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In 1952 Dirac [8] proved a celebrated theorem stating that if the minimum de­
gree 8(G) in an n-vertex graph G is at least n/2 then G contains a Hamiltonian
cycle. In 1999, Katona and Kierstead initiated a new stream of research de­
voted to studying similar questions for hypergraphs, and subsequently, for per­
fect matchings. A pivotal role in achieving some of the most important results in
both these areas was played by Endre Szemeredi. In this survey we present the
current state-of-art and pose some open problems .

1. INTRODUCTION

A k-uniform hypergraph, or k-graph for short, is a pair H = (V, E), where
V := V(H) is a finite set of vertices and E := E(H) ~ (D is a family of k­
element subsets of V. Whenever convenient we will identify H with E(H).
A matching in H is a set of disjoint edges of H, and a matching containing
all vertices of H is called perfect.

There are several notions of a hypercycle. Berge [2J defined a hypercycle
of length m in a hypergraph H as an alternating sequence of m vertices
and m edges Xl,el ,X2,e2, ... , Xm , em , Xl such that {Xi,Xi+l} ~ e: for all
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i = 1,2, ,m, where Xm+l = Xl . Observe that there may be other vertices
than Xl, ,Xm in the edges of a Berge cycle and that there are several
nonisomorphic Berge hypercycles of length m. Bermond et al. [3] studied
the existence of Hamiltonian Berge cycles under some degree conditions.
Also, more recently, there has been some interest in Ramsey-type questions
for Hamiltonian Berge cycles (see, e.g., [10].)

However, following the paper by Katona and Kierstead [13] , another
notion of a hypergraph cycle has become gradually more and more popular.

Definition 1.1. For 0 ::;; i ::;; k - 1 a (k, i)-cycle is a k-graph whose vertices
can be ordered cyclically in such a way that the edges are segments of that
cyclic order and every two consecutive edges share exactly l vertices (see
Figure 1 I). A Hamiltonian i-cycle in a k-graph H is then defined as a
(k , i)-cycle in H containing all vertices of H.

Fig . 1. A (5,2)-cycle and a (5,3)-cycle

The notion of a (k, i)-cycle, unlike the Berge hypercycle , is unique up to

isomorphism. Let us denote by 0:,1 the (k, i)-cycle on s vertices. Observe
that s must be divisible by k -i and the cycle has s/(k -l) edges. Further­
more, if we write k = t(k - i) + r, where 1 ::;; t ::;; k and 0 ::;; r ::;; k - i-I
are uniquely determined by k and l; then s/(k - i) ~ t + 1. In particular,
s ~ k + 1 for i = k - 1 while s ~ 2(k -i) for i < k/2.

If, in addition, k - i divides k then a (k, i)-cycle is regular of degree
k/(k - i) . Otherwise, its minimum degree is lk/(k - l)J and maximum
degree is rk/ (k - l)1. Note also that for i = 0 an i-cycle reduces to a
matching.

1All figures prepared electronically by Emory students, Domingos Dellamonica Jr. and
Sangjune Lee
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Given a k-graph Hand d vertices VI , ... , v« E V(H), 1 S d S k - 1,
we denote by degH(VI, .. . ,Vd) the degree of the d-tuple {VI , . . . ,Vd} in H ,
that is, the number of edges of H which contain VI , . .. ,Vd. For a vertex
V E V(H), let H(v) denote the link of V in H that is,

In particular, IH(v)1 = degH(v),

Further, let

For d = 1, 5d(H) is the ordinary minimum vertex degree in H. Observe
that 5d(H) S G=~)·

Definition 1.2. Let d, k, 1, and n satisfy 1 S d S k - 1 and k -1 divide n ,
We define h~(k, n) to be the smallest integer h such that every n-vertex
k-graph H satisfying 5d(H) ~ h contains a Hamiltonian I-cycle.

As mentioned before, for 1 = 0, a Hamiltonian I-cycle in a k-graph H
becomes a perfect matching in H. Moreover, any Hamiltonian (k -I)-cycle
contains a matching of size ln]kJ. Hence, not surprisingly, the results for
Hamiltonian cycles and perfect (or almost perfect) matchings are related.

To our knowledge, the first result relating the minimum degree and the
existence of a large (though, far from perfect) matching in a k-graph was
obtained by Bollobas, Daykin, and Erdos in [4]. It was further extended to
perfect matchings by Daykin and Haggkvist in [7].

Definition 1.3. Let d, k, r , and n satisfy 1 S d S k - 1 and k divide
n - r , We define m'd(k,n) to be the smallest integer m such that every
n-vertex k-graph H satisfying 5d(H) ~ m contains a matching M ' with
IV(M) I = n - r.

In Sections 2 and 3, respectively, we summarize what we know about the
parameters h~(k, n) and m~(k, n) . We present both, asymptotic and exact
results, some with sketches of proofs, as well as pose several open questions.
We also discuss the k-partite case and some other related topics.

Throughout the paper we will be giving a particular interest to the
cases when d = k - 1, 1 = k - 1, and/or r = O. We will be then
suppressing the subscript or the superscript, or both, respectively. For
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instance, md(k,n) = h~(k, n) will stand for the smallest integer m such that
every k-graph on n vertices with n divisible by k and bd 2:: m contains a
perfect matching. For future references we summarize our notation here.

Summary of notation: For n divisible by k-I

• h~(k , n) = min {h : bd(H) 2:: h:::} H contains a Hamiltonian I-cycle}

• hl(k, n) = hLI (k, n)

• hd(k, n) = h~-I(k, n)

• h(k, n) = hti(k, n),

and for n - r divisible by k

• md(k,n) = min {m bd(H) > m :::} H contains a matching M ,

IV (M) I= n- r}

• mT(k, n) = mk- I (k, n)

• md(k,n) = m~(k, n)

• m(k, n) = mLl (k, n).

The parameters h~(k,n) and m:i(k,n) are often referred to as Dirac-type
thresholds. So far, all known results and conjectures indicate that the Dirac
thresholds are asymptotic to cG=~), for some 0 < c < 1. Therefore, the
following observation can be useful.

Remark 1.4. Since, by simple averaging,

we have for every c > 0 that

Consequently,

I (n-d)hd(k,n) 2:: c k _ d

implies

implies

(n-(d-1))
bd-I(H) 2:: c k _ (d _ 1) .

I (n-(d-1))
hd_l(k,n) 2:: c k _ (d -1)
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l (n-(d-1))
hd_1(k,n) ~ C k _ (d -1) implies l (n-d)hd(k, n) ~ C k _ d '

and similar implications hold for the parameter m:i(k,n) as well.

