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Preface

ICISC 2009, the 12th International Conference on Information Security and
Cryptology, was held in Seoul, Korea, during December 2–4, 2009. It was or-
ganized by the Korea Institute of Information Security and Cryptology (KIISC)
and the Ministry of Public Administration and Security (MOPAS). The aim
of this conference was to provide a forum for the presentation of new results
in research, development, and applications in the field of information security
and cryptology. It also served as a place for research information exchange. The
conference received 88 submissions from 22 countries, covering all areas of infor-
mation security and cryptology. The review and selection processes were carried
out in two stages by the Program Committee (PC) comprising 57 prominent re-
searchers via online meetings. First, at least three PC members blind-reviewed
each paper, and papers co-authored by the PC members were reviewed by at
least five PC members. Second, individual review reports were revealed to PC
members, and detailed interactive discussion on each paper followed. Through
this process, the PC finally selected 25 papers from 15 countries. The acceptance
rate was 28.4%. The authors of selected papers had a few weeks to prepare for
their final versions based on the comments received from more than 80 exter-
nal reviewers. The conference featured one tutorial and one invited talk. The
tutorial was given by Amit Sahai from the University of California and the talk
was given by Michel Abdalla from École normale supérieure. There are many
people who contributed to the success of ICISC 2009. We would like to thank
all the authors who submitted papers to this conference. We are deeply grateful
to all 57 members of the PC, especially to those who shepherded conditionally
accepted papers. It was a truly nice experience to work with such talented and
hard-working researchers. We wish to thank all the external reviewers for as-
sisting the PC in their particular areas of expertise. We would like to thank all
the participants of the conference who made this event an intellectually stim-
ulating one through their active contribution. The support given to the ICISC
2009 workshop by the following sponsors is greatly appreciated: National Secu-
rity Research Institute (NSRI), Electronics and Telecommunications Research
Institute (ETRI), National Institute for Mathematical Sciences (NIMS), Korea
Internet and Security Agency (KISA), Korea University BK21 Information Se-
curity in Ubiquitous Environment, Seoul National University Research Institute
of Mathematics (SNU RIM), Korean Federation of Science and Technology So-
cieties (KOFST), Chungnam National University Internet Intrusion Response
Technology Research Center (IIRTRC), MarkAny, SG Advantech, AhnLab, LG
CNS, and Korea University.

December 2009 Donghoon Lee
Seokhie Hong
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Generic One Round Group Key Exchange in the

Standard Model

M. Choudary Gorantla1, Colin Boyd1,
Juan Manuel González Nieto1, and Mark Manulis2

1 Information Security Institute, Faculty of IT, Queensland University of Technology
GPO Box 2434, Brisbane, QLD 4001, Australia

mc.gorantla@isi.qut.edu.au, {c.boyd,j.gonzaleznieto}@qut.edu.au
2 Cryptographic Protocols Group, Department of Computer Science

TUDarmstadt & CASED, Germany
mark@manulis.eu

Abstract. Minimizing complexity of group key exchange (GKE) pro-
tocols is an important milestone towards their practical deployment. An
interesting approach to achieve this goal is to simplify the design of GKE
protocols by using generic building blocks. In this paper we investigate
the possibility of founding GKE protocols based on a primitive called
multi key encapsulation mechanism (mKEM) and describe advantages
and limitations of this approach. In particular, we show how to design a
one-round GKE protocol which satisfies the classical requirement of au-
thenticated key exchange (AKE) security, yet without forward secrecy.
As a result, we obtain the first one-round GKE protocol secure in the
standard model. We also conduct our analysis using recent formal mod-
els that take into account both outsider and insider attacks as well as
the notion of key compromise impersonation resilience (KCIR). In con-
trast to previous models we show how to model both outsider and insider
KCIR within the definition of mutual authentication. Our analysis ad-
ditionally implies that the insider security compiler by Katz and Shin
from ACM CCS 2005 can be used to achieve more than what is shown
in the original work, namely both outsider and insider KCIR.

Keywords: Group Key Exchange, Key Encapsulation Mechanism, Key
Compromise Impersonation.

1 Introduction

The computation of a common secret key among a group of members communi-
cating over a public network is usually performed through a group key exchange
(GKE) protocol. The secrecy (indistinguishability) of the established group key
is modelled through the requirement called authenticated key exchange (AKE)
security [1,2,3]. The classical AKE-security notion comes in different flavours
depending on whether the protocol provides forward secrecy or not. Informally,
a protocol with forward secrecy ensures that the secrecy of the group key is pre-
served despite possible user corruptions in the future. The user corruptions also

D. Lee and S. Hong (Eds.): ICISC 2009, LNCS 5984, pp. 1–15, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 M.C. Gorantla et al.

have different flavours depending on whether only long-lived secrets are leaked
(weak corruption [1,4]) or the ephemeral, session-dependent information from
the internal states can be revealed as well (strong corruption [5]). Bresson et
al. [1] also define mutual authentication (MA) security as a desired notion of se-
curity for GKE protocols. The notion of MA-security requires that parties who
complete the protocol should output identical session keys and that each party
should be ensured of the identity of the other participating parties

However, as discussed by Katz and Shin [6] and Bohli et al. [7] the above secu-
rity notions are not adequate if the GKE protocol should resist misbehaviour of
its participants; in particular, preventing honest users from computing different
keys and from having distinct views on the identities of other participants. Bres-
son and Manulis [5] merged the insider security requirements defined by Katz
and Shin into their notion of MA-security in the presence of malicious insiders,
improving upon the notion of MA-security from Bresson et al. [1]. This stronger
MA-security can be obtained for any AKE-secure GKE protocol using Katz and
Shin’s compiler, which we refer to as the KS-compiler.

Recently, AKE- and MA-security notions have been further extended by
Gorantla et al. [8] considering outsider and insider key compromise imperson-
ation resilience (KCIR). Informally, a GKE protocol with KCIR ensures that an
honest party cannot be impersonated by an adversary which has access to the
private keys of other parties. The notion of outsider KCIR was modelled within
AKE-security and insider KCIR was embedded into MA-security [8]. However,
these notions defy the natural expectation that insider KCIR should imply out-
sider KCIR. It also remains unclear whether the KS-compiler can be used to
achieve the additional insider KCIR or not.

Key Encapsulation Mechanisms. Cramer and Shoup [9] formalised the
concept of hybrid encryption which securely merges public and symmetric en-
cryption techniques to encrypt messages. In short, the public key part called
key encapsulation mechanism (KEM) is used to generate and encrypt a random
session key, while data encryption mechanism (DEM) based on symmetric tech-
niques is used to encrypt the actual message using that session key. The KEM
primitive has been further extended to multi KEM (mKEM) by Smart [10].
mKEM is useful in scenarios where a single message should be encrypted for
multiple recipients.

It is evident from their properties, especially by generating a random session
key, that KEMs can also be utilized for the establishment of secure shared keys.
In fact, the question of constructing key establishment protocols from KEMs has
been investigated in the two-party setting: Gorantla et al. [11] provided generic
constructions in both the directions based on signcryption KEMs, whereas Boyd
et al. [12] presented a generic one-round protocol using plain encryption KEMs.
The natural question is, thus, whether mKEMs in turn can be utilized for the
design of GKE protocols? The non-triviality of the problem, in contrast to what
one may think after having [11,12], is the consideration of insider attacks which
are not present in the two party case.
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1.1 Our Contributions

In this paper, we extend the technique of Boyd et al. [12] to the group setting
and present a generic one-round GKE protocol using mKEM as a building block
which we prove AKE-secure in the standard model, yet without forward secrecy.
The main reason for lack of forward secrecy is that mKEMs known today are not
forward secure. Since forward secrecy is a desirable goal for some applications we
also discuss the modified two-round version of the protocol based on one-time
mKEM and digital signatures.

We enrich KCIR notions for GKE by including a definition of outsider KCIR
into MA-security. In this way we achieve the natural implication between insider
and outsider KCIR. We demonstrate the usefulness of the new notion by showing
that the generic transformation of Bresson et al. [1] to achieve outsider MA-
security is not sufficient for outsider KCIR.

Our new definition also highlights the separation between AKE-security and
KCIR. As observed by Boyd and Mathuria [13, §5.5, p.166] two-party protocols
can always achieve KCIR if each party encrypts its ephemeral pubic key with the
partner’s long-term public key. This holds also for the generic two-party protocol
of Boyd et al.[12]. However, when we move to the group setting this observation
does not hold any more with respect to AKE-security. As an example, we show
that our one-round GKE protocol does not achieve AKE-security with outsider
KCIR. Nevertheless, we show that our protocol still achieves MA-security with
outsider KCIR. Thanks to the implication from insider KCIR to outsider KCIR
we can show this by proving that our protocol when compiled with the KS-
compiler achieves MA-security with insider KCIR.

Katz and Shin [6] informally mentioned that the KS-compiler could provide
KCIR. Gorantla et al. [8] also speculated that when the KS-compiler is applied
to the protocol of Boyd and González Nieto [14] it would result in a GKE proto-
col secure under both AKE-security and MA-security with KCIR. However, we
observe that the KS-compiler does not necessarily guarantee AKE-security with
outsider KCIR.

1.2 Related Work

Boyd [15] presented three classes of one round key exchange protocols, which
may be seen as a different paradigm to the classical Diffie-Hellman key exchange.
In Class 1, the parties exchange random nonces in clear as their contributions
towards the session key. A long-term shared symmetric key is then used to derive
the session key. Constructing concrete GKE protocols in this class is not very
interesting as the assumption that all the parties in the group initially share a
common symmetric key seems unrealistic [16]. In Class 2, only one party uses
confidential and authentication channels to send its nonce while all other parties
send their nonces in clear. Concrete protocols in the Class 2 can be constructed
using public key encryption and signature schemes. The protocol of Boyd and
González Nieto [14] falls into this class. In Class 3, all the parties use confidential
channels to send their nonces. Our proposed protocol falls into this class. A major
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drawback of protocols in all the three classes is that they cannot provide forward
secrecy. However, a distinctive feature of Class 3 protocols is that they can
be proven secure under the AKE-security notion without employing public key
signatures. Hence, Class 3 protocols seem suitable to construct efficient deniable
GKE protocols [17]. We do not formally explore this possibility in this paper.

Bohli et al. [7] defined contributiveness as another desired security notion for
GKE protocols. This notion demands that a proper subset of insiders should not
predetermine the resulting session key. Bresson and Manulis [5] strengthened this
notion by considering strong corruptions where the ephemeral session state of an
instance might also be revealed in addition to the long-term private key of the
party. They also proposed compilers to achieve contributiveness in both weak
and strong corruption models [18].

1.3 Organization

Section 2 reviews existing notions of AKE-security and MA-security with insider
KCIR and also presents a new notion of MA-security with outsider KCIR. In
Section 3, we describe our one-round GKE protocol based on mKEM and prove
it AKE-secure without forward secrecy. Additionally, we mention how to extend
this protocol with an additional round and obtain forward secrecy. In Section 4,
we prove that the compiler by Katz and Shin [6] if executed with our protocol
provides MA-security with outsider and insider KCIR. Section 5 gives security
and efficiency comparison of existing GKE protocols. Appendix A describes the
background concepts that serve as building blocks in our paper.

2 Security Model for GKE Protocols

In this section, we review existing notions of AKE-security and MA-security
considered for GKE protocols. We also present our new notion of MA-security
with outsider KCIR.

Let U = {U1, . . . , UN} be a set of N parties. The protocol may be run among
any subset of these parties. Each party Uj for j ∈ [1, N ] is assumed to have a pair
of long-term public and private keys, (pk j , sk j) generated during an initialization
phase prior to the protocol run. A GKE protocol π executed among n ≤ N users
is modelled as a collection of n programs running at the n different parties in
U . Each instance of π within a party is defined as a session and each party may
have multiple such sessions running concurrently.

Let πi
U be the i-th run of the protocol π at party U ∈ U . Each protocol instance

at a party is identified by a unique session ID. We assume that the session ID
is derived during the run of the protocol. The session ID of an instance πi

U is
denoted by sidi

U . We assume that each party knows who the other participants
are for each protocol instance. The partner ID pidi

U of an instance πi
U , is a set

of identities of the parties with whom πi
U wishes to establish a common group

key. Note that pidi
U includes the identity of U itself.

An instance πi
U enters an accepted state when it computes a session key ski

U .
Note that an instance may terminate without ever entering into an accepted
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state. The information of whether an instance has terminated with acceptance
or without acceptance is assumed to be public. Two instances πi

U and πj
U ′ at

two different parties U and U ′ respectively are considered partnered iff (1) both
the instances have accepted, (2) sidi

U= sidj
U ′ and (3) pidi

U= pidj
U ′ .

The communication network is assumed to be fully controlled by an adversary
A, which schedules and mediates the sessions among all the parties. A is allowed
to insert, delete or modify the protocol messages. If the adversary honestly for-
wards the protocol messages among all the participants, then all the instances
are partnered and output identical session keys. Such a protocol is called a cor-
rect GKE protocol. In addition to controlling the message transmission, A is
allowed to ask the following queries.

– Execute(pid) prompts a complete execution of the protocol among the parties
in pid with a unique session ID sid. A is given all the protocol messages,
modelling passive attacks.

– Send(πi
U ,m) sends a message m to the instance πi

U . If the message is pid, the
instance πi

U is initiated with partner ID pid. The response of πi
U to any Send

query is returned to A.
– RevealKey(πi

U ) If πi
U has accepted, A is given the session key ski

U established
at πi

U .
– Corrupt(Uj) The long-term secret key sk j of Uj is returned to A. Note that

this query returns neither the session key (if computed) nor any session
specific internal state.

– RevealState(πi
U ) The ephemeral internal state of πi

U is returned to A. We
assume that the internal state is erased once πi

U has accepted.
– Test(πi

U ) A random bit b is secretly chosen. If b = 1, A is given κ1 = ski
U

established at πi
U . Otherwise, a random value κ0 chosen from the session key

probability distribution is given. Note that a Test query is allowed only once
that too on an accepted instance.

Corrupted Parties, Corrupted Instances and Insiders. We call a party
U corrupted if it has been issued a Corrupt query, while a protocol instance πi

U is
called corrupted if a RevealState(πi

U ) query has been asked. Note that there exist
uncorrupted protocol instances at corrupted parties when the session specific
ephemeral secrets are not revealed. A party is called an insider in a particular
protocol run if both the party and the protocol instance are corrupted or if
the adversary issues a Corrupt query to the party and then impersonates it i.e.
when the adversary issues a Send query on behalf of πi

U with a message m not
previously output by πi

U .

2.1 AKE-Security

The notion of freshness is central to the definition of AKE-security. Informally,
a session is considered fresh if the session key established in that session is
not trivially compromised. In Figure 1, we review different notions of freshness
defined for GKE protocols in the literature. The first notion is a slightly revised



6 M.C. Gorantla et al.

notion from Katz and Yung [4], considering RevealState queries. This notion
does not capture either forward secrecy or KCIR. Hence, the adversary is not
allowed to corrupt any party associated with the test session. The second notion
considers forward secrecy and may be seen as a stronger notion than that of
Bresson and Manulis [5], where the corruption of a party U ′ is allowed after the
session πi

U has accepted. This differs from the notion of Bresson and Manulis,
where the adversary is not allowed to issue a corrupt query until πi

U and all its
partners have accepted. The second notion may also be seen as a revised notion
from Katz and Shin [6] considering RevealState queries. The third notion, which
was recently defined by Gorantla et al. [8], considers both forward secrecy and
outsider KCIR.

The basic notion of freshness (not considering forward secrecy or KCIR) [4]
An instance πi

U is fresh if the following conditions hold:

1. the instance πi
U or any of its partners has not been asked a RevealKey after their

acceptance
2. the instance πi

U or any of its partners has not been asked a RevealState before their
acceptance

3. there has not been a Corrupt(U ′) query for any U ′ ∈ pidi
U (including U ′ = U)

The notion of freshness with forward secrecy [6,5]
An instance πi

U is fs-fresh if the following conditions hold:

1. the instance πi
U or any of its partners has not been asked a RevealKey after their

acceptance
2. the instance πi

U or any of its partners has not been asked a RevealState before their
acceptance

3. there has not been a Corrupt(U ′) query for any U ′ ∈ pidi
U (including U ′ = U)

before πi
U has accepted

The notion of freshness with outsider KCIR and forward secrecy [8]
An instance πi

U is kcir-fs-fresh if the following conditions hold:

1. the instance πi
U or any of its partners has not been asked a RevealKey after their

acceptance
2. the instance πi

U or any of its partners has not been asked a RevealState before their
acceptance

3. If πj
U′ ∈ pidi

U and A asked Corrupt(U ′), then any message that A sends to πi
U on

behalf of πj
U′ must come from πj

U′ intended to πi
U .

Fig. 1. Notions of Freshness

Definition 1 (AKE-Security). An adversary AAKE against the AKE-security
notion is allowed to make Execute, Send, RevealState, RevealKey and Corrupt
queries in Stage 1. AAKE makes a Test query to an instance πi

U at the end of
Stage 1 and is given a challenge key κb as described earlier. It can continue
asking queries in Stage 2. Finally, AAKE outputs a bit b′ and wins the AKE
security game if (1) b′ = b and (2) the instance πi

U that was asked Test query
remained fresh(or fs-fresh/kcir-fs-fresh correspondingly) till the end of AAKE ’s
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execution. Let SuccAAKE be the success probability of AAKE in winning the
AKE security game. The advantage of AAKE in winning this game is AdvAAKE =
|2 · Pr[SuccAAKE ] − 1|. A protocol is called AKE-secure if AdvAAKE is negligible
in the security parameter k for any polynomial time AAKE .

Remark 1. It is clear that if a GKE protocol does not have forward secrecy,
the AKE-security of the session key can be compromised by revealing the long-
term key of a protocol participant. An adversary can perform a KCI attack on
GKE protocols without forward secrecy by replaying messages of past successful
executions or even by relaying messages from an honest party. The KCI attacks
of Gorantla et al. [8] on Boyd and González Nieto [14] and Bresson et al. [19]
protocols work in the same way. As the AKE-security notion with outsider KCIR
implies that at most n− 1 corruptions are allowed, it is necessary for a protocol
realizing this notion to have at least (partial) forward secrecy when n−1 parties
are corrupted or (full) forward secrecy. However, as evident by Gorantla et al.’s
KCI attack on Al-Riyami and Paterson’s protocol [20], having forward secrecy
alone is not sufficient for a GKE protocol to have AKE-security with outsider
KCIR. We leave it an open problem to define AKE-security notion with outsider
KCIR and partial forward secrecy and to construct a GKE protocol realizing it.

2.2 MA-Security

We present two notions of MA-security with KCIR, one in the presence of only
outsiders and another in the presence of insiders. The notion of MA-security
with KCIR in the presence of insiders was defined by Gorantla et al. [8], while
the notion of MA-security with outsider KCIR is new.

Definition 2 (MA-Security with Outsider KCIR). An adversary AMA against
the MA-security of a correct GKE protocol π is allowed to ask Execute, Send,
RevealState, RevealKey and Corrupt queries. AMA violates the MA-security of
the GKE protocol if at some point during the protocol run, there exists an
uncorrupted instance πi

U that has accepted with a key ski
U and another party

U ′ ∈ pidi
U that is uncorrupted at the time πi

U accepts such that there are no
insiders in pidi

U and

1. there exists no instance πj
U ′ with (pidj

U ′ , sidj
U ′) = (pidi

U , sidi
U ) or

2. there exists an instance πj
U ′ with (pidj

U ′ , sidj
U ′) = (pidi

U , sidi
U ) that has ac-

cepted with skj
U ′ �= ski

U .

The above definition implies that AMA must be passive for any corrupted party
in pidi

U . Note that in a protocol execution with n parties, the above definition
also implies that AMA is allowed to corrupt up to n − 1 parties.

Let SuccAMA be the success probability of AMA in winning the above security
game. A protocol is said to provide MA-security with outsider KCIR if SuccAMA

is negligible in the security parameter k for any polynomial time AMA.
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Definition 3 (MA-Security with Insider KCIR). An adversary AMA against
the MA-security of a correct GKE protocol π is allowed to ask Execute, Send,
RevealState, RevealKey and Corrupt queries. AMA violates the MA-security of
the GKE protocol if at some point during the protocol run, there exists an
uncorrupted instance πi

U (although the party U may be corrupted) that has
accepted with a key ski

U and another party U ′ ∈ pidi
U that is uncorrupted at the

time πi
U accepts such that

1. there is no instance πj
U ′ with (pidj

U ′ , sidj
U ′) = (pidi

U , sidi
U ) or

2. there is an instance πj
U ′ with (pidj

U ′ , sidj
U ′) = (pidi

U , sidi
U ) that has accepted

with skj
U ′ �= ski

U .

Note that this notion implies that there can be up to n − 2 insiders (i.e. except
U and U ′). Let SuccAMA be the success probability of AMA in winning the above
security game. A protocol is said to provide MA-security with insider KCIR if
SuccAMA is negligible in the security parameter k for any polynomial time AMA.

3 One Round GKE Protocol from mKEM

Smart [10] formalised the notion of mKEM by extending the concept of KEM.
Using an mKEM scheme, a user who wants to encrypt a large message to n par-
ties can encapsulate a single session key to all the parties at once and then apply
a DEM with the session key to encrypt the actual message. Smart also defined
the notion of indistinguishability under chosen ciphertext attacks (IND-CCA)
for mKEM. The definition and security model for mKEM have been reviewed in
Appendix A.1.

In Figure 2, we present a generic construction of GKE protocol based on
mKEM. The parties can establish the group session key by executing an mKEM
in parallel. Let U = {U1, U2, · · · , Un} be the set of protocol participants. The
protocol uses an mKEM scheme (KeyGen, Encap,Decap). Let (pk i, sk i) be the
public-private key pair of the party Ui, generated using the KeyGen algorithm.
Each party starts the protocol by running the Encap algorithm and then broad-
casts the encapsulation Ci to the other parties in the group. Upon receiving
the encapsulations each party runs the Decap algorithm for each encapsulation
intended for it and retrieves the symmetric keys. The session ID is defined as
the concatenation of all the encapsulations along with the group identity U .

The session key is finally computed by each party from the symmetric key
it has generated during the Encap algorithm and all the symmetric keys decap-
sulated. A pseudo random function (PRF) f is used to derive the session key.
Note that the session key derivation in our protocol is slightly different from
the approach used in Boyd et al. [12]. In Boyd et al.’s protocol a randomness
extraction function is first applied to the symmetric keys Ki’s before using them
as seeds to a PRF to derive the session key. In our protocol, we directly use
the symmetric keys generated by the IND-CCA secure mKEM as seeds to f to
simplify the protocol design. As shown in the proof below this does not effect
the security of the protocol.
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Computation

Each Ui executes an mKEM with public keys {pk j |1 ≤ j ≤ n; j �= i} as input and
obtains the symmetric key and encapsulation pair (Ki, Ci)

(Ki, Ci)← Encap({pk j |1 ≤ j ≤ n; j �= i})
Broadcast

Each Ui broadcasts the computed encapsulation Ci along with its identity.

Ui → U \ {Ui} : Ci, Ui

Key Computation

1. Each Ui executes the decapsulation algorithm using its private key sk i and on
each of the incoming encapsulations Cj and obtains the symmetric keys Kj ,
where 1 ≤ j ≤ n, j �= i.

Kj ← Decap(sk i, Cj) for each 1 ≤ j ≤ n, j �= i

2. Each Ui then computes the session ID as the concatenation of all the outgoing
and incoming messages exchanged i.e. sid = (C1‖ · · · ‖Cn‖U), where U is the
set of identities of all the n users.

3. The session key κ is then computed as

κ = fK1(sid)⊕ fK2(sid)⊕ · · · ⊕ fKn(sid)

where f is a pseudo random function.

Fig. 2. A generic GKE protocol from mKEM

3.1 Proof of Security

Theorem 1. The protocol in Figure 2 is AKE-secure without forward secrecy
as per Definition 1 assuming the underlying mKEM is IND-CCA secure. The
advantage of AAKE is given as AdvAAKE ≤ n· q2

s

|C|+n·qs·(AdvACCA + n · AdvAPRF ),
where n ≤ N is the number of parties in the protocol, N is the number of public
keys in the system, qs is the number of sessions AAKE is allowed to activate, |C| is
the size of the ciphertext space, ACCA is a polynomial adversary against the IND-
CCA security of the underlying mKEM and APRF is a polynomial adversary
adversary against the pseudo random function.

The proof of above theorem is given in the full version [21].

3.2 Instantiating the Protocol

Smart [10] presented an efficient IND-CCA secure mKEM based on ElGamal
encryption scheme. However, it has been proven secure in the random oracle
model. Although our generic construction does not assume random oracles, a
concrete realization with this mKEM will only be secure in the random oracle
model.
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Smart also proposed a generic mKEM from any public key encryption scheme.
This construction was proven IND-CCA secure assuming that the underlying en-
cryption scheme was IND-CCA secure [10, Theorem 2]. Hence, generic mKEMs
in the standard model can be constructed from public key encryption schemes
which are also secure in the standard model [22,9,23]. This means that our
protocol can be realized in the standard model by using the generic mKEM con-
struction. However, note that the security in the standard model comes at the
price of additional computational efficiency and longer message size. Neverthe-
less, this instantiation will result in the first concrete GKE protocol which has
only one round of communication.

3.3 Achieving Forward Secrecy

Our one-round protocol in Figure 2 does not provide forward secrecy. However,
it can be used as a building block for a two-round GKE protocol that achieves
this additional goal. This protocol runs as follows: In the first round, each user Ui

chooses an ephemeral asymmetric key pair (pk i, sk i) for mKEM and broadcasts
pk i to the group. In the second round users perform the one-round protocol in
Figure 2 using asymmetric mKEM keys from the first round. It is easy to see
that such construction involving one-time mKEMs results in an unauthenticated
GKE protocol with forward secrecy. The AKE-security of this protocol can be
achieved using digital signatures similar to [4]; in particular, one can treat
one-time pk i as a nonce of Ui and require the additional signature of Ui on
Ci|pk1| . . . |pkn in the second round.

4 Achieving MA-Security with KCIR

Bresson et al. [1] proposed a generic transformation that turns an AKE-secure
GKE protocol π into a protocol π′ that provides MA-security in the presence of
an outsider adversary. Yet, their notion of MA-security did not consider KCIR.
The transformation uses the well known technique of constructing an “authen-
ticator” using the shared session key established in π. It works as follows: Let
κi be the session key computed by Ui in protocol π. The protocol π′ requires an
additional round in which each party Ui computes a message authi = H(κi, i),
where H is a hash function (modelled as random oracle in the proof) and broad-
casts it to all other parties. Each party verifies the incoming messages using the
session key established at their end. If the verification is successful, π′ terminates
with each party Ui accepting the session key κ′

i = H(κi, 0).
We show that the above transformation does not necessarily guarantee MA-

security with outsider KCIR. For example, consider a protocol π which does not
have forward secrecy like the protocol of Boyd and González Nieto [14] or our
one-round protocol in Figure 2. Definition 2 implies that an adversary against
MA-security with outsider KCIR can issue up to n− 1 Corrupt queries but must
then remain passive on behalf of corrupted users. As the protocol π does not
have forward secrecy, corrupting a single party Ui is enough to obtain the session
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key κi. The adversary can now easily impersonate an uncorrupted party Uj in
protocol π′ by computing authj = H(κi, j). Hence, transformations based on
shared keys cannot be used to obtain MA-security with outsider KCIR.

Instead, we show that the KS-compiler [6] when applied to our protocol
achieves MA-security with both outsider and insider KCIR. Katz and Shin [6]
proved that this compiler when applied to an AKE-secure GKE protocol pro-
vides MA-security in the presence of insiders, yet without considering KCI at-
tacks. Here, we show that their technique is also sufficient to obtain MA-security
with outsider and insider KCIR. It is easy to see that MA-security with insider
KCIR implies MA-security with outsider KCIR, i.e. given an adversary against
MA-security with outsider KCIR, one can construct an adversary against MA-
security with insider KCIR. Hence, we only need to prove that the compiled
protocol guarantees MA-security with insider KCIR.

Theorem 2. If we apply the KS-compiler to our protocol in Figure 2, the re-
sulting protocol provides MA-security with insider KCIR. The success probability
of the adversary AMA is given as n2 ·AdvACMA +n · q2

s

|C| +AdvAcoll , where n is the
number of parties in the protocol, qs is the number of sessions AMA is allowed to
activate, |C| is the size of the ciphertext space, ACMA is a polynomial adversary
against the unforgeability of the signature scheme under chosen message attack
and Acoll is a polynomial adversary adversary against the collision resistance of
the pseudo-random function F in the KS-compiler.

The proof of above theorem is given in the full version [21].

Remark 2. Note that the protocol obtained after applying Katz and Shin’s com-
piler to our one-round GKE protocol still does not achieve forward secrecy.
Hence, as discussed in Remark 1, it cannot achieve AKE-security with KCIR.
However, from Theorem 2 it is evident that forward secrecy is not necessary for
a GKE protocol to achieve MA-security with insider KCIR.

5 Conclusion

Table 1 compares the security of some of the existing GKE protocols. The col-
umn “Rounds” shows the number of communication rounds required to complete
the protocol. The terms “AKE”, “AKE-FS” and “AKE-KCIR” refer to AKE-
security, AKE-security with forward secrecy and AKE-security with KCI re-
silience respectively. Similarly, “MA” refers to mutual authentication and
“MA-Out” and “MA-In” refer to mutual authentication with outsider and insider
KCIR respectively. The entry “Yes∗” indicates that the corresponding protocol
appears to be secure under the notion but there is no formal proof. The last
column in the table says whether the protocol is proven in the random oracle
model or in the standard model.

It can be observed from the table that our protocol is the only one-round GKE
protocol secure in the standard model. Although the protocol of Bohli et al. sat-
isfies all the desired notions of security, it requires two-rounds of communication
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Table 1. Security and efficiency comparison among existing GKE protocols

Rounds AKE AKE-FS AKE-KCIR MA MA-Out MA-In Model

Boyd and
González
Nieto [14]

1 Yes No No No No No ROM

Katz and
Yung [4]

3 Yes Yes Yes∗ honest Yes∗ No Std.

Bohli et al. [7] 2 Yes Yes Yes Yes Yes Yes ROM

Bresson and
Manulis [5]

3 Yes Yes Yes∗ Yes Yes Yes∗ Std.

Furukawa et
al. [24]

2 Yes Yes Yes∗ Yes Yes Yes∗ Std.

Our Protocol 1 Yes No No No No No Std.

Our Protocol
+ KS-compiler

2 Yes No No Yes Yes Yes Std.

and moreover proven secure only in the random oracle model. Of the other pro-
tocols which are proven secure in the standard model, the protocols of Bresson
and Manulis and Furukawa et al. [24] appear to satisfy all the desired notions,
but they require three and two communication rounds respectively. Applying the
KS-compiler to our protocol results in a two-round GKE protocol that satisfies
the MA-security notion with insider KCIR. However, the resulting protocol still
cannot provide forward secrecy or AKE-security with KCIR. The approach out-
lined in Section 3.3 with the combination of the KS-compiler results in a GKE
protocol that appears to satisfy all the desired notions of security. However, this
protocol will have three rounds of communication.

Although our one-round GKE protocol cannot achieve all the security notions,
it will be very useful in scenarios where communication efficiency highly desired.
Unlike the previously known one-round GKE protocol, our protocol has been
proven secure in the standard model. We have also discussed generic techniques
with which the security of the protocol can be enhanced. However, as expected
this additional security guarantee comes at the price of extra number of rounds.
We leave it an open problem to construct an efficient mKEM in the standard
model, which can in turn be used to construct a one-round GKE protocol using
our approach.
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A Preliminaries

We first review the definition and notion of security considered for mKEM and
then briefly describe Katz and Shin’s compiler.

A.1 Multi KEM

An mKEM takes the public keys of n parties as input and outputs a session key
K and an encapsulation of K under all the n public keys. It is formally specified
by three algorithms as described below:

KeyGen: This is a probabilistic algorithm that takes the domain parameters as
input and outputs a public-private key pair (pk , sk).

Encap: This is a probabilistic algorithm that takes the domain parameters, the
public keys of n receivers (pk1, . . . , pkn) and outputs a session key K ∈
{0, 1}k and an encapsulation C of K under the public keys (pk1, . . . , pkn).

Decap: This is a deterministic algorithm that takes the domain parameters, an
encapsulation C and a private key sk i as input and outputs either a key K
or ⊥.

For an mKEM to be considered valid it is required that for all key pairs (pk i, sk i),
i ∈ [1, n] if (K, C) = Encap({pk1, pk2, . . . , pkn}) then Decap(C, sk i) = K for each
i ∈ [1, n].

The IND-CCA notion of security for mKEM is defined in a similar way to the
traditional KEMs as below.

Definition 4. An mKEM is IND-CCA secure if the advantage of any probabilis-
tic polynomial time adversary in the following game is negligible in the security
parameter k.

Setup: The challenger runs the KeyGen algorithm and obtains n key pairs
(pk i, sk i) for 1 ≤ i ≤ n. All the public keys P = {pk1, · · · , pkn} are given to
the adversary.

http://eprint.iacr.org/
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Phase 1: The adversary is allowed to issue decapsulation queries as below:
Decap: The adversary issues this query with input P ′ ⊆ P and an encap-

sulation C. The challenger returns either a key K or ⊥ after executing
the Decap algorithm on C using the private keys corresponding to P ′.
Note that if Decap on input C produces different symmetric keys for two
different private keys of users in P ′, then the encapsulation C is deemed
invalid and the adversary is returned ⊥.

Challenge: The adversary gives a set of keys P∗ ⊆ P to the challenger. The
challenger first chooses b ∈ {0, 1}. It then runs the Encap algorithm using
P∗ and generates (Kb, C

∗). It then sets K1−b to be a random key drawn
uniformly from the key space i.e., K1−b

R← {0, 1}k. Both the keys {K0,K1}
are given to the adversary along with the challenge encapsulation C∗.

Phase 2: The adversary is allowed to issues queries to challenger as in Phase 1
with the following restriction: A decapsulation query on an encapsulation C′

(includes C′ = C∗) that trivially reveals the session key Kb is not allowed.1

Guess: The goal of the adversary is to guess which one of the two keys {K0,K1}
is encapsulated in C∗. It finally outputs a guess bit b′ and it succeeds if b′ = b.
The advantage of the adversary is given as AdvACCA = |2 · Pr[b′ = b] − 1|.

1 This restriction is necessary to address benign malleability [10].



Modeling Leakage of Ephemeral Secrets

in Tripartite/Group Key Exchange

Mark Manulis1, Koutarou Suzuki2, and Berkant Ustaoglu2

1 Cryptographic Protocols Group, TU Darmstadt & CASED, Germany
mark@manulis.eu

2 NTT Information Sharing Platform Laboratories
3-9-11 Midori-cho Musashino-shi Tokyo 180-8585, Japan
{suzuki.koutarou,ustaoglu.berkant}@lab.ntt.co.jp

Abstract. Recent advances in the design and analysis of secure two-
party key exchange (2KE) such as the leakage of ephemeral secrets used
during the attacked sessions remained unnoticed by the current models
for group key exchange (GKE). Focusing on a special case of GKE —
the tripartite key exchange (3KE) — that allows for efficient one-round
protocols, we demonstrate how to incorporate these advances to the
multi-party setting. From this perspective our work closes the most pro-
nounced gap between provably secure 2KE and GKE protocols.

The proposed 3KE protocol is an implicitly authenticated protocol
with one communication round which remains secure even in the event
of ephemeral secret leakage. It also significantly improves upon currently
known 3KE protocols, many of which are insecure. An optional key con-
firmation round can be added to our proposal to achieve the explicitly
authenticated protocol variant.

1 Introduction

Bellare and Rogaway [2] and Blake-Wilson, Johnson and Menezes [3] indepen-
dently proposed models for analyzing security of two-party key exchange (2KE)
protocols in the shared and public key settings, respectively. In their approach
an adversary is given the ability to interact with parties and controls the commu-
nication with the simple goal of distinguishing a test session key from a random
key. Motivating with the signed variant1 of the classical unauthenticated Diffie-
Hellman [13] protocol, Canetti and Krawzcyk [10] argued that it is desirable
to augment the 2KE adversary with the ability to learn session-specific and
protocol-defined ephemeral information that is not related to the test session.
LaMacchia, Lauter and Mityagin [25] allowed leakage of some test session spe-
cific ephemeral information under certain conditions. Menezes and Ustaoglu [31]
extended the timing of the information leakage. All these developments were
within the framework of two-party key exchange.

1 In the signed Diffie-Hellman protocol users sign outgoing ephemeral public keys with
their static keys.

D. Lee and S. Hong (Eds.): ICISC 2009, LNCS 5984, pp. 16–33, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Group key exchange (GKE) protocols are essentially the generalization of
2KE protocols to the group case. However, this generalization brings additional
problems both in the design and the analysis of the protocols. The first for-
mal model for GKE protocol was described by Bresson et al. [5] inspired by
the two-party approach in [2]. Many modifications and improvements appeared
thereafter, see the survey in [30]. GKE models mainly focus on the outsider secu-
rity which is modeled through the requirement of AKE-security, e.g. [5,4,21,9],
as this requirement deals explicitly with the secrecy of the established keys,
which becomes meaningless if the adversary is an insider. Yet, several mod-
els, e.g. [20,6,8,15,14], consider the optional insider security aiming to prevent
attacks by which insiders force parties to complete either with different keys
(usually modeled as MA-security) or with keys that have some biased distri-
bution (usually modeled as contributiveness). Several compilers have been pro-
posed to augment AKE-secure protocols with security against insider attacks,
e.g. [20,6,7]. Beside consideration of outsider and insider security GKE models
differ in the treatment of corruptions. Earlier GKE models, e.g. [5,21], consid-
ered weak corruptions allowing the adversary to obtain users’ static keys, but
not their ephemeral session secrets. Later models, e.g. [9,8,14] assumed strong
corruptions allowing the adversary to learn both static private keys and session
specific secrets through a single query. Manulis and Bresson [8], inspired by the
two-party approach in [10] refined the notion of strong corruptions in GKE al-
lowing the adversary to obtain static keys independently from ephemeral session
secrets; yet, restricting the leakage of ephemeral secrets to sessions for which
the adversary does not need to distinguish the key. The reason is that GKE
protocols known today become insecure if ephemeral secrets used to compute a
group key leak, in other words leaking ephemeral secrets of one session affects
the security of other non-partnered sessions. As a result many GKE protocols
are insecure if parties for better performance pre-compute their ephemeral se-
crets off-line. Gorantla et. al. [14] subsequently strengthened [8] by considering
key compromise impersonation attacks.

Despite of their significant improvement over the years GKE models remain
incomparable to the 2KE models in terms of security guarantees they provide.
In contrast to the 2KE models such as [23,31], GKE models do not consider
leakage of ephemeral secrets for the session which is to be proven AKE-secure.
In this paper we aim to fix the gap between 2KE and GKE models. Focusing
on AKE-security we first revise the latest GKE models to accommodate leakage
of ephemeral secrets against the attacked session. In order to illustrate that our
model is reasonable and practical for our analysis we focus on three-party key
exchange (3KE), which is a special class of GKE protocols and come up with a
provably secure solution that resists these stronger leakage attacks.

Notation. Let ê : G × G �→ GT be a non-degenerate bilinear map from a group
G to a group GT both of prime order q. Let P be a generator of G; for a user UA

we set UA’s static and ephemeral keys SA = sAP and XA = xAP , respectively.
The lowercase letters are the private keys.
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2 Three vs. Two Party Key Establishment

Antoine Joux [17,18] used properties of pairings to extends the classical (unau-
thenticated) two-party Diffie-Hellman protocol [13] to the case of three parties,
preserving the optimal one-round communication complexity. Since then tripar-
tite key exchange as a special form of group key exchange has gained attention
of the research community and several attempts have been made to improve the
original protocol in order to enlarge the class of attacks it can resist.

2.1 Authenticating Outgoing Messages

Shim [32] argued that Joux’s protocol fails to a variant of the well know person-
in-the-middle attack against the (unauthenticated) Diffie-Hellman protocol. To
address that shortcoming Shim proposed a protocol where Alice broadcasts

TA = xAsAP. (1)

Upon exchanging these ephemeral public keys the parties compute
t = ê(P, P )sAsBsC and the session key

k = H(ê(P, P )xAxBxCsAsBsCt
, UA, UB, UC). (2)

Shim’s protocol fails to key compromise impersonation attack [33,29]. Suppose
Malice sends two ephemeral public keys uP and vP to Alice on behalf of Bob and
Charlie respectively. With the knowledge of Alice’s static private key Malice can
compute t; with the knowledge of u Malice can also compute k = ê(vP, TA)ut,
which is the key Alice computes. Lin and Lin [29] observe that the attack is pos-
sible since Shim’s protocol does not authenticate the TA’s origin. To resolve such
issues one venue is introducing new elements into the communicated messages:
along the ephemeral public key a user could append extra information that iden-
tifies messages’ origin or provides evidence for following protocol specifications.
For example [11] requires that along the message in Shim’s protocol Alice also
computes and broadcasts XA = xAP ; the suggested session key is

k = ê(P, P )xAxBxCsAsBsC .

Suppose, however, that an adversary Malice can obtain a certificate for an
ephemeral public key XA used by Alice. Malice can then send XM = SA,
TM = TA, and the certificate to Bob and Charlie. As a result Bob and Charlie
will believe the session key is shared with Malice, whereas the key is shared with
Alice, who correctly identifies all session peers. This example resembles Kaliski’s
on-line unknown key share (UKS) attack [19] on the MQV protocol [26]. It is
plausible [22, §7.3], that the ephemeral public keys pre-computed for efficiency
reasons are not as securely stored as the ephemeral private keys. In that case
the UKS attack can be made off-line implying that timing information leakage
has important security consequences.
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The modification to Shim’s protocol in [29] requires that in addition to TA,
Alice also computes and broadcasts

mA = H(sA, xA) (3)

uA = (sAxA)−1(mA + sA) mod q. (4)

Bob and Charlie verify Alice’s message by computing tA = uA
−1 mod q, zA =

tAmA mod q, and checking that

TA
?= zAP + tASA. (5)

The session key (as computed by Alice) is

k = H(ê(SB + TB, SC + TC)sA+sAxA , UA, UB, UC)

= H(ê(P, P )(sA+sAxA)(sB+sBxB)(sC+sCxC)
, UA, UB, UC). (6)

Malice can easily circumvent the verification by selecting a random integer mB,
setting TB = −mBP − SB, uB = −1 mod q and sending these values on Bob’s
behalf to Alice and Charlie; see also [28, §4.1]. Alice (as well as Charlie) compute
tB = −1−1 = −1 mod q, zB = −mB mod q and verify Equation 5 namely,

TB = zBP + tBSB = −mBP − SB.

Subsequently, Alice computes the key

k = H(ê(SB + TB, SC + TC)sA+sAxA , UA, UB, UC)
= H(ê(SB − mBP − SB, SC + TC)sA+sAxA , UA, UB, UC)

= H(ê(P, P )(sA+sAxA)(−mB)(sC+sCxC)
, UA, UB, UC). (7)

With the knowledge of mB Malice can compute the same session key.
Lim et al. [28] further propose a “fix” to the above problem that requires addi-

tional information in the messages and further verification procedures. However,
as observed in [27, §4.2], uA relates the static and ephemeral key such that given
the static private key sA an adversary can derive the ephemeral private key xA

and thereafter recover the session key, so protocols with uA as in Equation 4 do
not provide forward secrecy. As an alternative [27] suggests WA = xAH(xA)(SA),
nA = H(TA, WA, pA) for a time stamp pA, and

sA = (sAxAH(xA))−1(mA + sAnA) mod q. (8)

The above examples aimed to provide certain assurances about incoming mes-
sages without allegedly sacrificing security. Compilers can be viewed as an ab-
straction to such approach, at the expense of overhead like complicated messages
or more communication rounds. A more rigorous analysis of that approach can
be found in [21,16].
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Ephemeral key leakage has been motivated for two party key agreement pro-
tocols [10,23,34], but so far we did not include it in our analysis. In Equation 8
if sA is leaked the adversary cannot obtain xA, but if xA is leaked, then the
adversary can easily obtain the static secret sA. Furthermore, in [24] authors
observed that within a party cryptographic primitives can share the source of
randomness; if the source is weak then signature schemes such as DSA can leak
static private keys. Therefore, in the presence of leakage of ephemeral private
information compilers’ based solutions are non-trivial to adopt.

2.2 Al-Riyami and Patterson Protocols

Al-Riyami and Patterson [1] proposed four one round three party key agreement
protocols. The design aims to “avoid the use of expensive signature computa-
tions”. The protocols broadcast a message consisting of a single ephemeral public
key along with necessary certificates, but differ in the key derivation procedures
which are inspired by two-party protocols. These protocols inherit vulnerabilities
from the underlying two-pass protocols, but suggest that lessons from two-party
protocols should be applied to three-party protocols. In the TAK-4 protocol, akin
to MQV [26] and HQMV [23], Alice, Bob and Charlie after exchanging static-
ephemeral key pairs (SA, XA), (SB, XB) and (SC , XC), respectively, compute
the session key

k = ê(P, P )(xA+He(XA,SA)sA)(xB+He(XB ,SB)sB)(xC+He(XC ,SC)sC)
.

Given, the complicated HMQV security argument it is not surprising that no
security argument for TAK-4 is provided. In fact as described in [1] TAK-4 fails
to the following UKS attack in which Alice and Bob will falsely think that they
share a key with Malice, whereas Charlie correctly identifies his peers as Alice
and Bob. In the attack Malice, who owns a certificate for the public key 1G

2,
intercepts all public keys and computes XM = XC + He(XC , SC)SC , implicitly
defining xM = xC + He(XC , SC)sC . Note that

k = ê(P, P )(xA+He(XA,SA)sA)(xB+He(XB ,SB)sB)(xC+He(XC ,SC)sC)

= ê(P, P )(sA+He(SA,SA)sA)(xB+He(XB ,SB)sB)(xC+He(XC ,SC)sC+H(XM ,1G)0)

= ê(P, P )(sA+He(SA,SA)sA)(xB+He(XB ,SB)sB)(xM+H(XM ,1G)0)
.

Therefore, by sending (SM , XM ) instead of (SC , XC) to Alice or Bob, Malice
successfully mounts a UKS attack on TAK-4. The possibility of such attacks
is acknowledged in [1], which also offers two alternatives to prevent them. The
requirements in [1] do not prevent the adversary from mounting the above attack
thus the more sound approach is to include identities in the key derivation as
typically done in two party key agreement. In general fewer assumptions and
primitives are better as they leave less room for security vulnerabilities.

2 The element 1G is the identity element in G.
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2.3 Ephemeral Information Leakage

In general, the security considerations important for two-party protocols are also
relevant for multi-party protocols. Motivation for ephemeral information leak-
age is independent from number of users involved in a key agreement protocol.
Primitives used in compilers often assume no ephemeral key leakage. Thus, it is
worth considering implicitly authenticated key exchange protocols.

Ephemeral keys introduce further security aspects. For example, in Shim’s
protocol leaking static keys does not reveal the past session keys, but an ad-
versary that can access one ephemeral and one static private key from different
users can compute the session key. So, for a party concerned with forward se-
crecy with respect to its own static key, there is a difference if its peer static or
ephemeral private key is leaked: the session key is still secure in the former case
but no longer in the latter.

3 Implicitly Authenticated Tripartite Protocol

Informally, in our proposed protocol P parties exchange ephemeral and static
keys and derive the keying material as described bellow. Optionally, there can
be a key confirmation round.

Initialization. User Ui performs:
1. Select an ephemeral private key xi ∈R [1, q] and compute Xi = gxi .
2. Create a session state, identified by (P, Ui, Xi) that contains only (xi, Xi).

Communication. Upon receiving request: (P, Ui, Ui+1, Ui+2, rl), user Ui broad-
casts (1|P, U0, U1, U2, rl, Xi).

Derivations. Upon receiving the first round of messages Ui does the following:
1. Verify that Xi+1, Xi+2 ∈ G∗.
2. Compute sidi = P|U0|X0|U1|X1|U2|X2.
3. Compute KeyDer(Ui, rl, sidi, xi, si).

Completion. To complete the session Ui does:
1. Destroy the session state.
2. Accept the session key k.

Key material. On input (Ui, rl, sidi, xi, si) the auxiliary key derivation KeyDer
computes:

1. Compute f0 = He(X0), f1 = He(X1) and f2 = He(X2).
2. Compute

σ0 =

⎧⎨⎩
(ê(X1 + S1, X2 + S2))

x0+f0s0 if rl = 0
(ê(X0 + f0S0, X2 + S2))

x1+s1 if rl = 1
(ê(X0 + f0S0, X1 + S1))

x2+s2 if rl = 2
(9)

3. Compute

σ1 =

⎧⎨⎩
(ê(X1 + f1S1, X2 + S2))

x0+s0 if rl = 0
(ê(X0 + S0, X2 + S2))

x1+f1s1 if rl = 1
(ê(X0 + S0, X1 + f1S1))

x2+s2 if rl = 2
(10)
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4. Compute

σ2 =

⎧⎨⎩
(ê(X1 + S1, X2 + f2S2))

x0+s0 if rl = 0
(ê(X0 + S0, X2 + f2S2))

x1+s1 if rl = 1
(ê(X0 + S0, X1 + S1))

x2+f2s2 if rl = 2
(11)

5. Compute

σ3 =

⎧⎨⎩
(ê(X1 + f1S1, X2 + f2S2))

x0+f0s0 if rl = 0
(ê(X0 + f0S0, X2 + f2S2))

x1+f1s1 if rl = 1
(ê(X0 + f0S0, X1 + f1S1))

x2+f2s2 if rl = 2
(12)

6. Return k = H(σ0, σ1, σ2, σ3, sidi).

Instances with the same session id sid, and hence with the same ephemeral
public keys and partners, compute the same output since

H(σ0, σ1, σ2, σ3, sid
i) = H

(
(ê(P, P ))(x0+f0s0)(x1+s1)(x2+s2),

(ê(P, P ))(x0+s0)(x1+f1s1)(x2+s2)
,

(ê(P, P ))(x0+s0)(x1+s1)(x2+f2s2)
,

(ê(P, P ))(x0+f0s0)(x1+f1s1)(x2+f2s2)
, sidi

)
. (13)

A special attention should be paid to the content of the internal state which by
definition contains only the ephemeral private keys used by session throughout
the protocol execution. Neither the static private key si, nor the values σ0. . . σ3,
nor the derived key material become part of the session state. This is differ-
ent from the definition used in [12], where the model allows the adversary to
learn the complete state of the Turing machine. Our formulation is similar to
the more common approach for two party Diffie-Hellman protocols, see for ex-
ample [10,23,34], where the session state consists only of the ephemeral private
key xi used by Ui.

To include key confirmation, the output of H is modified to (km, k). Further-
more, after Derivation and before Completion users perform the following:

Confirmation. To execute key confirmation Ui does:
1. Compute tags T0 = H3(km, U0, X0, sidi), T1 = H3(km, U1, X1, sidi), and

T2 = H3(km, U2, X2, sidi).
2. Record3 Ti+1 and Ti+2, and delete km.
3. Broadcast (2|P, Ti, Ui, sidi, rl)

Verification. Ui verifies that the incoming Ti+1 and Ti+2 are equal to the tags
stored in the session state.

3 To prevent leakage of these confirmation tags, Ui can store fingerprint of these tags.
Upon obtaining tags from the alleged peers Ui computes and compares fingerprints
of incoming tags with the fingerprints stored in the session state. Thus we can assume
that the confirmation tags do not become part of the session state.
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In the analysis of many two-party protocols ephemeral public and private keys
can be obtained by the adversary only during the session execution. Thus such
arguments do not cover pre-computed ephemeral key pairs. In some cases the
adversary may be able to recover past ephemeral keys. For this reason in our
protocol description the ephemeral key pairs are pre-computed and the adversary
can access them before event the session is initialized. Indeed the Initialization
stage can be performed long before the Communication stage. Similarly, the
protocol description does not explicitly destroy the ephemeral private key (but
should be done in practice) to allow the possibility that the adversary obtain
the ephemeral key after observing some subsequent actions of the parties. These
modifications only increase the power of the adversary and does not decrease it
relative to the usual approach where ephemeral keys can be obtained only during
the session execution.As mentioned in the introduction, Bresson and Manulis [8]
considered leakage of ephemeral secrets from the internal states prior to the
execution of a session, thus incorporating pre-computations into the model, and
also after the completeness of the session, thus implicitly requiring the erasure
of ephemeral secrets from the state. However, their approach disallows leakage
of ephemeral secrets during the execution of the session.

4 The Model and Security Definitions

Our model can be seen as an extension of the strong authenticated key exchange
model for two-party protocols from [31] to the group setting. It is described using
the classical notations and terminology from previous models for GKE protocols,
in particular those in [21,8,14].

Protocol Participants and Initialization. Let U := {U1, . . . , UN} be a set of po-
tential protocol participants and each user Ui ∈ U is assumed to hold a static
private/public key pair (si, Si) generated by some algorithm Gen(1κ) on a secu-
rity parameter 1κ during the initialization phase.

Protocol Sessions and Instances. Any subset of U can decide at any time to
execute a new protocol session and establish a common group key. Participation
of some U ∈ U in multiple sessions is modeled through an number of instances
{Πs

U | s ∈ [1 . . . n], U ∈ U}, i.e. the Πs
U is the s-th session of U. Each instance is

invoked via a message to U with a partner id4 pids
U ⊆ U , which encompasses the

identities of all the intended session participants (note that pids
U also includes

U). We say that U owns the instance Πs
U . In the invoked session Πs

U accepts if
the protocol execution was successful, in particular Πs

U holds then the computed
group key ks

U .

Session state. During the session execution each participating Πs
U creates and

maintains a session id sids
U and an associated internal state states

U which in

4 Invocation may also include other public information such as the protocol name that
is invoked, the order of user and so on.
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particular is used to maintain ephemeral secrets used by Πs
U during the protocol

execution. We say that U owns session sids
U if the instance Πs

U was invoked at
U. Note that the integer s is only a tool to describe the model. The users do not
keep track of s, instead sessions are identified via the vector sids

U . At the onset
of the instance the user that owns the instance may not have enough information
to create sids

U ; until sids
U is created the instance is identified via pids

U and the
outgoing ephemeral public key5 which is unique per user except with negligible
probability. Furthermore, we assume that instances that accepted or aborted
delete all information in their respective states.

Partnering. Two instances Πs
U and Πt

U∗ are called partnered or matching if
sids

U ⊆ sidt
U∗ or sidt

U∗ ⊆ sids
U and pids

U = pidt
U∗ . The first condition models

the fact that if session ids are computed during the protocol execution, e.g. from
the exchanged messages, then their equality should be guaranteed only at the
end of the protocol, i.e. upon the acceptance of Πs

U and Πt
U∗ .

Note also that the notion of partnering is self-inclusive in the sense that any
Πs

U is partnered with itself. If the protocol allows a user U to initiate sessions
with U, then the equality pids

U = pidt
U∗ is a multi-set equality.

Adversarial Model. The adversary A, modeled as a PPT machine, can schedule
the protocol execution and mount own attacks via the following queries:

– AddUser(U, SU): This query allows A to introduce new users. In response,
if U �∈ U (due to the uniqueness of identities) then U with the static public
key SU is added to U ; Note that A is not required to prove the possession
of the corresponding secret key sU

6.
– Send(Πs

U , m): With this query A can deliver a message m to Πs
U whereby

U denotes the identity of its sender. A is then given the protocol message
generated by Πs

U in response to m (the output may also be empty if m
is not required or if Πs

U accepts). A special invocation query of the form
Send(U, (′start′, U1, . . . , Un)) with U ∈ {U1, . . . , Un} creates a new instance
Πs

U with pids
U = {U1, . . . , Un} and provides A with the first protocol mes-

sage.
– RevealKey(Πs

U): This query models the leakage of session group keys and
provides A with ks

U . It is answered only if Πs
U has accepted.

– RevealStaticKey(U): This query provides A with the static private key sU .
– RevealState(Πs

U): A is given the ephemeral secret information contained in
states

U at the moment the query is asked. Note that the protocol specifies
what the state contains.

– Test(Πs
U): This query models the indistinguishability of the session group key

according to the privately flipped bit τ . If τ = 0 then A is given a random
session group key, whereas if τ = 1 the real ks

U . The query is requires that
Πs

U has accepted.
5 Implicitly, this assumes that the first outgoing message contains the ephemeral public

key. If necessary this can be modified to accommodate other types of protocols.
6 In our security argument we will only assume that SU chosen by A is checked to be

an element of G.
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Correctness. A GKE protocol is said to be correct if, when in the presence of
benign7 adversary all instances invoked for the same protocol session accept with
the same session group key.

Freshness. The classical notion of freshness of some instance Πs
U is traditionally

used to define the goal of AKE-security by specifying the conditions for the
Test(Πs

U) query. For example, the model in [21] defines an instance Πs
U that

has accepted as fresh if none of the following is true: (1) at some point, A
asked RevealKey to Πs

U or to any of its partnered instances; or (2) a query
RevealStaticKey(U∗) with U∗ ∈ pids

U was asked before a Send query to Πs
U or

any of its partnered instances.
Unfortunately, these restrictions are not sufficient for our purpose since Πs

U

becomes immediately unfresh if the adversary gets involved into the protocol
execution via a Send query after having learned the static key sU∗ of some user
U∗ those instance participates in the same session as Πs

U . We fairly remark that
[21] does not address (strong) corruptions of ephemeral secrets.

The recent model in [8] defines freshness using the additional AddUser and
RevealState queries as follows. According to [8], an instance Πs

U that has ac-
cepted is fresh if none of the following is true: (1) A queried AddUser(UM , SUM )
with some U∗ ∈ pids

U ; or (2) at some point, A asked RevealKey to Πs
U or any

of its partnered instances; or (3) a query RevealStaticKey(U∗) with U∗ ∈ pids
U

was asked before a Send query to Πs
U or any of its partnered instances; or (4) A

queried RevealState to Πs
U or any of its partnered instances at some point after

their invocation but before their acceptance.
Although this definition is already stronger than the one in [21] it is still in-

sufficient for the main reason that it excludes the leakage of ephemeral secrets of
instances in the period between the protocol invocation and acceptance. Also this
definition of freshness does not model key compromise impersonation attacks.

The recent update of the freshness notion in [14] addressed the lack of key
compromise impersonation resilience. In particular, it modifies the above con-
dition (3) by requiring that if there exists an instance Πt

U∗ which is partnered
with Πs

U and A asked RevealStaticKey(U∗) then all messages sent by A to Πs
U

on behalf of Πt
U∗ must come from Πt

U∗ intended for Πs
U . This condition should

allow the adversary to obtain static private keys of users prior to the execution
of the attacked session while requiring its benign behavior with respect to the
corrupted user during the attack.

Yet, this freshness requirement still prevents the adversary from obtaining
ephemeral secrets of participants during the attacked session. What is needed is
a freshness condition that would allow the adversary to corrupt users and reveal
the ephemeral secrets used by their instances in the attacked session at will
for the only exception that it does not obtain both the static key sU∗ and the
ephemeral secrets used by the corresponding instance of U∗; otherwise security
can no longer be guaranteed. In the following we give the combined definition of
freshness taking into account the previously described problems.
7 Benign adversary executes an instance of the protocol and faithfully delivers mes-

sages without any modification.
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Definition 1. An instance Πs
U that has accepted is fresh if none of the following

is true:

1. A queried AddUser(U∗, SU∗) with some U∗ ∈ pids
U ; or

2. A asked RevealKey to Πs
U or any of its accepted partnered instances; or

3. A queried both RevealStaticKey(U∗) with U∗ ∈ pids
U and RevealState(Πt

U∗)
for some instance Πt

U∗ partnered with Πs
U ; or

4. A queried RevealStaticKey(U∗) with U∗ ∈ pids
U prior to the acceptance of

Πs
U and there exists no instance Πt

U∗ partnered with Πs
U .

Note that since U ∈ pids
U and since the notion of partnering is self-inclusive

Condition 3 prevents the simultaneous corruption of static and ephemeral secrets
for the corresponding instance Πs

U as well. In case when users are allowed to own
two partnering instances i.e., they can initiate protocols with themselves the last
condition should be modified to say that the number of instances U equals the
number of times U appears in pids

U . Note also that the above definition captures
key-compromise impersonation resilience through Condition 4: A is allowed to
corrupt participants of the test session in advance but then must ensure that
instances of such participants have been honestly participating in the test session.
In this way we exclude the trivial break of security where A reveals static keys of
users prior to the test session and then actively impersonates that users during
it. On the other hand, as long as A remains benign with respect to such users
their instances will still be considered as fresh.

AKE-Security. We are ready to generalize the strong AKE-security definition
from [25,31] to a group setting.

Definition 2. Let P be a correct GKE protocol and τ be a uniformly chosen bit.
We define the adversarial game Gameake−τ

A,P (κ) as follows: after initialization, A
interacts with instances via queries. At some point, A queries Test(Πs

U), and
continues own interaction with the instances until it outputs a bit τ ′. If Πs

U to
which the Test query was asked is fresh at the end of the experiment then we set
Gameake−τ

A,P (κ) = τ ′.

We define: Advake
A,P(κ) := |2 Pr[τ = τ ′] − 1|

and denote with Advake
P (κ) the maximum advantage over all PPT adversaries A.

We say that a GKE protocol P provides strong AKE-security if this advantage
is negligible.

5 Security Arguments

In this section, we provide security arguments of the proposed implicitly au-
thenticated tripartite protocol. We need the gap BDH(Bilinear Diffie-Hellman)
assumption, where one tries to compute BDH(U, V, W ) accessing the BDDH or-
acle. Here, we denote BDH(U, V, W ) = ê(P, P )log U log V log W , and the BDDH
oracle on input (uP, vP, wP, ê(P, P )x) returns the bit 1 if uvw = x and the bit
0 otherwise.
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Theorem 1. If G is a group where gap Bilinear Diffie-Hellman assumption
holds and H and He are random oracles, the proposed implicitly authenticated
tripartite protocol in Section 3 is secure in the sense of Definition 2.

Outline of proof of Theorem 1 is provided in Appendix A. Here, we give an in-
tuition of the proof. We denote by (S0, X0), (S1, X1), (S2, X2) the static and
ephemeral public keys of users U0, U1, U2 in the test session sidt. Consider
the case, where user U0 is honest, ephemeral public key X0 is not revealed,
and static public keys S1 and S2 are not revealed. In this case, solver S em-
beds instance (U, V, W ) of gap BDH problem as X0 = U, S1 = V, S2 = W .
Since H is random oracle, adversary A need to ask σ0, σ1, σ2, σ3 to H, s.t.
BDDH(X0 + f0S0, X1 + S1, X2 + S2, σ0) = 1, BDDH(X0 + S0, X1 + f1S1, X2 +
S2, σ1) = 1, BDDH(X0 + S0, X1 + S1, X2 + f2S2, σ2) = 1, and BDDH(X0 +
f0S0, X1 + f1S1, X2 + f2S2, σ3) = 1, to distinguish the session key. Since user
U0 is honest, solver S knows s0 = log(S0). By using s0, solver S can com-
pute four independent terms w.r.t. s1 = log(S1) and s2 = log(S2): σ′

0 = ê(X1 +
S1, X2+S2)−f0s0σ0 = ê(P, P )x0(x1+s1)(x2+s2), σ′

1 = ê(X1+f1S1, X2+S2)−s0σ1 =
ê(P, P )x0(x1+f1s1)(x2+s2), σ′

2 = ê(X1+S1, X2+f2S2)−s0σ2 = ê(P, P )x0(x1+s1)(x2+f2s2),
and σ′

3 = ê(X1 + f1S1, X2 + f2S2)−f0s0σ3 = ê(P, P )x0(x1+f1s1)(x2+f2s2). By us-
ing these four independent terms, solver S can compute answer of gap BDH
problem ((σ′−1

0 σ′
1)

−1σ′−1
2 σ′

3 )1/((f1−1)(f2−1)) = BDH(X0, S1, S2). This is why
the proposed protocol uses four terms σ0, σ1, σ2, σ3.

6 Conclusion

We presented a new 3KE protocol and a more general GKE model that takes
into account ephemeral key leakage. In this way we closed the outstanding gap
in the modeling of AKE-security for 2KE and GKE protocols. Our implicitly
authenticated 3KE protocol does not make use of compilers and proceeds in one
round achieving this desired higher level of security. As such it is the first one-
round tripartite key exchange protocol having these security properties without
complicating the messages of the original protocol by Joux [17,18].

We did not take into account malicious insiders in GKE protocols [8,14] and
did not consider the possibility of invoking sessions with destination addresses as
done in the so called post-specified peer model [10,31]. It is an interesting open
problem to formally consider the post-specified peer setting. Furthermore, it is of
independent worth to provide methods for key confirmation and contributiveness
for implicitly authenticated protocols that tolerate malicious insiders.
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one tries to compute BDH(U, V, W ) accessing the BDDH oracle. Here, we de-
note BDH(U, V, W ) = ê(P, P )log U log V log W , and the BDDH oracle on input
(uP, vP, wP, ê(P, P )x) returns the bit 1 if uvw = x and the bit 0 otherwise.

Let κ denote the security parameter, and let A be a polynomially (in κ)
bounded adversary. We assume that A succeeds in an environment with n users
{Ui}, activates at most s instances {Πj

Ui
} within a user Ui. We use A to con-

struct a gap BDH solver S that succeeds with non-negligible probability. The
adversary A is said to be successful with non-negligible probability if A wins the
distinguishing game with probability 1

2 + p(κ), where p(κ) is non-negligible, and
the event M denotes a successful A.

Let Πt be the test instance with session id sidt = (P, UA, SA, XA, UB, SB, XB,
UC , SC , XC). Let Π be any completed instance owned by an honest user with
session id sid such that sid �= sidt. Let H∗ be the event that A queries
(σ0, σ1, σ2, σ3, sid

t) to H, where σ0, σ1, σ2, σ3 are correctly formed. Let H∗

be the complement of event H∗. Since sid and sidt are distinct, the inputs
to the key derivation function H are different for sid and sidt. Since H is
a random oracle, A cannot obtain any information about the session key of
test instance Πt from the session key of instance Π . Hence Pr(M ∧ H∗) ≤ 1

2

and Pr(M) = Pr(M ∧ H∗) + Pr(M ∧ H∗) ≤ Pr(M ∧ H∗) + 1
2 , and we have

Pr(M ∧ H∗) ≥ p(κ). Henceforth the event M ∧ H∗ is denoted by M∗.
We will consider the not exclusive classification of all possible events in the

following tables. In the tables, we denote by (A, X), (B, Y ), (C, Z) the static
and ephemeral public keys of users UA, UB, UC in the session id sidt of the
test instance Πt. Events can be classified not exclusively as in Table 1 when
A, B, C are distinct, as in Table 2 when A = B �= C, as in Table 3 when
A = C �= B, as in Table 4 when A �= B = C, and as in Table 5 when A = B = C.
Since the classification covers all possible events, at least one event Exy ∧ M∗

in the tables occurs with non-negligible probability, if event M∗ occurs with
non-negligible probability. Thus, the gap BDH problem can be solved with non-
negligible probability, and that means we shows that the proposed protocol is
secure. We will investigate each of these events in the following subsections.

A.1 Event E1a ∧ M∗

Setup. The algorithm S begins by establishing n honest users that are assigned
random static key pairs. S embed instance (U, V, W ) of gap BDH problem as
follows. S randomly selects three users UA, UB, UC and integer j ∈R [1, s]. S
selects static and ephemeral key pairs on behalf of honest users with the following
exceptions. The j-th ephemeral public key X selected on behalf of UA is chosen
to be U , the static public key B selected on behalf of UB is chosen to be V , and
the static public key C selected on behalf of UC is chosen to be W , S does not
possess the corresponding static and ephemeral private keys.

Simulation. S activates A on this set of users and awaits the actions of A. S
simulate oracle queries as follows.
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1. Send(Ui, (′start′, P, Ui, Uj, Uk)): S selects ephemeral private key xi randomly,
computes ephemeral public key Xi = gxi , returns (P, Ui, Uj , Uk, Xi), and
records it.

2. Send(Π l
Ui

, (P, Ui, Uj , Uk, Xj , Xk)): If (P, Ui, Uj , Uk, Xi) is recorded, S records
instance Π l

Ui
is completed. Otherwise, S records instance Π l

Ui
is not com-

pleted.
3. RevealKey(Π l

Ui
= (P, Ui, Si, Xi, Uj, Sj , Xj , Uk, Sk, Xk)): S maintains list LS

of query Π l
Ui

and answered session key K.
(a) If instance Π l

Ui
is not completed, S returns error.

(b) Else if instance Π l
Ui

is recorded in LS, S returns recorded session key K.
(c) Else if (σ0, σ1, σ2, σ3, sid) is recorded in LH , where sid is the session

id of instance Π l
Ui

, and BDDH(Xi + fiSi, Xj + Sj, Xk + Sk, σ0) = 1,
BDDH(Xi+Si, Xj+fjSj , Xk+Sk, σ1) = 1, BDDH(Xi+Si, Xj+Sj, Xk+
fkSk, σ2) = 1, BDDH(Xi +fiSi, Xj +fjSj , Xk +fkSk, σ3) = 1, S returns
recorded session key K and records it in LS .

(d) Otherwise, S returns random session key K, and records it in LS .
4. H(σ0, σ1, σ2, σ3, sid = (P, Ui, Si, Xi, Uj, Sj , Xj , Uk, Sk, Xk)): S maintains list

LH of query (σ0, σ1, σ2, σ3, sid) and answered hash value K.
(a) If sid is the session id of the test instance Πt = (P, UA, A, X = U, UB, B =

V, Y, UC , C = W, Z), and BDDH(X + DA, Y + B, Z + C, σ0) = 1,
BDDH(X + A, Y + EB, Z + C, σ1) = 1, BDDH(X + A, Y + B, Z +
FC, σ2) = 1, BDDH(X + DA, Y + EB, Z + FC, σ3) = 1, and UA is
honest, i.e., S knows a = log(A), then S stops and is successful by out-
putting answer of gap BDH problem ((σ′−1

0 σ′
1)

−1σ′−1
2 σ′

3)
1/((E−1)(F−1)) =

BDH(X, B, C), where σ′
0 = ê(Y +B, Z +C)−Daσ0, σ′

1 = ê(Y +EB, Z +
C)−aσ1, σ′

2 = ê(Y + B, Z + FC)−aσ2, σ′
3 = ê(Y + EB, Z + FC)−Daσ3,

and D = fA = He(X), E = fB = He(Y ), F = fC = He(Z).
(b) Else if (σ0, σ1, σ2, σ3, sid) is recorded in LH , S returns recorded hash

value K.
(c) Else if instance Π l

Ui
is recorded in LS, where Π l

Ui
is an instance with ses-

sion id sid, and BDDH(Xi+fiSi, Xj +Sj , Xk+Sk, σ0) = 1, BDDH(Xi+
Si, Xj +fjSj , Xk +Sk, σ1) = 1, BDDH(Xi+Si, Xj +Sj, Xk +fkSk, σ2) =
1, BDDH(Xi + fiSi, Xj + fjSj , Xk + fkSk, σ3) = 1, S returns recorded
session key K and records it in LH .

(d) Otherwise, S returns random hash value K, and records it in LH .
5. He(Xi): S simulates random oracle in the usual way.
6. RevealState(Π l

Ui
): If ephemeral public key of instance Π l

Ui
is U , then S

aborts with failure, otherwise responds to the query faithfully.
7. RevealStaticKey(Ui): If static public key of user Ui is V or W , then S aborts

with failure, otherwise responds to the query faithfully.
8. AddUser(Ui, S): S responds to the query faithfully.
9. Test(Π l

Ui
): If ephemeral public key of the owner is U and static public keys

of the other users are V, W in instance Π l
Ui

, then S responds to the query
faithfully, otherwise S aborts with failure.

10. If A outputs a guess γ, S aborts with failure.
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Analysis. The simulation of A environment is perfect except with negligible
probability. The probability that A selects the instance, where ephemeral public
key of the owner is U and static public keys of the other users are V, W , as the
test instance Πt is at least 1

n3s . Suppose this is indeed the case, S does not abort
as in Step 9, and suppose event E1a ∧ M∗ occurs, S does not abort in Step 7
and Step 6.

Under event M∗ except with negligible probability, A queries H with BDH(X+
DA, Y +B, Z +C), BDH(X +A, Y +EB, Z +C), BDH(X +A, Y +B, Z +FC),
and BDH(X + DA, Y + EB, Z + FC). Therefore S is successful as described in
Step 4a and does not abort as in Step 10.

Hence, S is successful with probability Pr(S) ≥ p1a

n3s , where p1a is probability
that E1a ∧ M∗ occurs.

A.2 Other Events

EventE1b∧M∗. Sameas the eventE1a∧M∗ in SubsectionA.1, except the follow-
ing points. In Setup, S embeds gap BDH instance (U, V, W ) as A = U, B = V, C =
W . In Simulation of H, S extracts BDH(U, V, W ) as follows: ((σ′−1

0 σ′
1)

−1σ′−1
2 σ′

3)
1/((E−1)(F−1)) = BDH(A, B, C), where σ′

0 = (ê(Y + B, Z + C)−xσ0)1/D, σ′
1 =

ê(Y + EB, Z + C)−xσ1, σ′
2 = ê(Y + B, Z + FC)−xσ2, σ′

3 = (ê(Y + EB, Z +
FC)−xσ3)1/D.

EventE2a∧M∗. Sameas the eventE1a∧M∗ inSubsectionA.1, except the follow-
ing points. In Setup, S embeds gap BDH instance (U, V, W ) as X = U, Y = V, Z =
W . In Simulation of H, S extracts BDH(U, V, W ) as follows: ((σ′E

0 σ′−1
1 )F (σ′E

2 σ′−1
3 )

−1)1/((E−1)(F−1)) = BDH(X, Y, Z), where σ′
0 = ê(Y + B, Z + C)−Daσ0, σ′

1 =
ê(Y + EB, Z + C)−aσ1, σ′

2 = ê(Y + B, Z + FC)−aσ2, σ′
3 = ê(Y + EB, Z +

FC)−Daσ3.

EventE2b∧M∗. Sameas the eventE1a∧M∗ inSubsectionA.1, except the follow-
ing points. In Setup, S embeds gap BDH instance (U, V, W ) as A = U, Y = V, Z =
W . In Simulation of H, S extracts BDH(U, V, W ) as follows: ((σ′E

0 σ′−1
1 )F (σ′E

2 σ′−1
3 )

−1)1/((E−1)(F−1)) = BDH(A, Y, Z), where σ′
0 = (ê(Y + B, Z + C)−xσ0)1/D,

σ′
1 = ê(Y +EB, Z +C)−xσ1, σ′

2 = ê(Y +B, Z +FC)−xσ2, σ′
3 = (ê(Y +EB, Z +

FC)−xσ3)1/D.

EventE3a∧M∗. Sameas the eventE1a∧M∗ inSubsectionA.1, except the follow-
ing points. In Setup, S embeds gap BDH instance (U, V, W ) as X = U, B = V, Z =
W . In Simulation ofH,S extractsBDH(U, V, W ) as follows: ((σ′−1

0 σ′
1)

F (σ′−1
2 σ′

3)
−1)

1/((E−1)(F−1)) = BDH(X, B, Z), where σ′
0 = ê(Y + B, Z + C)−Daσ0, σ′

1 = ê(Y +
EB, Z + C)−aσ1, σ′

2 = ê(Y + B, Z + FC)−aσ2, σ′
3 = ê(Y + EB, Z + FC)−Daσ3.

EventE3b∧M∗. Sameas the eventE1a∧M∗ inSubsectionA.1, except the follow-
ing points. In Setup, S embeds gap BDH instance (U, V, W ) as A = U, B = V, Z =
W . In Simulation ofH,S extractsBDH(U, V, W ) as follows: ((σ′−1

0 σ′
1)F (σ′−1

2 σ′
3)−1)

1/((E−1)(F−1)) = BDH(A, B, Z), where σ′
0 = (ê(Y + B, Z + C)−xσ0)1/D, σ′

1 =
ê(Y + EB, Z + C)−xσ1, σ′

2 = ê(Y + B, Z + FC)−xσ2, σ′
3 = (ê(Y + EB, Z +

FC)−xσ3)1/D.



Modeling Leakage of Ephemeral Secrets in Tripartite/Group Key Exchange 33

Event E3′a ∧M∗ and E3′b ∧M∗. Event E3′a∧M∗/E3′b∧M∗ can be handled
same as event E3a ∧M∗/E3b ∧M∗ in Subsection A.2/A.2, because of symmetry
of B and C.

A.3 Other Cases

In the case of A = B �= C, events E1
1b, E

1
2a, E1

3b, E
1
3′a in Table 2 can be handled

same as events E1b, E2a, E3b, E3′a in Table 1, with condition A = B �= C.
In the case of A = C �= B, events E1′

1b, E
1′
2a, E1′

3a, E1′
3′b in Table 3 can be handled

same as events E1b, E2a, E3a, E3′b in Table 1, with condition A = C �= B.
In the case of A �= B = C, events E2

1a, E2
1b, E

2
2a, E2

2b in Table 4 can be handled
same as events E1a, E1b, E2a, E2b in Table 1, with condition A �= B = C.

In the case of A = B = C, events E3
1b, E

3
2a in Table 5 can be handled same as

events E1b, E2a in Table 1, with condition A = B = C.

Table 1. Classification of events, when
A, B, C are distinct. “ok” means the
static key is not revealed, or a partnered
instance exists and its ephemeral key is
not revealed. “r” means the static or
ephemeral key may be revealed. “r/n”
means the ephemeral key may be re-
vealed if the corresponding partnered in-
stance exists, or no corresponding part-
nered instance exists. “succ. prob.” row
shows the probability of success of solver
S , where pxy = Pr(Exy∧M∗) and n and
s are the number of users and instances.

A X B Y C Z succ. prob.

E1a r ok ok r/n ok r/n p1a/n3s

E1b ok r ok r/n ok r/n p1b/n3

E2a r ok r ok r ok p2a/n3s3

E2b ok r r ok r ok p2b/n3s2

E3a r ok ok r/n r ok p3a/n3s2

E3b ok r ok r/n r ok p3b/n3s

E3′a r ok r ok ok r/n p3′a/n3s2

E3′b ok r r ok ok r/n p3′b/n3s

Table 2. Classification of events, when
A = B �= C

A X B = A Y C Z succ. prob.

E1
1b ok r ok r/n ok r/n p1

1b/n3

E1
2a r ok r ok r ok p1

2a/n3s3

E1
3b ok r ok r/n r ok p1

3b/n3s

E1
3′a r ok r ok ok r/n p1

3′a/n3s2

Table 3. Classification of events, when
A = C �= B

A X B Y C = A Z succ. prob.

E1′
1b ok r ok r/n ok r/n p1′

1b/n3

E1′
2a r ok r ok r ok p1′

2a/n3s3

E1′
3a r ok ok r/n r ok p1′

3a/n3s2

E1′
3′b ok r r ok ok r/n p1′

3′b/n3s

Table 4. Classification of events, when
A �= B = C

A X B Y C = B Z succ. prob.

E2
1a r ok ok r/n ok r/n p2

1a/n3s

E2
1b ok r ok r/n ok r/n p2

1b/n3

E2
2a r ok r ok r ok p2

2a/n3s3

E2
2b ok r r ok r ok p2

2b/n3s2

Table 5. Classification of events, when
A = B = C

A X B = A Y C = A Z succ. prob.

E3
1b ok r ok r/n ok r/n p3

1b/n3

E3
2a r ok r ok r ok p3

2a/n3s3
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Abstract. We give a direct construction of a certificateless key encap-
sulation mechanism (KEM) in the standard model that is more efficient
than the generic constructions proposed before by Huang and Wong [9].
We use a direct construction from Kiltz and Galindo’s KEM scheme [10]
to obtain a certificateless KEM in the standard model; our construction
is roughly twice as efficient as the generic construction.

1 Introduction

Certificateless encryption introduced by Al-Riyami and Paterson [1] is a
variant of identity based encryption that limits the key escrow capabilities of the
key generation centre (KGC), which are inherent in identity based encryption
[3]. Dent [8] published a survey of more than twenty certificateless encryption
schemes that focuses on the different security models and the efficiency of the re-
spective schemes. In certificateless cryptography schemes, there are three secrets
per party:

1. The key issued by the key generation centre (Dent [8] calls it “partial private
key”). We assume in the following that this key is ID-based, although it does
not necessarily have to be ID-based.

2. The user generated private key xID (Dent calls it “secret value”).
3. The ephemeral value chosen randomly for each session.

Key encapsulation mechanisms (KEM) provide efficient means to commu-
nicate a random key from a sender to a designated receiver. Messages used with
public key encryption schemes are usually limited in length or have to belong to
a specific group. Contrariwise, key encapsulation mechanisms encrypt only a key
that is then usually used in a symmetric data encapsulation mechanism (DEM)
and thus provide increased efficiency over public key encryption. The resulting
scheme is then called a hybrid encryption scheme [7,6]. Efficient constructions
for a certificateless encryption scheme in the standard model can be obtained
from our scheme using the KEM-DEM construction [6,2].
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Previous work has identified both identity based key encapsulation mech-
anisms (IB-KEM) [10,5] (see [11] for a comparison) and certificateless key en-
capsulation mechanisms (CL-KEM) [2,9]. However, the known constructions for
CL-KEM schemes are all generic constructions: they involve running a public
key based encryption scheme and an ID-based KEM in parallel and are thus not
very efficient. In this work we propose the first direct CL-KEM construction from
an efficient IB-KEM in the standard model and prove the construction secure.

The security model for our CL-KEM construction is similar to that of
previous work by Bentahar et al. [2] and Huang and Wong [9]. We consider a
“weak” certificateless adversary that can replace public keys, but cannot request
decapsulations of a ciphertext under a replaced public key unless the correspond-
ing user secret value is disclosed to the simulator. This is a realistic notion as in
real life one cannot expect a user to successfully decrypt ciphertexts that do not
correspond to the user’s private key. For a full discussion of the security model
see Section 3 on the following page.

The main contributions of this work are:

– First efficient direct construction for a CCA secure certificateless key encap-
sulation mechanism proven secure in the standard model.

– Simplified proof strategy for certificateless KEM constructions.
– Direct efficient constructions for certificateless CCA secure encryption [2]

and key agreement [4] follow from our construction.
– Approximately twice as efficient as the generic construction by Huang and

Wong.
– Improved security model for certificateless KEM

2 Definitions

2.1 Target Collision Resistant Hash Function

Let F = (TCRs)s∈S be a family of hash functions for security parameter k and
with seed s ∈ S where S is parametrized by the security parameter k. F is said
to be collision resistant if, for a hash function TCR = TCRs with s

$← S, it is
infeasible for an efficient adversary to find two distinct values x �= y such that
TCR(x) = TCR(y).

The notion of a target collision resistant hash function(TCR) is strictly weaker.
The adversary against a target collision resistant hash function is supplied with
a randomly drawn hash function TCR = TCRs and a randomly chosen element
x. The task of the adversary is to find a y such that TCR(x) = TCR(y). Note
that the adversary may not select x, and is thus limited with respect to collision
resistant hash functions. Target collision resistant hash functions are sometimes
also called universal one-way hash functions. Naor and Yung [13] and Rompel
[14] give efficient constructions for target collision resistant hash functions from
arbitrary one-way functions. In the following we assume that TCR’s exist and
define the advantage of any efficient polynomial time adversary M against a
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randomly chosen hash function TCR = TCRs as

Advhash-tcr
TCR,M (k) = Pr[y $← M(TCR(·), x)|TCR(y) = TCR(x)]

The hash function TCR is said to be target collision resistant if the advantage
for all M against TCR is negligible in k.

2.2 Admissible Bilinear Pairing

Let G and GT be groups of prime order p. A bilinear pairings map e : G×G → GT

between the groups G and GT satisfies the following properties:

Bilinear. We say that a map e : G × G → GT is bilinear if e(ga, gb) = e(g, g)ab

for all g ∈ G and a, b ∈ Zp.
Non-degenerate. We say that e is non-degenerate if it does not send all pairs in

G×G to the identity in GT . Since G and GT are groups of prime order p, it
follows that if g ∈ G is a generator of G, then e(g, g) is a generator of GT .

Computable. There is an efficient algorithm to compute e(g, h) for any g, h ∈ G.

2.3 Decisional Bilinear Diffie-Hellman Problem

The decisional Bilinear Diffie-Hellman assumption states that given {ga, gb, gc} ∈
G3 it is hard to distinguish e(g, g)abc ∈ GT from a random element R

$← GT .
Let Z be an algorithm that takes as input a triple {ga, gb, gc, T } ∈ G3 × GT ,
and outputs a bit b ∈ {0, 1} indicating T

?= e(g, g)abc. We define the dBDH
advantage of Z to be

AdvdBDH
Z =

∣∣∣Pr
[
a, b, c

$← Zp : Z(ga, gb, gc, T ) =
(
T

?= e(g, g)abc
)]

− 1/2
∣∣∣

3 Security Model

3.1 Types of Certificateless Adversaries

In certificateless cryptography it is common to distinguish between two types of
adversaries:

Type I: A Type I adversary represents an outsider adversary that does not
have access to the secret master key of the key generation centre (KGC).

Type II: A Type II adversary represents an insider adversary that has access
to the master secret key (e.g. a malicious KGC).

The security of the scheme is then further classified by the type of decryption
oracle access that the adversary has:
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Strong security: The adversary has access to a strong decryption oracle. This
means that the oracle can decrypt ciphertexts even if it does not know the
private key that matches the public key used for encryption. Thus it can
decrypt a ciphertext C ∈ C even if the adversary replaced the certificateless
public key that was used to generate the ciphertext and does not disclose
the matching private key to the decryption oracle.

Weak security: The adversary has access to a weak secret value decryption
oracle (Weak SV Decrypt oracle). The oracle can decrypt ciphertexts only if
it is given all private keys necessary for decryption. If the adversary replaced
a public key, then decryption is only possible if the adversary submits the
private key matching the public key along with the decryption request.

In his survey on certificateless encryption schemes, Dent [8] remarks that “the
Weak [. . . ] [security] model seems to most realistically reflect the potential abil-
ities of an attacker.” All published CL-KEM schemes [9,2] focus on the weak
security model. We will use this model for our work as well.

3.2 Certificateless Key Encapsulation Mechanism

We use the definition by Huang and Wong [9] for a certificateless key-encapsulation
mechanism (CL-KEM). A certificatelessKEMconsists of the following algorithms:

CL-KEM IBE Setup: On input 1k where k ∈ N is a security parameter, it
generates a master public/private key pair (mpk, msk).

CL-KEM IBE KeyDerivation: On input msk and a user identity ID∈{0, 1}∗,
it generates a user partial key / ID-based private key skID.

CL-KEM User KeyGen: On input mpk and a user identity ID, it generates
a user public/private key pair (βID, xID).

CL-KEM Encapsulation: takes as input (mpk, βID, ID) and outputs an en-
capsulation key pair (K, C) ∈ K × E where C is called the encapsulation
of the key K and K and E are the key space and the encapsulation space
respectively.

CL-KEM Decapsulation: takes as input ((skID, xID), ID, C) and decapsulates
C to get back a key K, or outputs the special symbol ⊥ indicating invalid
encapsulation.

3.3 The Security Game for CL-KEM

To model the security guarantees of a certificateless scheme correctly, we intro-
duce the following model that merges the requirements by Dent [8] and Huang
& Wong [9]. The adversary M has access to the following oracles:

Reveal master key: The adversary is given access to the master secret key.
Reveal ID-based key(ID): The adversary extracts the ID-based private key

of party ID.
Get user public key(ID): The adversary obtains the certificateless public key

for ID. If the certificateless key for the identity has not yet been generated,
it is generated with the user key gen algorithm.
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Replace public key(ID, pk): Party ID’s certificateless public key is replaced
with pk chosen by the adversary. All communication (encryption, encapsu-
lation) for Party ID will use the new public key.

Reveal secret value(ID): The adversary extracts the secret value xID that cor-
responds to the certificateless public key for party ID. If the adversary issued
a replace public key query for ID before, ⊥ is returned.

Decapsulate(ID, C): The adversary learns the decapsulation of C under ID or
⊥ if C is invalid or if the adversary replaced the public key of ID.

Decapsulate(ID, C, x): The adversary learns the decapsulation of C under ID
using the secret value x. The special symbol ⊥ will be returned if C is invalid.

Get challenge key encapsulation(ID∗): The adversary requests a challenge
key encapsulation and thus marks the transition from Oracles1 to Oracles2

in Experiment 1. The simulator returns a challenge key encapsulation as
described in Experiment 1.

The security game for a CL-KEM scheme is associated with the following ex-
periment:

Experiment Challengecl−kem−cca
CL-KEMM (k) :

(mpk, msk) $← CL-KEM IBE Setup(k)

(ID∗, state) $← MOracles1(find, mpk)

K∗
0

$← K; (C∗, K∗
1 ) $← CL-KEM Enc(pk, ID∗)

γ
$← {0, 1}; K∗ = K∗

γ

γ′ $← MOracles2(guess, K∗, C∗, state)
Return γ == γ′

(1)

The advantage an adversary M has against a CL-KEM scheme is therefore
expressed by

AdvCL-KEM
M (k) =

∣∣∣Pr
[
Experiment Challengecl−kem−cca

CL-KEMM (k)
]
− 1/2

∣∣∣
For a Type I adversary M, Oracles1 and Oracles2 mean access to all oracles
listed above with the following limitations:

1. No reveal master key queries.
2. C∗ must not be submitted to a decapsulate oracle under ID∗.
3. Not both (reveal secret value OR replace public key) AND reveal ID-based

key oracles may be asked for ID∗.

For a Type 2 adversary M, Oracles1 and Oracles2 are subject to the following
limitations:

1. Oracles1 and Oracles2 now includes reveal master key as allowed query,
2. C∗ must not be submitted to a decapsulate oracle under ID∗.
3. reveal secret value must never be asked for ID∗,
4. Oracles1 must not include replace public key for ID∗.
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4 The CL-KEM Scheme

We describe the phases of our certificateless key encapsulation mechanism in this
section. Our protocol consists of five phases: setup, identity based key derivation,
user key generation, key encapsulation, and key decapsulation. The algorithms
setup, and identity based key derivation are exactly the same as in Kiltz and
Galindo’s KEM [11]. In the following, we first recapitulate the parameters needed
for the Kiltz-Galindo KEM and continue then to describe the differences needed
to obtain a certificateless KEM. We will use bilinear pairings and Waters hash
in the scheme, which we describe shortly.

4.1 Waters’ Hash

To prove our scheme, we use Waters’ hash function H : {0, 1}n → G as described
in Waters’ identity based encryption scheme [15]. On input of an integer n, the
randomized hash key generator HGen(G) chooses n + 1 random group elements
h0, h1, . . . , hn ∈ G and returns h = (h0, h1, . . . , hn) as the public description of
the hash function. The hash function H : {0, 1}n → G∗ is evaluated on a string
ID = (ID1, . . . , IDn) ∈ {0, 1}n as the product H(ID) = h0

∏n
i=1 hIDi

i .

4.2 CL-KEM Algorithms

Setup. On input of the security parameter k, the key generation center picks
suitable bilinear pairing parameters (e(·, ·), p,G,GT , g) and uses HGen(G) to ob-
tain a suitable Waters’ hash function. The KGC also publishes system parameters
(u1, u2, z) ∈ G. SeeAlgorithmCL-KEM IBE Setup inFigure 1 on the next page
for details.

Identity-based Key Derivation. To generate an ID-based key for an identity
ID ∈ {0, 1}n, the key generation centre follows the Algorithm CL-KEM IBE
KeyDerivation in Figure 1 on the following page.

User key generation. To obtain a certificateless KEM, we introduce the new
algorithm user key generation into the Kiltz-Galindo KEM. The user generates
a certificateless key pair from the system parameters as outlined by Algorithm
CL-KEM User Keygen in Figure 1 on the next page. After key generation,
the user publishes βID and keeps xID private.

Certificateless Key Encapsulation. We modify the Kiltz-Galindo encap-
sulation mechanism by using βID instead of z for encryption. Thus we get a
very efficient encapsulation mechanism, outlined by Algorithm CL-KEM Enc
in Figure 1 on the following page. The key K is used for encryption, C is the
certificateless encapsulation of K.
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CL-KEM IBE Setup(k) :

u1, u2, α
$← G

∗; z ← e(g,α)

H
$← HGen(G)

mpk ← (u1, u2, z, H); msk← α

Return(mpk, msk)

CL-KEM IBE KeyDerivation(msk, ID) :

s
$← Zp

∗

skID ← (α ·H(ID)s, gs)

Return(skID)

CL-KEM User Keygen(mpk, ID) :

(u1, u2, z, H)← mpk

xID
$← Zp

∗

βID ← zxID

Return(βID, xID)

CL-KEM Enc(mpk, βID, ID, M) :

r
$← Zp

∗

c1 ← gr

c2 ← H(ID)r, t← TCR(c1)

c3 ← (ut
1 · u2)

r; z ← mpk

K ← βID
r = (zx)r ∈ GT

C ← (c1, c2, c3) ∈ G
3

Return(K, C)

CL-KEM Dec(skID, x, C) :

c1, c2, c3 ← C

d1, d2 ← skID

r1, r2
$← Zp

∗

t← TCR(c1)

K ←
(

e(c1, d1 · (ut
1u2)

r1 ·H(ID)r2)

e(c2, d2 · gr2)e(gr1 , c3)

)xID

Return(K)

Fig. 1. Our CCA secure CL-KEM

Certificateless Key Decapsulation. Decapsulation is also very efficient as
it needs only one additional exponentiation over the Kiltz-Galindo KEM decap-
sulation algorithm. The Algorithm CL-KEM Dec in Figure 1 describes the
decapsulation.

This concludes the description of the certificateless KEM construction.

5 Efficiency Comparison

When compared to the only other CL-KEM in the standard model by Huang
and Wong [9], we note that both key generation and encapsulation are twice as
efficient, we save one exponentiation during decapsulation, key size is smaller
and ciphertext size is approximately halved. For a detailed comparison see Ta-
ble 1 on the facing page.

6 Proof of Security for the CL-KEM

Theorem 1. Assume TCR is a target collision resistant hash function. Under
the decisional Bilinear Diffie-Hellman assumption relative to the generator G, the
CL-KEM from Section 4 on the previous page is secure against chosen ciphertext
attacks.
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Table 1. Comparison of the Huang-Wong scheme with our scheme

Scheme KeyGen Enc Dec Keysize Ciphertext
#pairings + #[multi,regular,fixed-base]-exp pk overhead

IB-KEM [11] 0 + [0,2,0] 0 + [1,3,1] 3 + [1,0,2] n+4 3l
+ PKE [12] 0 + [0,4,0] 0 + [0,4,0] 0 + [0,2,0] 4 2l

= CL-KEM [9] 0 + [0,6,0] 0 + [1,7,1] 3 + [1,2,2] n+8 5l

Ours 0 + [0,3,0] 0 + [1,3,1] 3 + [1,1,2] n+4 3l

We instantiate the Huang & Wong [9] scheme with the most efficient CCA2 secure
PKE scheme by Kurosawa & Desmedt [12] and the most efficient CCA2 secure ID-
based KEM by Kiltz & Galindo [11] and compare it to our direct construction from
the Kiltz & Galindo KEM.

Proving the protocol is easier if we do not treat Type I and Type II adversaries
separately. Essentially, there are two strategies for dealing with an adversary:

– Embed the challenge into the ID-based part. Then the adversary may learn
the secret value or replace the certificateless public key. This is generally not
applicable for Type II adversaries.

– Embed the challenge into the CL-based part. Then the adversary may learn
the ID-based secret key. This is applicable for both Type I and Type II
adversaries.

For Type I adversaries that want to learn the CL-key, we use the proof from
Kiltz and Galindo [11] unmodified and hand over the user secret value xID to
the adversary. The original proof does still hold in this setting.

For Type II adversaries and Type I adversaries that want to learn the ID-
based key, we have to modify the proof. The simulator B gets the dBDH chal-
lenge (g, ga, gb, gc, T ) from its challenger. Given that the adversary M has an
advantage in the CL-KEM game, B uses the adversary M to get an advantage
in solving the dBDH challenge. This strategy simplifies proving the security of
the scheme: a well known proof in the ID-based setting is expanded only with
what is necessary for the certificateless setting. As it turns out, the proof for the
CL-part of the scheme is easier to understand as it does not have to deal with
artificial aborts.

We rewrite the proof by Kiltz and Galindo to get a proof for the CL-KEM
scheme for Type II adversaries. As in Kiltz & Galindo’s paper, the main idea is
again that the simulator knows a back door for the hash function H . Knowing the
back door for H allows the simulator to let H “vanish” for the target identity.
To achieve this, we have to embed the challenge slightly differently from the
original proof by Kiltz and Galindo [11]. We also use a game based approach.
The simulator B starts with knowing the discrete logarithms of ga, gb, gc and
“forgets” the discrete logarithms during modifications of the game.
Game 0.(Forget b) The simulator B picks (a, b, c) $← Zp

∗, computes gc and t∗ =

TCR(gc) and additionally picks d
$← Zp

∗. The CL-KEM IBE Setup algorithm is
modified as follows:
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CL-KEM IBE Setup(k) :

γ
$← Zp, u1 = ga, u2 = (ga)−t∗gd, α = gb; z ← e(g, α) = e(g, gb)

H
$← HGen(G)

mpk ← (u1, u2, z, H); msk ← α

Return(mpk, msk)

(2)

We assume that the adversary M makes no more than q0 queries for distinct
identities. One of these identities will be used to create the challenge ciphertext.
We enumerate these queries. The simulator B guesses the index of the target
identity ID∗ that the adversary will use in the test query by selecting q∗

$← Zq0 .
We also assume that the adversary does not make more than q decapsulation
queries. B sets the target identity’s public key to βID∗ = e(ga, gb) = za. Both the
KGC public key and the master secret key α = gb can be given to the adversary
at the start of the game.

Find Phase. During its execution, M makes a number of reveal master key,
reveal ID-based key, reveal secret value, replace public key, and decapsulate re-
quests. The simulator deals with the adversary’s queries in the following way:
Get master key: B returns α.
Get user public key(ID): If these requests target an identity that has not

been initialized before, there are two possibilities: If it is the q∗th distinct
query, the simulator returns βID∗ = za as discussed above. Otherwise, the
simulator generates a new certificateless key (βID, xID) on the fly, publishes
the ID’s certificateless public key βID in the directory of certificateless public
keys and records the certificateless private key xID along with the ID in a
table (later referred to as the table of certificateless private keys).

