, 2, . . . , k. By symmetry and
Proposition 1 we may assume that the order is 1234. Now let I1, I2, . . . , Ik be
the set of all [2i, 4i]-intervals in W . Two cases are possible.
1. There is an interval Ij such that 7 belongs to it. Then since 2,4,7 form a

clique, 7 must be inside each of the intervals I1, I2, . . . , Ik. But then 7 is
adjacent to 1, a contradiction.

2. 7 does not belong to any of the intervals I1, I2, . . . , Ik. Again, since 7 is
adjacent to 2 and 4, each pair of consecutive intervals Ij , Ij+1 must be
separated by a single 7. But then 7 is adjacent to 3, a contradiction.

The effect of graph operations: Finally, we observe that the following operation
on a representable graph preserves representability: Replace any node with a
comparability graph, connecting all the new nodes to the neighbors of the orig-
inal node. I.e., replacing a node with a comparability graph module. On the
other hand, several other operations on representable graphs do not necessarily
result in a representable graph: Taking the complement, taking the line graph,
or identifying cliques of size more than 1 from two representable graphs.
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Abstract. The hairpin completion is a natural operation on formal lan-

guages which has been inspired by biochemistry and DNA-computing.

In this paper we solve two problems which were posed first in 2008 and

2009, respectively, and still left open:

1.) It is known that the iterated hairpin completion of a regular lan-

guage is not context-free in general, but it was open whether the iterated

hairpin completion of a singleton or finite language is regular or at least

context-free. We will show that it can be non-context-free.

2.) A restricted but also very natural variant of the hairpin completion

is the bounded hairpin completion. It was unknown whether the iterated

bounded hairpin completion of a regular language remains regular. We

prove that this is indeed the case.

1 Introduction

The inspiration of the hairpin completion is rooted in DNA-computing and bio-
chemistry, where it appears naturally in chemical reactions. It turned out that
the corresponding operation on formal languages gives rise to very interesting
and quite subtle decidability and computational problems. The focus of our pa-
per is therefore on these formal language theoretical results.

Consider an alphabet Σ together with an involution : Σ → Σ (i.e., a = a
for all a ∈ Σ). We say a is the complement of a. For words a1 · · · an = an · · ·a1.
The hairpin completion is best explained by Fig. 1. If a word has a factorization
γαβα (a), then the suffix α can bind to the infix α and form a hairpin (b). By
complementing the unbound prefix γ, the hairpin completion (c) arises.

(a)
γ α β α (b)

γ α
β

α

(c)
γ α

β
αγ

Fig. 1. Hairpin completion of a word

Let k ≥ 1 be a small constant. The one-sided hairpin completion of a for-
mal language L is defined as os-Hk(L) = {γαβαγ | γαβα ∈ L ∧ |α| = k}. For
the (two-sided) hairpin completion we also allow the suffix of a word to belong
to L, this leads to Hk(L) = {γαβαγ | (γαβα ∈ L ∨ αβαγ ∈ L) ∧ |α| = k}. See,
e.g., [1, 5]. A familiar operation has been introduced in [2], the bounded hairpin
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completion Hk,�(L) = {γαβαγ | (γαβα ∈ L ∨ αβαγ ∈ L) ∧ |γ| ≤ � ∧ |α| = k},
where the length of the γ-part is bounded by a constant � ≥ 0.

The iterated hairpin completion of a formal language L is defined as H∗
k(L) =⋃

i≥0Hi
k(L) where H0

k(L) = L and Hi+1
k (L) = Hk(Hi

k(L)). The iterated one-
sided hairpin completion os-H∗

k(L) and the iterated bounded hairpin completion
H∗

k,�(L) are defined analogously.

2 Results

Our first result concerns the iterated hairpin completion of singletons. We prove
that a singleton exists whose iterated hairpin completion is non-context-free.
This was stated as an open problem in [4]. It was even unknown if a singleton
exits whose iterated hairpin completion is non-regular.

Theorem 1. The iterated one- and two-sided hairpin completion of a singleton
(or finite language) is context-sensitive and is not context-free in general.

The next result gives a new representation for the iterated bounded hairpin
completion.

Theorem 2. Let L be a formal language and � ≥ 0. The iterated bounded hair-
pin completion H∗

k,�(L) can be represented by an expression using L and the
operations union, intersection with regular sets, and concatenation with regular
sets.