2. HAMILTON CYCLES

For most of this section we will deal with th e case d = k - 1 and l = k - 1
and set h(k ,n) = hti(k,n) for convenience (see Summary of notation in
Section 1). Also for convenience, we will call Hamiltoni an (k - 1)-cycles just
Hamiltonian cycles, and k-graphs containing such cycles - Hamiltonian.

In 1952 Dirac [8] proved that h(2, n) = rn/21. The two following graphs
show that this result is tight: the union of two complete graphs 2Krn/21
(with one vertex in common when n is odd) and the complete bipartite
graph Krn/21-1 ,Ln/2J+l' The first Dirac-type result for hypergraphs was
obtained by Katona and Kierstead who proved in [13] that

In- k + 3j (1 )2 ~h(k,n)~ 1-
2k

n+Ok(l) .

As a proof of the lower bound they provided the following construction of
an extremal k-graph He:

Construction 2.1 ([13]). Let V = V' U {v} , IVI = n ~ k2 + 1. Split
V' = xu Y, where, IXI = Ln21Jand WI = fn21l The edges of Ho are

all k-element subsets 5 of V such that IX n 51 i= L~J or v E 5. It is shown

in [13] that Ho is not Hamiltonian, while bk-l (Ho) ~ Ln-~+l J. Thus,

I
n-k+1j In-k+3jh(k,n)~bk-l(Ho)+l= 2 +1= 2 .

Katona and Kierstead (implicitly) conjectured that their lower bound is
the correct value of h(k, n). Recently, this has been confirmed for k = 3,
first asymptotically [22], then exactly [27]' solving also the corresponding
Hamiltonian path problem.
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Theorem 2.2 ([27]). Let H be a 3-graph on n vertices, where n is suffi­
ciently large.

1. If o2(H) ~ In/2J then H has a Hamiltonian cycle. Moreover, for
every n there exists a 3-graph Hn such that o(Hn ) = In/2J -1 and
Hn does not have a Hamiltonian cycle. In other words, h(3, n) = l~J.

2. If o2(H) ~ rn/21 - 1 then H has a Hamiltonian path . Moreover, for
every n there exists a 3-graph Hn such that o(Hn ) = rn/21 - 2 and
Hn does not have a Hamiltonian path.

An analogous question regarding the Dirac threshold for Hamiltonian
cycles in k-graphs remains open.

Problem 2.3. Prove that h(k, n) = ln-~+3J for all k ~ 4.

As a step toward solving this problem, it was proved in [24] that
h(k,n) rv ~n, that is, h(k, n) = (1 +0(1)) ~n, for all k ~ 3.

Theorem 2.4 ([24]). Let k ~ 3, "( > 0, and let H be a k-graph on n­
vertices, where n is sufficiently large. If Ok-l(H) ~ (1/2 + "()n edges, then
H is Hamiltonian . In other words, h(k, n) rv ~n.

A sketch of the proof of Theorem 2.4 from [24] is presented in Section 2.2.

2.1. Dirac thresholds for loose(r) Hamiltonian cycles

For two integers, a and b, let us write alb if a divides b. As an (almost)
immediate consequence of Theorem 2.4 we can asymptotically determine
the value hl(k,n) of the Dirac threshold for Hamiltonian i-cycles for all
1 :s: i :s: k - 1 satisfying the congruence (k -i) I k.

Corollary 2.5 ([19]). If (k -i) I k and (k -i) In, then hl(k, n) rv ~n.

Proof. We will show first that hl(k,n) :s: G+ 0(1) )n. Since (k -i) I k and

(k -i) In, every Hamiltonian (k - Ij-cycle C~,k-l contains a Hamiltonian

i-cycle C~,l (indeed, take every (k -i)th edge of C~,k-l) . Thus, we have

hl(k, n) :s: h(k,n) = (~+ 0(1)) n,

where the equation follows from Theorem 2.4.
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For the lower bound, assume first that, in addition to (k - l) I k and

(k -l) In, we also have kin. Then, by taking every k~l th edge of C~,l, we

can find a perfect matching C~,o inside C~,l . Thus , in this case,

By the lower bound (2) given in Section 3 we know that

1
m(k ,n) ~ 2n-k,

which completes the proof if kin.

If k does not divide n then still hl(k ,n) f"V ~n because hl(k, n) ~ ~n - k
by a simple argument from [19] which uses the following constructions.

Construction 2.6. Let HI = (V,E) where V = A u B, ~n - 1 ::; IAI ::;
~n+~ , IAI is odd , and E consists of all eE (~) such that lenvi is even. Let

H2 = (V,E) where V = Au B, IAI = I~nl, and E consists of all e E (~)
such that lenvi is odd. It is easy to check that <5k-I(Hi ) ~ n/2-k, i = 1,2.
Moreover, it follows by a parity argument that HI contains no Hamiltonian
l-cycle if k~l is odd , while H2 contains no Hamiltonian l-cycle if k~l is even

and k~l is odd. The remaining case, when k~l and k~l are even, can be
reduced to one of the two previous cases. _

In the meantime, the value of hl(k ,n) has been determined asymptoti­
cally for all 0 ::; l ::; k - 1, that is, also when k - l does not divide k. First,
Kiihn and Osthus proved in [17] that hI(3,n)

f"V in and conjectured that
hI(k,n) f"V 2(LI)n. This conjecture was proved in [14], and independently

in [12], where Han and Schacht generalized it further, obtaining the asymp­
totic formula hl(k, n) f"V 2(Ll) n for alII::; l < ~k . In turn, Han and Schacht
conjectured the right result for all values of l which was finally proved by
Kiihn, Mycroft, and Osthus in [15] .

Theorem 2.7 ([15]). If k -l does not divide k and (k -l) In, then

l n
h (k,n) f"V I k l .- (k -l)k-l

(Note that rk~ll = 2 for l < k/2.)
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So, the situation is quite peculiar as our next example shows. Let k = 10.
Then the asymptotic values of hl (10 ,n) for [ = 0,1 , 2, ... , 9 are ~ , 1

18'
116,

11 111 11
14 ' 12' 2" ' 12' 12 ' 2"' 2" '

The lower bound in the above theorem comes from the following con­
struction which sheds some light on the origin of the cumbersome formula.

Construction 2.8. Let H3 = (V,E) where V = A u B ,

It follows that r5k - 1(H3 ) = IAI. Recall that every Hamiltonian l-cycle has
m = n / (k - l) edges and maximum degree b. = rk~ll. If there was a
Hamiltonian [-cycle in H3 , then A would be its vertex cover. However ,

IAI x t1 = (I r61~k - I)1- 1) x rk ~ /1< n/(k ~ I),

a cont radiction.

It seems that it will be very hard to pinp oint the value of hl (k , n )
precisely.