Replace user public key(ID, β′
ID): The simulator inserts the new certificate-

less public key β′
ID into the table of certificateless public keys and inserts ⊥

into the table of certificateless private keys at position ID.
Reveal ID-based key(ID): (only Type I) As the simulator knows α = gb

these queries can always be answered throughout the game for Type I ad-
versaries. For Type II adversaries, α can be passed to the adversary at the
start of the game. Then it is not necessary to provide this functionality to
the adversary (the adversary may compute the keys on its own).

Decapsulation(C, ID): The simulator returns the decapsulation of C under ID
query using the entry from the table of certificateless private keys or ⊥ if the
certificateless public key was replaced by the adversary or C is an invalid
encapsulation.

Decapsulation(C, ID, x): The simulator returns the decapsulation of C under
ID query using x as the user secret value or ⊥ if C is an invalid encryption.

Eventually, the adversary returns a target identity ID∗. The simulator chooses
a random key K∗

0 and runs the encapsulation algorithm to create a key K∗
1

together with the challenge ciphertext C∗ = (c∗1, c∗2, c∗3). The challenge ciphertext
is computed as

c∗1 ← gc, t∗ ← TCR(gc), c∗2 = H(ID∗)c, c∗3 = (ut∗
1 u2)c
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Then, the simulator chooses a random bit b and the challenge ciphertext C∗ is
returned together with the key K∗ = K∗

b to the adversary.
Guess Phase. The adversary continues to query the oracles provided by the

simulator under the condition that he may not request a decapsulation of C∗

under ID∗ and may not request the user secret value xID∗ . Finally, the adversary
returns a bit b′. If b′ = b then the simulator returns 1, else he returns 0. This
completes the description of the simulator. Let Xi denote the event that the
adversary M wins game i. Thus we have for the advantage of the adversary
against the CL-KEM scheme: Advcl−kem−cca

CL−KEM,M = |Pr[X0] − 1/2|.
Game 1.(Eliminate hash collisions): The simulator fixed c∗1 = gc and t∗ =
TCR(gc) at the start of the game and aborts if a decapsulation query is made
for any ciphertext C = (c1, c2, c3) for that TCR(c1) = t∗ and c1 �= c∗1. Otherwise,
Game 0 and Game 1 are identical. This event happens only with negligible
probability as otherwise M could be used as an efficient adversary against TCR.
Thus we have

|Pr[X1] − Pr[X0]| ≤ Advhash-tcr
TCR,M (k)

Game 2.(Change of hash keys): The game continues as in Game 1 except that
the simulator changes the way the hash keys h = (h0, h1, . . . , hn) are generated.
Set m = 2q (where q is the upper bound on the decapsulation queries) and
randomly choose

x0, x1, . . . , xn
$← {0, . . . , p − 1}; y′

0, y1, . . . , yn
$← {0, . . . , m − 1}

k
$← {0, . . . , n}

(3)

and set y0 ← p − km + y′
0.

B redefines the public hash keys h = {h0, . . . , hn} as hi = gxiuyi

1 = gxi(ga)yi

for 0 ≤ i ≤ n. Thus, the public hash function H evaluated at identity ID ∈ {0, 1}n

is given by

H(ID) = h0

n∏
i=1

hIDi

i = gx(ID)u
y(ID)
1 = gx(ID)(ga)y(ID)

with x(ID) = x0 +
∑n

i=1 IDixi and y(ID) = y0 +
∑n

i=1 IDiyi (where x() and y()
are only known to the simulator). As this does not change the distribution of
the hash keys, the probability of success for the adversary does not change:

Pr[X2] = Pr[X1]

Game 3.(Abort for wrong challenge identity): The simulation proceeds as in
Game 2. Once the simulator is being asked the challenge ciphertext query, it
checks the ID∗ is the q∗th distinct identity and aborts otherwise. The simulator
also aborts if y(ID∗) �= 0.

As we do not need to change the key derivation oracle during the sequence
of games (as Kiltz and Galindo do), we can simplify the proof significantly. We
especially do not have to deal with artificial aborts, as the abort probability for



44 G. Lippold, C. Boyd, and J.M. González Nieto

the simulator can be estimated directly using results from Kiltz and Galindo [11,
Section A.2]. From Equation 3 on the preceding page we have that

y(ID∗) = 0 = p − km + y′
0 +

n∑
i=1

ID∗
i yi

and from the distribution of the yi we get that

0 ≤ y′
0 +

n∑
i=1

ID∗
i yi < (n + 1)m

Thus if y(ID∗) = 0 mod m, then there is a unique 0 ≤ k < n + 1 such that
y(ID∗) = 0 over the integers. Since k is uniformly and independently distributed
over the integers, we get:

Pr[y(ID∗) = 0] = Pr[y(ID∗) = 0 mod p] ≥ Pr[y(ID∗) = 0 mod m]/(n + 1)

Thus for a fixed k and b ∈ Zm we have that Pr[y(ID) = b mod m] = 1/m. So we
conclude with

Pr[y(ID∗) = 0] ≥ 1
n + 1

Pr[y(ID∗) = 0 mod m] =
1

n + 1
· 1
m

=
1

m(n + 1)

Thus, the probability that Game 3 succeeds is given by the probability that
y(ID∗) = 0 and that ID∗ is the q∗th distinct identity. As there are at most q0

distinct ID queries by the adversary we have

Pr[X3] ≥ Pr[X2]/(q0m(n + 1))

Game 4.(Change of decapsulation oracle / Forget a): The simulator knows all
user secret keys except for those the adversary replaced with a replace certificate-
less public key request. Regarding decapsulation queries, the simulator does not
have to answer requests for identities that were issued a replace certificateless
public key query unless the adversary supplies the user secret key matching the
replaced certificateless public key. As the simulator can derive ID-based private
keys from the master parameters, answering decapsulation queries for all identi-
ties except ID∗ is easy, as all secret information to do this is readily available using
the standard CL-KEM Dec algorithm as described in Figure 1 on page 40.

The simulator established in Game 3 that y(ID∗) = 0. This enables the sim-
ulator to answer decapsulation queries for ID∗ in the following way: instead of
answering the decapsulation as in CL-KEM Dec in Figure 1 on page 40, the
simulator computes the decapsulations for ID∗ as follows: with u1 = ga, u2 =
(ga)−t∗gd and c1 = gr we have

c3 = (ut
1u2)r = ((ga)tg−t∗agd)r = ((ga(t−t∗)gd)r = (ca

1)
t−t∗ · cd

1.

To decapsulate the correct key K, we would like to compute e(ga, gb)r. Thus
knowing gb and computing ca

1 = (gr)a = gra will allow us to compute K by
computing e(gra, gb) = e(g, g)rab:(

c3/cd
1

) 1
t−t∗ =

(
(ca

1)t−t∗ · cd
1/cd

1

) 1
t−t∗

= (ca
1)

t−t∗
t−t∗ = ca

1 = gra
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As K = βr
ID∗ = e(ga, gb)r = e(g, g)abr, knowing t = TCR(gr) we can recompute

K with
K = e

(
gb,
(
c3/cd

1

) 1
t−t∗
)

= e(gb, gar) = e(g, g)abr

As this behaviour does not alter the adversary’s view of the game we have

Pr[X4] = Pr[X3]

Game 5.(Modify the challenge / Forget c): The simulator changes its an-
swer to the get challenge key encapsulation query. Game 3 established that
y(ID∗) = 0 mod p, thus the challenger can compute the challenge ciphertext
C∗ = (c∗1, c∗2, c∗3) as

c∗1 = gc, c∗2 = (gc)x(ID∗), c∗3 = (gc)d, K = T

where gc and T are given by the challenger before the game starts. Now the
answer of the adversary to the challenge ciphertext is directly related to the
challenge, and thus the simulator has an advantage in solving the dBDH chal-
lenge if the adversary has an advantage in winning the game:

Advcl−kem−cca
CL−KEM,M=

∣∣∣∣Pr[X0] −
1
2

∣∣∣∣≤∣∣∣∣ 1
q0m(n + 1)

AdvdBDH
M (k)+Advhash-tcr

TCR,M (k)−1
2

∣∣∣∣
7 Conclusion

We show how to construct an efficient CL-KEM scheme from an existing ID-
based KEM scheme in the standard model. Our construction requires only one
additional exponentiation during the construction of the certificateless key and
one additional exponentiation during the decapsulation compared to the original
ID-based KEM scheme and is thus more efficient than any generic construction
that has been published before. By modifying the Kiltz-Galindo KEM scheme
[11] which is one of the most efficient ID-based KEM schemes in the standard
model, we obtain the most efficient CL-KEM scheme in the standard model
today.
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Abstract. In the case of Barreto-Naehrig pairing-friendly curves of em-
bedding degree 12 of order r, recent efficient Ate pairings such as R-ate,
optimal, and Xate pairings achieve Miller loop lengths of (1/4)
log2 r�.
On the other hand, the twisted Ate pairing requires (3/4)
log2 r� loop
iterations, and thus is usually slower than the recent efficient Ate pair-
ings. This paper proposes an improved twisted Ate pairing using Frobe-
nius maps and a small scalar multiplication. The proposal splits the
Miller’s algorithm calculation into several independent parts, for which
multi-pairing techniques apply efficiently. The maximum number of loop
iterations in Miller’s algorithm for the proposed twisted Ate pairing is
equal to the (1/4)
log2 r� attained by the most efficient Ate pairings.

Keywords: twisted Ate pairing, Miller’s algorithm, Frobenius map,
multi–pairing, thread computing.

1 Introduction

Recently, pairing–based cryptographic applications such as ID-based cryptogra-
phy [3] and group signature schemes [23] have received much attention. In order to
make these applications practical, the efficient parallelization of pairing calcula-
tions which seems to be inherently sequential is one of the main open problems. For
sequential pairing calculationswith ordinary curves, various improvements such as
Ate [7], twisted Ate [21], subfield–twisted Ate [8], R–ate [20], optimal [27], and Xate
[24] pairings have been proposed. In general, pairing calculations consist of two
parts. One part is Miller’s algorithm and the other is the so–called final exponen-
tiation. In the case of the Ate pairing, let r, t, and k be the order, Frobenius trace,
and embedding degree, respectively. The calculation is denoted as

α(Q, P ) = ft−1,Q(P )(p
k−1)/r, (1)

where P ∈ G1, Q ∈ G2, and ft−1,Q(·) is a certain rational function that is
calculated by Miller’s algorithm. The number of calculation loops of Miller’s
algorithm, given by �log2(t − 1) in the case of Eq.(1) for example, has played
an important role in the development of faster pairings. On the other hand,

D. Lee and S. Hong (Eds.): ICISC 2009, LNCS 5984, pp. 47–64, 2010.
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some recent processors such as Core 2 DuoTM have several computation cores. If
the Miller’s algorithm calculation, specifically the above ft−1,Q(P ), is efficiently
split into several independent calculation parts, multi–pairing techniques, thread
computing, or some other techniques can be efficiently applied. Then, pairing
calculations will become much faster. This paper tries to achieve the above for
twisted Ate pairings by using Frobenius maps and a precomputed small scalar
multiplication. In what follows, ft−1,Q(P ) is abbreviated as ft−1,Q.

Barreto–Naehrig (BN) [2] curves with embedding degree 12 form one of the
most important families of ordinary pairing-friendly curves because sextic twists
are available. This paper mainly deals with the case of BN curves. Lee et al.
[20] have proposed an idea that applies R–ate pairing techniques to twisted Ate
pairing, yielding twisted R–ate pairings. In the case of BN curves with embedding
degree 12, where the parameters are given with a certain integer χ as

p(χ) = 36χ4 − 36χ3 + 24χ2 − 6χ + 1, (2a)
r(χ) = 36χ4 − 36χ3 + 18χ2 − 6χ + 1, (2b)
t(χ) = 6χ2 + 1, (2c)

the twisted R–ate pairing calculates

R(P, Q) = fa1,P (Q)p10 · fa2,P (Q) · l[a1]p10P,[a2]P (Q), (3)

where a1 = 2χ + 1 and a2 = 6χ2 + 4χ. In what follows, let [s]P denote the
scalar multiplication of a rational point P with a scalar s. From Eq.(3), twisted
R–ate pairings need two Miller’s algorithm calculations with a Frobenius map,
thus multi–pairing technique or thread computing can be efficiently applied. In
addition, as shown above, one has 2�log2 χ calculation loops which is two times
larger than the �log2 χ of the latter. It is quite important in the context of
accelerating techniques to bound the maximum number of loop iterations. In
the cases of optimal, R–ate, and Xate pairings, though they differ from Eq.(3)
in that they have only one Miller’s algorithm calculation, the number of loop
iterations is �log2 χ.

This paper proposes an improved twisted Ate pairing using not only Frobenius
maps but also a precomputed small scalar multiplication. The proposed twisted
Ate pairing has two Miller’s algorithm calculations. In addition, its maximum
number of loop iterations is bounded by �log2 χ.

First, we introduce a simple idea that efficiently splits Miller’s algorithm cal-
culation into several independent calculation parts together with a Frobenius
map and a precomputed small scalar multiplication. In the case of BN curves,
according to Eqs.(2), first we show

p ≡ (2χ − 1)p10 + 2χ mod r. (4)

Then, as shown in Eq.(5a), the Miller’s algorithm calculation f̂χ,P (Q) of the
proposed twisted Ate pairing is split into two Miller’s algorithm calculations F1

and F2 for which the number of loop iterations is bounded by �log2 χ.

f̂χ,P (Q) = F1
p · F2, (5a)
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where, setting Pp = [p]P , F1 and F2 are respectively given as

F1 = {f2χ,P · g[2χ]P,−P }p10
· f2χ,P · g[(2χ−1)p10]P,[2χ]P , (5b)

F2 = {f2χ,Pp · g[2χ]Pp,−Pp
}p10 · f2χ,Pp · g[(2χ−1)p10]Pp,[2χ]Pp

. (5c)

In the above equations, g[a]P,[b]P is given by l[a]P,[b]P /v[a]P+[b]P . l[a]P,[b]P denotes
the line passing through two rational points [a]P and [b]P . v[a]P+[b]P denotes
the vertical line passing through [a]P + [b]P .

This paper proposes an idea that makes the Miller’s algorithm calculations
for F1 and F2 independent by using a Frobenius map and a small scalar multipli-
cation. First, calculate a rational point Pp = [p]P . This makes the calculations
of F1 and F2 independent. Then, using this precomputed Pp, multi–pairing tech-
niques are efficiently applied for the calculation of Eq.(5a). Although it is not
our main contribution, thread computing also works efficiently. In this case, the
number of calculation loops becomes �log2 χ for each thread. This paper also
shows another example of embedding degree 8. After that, this paper shows
some experimental results with multi–pairing techniques and thread computing
on Core2 DuoTM. It is shown that the Miller’s algorithm calculation part of
the proposed twisted Ate pairing with multi–pairing techniques and that with
thread computing become faster than the original twisted Ate pairing by 55.6%
and 70.3%, respectively. Although this paper mainly improves twisted Ate pair-
ings, the proposed idea can be also applied to twisted R–ate pairings which also
become more efficient.

2 Fundamentals

This section reviews Barreto–Naehrig curves, twists, twisted Ate pairings, divisor
theory, twisted R–ate pairings [20], Xate pairings [24], skew Frobenius maps, and
multi–pairings.

2.1 Elliptic Curves and BN Curves

Let Fp be prime field and E be an elliptic curve over Fp . E(Fp) is the set of
rational points on the curve, including the infinity point O . It forms an additive
Abelian group. Let #E(Fp) be its order, and consider a large prime number r
that divides #E(Fp). The smallest positive integer k such that r divides pk − 1
is called the embedding degree. One can consider a pairing such as the Tate or
Ate pairing on E(Fpk). Usually, #E(Fp) is written as

#E(Fp) = p + 1 − t (6)

where t is the Frobenius trace of E(Fp). The characteristic p and Frobenius trace
t of Barreto–Naehrig (BN) curves [2] are given by using an integer variable χ as
in Eqs.(2). In addition, a BN curve E has equation

E : y2 = x3 + b, b ∈ Fp (7)
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whose embedding degree is 12. In this paper, let #E(Fp) be a prime number r.
As introduced in [2], this paper focuses on ordinary pairing–friendly curves as
given in Eqs.(2).

2.2 Twist Technique

Let E be an ordinary elliptic curve and E′ be the twisted elliptic curve of E.
When the embedding degree k is equal to de, where e is a positive integer and
d is the twist degree such as 2, 3, 4, and 6, the following isomorphism is given
between E′(Fpe) and E(Fpe).

ψd :

{
E′(Fpe) → E(Fpde),
(x, y) �→ (xv2/d, yv3/d),

(8)

wherex and y arex–coordinates and y–coordinates of a rational point, respectively.
Corresponding to the twist degree d, v is chosen as a quadratic non residue, a cu-
bic non residue, or a quadratic and cubic non residue in Fpe . Thus, when the twist
degree d is even, the x–coordinate xv2/d belongs to the proper subfield Fpk/2 be-
cause v2/d ∈ Fpk/2 . In addition, when d = 2 or 4, the coefficient of x of the twisted
curve is written as E′ : y2 = x3 + av−4/dx + b or y2 = x3 + av−4/dx, respectively.
When one uses Barreto–Naehrig curves that belong to the class of pairing–friendly
curves, one can apply quadratic/cubic/sextic twists because its embedding degree
is 12. Of course, sextic twists are the most efficient for pairing calculations and
rational point compression. In what follows, the curve E′ specifically means the
twisted elliptic curve of E such that #E′(Fpe) is divisible by r.

2.3 Twisted Ate Pairing with BN Curves

This section briefly reviews twisted Ate pairings [21] on BN curves, which are
what we mostly deal with. Let φ be Frobenius endomorphism, ı.e.,

φ : E(Fp12 ) → E(Fp12) : (x, y) �→ (xp, yp), (9)

Then, in the case of BN curves, let G1 and G2 be

G1 = E(Fp12)[r] ∩ Ker(φ − 1), G2 = E(Fp12)[r] ∩ Ker([ζ6]φ2 − [1]), (10)

where E(Fp12)[r] denotes the subgroup of rational points of order r in E(Fp12)
and ζ6 is the primitive 6-th root of unity such that [ζ6] : (x, y) �→ (ζ2

6x, ζ3
6y). Let

P ∈ G1 and Q ∈ G2. The twisted–Ate pairing α(·, ·) is defined as

α(·, ·) :

{
G1 × G2 → F∗

p12/(F∗
p12)r

(P, Q) �→ fs,P (Q)(p
12−1)/r.

(11)

A = fs,P (Q) is usually calculated by Miller’s algorithm[8], followed by the so–
called final exponentiation A(p12−1)/r. The number of calculation loops in Miller’s
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algorithm for the twisted–Ate pairing with BN curves is determined by �log2 s,
where the parameter s in the case of BN curves is given by

s = (t − 1)2 = 36χ3 − 18χ2 + 6χ − 1 mod r. (12)

Note that, in the case of BN curves, since the number of calculation loops of
Miller’s algorithm for the twisted Ate pairing is larger than those of recent effi-
cient Ate pairings such as the optimal [27]. R–ate [20], and Xate [24] pairings, the
twisted–Ate pairing is usually slower than the recent efficient Ate pairings. How-
ever, in contrast to these efficient Ate pairings, the twisted Ate pairing mainly
uses rational points in G1 defined over a prime field Fp . Thus, twisted Ate pairing
has the possibility to become faster than the recent efficient Ate pairings. This
paper tries to achieve that potential by using multi-pairing techniques.

2.4 Divisors

Let D be the principal divisor of Q ∈ E. For scalars a, b ∈ Z, let aD and bD be
written as

aD = (aQ) − (O) + div(fa,Q), bD = (bQ) − (O) + div(fb,Q), (13)

where fa,Q and fb,Q are the rational functions for aD and bD, respectively. Then,
we have the following relations.

fa+b,Q = fa,Q · fb,Q · gaQ,bQ, (14a)
fab,Q = fa

b,Q · fa,bQ = f b
a,Q · fb,aQ, (14b)

where gaQ,bQ = laQ,bQ/vaQ+bQ. laQ,bQ denotes the line passing through the two
points aQ and bQ. vaQ+bQ denotes the vertical line passing through aQ + bQ.
Miller’s algorithm calculates fs,Q efficiently.

2.5 Twisted R–Ate Pairing with BN Curves

Lee et al. [20] have proposed an efficient Ate pairing called the R–ate pairing.
According to [20], the basic idea is finding w = a1t + a2 with small coefficients
ai where w and t are the parameters for bilinear pairings such as r or ti, where
ti = pi (mod r). Then, the R-ate pairing calculates fai,Q by Miller’s algorithm.
In the case of BN curves, the R–ate technique is efficiently applied for twisted Ate
pairings, where it uses 2r = a1t10 + a2, where a1 = 2χ + 1 and a2 = 6χ2 + 4χ.
Let P ∈ G1 and Q ∈ G2, where G1 and G2 are defined as in Eqs.(10). The
twisted R–ate pairing is defined as

R(P, Q) = fa1,P (Q)p10 · fa2,P (Q) · g[a1]p10P,[a2]P (Q)(p
12−1)/r. (15)
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2.6 Xate Pairing with BN Curves

Recent efficient Ate pairings such as optimal, R–ate, and Xate pairings achieve
�log2 r/ϕ(k) calculation loops in Miller’s algorithm, where ϕ(·) is the Euler’s
function. For comparison in Sec.4, this paper briefly refers to the Xate pairing
[24] using the cross–twisted (Xt) technique [1].

In the case of BN curves, let G1 and G2 be

G1 = E(Fp12)[r] ∩ Ker(φ − 1), G2 = E(Fp12)[r] ∩ Ker(φ − [p]), (16)

and let P ∈ G1 and Q ∈ G2, The Xate pairng β(·, ·) is defined as

β(·, ·) :

{
G2 × G1 → F∗

p12/(F∗
p12)r

(Q, P ) �→ f̃χ,P (Q)(p
12−1)/r,

(17)

where
f̃χ,P (Q) = {f1+p

χ,Q · lχQ,pχQ}1+p3 · lχQ+pχQ,p3χQ+p4χQ. (18)

According to Eq.(18), the number of calculation loops of Miller’s algorithm is
determined by �log2(χ), that is (1/4)�log2 r. Applying the cross–twisted (Xt)
technique [1], let P ′ = ψd(P ) and Q′ = ψd(Q), The Xt–Xate pairing is given by
β(Q′, P ′).

2.7 Skew Frobenius Maps for a Rational Point P ∈ G1

For an arbitrary rational point P ∈ G1 ⊂ E(Fpk), as previously introduced,
consider P ′ = ψ−1

d (P ) ∈ G′
1 ⊂ E′(Fpk). Note that P ′ satisfies the following

relation [16]

(φe − [pe])P ′ = O, φe(P ′) = (xpe

P ′ , y
pe

P ′), (19)

where e = k/d and P ′ be (xP ′ , yP ′). Then, ∀P (xP , yP ) ∈ G1, the skew Frobenius
map φ̃e is defined as [26].

φ̃e :

{
G1 → G1,

(x, y) �→ (xp/v2(pe−1)/d, yp/v3(pe−1)/d).
(20)

Let [s]P denote the scalar multiplication of a rational point P with scalar s.
Then, for an arbitrary rational point P ∈ G1, the following relation holds.(

φ̃e − [pe]
)

P = O and thus φ̃e(P ) = [pe]P. (21)

This relation is sometimes useful for accelerating a scalar multiplication in G1.
The authors [26] have exhibited an efficient scalar multiplication for a pairing–
friendly elliptic curve E(Fp) with the skew Frobenius endomorphism φ̃e.
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In the case of BN curves, since k = 12, d = 6, and e = k/d = 2, the skew
Frobenius map φ̃2 becomes

φ̃2 :

{
G1 → G1,

(x, y) �→ (x/v(p2−1)/3, y/v(p2−1)/2).
(22)

In practice, note that 1/v(p2−1)/3 and 1/v(p2−1)/2 become a primitive third root
of unity and −1 in Fp , respectively.

2.8 Multi–pairing

For the following sets of rational points,

SP = {P1, P2, · · · , PN ∈ G1}, SQ = {Q1, Q2, · · · , QN ∈ G2}, (23)

consider the following product of N pairings.

MN =
N∏

i=1

α(Pi, Qi)(p
k−1)/r. (24)

Granger et al. [13] have proposed an efficient algorithm for calculating the above
product, namely the multi–pairing algorithm. As shown in Algorithm 1, squar-
ings are unified at Step 5. In what follows, Algorithm 1 is called MMA. In ad-
dition, the well–known Montgomery’s trick [6] is efficiently applied for inversions
at Step 7 and Step 11. Note that the following rational points are also obtained
through the calculation flow.

SR = {R1, R2, · · · , RN ∈ G1}, where Ri = [s]Pi. (25)

In what follows, denote the calculation result of MMA(s,N ,SP ,SQ) by Fs,SP (SQ)
or simply Fs,SP . Then, one final exponentiation is carried out as

MN = F
(pk−1)/r
s,SP

. (26)

In this paper, the multi–pairing technique is applied for calculating just one
pairing.

3 Main Idea

In this section, using BN curves of embedding degree 12, we construct an im-
proved twisted Ate pairing that efficiently works together with the multi–pairing
technique. This pairing is based on the relation given by Eq.(4). A secondary
benefit is that thread computing will also work efficiently. First, we show how to
obtain Eq.(4), and then an efficient bilinear map is proposed. Then, it is shown
that the multi–pairing technique can be applied.
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Algorithm 1. Miller’s Algorithm for Multi–pairing

MMA( s, N , SP , SQ )

Input: s, N , SP = {P1, P2, · · · , PN ∈ G1}, SQ = {Q1, Q2, · · · , QN ∈ G2}

Output:
N∏

i=1

fs,Pi(Qi), SR = {[s]P1, [s]P2, · · · , [s]PN}

1. f ← 1.
2. For i = N downto 1.
3. Ri ← Pi.
4. For j = 
log2(s)� downto 1:
5. f ← f2.
6. For i = N downto 1.
7. f ← f · gRi,Ri(Qi).
8. Ri ← 2Ri.
9. If s[j] = 1,then:
10. For i = N downto 1.
11. f ← f · gRi,Pi(Qi).
12. Return f

*s[j] denotes the j–th bit of the loop parameter s from the lower.

3.1 How to Obtain Eq.(4)

First, the following relation holds.

36χ4 − 36χ3 + 18χ2 − 6χ + 1 ≡ 0 mod r. (27)

Since p ≡ t − 1 ≡ 6χ2 mod r from Eq.(2c),

p2 − 6χp + 3p − 6χ + 1 ≡ 0 mod r

(−6χ + 3)p ≡ −p2 + 6χ − 1 mod r. (28)

Squaring both sides of Eq.(28) leads to

(6χ − 3)2p2 ≡ (p2 − 6χ + 1)2 mod r

36χ2p2 − 36χp2 + 9p2 ≡ p4 − 12χp2 + 2p2 + 36χ2 − 12χ + 1 mod r. (29)

From p4 + 1 ≡ p2 mod r,

36χ2p2 − 36χp2 + 9p2 ≡ −12χp2 + 3p2 + 36χ2 − 12χ mod r,

36χ2(p2 − 1) ≡ (24χ − 6)p2 − 12χ mod r,

6χ2(p2 − 1) ≡ (4χ − 1)p2 − 2χ mod r. (30)

Multiplying Eq.(30) by (p2 − 1)−1,

6χ2 ≡ −(4χ − 1)p4 + 2χp2 mod r, (31)

where using p4 − p2 + 1 ≡ 0 mod r and based on

gcd(p4 − p2 + 1, p2 − 1) ≡ 1 mod r, (32)
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(p2 − 1)−1 is given as

p4 − p2 + 1 ≡ 0 mod r,

−p2(p2 − 1) ≡ 1 mod r,

(p2 − 1)−1 ≡ −p2 mod r. (33)

From p2 ≡ p4 + 1 mod r,

6χ2 ≡ −(4χ − 1)p4 + 2χ(p4 + 1)
≡ −(2χ − 1)p4 + 2χ. (34)

Finally, since p ≡ t − 1 ≡ 6χ2 mod r and p6 ≡ −1 mod r, Eq.(4) is obtained.

3.2 Proposal

In the case of BN curves of order r, the number of calculation loops of Miller’s
algorithm for the Ate pairing is (1/2)�log2 r. Those of the R–ate, Xate, and
twisted Ate pairings are (1/4)�log2 r, (1/4)�log2 r, and (3/4)�log2 r, respec-
tively. In the case of the twisted R–ate pairing, Eq.(15) has two Miller’s algorithm
calculations and the maximum length of their calculation loops is (1/2)�log2 r.
The proposed twisted Ate pairing achieves the maximum (1/4)�log2 r as follows.
According to the divisor theorem, specifically Eq.(14b), the Miller’s algorithm
calculation of the twisted Ate pairing with BN curves is given by

f(t−1)2,P (Q)(p
12−1)/r = {f(t−1),P (Q)t−1 · f(t−1),[t−1]P (Q)}(p12−1)/r,

= {f6χ2,P (Q)p · f6χ2,[p]P (Q)}(p12−1)/r, (35)

where p = t − 1 mod r. Let P ∈ G1, Q ∈ G2, and Pp = [p]P . Applying the
relation Eq.(4) to Eq.(35), the proposed twisted Ate pairing is given as follows.

ζ(·, ·) :

{
G1 × G2 → F∗

p12/(F∗
p12)r

(P, Q) �→ f̂χ,P (Q)(p
12−1)/r,

(36a)

where

f̂χ,P (Q) = ({f2χ,P · l[2χ]P,−P }p10
· f2χ,P · l[(2χ−1)p10]P,[2χ]P )p

·{f2χ,Pp · l[2χ]Pp,−Pp
}p10

· f2χ,Pp · l[(2χ−1)p10]Pp,[2χ]Pp
. (36b)

The bilinearity of f̂χ,P (Q) is shown in App. A. When the embedding degree k
is an even number such as in the case of BN curves, it is well known that the
vertical line vaP+bP (Q) of gaP,bP (Q) can be ignored by the final exponentiation.
Thus, in the case of BN curves, note that the calculations of vertical lines are
not required. Let F1 and F2 be

F1 = {f2χ,P · l[2χ]P,−P }p10 · f2χ,P · l[(2χ−1)p10]P,[2χ]P , (37a)

F2 = {f2χ,Pp · l[2χ]Pp,−Pp
}p10 · f2χ,Pp · l[(2χ−1)p10]Pp,[2χ]Pp

. (37b)
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Eq.(36b) is written as f̂χ,P (Q) = F p
1 · F2. In general, F1 is first calculated, then

F2 is calculated because the rational point Pp needed for the calculation of F2

is obtained through the calculation of F1. Though the total number of calcula-
tion loops is given by (1/2)�log2 r as shown in Eq.(36b), if [p]P is efficiently
precomputed, the calculation of Eq.(36b) will be accelerated by multi–pairing
techniques or thread computing from the viewpoints of software and hardware,
respectively. Then, the maximum of the calculation loops theoretically reaches
(1/4)�log2 r. Note that, as introduced in Sec.3.3, [p]P is efficiently calculated
with the skew Frobenius map φ̃2 as in Eq.(43).

3.3 Multi–pairing Technique

First, suppose that the rational point [p]P is precomputed as Pp. Then Eq.(36b)
is calculated as

f̂χ,P (Q) = {fp
2χ,P · f2χ,Pp · lp[2χ]P,−P · l[2χ]Pp,−Pp

}p10

·fp
2χ,P · f2χ,Pp · lp[(2χ−1)p10]P,[2χ]P · l[(2χ−1)p10]Pp,[2χ]Pp

. (38)

Then, apply the multi–pairing technique to the calculation of A = fp
2χ,P · f2χ,Pp .

First, let Qp = [p]Q. Since Q ∈ G2 has the following property,

fs,P (Q)p = fs,P (Qp), (39)

A = fp
2χ,P · f2χ,pP is calculated by

A = f2χ,P (Qp) · f2χ,Pp(Q). (40)

Thus, for the proposed twisted Ate pairing calculation, the multi–pairing tech-
nique is efficiently applied as Algorithm 2. After that, one final exponentiation
follows.

f̂χ,P (Q) = {F2χ,SP (SQ) · lp[2χ]P,−P · l[2χ]Pp,−Pp
}p10

·F2χ,SP (SQ) · lp[(2χ−1)p10]P,[2χ]P · l[(2χ−1)p10]Pp,[2χ]Pp
, (41)

where SP = {P, Pp} and SQ = {Qp, Q}. For an arbitrary rational point P ∈ G1,
according to Eq.(4), the scalar multiplication Pp = [p]P is carried out by

Pp = [(2χ − 1)p10]P + [2χ]P. (42)

In the above calculation, [p10]P is easily determined by the skew Frobenius map
for the rational point in G1 that was introduced in Sec.2.7. Therefore, note that
�log2 χ ≈ (1/4)�log2 r and Eq.(42) becomes

Pp = [2χ − 1]φ̃5
2(P ) + [2χ]P. (43)

In the case of BN curves, the integer parameter χ can be optimized so as to have
small Hamming weight [24]. Thus, compared to a general scalar multiplication,
Eq.(43) is quite efficiently calculated. On the other hand, Qp is easily determined
by the Frobenius endomorphism φ as Eq.(9).
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Algorithm 2. Miller’s algorithm for the proposed twisted Ate pairing with
multi–pairing technique in the case of BN curves

Input : P ∈ G1, Q ∈ G2, 2χ, p

Output : f = f̂χ,P (Q)

Procedure :
1. P1 ← [2χ]P
2. P2 ← P1 − P

3. P2 ← φ̃5
2(P2)

4. Pp ← P2 + P1 //Pp ← [p]P
5. Qp ← φ(Q) //Qp ← [p]Q
6. A← MMA ( 2χ, 2, SP , SQ ) //A← F2χ,SP (SQ),

//SP = {P, Pp}, SQ = {Qp, Q}
7. B ← l[2χ]P,−P

8. C ← l[2χ]Pp,−Pp

9. f ← Bp · C
10. B ← lφ̃5

2([2χ−1]P ),[2χ]P

11. C ← lφ̃5
2[(2χ−1]Pp),[2χ]Pp

12. f ← fp10 ·A ·Bp · C
13. Return f

3.4 Other Pairing–Friendly Curves

As another example, this section considers a pairing–friendly curve of embed-
ding degree 8 that has a quartic twist, as introduced in [10]. In this case, the
parameters are given as follows.

p(χ) = (81χ6 + 51χ5 + 45χ4 + 12χ3 + 13χ2 + 6χ + 1)/4, (44a)
r(χ) = 9χ4 + 12χ3 + 8χ2 + 4χ + 1, (44b)
t(χ) = −9χ3 − 3χ2 − 2χ. (44c)

Corresponding to Eq.(4), the following relation is obtained.

p3 = p2 + 3χ + 1 mod r. (45)

In this case, since k = 8, d = 4, and e = k/d = 2, [p2]P for an arbitrary rational
point P ∈ G1 is efficiently calculated by the skew Frobenius map φ̃2 as

[p2]P = φ̃2(P ). (46)

Then, in this case, the proposed twisted Ate pairing is given as follows.

f̂χ,P (Q) = F3χ,SP · {l[3χ]P,P · lφ̃2(P ),[3χ+1]P }p3

·l[3χ]Pp3 ,Pp3 · lφ̃2(P )p3 ,[3χ+1]Pp3
, (47)

where we set Pp3 = [p3]P and Qp3 = [p3]Q. Note that the vertical line vaP+bP (Q)
of gaP,bP (Q) can be ignored by final exponentiation since it has a quartic twist.
This case employs SP = {P, Pp3} and SQ = {Qp3 , Q} for multi–pairing. In
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this context, [p3]P is calculated with the skew Frobenius map φ̃2 by Eq.(45) and
[p3]Q is easily determined by the Frobenius endomorphism φ.

As with the twisted R–ate pairing [20], the proposed twisted Ate pairing is
based on the original twisted Ate pairing [21]. Therefore, the target pairing–
friendly curves on which the proposed twisted Ate and also twisted R–ate pairings
become more efficient than the original twisted Ate pairing are restricted. For
example, Freeman curves [9] do not belong to such families of pairing–friendly
curves.

4 Experimental Result

This section discusses the implementation of the proposed twisted Ate pairing
with BN curves of embedding degree 12 and shows some experimental results.

4.1 Comparison

Using the following positive integer χ of Hamming weight 3 [24],

χ = 262 + 235 + 224, (48)

accordingly the order r becomes a 254–bit prime number and the size of Fp12

becomes 3048–bit. We implemented the proposed twisted Ate pairing together
with the multi-pairing technique and thread computing. Table 1 and Table 2
show the computational environment and the experimental result, respectively.
For constructing Fp12 , Kato et al.’s work [18] and the tower field technique for
F(p4)3 [25] were used. For comparison, Xt–Xate, twisted Ate, twisted R–ate pair-
ings, and the proposed twisted Ate pairing given by Eq.(36) were implemented
and their results were shown in Table 2. Note that the implementation of the
proposed twisted Ate pairing did not use techniques to parallelize lower–level
functions such as SIMD or SWAR shown in [14] and [15]. In the case of BN
curves, the total numbers of calculation loops of the twisted Ate pairing, the
proposed twisted Ate pairing with multi–pairing technique, and that with thread
computing are (3/4)�log2(r), (1/2)�log2(r), and (1/4)�log2(r), respectively.
Since the calculation time of Miller’s algorithm depends on this number, the
reduction of the number directly contributes to the efficiency of Miller’s algo-
rithm calculation. As shown in Table 2, the Miller’s part of the proposed twisted
Ate pairing with multi–pairing technique and that with thread computing become
faster than the original twisted Ate pairing by 55.6% and 70.3%, respectively. The
proposed technique can also be applied to the twisted R–ate pairing. Though the
efficiency of the proposed techniques for the twisted R–ate pairing is described
in App. C, the calculation time of the Miller’s part will become about two times
faster. In the Miller’s algorithm calculation for Xt–Xate pairing, elliptic curve
additions and doublings are calculated over Fp2 . On the other hand, in the case
of the twisted Ate pairing, they are calculated over Fp . Thus, as shown in Table 2,
the proposed twisted Ate pairing with thread computing was slightly faster than
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Table 1. Computational environment

CPU CoreTM 2 Duo∗ 2.53GHz
Cache size 6144KB

OS Fedora 8 2.6.26
Compiler gcc 4.2.2
Library GNU MP 4.1.2 [12], pthread

∗Core 2 Duo is a registered trademark of Intel Corporation.

Table 2. Comparison of timings of pairings with BN curves of 254–bit prime order
(The Hamming weight of integer variable χ is 3.)

[unit:ms]

pairing Miller’s part final exp. total

Xt–Xate 4.38 9.00

normal† twisted R–ate 7.64 12.3
twisted Ate 13.9 4.62 18.5

multi–pairing†
proposed twisted Ate

6.17 10.8
thread computing 4.12 8.74

Remark : Core 2 Duo (2.53GHz), C language, and GMP [12] are used.
† Only single (thread) core is used.

the Xt–Xate pairing, even though their numbers of calculation loops in Miller’s
algorithms are the same. This paper does not take the overheads of making and
closing threads into account because they are negligible and closely related to the
concerned processor and kernel of the operating system. Of course, the number
of data transmissions between the cores is preferred to be small as the proposed
method achieves.

For comparison, using another integer of large Hamming weight for χ, the
proposed twisted Ate and other pairings were also implemented. In this case, the
following 63–bit integer χ of Hamming weight 32 is used.

χ = 4825411341445627382. (49)

The experimental results are summarized in Table 3. As shown in Table 3, the
proposed ideas can substantially accelerate twisted Ate pairing even when the
Hamming weight of χ is increased.

4.2 Thread Computing

Although it does not represent our main contribution, thread computing also
works efficiently.

Consider applying thread computing to the calculation of Eq.(36b). Fig.1 in
App. B shows the calculation flow of the proposed method with BN curves and
thread computing. According to Eq.(37), the calculation of F2 does not depend
on that of F1 for which [p]P of course needs to be precomputed. Thus, not only
multi–pairing techniques but also thread computing with two calculation cores
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Table 3. Comparison of timings of pairings with BN curves of 254–bit prime order
(The Hamming weight of integer variable χ is 32.)

[unit:ms]

pairing Miller’s part final exp. total

Xt–Xate 5.5 12.0

normal† twisted R–ate 9.3 15.8
twisted Ate 13.8 6.5 20.3

multi–pairing†
proposed twisted Ate

8.3 14.8
thread computing 5.4 11.9

Remark : Core 2 Duo (2.53GHz), C language, and GMP [12] are used.
† Only single (thread) core is used.

shown in Fig.1 will efficiently work for the proposed twisted Ate pairing. Note
here that [p]P is efficiently calculated by the skew Frobenius endomorphism φ̃2

as introduced in Sec.3.3. In this case, the number of calculation loops of Miller’s
algorithm for the proposed twisted Ate pairing with thread computing practically
becomes (1/4)�log2 r.

5 Conclusion and Future Work

This paper proposed an idea for splitting Miller’s algorithm and then applying
the multi–pairing technique to just one pairing calculation. As introduced in
App. C, in the case of BN curves, the Miller’s part of the twisted R–ate pairing
with the proposed idea and thread computing becomes about two times faster.
For the recent efficient Ate pairings such as optimal pairing, a similar technique
with multi–pairing and thread computing should be considered. Then, as shown
in Table 2, the final exponentiation should be improved.

Merely splitting up the Miller’s algorithm calculation is not so difficult. How-
ever, as in the proposed method, it is not always possible to combine an efficient
split together with an efficient multi–pairing technique. Such an efficient paral-
lelization of Miller’s algorithm calculation for other pairings will be an important
area for future work.
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A Bilinearity and Nondegeneracy of the Proposed twisted
Ate Pairing

First, Eq.(4) becomes

p ≡ (2χ − 1)p10 + 2χ mod r

≡ (2χ + p6)p10 + 2χ mod r. (50)

Then, let 6χ2 = (2χ+p6)p10 +2χ+cr, where c is a certain integer, the following
relation holds.

f
(p12−1)/r
(t−1)2,P

=
{

fp
(2χ+p6)p10+2χ,P · f(2χ+p6)p10+2χ,[p]P · fp

cr,P · fcr,[p]P

}(p12−1)/r

=
{

fp
(2χ+p6)p10+2χ,P · f(2χ+p6)p10+2χ,[p]P · f2cp

r,P

}(p12−1)/r

, (51a)

where note that g[(2χ+p6)p10+2χ]P,[cr]P becomes 1. In the above equation,

f
(p12−1)/r
(2χ+p6)p10+2χ,P

= (fp10

2χ+p6,P · fp10,[2χ+p6]P · f2χ,P · g[(2χ+p6)p10]P,[2χ]P )(p
12−1)/r

=
{
(f2χ,P · fp6,P · g[2χ]P,[p6]P )p10 · f2χ+p6

p10,P · f2χ,P · g[(2χ+p6)p10]P,[2χ]P

}(p12−1)/r

.

(51b)

f
(p12−1)/r
(2χ−1)p10+2χ,[p]P is also developed in the same way of Eq.(51b). Then,

f(t−1)2,P (Q)(p
12−1)/r = {f̂χ,P (Q) · A}(p12−1)/r, (52a)

where

A = (fp10

p6,P · f2χ+p6

p10,P )p · fp10

p6,[p]P · f2χ+p6

p10,[p]P · fr,P (Q)2cp (52b)

and

f̂χ,P (Q) = {(f2χ,P · g[2χ]P,[p6]P )p10 · f2χ,P · g[(2χ+p6)p10]P,[2χ]P }p

·(f2χ,[p]P · g[2χp]P,[p6p]P )p10 · f2χ,[p]P · g[(2χ+p6)p10p]P,[2χp]P . (52c)

http://eprint.iacr.org/2008/096


Accelerating Twisted Ate Pairing with Frobenius Map 63

In Eq.(52b), f
(p12−1)/r
(t−1)2,P is the original twisted Ate pairing and f

(p12−1)/r
r,P is Tate

pairing. In addition, f
(p12−1)/r
pe,P has a bilinearity that is shown in the same of

Appendix A in [24] with Eq.(21). Thus, based on these bilinearities, the right–
hand side of the following equation gives a bilinear map.

f̂χ,P (Q)(p
12−1)/r = {f(t−1)2,P (Q) · A−1}(p12−1)/r. (53)

In the same way of Xate pairing [24], according to Eqs.(51), the non–degeneracy
of the proposed twisted Ate pairing is given by combining those of twisted Ate,
Tate pairings [21], and fpe,P (Q)(p

k−1)/r.

B Calculation Flow of the Proposed twisted Ate Pairing
with BN Curve and thread computing

In the case of BN curve, the calculation flows of Miller’s algorithm for the pro-
posed twisted Ate pairing with thread computing on two cores are shown in Fig.1.

Pp = [p]P

Multiply the results

Main thread Sub thread

F2 = {f2χ,Pp · l[2χ]Pp,−Pp}p
10

·f2χ,Pp · l[(2χ−1)p10]Pp,[2χ]Pp

F1 = {f2χ,P · l[2χ]P,−P}p10

·f2χ,P · l[(2χ−1)p10]P,[2χ]P

F p
1

Fig. 1. Calculation flow of the proposed method with BN curves and thread computing

C Twisted R–Ate Pairing with thread computing

The proposed techniques are applicable to twisted R–ate pairing. Precomputing
a rational point [χ]P , twisted R–ate pairing becomes as

R(P, Q) = {fp10

2χ+1,P · f6χ2+4χ,P · g[2χ+1]p10P,[6χ2+4χ]P }(p12−1)/r

= {fp10

2χ,P · gp10

[2χ]P,P · f6χ
χ,P · f6χ,[χ]P · f4χ,P

·g[6χ2]P,[4χ]P · g[2χ+1]p10P,[6χ2+4χ]P }(p12−1)/r

= {fp10

2χ,P · f1+p+p3+p10

χ,P · f4χ,P · f6χ,[χ]P · g[2χ]P,P
p10

·g[6χ2]P,[4χ]P · g[2χ+1]p10P,[6χ2+4χ]P }(p12−1)/r, (54)
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where 6χ = 1 + p + p3 + p10 mod r. Let F1 and F2 be

F1 = fχ,P , (55a)
F2 = f6χ,[χ]P , (55b)

Eq.(54) becomes as

R(P, Q) = {F 2p10

1 · gp10

P,P · F 1+p+p3+p10

1 · F 4
1 · gP,P · g[2]P,[2]P · F2 · g[2χ]P,P

p10

·g[6χ2]P,[4χ]P · g[2χ+1]p10P,[6χ2+4χ]P }(p12−1)/r,

= {F 5+p+p3+3p10

1 · F2 · gP,P
(p10+1) · g[2]P,[2]P · g[2χ]P,P

p10

·g[6χ2]P,[4χ]P · g[2χ+1]p10P,[6χ2+4χ]P }(p12−1)/r. (56)

According to Eq.(56), the calculations of F1 and F2 are independent for which
[χ]P needs to be precomputed. For this calculation, thread computing with two
calculation cores is efficiently applied. Then, the calculation time of the Miller’s
part will become about two times faster.

On the other hand, multi–pairing technique can be also applied to the twisted
R–ate pairing. In this case, R(P, Q) is given by

R(P, Q) =
(
F 5+p+p3+3p10

1 · F2

)(p12−1)/r

. (57)

Therefore, since the exponent of F1 is not simple, multi–pairing technique will
not efficiently work as the proposed twisted Ate pairing with multi–pairing.
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Abstract. Let n = pq > q3 be an rsa modulus. This note describes
a lll-based method allowing to factor n given 2 log2 q contiguous bits
of p, irrespective to their position. A second method is presented, which
needs fewer bits but whose length depends on the position of the known
bit pattern. Finally, we introduce a somewhat surprising ad hoc method
where two different known bit chunks, totalling 3

2
log2 q bits suffice to

factor n.
The technique underlines the danger of using unbalanced moduli on

leaky hardware implementations.

1 Introduction

The problem of factoring using partial information was introduced by Rivest
and Shamir [11] in 1986. Factoring using partial information relates both to the
(very theoretical) oracle complexity of factoring and to the (very practical) side
channel analysis of public-key implementations.

In most past works [11,5,6,7,12] the attacker knows some of the bits of one of
the factors, usually the most significant bits (msbs) or chunks of bits spread over
one of the factors [8]. In other settings (e.g. [9]), the opponent is given access to an
oracles answering yes/no questions. Recently, May and Ritzenhofen considered
the factoring of integers whose factors feature a common, yet unknown, bit-
pattern [10]. Finally, [3] tackles the factorization of numbers of the form prq.

In this note we show that for unbalanced rsa moduli n = pq > q3 (as consid-
ered for example in [13], see figure 1), one can factor n given 2 log2 q contiguous
bits of p. The technique is interesting because it does not appear to relate di-
rectly to other lll-based results. Furthermore, the amount of bits to be known
does not depend on the size of n but rather of the size of its smaller factor q.

Conventions: Throughout this paper, capital letters will denote the bit-size
of lowercase variables. In addition, we will illustrate the different factoring tech-
niques using black rectangles for known (given) bit blocs and white rectangles
for unknown bit blocks.

D. Lee and S. Hong (Eds.): ICISC 2009, LNCS 5984, pp. 65–72, 2010.
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×

p q

Fig. 1. The factoring problem: Hard

2 An Initial Observation

Factoring given p′ = p mod 2Q, the Q least significant bits (lsbs) of p, is trivial:

n

p′
mod 2Q = q mod 2Q = q

Similarly, it is trivial to factor given the Q most significant bits (msbs) of p by
Euclidean division.

×

Fig. 2. Factoring knowing the Q lsbs (or msbs) of p: Easy

It is easy to observe that factoring unbalanced moduli is also easy when p
presents a pattern of Q zeros at positions [2Q − 1, Q].

If p is of the form p = u22Q + y where Y ≤ Q then:

gcd
(
n, n mod 22Q

)
= gcd

(
pq, yq mod 22Q

)
= gcd (pq, yq) = q

×0 … 00 0

Fig. 3. Factoring knowing that bits [2Q− 1, Q] of p are zeros: Easy

The previous equation p = u22Q + y is a particular case of the general form
p = u2W+L + v2W + y where v is a known L-bit pattern. Given v and setting
a = v2W , b = n mod 2W+L and q = x, factoring n boils down to solving the
equation:

b = x(a + y) mod 2W+L (1)

for {x, y}, with x of size Q and y of size W . The two following sections focus on
solving this equation.
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3 Applying Lattice Reduction

The most straightforward approach to solve equation (1) is to set z = xy. The
new variable z being of size Q + W . The equation becomes:

b = ax + z mod 2W+L

which is a bivariate linear modular equation. In [6], Coppersmith gives an lll-
based heuristic algorithm, to solve such equations when the sum of the sizes of
variables is less than the modulus divided by the equation’s degree. In our case,
this means that:

Q + (Q + W ) < W + L

The solution is thus found as soon as L > 2Q. This means that n can be factored
as soon as 2Q contiguous bits of p are known, no matter where their position is
(figure 4).

×

×

×

×

…

Fig. 4. Factoring given any 2Q-bit block of p: Easy

4 Using Fewer Bits

We also notice that this equation is very similar to Boneh and Durfee’s Small
Inverse Problem (section 4 of [4]). This problem amounts to solving the equation:

1 = x(a + y) mod e.

Replacing 1 by an arbitrary integer b does not change anything in the algorithm’s
analysis, since the diagonal of the triangular basis of the lattice used to solve
the equation is independent of b.

The main difference is that [4] handles only the case 2Y = E, which is not
necessarily the case in our setting.

We will focus on solving b = x(a + y) mod e for {x, y} with X = eδ and
Y = eα. The lattice is built as in section 4 of [4] but the choice of the optimizing
parameter t will differ.

For convenience, we set t := τm. In the inequality det(L) < emw, we consider
only dominant terms, i.e. terms in m3, we get the inequality:

3ατ2 + 3(α + δ − 1)τ + α + 2δ − 1 < 0.
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Solutions to this inequality exist if and only if the discriminant of the quadratic
equation in τ is positive. The condition on α and δ is:

3δ2 − α2 − 2αδ − 6δ − 2α + 3 > 0.

This result is of independent interest, generalizing [4].
In our initial problem, the parameters are as follows:

e = 2W+L, δ =
Q

W + L
, and α =

W

W + L
.

Then, the length L of the known bit pattern must satisfy

3L2 + (4W − 6Q)L + 3Q2 − 8QW > 0.

This quadratic admits two solutions, the smaller of which corresponds to param-
eters δ > 1, which makes no sense. Taking the larger solution into account, the
final result is:

L > Q +
2
3
(
√

W 2 + 3QW − W ).

In other words, as the position of the known bit block slides from the lsbs to the
msbs (i.e. when W increases from 0 to ∞), the amount of known bits increases
from Q to 2Q (figure 7).

This method is always better than the one presented in section 3. Furthermore,
since the equation solved in this case is of Boneh-Durfee type, the results of
Bauer and Joux [1,2] ensure that the algorithm provably terminates if the given
bound is satisfied (contrary to more general, heuristic variants of Coppersmith’s
algorithm).

×

×

×

×

…

Fig. 5. Factoring given progressively bigger chunks of p: Easy

5 Ad Hoc Configurations

In addition to the previously presented techniques, it appears possible to obtain
better results in a number of specific cases. We illustrate two such instances in
this section.
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5.1 Disjoint lsb Blocks

We first turn our attention to the case, very similar to the observation in the
introduction, where we know a pattern of Q bits in the prime factor p starting
from the Q-th bit. As per the previous section’s results, this is not enough since
we would need 5Q/3 bits to factor. Thus, we suppose that we also know the L
lsbs of p. Evidently, we can now get the L lsbs of q as well by division modulo
2L. In other words, we have the following representation of the factors:

p = u2Q+L + v2Q + y2L + w
q = x2L + w′,

where v, w and w′ are known and ww′ = n mod 2L.
Expand the equation pq = n and reduce it modulo 22Q. Obviously, one can

factor 2L since we properly selected w′. We get a quadratic bivariate equation in
the variables x and y. The variables are of size 2Q−L and the equation must be
satisfied modulo 22Q−L. Note that the only quadratic term is xy2L, hence the
equation becomes linear modulo 2L (and easy to solve). We use lattice reduction
techniques to present the general solution under the form:

x = x0 + rx1 + sx2

y = y0 + ry1 + sy2,

where r and s are unknown integers. The linear equation is to be understood
modulo 2L and thus the numbers xi and yi can be chosen of approximate size
2L/2. Since x and y are of size 2Q−L, we infer that r and s are of size 2Q−3L/2.
We now plug the parameterizations of x and y into our original equation and
get a quadratic equation in the variables r and s. It is clear that we can factor
2L and get an equation modulo 22Q−2L. Again, we use Coppersmith’s algorithm
for bivariate equations to compute r and s. For this to be possible, the sum of
the sizes of the variables must be less than half the modulus size:

2(Q − 3L

2
) ≤ Q − L,

which is easily transformed into Q ≥ 2L. From the values of r and s, we get
back to the values of x and y and subsequently find q.

All in all, if we know a pattern of Q bits of p in the range [2Q − 1, Q] and
the Q/2 lsbs of p (or q), we can factor n in polynomial time (figure 6). Note
that the number of bits needed in this section is less than the number claimed
by the previous section. This stems from the fact that p’s lsbs of p leak direct
knowledge on q’s lsbs.

5.2 Particular n Formats

We now adapt to our purpose the finer analysis of [4], section 5 (instead of
section 4). For the sake of conciseness, we adopt the terminology and notational
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×

Fig. 6. Factoring given bits [2Q − 1, Q] and [Q/2, 0] of p: Easy

conventions introduced in that paper, to which we refer the reader. Consider
again:

b = x(a + y) mod e

with |x| ≤ X = eδ and |y| ≤ Y = eα, where α and δ are such that α + δ < 1.
Unfortunately, in general, the resulting matrix My of y-shifts is not geomet-

rically progressive in Boneh-Durfee’s sense.
However, My does become geometrically progressive if we further assume that

|b| ≤ er for some constant r ∈ R satisfying:

0 < r < α + δ and r < 2 − 1 − δ

α

The implications of this assumption will be examined at the end of this section.
We can readily verify that, under this additional assumption, My is geometri-

cally progressive with parameters (4m, e, m, α+ δ− r, α− 1, r− 1, 1, (1− r)/(α+
δ − r)).

Setting the parameter t to (1−α− δ)m/α, we find that det(L1)e−mw = eu(m)

with

u(m) =
[
2 + α + 2δ +

1
α

(1 − α − δ)(2 + α + δ)
]

m3

6
− 1 − δ

2α
m3 + o(m3)

=
(
α − (1 − δ)2

)m3

6α
+ o(m3)

It follows that lattice reduction can be applied for large enough m as soon as:

(1 − δ)2 > α

This result may, yet again, be of independent interest.
Returning to our particular setting in which

e = 2W+L, δ =
Q

W + L
, and α =

W

W + L

we see that the length L must satisfy (L + W − Q)2 > W (L + W ), which gives
the following bound:

L > Q +
1
2
(
√

W 2 + 4QW − W )

Although this bound also increases from Q to 2Q as W grows, it is always
(slightly) tighter than the bound obtained it section 4. To assess the best possible
improvement we denote W = λQ and seek to maximize:
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f(λ) =
2
3
(
√

λ2 + 3λ − λ) − 1
2
(
√

λ2 + 4λ − λ)

We have f ′(λ0) = 0 for λ0 ≈ 0.716, the positive root of the polynomial λ4 +
7λ3 + 12λ2 − 9 corresponding to a maximal gain of f(λ0) ≈ 0.049.1

However, this 5% improvement is only obtained under a very costly assump-
tion: the condition on b implies that n has pattern of Q + L/W zero bits before
position W + L. Note that:

2 4 6 8 10 12 14

0.01

0.02

0.03

0.04

0.05

Fig. 7. A plot of f(λ). Note that limλ→∞ f(λ) = 0

The technique will therefore only apply to n values having this special form.

6 Conclusion

This paper showed that the knowledge of a pattern of contiguous bits in the
larger factor of an unbalanced modulus is sufficient to factor as soon as the
length of this pattern is twice the size of the smaller factor.

A deeper analysis showed that fewer bits are required, depending on the known
bit-chunk’s position.

The existence of a variety of ad hoc configurations, of which we gave two
examples seems to indicate that a systematic exploration of topic is an interesting
further research direction.
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1 E.g. for Q = 400 bits the attack requires ≈ 20 fewer bits.
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Abstract. The SMS4 block cipher is part of the Chinese WAPI wireless
standard. This paper describes the specification and offers a specification
for a toy version called simplified SMS4 (S-SMS4). We explore algebraic
attacks on SMS4 and S-SMS4 using Gröbner basis attacks on equation
systems over GF(2) and GF(28), as well as attacks using a SAT solver
derived from the GF(2) model. A comparison of SAT and Gröbner basis
attacks is provided.

1 Introduction

Algebraic cryptanalysis is a relatively new field of cryptology. The basic idea is
to model a cipher using a system of polynomial equations over a finite field. This
approach has gained attention since Nicolas Courtois claimed that it could be
used to attack AES, which has a simple algebraic structure [1]. This attack has
also been attempted on other ciphers such as DES [2]. Algebraic cryptanalysis
has been shown very effective for families of stream ciphers.

The SMS4 cipher was designed by the Chinese government as part of their
WAPI standard for wireless networks. The best currently known attacks on
SMS4 are the 14-round rectangle attack and 16-round impossible differential
attack discussed by Jiqiang Lu in [3]. However, as shown in [4], SMS4 itself has
a simple algebraic structure, similar to AES. Thus, we have attempted to attack
it with algebraic attacks over GF(2). Wen Ji and Lei Hu have also attempted to
attack SMS4 with an algebraic attack over both GF(2) and GF(28), as shown in
[5] and [6], but their papers present only theoretical results, not any experimental
results. We have found our experimental results contradictory to their analysis.

In this paper we present an attempt to attack SMS4 with algebraic attacks
over GF(2), including several potential alterations. We also present preliminary
� Much of this work was done while Jeremy Erickson was an undergraduate at Taylor

University, Upland, IN 46989.
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results of attacks based on GF(28) as in [5]. Both types of attacks were imple-
mented using the Magma computer algebra system ([7]), as well as using the
MiniSAT boolean satisfiability solver in some cases. Preliminary results indicate
that Magma is more effective than MiniSAT for the full cipher, while MiniSAT
outperforms Magma in the simplified version of the cipher created for our exper-
iments. No effective guess-and-determine attack strategy was found, but some
preliminary results were determined. We found evidence that the results in [5]
and [6] are very inaccurate. This casts serious doubt about the their theoretical
analysis and the previous analysis they relied on.

This paper begins with a description of the SMS4 algorithm itself, including
a description of the simplified variant. We also describe implementation details
for the attack itself, as well as experimental results. At the end we discuss the
implications of these results.

2 Structure of SMS4

SMS4 is an unbalanced Feistel cipher with a block size of 128 bits and a key
size of 128 bits. Each block is divided into four 32-bit blocks, referred to as
“words”, which in turn consists of four 8-bit bytes. An English translation of the
official specification is provided at [8]. We also describe the cipher here. There
are several fundamental components to the cipher.

2.1 The SMS4 S-Box

The official definition of the SMS4 S-box is based on a table of values (See Table 1.)
However, as shown in [4], the S-box can also be represented as an affine trans-

formation over GF(2), followed by an inversion over GF(28), followed by another
affine transformation over GF(2). The system is thus written as

s(x) = I(x · A + C) · A + C, (1)

where I indicates inversion over GF(28) (with the inverse of 0 defined as 0) and
the necessary field conversion. The values are given as

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 1 0 1
1 1 1 1 0 0 1 0
0 1 1 1 1 0 0 1
1 0 1 1 1 1 0 0
0 1 0 1 1 1 1 0
0 0 1 0 1 1 1 1
1 0 0 1 0 1 1 1
1 1 0 0 1 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

C = (1, 1, 0, 0, 1, 0, 1, 1).

To convert from GF(2) to GF(28), we use the irreducible polynomial

f(x) = x8 + x7 + x6 + x5 + x4 + x2 + 1
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Table 1. The SMS4 S-box, with the first input nibble as the row index and the second
as column index

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 d6 90 e9 fe cc e1 3d b7 16 b6 14 c2 28 fb 2c 05

1 2b 67 9a 76 2a be 04 c3 aa 44 13 26 49 86 06 99

2 9c 42 50 f4 91 ef 98 7a 33 54 0b 43 ed cf ac 62

3 e4 b3 1c a9 c9 08 e8 95 80 df 94 fa 75 8f 3f a6

4 47 07 a7 fc f3 73 17 ba 83 59 3c 19 e6 85 4f a8

5 68 6b 81 b2 71 64 da 8b f8 eb 0f 4b 70 56 9d 35

6 1e 24 0e 5e 63 58 d1 a2 25 22 7c 3b 01 21 78 87

7 d4 00 46 57 9f d3 27 52 4c 36 02 e7 a0 c4 c8 9e

8 ea bf 8a d2 40 c7 38 b5 a3 f7 f2 ce f9 61 15 a1

9 e0 ae 5d a4 9b 34 1a 55 ad 93 32 30 f5 8c b1 e3

a 1d f6 e2 2e 82 66 ca 60 c0 29 23 ab 0d 53 4e 6f

b d5 db 37 45 de fd 8e 2f 03 ff 6a 72 6d 6c 5b 51

c 8d 1b af 92 bb dd bc 7f 11 d9 5c 41 1f 10 5a d8

d 0a c1 31 88 a5 cd 7b bd 2d 74 d0 12 b8 e5 b4 b0

e 89 69 97 4a 0c 96 77 7e 65 b9 f1 09 c5 6e c6 84

f 18 f0 7d ec 3a dc 4d 20 79 ee 5f 3e d7 cb 39 48

and let the first term represent the constant term in a polynomial of degree 7,
the second term represent the x coefficient, etc.

However, calculation shows that these results do not match the table provided
in the SMS4 specification without modification. If the input to and output from
the S-box are each reversed, then the output is correct. Thus, we propose the
alternate model of the S-box

s(x) = A2 · I(A1 · x + C1) + C2 (2)

with parameters

A1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 0 1 1 1
0 1 0 0 1 1 1 1
1 0 0 1 1 1 1 0
0 0 1 1 1 1 0 1
0 1 1 1 1 0 1 0
1 1 1 1 0 1 0 0
1 1 1 0 1 0 0 1
1 1 0 1 0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 1 0 1 1
1 0 0 1 0 1 1 1
0 0 1 0 1 1 1 1
0 1 0 1 1 1 1 0
1 0 1 1 1 1 0 0
0 1 1 1 1 0 0 1
1 1 1 1 0 0 1 0
1 1 1 0 0 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,



76 J. Erickson et al.

C1 = (1, 1, 0, 0, 1, 0, 1, 1)T ,

C2 = (1, 1, 0, 1, 0, 0, 1, 1)T .

Compared to the original model, this model uses right multiplication, reverses
the columns of A for A1, reverses the rows of A for A2, uses CT for C1 and
reverses C1 for C2. This achieves reversing the input and output, compared to
(1). Calculations reveal that this model matches the table.

When the S-box is used in SMS4, it is applied 4 times in parallel, to an entire
word. Thus, X ∈ GF(2)32 is split into (x1, x2, x3, x4) ∈ (GF(2)8)4, and

S(X) = (s(x1), s(x2), s(x3), s(x4)).

2.2 The Linear Diffusion Transformation

SMS4 uses two linear diffusion transformations, one for the round function and
one for the key schedule. Here the notation ≪ represents circular left shifting.
Each function operates on x ∈ GF(2)32. For the round function, we use

L(x) = x ⊕ (x ≪ 2) ⊕ (x ≪ 10) ⊕ (x ≪ 18) ⊕ (x ≪ 24). (3)

For the key schedule, we use

L′(x) = x ⊕ (x ≪ 13) ⊕ (x ≪ 23). (4)

2.3 The SMS4 Key Schedule

We define a vector (Yi, Yi+1, Yi+2, Yi+3) ∈ (GF(2)32)4 as the key schedule input
to round i.

Denote the input key as (K0, K1, K2, K3). Then

Y0 = K0 ⊕ 0xa3b1bac6,

Y1 = K1 ⊕ 0x56aa3350,

Y2 = K2 ⊕ 0x677d9197,

Y3 = K3 ⊕ 0xb27022dc.

Also denote CKi = (cki,0, cki,1, cki,2, cki,3) ∈ (Z8
2)

4 where cki,j = 28i + 7j
mod 256, represented in binary.

Then
RKi = Yi+4 = Yi ⊕ L′(S(Yi+1 ⊕ Yi+2 ⊕ Yi+3 ⊕ CKi)). (5)

2.4 The SMS4 Round Function

We define a vector (Xi, Xi+1, Xi+2, Xi+3) ∈ (GF(2)32)4 as the input to round i,
numbering the rounds from 0. Thus, (X0, X1, X2, X3) represents the plaintext.
Then,

Xi+4 = Xi ⊕ L(S(Xi+1 ⊕ Xi+2 ⊕ Xi+3 ⊕ RKi)). (6)

The output of the last four rounds is reversed (at the word level) to generate
the ciphertext. Thus, the ciphertext is (X35, X34, X33, X32).
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3 Simplified SMS4

To provide for some basic exploration of the behavior of algebraic attacks over
a larger number of rounds, as well as to provide a form of SMS4 that can be
worked out by hand, we propose a simplified SMS4 algorithm, which will be
referred to from here as S-SMS4.

The basic operations of S-SMS4 are identical to full SMS4, except that all
operations on 128-bit blocks become operations on 32-bit blocks, operations on
32-bit words become operations on 8-bit “words”, and operations on 8-bit bytes
become operations on 4-bit nibbles.

3.1 The S-SMS4 S-Box

The S-box of SMS4 was designed from the description of the full SMS4 S-box in
[4]. The new S-box is designed to transform a 4-bit vector to another 4-bit vector,
but otherwise follows (1) plus reversing input and output. Thus, a smaller cyclic
matrix is the basic A with its bottom row as the row vector for C. Thus,

A =

⎡⎢⎢⎣
1 1 1 0
0 1 1 1
1 0 1 1
1 1 0 1

⎤⎥⎥⎦ ,

C = (1, 1, 0, 1).

Accounting for the reversal and using the form of (2), however, we derive the
following matrices in a similar manner:

A1 =

⎡⎢⎢⎣
0 1 1 1
1 1 1 0
1 1 0 1
1 0 1 1

⎤⎥⎥⎦ ,

A2 =

⎡⎢⎢⎣
1 1 0 1
1 0 1 1
0 1 1 1
1 1 1 0

⎤⎥⎥⎦ ,

C1 = (1, 1, 0, 1)T ,

C2 = (1, 0, 1, 1)T .

The inversion step is similar to full SMS4, except that we use GF(24) with an
irreducible polynomial of

f(x) = x4 + x3 + x2 + x + 1.

This S-box can also be written as a table, see Table 2.
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Table 2. S-SMS4 S-box, in the same form as Table 1

00 01 10 11

00 1001 0001 1011 0010

01 1111 0110 1000 1101

10 0111 1100 0011 1110

11 0100 0000 1010 0101

Because the S-SMS4 S-box only accepts one byte as input, which is two nib-
bles, we split X ∈ (GF(2))8 into (x1, x2) ∈ (GF(2)4)2 and write:

S(X) = (s(x1), s(x2)).

These parameters were chosen in attempt to model the properties of the full
SMS4 S-box, providing a small field size over which inversion remains non-trivial.
The A matrix is simply a cyclic matrix with the same first row as the beginning
of the first row in full SMS4. This first row seemed as appropriate as any.

3.2 The S-SMS4 Linear Diffusion Transformation

S-SMS4, like full SMS4, uses two linear diffusion transformations. Each function
operates on x ∈ GF(2)8. For the round function,

L(x) = x ⊕ (x ≪ 2) ⊕ (x ≪ 6). (7)

For the key schedule,

L′(x) = x ⊕ (x ≪ 3) ⊕ (x ≪ 5). (8)

The specific parameters in these equations are fairly arbitrary; the attack could
be generalized to use different numbers. We attempted to attain the essence of
the full SMS4 transformations. In L(x), the parameters have a GCF of 2, as in
full SMS4. In L′(x), the factors are prime numbers, as in full SMS4. The longer
length of L(x) could not be effectively preserved, due to the smaller vectors.

3.3 The S-SMS4 Key Schedule

The key schedule for S-SMS4 is analogous to full SMS4, except that we must
use shorter initial keys and CK values. The initial keys are as follows:

Y0 = K0 ⊕ 0xa3,

Y1 = K1 ⊕ 0xb1,

Y2 = K2 ⊕ 0xba,

Y3 = K3 ⊕ 0xc6.
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This initialization vector is simply the beginning of the full SMS4 initialization
vector; however, the specific numbers cannot alter the difficulty of breaking the
cipher. We could always solve the equations with any initialization vector (in-
cluding 0) and then adjust the results at the end by adding the appropriate
constant.

Denote CKi = (cki,0, cki,1) ∈ (Z4
2)

2 where cki,j = 11i + 3j mod 16, repre-
sented in binary. Then (5) holds. Note that we could have written cki,j = si+ tj
mod 16 with other values of s and t; our choice was arbitrary. However, this
choice will hopefully generate similar mixing. In the original cipher s = 4t, but
both s and t are much smaller than 256, so no directly analogous relationship
exists.

3.4 The S-SMS4 Round Function

With the notations in this section, (6) holds for simplified SMS4. We denote
S-SMS4 to have eight rounds, thus the ciphertext is (X11, X10, X9, X8).

4 Gröbner Basis and SAT Solver Attacks over GF(2)

The primary attempt to attack SMS4 in this paper is based on solving a system
of equations over GF(2). The equations are divided into two groups, one repre-
senting the key schedule for the entire cipher, and one with a representation of
the round function process for each plaintext/ciphertext pair. The Magma code
is written in such a way that full and simplified SMS4 can easily be compared
by changing which predefined functions are loaded.

4.1 Modelling the Key Schedule

The key schedule is modelled separately from the rounds, because it only needs
to be modelled once for any key to be broken, even if there is more than one
plaintext/ciphertext pair. The following system of equations is used for each
round r (indexed starting from 0) and byte (full)/nibble (simplified) index i
(also indexed from 0). The model of the S-box inversion is excluded, as the
system was tested using several representations. The real system has a set of
equations indicating that ZKr,i and WKr,i correspond to inverses in GF(28) or
GF(24). (These equations are derived from XY − X = 0 and Y X − Y = 0, so
that they work correctly when inverting zero).

A single subscript (e.g. BKr) indicates a word in GF(2)32 or GF(2)8, and a
double subscript (e.g. BKr,i) indicates a byte or nibble within the word.

BKr = Yr+1 ⊕ Yr+2 ⊕ Yr+3 ⊕ CKr,

ZKr,i = A1 · BKr,i ⊕ C1,

DKr,i = A2 · WKr,i ⊕ C2,

EKr = L′(DKr),
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Yr+4 = Yr ⊕ EKr.

When this system of equations is actually implemented in Magma, each variable
in GF(2) (with the exception of WK variables) has its own equation. Vectors
are used here for simplicity of explanation.

This system shows intermediate variables for every step of the operation.
In practice, faster times were obtained by combining several linear steps (by
substituting the expression from the previous result rather than variables.) The
best times were obtained using intermediate variables for DK and Y variables,
substituting in expressions in all other cases.

4.2 Modelling the Round Function

The model for the round function is similar to the model of the key schedule.
However, there is now a separate equation for each plaintext/ciphertext pair p.
Thus, in this case, a double subscript indicates a word and a triple subscript
indicates a nibble or byte. As in the case of the key schedule, the model also has
a set of equations indicating that Zp,r,i and Wp,r,i correspond to inverses in the
appropriate extension field.

Bp,r = Xp,r+1 ⊕ Xp,r+2 ⊕ Xp,r+3 ⊕ Yr+4,

Zp,r,i = A1 · Bp,r,i ⊕ C1,

Dp,r,i = A2 · Wp,r,i ⊕ C2,

Ep,r = L(Dp,r),

Xp,r+4 = Xp,r ⊕ Ep,r.

As with the key schedule, when this system is actually implemented in Magma,
each variable in GF(2) (with the exception of W variables) has its own equation.

Also as with the key schedule, fewer intermediates are actually needed to
solve the system. Only the X variables were left as intermediates in the final
representation, and inverses of the last three equations were used so that we
could still use the implicit representation of inversion.

4.3 SAT Solver Attacks

In addition to Gröbner Basis attacks, some attacks over GF(2) were also at-
tempted using MiniSAT. To convert the polynomials generated by Magma into
the proper input form, we wrote a Perl script using the method of [9]. Our con-
version system did not attempt to reorder or rewrite the equations to change
the random seed, and we used a cutting size of 6 as the paper suggested. The
script allowed us to convert our equations to MiniSAT format, run the MiniSAT
solver, and verify that the solution contained the correct key.
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5 Results of GF(2)-Based Attacks

These attacks were tested on an Intel R©Xeon R©dual-core CPU running at 2.00
GHz. The system had 32 GB of RAM and ran 64-bit CentOS 5. Magma 2.15-10
and MiniSAT 2.0 were used.

For small numbers of rounds, we tested Magma and MiniSAT both with the
same systems of equations. We discovered that SAT solvers did not finish within
several hours. However, we have previous test data from the system with more
intermediate variables running on a CoreTM2 Duo system running at 2.40 GHz
with 16 GB of RAM, running Ubuntu 8.0.4.1. These systems actually had fewer
intermediate variables when converted into SAT form, due to the intermedi-
ate variables created converting long sums into SAT. All tests were done using
two plaintext/ciphertext pairs, which experiments demonstrated to be clearly
optimal for Magma. Results are in Table 3 and graphed in Fig. 1.

Table 3. Typical test results

Magma MiniSAT

Rounds Time (s) Mem (MB) Time (s) Mem (MB)

SMS4

4 2.370 100.20 235.575 70.74

5 7.720 207.68 >6000 -

S-SMS4

4 0.030 8.86 0.032002 16.28

5 0.070 10.66 0.100006 17.07

6 11.650 128.15 0.364022 18.36

7 81.780 555.34 6.044380 24.33

5.1 Magma vs. SAT Solver

The results for S-SMS4 seemed to indicate that the SAT solver could provide a
more efficient solution, but this was not true for full SMS4. Also, as verified in
several tests, the SAT solver did not finish within 100 minutes with 5 rounds of
SMS4. Thus, Magma holds more promise for real attacks on SMS4. We believe
that the most likely explanation for this result is that while SAT works primarily
through guessing, which is effective when there are a small number of variables,
F4 works through structured algebraic methods, which have higher initial cost
but are better amortized by larger, more complicated sets of equations.

The computational complexity of the operations on full SMS4 cannot reliably
be determined from two data points. However, our hope is that the data from
simplified SMS4 is representative of the asymptotic complexity. The complexity
of the F4 attack seems to be exponential, with a large jump between 5 and
6 rounds of the cipher. For four rounds we expect the result to be obtained
quickly, because the entire state vector X is known. It seems that the gap in
the state vector becomes large enough to be highly significant when we reach
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Fig. 1. Typical test results

6 rounds. This is likely the reason that full SMS4 could not be broken for 6 or
more rounds on our system. The complexity of the SAT attack seems to be more
directly exponential, without the significant gap.

6 Guess-and-Determine Attack

A common technique for algebraic cryptanalysis is to guess some of the variables,
and then using algebraic cryptanalysis to solve others. If guessing n variables
reduces runtime by a factor greater than 2n, then the attack can save time,
provided that an incorrect guess solves as quickly as a correct guess.

In order to test the guess-and-determine attack on SMS4, we decided to use
7 rounds of simplified SMS4. Using 6 or more rounds of full SMS4 would have
been more ideal, but we were not able to break this many rounds in a reasonable
amount of time for the tests. Table 4 in the appendix provides results from guess
attacks.

As might be expected, no significant benefit was gained from guessing any
single bit. Even testing guessing with multiple bits, no attempt at guessing n
bits gained an improvement factor of greater than 2n in either time or memory.
However, there were appreciable differences between guessing different values. It
appears that guessing the first and/or last round keys achieve the most significant
speedup.

From this data, no evidence indicates that guess-and-determine attacks can
be effective against SMS4. However, the behavior may be different for significant
numbers of rounds in the full cipher. For these systems, these tests indicate that
guessing from the first and last round keys probably offers the most promise.

7 GF(28) Attacks

Using the method of [4], which was repeated in [5], we wrote a Magma program
to test the attack over GF(28). As discussed in [10], [11], and [12], XSL would
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not be expected to outperform a good Gröbner basis algorithm such as F4. Thus,
Magma’s builtin F4 algorithm is used, rather than XSL. The equation system
from [5] is used almost unaltered. However, there is an off-by-one error in their
indexing of all X variables (resulting in the use of X−1 in the first round), and
their model of the S-box is taken from [4] unaltered and does not take reversal
into account. Thus, we increased the index of the X variables by one and uti-
lized our corrected S-box model from section 2.1. This resulted in a system that
produced correct results for 4 rounds. Performance was consistent with a GF(2)
system tested without the field equations, but with all intermediate variables,
which is significantly slower than the GF(2) system with field equations or with
fewer intermediate variables. Runtimes were consistently between 240 and 250
seconds, and using 283.53MB of RAM each time. Because this attack used only
one plaintext/ciphertext pair, and it has a time measurement between the val-
ues for one and two pairs with the similar GF(2) attack (187.120 and 325.910
s, respectively, when the field equations are removed), with similar results for
memory, the GF(28) attack seems to have similar efficiency to the GF(2) attack
with all intermediate variables, at least for four rounds. However, upon testing
with more rounds on our system, Magma runs out of memory. This likely indi-
cates that the complexity increase from increasing the number of rounds greatly
exceeds what is predicted in [5]. We also see that their complexity prediction
of 259 for the attack on four rounds is far too high, which also demonstrates
a flaw in their model. Thus, experiments contradict their predictions. However,
to determine the actual behavior of the system for larger numbers of rounds,
further experimentation on a system with more RAM is necessary.

The authors of [5] have updated their analysis in [6], including adding an
analysis of SMS4 over GF(2). Their complexity prediction of 290 for the four
round attack over GF(28) is even higher, and their estimates for GF(2) attacks
at 4 rounds (2102) and 5 rounds (2121) show drastically higher complexity, and
higher increase in complexity, than we observed in our experiments. Also, unlike
their claim, the growth does appear from our experiments to be exponential for
simplified SMS4, so we suspect it is indeed exponential for full SMS4 over GF(2).
Thus, the equations used to analyze the behavior of XL seem not to line up with
the actual running time of the faster F4 algorithm at all.

8 Conclusion and Discussion

At this point, we have not demonstrated any practical attack on SMS4 which has
great promise of efficiency for the full cipher. However, we still discovered useful
results. It appears that F4 or a similar algorithm is likely to be more useful than
a SAT solver for the full cipher. For the simplified algorithm, the SAT solver
does appear to be more feasible. However, it could be that Magma’s additional
overhead to compute a Gröbner basis becomes less significant and could have
better asymptotic complexity. Few intermediate variables are needed, but the
round keys should be intermediate variables. Guess-and-determine attacks have
not been shown to be effective, but may be effective if round key bits are guessed.
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Also, breaking the system over GF(28) does not appear to provide any benefit
over solving over GF(2). Specifically, the claims of [5] and [6] are contradicted
by our experimental results. This casts very serious doubts about the basis of
their theoretical analysis.

There are many possible improvements which we have not had time to explore.
There exist improved methods for converting equations into SAT solver input. In
addition, not all methods and adjustments in [9] such as improving the optimal
cutting number have been attempted. Thus, it is possible that the SAT solver
attack could become more feasible with improved conversion.

Further work on the GF(28) attack is possible. Experiments could be per-
formed with sufficient RAM to test several numbers of rounds, so that the in-
crease in complexity can be measured. This would allow a more substantial
comparison of GF(2) and GF(28) implementations.

Overall, we believe any existing direct algebraic analysis will not work well in
attacking SMS4 and new methods that could fully utilize the hidden algebraic
structures need to be developed to attack SMS4 more efficiently in terms of
algebraic cryptanalysis.
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Appendix: Guess-and-Determine Attack Results

Table 4 contains results for the guess-and-determine attack on 7 rounds of sim-
plified SMS4.

Table 4. Results of guess-and-determine attacks

Attack # Bits Time (s) RAM (MB) Speedup RAM Reduc.

No guessing 0 83.210 556.43 1.00 1.00

Entire key 32 0.350 45.92 237.74 12.12

First key bit 1 84.940 552.74 0.98 1.01

Key bit 12 (0) 1 81.790 553.85 1.02 1.00

Key bit 13 (1) 1 81.160 551.19 1.03 1.01

Last key bit 1 81.340 545.80 1.02 1.02

First two key bits 2 81.400 549.32 1.02 1.01

First and 12 key bits 2 81.080 549.45 1.03 1.01

First and 13 key bits 2 80.440 546.67 1.03 1.02

First and last key bit 2 80.050 540.07 1.04 1.03

First three key bits 3 80.410 540.99 1.03 1.03

First four key bits 4 79.650 537.08 1.04 1.04

First eight key bits 8 90.560 580.41 0.92 0.96

First and last four 8 78.820 511.29 1.06 1.09

RK2 bit 1 1 81.090 554.57 1.03 1.00

RK2 bits 1, 2 2 78.150 556.41 1.06 1.00

RK2 bit 1, RK4 bit 1 2 77.820 532.19 1.07 1.05

RK1 (all bits) 8 19.980 152.00 4.16 3.66

RK2 (all bits) 8 57.290 429.42 1.45 1.30

RK3 (all bits) 8 57.210 384.42 1.45 1.45

RK4 (all bits) 8 46.890 304.93 1.77 1.82

RK5 (all bits) 8 50.440 333.27 1.65 1.67

RK6 (all bits) 8 56.590 364.54 1.47 1.53

RK7 (all bits) 8 21.940 173.77 3.79 3.20

RK1, RK7 (all bits) 16 0.270 45.92 308.19 12.12

RK1 bit 1 1 69.110 531.79 1.20 1.05

RK1 bits 1, 2 2 65.760 476.22 1.27 1.17

RK1 bits 1, 8 2 64.019 471.69 1.30 1.18

RK1 bit 1, RK7 bit 1 2 68.989 512.97 1.21 1.08

RK1 bits 1-2, 7-8 4 46.920 365.62 1.77 1.52

RK1 bits 1-4 4 22.460 156.08 3.70 3.57

RK1 bits 5-8 4 26.710 234.14 3.12 2.38

RK7 bits 6-8 3 27.940 181.75 2.98 3.06

R1 intermediates 8 72.140 495.74 1.15 1.12

R7 intermediates 8 39.140 294.49 2.13 1.89

RK1-7 bit 1 7 50.729 400.43 1.64 1.39

RK1-2, RK6-7 bit 1 4 64.510 483.45 1.29 1.15

RK1, RK7 bits 1-2 4 50.909 385.66 1.63 1.44
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Abstract. This paper introduces a new efficient algorithm, called MXL3,
for computing Gröbner bases of zero-dimensional ideals. The MXL3 is
based on XL algorithm, mutant strategy, and a new sufficient condition
for a set of polynomials to be a Gröbner basis. We present experimen-
tal results comparing the behavior of MXL3 to F4 on HFE and random
generated instances of the MQ problem. In both cases the first imple-
mentation of the MXL3 algorithm succeeds faster and uses less memory
than Magma’s implementation of F4.
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1 Introduction

The standard way to represent the polynomial ideals is to compute a Gröbner
basis of it. One of the most useful applications of Gröbner bases is to compute
efficiently the variety of the ideal. This leads to solving the polynomial system
induced by the ideal.

The Buchberger algorithm [4] was the first algorithm for computing Gröbner
bases. It is based on the computation of Gröbner bases using s-polynomials.
F4 [11] is an algorithm that uses linear algebra and Buchberger’s s-polynomial
techniques to compute Gröbner bases.

XL was introduced in [6] as an efficient algorithm for solving polynomial
equations in case only a single solution exists. The MutantXL algorithm was
proposed as a variant of XL that is based on the mutant strategy [9,8]. The
MXL2 algorithm [16] is an improvement to MutantXL that uses the partial
enlargement technique [16] and a necessary number of mutants to solve.

As explained in [13,17] the XL algorithm calculates the reduced Gröbner basis
in the case of a single solution. So, we wonder if a variant of the XL algorithm
can compute Gröbner bases in a more general case.

D. Lee and S. Hong (Eds.): ICISC 2009, LNCS 5984, pp. 87–100, 2010.
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The comparison of XL and F4 in [13,17] concluded that F4 computes a
Gröbner basis faster and uses less memory resources than XL. By combining
the mutant strategy with the XL algorithm, it was shown in [9] that MutantXL
outperforms XL in all cases. Moreover the results presented in [16] showed that
MXL2 outperforms F4 for all the random systems and 57% of the HFE cases
that are considered in that paper. Another indicator for the fact that a variant
of MutantXL outperforms F4 is in [15]. So this variant of the XL algorithm is a
good candidate to be adapted for computing Gröbner bases.

In this paper we introduce a new efficient algorithm for computing Gröbner
bases of zero-dimensional ideals that we call MXL3. The MXL3 algorithm uses
the MutantXL strategy, MXL2 improvements, and a new efficiently checkable
condition to test whether a set of polynomials is a Gröbner basis. We give an ex-
perimental comparison between the first implementation of the MXL3 algorithm
and Magma’s implementation of the F4 algorithm on some HFE cryptosystems
and some randomly generated instances of the MQ problem. We show that for
the HFE systems MXL3 can solve systems of univariate degree 288 that have
number of variables up to 49 while Magma’s F4 can not solve any system with
more than 39 variables under the same memory constraints. Moreover, we show
that MXL3 solves the HFE challenge 1 using a smaller matrix dimensions than
Magma’s F4.

This paper is organized as follows. In Section 2 we give an overview of Gröbner
bases and present the new condition to test whether a set of polynomials is a
Gröbner basis. In Section 3 we review the XL algorithm, mutant strategy, and
the MXL2 improvements. In Section 4 we describe the MXL3 algorithm. In
Section 5 we give our experimental results on random and HFE systems and
finally we conclude the paper in Section 6.

2 Gröbner Bases

We adopt the notation and use some of the results from [2]. Let K be the ground
field, and let the polynomial ring K[x1, . . . , xn] over K be denoted by K[ x ]. A
term in the indeterminates x1, . . . , xn is a power product of the form xe1

1 · · ·xen
n

with ei ∈ N. We denote by T the set of all terms. A monomial is any product
of a field element and a term. Let ≤ denote a term order on T . The degree
of t = xe1

1 · · ·xen
n ∈ T is defined by deg(t) :=

∑n
i=1 ei. For f =

∑
t∈T ctt ∈

K[ x ], where ct ∈ K is the coefficient of t in f , we define the terms of f by
T (f) := {t ∈ T | ct �= 0}, the degree of f by deg(f) := max{deg(t) | t ∈ T (f)},
the head term of f by HT(f) := max≤ T(f), the head coefficient of f , denoted
by HC(f), is the coefficient of the head term, and the head monomial of f is
HM(f) := HC(f)HT(f). If f, g ∈ K[ x ] the s-polynomial of f and g is defined
as spol(f, g) = t

HM(f)f − t
HM(g)g, with t := lcm(HT(f), HT(g)).

Given a subset P of K[ x ], we denote by 〈P 〉 the ideal generated by P , and by
HT(P ) the set of head terms from elements in P . We denote by spanK(P ) the
K-linear span of P . We will denote by P(op)d the subset of all the polynomials
of degree (op)d in P , where (op) is any of {=, <, >,≤,≥}.
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Definition 1. A finite subset G of an ideal I of the polynomial ring K[ x ] is
called a Gröbner Basis for I (w.r.t the term order ≤) if

〈HT(G)〉 = 〈HT(I)〉 .

A finite subset H̃ of K[ x ] is a row echelon form of H w.r.t. ≤ if span(H̃) =
span(H) and elements of H̃ have pairwise different leading terms.

Definition 2. Let P be a finite subset of K[ x ], 0 �= f ∈ 〈P 〉 and t ∈ T . A
representation

f =
s∑

i=1

aitipi

with ai ∈ K, ti ∈ T , and pi ∈ P is called a t-representation of f w.r.t. P (and
≤) if HT(tipi) ≤ t for i = 1, . . . , s. A HT(f)-representation of f w.r.t. P is
called a standard representation.

Proposition 1. [2] Let G be a finite subset of K[ x ] with 0 /∈ G, and assume
that for all g1, g2 ∈ G, spol(g1, g2) equals zero or has a standard representation
w.r.t. G. Then G is a Gröbner basis.

We recall a result commonly known as Buchberger’s second criterion. We para-
phrase it in the following proposition.

Proposition 2. [5,2] let F be a finite subset of K[ x ] and g1, p, g2 ∈ K[ x ] be
such that HT (p) | lcm(HT(g1), HT(g2)), and for i = 1, 2 spol(gi, p) has a stan-
dard representation w.r.t. F , then spol(g1, g2) also has a standard representation
w.r.t. F .

In the rest of this paper we will be working with the total-degree orderings of
terms. So by “order” we mean “total-degree order” here. In the total-degree
orderings, we compare total degree first. In case of the equality, there are many
different orderings that can break the ties. The most commonly used are the
graded lexicographic and the graded reverse lexicographic orderings.

Now we present our new result that establishes a sufficient condition for a
finite set to be a Gröbner basis.

Proposition 3. Let G be a finite subset of K[ x ] with D being the highest degree
of its elements. Let < be an order on K[ x ]. Suppose that the following holds:

1. G contains all the terms of degree D as leading terms; and
2. if H := G ∪ {t · g | g ∈ G, t a term and deg(t · g) ≤ D + 1}, there exists H̃,

a row echelon form of H, such that H̃≤D = G,

then G is a Gröbner basis.

Note that condition 1 implies 〈G〉 is a zero-dimensional ideal. From now on we
concentrate on zero-dimensional ideals.
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Proof. Let G = {g1, . . . , gs} with gi �= gj for i �= j. Suppose that the highest
degree in G is D and that conditions 1 and 2 above hold. We want to show that
for i, j ∈ {1, . . . , s}, with i �= j, f := spol(gi, gj) has a standard representation
w.r.t. G. without loss of generality, it suffices to show it for spol(g1, g2).

If d := deg(lcm(HT(g1), HT(g2))) ≤ D + 1, then by condition 2

f ∈ spanK(H) = spanK(H̃) = spanK(G) ⊕ spanK(H̃=D+1).

If deg(f) < D + 1 then it is trivial to see that f ∈ spanK(G) and hence has a
standard representation w.r.t. G. Suppose that deg(f) = D + 1. By condition 1,
every term of degree D + 1 appears as a head term in H . Choose h1 ∈ H such
that HT(h1) = HT(f) and define f1 by

f1 := f − HC(f)
HC(h1)

h1.

It is easy to see that f1 ∈ spanK(H̃) and that HT(f1) < HT(f). If deg(f1) =
D + 1 we can repeat the same argument for f1 and by iterating the argument a
finite number of times m, we obtain an expression

f =
m−1∑
i=1

aihi + fm (1)

with ai ∈ K, hi ∈ H , for 1 ≤ i < m−1 HT(hi) > HT(hi+1) and deg(fm) < D+1.
Since fm ∈ spanK(H̃) and deg(fm) < D + 1, fm ∈ spanK(G) thus clearly (1)
yields a standard representation of f w.r.t G.

For d > D + 1, we proceed by induction. Suppose that d > D + 1 and that
for i �= j, if deg(lcm(HT(gi), HT(gj))) < d then spol(gi, gj) has a standard rep-
resentation w.r.t. G. Assume, without loss of generality, that deg(g1) ≥ deg(g2)
and note that deg(g1) > (D + 1)/2. Let t := lcm(HT(g1), HT(g2)) and let t1, t2
be terms such that for i = 1, 2, t = ti HT(gi). Note that deg(ti) ≥ 2 and that
t1 and t2 are disjoint. Choose any terms t11, t12, t21, t22 such that for i = 1, 2,
ti = ti1ti2 and deg(g1) + deg(t12) = D + 1 and deg(t21) = 1. These choices
are possible because (D + 1)/2 < deg(g1) ≤ D thus 1 ≤ D + 1 − deg(g1) <
D + 1 − (D + 1)/2 = (D + 1)/2 < deg(g1) and because deg(t2) ≥ 2. It follows
that deg(t11), deg(t12), deg(t21) and deg(t22) are all greater than or equal to 1.
Also, if we let t∗ := t

t11t21
, by construction, for i = 1, 2, lcm(t∗, HT(gi))) = t/ti1

divides t properly, deg(t∗) = D and since t1 and t2 are disjoint, t∗ is different
from both HT(g1) and HT(g2). Then, by condition 1, there exist g ∈ G\{g1, g2}
with HT(g) = t∗. Also, for i = 1, 2, since deg(lcm(HT(g), HT(gi))) < deg(t),
by the inductive hypothesis, spol(g, gi) has a standard representation w.r.t. G.
Moreover, HT(g) divides t and therefore, by the Buchberger’s second criterion,
spol(g1, g2) has a standard representation w.r.t. G.
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3 From XL to MXL2

The MXL3 algorithm adapts MXL2 which in turn adapts XL [6]. Below we
present a brief overview of the XL algorithm, the mutant strategy [8,9] and the
MXL2 improvements [16].

Let P be a finite set of polynomials in K[ x ]. Given a degree bound D, the XL
algorithm is simply based on extending the set of polynomials P by multiplying
each polynomial in P by all the terms in T such that the resulting polynomials
have degree less than or equal to D. Then, by using linear algebra, XL com-
putes P̃ , a row echelon form of the extended set P . Afterwards, XL searches for
univariate polynomials in P̃ .

In [8,9], it was pointed out that during the linear algebra step, certain poly-
nomials of degrees lower than expected appear. These polynomials are called
mutants. The mutant strategy aims at distinguishing mutants from the rest of
polynomials and to give them a predominant role in the process of solving the
system.

The precise definition of mutants is as follows.

Definition 3. Let I be the ideal generated by the finite set of polynomials P .
An element f in I can be written as

f =
∑
p∈P

fpp (2)

where fp ∈ K[ x ]. The maximum degree of fpp, p ∈ P , is the level of this
representation. The level of f is the minimum level of all of its representations.
The polynomial f is called mutant with respect to P if deg(f) is less than its
level.

The MutantXL algorithm [9] is a direct application of the mutant concepts
to the XL algorithm. It was noted in [16] that there are two problems in the
MutantXL algorithm that affect its performance. The first problem is, when
the system generates a huge number of mutants. The second problem is, when
the system generates an insufficient number of mutants to solve the system at
a lower degree than XL. The MXL2 algorithm handles the first problem by
choosing the minimum number of mutants necessary to solve.

In [16], Mohamed et. al. also introduced a new technique for the space en-
largement process to handle the second problem which is called the partial en-
largement technique. In the process of space enlargement, MutantXL multiplies
all the polynomials in P of degree D by all the terms of degree one such that
each term is multiplied only once. In many cases, the last iteration of this process
generates a very large number of dependent polynomials. These polynomials are
reduced to zero. MXL2 avoids this problem by using the partial enlargement
technique. This means that, in the process of space enlargement MXL2 multi-
plies only a subset of the polynomials of degree D in P and tries to solve. This
step is repeated until the system is solved. The strategy for selecting a subset
will be explained in the next section.
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By these two improvements MXL2 could outperform Magma’s F4 in terms of
memory in all the cases of random systems and 57% of the cases of HFE systems
that are considered in [16].

4 Description of the MXL3 Algorithm

The main difference between MXL2 and MXL3 is that MXL2 only works when
the system of equations has a unique solution whereas MXL3 can handle any
system of equations with a finite number of solutions. Any XL-type algorithm
eventually computes a Gröbner basis, however it is uncertain for which degree
bound it occurs. Proposition 3 provides an easy to check condition that guar-
antees a Gröbner basis has been found. Experimental results show that in all
the cases that we examined, using this alternative criterion reveals the Gröbner
basis early. Another important difference is that MXL3 multiplies only by some
chosen monomials, while MXL2 multiplies by all possible monomials. In addition
to the notation of section 2, we also need the following notation.

4.1 Notation

Let X := {x1, . . . , xn} be a set of variables, upon which we impose the following
order: x1 > x2 > . . . > xn. Let

R = F2[x1, . . . , xn]/〈x2
1 − x1, ..., x

2
n − xn〉

be the Boolean polynomial ring in X with the monomials of R ordered by
the graded lexicographical order <glex. We consider elements of R as poly-
nomials over F2 where degree of each term w.r.t any variable is 0 or 1. Let
P = (p1, . . . , pm) ∈ Rm be an m-tuple of polynomials in R.