Consequentially, all language classes which are closed under these operations —
which includes the classes in the Chomsky Hierarchy — are closed under iterated
parameterized hairpin completion, too. From [2] it is known that the classes of
context-free, context-sensitive, and recursively enumerable languages are closed
under iterated bounded hairpin completion, but the status for regular languages
was unknown. From Thm. 2 we conclude:

Corollary 1. The class of regular languages is closed under iterated bounded
hairpin completion.

For the formal proofs of our results we refer to the technical report [3].
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A restarting automaton is a special type of linearly bounded automaton with
fixed lookahead length k, whose computation proceeds in cycles performing one
length-reducing rewrite of the lookahead contents per cycle as the only modifi-
cation of the input. Through various restrictions on this machine model, a vast
number of traditional and new language classes have been excavated. In two
studies on lookahead hierarchies for restarting automata without auxiliary sym-
bols [2,3], it was shown that lookahead length is often a significant restriction on
the power of these types of restarting automata. No similar study on lookahead
hierarchies for restarting automata with auxiliary symbols has been explicitly
carried out. Such a study could provide more insight into the most important
open problem concerning restarting automata: L(RRWW ) =?L(RWW ). In this
paper, we present a focussed study on language hierarchies for monotone or de-
terministic restarting automata with auxiliary symbols, whose rewrite step is
separated from their restart step, to those for which these two steps are not
separated. In doing so, we establish tight hierarchies for such restarting au-
tomata, the proofs of which are essentially a generalisation of the simulation of
(right-) monotone RRWW-automata by a pushdown automaton in [1]. We show,
in particular, that the class of languages for any type of right- or left- mono-
tone restarting automaton (deterministic or not) whose restart step and rewrite
step are separated coincides with that of the same monotone restarting automa-
ton whose restart and rewrite steps are not separated, for any fixed lookahead
size; furthermore, for the right- and left-monotone (non-deterministic) cases, the
lookahead hierarchies collapse. For the non-monotone deterministic case, the
lookahead length must be approximately doubled.

Theorem 1. For each, X-RRWW(k)-automaton M1, there is an X-RWW(k)-
automaton M2, such that L(M1) = L(M2), when k > 1 and X ∈ {mon, det-
mon, left-mon, right-left-mon, det-left-mon, det-right-left-mon}, where k is the
lookahead length.

Proof idea of Theorem 1. The proof constructs an mon-RWW-automaton M2

to simulate an mon-RRWW-automaton M1. The computations of M1 in each
cycle can be partitioned into computations preceding the rewrite step (left-
computations), the rewrite step, and computations following the rewrite step
(right-computations).M2 will simulateM1’s previous right-computations in later
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cycles or in the tail phase of its computation. M2 does this by recording the state
that M1 would have been in following the rewrite (if M1 does not also restart at
that point) in a compound symbol of its tape when rewriting. When M2 finds
a compound symbol, and providing the information it gives about how to con-
tinue simulating M1’s right-computations is accurate for the current phase, it is
able to carry out simulation of (part of) the preceding right-computations (of
M1) that it was not able to carry out when producing this compound symbol,
because it had to restart.

If all computations considered are monotone, then there is no need to check
the accuracy of information collected from a compound symbol regarding how
to continue with preceding right-computations. When M2 finds two successive
compound symbols, it will always abandon the information contained in the for-
mer for that of latter, for monotonicity, or incorporate all information found, in
the case of left-monotonicity.

For at least the non-deterministic case, the hierarchy collapses.

Corollary 1. For all k ≥ 3 and X ∈ {mon, left-mon}, we have L(X-RWW (k))
= L(X -RRWW (k)) = CFL, where k is the lookahead length.

For deterministic case, one must approximately double the lookahead length.

Theorem 2. For each, det-RRWW(k)-automaton M1, there is a det-RWW(2k-
2)-automaton, M2 such that L(M1) = L(M2), k > 1, where k and 2k − 2 the
respective lookahead lengths.

Proof idea for Theorem 2. The proof builds on that of Theorem 1. Every det-
RRWW(k) automaton is weakly j-monotone for some j ≤ k − 2 [3]. So if we
extend M2’s lookahead length by k − 2 and rewrite the first k letters of the
lookahead (as M1 would), while just reprinting or marking the other k − 2, we
should obtain an automaton that, on the current phase, will only rewrite when
it has seen all of the result of the rewrite from the last phase.