Problem 2.9. Determine the exact value of hl (k , n) for all k ~ 3, 0 ::; 1 ::;
k - 1 and all (sufficiently large) n .

So far this has been solved for k = 3, 1 = 2 in [27] (see Theorem 2.2
above) and for k ~ 3, 1= 0 in [23] (see Theorem 3.4 in Section 3).

2.2. An outline of the proof of Theorem 2.4

In this sect ion we assume that r5k - 1(H) ~ (1/ 2 + ,)n for , > 0 and
sufficiently small with respect to k. The proof in [24] is built around the
notion of an absorbing path. A k-uniform (tight) path P of length s is a
k-graph with s vertices and s - k + 1 edges whose vertices can be ordered
VI, .. . .u, in such a way that every k consecut ive vertices form an edge
(each path has exactly two such orderings). The sequences (V I , . . . , Vk - 1)

and (vs , . . . , Vs - k+l) are called the ends of P , and we say that P connects
them.
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Lemma 2.10 (Absorbing Lemma, [24]). There exists a path A in H
(called absorbing) with IV(A)I :s 16k,yk-In such that for every subset
U C V \ V(A) of size lUI :s 2k - 4, 2kn there is a path Au in H with
V(Au) = V(A) U U and such that Au has the same ends as A.

In other words, the above lemma asserts that there is one, not too long
path such that every not too large subset of vertices can be "absorbed" into
the "interior" of this path.

The idea of the proof of Theorem 2.4 can be described in three steps
(see Figure 2).

Outline of proof of Theorem 2.4.

1. Fix an absorbing path A guaranteed by Lemma 2.10.

2. Build a cycle C of length at least n - 2k- 4 , 2kn containing A.

3. Applying the absorbing property of A to the set U = V(H) \ V(C),
insert U into A, obtaining a Hamiltonian cycle CHAM in H.

11::- _

Fig. 2. A bird 's view of the proof of Theorem 2.4

Below we explain how these three steps are implemented.

Step 1. The absorbing path will be. constructed from absorbing se­
quences.

Definition 2.11. Given a vertex v, we say that a (2k - 2)-element sequence
of vertices x = (Xl, .. . ,X2k-2) absorbs v in H if

• for every i = 1, ... , k - 1 we have {Xi, Xi+l,'" ,Xi+k-d E H (that is,
x spans a path in H) and

• for every i = 1, . . . , k we also have {Xi, Xi+ I, ... , Xi+k- 2, v} E H (that
is, x spans a (k - I)-uniform path in the link H (v) of v in H).
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If x is actually a segment of a path P and v is not a vertex of P, then P
can "absorb" v by replacing the edges {Xi , Xi+l , ... , Xi+k-d, i = 1, . .. , k-1,
by { Xi , Xi+l ,.' . , XHk-2 , v}, i = 1, ... , k. This way, the segment x of P is
replaced by the new segment x' = (Xl, " " Xk-l, v, Xk,·.·, X2k-2).

A key feature of absorbing sequences is that there are plenty of them.

Claim 2.12. For every v E V(H), there are at least

2k- 2 k-l 2k-2, n

sequences absorbing v in H.

Proof. While constructing a v-absorbing sequence x = (Xl,"" X2k-2),

there is no restriction on the vertices Xl, ... , Xk-2 other than they should be
different from v. Thus, Xl, ... , Xk-2 can be chosen in precisely (n - 1h-2
ways. By the degree assumption applied to the set {Xl, ... , Xk-2, v}, there
are at least (1/2 +,)n vertices Xk-l such that {Xl, ... ,Xk-I,V} E H.

By the degree assumption applied to the sets {Xl , ... , Xk-l} and
{X2 , ... ,Xk-I ,V}, there are at least 2,n+k-2 > 2,n vertices Xk such
that

{XI, ... ,xd E Hand {X2"",Xk,V} E H.

(See Fact 3.1 in [24] for details.) Similarly, for each i = k + 1, . . . ,2k - 2,
there are at least 2,n + k - 2 vertices Xi such that

Among them, at least 2,n + k - 2 - (i - k) 2 2,n satisfy Xi =I Xl, . . . , Xi-k '

Altogether, this implies that there are at least

sequences x = (Xl, ... , X2k-2) absorbing v. •

The construction of an absorbing path consists of two phases:

1(a) Selecting a small number of disjoint, absorbing sequences such that
each vertex is absorbed by many of them;

1(b) Connecting these sequences into one path.
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Phase l(a). We select randomly, with probability p = "(k+ I / n2k - 3 ,

a family n of (2k - 2)-element sequences x of vertices. By standard proba­
bilistic argument and by Claim 2.12 it follows that with positive probability
n contains a subfamily F of at most 2"(k+I n disjoint sequences such that for
every vertex v at least 2k - 4"(2kn of these sequences are v-absorbing (see [24]
for details).

Phase 1(b). This phase is executed with the help of the connecting
lemma from [24], the proof of which is omitted here.

Lemma 2.13 (Connecting Lemma, [24]). If 8k- I(H) ~ (1/2 + "()n then ,
for every two disjoint (k - I)-element sequences of vertices of H, there is a
path in H of length at most 2k/"(2 which connects them.

We use Lemma 2.13, but with "(/ 2 instead of "(, to connect , one by one,
all sequences of F obtaining an absorbing path. This is possible, because
the whole path will have at most

vertices, and thus, at any given time of the connecting procedure, the
subhypergraph H* spanned by the remaining vertices will have

8k-1 (H*) ~ (1/2 + "()n - 16kl-I n > (1/2 +"(/2)n > (1/2 + ,,(/2)IV(H*) I,
for sufficiently small "( > O.

Step 2. The process of finding a long cycle containing A, can be broken
up into three phases:

2(a) Selecting a small "reservoir set" R such that IRI = 2k - 5"(2k n , R n
V(A) = 0, and H[R] inherits the degree property of the entire k­
graph H, scaled down to its size.

2(b) Constructing, via The Weak Regularity Lemma, a constant size col­
lection of long, disjoint paths in H' = H [v \ (V(A) U R) ], covering

all but at most 2k- 5"(2k
l V(H')I vertices of H' .

2(c) Connecting these paths and the absorbing path A into one cycle,
utilizing a small chunk of R.

Phase 2(a) is necessary, since toward the end of the connecting phase 2(c),
there will be only few vertices left outside the path under construction, and
thus available for connecting. We make sure, however, that this residual
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part of H' will contain a small "copy" of H, namely H[R] or its large
portion H[R'], R' c R, and so, we will be in position to apply an analog of
Lemma 2.13 to it.

Phase 2(a).