Throughout the operation of the algorithm described in this paper, a degree
bound D will be used. This degree bound denotes the maximum degree of the
polynomials contained in P . Also, we use ED as a degree bound for the elimi-
nated subset of P , (P≤ED). Note that the content of P is changed throughout
the operation of the algorithm. We define the leading variable LV(p) for p ∈ P
as the largest variable in HT(p), according to the order defined on the variables
set. Also, we define the subset LV(P, x) as the set of all polynomials of P with
leading variable x.

4.2 MXL3 Algorithm

The algorithm performs the following steps:

– Initialize: Set P = {p1, . . . , pm}, D = max{deg(p) : p ∈ P}, the elimination
degree ED = min{deg(p) : p ∈ P}, the set of mutants M = ∅ , the extension
flag newExtend = true, and the partitioned variable x = x1.
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– Repeat
Echelonize: Consider each term in P≤ED as a new variable. Set P≤ED =

P̃≤ED, where P̃≤ED is the row echelon form of P≤ED.
Here polynomials are identified with their coefficient vectors as explained
in [11].

ExtractMutants : Add all the new elements of P<ED to M .
Gröbner : If (ED < D or newExtend = true), M<ED = ∅ and

∣∣P=(ED−1)

∣∣
=
∣∣T=(ED−1)

∣∣ then set G = P≤(ED−1), return G and terminate.
Enlarge: If M �= ∅, then Multiply(P, M, ED), otherwise

Extend(P, D, x, ED, newExtend).

Multiply(P, M, ED)

– Set k = min{deg(p): p ∈ M}.
– Set y = max{LV(p) : p ∈ M=k}.
– Select a necessary number of mutants of M=k, multiply the selected mutants

by all variables ≤ y, remove the selected mutants from M , add the new
polynomials to P .
(The necessary number of mutants is numerically computed as in [16].)

– Set ED = k + 1.

Extend(P, D, x, ED, newExtend)

– If newExtend = true, then increment D by 1, set x = min{LV(p) : p ∈
P=D−1}, and set newExtend = false. Otherwise, set x = min{LV(p) : p ∈
P=D−1 and LV(p) > x} (the next-smallest leading variable).

– multiply all the polynomials of LV(P, x) (the current partition) by all the
variables ≤ x without redundancy and add the newly obtained polynomials
to P .

– If x = x1, then set newExtend = true.
– Set ED = D .

We now explain the selection strategy that we use to avoid the redundancy
produced from the extend step. During the multiplication process we keep the
multiplier variable that gave rise to every new produced polynomial and we keep
one for the original polynomials. When we extend the system, we multiply the
polynomial p by all variables smaller than its previous multiplier variable. In case
of the previous multiplier of p is one, we multiply by all variables. The target of
this selection method is to speed up the extension process of the system. Only we
multiply by monomials of degree one (variables) without any trivial redundancy.

Let for example p ∈ P , xip, xjp be two polynomials in the extended system,
and xi > xj . Then xip is extended by multiplying it with variables < xi one of
them being xjxip, while the redundant polynomial xixjp can not be produced
by xjp since xi > xj and xjp is multiplied only by variables < xj .

The multiplication of mutants process provides another important improve-
ment to our algorithm. Let the system have mutants of degree k < D and x
is the greatest leading variable of the set of mutants. MXL3 multiplies these



94 M.S.E. Mohamed et al.

mutants by all variables ≤ x instead of multiplying by all variables as in MXL2.
The target of this improvement is to solve with as small number of polynomials
as we can.

Let for example M be a set of mutant polynomials of degree k and let xi be
the smallest leading variable of the elements in M . We multiply the elements of
M by all variables ≤ xi. The resulting polynomials have smallest leading variable
≤ xi, then all the old polynomials of degree k +1 with leading variable > xi will
not play any role during the Gaussian elimination process. This will decrease
the dimension of the system.

The following theorem establishes the correctness of the algorithm.

Theorem 1. The MXL3 algorithm computes a Gröbner basis G of the ideal
generated by the set {p1, . . . , pm} of R.

Proof. Termination: MXL3 terminates only when it enlarges all the polynomials
of degree < ED and when P contains all the terms of degree ED − 1 as lead-
ing terms, at a certain degree ED ≤ D. The worst case is to satisfy these two
conditions at ED = D = n+ 1. Let the system is extended up to degree n with-
out satisfying the termination conditions of the algorithm. In this case, MXL3

extends the system to the next degree D = n + 1. P has only one polynomial of
degree n. In the Enlarge step, this polynomial is extended, newExtend is set
to true, and ED to n + 1. After the Echelonize step, P still contains only one
polynomial of degree n = ED − 1 which is equal to the number of all terms in
the Boolean ring R with degree n. If M �= ∅, MXL3 loops between Eliminate
and Enlarge a finite number of times until the set M becomes empty. So all
the conditions of Gröbner step are satisfied. Then MXL3 returns G = P with
highest degree n and terminates.

Correctness: MXL3 returns a set of polynomials G with elements of maximum
degree d = ED − 1, where ED ≤ D. The set G satisfies the first condition
of Proposition 3 since It is in the row echelon form and It contains all the
terms of degree d as leading terms. Also, the Gröbner step returns G only when
newExtend = true and M<ED = ∅ which means that all the polynomials of
degree ≤ d are enlarged. Then G satisfies the second condition of Proposition
3. Therefore G is a Gröbner basis for the ideal generated by the input system
{p1, . . . , pm}.

5 Experimental Results

We built our experiments to compare the efficiency of MXL3 to the efficiency of
F4 in solving some random systems generated by Courtois [7] as well as some
HFE systems generated by the code of John Baena. We run all the experiments
on a Sun X4440 server, with four “Quad-Core AMD OpteronTM Processor 8356”
CPUs and 128 GB of main memory. Each CPU is running at 2.3 GHz. We used
only one out of the 16 cores.

Tables 1 and 2 show the results of dense random systems with many solutions
and the results of HFE systems of univariate degree 288, respectively. In both
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Table 1. Performance of MXL3 versus F4 for dense random system

MXL3 F4

n D max. matrix Memory Time D max. matrix Memory Time

25 6 66631×76414 698 704 6 248495×108746 5128 1341

26 6 88513×102246 1207 1429 6 298592×148804 8431 3325

27 6 123938×140344 2315 2853 6 354189×197902 13312 6431

28 6 201636×197051 4836 7982 6 420773×261160 20433 13810

29 6 279288×281192 9375 18796 6 499222×340254 30044 25631

30 6 332615×351537 15062 33331 6 1283869×374081 72258 92033

31 6 415654×436598 23078 94191 6 868614×489702 108738 162118

tables we denote the number of variables and equations by n and the highest
degree of the iteration steps by D. The tables also show the maximum matrix
size, the memory used in Megabytes, and the execution time in seconds. It is
evident from Tables 1 and 2 that MXL3 solves the random generated systems
and HFE systems faster and consumes less memory than F4.

Table 1 shows that both MXL3 and F4 solve random systems up to a system
of 31 variables. The solutions of MXL3 are consistent to the results of Magma.
When MXL3 and F4 tried to solve a 32 variables system, both were able to
enlarge the system up to degree 6. When the system was enlarged to degree 7,
they ran out of memory. For the 30 variables system we get a strange matrix
size from Magma. We created many 30 variables random system and we obtain
approximately the same numbers.

Table 2. Performance of MXL3 versus F4 for HFE(288,n) systems

MXL3 F4

n D max. matrix Memory Time D max. matrix Memory Time

30 5 86795×130211 1389 3106 5 149532×136004 7105 3806

35 5 155914×296872 5737 10047 5 200302×321883 40480 11032

36 5 173439×344968 7310 14183 5 219438×382252 50846 15220

37 5 192805×399151 9288 20375 5 247387×444867 66623 20787

38 5 212271×459985 11351 27089 5 274985×512311 83445 27305

39 5 234111×528068 15070 36833 5 305528×588400 104135 38013

40 5 258029×604033 20881 6346017.6 hours ran out of memory

45 5 404940×1126819 55216 2993553.46 days ran out of memory

47 5 457691×1417468 77967 3710884.3 days ran out of memory

48 5 517642×1583807 98913 6892357.9 days ran out of memory

49 5 561972×1765465 120524 7519658.7 days ran out of memory

Table 2 shows that all the HFE systems of univariate degree 288 up to 49
variables are solved by using MXL3, whereas F4 could only solve HFE systems
up to 39 variables with the same memory resources.

In Table 3 we compare the performance of the MXL3 algorithm against the
F4 algorithm in computing a Gröbner basis of the random system n = 30. For
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MXL3, we give the elimination degree (D), the matrix size for each level, the
rank of the matrix (Rank), the number of mutants found (NM), the number of
used mutants (UM), and the lowest degree of mutants found (MD). For F4, we
give the step degree (D), the matrix size, and the step memory in MB.

Table 3. Results for the system Random-30

MXL3 F4

Step D Matrix Size Rank NM UM MD D Matrix Size Memory

1 2 30×466 30 0 0 - 2 30×466 14.2

2 3 930×4526 930 0 0 - 3 937×4526 14.2

3 4 13980×31931 13515 0 0 - 4 13320×30551 207

4 5 131690×174437 121365 0 0 - 5 106603×143547 4318

5 6 332615×351537 329051 31060 665 5 6 588160×437262 42843

6 6 302981×309033 302981 3596,12340 0,191 5,4 6 1283869×374081 72258

7 5 172945×174437 172945 2480,3160,90 0,0,11 4,3,2 2 722×466 72258

8 3 4510×4526 4510 315,15 0,1 2,1 3 4864×3782 72258

9 2 480×466 465 15 0 1 4 22421×19736 72258

10 5 103919×62858 72258

Table 3 shows that by using the mutant strategy, MXL3 can easily solve the
30 variables random system with a smaller matrix size compared to F4. MXL3

starts to generate mutants at step 5. In this step 31060 mutants of degree 5
are generated, out of which only 665 are multiplied. Due to the degree of the
generated mutants, the elimination degree remains the same in the next step,
i.e. , D = 6. Starting from step 7, D starts to decrease. In step 8, the system
generates 315 quadratic mutants and 15 linear mutants. By using only one of
the linear mutants, MXL3 generates additional 15 linear mutants in the next
step, which in turn leads to solving the system.

Also, Table 3 shows that the number of reductions to zero is less than 8%
for each iteration step. This explains practically that our improved selection
strategy has strictly increased the efficiency of the algorithm since it avoids the
redundant computations.

In Appendix A Table 4 presents a comparison between the maximum ma-
trix size constructed by MXL3 and MXL2 on some random systems that have
only one solution. The results show that MXL3 solves with smaller number of
polynomial equations and smaller number of terms than MXL2. This due to the
selection strategy of the multiplied variables that used is by MXL3. In Appendix
B Table 5 presents another comparison between MXL3 and Magma’s F4 when
the HFE parameter is setting to true. In this case MXL3 also solves with smaller
number of polynomials than Magma’s F4. For example the HFE challenge 1
n = 80 that was first solved with maximum matrix size 307126 × 1667009 by
Faugère and Joux [14] using F5 /2 algorithm [12] in May 2002, can be solved by
MXL3 with maximum matrix size 268840×1666981, while Magma solves it with
maximum matrix size 293287 × 1666981. In this case Magma is faster than our
implementation since it uses a very fast linear algebra implementation.
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For the comparison with Faugère’s F4 algorithm, we used Magma (version
V2.13-10). We used the field equations x2

i = xi and using the polynomial ring
type for Magma that is defined over F2 such that all the terms are reduced
modulo the field equations. When we use the new version of Magma (V2.15) and
the new Magma type BooleanPolynomialRing, we have worse results in terms of
the matrix size and the memory, although we obtained better results in terms of
the running times. For MXL3, we also used the Boolean polynomial ring in our
C++ implementation. For the Echelonize step, we used an adapted version of
M4RI [1], a library for dense matrix linear algebra over F2. Our adaptation is in
changing the strategy of selecting a pivot during Gaussian elimination to keep
the old elements in the system intact.

We chose to compare MXL3 only with Magma’s implementation of F4 be-
cause both Faugère’s algorithm and Steel’s implementation are widely recog-
nized as benchmarks for efficient Gröbner basis computation. A comparison with
Faugère’s F5 algorithm has been suggested by some researchers. We consider this
infeasible due to the controversy about the algorithm and the lack of a well rec-
ognized implementation.

F5 is primary intended for homogeneous regular sequences There is no detailed
description of how to adapt it for non-homogeneous sequences and moreover, no
analysis exist on the behavior for such sequences. In the non-homogeneous case
the F5 criteria can discover trivial syzygies of the leading forms but it says
nothing about what to do with the non-trivial ones which in turn yield mutants.
In [9,16,10] the importance of mutants in the computation of Gröbner Bases
for non-homogeneous sequences has been shown. F5 says nothing about how to
take advantage of those. Therefore, in the absence of such algorithm one relies
on Buchberger’s or the F4 algorithm to compute a Gröbner Basis once mutants
appear.

6 Conclusion and Future Work

In this paper, the MXL3 algorithm is introduced as a new and efficient method
to compute Gröbner bases on the Boolean polynomial ring. The experiments
showed that both in classical cryptographic challenges and random systems,
this new algorithm performs better in terms of memory than the F4 algorithm
implemented in Magma, currently the best publicly available implementation of
F4. The growth of the complexity shown in the experiments suggests that the
difference is not marginal.

These experimental results demonstrate the importance of mutants in the
computation of Gröbner bases, which was explored in a different setting in [10]. In
combination with the techniques derived from the concepts of necessary number
of mutants and partial enlargement, this new strategy has shown to be very
successful unfolding the underlying structure of systems of equations.

Also, the new criterion for determining the termination of the new algorithm,
proved to be efficiently checkable and sharp to detect a Gröbner basis. The fact
that the MXL3 algorithm terminates at the same degree as the F4 algorithm in
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all experiments, suggests a connection between this criterion and other criteria
to establish a Gröbner basis, a very interesting new direction, we will study next.

This paper further demonstrates the great potential of the mutant strategy
and much more is still needed to be done to realize its full potential. Comparison
with PolyBoRi [3] are planed as well as some improvements in the enlargement
technique.
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Appendix A

Table 4. Performance of MXL3 versus MXL2 for dense random system

MXL3 MXL2

n max. matrix max. matrix

15 1422×1577 1946×1758

16 2295×2573 2840×2861

17 3211×3676 3740×4184

18 4477×5335 6508×7043

19 8150×8039 9185×11212

20 8494×10564 14302×12384

21 16128×16115 14365×20945

22 20332×20737 35463×25342

23 23415×26407 39263×36343

24 52215×57171 75825×69708

Appendix B

Table 5. Performance of MXL3 versus F4 for HFE(96,n) systems

MXL3 F4

n max. matrix max. matrix

20 5236×5227 7053×6196

25 9979×9941 12459×15276

30 22515×31931 20003×31931

35 33705×59536 30081×59536

40 37005×84516 43124×102091

50 67525×251176 79116×251176

60 144030×523686 130755×523686

70 181335×974121 201343×974121

80 268840×1666981 293287×1666981
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Abstract. The SOSEMANUK stream cipher is one of the finalists of the
eSTREAM project. In this paper, we improve the linear cryptanalysis
of SOSEMANUK presented in Asiacrypt 2008. We apply the general-
ized linear masking technique to SOSEMANUK and derive many linear
approximations holding with the correlations of up to 2−25.5. We show
that the data complexity of the linear attack on SOSEMANUK can be
reduced by a factor of 210 if multiple linear approximations are used.
Since SOSEMANUK claims 128-bit security, our attack would not be a
real threat on the security of SOSEMANUK.
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1 Introduction

SOSEMANUK [3] is a synchronous software-oriented stream cipher proposed
by Berbain et al. in 2005. The SOSEMANUK cipher was submitted to the eS-
TREAM competition [12] and was selected as one of the four finalists of Profile
1 (software category) in the eSTREAM Portfolio. The eSTREAM project con-
cluded in the final report that SOSEMANUK offers a very considerable margin
for security as well as very reasonable performance trade-offs [2].

After the eSTREAM project closed, a linear attack against SOSEMANUK
was presented by Lee et al. in Asiacrypt 2008 [10]. In this attack, authors used
the linear masking method [7] to derive the best linear approximation of the
nonlinear function. Then, they mounted a state recovery attack which was origi-
nally developed to cryptanalyze the Grain stream cipher version 0 [4]. The main
idea of this attack is to collect a number of linear approximations which depend
on partial initial state bits and use them to distinguish the right value of partial
initial states from the wrong ones. Authors claimed that the full initial states of
SOSEMANUK can be recovered with the time complexity of 2147.9, the memory
complexity of 2147.1 and the data complexity of 2145.5.

In this paper, we improve Lee et al.’s linear attack on SOSEMANUK. We
derive the best linear approximation of SOSEMANUK by the generalized linear
masking method which was applied to the distinguishing attack on SNOW 2.0

D. Lee and S. Hong (Eds.): ICISC 2009, LNCS 5984, pp. 101–116, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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by Nyberg et al. [14]. Our results show that the best linear approximation of
SOSEMANUK is not a single but multiple. Moreover, many linear approxima-
tions have the same order of magnitude of the correlations as the highest one. If
Lee et al.’s attack uses such multiple linear approximations holding with strong
correlations, the data complexity of the attack can be reduced significantly. On
the other hand, the time complexity of the attack is not much affected since
the total amount of linear approximations is determined by the correlation of
the dominant linear approximations. We estimate that the best attack requires
around 2135.7 keystream bits with the time complexity 2147.4 and memory com-
plexity 2146.8.

We note that SOSEMANUK claims the security level of 2128 complexity so
that our analysis would not threaten the security of SOSEMANUK. Rather, we
focus on the security analysis of each component of SOSEMANUK and the effect
of their combinations. As a result, we hope to evaluate the security margin of
the whole cipher more accurately. We also show that our method can enhance
the performance of the distinguishing attack against SOBER-128 which adapts
similar nonlinear components to SOSEMANUK.

This paper is organized as follows. In Section 2, the structure of the
SOSEMANUK stream cipher is briefly described and the previous linear at-
tacks are discussed. In Section 3, the linear approximations are derived and
its capacity is computed. In Section 4, the improved correlation attack against
SOSEMANUK is presented. In Section 5, our attack is applied to SOBER-128.
Section 6 concludes this paper.

2 Preliminaries

2.1 Brief Description of SOSEMANUK

SOSEMANUK inherits the design structure of the stream cipher SNOW 2.0 [8]
which is known for both strong security and high performance. SOSEMANUK
aims at improving SNOW 2.0 by reducing the internal state size of the linear
feedback shift register (LFSR) for better performance and adding a multiplexing
function for avoiding some structural properties. SOSEMANUK also adapts the
transformation function from the block cipher SERPENT [1] which was one of
the five finalists of AES competition [11]. The structure of SOSEMANUK is
shown in Figure 1.

SOSEMANUK uses a single 320-bit (10-word) LFSR which is operated on
F232 with the following recurrence function:

st+10 = st+9 ⊕ α−1st+3 ⊕ αst, t ≥ 1 (1)

where α is a root of the primitive polynomial P (X) = X4 + β23X3 + β245X2 +
β48X + β239 on F28 [X ] and β is a root of the primitive polynomial Q(X) =
X8 + X7 + X5 + X3 + 1 on F2[X ]. The nonlinear block of SNOW-like structure
is called the Finite State Machine (FSM). The FSM of SOSEMANUK contains
two 32-bit registers R1 and R2 with the following relations:
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Fig. 1. Overview of SOSEMANUK

R1t+1 = R2t + (rtst+9 ⊕ st+2)
R2t+1 = Trans(R1t) (2)

ft = (st+9 + R1t) ⊕ R2t

where rt denotes the least significant bit of R1t. The transition function Trans
which is operated on F232 is defined as

Trans(R1t) = (R1t × 0x54655307 mod 232)≪7

where x≪7 denotes x left-rotated by 7 bits and × denotes an arithmetic
multiplication.

Four consecutive outputs of FSM become the input of the transformation
function, which is called Serpent1, defined as

(zt+3, zt+2, zt+1, zt) = Serpent1(ft+3, ft+2, ft+1, ft) ⊕ (st+3, st+2, st+1, st). (3)

Serpent1 takes four 32-bit words as input and provides four 32-bit words as
output in bitslice mode. Serpent1 uses an identical 4×4 transformation functions
32 times in parallel, each of which uses 4 × 4 S-box S2 which is one of the eight
distinct S-boxes used in SERPENT. For complete description of SOSEMANUK
we refer to the paper [3].

2.2 Lee et al.’s Attack on SOSEMANUK in Asiacrypt 2008

Let n be a non-negative integer. Given two vectors x = (x0, . . . , xn−1) and
y = (y0, . . . , yn−1) where x, y ∈ Fn

2 , let x · y denote a standard inner product
defined as x · y = x0y0 ⊕ . . .⊕ xn−1yn−1. A linear mask is a constant vector that
is used to compute an inner product of a n-bit string.
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Let f : F2n �→ F2m for some positive integers m and n. The correlation of
f is c(f) = c(f(x)) = 2−n (#{x : f(x) = 0} − #{x : f(x) = 1}) . Given a linear
input mask Λ ∈ Fn

2 and a linear output mask Γ ∈ Fm
2 , the correlation of the

linear approximation Λ · x = Γ · f(x) of f is cf (Λ; Γ ) = c(Λ · x ⊕ Γ · f(x)).
In [10], the best linear approximations of FSM and Serpent1 were derived

using a single linear mask Γ as follows:

FSM : Γ · ft ⊕ Γ · ft+1 ⊕ Γ · st+10 ⊕ Γ · st+2 = 0 (4)
Serpent1 : Γ · ft ⊕ Γ · ft+1 ⊕ Γ · (st ⊕ zt) ⊕ Γ · (st+3 ⊕ zt+3) = 0. (5)

If (4) and (5) are linearly combined, ft and ft+1 terms are canceled out and the
linear approximation of SOSEMANUK is derived as

Γ · st+10 ⊕ Γ · st+2 = Γ · (st ⊕ zt) ⊕ Γ · (st+3 ⊕ zt+3). (6)

The highest correlation of (6) holds with the correlation of 2−21.4 [10]. The
correlation attack presented in [10] reduced the data complexity of the attack by
the so-called Second LFSR derivative technique that was developed by Berbain
et al. in [4]. We will discuss this technique in Section 3 . Finally, authors claimed
that the attack requires around 2145.5 data, 2147.9 computing time and 2147.1

memory complexity.

3 Deriving Linear Approximations of SOSEMANUK

In this section, we derive the linear approximations of two nonlinear blocks:
FSM and Serpent1. By combining them, we derive the linear approximation of
SOSEMANUK which uses only the internal states of LFSR and the keystream
bits as variables.

3.1 Linear Approximation of FSM

FSM uses the Trans-function and modular additions as the nonlinear compo-
nents. If the linear masks of each nonlinear component are allowed to be differ-
ent, a wider range of linear masks search is possible, which enables us to obtain
multiple linear approximations with strong correlations. Our idea is depicted in
Figure 2.

Firstly, we establish the linear approximations of each nonlinear components
as follows:

Γ2 · R2t+1 = Φ · R1t

Λ · R1t+1 = Γ1 · R2t ⊕ Γ4 · (st+2 ⊕ rtst+9)
Γ1 · ft = Γ3 · st+9 ⊕ Φ · R1t ⊕ Γ1 · R2t

Γ2 · ft+1 = Γ5 · st+10 ⊕ Λ · R1t+1 ⊕ Γ2 · R2t+1.
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Fig. 2. Generalized linear masking of FSM

where (Γ1, Γ2, Γ3, Γ4, Γ5) ∈ F32
2 . If above approximations are linearly combined,

the terms of R1 and R2 registers vanish. Then, we get the following approxima-
tion of FSM:

Γ1 · ft ⊕ Γ2 · ft+1 = Γ3 · st+9 ⊕ Γ5 · st+10 ⊕ Γ4 · (st+2 ⊕ rtst+9). (7)

Since rt ∈ {0, 1}, we get the following two approximations from (7):

(rt = 0) : Γ1 · ft ⊕ Γ2 · ft+1 = Γ3 · st+9 ⊕ Γ5 · st+10 ⊕ Γ4 · st+2 (8)
(rt = 1) : Γ1 · ft ⊕ Γ2 · ft+1 = (Γ3 ⊕ Γ4) · st+9 ⊕ Γ5 · st+10 ⊕ Γ4 · st+2. (9)

Let us denote the correlations of modular addition and the Trans-function by

c+(Λ1, Λ2; Γ ) = 2 Pr[Λ1 · x ⊕ Λ2 · y = Γ · (x + y)] − 1
cTrans(Λ; Γ ) = 2 Pr[Λ · x = Γ · Trans(x)] − 1.

According to Correlation Theorem in [13], the correlations of both (8) and (9)
are obtained by computing

cFSM(Γ1, Γ2, Γ3, Γ4, Γ5) =
1

2

232−1X

Λ=1

c+(Γ1, Γ4; Λ)c+(Γ5, Λ; Γ2)

232−1X

Φ=1

c+(Γ3, Φ; Γ1)cTrans(Φ; Γ2) (10)

where the constant 1
2 comes from the assumption that Pr[rt = 0] = Pr[rt = 1] =

1
2 .

3.2 Linear Approximations of Serpent1

At every four clocks, Serpent1 substitutes 128-bit (4-word) inputs into 128-bit
(4-word) outputs by 32 parallel S-boxes operated in the bitslice mode. For a
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fixed clock t, the inputs and outputs of Serpent1 are (ft+i)i=0,1,2,3 and (st+i ⊕
zt+i)i=0,1,2,3, respectively. Hence, the general form of the linear approximation
of Serpent1 is

3⊕
i=0

Ai · ft+i =
3⊕

i=0

Bi · (st+i ⊕ zt+i), t ≡ 1 (mod 4) (11)

where Ai, Bi ∈ F32
2 are the input and output linear masks, respectively.

In bitslice mode, the 4-bit input of the j-th S-box (out of 32 S-boxes) of
Serpent1 is the concatenation of each j-th bit of (ft+i)i=0,1,2,3. Let aj , bj ∈ F24

denote the input and output masks of the j-th S-box. The correlation of linear
approximation using aj and bj is denoted by cS(aj ; bj). Then, the correlation of
(11) is equal to the multiplication of all the nonzero cS(aj ; bj) where 0 ≤ j ≤ 31
as

cSerpent1(A0, A1, A2, A3, B0, B1, B2, B3) =
∏
j∈J

cS(aj ; bj) (12)

where J = {j| cS(aj ; bj) �= 0, 0 ≤ j ≤ 31}. Figure 3 shows an example of the
linear approximation of Serpent1.
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Fig. 3. An example of the linear approximation of Serpent1 with correlation of 2−4

3.3 Approximations of SOSEMANUK

If we combine (7) and (11) in such a way that (ft+i)i=0,1,2,3 terms vanish, we
obtain the linear approximations of SOSEMANUK of which variables come from
only the internal states of LFSR and the keystream. Obviously, such combination
should satisfy the following condition:

(A0, A1, A2, A3) ∈ {(Γ1, Γ2, 0, 0), (0, Γ1, Γ2, 0), (0, 0, Γ1, Γ2)}.

Note that we can obtain (7) at clock t, t + 1 and t + 2. Hence, we derive the
following form of the linear approximation for t ≡ 1 (mod 4) as

Γ3 ·st+9+τ ⊕Γ4 ·st+2+τ ⊕Γ5 ·st+10+τ =
3⊕

i=0

Bi ·(st+i⊕zt+i), τ ∈ {0, 1, 2}. (13)
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Let csose denote the correlation of (13). Then, csose =
∑

Γ1,Γ2
cFSM × cSerpent1

and due to the bitslice mode of Serpent1, csose is equal to cFSM × cSerpent1 for
some single pair (Γ1, Γ2).

Searching the Linear Masks. We searched the linear masks of (13) of which
correlations are as strong as possible. Since the search space of the relevant linear
masks (Γi)i=1,...,5 and (Bi)j=0,...,3 over F32

2 is too large, we allowed the linear
masks that are of Hamming weights up to six. The reason for this decision is
as follows. Due to the bitslice mode of Serpent1, cSerpent1 is determined by the
Hamming weight of Γ1 and Γ2. Also, the correlation of FSM has three terms
of c+ which is limited by the Hamming weight of Γ1 and Γ2. Hence, the csose

using the linear masks of the Hamming weight six is likely to be smaller than
2−6·4 = 2−24 and it is much smaller than the highest correlation.

For efficient search, the following results help us to reduce the search space.
For each i = 0, . . . , 31, we denote the i-th bit of X ∈ F232 by Xi. Moreover,
the vector of i least significant bits of X is denoted by X ′

i = (Xi−1, . . . , X0).
Consider first the modular addition in F232 , denoted by + . Lemma 4 given in
[5] is stated as follows:

Lemma 1. Let X, Y ∈ F232 and let Z = X + Y be their sum modulo 232.
Then Z0 = X0 ⊕ Y0, Z1 = X1 ⊕ Y1 ⊕ X0Y0 and for all i = 2, . . . , 31, the bit
Zi = Xi ⊕ Yi ⊕ fi(X ′

i, Y
′
i ), where the function fi is given by

fi(X ′
i, Y

′
i ) = Xi−1Yi−1 ⊕

i−2⊕
j=0

XjYj

⎛⎝ i−1∏
t=j+1

Xt ⊕ Yt

⎞⎠ .

We need the following concepts to formalize the next results. Let p = max{i =
0, . . . , 32 : Xi �= 0}, that is, p is the largest index such that Xp �= 0 and Xi = 0,
if i > p. Then p is called the most significant effective bit position (MSEBP) of
X . We denote p = MSP(X).

Let X = g(S) ∈ F232 and Y = h(S) ∈ F232 be calculated from the n-bit
internal state S ∈ F2n of the cipher using some functions g and h. We say
that X and Y are statistically independent, if for all masks α, β ∈ F32

2 and
(α, β) �= (0, 0), the correlation c(α ·X ⊕β ·Y ) = c(α ·f(S)⊕β ·g(S)) = 0. Hence,
if X and Y are statistically independent, each non-trivial linear combination of
their bits has zero correlation. We have the following result about the possible
input and output masks of the addition of statistically independent inputs:

Lemma 2. Let X, Y ∈ F232 be statistically independent and let Z = X + Y . Let
α, β and γ be 32-bit masks of the linear approximation α ·X ⊕ β · Y ⊕ γ ·Z with
correlation c+(α, β; γ). If the correlation is non-zero, then MSP(α) = MSP(β) =
MSP(γ).

Proof. Let p = MSP(α), q = MSP(β) and r = MSP(γ). Using Lemma 1, we
have

α ·X ⊕ β · Y ⊕ γ ·Z = Xp ⊕ Yq ⊕Zr ⊕L = Xp ⊕ Yq ⊕Xr ⊕ Yr ⊕ fr(X ′
r, Y

′
r )⊕L,
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where L = L(X ′
p, Y

′
q , Z ′

r) is a nonlinear function. But since X and Y are statisti-
cally independent, the correlation c+(α, β; γ) can be non-zero only if p = q = r.

��

The previous lemma shows how to restrict the search space of the + -operation.
We consider the Trans-function next. Let us denote Z = R × 0x54655307 mod
232. The multiplication by 0x54655307 is equal to the 14-consecutive modular
additions as

Z = R + (R � 1) + (R � 2) + (R � 8) + (R � 9) + (R � 12) + (R � 14) + (R � 16)
+ (R � 18) + (R � 21) + (R � 22) + (R � 26) + (R � 28) + (R � 30),

where � denotes the left-shift operation. Similarly as for + -operation, the bit
Zi = Ri ⊕ gi(R′

i), for all i = 0, . . . , 31. The following corollary shows how the
space of possible masks for Trans-function can be restricted.

Corollary 1. Let R ∈ F232 be the input of the Trans-function. Let α and β be 32-
bit input and output masks of the Trans-function, respectively. If the correlation
cFSM of the linear approximation of FSM is non-zero, then for some q = 0, . . . , 6,
we have q + 25 = MSP(α) = MSP(β). Moreover, βq = 1 and βi = 0 for all
i = q + 1, . . . , 6.

Proof. Let us first show that MSP(α) = MSP(β). In all the + -additions in the
FSM, the other input consists of some of the statistically independent LFSR
state words st, . . . , st+9. Hence, in all three + -additions, the two inputs are
statistically independent of each other and by formula (10) and Lemma 2, the
MSEBP of all the masks in the triples (Γ1, Γ4, Λ), (Γ5, Λ, Γ2) and (Γ3, Φ, Γ1)
must be equal. Since α = Φ and β = Γ2, we have MSP(α) = MSP(β) = p, for
some p = 0, . . . , 31.

Next we show that p = q + 25 for some q = 0, . . . , 6 and βq = 1. We divide
the Trans-function to two steps: Z = R × 0x54655307 mod 232 and W = Z≪7,
such that for each i = 0, . . . , 31, we have Wi = Z(i−7) mod 32. If the correla-
tion cTrans(α; β) of the approximation is non-zero there must be no statistically
independent linear terms in the approximation. Since αp = 1, the term Rp is
included in the approximation. For all i = 0, . . . , 31, the bit Zi = Ri ⊕ gi(R′

i).
Hence, at least one of the bits Zp, . . . , Z31, should be used in the approximation,
otherwise Rp would be a statistically independent linear term and the correla-
tion cTrans(α; β) = 0. If p = 31, then bit Z31 = W6 is used in the approximation,
we have β6 = 1 and the claim holds for q = 6.

Assume now p < 31. Since p is the MSEBP of α, we must have β6 = 0. Oth-
erwise, we would have the bit Z31 = W6 = R31 + g31(R′

31) in the approximation,
but R31 would then be a lonely, statistically independent linear term giving zero
correlation. Similarly we conclude that βi = 0, for i = (p + 8) mod 32, . . . , 6.
Hence, we must have β(p+7) mod 32 = 1. Again, since p is MSEBP, we have
p > (p + 7) mod 32. Hence, p ≥ 25 such that p = q + 25, for some q = 0, . . . , 6
and β(p+7) mod 32 = βq = 1. ��

We note that part of Corollary 1 was heuristically used in [10] with the assump-
tion that α = β.
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Our Results. We used Wallén’s algorithm proposed in [15] by which the lin-
ear approximations of the modular addition of 2n could be efficiently deliv-
ered. Unfortunately, we could not find the stronger approximation than the
one reported in [10]. Instead, we found out there exist many linear approx-
imations that have the same magnitude of correlations as the strongest one.
The linear masks of the approximations with strong correlations are partially
listed in Table 1. Note that WH(X) denotes the Hamming weight of X ; that
is, the number of nonzero bits of X ∈ F32

2 . SOSEMANUK is composed of
two nonlinear blocks that operate independently, which intends to remove the
possibility of linear approximation that has strong correlation on both blocks
simultaneously. On the other hand, the linear approximations of both blocks
can be combined independently, which yields multiple linear approximations
with equal correlations. Here is an example. Let us take the linear approxima-
tion of FSM which is located in the first line in Table 1: (Γ1, Γ2, Γ3, Γ4, Γ5) =
(0x02004001, 0x03004001, 0x02004001, 0x02004001, 0x03004001) with the corre-
lation of 2−17.4. The Γ1 and Γ2 are transformed into the input masks of Serpent1
that have four nonzero inputs of the S-boxes at the bit positions of 25, 24, 14, 0,
as shown in Figure 3. According to the S-box profile of Serpent1 displayed in
Table 5, there exist multiple input and output masks of S-box that yield nonzero
correlations. For instance, cS(3; 9) = cS(3; 14) = 2−1 and cS(2; 7) = cS(2; 14) =

Table 1. Linear masks of FSM with |cFSM| ≥ 2−18.5 where ∨ denotes a bitwise logical
OR operation

Γ1 Γ2 Γ3 Γ4 Γ5 cFSM WH(Γ1 ∨ Γ2)

02004001 03004001 02004001 02004001 03004001 2−17.4 4
03004001 03004001 03004001 03004001 03004001 2−17.4 4
02006001 03004001 02006001 02006001 03004001 2−17.4 5
03006001 03004001 03006001 03006001 03004001 2−17.4 5
02004001 03004001 02004001 02006001 03006001 2−18.4 4
02004001 03004001 02004001 03004001 02004001 2−18.4 4
03004001 03004001 03004001 03006001 03006001 2−18.4 4
03004001 03004001 03004001 02004001 02004001 2−18.4 4
02000201 02000301 03000301 02000201 02000301 2−18.5 4
02000301 02000301 03000201 02000301 02000301 2−18.5 4

Table 2. Evaluation of the number of linear approximations with respect to the cor-
relations

source |csose| M M × c2
sose

Lee et al.’s attack [10] 2−21.4 8 2−39.8

this paper

2−21.4 896 2−33.0

2−22.5 7680 2−32.1

2−23.5 63104 2−31.1

2−24.5 331776 2−30.7

2−25.5 1391872 2−30.6
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2−1. We obtain more linear approximations by taking (13) at clock t, t + 1 and
t+2. Also, both (8) and (9) have equal correlations. In total, there are 896 ≈ 29.8

linear approximations holding with the correlation of 2−21.4. Furthermore, we
found that a large number of linear approximations have strong correlations
slightly less than the strongest one. Table 2 summarizes the number of the lin-
ear approximations of (13) that have the correlations of up to 2−25.5.

4 Linear Cryptanalysis of SOSEMANUK

4.1 Generating Linear Approximations by Linear Recurrence

Given the linear approximation (13), a new linear approximation can be gen-
erated by applying the linear recurrence function of the LFSR to (13) at every
clock. This technique was described in [4,10] and we give a simpler description
using the matrix on this method.

Recall the linear recurrence function of SOSEMANUK. It is well known that
the function (1) is equivalently expressed by the following transition matrix:

A =

⎛⎜⎜⎝
0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 1
a0 a1 a2 · · · a9

⎞⎟⎟⎠
where (a0, a3, a9) = (α, α−1, 1) and the other (ai)i=1,2,4,5,6,7,8 are zeros over F 32

2 .
Let us denote the states of the LFSR at the clock t as St = (st st+1 · · · st+9)T

where st ∈ F 32
2 and the superscript T stands for the transpose of the matrix.

The state update of LFSR is expressed as St+1 = ASt for t ≥ 0. By induction,
the current state of LFSR is expressed as St = AtS0 and S0 is called the initial
states of the LFSR.

Suppose that U = (u0 u1 · · · u9) and W = (w0 w1 w2 w3) denotes linear
mask matrices where ui, wi ∈ F 32

2 , respectively. Then, the linear approximation
of SOSEMANUK (13) is expressed as the following form:

USt ⊕ WZt = 0 ⇐⇒ UAtS0 ⊕ WZt = 0, t ≡ 1 (mod 4) (14)

where Zt = (zt, zt+1, zt+2, zt+3)T .

4.2 Attack Method

Our attack algorithm is exactly same as [4,10] except that multiple linear ap-
proximations are derived at a fixed clock. Let us assume that N is the number
of keystream words observation and M is the linear approximations of the form
(14) derived at each clock. Then, we get totally M × N linear approximations
for the attack and they are expressed as the following form:⎛⎜⎜⎜⎝

U0

U1

...
UM−1

⎞⎟⎟⎟⎠AtS0 ⊕

⎛⎜⎜⎜⎝
W0

W1

...
WM−1

⎞⎟⎟⎟⎠Zt = 0, t = 1, 2, . . . , N. (15)
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Let l denote the length of the internal states of the LFSR over F2. Our attack
aims at recovering m bits out of l state bits where 0 < m < l. Let Ωm denote a
subspace of Fl

2 such that l − m coordinates at each U in Ωm are always zeros.
Without loss of generality, we assume that the vectors of the Ωm have zero values
from the first to the (l − m)-th coordinates. Hence, |Ωm| = 2m.

The attack algorithm to recover the m state bits is described as follows;

1. Collect a sufficient number of linear approximations which satisfy UiA
t ∈ Ωm

where 0 ≤ i ≤ M and 0 ≤ t ≤ N .
2. For K = 0 to K = 2m − 1,

(a) Assign the values of m state bits by K;
(b) Compute the correlation of the linear approximations using K;

3. Choose K whose correlation is maximal.

In Step 1, the expected number of linear approximations is M ×N ×2m−l. If we
combine the N × M linear approximations pairwise, we can derive new linear
approximations (holding with lower correlations) for the attack without increas-
ing the number of the keystream observations. This technique is called Second
LFSR derivation in [4]. From (15), a pairwise combined linear approximation is
of the following form:

(UiA
τ1 ⊕ UjA

τ2)S0 ⊕ (WiZτ1 ⊕ WjZτ2) = 0, 1 ≤ i, j ≤ M, 1 ≤ τ1, τ2 ≤ N.

The amount of possible combinations are N × M × 2. Among those, we choose
the linear approximations such that (Ui1A

j1 ⊕ Ui2A
j2) ∈ Ωm. Obviously, such

approximations have the correlation of c2
sose. The number of approximations that

satisfy this condition is expected to be N ′ = 2m−l(N × M)2.
Let us denote N ′ linear approximations by

U ′
iS0 ⊕ W ′

i Zt = 0, i = 0, · · · , N ′ − 1. (16)

where U ′
i ∈ Ωm. In Step 2 and Step 3, the correlations of (16) are evaluated for

all possible values of m state bits as follows:

∀K ∈ Ωm, DK = (#{U ′
iK ⊕ W ′

i Zt = 0′} − #{U ′
iK ⊕ W ′

iZt = 1})/N ′.

For correctly guessed m state bits, DK is close to c2
sose. On the other hand, for

incorrectly guessed state bits, DK is close to zero.
Instead of evaluating (16) for all possible values of m state bits indepen-

dently, we can reduce the computing complexity by the fast Walsh-Hadamard
Transform. Let f : Ωm → R be a real valued function. The Walsh-Hadamard
Transform F of f is defined as

F (ν) =
∑

η∈Ωm

f(η)(−1)η·ν , ν ∈ Ωm.

If the mapping f is defined as the frequencies of the vectors U ′
i and W ′

i for
i = 0, · · · , N ′ − 1, the fast Walsh-Hadamard Transform F (K) for a fixed K
indicates the DK .



112 J.Y. Cho and M. Hermelin

4.3 Attack Complexity

We estimate the complexity of the attack by the statistic method presented in
[4,10]. Let l denote the length of the LFSR of SOSEMANUK in bits, i.e. l = 320.
We target to recover m bits out of l bits by using the linear approximations whose
correlations are larger than csose.

Data Complexity. Let Φ be the normal cumulative distribution function which
is defined as

Φ(x) =
1√
2π

∫ x

−∞
e−

t2
2 dt.

For the right value K0 of the m state bits, the non-detection probability is

Pr
[
DK0 <

3
2
N ′csose

]
= 1 − Φ (3/λ)

and for the wrong value Ki �= K0 of the m state bits, the false-alarm probability
is

Pr
[
DKi <

3
2
N ′csose

]
= 2−m

where λ is determined by the condition 1 − Φ(λ) = 2−m. Then, the number of
approximation relations needed for the state recovery attack is N ′ = ( 4λ

3c2
sose

)2.
Hence, the number of keystream observations N required for the attack is cal-
culated as

N ′ = 2m−l−1(N × M)2 = (
4λ

3c2
sose

)2 =⇒ N =
4λ2(l−m+1)/2

3Mc2
sose

. (17)

Since a 128-bit keystream is produced at each observation (every four clocks),
the attack requires 128 × N bits of data.

Time Complexity. Suppose that M×N linear approximations are obtained by
observing the keystream and calculating the state recurrence matrix of LFSR. In
order to perform the Second LFSR derivative technique, we need (M ×N)2 op-
erations in general. However, the operations can be reduced by applying sorting-
and-combining technique used in [4,10]. First, M ×N approximations are sorted
out according to the value of l − m state bits. Let the sorted approximations
be represented by X1, X2, . . . , XM×N . Then, two consecutive approximations Xi

and Xi+1 for i = 1, . . . , M × N − 1 are checked whether their l − m state bits
are same. If they are same, we know Xi ⊕ Xi+1 ∈ Ωm. It is known that the
fast sorting algorithm requires around (M × N) log(M × N) operations. higher
Let us assume that the N ′ linear approximations are generated by the Sec-
ond LFSR derivative technique. As mentioned before, the evaluation of the N ′

linear approximations can be sped up by the fast Walsh-Hadamard Transform
[4,10]. Since the space of the targeted state bits is 2m, the evaluation by the fast
Walsh-Hadamard Transform requires 2m log(2m) = m × 2m operations. Hence,
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the time complexity of the attack for recovering the m state bits is approximately
m × 2m + (M × N) log(M × N).

Let us assume m ≥ 138 which is the parameter used in [10]. If the attack is
performed on two non-overlapping sets of m state bits, we can recover 2m bits
out of 320 + 64 state bits. Then the remaining 384 − 2m bits can be searched
exhaustively. Therefore, the time complexity required for the recovery of full
internal state bits is around T = 2×m×2m+2×M×N log(M ×N)+2384−2×m.

Memory Complexity. In order to carry out the sorting-and-combining tech-
nique, we need to store M × N linear approximations, which needs around
l ×M ×N memory bits. The Fast Walsh transform needs around 2m ×  log N ′!
memory bits. Hence, the memory complexity is around l×M×N+2m× log N ′!.

Table 3 summarizes the best attack complexity achievable by using multiple
linear approximations against SOSEMANUK.

Table 3. Comparison of the complexity with respect to the number of linear
approximations

|csose| M m λ data (bits) time memory (bits)

2−21.4 1 138 13.6 2145.5 2147.4 2146.8

2−21.4 896 138 13.6 2135.7 2147.4 2146.8

≥ 2−22.5 896 + 7680 139 13.6 2134.1 2148.8 2148.5

≥ 2−23.5 896 + 7680 + 63104 140 13.7 2132.6 2150.2 2150.0

≥ 2−24.5 896 + 7680 + 63104 + 331776 141 13.7 2131.6 2151.6 2151.5

≥ 2−25.5 896 + 7680 + 63104 + 331776 + 1391872 143 13.8 2130.4 2152.9 2152.5

5 Improved Distinguishing Attack on SOBER-128

SOBER-128 is a software oriented stream cipher proposed in 2003 by Qual-
comm Australia [9]. SOBER-128 consists of a 544-bit LFSR and a nonlinear
filter (NLF). The length of supporting key size is 128-bit. The brief description
of SOBER-128 algorithm is given in Appendix B.

The best attack against SOBER-128 is a distinguishing attack using a linear
approximation with the correlation of 2−8.8 [6]. We discovered that there exist
many linear approximations which hold with equal to or slightly less correlations
than the highest one. The number of linear approximations with strong corre-
lations is listed in Table 4. If these 96 linear approximations are used for the
distinguishing attack, the data complexity of the attack is reduced to

N = 1/

96∑
i=1

(2c−6
sober,i)

2 = (16 · 2−103.6 + 24 · 2−104.8 + 56 · 2−106)−1 = 298.4.

For comparison, the distinguishing attack using a single linear approximation
requires 2103.6 data complexity [6].
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Table 4. The number of linear approximations of SOBER-128 and their correlations

source |cSober| # of linear approximations

[6] 2−8.8 8

this paper
2−8.8 16
2−8.9 24
2−9.0 56

6 Conclusion

SOSEMANUK adapts the core structures of two strong ciphering algorithms,
aiming at reducing the possibility of attacks which are applicable to both cipher-
ing blocks simultaneously. The existence of many linear approximations holding
with strong correlations in both ciphering blocks seems to be an unexpected
weakness of SOSEMANUK. We showed that the data complexity of the linear
cryptanalysis presented in Asiacrypt 2008 can be reduced by a factor of 210 if
such multiple linear approximations are used. Even though we could not present
any practical attack threatening the security of SOSEMANUK, we believe that
our analysis techniques and results can be useful for analyzing SOSEMANUK-
like ciphering algorithms.
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A Correlation Table of S-Box of Serpent1

Given an input mask a and an output mask b where a, b ∈ F4
2, the correlation of

the linear approximation a · x⊕ b · S(x) = 0 of the S-box is measured as follows:

c(a; b) = 2−4(#(a · x ⊕ b · S(x) = 0) − #(a · x ⊕ b · S(x) = 1))

where the · notation stands for the standard inner product. The correlation table
of the S-box is given in Table 5.

B Brief Description of SOBER-128

SOBER-128 consists of an LFSR and a nonlinear filter (NLF). The LFSR consists
of 17 words state registers which is denoted by the vector (st, · · · , st+16). Since
each si is a 32-bit integer, the size of LFSR is 544 bits. The new state of the
LFSR is generated by the following connection polynomial

st+17 = st+15 ⊕ st+4 ⊕ γst,

where the constant γ = 0x00000100 (hexadecimal).
A Nonlinear Filter (NLF) produces an output word zt by taking st, st+1, st+6,

st+13, st+16 from the LFSR states and the 32-bit constant K. The NLF consists
of two substitution functions (S-box), one rotation, four adders modulo 232 and
three XOR additions.

http://eprint.iacr.org/
http://csrc.nist.gov/archive/aes/round2/r2report.pdf
http://www.ecrypt.eu.org/stream/
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Table 5. Correlation table of S-box used in Serpent1: c(a; b)

a\b 1 2 3 4 5 6 7 8 9 a b c d e f

1 0 0 0 0 2−1 0 2−1 0 −2−1 0 2−1 0 0 0 0
2 0 2−2 2−2 2−2 −2−2 0 2−1 0 0 −2−2 −2−2 2−2 −2−2 2−1 0
3 0 2−2 2−2 2−2 2−2 0 0 0 2−1 −2−2 2−2 2−2 −2−2 −2−1 0
4 0 2−2 −2−2 −2−2 −2−2 2−1 0 0 0 −2−2 2−2 −2−2 −2−2 0 −2−1

5 0 −2−2 2−2 −2−2 2−2 0 0 −2−1 0 −2−2 −2−2 2−2 2−2 0 −2−1

6 0 0 −2−1 0 2−1 0 0 0 0 0 −2−1 0 −2−1 0 0
7 0 2−1 0 0 0 −2−1 0 −2−1 0 0 0 −2−1 0 0 0
8 0 −2−2 2−2 0 0 2−2 −2−2 −2−2 −2−2 −2−1 0 −2−2 −2−2 0 2−1

9 0 −2−2 2−2 2−1 0 −2−2 −2−2 2−2 −2−2 0 0 −2−2 −2−2 0 −2−1

10 2−1 0 0 −2−2 −2−2 −2−2 2−2 2−2 −2−2 −2−2 −2−2 0 0 −2−1 0
11 −2−1 0 0 2−2 −2−2 2−2 2−2 −2−2 −2−2 2−2 −2−2 0 0 −2−1 0
12 0 0 0 2−2 2−2 2−2 2−2 2−2 2−2 −2−2 −2−2 −2−1 2−1 0 0
13 0 2−1 2−1 −2−2 2−2 2−2 −2−2 2−2 −2−2 2−2 −2−2 0 0 0 0
14 2−1 −2−2 2−2 0 0 2−2 2−2 −2−2 2−2 2−1 0 −2−2 −2−2 0 0
15 2−1 2−2 −2−2 2−1 0 2−2 −2−2 −2−2 −2−2 0 0 2−2 2−2 0 0

The function f is defined as f(a) = S-box(aH) ⊕ a, where the S-box takes
8-bit inputs and generates 32-bit outputs. Note that aH is the most significant 8
bits of 32-bit word a. The output zt of the nonlinear filter is described as follows

zt = f((((f(st + st+16) ≫ 8) + st+1) ⊕ K) + st+6) + st+13,

where + denotes an addition modulo 232 and ≫ 8 denotes the right rotation
by 8 bits.. The LFSR states and the constant K are initialized from the 128-bit
secret key using the initialization procedure. More details can be found in the
original paper describing SOBER-128 [9].

C Example of Linear Masks with the Strongest
Correlations

Let us recall (13). If Γ1 and Γ2 is used in the bitslice mode and τ = 0, the
input of S-box can be 2 or 3. Since cS(2; 7) = cS(2; 14) = 2−1 and cS(3; 9) =
cS(3; 14) = 2−1, there are 32 possible combinations. For τ = 1, the input of
S-box can be 4 or 6. Since cS(6; 3) = cS(6; 5) = cS(6; 11) = cS(6; 13) = 2−1

and cS(4; 6) = cS(4; 15) = 2−1, we get 384 possible combinations. For τ = 2, the
input of S-box can be 8 or 12. Since cS(8; 10) = cS(8; 15) = 2−1 and cS(12; 12) =
cS(12; 13) = 2−1, there are 32 possible combinations. If we use both (8) and (9),
we can get 2× (32 + 384 + 32) = 896 linear approximations. Table 6 shows some
linear masks with the strongest correlations for τ = 0.
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Table 6. Linear masks of approximations (13) with the correlation of 2−21.4 for τ = 0

Γ1 Γ2 Γ3 Γ4 Γ5 B0 B1 B2 B2 |csose|
02004001 03004001 02004001 02004001 03004001 03004001 01000000 01000000 02004001 2−21.4
02004001 03004001 02004001 02004001 03004001 01004001 03000000 03000000 02004001 2−21.4
02004001 03004001 02004001 02004001 03004001 02004001 01000000 01000000 03004001 2−21.4
02004001 03004001 02004001 02004001 03004001 00004001 03000000 03000000 03004001 2−21.4
02004001 03004001 02004001 02004001 03004001 03000001 01004000 01004000 02004001 2−21.4
02004001 03004001 02004001 02004001 03004001 01000001 03004000 03004000 02004001 2−21.4
02004001 03004001 02004001 02004001 03004001 02000001 01004000 01004000 03004001 2−21.4
02004001 03004001 02004001 02004001 03004001 00000001 03004000 03004000 03004001 2−21.4
02004001 03004001 02004001 02004001 03004001 03004000 01000001 01000001 02004001 2−21.4
02004001 03004001 02004001 02004001 03004001 01004000 03000001 03000001 02004001 2−21.4
02004001 03004001 02004001 02004001 03004001 02004000 01000001 01000001 03004001 2−21.4
02004001 03004001 02004001 02004001 03004001 00004000 03000001 03000001 03004001 2−21.4
02004001 03004001 02004001 02004001 03004001 03000000 01004001 01004001 02004001 2−21.4
02004001 03004001 02004001 02004001 03004001 01000000 03004001 03004001 02004001 2−21.4
02004001 03004001 02004001 02004001 03004001 02000000 01004001 01004001 03004001 2−21.4
02004001 03004001 02004001 02004001 03004001 00000000 03004001 03004001 03004001 2−21.4
03004001 03004001 03004001 03004001 03004001 03004001 00000000 00000000 03004001 2−21.4
03004001 03004001 03004001 03004001 03004001 01004001 02000000 02000000 03004001 2−21.4
03004001 03004001 03004001 03004001 03004001 02004001 01000000 01000000 03004001 2−21.4
03004001 03004001 03004001 03004001 03004001 00004001 03000000 03000000 03004001 2−21.4
03004001 03004001 03004001 03004001 03004001 03000001 00004000 00004000 03004001 2−21.4
03004001 03004001 03004001 03004001 03004001 01000001 02004000 02004000 03004001 2−21.4
03004001 03004001 03004001 03004001 03004001 02000001 01004000 01004000 03004001 2−21.4
03004001 03004001 03004001 03004001 03004001 00000001 03004000 03004000 03004001 2−21.4
03004001 03004001 03004001 03004001 03004001 03004000 00000001 00000001 03004001 2−21.4
03004001 03004001 03004001 03004001 03004001 01004000 02000001 02000001 03004001 2−21.4
03004001 03004001 03004001 03004001 03004001 02004000 01000001 01000001 03004001 2−21.4
03004001 03004001 03004001 03004001 03004001 00004000 03000001 03000001 03004001 2−21.4
03004001 03004001 03004001 03004001 03004001 03000000 00004001 00004001 03004001 2−21.4
03004001 03004001 03004001 03004001 03004001 01000000 02004001 02004001 03004001 2−21.4
03004001 03004001 03004001 03004001 03004001 02000000 01004001 01004001 03004001 2−21.4
03004001 03004001 03004001 03004001 03004001 00000000 03004001 03004001 03004001 2−21.4
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Abstract. In this paper we extend the standard attack tree model by
introducing temporal order to the attacker’s decision making process.
This will allow us to model the attacker’s behaviour more accurately,
since this way it is possible to study his actions related to dropping some
of the elementary attacks due to them becoming obsolete based on the
previous success/failure results. We propose an efficient algorithm for
computing the attacker’s expected outcome based on the given order
of the elementary attacks and discuss the pros and cons of consider-
ing general rooted directed acyclic graphs instead of plain trees as the
foundations for attack modelling.

1 Introduction

Attack tree (also called threat tree) approach to security evaluation is several
decades old. It has been used for tasks like fault assessment of critical systems
[1] or software vulnerability analysis [2,3]. The approach was first applied in the
context of information systems (so-called threat logic trees) by Weiss [4] and later
more widely adapted to information security by Bruce Schneier [5]. We refer to
[6,7] for good overviews on the development and applications of the methodology.

Since their first introduction, attack trees have been used to describe attacks
against various real-world applications like Border Gateway Protocol [8], SCADA
protocols [9] and e-voting infrastructures [10]. Attack trees have found their place
in computer science education [11] and several support tools like AttackTree+1

and SecurITree2 have been developed.
Early approaches to attack tree modelling were mostly concerned with just

categorising the attacks [8] or modelling the attacker’s behaviour by one specific
parameter of the attacks like the cost, difficulty or severity [5,9,12]. A substantial
step forward was taken by Buldas et al. [13] who introduced the idea of game-
theoretic modelling of the attacker’s decision making process based on several
interconnected parameters like the cost, risks and penalties associated with dif-
ferent elementary attacks. This approach was later refined by Jürgenson and

1 http://www.isograph-software.com/atpover.htm
2 http://www.amenaza.com/

D. Lee and S. Hong (Eds.): ICISC 2009, LNCS 5984, pp. 118–128, 2010.
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Willemson [14,15] and applied to the analysis of the security of several e-voting
solutions by Buldas and Mägi [10].

So far, practically all the research in the field of attack trees has concentrated
on what one could call a parallel model [4,5,3,8,9,16,12,13,14,10,15]. Essentially,
the model assumes that all the elementary attacks take place simultaneously
and hence the attacker’s possible decisions based on success or failure of some
of the elementary attacks are ignored. However, as noted already in [15], this
model is unrealistic. In practice, the attacker is able to order his actions and try
different alternative scenarios if some others fail or to stop trying altogether if
some critical subset of elementary attacks has already failed or succeeded. Not
risking with the hopeless or unnecessary attempts clearly reduces the amount of
potential penalties and hence increases the attacker’s expected outcome.

The main contribution of this paper is to surpass this shortcoming by intro-
ducing what one could call a serial model for attack trees. We extend the basic
parallel model with temporal order of the elementary attacks and give the at-
tacker some flexibility in skipping some of them or stopping the attack before
all of the elementary attacks have been tried. The other contribution is a gener-
alisation of the attack tree approach to accommodate arbitrary rooted directed
acyclic graphs, which will enable us to conveniently ensure consistency of our
computations in the general framework proposed by Mauw and Oostdijk [12].

The paper is organised as follows. In Section 2 we first briefly review the basic
multi-parameter attack tree model. Sections 3 and 4 extend it by introducing
attack descriptions based on general Boolean functions and temporal order of
elementary attacks, respectively. Section 5 presents an efficient algorithm for
computing the attacker’s expected outcome of the attack tree with the predefined
order of leaves. Finally, Section 6 draws some conclusions and sets directions for
further work.

2 The Attack Tree Model

Basic idea of the attack tree approach is simple – the analysis begins by identi-
fying one primary threat and continues by dividing the threat into subattacks,
either all or some of them being necessary to materialise the primary threat. The
subattacks can be divided further etc., until we reach the state where it does not
make sense to divide the resulting attacks any more; these kinds of non-splittable
attacks are called elementary attacks and the security analyst will have to eval-
uate them somehow. During the splitting process, a tree is formed having the
primary threat in its root and elementary attacks in its leaves. Using the struc-
ture of the tree and the estimations of the leaves, it is then (hopefully) possible
to give some estimations of the root node as well. In practice, it mostly turns
out to be sufficient to consider only two kinds of splits in the internal nodes of
the tree, giving rise to AND- and OR-nodes. As a result, an AND-OR-tree is
obtained, forming the basis of the subsequent analysis.

The crucial contribution of Buldas et al. [13] was the introduction of four
game-theoretically motivated parameters for each leaf node of the tree. This
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approach was later optimised in [15], where the authors concluded that only two
parameters suffice. Following their approach, we consider the set of elementary
attacks X = {X1, X2, . . . , Xn} and give each one of them two parameters:

– pi – success probability of the attack Xi,
– Expensesi – expected expenses (i.e. costs plus expected penalties) of the

attack Xi.

Besides these parameters, there is a global value Gains expressing the benefit of
the attacker if he is able to materialise the primary threat.

In the parallel model of [15], the expected outcome of the attacker is computed
by maximising the expression

OutcomeS = pS · Gains −
∑

Xi∈S

Expensesi (1)

over all the assignments S ⊆ X that make the Boolean formula F , represented
by the attack tree, true. (Here pS denotes the success probability of the primary
threat.) Like in the original model of Buldas et al. [13], we assume that the
attacker behaves rationally, i.e. he attacks only if there is an attack scenario
with a positive outcome. The defender’s task is thus achieving a situation where
all the attack scenarios would be non-beneficial for the attacker.

Our aim is to develop this model in two directions. In Section 3 we will
generalise the attack tree model a bit to allow greater flexibility and expressive
power of our model, and in Section 4 we will study the effects of introducing
linear (temporal) order to the set of elementary attacks.

3 Attack Descriptions as Monotone Boolean Functions

Before proceeding, we briefly discuss a somewhat different perspective on attack
tree construction. Contrary to the standard top-down ideology popularised by
Schneier [5], a bottom-up approach is also possible. Say, our attacker has iden-
tified the set of elementary attacks X available to him and he needs to figure
out, which subsets of X are sufficient to mount the root attack. In this paper we
assume that the set of such subsets is monotone, i.e. if some set of elementary
attacks suffices, then so does any of its supersets. This way it is very convenient
to describe all the successful attacks by a monotone Boolean function F on the
set of variables X .

Of course, if we have constructed an attack tree then it naturally corresponds
to a Boolean function. Unfortunately, considering only the formulae that have
a tree structure is not always enough. Most notably, trees can not handle the
situation, where the same lower-level attack is useful in several, otherwise inde-
pendent higher-level attacks, and this is clearly a situation we can not ignore in
practical security analysis.

Another shortcoming of the plain attack tree model follows from the general
framework by Mauw and Oostdijk [12]. They argue that the semantics of an
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attack tree is inherently consistent if and only if the tree can be transformed
into an equivalent form without changing the value of the expected outcome.
When stating and proving their result, they essentially transform the underlying
Boolean formula into a disjunctive normal form, but when doing so, they need
to introduce several copies of some attacks, therefore breaking the tree structure
in favour of a general rooted directed acyclic graph (RDAG). Since AND-OR-
RDAGs are equivalent to monotone Boolean functions, there is no immediate
need to take the generalisation any further.

Thus it would be more consistent and fruitful not to talk about attack trees,
but rather attack RDAGs. On the other hand, as the structure of a tree is so
much more convenient to analyse than a general RDAG, we should still try to
stick to the trees whenever possible. We will see one specific example of a very
efficient tree analysis algorithm in Section 5.

4 Ordering Elementary Attacks

After the attacker has selected the set of possible elementary attacks X and
described the possible successful scenarios by means of a monotone Boolean
function F , he can start planning the attacks. Unlike the näıve parallel model of
Schneier [5], the attacker has a lot of flexibility and choice. He may try some ele-
mentary attack first and based on its success or failure select the next elementary
attack arbitrarily or even decide to stop attacking altogether (e.g. due to certain
success or failure of the primary threat). Such a fully adaptive model is still too
complicated to analyse with the current methods, thus we will limit the model
to be semi-adaptive. I.e., we let the attacker to fix linear order of some elemen-
tary attacks in advance and assume that he tries them in succession, possibly
skipping superfluous elementary attacks and stopping only if he knows that the
Boolean value of F has been completely determined by the previous successes
and failures of elementary attacks.

The full strategy of the attacker will be the following.

1. Create an attack RDAG with the set of leaf nodes X = {X1, X2, . . . , Xn}.
2. Select a subset S ⊆ X materialising the primary threat and consider the

corresponding subtree.
3. Select a permutation α of S.
4. Based on the subtree and permutation α, compute the expected outcome.
5. Maximise the expected outcome over all the choices of S and α.

This paper is mostly concerned with item 4 in the above list, but doing so we must
remember that when building a complete attack analysis tool, other items can
not be disregarded either. Optimisations are possible, e.g. due to monotonicity
there is no need to consider any subsets of attack suites that do not materialise
the primary threat. Even more can be done along the lines of [15], Section 4.1,
but these aspects remain outside of the scope of the current paper.

Since only one subset S and the corresponding subtree are relevant in the
above step 4, we can w.l.o.g. assume that S = X . The attacker’s behaviour for
permutation α will be modelled as shown in Algorithm 1.
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Algorithm 1. Perform the attack
Require: The set of elementary attacks X = {X1, X2, . . . , Xn}, permutation α ∈ Sn

and a monotone Boolean formula F describing the attack scenarios
1: for i := 1 to n do
2: Consider Xα(i)

3: if success or failure of Xα(i) has no effect on the success or failure of the root
node then

4: Skip Xα(i)

5: else
6: Try to perform Xα(i)

7: if the root node succeeds or fails then
8: Stop
9: end if

10: end if
11: end for

Consider the example attack tree depicted in Figure 1, where we assume
α = id for better readability.

The attacker starts off by trying the elementary attack X1. Independent of
whether it succeeds or fails, there are still other components needed to complete
the root attack, so he tries X2 as well. If it fails, we see that the whole tree fails,
so it does not make sense to try X3 and X4. If both X1 and X2 have succeeded,
we see that it is not necessary to try X3, since X1 and X3 have a common OR-
parent, so success or failure of X4 determines the final outcome. If X1 fails and
X2 succeeds, we need the success of both X3 and X4 to complete the task; if
one of them fails, we stop and accept the failure.

The expected outcome of the attack based on permutation α will be defined
as

Outcomeα = pα · Gains −
∑

Xi∈X
pα,i · Expensesi , (2)

where pα is the success probability of the primary threat and pα,i denotes the
probability that the node Xi is encountered during Algorithm 1. Before proceed-
ing, we will prove that the expected outcome of Algorithm 1 does not depend
on the specific form of the formula F . This essentially gives us the compliance
of our attack tree model in the framework of Mauw and Oostdijk [12]. Formally,
we will state and prove the following theorem, similar to Proposition 1 in [15].

Theorem 1. Let F1 and F2 be two monotone Boolean formulae such that F1 ≡
F2, and let Outcome1

α and Outcome2
α be the expected outcomes obtained running

Algorithm 1 on the corresponding formulae. Then

Outcome1
α = Outcome2

α .

Proof. We can observe that Algorithm 1 really does not depend on the attack
description having a tree structure, all the decisions to skip or stop can be taken
based on the Boolean function F . Assume we have already fixed the results of
the elementary attacks Xα(1), . . . , Xα(i−1). Then we see that
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Fig. 1. An example attack tree. The left-to-right ordering of the leaf nodes in the tree
represents the permutation α = id of the set X = {X1, X2, X3, X4}.

– the node Xα(i) may be skipped if for all the values of Xα(i+1), . . . , Xα(n) we
have

F
(
Xα(1), . . . , Xα(i−1), t, Xα(i+1), . . . , Xα(n)

)
=

= F
(
Xα(1), . . . , Xα(i−1), f, Xα(i+1), . . . , Xα(n)

)
,

– there is no need to proceed with Algorithm 1 after the node Xα(i) if for all
the values of Xα(i+1), . . . , Xα(n) we have

F
(
Xα(1), . . . , Xα(i−1), Xα(i), Xα(i+1), . . . , Xα(n)

)
= t

or
F
(
Xα(1), . . . , Xα(i−1), Xα(i), Xα(i+1), . . . , Xα(n)

)
= f . ��

Thus, our serial model for attack trees follows the guidelines given in Sec-
tion 3 and it really is safe to talk about Boolean functions describing the attack
scenarios.

Next we will show formally that introducing order to the elementary attacks
really increases the attacker’s expected outcome. Comparing (2) to (1) we get
the following theorem.

Theorem 2. Let F be a monotone Boolean function on n ≥ 2 variables describ-
ing the attack scenarios. Let Outcomeα be defined by (2) and let OutcomeX be
defined by (1) for S = X . Then we have

Outcomeα ≥ OutcomeX . (3)

If for all the elementary attacks Xi (i = 1, . . . , n) one also has Expensesi > 0,
then strict inequality holds in (3).
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Proof. First we note that by [15] we can compute the success probability of the
attacker as follows:

pX =
∑

S ⊆ X
F(S := true) = true

∏
Xi∈S

pi

∏
Xj∈X\S

(1 − pj) ,

where F(S := true) denotes evaluation of the Boolean function F , when all the
variables of S are assigned the value true and all others the value false. This is
exactly the total probability of all the successful branches of Algorithm 1 and
thus pX = pα (implying that pα is actually independent of α). We also have that
∀i pα,i ≤ 1 and hence the inequality (3) follows.

Assume now that for all Xi we have Expensesi > 0. Then in order to prove
that strict inequality holds in (3), we need to show that there exists such an
index i that pα,i < 1. Consider the elementary attack Xα(n) that the attacker
is supposed to try last. If there exists an evaluation of the Boolean variables
Xα(1), . . . , Xα(n−1) such that

F
(
Xα(1), . . . , Xα(n−1), t

)
= F

(
Xα(1), . . . , Xα(n−1), f

)
,

then Xα(n) is superfluous in this scenario and hence pα,n < 1.
If on the other hand we have

F
(
Xα(1), . . . , Xα(n−1), t

)
�= F

(
Xα(1), . . . , Xα(n−1), f

)
for all evaluations of Xα(1), . . . , Xα(n−1), then due to monotonicity of F we can
only have that

F
(
Xα(1), . . . , Xα(n−1), f

)
= f

and
F
(
Xα(1), . . . , Xα(n−1), t

)
= t ,

implying F(Y1, . . . , Yn) ≡ Yn. But in this case all the elementary attacks before
the last one get skipped, so pα,1 = . . . = pα,n−1 = 0. ��

Thus, introducing ordering of the elementary attacks is guaranteed to give at
least as good a result to the attacker as the routine described in [15]. In the in-
teresting case, when all attack components have positive expenses, the attacker’s
expected outcome is strictly larger.

5 Computing the Expected Outcome

There are n + 1 parameters that need to be computed in order to find the
expected outcome using the formula (2) – the total success probability pα and
the probabilities pα,i that the node Xi is encountered during Algorithm 1. It
turns out that there is an efficient algorithm for computing these quantities
provided that the given monotone Boolean function can actually be described
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by a tree. In what follows we will also assume that the tree is binary, but this
restriction is not a crucial one.

So let us have an attack tree with the leaf nodes X1, . . . , Xn and the corre-
sponding success probabilities pi, i = 1, . . . , n. We will assume that all these
probabilities are independent and consider the permutation α ∈ Sn. In order to
explain the algorithm, we first introduce three extra parameters to each node
Y , namely Y.t, Y.f and Y.u showing the probabilities that the node has been
proven to be respectively true, false or yet undefined in the course of the anal-
ysis. Initially, we may set Y.t = Y.f = 0 and Y.u = 1 for all the nodes and
the algorithm will work by incrementally adjusting these values, so that in the
end of the process we will have R.t = pα for the root node R. Throughout the
computations we will of course retain the invariant Y.t + Y.f + Y.u = 1 for all
the nodes Y , hence one of these parameters is actually superfluous. In the pre-
sentation version of the algorithm we will drop the parameter Y.u, even though
it actually plays the central role.

Going back to the high-level description of Algorithm 1, we see that the most
difficult step is step 3, where the attacker is supposed to find out whether the
next elementary attack in his list may have any effect on the success or failure
of the root node. Elementary attack does not have any effect iff there is a node
on the path from that particular leaf to the root that has already been proven
to be true or false. Thus the next elementary attack should be tried iff all the
nodes on this path are undefined – and this is precisely the event that gives us
the required probability pα,i.

Let the path from root R to the leaf Xi then be (Y0 = R, Y1, . . . , Ym = Xi).
Thus, we need to compute the probability

pα,i = Pr[Y0 = u & Y1 = u & . . . & Ym = u] =
= Pr[Y0 = u |Y1 = u , . . . , Ym = u] ·

·Pr[Y1 = u |Y2 = u , . . . , Ym = u] · . . .
. . . · Pr[Ym−1 = u |Ym = u] · Pr[Ym = u] =

= Pr[Y0 = u |Y1 = u] · Pr[Y1 = u |Y2 = u] · . . .
. . . · Pr[Ym−1 = u |Ym = u] · Pr[Ym = u] (4)

The equations

Pr[Yk = u |Yk+1 = u , . . . , Ym = u] = Pr[Yk = u |Yk+1 = u]

hold due to the tree structure of our underlying RDAG and the independence
assumption of the elementary attacks. In (4) we have Pr[Ym = u] = Pr[Xi = u] =
1 and all the other probabilities are of the form Pr[Yk = u |Yk+1 = u]. Hence, we
need to evaluate the probability that the parent node Yk is undefined assuming
that one of its children, Yk+1, is undefined. This probability now depends on
whether Yk is an AND- or OR-node. If Yk is an AND-node and Yk+1 is undefined,
then so is Yk, if its other child Z is either true or undefined, which is the case
with probability Z.t + Z.u = 1−Z.f . Similarly, if Yk is an OR-node and Yk+1 is
undefined, then so is Yk, if its other child Z is either false or undefined, which is
the case with probability Z.f + Z.u = 1 − Z.t.
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This way, (4) gives an efficient way of computing pα,i assuming that the cur-
rent parameters of the internal nodes of the tree are known. Hence, we need the
routines to update these as well. These routines are straightforward. If the ele-
mentary attack Xi is tried, only the parameters of the nodes on the path (Ym =
Xi, . . . , Y1, Y0 = R) from that leaf to the root need to be changed. We do it by
first setting Ym.t = pi, Ym.f = 1 − pi and Ym.u = 0 and then proceed towards
the root. If the node we encounter is AND-node A with children B and C, we set

A.t = B.t · C.t , (5)
A.f = B.f + C.f − B.f · C.f , (6)

and if we encounter an OR-node A with children B and C, we set

A.t = B.t + C.t − B.t · C.t , (7)
A.f = B.f · C.f . (8)

As noted above, we see that the quantities Y.u are actually never needed in the
computations.

This way we get the full routine described as Algorithm 2.

Algorithm 2. Computing the probabilities pα,i

Require: An attack tree with leaf set X = {X1, X2, . . . , Xn} and a permutation
α ∈ Sn

Ensure: The probabilities pα,i for i = 1, 2, . . . , n
1: for all Z ∈ {X1, . . . , Xn} do
2: Z.t := 0, Z.f := 0
3: end for
4: for i := 1 to n do
5: Find the path (Y0, Y1, . . . , Ym) from the root Y0 = R to the leaf Ym = Xα(i)

6: pα,α(i) :=
∏m

j=1(1− Zj .a), where Zj is the sibling node of Yj and

a =

{
t, if Yj−1 is an OR-node,
f, if Yj−1 is an AND-node

7: Xα(i).t = pα(i)

8: Xα(i).f = 1− pα(i)

9: Update the parameters of the nodes Ym−1, Ym−2, . . . , Y0 according to formulae
(5)–(8)

10: end for

Algorithm 2 is very efficient. In order to compute the n + 1 necessary proba-
bilities, it makes one run through all the leaves of the tree and at each run the
path from the leaf to the root is traversed twice. Since the number of vertices
on such a path in a (binary) tree can not be larger than the number of leaves
n, we get that the worst-case time complexity of Algorithm 2 is O(n2). If the
tree is roughly balanced, this estimate drops even to O(n log n). This is a huge
performance increase compared to a näıve algorithm that one could design based
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on the complete attack scenario analysis described after Figure 1 in Section 4.
We studied the näıve algorithm and it turns out that it is not only worst-case
exponential, but also average-case exponential [17].

Of course, as noted in Section 4, Algorithm 2 is only one building block in
the whole attack tree analysis. In order to find out the best attack strategy of
the attacker, we should currently consider all the subsets of X and all their
permutations. Optimisation results presented in [14] give a strong indication
that a vast majority of the possible cases can actually be pruned out, but these
methods remain outside of the scope of the current paper.

6 Conclusions and Further Work

In this paper we studied the effect of introducing a temporal order of elementary
attacks into the attacker’s decision making process together with some flexibility
in retreating of some of them. It turns out that taking temporal dependencies into
account allows the attacker to achieve better expected outcomes and as such, it
brings the attack tree model one step closer to the reality. This reality comes for a
price of immense increase in computational complexity, if we want to compute the
attacker’s exact outcome by considering all the possible scenarios in a näıve way.

Thus there are two main challenges for the future research. First, one may try
to come up with optimisations to the computational process and in this paper we
showed one possible optimisation which works well for attack trees. The second
approach is approximation. In attack tree analysis we are usually not that much
interested in the exact maximal outcome of the attacker, but we rather want to
know whether it is positive or negative. This observation gives us huge potential
for rough estimates, which still need to be studied, implemented and tried out in
practice.

In this paper we limited ourselves to a semi-adaptive model, where the attacker
is bound to the predefined order of elementary attacks and may only choose to
drop some of them. Fully adaptive case where the attacker may choose the next
elementary attack freely is of course even more realistic, but it is currently too
complicated to analyse. Our model is also non-blocking in the sense that there
are no elementary attacks, failure of which would block execution of the whole
tree. However, in practice it happens that when failing some attack, the attacker
might get jailed and is unable to carry on. Hence, future studies in the area of
adaptive and possibly-blocking case are necessary.

As a little technical contribution we also discussed the somewhat inevitable
generalisation of attack trees to RDAGs, but our results also show that whenever
possible, we should still stick to the tree structure. Possible optimisations of
RDAG-based algorithms remain the subject for future research as well.
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Abstract. The field of lightweight cryptography has developed signif-
icantly over recent years and many impressive implementation results
have been published. However these results are often concerned with a
core computation and when it comes to a real implementation there can
be significant hidden overheads. In this paper we consider the case of
cryptoGPS and we outline a full implementation that has been fabri-
cated in ASIC. Interestingly, the implementation requirements still re-
main within the typically-cited limits for on-the-tag cryptography.

1 Introduction

Radio-frequency identification (RFID) tags are becoming a part of our everyday
life and a wide range of applications from the supply chain to the intelligent
home are often described in the literature. Yet, at the same time, security and
privacy issues remain a major issue, not least in the battle against counterfeit
goods, pharmaceutical products, and even engine components in the automotive
and aeronautic industries [16].

It has long been recognised that cryptographic techniques might be used to
help alleviate these problems. However they have all too often been considered
as too expensive to implement, or too unsuited to the enviroment of use. Over
recent years this view has begun to change and there have been substantial
advances in cryptographic design, for instance in new block ciphers such as
present [3]. And as well as the advances we might have expected in symmetric
cryptography—which is typically viewed as the lightweight choice—there has
been a growing understanding of which asymmetric techniques are available
and how they might best be implemented. Indeed, given the essential nature
of an RFID-based deployment with many (potentially unknown) players being
involved—i.e. we have an open rather than a closed system—lightweight public-
key cryptography should be viewed as a particularly attractive technology.

D. Lee and S. Hong (Eds.): ICISC 2009, LNCS 5984, pp. 129–145, 2010.
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Some of the more recent implementation results in the literature have been
very impressive. The oft-cited opinion is that there are around 2 000-3 000 gate
equivalents (GE) available for on-tag security features,1 and despite this repre-
senting a formidable challenge several algorithms claim to achieve this.

In this paper we highlight a problem with many of these estimates and we
observe that figures are often given for the cryptographic core of a computation.
For instance, estimates for the feasibility of elliptic curve cryptography might
consider just the elliptic curve operation while implementation results for cryp-
toGPS [21,22] are focused on the protocol computations. This means that when
it comes to a real implementation there can be significant hidden overheads.

The main purpose of this paper is to highlight this issue, but also to re-
examine the case of one particular proposal in particular, that of cryptoGPS.
To do this we will describe a full implementation of cryptoGPS which includes
all the additional functionality that would be required in a real deployment.
Further, noting that implementation results for lightweight cryptography are
often derived from an FPGA implementation or ASIC synthesis tools, we have
gone one step further and we report on the results of the full ASIC fabrication
of a fully-supported version of cryptoGPS.

1.1 Related Work

Over recent years a lot of work on public key cryptography for RFID tags has
centered around elliptic curves. A comparison between different ECC implemen-
tations is not always easy because the choice of the underlying curve determines
both efficiency and security of the algorithm. However no implementation has
been published so far that comes under 5 000 GE which would, even then, be
too great for passive RFID-tags. Instead several elliptic curve implementations
with a significantly lower security level than 80-bit exist, but their size lies in
the range of 10 000 GE or above [2,6,8].

Gaubatz et al. [9] have investigated the hardware efficiency of the NTRUen-
crypt algorithm [18,26] with the following parameter set (N, p, q) = (167, 3, 128)
that offers a security level of around 57 bits. Though their implementation re-
quires only 2 850 GE, it takes 29 225 clock cycles, which translates to 292 ms
for the response to be computed at the typical clocking frequency of 100 KHz.
Further, it is noteworthy that more than 80% of the area is occupied with stor-
age elements and that already a bit serial datapath is used. This implies that
the opportunities for future improvement are very limited. Oren et al. propose
a public key identification scheme called wipr [27]. Their ASIC implementation
requires 5 705 GE and 66 048 clock cycles, though a proposed optimisation [32]
suggests a reduced area requirement of around 4 700 GE.

In this paper, however, we will concentrate on the cryptoGPS scheme. The
name GPS is derived from the inventors Girault, Poupard, and Stern, but the
term cryptoGPS is increasingly used to avoid confusion with the geographical

1 The gate equivalent (GE) is a unit of area and is equivalent to the physical space
occupied by a logical NAND gate for the given manufacturing process.
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positioning system. A description of the scheme and numerous variants can be
found in [10,14,29]. It is standardised within ISO/IEC 9798-5 [19] and listed in
the final NESSIE portfolio [20]. Some initial analysis of the ASIC implementation
requirements for the elliptic-curve based variant of the cryptoGPS identifica-
tion scheme are available [21,22]. There implementation estimates range between
300–900 GE, but they are only concerned with the core on-tag operation in cryp-
toGPS. A more complete implementation in the form of a fully-functioning
FPGA prototype is described in [12]. But in moving from an FPGA implemen-
tation to a dedicated RFID-tag implementation there are many differences and
complications to consider and this is one of the goals behind this paper.

1.2 This Paper

This paper is organized as follows. First we introduce the cryptoGPS identifi-
cation scheme and we provide a summary of some of the optimisations that are
available. Then we turn to the question of how an implementation would look in
reality and what additional functionality—over and above the core cryptoGPS
computations—would be required. In Section 3 we describe the engineering and
design challenges that needed to be overcome in designing an ASIC that in-
corporates three different (two round-based and one serialised) variants of the
cryptoGPS scheme. In Section 4.2 we discuss our results before we draw our
conclusions in Section 5.

2 The cryptoGPS Identification Scheme

A public key identification scheme [23] allows the possessor of a secret key to
prove possession of that secret by means of an interactive protocol. Thus, in
the case of an RFID deployment, the tag would “prove” to a reader that it
contains a tag-specific secret and the reader is thereby assured that the tag is
genuine. Only a device possessing the key could provide the necessary responses.
While at first sight this might appear to be quite a specialised functionality,
for instance we don’t have the conventional public key services of encryption or
digital signatures2, interactive identification schemes have been deployed widely.
In particular the cryptoGPS scheme seems to allow a particularly compact
implementation on the tag. This allows us to consider RFID tags with public
key capability which can open up previously unavailable application areas.

2.1 Overview of cryptoGPS

There are many variants and optimisations of cryptoGPS. One variant uses
RSA-like moduli but here, and in Figure 1, we illustrate the essential elements of
cryptoGPS using elliptic curve operations. For the system as a whole there are
2 Identification schemes can be converted to signature schemes in a standard way [23]

though some computational advantages can be lost.
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Keys and Parameters:

Curve C and base point P

Secret key s r {0,...,2 -1}

Public key V = -sP
Secret PRG key k

Keys and Parameters:

Curve C and base point P

Secret key s r {0,...,2 -1}

Public key V = -sP

Precomputation:

For 0 i  t -1
Generate ri = PRGk(i)

Compute xi = HASH(riP)

Select coupon (xi)

Check 0 c  2 -1

re-generate ri = PRGk(i)

Compute y = ri + sc

Check 0  xi  2h-1

Choose c r {0,...,2 -1}

HASH(yP + cV) = xi ?

c

xi

y

Store coupon (xi)

Tag

Reader

Fig. 1. An overview of the elliptic curve-based variant of cryptoGPS with most avail-
able optimisations implemented. Note that the elliptic curve parameters are not re-
quired on the tag and the only computations that are required are those of the prgk

to generate ri and computation of the response y.

the shared parameters of the elliptic curve C and a base point P on that curve.
These are not required on the tag and so they do not impact our implementation.
The cryptoGPS secret key s is stored on the tag and is assumed to be σ bits
in length. The public key V = −sP is an elliptic curve point and we assume
that this is available to the reader by some mechanism. To take full advantage
of the optimisations described in Section 2.2 the tag is required to support a
pseudo-random generator (prg) that uses a tag-specific secret key k. Note that
k is required at initialisation to perform some pre-computation, but afterwards
k is never needed outside the tag.

Several parameter sizes need to be set and the appropriate choices will depend
on the application and the security level. We have already mentioned σ which
for a security level of 80 bits is set to σ = 160. The length of the challenge c
from the reader to the tag will be denoted δ and the particular value will depend
on different optimisations. The length of the pseudo-random numbers ri will be
denoted ρ and it is a requirement of cryptoGPS that we set ρ = σ + δ + 80.

2.2 Implementing cryptoGPS in Theory

Of particular practical interest are a series of optimisations designed to ease the
computation and storage costs of cryptoGPS implementation.

– One important optimisation is the use of coupons. In [11] Girault describes
a storage/computation trade-off for cryptoGPS that uses t coupons, each
consisting of a pair (ri, xi) for 1 ≤ i ≤ t. These coupons are stored on
the tag before deployment. Figure 1 shows a general overview of the elliptic
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curve-based variant of cryptoGPS where both pre-computation and reader
verification use a hash function hash giving h-bit outputs. However when
coupons are used neither the elliptic curve operation nor the hash function
are needed on the tag.

– As a further improvement to the storage costs of coupons, we can generate
the ri using a keyed pseudo-random generator prgk as described in [15,19].
This is done at the time of tag manufacture, and then the necessary ri can
be re-computed on the tag at the time of verification.

– The on-tag computation y = ri + sc can be optimised by using what is
termed a Low Hamming Weight (LHW) challenge [13]. This effectively turns
the integer multiplication into a few simple integer additions.

The combination of coupons and the LHW challenge lends cryptoGPS its ad-
vantageous performance. While coupons carry a storage cost and they are not
to everyone’s tastes, this approach encapsulates today’s typical environment of
use; we want aggressive and cheap performance on the tag and in most appli-
cations RFID tags will only be verified a moderate number of times, perhaps
over several hops in the supply chain. After this the tag would be thrown away
or deactivated as is currently recommended in a variety of policy statements on
privacy.

2.3 Implementing cryptoGPS in Practice

In abstract terms, Section 2.2 gave an outline of how we would implement cryp-
toGPS. But these optimisations carry their own problems and it is a task of
some difficulty to arrive at a good solution in practice.

Implementing the LHW challenge. In order to avoid the rather demanding
(σ × δ)-bit multiplication that is required, it is possible to use a series of simple
additions [13]. For this purpose it is required to turn the challenge c into a
Low Hamming Weight (LHW) challenge [13] such that at least σ − 1 zero bits
lie between two subsequent 1 bits. When using binary representations of the
multiplicands it is easy to see that multiplications can be performed using the
basic Shift-And-Add multiplication algorithm [28]. When a bit of the input
challenge c is 0, the multiplicand s is shifted to the left by one position. When
the input challenge c is 1, the multiplicand s is shifted to the left and the result
is added (with carry) to the multiplicand s. This way a complete multiplication
can be reduced to simple shiftings and additions. Since in our case we use a low
Hamming weight challenge that has all 1 bits at least σ − 1 zero bits apart, it is
ensured that there is no overlap in subsequent additions of s. In other words s
is never added more than once at the same time.

In our implementation the secret is of size σ = |s| = 160 and the challenge
c is of length δ = |c| = 848 with a Hamming weight of 5. The specifications of
cryptoGPS state that the parameters are typically set to ρ = |r| = σ + δ + 80
and so for our chosen values, achieving a probability of impersonation of 2−32

requires δ = 848 bits [13] and this leads to ρ = |r| = 160+ 848 + 80 = 1088 bits.
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However 848 bits is quite a long challenge to transmit from the reader to the
tag, and so work in [12,22] has considered this issue. In particular two encoding
schemes have been proposed that require that we use only 40 bits to encode the
complete 848-bit challenge c. We build on this work and in our implementation
we will use a modified variant of the encoding scheme that was proposed for
the 8-bit architecture in [22]. In particular it assumes that the challenge c is
represented as five 8-bit chunks ni so that c = n4‖n3‖n2‖n1‖n0. Then, each ni

consists of the 5-bit number ci,1 and the 3-bit number ci,2, and so ni = ci,2‖ci,1,
and these are used to encode the exact position of one of the five non-zero bits of
the 848-bit low Hamming weight challenge. In particular, the positions p0, . . .,
p4 of the non-zero bits of the challenge c can be calculated using the following
equations:

pi =
{

8 · c0,1 + c0,2 for i = 0
160 + 8 · ci,1 + ci,2 for 1 ≤ i ≤ 4

Two examples of the encoding can be found in Appendix I.

Using a prg. Storing coupons cost memory and in both hardware and soft-
ware implementations for embedded devices this can be a significant cost factor.
Hence, the size of the coupons limits the number of available coupons for a given
amount of memory or increases the cost. One approach uses a hash function
to reduce the size of the xi that need to be stored [15]. A second improvement
is to observe that, above a certain threshold, it can be cheaper to implement
a way of re-generating the ri than to store them. The ISO standard 9798 [19]
suggests using a tag-specific keyed prg for doing this. While there are a variety
of lightweight algorithms available [4,17] we decided to use the lightweight block
cipher present in an appropriate mode to regenerate the ri. The most efficient
choice was to use the output feedback mode (OFB) [25] for our cryptoGPS im-
plementations. Clearly care needs to be taken to manage the state of the cipher
between calls to the tag to ensure that no repetitions in ri are generated.

Summary. The following optimisations have been considered for this prototype:

1. Coupons are used to avoid hash and elliptic curve operations on the tag.
2. LHW challenges are used to reduce the on-tag (σ × δ)-bit multiplication to

simple additions.
3. Compact encodings of the LHW challenge are used to reduce the transmis-

sion time.
4. A prg is used to eliminate the need to store the ri.

The implementations to be described in Sections 3.1 and 3.2 take the complete
compact challenge c and a 64-bit initialization vector iv at the beginning of
the computation. Though the secret s will be fixed in practical applications
we also implemented a version with variable s. This gave us the flexibility for
additional testing. The 64-bit iv was used to initialize a present-80 core in
OFB mode. At the end of one run, i.e. after 17 complete iterations of present
(since 17×64 = 1088), the ASIC outputs the internal state of the present core,
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allowing the state to be managed for the next run. In total, we implemented three
different architectures.

1. One variant with a round-based present-80 core, an internal datapath of
8 bits and a fixed secret s. We refer to this variant as GPS-64/8-F and
describe the implementation in Section 3.1.

2. A second variant uses a serialised present-80 core instead of a round-based
one. For this variant it is advantageous to use an internal datapath of 4 bits.
Again this was implemented with a fixed secret s. Details for the variant
GPS-4/4-F are provided in Section 3.2.

3. A third variant returned to the round-based approach but allowed the secret
s to be updated. This covers the few applications where one might envisage
changing the key and it allows for some additional testing. This third variant,
referred to as GPS-64/8-V, uses a round-based present-80 core, an internal
datapath of 8 bits and a variable secret s, see Sections 3.1.

3 Hardware Architectures of cryptoGPS

In the next section we provide more details on the two round-based implemen-
tations, denoted cryptoGPS-64/8-F and cryptoGPS-64/8-V, before we de-
scribe the serialised implementation cryptoGPS-4/4-F. During our work the
design of the prototype board posed several challenging limitations and these
are discussed in Section 4.1. As we will see, one issue is that the fabricated chips
were mounted on a board and a microcontroller used to simulate the remaining
parts of an RFID tag. These components needed to be synchronized and a hand-
shake protocol was implemented. This is referred to in the sections that follow
since we need to identify where this created a moderate performance overhead.

3.1 Round-Based Implementations

The architecture of cryptoGPS-64/8-F is depicted in Figure 2(a). We use a
round-based implementation of present, a Controller component, a full-adder
component Addwc for the cryptoGPS computation, and S_Storage for holding
the tag secret s. The variant cryptoGPS-64/8-V uses essentially the same
architecture although the storage of s is handled differently. Here we describe
these different components in detail and the relative space they occupy within
the manufactured ASIC is nicely illustrated in Figure 3.

The controller consists of four separate but interacting FSMs each one for
the central control, I/O, S_Storage, and present. It requires 64 clock cycles
to initialize the ASIC and to load the values iv, cin, and s. In the round-based
version it requires 32 cycles to create 64 pseudo-random bits using present and
to add it with the appropriate chunk of the secret s. Due to the handshaking
protocol, it then requires 64 cycles to output the result in 8-bit chunks. Since we
have to compute 1088 bits, we have to repeat this procedure another 16 times.
Finally, the internal state of present needs to be stored outside the ASIC so



136 A. Poschmann et al.

ControllerPRESENT-80/64 S_Storage

Addwc

8

8 8

88

8

5 10

n_reset rx

c_in

txdata_in

8IV s_in

s_outps_out

data_out

en_add

control_ps control_s

overflowround

5

GPS-64/8-F
GPS-64/8-V

(a) cryptoGPS-64/8-F and -64/8-V.

ControllerPRESENT-80/4 S_Storage

Addwc

8

4 4

44

4

5 10

n_reset rx

c_in

txdata_in

8IV s_in

s_outps_out

data_out

en_add

control_ps control_s

overflowround

5

GPS-4/4-F
"0000"

8

44

[7:4][3:0]

(b) cryptoGPS-4/4-F.

Fig. 2. Top-level architectures of the cryptoGPS-core

that it can be used as the new iv for the next iteration of cryptoGPS. In total,
including I/O overhead, it takes (17× (32+32))+32 = 1120 clock cycles for one
complete run of cryptoGPS. If we assume a more realistic scenario where the
cryptoGPS module is part of an integrated circuit, i.e. on an RFID tag, then
there is no need for a handshaking protocol and only 724 cycles are required.

The ADDWC component consists of a flip-flop to store the carry bit and a ripple
carry adder in order to keep the area requirements to a minimum. For the round-
based variants GPS-64/8-F and GPS-64/8-V it has a datapath width of 8 bits,
i.e. two 8-bit input values are added.

The architecture of the S_Storage component for a fixed secret s consists of
an 8-bit AND gate, an 8-bit OR gate, a gated register with 8-bit input, and an 8-bit
20-to-1 MUX. These require 11, 11, 48, and 249 GE respectively, in total 319 GE.
The appropriate 8-bit chunk of s is chosen by MUX and it is combined using AND
with an 8-bit signal denoted n_zero. In fact n_zero is an eight-fold replication
of a single bit and so n_zero can either be set to 00000000 or 11111111. This
way the resulting value a is either set to 8-bits of s or 00000000 before being
processed by the shifting component. To start, the input value a is appended to
the string 00000000 to yield the intermediate state b and this is rotated by c2
positions to the left. Since c2 has three bits the shifting offset varies between 0
and 7. Finally it outputs two 8-bit values c and d, which consist of the eight most
significant (c) and the eight least significant (d) bits of b, the internal state. The
value c is stored in an 8-bit gated register and d is combined using OR with the
output of the gated register.

Varying the secret s. To allow for additional testing we implemented one
version of cryptoGPS with a key s that can be changed. This would not be the
typical implementation in practice since the key for an RFID tag is normally set
at the time of manufacture and cannot be changed. Adding this feature clearly
imposes an additional cost: in our prototype the area overhead is 54%, mainly
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due to the additional storage for the secret, but also due to a more complex
finite state machine (see Table 1).

The S_Storage component that supports variable secrets s consists of an 8-
bit 4-to-1 input MUX, an 8-bit 3-to-1 output MUX, an 8-bit AND, an 8-bit OR
and 22 gated shifting registers that each store 8 bits. Twenty of these shifting
registers are required to store the complete secret s while the remaining two are
required to temporarily store the shifted values for the next addition cycle.

3.2 Serialised Implementations

To reduce the space demands we explored a serialised version of present-80
implementation (see Figure 2(b)). While the general form of the PRESENT and the
Addwc components are relatively unchanged, the Controller and the S_Storage
components are different and we describe them in more detail. Further, since
the internal datapath of this variant is 4 bits, and since the outputs of the
present, S_Storage, and Addwc components are 4-bits wide, the 4-bit output
signal data_out is padded with 0000 to fit the 8-bit I/O interface.

Three out of four FSMs of the Controller module are similar to those used
for the round-based variants. However the FSM of the serialised present-80
component is significantly more complex than a round-based implementation. It
requires 64 clock cycles to initialize the ASIC and load the values iv, cin and s.
In the serialised version it requires 563 cycles to create 64 pseudo-random bits
by the present component and to add it to the appropriate chunk of the secret
s. Here we encounter an artificial delay since, due to the design of the board (see
Section 4.1), it requires 64 cycles to output the result in 4-bit chunks. Since we
have to compute 1088 bits, we have to repeat this procedure another 16 times.
Finally the internal state of the present component has to be stored outside the
ASIC as the new iv for the next iteration of cryptoGPS. So in total, including
the I/O overhead, it takes 17 · (527 + 64) + 64 = 10, 111 clock cycles for one
complete run of cryptoGPS. Without the overhead this drops to 9, 319 cycles.

4 Implementation of cryptoGPS

ASIC fabrication is notoriously expensive and poses a formidable barrier. For
our ASIC implementation of cryptoGPS we took advantage of the facilities
provided by IHP Microelectronics3 which offer so-called multi-design ASICs.
Here different designs from different customers are bundled on the same wafer,
and this permits significant cost savings for the production of the lithographic
mask, which in turn allows us to fabricate designs for a very limited budget.