Monotone segments of computations are carried out similarly to the part of
the proof of Theorem 1 for monotonicity: M2 abandons information from former
compound symbols (here, marked regions) for new compound symbols (marked
regions). Non-monotone segments (where M1 has a rewrite back-up of at most
k − 2) are marked so that M2 knows to merge all information collected in these
segments and abandon nothing as in the part of the proof of Theorem 1 for
left-monotonicity.
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Abstract. Infinite words are often considered as limits of finite words.
As topological methods have been proved to be useful in the theory of
ω-languages it seems to be providing to include finite and infinite words
into one (topological) space. The attempts so far (see [3, Section 2.4])
have their drawbacks.

Therefore, in the present paper we investigate the possibility to join
separate topologies on the space of finite words with a topology in the
space of infinite words via a natural mapping. A requirement in this link-
ing of topologies consists in the compatibility of topological properties
(opennenss, closedness etc) of images with pre-images and vice versa.

Here we choose the natural Cantor topology for infinite words and
the δ-limit as linking mapping, nad we show that several natural topolo-
gies on the space of finite words prove to be compatible with the topology
of the Cantor space. It is interesting to observe that besides the well-
known prefix topology there are at least two more whose origin is from
language theory, from the construction of centers and super-centers of
languages.

These center- and supercenter-topologies on the space of finite words,
Tc and Tsc, respectively, fit into the class of L-topologies investigated in
[2]. Moreover they exhibit special properties within the classes of topolo-
gies compatible with the Cantor topology.

The paper presents the main results, omitting, however, due to lack
of space the results on L-topologies. For notation see Sections 1 and 2.1
of [3], and for topological background see e.g. [1].

In Section 2.4 of [3] it was shown that one can link the prefix topology, that is, the
right topology of the prefix order � on X∗ via the δ-limit to Cantor topology
in such a way that

W = A(W ) ⊆ X∗, closed −→ W δ = F ⊆ Xω closed
W = W ·X∗ ⊆ X∗, open −→ W δ = F ⊆ Xω open

W ⊆ X∗,W ∈ B(G) −→ W δ = F ⊆ Xω, F ∈ B(G)
W ⊆ X∗ a (σ, δ)-set −→ W δ = F ⊆ Xω, F ∈ Fσ ∩Gδ and
W ⊆ X∗ arbitrary −→ W δ = F ⊆ Xω, F ∈ Gδ .

Moreover, every subset F ⊆ Xω in a class on the right hand side has a δ-pre-
image in the corresponding class on the left hand side. This observation leads to
the following definition.
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Definition 1 (Compatibility). A topology T on X∗ is compatible with the
Cantor topology on Xω provided
1. If F ⊆ Xω is closed (open) in Cantor space then F = W δ for someW ⊆ X∗

closed (open) in T , and
2. W δ is closed (open) if W ⊆ X∗ is closed (open) in T .

The prefix topology is, however, only a T0-topology on X∗, in particular, not
every finite subset of X∗ is closed. In the sequel we present two T1-topologies
refining the prefix topology which are also compatible with the Cantor topology
on Xω. The first one is the coarsest T1-topology refining the prefix topology. It
can be described by the closure operator αc(W ) := W ∪A(A(W )δ).

Lemma 1. 1. The prefix topology is the coarsest topology having all subsets
A(F ) ⊆ X∗ closed.

2. The topology Tc defined by the closure operator αc is the coarsest topology
having all subsets A(F ) ⊆ X∗ and all finite subsets closed.

3. Tc is compatible with the Cantor topology on Xω.

In the prefix topology and in Tc every subset A(F ) ⊆ X∗ is the smallest closed
subset such that A(F )δ = F whenever F is closed. In the sequel we investigate
topologies having this property.

Definition 2 (Strong compatibility). A topology T on X∗ is strongly com-
patible with the Cantor topology provided T is compatible with the Can-
tor topology and

∀F
(
A(F ) = min⊆{W : W is closed in T ∧ F ⊆W δ}

)
.

Theorem 1. A topology T on X∗ is strongly compatible with the Cantor topol-
ogy if and only if the corresponding closure operator αT satisfies αT (W ) ⊇
A(W δ).

The prefix topology is the coarsest and the closure αsc(W ) := W ∪ A(W δ)
defines the finest topology strongly compatible with the Cantor topology.

Corollary 1. If a topology T on X∗ is strongly compatible with the Cantor
topology then every closed set in T is a (σ, δ)-subset of X∗.

The converse of Corollary 1, however is not true. There are topologies T on X∗

compatible but not strongly compatible with the Cantor topology such that
every T -closed set is a (σ, δ)-subset of X∗.
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Kĺıma, Ondřej 279
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