Lemma 2.14 (Reservoir Lemma). There exists a subset ReV \ V(A) of
size IRI = l2k - 5, 2kn J such that for every (k - 1)-element set S C V we
have

(1)

Proof. Select R randomly. By Chernoff's bound, with high probability, the
set R will satisfy (1). •

Phase 2(b).

Lemma 2.15 (Path Cover Lemma). All but at most 2k- 5, 2k l V(H')I

vertices of H' = H[V \ (V(A) U R)] can be covered by at most m = m{t)
vertex-disjoint paths Pi , ... , Pm.

Proof. See [24]. •

Phase 2(c). In this final phase of Step 2, we use a lemma which was
implicitly proved in [24].

Lemma 2.16 (Restricted connecting Lemma). Let R be as in Lemma 2.14.
Then for every two disjoint, (k - I)-element sequences (Xl, ... ,Xk-l) and
(YI, ... ,Yk-l) of vertices of H, there is a path P in H of length at most
8kh2 + 2(k - 1), which connects them and such that

V(P) \ {XI, ... , Xk - I, Y I , ... , Yk- l } cR.

Proof. By property (1) there exist distinct vertices UI, , Uk-l E R
and VI"",Vk-1 E R such that Qx = (XI" .. ,Xk-I ,UI, ,Uk-l) and
Qy = (YI, .. . ,Yk-l, VI, .. · , Vk-l) form paths in H. Now, we can apply
Lemma 2.13 with ,/2 to the k-graph H[R] and the sequences (Ul, ... , Uk-I)

and (VI, . . . , Vk-l) , obtaining a path Q of length 8kh2 connecting them.
Then, the path P = QxQQy connects (Xl, ... , xk-d with (YI , . .. ,Yk-l)

and has length IV(Q)I + 2(k - 1). •

Now, we are ready to prove the main lemma of this phase.
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Lemma 2.17 (Long Cycle Lemma). There is in H a cycle C of length at
least n - 2k - 5, 2kn containing A .

Proof. We perform m + 1 applications of Lemma 2.16, with,/3 instead
of,/2, to large subsets R' ~ R, and connect all paths PI, ... , Pm, as well
as the absorbing path A, into one long cycle C in H . Suppose that at
some point we are to connect an end (Xl," " Xk-l) of one path with an end
(Yl , ... , Yk-l) of another path. Let us denote the yet unused portion of R by
R' . Since we connect only 0(1) times , each time using only 0(1) vertices
of R, throughout the procedure we maintain that IR'I = IRI - 0(1) >
(I-,/6)IRI , and thus, by property (1) of R, for every (k - I)-element set
S C V we still have

INH(S) n R'I ~ (1/2 +,/2)IRI - (IRI -IR'I) > (1/2 +,/3)IRI
\

> (I/2+ ,/3)IR'I·

Hence, we apply Lemma 2.16 with , /3 instead of,/2, and so, the obtained
connecting paths are of lengths at most I8kh2 + 2(k - 1).

Let T be the set of vertices of H' not covered by the paths PI , ... ,Pm.
Only a subset R' of R and the set T are uncovered by the cycle C. The
union of these two sets has size at most IRI + ITI ::; 2k- 4, 2kn (see Figure 3).

•

Fig. 3. Phase 2(c) of the proof of Theorem 2.4

Step 3. Let U = R' U T. Note that lUI ::; 2k- 4, 2kn . Let Au be the
path as defined in Lemma 2.10. Then, replacing A with Au in C yields a
Hamiltonian cycle in H .

This completes the outline of the proof of Theorem 2.4.
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2.3. Hamilton cycles in hypergraphs with large vertex minimum
degree

There are virtually no results on h~(k, n) for d :::; k - 2. Here we consider
the smallest unsolved case: k = 3 and d = 1.

Two constructions set the bound hl (3,n) ~ (~+ o(I))(n21). One is
obtained by modifying the hypergraph Ho from Construction 2.1. We now
take V = xu Y, where /YI rv 21XI (instead of /YI rv IXI) and all triples 8
of vertices with 18 n XI i- 1 as the edges. Let Hb be the obtained 3-graph.
Then

(j1(Hb) = max ((/Y12-
I) + ('~I), ('XI2-I) + (lXI-I) /YI)

rv~(n~I).

and , likewise in Ho , there is no Hamiltonian cycle in Hb .
The other construction is very similar to the hypergraph H3 described

in Construction 2.8. We define H4 as a hypergraph on the vertex set
V = X U Y, where IXI = n/3 - 1, and with the edge set consist ing of
all triples intersecting X. Then, again, ol(H4 ) rv Hn~l) and H4 has no
Hamiltonian cycle.

Note that (for n divisible by 3) the hypergraph H4 does not even have a
perfect matching. As we will see in Section 3 (see Theorem 3.4 below, proved
in [11]) , the threshold ml(3 ,n) for the existence of a perfect matching is, in
fact, (~+ o(1)) (n21). Judging by the similarities between Dirac thresholds
for perfect matchings and Hamiltonian cycles in various situations, it was
tempting to conjecture that hI (3,n) rv ml (3,n). However, even showing
that hI (3, n) :::; c(n21) for some c < 1 does not seem to be completely trivial.
In our preliminary reconnaissance of this problem, by adapting the original
proof from [24] and using Theorem 3.4 along the way, we were able to obtain
only the upper bound hl (3,n) :::; U~ +T')(n21). Very recently we learned
from Endre that he knows how to prove that, indeed , hl (3,n) rv ml(3,n) .

Endre's insight and the existing results showing that h(k,n) rv m(k,n)
for all k suggest that the same is true in general.

Conjecture 2.18. For alII:::; d :::; k - 1,
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Note that formula (4) and Conjecture 3.6 in Section 3.2 specify the value
of md(k,n).

2.4. The k-partite case

Unlike matchings (see the next section) there are very few results on the
Hamiltonicity of partite hypergraphs. For graphs , Moon and Moser [20]
extended Dirac's theorem to bipartite graphs . Later, the authors of [5]
provided a generalization to balanced k-partite graphs. Here we treat briefly
the case of k-partite k-graphs , k 2:: 3.

A k-graph H is k-partite if its vertices can be partitioned into k classes,
V (H) = VI U . . . U Vk , in such a way that for every edge e E H and each
i = 1, ... , k, we have [e n Vii = 1. Given such a partition, we call a set
of vertices 8 legal if for each i = 1, ... , k , 18 n Vii ::; 1. We denote by
o'(H) := OLI(H) the minimum of degH(8) taken over all legal (k - 1)­
tuples 8 in H .

An adaptation of the proof of Theorem 2.4 leads to the following result,
which, in turn, implies Theorem 2.4 by taking a random k-partition.