4.1 The cryptoGPS Proof-of-Concept Prototype Board

While the work in this paper demonstrates that a full implementation of cryp-
toGPS on an RFID tag is both feasible and, in terms of silicon, economically
3 Innovations for High Performance Microelectronics, Frankfurt/Oder, Germany.
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viable, our implementations still fall short of a fully functioning RFID tag. There
is no radio/communication interface. This shortfall has no impact on the con-
clusions that can be drawn; indeed it serves to illustrate just how close to a
prototype RFID tag we are. Nevertheless this communication with the outside
world needs to be provided for testing and evaluation purposes.

To achieve this the fabricated chips were mounted on a board and an ATMEL
ATmega32a [1] microcontroller, denoted μC, was used to simulate the remaining
parts of an RFID tag. As such it provides the ASIC with the challenge cin (and
the secret s for the variant that allowed a variable secret) and receives the out-
put of the ASIC. Since the microcontroller is clocked independently of the ASIC,
these two components have to be synchronized when they are communicating.
For this reason a handshake protocol was implemented, given in Appendix II, and
this lead to an increase of around 150 GE in the area requirements for the imple-
mentation. For the proof-of-concept prototype it was important to demonstrate
the different functionalities of the cryptoGPS variants. Therefore an external
adapter provided a serial-to-USB interface for easy communication with a PC.
The microcontroller converts the bit serial data stream from the serial interface
to the 8-bit parallel I/O of the ASIC, and vice versa.

The ATMEL ATmega32a has a single power supply of 3.3 volts and the ASIC
uses two different power supplies; one for the core (2.5 V) and one for the pads
(3.3 V). This allows us to consider the power consumption of the cryptographic
core without any influence of the pads. This is important since the cryptographic
core would be integrated into a full custom design and directly connected to a
main component. The ASIC design is in fact limited by the pads which means
that the core itself occupies more space than is strictly required. The size of the
die is 1, 372 × 1, 179 μm2 yet the core itself requires only 445 × 645 μm2. After
fabrication the die was put in a relatively large QFP-80 package, so as to be
compatible with the test equipment at IHP.
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4.2 Results and Discussion

For functional and post-synthesis simulation we used Mentor Graphics Modelsim
SE PLUS 6.3a [24] while Synopsys DesignCompiler version Z-2007.12-SP1 [30]
was used to synthesize the designs to the IHP standard cell library SESAME-
LP2-IHP0.25UM, which is compatible with the IHP 0.25 μm SGB25V process
and has a typical voltage of 2.5 Volt [5].

Table 1 details the post-layout area requirements of every component of the
three different architectures of cryptoGPS while Table 2 provides area figures
for comparison reasons for two different design steps: post-synthesis (syn.) and
post-layout (lay.). As we can see flexibility comes at a high price; while the
fixed secret variants of cryptoGPS can hardwire s and select the appropriate
chunk with MUXes, a variant that allows s to change requires 160 additional

Table 1. Breakdown of the post-layout implementation results of three different ar-
chitectures of cryptoGPS

Component PRESENT Addwc Controller S_Storage Sum
[GE] % [GE] % [GE] % [GE] % [GE]

GPS-64/8-V 1, 751 39.5 67 1.5 1, 127 25.5 1, 483 33.5 4, 428

GPS-64/8-F 1, 751 60.9 60 2.1 905 31.5 159 5.5 2, 876

GPS-4/4-F 1, 200 50.0 35 1.5 905 37.7 263 11.9 2, 403

Table 2. Post-synthesis and manufactured implementation results of three different
architectures of cryptoGPS. We provide area figures for the two different design steps
of post-synthesis (syn.) and post-layout (lay.). We also include figures for other low-cost
asymmetric cryptographic implementations.

Security Data Cycles
level path per Logic Design Area
[bits] size block process step [GE]

GPS-64/8-V 80 8 724 0.25 IHP syn. 3,861

lay. 4,428

GPS-64/8-F 80 8 724 0.25 IHP syn. 2,433

lay. 2,876

GPS-4/4-F 80 4 9,319 0.25 IHP syn. 2,143

lay. 2,403

WIPR [27] 80 8 66,048 0.35 AMS syn. 5,705

ECC-(267)2 [2] 67 1 418,250 0.25 syn. 12,944

ECC-112 [8] 56 1 195,264 0.35 AMI syn. 10,113

NTRUencrypt [9] 57 1 29,225 0.13 TSMC syn. 2,850
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(a) Addwc (67 GE). (b) PRESENT-80/64 (1,751 GE).

(c) S_Storage (1,484 GE). (d) Controller (1,127 GE).

Fig. 3. Area shares of single components within the GPS-64/8-V ASIC
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flip-flops and a more complex finite state machine. Together this constitutes a
significant overhead of 1, 550 GE (see Table 1). The area occupied by the different
components of the cryptoGPS implementation are illustrated in Figure 3.

We can also see from Table 2 that, for a single challenge, the round-based
variants cryptoGPS-64/8-F and cryptoGPS-64/8-V require 724 clock cy-
cles while the serialised variant cryptoGPS-4/4-F requires 9, 319 clock cycles.
This is as one would expect, and at a frequency of 100 KHz this translates to
7.24 ms and 93.19 ms, both of which are well below the typical target of 200 ms.
Since we omitted the timing overhead introduced by the handshaking protocol,
these figures offer a realistic view of the timing demands of an embedded cryp-
toGPS core. Given that the processing time for serialised present is nearly 13
times longer than the round-based version it offers only a marginal benefit.

Interestingly we observe that the post-synthesis area requirements are 3, 861,
2, 433, and 2, 143 GE depending on the variant. However filler cells, clock tree
insertion and other layout overheads introduce a 12 to 18 % area increment and
after manufacturing, these figures increase to 4, 428, 2, 876 and 2, 405 GE, respec-
tively. Such an overhead is common and has been remarked on in other work [7].
Post-synthesis and post-layout current figures were simulated with Synopsys De-
signCompiler version Z-2007.12-SP1 and Synopsys PrimePower respectively.
The results, ranging from 1.6 μA to 2.7 μA depending on the variant, indicate
that cryptoGPS is well-suited for passive RFID-tags.

5 Conclusions

In the field of lightweight cryptography hidden overheads are crucial. So while
much attention is often focused on the headline implementation of the crypto-
graphic core, additional mechanisms required to make the solution functional
can be overlooked. In this paper we have made two contributions. The first is to
highlight and quantify the unseen overheads for cryptoGPS. We have under-
taken the design of a full version of the scheme yet the total costs still remain
surprisingly modest; a fully-functioning version of cryptoGPS can be envis-
aged for 2000-3000 GE depending on the variant. The second contribution of
the paper is to go through the full fabrication process and to produce a final
functioning ASIC. This allows us to give increasingly accurate performance mea-
surements, moving us one additional step closer to putting cryptography, indeed
asymmetric cryptography, onto RFID tags.
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Appendix I: Challenge Encoding

Consider two example challenges Ccomp,1 and Ccomp,2. The all-zero compact
transmitted challenge Ccomp,1 gives the following ci,1 and ci,2, from which it is
easy to compute P (i) using Section 2.3.

n4 n3 n2 n1 n0

Ccomp,1 = 00 00 00 00 00

i ni ci,2 ci,1 P (i)
0 0x00 000 00000 0
1 0x00 000 00000 160
2 0x00 000 00000 320
3 0x00 000 00000 480
4 0x00 000 00000 640

We can then recover the whole 848-bit challenge c as:4

864 832 800 768 736 704 672

Ccomp,1 = 00000000 00000000 00000000 00000000 00000000 00000000 00000000
640 608 576 544 512 480 448

00000001 00000000 00000000 00000000 00000000 00000001 00000000
416 384 352 320 288 256 224

00000000 00000000 00000000 00000001 00000000 00000000 00000000
192 160 128 96 64 32 0

00000000 00000001 00000000 00000000 00000000 00000000 00000001

For the second example, set Ccomp,2 as shown below, which leads to the associate
values of P (i):

n4 n3 n2 n1 n0

Ccomp,2 = 44 E3 A2 C1 20

i ni ci,2 ci,1 P (i)
0 0x20 001 00000 8 · 0 + 1 = 1
1 0xC1 110 00001 1 + 160 + 8 · 1 + 6 = 175
2 0xA2 101 00010 175 + 160 + 8 · 2 + 5 = 356
3 0xE3 111 00011 356 + 160 + 8 · 3 + 7 = 547
4 0x44 010 00100 547 + 160 + 8 · 4 + 2 = 741

The associated challenge, in hexadecimal notation, is then given as:

864 832 800 768 736 704 672

Ccomp,2 = 00000000 00000000 00000000 00000000 00000020 00000000 00000000
640 608 576 544 512 480 448

00000000 00000000 00000000 00000000 00000008 00000000 00000000
416 384 352 320 288 256 224

00000000 00000000 00000010 00000000 00000000 00000000 00000000
192 160 128 96 64 32 0

00000000 00008000 00000000 00000000 00000000 00000000 00000002

4 Note that throughout this example we padded the challenge with 48 zeros to the left
in order to gain a multiple of 64 (848 + 48 = 896 = 14× 64).
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Appendix II: Communication between ASIC and Board

One requirement of the shared design ASIC was that all variants have the same
I/O pins. In order to have the possibility of using a small packaging we tried
to use as few pins as possible. Beside the mandatory pins for power supply we
decided to use the following 20 I/O pins: clk, n_reset, rx as the input channel
and tx as the output channel of the ASIC for the I/O handshake protocol,
data_in is used to load values in 8-bit chunks into the ASIC and data_out is
used to output the result in 8-bit chunks.

Since the microcontroller (μC) is clocked independently from the ASIC, both
components have to be synchronized when they are communicating. Therefore
a handshake protocol with the following steps was implemented (see Figure 4):

1. μC sets input data
2. wait until input data valid
3. μC sets tx to ‘0’ indicating that input data are valid
4. wait until ASIC notices that input is valid (IO_READ_WAIT)
5. ASIC sets rx to ‘0’ indicating that input is being read (IO_READ_INPUT)
6. ASIC reads input (IO_READ_INPUT)
7. ASIC sets rx to ‘1’ indicating the successful read of input (IO_READ_ACK)
8. wait until μC notices that rx was set to ‘1’
9. μC sets tx to ‘1’ thus finishing the input procedure

10. ASIC computes the response
11. ASIC sets rx to ‘0’ indicating that output data are valid (IO_WRITE_WAIT)
12. wait until μC notices that output is valid (IO_WRITE_WAIT)
13. μC sets tx to ‘0’ indicating that output is being read
14. μC reads output (IO_WROTE_OUTPUT)
15. μC sets tx to ‘1’ indicating that the output was successfully read
16. wait until ASIC notices that tx was set to ‘1’
17. ASIC sets rx to ‘1’ thus finishing the output procedure.

Fig. 4. Signal flow of the handshake protocol for communication between board and
cryptoGPS ASIC
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Abstract. Several dual-rail logic styles make use of single-rail flip-flops
for storing intermediate states. We show that single mask bits, as ap-
plied by various side-channel resistant logic styles such as MDPL and
iMDPL, are not sufficient to obfuscate the remaining leakage of single-rail
flip-flops.

By applying simple models for the leakage of masked flip-flops, we
design a new attack on circuits implemented using masked single-rail
flip-flops. Contrary to previous attacks on masked logic styles, our at-
tack does not predict the mask bit and does not need detailed knowledge
about the attacked device, e.g., the circuit layout. Moreover, our attack
works even if all the load capacitances of the complementary signals are
perfectly balanced and even if the PRNG is ideally unbiased. Finally, af-
ter performing the attack on DRSL, MDPL, and iMDPL circuits we show
that single-bit masks do not influence the exploitability of the revealed
leakage of the masked flip-flops.

1 Introduction

Since Differential Power Analysis (DPA) was introduced by Kocher et al. [5]
to physically attack cryptographic devices, several countermeasures have been
proposed to improve the resistance of implementations. Sense Amplifier Based
Logic (SABL), which is a Dual-Rail Precharge (DRP) logic, has been proposed
by Tiri et al. [17] as the first DPA countermeasure at the cell level. In fact, in
theory using a full-custom design tool enables to equalize the load capacitances
of each couple of complementary logic signals and hence to make the power
consumption independent of the processed data. Afterwards, Wave Dynamic
Differential Logic (WDDL) [19] has been introduced in order to avoid the usage of
full-custom design tools especially for the routing process. Since some place and
route methods such as [4,20] were proposed to diminish the load imbalances of
complementary signals, the data-dependent time of evaluation and the memory
effect of WDDL cells make it vulnerable to DPA attacks [6,15].
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Although it has been shown that masking at cell level can not prevent the
information leakage because of the presence of glitches [7], its combination with
precharge logics led to Random Switching Logic (RSL) [16] in order to equalize
the circuit transition probability. However, Tiri and Schaumont [18] showed that
the single mask-bit in RSL just adds one bit of entropy. On the other hand, in
order to use semi-custom design tools without routing constraints, Masked Dual-
Rail Precharge Logic (MDPL) [12] was introduced. It works similar to WDDL
and employs a single mask-bit to nullify the effect of load imbalances. Moreover,
Dual-Rail Random Switching Logic (DRSL) [2] was proposed as the dual-rail
version of RSL and to avoid the need of a central module to control the precharge
signals.

Suzuki et al. showed that MDPL is susceptible to the early propagation ef-
fect [14]. The practical evaluation of the MDPL microprocessor of the SCARD
prototype chip1 proved that the early propagation effect which resulted in a
vulnerability of CMOS circuits also exists for MDPL cells [11]. In order to cope
with early propagation issues, the designers of MDPL introduced a so called
Evaluation-Precharge Detection Unit (EPDU), which consists of three (CMOS)
AND gates and two (CMOS) OR gates. The EPDU is applied to all improved
MDPL (iMDPL) gates, hence it is not surprising that the area requirements for
iMDPL gates increased significantly compared to MDPL.

Concurrently, Gierlichs [3] presented an attack on MDPL that exploits a de-
viation in the mask bit distribution and unbalanced dual-rails in the target
cell. In order to mount this attack an adversary requires detailed knowledge on
the layout-level of the target device. However, in practice this information is
not publicly available or requires insider knowledge or expensive equipment and
time-consuming efforts, such as reverse-engineering.

At that time, Schaumont and Tiri [13] showed that already slightly unbalanced
complementary wires can be exploited to mount classical DPA attacks after
only a simple filtering operation. Contrary to Gierlichs they did not exploit the
unbalanced wires of the mask bit signal, but rather use only the unbalanced
dual-rail wires of the logical signals.

Note that the attacks of Gierlichs and of Schaumont/Tiri can also be mounted
on circuits built in iMDPL, but again require unbalanced wires and detailed
knowledge of the device under attack. Therefore both attacks assume a rather
strong attacker model. Furthermore, both attacks and also the attacks by Suzuki
et al. [14] and Popp et al. [11] exploit leakage of the combinatorial part of a cir-
cuit. Contrary to this, a key recovery attack on special circuits built in MDPL
and DRSL that exploits the leakage of the underlying flip-flops has been pre-
sented in [9]. The authors gain the Hamming distance (HD) of the mask bit
with a Simple Power Analysis (SPA) and subsequently attack the circuit with
a Correlation Power Analysis (CPA) [1]. Note that the success rate of any SPA

1 During the SCARD (Side-Channel Analysis Resistant Design Flow,
www.scard-project.eu) project a prototype chip was built, that contains
amongst other components three MC 8051s and three AES co-processors built in
CMOS, a DRP logic, and MDPL.

www.scard-project.eu
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strongly depends on the architecture of the attacked device. However, this attack
is focused on a special type of flip-flops and a special architecture of the circuit
that might not lead to a successful result in practice.

Moreover, practical attacks on the MDPL AES co-processor of the SCARD
chip presented in [10] show that not only the early propagation effect of MDPL
cells does not break the masked hardware but also the attack proposed by Schau-
mont/Tiri is not capable of revealing the secrets in this case. Further, it has been
shown that a bias of the mask bit in the SCARD chip does not threaten the re-
sistance of the device.

In this work first we analyze the information leakage of CMOS flip-flops as well
as the flip-flops of some known DPA-resistant logic styles. Using the introduced
leakage models, we present an attack on certain types of flip-flops in masked
logic styles that does not require any knowledge of the layout of the device
nor unbalanced wires. Our attack works even if a masked dual-rail ASIC has
perfectly balanced wires. Yet, perfectly balanced loads can never be achieved in
practice because electrical effects will always cause different wire capacitances,
even when the routing is done manually in a full-custom design process. This
however underlines the strength of our attack. Indeed, our attack is based on the
fact that although combinational parts of the masked logic styles, e.g., iMDPL,
are in dual-rail mode and decrease the leakage significantly, their sequential parts
are built in single-rail leading to a serious vulnerability.

The remainder of this work is organized as follows: in Sect. 2 we recall the de-
sign of standard CMOS flip-flops which are used in many proposed side-channel
resistant logic styles, e.g., WDDL and MDPL. We also develop leakage mod-
els for CMOS, DRP, and masked flip-flops. Based on these leakage models we
propose a new attack in Sect. 3. Subsequently, we present our results of a sim-
ulated attack on implementations of a reduced round AES in Sect. 4. Further,
we discuss on practical issues in Sect. 5, and finally Sect. 6 concludes the paper.

2 Information Leakage of Flip-Flops

In this section we describe leakage models of flip-flops. Starting with CMOS
flip-flops in Sect. 2.1, we continue with DRP flip-flops in Sect. 2.2, and finally
end with masked flip-flops in Sect. 2.3.

2.1 CMOS Flip-Flops

The information leakage of CMOS flip-flops was already modeled by the first
DPA attacks. It is well-known that the dynamic power consumption is higher
when the content of a single-bit flip-flop is changed than if the content remains
unchanged. Therefore, HD of the registers is applied to partially model the power
consumption of a circuit. We generally review the structure of an edge-sensitive
flip-flop to figure out its information leakage.

Typically, edge-sensitive flip-flops are built using two consecutive latches. The
block diagram of a positive-edge flip-flop is shown in Fig. 6. Note that the
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negative-edge one can be constructed by swapping the CLK and CLKN signals.
In fact, each manufacturer has its own design to build edge-sensitive CMOS flip-
flops, but the fundamental architecture corresponds to that shown in Fig. 6. We
define two operation phases for a flip-flop: sampling phase and hold phase. In
a positive-edge flip-flop, the first latch samples the input during the sampling
phase while the CLK signal is stable at 0. When the CLK signal switches to 1,
i.e., beginning of the hold phase, the connection of the two latches is established
and the content of the flip-flop is updated. Obviously, at this point in time the
power consumption is influenced by the change of the content of the second
latch (i.e., flip-flop content). As mentioned, this leakage is widely used as HD
model. However, during the sampling phase, changing the input signal (i.e., d)
results in a change of the content of the first latch, and it also affects the power
consumption.

Suppose a circuit with k synchronous flip-flops where all of the flip-flops are
controlled and are triggered by a clock signal. As mentioned before, toggling the
input signal at the sampling phase directly affects the power consumption. Our
simulation results show that the difference between the effect of the rising and
the falling toggles in the input signal is negligible. Thus, the toggle count model
is an appropriate choice to model the leakage of the flip-flops at the sampling
phase as follows:

Leak S© =
∑k

i=1 number of toggles at the input signal d of the ith FF
= ToggleCount (D = [dk, . . . , d2, d1])

(1)

Also, the well known HD model describes the power consumption at the hold
phase.

Leak H© =
∑k

i=1 number of toggles at the output signal q of the ith FF
= HD

(
Q(t) =

[
q(t)

k , . . . , q(t)
2 , q(t)

1

]
, Q(t+1)

) (2)

2.2 DRP Flip-Flops

Amongst DRP logic styles, we focus on SABL [17] and WDDL [19], because
with regards to side-channel resistance they are the best investigated logic styles.
Since SABL is a full-custom logic style, its flip-flop was specifically designed to
have a constant internal power consumption independently of the logic values.
As shown in Fig. 7, an SABL flip-flop similarly to the CMOS flip-flop consists
of two stages. The first stage stores the complementary input values d and d at
the negative edge of the CLK, while the second stage is precharged. At the next
positive clock edge, the second stage stores the data values from the first stage.
Then, the first stage is precharged and the second one provides the output values
q and q [6]. Assuming fully balanced capacitances, the power consumption of an
SABL flip-flop is constant in every clock cycle independently of the input and
output values. Therefore, leakage models similar to those presented in Sect. 2.1
can not be introduced for SABL flip-flops.

Two ways to launch the precharge wave in WDDL have been proposed, hence,
there are two types of WDDL flip-flops:
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(i) Single Dynamic Differential Logic (SDDL) flip-flop which uses two CMOS
flip-flops as shown in Fig. 8(a)

(ii) Master-Slave Dynamic Differential Logic (M-S DDL) flip-flop which employs
four CMOS flip-flops as shown in Fig. 8(b).

In fact, in comparison with SDDL FF’s (with the same clock frequency) using
M-S DDL FF’s causes the operation frequency of the circuit to be divided by 2.

In order to model the power consumption of an SDDL FF, we first consider
the power consumption of one of the internal CMOS flip-flops. The input signal,
d, is 0 at the precharge phase (when CLK is 1). It may switch to 1 once at the
evaluation phase (when CLK is 0). Therefore, if there are k synchronous SDDL
flip-flops, the leakage is defined as follows.

Leak S© [SDDL1] =
∑k

i=1 number of toggles at signal d of the ith FF
= HW (D = [dk, . . . , d2, d1])

(3)

Also, the HD of the output signals is clearly leaking at the hold phase.

Leak H© [SDDL1] = HD
(
Q(t) =

[
q(t)

k , . . . , q(t)
2 , q(t)

1

]
, Q(t+1)

)
(4)

Similarly, the leakages of the second internal CMOS flip-flops are defined as
follows.

Leak S© [SDDL0] = HW
(
D =

[
dk, . . . , d2, d1

])
(5)

Leak H© [SDDL0] = HD
(
Q

(t)
=
[
q(t)

k , . . . , q(t)
2 , q(t)

1

]
, Q

(t+1)
)

(6)

Now, the whole leakage for each phase can be easily computed by adding two
leakages.

Leak S© [SDDL] = Leak S© [SDDL1] + Leak S© [SDDL0]
= HW (D) + HW

(
D
)

= k
(7)

Leak H© [SDDL] = Leak H© [SDDL1] + Leak H© [SDDL0]
= HD

(
Q(t), Q(t+1)

)
+ HD

(
Q

(t)
, Q

(t+1)
)

= 2 · HD
(
Q(t), Q(t+1)

) (8)

Therefore, SDDL flip-flops do not leak any information during the sampling
phase, but their leakage is twice of the CMOS flip-flops in the hold phase (again
note that we do not consider the unbalanced capacitances of the complementary
wires in this article). Thus, successful power analysis attacks can be mounted on
hardware where SDDL flip-flops are used.

As shown in Fig. 8(b), there are two sampling and two hold phases in each
precharge-evaluation phase in the case of M-S DDL FF’s. In each clock cycle
every dual-rail flip-flops contain precharge value, i.e., (0, 0), and are replaced by
a differential value, (1, 0) or (0, 1), or vice versa. Thus, both leakage models in
sampling and hold phases are similar to that defined in Eq. 7, hence they are
data-independent. As a result, it is not possible to perform a power analysis
attack using our leakage model and our assumptions on M-S DDL FF’s.



Power Analysis of Single-Rail Storage Elements as Used in MDPL 151

2.3 Masked Flip-Flops

In the case of DRSL, MDPL, and iMDPL flip-flops, each of the logic styles has
a special circuit to mask the input signal using the mask bit of the next clock
cycle. However, all have in common that they use a CMOS flip-flop. Although
the early propagation problem of the MDPL gates is solved in the improved
version, i.e., iMDPL, the structure of the flip-flops is the same for both versions.
Cell schematic of the original MDPL and iMDPL flip-flops are shown in Fig. 9.
The structure of the DRSL flip-flop is the same as MDPL; a DRSL XOR gate
is used instead of the MDPL XOR [2]. The input signal of the internal CMOS
flip-flop, i.e., dmn , is 0 at the precharge phase (when CLK is 1). It switches to
1 once at the evaluation phase (when CLK is 0) depending on d and the next
mask bit, mn. Therefore, if there are k synchronous masked flip-flops, the leakage
during the sampling phase can be modeled as follows:

Leak S© [Masked] =
∑k

i=1 number of toggles at dmn of the ith FF
= HW

(
Dmn =

[
dkmn

, . . . , d2mn
, d1mn

])
= HW

(
[dk, . . . , d2, d1]mn

)
= HW (D ⊕ [mn, . . . , mn])

(9)

In other words, what is leaked at the sampling phase is the HW of the masked
input values. Moreover, the HD of the output signals is leaking at the hold phase.

Leak H© [Masked] =
∑k

i=1 number of toggles at qm of the ith FF
= HD

(
Q(t)

m =
[
q(t)

km
, . . . , q(t)

2m
, q(t)

1m

]
, Q(t+1)

mn

)
= HW

(
Q(t)

m ⊕ Q(t+1)
mn

)
= HW

((
Q(t) ⊕ [m, . . . , m]

)
⊕
(
Q(t+1) ⊕ [mn, . . . , mn]

))
= HW

((
Q(t) ⊕ Q(t+1)

)
⊕ ([m, . . . , m] ⊕ [mn, . . . , mn])

)
= HW

((
Q(t) ⊕ Q(t+1)

)
⊕ [m′, . . . , m′]

)
; m′ = m ⊕ mn

= HD
(
Q(t), Q(t+1) ⊕ [m′, . . . , m′]

)
(10)

Clearly, it is not possible to mount a classical DPA or CPA using the leakages
described above, because the mask bit (mn or m′) which contributes to the
leakages is refreshed every clock cycle, e.g., by a PRNG. In the next section we
illustrate a new attack strategy to reveal the secrets using the presented leakage
models.

MDPL has a timing constraint for the flip-flops. The constraint requires cre-
ating the clock tree in a specific manner [12]. An alternative design (similar to
the M-S DDL flip-flop) which uses four CMOS flip-flops has been proposed for
cases where the timing constraint can not be met [12]. As mentioned for the
M-S DDL, this kind of flip-flop requires four times the area and the clock rate
must be doubled in order to keep the data rate of the circuit constant. Of course
this results in a significant increase of the power consumption. However, a de-
sign employing this type of flip-flop does not leak any information under our
assumptions. This design has not been proposed for DRSL and iMDPL, but it
is applicable for them with all its disadvantages. However, it was not considered
in the literature and in implementations, e.g., the SCARD chip.
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Also, a modification on the structure of MDPL and DRSL flip-flops has been
proposed in [9], i.e., make use of two CMOS flip-flops in each masked flip-flop
in order to prevent the leakage. The leakage models of the new masked flip-flops
are as follows:

Leak S© [Masked∗] = HW (D ⊕ [mn, . . . , mn]) + HW
(
D ⊕ [mn, . . . , mn]

)
= k

(11)

Leak H© [Masked∗] = HD
(
Q(t), Q(t+1) ⊕ [m′, . . . , m′]

)
+

HD
(
Q

(t)
, Q

(t+1) ⊕ [m′, . . . , m′]
)

= 2 · HD
(
Q(t), Q(t+1) ⊕ [m′, . . . , m′]

) (12)

The proposed modification prevents sampling-phase leakage, but it increases the
leakage of the hold phase compared to the original design.

3 Our Proposed Attack

For simplicity, we assume an 8-bit masked flip-flop as the target of the attack.
As illustrated in the previous section, during the sampling phase HW of the
masked input signals, Leak S© = HW(Dmn ), is leaking. In fact, we are looking for
a technique to discover a relation between the unmasked values D and HW of
the masked values. Table 1 shows all possible values of HW of an 8-bit masked
input, Dmn . As shown in the fourth column, the average of HWs, μ(HW (Dmn)),
is always 4. In other words, the mask bit switches the flip-flop’s content be-
tween two complementary states where sum of HWs is always 8. However, the
difference between HWs when the mask bit is 0 or 1, |HW (D0) − HW (D1)|,
takes certain values depending on HW of D. Indeed, there is a relation be-
tween the unmasked value, D, and the difference between HWs. This difference
is given in the last column of Table 1. We call it Difference of Hamming Weights
(DHW (D) = |#ofBits − 2 · HW (D)|) and later will use it to mount an attack
without prediction or estimation of the mask bit.

One can also conclude from Table 1 that the distance of one individual leakage
HW(Dmn) for an unknown mask bit mn to the average of HWs μ(HW(Dmn )) is
the same independent of the mask bit mn. Hence,

|μ(HW(Dmn )) − HW(D0)| = |μ(HW(Dmn)) − HW(D1)| =
1
2
DHW(D)

We can not directly predict the leakage of a masked flip-flop, but by subtract-
ing the average power consumption and taking the absolute value μ(Leak S©) =
μ(HW(Dmn)) from the individual power consumption

|Leak S© − μ(Leak S©)| = |HW(Dmn) − μ(HW(Dmn))| =
1
2
DHW(D)

we can predict this distance using the Difference of Hamming Weights. We now
use the DHW(D) as a hypothetical power model and perform a CPA attack on
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Table 1. HW of an 8-bit data masked by a single mask bit

HW (D)
HW (Dmn)

μ(HW (Dmn))
DHW (D) =

| HW (D0)− HW (D1) | =
mn = 0 mn = 1 | 8− 2 · HW (D) |

0 0 8 4 8
1 1 7 4 6
2 2 6 4 4
3 3 5 4 2
4 4 4 4 0
5 5 3 4 2
6 6 2 4 4
7 7 1 4 6
8 8 0 4 8

Algorithm 1. The attack algorithm (for a single point of measurements)

1: μ =

∑z
i=1 pi

z
; pi : ith measured power value, z: # of measurements

2: for all measured power values pi, 1 ≤ i ≤ z do
3: p̂i = |pi − μ|
4: end for
5: Perform a CPA on P̂ = {p̂i; 1 ≤ i ≤ z} using leakage model DHW (·)

the preprocessed power traces. For clarity, a pseudocode overview of the attack
is given in Algorithm 1.

The illustrated leakage model, DHW (·), fits the sampling phase leakage of
the masked flip-flops, Leak S©. Also, it can be applied to the hold phase leakage,
Leak H©, by replacing HW with HD in Table 1. In fact, the table is the same for
HD, just the notation will be changed, i.e., Difference of Hamming Distances is

DHD
(
Q(t), Q(t+1)

)
=
∣∣∣#ofBits − 2 · HD

(
Q(t), Q(t+1)

)∣∣∣.
In comparison with Zero-Offset second order DPA [21], which similarly does a
preprocessing step on power traces before running straight DPA, the prepro-
cessing of our attack shows a similar time complexity of O(z · t), where each
power trace consists of t points. On the other hand, since in masked precharged
logic styles the mask bit is represented by two precharged complementary sig-
nals, the information of the mask bit, which is essentially required to perform a
second-order DPA attack, is not leaking (without considering the difference be-
tween the unbalanced capacitances). Consequently, not only a classical DPA is
not possible, but also a Zero-Offset 2DPA could not recover the secrets without
knowing the layout details, i.e., knowledge about the loading imbalances. Our
simulation results (which are not presented here) confirmed these issues. In fact,
the preprocessing step of our proposed attack tries to remove the effect of single
mask bit by folding the power values from an estimated mean value. Thus, from
this point of view, our proposed attack can be considered as a second-order DPA
attack.



154 A. Moradi et al.

PRNG

Input 8

CLK
8

8-bit
F-F

Masking

Masking

AES
S-box

iMDPL

m   m

mn    mn
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Fig. 1. Block diagram of the attacked device

However, the preprocessing step is similar to the one suggested in [13], i.e.,
estimation of and folding around the empirical mean value per sampled time
instant. Note that in their attack the preprocessing step takes place to classify
the power values based on the estimated mask bit due to the leakage caused by
the loading imbalances of a combinational circuit, then a CPA (or even DPA)
attack using a normal HW model is performed. However, in our proposed attack
after the same preprocessing step the newly proposed DHW or DHD model is
used in a CPA attack to defeat the effect of the single-bit mask. Moreover, since
their attack has been verified using weighted toggle count model to simulate
the power consumption of a post placed-and-routed combinational circuit, they
did not consider the power consumption and the leakage of the flips-flops. As a
result, the principles of the attack presented in [13] and our proposed one are not
the same. Further, the applicability of their attack in practice has been discussed
in [10].

In fact, our leakage models, DHW and DHD, are adapted to the fact that
although the masked circuits are DRP circuits, the flip-flops are only single-rail.
In the next section the simulation results of attacks performed using our leakage
models are presented.

4 Simulation Results

In order to evaluate the efficiency of the proposed attack, we analyzed the circuit
shown in Fig. 1. It consists of an 8-bit key addition and an AES S-box followed by
an 8-bit flip-flop. The circuit is implemented using iMDPL cells. We simulated
the HSPICE description files for thousands of random inputs using Synopsys
Nanosim version A-2007.12 in 0.18μm technology and 1.8V supply voltage to
obtain the power supply current traces. As mentioned earlier, we do not consider
the difference between the capacitances of complementary wires arising from
different routings. Thus, we did not put any capacitances manually at the gate
outputs.

First, we take a look at the leakage of the sampling phase Leak S©. As described
in Sect. 2.3, this leakage is caused by the toggling of inputs of the flip-flops that
are the outputs of a combinational circuit. Since the depth (and consequently the
delay time) of all output signals of a combinational circuit are not the same, the
sampling phase leakage does not appear at specific points of the power traces.
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Fig. 2. Correlation coefficient of the key
hypotheses vs. the number of traces using
the sampling phase leakage model

Fig. 3. Correlation coefficient of the key
hypotheses using the hold phase leakage
model

Moreover, in MDPL circuits, where the time-of-evaluation depends on the pro-
cessed data (and on the mask bit), the leakage is caused at different time in-
stances of the sampling phase. Therefore, the integral (or the average) of the
power values during a specific period of time is used to mount the attack on the
sampling phase2. Finally, we performed the attack which is described in Algo-
rithm 1 using the leakage model presented in Eq. 9. The correlation coefficient
of the correct key hypothesis (solid black line) and the wrong hypotheses (gray
lines) plotted over the number of measurements is shown in Fig. 2.

Contrary to the sampling phase leakage it is expected that the leakage of the
hold phase appears at specific point(s) of the power traces, because the hold
phase leakage Leak H© coincides with the positive clock edge (beginning of the
precharge phase), and all the synchronous flip-flops are triggered at the same
time. The previous attack was repeated using the leakage model presented in
Eq. 10. As a result Fig. 3 shows the correlation coefficient of the key hypotheses
for the different points of power traces using 1 500 measurements. Obviously, the
maximum correlation for the correct key guess appears directly after the rising
edge of the clock signal.

We limited the attack results to the iMDPL circuits since the structure (and,
hence, our leakage models) of MDPL and DRSL flip-flops are identical to iMDPL.
Indeed, we repeated the attack on corresponding MDPL and DRSL circuits as
well as the modified structure proposed in [9] (just using hold-phase leakage).
All attacks led to the same results as shown for the iMDPL.

5 Practical Issues

Since our proposed leakage model and hence our attack is a second-order at-
tack, we compare the sensitivity to noise of our proposed attack to that of a
corresponding first-order attack.

We consider a set of 1, 000, 000 random bytes assuming a HW leakage with
additive white Gaussian noise featuring zero mean and a specified standard de-
viation. To model the effect of noise to the attack, we determine the correlation
2 This step needs to be performed because of the high accuracy of the simulations. In

power traces measured from a real chip these leakages appear as a single peak [8].
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Fig. 4. Comparison of DHW model (of a single-bit masked ciruit) and HW model (of
the corresponding unmasked circuit), correlation of the predictions and measurements
over SNR

between HWs and noisy HWs (i.e., HW+noise as the simulated noisy measure-
ment) for different noise standard deviations (and hence different SNRs). As
usual for a hamming weight model, each bit has an equal contribution to the
power consumption.

It should be noted that in order to make simulation and calculations closer to
real measurements, noisy HW values are rounded to decimal values restricted to
a byte since most of the measurement tools (i.e., digital oscilloscopes) use 8-bit
analogue to digital converters and hence real measured power values are stepwise
to 256 steps. In order to compare the noise effect on our proposed DHW-based
attack, the same scenario is repeated for the masked circuit by masking the
input bytes (by a random mask bit for each byte) before extracting the HW
and adding noise. When analyzing the generated data, the new preprocessing
step is performed according to the scheme presented by Algorithm 1. A com-
parison between these two experiments over their signal to noise ratio, SNR =
var(signal)/var(noise), is depicted in Fig. 4. As expected, correlation between
the predictions and measurements is decreased for low SNRs. However, the cor-
relation for the DHW model (single-bit masked circuit) decreases more rapidly
than that of HW model (unprotected circuit). It means, our proposed attack is
more sensitive to noise than a straightforward CPA.

To investigate the applicability of our proposed attack in the presence of
noise, we performed another experiment where additionally to the previous case
an 8-bit key XOR followed by an AES Sbox is taken into account (similar to the
circuit in Fig. 1). First, a first-order CPA attack using HW model of an unmasked
circuit is performed for all possible values of the secret key (256 cases). The
success rate of this attack is obtained for different signal to noise ratios3. Then,
the same scenario is repeated for the single-bit masked circuit. This means, our
proposed attack using DHW model (Algorithm 1) is performed for all possible
secret keys, and success rates are computed for different signal to noise ratios.
Fig. 5 depicts a comparison of success rates over SNR, threshold of SNR for a

3 Success rate is computed as a ratio of the number of successful attacks over the
number of all cases.



Power Analysis of Single-Rail Storage Elements as Used in MDPL 157

10
−5

10
−4

10
−3

10
−2

0

0.2

0.4

0.6

0.8

1

 

 

SNR

S
uc

ce
ss

 R
at

e

HW
DHW

Fig. 5. Comparison of HW and DHW attacks, success rate over SNR

100% success rate in our proposed attack is higher than that of a straightforward
CPA. In other words, our proposed attack on a single-bit masked circuit stops
succeeding earlier than a first-order CPA on a corresponding unprotected circuit
with an increasig SNR. Mapping the SNR threshold of DHW attack, i.e., 0.01,
to the diagrams of Fig. 4 clarifies maximum correlation, i.e., 0.01, which can be
achieved by a successful DHW attack at the threshold point. At the same SNR,
maximum correlation for a successful first order CPA attack is around 0.1. It
means, DHW attack works on a single-bit masked circuit if correlation between
predictions and measurements of the same unprotected circuit (i.e., when mask
bit generator is off and mask bit is always 0) is greater than 0.1.

Note that these observations are for 1, 000, 000 measurements. The SNR
threshold for a successful DHW attack and hence minimum required correla-
tion value for the unprotected circuit are increased by deducting the number of
measurements, e.g., we got 0.1 and 0.3 as SNR threshold and minimum required
correlation respectively using 10, 000 measurements. Also, it should be noted
that in our simulations we have supposed that the leakages are linearly related
to predictions (HW), which does not hold precisely in practice. Moreover, in our
proposed attack (and in our simulation as well) we have taken all of single-bit
masked registers into account. In other words, all the masked registers in the ar-
chitecture which are triggered at the same time must be considered in the attack.
Otherwise, the DHW/DHD model does not fit to the folded measurements.

6 Conclusion

In this work we discussed the leakage for a wide range of side-channel resistant
logic styles. Unlike most of the previous contributions, we did not focus our
analysis on combinational parts of the logic. Instead we analyzed the leakage of
flip-flop designs for various side-channel resistant logic styles. Our results show
that logic masking where more than one flip-flop shares a single-bit mask does
not prevent information leakage of those flip-flops. In other words, using the
leakage we found in the masked flip-flops, a single-bit mask can not improve the
security.
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We furthermore presented a new attacking scheme that exploits the leakage of
masked flip-flops. The attack does neither rely on unbalanced loads for the two
parts of a differential signal, nor does the attacker need a detailed knowledge of
the target layout or implementation. Instead it uses the newly proposed Differ-
ence of Hamming Weight (DHW) and Difference of Hamming Distance (DHD)
model for predicting the data-dependent power consumption of the masked flip-
flops. Using DHW and DHD as power model for a classical CPA attack on
pre-processed power traces simply renders the single bit masks of a flip-flop use-
less. Hence the attack neither needs a biased PRNG nor is a mask bit detection
step needed as in [13]. We proved the feasibility of our attack on two different
ciphers and most of the masked DRP logic styles proposed so far.

Since most of the prior analysis of side-channel resistant logic styles focused
on the combinational logic, so did the research to improve those logic styles. We
think it is time to switch the focus of research to find methods for designing side-
channel resistant flip-flops with a decent area and power consumption and a low
impact on the operation frequency. One possible approach could be combining
semi-custom design for combinational logic with full-custom flip-flop design.
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Appendix I - Schematics of Flip-Flops
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1 Introduction

The security of applied public-key cryptography relies on the incapability of
modern computing systems to solve some mathematical problems in acceptable
times. The factorization of large integers and the determination of discrete loga-
rithms belong to this class of problem [1,2,3,4]. It is assumed, however, that these
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systems are assumed to be resistant against quantum computers. Additionally,
hardware solutions were proposed to address the performance question of these
systems, see [12,13,14,15].
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of the decoding problem [16]. As no quantum algorithm has been proposed to
solve this problem efficiently, so far, McEliece-PKC is regarded as secure against
quantum computers. The security level of McEliece-PKC depends on the size of
the underlying code. This has two effects: The public key and the private key
are large and the decoding process is highly time-consuming. McEliece, there-
fore, employed Goppa codes for this cryptosystem, since an efficient decoding
algorithm is available for this code, which is the Patterson Algorithm [17].

Nowadays, however, it is well-understood that algorithmic strength of a cryp-
tosystem is only one condition for its security. The implementation of cryp-
tographic systems must be secured against side channel attacks [18,19,20,21].
Especially for systems such as the McEliece-PKC, which is, due to its quan-
tum computer resistance, designated to be used in high security contexts, side
channel security becomes a very important issue.

In [22] a timing attack on the McEliece cryptosystem was proposed. This
attack is based on the fact that the degree of the error locator polynomial equals
the hamming weight of the error vector which is embedded in the ciphertext.
During decryption, the error locator polynomial is evaluated n times, where
n is the code length. Thus, the degree of this polynomial has a measurable
influence on the decryption time. An attacker tries to change the decryption
time by changing the hamming weight of the error vector of a chosen ciphertext.
The proposed countermeasure in [22] relies on correcting the degree of the error
locator polynomial: If this degree is detected to be less than the designated error
weight, it is increased artificially to close the described timing side channel.

Our contribution: An in-depth investigation of the Patterson Algorithm, how-
ever, discloses another side channel which can not be closed by the countermea-
sure proposed in [22]. Specifically, the time behavior of the extended Euclidean
Algorithm (XGCD), which is employed for determining the error locator poly-
nomial, depends on the error weight. In this paper we provide a detailed analysis
of this side channel, describe the attack procedure based upon, propose a coun-
termeasure to close this channel, and provide an implementation outline of the
attack and a corresponding countermeasure for an FPGA implementation.

Paper Structure: Section 2 provides a brief introduction into the McEliece-PKC
and outlines the related timing attack. Section 3 details the attack proposed in
this work including the side channel analysis, the attack procedure, the counter-
measure and an implementation outline. Section 4 concludes the paper.

2 Preliminaries

2.1 McEliece Cryptosystem

This section provides a brief algorithmic description of McEliece-PKC. For de-
tails, interested readers are referred to special literature on coding theory, e.g.,
[23], and cryptography, e.g., [24]. Similarly to other cryptosystems, a plain imple-
mentation of McEliece-PKC is attackable by adaptive chosen-ciphertext attacks
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(CCA2). For simplicity, the following description of the cryptosystem does not
take into consideration any CCA2 conversion such as Pointcheval’s [25] or Ko-
bara and Imai’s [26]. It can be shown, that the presence of a CCA2 conversion
does not prevent our attack [22].

Key Generation: As this process is irrelevant for our purpose, a detailed
description is given in Appendix A. In the following, only the private and the
public keys are specified which are generated based on the domain parameters
m and t, the code length n, and the code dimension k.

The private key consists of two parts: Firstly, a monic irreducible Goppa poly-
nomial g(x) = xt+gt−1x

t−1+. . .+g1x+g0, where gi’s are random elements of the
field GF (2m). Secondly, a n × n permutation matrix P . Besides the parameters
t and m, the public key consists of an (mt × k) matrix RT . The control matrix
H, which is created based on g(x) is also secret. After generating the public key,
H can either be stored for decryption or destroyed. In the latter case, H must
be regenerated during decryption.

Encryption: Algorithm 1 depicts the encryption procedure in McEliece-PKC,
which is self-explanatory.

Algorithm 1. McEliece-PKC Encryption
Require: k-bit plaintext m; public key RT .
Ensure: n-bit ciphertext z.
1: Expand the public key RT to G =

[
RT |Ik

]
.

2: Generate a random n-bit error vector e with a hamming weight we = t.
3: Encode the message z := mG.
4: Imprint t errors z := z ⊕ e.
5: return z.

Decryption: Algorithm 2 presents the decryption process in McEliece-PKC,
which is clearly more complex than the encryption. For efficient error correc-
tion, the Patterson Algorithm [17] is employed to determine the error locator
polynomial σ(x), which will be abbreviated as ELP in the following. Patterson
Algorithm is included in Algorithm 2 from step 2 to 7. By evaluating the ELP for
all elements of GF (2m), all error bits are revealed: An error at the i-th position
of z causes σ(αi) to be zero.

Notation: To facilitate referring to a certain step in a certain algorithm, we use
the notation (A.x, S.y) to refer to step y of algorithm x. For instance, (A.2, S.6)
refers to the determination of the error locator polynomial during decryption.

2.2 Side Channel of ELP Evaluation

In this section we briefly describe the timing attack proposed in [22] and discuss
its countermeasure.
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Algorithm 2. McEliece-PKC Decryption
Require: n-bit ciphertext z; private key (P, g(x)).
Ensure: k-bit plaintext m.
1: Permute z: z′ = zP.
2: Determine the syndrome polynomial

Sz′(x) = z′HT (xt−1, . . . , x, 1)T . // the multiplication by the coefficient vector is
used to transform the vector into a polynomial

3: Invert S−1
z′ (x).

4: Let τ (x) =
√

S−1
z′ (x) + x.

5: Find two polynomials a(x) and b(x), so that
b(x)τ (x) = a(x) mod (g(x)), and deg(a) ≤ 
 t

2
� hold.

6: Determine the error locator polynomial
σ(x) = a2(x) + xb(x)2,
where deg(σ) ≤ t

7: Reconstruct the error vector
e′ = (σ(α0), σ(α1), . . . , σ(αn−1))⊕ (1, . . . , 1).

8: Permute the error vector e = e′PT .
9: Reconstruct the plaintext m = z ⊕ e.

10: return m

Side Channel Analysis: According to (A.2, S.7), the ELP is evaluated for
each element of GF(2m) to reconstruct the error vector. By definition σ(α) is
given by the following equation, where Te = {i|ei = 1} and e is the error vector.

σ(x) =
∏

j∈Te

(x − αj) ∈ F2m [x] . (1)

If e = e7e6e5e4e3e2e1e0 = 01100001, for instance, then σ(x) = (x − α6)(x −
α5)(x − α0). Obviously, the time required to evaluate the ELP in (A.2, S.7)
strongly depends on the weight of the error vector, as the latter determines the
degree of this polynomial.

Concept of the Attack: The attacker exploits this behavior in order to find a
plaintext to a certain ciphertext. Particularly, he flips a single bit at position i
in the ciphertext and uses the timing side channel in order to determine whether
ei used during encryption was 0 or 1. He does this for all bit positions. Once he
has reconstructed the error vector, he can easily recover the message.

Countermeasure: To avoid the differences in the decryption time arising from
the different degrees of σ(x), the countermeasure proposed in [22] relies on arti-
ficially raising of the degree of σ(x) if it is found to be lower than t.

3 Side Channel of ELP Determination

A deeper insight into Algorithm 2, however, reveals another timing side chan-
nel, which cannot be closed by the countermeasure proposed in [22]. Specifically,
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the time needed to determine the ELP in (A.2, S.5) and (A.2, S.6) depends on
the error weight. This side channel is available irrespective of the countermea-
sure proposed in [22]. Fig. 1 illustrates this aspect. In a näıve implementation,
McEliece-PKC decryption leaks two side channels in both the determination and
the evaluation of ELP. The work in [22] detected the second side channel and
proposes a corresponding countermeasure. In our work we detect the first side
channel and propose a countermeasure which closes both channels.

Countermeasure
proposed in this paper

Countermeasure
proposed in [22]

Side channel
unaware decryption

τ(x)

τ(x)

τ(x)

σ(x)

σ(x)

σ(x)

e′

e′

e′

ELP Determination
(A.2, S.5) and (A.2, S.6)

ELP Evaluation
(A.2, S.7)

Dashed arrow: Computing time
depends on error weight
(side channel available).

Continuous arrow: Computing time
does not depend on error weight
(side channel closed).

Fig. 1. Illustration of Timing Side Channels in McEliece-PKC

3.1 Side Channel Analysis

The error locator polynomial is established in (A.2, S.6). For σ(x) to be of degree
t the degrees of a(x) and b(x) must fulfill the following conditions:

1. If t is odd, then the degree of b(x) must be equal to t−1
2 to determine the

leading term of σ(x). The degree of a(x) must be equal or less than t−1
2 .

2. If t is even, then the degree of a(x) must be equal to t
2 to determine the

leading term of σ(x). The degree of b(x) must be equal or less than t
2 − 1.

These conditions lead to the following inequalities:

deg(a) ≤
⌊

t

2

⌋
and (2)

deg(b) ≤
⌊

t − 1
2

⌋
. (3)

Usually, the determination of a(x) and b(x) in (A.2, S.5) is performed using the
extended Euclidean algorithm (XGCD) with τ(x) and g(x) as input polynomi-
als, see Algorithm 3. The iterative processing is stopped when the degree of the
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Algorithm 3. XGCD with break condition
Require: τ (x), g(x)
Ensure: a(x) and b(x), with b(x)τ (x) = a(x) mod (g(x)) and deg(a) ≤ dbreak

1: r−1(x) = g(x)
2: r0(x) = τ (x)
3: b−1(x) = 0
4: b0(x) = 1
5: i=0
6: while deg(ri(x)) > dbreak do
7: i = i + 1
8: qi(x) = ri−2(x)/ri−1(x)
9: ri(x) = ri−2(x) mod ri−1(x)

10: bi(x) = bi−2(x) + qi(x) · bi−1(x)
11: end while
12: a(x) = ri(x)
13: b(x) = bi(x)
14: return a(x) and b(x)

remainder polynomial r(x) becomes equal to or less than � t
2. We denote Equa-

tion (2) as the break condition and denote � t
2 = dbreak. Furthermore, N refers

to the number of iterations in Algorithm 3.
In McEliece-PKC, the error vector always has a weight we = t. In this case,

we get equality either in (2) or in (3)1. Furthermore, due to Equation (1) recall
that any error vector with a weight we < t results in an ELP of a degree we. In
consideration of Algorithm 3, this effect is caused by returning two polynomials
a(x) and b(x), where neither (2) nor (3) becomes an equation. The purpose of
the following analysis is to show how this aspect is associated with a reduction
of the iteration number N in Algorithm 3. This, on its part, affects the execution
time of XGCD and offers a side channel for attacking the McEliece-PKC. Recall
that this timing side channel is available independently of the countermeasure
detailed in Section 2.2.

Table 1 depicts the dependency of the iteration number N on the error weight
we for different values of we and t. Based on we the degree of the ELP, i.e., deg(σ),
is given. Also, the possible values of deg(a) and deg(b) are determined based on
the following equation, given in (A.2, S.6):

σ(x) = a2(x) + x · b2(x) . (4)

From Algorithm 3, however, deg(b) can be determined as:

deg(b) =
N∑

i=1

deg(qi) . (5)

In Table 1, the iteration number N is set to be equal to deg(b). This is based on
the assumption that the degree of the quotient polynomial qi(x) in each iteration

1 For even t, we get equality in (2), for odd t, we get equality in (3).
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Table 1. Relation of iteration count N to the error weight we. Assumption: degree of
the quotient polynomial qi(x) equals one in each XGCD iteration.

t 20 19 even t odd t

we = t

deg(σ) 20 19
deg(a) = 10 ≤ 9
deg(b) ≤ 9 = 9
N ≤ 9 = 9 ≤ t

2
− 1 = t−1

2

we = t− 1

deg(σ) 19 18
deg(a) ≤ 9 = 9
deg(b) = 9 ≤ 8
N = 9 ≤ 8 = t

2
− 1 ≤ t−1

2
− 1

we = t− 2

deg(σ) 18 17
deg(a) = 9 ≤ 8
deg(b) ≤ 8 = 8
N ≤ 8 = 8 ≤ t

2
− 2 = t−1

2
− 1

we = t− 3

deg(σ) 17 16
deg(a) ≤ 8 = 8
deg(b) = 8 ≤ 7
N = 8 ≤ 7 = t

2
− 2 ≤ t−1

2
− 2

equals one. In the following, we show that this is not strictly true, but is fulfilled
with a very high probability for realistic values of the McEliece parameters m
and t.

If deg(qi) = 1 for all i ∈ {1, 2, . . .N}, then according to (5) the interation
number equals deg(b), as

deg(b) =
N∑

i=1

1 = N =
⌊

t − 1
2

⌋
. (6)

However, if deg(qi) = Q > 1 for any i ∈ {1, 2, . . .N}, then the iteration number
N is reduced by Q − 1 compared to the case where deg(qi) = 1 for all i’s. Note
that this does not affect the degree of b(x) due to Equation (5).

From Algorithm 3, the degree of qi(x) can be written as:

deg(qi) = deg(ri−2) − deg(ri−1) . (7)

For deg(qi) to be one, the degree of the remainder ri−1 must have decreased
exactly by one compared to ri−2. This happens with a probability of 1 − 2−m.
For m = 11, for instance, the above assumption is true in 99.95% of the cases2.

Thus, the probability for all qi(x) with i ∈ {1, 2, . . .N} having degree one
becomes

p1 =
(
1 − 2−m

)N
, (8)

2 This corresponds to the probability, that an 11-bit vector with uniformly distributed
bits is different from zero.
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Fig. 2. Possible XGCD iteration counts as a function of the error vector weight

where N is given by Equation (6). For m = 11 and t = 50, p1 becomes 98.83%
which is still high. Thus, in the majority of the cases we will encounter the
maximal number of iteration N = deg(b). Fig. 2 illustrates the results of Table 1
graphically, where the dots and bars in this figure represent exact values or value
ranges of N , respectively. From this figure and based on the previous analysis,
the following important conclusions can be drawn:

1. If t is odd, then reducing the number of errors we in a ciphertext from t to
t − 1, leads to reducing the iteration number N , see right part of Fig. 2.

2. If t is even, then reducing we to t−1 is not sufficient to reduce the iteration
number. At least two bits must be flipped by the attacker in this case, in
order to potentially reach we = t − 2, see left part of Fig. 2.

3. The lower we, the lower N , however, the more difficult is the attack. This
is because the probability to correctly guess l positions of the error vector
that have the value 1 is given as follows:

p2 =
l−1∏
i=0

t − i

2m − i
. (9)

Table 2 shows some examples for this probability. Obviously l may be used
as a trade-off parameter to control the attack. Lower l values, on the one hand,
demand less computation to find the right bits. On the other hand, a lower l value
causes less reduction of N and the time measurement must be more accurate to
eliminate noise. Therefore, lower l values may be more appropriate for attacking
devices with low computation power and low noise such as smart cards. For
attacking a server, in contrast, higher values of l may be more helpfull. In general,
a server may offer the computation power needed to rule the exponential relation
between the number of guessed bit positions l and the probability for a right
guess according to (9).

Note: We analyzed the side channel of ELP determination with respect to
XGCD applied in (A.2, S.5), so far. In this note we address the squaring of a(x)
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Table 2. Probability to create manipulated ciphertexts with a given we

we Probability Example: t = 50 and m = 11

t− 1 t
2m 2.44%

t− 2 t
2m

t−1
2m−1

0.06%

t− 3 t
2m

t−1
2m−1

t−2
2m−2

0.0026%

and b(x) in (A.2, S.6). Considering Table 1 it can be seen that manipulated
ciphertexts, i.e. ciphertexts with we < t, result in polynomials a(x) and b(x)
with degrees, which are most likely equal to or less than the case of we = t.
Consequently, the squaring in (A.2, S.6) will be faster and the decryption time
will again be smaller. Thus, the effect of this manipulation on the squaring time
enhances the side channel of XGCD discussed above. As this effect, however,
will be removed by the same countermeasure proposed in Section 3.3, it is not
analyzed here, for brevity.

3.2 Attack Procedure

Note: Encrypting a message in McEliece-PKC includes imprinting t errors into
the encoded message, see (A.1, S.4). In the following we use the concept of correct
bit, which should be considered from the attackers’ point of view. This concept
refers to a bit of the error vector which has a value of one. Thus, the purpose of
the attack is to find all the t correct bits imprinted in the n−bit ciphertext z.

In this section we first describe the attack procedure for an odd t, where
flipping only one correct bit is sufficient. Then, we remark how the procedure
can be modified to attack systems with an even t. In the following, we assume
an implementation with the countermeasure presented in [22] to eliminate the
effect of the ELP evaluation channel and to highlight only the ELP determination
channel.

The proposed attack relies on flipping a bit zi of the ciphertext z and mea-
suring the decryption time. We distinguish two cases:

1. If the corresponding bit of the error vector is not a correct bit (ei = 0), then
the bit flipping causes adding an additional error, so that we > t. It can be
shown that the ELP will have a degree of t and the XGCD iteration number
will be equal to t−1

2 in this case, see [22].
2. If the corresponding bit of the error vector is a correct bit (ei = 1), then

the bit flipping causes the removal of this error, so that we = t − 1. Thus,
the XGCD iteration number will be equal to or less than t−1

2 − 1 and the
decryption time will be shorter than in the previous case.

This procedure is repeated for all bits of z as depicted in Algorithm 4. The
function OneHot(n, i) delivers an n−bit vector where only the i−th bit is one.
To improve results, a measurement may be repeated several times, which is
adjusted using the parameter M .
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Algorithm 4. Timing attack based on the ELP evaluation for odd t

Require: Ciphertext z, McEliece parameters (t, n = 2m), attack precision parame-
ter M .

Ensure: Error vector e shrouded in z.
1: e := 0
2: for i = 0 to n− 1 do
3: c = z ⊕OneHot(n, i).
4: for j = 1 to M do
5: Provoke decrypting c and measure the decryption time Ti,j

6: end for
7: Determine Ti as the mean value of all Ti,j ’s and insert it into a list L.
8: end for
9: Sort L according to increasing Ti values.

10: for k = 0 to t− 1 do
11: Get the the index i of the k-th element of L.
12: ei := 1
13: end for
14: return e.

For the case of even t, Algorithm 4 must be modified to support flipping of
at least two bits of the ciphertext. For this purpose, the first for-loop may be
replaced by two nested loops. The extern loop flips one bit, say zi. The inner
loop flips all the other bits from zi+1 to zn−1 one-by-one and proceeds as the
first for-loop of Algorithm 4. This implements a maximum-likelihood strategy
concerning the error positions.

3.3 Countermeasure

The idea of the countermeasure is to detect the conditions for an untimely ter-
mination of XGCD and, if this is the case, to enforce the continuation of XGCD
execution until proper degrees of a(x) and b(x) are reached, which would result
from a ciphertext with we = t, see Algorithm 5.

Referring to previous analysis and Table 1 the break condition of XGCD in
consideration of the presented attack can be rewritten as follows:

– If t is even, then the degree of a(x) can be used to detect a ciphertext with
we < t. Specifically, deg(a) must be equal to dbreak to make sure that we ≥ t.
For instance, if t = 20 then deg(a) must be equal to 10 in the last iteration,
see the condition in (A.5, S.12).

– If t is odd, then a ciphertext with we < t can be detected by examining
the degree of b(x), which also must be equal to dbreak in the last iteration,
provided that z was not corrupted, see the condition in (A.5, S.16).

In both cases the timing side channel arising in the event of we < t are closed.
Enforcing the continuation of XGCD execution is achieved by manipulating the
remainder polynomials ri(x) to have a degree which is equal to deg(ri−1)− 1, see
steps 13 and 17 of Algorithm 5. This manipulation is performed using predefined
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Algorithm 5. XGCD with countermeasure
Require: τ (x), g(x)
Ensure: a(x) and b(x), with b(x)τ (x) = a(x) mod (g(x)) and deg(a) ≤ dbreak

1: r−1(x) = g(x)
2: r0(x) = τ (x)
3: b−1(x) = 0
4: b0(x) = 1
5: i = 0
6: while deg(ri(x)) > dbreak do
7: i = i + 1
8: qi(x) = ri−2(x)/ri−1(x)
9: ri(x) = ri−2(x) mod ri−1(x)

10: bi(x) = bi−2(x) + qi(x) · bi−1(x)
11: if t even then
12: if deg(ri) < dbreak then
13: Manipulate ri(x), so that deg(ri) = deg(ri−1)− 1
14: end if
15: else
16: if deg(ri) ≤ dbreak AND deg(bi) < dbreak then
17: Manipulate ri(x), so that deg(ri) = deg(ri−1)− 1
18: end if
19: end if
20: end while
21: a(x) = ri(x)
22: b(x) = bi(x)
23: return a(x) and b(x)

coefficients or pseudo random coefficients which are derived deterministically from
the ciphertext. Note that it is not advisable to use random data to implement this
countermeasure. Otherwise an attacker may gather information by detecting that
the decryption of a manipulated ciphertext is not deterministic. He could observe
this by repeatedly letting the device decrypt the respective manipulated cipher-
text, and determine the variance of quantities like the timing or power consump-
tion at a certain point in time. Note that this countermeasure leads to falsifying
the result, however, only in the case of manipulated ciphertexts. Understandably,
this falsification is not critical in this case.

3.4 Implementation

Attack Execution: To prove the proposed attack and its countermeasure we
simulated it for a proprietary FPGA implementation using Virtex-5 from Xilinx.
The McEliece-PKC parameters are t = 50 and m = 11. We decrypted three
ciphertexts z1, z2, and z3, where z1 is an incorrupted ciphertext, z2 is z1 after
flipping one correct bit, and z3 is z1 after flipping two correct bits. Table 3
summarizes the number of clock cycles needed to decrypt the three ciphertexts.
These results prove the feasibility of the timing attack and confirm the analysis
given in Section 3.1. Apparently, flipping one bit is not sufficient in the case of
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even t. At least two bits must be flipped to reduce the iteration number and
obtain a considerable difference in the decryption time. Table 3 additionally
includes the decryption clock cycles for the same ciphertexts after implementing
the countermeasure described in the following.

Table 3. Timing Attack Procedure Example

z we No. cycles without countermeasure No. cycles with countermeasure

z1 t 189,138 189,138

z2 t− 1 189,138 189,138

z3 t− 2 188,836 189,138

Countermeasure Implementation: The goal of the countermeasure is to
defeat the described attack without increasing the clock cycles necessary for
the computation of the XGCD compared to the original implementation. As our
McEliece-PKC implementation has an even t (t = 50), the proposed countermea-
sure relates to steps 12 and 13 in Algorithm 5. If we find out that deg(ri) < dbreak

in any iteration i, then the corresponding ciphertext is manipulated. In this case
we alter ri(x) to r′i(x) so that deg(r′i) = deg(ri−1) − 1. This means, not only
the highest coefficient of ri(x) is set to a non-zero value, but also all other po-
tential leading zero coefficients. The results in Table 3 show that the described
countermeasure closes the obvious timing side channel completely.

4 Conclusion

In this paper we have shown that the McEliece-PKC like most known public
key cryptosystems, bears a high risk of leaking secret information through side
channels if the implementation does not feature appropriate countermeasures.
We have detailed a timing attack, which was also implemented and executed
on an existing FPGA implementation of the cryptosystem. Our results show the
high vulnerability of an implementation without countermeasures. Clearly, other
parts of the cryptosystem require to be inspected with the same accuracy. This
is especially true for the decryption phase, where the secret Goppa polynomial
is employed in different operations. The McEliece-PKC, though existing for 30
years, has not experienced wide uses so far. But since it is one of the candidates
for post quantum public key cryptosystems, it might become practically relevant
in the near future.
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A Key Generation in McEliece-PKC

Algorithm 6. McEliece-PKC Key Generation
Require: McEliece domain parameters m and t.

Let n = 2m and k = n−mt.
Ensure: The public key RT and the private key (P, g(x)).
1: Construct GF (2m) = {α0, α1, . . . , αn−1}.
2: Create a random monic, irreducible polynomial g(x) with deg(g) = t, having coef-

ficients in GF (2m) and x ∈ GF (2m).
3: Create the auxiliary matrices X, Y, and Z.
4: Calculate the t× n control matrix H = XYZ.
5: Create a random n× n permutation matrix P.
6: Calculate the permutated control matrix H̃ = HPT .
7: Transform the t×n matrix H̃ over GF (2m) into a mt× n matrix H2 over GF (2).

8: Bring H2 into the systematic form G̃ = [Imt|R].
9: The expanded public key is the k×n matrix over GF (2), denoted as G =

[
RT |Ik

]
.

10: return RT and (P, g(x))

Key Generation. Algorithm 6 depicts the key generation in McEliece-PKC.
Based on the domain parameters m and t, the code length n and its dimension
k are determined. The first step in the key generation is to construct the basic
finite field GF (2m). With m = 11, for instance, this field contains 2048 elements
α0, α1, . . . , α2047, which are all 11-bit vectors. The next step is to generate a
monic, irreducible polynomial g(x) = xt + gt−1x

t−1 + . . . + g1x + g0, which is
denoted as Goppa polynomial. All coefficients of g(x) are elements of GF (2m).
This polynomial is part of the private key which is kept secret.

Based on g(x) and the field GF (2m) the control matrix H is created. This step
is performed using three auxiliary matrices X, Y, and Z, as given in Appendix
A. Note that g(αi)−1 indicates the multiplicative inverse of g(αi) in GF (2m),
where g(αi) results from the evaluation of g(x) for the element αi.
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X =

⎡⎢⎢⎢⎣
gt 0 0 · · · 0

gt−1 gt 0 · · · 0
...

...
...

. . .
...

g1 g2 g3 · · · gt

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

t×t matrix

, Y =

⎡⎢⎢⎢⎣
1 1 · · · 1
α0 α1 · · · αn−1

...
...

. . .
...

αt−1
0 αt−1

1 · · · αt−1
n−1

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

t×n matrix

,

Z =

⎡⎢⎢⎢⎣
g(α0)

−1 0 · · · 0
0 g(α1)

−1 · · · 0
...

...
. . .

...
0 0 · · · g(αn−1)

−1

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

n×n matrix

Fig. 3. Auxiliary Matrices for the Control Matrix H

Subsequently, the control matrix is permuted using a random matrix P , which
is also kept secret as a part of the private key. Although the resulting matrix H̃
can now be used as a public key, this is inefficient because of the huge length of
this key. The next steps, therefore, aim at producing a shorter public key. First
H̃ is expanded to the binary form H2, which is converted into a systematic form
G̃, where I is the identity matrix. Lastly, G̃ is transposed into G and G’s left
submatrix RT is returned as the public key.
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Abstract. The design of embedded processors demands a careful trade-
off between many conflicting objectives such as performance, silicon area
and power consumption. Finding such a trade-off often ignores the issue
of security, which can cause, otherwise secure, cryptographic software to
leak information through so-called micro-architectural side channels. In
this paper we show that early-terminating integer multipliers found in
various embedded processors (e.g., ARM7TDMI) represent an instance
of this problem. The early-termination mechanism causes differences in
the time taken to execute a multiply instruction depending on the mag-
nitude of the operands (e.g., up to three clock cycles on an ARM7TDMI
processor), which are observable via variations in execution time and
power consumption. Exploiting the early-termination mechanism makes
Simple Power Analysis (SPA) attacks relatively straightforward to con-
duct, and may even allow one to attack implementations with integrated
countermeasures that would not leak any information when executed on
a processor with a constant-latency multiplier. We describe several case
studies, including both secret-key (RC6, AES) and public-key algorithms
(RSA, ECIES) to demonstrate the threat posed by embedded processors
with early-terminating multipliers.

Keywords: Side-channel attack, power analysis, computer arithmetic,
general-purpose processor, micro-architectural cryptanalysis.

1 Introduction

Within the context of embedded system design, factors such as silicon area and
power consumption need to be carefully balanced against performance. This is
particularly important when a single component acts as a bottleneck to perfor-
mance, or is particularly large or power hungry; examples include the dedicated
multiplier circuits that exist within embedded processor cores. Approaches to
the realisation of such circuits form a large design space. Ignoring issues such as
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pipelining, at one extreme are fully parallel designs built entirely from combi-
natorial logic, for example those based on Wallace or Dadda trees [13]. Such
designs represent a low-latency solution since they produce a result in a single
clock cycle, but do so at the expense of area and power consumption.

At the other end of the design space are multipliers that are iterative in the
sense that they make iterative use of modest combinatorial logic (e.g., based on
a bit-serial approach). Bit-serial multipliers essentially allow the opposite trade-
off by increasing latency but reducing area and power. Of course, intermediate
points in the design space exist; these represent approaches which try to reduce
the area requirements of low-latency designs or reduce the latency of low-area
or low-power designs. Well-known ways to arrive at such a compromise include
the implementation of a digit-serial multiplier [20], the recoding of one of the
operands into a radix-4 representation [10], or a combination of both [15].

Numerous 32-bit processors intended for the embedded market are equipped
with digit-serial integer multipliers. For example, ARM7 processors such as the
ARM7TDMI [5] contain a (32 × 8)-bit multiplier; other embedded processors
feature (32 × 12)-bit multipliers (Intel StrongARM SA-1100 [22]) or (32 × 16)-
bit multipliers (e.g., MIPS32 4Km [26], PowerPC 440x6 [21], as well as certain
ARM9 models). These processors execute a (32 × 32)-bit multiplication in an
iterative fashion by making several passes through the datapath; each iteration
processes an 8, 12, or 16-bit digit of the multiplier-operand, starting with the
least-significant digit. The result of the first iteration is fed back into the multi-
plier and combined with the intermediate products of the following iterations to
eventually yield the full result [15]. Generally speaking, a w-bit processor core
comprising of a digit-serial multiplier with a digit-size of k < w bits requires
 w/k! cycles to calculate the 2w-bit product of a (w ×w)-bit multiplication (an
extra clock cycle may be necessary if the full product is to be written back to
general-purpose registers).

One of the reasons why digit-serial multipliers are attractive is the prolifera-
tion of Digital Signal Processing (DSP) and multimedia applications in mobile
and embedded devices, e.g. cell phones or PDAs. These application domains are
multiplication-intensive, which means that the latency of multiply instructions
impacts heavily on overall performance. In order to better support DSP/multi-
media kernels, many processors with digit-serial multipliers employ a technique
commonly referred to as early termination [15]. That is, after each iteration the
multiplier checks whether the remaining digits are all zero; if this is the case the
multiplication is terminated early and the result is immediately returned. The
early-termination mechanism can reduce the latency of multiply instructions
if the operands are small, which is generally the case in DSP and multimedia
applications. For example, a processor with an early-terminating (32 × 8)-bit
multiplier can multiply two 8-bit pixel colour values in a single cycle, or two
16-bit audio samples in two clock cycles (instead of four cycles as would be the
case without early termination).

Both Kocher et al. [25] and Ravi et al. [33] stress the importance of consid-
ering security as an additional dimension in the embedded system design space
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that demands the same attention as more traditional metrics of interest such
as cost, performance, and power. Within this setting, the threat of side-channel
analysis against embedded systems poses a particularly hard problem. By pas-
sively profiling or actively influencing execution of cryptographic software, it is
possible that an attacker can recover otherwise secret information stored in an
embedded device. Focusing on power analysis attacks, Simple Power Analysis
(SPA) refers to a scenario where an attacker typically collects only one, or very
few, power traces and attempts to recover secret information by focusing on
differences between patterns within each trace. In contrast, Differential Power
Analysis (DPA) typically uses several or many traces and analyses differences
between the traces [24].

The problem of side-channel leakage becomes especially pronounced if a pro-
cessor itself causes otherwise secure cryptographic software to leak information
through a micro-architectural side channel [4]. Put simply, micro-architectural
attacks exploit certain features or effects of “standard” processor components
(e.g., cache systems, branch prediction units) to induce or amplify side-channel
leakage. In recent years, micro-architectural cryptanalysis based on cache hits
or misses [32,9,1] as well as branch (mis-)predictions [2,3] has been studied ex-
tensively, and several successful attacks are reported in the recent literature
[7,31]. These approaches allow an attacker to extract secret keys from crypto-
graphic software, even if it features sophisticated side-channel countermeasures
that would completely prevent leakage on processors without cache sub-system
or branch prediction unit.

In this paper we show that early-terminating integer multipliers are a prime
example of a micro-architectural side channel and that they can leak significant
information about the secret keys used in cryptographic software. As described
previously, the early-termination mechanism causes differences in the latency
of multiply instructions, which are observable via variations in execution time
and power consumption. For example, the latency of a (32 × 32)-bit multiply
instruction producing a 64-bit result can vary by up to three clock cycles on a
processor with an early-terminating (32 × 8)-bit multiplier (e.g., ARM7TDMI
and ARM920T), or up to two cycles if the multiplier has a digit-size of 12 bits
(e.g., StrongARM SA-1100), or one cycle in the case of an early-terminating
(32 × 16)-bit multiplier (e.g., MIPS32 4Km, certain PowerPC models).

Side-channel attacks exploiting the early-termination mechanism belong to
the category of micro-architectural attacks since the level of susceptibility de-
pends mainly on the micro-architectural design of a processor. However, micro-
architectural cryptanalysis based on early-terminating multiplication differs in
some aspects from cache attacks and branch-prediction attacks. Firstly, some
variants of cache attacks (e.g., those described in [31,1]), as well as the Simple
Branch Prediction Analysis (SBPA) attack [2], rely on other processes (e.g., a
so-called “spy” process running in parallel on the same processor) to evict cache
lines or to reveal the branch predictor state. An early-termination attack, on
the other hand, is completely passive in the sense that it does not require a spy
process running on the target processor: instead, our attacks work by feeding
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cryptographic software carefully chosen input content (plaintexts) that provoke
the early-termination mechanism. Often, very few such inputs, and hence very
few executions of the implementation under attack, suffice to extract the entire
secret key. A second difference is the type of processors for which said attacks
are relevant. While cache memory and branch prediction units can be found in
almost any high-performance processor, they are less common in the embedded
market, especially in the low-power segment. Early-terminating multipliers, on
the other hand, are widely deployed in embedded processors and, as such, early-
termination attacks expand the scope of micro-architectural cryptanalysis into
the embedded domain.

Our contribution in this paper is threefold. First, we describe in detail how
early-terminating multipliers work and what information they can leak through
power and timing side channels. Even though side-channel leakage due to data-
dependent instruction timing has been investigated within other contexts, the
threat posed by the early-termination effect is still widely unknown. Our second
contribution is to survey vulnerable cryptographic algorithms, and to explain
how such vulnerabilities can be practically used to mount attacks. We conducted
numerous experiments with software implementations of AES, RC6, RSA, and
ECC on an ARM7 processor. In all our experiments we succeeded in extracting
the entire key with just a few power traces; in some cases a single trace was
sufficient. The third and final contribution is an analysis of potential hardware
and software-based countermeasures.

2 Background

In this section, we describe the early-termination mechanism in detail, using the
ARM7TDMI [5,15] as a concrete example. We focus on this specific platform
because it has a dominant role in the 32-bit embedded processor market. How-
ever, we point out that the attacks described in this paper can be mounted on
any embedded processor with an early-terminating integer multiplier, including
(but not limited to) the StrongARM SA-1100, the MIPS32 4Km, and certain
PowerPC models.

We use the following notation: w refers to the processor’s word size; in our
case w = 32 since we are dealing with an ARM7 processor. Let xi with 0 ≤ i < w
denote the i-th bit of some w-bit word x. Furthermore, let x(y) denote x written
in base-y. For example, F0(16) is the decimal value 240 written in base-16, X =
(X0, X1, . . . Xn−1)(256) is a vector of n elements where each element is written
in base-256 (i.e., each element is a byte).

2.1 Multiplication on an ARM7TDMI

The ARM instruction set provides several (32 × 32)-bit multiplication instruc-
tions which pass two 32-bit inputs x and y to the multiplier circuit. For exam-
ple, the umull and mul instructions produce 64-bit and 32-bit unsigned outputs
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Algorithm 1. A functional description of ARM7TDMI multiplication

Input: The 32-bit integers x and y.
Output: The 64-bit result r = x · y.

t0 ← 01

for i = 0 up to 3 step 1 do2

t1 ← x · y7...03

t0 ← t0 + (t1 � 8i)4

y ← y � 85

if y = 0 then return t06

end7

respectively [6]. Signed alternatives are provided that function in a similar man-
ner; however, we exclusively consider unsigned instructions because they are
more commonly used in cryptographic algorithms. We term x the multiplicand
and y the multiplier. In principle, one can imagine the multiplication hardware
operating as described in Algorithm 1.

The (32×8)-bit multiplier processes one 8-bit digit of y in each step, working
from the least-significant to the most-significant. After the i-th step, if y = 0
then the algorithm terminates early and immediately returns the accumulated
result in t0. Since y is right-shifted at each step, this essentially means each j-th
digit of the original y, with j > i, is checked: if all digits are set to zero then
early termination occurs. On the other hand, if y �= 0, then at least one such j-th
digit is non-zero, and hence a (32×8)-bit multiplication is used to form a partial
product t1, which is scaled and added to t0. The early-termination mechanism
means one can consider the algorithm taking between 1 and 4 steps.

Due to this early termination, a (32 × 32)-bit multiplication is executed in a
single clock cycle if bits y8 to y31 of the multiplier y are all set to zero, in two
clock cycles if y16 to y31 are all set to zero (but y8 to y15 are not), in three clock
cycles if bits y24 to y31 are all zero (but y8 to y23 are not), and in four cycles
otherwise. The so-called “long” multiply instructions that return a 64-bit result
(e.g., umull) need an additional clock cycle since they have to write-back two
32-bit words into general-purpose registers via a single write port [15]. Putting
everything together, the umull instruction occupies the Execute stage1 of the
pipeline for between two and five clock cycles, depending on the magnitude of the
multiplier-operand y.

2.2 Recovering Multiplication Latency Using SPA

“Long” multiply instructions, such as umull [6], allow one to specify two source
registers (Rm, Rs) from which the operands to be multiplied are read, and two
destination registers (RdLo, RdHi) into which the lower (resp. upper) part of the
64-bit product Rm ×Rs is placed. The ARM7TDMI supports early termination
1 The ARM7TDMI processor has a simple three-stage pipeline comprising of Fetch,

Decode, and Execute stages [5].
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Fig. 1. Overlaid (left) and individual (right) power consumption traces showing ARM7
multiplications that take 2, 3, 4 and 5 clock cycles (top left to bottom right)

on Rs, which means that the latency of the umull instruction can vary by up to
three clock cycles depending on the magnitude of the operand in Rs [5]. In what
follows, we assume that the multiplicand x is stored in Rm and the multiplier y in
Rs. Consequently, the value of y provokes early termination; where an operand
within some pseudo-code algorithm or source code is fed to the multiplier circuit
as y, we term it an early-terminating operand.

As mentioned above, the umull instruction occupies the Execute stage of the
ARM7TDMI pipeline for between two and five clock cycles, depending on the
magnitude of y. As a result, the number of clock cycles required to execute
the umull instruction leaks information about the multiplier y. The exact in-
formation returned is the number of most-significant 8-bit digits of y that are
set to zero, excluding the least-significant digit, which is always processed (see
Algorithm 1). This observation can be made in a “course-grained” way by noting
timing differences over an entire execution, or in a “fine-grained” way by mon-
itoring the power consumption of the processor while it executes a particular
umull instruction. Figure 1 shows exemplar power consumption traces from an
ARM7TDMI core clocked at 7.37 MHz to demonstrate this side channel. These
traces have been captured using a Tektronix DPO 7104 digital oscilloscope with
a differential probe connected to a 1 Ω shunt in the power supply line.

The umull instruction terminates early on the operand read from register
Rs, i.e. the multiplier y according to our definition from above. On the other
hand, the second operand read from register Rm has no impact as to whether or
not early termination occurs. If one of the two operands to be multiplied is small
and known a priori, then the programmer can reduce the latency of the umull
instruction by assigning registers in such a way that this operand provokes the
early-termination mechanism. Optimising compilers also try to increase the pro-
bability of early termination through appropriate assignment of small operands
(e.g. loop counters, array indices). However, there is no guarantee that a given
compiler performs optimisations so that early termination occurs (or does not
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Algorithm 2. The AES-128 encryption function

Input: The 128-bit plaintext block P , and 128-bit key K.
Output: The 128-bit ciphertext block C.

X ← AddRoundKey(P, K)1

for i← 1 to 10 do2

X ← ShiftRows(X)3

X ← SubBytes(X)4

if i �= 10 then5

X ← MixColumns(X)6

end7

K ← KeySchedule(K)8

X ← AddRoundKey(X, K)9

end10

C ← X11

return C12

occur) on certain input data or that an optimisation decision will be safe if the
same program is executed on a different, but compatible, processor (e.g., with a
different multiplier type). Furthermore, there exist a number of scenarios where
a programmer has little or no control over the early-termination mechanism; one
may think of Java applets executed in a virtual machine running on a proces-
sor. In this case it depends primarily on the virtual machine whether or not the
multiplication of a given pair of operands terminates early.

3 Early-Termination Attacks

In the following we demonstrate that the early-termination mechanism facilitates
SPA attacks on both secret-key and public-key cryptosystems.

3.1 AES

The basic structure of the Advanced Encryption Standard (AES) [30], as used to
perform encryption, is illustrated in Algorithm 2. Note that we restrict ourselves
to considering AES-128 and that the description omits a permutation typically
used to convert the 128-bit plaintext P = (P0, P1, . . . , P15)(256) and key K =
(K0, K1, . . . , K15)(256) into a matrix form as described in [30]. The encryption
itself is realised through iterated use of a number of round functions on a state
matrix X :

– The AddRoundKey function mixes a round key with the state using an XOR
operation.

– The ShiftRows function is a byte-wise permutation of the state.
– The SubBytes function applies a substitution table (i.e., an S-box) to each

byte of the state; formally, this table is an inversion over F28 followed by an
affine transformation.
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Algorithm 3. The AES MixColumns function

Input: X = (X0, X1, . . . , X15)(256)
Output: Y = (Y0, Y1, . . . , Y15)(256)

for i← 0 to 15 do1

Yi = 2 •Xi ⊕ 3 •X(i+4) mod 16 ⊕X(i+8) mod 16 ⊕X(i+12) mod 162

end3

return Y4

Algorithm 4. An implementation of the xtime function on a 32-bit platform

Input: A = (a0, a1, a2, a3)(256)
Output: B = (xtime(a0), xtime(a1), xtime(a2), xtime(a3))(256)

R1 ← A ∧ 80808080(16)1

R1 ← R1 � 72

R2 ← R1 · 1B(16)3

R1 ← A� 14

R1 ← R1 ∧ FEFEFEFE(16)5

R1 ← R1 ⊕R26

return R17

– The MixColumns function is shown in Algorithm 3, where • represents poly-
nomial multiplication over the field F28 modulo the irreducible polynomial
x8 + x4 + x3 + x + 1. That is, polynomial multiplication by 2 and 3 denotes
multiplication with x and x + 1, respectively.

– The KeySchedule function generates the next round key from the previous
one. The first round key is the input key with no changes, subsequent round
keys are generated using the SubBytes function and XOR operations.

An 8-bit implementation typically represents the state as an array of 16 bytes
and implements each step of the round function in a direct manner. Within such
an implementation, the xtime function [14] (a polynomial multiplication by 2)
used by MixColumns (and within the S-box used in SubBytes) can be imple-
mented as a look-up table, or careful use of data-independent control-flow, to
prevent side-channel attacks. More specifically, using a look-up table avoids the
data-dependent XOR needed to perform reduction by the irreducible polynomial
x8 + x4 + x3 + x + 1.

On a 32-bit platform it can be attractive to compute (rather than look-up)
the results of xtime as described in Algorithm 4. Intuitively, this approach, due
to Bertoni et al. [8], appears more time-consuming than a single look-up; how-
ever, it allows four applications of xtime to be computed in parallel. Compared
to the traditional T-tables approach to implementing AES on 32-bit platforms
[14], this realisation of xtime allows a trade-off toward performance over memory
footprint (which is crucial for various embedded applications) and also guards
against cache-based side-channel attacks.
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Algorithm 5. The RC6 encryption function

Input: A 4-tuple of 32-bit plaintext values (A, B, C, D).
Output: A 4-tuple of 32-bit ciphertext values (A, B, C, D).

B ← B + S[0]1

D ← D + S[1]2

for i = 0 up to r do3

t← (B · (2B + 1))� 54

u← (D · (2D + 1))� 55

A← ((A⊕ t)� u) + S[2i]6

C ← ((C ⊕ u)� t) + S[2i + 1]7

(A, B,C, D)← (B, C, D, A)8

end9

A← A + S[2r + 2]10

C ← C + S[2r + 3]11

return (A, B, C, D)12

Assuming that R1 holds the early-terminating operand2, the danger of this
approach is clear: if an attacker can recover how many clock cycles it takes to
compute the multiplication in step 3, he can determine how many of the most-
significant bytes of R1 are set to zero. The full version of this paper [18] presents
some concrete attacks applied to AES as implemented on an ARM7TDMI pro-
cessor [5]. In one of these attacks we were able to extract the entire 128-bit key
using just eight power consumption traces.

3.2 RC6

Consider encryption using the block cipher RC6 [34] as described in Algorithm
5 for the specific case of w = 32; this description assumes that the round keys
represented by S are an auxiliary input. Focusing on the plaintext input B, the
pertinent feature with regard to early termination occurs in step 4 which, cru-
cially, is after the initial whitening step. In the first round (i.e. when i = 0), this
step represents a (32× 32)-bit unsigned multiplication where both operands are
derived from the input B and S[0].

Assume the early-terminating operand for this multiplication is B + S[0]. An
attacker can recover the number of cycles taken by this multiplication. Using
adaptive choices of input B, the attacker can perform trial encryptions until the
whitening step computes a result B + S[0] in which the most-significant byte is
zero. Since this intermediate value is used as the early-terminating operand in

2 An optimising C compiler would rather use the constant 1B(16) as early-terminating
operand (even though there is no guarantee for this). However, the attack on xtime is
nonetheless practically relevant if we consider a Java implementation of Algorithm 4.
In this case the programmer has no control over the early-termination mechanism
since it depends primarily on the virtual machine whether R1 or 1B(16) is the early-
terminating operand.
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Algorithm 6. The left-to-right binary exponentiation algorithm

Input: The integers x, y and N .
Output: The integer r = xy (mod N).

t← x1

for i = |y| − 2 downto 0 do2

t← t2 (mod N)3

if yi = 1 then4

t← t · x (mod N)5

end6

end7

return t8

step 4, the fact that the most significant byte is zero causes early termination. In
an ideal setting, this would mean one could search for a B such that B+S[0] = 0
(i.e. S[0] = −B), and hence recover S[0]. However, as detailed in Subsection 2.1
and 2.2, one can not recover information about the least-significant byte of the
early-terminating operand. This means that instead of getting S[0] directly, one
narrows the possible range of values: one finds that B + S[0] ∈ {0 . . . 255}. Even
so, one can view this as leaking 24 bits of the 32-bit round key S[0]; the same
approach also yields S[1] via observation of the second multiplication involving
D (within the same set of acquisitions).

3.3 Exponentiation in ZN (e.g., RSA)

A central operation in the RSA algorithm [35] is exponentiation in ZN where
N = p · q for secret, large primes p and q. In “textbook” RSA, this operation
takes plaintext (resp. ciphertext) x and exponentiates it by a key y to compute
ciphertext (resp. plaintext) r = xy mod N . Let yi denote the i-th bit in the
binary expansion of y, and S and M represent modular squaring operations and
multiplications in ZN .

Typically, x is controllable by an attacker while y is fixed: either it represents
the public or private RSA exponent. The classic square-and-multiply technique
(left-to-right binary exponentiation) described in Algorithm 6 provides a simple
method to compute r. Within the i-th iteration of the algorithm a multiplication
is executed if, and only if, yi = 1. This leaks the value of y if an attacker can
distinguish squaring operations (i.e., step 3) from multiplications (i.e., step 5):
if the attacker observes the sequence SM during iteration i (i.e., a squaring
operation then a multiplication is executed) then yi = 1, whereas if he observes
S alone then yi = 0.

Since all inputs and the output r of Algorithm 6 are multi-precision integers
(e.g. 1024 bits held in 32-bit words), a method such as Montgomery multiplica-
tion [28] is typically used to perform the modular arithmetic. Step 3 uses t as
both operands to the modular multiplication; since t is essentially random as the
algorithm progresses, both operands are random. However, the multiplication in
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step 5 uses x as one operand. If the digits of x form early-terminating operands
to (32×32)-bit multiply instructions within the Montgomery multiplication, the
early-termination mechanism can be invoked. Specifically, if an attacker controls
x, he can select a value that is “special” in the sense it has a low weight (i.e. a
number of 32-bit digits are zero). Such an x permits the attacker to distinguish
between modular squaring operations and multiplications based on how often
the early-termination mechanism is invoked; following the reasoning above this
leaks y which, depending on the context, is potentially the private key.

Interestingly, this approach not only works for “textbook RSA” as outlined
above, but also when the plaintext (resp. the ciphertext) is padded according to
PKCS #1 [36]. The PKCS #1 standard provides recommendations for the im-
plementation of public-key cryptography based on the RSA algorithm, covering
both encryption and the generation/verification of digital signatures. Version 2.1
of PKCS #1 specifies two padding schemes for encryption, namely the Optimal
Asymmetric Encryption Padding (OAEP) and an older padding scheme from
PKCS #1 version 1.5, which is not recommended for new applications. In both
cases the message is first encoded before the encryption (i.e., modular exponen-
tiation) is performed. Conversely, the decryption of the ciphertext starts with a
modular exponentiation to recover the plaintext, which is then decoded into the
original message.

Assume an attacker wishes to extract the secret key used in an RSA decryp-
tion operation by exploiting the early-termination mechanism: to achieve this
he manipulates the ciphertext such that it has a low weight (e.g., by injecting a
number of 32-bit words that are set to zero). As mentioned previously, the de-
cryption process starts with a modular exponentiation of the ciphertext using the
secret exponent, followed by the decoding of the obtained plaintext to retrieve
the original message. Consequently, a manipulation of the ciphertext can only be
detected after the exponentiation has finished. Any multiply instruction using
one of the low-weight words as operand will terminate early, thereby enabling
an attacker to distinguish modular multiplications from modular squarings when
the exponentiation is performed as described in Algorithm 6. Extracting the se-
cret key from a PKCS #1-compliant implementation of RSA decryption is, in
essence, no harder than attacking textbook RSA, provided that the attacker has
the possibility to manipulate a ciphertext or to inject chosen ciphertexts.

Attacking SPA-Resistant m-ary Exponentiation. The early-termination
mechanism amplifies side-channel leakage, but an SPA attack is, of course, also
possible without exploiting this mechanism. In order to thwart SPA attacks on
RSA, a number of regular exponentiation techniques have been proposed; these
range from the square-and-multiply-always algorithm to m-ary exponentiation
with a recoded exponent [23]. The aim of all these algorithms is to perform the
exponentiation in such a way that always the same sequence of basic operations
(modular multiplications, modular squarings) is executed, irrespective of the
exponent. The m-ary exponentiation method uses the m-ary expansion of the
exponent y, whereby m is usually a power of two, i.e. m = 2k. It uses a table
of m − 2 pre-computed powers of the base x, i.e. xi for i ∈ {1, . . . , m − 1}, and
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processes a k-bit digit of the exponent y at a time, which reduces the number
of modular multiplications compared to the binary method. Möller proposed in
[27] a recoding scheme for m-ary exponentiation where each k-bit digit that is
equal to zero is substituted with −m, and the next most significant digit gets
incremented by one. This leads to an exponent recoded with k-bit digits in the
set {1, 2, . . . , m − 1} ∪ {−m}. An overview of other exponent recoding schemes
yielding regular m-ary exponentiation can be found in [23].

Unfortunately, these regular m-ary exponentiation techniques succumb to a
SPA attack when exploiting the early-termination effect. The attacker just needs
to select the base x in such a way that exactly one of the pre-computed powers
of x contains bytes that are equal to zero at the “right” positions. Whenever a
multiplication with this power of x is performed, the early-termination mecha-
nism is invoked, which leaks the value of the corresponding k-bit digit from the
private exponent [27]. Repeating this attack with other values of x such that a
different power of x contains a number of bytes equal to zero will eventually
allow the attacker to fully recover the private exponent. The early-termination
effect makes attacking these regular m-ary exponentiation methods—which are
designed to provide SPA resistance—almost as easy as attacking a completely
unprotected implementation such as the square-and-multiply technique shown
in Algorithm 6.

3.4 Point Multiplication on E(Fp) (e.g., ECIES)

Consider an elliptic curve E(Fp). A central operation to cryptographic schemes
based on such a curve is scalar multiplication [19] of some point P ∈ E by a
secret integer d, i.e., Q = d ·P . Let di denote the i-th bit in the binary expansion
of d, and A and D represent point addition and point doubling operations on
E, respectively. Depending on the exact setting P might be fixed or unknown;
consider instead a setting where P is supplied as input and hence is controllable
by an attacker.

The double-and-add algorithm [19] provides a simple method to compute Q;
since this is the additive analogue to the square-and-multiply algorithm, it is
vulnerable to similar side-channel attacks [12]. One way to harden the algorithm
is to split the point addition operation into parts each of which is identical, in
terms of the field operations it performs, to a point doubling. Put simply, instead
of a sequence such as DA the attacker now observes the sequence XXX where
each X represents an atomic, indistinguishable operation which could either be
a point doubling operation or a step in a point addition.

Point doubling and addition sequences introduced by Gebotys and Gebotys
[16] was the first example of this; multiplication by small constants is performed
using shifts. Several “dummy” operations are included to pad the sequences so
the same operation occurs at each index. Gebotys and Gebotys are careful to
note in [16, Section 2] that on their experimental platform (a StarCore SC140
DSP), “the only field operations which had variable clock cycle counts were
the modular reductions which may or may not be required after additions, sub-
tractions, or shifts.” Of course, where an early-terminating multiplier is used to
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perform (32 × 32)-bit multiply instructions within the field multiplication and
squaring operations, this ceases to be true.

In order to overcome this countermeasure, an attacker can select a P whose
x or y coordinates are “special” in the sense they have a low weight (i.e. a num-
ber of 32-bit digits are set to zero). In such a setting, even though a high-level
SPA countermeasure is implemented, an attacker can still distinguish between a
point doubling operation and a point addition by observing when this low-weight
coordinate is used and hence the early-termination mechanism is invoked more
often than usual. This may be viewed as related to the attack of Goubin [17]
where an attacker attempts to provoke computation by using “special” points
(e.g., one where the x or y coordinate is set to zero).

The elliptic curve (EC) point multiplication operation is a central operation
of all EC-based cryptosystems: given an EC point P and a scalar value d, the
operation Q = d · P outputs another point Q on the curve. There exist various
implementation strategies for this including the simple binary algorithm (aka
double-and-add method [19]). In this algorithm, a sequence of point additions
and point doublings are performed. More precisely, a point doubling operation
is carried out in every iteration, whereas a point addition operation is executed
if, and only if, the i-th bit of d equals one. It has been observed in [12] that näıve
implementations of EC point multiplication are vulnerable to SPA attacks. To
thwart such attacks, a number of SPA-resistant implementations were proposed
using, for instance, indistinguishable operations [11] (see e.g. [16] for a concrete
implementation). The goal of indistinguishable operations is to make addition
and doubling operations “look alike” in terms of their power profiles.

By exploiting the early termination feature of a multiplier, we can break the
binary algorithm even if the point addition and point doubling are implemented
using indistinguishable operations. In the i-th step of the binary algorithm, the
base point P is added if (and only if) di = 1. Now, if we set P to be a special
point, i.e., a point which has either one or both coordinates with leading bytes
of zeroes, then the early termination will always occur when P is added to the
current intermediate point. Assuming that the intermediate points which occur
during the execution of the binary algorithm have random coordinates (i.e. do
not lead to early termination in the same way as P does), the point addition is
identifiable because of the early-termination effect. Identifying the point addition
operation allows identifying the bits of d which are equal to one.

The remaining problem is to identify EC-based cryptosystems in which the
attacker can control (i.e., choose) the base point. Typically, EC cryptosystems
supply a base point G as part of their domain parameters; since this point is fixed
it can not be chosen by an attacker. This rules out schemes such as ECDSA [29]
where point multiplication within the signature generation function uses G as
the base point. However, KEM-DEM based encryption schemes such as ECIES
[37] use a Diffie-Hellman (DH)-style key exchange mechanism within their KEM
component. In the decryption step of such a KEM, the private key is used to
multiply a point derived from the ciphertext (i.e., the point can be chosen by an
attacker). Consequently, this point multiplication leaks the private key if it is
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Algorithm 7. A constant time algorithm to replace ARM7 multiplication

Input: The 32-bit integers x and y.
Output: The 64-bit result r = x · y.

γ ← (y ∧ 00FFFFFF(16)) + 01000000(16)1

τ ← (y ∧ FF000000(16))� 242

r ← x · γ3

r ← r + ((x · τ )� 24)4

r ← r − (x� 24)5

return r6

executed on an early-terming multiplier and the attacker chooses the base point
appropriately. Using the same observation, other DH-based protocols including
ephemeral and static versions of ECDH, as well as ECMQV, are vulnerable.

4 Countermeasures

Given the simplicity and broad applicability of the attacks described in Section
3, it is clearly attractive to examine potential countermeasures. The most in-
vasive countermeasure would be to alter the processor itself. For example, one
can easily imagine including a dedicated instruction (or a processor mode) that
disables the early-termination mechanism during execution of security-critical
regions of a program. However, this is disadvantageous in the sense that such an
approach is potentially costly and can not be retrospectively applied to existing
processors. As such, one can also consider software-only countermeasures. The
simplest approach of this type is to ensure that secret information is never used
as an early-terminating operand. In the context of AES-128, this means placing
the constant value 1B(16) in the register that governs how long a multiplication
takes, i.e., Rs rather than R1.