Proposition 2.19. Let k 2:: 3, "( > 0, and let H be a k-partite k-graph on
kn vertices with a given equitable partition VI, .. . , Vk, IViI = n , where n is
sufficiently large. If O~_l (H) 2:: (1/2 + "()n edges, then H is Hamiltonian .
Moreover, there is a k-partite k-graph Ho on kn vertices and with an
equitable partition such that O~_l (Ho) ~ l!nJ and Ho does not have a
Hamiltonian cycle.

To obtain Ho, we modify Construction 2.1.

Construction 2.20. Given k and n, let X = Xl U·· .UX k, Y = YI U·· ,UYk,

and Vi = Xi U Yi , i = 1, ... , k, where all sets Xi and Yi are pairwise
disjoint , lkn/2J ::; lXI, IYI ::; fkn/21 , IXI + WI = kn, and , for i = 1, ... , k,
In/2J ::; lXii, IYiI ::; fn/21, and IViI = n.

Let Ho be a k-graph with V = VI U . . . U Vk = X U Y whose edge
set consists of all k-element subsets 8 of V such that IX n 81 =1= l~J and

18 n (Vi) I ::; 1, i = 1,2, .. . , k. Being a subhypergraph of the k-graph
from Construction 2.1, this new Ho is not Hamiltonian either. Moreover,
for every (k - I)-element subset 8 of V, if IX n 81 E {l~J -1, l~J} , then

degHo (8) E {lXii , IYiI} = { In/2J, fn/21}, while if IXn81 tf- {l~J -1, l~J}
then degHo (8) = IVi I= n, where i is the unique index such that 8 n Vi = 0.
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The proof of the main part of Proposition 2.19 follows the lines of the
proof of Theorem 2.4 from [24], outlined in Section 2.2. It only needs to be
substant ially altered in the construction of the absorbing path. Below we
provide detai ls of this modified absorbing scheme.

Note that on every path or cycle the cyclical order in which the first edge
meets the sets VI , . . . , Vk is maintained by all subsequent edges. Without
loss of generality, we choose VI, V 2 , " " Vk as the canonical order, and will be
assuming that the absorbing path we build as well as the final Hamiltonian
cycle will follow that order.

We will use two different absorbing strategies depending on whether a
given set of k vertices which is to be absorbed forms an edge in H or not.

Fig. 4. Absorbing sequence, k = 4, the partition sets marked by different symbols

Definition 2.21. For an edge e = {vi , . .. ,vd E H , where Vi E Vi ,
i = 1, . . . , k, we say th at a (2k - 2)-element sequence of vertices x =
(Xl ,''' ' X2 k - 2 ) , absorbs e in H if

(a) X l E V2 , X2 E V3"" , Xk-1 E Vk , Xk E V I , .. . , X2k - 2 E Vk-l ,

(b) for every i = 1, ... ,k - 1, we have { Xi , Xi + l , .. . , Xi+k-l} E H (that is,
x spans a path in H) ,

(c) for every i = 1, , k -1, we have {Xi, " " Xk - l, VI , . .. , vd E H , and

(d) for every i = 2, , k, we have { Vi , " " Vk, Xk, . .. , X k - 2+i } E H . (Prop-
erties (c) and (d) together imply that the sequence x ' = (Xl, ... , X k - l ,

VI, . . . , Vk , X k , " " X2k-2) spans a path in H.)

If x is actually a segment of a path P and VI , V2 , . . . , Vk are not on P,
then P can "absorb" all these vertices by replacing the segment x with the
new segment x ' (see Fig. 4).

In the final stage of the proof of Proposit ion 2.19 the above absorbing
technique can be used for as long as there are edges induced by the vertices
remaining outside the long cycle. When the set of such vertices becomes
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independent, we use a swapping device which will exchange some k vertices
outside the cycle with a set of k vertices which form an edge of H, allowing
us to use again the absorbing device and absorb the released vertices back
into the cycle.

Co

Fig. 5. Swapping sequence, k = 4, the partition sets marked by different symbols

Definition 2.22. For a set S = {VI, ... , Vk} c V(H) , where Vi E Vi,
i = 1, , k, we say that a (k2 + 2k - 2)-element sequence of vertices
x = (Xl , , Xk2+2k-2), is edge-swapping for S if

(a) Xl E V2,X2 E V3 , . .. ,Xk-1 E Vk ,Xk E VI, ,, , ,Xk2+2k-2 E Vk-l,

(b) the sequence x spans a path PI in H ,

(c) the sequence x with each Xik+i-l replaced by Vi, i = 1, .. . , k, spans a
path P2 in H , and

(d) eo := {Xk , X2k+l , " " Xk2+k-d E H.

If x is actually a segment of a path P and VI , V2 , . . . , Vk are not on P,
then P can "swap" the vertices Xk, X2k+l, X3k+2"" xk2+k-1 for VI, V2,· . . , Vk

by replacing PI with P2 , and thus, releasing the vertices of eo from P (see
Fig. 5).

So, our absorbing strategy is as follows: create two, disjoint, not too
long paths: an absorbing path A containing many absorbing sequences for
each edge of H , and a swapping path B containing many edge-swapping
sequences for each k-element set of vertices of H.

To successfully complete this task all we need are two statements
analogous to Claim 2.12. Let us begin with counting, for a given edge
{VI , . . . , Vk} E H , the number of absorbing sequences.

Claim 2.23. For every edge {VI, . . . , Vk} E H, there are at least ,k-In2k-2

absorbing sequences in H.
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Proof. As for each i = k -1, k - 2, ... ,1, degH(xi+l,"" Xk-l ' VI,.·. ,Vi) ~

(1/2 + "y')n, there are at least (n/2)k-1 choices of Xk-l,"" Xl, selected in
that order. Then, each of Xk, .. . , X2k-2 must be a common neighbor of two
(k - 1)-tuples of already existing vertices, and so there are at least, roughly,
(2"y'n)k-1 choices of these vertices. Altogether, we have at least "y'k-I n2k-2

such sequences. _

Claim 2.24. For every set S = {VI, . .. ,vd c V (H) , there are at least
2 k2-k"y'k2nk2+2k-2 edge-swapping sequences in H.

Proof. For a given set S = {VI , ,vd c V(H), we will proceed systemat-
ically and count , for each i = 1, ,k2 +2k - 2, the number of choices of Xi,

given that Xl, ... , Xi - l have been already selected. There are, roughly, n
choices for each of Xl, . . . ,Xk-2 as there are no constraints on them. The
vertex Xk-l must be a neighbor of {Xl,"" Xk-2, vr} and then, Xk must be
a neighbor of {Xl, ... , x k- I} , yielding at least n/2 choices of each. The
vertices Xk+l,"" X2k-1 are each a common neighbor of two (k - I)-tuples
of already existing vertices, one on the path PI, the other on P2 . This
is also true for X2kl although for a different reason. Indeed, the paths PI

and P2 run together between Xk+l and X2k , however X2k must be a com­
mon neighbor of {Xk+l , "" X2k-l} and {Xk+2, "" X2k-l, V2}. Then, X2k+1

has to be a neighbor of only one (k - I)-tuple (the one on PI, namely
{Xk+I, ... ,X2d). This pattern continues for the next k - 2 intervals of
length k + 1, until we reach xk2+k-1 which, in addition, has to be a neigh­
bor of Xk, X2k+l,' " ,XkL2' It is crucial for the success of our construction
that no vertex needs to be a common neighbor of three or more already
existing (k - I)-tuples.

Hence, altogether, there are at least

choices of the entire edge-swapping sequence. _

The rest of the proof of a k-partite version of the absorbing lemma follows
mutatis mutandis the proof from [24] described in Section 2.2, except that
we need to be careful to maintain the canonical order on all paths we build.
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3. PERFECT MATCHINGS
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There are several results on Dirac-type degree thresholds for perfect match­
ings in k-graphs. To some extent, they resemble the results for Hamiltonian
cycles and are often obtained by methods based on similar ideas, most no­
tably, -the idea of absorption. In this section we give an overview of such
results.

Recall that the Dirac-type threshold m'd(k, n) has been introduced in
Defintion 1.3 and that we suppress the subscript d when d = k - 1 as well as
we suppress the superscript r when r = 0, that is, when we consider perfect
matchings (see the Summary of notation in Section 1).

For graphs, an easy argument shows that m(2, n) = n/2. Since, for
n divisible by k, every Hamiltonian cycle contains a perfect matching, it
follows from [24] that m(k,n) :s n/2 + o(n). In [16], Kiihn and Osthus
sharpened this bound to m(k,n) :s n/2 + 3k2Jn log n, using a result for
the k-partite case which they had shown first (see Subsection 3.4). This
was further improved in [23] to m(k, n) :s n/2 + Clog n, using the idea of
absorption. The authors of [25] found a fairly simple proof of the inequality
m(k,n) :s n/2+k/4, based on a beautiful idea of Aharoni, Georgakopoulos,
and Spriissel [1] (see Subsection 3.4) .

This last bound is very close to the true value of m(k, n). Indeed,
constructions presented in [26] yield the lower bound

(2)

m(k, n) 2 t(n, k) :=

n/2 + 3 - k

n/2+5/2-k

n/2 + 3/2 - k

n/2 + 2 - k

if k/2 is even and n/k is odd,

if k is odd and (n - 1)/2 is odd,

if k is odd and (n - 1)/2 is even,

otherwise .

Moreover, the main result of [26] shows that, in fact , there is equality
in (2).

Theorem 3.1 ([26]). For all k 2 2,m(k, n) = t(k ,n), where t(k ,n) is given
by (2).

When comparing with Problem 2.3, we see that the conjectured Dirac
threshold for a Hamiltonian cycle and the above threshold for a perfect
matching differ only by an additive term of about k/2. In fact, we know
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that they coincide for k 2 and differ .by at most one for k = 3 (see
Theorem 2.2).

To prove Theorem 3.1, two cases are separately considered in [26] . When
H is "close" to one of the critical k-graphs yielding the lower bound (2),
one can find a perfect matching in H by "brute force" If, on the other hand,
H is far from the critical k-graphs, we apply a version of the absorbing
technique.

The absorbing configurations used in [23] and [26] (as well as in [11]),
although different from each other, follow the same pattern: given a set
8 C V(H) , \81 = k, a matching Mj is 8-absorbing if the vertex set V(MI)U8

spans in H a matching M 2 of size IMII + 1. Consider a matching M and
a set 8, 8 n V(M) = 0. If M contains an 8-absorbing matching MI , then
one can absorb 8 into M by swapping M I for M 2 .

The idea of the proofs in [23] and in the "far-from-critical" case in [26]
is now transparent and similar to the idea described in the Outline of the
proof of Theorem 2.4:

• Find a relatively small matching MA such that for every set 8 c V(H),
181 = k, there is an 8-absorbing matching in MA.

• Build a matching M' in H' = H - V(MA) which leaves only a set 8
of k vertices unmatched.

• Apply the absorbing procedure to 8.

Building the almost perfect matching M' requires itself a version of
the absorbing technique which works for as long as there are more than
k vertices uncovered. Adding the last edge represent a more significant
difficulty. In the next subsection we will see that if we allow even one
vertex to be uncovered the threshold drops significantly. A matching of size
n/k - k + 2 can be, however, constructed by a standard greedy approach.

3.1. Almost perfect matchings

Here we present results about mT(k, n) for r > O. The following construction
yields the lower bound

for all r > O.
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Construction 3.2. With n = r (mod k), let A and B be disjoint sets of
sizes IAI = nkr - 1 and IBI = n -IAI. Let H; be a k-graph on V = AuB
consisting of all k-element subsets S of vertices which intersect A. Then
the largest matching of H; has size at most IAI, and thus, it has at most
klAI < n - r vertices .

In [26] we established that

(3)
n-r

mr(k, n) = -k-

holds for all r 2: k(k - 2). This was shown by a fairly simple argument
involving a greedy algorithm.

Also, using a version of the absorption method, with the sets S of size
k + 1, it was proved in [26] that for all r > 0

n-r n
-k- ~ mr(k, n) ~ k + O(logn).

This result stands in a striking contrast with Theorem 3.1, where the
threshold is around n/2. Hence, from the Dirac threshold perspective, an
almost perfect matching appears much sooner than a prefect one.

Note that for 0 < r < k we have nkr = lfJ which is the size of the
largest matching one can possibly have if n is not divisible by k. We feel
that the o(logn) term, brought in by the technicalities of the absorption
method, should not be there.

Problem 3.3. Prove (or disprove) that mr(k, n) = lfJ for all 0 < r < k.

In particular, is it true that if n =1= 0 (mod 3) and 82(H ) 2: l~J then there

is a matching in H of size l~J?