Where this is not possible (e.g., both operand leak secret information, or the
programmer does not directly control instructions being executed as could be
the case in interpreter-based platforms such as Java), one can imagine replacing
each use of an insecure multiply instruction with a more heavy-weight function
that executes a (32×32)-bit multiplication in constant time. Algorithm 7 shows
an example: it forces the number of cycles required to perform a multiplication
to be data-independent. Essentially, this works by masking the multiplier y so
that the most-significant byte in one multiplication is always non-zero, and the
other is always a multiplication with one byte. The two invocations of the real
multiply instruction in steps 3 and 4 therefore leak no information.

Using Algorithm 7 within our software implementation of AES-128 increases
the execution time from 1.24 msec to 1.56 msec. However, this is still a massive
improvement over implementing the MixColumns transformation in a byte-wise
manner; our implementation requires 2.53 msec in this case. The impact on an
implementation of modular exponentiation is larger; for example, the execution
time of a 1024-bit modular exponentiation on the ARM7TDMI was increased
from 1.6 to 3.135 seconds (at 7.37 MHz).
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5 Conclusions

In this paper we described and analysed security issues that arise when crypto-
graphic software is executed on a processor equipped with an early-terminating
multiplier. Even though the early-termination mechanism provides advantages
for some application domains (most notably digital signal and multimedia pro-
cessing), it poses a serious challenge for security-critical applications that need
to resist side-channel attacks. We explained why, and demonstrated how, the
early-termination mechanism causes differences in the latency of multiply in-
structions; in turn, this results in easily observable variations in execution time
and power consumption. Such data-dependent variations make power analysis
fairly straightforward, and may even allow an attacker to extract the secret key
from implementations with integrated high-level countermeasures.

While the side-channel leakage caused by the early-termination mechanism is
obvious for public-key cryptosystems performing multi-precision multiplications
(e.g., RSA, ECIES), we also demonstrated that block ciphers, such as RC6, are
vulnerable to SPA attacks when executed on an ARM7TDMI processor. Conse-
quently, careful attention must be paid to the implementation of cryptographic
software at a low level so that the early-termination effect does not produce
side-channel leakage; this can be costly and difficult to achieve via software-only
countermeasures, especially in the case of RSA. Another conclusion that can be
drawn from the discovery of security issues caused by early-terminating multi-
pliers (and all other micro-architectural side channels) is that processor vendors
need to reassess their objectives in micro-architectural design: security aspects
require—and deserve—the same attention as other metrics of interest such as
performance, silicon area, and power consumption.
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Abstract. We design a new (n, 1)-CPIR protocol BddCpir for �-bit
strings as a combination of a noncryptographic (BDD-based) data struc-
ture and a more basic cryptographic primitive (communication-efficient
(2, 1)-CPIR). BddCpir is the first CPIR protocol where server’s online
computation depends substantially on the concrete database. We then
show that (a) for reasonably small values of �, BddCpir is guaranteed
to have simultaneously log-squared communication and sublinear online
computation, and (b) BddCpir can handle huge but sparse matrices,
common in data-mining applications, significantly more efficiently com-
pared to all previous protocols. The security of BddCpir can be based
on the well-known Decisional Composite Residuosity assumption.

Keywords: Binary decision diagram, computationally-private informa-
tion retrieval, privacy-preserving data mining, sublinear communication.

1 Introduction

(Single-database) computationally-private information retrieval (CPIR) is one
of the most basic cryptographic protocols in the client-server setting. More pre-
cisely, in an (n, 1)-CPIR protocol, the client retrieves an element chosen by him
from server’s n-element database of �-bit strings, so that the server obtains no
knowledge about which element was transfered. It is always required that the
total communication of the CPIR protocol be less than n� bits. CPIR protocols
constructed in [18,12] are almost optimally communication-efficient. Unfortu-
nately, in all prior nontrivial CPIR protocols, the server’s online computational
complexity is Ω(n) public-key operations. Thus, in most of the applications, one
is restricted to databases of size say n = 210, which makes computation-efficiency
the main bottleneck in deploying CPIR protocols in practice.

In the case of multiple servers, [3] constructed several sublinear-computation
information-theoretically private information retrieval protocols. They posed as
an open problem to design a sublinear-computation single-server CPIR proto-
col. This goal has remained so elusive that many researchers have claimed linear
computation to be lower-bound for any CPIR, see for example [5, Sect. 1.2], [6,
Sect. 2.3] and [12, Sect. 3] for just a few examples. Based on empirical re-
search, Carbunar and Sion [6] argued that in the foreseeable future all linear-
communication CPIR protocols will be at least one order of magnitude slower
than the trivial CPIR protocol, where the server just transfers the whole
database to the client.
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Our Contributions. Up to now, one has considered CPIR to be a basic prim-
itive where the server does a fixed amount of work that does not depend on her
concrete database. We show that one can efficiently combine noncryptographic
data preprocessing with the cryptographic protocol, such that the combination
is still secure and at the same time more efficient than the prior work. (In fact
it is clear that without preprocessing, the server has to do some online work
with every database element.) This in particular shows that (n, 1)-CPIR is not
a monolithic cryptographic primitive per se but can be seen as a combination of
a “noncryptographic” data structure (in our case, based on binary decision dia-
grams) and a more basic cryptographic primitive (in our case, a communication-
efficient (2, 1)-CPIR). In our opinion, this presents a significant paradigm shift.

Now, let x be the client’s index, let f = (f0, . . . , fn−1) be the server’s database.
In the new (n, 1)-CPIR protocol BddCpir, we write down an optimized BDD for
the function f , f(x) := fx, and then use the PrivateBDD protocol [14] to cryp-
tocompute f . We describe an optimized version of it in Sect. 3 in full detail. In
particular, [14] assumed that a strong oblivious transfer protocol is used in ev-
ery node. We show that a (2, 1)-CPIR protocol can be used instead. Our variant
of the PrivateBDD protocol also has communication that is linear in the length
len(F) of the constructed BDD. More precisely, when using Lipmaa’s (2, 1)-CPIR
protocol from [18], the communication complexity of BddCpir is proportional to
|x| · (|f(x)| + len(F)); see Sect. 3. Server’s online computation in BddCpir is
dominated by size(f) public-key operations, where size(f) is the size of the BDD
that corresponds to server’s fixed input f . This should be contrasted to more
general two-party computation protocols where the computation is dominated
by the size of the (say) circuit where server’s input f is a variable.

After that, we present two different applications. First, for � = 1, we show
that in BddCpir, server’s online computational complexity is upperbounded by
(1+o(1))n/ log2 n public-key operations, while the communication complexity is
Θ(k · log2 n), where k is the security parameter. The offline computational com-
plexity of this variant of BddCpir is O(n) non-cryptographic operations, while
setting up the data structure, and Õ(t), when t elements are updated. Alterna-
tively, this result shows that one can implement secure function evaluation of
any f : {0, 1}m → {0, 1} with communication complexity O(m2 · k) and server’s
online computation O(2m/m). This means that say for databases of size 214,
about 7 times less public-key operations in the worst case are needed than in
Lipmaa’s (n, 1)-CPIR from [18]. Importantly, the new protocol has exactly the
same communication complexity as Lipmaa’s CPIR. In general (and again in
the worst case), about 4 to 8 times larger databases can be handled than with
Lipmaa’s (n, 1)-CPIR in the same time, which brings us closer to the practical
deployment of (n, 1)-CPIR protocols. Moreover, for any �, one can construct a
CPIR protocol with communication complexity Θ(� · log n+k · log2 n) and online
computation of Θ(n�/(log n+log �)) public-key operations. Thus, if � = o(log n),
then BddCpir has still guaranteed sublinear online computation.

However, clearly, the BDD depends on the concrete database. If the databases
are well-structured, then one can decrease the computation much more. We show
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that if the database is sparse, with c � n non-zero elements, the BddCpir pro-
tocol has the same communication complexity as before, but its online computa-
tional complexity is reduced to ≈ c · log2 n. This version of BddCpir can be used
in any of the innumerable privacy-preserving data-mining applications that deal
with huge (say, 10 000 times 10 000) but very sparse Boolean matrices. Here,
linear-time CPIR protocols are clearly not applicable. However, if the matrix
is very sparse, then one can efficiently present the matrix as a BDD, and then
apply BddCpir. As an example, the BddCpir protocol can handle 20 000×20 000
permutation matrices about 700 times faster than linear-time CPIR protocols.
Moreover, representation as a BDD does not necessarily carry with itself ad-
ditional cost, since many common data-mining subroutines can be efficiently
performed on BDDs [9]. We emphasize that this example is important: the main
reason why cryptography-based privacy-preserving data mining has not taken off
is the utter inefficiency of existing cryptographic methods in handling huge but
structured data. Instead, one uses insecure but severely more efficient methods,
see e.g. [1], when processing such data.

In addition, in many existing cryptographic protocols where the server has
to cryptocompute some value and then return it to the client, because of the
lack of more efficient methods, the server precomputes a database of possible
answers and then the client and the server execute an (n, 1)-CPIR protocol. In
such cases, the database has a clear structure, and thus the BddCpir protocol
can be applied.

As a separate contribution, we show how to optimize the PrivateBDD
protocol even further. In particular, we present three versions of Lipmaa’s
(n, 1)-CPIR protocol from [18] that have the communication complexity of
2� + (2 + o(1)) log2 n · k, (1 + o(1))� + (1 + o(1)) log2 n · log log n · k and
Θ(� · log n/ log log n+k · log2 n/ log log n), respectively. The balancing techniques
are applicable also in the case of the new BddCpir protocol. In particular, the
second of those results shows that the new CPIR protocol achieves optimal rate
1 + o(1) in the case of a large �, while simultaneously achieving sublinear com-
putation in the case of a large n.

In Sect. 4 we also discuss how to modify BddCpir so that it will also protect
server’s privacy, that is, to an oblivious transfer (OT) protocol in a virtually
costless way.

2 Preliminaries

Client’s input is x ∈ {0, 1}m, server’s input is a function f : {0, 1}m → {0, 1}σ�

for suitably chosen σ and �. (See the next paragraph for the precise meaning of
σ and �, in a concrete application they are chosen so as to minimize the cost
of the BddCpir protocol.) We also denote f(x) by fx, that is, we think of f as
of the characteristic function of the vector f = (f0, . . . , f2m−1). Also, n denotes
the server’s database size, and k denotes the security parameter. If A is either a
set or a (randomized) algorithm, then a ← A denotes assignment of a according
to the implicit random distribution. All logarithms have base 2.
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(Integer-Valued) Binary Decision Diagrams. A binary decision diagram
(BDD, or a branching program, [24]) is a fanout-2 directed acyclic graph (V, E),
where the non-terminal (that is, non-sink) nodes are labeled by variables from
some variable set {x0, . . . , xm−1}, the sinks are labeled by �-bit strings and the
two outgoing edges of every internal node are respectively labeled by 0 and 1.
Usually, it is assumed that a BDD has 1-bit sink labels, then it can be assumed
to have two terminal nodes. A BDD with longer sink labels is thus sometimes
called multi-terminal. A BDD that has σ sources computes some function f :
{0, 1}m → {0, 1}σ�. Every source and every assignment of the variables selects
one path from this source to some sink as follows. The path starts from the
source. If the current version of path does not end at a sink, test the variable
at the endpoint of the path. Select one of the outgoing edges depending on the
value of this variable, and append this edge and its endpoint to the path. If the
path ends at a sink, return the label of this sink as the value of the corresponding
source. The BDD’s value is then equal to the concatenation of its source values.

In an ordered binary decision diagram (OBDD), an order π of the labels is
chosen, and for any edge (u, v) ∈ E it must hold that π(u) < π(v). A BDD is
a decision tree if the underlying graph is a tree. A BDD is layered if its set of
nodes can be divided into disjoint sets Vj such that every edge from a node in
set Vj ends in a node in set Vj+1. For a BDD P , let len(P ) be its length (that is,
the length of its longest path), size(P ) be its size (that is, the number of non-
terminal nodes). Let BDD(f)/OBDD(f) be the minimal size of any BDD/OBDD
computing f . It is known that any Boolean function f : {0, 1}m → {0, 1} has
BDD(f) ≤ (1+o(1))2m/m [4, Thm. 1] and OBDD(f) ≤ (2+o(1))2m/m [17,13,4].

Public-Key Cryptosystems. Let Π = (G, E, D) be a length-flexible
additively-homomorphic public-key cryptosystem [7], where G is a randomized
key generation algorithm, E is a randomized encryption algorithm and D is a
decryption algorithm. in a length-flexible cryptosystem, both E and D receive an
additional length parameter �, so that Epk(�, ·) encrypts plaintexts from some set
{0, 1}≤�. In the case of the DJ01 cryptosystem from [7], for every integer � > 0,
Epk(�, ·) ∈ {0, 1}��/k	·k+k. (In some other length-flexible cryptosystems like [8],
the resulting ciphertext is longer.) In practice, 2� < N where N is the public
key of the DJ01 cryptosystem.

Thus, in the case of the DJ01 cryptosystem, Epk(�, M) is a valid plaintext of
Epk( �/k! · k + k, ·), and therefore one can multiple-encrypt messages as say in

C ← Epk(� + 2k, Epk(� + k, Epk(�, M))),

and then recover M by multiple-decrypting,

M ← Dsk(� + 2k, Dsk(� + k, Dsk(�, C))).

Note that the length of j-times encrypted M is  �/k! · k + jk ≤ � + (j + 1) · k
bits. Additionally, in any length-flexible additively-homomorphic cryptosystem,
Epk(�, M1) · Epk(�, M2) = Epk(�, M1 + M2), where the addition is modulo the
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public key N . We will also need the existence of a compression function C
that, given pk, �′ and � for �′ ≥ �, and Epk(�′, M) for M ∈ {0, 1}�, returns
Epk(�, M) ∈ {0, 1}��/k	·k+k. As shown in [18] and later in [14], DJ01 has a very
simple compress function that just reduces Epk(�′, M) modulo some power of N .

In the CPA (chosen-plaintext attack) game, the challenger first generates a
random key pair (sk, pk) ← G(1k), and sends pk to the attacker. The attacker
chooses two messages M0, M1 and a length parameter �, and sends them to
the challenger. The challenger picks a random bit b, and sends a ciphertext
Epk(�, Mb) to the attacker. The attacker outputs a bit b′, and wins if b = b′. A
cryptosystem is CPA-secure if the probability that any nonuniform probabilistic
polynomial-time attacker wins in the CPA-game is negligibly different from 1/2.

Clearly, because of the existence of the compress function, a CPA-secure
length-flexible cryptosystem remains CPA-secure even if the adversary sends
many message pairs (Mj0, Mj1) and length parameters �j , and has to guess b
after seeing encryptions of all Mjb under the corresponding length parameters
�j. This so-called LFCPA-security [18] of the cryptosystem is crucial for the se-
curity of the efficient PrivateBDD protocol as defined in the next section. The
DJ01 cryptosystem [7] is CPA-secure under the Decisional Composite Residuos-
ity Assumption [22].

CPIR. In a 1-out-of-n computationally-private information retrieval protocol,
(n, 1)-CPIR, for �-bit strings, the client has an index x ∈ {0, . . . , n− 1} and the
server has a database f = (f0, . . . , fn−1) with fi ∈ {0, 1}�. The client obtains fx.
The new (n, 1)-CPIR protocol BddCpir, proposed in this paper, is based on an
(2, 1)-CPIR protocol that satisfies some very specific requirements. Namely, we
say that an (n, 1)-CPIR protocol Γ = (Q, R, A, C) is BDD-friendly if it satisfies
the next four assumptions:

1. Γ has two messages, a query Q(�, x) from the client and a reply R(�, f, Q)
from the server, such that the stateful client can recover fx by computing
A(�, x, R(�, f, Q)).

2. Γ is uniform in �, that is, it can be easily modified to work on other values
of �.

3. |Q(�, ·)|, |R(�, ·, ·)| ≤ � + Θ(k).
4. The compress function C maps Q(�′, x) to Q(�, x) for any �′ ≥ � and x.

That is, Γ = (Q, R, A, C) is a quadruple of probabilistic polynomial-time algo-
rithms, with A(�, x, R(�, f, Q(�, x))) = fx, and C(�′, �, Q(�′, x)) = Q(�, x) for any
�′ ≥ �, x and f . For related work on computation-efficient CPIR protocols, see
for example [10,2].

Let Π = (G, E, D) be a length-flexible additively homomorphic public-key
cryptosystem. Client’s private input is x ∈ {0, 1}, server’s private input is f =
(f0, f1) for f0, f1 ∈ {0, 1}�. In [18], Lipmaa proposed a (2, 1)-CPIR protocol that
consists of the next three steps:
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1. The client sets (sk, pk) ← G(1k), c ← Epk(�, x), and sends Q(�, x) ← (pk, c)
to the server.

2. The server replies with R = R(�, f, (pk, c)) ← Epk(�, f0) · cf1−f0 .
3. The client outputs A(�, x, R) := Dsk(�, R).

If x ∈ {0, 1}, then clearly

R(�, f, (pk, Epk(�, x))) =Epk(�, f0) · cf1−f0 = Epk(�, f0) · Epk(�, x)f1−f0

=Epk(�, f0 + (f1 − f0) · x) = Epk(�, fx).

If Π has a compress function, then Lipmaa’s (2, 1)-CPIR protocol has also a
compress function C that just compresses both involved ciphertexts. Importantly,
|Q(�, ·)|, |R(�, ·, ·)| ≤ � + 2k and thus, this (2, 1)-CPIR protocol is BDD-friendly.

Semisimulatable Privacy. Let Γ = (Q, R, A, C) be a 2-message (n, 1)-CPIR
protocol. As many previous papers [21,18,14], we only require (semisimulatable)
privacy in the malicious model. More precisely, client’s privacy is guaranteed in
the sense of indistinguishability (CPA-security), while server’s privacy is guaran-
teed (if at all) in the sense of simulatability. This assumption makes it possible
to design 2-message (n, 1)-CPIR protocols that are both communication and
computation-efficient. We now give an informal definition of privacy.

For the CPA-security (that is, the privacy) of the client, no malicious nonuni-
form probabilistic polynomial-time server should be able to distinguish, with
non-negligible probability, between the distributions Q(�, x0) and Q(�, x1) that
correspond to any two of client’s inputs x0 and x1 that are chosen by herself.
For server-privacy, we require the existence of an unbounded simulator that,
given client’s message Q∗ and client’s legitimate output corresponding to this
message, generates server’s message that is statistically indistinguishable from
server’s message R in the real protocol; here Q∗ does not have to be correctly
computed. A protocol is private if it is both client-private and server-private.

Any (n, 1)-CPIR protocol Γ must be client-private, that is, CPA-secure. Lip-
maa’s (2, 1)-CPIR protocol [18], when based on the DJ01 cryptosystem [7], is
CPA-secure under the DCR Assumption [22]. Because of the existence of the
compression function, if Γ is CPA-secure then it is also difficult to distinguish
between any two polynomially large sets {Q(�i, xi0)} and {Q(�i, xi1))}, even if
the same public key pk is used in all of them. A private (n, 1)-CPIR protocol is
also known as an (n, 1)-oblivious transfer protocol.

3 The PrivateBDD Protocol

Next, we describe the PrivateBDD cryptocomputing protocol from [14]. It gen-
eralizes the cryptocomputing process, done in several previous (n, 1)-CPIR pro-
tocols [15,23,18]. Our exposition is simpler than the more general exposition
of [14]. The concrete protocol has also some small differences compared to the
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protocol of [14]. More precisely, while the description given by us can be inferred
from the description in [14], we have opted to describe explicitly the most effi-
cient known implementation of the PrivateBDD. Moreover, Ishai and Paskin [14]
used a strong oblivious transfer protocol at every node of the underlying BDD,
while we just use an efficient (2, 1)-CPIR protocol. There are also other minor
differences.

In the PrivateBDD protocol for some set F of functions, the client has pri-
vate input x ∈ {0, 1}m, the server has private input f : {0, 1}m → {0, 1}σ�

with f ∈ F , and the client will receive private output f(x). Here, F = {f :
{0, 1}m → {0, 1}σ�} is a set of functions, where every f ∈ F can be com-
puted by some polynomial-size BDD Pf that has σ sources and �-bit sink labels.
Define len(F) := maxf∈F len(Pf ). Let Γ ′ = (Q′, R′, A′, C′) be a BDD-friendly
(2, 1)-CPIR protocol. Since we are going to recursively apply Γ ′ on databases
that consist of the R′ values of some other runs of Γ ′, we need to define the next
few values. Namely, let

|Q(1)(�)| :=|Q′(�, x)|,
|R(j)(�)| :=|R′(|Q(j)(�)|, f, Q′)|,

|Q(j+1)(�)| :=|Q′(|R(j)(�)|, x)|.

We will assume that those values are well-defined, that is, that they do not
depend on the concrete values of x and f . Because Γ ′ has to be private, this
assumption is reasonable. If Γ ′ is BDD-friendly, then |Q(j)(�)| = |R(j)(�)| ≤
� + j · Θ(k).

Now, BDDs are usually evaluated in a top-down manner by following the
σ paths that are consistent with the assignment of the input variables xj . It
is unlikely that one can evaluate BDDs like this in a private manner. Instead,
following [14], we use a bottom-up way of evaluating a BDD. In the non-private
version of this process, the sinks’ output values are equal to their labels. At every
non-terminal node v that is labeled by some xj and for which the output values
Rv0 and Rv1 of both children are known, one sets the output value Rv of v to be
equal to Rvxj

. The value of the BDD is equal to the concatenation of the output
values of the sources.

In the private version, the server also executes the BDD Pf bottom-up, that
is, starting from the sinks. The output values Rv of the sinks are equal to their
�-bit labels. Initially, Rv is undefined for all other nodes. At every node v of the
BDD with label xj and children v0/v1 such that the output values Rv0/Rv1 of
v0/v1 are known but the output value Rv of v is not yet defined, the server uses
Γ to obliviously propagate the value Rvxj

upwards as Rv. The server does this
for all nodes in some ordering, and then sends the output values of the σ sources
to the client. (Ishai and Paskin [14] only considered the depth-first ordering,
while sometimes some other ordering may be more efficient.) For every source,
the client applies the decoding procedure A′ repeatedly to obtain the label of the
sink that is uniquely determined by this source and by client’s input x. Complete
description of the PrivateBDD protocol for F is given by Protocol 1.
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1. Common inputs: m, σ, �,F , len(F).
2. Private inputs: the server has a function f : {0, 1}m → {0, 1}σ
 from F , and the

client has bitstring x ∈ {0, 1}m.
3. Offline phase: server computes an efficient BDD Pf for f that has σ sources and

�-bit sink labels, and where len(Pf ) ≤ len(F). Let �max := |Q(len(F)−1)(�)|.
4. Online phase:

(a) Client does: For j ∈ {0, . . . , m − 1}, set Qj ← Q′(�max, xj). Send Q(�, x) ←
(Q0, . . . , Qm−1) to the server.

(b) Server does:
i. For all sinks v of Pf , set Rv to be their label. For non-terminal nodes v,

set Rv ← ⊥.
ii. Do by following some ordering of the nodes:

A. Let v be some node with Rv = ⊥, with children v0 and v1 that have
Rv0 , Rv1 �= ⊥; if no such node exists then exit the loop.

B. Assume that v is labeled by xi and edges from v to v0/v1 are labeled
by 0/1.

C. Compute and store Rv ← R(�∗, (Rv0 , Rv1), C(�max, �
∗, Qi)), where

�∗ ← max(|Rv0 |, |Rv1 |). // If BDD is layered then |Rv0 | = |Rv1 |.
iii. For all σ sources v, send Rv to the client.

(c) Client does: For any source v, compute private output from Rv by applying
A′ recursively up to len(F) times.

Protocol 1. The PrivateBDD protocol

Theorem 1. Let Γ ′ = (Q′, R′, A′, C′) be a CPA-secure BDD-friendly (2, 1)-
CPIR protocol. Let F be a set of functions from {0, 1}m to {0, 1}σ� where
every f ∈ F can be computed by a polynomial-size BDD Pf . Then F has
a CPA-secure cryptocomputing protocol with the communication complexity
m · |Q(len(F))(�)| + σ · |R(len(F))(�)| = (m + σ)(� + len(F) · k). Server’s online
computation is dominated by size(Pf ) public-key operations. Additionally, if Pf is
layered, then the PrivateBDD protocol is server-private in the semihonest model.

Proof. CPA-security follows by a standard hybrid argument from the LFCPA-
security of Γ ′, and thus from the CPA-security of Γ ′ and from the existence of
C′. If Pf is layered, then the client is completely oblivious to the shape of the
BDD, except the length of it: he just forms queries corresponding to his input
bits by using his knowledge of the length of the BDD (and on the output length
�), and then receives multiple-“encryptions” of the outputs. The communication
complexity part is straightforward. Server has to compute R at every node of Pf .

��

Alternatively, this theorem shows that if any f : {0, 1} → {0, 1}σ� has an “ef-
ficient” cryptocomputing protocol, then any F : {0, 1}m → {0, 1}σ� has an
“efficient” cryptocomputing protocol.

If the compress function C does not exist, then the client has to submit up
to len(P ) different queries Q(�′, xj) for every xj and every �′ = |Q(i)(�)| for
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i ≤ len(P ) − 1. This can increase the communication by a factor of len(P ). The
existence of C makes it possible to compute Q(|Q(i)(�)|, xj) from Q(�max, xj).

We assume throughout this paper that we are working with Lipmaa’s (2, 1)-
CPIR from [18], which is currently the only known (2, 1)-CPIR protocol that
allows the PrivateBDD protocol to achieve the communication complexity that
is polynomial in len(F) (thus the name “BDD-friendly”). A precise result follows:

Corollary 1. Assume that the DCR Assumption [22] is true. Let F be a set
of functions f : {0, 1}m → {0, 1}σ�, and for any f ∈ F let Pf be some σ-
source polynomial-size BDD with �-bit sink labels that computes f . Then F has
a CPA-secure cryptocomputing protocol with the communication upperbounded
by k +(m+σ) · (�+(len(F)+2) ·k), and server’s online computation dominated
by size(F) public-key operations.

Proof. Let Π = (G, E, D) be the DJ01 length-flexible cryptosystem [7]. This
version of the PrivateBDD protocol generates one single (sk, pk) ← G(1k)
and uses the same pk to construct all m queries Qj . Because Lipmaa’s (2, 1)-
CPIR is BDD-friendly and CPA-secure, the CPA-security of PrivateBDD fol-
lows from a standard hybrid argument. Computation-efficiency is straightfor-
ward. To calculate the communication efficiency, note that Qj = Q′(�max, xj) =
Epk(� + len(F) · k, xj). Thus,

|Qj | = |Epk(� + len(F) · k, xj)| = ( �/k! + len(F) + 1) · k ≤ � + (len(F) + 2) · k.

Therefore, the client sends a public key (of length say k) and at most m · (� +
(len(F) + 2) · k) additional bits. The output of the BDD is equal to σ (≤
len(F))-times encryptions of sink values, where the sinks are selected by the
encrypted client inputs xj . Server’s communication consists of σ (≤ len(F))-
times encrypted messages of length ≤ � + (len(F) + 2) · k. ��

All CPIR protocols that follow the Kushilevitz-Ostrovsky recursion tech-
nique [15,23,18] can be seen as using PrivateBDD to cryptocompute an or-
dered n′-ary decision tree, with σ = 1, m =  logn′ n! and varying values of
n′. However, in the case of [15,23], the underlying (n′, 1)-CPIR protocol is not
very efficient and thus the communication-complexity of the resulting (n, 1)-
CPIR protocols of [15,23] is not polylogarithmic. On the other hand, Lipmaa’s
(n, 1)-CPIR protocol from [18] uses his (2, 1)-CPIR protocol in combination
with an ordered binary decision tree, to achieve the communication complex-
ity Θ(m · (� + len(Pf ) · k)) = Θ(� · log n + k · log2 n), agreeing with Cor. 1. Note
that such CPIR protocols do not explicitly need the C function, because they
cryptocompute an ordered binary decision tree where every xi is only tested on
the ith level of the tree. More generally, the C function is not necessary if the
underlying BDD is ordered.

4 New Computation-Efficient (n, 1)-CPIR Protocol

Assume that σ = 1 and that the database size is n = 2m, that is, that the
server’s database consists of n = 2m bits. (If n is not a power of 2 then one can
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round up the database size by using additional dummy elements.) In this case,
we can restate the goals of an (n, 1)-CPIR protocol as follows.

Assume that the client has an input x ∈ {0, 1}m, and that the server’s input
is a Boolean function f : {0, 1}m → {0, 1}�, such that f(x) = fx. The client
needs to retrieve f(x). Thus in this case, F is the set of all functions, F = {f :
{0, 1}m → {0, 1}�}. In the new (n, 1)-CPIR protocol, the client and the server
run PrivateBDD for this F . That is:

– In the offline phase of BddCpir, the server computes and stores an efficient
BDD Pf for the concrete f .

– In the online phase of BddCpir, the client and the server follow PrivateBDD
as specified in Protocol 1. Here, the server uses Pf .

In BddCpir, server’s online computational complexity is proportional to size(Pf )
while the communication complexity is proportional to len(F). We emphasize
once more that Pf is computed after server’s input f has been fixed.

The size (and to a lesser extent, also the length) of Pf will depend heavily
on f (and F), and not much can be said about it unless we know the concrete
database or at least some of its properties. In what follows, we will consider
two different database classes. First, we look at the case of arbitrary databases.
We show that for any possible database f , as long as � = o(log n), the new
(n, 1)-CPIR protocol has server’s computation upperbounded by o(n) public-
key operations. Second, we look at the case where it is known that f is a very
sparse database (like in many privacy-preserving data mining applications). We
show than in the case, BddCpir is computationally significantly more efficient
than any other existing CPIR protocol.

4.1 Class 1: Arbitrary Databases

In [4], it was shown that any Boolean function f can be computed by a BDD Pf

of size (1+o(1))2m/m and length (1+o(1))m. However, this construction is rea-
sonably efficient only when m ≥ 25. Instead, we will describe an OBDD WP(f)
from [17,13,4] that meets the upperbound OBDD(Pf ) ≤ (2 + o(1))2m/m. This
OBDD also has the benefit of having optimal length m. Based on this result,
even if f is an arbitrary Boolean database, the BddCpir protocol has commu-
nication complexity Θ(k · log2 n) and server’s online computational complexity
Θ(n/ log n).

Let f : {0, 1}m → {0, 1} be a Boolean function. (See Fig. 1 for the concrete
case m = 6 of the next general construction.) Prot. 2 describes the corresponding
OBDD WP(f), as found in say [24]. Briefly, the idea of WP(f) is to first branch
according to first d variables. After that, the number of possible subfunctions
on the last m − d variables will be sufficiently small, so that one can branch
according to corresponding subfunctions.

Clearly, this OBDD computes f and has length m. The size of WP(f) depends
on d. There are two different recommendations for d. In [4], it was recommend
to fix

d := m − �log2(m − 2 log2 m). (1)
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– The BDD starts out as a depth-d, where d is fixed later, ordered binary decision
tree where one branches on variables x0, . . . , xd−1. This part of the BDD has 2d−1
nodes.

– The BDD has 22m−d

more nodes that correspond to all subfunctions g of f on its
last m− d variables. These extra nodes are layered in m− d more levels. The node
for a subfunction that first essentially depends on the jth variable out of these
m−d variables (but not on earlier ones) is on level d+ j; nodes that correspond to
constant subfunctions are on level m. The extra nodes are labeled by corresponding
subfunctions g. Note that the m−d lowest levels have 2, 22−21 = 2, 24−22 = 12,

. . . , 22m−d − 22m−d−1
nodes respectively.

– Let vg be an extra (non-terminal) node. Assume that g(y1, . . . , ym−d) first essen-
tially depends on yj . For i ∈ {0, 1}, let g|yj=i be the function that we get from g
when we set yj ← i. Add an i-edge from vg to vg|yj=i

.

– The above part of the construction only depends on the value of n = 2m and not on
the concrete database. The next part depends on the database: The 2d−1 nodes on
level d are labeled by subsequent 2m−d+1 = 2 · 2m−d values of the 2m-bit database
f . For a fixed level d node v′, consider the first 2m−d bits of this label to be the
truth table of some subfunction g0, and the last 2m−d bits to be a truth table of
some subfunction g1. Add a 0-edge from v′ to vg0 and a 1-edge from v′ to vg1 .

Protocol 2. The description of WP(f)
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Fig. 1. Pictorial representation of OBDD corresponding to the presented upper-
bound (2 + o(1))2m/m for n = 2m = 64 and d = 4 computed according to
Eq. (2). Only blue values and edges depend on the concrete database, which is
equal to a sequence of binary presentations of all 4-bit integers. Everything else de-
pends just on the value of m. For the sake of simplicity, we use the truth tables
of corresponding subfunctions to label the extra nodes. The concrete database is
f = (0, 0, 0, 0; 0, 0, 0, 1; 0, 0, 1, 0; 0, 0, 1, 1; 0, 1, 0, 0, . . . ).
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For such d, as it is shown in [4], WP(f) has size upperbounded by (2+o(1))2m/m.
However, for this choice of d to work, one has to assume that m ≥ 7. Therefore,
if m is small, we follow the recommendation of [24] to take

d := m − �log2(m + 1 − log2 m). (2)

It is known [24] that with this choice of d, the size of WP(f) is (3 + o(1))2m/m.

Example 1. If m = 6, then d = 4 according to Eq. (2). The complete ordered
decision tree (which corresponds to the use of Lipmaa’s CPIR protocol from [18])
has 2m−1 = 63 non-terminal nodes. The OBDD WP(f) has 2d−1+22m−d −2 =
15 + 16 − 2 = 29 non-terminal nodes. Thus even in this pet case, the BddCpir
protocol requires 63/29 ≈ 2 times less public-key operations than Lipmaa’s
CPIR protocol. See Tbl. 1 for 2m − 1 and the size of WP(f) for other values of
m, where an optimal d has been numerically optimized. (Note that this usually
agrees with d computed according to Eq. (2).) There we see that for m = 20,
the BddCpir protocol requires 8 times less public-key operations than Lipmaa’s
CPIR protocol.

We emphasize that it is natural to compare the efficiency of the new BddCpir
protocol and Lipmaa’s CPIR from [18] in the number of public-key operations
since in both cases, one uses the same underlying public-key primitive on the
plaintexts of the same length. Thus, one can expect that the actual running time
of the BddCpir protocol (measured in seconds) is also about 4 to 8 smaller than
the actual running time of Lipmaa’s CPIR protocol, while having exactly the
same communication complexity.

Now, let us proceed to compute the efficiency of this variation of the BddCpir
protocol. Offline computation of the BddCpir protocol (the construction of the
OBDD that corresponds to the upperbound) takes O(2m) non-cryptographic
operations. This value is not so important because the offline computation has
to be only done once per database, and not once per query. As evident from
the construction of WP(f), only the location of 2d ≈ 2m/(m + 1 − log2 m) =
(1 + o(1)) · 2m/m edges depends on the database. Thus even when the database
is completely changed, one has to change O(2d) = O(2m/m) edges. This takes
O(2m/m) time in the RAM model, and can be compared to the 2m work that is
necessary to update the database itself. In the case t elements of the database
are updated, exactly the location of t edges is changed.

Online evaluation of the BDD WP(f) on concrete input x takes (3+o(1))2m/m
public-key operations. As depicted by Tbl. 1, this is smaller than the trivial
n = 2m for any m ≥ 3. To the best of our knowledge, this is the first (n, 1)-
CPIR with this property. Note that the upperbound Θ(2m/m) is also tight
because there exist functions f with BDD(f) = (1 − o(1))2m/m [4].

Theorem 2. Assume that the DCR Assumption holds. Then there exists a
CPA-secure (n, 1)-CPIR protocol for 1-bit strings with the communication com-
plexity Θ(log2 n) · k and server’s online computation of O(n/ log n) public-key
operations.
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Table 1. The comparison of the size of the binary decision tree and WP(f)

m 2m − 1 WP(f) Opt. d Imprv.

1 1 1 1 1.0
2 3 3 1 1.0
3 7 5 2 1.4
4 15 9 3 1.66667
5 31 17 4 1.82353
6 63 29 4 2.17241
7 127 45 5 2.82222
8 255 77 6 3.31169
9 511 141 7 3.62411

10 1 023 269 8 3.80297
11 2 047 509 8 4.02161
12 4 095 765 9 5.35294

m 2m − 1 WP(f) Opt. d Imprv.

13 8 191 1 277 10 6.41425
14 16 383 2 301 11 7.11995
15 32 767 4 349 12 7.53438
16 65 535 8 445 13 7.76021
17 131 071 16 637 14 7.87828
18 262 143 33 021 15 7.93868
19 524 287 65 789 16 7.96922
20 1 048 575 131 069 16 8.00018
21 2 097 151 196 605 17 10.6668
22 4 194 303 327 677 18 12.8001
23 8 388 607 589 821 19 14.2223
24 16 777 215 1 114 109 20 15.0589

Proof. Follows from Cor. 1 and the upperbound of [17,13,4], by letting F to be
the set of all Boolean functions f : {0, 1}�log2 n	 → {0, 1}, and using the OBDD
WP(f). ��

Now, let f : {0, 1}m → {0, 1}� for some � ≥ 1. By the already mentioned
upperbound of [17,13,4], clearly BDD(f) ≤ � · (2+ o(1))2m/m by just evaluating
� BDDs in parallel. Thus, there exists a sublinear-computation CPIR protocol
for say any � ≤ m/3. However, we can prove the next more precise result.

Theorem 3. (1) Let f : {0, 1}m → {0, 1}� for some � ≥ 1. For � ≥ 1,
OBDD(f) ≤ (2 + o(1)) · 2m · �/(m + log2 �). (2) Assume that the DCR Assump-
tion holds. There exists a CPA-secure (n, 1)-CPIR protocol for �-bit strings with
the communication complexity Θ(� · log n + k · log2 n) and online computation of
O(� · n/(log n + log �)) public-key operations.

Proof (Of Thm. 3). We follow the same ideas as in constructing WP(f). The new
OBDD starts with a complete binary tree of depth d and then has 2�·2m−d

extra
nodes that correspond to all possible subfunctions f ′ : {0, 1}m−d → {0, 1}�, with
2� of those extra nodes being the sinks. The edges are added in the natural way.
Thus, this BDD has 2d−1+2�2m−d−2� non-terminal nodes. This value is (almost)
minimized when d = � · 2m−d, that is, when d = W (2m� ln 2)/ ln 2. Here W (x)
is the Lambert’s W -function, that is the inverse function of f(w) = w · exp(w).
Using this value of d, we get that the constructed OBDD has then

2 · exp(W (2m� · ln 2)) − 2� − 1

non-terminal nodes. Next, we use the first two elements of the series expansion of
W (z) = ln z−ln ln z+. . . , to find that the constructed OBDD has approximately
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2 · exp(ln(2m� ln 2)− ln ln(2m� ln 2)) − 2� − 1 =
2m+1�

m + log2 � + log2 ln 2
− 2� − 1

≤2 · 2m�

m + log2 �

non-terminal nodes. Because d has to be integral, the computations are not
precise, and there will be a small additional multiplicative constant 1 + o(1)
that this expression will be multiplied with. Note that the size of this OBDD is
smaller than the trivial 2m−1 if say � ≤ (m+log2 �)/3 or say � ≤ (m+log m)/3.

��

4.2 Case 2: CPIR for Sparse Matrices

In almost all real life data, there is a lot of redundancy. Otherwise, most of
the existing data-mining and machine learning algorithms would not be useful
in practice. As a concrete application area of the BddCpir protocol, consider
privacy-preserving data mining scenarios that often deal with huge (say, 20 000
times 20 000) but very sparse Boolean matrices. For example, in such applications
every row of this matrix could be a transaction (say in a supermarket) and every
column would correspond to some item sold in this supermarket. An element mij

of this matrix would be 1 exactly when during the ith transaction the jth item
was actually bought.

One of the most basic operations in such applications is private retrieval of a
single matrix element. Clearly, linear-time CPIR protocols are not applicable in
this case due to the raw size of the matrices. However, if the matrix is very sparse,
then one can efficiently present the matrix as a BDD (as was recommended say
in [9]), and then apply the BddCpir protocol. As noted in [9], BDD is a good
data structure for representing sparse matrices. In particular, if the matrix is
very sparse, then the next straightforward OBDD representation is already good
enough. Namely, assume that the Boolean matrix has dimension n1 × n2 and
contains c � n1n2 ones. We can then represent the matrix as a join of c paths of
length  log2 n1 + log2 n2!, where every sink (and thus every path) corresponds
to exactly one 1 entry in the matrix. Thus, the size of this OBDD representation
is upperbounded by c ·  log2 n1 + log2 n2)! [9] while its length is upperbounded
by  log2 n1 + log2 n2!. This is an upperbound, since all paths share at least
one (and usually more) nodes. Thus, in the case of sparse but huge matrices,
we can use this trivial representation and then just apply BddCpir to this. Note
that, as shown in [9], many matrix algorithms can be performed efficiently on the
OBDD representation of sparse matrices, which makes the OBDD representation
of sparse matrices reasonable in many data-mining applications and thus one
could apply more complex privacy-preserving operations on the top of CPIR.

As a concrete example, assume that we have a 20 000 × 20 000 matrix. If
this matrix has exactly one 1 in every row (like the permutation matrices), then
BddCpir has server’s online computation dominated by ≤ 20 000·2 log2(20 000) ≈
219.1 public-key operations, while all previous CPIR protocols need 20 0002 ≈
228.6 public-key operations. If the matrix has say 20 ones in every row in average
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(this is typical in shopping-basket applications), then BddCpir is still about 35
times faster than CPIR protocols with linear computation.

More generally, we have the next result.

Theorem 4. Assume that the DCR Assumption holds. Assume that f =
(f0, . . . , fn−1) is a sparse (not necessary Boolean) database that has c � n
non-zero entries. Then there exists a CPA-secure (n, 1)-CPIR protocol for �-bit
strings with the communication complexity Θ(� · log n + k · log2 n) and server’s
online computation of ≈ c · log2 n public-key operations.

Proof (Sketch.). Similarly to the sparse matrix case, one can construct a trivial
BDD with c sinks and paths that has length ≈ log2 n and size ≈ c · log2 n.
According to Cor. 1, in this case BddCpir has communication complexity Θ(� ·
log n + k · log2 n), and server’s online computation is dominated by ≈ c · log2 n
public-key operations. ��

In particular, if c = Θ(
√

n) as in the sparse matrix case, then server’s online
computation is dominated by O(

√
n · log2 n) public-key operations. Moreover, if

c = n, then we actually have a complete binary decision tree, which corresponds
to the CPIR of [18], and therefore this solution is never less efficient than [18].

5 Discussions

Server-Privacy. Recall that an (n, 1)-CPIR protocol that also achieves server-
privacy is usually called an (n, 1)-OT protocol. As said earlier, as the minimum,
the underlying BDD has to be layered or otherwise the protocol will not preserve
server’s privacy. Most of the BDDs that appear in practice can be easily made
layered, and in fact layering makes the BDD at most quadratically larger [14].
Quadratic increase in computation time is not desirable in the case of CPIR. We
will now show that one can make WP(f) layered in a virtually costless way. For
this, first one has to add m − d − j dummy nodes per each node on bottom d
levels, or

m−d∑
j=1

(m − d − j)(22j − 22j−1
) =

m−d−1∑
j=1

22j

+ 2 = Θ(22m−d−1
)

nodes in total. Now, if d is chosen according to Eq. (1), this will be (2 +
o(1))2m/2/m nodes. If d is chosen according to Eq. (2), this will be (

√
2 +

o(1))2m/2/
√

m nodes. Both values are negligible compared to the total num-
ber of nodes Θ(2m/m) in the BDD. In addition, for every node on the level
d—and there are (1+ o(1))2m/m2 such nodes if d is chosen according to Eq. (1)
and (1+o(1))2m/m if according to Eq. (2)—there are database-dependent edges
to nodes in bottom layers. Because the number of bottom layers is m − d, if d
is chosen according to Eq. (2), at most (1 + o(1))2m log m/m2 new edges will be
added.

After making the BDD layered, we must add privacy against a malicious
server. There are many existing CPIR-to-OT transformations. In particular, the
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transformation from [16] takes m = log2 n public-key operations, and modifies
the CPIR protocol to a server-private protocol. (With the caveat that the public
key has to be rough.) See [16,14] for more discussions.

Balancing. Let f : {0, 1}m → {0, 1}σ�. In PrivateBDD, the client sends m
messages and the server sends σ messages. If m $ σ and σ� $ m, then one can
improve the communication complexity by balancing, as follows. Without loss
of generality, assume that σ | m. Denote b := m/σ. Then, for j ∈ {0, . . . , b − 1},
let fj : {0, 1}m → {0, 1}σ�/b. Here, f0 computes the first �/b bits of every source
(that is, computes f restricted on the first �/b bits of the sink values), f1 com-
putes the next �/b bits of every source, etc. We then execute the PrivateBDD
protocol (by reusing client’s first message) in parallel for every fj , and con-
catenate the private outputs. Thus, in this balanced version, the client sends m
messages of length ≤ (�/b + (len(F) + 2) · k). The server returns bσ messages
of the same length. Thus, the total communication complexity of the balanced
protocol is ≤ (m + bσ)(�/b + (len(F) + 2) · k) = 2m(σ�/m + (len(F) + 2) · k) =
2σ� + 2m(len(F) + 2) · k. Thus, if � $ m · len(F) · k, then this version of the
PrivateBDD protocol has information rate 1/2.

If � is even longer, then one can define b := αm/σ for some α > 1, then the
balanced protocol has communication complexity (1+1/α)σ�+(α+1)m(len(F)+
2)k, or—for large values of � and α—information rate 1+o(1). For example, one
can take α = log2 m, then the communication complexity is (1 + o(1))σ� +
(log2 m + 1) · m · (len(F) + 2)k.

In another variant of balancing, we define �max ≈ (�+ len(F)k)/b. Then, after
every b levels of the BDD, the length of the intermediate output values grows
longer than �max, which requires us to double the remaining of the BDD like say
in [23]. Here, the total communication complexity is (m+2bσ)/b · (�+ len(F) ·k).
Defining b := log2(m/σ), this will become (m+2)/(log2 m−log2 σ)·(�+len(F)·k).
For integer b, the communication complexity is (1 + o(1)) ·m/(log2 m− log2 σ) ·
(� + len(F) · k).

By using the first balancing technique, the communication complexity of Lip-
maa’s (n, 1)-CPIR protocol from [18] can be improved to 2�+(1+o(1))· log2

2 n ·k.
By using the second balancing technique, the communication complexity of Lip-
maa’s (n, 1)-CPIR protocol can be improved to Θ((� · log n+k · log2 n)/ log log n).
Balancing can also be used on some variations of the BddCpir protocol, espe-
cially when � is large.

More Optimizations. Note that in the case of Lipmaa’s (n, 1)-CPIR protocol,
the client knows in advance in what depth every of the BDD input variable xj

is used. Thus, he does not have to send values Q(�max, xj), but can send values
Q(� + (j − 1) · k, xj) for every j. This optimization was used in [18] but it is
also valid in other similar contexts, including both presented variations of the
BddCpir protocol.

Further Work. The first (though somewhat sketchy) version of BddCpir was
presented in an earlier preprint [20] in Spring of 2008, and it is based on a
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very standard security assumption. In the meantime, several fully-homomorphic
public-key cryptosystems have been proposed, starting with [11]. Given a fully-
homomorphic cryptosystem where on can encrypt integers modulo a large N , it is
easy to construct a CPIR protocol with communication complexity Θ(log n+k),
see e.g. [19] or an earlier eprint version of [18] (as available from the author’s
homepage), though there might be earlier works. We are currently working on
a paper that shows that based on a fully-homomorphic cryptosystem, one can
construct a CPIR protocol with communication complexity Θ(log n + k) (note
that all trivial approaches result in communication complexity Θ(k · log n), since
Gentry’s cryptosystem makes it only possible to encrypt Boolean values) and
sublinear computation. Nevertheless, it is important to achieve sublinear com-
putation under a well-known assumption, as done in the current paper.
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Abstract. At Eurocrypt’04, Freedman, Nissim and Pinkas introduced a fuzzy
private matching problem. The problem is defined as follows. Given two parties,
each of them having a set of vectors where each vector has T integer components,
the fuzzy private matching is to securely test if each vector of one set matches
any vector of another set for at least t components where t < T . In the conclu-
sion of their paper, they asked whether it was possible to design a fuzzy private
matching protocol without incurring a communication complexity with the factor(

T
t

)
. We answer their question in the affirmative by presenting a protocol based

on homomorphic encryption, combined with the novel notion of a share-hiding
error-correcting secret sharing scheme, which we show how to implement with
efficient decoding using interleaved Reed-Solomon codes. This scheme may be of
independent interest. Our protocol is provably secure against passive adversaries,
and has better efficiency than previous protocols for certain parameter values.

Keywords: Private matching, private set intersection, fuzzy private matching,
homomorphic encryption, error correction, secret sharing.

1 Introduction

In Eurocrypt’04, Freedman, Nissim and Pinkas (FNP) [4] introduced the private fuzzy
matching problem. The problem is defined for two parties. Each party holds a set of
vectors, where each vector has its length equal to T . The number of vectors in the two
sets are m and n, respectively. The fuzzy private matching of the two sets computes the
intersection of two sets by considering a match if any pair of vectors from both sets has
at least t out of T common components (t < T ). The computation must preserve the
privacy of the sets, i.e. the other party learns no more than the result of the operation.

This error-tolerance property is useful in many applications. For example, database
entries are not always accurate or full (e.g. due to errors, omissions, or inconsistent
spellings), for example, in the case of biometric pattern matching. Due to the human
error and error-prone biometric systems, it would be useful to have an algorithm still
reporting a match if two datasets are similar within a threshold.
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In [4], Freedman, Nissim and Pinkas gave a simple 2-out-of-3 fuzzy private matching

protocol. However, this protocol is not efficient as it requires O
(
m
(
T
t

))
communica-

tion complexity and O
(
mn
(
T
t

))
computation complexity. As an open problem, they

posed the question of how to construct the private fuzzy matching without incurring a
communication complexity with the exponential

(
T
t

)
factor.

Recently, Chmielewski and Hoepman [3] proposed two fuzzy matching protocols
with polynomial communication complexity, but at the expense of an exponential

(
T
t

)
factor in the computation complexity. We show how to further improve one of these
protocols (to be called CH1), making both communication and computation polynomial
in T . We also show that the second protocol in [3], to be called CH2 (which is claimed
to have even better communication complexity) is insecure.

Our solution is based on polynomial encoding and a share-hiding random error-
correcting threshold secret sharing scheme based on interleaved Reed-Solomon codes.

We first explain the notion of an error-correcting secret sharing scheme. In an or-
dinary t-of-T secret sharing scheme, the secret can be efficiently recovered from any
t shares. However, if one is given a ‘noisy’ vector of T shares, out of which only t
shares are correct and the rest are random values, one may have to try all

(
T
t

)
subsets

of t shares until the correct subset is found and the secret is recovered (assuming that
the correct secret can be identified). The idea of an error-correcting threshold t-of-T
secret sharing scheme is to add additional redundancy to the shares of the secret, such
that the correct secret can be efficiently recovered (in time polynomial in T ) even in the
‘noisy’ setting above, where an unknown subset of t of T given shares are correct and
the rest are random. At the same time, we also require a share hiding privacy property:
when there are < t correct shares the above ‘noisy’ vector of T shares gives no infor-
mation on the position of the correct shares. This problem naturally leads to consider
error correcting codes to perform this decoding. As we explain, although the Shamir
t-of-T secret sharing scheme can also be viewed as a Reed Solomon error correcting
code, it does not quite achieve the goal (since it requires at least

√
T t correct shares

for efficient decoding, which may be much larger than t). We show how to modify the
Shamir scheme into an error-correcting secret sharing scheme by using the concept of
interleaved Reed Solomon codes.

Given our share hiding error-correcting secret sharing scheme, the idea of our proto-
col (based on the CH1 protocol) is to let one party, Alice, send to the other party Bob
encryptions of her database elements using a homomorphic encryption scheme. Using
the homomorphic property, Bob can compute the ciphertext of the difference vector
between each pair of Alice’s and Bob’s database words. Bob then homomorphically
adds this difference vector to the shares vector of an encryption key, created using the
error-correcting secret sharing scheme, and sends the resulting ciphertexts to Alice. As
a result, Alice’s decryption consists of share vectors having correct shares of Bob’s key
in the positions where Alice’s word matched Bob’s word, and, if there are at least t
matches, Alice can use the error-correcting property to recover Bob’s key (which is
then used by Alice to decrypt a ciphertext of Bob’s matching word). In order to hide
the non-matching elements of Bob, we utilize the randomization technique used in the
original FNP private matching protocol (if the element of the Alice dataset is different
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from the element of the Bob dataset, then this element will be multiplied by a random
number). Moreover the share hiding property also hides the location of the matching
elements when there are less than t matches. We remark that the original CH1 protocol
in [3] did not make use of an error correcting secret sharing scheme, which forced an
exponential search by Alice in decoding.

We prove the security of our protocol against passive attacks and explain its effi-
ciency advantages relative to previous protocols.

1.1 Private Matching and Set Intersection in FNP

We briefly review the (not fuzzy) private matching and set intersection in [4], since it is
the basis and the extension of the private fuzzy matching discussed in the same paper.

Polynomial Representation of Datasets and Private Matching. Let (K, E ,D) be a
semantically-secure public-key cryptosystem with additive homomorphic properties,
such as Paillier’s [9]. Recall that, given E(a), E(b) and a constant c, one can compute
E(a + b) = E(a) % E(b) and E(a · c) = E(a)c.

There are two parties in the protocol, namely, Alice and Bob. Bob owns a value b,
while Alice possesses a dataset A′ = {a1, . . . , am} and wants to test if b ∈ A′ or not.
Alice does not want to reveal A to Bob, and Bob is unwilling to disclose b to Alice.

The protocol runs as follows.

– Alice first presents her dataset A′ in the form of a polynomial

P(y) =
∏

ai∈A′
(y − ai) =

m∑
i=0

αiy
i, where αm = 1

– Applied in the homomorphic encryption. Alice encrypts her polynomial P with her
public-key. Note that the encrypted polynomial E(P) contains the encryptions of
all coefficients αi except αm. Next she sends E(P) to Bob.

– Using the homomorphic properties, Bob evaluates the polynomial for his input b
according to the following formula

E(P(b)) = E(α0) % E(α1)b % E(α2)b2 % . . . % E(αm−1)bm−1
% E(1)bm

,

and sends the result E(γP(b) + b) to Alice, where γ is a random non-zero integer.
Note that b ∈ A′ if and only if P(b) = 0.

– When Alice receives the cryptogram, she decrypts it and checks if the decrypted
message belongs to the set A′. If it does she knows the value b, otherwise she
knows a random value.

Private Computation of Set Intersection. Suppose Alice and Bob, each has a dataset
A′ = {a1, . . . , am} and B′ = {b1, . . . , bn} respectively, where the set cardinalities m
and n are publicly known. Alice wishes to learn the intersection of two sets A ∩ B.
To compute the set intersection, we simply run the above private matching protocol m
times in parallel for each of bj ∈ B. In the end, Alice decrypts all the cryptograms and
checks if each one is in A, and then establishes A ∩ B.
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1.2 Related Work on Fuzzy Private Matching

A simple 2-out-of-3 fuzzy matching protocol is given in [4]. We are going to call it the
FNP protocol. Although it is flawed (for a detailed analysis refer to [3]), the approach
seems to be sound. Alice has m 3-tuples A1, . . . , Am, where Ai = (ai1, ai2, ai3) for
i = 1, . . . , m. Let P1, P2, P3 be polynomials, such that P� is used to encode the �-
th elements (a1�, . . . , am�) of the 3-tuples. For each i = 1, . . . , m, Alice chooses a
random value γi = P1(ai1) = P2(ai2) = P3(ai3). Note that for each polynomial P�;
� = 1, 2, 3, there are m equations so the degree of the polynomials P� is at most m− 1.

Next Alice sends (E(P1), E(P2), E(P3)) to Bob in the form of encrypted coefficients
as in Section 1.1.

For every 3-tuple Bj in his dataset of size n, Bob responds to Alice in a manner
similar to the protocol in Section 1.1. He computes the encrypted values E(r·(P1(bj1)−
P2(bj2))+Bj), E(r′ · (P2(bj2)−P3(bj3))+Bj) and E(r′′ · (P1(bj1)−P3(bj3))+Bj)
by encoding Bj as bj1||bj2||bj3, where r, r′ and r′′ are random values. If two elements
in Ai are the same as those in Bj , Alice obtains Bj in one of the entries after decrypting
received ciphertexts.

The generalization of this approach for matching t our of T positions is possible but
the resulting protocol is not going to be efficient. Clearly, for each Bj ; j = 1, . . . , n,
Alice has to check all the combinations

(
T
t

)
so both communication and computation

complexities of the protocol have the factor
(
T
t

)
.

Chmielewski and Hoepman [3] extend the FNP protocol and propose two modified
protocols that we call CH1 and CH2, both avoiding the

(
T
t

)
factor in the communica-

tion complexity, but at the expense of a
(
T
t

)
factor in computation. The protocol CH1

has quadratic complexity, while CH2 has linear complexity. Unfortunately, the protocol
CH2 is insecure, as we explain below. Our work shows how to improve CH1 by fur-
ther removing the

(
T
t

)
factor from the computation. Both protocols CH1 and CH2, are

achieved by combining secret sharing [12] and homomorphic encryption. The idea of
the CH1 protocol (which forms the basis for our protocol) was already explained in the
Introduction. Here we explain the CH2 protocol and why it is insecure.

CH2 Protocol. For each secret vector Bj ∈ B, Bob constructs t-out-of-T secret
sharing that defines a collection of shares (sj1, . . . , sjT ). Note that, Bj is encoded as
bj1||bj2|| . . . ||bjT for a convenience. If bj� = bj′�, then sj� = sj′� where j �= j′. Bob
also constructs T polynomials of degree n, P1, . . . , PT such that

((P�(b1�) = s1�) and (P�(b2�) = s2�) and , . . . , and (P�(bn�) = sn�)).

Bob sends all E(P�) to Alice for � = 1, . . . , T .
For i = 1, . . . , m and � = 1, . . . , T , Alice computes E(P�(ai�)) using homomorphic

properties. Note that P�(ai�) = sj� if ai� = bj�. To hide the information about ai�, Alice
random selects a integer ri� and sends E(P�(ai�) + ri�) to Bob for i ∈ {1, . . . , m}.

Assume that Bob does not want to reveal any information about sj�. Bob decrypts
E(P�(ai�) + ri�), and prepares t-out-of-T shares (ŝi1, . . . , ŝiT ) of a value 0 for i =
1, . . . , m. Bob sends P�(ai�) + ri� + ŝi� to Alice. Note that P�(ai�) + ri� + ŝi� =
sj� + ri� + ŝi� if ai� = bj� for some j.

After receiving all the values from Bob, Alice computes vi� = (P�(ai�) + ri� +
ŝi�)− ri� for all i and �. For each i = 1, . . . , m, Alice tries to computes A′

i from all
(
T
t

)
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combinations of (vi1, . . . , viT ) by using t-out-of-T secret sharing scheme. If A′
i ∈f A,

then Alice adds A′
i to her output set.

Attack on CH2 Protocol. We show that CH2 is insecure. Suppose that A1 and A2 are
two words in Alice’s dataset and B1, B2, B3 are three words in Bob’s dataset. Suppose
that A1 matches B1 on t−1 letters in positions 1, ..., (t−1), matches B2 on t−1 letters
in positions t, ..., 2t− 2, and matches B3 on t− 1 letters in positions 2t− 1, ..., 3t− 3.
Suppose further that A2 matches B2 on t − 1 letters in positions 1, ..., (t − 1), matches
B3 on t− 1 letters in positions t, ..., 2t− 2, and matches B1 on t− 1 letters in positions
2t − 1, ..., 3t − 3.

The above condition implies that the shares vi� obtained by Alice in CH2, are related
to Bob’s shares sj� and ŝj� as follows: v1� = s1� + ŝ1� for � = 1, . . . , t − 1, v1� =
s2� + ŝ1� for � = t, . . . , 2t − 2, v1� = s3� + ŝ1� for � = 2t − 1, . . . , 3t − 3, v2� =
s2� + ŝ2� for � = 1, . . . , t − 1, v2� = s3� + ŝ2� for � = t, . . . , 2t − 2, v2� = s1� + ŝ2�

for � = 2t − 1, . . . , 3t − 3. Assume we are using t-of-T Shamir sharing for the 5
secret sharing vectors {sj�}�, {ŝi�}� for j ∈ {1, 2, 3} and i ∈ {1, 2}. Each sharing has
a polynomial of degree ≤ t − 1 associated with it, so we have 5t random variables
(coefficients) involved. On the other hand, the above relations give us overall 6(t − 1)
known linear equations in these random variables. For sufficiently large t, we have
6(t− 1) > 5t, which means we can find a linear dependency among the equations. The
corresponding non-trivial linear combination of the vi�’s will be zero, and this can be
detected by Alice. On the other hand, for example, if the A1 and A2 don’t match the
B1, ...B3 in any position, the vi�’s will be independent and uniformly random, so the
tested non-trivial linear combination of them will be zero with negligible probability
1/p. Hence the attack allows Alice to tell when the prescribed condition holds, which
is a privacy leak (since the condition involves only t − 1 < t matches between any Ai

and Bj).

2 Preliminaries

2.1 Additively Homomorphic Encryption

We will utilize an additive homomorphic public key cryptosystem, such as Paillier [9].
Following Adida and Wikstrom [1], we use the following definition.

Definition 1 ([1]). A cryptosystem (K, E ,D) defined by the key generator, encryption
and decryption algorithms, respectively, is said to be homomorphic if for every key pair
(pk, sk) ∈ K(1l), the following conditions hold.

1. The message space M is a subset of an additive abelian group G(M).
2. The randomizer space R is an additive abelian group.
3. The ciphertext space is an multiplicative abelian group.
4. Given a public key pk, the group operations can be computed in polynomial time.

For every m, m′ ∈ M and r, r′ ∈ R, the following relation holds

E(m, r) % E(m′, r′) = E(m + m′, r + r′).

5. The cryptosystem is said to be additive if the message space M is the additive
modular group Zn for some integer n > 1.
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When such operations are performed, we require that the resulting ciphertexts be re-
randomized for security reasons. During such a process, the ciphertext e of the plaintext
m is transformed into e′ such that e′ is still a valid cryptogram for the same message m
but created with a different random string.

For simplicity, we use E(m) to represent E(r, m) in the rest of the presentation as
we assume that there is always a corresponding random string r.

2.2 Definitions

We use the usual asymptotic notation O, o, Ω, ω. We say that a function f(s) is neg-
ligible, denoted f(s) = neg(s), if f(s) = 1/sω(1). For two probability distribu-
tions D1, D2 parameterized by a security parameter s, we say that D1 and D2 are
computationally indistinguishable, denoted D1 =c D2, if any distinguisher A with
run-time O(poly(s)) has negligible distinguishing advantage |Prx←D1 [A(x) = 1] −
Prx←D2 [A(x) = 1]| = neg(s). We say that D1 and D2 are statistically indistinguish-
able, denoted D1 =s D2, if any distinguisher A with unbounded run-time has negligi-
ble distinguishing advantage.

Throughout this chapter, the computations are carried out over an arbitrary finite
field F . There are two parties Alice IC and Bob IS . Let A = {A1, . . . , Am} and
B = {B1, . . . , Bn} be Alice’s and Bob’s datasets respectively. We call the dataset
elements words, and assume that each word consists of an ordered list of T letters from
F , i.e. Ai = (ai1, . . . , aiT ) ∈ FT , Bj = (bj1, . . . , bjT ) ∈ FT .

Definition 2. Given two words Ai and Bj defined as above and integer t ≤ T , we say
that Ai and Bj are t-fuzzy equal, written as Ai ≈t Bj , if the words Ai and Bj agree
on at least t letters, i.e. if

|{� : ai� = bj�}| ≥ t.

Definition 3. Given two datasets A and B as defined above and integer t ≤ T , the
t-fuzzy set intersection of datasets A and B, denoted A ∩t B is defined as

A ∩t B = {(Ai, Bj)|Ai ∈ A, Bj ∈ B, Ai ≈t Bj}.

Now we formally define the private fuzzy matching protocol. Let client Alice IC and
server Bob IS be two probabilistic polynomial time interactive Turing machines. The
interaction of IC and IS yields a result to Alice IC only (server Bob outputs nothing).

We use the standard definitions for passive security of two-party computation, adapted
to the private fuzzy matching setting.

Definition 4. (Private Fuzzy Matching) A protocol Π for two probabilistic polyno-
mial time interactive Turing machines, Client IC and Server IS , is said to be a passive-
secure t-fuzzy matching protocol if it satisfies the following properties. The common
input to both IC and IS is a security parameter s (implicit below). The private input of
IC is dataset A and the private input of IS is dataset B.

Completeness. If both parties follow the protocol, then at the end of the protocol, with
probability ≥ 1 − neg(s) (over the random coins of IC and IS), IC learns the
t-fuzzy set intersection A ∩t B.
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Security Against Passive Attacks. Let ViewC,Π(A, B) and ViewS,Π(A, B) denote the
protocol view of Client and Server, respectively, after a run of protocol Π with
private inputs (A, B) in which both parties follow the protocol. Then there exist
simulator algorithms SC and SS respectively, with run-time O(poly(s)), that, for
all A, B, can simulate the view of Client and Server, respectively, given only their
own private input and output, i.e.:

SC(A, A ∩t B) =c ViewC,Π(A, B) and SS(B) =c ViewS,Π(A, B).

3 Share-Hiding Error-Correcting Secret Sharing from Interleaved
Reed-Solomon Codes

For our protocol we introduce a primitive that we call a Share-Hiding Error-Correcting
Threshold Secret Sharing Scheme (SHEC-TSS). In this section, we give the relevant
coding background and our SHEC-TSS construction from Interleaved Reed-Solomon
codes. We start by formulating abstractly the properties we require from a SHEC-TSS
scheme.

Our first requirement is random error correction: the secret can be recovered with
high probability from a ‘noisy’ n share vector, in which a subset I of |I| ≥ t shares are
correct (the rest being uniformly random), even without knowing the positions of the
correct shares. It can be viewed as a strengthening of the usual correctness requirement
on a t-of-n threshold scheme, i.e. that any t shares can be used to recover the secret.
The formal definition follows.

Definition 5. Let δ > 0. A t-of-n secret sharing scheme SS with share space S is called
δ-random error correcting if it has the following property. Let C = (c1, . . . , cn) ∈ Sn

be the share vector for some secret s using scheme SS, and let I ⊆ [n] be a subset of
size |I| ≥ t. Let DC,I denote the the probability distribution of ‘noisy share vectors’
C̄ = (c̄1, . . . , c̄n) generated as follows: For i ∈ I , we set c̄i = ci (i.e. C̄ agrees with
C on shares with indices in I), and for i ∈ [n] − I , we choose c̄i independently and
uniformly at random from share space S. Then there exists an efficient (probabilistic
poly-time) decoding algorithm D that, given n, t and C̄ sampled from distribution DC,I ,
returns C with probability at least 1−δ over the random choice of c̄i for i ∈ [n]−I and
the random coins of D (note that D must succeed with probability ≥ 1 − δ for every
valid share vector C and every I ⊆ [n] with |I| ≥ t).

Our second requirement is share hiding: for any fixed secret, any collection I of |I| < t
shares is a uniformly random (t − 1)-tuple of elements from the share space. It can
be viewed as a strengthening of the usual security requirement for a t-of-n threshold
scheme, i.e. that any subset of < t shares gives no information on the secret. The formal
definition follows.

Definition 6. A t-of-n secret sharing scheme SS with share space S is called share
hiding if it has the following property. Fix a secret s and let C = (c1, . . . , cn) ∈ Sn

be the share vector for s generated with randomness ω. Then, for each s and subset
I ⊆ [n] of size |I| < t, the |I|-tuple of shares (si)i∈I is uniformly random in S|I| (over
the choice of randomness ω).
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Remark 1. The name ‘share hiding’ comes from the following useful implication that is
used in our protocol: let I ⊆ [n] be a share subset and let DC,I denote the distribution
of noisy n-share vectors generated as in Def. 5, in which the |I| shares indexed by I
are correct, and the rest chosen uniformly at random. Then the share hiding property
implies that when |I| < t, DC,I is the uniform distribution of n-tuples on the share
space, independent of the subset I – hence the correct share subset I is ‘hidden’.

Remark 2. The share hiding requirement implies the standard perfect security for t-of-n
secret sharing, but the converse is not true in general (see next remark).

Remark 3. It is easy to satisfy the random error correcting property while violating
the share hiding property, e.g. share s with a standard t-of-n secret sharing scheme
and define the ith share for the new scheme to be the ith share si for the old scheme
concatanated with some redundancy information on si.

Finally, our third technical requirement is sparsity.

Definition 7. Let δ > 0. A t-of-n secret sharing scheme SS with share space S is
called δ-sparse if a uniformly random n-tuple from Sn has probability at most δ to
agree with a valid share vector of some secret s on ≥ t positions.

We can now formally define the notion of a SHEC-TSS.

Definition 8. A t-of-n secret sharing schemeSS is called Share-Hiding Error-Correcting
(SHEC-TSS) with error δ, if it is δ-random error correcting, share hiding, and δ-sparse.

Reed and Solomon [10] discovered the Reed-Solomon code, an important class of error-
correcting code. The key idea behind a Reed-Solomon code is that the original data are
encoded as a polynomial. The polynomial is then encoded by its evaluation at various
points, and these values are what is actually sent. During transmission, some of these
values may become corrupted. The Reed-Solomon decoding algorithm can reconstruct
the original polynomial as long as sufficient values are received correctly, and hence
decode the original data.

Definition 9. Let p be a prime number and let t ≤ n ≤ p and let z = (z1, . . . , zn) ∈
Zn

p be a vector of n distinct elements in Zp. The Reed-Solomon code RSn,t,p,z over
the field Zp with t message symbols and n code symbols is defined as follows. Given a
message vector m = [m0, m2, . . . , mt−1] ∈ Zt

p, let P (x) be the polynomial

P (x) = mt−1x
t−1 + . . . + m1x + m0.

Then the codeword C(m) ∈ Zn
p for this message vector is the list of the first n values

of the polynomial P (x):

C(m) = [P (z1), P (z2), . . . , P (zn)].

Since any two distinct polynomials of degree t − 1 agree on at most t − 1 points, the
minimum Hamming distance between any two distinct codewords in the code RSn,t,p,z

is n− t + 1. This allows deterministic unique error-correction of a noisy codeword if at
most (n−t+1)/2 coordinates are incorrect, i.e. at least t′ = t+(n−t−1)/2 coordinates
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are correct. However, in our application, we wish to be able to recover the codeword
when t′ is as close to t as possible, where t defines a security threshold (so that t−1 cor-
rect coordinates give no information on the codeword), and the incorrect coordinates are
uniformly random and independent in Zp. The celebrated Reed-Solomon list-decoding
algorithm of Guruswami-Sudan [5] gives a unique solution with high probability in our
setting, when the number of correct coordinates t′ ≥

√
tn, but this is still not suffi-

ciently close to t for our application. To reduce t′ closer to t, we use the Interleaved
Reed-Solomon Code defined as follows.

Definition 10. Let p be a prime number, r ≥ 1 an integer, t ≤ n ≤ p, and let z =
(z1, . . . , zn) ∈ Zn

p be a vector of n distinct elements in Zp. The Interleaved Reed-
Solomon code IRSn,t,p,r,z over the field Zp with r · t message symbols and r · n code
symbols is defined as follows. Given a message vector m = (m1, . . . , mr) with m� =
[m�,0, . . . , m�,t−1] ∈ Zt

p for � ∈ [r], let P�(x) be the polynomial

P�(x) = m�,t−1x
t−1 + . . . + m�,0.

Then the codeword C(m) ∈ (Zr
p)

n for this message is the vector

C(m) = [(P1(z1), . . . , Pr(z1)), . . . , (P1(zn), . . . , Pr(zn))].

For i ∈ [n], we refer to (P1(zi), . . . , Pr(zi)) ∈ Zr
p as the ith coordinate of the codeword

C(m).

Bleichenbacher, Kiayias and Yung [2] showed the following.

Theorem 1 ([2]). Fix integer parameters t ≤ n ≤ p with p prime and r ≥ n − t + 1,
and a vector z = (z1, . . . , zn) ∈ Zn

p with zi �= zj for i �= j. There exists an efficient
(run-time O(poly(n, log p))) decoding algorithm D for code IRSn,t,p,r,z that, given
n, t, p, r, z and a noisy codeword Y = C + E ∈ (Zr

p)
n with C ∈ IRSn,t,p,r,z and

E ∈ (Zr
p)

n a noise vector with some subset I of t′ ≥ t + 1 coordinates fixed to 0r and
the remaining n− t′ coordinates chosen independently and uniformly at random in Zr

p,
returns C with probability at least 1 − (n − t′)/q over the choice of E and the random
coins of D.

The above algorithm works when the number of correct coordinates in Y is t′ ≥ t + 1,
but not for t′ = t: in that case it is easy to see that C cannot be uniquely decoded from
Y if we allow C to be an arbitrary codeword in code IRSn,t,p,r,z. To deal with this
problem, our secret sharing scheme introduces additional redundancy by restricting C
to a subset of codewords whose r polynomials all share the same constant coefficient
(the secret), i.e. we are using a modified interleaved Reed Solomon code IRS′

n,t,p,r,z

in which the codewords satisfy P�(0) = P1(0) for all � ∈ [r]. We also make sure
that zi �= 0 for i ∈ [r]. Below, we show that a natural adaptation of the decoding
algorithm from Theorem 1 to the code IRS′

n,t,p,r,z provides a unique solution with
high probability even for t′ = t, as required.

We formalize our construction of a random-error correcting secret sharing scheme
as follows.
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Definition 11. Let p be a prime number, r ≥ 1 an integer, t < n < p, and let
z = (z1, . . . , zn) ∈ Zp be a vector of n distinct non-zero elements in Zp. The t-of-
n threshold secret sharing scheme IRS′

n,t,p,z,r over the field Zp with threshold t and
n shares is defined as follows. Given a secret s ∈ Zp, the dealer chooses r random
polynomials P�(x) of degree ≤ t− 1 with P�(0) = s for � ∈ [r]. The share vector C(s)
for secret s is

C(s) = [(P1(z1), . . . , Pr(z1)), . . . , (P1(zn), . . . , Pr(zn))],

where for i ∈ [n], the ith share is (P1(zi), . . . , Pr(zi)) ∈ Zr
p.

We now present our main result.

Theorem 2. Let IRS′
n,t,p,z,r be the t-of-n secret sharing scheme defined above. If r ≥

n − t + 1, the scheme is a SHEC-TSS with error δ ≤ n/p.

Proof. The share hiding property follows from the fact that the collection of t′ < t valid
shares ci,� plus the secret s imposes t′ + 1 ≤ t constraints of the form P�(0) = s and
P�(zi) = ci,� for t′ distinct non-zero zi, on the degree ≤ t − 1 polynomials P�. Since
there is a unique solution for P� passing through any t given points, there are exactly
pt−t′−1 ≥ 1 possible choices for each polynomial P� satisfying the given constraints,
regardless of the values of the ci,�; the result follows by the uniformly random choice
of the P�.

We now establish the δ-sparse property. Fix a subset I ⊆ [n] with |I| = t. The
probability that a uniformly random vector Y ∈ (Zr

p)n matches any valid share vector
C of IRS′

n,t,p,r,z on the shares with indices in I is 1/pr−1. This is because there is a
unique polynomial P1 of degree ≤ t − 1 satisfying P1(zi) = yi,1 for i ∈ I , and unique
polynomials P2, . . . , Pr of degree ≤ t − 1 satisfying P�(0) = P1(0) and P�(zi) = ci,�

for i ∈ I − {i∗}, where i∗ is one element of I . Hence, the random vector Y will match
the valid codeword C also on the i∗th share if and only if P�(zi∗) = ci∗,� for � ≥ 2,
which holds with probability 1/pr−1. By taking a union bound over all subsets I of size
t we conclude that δ-sparsity holds with δ ≤

(
n
t

)
/pr−1 =

(
n

n−t

)
/pr−1 ≤ (n/p)n−t ≤

n/p, using r ≥ n − t + 1 and
(

n
n−t

)
≤ nn−t.

Now we prove the random error-correcting property by explaining the appropriate
modifications to the algorithm of Theorem 1 and its analysis in [2]. The decoding al-
gorithm accepts as input n, t, p, z, r and a noisy share vector Y = (y1, . . . , yn) with
yi = (yi,1, . . . , yi,r) ∈ Zr

p for i ∈ [n] sampled from the distribution DC,I as in Def-
inition 5, where C = (c1, . . . , cn) is the share vector for some secret s using scheme
IRS′

n,t,p,z,r, and I is a subset of [n] with |I| ≥ t. The decoding algorithm does not
know |I|, and therefore tries to decode using a guess t′ for |I|, until it succeeds. The
algorithm works as follows.

– Repeat the following for t′ = t, t + 1, . . . , n:

• Randomize: Select r random polynomials Q1(x), . . . , Qr(x) of degree ≤ t−1
with Q�(0) = Q1(0) = s′ for � ∈ [r], and set yi,� := yi,� + Q�(zi) for i ∈ [n]
and � ∈ [r].
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• Solve: Find a polynomial E(x) of degree ≤ n − t′ with constant term 1, and r
polynomials m�(x) for � ∈ [r] of degree ≤ n−t′+t−1 such that the following
linear system of equations is satisfied:

m�(zi) = yi,�E(zi), m�(0) = m1(0), E(0) = 1, for i ∈ [n], � ∈ [r]. (1)

• If the solution m1, . . . , mr, E to (1) is unique and m�(x) is divisible by E(x)
for � ∈ [r], then compute polynomials P�(x) = m�(x)/E(x) − Q�(x) for
� ∈ [r], and return share vector C determined by those polynomials (with
P1(0) = m1(0) − s′ being the corresponding secret), and terminate.

– If no solution is found for any t′ ∈ {t, . . . , n}, terminate and return failure.

We note that the algorithm in [2] works in essentially the same way, except that it does
not impose the constraints m�(0) = m1(0) for � ∈ [r]. The run-time of each iteration
of the algorithm is dominated by the Gaussian elimination procedure for solving the
linear system of equations over Zp of dimension ≤ r · n, which can be done in time
O((rn)3 log2 p). Thus the overall run-time is O(n · (rn)3 log2 p), which is polynomial
in the input length, as required.

The randomization step randomizes the r solution polynomials P1, . . . , Pr corre-
sponding to the vector Y , i.e. after this step, we know that there exists a subset I ⊆ [n]
of size |I| ≥ t and r random polynomials P ′

1, . . . , P
′
r of degree ≤ t − 1 such that

yi,� = P ′
�(zi) for i ∈ I and � ∈ [r], and yi,� uniformly random for i ∈ [n] − I and

� ∈ [r], and P ′
�(0) = P ′

1(0) = s + s′ for � ∈ [r]. When t′ ≤ |I|, the polynomials P ′
�

give rise to the following desired solution m∗
1, . . . , m

∗
r, E

∗ to system (1):

E∗(x) = (−1)n−|I|
∏

i∈[n]−I

(x/zi − 1), m∗
� (x) = P ′

�(x) · E∗(x), � ∈ [r].

However, note that when t′ < |I|, the system (1) will not have a unique solution, so the
algorithm will increment t′ until it reaches t′ = |I| (indeed, when t′ < |I|, one can take
any subset I ′ of I of size |I ′| = t′ and construct a distinct solution to (1) associated
with I ′ by replacing I with I ′ in the above definition of E∗).

Our goal is to show that when t′ = |I|, the above desired solution is indeed the
unique one. We note that (1) is a linear system with r · n equations and r · (n − t′ +
t)+ (n− t′)− (r− 1) variables. A necessary condition for the system to have a unique
solution is that it is not under determined; that is, the number of equations is at least
equal to the number of variables. It is easy to see that if r ≥ n − t′ + 1, the system (1)
is not under determined when t′ ≥ t (whereas the system in [2] has r − 1 additional
variables, and is not under determined only for t′ ≥ t + 1).

We now explain how to modify the argument in [2] to show that when the system (1)
is not under determined, it has a unique solution with probability at least 1 − (n − t)/p
over the random choice of the P� for � ∈ [r] and yi,� for i ∈ [n] − I and � ∈ [r] - we
call those the random variables.

The argument works in three steps as follows. Starting from the matrix A of the
system (1), the first step removes some rows from A to obtain a square matrix Â. The
second step is a rearrangement of the rows of Â to give a matrix Â∗. The final step
is to show that the determinant of Â∗ is a non-zero polynomial of degree ≤ n − t in
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the random variables, by showing that the determinant is non-zero for some choice of
values for the random variables. It then follows by the Schwartz Lemma [11] that the
determinant of Â∗ is non-zero (and hence the original system has a unique solution)
with probability at least 1− (n− t)/p over the uniform choice of the random variables.

First Step. The matrix A for our system (1) has the following form (where we arrange
the variables with the n−t′+t coefficients of m1 first, followed by the n−t′+t−1 non-
constant coefficients of m� for � = 2, . . . , r, and finally the non-constant coefficients
of E):

A =

⎡⎢⎢⎢⎢⎢⎣
M 0 0 · · · 0 −M1

K M̄ 0 · · · 0 −M2

K 0 M̄ · · · 0 −M3

...
...

... · · ·
...

...
K · · · · · · · · · M̄ −Mr

⎤⎥⎥⎥⎥⎥⎦ ,

where

M =

⎡⎢⎢⎢⎣
1 z1 z2

1 · · · zn−t′+t−1
1

1 z2 z2
2 · · · zn−t′+t−1

2
...

... · · · · · ·
...

1 zn z2
n · · · zn−t′+t−1

n

⎤⎥⎥⎥⎦ ,

M̄ is the n × n − t′ + t − 1 submatrix of M with the first of column of M (all ones)
removed, K is a n × (n − t′ + t) matrix whose elements are all zero except for the
leftmost column whose entries are all 1, and for � ∈ [r], M� is a n × (n − t′) matrix
whose (i, j)th element M�[i, j] is related to the (i, j)th element of M̄ as follows:

M�[i, j] = yi,� · M̄ [i, j], i ∈ [n], j ∈ [n − t′]. (2)

Since the number of rows of A exceeds the number of columns by N = r ·(t′− t+1)−
(n − t′ + 1), we need to remove N rows from A to make it square. The rows of A are
naturally divided into r blocks of n rows each, indexed from 1 to r from top to bottom.
Similarly to [2], we remove from A the bottom t′ − t + 1 ≥ 1 rows of the last c < r
blocks of A (note that this makes the c diagonal block matrices in the corresponding
blocks, square matrices of dimension n − t′ + t − 1), where c = �N/(t′ − t + 1).
This leaves N mod (t′ − t + 1) remaining rows to remove – they are removed from the
bottom of block r − c ≥ 1. This gives the square matrix Â.

Second Step. In this step, we make the diagonal block matrices of the top r − c
blocks square (and hence all block matrices along the diagonal square, thanks to Step
1) by swapping some rows from those blocks to the bottom of the matrix. As in [2],
we assume, without loss of generality, that I = {n − t′ + 1, . . . , n}, and we define the
surplus s� of block � ∈ [r − c] of Â as the number of rows that should be swapped
from the �th block to the bottom of the matrix, in order to make the the corresponding
diagonal block matrix square, i.e. s1 = t′ − t − x1 and s� = t′ − t + 1 − x� for
� ≥ 2, where x� is the number of rows removed from block � in Step 1. We observe
that, since matrix Â is square and the number of columns of the M� matrices on the
right is n− t′, we have

∑
�∈[r−c] s� = n− t′. We swap rows 1, . . . , s1 of block 1 to the

bottom, then rows s1 + 1, . . . , s1 + s2 of block 2 to the bottom, and so on until rows
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�<r−c s� + 1, . . . ,

∑
�≤r−c s� = n − t of block r − c. The resulting matrix Â∗ has

the form:

Â∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

N1 0 0 · · · 0 −M ′
1

K N̄2 0 · · · 0 −M ′
2

K 0 N̄3 · · · 0 −M ′
3

...
...

... · · ·
...

...
K · · · · · · · · · N̄r −M ′

r

V1 V2 · · · · · · Vr −M̂

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where N1 is a Vandermonde matrix relative to a subset of the zi’s, and for � ≥ 2,
N ′

r is a scaled Vandermonde matrix relative to a subset of the zi’s (we recall that a
Vandermonde matrix of dimension k relative to (z1, . . . , zk) has (1, zi, z

2
i , . . . , zk−1

i ) as
its ith row for i = 1, . . . , k. If the ith row is of the form (zi, z

2
i , . . . , zk

i ) for i = 1, . . . , k,
we call the matrix a scaled Vandermonde matrix). Similarly, for � ≥ 1, M ′

� is M� with
some rows removed. The matrices V1, . . . , Vr and M̂ consist of the rows of M , M̄ , and
M1, . . . , Mr swapped to the bottom in this step.

Step 3. We show that det(Â∗) is non-zero polynomial D in the random variables
of degree n − t′. The degree follows from the fact that only the last n − t′ columns
of Â∗ depend on the random variables, and each element in those columns is linear
in the random variables. To show that D is a non-zero polynomial, we show that it
evaluates to a non-zero value for certain values of the random variables. Namely, we
set the polynomials P� = 1 for � ∈ [r] (note that this satisfies the constraint that all P�

have the same constant coefficient). This implies yi,� = 1 for all i ∈ {n− t′+1, . . . , n}
(since I = {n − t′ + t, . . . , b}) and � ∈ [r]. We also set yi,� = 1 for all rows i, � which
have not been moved to the bottom of the matrix in Step 2. On the other hand, we set
yi,� = 0 for all rows i, � which have been moved to the bottom in Step 2 (note that these
rows have i ≤ n− t′ by construction, therefore the corresponding random variables yi,�

can take on arbitrary values, independent of the P�’s). For this setting of the random
variables, we have that M ′

1 is equal to the submatrix of N1 consisting of columns 2 to
n− t+1, and for � ≥ 2, M ′

� is equal to the submatrix of N� consisting of the first n− t

columns. We also have that M̂ is the zero matrix.
We now perform elementary row operations on Â∗ (with the above setting of the

random variables) to zero out all elements below the square block matrices N1, . . . , Nr

along the diagonal. Since N� for � ∈ [r] is a Vandermonde (or scaled Vandermonde)
matrix, and the zi’s are distinct and non-zero, then N� is full rank and has non-zero
determinant (it is well known that a Vandermonde matrix relative to z1, . . . , zk has a
non-zero determinant when the zi are distinct; the scaled Vandermonde matrix can be
obtained by multiplying each row of a Vandermonde matrix by the corresponding zi, so
the scaled Vandermonde matrix has a non-zero determinant when the zi are all non-zero
and distinct). First, we eliminate all 1 elements in the first column of Â∗. Since N1 is
full rank, we can express each row (1, 0, . . . , 0) of K as a linear combination of the
rows of N1. Subtracting this linear combination of the first n − t rows of Â∗ from the
rows below, we eliminate the 1 elements in the first column of these rows. Furthermore,
since M ′

1 consists of the submatrix of N1 except the first column, this operation has no
effect on the elements of M ′

� for � ≥ 2. Next, we similarly eliminate the elements in V1

by expressing each row of V1 as a linear combination of the rows of N1 and subtracting
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this combination of rows of Â∗ from the non-zero first s1 rows of V1. Due to the relation
of M ′

1 and N1 explained above and the fact that M̂ = 0, the first s1 rows of M̂ after
this operation are the first s1 rows of V1 before this operation (without the first column).
Similarly, we eliminate the s� non-zero rows of V� using N� for � = 2, . . . , r. At the
end, we get all zero elements below the diagonal square block matrices N1, . . . , Nr,
and the matrix M̂ has the form of a scaled Vandermonde matrix relative to a subset of
the zi’s, and therefore has a non-zero determinant. It follows that det(Â∗) is the product
of the non-zero determinants of the N� for � ∈ [r] and M̂ , so det(Â∗) is non-zero for
the above setting of the random variables, as claimed. ��

4 Private Fuzzy Matching Protocol

We show how to combine our our error correcting secret sharing scheme with homomor-
phic encryption to get a simple protocol secure in the passive case, which has quadratic
communication complexity in the size of the datasets. Our protocol is similar to a fuzzy
matching protocol of [3]. However, the protocol of [3] requires computation exponential
in the size of the datasets. In contrast, our protocol makes use of error correction tech-
niques to improve computation complexity to be polynomial in the size of the datasets.

Our simple protocol is shown in Fig. 1.

Theorem 3. The protocol Γ1 is a passive-secure t-fuzzy matching protocol, assuming
that the underlying homomorphic cryptosystem E and one-time symmetric cryptosystem
E are semantically secure.

Proof. We first show completeness. For each i ∈ [m], j ∈ [n], let Iij = {k ∈ [T ] :
aik = bjk}. Note that if k ∈ Iij , i.e. Ai matches Bj on the kth letter, then the share
C̄ijk decrypted by Alice matches the corresponding share Cijk for secret Bj created by
Bob, whereas if k �∈ Iij the share C̄ijk is independent and uniformly random in (Zp)r,
thanks to the uniform independent choice of γ�

ijk for � ∈ [r]. There are two cases to
consider.

The first case is that Ai ≈t Bj , so that |Iij | ≥ t. In this case, C̄ij is sampled from
the noisy share vector distribution DCij ,Iij defined in Def. 5. Since |Iij | ≥ t and r ≥
T − t+1, we conclude from the δ-random error correcting property of IRS′

T,t,p,r,zthat
in this case, except with probability δ ≤ (T − t)/p ≤ T/p, Alice recovers secret key
s = ksym

j so that B̄j = D(ksym
j , ρj) = Bj and Alice correctly adds (Ai, Bj) to the

output set S.
The second case is that Ai is not t-fuzzy equal to Bj so that |Iij | < t. In this case, we

claim that Alice correctly concludes that (Ai, Bj) �∈ A ∩t B, except with probability
at most T/p. This is because, in order for Alice to make a mistake, C̄ij would have
to match some valid share vector Ĉ of scheme IRS′

T,t,p,r,z on at least t shares. To
bound the probability of this bad event B, we first observe that |Iij | < t implies, by the
share-hiding property of IRS′

T,t,p,r,z, that the probability distribution of C̄ij is uniform
on (Zr

p)
T , independent of the secret ksym

j . It follows from the δ-sparse property of
IRS′

T,t,p,r,z that event B occurs with probability ≤ δ ≤ T/p. We conclude that, for
each i, j, Alice makes a mistake with probability at most T/p, hence the overall protocol
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Input: Security parameter k, Alice has a dataset A = {A1, . . . , Am} and Bob owns a
dataset B = {B1, . . . , Bn}, where Ai = (ai1, . . . , aiT ) ∈ ZT

p and Bj = (bj1, . . . , bjT ) ∈
ZT

p ,for some prime p ≥ 2kmnT .
Output: Alice learns A ∩t B.

0. Setup. Alice and Bob agree on T distinct points z = (z1, . . . , zT ) ∈ (Zp \ {0})n and
parameter r ≥ T − t + 2 for the t-of-T secret sharing scheme IRS′

T,t,p,r,z over Zp, a
homomorphic public key cryptosystem (K, E ,D) with plaintext space Zp, a one-time
symmetric cryptosystem (E, D) with key space Ksym and plaintext space ZT

p . All
arithmetic below is defined over Zp.

1. Bob
(a) for j ∈ [n] generates random symmetric key ksym

j ∈ Ksym and computes ci-
phertext ρj = E(ksym

j , Bj).
(b) sends (ρ1, . . . , ρn) to Alice (the Bj ’s are indexed in a random order).

2. Alice
(a) generates a homomorphic cryptosystem key pair (kp, ks) using K(1l),
(b) sends public key kp and ciphertexts cik = E(aik) to Bob for i ∈ [m] and k ∈ [T ].

3. Bob, for i ∈ [m], j ∈ [n]:
(a) computes a random share vector Cij = (Cij1, . . . , CijT ) ∈ (Zr

p)
T for se-

cret ksym
j using the t-of-T secret sharing scheme IRS′

T,t,p,z,r, i.e. Cijk =

(C1
ijk, . . . , Cr

ijk) with C

ijk = P 


ij(zk) ∈ Zp and P 1
ij(x), . . . , P r

ij(x) are ran-
dom polynomials over Zp of degree ≤ t− 1 with P 


ij(0) = ksym
j for � ∈ [r].

(b) using cik , and the homomorphic properties of E , computes ciphertext η

ijk =

E(C̄

ijk) for C̄


ijk = C

ijk + γ


ijk · (aik − bjk), where γ

ijk is chosen uniformly

and independently from Zp.
(c) sends all η


ijk’s to Alice.
4. Alice

(a) initializes output set S to empty.
(b) decrypts η


ijk’s to C̄

ijk = D(η


ijk) for i ∈ [m], j ∈ [n], k ∈ [T ] and � ∈ [r].
(c) for i ∈ [m] and j ∈ [n],

i. runs the decoding algorithm from Theorem 2 for secret sharing scheme
IRS′

T,t,p,r,z on noisy share vector C̄ij = (C̄ij1, . . . , C̄ijT ), where C̄ijk =
(C̄1

ijk, . . . , C̄r
ijk) ∈ (Zp)

r for k ∈ [T ]. If the decoding algorithm succeeds
to recover share vector Cij matching C̄ij on ≥ t shares, conclude Ai ∩t Bj

and add (Ai, B̄j) to output set S, where B̄j = D(s, ρj) and s is the secret
corresponding to share vector Cij .

ii. otherwise, conclude (Ai, Bj) �∈ A ∩t B.
(d) return S = A ∩t B.

Fig. 1. Protocol Γ1: Computation-Efficient Fuzzy Private Matching Protocol

success probability is at least 1−mnT/p ≥ 1−2−k using p ≥ 2k·mnT . This completes
the completeness proof.

The security against passive attacks is shown as follows.
Bob’s protocol view consists of just the public key kp and ciphertexts cik for Alice’s

dataset. Accordingly, Bob’s view simulator SB simply generates a key pair (kp, ks)
for E to get public key kp, and simulates ciphertexts cik = E(0) (i.e. by encrypting
0 messages). By a standard hybrid argument, the semantic security of the encryption
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scheme E implies that this simulation is computationally indistinguishable from the
view of Bob in the real protocol (in which cik = E(aik)).

Alice’s protocol view consists of the symmetric key ciphertexts ρj and the public key
ciphertexts η�

ijk . On input (A, A ∩t B), Alice’s view simulator SA works as follows.
First, SA generates random keys ksym

j ∈ Ksym for j ∈ [n]. Then, SA determines
from A ∩t B the number N of distinct words Bj such that (Ai, Bj) ∈ A ∩t B for
some i ∈ [m], and chooses a random subset V of N indices j ∈ [n] to assign to
those N words Bj . Now for each j ∈ V , SA computes ciphertexts ρj = E(ksym

j , Bj),
and C�

ijk for � ∈ [r] and k ∈ [T ] in exactly the same way as Bob computes them in
the real protocol (this is possible since Bob knows the corresponding Ais and Bjs).
Finally, for each j ∈ [n] − V , SA computes ρj = E(ksym

j , 0) (where 0 ∈ (Zr
p)T )

and η�
ijk = E(C̄�

ijk) for independent uniformly random C̄�
ijk ∈ Zp. To analyse this

simulation, note that for (i, j) with j ∈ V the simulation of the ρj and C�
ijk is perfect

since the simulation exactly follows the protocol. For all other (i, j), we know that Ai is
not fuzzy t-equal to Bj , and in this case in the real protocol, as shown in the correctness
proof above, the noisy share vector C̄ij is uniformly random in (Zr

p)
T , independent of

the secret ksym
j , perfectly matching the simulation of the η�

ijk for j ∈ [n] − V . Finally,
a standard hybrid argument shows that the semantic security of the one-time symmetric
encryption scheme E implies that the simulation of the ρj (as encryption of zero under a
random key) for j ∈ [n]−V is computationally indistinguishable from the real protocol
(encryption of Bj under a random key). This completes the security proof. ��

Implementation Remarks. For simplicity, we assumed in the version of the protocol
presented above that we use a homomorphic encryption scheme with plaintext space
Zp for p prime (the Okamoto-Uchiyama [8] cryptosystem is one such example). Our
protocol can also directly work with the Paillier cryptosystem [9], in which the plaintext
space is ZN , where N = pq and p, q are distinct primes. The correctness and security
analysis of our protocol naturally extend to this case, as long as the zi,zi − zj and
ai,� − bj,� are non-zero mod p and mod q; this can be easily ensured by restricting
zi, ai,�, bj,� < min(p, q) (or just relying on the hardness of factoring n). With the same
assumptions on the zi’s, the proof of Theorem 2 also extends (by analysing the linear
system of equations mod n separately mod p and mod q), except that unique decoding
may fail with probability at most δ ≤ (n− t) ·(1/p+1/q). This leads to the correctness
condition N/(p + q) > 2kmnT .

In practice, there are actually three separate parameters in our protocol which were
assumed to be equal above: the size of the dataset letter space pd, the encryption scheme
plaintext space N , and the secret sharing modulus p. Our protocol correctness only
requires p > 2kmnT for security parameter k, which may typically be much smaller
than N for the same security parameter (e.g. for security parameter k = 80, m, n < 220

and T < 210 we have 2kmnT < 2130 while N ≈ 21024). In this case we may improve
the efficiency of the protocol by taking p ≈ 2kmnT much smaller than N (assuming
that pd < p), which reduces the complexity of error correction. To maintain security of
our protocol in this case, Step 3(b) would have to be modified so that η�

ijk are computed
as ciphertexts of C̄�

ijk = C�
ijk+γ�

ijk·(aik−bjk)+w�
ijk·p, where γ�

ijk is chosen uniformly
and independently in ZN , and w�

ijk is chosen uniformly and independently in Zs where
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s = �N/p. In step 4(c), the decrypted plaintexts in ZN would be reduced modulo p
before proceeding with the decoding in Zp. With this modification, for the case when Ai

is not fuzzy t-equal to Bj in the simulation proof of Theorem 3, the noisy share vectors
C̄ij decrypted by Alice in Step 4 of the real protocol have coordinates uniformly random
in ZN for unmatching positions and coordinates uniformly random in Zk·p for matching
positions. The latter are statistically indistinguishable from uniform on ZN if N/p is
sufficiently large (namely the statistical distance is ≤ mnTp/N ); thus ensuring that
N > 2kmnTp, maintains statistical security of the protocol (the simulation consists of
choosing the coordinates of C̄ij uniformly and independently at random from ZN ). If
the condition pd < p does not hold, a possible solution is to hash the letters from Zpd

to Zp using a collision-resistant hash function, and then apply the previous protocol.
Efficiency. The communication and computation complexity of our scheme are sum-

marised in Table 1, which also includes the values for previous protocols.