3.2. The parameter m'd(k, n) for 1 ~ d ~ k - 2

Pikhurko [21] proved that for all d 2: k/2

(4)

His proof is in part based on the ideas from [16]. Similarly as in [16] he
proved first a related result for k-partite k-graphs (see Subsection 3.4).
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Moreover, in view of Remark 1.4 it was sufficient to prove the lower bound
in (4) only for d = k - 1 and the upper bound in (4) only for d = fk/2l

The case d < k/2 seems to be much harder. The constructions yielding
.(2) together with Construction 3.2 applied with r = 0 give the following,
general lower bound:

As for the upper bound, Han , Person , and Schacht [11], by a similar
method as in [21], proved first that for all 0 ~ d ~ k - 1,

(6)

That is, iffor a k-graph H, 6d(H) is at least as large as the R-H-S of (6) then
H contains a matching covering all but k(d - 1) vertices. Then, combining
(6) with the absorption method, they improved (6) in the lower range of d
by showing that for 1 ~ d < k/2

(7) (k- d ) (n -d)
md(k ,n)~ -k-+o(l) k-d'

Note that for d = k-1 , (6) is asymptotically the same result as (3). For
d = 1, on the other hand , (6) is asymptotically equivalent to an old result
of Daykin and Haggvist [7] .

In the same paper [11] the authors improved (7) in the smallest case
of k = 3, d = 1, achieving asymptotically the lower bound (5):

Theorem 3.4 ([11]).

A crucial ingredient of the proof in [11] was a strong version of the
Absorbing Lemma for matchings, an analog of Lemma 2.10 from Section 2.2.

Lemma 3.5 ([11]' Lemma 10). For all, > 0 and integers k > d > 0 there
is an no such that for all n > no the following holds: Suppose that H is
a k-graph on n vertices with 6d(H) ~ (1/2 + 2,)(~=~) , then there exists a
matching M := Mabs in H such that
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(i) IMI < ,.ykn/k , and

(ii) for every set W C V \ V(M) of size at most IWI ::; '"'(2kn and divis­
ible by k there exists a matching in H covering exactly the vertices
of V(M) U W .

This success prompted Him, Person , and Schacht to conjecture that (5)
is the correct asymptotics of md(k,n).

Conjecture 3.6 ([11]). For all 1 ::; d < k/2 ,

Observe that with d = 1 the above coefficient equals ~ for k = 3, ~~ for
k = 4, and ~~~ for k = 5. However, for d = 2 and k = 5 it is !.

Very recently, Markstrom and the second author [19] lowered slightly the
general bound (7) by using some ideas behind Theorem 3.4. They proved
that for all 1 ::; d < k/2

(8) (k- d 1 ) (n -d)md(k,n)::; -k- - kk-d + 0(1) k _ d .

In the smallest unknown case, k = 4, inequality (7) yields a bound
ml(4,n)::; (~~ +0(1))(n31). It follows from (8) that ml(4,n)::; (~~ +
o(1)) (n31). By some tedious case by case analysis the coefficient can be

lowered further to ~~ (see [19]) , still far from the conjectured ~I.

3.3. Fractional perfect matching

A relaxation of the notion of a perfect matching can be obtained by allow­
ing the inclusion of fractional edges into a matching. A fractional perfect
matching in a k-graph H = (V, E) is a function w : E -t [0,1] such that for
each v E V we have I:e3v w(e) = 1. It follows that if an n-vertex k-graph
has a fractional perfect matching then I:eEH w(e) = 1} , which justifies the
name.

For every 1 ::; d ::; k - 1, let

m'd(k, n) = min {m : bd(H) 2: m ===} H contains a fractional

perfect matching} .
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It was proved in [23] that m'k-l (k, n) :::; fn/k1, so, again, the threshold
is much lower than that for perfect matchings. Moreover, Construction 3.2
with IAI = fn/kl - 1 provides an n-vertex k-graph with Ok-l = fn/kl -1
which has no fractional perfect matching. Hence, we have the following
result.

Theorem 3.7 ([23]). m'k_l(k,n) = fn/kl

The proof of Theorem 3.7 utilizes the Farkas Lemma (see, e.g., [6] or
[18]) which asserts that a system of equations y A = b, y 2: 0, is solvable if
and only if the system Ax 2: 0, bx < 0, is unsolvable.

Let A := AH be the incidency matrix of a hypergraph H with rows
representing the edges and columns representing the vertices of H. We
applied Farkas' Lemma with this A and with b = 1 - the vector of length n
whose all entries are equal to 1, and showed that, under the assumption
Ok-l(H) 2: fn/kl the system of inequalities Ax 2: 0, Ix < 0, has no
solutions. Hence, there is a solution to y A = 1, Y 2: 0, which determines a
fractional perfect matching w(e) = Ye for all e E H .

It turns out that fractional matchings can be used to give an alternative
proof of Theorem 3.4, and possibly even to settle Conjecture 3.6 in full
generality. Indeed, the following relation holds.

Theorem 3.8. For every 1 :::; d :s; k - 1 and every a > °
md(k,n) (1 m'd(k,n))

(n-d) :::; max 2' (n-d) + a
k-d k-d

for sufficiently large n.

Observe that, trivially, m'd(k, n) :::; md(k, n). Therefore, if m'd(k, n) 2:
.! (n-d) then
2 k-d

(9) m'd(k, n) rv md(k, n)

The proof of Theorem 3.8 is based on Theorem 1.1 in [9]. An immediate
corollary of that result asserts the existence of an almost perfect matching
in a k-graph with all degrees almost equal and all pair degrees much smaller
than the vertex degrees (see the Remark after Theorem 1.1 in [9]). Here we
formulate this corollary in the following lemma.
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Lemma 3.9 ([9]). For all k, e > band a > 3 there exists r = r(£) and
no = no(r) such that if n > no and H is an n-vertex k-graph satisfying

1. (1 - r)D < degH (v) < (1 + r)D for some D and all v E V , and

2. c52(H ) < D/(logn)a

then H contains a matching Maim covering all but at most en vertices.

The second tool is the Strong Absorbing Lemma 3.5 (see previous sec­
tion) .

Sketch of Proof of Theorem 3.8. Assume that there exists a constant
o< c< 1 such that m:t(k,n) rv cG=~). This is not a restriction at all, as we

know by (5) that m:t(k, n) = e((~=~) ). For any a > 0 consider an n-vertex
k-graph H, n large, with

(
n - d)

c5d(H ) > (c+ a) k _ d .

Set , = a/2 and £ = (a/2)2k. The proof consists of four steps.

1. Find an absorbing matching Mabs satisfying properties (i) and (ii) of
Lemma 3.5. Set H' = H\V (Mabs)' Note that c5d(H') ~ (c+a/2)(~=~).

2. Select a spanning subhypergraph H" of H' sat isfying the assumptions
of Lemma 3.9 with D = nO.2, r = 0(1) any a > 0, and n ~ no(a).

3. Find an almost perfect matching Maim in H" by applying Lemma 3.9.
Note that 1V(Malm)! ~ (1- £)1 V(H')j and thus, 1V(MalmUMabs)I ~
(1 - £)n.