Table 1. Comparison of protocol efficiency with previous protocols, with m = n, �pk and �sym

are the ciphertext lengths of the homomorphic encryption scheme E and symmetric encryption E,
respectively, k is the security parameter. Also, TE , TD, TH, TA denote the encryption/decryption
time and time for a homomorphic scalar multiplication/homomorphic addition for E , T ′

E = TE +
TD + TH, and Tsym denotes the encryption time for E. Only dominant terms (proportional to
n2) are shown.

Scheme Communication Computation
Ours O(n2T 2�pk) O(n2(poly(T ) + T 2T ′

E))

CH1 [3] O(n2T�pk) O(n2(
(

T
t

)
poly(T ) + TT ′

E))
Yao [13] O(n2T (log p + log T )�sym) O(n2TTsym)
IW [6] O(n2kTD�sym) O(n2k(T 2TA + TDTsym))

Compared to the CH1 protocol [3], our protocol dramatically improves computation
by a factor O(

(
T
t

)
/poly(T )) but has larger communication by a linear factor O(T )

(due to our use of error correcting secret sharing). We also compare our protocol to
two other protocols based on the generic Yao ‘garbled circuit’ protocol for two-party
computation. Since one can choose �pk ≈ log p, we see that compared to the generic
Yao protocol [13], our protocol’s communication is roughly a factor O(T/�sym) times
that of the Yao protocol, hence we expect an improvement in the case T = O(�sym).
Although this may not be a huge improvement, we believe it is still a useful, simpler and
more natural alternative to the Yao protocol for this application. Note that Yao’s protocol
is generic and applies to any Boolean ciruit; to apply it to our problem, we represent
the fuzzy matching function as a boolean circuit having the n2 database words as input.
Such a circuit can be implemented with O(n2T (log p + log T )) 2-input gates, giving
the complexity estimate in Table 1 (in practice, one could use the Fairplay compiler [7]
to generate the circuit). The last row in Table 1 corresponds to the fuzzy matching
protocol of Indyk and Woodruff [6]. The latter protocol has a dominant communication
complexity term (the n2 term) independent of T , but uses (as a subprotocol) the Yao
protocol applied to the decryption circuit D of a homomorphic encryption scheme,
which typically has complexity TD = O(�3

pk), where �pk is the length of the public key.
Thus we expect our protocol to be more efficient in the case T 2 = O(k�2

pk).
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5 Conclusion

We presented a novel share hiding random error-correcting secret sharing scheme based
on interleaved Reed-Solomon codes, and showed how to apply it to construct a simple
protocol for private fuzzy matching. We believe our secret sharing scheme may find
further cryptographic applications in future. The size of shares in our t-of-n scheme
is O((n − t)k), where k is the length of the secret. An interesting open problem is to
find alternative constructions with smaller shares, as this will improve our protocol’s
communication efficiency further.
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Abstract. Automatic recognition of human faces is becoming increas-
ingly popular in civilian and law enforcement applications that require
reliable recognition of humans. However, the rapid improvement and
widespread deployment of this technology raises strong concerns regard-
ing the violation of individuals’ privacy. A typical application scenario
for privacy-preserving face recognition concerns a client who privately
searches for a specific face image in the face image database of a server.

In this paper we present a privacy-preserving face recognition scheme
that substantially improves over previouswork in terms of communication-
and computation efficiency: the most recent proposal of Erkin et al.
(PETS’09) requires O(log M) rounds and computationally expensive op-
erations on homomorphically encrypted data to recognize a face in a
database of M faces. Our improved scheme requires only O(1) rounds
and has a substantially smaller online communication complexity (by a
factor of 15 for each database entry) and less computation complexity.

Our solution is based on known cryptographic building blocks combin-
ing homomorphic encryption with garbled circuits. Our implementation
results show the practicality of our scheme also for large databases (e.g.,
for M = 1000 we need less than 13 seconds and less than 4 MByte on-
line communication on two 2.4GHz PCs connected via Gigabit Ethernet).

Keywords: Secure Two-Party Computation, Face Recognition, Privacy.

1 Introduction

In the last decade biometric identification and authentication have increasingly
gained importance for a variety of enterprise, civilian and law enforcement appli-
cations. Examples vary from fingerprinting and iris scanning systems, to voice
and face recognition systems, etc. Many governments have already rolled out
electronic passports [18] and IDs [27] that contain biometric information (e.g.,
image, fingerprints, and iris scan) of their legitimate holders.

In particular it seems that facial recognition systems have become popular
aimed to be installed in surveillance of public places [17], and access and border
control at airports [8] to name some. For some of these use cases one requires
online search with short response times and low amount of online communication.

Moreover, face recognition is ubiquitously used also in online photo albums
such as Google Picasa and social networking platforms such as Facebook which
� Supported by EU FP6 project SPEED, EU FP7 project CACE and ECRYPT II.

D. Lee and S. Hong (Eds.): ICISC 2009, LNCS 5984, pp. 229–244, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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have become popular to share photos with family and friends. These platforms
support automatic detection and tagging of faces in uploaded images.1 Addi-
tionally, images can be tagged with the place they were taken.2

The widespread use of such face recognition systems, however, raises also
privacy risks since biometric information can be collected and misused to profile
and track individuals against their will. These issues raise the desire to construct
privacy-preserving face recognition systems [12].

In this paper we concentrate on efficient privacy-preserving face recognition
systems. The typical scenario here is a client-server application where the client
needs to know whether a specific face image is contained in the database of a
server with the following requirements: the client trusts the server to correctly
perform the matching algorithm for the face recognition but without reveal-
ing any useful information to the server about the requested image as well as
about the outcome of the matching algorithm. The server requires privacy of its
database beyond the outcome of the matching algorithm to the client.

In the most recent proposal for privacy-preserving face recognition [12] the
authors use the standard and popular Eigenface [34,33] recognition algorithm
and design a protocol that performs operations on encrypted images by means
of homomorphic encryption schemes, more concretely, Pailler [29,11] as well as
a cryptographic protocol for comparing two Pailler-encrypted values based on
the Damg̊ard, Geisler and Krøig̊ard [9,10] cryptosystem). They demonstrate
that privacy-preserving face recognition is possible in principle and give re-
quired choices of parameter sizes to achieve a good classification rate. How-
ever, the proposed protocol requires O(log N) rounds of online communication
as well as computationally expensive operations on homomorphically encrypted
data to recognize a face in the database of N faces. Due to these restrictions,
the proposed protocol cannot be deployed in practical large-scale applications.
In this paper we address this aspect and show that one can do better w.r.t.
efficiency.

Basically one can identify two approaches for secure computation: the first
approach is to perform the required operations on encrypted data by means of
homomorphic encryption (see, e.g., [29,11]). The other approach is based on Gar-
bled Circuit (GC) à la Yao [35,22]: the function to be computed is represented
by a garbled circuit i.e., the inputs and the function are encrypted (“garbled”).
Then the client obliviously obtains the keys corresponding to his inputs and
decrypts the garbled function. Homomorphic Encryption requires low commu-
nication complexity but huge round and computation complexity whereas GC
has low online complexity (rounds, communication and computation) but large
offline communication complexity. We present a protocol for privacy-preserving
face recognition based on a hybrid protocol which combines the advantages of
both approaches. A protocol based on GC only is given in the full version [32].

1 http://picasa.google.com/features-nametags.html; http://face.com
2 Geotagging can be done either manually or automatically on iPhones using GPS
http://www.saltpepper.net/geotag

http://picasa.google.com/features-nametags.html
http://face.com
http://www.saltpepper.net/geotag
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Contribution. We give an efficient and secure privacy-preserving face recog-
nition protocol based on the Eigenfaces recognition algorithm [34,33] and a
combination of known cryptographic techniques, in particular Homomorphic En-
cryption and Garbled Circuits. Our protocol substantially improves over previous
work [12] as it has only a constant number of O(1) rounds and allows to shift
most of the computation and communication into a pre-computation phase. The
remaining online phase is highly efficient and allows for a quick response time
which is especially important in applications such as biometric access control.

Related Work. Privacy-Preserving Face Recognition allows a client to obliv-
iously detect if the image of a face is contained in a database of faces held by
server. We give a detailed summary of previous work on privacy-preserving face
recognition [12] in §3.1. Our protocol has a substantially improved efficiency.

The related problem of Privacy-Preserving Face Detection [3] allows a client
to detect faces on his image using a private classifier held by server without
revealing the face or the classifier to the other party.

In order to preserve privacy, faces can be de-identified such that face recog-
nition software cannot reliably recognize de-identified faces, even though many
facial details are preserved as described in [28].

2 Preliminaries

In this section we summarize our conventions and setting in §2.1 and crypto-
graphic tools used in our constructions in §2.2 (additively homomorphic encryp-
tion (HE), oblivious transfer (OT), and garbled circuits (GC) with free XOR).
A summary of the face recognition algorithm using Eigenfaces is given in §2.3.
Readers familiar with the prerequisites may safely skip to §3.

2.1 Parameters, Notation and Model

We denote symmetric security parameter by t and the asymmetric security pa-
rameter, i.e., bitlength of RSA moduli, by T . Recommended parameters for
short-term security (until 2010) are for example t = 80 and T = 1024, whereas
for long-term security t = 128 and T = 3072 are recommended [16]. The sta-
tistical correctness parameter is denoted with κ 3 and the statistical security
parameter with σ. In practice, one can choose κ = 40 and σ = 80.

We work in the semi-honest model where participants are assumed to be
honest-but-curious (details later in §3). Our improved protocols can be proven
in this model based on existing proofs for the basic building blocks from which
they are composed. We further note that efficient garbled circuits of [21] (and
thus our work) requires the use of random oracles. We could also use correlation-
robust hash functions [19], resulting in slightly more expensive computation of
garbled circuits [31] (see below).
3 The probability that the protocol computes a wrong result (e.g., caused by an over-

flow) is bounded by 2−κ.
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2.2 Cryptographic Tools

Homomorphic Encryption (HE). We use a semantically secure additively
homomorphic public-key encryption scheme. In an additively homomorphic cryp-
tosystem, given encryptions �a� and �b�, an encryption �a+b� can be computed as
�a + b� = �a��b�, where all operations are performed in the corresponding plain-
text or ciphertext structure. From this property follows, that multiplication of
an encryption �a� with a constant c can be computed efficiently as �c · a� = �a�c

(e.g., with the square-and-multiply method).
As instantiation we use the Paillier cryptosystem [29,11] which has plain-

text space ZN and ciphertext space Z∗
N2 , where N is a T -bit RSA modulus.

This scheme is semantically secure under the decisional composite residuosity
assumption (DCRA). For details on the encryption and decryption function we
refer to [11]. The protocol for privacy-preserving face recognition proposed in
[12] additionally uses the additively homomorphic cryptosystem of Damg̊ard,
Geisler and Krøig̊ard (DGK) which reduces the ciphertext space to Z∗

N [9,10].

Oblivious Transfer (OT). For our construction we use parallel 1-out-of-2
Oblivious Transfer for m bitstrings of bitlength �, denoted as OTm

� . It is a two-
party protocol where the server S inputs m pairs of �-bit strings Si =

〈
s0

i , s
1
i

〉
for i = 1, .., m with s0

i , s
1
i ∈ {0, 1}�. Client C inputs m choice bits bi ∈ {0, 1}. At

the end of the protocol, C learns sbi

i , but nothing about s1−bi

i whereas S learns
nothing about bi. We use OTm

� as a black-box primitive in our constructions. It
can be instantiated efficiently with different protocols [25,1,23,19]. It is possible
to pre-compute all OTs in a setup phase while the online phase consists of 2
messages with Θ(2mt) bits. Additionally, the number of public-key operations
in the setup phase can be reduced to be constant with the extensions of [19].

Garbled Circuit (GC). Yao’s Garbled Circuit approach [35,22], is the most
efficient method for secure evaluation of a boolean circuit C. We summarize its
ideas in the following. First, server S creates a garbled circuit C̃ with algorithm
CreateGC: for each wire Wi of the circuit, he randomly chooses a complementary
garbled value ŵi =

〈
w̃0

i , w̃1
i

〉
consisting of two secrets, w̃0

i and w̃1
i , where w̃j

i is
the garbled value of Wi’s value j. (Note: w̃j

i does not reveal j.) Further, for each
gate Gi, S creates and sends to client C a garbled table T̃i with the following
property: given a set of garbled values of Gi’s inputs, T̃i allows to recover the
garbled value of the corresponding Gi’s output, and nothing else. Then garbled
values corresponding to C’s inputs xj are (obliviously) transferred to C with a
parallel oblivious transfer protocol OT (see below): S inputs complementary
garbled values W̃j into the protocol; C inputs xj and obtains w̃

xj

j as outputs.
Now, C can evaluate the garbled circuit C̃ with algorithm EvalGC to obtain the
garbled output simply by evaluating the garbled circuit gate by gate, using the
garbled tables T̃i. Finally, C determines the plain values corresponding to the
obtained garbled output values using an output translation table received by S.
Correctness of GC follows from method of construction of garbled tables T̃i.
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Implementation Details. For most efficient implementation of the garbled circuit
we use several extensions of Yao’s garbled circuit methodology as summarized
in [31]: the “free XOR” trick of [21] allows “free” evaluation of XOR gates (no
communication and negligible computation); for each non-XOR gate (e.g., AND,
OR, ...) we use garbled row reduction [26,31] which allows to omit the first entry
of the garbled tables, i.e., for each non-XOR gate with 2 inputs a garbled table of
Θ(3t) bits is transferred; point-and-permute [24] allows fast GC evaluation, i.e.,
evaluation of a 2 input non-XOR gate requires in the random oracle model one
invocation of a suitably chosen cryptographic hash function such as SHA-256.
In the standard model, two invocations are needed [31].

Efficient Circuit Constructions. We use the following efficient circuit building
blocks from [20] operating on �-bit numbers: SubtractionSUB�, ComparisonCMP�,
and Multiplexer MUX� circuits of size � non-XOR gates. Circuits can be automat-
ically generated from a high-level description with the compiler of [30].

2.3 Face Recognition Using Eigenfaces

A well-known algorithms for face recognition is the so-called Eigenfaces algo-
rithm introduced in [34,33]. This algorithm achieves reasonable classification
rates of approximately 96% [12] and is simple enough to be implemented as
privacy-preserving protocol (cf. §3). The Eigenfaces algorithm transforms face
images into their characteristic feature vectors in a low-dimensional vector space
(face space), whose basis consists of Eigenfaces. The Eigenfaces are determined
through Principal Component Analysis (PCA) from a set of training images;
every face is represented as a vector in the face space by projecting the face
image onto the subspace spanned by the Eigenfaces. Recognition is done by first
projecting the face image into the face space and afterwards locating the closest
feature vector. For details on the enrollment process we refer to [12] and original
papers on Eigenfaces [34,33]. In the following we briefly summarize the recog-
nition process of the Eigenfaces algorithm. A pseudocode description and the
naming conventions and sizes of parameters are given in Appendix §A.

Inputs and Outputs: The algorithm obtains as input the query face image Γ
represented as a pixel image with N pixels. Additionally, the algorithm obtains
the parameters determined in the enrollment phase as inputs: the average face Ψ
which is the mean of all training images, the Eigenfaces u1, .., uK which span the
K-dimensional face space, the projected faces Ω1, .., ΩM being the projections of
the M faces in the database into the face space, and the threshold value τ . The
output r of the recognition algorithm is the index of that face in the database
which is closest to the query face Γ or the special symbol ⊥ if no match was
found, i.e., all faces have a larger distance than the threshold τ .

Recognition Algorithm: The recognition algorithm consists of three phases:

1. Projection: First, the average face Ψ is subtracted from the face Γ and the
result is projected into the K-dimensional face space using the Eigenfaces
u1, .., uK . The result is the projected K-dimensional face Ω̄.
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2. Distance: Now, the square of the Euclidean distance Di between the projected
K-dimensional face Ω̄ and all projected K-dimensional faces in the database
Ωi, i = 1, .., M , is computed.

3. Minimum: Finally, the minimum distance Dmin is selected. If Dmin is smaller
than threshold τ , the index of the minimum value, i.e., the identifier imin of
the match found, is returned to C as result r = imin. Otherwise, the image
was not found and the special symbol r = ⊥ is returned.

3 Privacy-Preserving Face Recognition

Privacy-Preserving Face Recognition allows a client to obliviously detect if the
image of a face is contained in a database of faces held by a server. This can
be achieved by securely evaluating a face recognition algorithm within a cryp-
tographic protocol. In the following we concentrate on the Eigenface algorithm
described in §2.3 which was also used in [12]. Our techniques can be extended to
implement different recognition algorithms as discussed in the full version [32].

3.1 Privacy-Preserving Face Recognition Using Eigenfaces

The inputs and outputs of the Eigenfaces algorithm are distributed between
client C and server S as shown in Fig. 1(a). Both parties want to hide their
inputs from the other party during the protocol run, i.e., C does not want to
reveal for which face she is searching while S does not want to reveal the faces
in his database or the details of the applied transformation into the face space
(including Eigenfaces which might reveal critical information about faces in DB).

In the semi-honest model we are working in, parties are assumed to follow
the protocol but try to learn additional information from the protocol trace
beyond what can be derived from the inputs and outputs of the algorithm when
used as a black-box. In particular this requires that all internal results of the
Eigenfaces algorithm, including the values passed between the different phases
Ω̄ and D1, .., DM , are “hidden” from both parties. For practical applications it
is sufficient to assume that both parties are computationally bounded, i.e., no
polynomial-time adversary can derive information from “hidden” values.

For implementing the privacy-preserving Eigenfaces algorithm and “hiding”
the intermediate values, different techniques can be used as listed in Fig. 1(b).

To the best of our knowledge, the only previous work on privacy-preserving
face recognition [12] uses homomorphic encryption (HE) to implement the Eigen-
faces algorithm in a privacy-preserving way, i.e., computations are performed on
homomorphically encrypted data and the intermediate values are homomorphi-
cally encrypted (denoted as �·�). We summarize this protocol in §3.2.

Our Hybrid protocol presented in §4.1 substantially improves the efficiency of
this protocol by implementing the Projection and Distance phase using homomor-
phic encryption and the Minimum phase with a garbled circuit. An alternative
protocol which is entirely based on garbled circuits and hides intermediate val-
ues as garbled values (denoted as ·̃) is presented in the full version [32]. Our
improvements over previous work are summarized in §5.
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Distance

Projection

Minimum

face Γ

recognition result r

threshold value τ

eigenfaces u1, .., uK

average face Ψ

projected faces

Client C Server S

projected face Ω̄

squared distances
D1, .., DM

Ω1, ..,ΩM

(a) Protocol Structure

[12] This Work

Protocol HE Hybrid GC
(§3.2) (§4.1) [32]

Projection HE HE GC

↓ �Ω̄� �Ω̄� ˜̄Ω
Distance HE HE GC

↓ �Di�
M
i=1 �Di�

M
i=1 (D̃i)

M
i=1

Minimum HE GC GC

(b) Protocols and Applied Techniques

Fig. 1. Privacy-Preserving Face Recognition using Eigenfaces

3.2 Previous Work: Privacy-Preserving Face Recognition Using HE

In [12], the authors describe describe a protocol for privacy-preserving face recog-
nition which implements the Eigenfaces recognition algorithm of §2.3 on homo-
morphically encrypted data. Their protocol is secure in the semi-honest model,
i.e., players are honest-but-curious [12, Appendix A].

Projection. First, C and S jointly compute the projection of the face image Γ
into the eigenspace spanned by the Eigenfaces u1, .., uK as follows: C generates
a secret/public key pair of a homomorphic encryption scheme (cf. §2.2) and
encrypts the face Γ as �Γ � = (�Γ1�, .., �ΓN �). C sends the encrypted face �Γ �
along with the public key to S. Using the homomorphic properties, S projects the
encrypted face into the low-dimensional face space and obtains the encryption
of the projected face �Ω̄� = (�ω̄1�, .., �ω̄K�) by computing for i = 1, .., K: �ω̄i� =
�−
∑N

j=1 ui,jΨj� ·
∏N

j=1�Γj�
ui,j . The first factor can already be computed in the

pre-computation phase.

Distance. After Projection, C and S jointly compute the encryption of the Eu-
clidean distances between the projected face �Ω̄� and all projected faces Ω1, .., ΩM

in the database held by S. This is done by computing for i = 1, .., M : �Di� =
�||Ωi − Ω̄||2� = �S1,i� · �S2,i� · �S3�, where �S1,i� = �

∑K
j=1 ω2

i,j� =
∏K

j=1�ω
2
i,j� and

�S2,i� = �
∑K

j=1(−2ωi,jω̄j)� =
∏K

j=1�ω̄j�
−2ωi,j can be computed by S from �Ω̄�

without interaction with C. To obtain �S3� = �
∑K

j=1 ω̄2
j � from �Ω̄�, the

following protocol is suggested in [12]: For j = 1, .., K: S chooses rj ∈R Zn,
computes �xj� = �ω̄j + rj� = �ω̄j� · �rj� and sends �xj� to C. C decrypts �xj�,
computes �S′

3� = �
∑K

j=1 x2
j�, and sends �S′

3� to S. S finally computes �S3� =
�S′

3� · �−
∑K

j=1 r2
j � ·
∏K

j=1�ω̄j�
−2rj .
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Minimum. As last step, C and S jointly compute the minimum value D from
�D1�, .., �DM � and its index Id. If the minimum value D is smaller than the
threshold value τ known by S, then C obtains the result Id. To achieve this, [12]
suggests the following protocol: Choose the minimum value and index from the
list of encrypted value and id pairs (�D0 = τ�, �Id0 = ⊥�), (�Di�, �Idi�)M

i=1. For
this, they apply a straight-forward recursive algorithm for minimum selection
based on a sub-protocol which compares two encrypted distances and returns
a re-randomized encryption of the minimum and its index to S. For this sub-
protocol, an optimized version of the homomorphic encryption-based comparison
protocol of Damg̊ard, Geisler and Krøigaard (DGK) [9,10] is used.

Complexity of Minimum protocol (cf. Table 1). The Minimum protocol of [12]
requires a logarithmic number of 6 log2(M + 1)! + 1 moves. Overall, 8M Pail-
lier ciphertexts and 2�′M DGK ciphertexts are sent in the online phase, where
�′ = 50 is the length of the squared distances D1, .., DM among which the mini-
mum is selected (cf. Table 3 in Appendix §A). This results in a communication
complexity of (16+2�′)MT bits. The asymptotic online computation complexity
is dominated by approximately 2M Paillier decryptions and �′M DGK decryp-
tions for C and the same number of exponentiations for S.

4 Our Protocols for Privacy-Preserving Face Recognition

In the following we present our Hybrid protocol which improves over the protocol
of [12] (cf. §3.2) and is better suited for larger database sizes. An alternative
protocol based on garbled circuits only is given in the full version [32].

4.1 Privacy-Preserving Face Recognition Using Hybrid of HE +
GC

Our hybrid protocol for privacy-preserving face recognition improves over the
protocol in [12] by replacing the Minimum protocol with a more efficient protocol
based on garbled circuits. Additionally, the Distance protocol proposed in [12]
can be slightly improved by packing together the messages sent from server S to
client C into a single ciphertext as detailed in the full version [32]. We concentrate
on the core improvements of the Minimum protocol in the following.

Hybrid Minimum Protocol
The most efficient protocols for secure comparison in the setting with two compu-
tationally bounded parties is still based on Yao’s garbled circuit (GC) approach
[35,26,20] as briefly explained in §2.2. This also includes the natural generaliza-
tion to selecting the minimum value and index of multiple values. As shown in
[20], these GC based protocols clearly outperform comparison protocols based on
homomorphic encryption [13,6,14,9,10]. In the following we show how the proto-
cols of [20] can be adopted to yield a highly efficient, constant round Minimum
protocol for our Hybrid privacy-preserving face recognition protocol.
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Overview. The high-level structure of our improved Minimum protocol is shown
in Fig. 3(a) in Appendix §B and consists of several building-blocks: the sub-
protocol ParallelConvert converts the homomorphically encrypted distances held
by server S, �D1�, .., �DM �, into their corresponding garbled values D̃1, .., D̃M

output to client C (details below). These garbled values are used to evaluate
a garbled circuit C̃Minimum which computes the Minimum phase of Algorithm 1
in Appendix §A (details on how the underlying circuit CMinimum is constructed
below). The garbled circuit C̃Minimum can be created already in the setup phase
using algorithm CreateGC and sent to C before the online phase starts. The
garbled values τ̃ which correspond to server’s threshold value τ are selected
by S (Select) and transferred to C as well (either in the setup phase or in the
online phase depending on how often the database changes). Finally, C evaluates
C̃Minimum on the garbled values τ̃ , D̃1, .., D̃M and obtains the correct output r.

ParallelConvert protocol. An efficient ParallelConvert protocol is given in [20]
which we summarize in the following (see [20] and [4] for a detailed descrip-
tion): S blinds the homomorphically encrypted �′-bit values �Di�, i = 1, .., M
with a randomly chosen additive T -bit mask Ri ∈R Zn and sends the blinded
values �Di + Ri� to C who can decrypt. Then, C and S jointly run a garbled
circuit protocol in order to obliviously take off the mask Ri with a subtraction
circuit. For improved efficiency, multiple values �Di� can be packed together
into a single ciphertext before blinding. To avoid an overflow when adding the
T -bit random mask, the most significant κ bits are left as correctness margin,
where κ is a statistical correctness parameter (e.g., κ = 40). This allows to pack

M ′ = �T−κ
�′  values into one ciphertext resulting in m =  M

M ′ ! packed Paillier
ciphertexts for the M values. The ParallelConvert protocol consists of 3 moves.

Circuit CMinimum which computes the required functionality of the Minimum
protocol is shown in Fig. 3(b) in Appendix §B: First, the minimum value Dmin =
min(D1, .., DM ) and the corresponding index imin ∈ {1, .., M} are computed
with the MIN circuit. The MIN circuit is similar to the circuit evaluated in a
first-price auction where the highest bid and the index of the highest bidder
is selected [26]. An efficient construction of this circuit has size |MIN| ∼ 2�′M
non-XOR gates [20]. Afterwards, the minimum value Dmin is compared with the
threshold value τ using a comparison circuit CMP. The output c of the CMP
circuit is 1 if Dmin ≤ τ and 0 otherwise. Depending on c, the multiplexer MUX
chooses either the minimum index imin if c = 1 as output or the special symbol ⊥
otherwise (e.g., ⊥ = 0). The circuit has size |CMinimum| ∼ 2�′M non-XOR gates.

Complexity. The complexity of our improved Minimum protocol and the one
proposed in [12] is given in Table 1. For the computation complexity the table
contains only the dominant costs: the number of Paillier and Damg̊ard-Geisler-
Krøig̊ard (DGK) decryptions (Dec) and exponentiations (Exp) as well as the
number of evaluations of a cryptographic hash function (Hash).
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Table 1. Complexity of Minimum Protocols with Parameters M : # faces in database,
�′: bitlength of values D1, .., DM , t: symmetric security parameter, T : asymmetric se-
curity parameter, κ: statistical correctness parameter, m ∼ 
′

T−κ
M

HE §3.2 [12] Hybrid §4.1
Round Complexity 6�log(M + 1)+ 1 moves 3 moves

Asymptotic Communication Complexity [bits]

online (2�′ + 16)MT 2�′Mt + 2mT

offline OT
′M
t + 9�′Mt

Asymptotic Computation Complexity

C online ≈ 2M DecPaillier + �′M DecDGK m DecPaillier + 3�′M Hash

S online ≈ 2M ExpPaillier + �′M ExpDGK m ExpPaillier

Our improved Minimum protocol requires a constant number of 3 moves for
the ParallelConvert protocol (τ̃ can be sent with the last message). The online
communication complexity is determined by the ParallelConvert protocol for con-
verting M values of bitlength �′, i.e., m Paillier ciphertexts and the online part
of the OT�′M

t protocol which is asymptotically 2�′Mt + 2mT bits (cf. §2.2).
The online computation complexity requires S to pack the m ciphertexts (corre-
sponds to m exponentiations) and C to decrypt them. After the OT protocol, C
needs to evaluate a garbled circuit consisting of approximately 3�′M non-XOR
gates (�′M to subtract the random masks in the ParallelConvert protocol and
2�′M for CMinimum) which requires to invoke a cryptographic hash function (e.g.,
SHA-256) the same number of times. The offline communication consists of the
OT�′M

t protocol and transferring the GC (3t bits per non-XOR gate, cf. §2.2).

Improvements (cf. Table 1). Most notably, the round complexity of our improved
Minimum protocol is independent of the size M of the database.

The online communication complexity of our protocol is smaller by a factor
of approximately T/t, e.g., 1024/80 ≈ 13 for short-term security and 38 for
long-term security (see §5.1 for details).

The online computation complexity of our protocol is substantially lower,
as the number of Paillier operations is reduced by a factor of approximately
2M/m = 2M ′ = 2(T−κ)

�′ , e.g., 2(1024−40)
50 ≈ 40 for short-term security and 121

for long-term security. GC evaluation (which requires one invocation of SHA-256
per gate) is computationally less expensive than the modular arithmetics needed
for the DGK public-key cryptosystem used in [12] (see §5.2 for details).

5 Complexity Improvements

In the following we compare our improved protocol with the protocol of [12]:
communication- and round complexity in §5.1 and computation complexity in
§5.2. We consider different recommended sizes of security parameters for short-,
medium-, and long-term security [16] (cf. Appendix §C for parameter sizes).
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5.1 Round Complexity and Asymptotic Communication Complexity

HE vs. Hybrid (Table 2). Our Hybrid protocol substantially improves the
performance of the HE protocol proposed in [12]: the round complexity is re-
duced from logarithmic in the size of the database M down to a small constant of
6 moves. The online communication complexity of the Minimum protocol (§4.1)
is reduced to only 6.6% of the previous solution for short-term security. For
medium- and long-term security the savings are even better. Our improvements
of the Distance protocol (in full version [32]) down to 23% for short-term secu-
rity are negligible w.r.t. the overall communication complexity as it has small
communication complexity (few KBytes) independent of the database size M .

Table 2. Round- and Communication Complexity – HE vs. Hybrid. M : size of DB

Protocol HE §3.2 [12] Hybrid §4.1 (Improvement)

Round Complexity [moves] 6�log(M + 1)+ 4 6 (O(log M)→ O(1))

Security Level Short Medium Long Short Medium Long

Asymptotic Communication Complexity (online)

Projection [MB] 2.5 5.0 7.5 2.5 5.0 7.5
Distance [kB] 3.2 6.5 9.8 0.75 (23%) 1.0 (15%) 1.5 (15%)
Minimum [kB per face in DB] 15 29 44 0.99 (6.6%) 1.4 (4.8%) 1.6 (3.6%)

5.2 Online Computation Complexity

Hybrid protocol (§4.1). We have implemented the Hybrid protocol for
privacy-preserving face recognition described in §4.1 in Python to quantify its
online computation complexity. Although interpreted Python code runs sub-
stantially slower than compiled code we chose it for platform independence. We
perform performance measurements on two standard PCs (AMD Athlon64 X2
5000+ (2.6GHz), 2 Cores, 4 GB Memory running on Gentoo Linux x86 64)
communicating via TCP/IP6 over a Gigabit Ethernet connection. Both ma-
chines were clocked to 2.4GHz via CPU frequency scaling to make the perfor-
mance comparable to [12]. The implementation is running in the cPython-2.6
interpreter and uses gmpy module (version 1.04) to access GNU GMP library
(version 4.3.1).

In comparison, the protocol in [12] was implemented in C++ using the GNU
GMP library (version 4.2.4) and executed on a single PC (2.4 GHz AMD Opteron
with dual-core processor and 4 GB RAM under Linux) as two threads. This im-
plementation neglects latencies of communication stack and network which could
result in non-negligible slow-downs due to their logarithmic round complexity.

Although our implementation is closer to a real-world setting and uses a sub-
stantially slower programming language, it still outperforms that of [12] espe-
cially for larger database sizes due to our algorithmic protocol improvements
of the Minimum protocol as shown in Fig. 2(a). Surprisingly, our implemen-
tation is about 30% faster than the C++ implementation of [12] even in the
homomorphic encryption-based parts of the protocol (Projection and Distance).
Presumably this is due to faster multiplication in GMP version 4.3.
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Security Level

Client Short Medium Long

Projection 0.49 0.60 0.72
Distance 6.08 16.87 31.73
Minimum 1.86 2.71 4.49
Sum 8.43 20.18 36.95

Server Short Medium Long

Projection 6.58 17.43 32.37
Distance 0.47 1.52 3.03
Minimum 0.06 0.21 0.54
Sum 7.11 19.15 35.94

(b) Hybrid Protocol for M = 320

Fig. 2. Comparison of Timing Complexity in [s]

In contrast to the HE-based protocol of [12], our protocol scales well with
increasing security level as shown in Fig. 2(b), as symmetric security parameter
t increases much slower than its asymmetric equivalent T (cf. Appendix §C).

Overall, the implementation results confirm that our Hybrid protocol allows
privacy-preserving face recognition even for large databases.

5.3 Conclusion and Future Work

The methods for constructing efficient protocols for privacy-preserving face recog-
nition presented in this paper can be further improved into various directions.

Algorithmic Improvements for better classification accuracy might be achieved
by using different face recognition algorithms. Fisherfaces [5], which determine
the projection matrix with Linear Discriminant Analysis (LDA), can be used
instead of Eigenfaces. A different distance metric than Euclidean distance could
be used, e.g., Hamming distance or Manhattan distance. The Minimum phase
could be based on meaning or scoring instead of minimum selection.

Further Protocol Improvements could be achieved with a different homomor-
phic encryption scheme that allows both, additions and multiplications [7,2,15]
to avoid the additional communication round for computing Euclidean Distance.

Further Implementation Improvements can be achieved by exploiting paral-
lelism on multi-core architectures or graphics processing units (GPUs).

Acknowledgements. We thank Wilko Henecka for extending the compiler of
[30] to generate the underlying circuits, authors of [12] for detailed information
on their protocol, and anonymous reviewers of ICISC 2009 for helpful comments.
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A Face Recognition Using Eigenfaces: Details

Algorithm 1 shows the pseudocode description of the Eigenfaces algorithm and
Table 3 the naming conventions and sizes of the parameters.

Algorithm 1. Face recognition using Eigenfaces [34,33].
Input face Γ , average face Ψ ; Eigenfaces u1, .., uK ; projected faces Ω1, .., ΩM ; thresh-

old value τ
Output recognition result r ∈ {1, .., M} ∪ ⊥
{Phase 1: Projection}

1: for i = 1 to K do
2: ω̄i = uT

i (Γ − Ψ)
3: end for
4: projected face Ω̄ := (ω̄1, .., ω̄K)

{Phase 2: Distance}
5: for i = 1 to M do
6: compute squared distance Di = ||Ω̄ −Ωi||2 =

∑K
j=1(ω̄j − ωi,j)

2

7: end for

{Phase 3: Minimum}
8: compute minimum value Dmin = min{D1, .., DM} and index imin: Dmin = Dimin

9: if Dmin ≤ τ then
10: Return r = imin

11: else
12: Return r = ⊥
13: end if

Table 3. Parameters and Sizes for Privacy-Preserving Face Recognition

Parameter Size [12] Description

M number of faces in database
N = 10304 size of a face in pixels
K = 12 number of Eigenfaces

Γ, Ψ ∈ [0, 28 − 1]N face, average face
u1, .., uK ∈ [−27, 27 − 1]N Eigenfaces

Ω̄, Ω1, .., ΩM ∈ [−231, 231 − 1]K projected face, projected faces in database
D1, .., DM ∈ [0, 250 − 1] squared distances between projected images

τ ∈ [0, 250 − 1] threshold value
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B Improved Minimum Protocol: Details
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Fig. 3. Improved Minimum Protocol

C Parameter Sizes

We compare the complexity for different recommended sizes of security parame-
ters – short-term (recommended use up to 2010), medium-term (up to 2030) and
long-term security [16]. The sizes for the security parameters and corresponding
parameter sizes for our Hybrid protocol are summarized in Table 4: we use sta-
tistical security parameter σ = 80 and statistical correctness parameter κ = 40.
According to Table 3, the input length for the Distance protocol is � = 32 and
for the Minimum protocol (§4.1) is �′ = 50.

Table 4. Size of Security Parameters (t: symmetric security parameter, T : asymmetric
security parameter) and Corresponding Parameters for Hybrid Protocol (M ′: # values
packed into one ciphertext before blinding)

Security Level Security Parameters Minimum (§4.1)
t T M ′

Short-Term 80 1024 19
Medium-Term 112 2048 40
Long -Term 128 3072 60
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Abstract. When performing secure multiparty computation, tasks may
often be simple or difficult depending on the representation chosen.
Hence, being able to switch representation efficiently may allow more
efficient protocols.

We present a new protocol for bit-decomposition: converting a ring el-
ement x ∈ ZM to its binary representation, x(log M)−1, . . . , x0. The proto-
col can be based on arbitrary secure arithmetic in ZM ; this is achievable
for Shamir shared values as well as (threshold) Paillier encrypted ones,
implying solutions for both these popular MPC primitives. For additively
homomorphic primitives (which is typical, and the case for both exam-
ples) the solution is constant-rounds and requires only O(log M) secure
ring multiplications.

The solution is secure against active adversaries assuming the exis-
tence of additional primitives. These exist for both the Shamir sharing
based approach as well as the Paillier based one.

Keywords: Constant-rounds secure multiparty computation, bit-
decomposition.

1 Introduction

Since Yao introduced the concept of secure multiparty computation (MPC)
[Yao82] – evaluate a function on distributed, private inputs without revealing
additional information on those inputs – it has been rigorously studied. Differ-
ent approaches have been suggested, including garbled circuits [Yao86], secret
sharing based approaches [BGW88, CCD88], and techniques relying on homo-
morphic, public-key cryptography, e.g. [CDN01].

It has been demonstrated that any function can be evaluated by describing it
as a Boolean circuit and providing the inputs in binary, e.g. stored as 0 and 1
in some field or ring over which the secure computation is performed. However,
alternative representations may provide greater efficiency. If, for example, the
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the function consists entirely of integer addition and multiplication, this can be
simulated with arithmetic over ZM , where M is chosen larger than the maximal
result possible. With primitives providing secure computation in ZM – e.g. based
on Shamir sharing if M is chosen prime [Sha79, BGW88] – this is much simpler
than using ring arithmetic to emulate the Boolean gates needed to “simulate”
the integer computation.

Unfortunately, other operations become difficult when integers are stored as
ring elements, e.g. division, modulo reduction, and exponentiation. To get the
best of both worlds, a way of changing representation is needed. To go from
binary to ring element is easy: it is a linear combination in the ring. The other
direction is more difficult, in particular when adding the requirement that the
solution must be constant-rounds, i.e. that only a constant number of messages
may be sent overall.

Related work. The problem of constant-rounds bit-decomposition was first solved
by Damg̊ard et al. in the context of secret shared inputs, [DFK+06]; this was
later improved by a constant factor by Nishide and Ohta [NO07]. Both solutions
require O(� log �) secure multiplications, where � is the bit-length of the modulus
defining the field. These solutions provided the same security guarantees as the
primitives, i.e. to ensure active or adaptive security, it was sufficient to utilize
secure arithmetic providing this.

Independently, Schoenmakers and Tuyls considered practical bit-decomposi-
tion of Paillier encrypted values, i.e. the cryptographic setting, where they ob-
tained linear – but non-constant-rounds – solutions [ST06, Pai99]. (They also
noted the applicability of [DFK+06] for the Paillier based setting.) The solution
of [ST06] was also secure against active adversaries, however, this needed addi-
tional “proofs of correctness” added to the basic protocol – in difference to the
above solutions, secure arithmetic was not sufficient by itself.

A constant-rounds, almost linear solution was proposed by Toft [Tof09]. The
problem of bit-decomposition was first reduced to that of postfix comparison
(PFC) (using O(�) secure multiplications), which was then solved using O(� ·
log∗(c)�) multiplications. Similarly to [DFK+06] and [NO07], security was in-
herited from the primitives implying security against both active and adaptive
adversaries immediately, both based on secret sharing as well on (threshold)
Paillier encryption.

Contribution. We present a novel, constant-rounds, linear solution to the PFC
problem, and hence also to that of bit-decomposition. The solution is applicable
for arbitrary secure arithmetic in ZM ,1 i.e. it is applicable for both secret sharing
as well as Paillier based primitives. The protocol not only improves the theoretic
complexity, it is also practical in the sense that the constants involved are similar
to previous constant-rounds solutions.
1 Our only restrictions are that M is odd and that it is possible to generate random,

invertible elements efficiently. Further, the transformation to the PFC problem must
also be constant-rounds. Focus will be on the cases where M is either prime (Shamir
sharing) or an RSA modulus (Paillier encryption) were all requirements are satisfied.
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In difference to [DFK+06, NO07, Tof09], perfect security cannot be provided,
even if this is guaranteed by the primitives. Security is at most statistical, which
still allows it to be unconditional. This further implies that we require M to be
sufficiently large – M > 22(κ+log n) where κ is the security parameter and n the
number of parties.

Similarly to [ST06], active security is not directly obtained from active secu-
rity of the primitives. As there, active security is achievable when the parties can
demonstrate that a provided input is less than some public bound. For both the
Shamir based setting and the Paillier based setting, a constant-complexity pro-
tocol exists implying actively secure, constant-rounds, O(�) bit-decomposition
protocols in these settings, where � = log M .

An overview of this paper. Section 2 presents the model of secure computation
used along with additional high-level constructs. Then in Sect. 3 the postfix
comparison problem is introduced. The basic solution is presented in Sect. 4.
Finally, the steps needed to achieve security against active adversaries are then
discussed in Sect. 5, while Sect. 6 contains concluding remarks.

2 Secure Arithmetic – Notation and Primitives

We present our result based on abstract protocols. The model of secure computa-
tion is simply the arithmetic black-box (ABB) of Damg̊ard and Nielsen [DN03].
It is described as an ideal functionality in the UC framework of Canetti, [Can00],
and the present work can be used together with any realizing protocols. Naturally,
the Paillier based protocols of [DN03] realize this functionality, but it can equally
well be realized with perfect, active, and adaptive security with Shamir sharing
over primes field FM [Sha79] and the protocols of Ben-Or et al. [BGW88].

2.1 The Arithmetic Black-Box

The arithmetic black-box allows a number of parties to securely store and reveal
secret values of a ring, ZM , as well as perform arithmetic operations. Borrowing
notation from secret sharing, a value, v, stored within the functionality will be
written in square brackets, [v]. The notation, [v]B will be used to refer to a bit-
decomposed value, i.e. it is shorthand for

[
v�̂−1

]
, . . . , [v0] of some bit-length �̂.

The ABB provides the following operations; we assume that it is realized using
additively homomorphic primitives.

– Input: Party P may input a value v ∈ ZM . Depending on the primitives,
this can mean secret share, encrypt and broadcast, etc.

– Output: The parties may output a stored [v]; following this, all parties know
the now public v. This refers to reconstruction, decryption, etc.

– Linear combination: The parties may decide to compute a linear com-
bination of stored values, [

∑
i αivi] ←

∑
i αi [vi]. This follows immediately

from the homomorphic property assumed above.
– Multiplication: The parties may compute products, [v · u]← [v] · [u] – this

requires interaction, at least for the examples considered.
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Note that secure computation is written using infix notation. Moreover, linear
combinations and multiplications may be written together in larger expressions.
Though further from the primitives, it improves readability as it emphasizes the
intuition behind the secure computations performed.

Regarding complexity, we will only consider rounds and communication size.
Note that this implies that linear combinations are considered costless. For
rounds, it is assumed that the other primitives all require O(1) rounds, and
that an arbitrary amount may be performed in parallel. Note that with abstract
primitives, we can only count the number of sequential executions, not the actual
number of rounds of a concrete realization. Under big-O, the two are equivalent,
though.

For communication complexity, the number of invocations of the primitives
are simply counted. Moreover, rather than counting them individually, similarly
to previous work they will simply be referred to collectively as secure multipli-
cations. (An input from every party will be considered equivalent to a single
multiplication – multiplication protocols typically require each party to provide
at least one input).

We stress that security is only shown in the ABB model of computation, i.e. we
are only concerned with primitives that securely realizes this ideal functionality.
This reduces security to a question of ensuring that inputs are proper, e.g. taken
from some subset of ZM , as well as ensuring that no information leaks when
values are output.

2.2 Complex Primitives

The protocols proposed will not be presented directly in the ABB model. A
number of high-level primitives are simply sketched – these are obtained from
previous work. We assume five rounds of preprocessing, where all random values
needed are generated and prepared in parallel. Hence, round complexity of the
primitives below are “online only.” The number of multiplications is still the
overall count.

Random, unknown elements. The parties can generate uniformly random, un-
known elements. Each party inputs a random value, the sum of these is uniformly
random and unknown assuming even a single honest party. This is considered
equivalent to one multiplication. Random, invertible elements can be generated
by verifying that the element indeed is invertible: generate two elements and
publish the product. If this is invertible, then so was the first element, while
the second acts as a one-time-pad masking it within the group. This consists of
three multiplications.

Element inversion, constant-rounds multiplication, and prefix-products. Element
inversion is possible using four secure multiplications with one round online:
generate a random, multiplicative mask; mask and reveal the input; invert the
(public) masked value; and securely unmask. This may be further used to ob-
tain constant-rounds, unbounded fan-in multiplication of invertible elements in
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one round using five multiplications per input. Both are due to Bar-Ilan and
Beaver [BB89]. This may then be used to compute prefix-products: given an array
of invertible values, ([v0] , . . . , [vm−1]), compute ([p0] , . . . , [pm−1]), where [pi] =∏i

j=0 [vj ]. Complexity is 5m multiplications in one round; see [DFK+06, Tof09]
for details.

Random bit generation. We require a protocol for generating a uniformly random
bit which is unknown to all parties. If M is prime, this is achievable with two
secure multiplications, [DFK+06]. For non-prime M it can be achieved by letting
each party share a uniformly random value in {1,−1}, computing the product
of these, and mapping the result (which is still ±1) to {0, 1}.

Note that when M is not prime, complexity is O(n) multiplications, where n
is the number of parties. For simplicity, we consider M prime in the analysis. In
general, by assuming only a constant number of parties this factor disappears
under big-O. This problem is not exclusive to our work; the factor n occurs in
all comparable solutions known to the authors.

Comparison. A protocol for comparing bit-decomposed values is required, i.e.
we allow expressions of the form

[a > b]← [a]B
?
> [b]B .

The comparison protocol of Reistad [Rei09] solves this problem using 7�̂ + 3
multiplications in three rounds, where �̂ is the bit-length. See Sections 4.1 and
4.3 for more information.

Random, bit-decomposed element generation. Another requirement is the ability
to generate a uniformly random, unknown element along with its bit-decomposi-
tion. This can be achieved by generating � random bits and viewing these as the
binary representation. Computing the value itself is a simple linear combination,
while a comparison is used to verify that the value is indeed less than M . Overall,
this requires 6�+3 multiplications; the comparison is slightly cheaper than above
as one input is public. In the event of failure, the protocol must be rerun; as in
previous work on bit-decomposition, we generate multiple candidates in parallel
and assume a factor of four efficiency loss, i.e. 24� + 12 multiplications. If ex-
pected constant-rounds suffices, then only a factor of two is required, i.e. 12�+ 6
multiplications. See [DFK+06] for justification.

This primitive is the most expensive with regard to preprocessing, i.e. this is
where the five rounds originate. Note that the failure probability depends on M .
If this can be chosen freely – e.g. as a Mersenne prime – then the issue can be
eliminated and complexity essentially reduced to 2� multiplications.

Least significant bit (LSB) gate. Finally, the ability to extract the least signifi-
cant bit of an �̂-bit value, [x], of bounded size will be needed. [ST06] describes a
way to do this for Paillier encrypted values when there is sufficient “headroom”
in the ring, 2�̂+κ+log n < M , where κ is a security parameter and n is the number
of parties. The result is not limited to the case of Paillier encryption, but can be
utilized with arbitrary realizing protocols.
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The idea is that the parties initially generate a random, unknown bit m0, and
that each party Pk inputs a uniformly random (κ+ �̂− 1)-bit value,

[
m(k)

]
from

which a random mask is computed,

[m]← 2(
n∑

k=1

m(k)) + [m0] .

Then d = [x] + [m] is computed and output. By the assumption on the size of
M , we have d0 = x0⊕m0, where d0 and x0 are the least significant bits of d and
x respectively. Thus, [x0] is easily obtained, [x0]← d0 +[m0]−2d0 [m0]. Overall,
this is considered equivalent to three multiplications.

As the ABB is secure by definition, only one potential leak exists: d. However,
m0 is unknown and uniformly random, so for any honest party, Pk, 2 ·

[
m(k)

]
+

[m0] statistically hides any information, and no adversary can learn anything,
even when all but one parties are corrupt. Note that this is where perfect security
is lost – the LSB gate is only statistically secure.

3 The Postfix Comparison Problem

The postfix comparison problem was introduced by Toft in [Tof09].

Problem 1 (Postfix Comparison [Tof09]). Given two secret, �̂-bit values
[a]B =

([
a�̂−1

]
,
[
a�̂−2

]
, . . . , [a0]

)
and [b]B =

([
b�̂−1

]
,
[
b�̂−2

]
, . . . , [b0]

)
, compute

[ci] =
[
a mod 2i

]
B

?
>
[
b mod 2i

]
B

for all i ∈ {1, 2, . . . , �̂}.
¿From that paper, we get the following lemma, which states that a protocol
for solving the problem of bit-decomposition can be obtained from any protocol
solving the PFC problem.

Lemma 1 ([Tof09]). Given a constant-rounds solution to Problem 1 using
O(f(�)) secure multiplications, constant-rounds bit-decomposition is achievable
using O(� + f(�)) secure multiplications.

The proof is by construction, which we sketch, see [Tof09] for the full explanation.
To bit-decompose [x], first compute

[
x mod 2i

]
for all i. Now, a bit, [xi], of

[x] can be computed using only arithmetic, 2−i(
[
x mod 2i+1

]
−
[
x mod 2i

]
). To

reduce [x] modulo all powers of 2, first add a random, bit-decomposed mask,
[r]B, over the integers :

[c]B = [x] + [r]B .

Then reduce both c and r modulo 2i (easy, as they are already decomposed) and
simulate computation modulo 2i using secure ZM arithmetic:[

x mod 2i
]
←
[
c mod 2i

]
−
[
r mod 2i

]
+ 2i ·

([
r mod 2i

]
B

?
>
[
c mod 2i

]
B

)
.
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The integer addition of [x] and [r]B is achieved by computing and revealing
c̃ = [x] + [r] mod M using ring arithmetic. This reveals no information, as c̃ is
uniformly random. We now have c ∈ {c̃, c̃ + M}; both values are known, so it is
merely a matter of securely choosing the bits of the relevant candidate: compare
[r]B and c̃ to determine if an overflow has occurred, and use the outcome to
select the right candidate using arithmetic. The comparisons of r mod 2i and
c mod 2i for all i is a postfix comparison problem. This transformation requires
24� + 12 + 6� + 3 = 30� + 15 multiplications and two online rounds (the public
c̃ improves efficiency slightly).

4 The New Constant-Rounds Solution

The proposed solution is based on (a variation of) a comparison protocol due to
Reistad, [Rei09]. The parts relevant for this paper – including the minor alter-
ations – are presented in Sect. 4.1. The improved postfix comparison protocol is
then presented and analyzed in Sect. 4.2. The solution has a restriction, which
must be eliminated in order to obtain the final bit-decomposition protocol, this
is described in Sect. 4.3. For the purpose of this section, assume that the parties
are honest-but-curious.

4.1 The Comparison of [Rei09]

Let [r]B and [c]B be two �̂-bit, bit-decomposed numbers to be compared. Further,
let κ be a security parameter, let n be the number of parties, and assume that
2�̂+κ+log n < M . The overall idea for computing [r > c] is to first compute a
value, [ei], for each bit-position, i. The expression is written with intuition in
mind; details on how to perform the actual computation follow below.

[ei]← [ri] (1− [ci])2
∑ �̂−1

j=i+1[rj ]⊕[cj ]. (1)

Note that [ei] is either 0 (when [ri] is not set, or when both [ri] and [ci] are
set) or a distinct power of two strictly less than 2�̂ – 2�̂ < M by assumption so
the computation can be viewed as occurring over the integers. Note also that
[ei] = 1 can only occur when i is the most significant differing bit-position. Thus,
all values except at most one are even. And an odd value, 1, occurs only if ri is
set at the most significant differing bit-position, i.e. if [r]B is bigger than [c]B.

Since at most one value is odd and this exists exactly when [r]B > [c]B,
computing the least significant bit, [E0], of

[E]←
�̂−1∑
i=0

[ei]

provides the desired result. This bit is determined with a LSB gate.
Security of this protocol is trivial: the arithmetic black-box can only leak

information when something is deliberately output, and this only occurs in sub-
protocols, which have already been considered.
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For the computation of the [ei] above, 2
∑ �̂

j=i+1[rj ]⊕[cj ] must be computed for
every bit-position, i. This is done by first computing [rj ⊕ cj ] ← [rj ] + [cj ] −
2 [rj ] [cj ] for each bit-position, j. Rewriting the exponentiation of Eq. (1) as

�̂−1∏
j=i+1

(1 + [rj ⊕ cj ]) ,

illustrates not only how to compute it for a single bit-position, it also allows it to
be computed efficiently for every such position: it is simply a prefix-product with
terms 1+ [rj ⊕ cj] and the most significant bit-position first. This is computable
in O(1) rounds since all terms are invertible – they are either 1 or 2, and M is
odd.

Analyzing the protocol in more detail, it can be seen that 7�̂+3 multiplications
are needed, and these can be performed in three rounds (plus preprocessing).
First [ciri] is computed for every position. Then 5�̂ multiplications are needed for
the prefix-product for the exponentiations, while an additional multiplication is
needed for each of the �̂ instantiations of Eq. (1). (Note that the multiplications
from the ⊕ operations may be reused.) The LSB gate is then applied to conclude
the computation.

4.2 Solving the PFCP with [Rei09]

Recall the PFC problem: we are given two �̂-bit values, [r]B and [c]B, and must
compare all postfixes, i.e. all reduction modulo 2-powers. The above comparison
cannot be applied naively at every bit-position, that would be too costly. Our
goal is therefore to compute a value,

[
E(k)

]
, for every bit-length, k ∈ {1, . . . , �̂},

equivalent to [E] above. This suffices as the goal are the least significant bits of
these values, and the LSB-gate requires only constant work.

Values similar to the [ei] above cannot be computed; there is a quadratic
number of them. Instead the [ei] are computed as before. These are equivalent

to the desired
[
e
(�̂−1)
i

]
, and will be used in all the ensuing computation,

[
Ẽ(k)

]
←

k−1∑
i=0

[ei] .

The computed values quite likely differ from the desired
[
E(k)

]
. However, [ei] is

only off from
[
e
(k)
i

]
– which should have been used – by a factor of some two-

power, 2
∑ �̂−1

j=k[rj]⊕[cj ]. For any fixed k, this value is also fixed. Therefore
[
Ẽ(k)

]
is also simply “wrong” by a factor of this.

To “correct”
[
Ẽ(k)

]
, first note that

[
2
∑ �̂−1

j=k rj⊕cj

]
has already been computed

by the prefix-product. Further, the factor can be eliminated as it is invertible.
I.e. the desired

[
E(k)

]
is securely computable.
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[
E(k)

]
←
[
Ẽ(k)

]
·
[
2
∑ �̂−1

j=k rj⊕cj

]−1

At this point, invoking an LSB-gate on every
[
E(k)

]
provides the final result.

Correctness follows from the above discussion along with that of Sect. 4.1.
Regarding security, the protocol clearly does not leak information. More values
are output from the ABB, but this still occurs only in sub-protocols. Thus, no
information is leaked.

We conclude with a complexity analysis of the protocol. Securely computing

both the factors,
[
2
∑ �̂−1

j=k[rj]⊕[cj ]

]
, and the [ei] for all bit-positions, i, and bit-

lengths, k, requires only 7�̂ secure multiplications in 3 rounds. All that was re-
quired was the computation of [rj ⊕ cj ] for every bit-position, the prefix-product,
and the concluding computation for each [ei].

Computing the
[
Ẽ(k)

]
is costless at this point, while correcting them – com-

puting the
[
E(k)

]
– requires �̂ additional multiplications. The element inversions

are costless as they can reuse the masking from the prefix-product. Thus, only
one multiplication is needed per bit-length, and these may all be processed in
parallel. Similarly, the concluding LSB-gates are are equivalent to three multi-
plications each and may also be executed concurrently.

Combining all of the above, the requirement is (7+1+3)�̂ = 11�̂ multiplications
in four rounds plus preprocessing. Thus, the following theorem is obtained.

Theorem 1. There exists a protocol which solves postfix comparison problems
of size �̂ in O(1) rounds using O(�̂) secure multiplications of elements of ZM ,
for M > 2�̂+κ+log n.

4.3 Performing Bit-Decomposition

It remains to apply Lemma 1 and Theorem 1 to obtain the main result of this
paper. There is, however, still one problem to be solved. The PFC problem
to solve is of size � = �log M�, but to apply Theorem 1 we must have M >
2�+κ+log n; this is of course contradictory.

Assuming that M > 22(κ+log n), then the following variation of the above
solution fixes the problem. The trick, taken from [Rei09], consists of considering
pairs of bit-positions rather than single bit-positions when computing the [ei].
This results in half as many [ei], thereby halving the bit-length needed. I.e. the
resulting modified

[
E(k)

]
have at least κ+log n bits of headroom in ZM , allowing

the LSB-gate to be applied. This was the sole reason for the restriction on M .
For simplicity it is assumed that � is even in the following, where Eq. (1) is
replaced by Eq. (2) which is computed only for the odd bit-positions, i.

First values, [ui], are computed,

[ui]← [ri] ∧ (¬ [ci]) ∨ (¬([ri]⊕ [ci])) ∧ [ri−1] ∧ (¬ [ci−1]).
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Note that this is simply a comparison circuit for 2-bit numbers. Though some-
what complex, the expression translates readily to arithmetic.

[ri] (1− [ci]) + (1 + 2 [ri] · [ci]− [ri]− [ci]) [ri−1] (1 − [ci−1])

The [ui] are then used in the computation replacing Eq. (1). [e′i] is set to a 2-
power exactly when the 2-bit position of [r]B is greater than that position of
[c]B, and the powers are smaller, as only the number of differing 2-bit blocks are
“counted.”

[e′i]← [ui] · 2
∑ �/2−1

j=((i−1)/2)+1([r2j ]⊕[c2j ])∨([r2j+1]⊕[c2j+1]) (2)

Again, the expression is slightly more involved than before, but it can also be
translated to a prefix-product,

�̂−1∏
j=i+1

(1 + ([r2j ⊕ c2j ] + [r2j+1 ⊕ c2j+1]− [r2j ⊕ c2j ] · [r2j+1 ⊕ c2j+1])) ,

where the ⊕ is computed as above. Overall, Eq. (2) requires only 10�/2 multi-
plications in four rounds.

The smaller
[
Ẽ(k)

]
can now be computed, however, there are two cases, as

values [e′i] are also needed for the even bit-positions.

[e′i]← [ri] (1 − [ci]) · 2
∑ �/2−1

j=(i/2)+1([r2j ]⊕[c2j ])∨([r2j+1]⊕[c2j+1])

At this point we may compute[
Ẽ(k)

]
←
{∑k/2−1

i=0

[
e′2i+1

]
when k is even[

e′k−1

]
+
∑(k−1)/2−1

i=0

[
e′2i+1

]
when k is odd

after which the incorrect powers of 2 can be eliminated and the LSB-gates applied
as above. This solves the PFC problem such that [x]B can be determined. The
final complexity is (10/2 + 1/2 + 1 + 3)� = 9.5� multiplications in 5 rounds plus
preprocessing and the conversion to the PFC problem, i.e. 9.5� + 30� + 15 =
39.5� + 15 secure multiplications in 5 + 2 + 5 = 12 rounds overall (including
preprocessing). The result is summarized in the following theorem.

Theorem 2. There exists a protocol which bit-decomposes a secret value, [x] of
ZM , to [x]B using O(�) secure multiplications in O(1) rounds. The protocol is
statistically secure against passive adversaries when the arithmetic primitives are
this. When they only provide computational security, then so does the present
protocol.

5 Active Security

As noted in the introduction, active security is not immediate. Even when ac-
tively secure protocols are used for the computation, problems occur when the
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parties are asked to share a random value from a domain different from ZM .
For example, when M is not a prime, the parties must verify that inputs are
really ±1 during the bit-generation protocol. This is easily achieved with a zero-
knowledge proof in the case of Paillier values, [DJ01]. The problem does not
affect the solution based on Shamir sharing. There ZM must be a field which
implies that M is a prime. A second problem occurs in the LSB gates. It must
be verified that the masks,

[
m(k)

]
, are indeed of the specified bit-length. But

these are the only problems.
By the definition of the arithmetic black-box, no adversary can do other harm.

Thus, given a constant-work means of proving that a value is of bounded size
(an interval proof), the solution can be made secure against active adversaries.
There exists such proofs for both our examples.

As noted in [ST06], it is possible to demonstrate that a Paillier encryption
contains a value within a specified range using the results of [Bou00, Lip03,
DJ02]. The solution reveals no other information than the fact that indeed the
value was from the desired range. Hence, active security is quite easily obtained
in a Paillier based setting.

Regarding protocols based on Shamir sharing, such a proof is not immediate.
It is, however, possible to obtain efficient range proofs by taking a detour through
linear integer secret sharing (LISS). The solution follows directly from LISS,
hence we only sketch it; see [Tho09] for a full explanation.

First off, LISS not only provides secret sharing of integer values, it can also
form the basis for unconditionally and actively secure MPC. Further, it is pos-
sible convert a linear integer secret sharing to a Shamir sharing over ZM simply
by reducing the individual share modulo M . The solution is therefore to first
share the m(k) using LISS, and for each of them demonstrate that it is in the
desired range using constant work, [Tho09]. Secondly, those secret sharings are
then converted to Shamir sharings over ZM . This ensures that the Shamir shared
value is of bounded size as required.

6 Conclusion

We have proposed a novel protocol for constant-rounds bit-decomposition based
on secure arithmetic with improved theoretic complexity compared to previous
solutions. The complexity reached – O(�) – appears optimal, as this is also
the number of outputs, however, that this is the case is not immediately clear.
Proving that Ω(�) secure multiplications is indeed a lower bound is left as an
open problem.

Unfortunately, the present solution also has some minor “defects” compared
to the previous ones. Firstly, “only” statistical security is guaranteed (at most),
rather than perfect. This still allows linear, constant-rounds, unconditionally se-
cure bit-decomposition, though. That security cannot be perfect also implies that
the underlying ring must be sufficiently large to accommodate the large, random
elements needed for statistical security. I.e. the protocol is only applicable for
large moduli.
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A second, worse “defect” is that – similarly to [ST06] – the basic solution does
not provide out-of-the-box active security. This must be obtained through ad-
ditional protocols, which of course increases complexity of the operations where
these are needed. However as demonstrated, efficient, active security can be
achieved quite readily for both Paillier based and Shamir sharing based settings.

We conclude by comparing the explicit complexity of our solution to that of
previous ones, Table 1 taken from [Tof09]. Counting the exact number of secure
multiplications provides a direct comparison for the case of passive security. It
is noted that the proposed protocol not only improves theoretic complexity, it is
also highly competitive with regard to the constants involved. In particular, if M
can be chosen as a Mersenne prime, the overall number of secure multiplications
can be reduced to essentially 17.5�.

Table 1. Complexity of constant-rounds bit-decomposition

Rounds Multiplications

[DFK+06] 38 94� log � + 63� + 30
√

�

[NO07] 25 47� log � + 63� + 30
√

�

[Tof09] 23 + c (31 + 26c)� · log∗(c)� + 71� + 14c
√

�log∗(c)(�) + 30
√

�
This paper 12 39.5� + 15

With regard to active security, the comparison is not fair. The present solution
must of course also take into account the proofs that the masks shared by parties
are well-formed. Their complexity depends on the realizing primitives, which are
outside the arithmetic black-box; they are therefore not included in the overview.
Complexity is reasonable, though. The main trick is that any positive integer
can be written as the sum of four squares, thus only eight multiplications (over
the integer scheme) are needed to show that an input is both upper and lower
bounded. In addition to this, there is the cost of transferring the input to the
scheme of the ABB.

Acknowledgements. The authors would like to thank Ivan Damg̊ard for com-
ments and suggestions.
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Abstract. In this paper, we present a new class of attacks against an
anonymous communication protocol, originally presented in ACNS 2008.
The protocol itself was proposed as an improved version of ModOnions,
which uses universal re-encryption in order to avoid replay attacks. How-
ever, ModOnions allowed the detour attack, introduced by Danezis to
re-route ModOnions to attackers in such a way that the entire path is
revealed. The ACNS 2008 proposal addressed this by using a more com-
plicated key management scheme. The revised protocol is immune to
detour attacks. We show, however, that the ModOnion construction is
highly malleable and this property can be exploited in order to redirect
ModOnions. Our attacks require detailed probing and are less efficient
than the detour attack, but they can nevertheless recover the full onion
path while avoiding detection and investigation. Motivated by this, we
present a new modification to the ModOnion protocol that dramatically
reduces the malleability of the encryption primitive. It addresses the class
of attacks we present and it makes other attacks difficult to formulate.

1 Introduction

Mix networks have been a popular scheme for anonymous communication since
they were first introduced by Chaum [2]. The basics of the design are that
messages are protected by a layered (“onion”) encryption, with each mix in the
path removing a layer of encryption and shuffling a batch of incoming messages
before forwarding them onwards. This way, each mix only knows its predecessor
and successor in the forwarding path of a message transmitted through the mix,
and an outside observer cannot link inputs of the mix to the outputs due to
encryption.

The idea of mixes is very appealing and became the basic component of major
anonymous communication protocols. However, despite of the importance of
the problem, we are still far away from providing an ultimate solution that
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would provide a satisfactory resilience to attempts of breaking anonymity. The
main reason is that in a practical setting an adversary has many other attack
possibilities than merely observing the incoming and outcoming messages of a
mix. This includes issues such as traffic analysis (static and dynamic) as well
as active attacks where an adversary may inject messages or modify them. So
far, research on anonymous communication protocols is a step-by-step advance,
where protocol proposals (dealing with certain classes of problems) are followed
by new attack methods.

Replay attack, ModOnions and detour attacks. Two rogue mixes can
carry out a replay attack, where one mix will re-send one or more copy of a
message, and the other look for duplicate incoming messages. This way the two
mixes can detect that they are on the same forwarding paths even if they are
separated by many honest mixes. The traditional defense to this attack is to
have each mix look for and discard message duplicates [5], requiring the mixes
to maintain state. Note that most of anonymous routing protocols are not im-
mune against replay attack. Even the most popular TOR protocol (introduced
in [6]) can be affected by elaborated forms of reply attack as reported in [13].
TOR is quite different from the regular Onion Routing and to protect integrity of
a message it uses enumerating packages and labeling streams. Such an approach
protects to some extent from reply attacks, however makes TOR vulnerable to
different statistical attacks. The fact remains, however that TOR is the most
secure implemented solution. ModOnions [9] take an alternate approach, using
Universal Re-Encryption (URE) [8] to re-randomize the messages (“onions”),
such that duplicate copies of an onion cannot be linked. Re-encryption of such
onions is possible, since instead of a single onion with a message hidden at each
“layer” of the onion, there is a group of onions to be processed together, each en-
coding a different routing information for a path. When processed properly, each
node on the path gets information from one of these onions and re-randomizes
the rest. Last not least, ModOnions can be signed by some intermediate servers
(for instance in order to prevent spam) and the signatures can be re-encrypted
while processing [10].

ModOnions addressed the replay attacks, but it turned out that they are
susceptible to the detour attack [4], where a ModOnion is redirected to go back
to the attacker after each routing step, and a mix is used as a decryption oracle.
Klonowski et al. presented a defense against the detour attacks by modifying the
key management scheme and using different keys for the final decryption [11].

1.1 Results

New attacks. We show that the improved scheme presented in [11] is still
vulnerable to redirection attacks that allow the recovery of the forwarding path.
Our first attack uses the fact that a form of oracle decryption is still possible
even in the modified scheme. It is no longer possible for an attacker to learn
the next hop in a path, but he can verify a guess of a forwarding path if he
controls both the first and last node. The number of guesses depends on the size
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of the network and the length of the forwarding paths; the attack is feasible for a
medium-sized network of 50 nodes using paths of length 5, but quickly becomes
impractical for larger parameters.

Our second attack relies on malleability of the URE scheme, which makes it
possible for an attacker to modify the encrypted plaintext of a message without
knowing the key under which it is encrypted. This makes it possible to selectively
modify an onion and use probes to recover its structure and learn the next hop, all
while avoiding detection. This attack requires many fewer probes and is practical
for most network sizes.

Patches. Using previous observations we propose a new extension to Mod-
Onions that drastically limits the malleability of the scheme such that any mod-
ification to the plaintext will be detected with high probability. This makes the
odds of success of our attacks negligible, as a large number of probes must all
be modified in such a way as to escape detection. By introducing this integrity
check into the ModOnion protocol, our extension should make the design of new
attacks more difficult as well.

2 ModOnions Protocol from [11]

In this section we recall the improved version of the ModOnions protocol (Onion
Routing with Universal Re-Encryption) from [11]. This protocol uses as a build-
ing block an extension of Universal Re-Encryption recalled below. At first let us
recall details and properties of Universal Re-Encryption (from [8]).

2.1 Universal Re–encryption

Universal Re-Encryption is based on the ElGamal encryption scheme. Construc-
tion of this encryption scheme is based on a cyclic group G, where discrete
logarithm, DDH problems are hard. Namely, let p, q be prime numbers such
that p = 2q + 1 and let g be the generator of G, which is the subgroup of Z∗

p

of order q. A private key is a non-zero x < q chosen uniformly at random, the
corresponding public key is y, where y = gx mod p. For a message m < p, a
ciphertext of m is a pair (s, r), where r := gk mod p and s := m · yk mod p and
0 < k < q is chosen at random.

The ElGamal scheme is a probabilistic one: the same message encrypted for the
second time yields a different ciphertext with overwhelming probability. Moreover,
given two ciphertexts, it seems to be infeasible in practice to say whether they
have been encrypted under the same key (unless, of course, the decryption key is
given). This property is called key-privacy (see [8]). ElGamal cryptosystem has yet
another important property. Everyone can re-encrypt a ciphertext (α, β) and get
(α′, β′) where α′ := α · yk′

mod p, β′ := β · gk′
mod p for k′ < q chosen at random

and the public key y. Moreover, without the decryption key it is infeasible to find
that (α, β) and (α′, β′) correspond to the same plaintext.

In [8] Golle et al. proposed a slightly modified version of this scheme that
is called universal re-encryption scheme or URE for short. It consists of the
following procedures:
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Setup: A generator g of a cyclic group G of prime order is chosen, where dis-
crete logarithm problem and DDH assumption is hard. Then G and g are
published.

Key generation: Alice chooses a private key x at random; then the corre-
sponding public key y is computed as y = gx.

Encryption: To encrypt a message m for Alice, Bob generates uniformly at ran-
dom values k0 and k1 (k0, k1 < p). Then, the ciphertext of m is a quadruple:
(α0, β0; α1, β1) :=

(
m · yk0 , gk0 ; yk1 , gk1

)
. Let us note that this is a pair of

two ElGamal ciphertexts with plaintext messages m and 1 (neutral element
of G), respectively.

Decryption: Alice computes m0 := α0
βx
0

and m1 := α1
βx
1
. Message m0 is accepted

if and only if m1 = 1.
Re-encryption: Two random values k′

0 and k′
1 are chosen. Then we compute:(

α0 · αk′
0

1 , β0 · βk′
0

1 ; αk′
1

1 , β
k′
1

1

)
, which is a ciphertext of the same plaintext.

From now on we assume that Ex(m) denotes an URE ciphertext of a message
m for a secret decryption key x. Note that there are many possible values for
Ex(m), since URE is a probabilistic encryption scheme.

2.2 Extension of Universal Re–encryption

Let us assume that there are λ distinct servers on each routing path, each server
si has a private key xi and the corresponding public key yi = gxi. To encrypt
a message m, which should go through the nodes s1, . . . , sλ, first values k0 and
k1 are generated at random. Then the ciphertext has the following form:

Ex1+x2+···+xλ
(m)=(α0, β0; α1, β1):=

(
m · (y1y2 . . . yλ)k0 , gk0 ; (y1y2 . . . yλ)k1 , gk1

)
.

Obviously, y1y2 . . . yλ is a kind of cumulative public key, since

Ex1+x2+···+xλ
(m) =

(
m · g

k0
λ∑

i=1
xi

, gk0 ; g
k1

λ∑
i=1

xi

, gk1

)
.

Moreover, Ex1+···+xλ
(m) is a ciphertext of m with the decryption key equal to∑λ

i=1 xi. Hence it can be re-encrypted in a regular way. Moreover, such a ci-
phertext can be partially decrypted, for instance, by the first server s1. Namely,
it computes Ex2+···+xλ

(m) as the following quadruple:

(α′
0, β

′
0; α

′
1, β

′
1) :=

( α0

βx1
0

, β0;
α1

βx1
1

, β1

)
.

It is obvious that it still is a correct URE ciphertext for the “reduced” decryption
key

∑λ
i=2 xi, and therefore it also can be re-encrypted as it was described above.

2.3 Description of ModOnions Protocol from [11]

The core idea of protocol introduced in [11] is that each server s has two different
pairs of keys:
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– transport keys: a private key xs and a public key ys := gxs ,
– destination keys: a private key x�

s and a public key y�
s := gx�

s .

Now the blocks encoding intermediate nodes on the routing path s1, s2, . . . , sλ

are constructed as follows:
Ex�

s1
(send to s2),

Exs1+···+xsi−1+x�
si

(send to si+1) for all 2 ≤ i ≤ λ− 1,

Exs1+···+xsλ−1+x�
sλ

(m, t), where t is a current time.

Note that:

- λ is a static parameter of the protocol,
- E denotes encryption scheme with properties as in [9, 11],
- for each block one of destination keys x�

i is used and only once; moreover, it
is the destination key of the final recipient of the information stored in the
block.

Routing. When a server s gets Modified ModOnion the following steps of the
protocol are executed:

1. Server s copies all blocks of a ModOnion. Then it decrypts all blocks with
its private destination key.

2. If every previous server on the path is honest, then after decryption exactly
one of the blocks should contain a correct message.
Case 1: one of the decryptions yields a correct name of the next server s′.

Then:
(a) All blocks (as obtained from the previous server), except for the one

containing s′, are decrypted with the private transport key of s. The
blocks obtained are then re-encrypted in the regular way.

(b) A random block replaces the block containing s′.
(c) The resulting blocks are permuted at random.
(d) The ModOnion obtained in this way is sent to s′.
Note that the number of blocks in a ModOnion remains unchanged.

Case 2: after decryption s obtains one meaningful message with destination
s. Then the message is delivered.

Case 3: the result of decryption for all blocks is meaningless. Then the
investigation procedure is launched.

Investigation procedure. Investigation procedure is a part of the protocol
launched by the node detecting dishonest behavior of other nodes. In this proce-
dure consecutive nodes from the path proves correct processing of the ModOnion.
It is assumed that malicious node, once caught is permanently excluded from
the protocol. Detailed description can be found in [9].

3 Attacks on the ModOnions Protocol from [11]

In this section we present two attacks on the improved ModOnions Protocol
described in the previous section.
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3.1 Attack 1: Guessing the Path

The modification to the ModOnions ensured that a router no longer acts as a
decryption oracle for the destination key, thus making it impossible to carry out
the detour attack. However, the router still acts as a decryption oracle for the
transport key. This lets the attacker verify a guess for the path the onion will
take. Suppose that an onion is sent to s6 along a path s1, s2, s3, s4, s5, with s1

and s5 being malicious. The onion that arrives at node s1 will have the following
form (we skip the permutation of blocks for clarity of presentation):

Ex�
s1

(send to s2),

Exs1+x�
s2

(send to s3),

Exs1+xs2+x�
s3

(send to s4),

Exs1+xs2+xs3+x�
s4

(send to s5),

Exs1+xs2+xs3+xs4+x�
s5

(send to s6),

Exs1+xs2+xs3+xs4+xs5+x�
s6

(m, t).

s1 can no longer use s2 to reveal the next router in the path. However, it can use
it as a decryption oracle to partially decrypt the message using the transport
key xs2 . If s1 then guesses that s3 and s4 are the next routers on the path, it
can use them as decryption oracles as well. After this, the onion will include the
block Ex∗

s5
(send to s6). By performing a trial decryption with key x∗

s5
(which is

available to the attacker since s5 is compromised), the attacker can learn both
that the guess of s3 and s4 is correct and that s6 is the ultimate destination of
the message.

We next describe the attack in more detail.

1. After receiving the onion, s1 partially decrypts it with x∗
s1

to learn the des-
tination s2.

2. Then s1 uses xs1 to partially decrypt the remaining blocks and gets:

Ex�
s2

(send to s3),

Exs2+x�
s3

(send to s4),

Exs2+xs3+x�
s4

(send to s5),

Exs2+xs3+xs4+x�
s5

(send to s6),

Exs2+xs3+xs4+xs5+x�
s6

(m, t).

Let us call this onion O1.
3. URE has the property that given a ciphertext encrypted with key x, Ex(m),

it is possible to produce a new ciphertext encrypted under the key x+x′, as
long as x′ is known. (One can think about this as a partial decryption under
the key −x′.) This allows s1 to wrap the blocks of O1 in an extra layer of
encryption so that these blocks are blindly partially decrypted and passed
along by s2. The new onion includes the original blocks of O1 (after blinding
them) as well as a new destination block:
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Ex∗
s2

(send to s1),

Ex′+x�
s2

(send to s3),

Ex′+xs2+x�
s3

(send to s4),

Ex′+xs2+xs3+x�
s4

(send to s5),

Ex′+xs2+xs3+xs4+x�
s5

(send to s6),

Ex′+xs2+xs3+xs4+xs5+x�
s6

(m, t).

4. This onion is then sent to s2. Node s2 partially decrypts with x∗
s2

to learn that
s1 is the next hop.1 Note that the second block will remain encrypted under
x′ and so s2 will only find one plaintext block, therefore no investigation will
be started.

5. s2 partially decrypts the onion with xs2 and forwards the following blocks
to s1:

random,

Ex′+x�
s2

−xs2
(send to s3),

Ex′+x�
s3

(send to s4),

Ex′+xs3+x�
s4

(send to s5),

Ex′+xs3+xs4+x�
s5

(send to s6),

Ex′+xs3+xs4+xs5+x�
s6

(m, t).

6. s1 partially decrypts the onion with x′, obtaining a new onion O2:
random,

Ex�
s2

−xs2
(send to s3),

Ex�
s3

(send to s4),

Exs3+x�
s4

(send to s5),

Exs3+xs4+x�
s5

(send to s6),

Exs3+xs4+xs5+x�
s6

(m, t).

Note that O2 contains all the blocks of O1, partially decrypted with the key
xs2 . We will call the steps 3–6 an oracle decryption, writing O2 = Dxs2

(O1).2
7. Now the attacker can proceed with guessing the path. For each (honest)

router si, with i 
= 2, the attacker performs an oracle decryption to obtain
Osi = Dxsi

(O2).3

1 s2 may get suspicious about forwarding an onion back to s1, but technically, s5 or
any other malicious node can act as the next hop to avoid this problem.

2 This process is very similar to the oracle decryption proposed by Danezis [4].
3 A minor caveat is that O2 is one block longer than O1: s1 cannot distinguish the

random block from the others and discard it. For the sake of simplicity of description
we assume that ModOnions may have variable length. However, if we assume that
the ModOnions always contain the same number of blocks, then s1 will need to split
O2 into two onions and obtain oracle decryption of both.
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8. For each pair (i, j), with j 
= i and j 
= 2, the attacker performs another
oracle decryption to obtain Osi,sj = Dxsj

(Osi ).
9. For a correct guess of s3, s4, the onion Os3,s4 will have the form:

random,

random,

random,

Ex�
s2

−xs2−xs3−xs4
(send to s3),

Ex�
s3

−xs3−xs4
(send to s4),

Ex�
s4

−xs4
(send to s5),

Ex�
s5

(send to s6),

Exs5+x�
s6

(m, t).

By performing a trial decryption of all blocks with x∗
s5

, the attacker can
learn s6, which is the final destination of the message in this example.

This attack will work whenever s1 and s5 are at the beginning and end of the
path. If the attacker has compromised more nodes, he can trial decrypt with
the destination key of every compromised node to detect whether they lie on
the path. (A trial decryption should also be performed on the intermediate onions
Osi to detect cases where a compromised node is in the fourth position on the
path.)

Note that there is another easy way to test a guess for a path: s1 can follow the
protocol, but insert Exs2+xs3+xs4+x∗

s5
(tag) instead of a random block into the

onion forwarded to s2. However, to test multiple guesses, onions would need to
be replayed and the destination would get multiple copies of the same message,
launching an investigation. Using the decryption oracles, no investigation will
be started.

Complexity. The adversary needs to perform at most (N − 1) +
(
N−1

2

)
oracle

decryptions, where N is the number of honest routers in the network. For a
network with 50 routers, this is a little over 1 000 oracle decryptions, making the
attack expensive, but feasible. (To speed up the attack, decryptions at multiple
routers can be carried out in parallel.) However, with larger networks the attack
becomes infeasible; similarly, by increasing the path length from 5 to k, the
complexity of the attack grows to Ω(Nk−3).

3.2 Attack 2: The Two-hop Attack

Our second attack exploits the fact that URE allows an attacker to replace
the plaintext of a message without knowing the encryption key as well as the
plaintext removed. So, for example, given a block Exsi

(send to sj), an attacker
can change it to Exsi

(send to s1). Using this technique, an attacker s1 could
change the received blocks
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Ex�
s2

(send to s3),

Exs2+x�
s3

(send to s4),

Exs2+xs3+x�
s4

(send to s5),

Exs2+xs3+xs4+x�
s5

(send to s6),

Exs2+xs3+xs4+xs5+x�
s6

(m, t)

to the following form:

Ex�
s2

(send to s3),

Exs2+x�
s3

(send to s1),

Exs2+xs3+x�
s4

(send to s5),

Exs2+xs3+xs4+x�
s5

(send to s6),

Exs2+xs3+xs4+xs5+x�
s6

(m, t).

If s1 sent these blocks to s2, they would travel two hops, over to s3 and back to
s1 (in a transformed form). s1 would then learn that s3 follows s2 in the path
of the onion. However, to adjust the onion properly, s1 would need to know the
order of the blocks. Since this is unknown, s1 recovers the order by probing, as
explained below in detail:

1. s1 receives an onion to be forwarded. After picking out the destination and
partial decryption, the onion has the following form:

Ex�
s2

(send to s3),

Exs2+x�
s3

(send to s4),

Exs2+xs3+x�
s4

(send to s5),

Exs2+xs3+xs4+x�
s5

(send to s6),

Exs2+xs3+xs4+xs5+x�
s6

(m, t).

2. s1 replaces the plaintext of all but one of the blocks with the directive
“send to s1,” obtaining an onion like the following:

Ex�
s2

(send to s1),

Exs2+x�
s3

(send to s1),

Exs2+xs3+x�
s4

(send to s5),

Exs2+xs3+xs4+x�
s5

(send to s1),

Exs2+xs3+xs4+xs5+x�
s6

(send to s1).

In this case, the third block is left unmodified.
3. This new onion is sent to s2, along with a tag block inserted as the random

block:
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Exs2+x′(tag),
Ex�

s2
(send to s1),

Exs2+x�
s3

(send to s1),

Exs2+xs3+x�
s4

(send to s5),

Exs2+xs3+xs4+x�
s5

(send to s1),

Exs2+xs3+xs4+xs5+x�
s6

(send to s1).

for some random key x′.
4. The onion received back from s2 has the following form:

Ex′(tag),
random,

Ex�
s3

(send to s1),

Exs3+x�
s4

(send to s5),

Exs3+xs4+x�
s5

(send to s1),

Exs3+xs4+xs5+x�
s6

(send to s1).

s1 notices the tag and declares this probe to be a failure.
5. s1 starts with the original onion and once again replaces all but one of the

blocks with “send to s1”, this time leaving a different block unmodified:

Exs2+x′(tag),
Ex�

s2
(send to s3),

Exs2+x�
s3

(send to s1),

Exs2+xs3+x�
s4

(send to s1),

Exs2+xs3+xs4+x�
s5

(send to s1),

Exs2+xs3+xs4+xs5+x�
s6

(send to s1).

6. s1 once again sends the onion to s2, along with a tag. s2 now finds s3 to
be the destination of the onion, and forwards it there. s3 then forwards the
onion back to s1, after all partial decryptions and inserting random blocks
it has the form:

Ex′−xs3
(tag),

random,

random,

Ex�
s4

(send to s1),

Exs4+x�
s5

(send to s1),

Exs4+xs5+x�
s6

(send to s1).
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7. Note that s1 cannot decrypt any of the blocks of the onion, so it suspects
that s3 is the hop following s2 in the onion path. To double check, it can
resend the onion with a tag of Exs2+xs3+x′(tag). This time, the onion will
come back with Ex′(tag) as one of its blocks.

After these steps, s1 learns the identity of the next hop in the path. It can now
use s2 as a decryption oracle to obtain a copy of an onion that would have been
sent by s2 to s3 during normal forwarding. Thus it can assume the role of s2

and repeat this attack with s3 to learn the identity of s4, and so on.

4 Defense: Context-Sensitive Encryption

A core problem that is exploited by all the attacks on ModOnions is that the
onion construction is highly malleable: an attacker can make extensive modifica-
tions to the encrypted onion and still produce a valid result. To defend against
them, we must reduce or eliminate this ability.

A non-malleable encryption scheme [7], such as Cramer–Shoup [3], would en-
sure that any modification to the ciphertext will result in a “random looking”
plaintext upon decryption. However, a non-malleable scheme will, by definition,
prevent the re-randomization used in re-encryption. Canetti et al. defined a
relaxed version of non-malleability, called Re-randomizable Chosen Ciphertext
Adversary security (RCCA) [1]. Prabhakaran and Rosulek later produced an
RCCA-secure scheme, based on Cramer–Shoup and the “double strand” con-
struction used in the Frikken–Golle universal re-encryption scheme we use in
this paper [12]. However, this scheme cannot be used with ModOnions since it
does not support key privacy, which is a requirement for anonymous message
forwarding.

Instead, we propose a new modification to the ModOnions protocol that dra-
matically reduces the malleability of the scheme. Since all attacks on ModOnions
rely on redirecting the onion to follow a different path, our modification centers
around making such redirection impossible. It entangles the encryption con-
struction with the onion path, such that if the path is modified, the decryption
produces an invalid result and thus an attack is detected. Our main approach
is to use a context-sensitive encryption/decryption key. Each router will have a
collection of n distinct transport and n distinct destination keys, xsi,1, . . . , xsi,n

and x∗
si,1, . . . , x

∗
si,n. Whenever a router needs to use a transport or a destina-

tion key, it picks the key based on context by selecting xsi,H(si−1||si||si+1), where
H : {0, 1}∗ → Zn is a hash function and si−1 and si+1 are the identifiers pre-
ceding and following si in the onion path. (In fact, n need not to be large. Even
n = 2 yields probability of 0.5 of detection of a malicious node in most cases, so
it prevents systematic attacks).

4.1 Context-Sensitive Onion Construction

We now describe our construction in more detail. Suppose a node s0 wishes to
send a message to s6, following a path s1, s2, s3, s4, s5. We assume that it has the
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public keys for all routers, i.e., ysi,j = gxsi,j . s0 creates a ModOnion as before,
but using context-sensitive keys. The first block of the onion would be:

Ex∗
s1,H(s0||s1||s2)

(send to s2).

The next block would be:

Exs1,H(s0||s1||s2)+x∗
s2,H(s1||s2||s3)

(send to s3)

Notice that the transport key for s1 is made context-sensitive as well. For s2’s
destination key, the context used is the part of the path known to s2. Proceeding
in this manner, the complete onion has the following form:

Ex∗
s1,H(s0||s1||s2)

(send to s2)

Exs1,H(s0||s1||s2)+x∗
s2,H(s1||s2||s3)

(send to s3)

Exs1,H(s0||s1||s2)+xs2,H(s1||s2||s3)+x∗
s3,H(s2||s3||s4)

(send to s4)

Exs1,H(s0||s1||s2)+xs2,H(s1||s2||s3)+xs3,H(s2||s3||s4)+x∗
s4,H(s3||s4|s5)

(send to s5)

Exs1,H(s0||s1||s2)+xs2,H(s1||s2||s3)+xs3,H(s2||s3||s4)+xs4,H(s3||s4||s5)+x∗
s5,H(s4||s5||s6)

(send to s6)

Exs1,H(s0||s1||s2)+xs2,H(s1||s2||s3)+xs3,H(s2||s3||s4)+xs4,H(s3||s4||s5)+xs5,H(s4||s5||s6)+x∗
s6,H(s5||s6)

(m, t)

Forwarding of the onions proceeds in a similar fashion as before, except that
context-sensitive keys are used. Notice that when s1 receives the onion, it does
not yet know what the next hop in the path will be. We nevertheless want to use
context-sensitive encryption here to reduce the possibility of attack. To resolve
this problem, s1 uses a brute-force search for all possible destination keys. That
is, it performs a trial decryption of each block with the keys x∗

s1,1, x
∗
s1,2, . . . , x

∗
s1,n.

This search will certainly slow down the decryption process, but even for n = 100,
the trial decryptions should take less than a second on a modern PC, and of
course, n is a tunable parameter.

After a trial decryption succeeds with key x∗
s1,j for some j, s1 verifies that

the contents of the decrypted message (“send to s2”) matches the recovered con-
text s0||s1||si, i.e., that H(s0||s1||s2) = j. If there is a discrepancy, the onion
is discarded and an investigation is started. Otherwise, it replaces the destina-
tion block with a random one, partially decrypts the rest of the onion with the
key xs1,H(s0||s1||s2), re-randomizes and shuffles the blocks, and forwards the new
onion to s2.

If the decrypted plaintext contains a message, rather than a redirection di-
rective, the router once again verifies that the correct context is used, i.e., that
H(s0||s1) = m and discards a message otherwise.

5 Security Analysis of the Modified ModOnion Scheme

Defending against the Two-Hop Attack. As the two-hop attack makes
extensive use of modifying the onion contents, it is severely impacted by the
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use of context-sensitive encryption. In the case of an unsuccessful probe, s2 will
receive an onion with the block:

Ex∗
s2,H(s1||s2||s3)

(send to s1).

After a brute-force search, the decryption will succeed using a key x∗
s2,i for some

i, but the odds that i = H(s1||s2||s1) are only 1/n. Therefore, s2 will launch
an investigation with probability n−1

n Similarly, for a successful probe, s3 will
receive an onion with:

Ex∗
s3,H(s2||s3||s4)

(send to s1)

and launch an investigation whenever H(s2||s3||s4) 
= H(s2||s3||s1).
The context-sensitive encryption acts as an integrity check on the message

contents, effectively preventing any modifications of the onion. For the two-hop
attack to succeed without detection, it must be the case that:

H(s1||s2||s3) = H(s1||s2||s1), H(s2||s3||s4)=H(s2||s3||s1), H(s3||s4||s5)=H(s3||s4||s1),

H(s4||s5||s6) = H(s4||s5||s1), H(s5||s6) = H(s5||s6||s1)

otherwise one of the nodes will notice the attack and start an investigation. The
odds of this are 1

n5 , so even very small values of n provide an effective defense.

Defending against the Path-Guessing Attack. The path guessing at-
tack does not modify any onion plaintext and thus is not immediately thwarted
by context-sensitive encryption. However, using a router as a decryption oracle
becomes significantly more complicated. Consider, for example, using s3 as a de-
cryption oracle in the path-guessing attack. If s1 were to follow the same steps
as in Section 3.1 for oracle decryption (but using Ex∗

s3,H(s1||s3||s1)
as the new des-

tination block), it would receive an onion where all blocks have been decrypted
with the key xs3,H(s1||s3||s1). However, the blocks in the real path would have in
fact been encrypted with xs3,H(s2||s3||s4), and thus the oracle decryption would
be useless (unless the hashes happen to match).

However, s1 can perform a trial to verify a guess of an entire path. It would
start by creating the following destination fields:

Ex∗
s2,H(s1||s2||s3)

(send to s3)

Exs2,H(s1||s2||s3)+x∗
s3,H(s2||s3||s4)

(send to s4)

Exs2,H(s1||s2||s3)+xs3,H(s2||s3||s4)+x∗
s4,H(s3||s4||s5)

(send to s5)

Then it would wrap all the existing blocks of the original onion (O1 in Section 3.1)
in a layer of encryption with random key x′:

Ex(m)→ Ex+x′(m).

When the onion is sent to s2, it will be forwarded along the path s2, s3, s4, s5,
with the corresponding context-sensitive decryptions happening along the way.
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In other words, s5 will receive blocks that has been partially decrypted with the
key xs2,H(s1||s2||s3) +xs3,H(s2||s3||s4) +xs4,H(s3||s4||s5). If the path guess is correct,
s5 will receive an onion that will contain a block Ex′+x∗

s5,H(s4||s5||s6)
(send to s6),

which it could locate by trial decryption. If the path guess is incorrect, s5 would
receive an onion with blocks that it cannot decrypt.

This attack is slower than the (already slow) path guessing attack. In our
particular case (s3, s4 honest, s5 corrupted) it requires (N − 1)(N − 2)C path
guesses, where N is the number of honest nodes in the network and C is the
number of nodes collaborating with s1. Possibility to parallelize this process is
limited due to the fact that every probe must pass through s2 first, limiting
the rate that can be used without arousing suspicion. If the size of the network
is such that the attack is still practical, increasing the path length can easily
eliminate it.

Possibility of Tagging Attacks. The modified construction of onions and the
context-sensitive encryption still potentially allow the adversary to replace the
plaintext (the address of the next server or the message) in a single block or
put something in the place of the random block. To some extent, this can be
useful for a tagging attack. Let us consider the following scenario: an onion gets
to some corrupted node si. This node wants to add a special tag, so that if this
onion arrives at another node controlled by the adversary, then he will be able
to recognize this event.

There are two ways in which the adversary may try to achieve that goal.
According to the first method, si can copy some block of the onion, change
the original plaintext there into some “tag” message, blind the ciphertext with
some additional key x′ and use it as the random block created himself. The
adversary will be able to recognize the tag if and only if the block used is a
block addressed to a node under control of the adversary. This occurs with
probability f , where f is the fraction of nodes controlled by the adversary in the
network. If the adversary replaces some other blocks with the blocks constructed
as above, then the chance to detect a tag may increase at most λ times, where
λ is the number of blocks. So, the probability remains small for the case when
f is reasonable. However, if the tag is not recognized by some adversary node,
then it will be detected that some block is missing and an investigation will be
started.

According to the second method, the adversary creates a ciphertext that en-
codes some “tag” by using the public keys of arbitrarily chosen nodes and some
blinding factor x′ and replaces some original block with this ciphertext. In this
case tagging remains undetected by honest nodes as long as the tag is inserted
in the random block created by si. The tag can be read by an adversary node
only if the path for the tag is guessed correctly. If this path has length k, then
this probability equals f

(N−1)k−1 , where f is the fraction of nodes controlled by
the adversary and N is the overall number of nodes. The adversary may increase
this probability by replacing more blocks by the blocks with tags. However, in
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most cases the tags are undetected, but the block removed will be found missing
leading to an investigation.

Countermeasures against Tagging Attacks. Since only the first method of
tagging attacks presented above is a serious threat is a real threat, we concentrate
on preventing a node to put some extra information in the random block. For this
purpose we need a public key P . Peculiarity of this public key is that it has no
owner holding the corresponding private key. We also assume that each message
contains sending time information and that each message will be delivered in
time T - otherwise we talk about an irregularity that has to be investigated.
The protocol may look as follows:

– instead of a random block the node should construct a ciphertext of 1 using
public key P ,

– when a ModOnion is transmitted from node ni to nj , the node nj starts a
checking procedure with a probability p, independently of other events (in
particular, whether checking has been already initiated for another copy of
the same message). The checking procedure consists of the following steps:
1. the message is stored by Sj ,
2. si is asked to resend the same message (re-encryption applies),
3. sj waits time T and afterwards demands a proof from si that one of the

blocks of the ModOnion is a ciphertext 1 created as described above. The
proof can be given by presenting the random exponent used for creating
the ciphertext.

Alternatively, instead of revealing the encryption exponent, si may provide a
zero-knowledge proof that one of the ciphertexts of the onion is a ciphertext of
1 under key P (without revealing which). In this case we do not have to wait
with the proof, but the proof might be too intensive computationally.

Note that no proof should reveal which block is random, unless the message
cannot be sent anymore without starting an investigation. Indeed, otherwise sj

would know two random blocks and could insert a tag in one of them without
possibility to be caught.

6 Conclusions

We presented two new types of attacks on the ModOnions protocol showing that,
despite modifications in [11], the protocol is still insecure. However, we introduce
a patch that successfully defends against these new attacks without providing
any new information to intermediate nodes. The main remaining threat seems
to be the tagging attack.
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06560 Valbonne, France
first.last@eurecom.fr

Abstract. Revocation of credentials in Secret Handshakes is a difficult
challenge, as it mixes the conflicting requirements of tracing revoked
users and of the untraceability and unlinkability of legitimate protocol
players. The schemes proposed in the literature are either limited ver-
sions of secret handshake supporting revocation, or they support more
complete versions of secret handshake with no possibility of introducing
revocation. In this paper we present a simple protocol that allows a user
to prove to a verifier possession of a credential. Credentials can be re-
voked simply by publishing a value in a revocation list. This protocol
is extremely flexible, as with it, we can achieve revocation for each of
the different nuances of Secret Handshakes known in the literature. We
prove the security of the new scheme without random oracles.

1 Introduction

The topic of secret handshakes is gaining momentum in research, as evidenced by
the number of recent publications on the subject [1,21,10,23,12]. The concept has
been introduced by Balfanz and colleagues in [5] as protocols that can be used
by two parties to share a key only if they both belong to a common secret group.
The protocol makes sure that an outsider, or an illegitimate group member does
not learn anything by interacting with a legitimate user or eavesdropping on
protocol exchanges.

The original protocol by Balfanz et al. [5] suffers from a number of shortcom-
ings, namely it only allows users to prove membership to the same group, and it
requires multiple credentials, as exchanged credentials are traceable over multi-
ple executions. These shortcomings have been fixed by subsequent schemes that
support the reuse of credentials and allow to match properties different from a
user’s own [10,25,15,14,21].

In spite of these enhancements, Secret Handshakes still suffer from significant
limitations due to the inherent difficulty of supporting revocation of credentials.
Revocation represents indeed an interesting challenge: on the one hand, protocol
messages need to be untraceable; on the other, revocation requires means of
tagging credentials in order to single out the revoked ones and refuse to interact
with users bearing them.
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So far this problem has still not been solved: among the schemes presented
in the literature, there are either limited versions of secret handshake schemes
that support revocation [27,5,10], or other schemes that support more complete
versions of secret handshake with no possibility of introducing revocation, at
least not without radical changes to the protocol [1,23].

The contributions of this paper are manifold: (i) we present a novel scheme
called RevocationMatching, a building block for addressing in a comprehensive
way all Secret Handshake scenarios known in the literature, with the additional
feature of revocation; (ii) with RevocationMatching we can build each of the
different “flavors” of secret handshake, own-group membership secret hand-
shakes [5,10,18,25,27], secret handshakes with dynamic matching [1] or secret
handshake with dynamic controlled matching [23], adding revocation support
to each. In addition, (iii) our scheme supports the existence of multiple CAs,
which also represent an interesting advancement to the state of the art of Secret
Handshakes.

In all the different schemes that we propose, credentials can be efficiently
revoked. After their revocation, credentials naturally lose their untraceability;
however, as we shall see, only users authorized to match a given credential will
be able to trace the revoked credential; for other users, the credential will still be
unlinkable and untraceable. We analyze the security of RevocationMatching and
of the derived Secret Handshake schemes without random oracles, by reduction
to intractable problems.

2 Related Work and Contribution

The goal of this Section is to walk the reader through the related work carried
out in the field of secret handshakes, highlighting the different existing protocols
and positioning the contribution of this paper.

Secret Handshakes have been introduced by Balfanz et al. [5] as a mecha-
nism devised for two users to simultaneously prove to each other possession of
a property, for instance membership to a certain group. The ability to prove
and verify is strictly controlled by a certification authority, that issues property
credentials and matching references respectively allowing to prove to another
user, and to verify another user’s, possession of a property. Balfanz’ original
scheme, as many other schemes in the literature, only supports proving and ver-
ifying membership to the same group: for this reason, we shall call this family
of schemes own-group membership secret handshakes. The proposed scheme sup-
ports revocation, but has a number of drawbacks, for instance the fact that it
relies on one-time credentials to achieve untraceability. After this seminal work,
many papers have further investigated the subject of secret handshake, consid-
erably advancing the state of the art. The work by Castelluccia et al. [10] has
shown how, under some specific requirements (namely CA-obliviousness), se-
cret handshakes can be obtained from PKI-enabled encryption schemes. Other
schemes have followed this approach [25,15] offering similar results, albeit with
different nuances of unlinkability. Almost all the schemes in this family support
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revocation of credentials; however the functionalities offered are limited to prov-
ing and verifying membership to a common group.

[14,21] show how leveraging on authenticated key exchanges, we can build Se-
cret Handshakes. Shin and Gligor [21] use password-authenticated key exchanges
to establish a common key, provided that there is a match of one common inter-
est or “wish”. This protocol is very similar to the family of Secure Matchmaking
protocols [4,28]. Protocols in this family support revocation but suffer from a
drawback: the CA cannot exercise any control over who has the right to match
which property. While this is a good feature in matchmaking-like scenarios, it is
an undesirable feature in more sensitive scenarios (see [23]). In addition, schemes
in this family are again limited to proof and verification of membership to a com-
mon group.

An advancement on this front has recently been put forward by Ateniese et
al. [1], who have introduced dynamic matching and Sorniotti et al. [23] who have
proposed the similar concept of dynamic controlled matching. Both schemes allow
more flexible types of handshakes: members of different groups, or more gener-
ally, users holding credentials for different properties, can conduct a successful
secret handshake if credentials match the other user’s matching references. The
difference between the two schemes is the control that the CA retains over the
matching ability. Both schemes are extremely flexible, covering the functionali-
ties of own-group membership secret handshakes and adding dynamic matching;
however, neither of them support revocation of credentials.

A related topic is represented by oblivious signature-based envelopes (OS-
BEs), introduced by Li et al. in [16]; using OSBE, a sender can send an envelope
to a receiver, with the assurance that the receiver will only be able to open it if he
holds the signature on an agreed-upon message. Nasserian and Tsudik in [19] ar-
gue – with no proofs – that two symmetric instances of OSBE may yield a Secret
Handshake: however OSBE does not consider unlinkability and untraceability,
as it requires the explicit agreement on a signature beforehand. Camenisch et
al. have shown in [9] how dynamic accumulators [20,6] can be used to achieve
efficient revocation for anonymous credentials. However dynamic accumulators,
quoting Balfanz [5], are ill-suited for secret handshakes, mainly due to the fact
that when a verifier has checked that a prover’s witness belongs to the accu-
mulator, he has already disclosed the prover’s affiliation and can then selfishly
refuse to reveal his own witness, or can reveal a fake one. Turning accumulator
based asymmetric membership verification into symmetric handshakes is indeed
an interesting open challenge. In addition, it is not possible to control who can
verify what, dynamic matching cannot be supported, and finally, tracing traitors
is not feasible.

The scheme that we present in this paper can reproduce the functionalities of
the different families of secret handshakes that we have discussed in this Section,
with the built-in revocation support. In addition, our scheme supports as well
the existence of multiple CAs, which represent an interesting advancement to
the state of the art of Secret Handshakes.
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3 An Overview of the Solution

In this Section we give the reader an insight on the reasons and choices behind
the actual design of the scheme.

At first, let us describe the notation used in the sequel of the paper. Given
a security parameter k, let G1, G2 and GT be groups of order q for some large
prime q, where the bit-size of q is determined by the security parameter k. Our
scheme uses a computable, non-degenerate bilinear map ê : G1 × G2 → GT for
which the Symmetric External Diffie-Hellman (SXDH) problem is assumed to
be hard. The SXDH assumption in short allows for the existence of a bilinear
pairing, but assumes that the Decisional Diffie-Hellman problem is hard in both
G1 and G2 (see [1] for more details).

We then describe how we represent strings into group elements. Following [7,26],
let g̃

R← G2; let us also choose n + 1 random values {yi}ni=0
R← Z∗

q ; we assign
g̃0 = g̃y0 , g̃1 = g̃y1 , . . . , g̃n = g̃yn . If v ∈ {0, 1}n is an n-bit string, let us define
h(v) = y0 +

∑
i∈V (v) yi ∈ Z∗

q , where V (v) represents the set of indexes i for which
the ith bit of v is equal to 1. We also define H̃(v) = g̃0

∏
i∈V (v) g̃i = g̃h(v) ∈ G2.

Our starting objective is to design a scheme that helps a prover convince a
verifier that she owns the credential for a property; however, the verification will
be successful only for entitled verifiers. The exchange must satisfy the standard
security requirements for Secret Handshakes, detector and impersonator resis-
tance and untraceability of properties and identities. On top of this, we also
want to support revocation of credentials. To this end, we need some means of
secretly “labeling” each credential, so that we can later on reveal the label and
use it as a handle to refuse handshake instances embedding it. In this section we
try to walk the reader through the design of the solution.

Let us assume that g and g̃ are generators of G1 and G2 respectively. Also,
t ∈ Z∗

q is a master secret. Then, given a property p, matching references can be
formed as g̃h(p)t ∈ G2 and given to verifiers; in order to successfully authenticate
as a possessor of property p, a prover must then prove knowledge of gh(p)t ∈ G1.
However, instead of simply giving that value to the prover, we pick a random
value x ∈ Z∗

q , different for every credential, and give x and g(x+h(p)t) to the
prover. g(x+h(p)t) is the credential and x is the aforementioned tag, called iden-
tification handle in the rest of this paper, used to identify credentials that need
to be revoked.

Then, a prover can be authenticated by a verifier as follows: the verifier sends
a challenge ê (g, g̃)m and receives

〈
gr(x+h(p)t), gr

〉
from the prover, where r is

a random number, used by the prover to salt the handshake message. The
prover can compute K = (ê (g, g̃)m)rx and the verifier can compute K ′ =(
ê
(
gr(x+h(p)t), g̃

)
/ê
(
gr, g̃h(p)t

))m
; if the authentication is successful, K and K ′

are the same.
If the credential is to be revoked at some point, all we need to do is reveal

g̃x, called revocation handle in the rest of the paper. This way, the verifier can
verify if the credential used by the prover has been revoked, by checking if
ê
(
gr(x+h(p)t), g̃

)
= ê

(
gr, g̃h(p)t · g̃x

)
holds.
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Two challenges arise: first, it should be impossible to use the value x in order
to trace credentials before they have been revoked; and second, a user should be
forced to send credentials unmodified. The solution presented above respects the
privacy of users: prior to the revocation of a given credential, an attacker cannot
use the identification handle to link two different instances of the handshake to
the same user: it is easy to show that linking the same x through subsequent
instances of the protocol, is equivalent to solving DDH in G1.

However this solution still does not force the attacker to send his credentials un-
modified, which would imply that an attacker can circumvent revocation. In order
to prevent this attack, we also introduce another public parameter W = gw, where
w

R← Z∗
q is kept secret. Each credential is multiplied by a different random number,

for instance gz(x+h(p)t); in addition, the prover also receives g̃z−1
and g̃(zw)−1

. The
verifier then computes K =

(
ê
(
grz(x+h(p)t), g̃z−1

)
/ê
(
gr, g̃h(p)t

))m

. In addition

we require verifier to also verify that ê
(
g, g̃z−1

)
= ê

(
W, g̃(zw)−1

)
.

The protocol introduced in the next Section is not very different from the
simple one that we proposed here. Among the modifications, we include an
additional random number used to also salt the terms g̃z−1

and g̃(zw)−1
, which

would otherwise not be randomized and open up to tracing attacks.

4 RevocationMatching: A Prover-Verifier Scheme with
Revocation Capabilities

RevocationMatching is a protocol wherein a prover can convince a verifier that
she owns a property. The active parties are essentially users, that can behave as
provers and verifiers, and a trusted entity that we will call certification author-
ity (CA). Provers receive from the CA credentials for a given property, allowing
them to convince a verifier that they possess that property. Verifiers in turn
receive from the CA credentials matching references for a given property, which
allow them to verify the possession of that property. In case of compromised
credentials, the CA adds a value called revocation handle to a publicly avail-
able revocation list: this way, verifiers may refuse to interact with users bearing
revoked credentials.

RevocationMatching consists of the following algorithms and protocols:

– Setup: according to the security parameter k, the CA chooses g, g̃, where g
is a random generator of G1 and g̃ of G2. The CA sets e = ê (g, g̃). The
CA also picks w, t

R← Z∗
q and sets W ← gw and T ← g̃t. Finally the CA

picks {yi}ni=0
R← Z∗

q and assigns g0 ← gy0 , g1 ← gy1 , . . . , gn ← gyn and g̃0 ←
g̃y0 , g̃1 ← g̃y1 , . . . , g̃n ← g̃yn ; this way, given a string v, H(v) = gh(v) and
H̃(v) = g̃h(v). The system’s public parameters are {q, G1, G2, g, g̃, W, T, g0,
. . . , gn, g̃0, . . . , g̃n, ê, e}. The values w, t, y0, . . . , yn are instead kept secret by
the CA;
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– Certify: upon user request, the CA verifies that the supplicant user u ∈ U
possesses the property p ∈ P she will later claim to have during the pro-
tocol execution; after a successful check, the CA issues to u the appro-
priate credential, which is made of two separate components: an identi-
fication handle, later used for revocation, and the actual credential. To
hand out the identification handle for a given pair (u, p), the CA picks
the identification handle xu,p

R← Z∗
q , randomly drawn upon each query,

and gives it to the supplicant user. The CA then forms the credential as
a tuple credu,p = 〈Cu,p,1, Cu,p,2, Cu,p,3〉 where Cu,p,1 = gz(xu,p+h(p)(t+h(p))),
Cu,p,2 = g̃z−1

and Cu,p,3 = g̃(zw)−1
, where z ∈ Z∗

q is randomly drawn upon
each query. The user can verify the validity of the credential by checking
that ê(Cu,p,1, Cu,p,2) = ê(gxu,p , g̃) · ê(H(p), T · H̃(p));

– Grant: upon a user’s request, the CA verifies that – according to the policies of
the system – user u is entitled to verify that another user possesses property
p ∈ P . If the checking is successful, the CA issues the appropriate matching

reference matchp =
(
T · H̃(p)

)h(p)

; the user verifies that ê(g, matchp) =

ê(H(p), T · H̃(p));
– Authenticate: let A be a prover and B a verifier. A has credA,p1 and xA,p1

to prove possession of property p1; B holds matchp2 to detect property p2.
The protocol proceeds as follows:
1. B picks m

R← Z∗
q and sends em to A

2. A picks r, s
R← Z∗

q and sends B the tuple
〈
gr, (CA,p1,1)

rs
, (CA,p1,2)

s−1

,

(CA,p1,3)
s−1〉. A locally computes K = (em)rxA,p1

3. B checks whether

ê
(
W, (CA,p1,3)

s−1)
= ê

(
g, (CA,p1,2)

s−1)
(1)

and locally computes

K =

⎛⎝ ê
(
(CA,p1,1)

rs
, (CA,p1,2)

s−1)
ê (gr, matchp2)

⎞⎠m

(2)

At the end of the protocol, A and B share the same key K if p1 = p2.
– Revoke: if the credential for property p of user u ∈ U is to be revoked, the CA

adds the so-called revocation handle revu,p = g̃xu,p to a publicly available
revocation list Lrev. Notice the tight relationship between the identification
handle xu,p and the corresponding revocation handle revu,p = g̃xu,p .

Let us assume that a given user A is using the protocol to convince user
B she owns a property; B receives 〈gr, (CA,p,1)

rs
, (CA,p,2)

s−1

, (CA,p,3)
s−1〉

from A. B behaves as follows: first, she performs the check of Equation 1;
then, before computing the key K, she verifies whether A is using a revoked
credential by checking if the following identity

ê
(
(CA,p,1)

rs
, (CA,p,2)

s−1
)

= ê (gr, matchp · rev) (3)
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is verified with any of the revocation handles rev in the list Lrev. If the
check is successful, B discards the current handshake instance. Notice that
if B does not have the correct matching reference for the received credential,
Revoke would fail altogether; however, so would Authenticate, in which case,
the receiving user would discard the handshake instance anyway. It is clear
that after revocation, credentials can be traced only by users that possess the
matching reference for the property object of that credential; these users were
already potentially able to match the given credential. For other users, past
and future transcripts of handshake instances produced from that credentials
are still untraceable and unlinkable.

Alice : pick r, s, m
R← Z∗

q

Alice −→ Bob :
〈
gr, (CA,p1,1)

rs , (CA,p1,2)
s−1

, (CA,p1,3)
s−1

, em
〉

Bob : pick r′, s′, m′ R← Z∗
q

Bob −→ Alice :
〈
gr′

, (CB,p2,1)
r′s′ , (CB,p2,2)

s′−1
, (CB,p2,3)

s′−1
, em′〉

Alice : check that Equation 1 holds, otherwise abort
Alice : check that Equation 3 is not satisfied with any rev ∈ Lrev,

otherwise abort

Alice : compute K1 =
(
em′)rxA,p1

Alice : compute K2 =

⎛⎝ ê
(
(CB,p2,1)

r′s′ , (CB,p2,2)
s′−1

)
ê (gr′ , matchp2)

⎞⎠m

Bob : check that Equation 1 holds, otherwise abort
Bob : check that Equation 3 is not satisfied with any rev ∈ Lrev,

otherwise abort

Bob : compute K1 =

⎛⎝ ê
(
(CA,p1,1)

rs , (CA,p1,2)
s−1
)

ê (gr, matchp1)

⎞⎠m′

Bob : compute K2 = (em)r′xA,p1

Alice ←→ Bob: mutual proof of knowledge of K1 and K2

Fig. 1. Secret Handshake with Dynamic Controlled Matching

5 Building Secret Handshakes

In this section, we show how RevocationMatching can be used to build a two-
party Handshake scheme. This scheme helps two users share a key in case of
simultaneous successful matching of properties, and gives no clue about one
another’s properties otherwise. The resulting scheme, contrary to many secret
handshake schemes in the state of the art, does not only allow users to verify if
they possess the same property (e.g. if they belong to the same secret group). Our
scheme also supports dynamic matching, as introduced by Ateniese et al. in [1]:
with dynamic matching, users can match properties different from the ones they
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possess. For instance, a member of CIA and a member of MI5 can successfully
authenticate with a secret handshake. Additional use-cases are described in [23].

We actually consider two different flavors of dynamic matching, thus propos-
ing a total of three different schemes (four considering the multiple CA scenario):
in the first scheme, credentials and matching references are issued by the certifi-
cation authority; this way, the CA retains the control over who can prove what
and who can verify what. In the second scheme instead, while credentials are
still issued by the certification authority, matching references can be computed
by users without any required intervention by the CA. We will refer to the first
scheme as Secret Handshake with Dynamic Controlled Matching, and to the
second one as Secret Handshake with Dynamic Matching.

5.1 Secret Handshake with Dynamic Controlled Matching

In this scheme, users receive credentials and matching references from the certi-
fication authority. Matching references can only be computed by the CA. Notice
that they do not necessarily refer to the same property as credentials; this way
we effectively achieve Secret Handshake with dynamic controlled matching [23].
However, notice that the CA may enforce the policy by which only users own-
ing a given property will receive the matching reference for it, thus achieving
own-group membership secret handshakes too [5,10,18,25,27].

The secret handshake is achieved by running two symmetric instances of
RevocationMatching, wherein each of the two users plays in turn the role of
prover and verifier. Each user will then end up with two keys, one computed
in the role of prover and the other one computed in the role of verifier. We
borrow the idea of computing two separate keys at each user’s side from Ate-
niese et al. [1]. To seal the handshake, the two users have to prove one another
knowledge of both keys simultaneously, for instance trying to establish a secure
channel with a key resulting from the hash of the concatenation of both keys.

Let us assume that two users, Alice and Bob, want to perform a Secret Hand-
shake and share a key if the Handshake is successful. Alice owns the tuple
〈credA,p1 , matchp2 , xA,p1〉 and Bob owns 〈credB,p2 , matchp1 , xB,p2〉. Figure 1
shows how the handshake is carried out.

At the completion of the protocol, Alice and Bob share the same keypair if
and only if each user’s credential matches the other user’s matching reference. If
not, one of the two keys, or both, will be different. By requiring them to prove
to one another knowledge of both keys simultaneously, either both users learn
of a mutual matching, or they do not learn anything at all. In particular, they
do not learn – in case of a failed handshake – if just one of the two matchings
have failed, and if so which one, or if both did fail.

5.2 Multiple CA Support

The scheme also supports the existence of multiple CAs. Multiple CAs may be
a requirement when the properties at stake are – for example – membership to
different secret agencies that do not want to delegate the execution of Certify,
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Grant and Revoke for security reasons. In a multiple CA scenario, a handshake
can be successful even in hybrid situations in which Alice has a credential for
property p1 issued from CA1 and a matching reference for property p2 issued
from CA2 and Bob has a credential for property p2 issued from CA2 and a
matching reference for property p1 issued from CA1.

A multiple CA scenario can be supported as follows: one of the CAs picks
{q, G1, G2, g, g̃, T, g0, . . . , gn, g̃0, . . . , g̃n, ê, e}; the values {yi}ni=0

R← Z∗
q and t are

shared among all the CAs. Then the CAs jointly generate W = gw and g̃w−1
,

such that w is unknown: the CAs can achieve this either by using a trusted dealer
or by performing the following joint computation: they organize themselves in
a chain; the first node A picks a

R← Z∗
q and sends to B, the next node, ga and

g̃a−1
; B in turn picks b

R← Z∗
q and sends to the next node gab and g̃(ab)−1

and so
forth until the last node is reached.

Finally, each CA picks a secret value tCA
R← Z∗

q and publishes TCA ← gtCA ; the
public parameters are {q, G1, G2, g, g̃, W, T, TCA1, . . . , TCAn , g0, . . . , gn, g̃0, . . . ,

g̃n, ê, e}; each CA keeps the values {yi}ni=0
R← Z∗

q , t, tCA and g̃w−1
secret.

A given CA forms credentials as credu,p =〈Cu,p,1, Cu,p,2, Cu,p,3〉 where Cu,p,1 =

W z(xu,p+h(p)tCA(t+h(p))), Cu,p,2 =
(
g̃w−1

)z−1

and Cu,p,3 = g̃z−1
; the matching

reference is formed as matchp =
(
T · H̃(p)

)h(p)tCA

. The check of Equation 1

becomes ê
(
W, (Cu,p,2)

s−1)
= ê

(
g, (Cu,p,3)

s−1)
. Users cannot any longer verify

the correctness of credentials and matching reference; for this reason, the issuing
CA also gives the value H(p)tCA to the supplicant user; the user can verify that
ê (H(p)tCA , g̃) = ê

(
TCA, H̃(p)

)
and then use H(p)tCA instead of H(p) in the

verification equations.
Revocation handles must be published in a common revocation list, where all

CAs publish revocation handles. The list is common, public, and there is nothing
that gives away which CA is behind which revocation value. For the rest, the
scheme behaves as before.

5.3 Secret Handshake with Dynamic Matching

In the scheme described in this Section, each user can freely compute matching
references of his choice: this way we effectively achieve dynamic matching, in
the sense first defined by Ateniese et al. [1]. The secret handshake with dynamic
matching is essentially equal to the scheme introduced in Section 5.1, with a
substantial difference: the parameter T is now equal to g̃, and consequently, t = 1;
as a consequence, we simplify Cu,p,1 = gz(xu,p+h(p)) and matchp = H̃(p) = g̃h(p).
Notice that now users are able to create matching references at their will.

With this scheme, two users with valid credentials can interact expressing
wishes on the property certified by the other user’s credential; wishes are rep-
resented by self-generated matching references. Both users at the end of the
protocol share a common key pair if they both own credentials for the property
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expected by the other user. Notice that this change makes it impossible to sup-
port multiple CAs, as specified in Section 5.2.

Revocation handles are also formed differently, as revu,p = g̃xu,p+h(p). Conse-

quently when a user B receives from user A
〈
gr, (CA,p,1)

rs , (CA,p,2)
s−1

,

(CA,p,3)
s−1〉, B verifies whether A is using a revoked credential by checking

if ê
(
(CA,p,1)

rs
, (CA,p,2)

s−1)
= ê (gr, rev) is verified with any of the revocation

handles rev in the list Lrev. If the check is successful, B discards the current
handshake instance and declines any further interaction.

The change in how the revocation handle is constructed can be explained
through the fact that in this case every user has the right to match any prop-
erty. A revoked credential therefore loses its untraceability to every other user.
However, the revocation handle still does not reveal anything about the nature
of the certified property.

6 Security Analysis

Before proceeding further, we state two well-known hard problems:

Definition 1 (Decisional Diffie-Hellman Problem). We say that the Deci-
sional Diffie-Hellman Problem (DDH) is hard if, for all probabilistic, polynomial-
time algorithms B,

AdvDDHB := Pr[B(g, ga, gb, gx) = true if x = ab]− 1
2

is negligible in the security parameter. We assume a random choice of g ∈ G1,
a, b ∈ Z∗

q; x is equal to ab with probability 1
2 and is otherwise equal to a random

value in Z∗
q/{ab} with the same probability.

Definition 2 (Bilinear Decisional Diffie-Hellman Problem). We say that
the Bilinear Decisional Diffie-Hellman Problem (BDDH) is hard if, for all proba-
bilistic, polynomial-time algorithms B,

AdvBDDHB := Pr[B(g, ga, gb, gc, g̃, g̃a, g̃b, g̃x) = true if x = abc]− 1
2

is negligible in the security parameter. We assume a random choice of g ∈ G1,
g̃ ∈ G2 and a, b, c ∈ Z∗

q; x is equal to abc with probability 1
2 and is otherwise

equal to a random value in Z∗
q/{abc} with the same probability.

We also introduce the following new intractability assumption; we will give evi-
dence of its hardness in Appendix A. In demonstrating the complexity assump-
tion, we follow the approach presented by Victor Shoup in [22] and extensively
used by the research community [2,8,17]. As an example, the well known SDH
assumption was thus proved by Boneh and Boyen in [8].

Definition 3. [SM Problem] Let w, y, m ∈ Z∗
q, let g be a generator of G1 and g̃

be a generator of G2. Let oracle Ow,y(·) take input x ∈ Z∗
q and produce output

gz(x+y), g̃z−1
and g̃(zw)−1

where z is randomly drawn from Z∗
q upon each oracle

query. We say that the SM Problem is hard if, for all probabilistic, polynomial-
time algorithms A,
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AdvSMA := Pr[A(g, gw, g̃, g̃y, g̃m, Ow,y) =
a, as(x∗+y), g̃(sw)−1

, g̃(s)−1
, ê (a, g̃)mx∗ ]

such that (x∗) /∈ O, is negligible in the security parameter; a ∈ G1. O is the
set of queries A makes to oracle Ow,y. This probability is taken over random
choice of g ∈ G1, g̃ ∈ G2, and w, y, m ∈ Z∗

q . a ∈ G1 can be chosen freely by the
adversary.

Intuitively, the assumption tells that it is unfeasible to compute a tuple〈
gs(x∗+y), g̃s−1

, g̃(sw)−1
〉

for a new value x∗ and prove knowledge of it, yet having
an oracle that can do so for any query. The new assumption is generic enough to
be of independent interest, for instance to realize signature protocols or oblivious
signature-based envelopes. Our assumption could have had a simpler formulation
had we chosen not to embed the proof of knowledge of x∗ in it.

6.1 Security Analysis of RevocationMatching

In this section we analyze the security requirements of RevocationMatching. We
base our security analysis on the security definitions and attacker model pre-
sented by Balfanz and colleagues in [5] and Ateniese and colleagues in [1].

At first, we briefly recapitulate some preliminary definitions: a complete de-
scription of the security definition and attacker model can be found in [5,1]. A
protocol instance is the interaction of two users according to the rules of the pro-
tocol. We say that during a protocol instance a prover sends a handshake tuple.
The handshake tuple contains a property, in that it is formed out of a credential
certifying possession of a property, which is then the object of the protocol in-
stance. At the end of the Authenticate algorithm, users are asked to prove to one
another knowledge of a locally computed key. It is a necessary prerequisite that
the proof of knowledge does not – in any way – leak the actual value of the key.
If the computed key is the same for both user, we say that the prover has proved
to or convinced a verifier that she owns the property object of the handshake;
and that the verifier has verified or detected the presence of a property within a
handshake tuple during a protocol instance.

To analyze the security of RevocationMatching, we identify four different ob-
jectives that an attacker might have. An attacker may:

– detection: try as a verifier to detect a prover’s property without the appro-
priate matching reference;

– impersonation: try as a prover to convince a verifier that she possesses a
given property without the appropriate property credential;

– linking: try to link different protocol executions to a given user;
– tracing: try to link different protocol executions to a given property;

The sequel of this Section analyzes RevocationMatching with respect to these four
requirements. Appendix B presents proofs of the claims made in this Section.
Notice that the proofs do not rely on random oracles.
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Untraceability. Consider an adversary A whose goal is to check if two hand-
shake tuples contain the same property, without owning the legitimate matching
reference; an adversary with this ability can link together the different users that
own credentials for a given property. In order to be general enough we consider
an active adversary that engages in protocol executions; this adversary clearly
also includes a passive one who just eavesdrops protocol instances.

To capture the attacker we define a game called TraceProperty. TraceProperty
develops as follows:

– Setup: during the setup phase, the challenger generates the parameters of
the system;

– Query: during the query phase, A can receive valid credentials, matching
references and revocation handles, and can engage in RevocationMatching
protocol execution with legitimate users;

– Challenge: then the challenger randomly chooses two properties p1 and p2

and sends A two handshake tuples, one for property p1 and the other for
property p2; both properties have not been object of a query in the previous
phase; A is then challenged to return true if p1 = p2;

Lemma 1. Suppose that there is a probabilistic, polynomial time adversary A
with an advantage

AdvTracePropertyA := Pr[A wins the game TraceProperty]− 1
2

in the TraceProperty game. Then a probabilistic, polynomial time algorithm B
solves the Decisional Diffie-Hellman problem (DDH) with the same advantage.

A proof of Lemma 1 can be found in Appendix B.1.

Unlinkability. Consider an adversaryA whose goal is to check if two handshake
tuples come from the same user; an adversary with this ability can link together
the same user over multiple protocol execution. In order to be general enough we
consider an active adversary that engages in protocol executions; this adversary
clearly also includes a passive one who just eavesdrops protocol instance.

Let us first of all notice that there are two values that can be linked to a
user, the identification handle xu,p, and z, the random number drawn at each
call to Certify and used to salt the credentials. Between the two, xu,p is the only
one that can be traced over two different handshake tuples. Indeed, tracing the
value z is impossible, since over successive handshake tuples, it always appears
multiplied by a different random value s chosen at random by the user himself.
To capture the attacker we define a game called TraceUser. TraceUser develops
as follows:

– Setup: during the setup phase, the challenger generates the parameters of
the system;

– Query: during the query phase, A can receive valid credentials, matching
references and revocation handles, and can engage in RevocationMatching
protocol execution with legitimate users;
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– Challenge: eventually A receives from the challenger two handshake tuples
containing the same property from users u1 and u2, u1 and u2 being chosen
randomly by the challenger; A is challenged to return true if u1 = u2;

Lemma 2. Suppose that there is a probabilistic, polynomial time adversary A
with an advantage

AdvTraceUserA := Pr[A wins the game TraceUser]− 1
2

in the TraceUser game. Then a probabilistic, polynomial time algorithm B solves
the Decisional Diffie-Hellman problem (DDH) with the same advantage.

A proof of Lemma 2 can be found in Appendix B.2.

Detector Resistance. Let A be an adversary whose goal is to engage in
RevocationMatching protocol instances and – acting as a verifier – to detect
the prover’s property, without owning the appropriate matching reference. We
call detector resistance the resilience to such kind of an attacker.

To capture this kind of attack, we define a game called Detect; Detect develops
as follows:

– Setup: during the setup phase, the challenger generates the parameters of
the system;

– Query: the adversaryA queries the system for an arbitrary number of tuples
〈credui,pi , matchpi , xui,pi , revui,pi〉 for any given pairs (ui, pi) ∈ U × P .
She is then free to engage in RevocationMatching protocol execution with
legitimate users;

– Challenge: A chooses a property p∗ for which she does not own the match-
ing reference. Also the challenger chooses a property p◦, among the ones for
which the adversary does not have a matching reference. Then, challenger
and adversary engage in a protocol execution; the challenger – acting as a
prover – presents a credential for property p◦ and the adversary – acting as
a verifier – wins the game if she can correctly whether or not p◦ = p∗;

This game is very similar to TraceProperty, and the reduction to prove it is a
straightforward adaptation of the one used to prove Lemma 1. Indeed an adver-
sary A who has an advantage on the detection of a property without the ap-
propriate matching reference (Detect game) can clearly link together properties
over multiple handshake instances (TraceProperty game) by repetedly detecting
the property in each of them and linking after the detection.

Impersonation Resistance. Let A’s goal be the impersonation of a user own-
ing a non-revoked credential for a given property. To capture this attacker’s goal
we define the a game called Impersonate, which develops as follows:

– Setup: during the setup phase, the challenger generates the parameters of
the system;
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– Query: the adversaryA queries the system for an arbitrary number of tuples
〈credui,pi , matchpi , xui,pi , revui,pi〉 for any given pairs (ui, pi) ∈ U × P .
She is then free to engage in RevocationMatching protocol execution with
legitimate users; A eventually decides that this phase of the game is over.
The challenger then issues revocation handles for each credential handed out
to the attacker in the previous phase, thus revoking them;

– Challenge:A then declares p∗ ∈ P which will be the object of the challenge;
A is then required to engage in a RevocationMatching instance with the
challenger, and wins the game if she can output the correct key computed
acting as a prover (notice that the same is required in [1,5]); in order to
successfully win the game, it must not be possible for the challenger to abort
the handshake due to the fact that the credentials used by the attacker have
been revoked;

Notice that the game covers a wide range of attacks. Recall that the attacker
receives a number of credentials during the query phase. The attacker can win
the game in two ways: (i) forge a brand new credential or (ii) use an old credential
yet circumventing revocation. Let us set Xu,p = xu,p + h(p)(t + h(p)). When the

attacker is challenged, she produces the tuple
〈
gr, grsXu∗,p∗ , g̃s−1

, g̃(sw)−1
〉
. If we

define the set

QA = {Xu,p ∈ Z∗
q : A has received gzXu,p , g̃z−1

, g̃(zw)−1
during the query phase}

then (i) implies Xu∗,p∗ /∈ QA and (ii) implies Xu∗,p∗ ∈ QA. We then define
two different games: Impersonate1 is the aforementioned Impersonate game when
Xu∗,p∗ /∈ QA, and Impersonate2 when Xu∗,p∗ ∈ QA.

Lemma 3. Suppose that there is a probabilistic, polynomial time adversary A
with an advantage

AdvImpersonate1A := Pr[A wins the game Impersonate1]

in the Impersonate1 game. Then a probabilistic, polynomial time algorithm B
solves the SM Problem with the same advantage.

Lemma 4. Suppose that there is a probabilistic, polynomial time adversary A
with an advantage

AdvImpersonate2A := Pr[A wins the game Impersonate2]

in the Impersonate2 game. Then a probabilistic, polynomial time algorithm B
solves the Bilinear Decisional Diffie-Hellman Problem (BDDH) with the same
advantage.

Appendixes B.3 and B.4 present the proofs of Lemmas 3 and 4, respectively. The
presence of two different games to prove the same security requirement is justified
by the fact that the two games cover all possible scenarios, with no possibility of
hidden attacks. Indeed, either the credential produced by the attacker belongs
to a set or it does not, and both cases are covered.
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6.2 Security Analysis of Secret Handshake with Dynamic
Controlled Matching

In Section 5.1 we showed how to construct a protocol for Secret Handshake with
dynamic controlled matching. The security requirements that have been identi-
fied for RevocationMatching in the previous Section must still hold unmodified
for Secret Handshake. In the analysis of the security of secret handshake we
require, as in Section 6.1, that the proof of knowledge of the keys does not –
in any way – leak their actual value. In addition, we require that users prove
to each other knowledge of both keys simultaneously. The same is required by
other protocols in the state of the art, for instance in [1]. Examples of how this
can be achieved can be found in [13].

Under these assumptions, it is straightforward how the security games and
proofs devised for the latter can be adapted for SecretHandshakes: indeed untrace-
ability and unlinkability games stay the same. As for detector and impersonation
resistance, the proofs of Section 6.1 tell us that an adversary is not able to run a suc-
cessful single instance of RevocationMatching acting as a rogue prover or verifier;
as a consequence, given that a successful Secret Handshake requires two successful
symmetric instances of RevocationMatching, an attacker acting as a rogue prover,
verifier or both cannot have success in either of these two games.

6.3 Security Analysis of Secret Handshake with Dynamic Matching

In Section 5.3 we presented a scheme that achieves secret handshake with dy-
namic matching, wherein users can freely compute matching references, thus
being able to match any property they want from another user. As in the pre-
vious Section, we require users to prove knowledge of both keys simultaneously,
without leaking any information about them.

Let us first of all make some general considerations about the nature of the
protocol. User A has the right to engage in an arbitrary number of protocol ex-
ecutions with any user B. If A has a legitimate credential for the wish of B (the
matching reference generated by B), and guesses correctly the property object of
the B’s credential, then she has legitimately disclosed the challenger’s property. If
she is successful twice, we might say that she has been able to trace the property
over two different protocol instances. Both situations are acceptable as they do
not mean that a user, by simply performing secret handshake repeatedly, trying
all possible matching references, will eventually discover another user’s creden-
tial. Indeed, by requiring users to prove to one another knowledge of both keys,
the protocol assures that if A does not have a valid credential for B’s matching
reference, A has no point in trying exhaustively all possible matching references
to discover B’s credential: one of the two instances of RevocationMatching would
always fail and so would the handshake.

Among the security requirements sketched in Section 6.2, the ones related
to the untraceability of identities and untraceability of properties are still the
same, and the games and proofs provided in Section 6.1 still hold unchanged.
As for impersonation resistance, Impersonate2 does not apply any longer, since
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revocation handles are now formed as g̃xu,p+h(p); it is therefore impossible for
an attacker to reuse already received credentials, yet circumventing revocation.
Impersonate1 instead remains unchanged and so does its proof.

Finally, the requirement of detector resistance vanishes, since users are explic-
itly allowed to freely match any property by computing matching references at
their will. However, as we pointed out before, a successful detection requires the
user to own a credential for the other user’s wish.

6.4 Security Analysis of a Multiple CA Scenario

Due to space restrictions we do not include the proofs of security of a multiple-
CA scenario, but leave them for an extended version of the paper; nonetheless,
we give here a sketch of the security analysis.

The handshake tuples produced in a multiple CA scenario are the same as
in the normal case, therefore the security proofs can be easily adapted from the
ones presented in the Appendixes. It remains to demonstrate that colluding CAs
cannot forge credentials and matching references from a target CA∗. Forging
Cu,p,1 = gzw(xu,p+h(p)tCA∗ (t+h(p))) from gw and and gtCA∗ intuitively breaks the
computational Diffie-Hellman problem; forging matchp = (T ·H̃(p))h(p)tCA∗ from
gtCA∗ intuitively breaks the SXDH assumption, since there is no isomorphism
between G1 and G2.

In addition, notice that upon a failed handshake, the information about the
CA who generated the credential is not leaked; moreover, an adversary can-
not trace credentials based on the CA who generated them; a similar game to
TraceUser or TraceProperty can be created to show this: tracing the value tCA

in gzwrs(xu,p+h(p)tCA∗ (t+h(p))) from gr and gtCA intuitively breaks the decisional
Diffie-Hellman problem.

7 Conclusion and Future Work

In this paper we have presented a novel protocol called RevocationMatching,
and showed how with it, we can support revocation in each of the different ver-
sions of Secret Handshake known in literature, own-group membership, dynamic
matching and dynamic controlled matching. In the study of the security of the
protocol, we have discovered an interesting new complexity assumption; we plan
to analyze in more details its relationship with other complexity assumptions as
well as its possible use in signature schemes and OSBE schemes. Moreover, we
intend to study more closely dynamic accumulators: although they appear not
to be perfectly suited for symmetric handshakes, they represent an interesting
alternative when revocation requirements clash with untraceable credentials.
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A Security of the New Assumption in Generic Groups

In what follows we will provide evidence as to the hardness of the problem in-
troduced in Definitions 3, by proving a lower bound on the computational com-
plexity under the generic group model. The generic group model is a theoretical
framework for the analysis of the success of algorithms in groups where the rep-
resentation of the elements reveals no information to the attacker. The most
popular is the one presented by Victor Shoup [22]. The model has been used to
provide evidence as to the hardness of several computational problems [2,8,17].

Internally, the simulator represents the elements of G1 as their discrete loga-
rithms relative to a chosen generator. To represent the images of the elements of
G1 for the attacker, we use a random one-to-one mapping ξ1 : Z∗

q → {0, 1}�log2q	,
where q is the group order. For instance, the group element ga is represented
internally as a, whereas the attacker is given the external string representation
ξ1(a) ∈ {0, 1}�log2q	. We similarly define a second mapping ξ2 : Z∗

q → {0, 1}�log2q	

to represent G2, and a third mapping ξT :→ {0, 1}�log2q	 to represent GT . The
adversary communicates with the oracles using the string representation of the
group elements exclusively. Notice that the adversary is given q = |G1| = |G2| =
|GT |.

The following theorem establishes the unconditional hardness of the SM prob-
lem in the generic bilinear group model. Our proof uses a technique similar to
the one adopted by Ateniese et al. in [2].

Theorem 1. Suppose A is an algorithm that is able to solve the SMproblem in
generic bilinear groups of order q, making at most qG oracle queries for the group
operations in G1, G2, and GT , the oracle Ow,y(·) and the bilinear pairing ê, all
counted together. Suppose also that the integers w, y, m ∈ Z∗

q and the encoding
functions ξ1, ξ2, ξT are chosen at random. Then, the probability ε that A on
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input (q, ξ1(1), ξ1(w), ξ2(1), ξ2(y), ξ2(m)) produces in output (ξ1(r), ξ1(rs(x∗ +
y)), ξ2((sw)−1), ξ2((s)−1), ξT (rx∗m)) with x∗ not previously queried to Ow,y, is

bounded by ε ≤ (qG + 5)2

q
= O(q2

G/q).

Proof. Consider an algorithm B that plays the following game with A.
B maintains three lists of pairs L1 = {(F1,i, ξ1,i) : i = 1, . . . , τ1}, L2 =

{(F2,i, ξ2,i) : i = 1, . . . , τ2} and LT = {(FT,i, ξT,i) : i = 1, . . . , τT }, such that,
at step τ in the game, τ1 + τ2 + τT = τ + 5. The entries F1,i, F2,i and FT,i

are polynomials with coefficients in Z∗
q . The entries ξ1,i, ξ2,i, ξT,i will be all the

strings given out to the adversary.
The lists are initialized at step τ = 0 by setting τ1 = 2, τ2 = 3, τT = 0 and

assigning F1,1 = 1, F1,2 = W , F2,1 = 1, F2,2 = Y and F2,3 = M where W , Y
and M are indeterminants. The corresponding ξ1,. and ξ2,. are set to random
distinct strings. In what follows we describe how B answers A’s query:

Group operations: A may request a group operation in G1 as a multiplica-
tion or as a division. Before answering a G1 query, the simulator B starts by
incrementing the τ1 counter by one. A gives B two operands ξ1,i, ξ1,j with
1 ≤ i, j < τ1, and a multiply/divide selection bit. To respond, B creates a
polynomial F1,τ1 ← F1,i±F1,j . If the result is identical to an earlier polyno-
mial F1,l for some l < τ1, the simulator B duplicates its string representation
ξ1,τ1 ← ξ1,l; otherwise, it lets ξ1,τ1 be a fresh random string in {0, 1}�log2q	,
distinct from ξ1,1, . . . , ξ1,τ1−1. The simulator appends the pair (F1,τ1 , ξ1,τ1)
to the list L−1 and gives the string ξ1,τ1 back to A. Group operation queries
in G2 and GT are answered in a similar way, based on the lists L2 and LT

respectively.
Pairing: A pairing query consists of two operands ξ1,i and ξ2,j with 1 ≤ i ≤ τ1

and 1 ≤ j ≤ τ2 for the current values of τ1 and τ2. Upon receipt of such a
query from A, the counter τT is incremented. The simulator then computes
the product of polynomials FT,τT ← F1,i · F2,j . If the same polynomial was
already present in LT , i.e., if FT,τT = FT,l for some l < τT , then B simply
clones the associated string ξT,τT ← ξT,l, otherwise it sets ξT,τT to a new
random string in {0, 1}�log2q	, distinct from ξT,1, . . . , ξ1,τT −1. The simulator
then adds the pair (FT,τT , ξT,τT ) to the list LT , and gives the string ξT,τT to
A.

Oracle O: Let τO be a counter initialized to 0 and O an empty set. At the
beginning of any oracle query, A inputs x ∈ Z∗

q ; to start, B adds x to the
set O and increments the counter τ1 and τO by one, and the counter τ2 by
two, choosing a new indeterminant ZτO ; it then sets F1,τ1 ← ZτO(x + Y ); it
also sets F2,τ2−1 ← Z−1

τO
and F2,τO ← (ZτOW )−1. If the same polynomials

were already present in L1 or L2, i.e., if F1,τ1 = F1,l for some l < τ1, or,
for j ∈ {0, 1}, F2,τ2−j = F2,l′ for some l′ < τ2, then B simply clones the
associated string ξ1,τ1 ← ξT,l, ξ2,τ2−j ← ξ2,l′ ; otherwise it sets the strings
ξ1,τ1 and ξ2,τ2−j to distinct random values in {0, 1}�log2q	, different from the
other strings already contained in the lists. The simulator then adds the
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pairs (F1,τ1 , ξ1,τ1) to the list L1 and (F2,τ2−j , ξ2,τ2−j) to the list L2, giving
the strings ξ1,τ1 and ξ2,τ2−j to A.

We assume that the SXDH assumption holds, therefore we do not create any
isomorphism between G1 and G2 or vice versa.

When A terminates, it returns the tuple 〈ξ1,α, ξ1,β, ξ2,γ , ξ2,δ, ξT,k〉 where 1 ≤
α, β,≤ τ1, 1 ≤ γ, δ ≤ τ2 and 1 ≤ k ≤ τT . Let F1,α, F1,β , F2,γ , F2,δ and FT,k be
the corresponding polynomials in the lists L1, L2 and LT , and gα, gβ, g̃γ , g̃δ,
ê (g, g̃)k the corresponding elements in G2

1 ×G2
2 ×GT .

In order to exhibit the correctness of A’s answer, B should check that the
system of equation ⎧⎪⎪⎪⎨⎪⎪⎪⎩

(
ê(gβ , g̃γ)
ê(gα, g̃y)

)m

= ê (g, g̃)k

ê (g, g̃γ)
ê (gw, g̃δ)

= 1

(4)

(5)

is verified. Let us set α = r, k = rx∗m and γ = s−1, for some integers r, x∗, s ∈
Z∗

q . If the above system is verified, we can rewrite gα = gr, gβ = grs(x∗+y),
g̃γ = g̃(s)−1

, g̃δ = g̃(ws)−1
, ê (g, g̃)k = ê (g, g̃)rx∗m; if x∗ /∈ O the attacker has

produced a valid answer, according to Definition 3.
In order to verify the system above within the simulation framework, B

computes {
FT,∗ = (F1,β · F2,γ − F1,α · Y )M − FT,K

FT,◦ = F2,γ − F2,δ ·W
(6)
(7)

To proceed with our demonstration, first of all we show that it is not possible
that FT,∗ = FT,◦ = 0 for every value of W , Y , M and Zi, 1 ≤ i ≤ τO. This result
implies that the success of A in the game must depend on the particular values
assigned to W , Y , M and Zi.

Let us first observe that the polynomials F1,α, F1,β are by construction formed
as

F1,α = α0 + α1W +
τO∑
i=1

(α2,iZi(xi + Y ))

F1,β = β0 + β1W +
τO∑
i=1

(β2,iZi(xi + Y ))

where xi is the element of Z∗
q queried upon the i-th query to the oracle O. The

polynomials F2,γ and F2,δ instead are formed as

F2,γ = γ0 + γ1Y + γ2M +
τO∑
i=1

(γ3,iZ
−1
i + γ4,i(ZiW )−1)

F2,δ = δ0 + δ1Y + δ2M +
τO∑
i=1

(δ3,iZ
−1
i + δ4,i(ZiW )−1)
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Plugging these equations back in Equation 7, gives us

γ0 + γ1Y + γ2M +
τO∑
i=1

(γ3,iZ
−1
i + γ4,i(ZiW )−1) =

δ0W + δ1WY + δ2WM +
τO∑
i=1

(δ3,iZ
−1
i W + δ4,iZ

−1
i ) (8)

If the attacker wins the game, Equation 8 must be symbolically equal to zero;
simplifying all the unique terms, we are left with

τO∑
i=1

(γ3,iZ
−1
i ) = W

τO∑
i=1

(δ4,i(ZiW )−1) (9)

from which we conclude that F2,γ =
τO∑
i=1

(γ3,iZ
−1
i ).

Let us now consider Equation 6, which can be rewritten as⎛⎝⎛⎝ τO∑
i=1

(β0γ3,iZ
−1
i + β1γ3,iZ

−1
i W +

τO∑
j=1

(β2,jγ3,iZ
−1
i Zj(xj + Y )))

⎞⎠−
(

α0Y + α1WY +
τO∑
i=1

(α2,iZiY (xi + Y ))

))
M = FT,K

(10)

If the attacker wins the game, Equation 10 must be symbolically equal to zero.
First of all, we notice that each term of the left hand of the equation contains
M . Therefore, from FT,K we delete all the terms that do not contain M . Then,
we simplify M on both sides. Further more, we simplify all the unique terms,
ending up with β2,jγ3,i(xj + Y )− α0Y = K0.

Now, α0 = β2,jγ3,i since they are the only coefficients of Y . Then K0 =
β2,jγ3,ixj . However this is not a valid solution, xj is the j-th value queried to
oracle O, and thus belongs to O. We therefore conclude that it is impossible for
the attacker to win the game for every value of W , Y , M and Zi; instead this
depends on a lucky instantiation of such variables.

The simulator B therefore chooses random values w̄, ȳ, m̄, z̄1, . . . , z̄τO for each
of the variables W , Y , M and Zi. Let us analyze the probability that the attacker
has won the game given the chosen assignment of the variables: this happens if
(i) no two non-identical polynomials in the lists L1, L2 and LT assume the
same value and (ii) if the assignment satisfies FT,∗ = FT,◦ = 0. If (i) is true,
B’s simulation was flawed because two group elements – that were equal – have
been presented as distinct to the attacker.

Summing up, the probability of success of the attacker is bounded by the
probability that any of the following equations holds:
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F1,i(w̄, ȳ, m̄, z̄1, . . . , z̄τO)− F1,j(w̄, ȳ, m̄, z̄1, . . . , z̄τO) = 0, i, j s.t. F1,i 
= F1,j

(11)

F2,i(w̄, ȳ, m̄, z̄1, . . . , z̄τO)− F2,j(w̄, ȳ, m̄, z̄1, . . . , z̄τO) = 0, i, j s.t. F2,i 
= F2,j

(12)

FT,i(w̄, ȳ, m̄, z̄1, . . . , z̄τO)− FT,j(w̄, ȳ, m̄, z̄1, . . . , z̄τO) = 0, i, j s.t. FT,i 
= FT,j

(13)

FT,∗(w̄, ȳ, m̄, z̄1, . . . , z̄τO)− 1 = 0 (14)
FT,◦(w̄, ȳ, m̄, . . . , z̄τO)− 1 = 0 (15)

For fixed i, j each non-trivial polynomial 11, 12, 13 has degree at most 1 and it
vanishes with probability ≤ 1/q. Polynomials 14 and 15 have too degree at most
1 and vanish with probability ≤ 1/q. We sum over all the (i, j) to bound the
overall success probability ε of the attacker A as ε ≤

(
τ1
2

)
1
q +

(
τ2
2

)
1
q +

(
τT

2

)
1
q + 2

q .

Since τ1 + τ2 + τT ≤ qG + 5, we end up with ε ≤ (qG + 5)2

q
= O(q2

G/q) ��

B Proofs of Security of RevocationMatching

In this section we present proofs of the security claims presented in Section 6.1.

B.1 Proof of Lemma 1

Proof. We define B as follows. B is given an instance
〈
g, ga, gb, gσ

〉
of the DDH

problem in G1 and wishes to use A to decide if σ = ab. The algorithm B sim-
ulates an environment in which A operates, using A’s advantage in the game
TraceProperty to help compute the solution to the DDH problem.

Setup. Here is a high-level description of how the algorithm B will work. B uses
g as the one received from the DDH challenge, picks and publishes the public
parameters according to the rules of the protocol.

Queries. Atfirst,AqueriesB for anarbitrarynumber of tuples 〈credui,pi , matchpi ,
xui,pi , revui,pi〉 for any given pairs (ui, pi) ∈ U × P . The queries can be adaptive.
B answers truthfully abiding by the rules of the protocol.

Challenge. At the end of this phase A initiates two handshake instances by
sending em1 and em2 ; B picks x1, x2, s1, s2, r

R← Z∗
q and p

R← P and generates
two handshake tuples as follows:〈

gr, grs1(x1+h(p)(bt+h(p))), g̃(s1)
−1

, g̃(s1w)−1
〉

〈
ga, gas2(x2+h2(p))gσs2h(p)t, g̃(s2)

−1
, g̃(s2w)−1

〉
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Analysis of A’s response. It is straightforward to verify that, if A wins the
game, B can give the same answer to solve the DDH problem. Indeed, if A wins
the game, she is able to decide if ∃α ∈ Z∗

q such that{
(r(x1 + h(p)(bt + h(p)))− rα)m1 = rm1x1

(a(x2 + h2(p)) + σh(p)t− aα)m2 = am2x2

(16)

If A’s answer is positive, it means that the system of equations is verified. Then
we can solve the first equation as α = h(p)bt+h2(p), and plugging in the second
equation B can verify that σ = ab, which is the positive answer to the DDH
problem. If not, B can give the negative answer to DDH. ��

B.2 Proof of Lemma 2

Proof. We define B as follows. B is given an instance
〈
g, ga, gb, gσ

〉
of the DDH

problem in G1 and wishes to use A to decide if σ = ab. The algorithm B sim-
ulates an environment in which A operates, using A’s advantage in the game
TraceCredential to help compute the solution to the DDH problem.

Setup. Here is a high-level description of how the algorithm B will work. B uses
g as the one received from the DDH challenge, picks and publishes the public
parameters according to the rules of the protocol.

Queries. A can query B for an arbitrary number of tuples 〈credui,pi , matchpi ,
xui,pi , revui,pi〉 for any given pairs (ui, pi) ∈ U×P . The queries can be adaptive.
B answers truthfully abiding by the rules of the protocol.

Challenge. At the end of this phase,A chooses a property p∗; B picks r, s1, s2
R←

Z∗
q and prepares two handshake tuples as follows:〈

gr, grs1(b+h(p)(t+h(p))), g̃(s1)
−1

, g̃(s1w)−1
〉

〈
ga, gs2σgas2(h(p)(t+h(p))), g̃(s2)

−1
, g̃(s2w)−1

〉
Analysis of A’s response. It is straightforward to verify that, if A wins the
game, B can give the same answer to solve the DDH problem. Indeed, if A
wins the game, she is able to tell if both handshake messages contain the same
identification handle x∗. Let us assume this is the case. Then, the same revocation
handle rev∗ = g̃x∗ can be used to revoke both credentials. Then, performing a
check as described in Equation 3, the following system{

r(b + h(p)(t + h(p))) − rh(p)(t + h(p)) = rx∗

σ + a(h(p)(t + h(p))) − ah(p)(t + h(p)) = ax∗
(17)

should hold.
Then we can solve the first equation as x∗ = b, and plugging in the second

equation B can verify that σ = ab, which is the positive answer to the DDH
problem. If not, B can give the negative answer to DDH. ��
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B.3 Proof of Lemma 3

Proof. We define B as follows. B is given an instance 〈g, gw, g̃, g̃y, g̃m, Ow,y〉
of the SM problem and wishes to use A to produce the tuple 〈gr, grs(x∗+y),

g̃s−1
, g̃(ws)−1

, ê (g, g̃)rx∗m〉, such that x∗ has not been queried to O. The algo-
rithm B simulates an environment in which A operates.

Setup. Here is a high-level description of how the algorithm B will work. B
sets public parameters g, g̃ as the ones received from the challenge. It then sets
W ← gw, T ← g̃y; the other public parameters are set according to the rules of
the protocol.

Queries. A queries B for an arbitrary number of tuples 〈credui,pi , matchpi ,
xui,pi , revui,pi〉 for any given pairs (ui, pi) ∈ U×P . The queries can be adaptive.

Upon a query for (ui, pi), B answers picking xui,pi

R← Z∗
q ; B then queries the ora-

cle Ow,y providing xui,pi
+h2(p)

h(p) as input, adding the value xui,pi
+h2(p)

h(p) to the setO

of queries to oracle O. The output of the oracle is (gz(
xui,pi

+h2(p)
h(p) +y), g̃z−1

, g̃(zw)−1
).

B then assigns Cui,pi,1 ←
(

gz(
xui,pi

+h2(p)
h(p) +y)

)h(p)

, Cui,pi,2 ← g̃z−1
, Cui,pi,3 ←

g̃(zw)−1
, matchpi =

(
T H̃(p)

)h(p)

, revui,pi = g̃xui,pi and gives the requested pa-
rameters to A. The attacker can successfully perform all the checks mandated
by the protocol; his view is therefore undistinguishable from a standard protocol
instantiation.

Challenge. A then declares that this phase of the game is over. B therefore
revokes each of the credentials A requested in the previous phase. A then chooses

a property p∗ ∈ P . A receives from B the matching reference
(
T H̃(p)

)h(p)

of
property p∗. B challenges A by sending ê (g, g̃m) and A answers the challenge
with the tuple 〈gα, gβ , g̃γ , g̃δ, ek〉.
Analysis of A’s response. If A wins the game, B can check that ê

(
gw, g̃δ

)
=

ê (g, g̃γ) and that
(

ê(gβ, g̃γ)
ê(gα, matchp∗)

)m

=

(
ê(gβ , g̃γ)

ê
(
gα, g̃h(p∗)(y+h(p∗))

))m

= ek as

mandated by the Authenticate step of RevocationMatching described in Section 4.
Let us set α = r, k = rx∗m and γ = s−1, for some integers r, x∗, s ∈ Z∗

q

unknown to B. Then, from the first Equation we derive that δ = (ws)−1 and
from the second Equation we derive that β = rs(x∗ + h(p∗)(y + h(p∗))). Notice
that by the definition of the game, the attacker has not received a credential
containing x∗+h(p∗)(y+h(p∗)); factoring h(p∗) we derive that x∗+h2(p∗)

h(p∗) cannot
belong to the set O. Therefore we conclude that, if A wins the game, B can
provide

〈
(gα)h(p∗)

, gβ , g̃γ , g̃δ, ê (g, g̃)k · ê (gα, g̃m)h2(p∗)
〉

as an answer to the SM
problem. ��
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B.4 Proof of Lemma 4

Proof. We define B as follows. B is given an instance
〈
g, ga, gb, gc, g̃, g̃a, g̃b, g̃σ

〉
of the BDDH problem and wishes to use A to decide if σ = abc. The algorithm
B simulates an environment in which A operates.

Setup. Here is a high-level description of how the algorithm B will work. B sets
g, g̃ as the ones received from the BDDH instance; T is set to be equal to g̃at. It
then sets all the remaining parameters as mandated in the rules of the protocol.

Queries. A queries B for an arbitrary number of 〈credui,pi , matchpi ,
xui,pi , revui,pi〉 for any given pairs (ui, pi) ∈ U × P . The queries can be

adaptive. B answers by picking for each query xui,pi , z
R← Z∗

q , and giv-
ing Cui,pi,1 ← gz(xui,pi

+h(pi)(at+h(pi))), Cui,pi,2 = g̃z−1
, Cui,pi,3 = g̃(zw)−1

,
matchpi = g̃h(pi)(at+h(pi)), revui,pi = g̃xui,pi to the attacker. The attacker can
successfully perform all the checks mandated by the protocol; his view is there-
fore undistinguishable from a standard protocol instantiation. B adds to a list
V the tuple (g̃xui,pi

+h(pi)(at+h(pi)), ui, pi, xui,pi) for each query of A and keeps it
for later use.

Challenge. A then declares that this phase of the game is over. B therefore
revokes each credential requested by A in the previous phase. A then declares
property p∗ ∈ P . B challengesA by sending ê (g, g̃)bc andA answers the challenge
with the tuple 〈gα, gβ , g̃γ , g̃δ, ê (g, g̃)k〉.
Analysis of A’s response. If A wins the game, B can check that(

ê(gβ , g̃γ)
ê(gα, matchp∗)

)bc

= ê (g, g̃)k and that ê
(
gw, g̃δ

)
= ê (g, g̃γ) as mandated by

the Authenticate step of RevocationMatching described in Section 4.
Let us set α = r, k = rx∗bc, γ = s−1 and β = rsv∗ for some integers

r, x∗, s, v∗ ∈ Z∗
q unknown to B. Then, from the first Equation we derive that

δ = (ws)−1.
We know by definition that the attacker has already received Cu◦,p◦,1 = gzv∗ =

gz(xu◦,p◦+h(p◦)(at+h(p◦))) during the previous query phase. Consequently, the re-
vocation handle revu◦,p◦ = g̃xu◦,p◦ has also been published. B can easily recover
u◦ and p◦, since she can check for which g̃xu◦,p◦+h(p◦)(at+h(p◦)) in the list V ,
ê(gβ, g̃γ) = ê(gα, g̃xu◦,p◦+h(p◦)(at+h(p◦))) holds and look up the respective h(p◦)
and xu◦,p◦ .

If p◦ = p∗, then A has lost the game, since a successful answer of the attacker
cannot be revoked by any of the issued revocation handles, whereas if p◦ = p∗,
the credential can be revoked with revu◦,p◦ . Then it must be that p◦ 
= p∗; in
this case x∗ = xu◦,p◦ + h(p◦)(at + h(p◦))− h(p∗)(at + h(p∗)).

Then k = rbc(xu◦,p◦ + h2(p◦) − h2(p∗)) + rabct(h(p◦) − h(p∗)). However B
is still not able to use A’s answer to solve the BDDH problem since B cannot
compute ê (g, g̃)rbc(xu◦,p◦+h2(p◦)−h2(p∗)). Using the generalized forking lemma [3]
presented by Bagherzandi et al. and used to a similar end in [24,11], we know
that A can be executed twice with the same random tape that produced r but
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with different parameters. In particular, in the forked instance B can replace
T = g̃at by g̃t. Therefore from the forked instance, B recovers

ê (g, g̃)rbc =
(
ê (g, g̃)k′)(xu◦,p◦+h(p◦)(t+h(p◦))−h(p∗)(t+h(p∗)))−1

and is finally able to decide if σ = abc by checking if

ê (gα, g̃σ) =

⎛⎜⎝ ê (g, g̃)k(
ê (g, g̃)rbc

)(xu◦,p◦+h2(p◦)−h2(p∗))

⎞⎟⎠
((h(p◦)−h(p∗))t)−1

�
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Abstract. In this paper, we propose cryptanalysis of the hash function
Cheetah-256. Cheetah is accepted as a first round candidate of SHA-3
competition hosted by NIST [1], but it is not in the second round.

First, we discuss relation between degrees of freedom injected from
round message blocks and round number of a pseudo-collision attack on
hash functions with S boxes and MDS diffusion. A pseudo-collision attack
on 8-round Cheetah-256 can be derived by trivially applying original
rebound techniques.

Then, we propose a rebound differential path for semi-free start colli-
sion attack on 12-round Cheetah-256 and an observation of the neutral
bytes’ influence on state values. Based on this observation, algebraic
message modifications are designed using the neutral bytes and total
complexity is reduced to 224. This is a practical rebound attack.

Keywords: Hash function, collision attack, rebound attack, message
modification, Cheetah-256, SHA-3 candidates.

1 Introduction

The SHA-3 competition hosted by NIST aims to find a new cryptographic hash
standard as a replacement of SHA-2. The Cheetah hash function [3] is selected
as a first round candidate of the SHA-3 competition [1], but it didn’t pass to the
second round.

In FSE 2009, Florian Mendel et al. proposed a powerful tool “rebound attack”
[4] for cryptanalysis of hash functions with AES-like [2] SPN designs. In this
paper, we improved rebound attack and applied it to Cheetah-256. When there
are degrees of freedom injected from round message blocks, we can extend round
number and reduce complexity of the inbound steps. Then we analyzed the
algebraic relation between neutral bytes and the state values and found a solution
of message modification. Complexity of the semi-free start collision attack was
significantly reduced to 224. Semi-free start collision pairs can be found in a few
minutes. The practical result is given in Appendix A.

Another method to improved rebound techniques is proposedby FlorianMendel
et al. in SAC 2009 [6]. In SAC 2009, we also proposed a rebound attack on another
first round candidate of SHA-3 competition, the LANE hash function [7].
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This paper is organized as follows. Compression function of Cheetah-256 is
briefly described in section 2. In section 3, we discussed the relation between
degrees of freedom and the round number of the attack. In section 4, we described
all details of the semi-free start collision attack on 12-round Cheetah-256. Section
5 is the conclusion.

2 Specification of Cheetah-256 Compression Function

The Cheetah-256 hash function uses iterative structure with block counters and
a last block permutation. We will not describe padding rules and last block
permutation here since they do not influence this attack. In this section, we will
briefly describe compression function of Cheetah-256.

Compression function of Cheetah-256 uses a 16-round 256-bit block cipher
in Davies-Meyer Mode. The 1024-bit message block is used as the key of this
block cipher. Message Schedule follows an AES-like procedure. Message block is
treated as a byte array of size 8×16 and the round message blocks K0, K1, ..., K15

for each round are generated as in Figure 1.

Fig. 1. Message Schedule of Cheetah-256

Figure 2 shows how these blocks are used in the iteration. In this paper,
BlockCounter is not considered, since we only deal with the first block and
BlockCounter=0 for the first block.

Fig. 2. Compression Function of Cheetah-256

Here we define all operations used in Cheetah-256.

– SB,S. The non-linear operation SB(S) applies S-Box to each byte of the
state. The S-box is the same as the one used in AES.

– SR4,SR8. The permutation SR4 and SR8 rotates bytes of the 4 × 8 and
8 × 16 state leftwards cyclically. Shift vector defines offset amount of the
rotation for each row. Shift vector is (0,1,3,4) for SR4 and (0,1,2,3,5,6,7,8)
for SR8.
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– MC4,MC8. The diffusion layer MC4 and MC8 multiplies the 4 × 8 and
8 × 16 state by a MDS matrix over GF (28). Matrices A4 and A8 are also
defined here.

MC4(s) = A4 · s, A4 =

⎛⎜⎜⎜⎝
02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎞⎟⎟⎟⎠

MC8(s) = A8 · s, A8 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

02 0c 06 08 01 04 01 01
01 02 0c 06 08 01 04 01
01 01 02 0c 06 08 01 04
04 01 01 02 0c 06 08 01
01 04 01 01 02 0c 06 08
08 01 04 01 01 02 0c 06
06 08 01 04 01 01 02 0c

0c 06 08 01 04 01 01 02

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
– P. Combination of SR4 and MC4.

P (·) = MC4 · SR4(·)

– AC. Addition of the round constant to the first column.

mi,0+ = S[4 ∗ r + i], 0 ≤ i ≤ 3

where S stands for the S-box and r is the round index in message expansion.
– K. Addition of the round message block to the internal state.

3 Rebound Attack and Round Message Blocks

In this section, we discuss how degrees of freedom injected from round message
blocks can be used to extend round number of a standard rebound differential
path. A rebound differential path of pseudo-collision attack on 8-round Cheetah-
256 cab be derived using this technique.

3.1 Rebound Attack on 5-Round Whirlpool

In FSE 2009, Florian Mendel et al. proposed the original 4-round rebound differ-
ential path for Whirlpool [4]. In this path, degrees of freedom from round message
blocks are not used. According to message expansion used in Whirlpool, input
chain value of the compression function can be determined from any one of the
expanded message block. So only one round message block is free to use. Once
a block is used, this rebound differential path can be extended to 5 rounds. In
the following figure, feedback operations are omitted.
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Fig. 3. 4-round and 5-round Rebound Differential Paths for Whirlpool

As shown in Figure 3, inbound steps of a rebound differential path, one SB
operation is chosen as the matching point. Note if no degrees of freedom are
available, there would be only one SB in the inbound steps. In Figure 3, the
rightmost SB in the inbound steps is chosen. Dark background color is used
to indicate the chosen SB. Any SB in the inbound steps can be chosen as the
matching point.

A principle of the inbound steps is that internal state differences must prop-
agate with probability of 1 on both sides of the chosen SB. All linear operations
are perfect for difference propagation. The only problem is S-Box. Degrees of
freedom from round message blocks are used to make sure difference can pass
through SB operations. The method is to fix state value before and after the SB
operation. Fixed value and difference can make this S-box behaves linear.

In Figure 3, difference from left side of the inbound steps propagates to the
right direction. When it comes to the first SB, the state value are randomly
chosen and fixed. So the state after SB is fixed too, both in difference and
value. Then the difference continues to the chosen SB, where it matches with
the difference from right side. There are 64 active S-boxes in the matching point,
so differences from both sides can match with probability of 2−64.

When a match is found, at least two values can be selected for each S-box.
So there will be at least 264 values for the matching states, which are called
the starting points. Then we calculated the state values backwards. In Figure 3,
starting point and our previously fixed state value meet at an AK operation.
State differences on both sides of AK are the same. State values can be connected
by setting round message block to XOR value of both sides of AK.

Dotted lines are used to indicate the connections between S-boxes and round
message blocks. One message block can extend the inbound steps for one round.
Since only one message block is available in Whirlpool, we can attack 4 + 1 = 5
rounds, which could be extended to semi-free start near-collision attack on 7
rounds.
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3.2 Pseudo-Collision Attack on 8-Round Cheetah-256

From the message expansion used in Cheetah-256, we know round message blocks
K4i, K4i+1, K4i+2 and K4i+3 are independent from each other. By trivially apply-
ing original rebound techniques, a pseudo-collision attack on 8-round Cheetah-
256 can be derived using degrees of freedom in K4, K5, K6 and K7. This attack
can be extended to pseudo-near-collision attack on 10 rounds.

Fig. 4. 8-round Rebound Differential Path for Cheetah-256

A pseudo-collision attack on 6-round Cheetah-512 can be derived in a similar
way, and extended to pseudo-near-collision attack on 8(.5) rounds. The attack
on 8.5-round Cheetah-512 is mentioned in the report slides of Florian Mendel et
al. at the FSE 2009 conference.

Mario Lamberger et al. have proposed an improved way to use degrees of
freedom in the round message block [8]. With their techniques, the inbound
steps can be extended for three rounds using only one message block. In this
paper, we use different techniques.

4 Semi-Free Start Collision Attack on 12-Round
Cheetah-256

In a semi-free start collision attack, differences are injected from message blocks.
It is quite different from the original rebound attack on Whirlpool. Here we
propose a differential path for 12-round Cheetah-256 in Figure 5.

Before we describe details about the attack, notations that will be used in
this section are given below.

– S[·] : GF (28)→ GF (28). The S-box.
– D(a, b) = {x ∈ GF (28)|S[x] + S[x + a] = b}.
– R(a, b) = {y ∈ GF (28)|S−1[y] + S−1[y + b] = a} = {S[x]|x ∈ D(a, b)}.
– a � b⇔ D(a, b) 
= ∅. a � b⇔ D(a, b) = ∅.
– d∗(a, b) Random element in D(a, b), which is defined iff a � b.
– r∗(a, b) Random element in R(a, b), which is defined iff a � b.
– si

K−→ s′i
S−→ s′′i

SR4−−−→ s′′′i
MC4−−−→ si+1. State values.

– si(m, n). The byte at m-th row and n-th column in si.
– �si, �s′i, �s′′i . State differences.
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Fig. 5. 12-round Rebound Differential Path for Cheetah-256

– �si ��sj iff for all 0 ≤ m ≤ 3 and 0 ≤ n ≤ 7, �si(m, n) ��sj(m, n).
– (i, j) The j-th neutral byte of the column indexed by i of neutral bytes in

K ′′
4 and K7 as indexed in Figure 6.

– di,j Difference for modification in neutral byte (i, j).
– δi Difference for modification required in the i-th active byte as indexed in

Figure 8.

4.1 Detailed Steps of the Attack

This attack can be described in the following steps:

Step 1: We start from randomly choosing non-zero values for �K6 and �K3.
Step 2: Choose random differences in �s′′2 and �s8, the left and right ends
of the inbound steps. According to message expansion, �K8 always follows the
pattern of d·(06, 0c, 02, 01)T for certain d. We choose difference�s8(1, 6) = 0c·D,
�s8(2, 6) = 02 · D and �s8(3, 6) = D for random D in order to increase the
probability of difference propagation �s8 →�s′8 from 2−24 to 2−8.
Step 3: Propagate differences from both sides and meet at the chosen S-box in
the 5-th round. The fixing value techniques are used to make S-boxes behave
linear. This is similar to original rebound attack.
Step 4: Once differences from both sides matches, which means �s′4 � �s′′4 .
Select a starting point, then K4, K5, K6 and K7 can be calculated.
Step 5: Calculate �K3 from �K6 and the values in the first column of K6 and
K7. If �K3 equals our previously chosen one in step 1, we have succeeded in
finding a correct inbound differential path. The probability is 2−24.
Step 6: For each value fulfilling the correct inbound path, difference propaga-
tions are calculated backwards and forwards in the outbound steps. Probability
for every outbound steps are given in Figure 5.
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4.2 Neutral Bytes and Message Modifications

In K4 and K7, degrees of freedom are used only in the positions of active bytes.
Let K ′

4 = P−1(K4), we have s′4 = P (s′′3) + K4 = P (s′′3 + K ′
4). There are 10

neutral bytes in K ′
4 and 16 neutral bytes in K7. Figure 6 shows positions of the

neutral bytes and the bytes in other round message blocks influenced by them.
Let K ′′

4 = MC4−1(K4) and we denote neutral bytes by order of column in K ′′
4

and K7 from 1 to d.

Fig. 6. Neutral Bytes in K4,K7 and the Influence on Round Message Blocks

Neutral bytes can be modified to increase probability of the outbound steps
shown in Figure 5. Modifications on the neutral bytes in K4 and K7 will affect
the state value in two ways as shown in Figure 7.

First, modifications in K4 and K7 will directly change state values in s′′3 and
s′7, but only in the non-active bytes which will not affect active bytes in s′′2 and
s′8. Second, K3 and K8 are changed due to message expansion and they will affect
the active bytes in s′′2 and s′8. So the active bytes in s′′2 and s′8 will be affected
only once. This simple algebraic relation between neutral bytes and state values
allows us to modify certain bytes of the state values as we want.

Message modifications can be described in three phases. After each phase, the
state values will be updated due to the modifications on message blocks.

Phase I: modify �K3. �K3 are affected by neutral bytes (7, 1), (7, 2) and
(7, 3). In order to make sure the modification succeed, we need to change steps
of the attack described in Section 4.1.
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Fig. 7. Influence of Neutral Bytes on Active State Bytes

In Step 1, we choose a possible�K3 instead of a random one. Since�K1,�K2

and �K3 are calculated from �K6 and the values in the first column of K6 and
K7. Now we can calculate the difference in the state SB(K3).

A−1
8 ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

�K6(2, 0)
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3a

ab

78
54
c2
81
66
ca

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
· �K6(2, 0)

Choose random �K ′
3 such that

�K ′
3(0, 5) � c2 · �K6(2, 0)

�K ′
3(1, 6) � 81 · �K6(2, 0)

�K ′
3(2, 7) � 66 · �K6(2, 0)

When a match is found, we calculate values of all the message blocks and states
from s′′2 to s′8. In order to modify �K3 to �K ′

3, we need to introduce three
differences on the active bytes of SB(K3) by d7,1, d7,2 and d7,3 as in the following
equation.⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

?
?
?
?

S[K3(0, 5)] + r∗(�K ′
3(0, 5), c2 · �K6(2, 0))

S[K3(1, 6)] + r∗(�K ′
3(1, 6), 81 · �K6(2, 0))

S[K3(2, 7)] + r∗(�K ′
3(2, 7), 66 · �K6(2, 0))
?

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= A−1

8 ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0

d7,1

0
d7,2

d7,3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Fig. 8. Indexes of Active Bytes in s′′2 and s′8

which can be simplified to⎛⎜⎝d7,1

d7,2

d7,3

⎞⎟⎠ =

⎛⎜⎝78 3a ca

54 ab 3a

c2 78 ab

⎞⎟⎠
−1

·

⎛⎜⎝S[K3(0, 5)] + r∗(�K ′
3(0, 5), c2 · �K6(2, 0))

S[K3(1, 6)] + r∗(�K ′
3(1, 6), 81 · �K6(2, 0))

S[K3(2, 7)] + r∗(�K ′
3(2, 7), 66 · �K6(2, 0))

⎞⎟⎠
Modify the 7-th column of neutral bytes with d7,1, d7,2 and d7,3 will change�K3

to �K ′
3 with probability of 1.

Now all degrees of freedom in column 7 of neutral bytes are used, therefore
all difference in message blocks are fixed. We have to modify state difference
instead of message difference in the following phases.

Phase II: modify s′′
2 and s′

8. In this section, we describe how to modify
s′′2 and s′8 in order to get our desired difference of s′2 and s9 in the backward
and forward directions simultaneously. We use δ to denote the difference from
message modifications. Active bytes in s′′2 and s′8 are indexed from 0 to 11 as
shown in Figure 8.

The same as in phase I, we need to change certain steps in the attack for
message modifications. In Step 2, we first choose a random byte of difference
in �s′′1 and calculate �s2 = P (�s′′1). Let �s′2 = �s2 and choose random
differences in positions (0, 0), (1, 1), (2, 2), (3, 3) of �s′2. Then �s′′2 is chosen such
that �s′2 ��s′′2 . Now we can always modify s′′2 and change�s′2 to what we have
chosen in the 5-th column.

We can’t always modify s′2 and s9 to cancel �K2 and �K8 since differences
in the message blocks are dynamic during the attack and can’t be pre-computed.
They have to be satisfied by chance. We will talk about this Section 4.3.

We have found a solution of message modifications without using neutral bytes
in column 9, b, c, d. Degrees of freedom in neutral byte columns we use are listed
in Table 1.

From now on, we use δ to denote the difference for modification. δi stands for
the difference we need in the i-th active byte shown in Figure 7. Determining all
{di,j} in the neutral bytes from {δi} is like solving an non-linear equation group.
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Table 1. Degrees of Freedom in the Neutral Byte Columns of Index

Index of neutral byte column 1 2 3 4 5 6 8 a

Degrees of freedom 2 3 1 1 2 1 2 3

Table 2. The Order of Solving Equations in Phase II

Step Active bytes
Index of neutral Index of Degrees of freedom

byte columns used fixed column left in each column

1 2 3 4 5 6 8 a

2 3 1 1 2 1 2 3

1 0 1 7 1 2 3 3 1 2 0 1 2 1 2 3

2 2 3 6 8 6 1 2 0 1 2 0 1 3

3 4 4 5 [6] 4 1 2 0 0 1 0 1 3

4 5 [3 4] 5 5 1 2 0 0 0 0 1 3

5 6 1 2 [3 4] 1 0 1 0 0 0 0 1 3

6 9 2 [3 4] 2 0 1 0 0 0 0 0 3

7 8 [1 2 3 4] 8 8 0 0 0 0 0 0 0 3

8 10 [5 6] a - 0 0 0 0 0 0 0 2

9 11 [6] a - 0 0 0 0 0 0 0 1

The order we solve these equations is shown in Table 2. In this table, the
first column is the set of active bytes. The neutral byte columns that influence
these active bytes are listed in the second column. The third column shows
the column of neutral bytes that will be fixed after we solve the equation of
each row. Numbers in “[·]” stands for indexes of the fixed neutral byte columns.
When degrees of freedom in a column of neutral bytes are all used, differences
for modification in this column can be fixed. Underlined numbers stand for used
neutral byte columns in this step.

First, δ0, δ1 and δ7 requires degree of freedom of three bytes from column
1,2,3. Since there is only one byte in column 3, d3 can be determined. Second,
δ2 and δ3 require degree of freedom of two bytes from column 6,8. Since there is
only one byte in column 6, d6 is determined. Similar techniques are used for the
rest of the equations.

Following this order, we used 14 neutral bytes to introduce our desired dif-
ferences in 12 active bytes. The byte (a, 3) is left unused, which will be used to
modify s1 in phase III. We leave details of solving the equation group described
in the Appendix B.

Once we have solved all equations and get {di,j} for i ∈ {1, 2, 3, 4, 5, 6, 8, a},
all values of round message blocks and states from s′1 to s′9 will be updated
once more. Now, we have �s′9 = 0 and there will be only one byte of difference
in s1.
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Phase III: modify s1. By observing the influence of neutral bytes given in
Figure 6, we found an interesting property of (a, 3) = K7(3, 4). Modifying (a, 3)
won’t change K3 and the active bytes in both s′2 and s′8. So the difference propa-
gations satisfied by phase II will not be destroyed. But (a, 3) will affect K2(0, 4),
which allows us to control the value in SB(s′1) and change the value of �s′1 to
cancel �K1.

After all three phases of message modifications, a semi-free start collision of
12-round Cheetah-256 compression function is found.

4.3 Complexity of This Attack

In the inbound steps, there are 32 active S-boxes at the matching point. So, the
probability is 2−32 and complexity is 232. We have found a way to reduce the
complexity of inbound match when there is degree of freedom injected.

In Figure 5, �s′5 is calculated from �s6. So, we can match the �s′4 and
P−1(�s5) column by column. If a column is not matched, we go back to the
related bytes in �s′5 and change them. Each column can be matched with com-
plexity 24 and there are 8 columns. So total complexity of our improved inbound
steps is 8 · 24 = 27. The same technique has been used in the cryptanalysis of
Twister [5].

Now for the outbound steps. If the message modification is possible, proba-
bility of the outbound steps can be increased to 2−8. We have to cancel �K8 by
chance, according to the way we choose �s8 described in Section 4.1. Now we
only need to find the probability that the message modification is possible.

As we have shown in Section 4.2, phase I is always possible because of the way
we choose �K ′

3. In phase II and phase III, differences in round message blocks
are dynamic. Message modification is possible iff:

�K2(0, 0) ��s′2(0, 0),�K2(1, 1) ��s′2(1, 1),�K2(2, 2) ��s′2(2, 2),
�K2(3, 3) ��s′2(3, 3),�s′8(2, 1) ��s′′8(2, 1),�s′8(3, 2) ��s′′8(3, 2),
�s′8(0, 6) ��s′′8(0, 6),�s′8(1, 7) ��s′′8(0, 7),�K1(3, 0) ��s′′1

where �s′′8 = P−1(�K9). Since there are 9 conditions, the probability is 2−9.
So the total complexity of this attack is 27 · 28 · 29 = 224.

5 Conclusion

In this paper, we proposed a rebound differential path of 12-round Cheetah-256
compression function for semi-free start collision attack. We also designed the
algebraic message modifications using degrees of freedom in the neutral bytes
and reduced the total complexity of the attack to 224. The attack is implemented
and collision pairs can be found in a few minutes.

A generated collision pair is shown in Table 3 of Appendix A. Byte order in this
table is the same as in the internal round state and the first expanded message
block.
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The positions of different bytes in message pairs are underlined. The last block
permutation is not applied. Our results do not hurt collision resistance of the
full Cheetah-256.

Since degrees of freedom in the inbound steps and 6 neutral bytes are not
used, it’s possible to improve this attack or attack more rounds. This will be the
future work.
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Appendix A

Table 3. Semi-free Start Collision for 12-round Cheetah-256

Initial Value

FB 58 EB B5 88 7C 31 DE

4A 94 CE 32 CF 13 64 81

EE 21 A9 0E 0D 70 3D EC

C7 E0 08 6D F2 89 45 AD

M1

7E 34 45 79 84 42 4F 78 FB DB 14 15 31 9C CF 0C

CA 6D 45 3C 0A CE 4B 5D 83 07 A2 DB 02 FE 83 20

51 AE 1A DF 6D A0 C4 CE F9 E0 03 AD 10 A8 D6 A2

80 B2 22 AC 28 B0 CA 48 7B 02 25 45 D0 52 11 69

E9 52 01 BA 60 97 4F EA 0B 2D 8A FD A1 51 48 CB

E4 7A 14 E5 52 5D E4 FE 51 76 56 0C 29 F3 9D 19

79 61 C1 49 9E 22 5C 7B AB F5 25 55 97 5F BC 13

31 AA 32 03 20 1A 09 8E 13 4E 7D 13 F4 52 A5 49

M2

7E 34 45 79 84 42 4F 78 0E DB 14 15 31 9C CF 0C

CA 6D 45 3C 0A CE 4B 5D 83 7A A2 DB 02 FE 83 20

51 AE 1A DF 6D A0 C4 CE F9 E0 7B AD 10 A8 D6 A2

80 B2 22 AC 28 B0 CA 48 7B 02 25 36 D0 52 11 69

E9 52 01 BA 60 97 4F EA 0B 2D 8A FD A1 5F 48 CB

E4 7A 14 E5 52 5D E4 FE 51 76 56 0C 29 F3 69 19

79 61 C1 49 9E 22 5C 7B AB F5 25 55 97 5F BC 78

0D AA 32 03 20 1A 09 8E 13 4E 7D 13 F4 52 A5 49

Hash Value

9E 51 1F 09 6D FC 7D 00

6F 03 57 EF CD 05 22 F8

CF 4E 81 CB FD A6 21 6C

38 33 45 C8 A5 20 A3 CA

Appendix B

Here, we explain details of solving the equations in Phase II of the message
modification. First, calculate all desired differences δi in the active bytes of s′′2
and s′8:

δ0 = s′′2(0, 0) + r∗(�K2(0, 0),�s′′2(0, 0))
δ1 = s′′2(1, 1) + r∗(�K2(1, 1),�s′′2(1, 1))
δ2 = s′′2(2, 2) + r∗(�K2(2, 2),�s′′2(2, 2))
δ3 = s′′2(3, 3) + r∗(�K2(3, 3),�s′′2(3, 3))
δ4 = s′′2(0, 4) + r∗(�s′2(0, 4),�s′′2(0, 4))
δ5 = s′′2(1, 4) + r∗(�s′2(1, 4),�s′′2(1, 4))
δ6 = s′′2(2, 4) + r∗(�s′2(2, 4),�s′′2(2, 4))
δ7 = s′′2(3, 4) + r∗(�s′2(3, 4),�s′′2(3, 4))
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Let �s′′8 = P−1(�K9),

δ8 = s′8(2, 1) + d∗(�s′8(2, 1),�s′′8(2, 1))
δ9 = s′8(3, 2) + d∗(�s′8(3, 2),�s′′8(3, 2))

δ10 = s′8(0, 6) + d∗(�s′8(0, 6),�s′′8(0, 6))
δ11 = s′8(1, 7) + d∗(�s′8(1, 7),�s′′8(1, 7))

First, for the backward direction of outbound steps, we calculate all differences
in SB(K3) from differences in neutral bytes. The results are shown in Table 4,
where “*” stands for the values we don’t use.

Table 4. Values of δSB(K3)

Now check the first column of s′′′2 .⎛⎜⎜⎜⎝
δ0

δ1

?
δ7

⎞⎟⎟⎟⎠ = A−1
4 ·

⎛⎜⎜⎜⎝
δK3(0, 0)
δK3(1, 0)
δK3(2, 0)

0

⎞⎟⎟⎟⎠⇒
⎛⎜⎝δK3(0, 0)

δK3(1, 0)
δK3(2, 0)

⎞⎟⎠ =

⎛⎜⎝0e 0b 0d

09 0e 0b

0b 0d 09

⎞⎟⎠
−1

·

⎛⎜⎝δ0

δ1

δ7

⎞⎟⎠
which implies,

S[K3(0, 0)] + S[K3(0, 0) + δK3(0, 0)] = 35 · d3

S[K3(1, 0)] + S[K3(1, 0) + δK3(1, 0)] = 35 · d2,1 + bb · d2,2 + ab · d2,3

S[K3(2, 0)] + S[K3(2, 0) + δK3(2, 0)] = 26 · d1,1 + 43 · d1,2

So, value of d3 can be determined and we have got two equations for columns 1
and 2. We can derive linear equations for the rest columns of s′′′2 with a similar
technique.

Second, for the forward direction to modify s′8, it is a little different. Use active
byte 9 as an example. According to Table 2, before we modify byte 9, columns
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1, 3, 4, 5, 6 of neutral bytes are fixed. The only byte of freedom in column 2 will
be used for active byte 9 which is in the third column of s′8,

A8 ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S[K4(0, 2)] + S[K4(0, 2) + 02 · d2,1 + d2,2 + d2,3]
S[K4(1, 3)] + S[K4(1, 3) + 03 · d3]

S[K4(2, 4)] + S[K4(2, 4) + d4]
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

?
?
?

δK8(3, 2)
?
?
?
?

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
since δ9 = δK8(3, 2), we have,

04 · (S[K4(0, 2)] + S[K4(0,2) + 02 · d2,1 + d2,2 + d2,3]) + S[K4(2, 4)]
+S[K4(2, 4) + d4] + S[K4(1, 3)] + S[K4(1, 3) + 03 · d3] = δ9

⇒ 02 · d2,1 + d2,2 + d2,3 = K4(0, 2) + S−1[S[K4(0, 2)]+

04−1 · (S[K4(2, 4)] + S[K4(2, 4) + d4] + S[K4(1, 3)] + S[K4(1, 3) + 03 · d3] + δ9)]

This is also an linear equation of d2,1, d2,2 and d2,3.
From Table 2, we know two more linear equations of them can be derived from

steps 1 and 5. After applying the same techniques for other neutral columns, we
turned the non-linear equation group into a linear one. All differences di,j can
be calculated by solving the linear equation group.
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Abstract. In this paper, we present the preimage attacks on step-reduced
ARIRANG and PKC98-Hash. Our attacks find the preimages of 35 steps
out of 40 steps of ARIRANG and 80 steps out of 96 steps of PKC98-Hash,
faster than the brute force attack. We applied recently developed tech-
niques of preimage attack. Our attack for ARIRANG is the improvement
of the previous attack, and our attack for PKC98-hash is the first analysis
result of its preimage resistance.

Keywords: SHA-3 candidate, ARIRANG, PKC98-hash, Preimage
Attack, Hash Function, Meet-in-the-middle.

1 Introduction

A cryptographic hash function is a function which generates a fixed-length out-
put for an arbitrary-length message and should satisfy some security notions
such as preimage resistance, 2nd-preimage resistance and collision resistance.
Recently widely trusted and used hash functions such as MD5[12] and SHA-1[2]
have been partially or totally broken. For this reason, NIST is developing one
or more additional hash functions through a public competition, called SHA-
3 project [3], similar to the development process of the Advanced Encryption
Standard (AES)[1].

ARIRANG [6] is one of the 1st round SHA-3 candidates submitted by Chang
et al. but fails to be in the 2nd round. It uses a MD-like domain extender with
a counter and there are 4 versions ARIRANG-224, ARIRANG-256, ARIRANG-
384, and ARIRANG-512 of ARIRANG by their output length. The output of
ARIRANG-224 is just a 32-bit truncation of the output of ARIRANG-256,
and the output of ARIRANG-384 is just a 128-bit truncation of the output of
ARIRANG-512 and the number of steps of each compression function of them
is all 40 steps. Guo et al. published the collision attack for ARIRANG-256, 512
with compression function reduced to 26 steps, and pseudo-collision attack for
full step ARIRANG-224, 384 [8]. And a preimage attack for 33-step reduced
ARIRANG-256, 512 is known [9].

At PKC’98, Shin et al. published a new hash function [17] which uses the
MD(Merkle-Damg̊ard) domain extender and a compression function of 96 steps
for 160-bit hash value. This hash function does not have a name, so we give

D. Lee and S. Hong (Eds.): ICISC 2009, LNCS 5984, pp. 315–331, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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a temporary name PKC98-hash for this hash function. PKC98-hash has been
broken by Chang et al. in collision resistance point of view. They gave a collision
attack of the full step PKC98-hash faster than the birthday attack at SAC
2002 [7]. But there is no result regarding preimage resistance yet.

Both hash functions use the MD-like domain extender and compression func-
tion of Davies-Meyer construction with a sequence of step functions and the
linear message schedule. So the recently developed techniques for the preimage
attack could be applied to them.

Our attacks are based on the framework and techniques of the meet-in-the-
middle preimage attacks on MD4-based hash functions, which have been re-
cently developed [4,5,13,14,15,16]. The chunk-pair-searching technique proposed
for SHA-0 and SHA-1 is applicable to the MD4-like hash functions with linear
message expansion. The initial-structure technique and the partial-fixing tech-
nique for unknown carry behavior were proposed for MD5 [16] and used for
SHA-0 and SHA-1 [5]. In particular, the partial-fixing technique works very ef-
ficiently for SHA-0 and SHA-1.

Our Results
We improve the preimage attack on ARIRANG. Our attack finds the preimages
of 35 steps out of 40 steps of ARIRANG, while the previous attack works for
33 steps. It requires the computational complexity of 2240.94 and the memory of
232 × 9 words for ARIRANG-256, and the computational complexity of 2480.94

and the memory of 264 × 9 words for ARIRANG-512. We also present the first
preimage attack on PKC98-hash. Our attack finds the preimage of 80 steps out
of 96 steps PKC98-hash. It requires the computational complexity of 2152 and
the memory of 216 × 7 words.

Table 1. Preimage attack results on ARIRANG and PKC98-hash

Algorithm Reference Steps Complexity
Computation Memory

ARIRANG-256 [9] 33 2241 232 × 9 words
ARIRANG-256 This paper 35 2240.94 232 × 9 words
ARIRANG-512 [9] 33 2481 264 × 9 words
ARIRANG-512 This paper 35 2480.94 264 × 9 words
PKC98-hash This paper 80 2152 216 × 7 words

2 Descriptions of Hash Functions

We briefly describe the specifications of the ARIRANG and PKC98-hash.

2.1 Hash Function ARIRANG

ARIRANG uses an MD-like domain extender with a counter XOR and the length
of chaining variables and hash values are 256-bit for ARIRANG-256 and 512-bit
for ARIRANG-512.
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Let n be 256 or 512 for ARIRANG-256 and ARIRANG-512 respectively. Then,
for an input message M , a single bit 1 is appended followed by 0s until the
length becomes 7n/4 modulo 2n, and n/4-bit representation of the length of M
is appended to produce the padded message M∗.

The padded message M∗ is partitioned into 2n-bit message blocks (M1, M2,
..., MN). Let compress : {0, 1}n×{0, 1}2n → {0, 1}n be the compression function
of ARIRANG. Then, the hash value HN for the input message M as follows.

1. Hi−1 ← Hi−1 ⊕ ctri

2. Hi ← compress(Hi−1, Mi)

for i = 1, ..., N − 1, where ctri’s are n-bit counters, and ctrN is set to a constant
P . The H0 is the initial values defined in the specification.

Compression Function. The compression function of ARIRANG consists of
40 iterations of a step function step(·, ·, ·), Feedforward1, Feedforward2 and a
message schedule. If (Hi−1, Mi) is the input of the compression function, then
n-bit state is updated as follows.

1. state0 ← Hi−1;
2. statej+1 ← step(statej , w2j , w2j+1) for j = 0, ..., 19;
3. state20 ← state20 ⊕ state0;
4. statej+1 ← step(statej , w2j , w2j+1) for j = 20, ..., 39;
5. Hi ← state40 ⊕ state0;

Message Schedule. The message schedule partition the 2n-bit input message
block Mi into 16 n/8-bit message words m0, ..., m15 and additionally generate 16
n/8-bit message words m16, ..., m32 from m0, ..., m15. The pair of message words
w2j , w2j+1 used in the j-th step, j = 0, ..., 39, is defined by w2j = mσ(2j) and
w2j+1 = mσ(2j+1).

m16, ..., m32 are generated by the following equations.

mσ(20t) =

(
3⊕

k=0

mσ(20t+2k+13) ⊕K4t

)≪5

, (1)

mσ(20t+1) =

(
3⊕

k=0

mσ(20t+2k+12) ⊕K4t+1

)≪11

, (2)

mσ(20t+2) =

(
3⊕

k=0

mσ(20t+2k+3) ⊕K4t+2

)≪19

, (3)

mσ(20t+3) =

(
3⊕

k=0

mσ(20t+2k+2) ⊕K4t+3

)≪31

, (4)

where t = 0, 1, 2, 3 and K0, ..., K15 are n/8-bit constants defined in the
specifications.

The index function σ is defined in the Table 2.
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Table 2. The index function σ

α σ(2α) σ(2α + 1) σ(2α + 20) σ(2α + 21) σ(2α + 40) σ(2α + 41) σ(2α + 60) σ(2α + 61)
0 16 17 20 21 24 25 28 29
1 0 1 3 6 12 5 7 2
2 2 3 9 12 14 7 13 8
3 4 5 15 2 0 9 3 14
4 6 7 5 8 2 11 9 4
5 18 19 22 23 26 27 30 31
6 8 9 11 14 4 13 15 10
7 10 11 1 4 6 15 5 0
8 12 13 7 10 8 1 11 6
9 14 15 13 0 10 3 1 12

Fig. 1. The j-th step function of the compression function of ARIRANG. (The rotation
number are (s1, s2, s3, s4) = (13, 23, 29, 7) for ARIRANG-256, and (s1, s2, s3, s4) =
(29, 41, 53, 13) for ARIRANG-512).

Step Function. The step function step(·, ·, ·) has three inputs statej , w2j and
2j+1 for j=0, 1, ..., 39. In the step function, each statej is partitioned into statej =
aj‖bj‖cj‖dj‖ej‖fj‖gj‖hj , where aj , ..., hj are n/8 bits. On the inputs statej , w2j

and w2j+1, the step function outputs statej+1 via the procedure of Fig. 1.
In the attack procedure, we consider step function step(·, ·, ·) as composition

of two sequential half step functions stepL(·, ·) and stepR(·, ·) by function G and
its corresponding operations. stepL(·, ·) has two inputs statej , w2j and outputs
intermediate state state∗j . And stepR(·, ·) generates the output of the step(·, ·, ·),
statej+1 from state∗j and w2j+1.

In the step function, the function G is the nonlinear function consisting of
8-bit S-boxes and an MDS matrix. We do not give any specific description of
the G function because our attack does not exploit it. For the more detailed
explanation, see [6].

2.2 PKC98-Hash

PKC98-hash uses the MD domain extender and the length of chaining variables
and hash values are 160-bit.
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The input message M is padded and partitioned into 512-bit message blocks
(M1, ..., MN). Let compress : {0, 1}160×{0, 1}512→ {0, 1}160 be the compression
function of PKC98-hash. Then, the hash value HN for the input message M as
follows: Hi ← compress(Hi−1, Mi) for i = 1, ..., N , where the H0 is the initial
values defined in the specification.

Compression Function. The compression function of PKC98-hash consists
of 96 iterations of step function step(·, ·), Feedforward, and a message schedule.
If (Hi−1, Mi) is the input of the compression function, then 160-bit state is
updated as follows. Note that the addition “+” is 32-bit-wise modulo addition
for Feedforward. Similarly, we use “−” to denote 32-bit-wise subtraction.

1. state0 ← Hi−1;
2. statej+1 ← step(statej , wj) for j = 0, ..., 95;
3. Hi ← state0 + state96;
4. return Hi;

Message Schedule. The message schedule partition the 512-bit input message
block Mi into 16 32-bit message words m0, ..., m15 and using these message words,
generate 8 more 32-bit message words m16, ..., m23 by the following equation.

m15+t = (mt ⊕m(2+t) ⊕m(7+t) ⊕m(12+t))≪1, (5)

where t = 0, 1, ..., 15. And each message word wj used in the j-th step is defined
by the following relations.

wj = mρr(j−24r)., (6)

where r = �j/24�. The index function ρ is defined in the Table 3. Note that ρ0

means the identity function.