4. Extend MalmUMabs to a perfect matching of H by using the absorbing
property (ii) of Mabs with respect to W = V(H') \ V(Malm). •

In view of relation (9), in order to prove Conjecture 3.6 it is sufficient
to show that

( (k- l)k-d) (n -d)
m:t(k,n)rv 1- -k- k-d .

This is work in progress. We have heard from Endre that he knows how to
determine ml (3, n) exactly.
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3.4. The k-partite case
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Recall from Section 2.4 that 0'(H) := O~_l(H) is the minimum of degH (8)
taken over all legal (k - I)-tuples of vertices 8 in a k-partite k-graph H.
Throughout this subsection, we asume that the k-partition V(H) = VI U

... U Vk satisfies IVII = ... = IVk I= n .

In [16] , Kuhn and Osthus showed that if

O~-I (H) ~ n/2 + J2n log n

then H has a perfect matching. Improving this result , Aharoni, Geor­
gakopoulos, and Spriissel obtained in [1] a surprisingly strong result.

Theorem 3.10 ([1]). If for every (k -I)-tuple of vertices (VI, ... ,Vk-I) E
VI X"' XVk-l wehavedegH(vl , ... ,Vk-t} > n/2andforevery(v2"" ,vk) E
V2 X"'XVk wehavedegH(v2" ",vk) ~ n/2, thenH has a perfect matching.
Consequently, if o'(H) > n/2 then H contains a perfect matching.

There is an example in [16] (see also Example 1 in [1]) of a k-partite
k-graph Ho with k even and n = 2 (mod 4), such that O~_l (Ho) = n/2 and
Ho does not have a perfect matching. For all other values of k and none
can provide similar constructions with <5~_I (Ho) 2: n/2 - 1, leaving open
the possibility that the result from [1] can be strengthen even further.

Problem 3.11. Assume that k is even or n i= 2 (mod 4). Is it true that
if O~_I (H) ~ n/2 then H has a perfect matching? If so, is it sufficient to
impose this degree bound only on two types of legal (k - I)-tuples, similar
to Jrheorem 3.107

In [1] several other open problems and conjectures are posed. We just
quote two of them here. The first one is related to ml (k,n) in the non­
partite case. Note that 1 - (1 - l/k)k-l < 1 - l/e and compare with
Problem 3.6 above.

Problem 3.12 ([11). Is it true that if c5~ (H) ~ (I-I/e)nk- 1 then there is
a perfect matching in H?

Another problem from [1] is to prove the following conjecture. For a
subset I ~ [k] of indices, let us call a subset 8 of vertices of H an I-tuple if
181 = II I and 8nVi i= 0 if and only if i E I. (Observe that if 8 is an I-tuple
then, in fact, for all i E I , we have 18 n Vii = 1.)
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Conjecture 3.13 ([1]). Let I be a subset of [k] . If deg'(S) > ~nk-III for

every I-tuple S, and deg'(S) > ~nlII for every Uk] \I)-tuple S, then H has
a perfect matching.

This conjecture was asymptotically verified by Pikhurko in [21] , while
its fractional version was proved in [1] (cf. Section 3.3 for the definition) .

For d < k - 1, there are also Dirac-type results relating o~ with perfect
and almost perfect matchings . Already in 1981, Daykin and Hiiggvist proved
that

o~(H) 2:: k ~ 1(nk- 1 -1)

guarantees a perfect matching. This was extended in [11]: if

then H contains a matching covering all but k(d - 1) vertices, and so, a
perfect matching for d = 1.

The other extreme case, d = k - 1, has been also studied in [16]. It was
proved there that if

O~_l (H) 2:: rn/k1
then there is a matching in H covering at least n - (k - 2) vertices from each
partition class Vi, i = 1, .. . , k. It is, perhaps, interesting to compare this
result with the results of Subsection 3.1 and consider the following analogue
of Problem 3.3.

Problem 3.14. Is it true for every k-partite k-graph H that if O~_l (H) ~
rn/k1 then H has a matching covering at least n - 1 vertices from each
partition class?

3.5. Other packings

In this section we briefly discuss F-packings, that is, tilings of a hypergraph
with vertex disjoint copies of F . Given two hypergraphs, F and H, an F­
packing in H is a set of vertex disjoint copies of F in H. An F-packing
is perfect if it covers all vertices of H . For n divisible by IV (F) I, let
pd(k, n;F) be the smallest integer p such that whenever a k-graph H on
n vertices, with n divisible by IV(F)I , satisfies od(H) 2:: p then H contains
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a perfect F-packing. In particular, when F = Kt) is a single edge, then

Pd(k,n; Kkk)) = md(k,n) is the Dirac threshold for perfect matchings.

Unlike for graphs, there are very few results about degree conditions
guaranteeing perfect F-packings in hypergraphs. Below we present two
problems, both assuming that k = 3 and d = 2.

In [17] the authors study, among other things, packings of copies of a

(3, I)-cycle d 3
,1) on 8 vertices , 8 even (see Definition 1.1). In the smallest

case of 8 = 4, that is, the unique 3-graph with 4 vertices and 2 edges, they
show that

(10)

This seems surprising, since the obtained threshold is about twice smaller
than the threshold for perfect matchings. For 8 :2: 6, the value of

P2(3, n; C~3,1)) remains unknown , except for large 8 when P2(3, n; C~3,1)) rv

n/4, but unlike in (10), here the asymptotics is also as 8 ---t 00 (see Theorem
1.2 in [17]).

As for the lower bound, a construction provided in [17J yields that

P2(3 ,n;C~3,1)) :2: r8/41 n.
8

This is quite interesting, since it shows that for a fixed s not divisible by
4, the threshold constant is strictly larger than ~ (e.g., it is at least ! for
s = 6).

Problem 3.15. Determine P2(3,n;C~3,1)) , 8 ~ 6, seven.

Similar lower bounds are claimed in [17J for k > 3 with ~ replaced by
1

2(k-l) .

In [21], Pikhurko investigated a challenging problem of determinig

P2 (3, n;Ki3
) ) , where Ki3

) is the complete 3-graph on 4 vertices, and ob­
tained bounds

3 (3) 2 + JIO
4n-2:SP2(3,n;K4 ):s 6 n+O(Jnlogn) ,

where the upper bound was also proved , independently, by Keevash and
Sudakov (unpublished). There is some indication that the truth may lie at
the lower end. Indeed , another result from [21J states that for n ~ 15, if

82(H) > ~n - ~- 4 4 '
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then there is a Ki3
)-packing in Hcovering all but at most 14 vert ices.

However, one should remember that divisibility has a big impact on the
Dirac thresholds for (almost) perfect matchings; compare, for instance .ithe
values of m(3,n) and m1(3,n).

Problem 3.16. Determine P2(3, n;Ki3)) .
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