Table 3. The message word schedule ρ

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

ρ(j) 4 21 17 1 23 18 12 10 5 16 8 0 20 3 22 6 11 19 15 2 7 14 9 13

Step Function. In the step function, each statej is partitioned into statej =
aj‖bj‖cj‖dj‖ej, where aj , ..., ej are 32-bit words. For 0 ≤ r < 4, 0 ≤ k < 24,
let j = 24r + k, then the j-th step function has two inputs statej and wj and
outputs statej+1 according to the following procedure.

1. aj+1 = ej;
2. cj+1 = b≪10

j ;
3. dj+1 = cj ;
4. ej+1 = dj ;
5. bj+1 = (fr(aj , bj , cj , dj , ej) + wj + Kr)≪s(j);
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The rotation number s(j) is dependent on message words. It is determined as
s(j) = wρ3−r(k) mod 32. For 0 ≤ r < 4, Kr is a constant and fr is a nonlinear
boolean function. f1 is equal to f3. Essentially, our attack does not use any
properties of Kr and fr, so we omit the description of them.

3 Techniques for Preimage Attack

In this section, we introduce the techniques used in our preimage attacks.

3.1 Converting a Pseudo-preimage Attack to a Preimage Attack

For a given hash value y, a pair of (x, M) is called a pseudo-preimage if y =
compress(x, M) and x is not equal to the initial value H0.

In Fact 9.99 of [11], an algorithm is given for converting a pseudo-preimage
attack to a preimage attack for the Merkle-Damg̊ard construction. We assume
the computational complexity of the pseudo-preimage attack is 2t and the length
of the chaining variable is n bits. For simplicity, we also assume that each preim-
age generated the preimage attack guarantees one block message is prepended.
Then, the conversion is as follows.

1. For a given hash value H , make a table of 2(n−t)/2 pseudo-preimages (x, M2).
2. Repeat the following procedure at most 2(n+t)/2 times.

(a) Choose a 1-block message M1 randomly, and compute its hash value
x′ = CF(H0, M1).

(b) Check whether there exists an entry such that x′ = x.
(c) If a match is found, then halt and output M = M1||M2 as a preimage

for H .

This conversion requires the computational complexity of 2(n+t)/2+1 (and the
memory of 2(n−t)/2 (x, M2)’s), and so it is meaningful only if t < n− 2.

3.2 Splice-and-Cut and Auxiliary Techniques

Sasaki and Aoki have developed several techniques for finding a preimage by
using a meet-in-the-middle attack.

The splice-and-cut technique was proposed a basic technique for applying a
meet-in-the-middle attack. Regarding the first and the last steps as consecutive,
it consists of dividing the targeted compression function into two chunks of
steps such that each chunk include at least one message word independent to
the opposite chunk, and using a meet-in-the-middle attack to find a pseudo-
preimage. The partial-matching and partial-fixing techniques are used to skip
several steps between chunks. Recently, the initial-structure and partial-fixing for
unknown carry behavior techniques were developed and proposed for attacking
HAS-160[15], MD5[4], and SHA-0/1[5].
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3.3 Computing Kernels of Each Independent Chunk

Since ARIRANG and PKC98-hash have linear message expansions, we can effi-
ciently search for a chunk separation and neutral words by applying the kernel
computing approach proposed for SHA-0 and SHA-1[5].

Let wj be the messageword used in the j-th step for j = 0, ..., l, expanded from a
message block M = [m0 · · · m15]. For simplicity, we assume that w0, w1, ..., wt−1

are used in the first chunk and wt, wt+1, ..., ws−1 are used in the second chunk.
We can regard it as a l × 16 binary matrix W satisfying [w0 · · · wl]T = WMT ,
and have two sub-matrices W1 and W2 satisfying [w0 w1 · · · wt−1]

T = W1M
T and

[wt wt+1 · · · ws−1]
T = W2M

T , respectively. We assume that rank W1= κ1 < 16
and rank W2 = κ2 < 16. Then, W1 and W2 have non-trivial kernels ker W1 and
ker W2, respectively. If we find a pair of binary vectors in kerW1 × kerW2 which
do not share any nonzero bit position, we can set neutral words according to the
vectors. Consider the example explained in [5]. Assume that we are given u and v
as follows. {

u = [1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0]T ∈ ker W1,

v = [0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0]T ∈ ker W2.

Then, W1u = 0 and W2v = 0 holds. It implies that m0 can be used as a neutral
word for the second chunk if we set m0 = m2 = m3, and that m1 can be used
as a neutral word for the first chunk if we set m1 = m4. If both W1 and W2 do
not have full rank but there exists no such pair of (u, v) ∈ kerW1 × kerW2, we
can easily construct an invertible matrix R such that R−1u and R−1v do not
share any nonzero bit position for a (u, v) ∈ ker W1 × ker W2. If such a matrix
is constructed, we have WMT = (WR)

(
R−1MT

)
, and we use W ′ = WR and

M ′T = [m′
0 · · · m′

15]
T = R−1MT as the message expansion and the message

block converted by R.

4 Preimage Attack on ARIRANG

This section describes the attack on ARIRANG reduced to 35 steps. We give
the detailed description of the attack on ARIRANG-256, because the attack on
ARIRANG-512 is similar to that on ARIRANG-256.

4.1 Chunk Separation for 35-Step ARIRANG

We divide a step function into two functions as explained in Section 2.1, and we
omit the rotations and the constant XORs in the message schedule. Then, we
can regard the message schedule as a 80× 16 binary matrix.

Our program finds the chunk separation covering steps 2–36, in total 35 steps.
The first chunk covers from step 4 to step 17L, and the second chunk covers from
step 23R to step 36 and steps 2 and 3. The matrices W1 and W2 corresponding
to two chunks have rank 15, and ker W1 and ker W2 have the following non-zero
vectors u and v, respectively.
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{
u = [1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0]T ,

v = [1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0]T .
(7)

Since W1 and W2 are not independent, we construct a 16× 16 invertible binary
matrix R satisfying⎧⎪⎪⎨⎪⎪⎩

[m′
0 · · · m′

15]
T = R−1MT ,

m′
0 ⊕m′

1 = m0, m
′
1 ⊕m′

12 = m12, m
′
0 = m4,

m′
j = mj−1 for j = 2, 3, and 4,

m′
j = mj for j = 5, ..., 11, 13, ..., 15.

(8)

The transformed message expansion WR, described in the previous section is
shown in Fig. 2. As shown in Fig. 2, the first chunk includes m′

1 but not m′
0,

and the second chunk includes m′
0 but not m′

1. Hence, by fixing m′
2 to m′

15, the
meet-in-the-middle attack can be performed.

4.2 Partial-Matching Technique for Skipping 6 Steps

In the meet-in-the-middle attack, results of two chunks must be compared effi-
ciently. Although 6 steps between two chunks are skipped in the employed attack
as shown in Fig. 2, a part of the results of two chunks can be compared by using
the partial-matching technique.

For simplicity, we omit the Feedforward1, the message words except m′
0 and

m′
1, and the constants in the skipped steps because essentially, they do not affect

on the attack at all. Let state∗23 = (x0, x1, x2, x3, x4, x5, x6, x7), and let the most
left two words of state∗17 be y0 and y1. Then, The backward partial computations
from state∗23 reach y0 and y1 as follows (See Fig. 4).

y0 = G(G(G(G(G(G(x0)⊕ x1)⊕G(x0)
≪13 ⊕ x2)⊕G(G(x0)⊕ x1)

≪13 ⊕G(x0)
≪23

⊕x3)⊕G(G(G(x0)⊕ x1)⊕G(x0)
≪13 ⊕ x2)

≪13 ⊕G(G(x0)⊕ x1)
≪23 ⊕ x4)⊕

G(G(G(G(x0)⊕ x1)⊕G(x0)
≪13 ⊕ x2)⊕G(G(x0)⊕ x1)

≪13 ⊕G(x0)
≪23 ⊕

x3)
≪13 ⊕G(G(G(x0)⊕ x1)⊕G(x0)

≪13 ⊕ x2)
≪23 ⊕ x5)⊕G(G(G(G(G(x0)⊕

x1)⊕G(x0)
≪13 ⊕ x2)⊕G(G(x0)⊕ x1)

≪13 ⊕G(x0)
≪23 ⊕ x3)⊕G(G(G(x0)⊕

G(x0)
≪13 ⊕ x2)

≪13 ⊕G(G(x0)⊕ x1)
≪23 ⊕ x4)

≪13 ⊕G(G(G(G(x0)⊕ x1)⊕
G(x0)

≪13 ⊕ x2)⊕G(G(x0)⊕ x1)
≪13 ⊕G(x0)

≪23 ⊕ x3)
≪23 ⊕G(x5)⊕ x6,

y1 = G(G(G(G(G(G(x0)⊕ x1)⊕G(x0)
≪13 ⊕ x2)⊕G(G(x0)⊕ x1)

≪13 ⊕G(x0)
≪23

⊕x3)⊕G(G(G(x0)⊕ x1)⊕G(x0)
≪13 ⊕ x2)

≪13 ⊕G(G(x0)⊕ x1)
≪23 ⊕ x4)⊕

G(G(G(G(x0)⊕ x1)⊕G(x0)
≪13 ⊕ x2)⊕G(G(x0)⊕ x1)

≪13 ⊕G(x0)
≪23 ⊕

x3)
≪13 ⊕G(G(G(x0)⊕ x1)⊕G(x0)

≪13 ⊕ x2)
≪23 ⊕ x5)

≪13 ⊕G(G(G(G(

G(x0)⊕ x1)⊕G(x0)
≪13 ⊕ x2)⊕G(G(x0)⊕ x1)

≪13 ⊕G(x0)
≪23 ⊕ x3)⊕G(

G(G(x0)⊕ x1)⊕G(x0)
≪13 ⊕ x2)

≪13 ⊕G(G(x0)⊕ x1)
≪23 ⊕ x4)

≪23 ⊕G(

G(x5)⊕ x6)⊕G(x5)
≪29 ⊕ x7 ⊕m′

0.
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Converted message index
Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2L ∗
2R ∗
3L ◦

2nd

3R ∗
chunk

4L ∗
4R ∗
5L ∗ ∗ ∗ ∗
5R • ∗ ∗
6L ∗
6R ∗
7L ∗
7R ∗
8L • ∗
8R ∗
9L ∗
9R ∗

10L • ∗ ∗
10R ∗ ∗ ∗ ∗

1st

11L ∗
chunk

11R ∗
12L ∗
12R • ∗
13L ∗
13R ∗
14L ∗
14R ∗
15L • ∗ ∗ ∗ ∗
15R ∗ ∗ ∗ ∗
16L ∗
16R ∗
17L ∗
17R ◦
18L ∗
18R ∗
19L ∗
19R ◦ •
20L ∗ ∗ ∗ ∗

skip20R ◦ ∗ ∗ ∗
21L • ∗
21R ∗
22L ∗
22R ∗
23L ◦ •
23R ∗
24L ∗
24R ∗
25L ∗ ∗ ∗ ∗
25R ◦ ∗ ∗ ∗
26L ◦
26R ∗
27L ∗
27R ∗
28L ∗
28R ∗
29L ∗
29R ∗

2nd

30L ◦ ∗ ∗ ∗
chunk

30R ∗ ∗ ∗ ∗
31L ∗
31R ∗
32L ∗
32R ∗
33L ∗
33R ∗
34L ∗
34R ◦
35L ◦ ∗ ∗ ∗
35R ∗ ∗ ∗ ∗
36L ∗
36R ∗

Fig. 2. Chunks for the 35 steps (Steps 2 to 36) of ARIRANG
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Message index
Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 ∗
1 ∗
2 ∗
3 ∗
4 ∗
5 ∗
6 ∗
7 ∗
8 ∗

2nd

9 ◦
chunk

10 ∗
11 ∗
12 ∗
13 ∗
14 ◦
15 •
16 ∗ ∗ ∗ ∗
17 ∗ ∗ ∗ ∗
18 ∗ ∗ ◦ ◦
19 ∗ ∗ ∗ •
20 ∗ ∗ ∗ ∗ ∗ ∗ ∗
21 ∗ ∗ ∗ ∗ ∗ ∗ ∗
22 ∗ ∗ ∗ ∗ ◦ ∗ ◦
23 ∗ ∗ ∗ ◦ ∗ ◦ •
24 ∗
25 ∗ ∗ ∗ ∗ ∗ ∗ ∗
26 ∗ ∗ ∗ ∗
27 ∗
28 ∗ ∗ ∗ ◦ ∗ ◦ •
29 ∗ ∗ ◦ ◦
30 ∗
31 ∗

1st

32 ∗
chunk

33 ∗ ∗ ∗ ∗
34 ∗
35 ∗
36 ∗ ∗ ∗ ∗ ∗ ∗ ∗
37 ∗
38 ∗ ∗ ∗ ∗ ◦ ∗ ◦
39 ∗
40 ∗
41 ∗ ∗ ∗ •
42 •
43 ∗
44 ∗
45 ◦
46 ◦
47 ∗
48 ∗ ∗ ∗ ◦ ∗ ◦ •
49 ◦

skip50 ∗ ∗ ∗ •
51 ∗ ∗ ∗ ∗ ∗ ∗ ∗
52 ∗
53 •
54 ∗ ∗ ∗ ∗ ∗ ∗ ∗
55 ∗
56 ∗ ∗ ◦ ◦
57 ∗
58 ∗
59 ∗
60 ∗
61 ∗
62 ◦
63 ∗
64 ∗
65 ∗
66 ∗
67 ∗ ∗ ∗ ∗
68 ∗

2nd

69 ∗ ∗ ∗ ∗ ◦ ∗ ◦
chunk

70 ∗ ∗ ∗ ∗
71 ∗
72 ∗
73 ∗ ∗ ∗ ∗ ◦ ∗ ◦
74 ∗
75 ◦
76 ∗
77 ∗
78 ∗
79 ∗

Fig. 3. Chunks for the 80 steps (Steps 0 to 79) of PKC98-hash
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Fig. 4. The partial-matching technique for attacking 35 steps of ARIRANG. The bold
lines denote the partial computations from state∗23).

4.3 Attack Procedure for 35-Step ARIRANG

Let w′
j ’s be the messages words assigned by the converted message schedule WR.

For a given hash value H2, the attack pseudo-procedure is as follows.

1. Fix state4 and m′
i(i = 2, ..., 12) to randomly chosen values. Set m′

13, m
′
14,

and m′
15 such that they satisfy the padding rule of ARIRANG.

2. For all possible 232 candidates of the neutral word m′
1,

(a) Compute
{

statej+1 ← step(statej , w
′
2j , w

′
2j+1) for j = 4, ..., 16,

state∗17 ← stepL(state17, w
′
34).

(b) Make a table of (m′
1, state

∗
17).
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3. For all possible 232 candidates of m′
0,

(a) Compute

⎧⎪⎪⎨⎪⎪⎩
statej ← step−1(statej+1, w

′
2j , w

′
2j+1) for j = 3, 2,

state37 ← H2 ⊕ state2,
statej ← step−1(statej+1, w

′
2j , w

′
2j+1) for j = 36, ..., 24,

state∗23 ← step−1
R (state24, w

′
47).

(b) Compute the left two words y0 and y1 from state∗23 as explained in Section
4.2.

(c) Check whether there exists an entry (m′
1, state

∗
17) in the table such that

(y0, y1) is matched with the most significant 64 bits of state∗17.
(d) If a match is found, check whether all results from both chunks match

for the corresponding message words.
(e) If all bits match, output the pair of the corresponding message block

MT = RM ′T and state2 as a pseudo-preimage.

4.4 Complexity Estimation

The complexity for the computation of a step(·, ·, ·) is around 1
35 35-step ARI-

RANG compression function.

– The computational complexity of Step 2a is approximately 232 · 13.5
35 .

– Step 2b requires the memory of 232 × 9 words.
– The computational complexity of Steps 3a and 3b is at most 232 · 15.5+4

35 .
– The computational complexity of the other Steps is negligible.

The computational complexity of the procedure is at most 232 · 12.5+19.5
35

∼= 231.87.
The expected number of the matched pair by one procedure is 232 · 232/2−256 =
2−192. So, we can expect to find a pseudo-preimage by repeating the above
procedure 2192 times. Consequently, the attack finding a pseudo-preimage of 35
steps of ARIRANG-256 using the above procedure requires the computational
complexity of 2223.87. The attack is converted to the preimage attack by ysing
the algorithm described in Section 3.1 with the computational complexity of
2240.94 and the memory of 232 × 9 words.

We can construct the similar procedure for finding a pseudo-preimage of 35
steps of ARIRANG-512. One procedure requires the computational complexity
of 263.87 and the memory of 264 × 9 (64-bit) words, and we can expect to find a
pseudo-preimage by repeating that procedure 2384 times. So, the attack finding
a pseudo-preimage of 35 steps of ARIRANG-512 using the procedure requires
the computational complexity of 2447.87. The attack is converted to the preimage
attack by using the algorithm described in Section 3.1 with the computational
complexity of 2480.94 and the memory of 264 × 9 words.

5 Preimage Attack on PKC98-Hash

This section describes the detailed description of the attack on PKC98-hash
reduced to 80 steps.
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5.1 Chunk Separation for 80-Step PKC98-Hash

We omit the rotations and the constant XORs in the message schedule. Then,
we can regard the message schedule as a 96× 16 binary matrix.

Our program finds a chunk separation covering steps 0–79, in total 80 steps.
The first chunk covers from step 15 to step 44, and the second chunk covers
from step 0 to step 14 and from step 54 to step 79. As shown in Fig. 3, if we set
m9 = m14, m9 and m14 do not affect the first chunk. The second chunk does
not include m15. So, the first chunk uses m15 as a neutral word, and the second
chunk uses m9 = m14 as a neutral word. Since m14 and m15 are related to the
padding rule, we will mention how to adjust the padding problem.

5.2 Partial-Fixing Technique for Skipping 9 Steps

Fig. 5 shows how the results of two chunks are partially computed by the fixed
bits of the message words. We choose and fix the bits of the related words to
the data-dependent rotation number s(45), s(46), and s(47) such that s(45) = 0,
s(46) = 10, and s(47) = 22. The bits 15–0 of m14(= m9) and m15 are fixed.
We explain how the results of two chunks are partially compared at state49 as
follows.

– Forward computation for b46: we obtain state45 = (a45, b45, c45, d45, e45) as
the result of the computation of the first chunk. Let τ45 be the output of the
boolean function f(state+45). Since we set s(45) = 0, b46 = (τ +K1)+m14.
Although m14 is the neutral word of the second chunk, bits 15–0 of m14 are
fixed. So, we can compute bit positions 15–0 of b46, uniquely.

– Forward computation for b47: since we set s(46) = 10, the equation for b47

is as follows.
b≫10
47 = f(state46) + m9 + K1.

τ46 = F (state46) and m9 are fixed in bits 15–0. So, we can compute the bit
positions 15–0 of b≫10

47 uniquely.
– Forward computation for b48: since we set s(47) = 22, the equation for b48

is as follows.
b≫22
48 = f(state47) + (m13 + K1).

τ47 = f(state47) is fixed in bits 25–10 by b47 and b≪10
46 . So, we can compute

the bit positions 25–10 of b≫22
48 by guessing the carry bit from bit position

9 to 10. Therefore, we obtain two candidates of bit positions 15–10 of c49

because b≪10
48 = c49.

– Backward computation: in the similar way, we can compute the bits 15–0
of c49, d49, and e49 from a state54. In the backward computation, we do not
need to care for the carry bits.

– Matching check: the partially computed results from both chunks are com-
pared at chaining variable c49, d49, and e49. We check whether the bits 15–0
of c49, the bits of 3–0 of d49, and the bits 15–10 of e49 are matched.
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Fig. 5. The partial-fixing technique for attacking 80 steps of PKC98-hash. The bold
lines denote the partial computations from state45 and state54.

5.3 Attack Procedure for 80-Step PKC98-Hash

For a given hash value HN , the pseudo-preimage attack procedure is as follows.

1. Fix state15 to randomly chosen value. Fix mi’s (i 
= 9, 14, 15), the bit posi-
tions 31, 30, and 13–0 of m14, and the bit positions 31–16 of m15 considering
the padding rule.

2. For all possible 216 candidates of unfixed bit positions in m14(= m9),
(a) Compute statej+1 ← step(statej , wj) for j = 15, ..., 44.
(b) Compute the forward computation for the partial-fixing technique.
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(c) For each m14, keep two candidates of (m14, state45, bits 15–0 of c49, bits
3–0 of d49, bits 15–10 of e49) and guessed carry bit in a table.

3. For all possible 216 candidates of unfixed bit positions in the neutral word
m15,

(a) Compute

⎧⎨⎩
statej ← step−1(statej+1, wj) for j = 14, ..., 0
state80 ← HN − state0,
statej ← step−1(statej+1, wj) for j = 79, ..., 54.

(b) Compute bits 15–0 of c49, d49, and e49.
(c) Compare the values of bits 15–0 of c49, bits of 3–0 of d49, and bits 15–10

of e49, in total 26 bits, with those of entries stored in the table.
(d) If a match is found, check whether the all result from both chunks match

for the corresponding message words and whether all guessed carry bits
are correct.

(e) If all bits match and all guessed carry bits are correct, output the pair
of the corresponding message block M and state0 as a pseudo-preimage.

5.4 Complexity Estimation

The complexity for the computation of a step(·, ·) is around 1
80 80-step PKC98-

hash compression function.

– The computational complexity of Step 2a and 2b is 216 × 30+7
80 .

– Step 2c requires the memory of 216 × 7 words.
– The computational complexity of Step 3a+3b is at most 216 × 41+2.5

80 .
– The other Steps require negligible complexities.

The computational complexity of the procedure is at most 216· 37+43.5
80

∼= 216. The
expected number of the matched pair by one procedure is 216+1 · 216/2160+1 =
2−128. So, we can expect to find a pseudo-preimage by repeating the above
procedure 2128 times. Consequently, the attack finding a pseudo-preimage of
80 steps of PKC98-hash using the above procedure requires the computational
complexity of 2144. The attack is converted to the preimage attack by using the
algorithm describe in Section 3.1 with the computational complexity of 2152 and
the memory of 216 × 7 words.

5.5 Padding Problem

The neutral words m14 and m15 are the 64-bit binary encode of the bit-length of
the hashed message in the padding rule. We fix the bits 8–0 of m14 as 1110000002,
such that the message length is guaranteed to be 512r+448 for an positive integer
r. It allow us to choose m13 freely. Then, we can use an expandable message [10]
to perform the preimage attack with the estimated computational complexity
and memory.
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6 Conclusion

We proposed the preimage attacks on the reduced steps of ARIRANG and
PKC98-hash. We applied recently developed techniques of the meet-in-the-
middle preimage attacks. As a result, we attacked 35 steps of ARIRANG and
80 steps of PKC98-hash. Our attack for ARIRANG-256/512 is the best result
and our attack for PKC98-hash is the first result in the analysis of preimage
resistance. Our attacks can be used as second preimage attack with the same
complexity.
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Abstract. In this paper, we improve previous preimage attacks on hash
function HAS-160, which is standardized in Korea. We show that the last
68 steps out of 80 steps of HAS-160 can be attacked, while a previous
attack works for only intermediate 52 steps. We also show that the first
67 steps of HAS-160 can be attacked. These attacks are based on the
meet-in-the-middle attack, which is also used in the previous attack. Re-
cently, various techniques of preimage attacks have been proposed on
other hash functions. We show that these techniques can also be applied
to HAS-160 and the number of attacked steps can be improved. For the
attack on 68 steps, we first generate pseudo-preimages with a complex-
ity of 2150.7, and then convert them to a preimage with a complexity of
2156.3. This attack uses a memory of 212 × 7 words. To the best of our
knowledge, attacking 68 steps is the best of all attacks on HAS-160 hash
function.

Keywords: HAS-160, hash function, preimage, meet-in-the-middle.

1 Introduction

Hash functions are important cryptographic primitives. They are used for various
purposes all over the world, so their security deserves to be carefully analyzed,
especially if they are used in practice. Hash functions are required to satisfy
several properties such as preimage resistance, second-preimage resistance, and
collision resistance. Let n be the bit length of hash values. Regarding the preim-
age resistance, it is obvious that if 2n different messages are hashed, one of
them matches the given target hash value with high probability. Therefore, find-
ing preimages faster than 2n computations is an undesired property. In fact, in
the SHA-3 competition, National Institute of Standards and Technology (NIST)
requires all candidates to guarantee the n-bit security for this property [1].

� Our attack target is the last 68 steps, but not the first 68 steps. Hence some may
say 68-step HAS-160 is not broken yet. However, based on the discussion at the
conference and the description in previous work, we determined to use this title.

D. Lee and S. Hong (Eds.): ICISC 2009, LNCS 5984, pp. 332–348, 2010.
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HAS-160 is a hash function developed in Korea, and was standardized by
Korean government in 2000 [2]. The design of HAS-160 is similar to SHA-0 and
SHA-1 [3], in particular, the step function of HAS-160 is very similar. However,
the message expansion is different. Hence, security analysis of HAS-160 is inter-
esting and useful to know the security contribution of its design. At ICISC 2008,
Sasaki and Aoki presented a preimage attack on HAS-160 reduced to 52 steps
[4]. On the other hand, at CRYPTO 2009, Aoki and Sasaki presented a preimage
attack on SHA-0 reduced to 52 steps [5]. So far, the number of attacked steps is
the same. Hence, improving the attack is an interesting issue to compare their
security.

The first cryptanalysis on HAS-160 was presented by Yun et al. [6] at ICISC
2005. They found that a collision for HAS-160 reduced to 45 steps could be gen-
erated in a very small complexity. This was improved by Cho et al. [7] at ICISC
2006, which reported that a collision attack could be theoretically applied until
53 steps. This was further improved by Mendel and Rijmen [8] at ICISC 2007,
where a real collision until 53 steps was generated and a differential path yield-
ing 59-step collisions was shown. After that, a preimage attack on 52 steps was
proposed at ICISC 2008 [4]. Compared to the collision resistance, the preimage
resistance has not been enough considered, hence more analyses on the preimage
resistance are necessary.

Related Work
Our attack is based on the previous preimage attack on 52 steps of HAS-160 [4],
which used the framework of meet-in-the-middle preimage attacks on other hash
functions [9,10,11,12,13]. This framework has also been applied to the recently
designed hash function ARIRANG [14] by Hong et al. [15,16]. Hence, develop-
ing techniques in this framework is important. Recently, various techniques for
preimage attacks on MD4-based hash functions have been improved. For ex-
ample, initial-structure and partial-fixing technique for unknown carry behavior
were proposed for MD5 [17], and linear algebra such as finding kernel was in-
troduced to analyze the message schedules of reduced SHA-0 and SHA-1 [5].
Whether or not these techniques can be applied to HAS-160 is not clear.

There is another hash function named HAS-V [18], which has the similar
structure to HAS-160. A preimage attack on HAS-V was discovered by Mendel
and Rijmen at ICISC 2007 [19]. Therefore, the preimage resistance of HAS-160
needs to be evaluated by recent attack techniques.

Our Results
In this paper, we show improved preimage attacks on step-reduced HAS-160.
Our attacks are based on the previous meet-in-the-middle attack [4]. First, we
revisit the initial structure technique. As a result, we found that up to 4 steps can
be skipped by the initial structure while the previous work skipped only 3 steps.
Besides, we point out that the initial structure can be constructed with much
less memory than the previous work. This can reduce the memory complexity
of the previous attack on 52 steps from 248 to 216. Next, we consider extending
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the number of steps skipped by the partial-fixing technique for unknown carry
behavior, while only the partial-fixing technique without carry was used in the
previous work. As a result, we succeed in skipping 13 steps, while the previous
work skipped only 8 steps. Finally, when we search for independent message
words for the meet-in-the-middle attack, we apply the linear algebra to maximize
the number of steps attacked.

By using these improvements, we can attack the last 68 steps (Steps 12 to 79)
or the first 67 steps (Steps 0 to 66) of HAS-160. Both of our attacks first generate
pseudo-preimages, and then convert them to a preimage. The complexity of these
attacks for finding pseudo-preimages are approximately 2150.7 and 2154 respec-
tively, and for finding preimages are approximately 2156.3 and 2158 respectively.
The required memory is 212 × 7 words and 210 × 7 words respectively.

The comparison of the previous work and our attacks is summarized in
Table 1. To the best of our knowledge, attacking 68 steps is the best of all
attacks including collision attacks on the HAS-160 hash function. Due to the
slight improvement of the attack complexity from the brute force attack and
considering that HAS-160 has 12 steps more, HAS-160 is still secure. However,
because the security margin is significantly reduced, we need to be very careful
for future attack improvements on HAS-160.

Table 1. Comparison of preimage attacks on HAS-160

Reference Step number Time complexity Memory use

Pseudo-preimage Preimage

[4] intermediate 48 2128 2145 232 × 6 words

[4] intermediate 52 2144 2153 248 × 9 words

This paper intermediate 52 2144 2153 216 × 9 words

This paper first 65 2143.4 2152.7 216 × 6 words

This paper first 67 2154 2158 210 × 7 words

This paper last 68 2150.7 2156.3 212 × 7 words

Organization of this paper is as follows. In Section 2, we describe the specifi-
cation of HAS-160. In Section 3, we summarize techniques in the previous work.
In Section 4, we explain how to search for attacked steps using improved tech-
niques. In Section 5, we propose preimage attacks on the last 68, the first 67,
and the first 65 steps of HAS-160. Finally, we conclude this paper in Section 6.

2 Description of HAS-160

HAS-160 [2] is a hash function that produces 160-bit hash values. HAS-160 has
the Merkle-Damg̊ard structure, which uses a 160-bit (5-word) chaining variable
and a 512-bit (16-word) message block to compute the compression function.
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First, an input message M is processed to be a multiple of 512 bits by the
padding procedure. A single bit 1 is appended followed by 0s until the length
becomes 448 modulo 512. Finally, the 64-bit binary representation of the length
of M is appended at the end.

The padded message is separated into 512-bit message blocks (M0, M1, . . . ,
MN−1). Let CF : {0, 1}160 × {0, 1}512 → {0, 1}160 be the compression function
of HAS-160. A hash value is computed as follows.

1. H0 ← IV ,
2. Hi+1 ← CF (Hi, Mi) for i = 0, 1, . . . , N − 1,

where Hi is a 160-bit value and IV is the initial value defined in the specification.
Finally, HN is output as a hash value of M .

Compression Function
HAS-160 iteratively computes a step function 80 times to compute a hash value.
Steps 0-19, 20-39, 40-59, and 60-79 are called the first, second, third, and fourth
rounds, respectively. Let (Hi, Mi) be the input of the compression function.

Message expansion. First, Mi is divided into sixteen 32-bit message-words
m0, . . . , m15. The message expansion of HAS-160 is a permutation of 20 message
words in each round, which consists of m0, . . . , m15 and four additional messages
m16, . . . , m19 computed from m0, . . . , m15. The computation of m16, . . . , m19 is
shown in Table 2. Let X0, X1, . . . , X79 be message words used in each step. The
message word mj assigned to each Xj is also shown in Table 2.

Table 2. Message expansion of HAS-160

Computation of m16 to m19 in each round

Round 1 Round 2 Round 3 Round 4

m16 m[0, 1, 2, 3] m[3, 6, 9, 12] m[12, 5, 14, 7] m[7, 2, 13, 8]

m17 m[4, 5, 6, 7] m[15, 2, 5, 8] m[0, 9, 2, 11] m[3, 14, 9, 4]

m18 m[8, 9, 10, 11] m[11, 14, 1, 4] m[4, 13, 6, 15] m[15, 10, 5, 0]

m19 m[12, 13, 14, 15] m[7, 10, 13, 0] m[8, 1, 10, 3] m[11, 6, 1, 12]

m[i, j, k, l] denotes mi ⊕mj ⊕mk ⊕ml

Message index order in each step

Round 1: X0, X1, . . . , X19 18 0 1 2 3 19 4 5 6 7 16 8 9 10 11 17 12 13 14 15

Round 2: X20, X21, . . . , X39 18 3 6 9 12 19 15 2 5 8 16 11 14 1 4 17 7 10 13 0

Round 3: X40, X41, . . . , X59 18 12 5 14 7 19 0 9 2 11 16 4 13 6 15 17 8 1 10 3

Round 4: X60, X61, . . . , X79 18 7 2 13 8 19 3 14 9 4 16 15 10 5 0 17 11 6 1 12



336 D. Hong, B. Koo, and Y. Sasaki

Step update function. Let pj , 0 ≤ j ≤ 80 be 160-bit intermediate variables.
The output of the compression function Hi+1 is computed as follows.

1. p0 ← Hi.
2. pj+1 ← Rj(pj , Xj) for j = 0, 1, . . . , 79,
3. Output Hi+1(= p80 + Hi), where “+” denotes 32-bit word-wise addition. In

this paper, we similarly use “−” to denote 32-bit word-wise subtraction.

Rj is the step function for Step j. Let aj , bj, cj , dj , ej be 32-bit values that satisfy
pj = (aj‖bj‖cj‖dj‖ej). Rj(pj , Xj) computes pj+1 as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

aj+1 = (aj ≪ s1j) + fj(bj , cj , dj) + ej + Xj + kj ,
bj+1 = aj,
cj+1 = bj ≪ s2j,
dj+1 = cj,
ej+1 = dj ,
pj+1 = aj+1‖bj+1‖cj+1‖dj+1‖ej+1

where fj, kj , and ≪ s2j represent bitwise Boolean function, constant number,
and s2j-bit left rotation defined in each round, and ≪ s1j represents s1j-bit left
rotation depending on the value of j mod 20. These values are shown in Table 3.

Table 3. Function f , constant k, and rotations s1 and s2 of HAS-160

Round Function fj(X, Y, Z) Constant kj Rotation s2j

Round 1 (X ∧ Y ) ∨ (¬X ∧ Z) 0x00000000 10
Round 2 Z ⊕ Y ⊕ Z 0x5a827999 17
Round 3 Y ⊕ (X ∨ ¬Z) 0x6ed9eba1 25
Round 4 X ⊕ Y ⊕ Z 0x8f1bbcdc 30

Rotation s1j

j mod 20 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

s1j 5 11 7 15 6 13 8 14 7 12 9 11 8 15 6 12 9 14 5 13

We show a diagram of the step function in Fig. 1. We assume that both addition
and subtraction have the same complexity, as well as both left and right rotations,
hence R−1

j (pj+1, Xj) can be computed in almost the same complexity as Rj .

3 Related Work

3.1 Converting Pseudo-preimages to a Preimage

For a given hash value y, a pseudo-preimage is a pair of (x, M), x 
= IV such
that CF (x, M) = y. For the Merkle-Damg̊ard hash functions, there is a generic
algorithm that converts a pseudo-preimage attack to a preimage attack [20,
Fact9.99]. Let the complexity of a pseudo-preimage attack be 2k and the hash
length be n.
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aj bj cj dj ej

aj+1 bj+1 cj+1 dj+1 ej+1

<<< s2j

<<< s1j

Xj

kj

fj

Fig. 1. Step function of HAS-160

1. Generate 2(n−k)/2 pseudo-preimages with a complexity of 2k · 2(n−k)/2.
2. Generate 2(n+k)/2 1-block messages, and compute their hash values.

One of these hash values are expected to match. The complexity of this attack is
2k · 2(n−k)/2 + 2(n+k)/2 = 21+(n+k)/2. Therefore, a pseudo-preimage attack with
a complexity less than 2n−2 can be converted to a preimage attack.

In this attack, so called Tree approach proposed by Leurent [10] and P3-graph
proposed by de Cannière and Rechberger [21] cannot be used because these
techniques require several special properties such that partial-pseudo-preimage
must be computed very rapidly.

3.2 Meet-in-the-Middle Preimage Attack on 52-Step HAS-160

Sasaki and Aoki proposed a meet-in-the-middle preimage attack on 52-step HAS-
160 [4]. First, splice-and-cut, partial-matching, and partial-fixing techniques,
which were originally proposed for analyzing MD5 [11], were considered. In this
framework, they first consider the first and last steps as consecutive steps, and
divide the attack target into two chunks of steps so that each chunk includes
several message words that appear only in one of two chunks1. These are called
neutral words. Then, a pseudo-preimage is computed by the meet-in-the-middle
attack. The partial-matching and partial-fixing techniques enable the attacker
to ignore several steps at the end of chunks. They concluded that up to 9 steps
can be skipped by using these two techniques.

Second, they showed an observation that additional 3 steps can be skipped at
the beginning of two chunks. For this observation, they showed only the results.
The generalization of this observation was later summarized as initial structure
technique, which is explained in the next section.

3.3 Initial Structure and Partial-Fixing for Unknown Carry
Behavior

Initial structure and partial-fixing for unknown carry behavior were proposed
by Sasaki and Aoki to attack full MD5 [17]. Initial structure is a technique for
skipping several steps at the beginning of chunks. Ref. [17] defined it as follows:
1 In this paper, we call a chunk including the first and last steps of the compression

function first chunk and a chunk consisting of only middle steps second chunk.
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Initial structure is a few consecutive steps including at least two neutral
words denoted by m2nd and m1st, where steps after the initial structure
(2nd chunk) can be computed independently of m1st and steps before the
initial structure (1st chunk) can be computed independently of m2nd.

For HAS-160, only skipping 3 steps has been considered in [4].
Partial-fixing for unknown carry behavior deals with the modular addition

of two partially known values. With this technique, more steps can be attacked
though the attack becomes less efficient. Assume that we add two word-size
variables A and B, where the upper half bits of A and B are known but the
lower half bits are unknown. We obtain two candidates of the upper half bits of
A+B because of an unknown carry from the lower half bits. Ref. [17] summarized
that the increase of S candidates can be filtered out without paying a significant
cost, where S is the number of steps in the compression function. For HAS-160,
this technique has not been considered by the previous work.

3.4 Computing Kernels of each Independent Chunk

Since HAS-160 has a linear message expansion, we can efficiently search for a
chunk separation and neutral words by applying the kernel computing approach
proposed for SHA-0 and SHA-1[5].

Let wj be the message word used in the j-th step for j = 0, ..., 79, ex-
panded from a message block M = [m0 · · · m15]. For simplicity, we assume
that w0, w1, ..., wt−1 are used in the first chunk and wt, wt+1, ..., ws−1 are used
in the second chunk. Since the message expansion of HAS-160 is linear, we can
regard it as a 80× 16 binary matrix W satisfying [w0 · · · w79]T = WMT , and
have two sub-matrices W1 and W2 satisfying [w0 w1 · · · wt−1]

T = W1M
T and

[wt wt+1 · · · ws−1]
T = W2M

T , respectively. We assume that rank W1 = κ1 <
16 and rank W2 = κ2 < 16. Then, W1 and W2 have non-trivial kernels ker W1

and ker W2, respectively. If we find a pair of binary vectors in ker W1 × ker W2

which do not share any nonzero bit position, we can set neutral words according
to the vectors. Consider the example explained in [5]. Assume that we are given
k1 and k2 as follows.{

k1 = [1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0]T ∈ ker W1,

k2 = [0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0]T ∈ ker W2.

Then, W1k1 = 0 and W2k2 = 0 hold. It implies that m0 can be used as a neutral
word for the second chunk if we set m0 = m2 = m3, and that m1 can be used as
a neutral word for the first chunk if we set m1 = m4. If both W1 and W2 do not
have full rank but there exists no such a pair of (k1, k2) ∈ ker W1 × ker W2, we
can easily construct an invertible matrix R such that R−1k1 and R−1k2 do not
share any nonzero bit position for a (k1, k2) ∈ ker W1× ker W2. If such a matrix
is constructed, we have WMT = (WR)

(
R−1MT

)
, and we use W ′ = WR and

M ′T = [m′
0 · · · m′

15]T = R−1MT as the message expansion and the message
block converted by R.
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4 Chunk Separation Search Using Improved Techniques

This section explains how to find chunks and neutral words that can attack long
steps. To find them, the following two parameters need to be considered.

1. How many steps can be skipped at the beginning of chunks?
2. How many steps can be skipped at the end of chunks?

We first explain how to determine the parameters, then show the result of chunk
separation search.

4.1 Initial Structure

The first parameter of the chunk separation search is achieved by the initial
structure technique. So far, only the initial structure for 3 steps, which uses a
large amount of memory, has been considered. We found that the length of the
initial structure can be chosen from 2 steps to 4 steps, and we could save the
memory to construct it. Our attack on 68-step HAS-160 uses a 3-step initial
structure. Hence we show the memoryless 3-step initial structure in Fig. 2.

In Fig. 2, pj is included in the first chunk and Xj+2 is the neutral word for the
first chunk. Similarly, pj+3 is included in the second chunk and Xj is the neutral
word for the second chunk. Hereafter, we denote neutral words in the first and
second chunks by NW 1st and NW 2nd, respectively. The goal is to guarantee
that the change of Xj+2 does not affect to pj+3 and the change of Xj does not
affect to pj . In Fig. 2, impacts of changing Xj and Xj+3 are shown by bold
and dotted lines, respectively. As shown in Fig. 2, in both chunks, the value of
tj , tj+1, and tj+2 can be set to given constant values. This enables us to compute
each chunk independently.

In the previous initial structure [4], the probability that pj and pj+3 are
correctly connected was 2−32. Hence, we need to increase the free bits in each
chunk by 32 bits. This increases the required memory by a factor of 232. Different
from the previous one, this structure always correctly connects pj and pj+3.
This prevents the increase of the required memory by a factor of 232. Finally, by
replacing the initial structure used in [4] with this memoryless one, the memory
use of the previous attack on 52 steps could be reduced from 248 × 9 words to
216 × 9 words.

We also show how to construct the memoryless 4-step initial structure in Fig. 4
in Appendix A.

4.2 Result of Chunk Separation Search

The second parameter of the chunk separation search depends on how many
steps we can skip by the partial-fixing technique. Unfortunately, it depends on
the message expansion and rotation numbers s1 and s2 of skipped steps. Hence,
we cannot determine the number of steps skipped without considering the actual
location of chunks. From our by-hand experiment, around 13 steps could be
skipped.
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aj+1 bj+1 cj+1 dj+1 ej+1

<<<s1j+1

fj+1

aj bj cj dj ej
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<<<s1j

Xj

kj
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aj+3 bj+3 cj+3 dj+3 ej+3
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pj+2

pj+3

tj+2

The order of addition is changed by the equivalent transformation

Fig. 2. Memoryless initial structure skipping 3 steps

Finally, we exhaustively search for the maximum number of attacked steps
under chosen two parameters. Results of the chunk separation search are shown
in Table 4. Assumption that we can skip up to 4 steps by the initial structure
and 13 steps by the partial-fixing technique is reasonable. However, to observe
what will happen if the attack techniques are improved, we also analyze the cases
where 5 or 6 steps are skipped by the initial structure and up to 18 steps are
skipped by the partial-fixing technique. Table 4 indicates that attacking 68 steps
would be possible. Table 4 also indicates that even if the attack techniques are

Table 4. Results of chunk separation search

# skipped steps by partial-fixing technique
7 8 9 10 11 12 13 14 15 16 17 18

0 65 65 65 65 65 65 65 65 65 65 68 68
# skipped 2 65 65 65 65 65 65 67 67 68 68 68 68
steps by 3 65 65 65 65 65 68 68 68 68 70 70 70
initial 4 65 65 65 65 65 68 68 68 68 70 70 70
structure 5 65 65 65 66 66 68 68 68 68 70 71 71

6 65 65 66 66 66 68 68 68 68 70 71 71

Skipping 3 and 8 steps by the initial structure and partial-fixing techniques, respec-
tively, is the previous best result [4]. Our new attack skips 3 and 12 steps, respectively,
with linear algebra analysis.



Improved Preimage Attack for 68-Step HAS-160 341

Step Message word index NW1st NW2nd

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15m[3, 6, 8, 15] m[2, 8]
12 ∗
13 ∗
14 ∗
15 ∗ ∗ ◦ ∗ √
16 ∗
17 ∗
18 ∗
19 ◦ √
20 ∗ ∗ ∗ ∗
21 ∗ √
22 ◦ √

first
ch

u
n
k

23 ∗
24 ∗
25 ∗ ∗ ∗ ∗
26 ◦ √ ↑
27 • √
28 ∗ IS

29 � √ √
30 ◦ ◦ ∗ ∗ ↓
31 ∗
32 ∗
33 ∗
34 ∗
35 • ∗ � ◦
36 ∗
37 ∗
38 ∗
39 ∗
40 ∗ ◦ ∗ ◦
41 ∗
42 ∗
43 ∗
44 ∗

se
c
o
n
d

ch
u
n
k

45 ∗ ◦ � ∗ √
46 ∗
47 ∗
48 • √
49 ∗
50 ∗ ∗ ∗ ∗
51 ∗
52 ∗
53 ◦ √
54 ◦ √
55 ∗ • ∗ ∗ √
56 � √ √
57 ∗
58 ∗
59 ◦ √
60 ∗ ∗ ∗ ◦ √

sk
ip

61 ∗
62 • √
63 ∗
64 � √ √
65 ∗ ◦ ∗ ∗ √
66 ◦ √
67 ∗
68 ∗
69 ∗
70 • ∗ � ∗ √
71 ◦ √
72 ∗
73 ∗
74 ∗
75 ◦ ∗ ∗ ∗ √

first
ch

u
n
k

76 ∗
77 ◦ √
78 ∗
79 ∗

∗ denotes message words used in each step. ◦ and • denote message words used as
neutral words in the first and second chunks, respectively. � denotes m8, which is a
neutral word in both chunks. In the column of NW 1st and NW 2nd, we put a tick if
m3 ⊕m6 ⊕m8 ⊕m15 �= 0 and if m2 ⊕m8 �= 0, respectively.

Fig. 3. Selected chunks for the 68 steps
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improved, the number of attacked steps is at most 71, hence the full HAS-160
would be secure against this approach.

5 Preimage Attack on 68 Steps HAS-160

In Fig. 3, we show the details of chunks obtained by the analysis in Section 4.
We skip 3 steps (Steps 27–29) by the initial structure and skip 12 steps (Steps
53–64) by the partial-fixing technique. When we compute the first chunk, we
change values of m3, m6, m8, and m15 so that m3 = m6 = m8 = m15 is always
satisfied. Similarly, when we compute the second chunk, we change values of m2

and m8 so that m2 = m8 is always satisfied. It is easy to check that changing
m2 and m8 does not affect the first chunk as long as m2 ⊕m8 = 0 is satisfied.
Independence of the second chunk can also be checked easily. m8 is involved in
both chunks. But this does not cause problems. In fact, we can apply the linear
algebra to the message schedule so that m3 ⊕ m6 ⊕ m8 ⊕ m15 is regarded as
m′

0 and m2 ⊕m8 is regarded as m′
1 using the method shown by [5,6,7,8]. Then,

m′
2, . . . , m

′
15 will be represented by linear combinations of m0, . . . , m15.

5.1 Initial Structure

The initial structure we use is basically the same as the one shown in Fig. 2 for
j = 27. However, X29 is m8 which needs to change to compute both chunks. In
order to maintain the independence of two neutral words, we separate m8 into
two parts, i.e. m8 = mH

8 ‖mL
8 . Then, we change only mL

8 to compute the first
chunk, and only mH

8 to compute the second chunk.
To compute the initial structure, we first fix the value of t29 to 0. Then, in

forward, we compute a30 ← t29+(a29 ≪ s129)+(mH
8 ‖0)+f29+k29. In backward,

we compute e29 ← t29 − (0‖mL
8 ). Finally, computations for two chunks become

independent.
By considering the partial-fixing technique explained in Section 5.2, length of

both mH
8 and mL

8 should be 10 bits. Hence, strictly speaking, the representation
of m8 becomes mH

8 ‖0‖mL
8 .

5.2 Partial-Fixing Technique

For the partial-fixing technique, we carefully consider the message order and
rotation numbers in each step to analyze how many bits can be compared by
the meet-in-the-middle. How the results of two chunks are compared is explained
in Table 5. In the followings, we explain how the computations in Table 5 are
processed.

Forward computation for a54: We know all bits of a53, b53, c53, d53, and e53.
Because bit positions 31–10 of NW 1st are fixed, we can compute the same
bit positions of a54. However, we cannot know the carry from bit position 9
to 10. Therefore, we guess the possible two patterns of carry value denoted
by C53, and compute two candidates of bit positions 31–10 of a54.
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Table 5. Number of known bits in partial-fixing technique

#cands

j s1j s2j aj bj cj dj ej NW 1st of aj

53 15 25 All All All All All 31–10

54 6 25 31–10 All All All All 31–10 21

55 31–16 31–10 All All All All 22

F
o
rw

a
rd

55 12 25 28–22 28–22 ? ? ? skipped

56 9 25 28–14 28–22 21–15 ? ? skipped

57 14 25 28–9 28–14 21–15 21–15 ? skipped

58 5 25 28–7 28–9 21–7 21–15 21–15 All 24

59 13 25 23–2 28–7 21–2 21–7 21–15 All 23

60 5 30 23–2 23–2 21–0 21–2 21–7 All 22

61 11 30 All 23–2 21–0 21–0 21–2 All 21

62 7 30 All All 21–0 21–0 21–0 21–0 1

B
a
ck

w
a
rd

63 15 30 All All All 21–0 21–0 All 1

64 6 30 All All All All 21–0 21–0 1

65 All All All All All

#cands

j s1j s2j aj bj cj dj ej NW 2nd of ej

Numbers denote the known bits of each chaining variable. Underlined variables in
j = 55 are the variables where we compare the results of two chunks.

Forward computation for a55: The equation for a55 is as follows:

a55 = a54
≪5

31–16
+f20+e20+X2031–10

+k20 = a54
≪5

31–16
+X2031–10

+Con,

where, subscripts besides underlines denote the positions of partially known
bits. When we compute X20 + Con, we do not know the carry from bit
position 9 to 10. However, if bit position y, 10 ≤ y ≤ 15 of both X20 and
Con are 0, the carry to y + 1-th bit is 0 regardless of the carry from y − 1-
th bit to y-th bit. Similarly, if both values are 1, the carry to y + 1-th bit
is always 1. Hence, we can know the carry from bit position 15 to 16 of
X20 + Con with high probability. Finally, due to the addition of a54

≪5
31–16

and (X20 + Con), we will obtain two results of bit positions 31–16 of a55.
Backward computation: The basic process in the backward computation has

already explained in [4], and computations for dealing with the unknown
carry are the same as the forward computation. Hence, we omit the detailed
explanation.

Match of two chunks: Finally, results from both chunks are compared at bits
28–22 of a55 and bits 28–22 of b55, in total 14 bits.
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5.3 Attack Procedure

Attack procedure
0. Apply the linear transformation for the message expansion matrix [M ] so

that (m3 ⊕ m6 ⊕ m8 ⊕ m15) and (m2 ⊕ m8) are regarded as m′
0 and m′

1

respectively, where (m′
0, . . . , m

′
15) are transformed message words.

1. Fix m′
i, (2 ≤ i ≤ 15) and bit positions 31–10 of m′

0 and bit positions 21–0 of
m′

1 to randomly chosen values. Fix a27, b27, t27 and t28 in the initial structure
to randomly chosen values. Fix t29 to 0.

2. For all 10 free bits (bit positions 31–22) of m′
1 in Step 27,

(a) Compute the initial structure and second chunk in forward to obtain the
value of p53.

(b) Process the partial-fixing technique in forward to obtain values shown
in Table 5 with guessing carry values C53 and C54.

(c) Make a table of (m′
1, p53, bits 28–22 of a55, bits 28–22 of b55, C53, C54).

Since we have 10 free bits in m′
0 and we guess two carry values, we

obtain 212 items in the table.
3. For all 10 free bits (bit positions 9–0) of m′

0 in Step 29,
(a) Compute the initial structure and first chunk in backward to obtain the

value of p65.
(b) Process the partial-fixing technique in backward to obtain bits 28–22 of

a55 and b55 with guessing carry values C62, C61, C60, and C59.
(c) Compare bits 28–22 of a55 and b55, in total 14 bits, with those stored in

the table.
(d) If matched, compute pj+1 ← Rj(pj , Xj) for j = 53, 54 with matched m′

0

and m′
1, and check the correctness of C53 and C54. Similarly, compute

pj ← R−1
j (pj+1, Xj) for j = 64, 63, . . . , 55 and check the correctness of

C62, C61, C60, and C59 and match of 146 other bits of p55.
(e) If all bits match, compute m0, . . . , m15 from m′

0, . . . , m
′
15 by the linear

transformation. Finally, m0, . . . , m15 and p12 is a pseudo-preimage.

5.4 Complexity Estimation

We assume that the complexity for computing 1 step is equivalent to 1
68 com-

pression function operation of HAS-160 reduced to 68 steps.
The complexity of step 2a is 210 · 2668 and the complexity of step 2b is 210 · (21 ·

1
68 + 22 · 1

68 ) = 210 · 6
68 . The complexity of step 3a is 210 · 33

68 . The complexity of
step 3b is 210 · (1 · 3

68 +21 · 1
68 +22 · 1

68 +23 · 1
68 +24 · 1

68 ) = 210 · 3368 . In step 2c, 212

items are stored in the table and in step 3b, 214(= 210 · 24) items are generated.
Therefore, in step 3c, 14 bits of 226 items are compared and 212(= 226 · 2−14)
pairs will remain. In step 3d, forward computation of p54 costs 212 · 1

68 = 210 · 4
68

and the number of remaining pairs will be 211(= 212 · 2−1) by checking the
correctness of C53. Hence, computation of p55 costs 211 · 1

68 = 210 · 2
68 and the

number of remaining pairs will be 210(= 211 · 2−1) by checking C54. Backward
computation up to p61 costs 210 · 4

68 and the number of remaining pairs will be
29(= 210 · 2−1) by checking C62. Computation of p60 costs 29 · 1

68 = 210 · 0.5
68
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and the number of remaining pairs will be 28(= 29 · 2−1) by checking C61.
Computation of p59 costs 28 · 1

68 = 210 · 0.25
68 and the number of remaining pair

will be 2−18(= 28 · 2−1 · 2−25) by checking the correctness of C60 and the match
between bits 31–29, 21–0 of a55 ≪ s256 and e59. Since the number of remaining
pairs is enough reduced, the complexity after this step is negligible. Finally,
in step 3d, match of other 121 (=160-14-25) bits and correctness of C59 are
checked and the number of remaining pair will be 2−140(= 2−18 · 2−121 · 2−1).
Therefore, by repeating the above procedure 2140 times, a pair matches for all
bits, namely, a pseudo-preimage is found. The complexity of one iteration is
210 · (26

68 + 6
68 + 33

68 + 33
68 + 4

68 + 2
68 + 4

68 + 0.5
68 + 0.25

68 ) = 210 · 108.75
68 ≈ 210.690.

Hence the total complexity is approximately 2150.7(≈ 210.690 · 2140). Finally,
pseudo-preimages are converted to a preimage with a complexity of 2156.3(≈
2(150.690+160)/2+1) by using the conversion algorithm described in Section 3.1.

In this attack, we use a memory to store 212 items of (m′
1, p53, 7 bits of a55,

7 bits of b55, C53, C54) in step 2c. Therefore, we need less than 212 × 7 words of
memory to generate a pseudo-preimage.

5.5 Message Padding

To find preimages, we need to satisfy the message padding rules. Because we use
m15 as a neutral word, the value of m15 cannot be fixed in advance. This means
that the length of preimages will be long and cannot be determined in advance.
This problem can be solved by using expandable message [22] constructed with
fixed point [23]. Note that when we generate second-preimages by using this
preimage attack, we do not have to satisfy the message padding rules.

5.6 Preimage Attacks on the First 67 Steps and the First 65 Steps

The framework of the attacks on the first 67 and 65 steps are the same as the
one for 68 steps. Due to the limited space, we only show the chunk separation
for these attacks in Appendix B.

The attack on 67 steps skips 2 steps by the initial structure and 13 steps by
the partial-fixing technique. We confirmed that the complexity of the attack is
slightly higher than that of 68 steps. This is because the partial-fixing technique
in this attack skips longer steps than the attack on 68 steps. Finally, pseudo-
preimages can be found with approximately 2154 computations and preimages
can be found with approximately 2158 computations. This attack uses 210 × 7
words of memory to find a pseudo-preimage. The attack on 65 steps does not
use the initial structure and skips only 7 steps by the partial-fixing technique. In
this attack, pseudo-preimages can be computed with approximately 2143.4 com-
putations and preimages can be found with approximately 2152.7 computations.
This attack uses at most 216 × 6 words of memory to find a pseudo-preimage.

6 Conclusion

This paper proposed improved preimage attacks on step-reduced HAS-160. We
considered various techniques on meet-in-the-middle preimage attacks. Using
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these techniques, we succeeded in attacking the last 68 steps and the first 67
steps. The complexities for finding pseudo-preimages with these attacks are 2150.7

and 2154, respectively. The complexities for finding preimages are 2155.6 and 2158,
respectively. The required memory are 212 × 7 and 210 × 7 words, respectively.
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A Construction of 4-Step Initial Structure

We explain how to compute the first chunk step by step. Note that to construct
this structure, bit positions we change in Xj and Xj+3 must be different so that
we can compute the fj+2 function in each chunk independently. In Fig. 4, we
assume that free bits of Xj are bits 31 to L and free bits of Xj+3 are bits L− 1
to 0. First, we show that the change of Xj+3 does not impact to pj+4.

0. Fix values of aj , tj , tj+1, tj+3 to randomly chosen values, and fix tj+2 to 0.
1. Compute ej+3 ← tj+3 − Xj+3 so that the value of tj+3 does not change

regardless of the value of Xj+3.
2. Compute free bits (L − 1 to 0) of fj+2 to obtain corresponding bits of fj+2

denoted by fL
j+2. Then, Compute ej+2 ← tj+2 −Xj+2 − (0‖fL

j+2).
3. Compute fj+1, then compute ej+1 ← tj+1 − fj+1.
4. Compute fj , then compute ej ← tj − fj − (aj ≪ s1j).

Finally, we can guarantee that changes of Xj+3 do not impact to pj+4. By the
similar analysis, we can also guarantee that changes of Xj do not impact to pj .

B Selected Chunks for the First 67 and the First 65 Steps

Chunks for the first 67 steps is as follows.

- The attack target is from Steps 0 to Steps 66 (the first 67 steps).
- 2-step initial structure is applied to Step 12 and Step 13 (skip 2 steps).
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Fig. 4. Memoryless initial structure for skipping 4 steps

- Partial-fixing technique is applied from Step 37 to Step 49 (skip 13 steps).
- The first chunk is from Step 50 to Step 66 and Step 0 to Step 11. We use

m0 = m10 as neutral words.
- The second chunk is from Step 14 to Step 36. We use m9 = m11 = m12 = m14

as neutral words.

Chunks for the first 65 steps is as follows.

- The attack target is from Steps 0 to Steps 64 (the first 65 steps).
- Partial-fixing technique is applied from Step 37 to Step 43 (skip 7 steps).
- The first chunk is from Step 44 to Step 64 and Step 0 to Step 15. We use

m12 = m14 as neutral words.
- The second chunk is from Step 16 to Step 36. We use m0 = m10 as neutral

words.
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Abstract. In this paper, we present a new distinguishing attack which
works for secret prefix MAC based on 65-step (12-76) SHA-1. By birth-
day paradox, we first guarantee the existence of an internal collision at
the output of the first iteration, then identify it by choosing the second
message block smartly, and finally distinguish the specific MAC from
a random function by making use of a near-collision differential path.
The complexity of our new distinguisher is 280.9 queries with success
probability 0.51. In comparison, we also present a distinguisher on secret
prefix MAC instantiated with 63-step (8-70) SHA-1 according to Wang’s
method introduced at FSE 2009 [21], which needs about 2157 queries
with success probability 0.70.

Keywords: Cryptanalysis, MAC, Distinguishing Attack, SHA-1.

1 Introduction

A Message Authentication Code (MAC) algorithm, accepts as input a secret key
and an arbitrary-length message to be authenticated, and outputs a fixed-length
MAC value. The MAC algorithm guarantees both data integrity and data origin
authenticity, where the verifiers can detect who send the message and whether
the message is tampered during the transformation. It is important in internet
communication and is widely used in security protocols such as SSL, SSH, IPsec,
etc. Recent collision attacks on hash functions have undermined the confidence
in the most popular hash functions such as MD5 and SHA-1 [2,3,16,17,18,20],
thus the security of MAC constructions built on these hash functions needs to
be reconsidered[4,6,8,12,13,15,19].

MACs are keyed hash functions, so it is natural to use hash functions in a way
that uses secret keys. The secret prefix method is a MAC construction which
prepends the secret key k to the message before the hashing operation, and it
is a basic design unit for HMAC/NMAC [1]. The original secret prefix MAC
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is defined as MACk(m) = H(k‖m), but this is not secure because we have
H(m1‖m2) = H(H(m1)‖m2) when applied in iterated chaining hash structures
such as Merkle-Damg̊ard structure[11]. Then if the adversary obtains the MAC
value of the message m1, he is able to obtain the MAC value of the message
m1‖m2 without knowing the key. One suggestion to guarantee a secure secret
prefix MAC is to prepend the message length to the message before hashing,
which is called LPMAC[21], the secret prefix MAC we analyzed in this paper
belongs to this version.

There are three type of attacks on MACs, named distinguishing attack, forgery
attack, and key recovery attack. Distinguishing attack can be divided into
distinguishing-R and distinguishing-H attack[8]. Distinguishing-R attack means
distinguishing a MAC from a random function, and distinguishing-H attack de-
tects an instantiated MAC (by an underlying hash function or block cipher) from
a MAC with a random function. This paper focuses on distinguishing-H attack,
and we call it distinguishing attack for short.

Collision or near-collision differential paths for the underlying hash functions
are often used to build distinguishers of MAC algorithms, and many cryptanaly-
sis of MACs based on hash functions have been proposed [4,6,8,11,12,13,15,19,21].
For MACs based on SHA-1, Kim et al. proposed a distinguishing attack on
HMAC/NMAC-43step-SHA-1 with data complexity 2154.9. They also described
two kinds of distinguishers for HMAC, named as Differential Distinguisher and
Rectangle Distinguisher where both come from the popular methods in the crypt-
analysis of block cipher. The differential distinguisher utilizes a collision differen-
tial path with probability higher than 2−n, and the rectangle distinguisher needs
a near-collision differential with probability higher than 2−n/2[8]. Rechberger and
Rijmen improved their attack to 50-step with data complexity 2153.5, who also
proposed a related-key distinguishing attack on 62-step (17-78) HMAC-SHA-
1, and a full key recovery attack on 34-step NMAC-SHA-1 in the related-key
setting[12]. All these attacks require a collision or near-collision differential path
with probability higher than 2−n. Wang et al. presented a new distinguishing
attack on LPMAC with 61-step SHA-1, which requires 2152.5 table lookups and
2154.5 queries with success rate 0.70[21]. Because there are too many sufficient
conditions in the differential path to construct a distinguisher with complex-
ity lower than 2n, the authors neglected the exact differential path in the first
round, replaced it with an inner near-collision, and explored new techniques to
detect the inner near-collision. In this way, they only need to find differential
path with high probability for the last three rounds. This work is motivated by
the first distinguishing attack on HMAC/NMAC-MD5 without related-key set-
tings, which detects an inner near-collision in the first iteration[19]. Their work
introduced totally different methods to distinguishing attack.

We research into this new method[21] and present a distinguishing attack on
LPMAC with 63-step (8-70) SHA-1. The complexity of the attack is 2157 queries
with success probability 0.70. Then we build another distinguisher which works
for LPMAC based on 65-step (12-76) SHA-1 with 280.9 queries and success proba-
bility 0.51. For messages composed of 2 blocks, we denote the collisions occurring
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after the first block as internal collisions, and collisions at the final output as
external collisions. It is obvious that the internal collision must lead to external
collision. Thus, the internal collision can be identified easily. Since the output
of the first block are used as IV of the second block, once an internal collision
is detected, the IVs of the second blocks are the same. Then the second block
follows a near-collision differential path with high probability if the LPMAC is
based on reduced SHA-1.

This paper is organized as follows: Section 2 gives brief descriptions of SHA-1,
LPMAC and Wang et al’s distinguishing attack on LPMAC-SHA-1. In section 3,
we present our results on 63-step SHA-1 using Wang’s method, and then build
a new distinguisher and compare it with the former one in section 4. Finally,
section 5 concludes our paper.

2 Backgrounds and Definitions

In this section, we define the notations used in this paper, and give brief de-
scriptions of SHA-1, LPMAC and the distinguishing attack proposed by Wang
et al[21].

2.1 Notations

H : a hash function
H : a hash function without padding and length appending
n : the length of the hash output
b : the length of one message block

IV : the initial chaining value
x‖y : the concatenation of the two bitstrings x and y
xi,j : the j-th bit of xi, where xi is a 32-bit word, j = 1, . . . , 32, and

32 is the most significant bit
+,− : the addition and subtration modular 232

Δ−x : the modular difference x− x′, where x and x′ are two 32-bit words
∧,¬,∨,⊕ : the bitwise AND, NOT, OR and exclusive OR

≪ s : the left-rotation by s-bit

2.2 Brief Description of SHA-1

The hash function SHA-1 was issued by NIST in 1995 as a Federal Information
Processing Standard[10]. It follows Merkle-Damg̊ard iterative construction, takes
a message M with the bit-length less than 264 as input, and produces a 160-bit
digest. Each 512-bit block Mi is divided into sixteen 32-bit words, denoted as
(m0, m1, · · · , m15), and expanded to eighty 32-bit words (w0, · · · , w79):

wj =
{

mj , for j = 0, . . . , 15,
(wj−3 ⊕ wj−8 ⊕ wj−14 ⊕ wj−16) ≪ 1, for j = 16, . . . , 79.

The compression function of SHA-1 takes a 160-bit chaining value hi = (a0, b0, c0,
d0, e0) and a 512-bit message block Mi as inputs, and produces another 160-bit
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chaining value hi+1, where h0 is the initial value IV , and M = M0‖ · · · ‖Mt−1. By
iterating all the message blocks Mi, we obtain the final 160-bit output value ht.

The compression function consists of 4 rounds, and each round includes 20
steps. The details for the compression function are as follows:

1. Input: w0, . . . , w79 and hi = (a0, b0, c0, d0, e0), where hi is a 160-bit chaining
value.

2. Step update: For j = 1 to 80,

aj = (aj−1 ≪ 5) + fj(bj−1, cj−1, dj−1) + ej−1 + wj−1 + kj ,

bj = aj−1, cj = bj−1 ≪ 30, dj = cj−1, ej = dj−1.

Here, the Boolean function fj and constant kj are defined as:

round steps fj kj

1 1-20 IF : (x ∧ y) ∨ (¬x ∧ z) 0x5a827999
2 21-40 XOR : x⊕ y ⊕ z 0x6ed6eba1
3 41-60 MAJ : (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z) 0x8fabbcdc
4 61-80 XOR : x⊕ y ⊕ z 0xca62c1d6

3. Output: hi+1 = (a0 + a80, b0 + b80, c0 + c80, d0 + d80, e0 + e80).

2.3 Brief Description of LPMAC

The secret prefix method is to append a message M to a secret key k before the
hashing operation:

MACk(M) = H(k‖M).

This method was proposed in the 1980’s[7], but the original secret prefix MAC is
insecure because we have H(m1‖m2) = H(H(m1)‖m2) when applied in iterated
chaining structures such as Merkle-Damg̊ard structure. Then if we obtain the
MAC value c1 of the message m1, we are able to obtain the MAC value c2 of
the message m1‖m2 without knowing the key k from

c1 = MACk(m1) = H(k‖m1),
c2 = MACk(m1‖m2) = H(k‖m1‖m2) = H(H(k‖m1)‖m2) = H(c1‖m2).

Prefixing the message length to the message before hashing is one suggestion to
avoid the above attack[13], which is denoted as:

LPMACk(M) = H(k‖length‖pad‖M) = Hk′(M),

where k‖length‖pad is a full block. Such kind of secret prefix MAC is called
LPMAC[21], and we focus on it in the rest of this paper.
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2.4 Wang et al.’s Distinguisher on LPMAC Based on 61-Step
SHA-1

In this part, we describe the distinguisher proposed by Wang et al, which works
on LPMAC with 61-step SHA-1 started from the first step[21]. Assume the
LPMAC algorithm is either LPMAC-61-step-SHA-1 or LPMAC-RF (LPMAC
with a random function).

For 61-step SHA-1, consider a differential path with two message blocks. As-
sume (P‖M0‖M1, P ′‖M ′

0‖M ′
1) is one message pair, which produces a target

differential path. P and P ′ are one-block messages, M0 and M ′
0 are 448-bit

(14 words) truncated messages of the second block, while M1 and M ′
1 are the

corresponding 64-bit messages left. Then select a target differential path, such
that the first iteration can be any differential path, and the second leads to
a near-collision. The second differential path is divided into two parts, where
the first part consists of the first 14 steps which involves most conditions, and
the second part is the last 47 steps with only 34 conditions. In order to make
sure the truncated differential path of the last 47 steps with higher probabil-
ity, choose a certain disturbance vector, which produces the near-collision for
the second iteration. Neglect the special differential path in the previous 14
steps and only consider the output difference of the 14th step, it can be re-
garded as an inner near-collision. Then, if the inner near collision occurs, replace
(M1, M

′
1) with another (M1, M ′

1), and (P‖M0‖M1, P
′‖M ′

0‖M ′
1) follows the dif-

ferential path with probability 2−34. If two pairs (P‖M0‖M1, P
′‖M ′

0‖M ′
1) and

(P‖M0‖N1, P
′‖M ′

0‖N ′
1) result in the near-collision differential path:

Hk(P‖M0‖M1)−Hk(P ′‖M ′
0‖M ′

1) = Hk(P‖M0‖N1)−Hk(P ′‖M ′
0‖N ′

1) = δ,

there will be

Hk(P‖M0‖M1)−Hk(P‖M0‖N1) = Hk(P ′‖M ′
0‖M ′

1)−Hk(P ′‖M ′
0‖N ′

1) = δ′.

Based on these facts, the distinguisher can be constructed as follows: Select four
messages M0‖M1, M0‖N1, M ′

0‖M ′
1 and M ′

0||N ′
1 such that

Δ(M0‖M1) = (M0‖M1)⊕ (M ′
0‖M ′

1) and Δ(M0‖N1) = (M0‖N1)⊕ (M ′
0‖N ′

1)

follow certain differential path, and M0‖M1, M0‖N1 satisfy the sufficient message
conditions. The distinguishing attack includes the following four steps:

1. Randomly choose a structure S, which consists of enough different one-block
messages P . For 61-step SHA-1 it needs 284.5 different P , because the total
sufficient conditions for the near-collision is 169.

2. For all P ∈ S, query the MAC values of P‖M0‖M1, P‖M ′
0‖M ′

1, P‖M0‖N1

and P‖M ′
0‖N ′

1 respectively, and compute the differences of the following two
structures:

S1 = {LPMAC(P‖M0‖M1)− LPMAC(P‖M0‖N1)|P ∈ S},
S2 = {LPMAC(P‖M ′

0‖M ′
1)− LPMAC(P‖M ′

0‖N ′
1)|P ∈ S}.

Search all the collisions between two structures by birthday attack.
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3. For each collision, compute LPMAC(P‖M0‖M1)− LPMAC(P ′‖M ′
0‖M ′

1),
and denote it as δ. Then for the message pair (P‖M0, P

′‖M ′
0), choose

234 different message pairs (M1, M ′
1) such that M0‖M1 satisfies the

message sufficient conditions for the near-collision path. Query the
MAC values for (P‖M0‖M1, P

′‖M ′
0‖M ′

1). Check whether the difference
LPMAC(P‖M0‖M1) −LPMAC(P ′‖M ′

0‖M ′
1) is equivalent to δ. If the dif-

ference of a pair (P‖M0‖M1, P ′‖M ′
0‖M ′

1) matching δ is found, we conclude
that the LPMAC is based on 61-step SHA-1, and break.

4. Repeat steps 1-3. If the number of structures exceeds 268, conclude that the
LPMAC is constructed from a random function.

This attack needs 268 × 284.5 = 2152.5 table lookups and 2154.5 queries, and the
success rate is about 0.70.

3 Distinguishing Attack on LPMAC Based on 63-Step
(8-70) SHA-1

3.1 Discussion about Wang et al.’s Attack

The core of this attack is to explore some mathematical properties that can be
used to distinguish the inner near-collision after the 14th step. For LPMAC,
there are two obstacles to do this:

1. In the first iteration, the output difference of the first is unknown, which
conceals the difference of the near-collision of the second block. Hence, the
birthday attack can not be applied directly to the second iteration like the
distinguishing attacks on MACs based on MD5.

2. How to choose messages, and fulfill the birthday attack to detect the inner
near-collision.

Wang et al.’s distinguisher solved these problems by constructing two structures
S1 and S2, but this leaves a problem that the probability of the differential path
of the last 47 steps should be higher than 2−40 . In other words, the number of
conditions on the near collision differential path of the last 47 steps should be
less than 40. This narrows the choice of disturbance vectors and makes it tough
to obtain further improvement of the attack. Consider the relationship between
the disturbance vector and number of conditions of SHA-0: in the first round,
each ‘1’ leads to 5 conditions; 2 for the second round; 4 for the third one; and the
last is the same as the second round[20]. Certain type of compound disturbance
can decrease the total number of conditions, for example two consecutive ‘1’s
disturbances in the third round will lead to 6 conditions, while two inconsecutive
ones will lead to 8 conditions. But since there are not many disturbance vectors
to choose, it is hard to find proper disturbance vectors. We try this method on
reduced SHA-1 started from the second round, and see how many steps we can
reach.

Consider the restriction of 40 conditions, we search for best disturbance vec-
tors with least conditions within certain rounds, using the similar method as[9].
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Table 1. Start Point of the Disturbance Vector

number value

0 0x00000000
1 0x00000000
2 0x00000002
3 0x00000000
4 0x00000002
5 0x00000000
6 0x00000000
7 0x00000000
8 0x00000000
9 0x00000000
10 0x00000000
11 0x00000000
12 0x00000000
13 0x00000000
14 0x00000000
15 0x00000000

At last we choose the start point of the disturbance vector as described in Table 1,
and the rest are calculated forward and backward from the message expansion
function. It is the same start point as[21], but we use it from different step of
SHA-1. From the 22nd step to the 70th step, we built a 49-step near collision
differential path for SHA-1 with 37 conditions, and we neglect the special dif-
ferential path in the previous 14 steps, replacing it with an inner near collision.
Table 2 shows the differential path selected.

3.2 Distinguishing Attack on LPMAC-63-Step-SHA-1 Using
Wang’s Method

First we should make clear how many chosen messages are needed to guarantee
the existence of the inner near collision. The number of sufficient conditions
for the inner near-collision is 162, where 160 conditions are from the output
difference of the 22nd step, and 2 conditions are needed for the cancelation of
step 22-23. So we need 2162/2 = 281 messages to guarantee an inner near collision
according to the birthday attack. Then select four messages M0‖M1, M0‖N1,
M ′

0‖M ′
1 and M ′

0‖N ′
1 such that Δ(M0‖M1) and Δ(M0‖N1) follow the message

difference as shown in Table 2, and M0‖M1, M0‖N1 satisfy the conditions in
Table 3.

Then Wang et al.’s distinguishing attack can be applied to LPMAC based on
63-step SHA-1, as described in section 2.4, and we omit the details here. The
complexity and success rate are computed as follows:

– Complexity: we need to choose 4 · 274 · (281 + 237) ≈ 2157 messages in total,
thus the complexity is 2157 queries and 274 · 281 = 2155 table lookups.
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Table 2. A Differential Path for SHA-1 Reduced to 63 Steps (8-70)

step disturb. XOR difference of the input to step i

i vector Δwi−1 Δai Δbi Δci Δdi Δei
conditions

8 80000003 - - - - - - -
9 80000000 - - - - - - -
10 3 - - - - - - -
11 2 - - - - - - -
12 80000001 - - - - - - -
13 2 - - - - - - -
14 3 - - - - - - -
15 2 - - - - - - -
16 80000003 - - - - - - -
17 0 - - - - - - -
18 80000000 - - - - - - -
19 2 - - - - - - -
20 80000001 - - - - - -
21 0 2,5,6,31,32 32,1 2 30 30,31,32 a19,2 = a18,2 + w19,32 + w20,32 + 1,

a19,3 = a18,3 + w19,1 + w20,1 + 1

22 0 1,30 32,1 32 30
23 2 2,31,32 30,31 32 30 a23,2 = w22,2
24 2 2,7,30,31,32 2 30,31 32 a24,2 = w23,2, a22,4 = a21,4 + w22,2 + w23,2 + 1
25 0 2,7,30,31 2 2 30,31 a23,4 = a22,4 + w23,2 + w24,2 + 1
26 0 2,32 2 32
27 0 32 32
28 0 32 32
29 0 32 32
30 2 2 a30,2 = w29,2
31 0 7 2 a29,4 = a28,4 + w29,2 + w32,7 + 1
32 2 2 a32,2 = w32,7 + 1
33 0 7,32 2 32 a31,4 = a30,4 + w32,7 + w34,7
34 2 32 2 32 a34,2 = w34,7 + 1
35 0 7 2 32 32 a33,4 = a32,4 + w34,7 + w35,7
36 3 1,32 2 32 a36,1 = w35,1 + 1
37 0 6,7 1 32 32 a35,3 = a34,3 + w35,1 + w37,1 + 1
38 0 1,32 1 32 a37,31 = a35,1 + w35,1 + w38,31
39 2 2,31, 31 32 a39,2 = w38,2, a38,31 = a37,1 + w35,1 + w39,31 + 1
40 0 7,31 2 31 a38,4 = a37, 4 + 1
41 0 2,31 2 31 a40,32 = a38,2 + 1
42 0 32 32 a41,32 = w40,2 + 1
43 0 32 32
44 2 2,32 32 a44,2 = w43,2
45 0 7 2 a43,4 = a42,4 + 1
46 0 2 2 a45,32 = a43,2 + 1
47 0 32 32 a46,32 = a45,2 + 1
48 0 32 32
49 0 32 32
50 2 2 a50,2 = w49,2
51 0 7 2 a49,4 = a48,4 + 1
52 2 2 a52,2 = w51,2, a51,32 = a49,2 + 1
53 0 2 32 a51,4 = a50,4 + 1, a52,32 = a51, 2 + 1
54 0 2 32 a53,32 = a51,2 + 1
55 0 32 32 a54,32 = a53, 2 + 1
56 0 32
57 0 32
58 0
59 0
60 0
61 0
62 0
63 0
64 4 3 a64,3 = w63,3
65 0 8 3 a63,5 = a62,5 + w63,3 + w65,3 + 1
66 0 3 3
67 8 4,1 1 a67,4 = w66,4
68 4 3,9,1 4 1 a68,3 = w67, 3, a66,6 = a65,6 + w66,4 + w68,4 + 1
69 0 8,4,1 3 4 1 a67,5 = a66,5 + w67,3 + w69,3 + 1
70 10 5,3,2 3 2 a70,5 = w69,5
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– Success rate: when the LPMAC is constructed from 63-step SHA-1, the
attack succeeds if another collision is detected in step 3. An inner near-
collision exists with probability:

Table 3. Conditions on Messages

w23,7 = w22,2 + 1, w24,7 = w23,2 + 1, w30,7 = w29,2 + 1, w36,6 = w35,1 + 1,

w36,7 = w35,1, w37,2 = w37,1 + 1, w39,7 = w38,2 + 1, w40,31 = w35,1 + 1,

w44,7 = w43,2 + 1, w50,7 = w49,2 + 1, w52,7 = w51,2 + 1, w53,2 = w49,2 + 1,

w64,8 = w63,3 + 1, w67,9 = w66,4 + 1, w68,8 = w67,3 + 1, w70,10 = w69,5 + 1

1− (1− 1
274 · 2162

)2
74·2162 ≈ 1− e−1 ≈ 0.63.

If the first collision is captured in step 2, the probability of the second colli-
sion searched in step 3 is:

1− (1− 1
237

)2
37 ≈ 1− e−1 ≈ 0.63.

So, if the LPMAC is constructed from 63-step SHA-1, the distinguishing
attack succeeds with probability 0.632 ≈ 0.40.

When the LPMAC is constructed from a random function, the attack
succeeds if there is no collision found in step 3, and the probability is:

((1− 1
2160

)2
37

)2
162+74−160 ≈ 1.

Therefore, the success rate of the attack is (0.40 + 1)/2 = 0.70.

4 New Method to Distinguish LPMAC Based on 65-Step
(12-76) SHA-1

The above attack restricts the number of conditions involved in the differential
path to be less than 40, which prevents cryptanalyzing more steps. However,
we find another way to construct distinguishers that looses the requirements on
the disturbance vectors. Consider the start point shown in Table 4, and the full
differential path for 65-step (12-76) SHA-1 is shown in Table 5.

We assume that the MAC algorithm is either a LPMAC-65-step-SHA-1 or
LPMAC-RF, then build another distinguisher as follows:

1. Generate a structure of 280.5 one-block random messages x randomly, and
append a fixed one-block message y to each x. Query the MAC values for
all x‖y.

2. Search all the colliding messages (x‖y, x′‖y) satisfying LPMAC(x‖y) =
LPMAC(x′‖y) by birthday attack. Denote the collisions happening at the
output of the first iteration as internal collisions, while the collisions at the
final output as external collisioins.
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Table 4. Start Point of the Disturbance Vector

number value

0 0x00000002

1 0x00000000

2 0x00000000

3 0x00000000

4 0x00000000

5 0x00000000

6 0x00000000

7 0x00000000

8 0x00000000

9 0x00000000

10 0x00000000

11 0x00000000

12 0x00000000

13 0x00000000

14 0x00000000

15 0x00000000

3. For all the collisions collected in step 2, we append another y′ 
= y to x and
x′, respectively, ask for (x‖y′, x′‖y′), and check if they still collide. In this
way, we can figure out the internal collisions.

4. Append 278 one-block message pairs (y1, y2), which satisfies the difference
and conditions on message block, to the internal collision pair (x, x′), re-
spectively. Query with (x‖y1, x

′‖y2), and check whether there is at least one
pair follows the differential path selected. Once a message pair whose output
difference is the same as shown in the differential path is found, we conclude
that the MAC algorithm is LPMAC-65-step-SHA-1. Otherwise, the MAC is
a LPMAC with a random function.

The data complexity of the attack is 280.5+2 ·278 ≈ 280.9 chosen messages. Since
we can use the birthday attack to search colliding pairs, the time complexity is
about 280.9 queries. For two random messages x and x′, according to the birthday
paradox and Taylor series expansion, among the 280.5 messages, we can find an
internal collision with probability:

1− (1− 1
2160

)2
160 ≈ 1− e−1 ≈ 0.63.

While for LPMAC-SHA-1, the collision in step 4 happens with probability 2−78

instead of the average probability 2−160. So, when the LPMAC is based on 65-
step SHA-1, we can find a collision in step 4 with probability:

1− (1 − 1
278

)2
78
≈ 1− e−1 ≈ 0.63.
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Table 5. A Differential Path for SHA-1 Reduced to 65 Steps (12-76)

step disturb. XOR difference of the input to step i

i vector Δwi−1 Δai Δbi Δci Δdi Δei
conditions

12 2 2 2
13 0 7 2 a12,2 = 0
14 0 2 32
15 1 1,32 32 c14,2 = 0, d14,2 = 1
16 0 6,32 1 32 a15,1 = 0, a15,32 = 1
17 80000002 1,2 1 a16,32 = 0
18 2 2,5,7,31 2,32 31 a17,2 = 0, a17,32 = 0, c17,1 = 0, d17, 1 = 1
19 80000002 7,31 2 2,32 31 a18,2 = 0, a18,31 = 1
20 0 2,5,7,30,31,32 2,32 2 32,30 31 a19,2 = 0, a19,32 = 0, c19,2 = 0, d19,2 = 1,

c19,32 = 0, d19,32 = 1, a19,31 = 0
21 2 30,32 2,32 32 32,30 c20,2 = d20,2, c20,32 = d20,32
22 0 7,32 2 32,30 32 32,30 a21,2 = 0
23 3 1,30 2 32,30 32 c22,2 = d22,2
24 0 6,7,30 1,2 32 32,30 a23,1 = 0, a23,2 = 0
25 2 1,32 1,2 32 c24,1 = d24,1, c24,2 = d24,2
26 2 2,7,31 2 31,32 32 a25,2 = 0
27 1 1,2,7,31,32 2 2 31,32 a26,2 = 0, c26,2 = d26,2
28 0 2,6,31 1 2 32 31,32 a27,1 = 0, c27,2 = d27,2
29 2 1,2 1 32 32 c28,1 = d28,1
30 2 2,7,31 2 31 32 32 a29,2 = 0
31 1 1,2,7,31,32 2 2 31 32 a30,2 = 0, c30,2 = d30,2
32 0 2,6,31,32 1 2 32 31 a31,1 = 0, c31,2 = d31,2
33 0 1 1 32 32 c32,1 = d32,1
34 2 2,31 31 32 32
35 3 1,2,7,31,32 2 31 32 a34,2 = 0
36 0 2,6,7,31 1,2 2 31 a35,1 = 0, a35,2 = 0, c35,2 = d35,2
37 2 1,32 1,2 32 c36,1 = d36,1, c36,2 = d36,2
38 2 2,7,31 2 31,32 32 a37,2 = 0
39 0 2,7,31 2 2 31,32 32 a38,2 = 0, c38,2 = d38,2
40 0 2,31 2 32 31,32 c39,2 = d39,2
41 2 2 32 32 c40,32 = −d40,32
42 0 7 2 32 32 a41,2 = 0, b41,32 = −c41,32
43 0 2,32 2 32 c42,2 = −d42,2
44 0 32 32 b43,32 = −d43,32
45 2 2,32 32 b44,32 = −c44,32
46 0 7,32 2 32 a45,2 = 0
47 2 2 c46,2 = −d46,2
48 0 7,32 2 32 a47,2 = 0, b47,32 = −d47,32
49 2 32 2 32 c48,2 = −d48,2, b48,32 = −c48,32
50 0 7 2 32 32 a49,2 = 0, b49,32 = −d49,32
51 2 32 2 32 c50,2 = −d50,2, b50,32 = −c50,32
52 0 7 2 32 32 a51,2 = 0, b51,32 = −d51,32
53 0 2,32 2 32 c52,2 = −d52,2, b52,32 = −c52,32
54 0 32 32 b53,32 = −d53,32
55 0 32 32 b54,32 = −c54,32
56 0 32 32
57 0
58 0
59 0
60 0
61 0
62 0
63 0
64 0
65 0
66 0
67 4 3
68 0 8 3 a67,3 = 0
69 0 3 3 c68,3 = d68,3
70 8 4,1 1
71 0 9,1 4 1 a70,4 = 0
72 0 4,1 4 1 c71,4 = d71,4
73 10 5,2 2
74 0 10,2 5 2 a73,5 = 0
75 8 4,5,2 5 2 c74,5 = d74,5
76 20 6,9,3 4 3 a75,4 = 0
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For LPMAC-RF, the attack succeeds if there is no collision found in step 4.
There are 278 pairs in total, so the probability that there is no collision among
them is:

(1− 1
2160

)2
78 ≈ 1.

Hence, the success rate of this attack is:

0.63× (0.63× 1
2

+ 1× 1
2
) ≈ 0.51.

The success rate can be increased by repeating the attack several times.
Compared with Wang et al.’s attack, this attack requires less chosen mes-

sages. So we can see that if we apply a distinguishing attack on reduced SHA-1
but don’t start from the first round, Wang’s attack does not show advantage.
Otherwise, because their method can ignore the conditions in the first 14 steps
of the complicated differential path of the first round, it has advantage. While
for the latter distinguisher we presented in section 4, it is hard to find a suitable
differential path start from the first step, because there are too many conditions
in the first round.

5 Conclusion

We first introduce Wang et al.’s distinguishing attack presented at FSE 2009
which can distinguish LPMAC based on 61-step SHA-1[21], and apply it to LP-
MAC with 63-step (8-70) SHA-1. Then we built another new distinguisher which
works for LPMAC instantiated with 65-step (12-76) SHA-1. The complexity of
the former one is 2157 queries with success rate 0.70, while for the latter one,
it only needs 280.9 queries, and the success probability is 0.51. The success rate
can be increased by repeating the attack several times.
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Abstract. At CANS 2008, Mashatan and Stinson suggested a message
recognition protocol for ad hoc pervasive networks. The protocol pro-
vides a procedure to resynchronize in case of a (possibly adversarial)
disruption of communication. We show that this resynchronization pro-
cess does not provide the functionality intended and in fact enables an
adversary to create selective forgeries. The computational effort for the
attack is negligible and allows the insertion of arbitrary messages.

Keywords: Cryptanalysis, message recognition, ad hoc network.

1 Introduction

In [MS08], Mashatan and Stinson propose a new message recognition protocol for
ad hoc pervasive networks, aiming at scenarios with resource restricted devices.
Their protocol relies on the use of a cryptographic hash function providing suit-
able guarantees, and the protocol avoids the use of asymmetric cryptography.
In informal terms, the scenario in [MS08] can be summarized as follows: during
an initialization phase, two parties A and B are connected through an authentic
channel of low bandwidth. While this narrow-band channel can be eavesdropped,
the adversary is confined to be passive; i. e., no messages can be altered, deleted
or inserted. Later on, A and B are connected via a public broadband chan-
nel that is completely controlled by the, now active, adversary. The protocol in
[MS08] tries to make sure that messages sent over this public insecure channel
by A are only accepted by B if they indeed originate from the party A with
which the initialization phase was performed. Further, according to [MS08], the
proposed protocol provides a practical procedure for resynchronization in case of
any adversarial disruption or communication failure.

Mashatan and Stinson’s proposal can be be seen in the same line of research
as, for instance, Anderson et al.’s Guy Fawkes protocol [ABC+98], Stajano and
Anderson’s resurrecting duckling [SA00], Mitchell’s scheme for remote user au-
thentication [Mit03], Weimerskirch and Westhoff’s zero common-knowledge au-
thentication [WW04], and Lucks et al.’s Jane Doe protocol [LZWW08].

Our contribution. Below, we show that the resynchronization mechanism sug-
gested by Mashatan and Stinson unfortunately does not work as intended, but
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actually enables an attack: an adversary can abuse the resynchronization pro-
cess to send forged messages that are accepted as legitimate. The computational
effort for the attack is negligible, and there is no restriction on the contents of
the messages that can be inserted.

2 The Proposal from CANS 2008

This section recalls Mashatan and Stinson’s proposal from CANS 2008 to the
extent necessary for describing our attack. The protocol splits into three compo-
nents, which we discuss in the next three subsections. For more details, we refer
to the original paper [MS08], which elaborates on the underlying assumptions
on the hash function H (pre-image resistance, paired second pre-image resis-
tance, paired collision resistance, binding pre-image resistance, for instance). We
denote passwords1 for party A by xi and for party B by yi. Writing H for
the underlying hash function, we set Xi := H(xi), Yi := H(yi) and refer to
the Xi and Yi as committing hash values of the passwords. Finally, the binding
hash values are denoted by Xi(i+1) and Yi(i+1) for A and B respectively, where
Xi(i+1) := H(xi, Xi+1) and Yi(i+1) := H(yi, Yi+1).

At any given time, the internal state of A is given by an 8-tuple
(xi, xi+1, Xi, Xi+1,Xi(i+1), y

∗
i−1, Y

∗
i ,Y∗

i(i+1)) with y∗
i−1, Y ∗

i , Y∗
i(i+1) being

B’s most recent password, committing hash
value, and binding hash value accepted by A. Likewise, the internal state of
B is given by an 8-tuple (yi, yi+1, Yi, Yi+1,Yi(i+1), x

∗
i−1, X

∗
i ,X ∗

i(i+1)) with x∗
i−1,

X∗
i , X ∗

i(i+1) being A’s most recent password, committing hash value, and binding
hash value accepted by B.

Adversarial model. During the initialization phase of the protocol, the involved
parties A and B exchange information through an authenticated channel which
we will denote by =⇒. The adversary is restricted to passive eavesdropping of
this channel; no delaying, deleting, inserting, or altering of messages is allowed.
During the execution of the protocol and in the resynchronization process, A and
B communicate over an insecure channel which we denote by −→. The adversary
has full control over the insecure channel, and in particular can delete and insert
messages. The goal of the adversary is to create a forgery; i. e., to provoke a
situation where B accepts a message-recipient pair (A, m) where the message m
has never been sent by A.

2.1 Initialization Phase

Figure 1 shows the steps performed by A and B in the initialization phase.
In summary, during the initialization phase A, does the following:

1 Here we follow the terminology in [MS08] and stress that exhausting all possible
passwords is assumed to be infeasible. In particular, this use of the term pass-
word differs from the common use in the context of password authenticated key
establishment.
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A B

Choose random x0 and x1 and form
X0 := H(x0), X1 := H(x1), and
X01 := H(x0, X1).

X0,X01====⇒ Receive X0,X01.

Receive Y0,Y01.
Y0,Y01⇐==== Choose random y0 and y1 and form

Y0 := H(y0), Y1 := H(y1), and
Y01 := H(y0, Y1).

Let y∗
−1 :=⊥, so A’s initial state is

(x0, x1, X0, X1, X01,⊥, Y0,Y01).
Let x∗

−1 :=⊥ so B’s initial state is
(y0, y1, Y0, Y1, Y01,⊥, X0,X01)

Fig. 1. Initialization phase of [MS08]

– Choose random x0 and x1.
– Compute X0 := H(x0), X1 := H(x1), and X01 := H(x0, X1).
– Send X0, X01 to B over the authenticated channel.
– Receive Y0, and Y01 from B over the authenticated channel.
– Set y∗

−1 :=⊥, Y ∗
0 := Y0, Y∗

0 := Y0.

Similarly, B performs the following steps:

– Choose random y0 and y1.
– Compute Y0 := H(y0), Y1 := H(y1), and Y01 := H(y0, Y1).
– Send Y0, Y01 to A over the authenticated channel.
– Receive X0, and X01 from A over the authenticated channel.
– Set x∗

−1 :=⊥, X∗
0 := X0, X ∗

0 := X0.

The values X0, X01, Y0, Y01 which are interchanged by A and B over the au-
thenticated channel can be eavesdropped—but not altered—by the adversary.

2.2 Execution of the Protocol

Once the initialization phase has been completed, the actual protocol execution
can take place as described in Figure 2.

Summarizing, on input a message-recipient pair (m, B), A does the following
during a protocol execution:

– Choose a random x2 and form X2 := H(x2), X12 := H(x1, X2).
– Compute h := H(m, x0).
– Send (m, h) and wait to receive y′

0, Y ′
1 , Y ′

01 from B. Resend if B does not
respond.

– If H(y′
0) = Y ∗

0 and H(y′
0, Y

′
1) = Y01, send x0, X1, X01 to B and update the in-

ternal state to (x1, x2, X1, X2,X12, y
′
0, Y

′
1 ,Y ′

12); else initiate
resynchronization.



Cryptanalysis of a Message Recognition Protocol by Mashatan and Stinson 365

A’s internal state: B’s internal state:
(x0, x1, X0, X1,X01, y

∗
−1, Y

∗
0 ,Y∗

01) (y0, y1, Y0, Y1,Y01, x
∗
−1, X

∗
0 ,X ∗

01)

A B

Receive input (m, B). Choose
a random x2 and form X2 :=
H(x2), X12 := H(x1, X2). Com-
pute h := H(m,x0).

m,h−−→ Receive m′, h′.

Receive y′
0, Y ′

1 , Y ′
12.

y0,Y1,Y12←−−−−−− Choose a random y2 and form
Y2 := H(y2), Y12 := H(y1, Y2).

If H(y′
0) = Y ∗

0 and
H(y′

0, Y
′
1) = Y∗

01, then send
x0, X1, X12 and update
your internal state as follows:
(x1, x2, X1, X2,X12, y

′
0, Y

′
1 ,Y ′

12)
else initiate resynchronization.

x0,X1,X12−−−−−−−→ Receive x′
0, X ′

1, X ′
12. If

H(x′
0) = X∗

0 , H(x′
0, X

′
1) = X ∗

01,
and h′ = H(m′, x′), then update
your internal state as follows:
(y1, y2, Y1, Y2,Y12, x

′
0, X

′
1,X ′

12)
and output (A, m′) else initiate
resynchronization.

Fig. 2. Protocol execution of [MS08]

After receiving (m′, h′), B does the following:

– Choose a random y2 and compute Y2 := H(y2), Y12 := H(y1, Y2).
– Send y0, Y1, Y12 to A and wait to receive x′

0, X ′
1, X12. Resend if A does not

respond.
– If H(x′

0) = X∗
0 , H(x′

0, X
′
1) = X01, and h′ = H(m′, x′

0) then update the inter-
nal state to (y1, y2, Y1, Y2,Y12, x

′
0, X

′
1,X ′

12) and output (A, m′); else initiate
resynchronization.

Note that all messages are sent over an insecure channel, where the adversary
can delete, modify, and insert messages at will. Further, it is possible for A to
update its internal state after sending x0, X1, X12 without B updating its state.
Therefore, the resynchronization process that follows is not symmetric.

2.3 Resynchronization Process

In the case of adversarial intrusion or communication failure, either A or B can
initiate the resynchronization process in Figure 3. As shown in this figure, B
has two sets of conditions that can update its internal state, whereas A has only
one.

We can summarize the resynchronization process as follows:

– A and B respectively choose random x2, y2 and form X2 := H(x2), Y2 :=
H(y2), X12 := H(x1, X2), and Y12 := H(y1, Y2).
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A’s internal state: B’s internal state:
(x0, x1, X0, X1,X01, y

∗
−1, Y

∗
0 ,Y∗

01) (y0, y1, Y0, Y1,Y01, x
∗
−1, X

∗
0 ,X ∗

01)

A B

Choose a random x2 and form
X2 := H(x2), X12 := H(x1, X2).

Choose a random y2 and form
Y2 := H(y2), Y12 := H(y1, Y2).

Receive y′
0, Y ′

1 , Y ′
12.

y0,Y1,Y12←−−−−−− Send y0, Y1, Y12.

Send x0, X1, X12.
x0,X1,X12−−−−−−−→ Receive x′

0, X ′
1, X ′

12.

If y∗
−1 = y′

0 and Y ∗
0 = Y ′

1 , then
Y∗

01 := Y ′
12, else initiate resynchro-

nization.

If x∗
−1 = x′

0 and X∗
0 = X ′

1, then
X ∗

01 := X ′
12,

otherwise if H(x′
0) = X∗

0 and
H(x′

0, X
′
1) = X ∗

01, then x∗
−1 := x′

0,
X∗

0 := X ′
1, X ∗

01 := X ′
12

else initiate resynchronization.

Fig. 3. Resynchronization process of [MS08]

– B sends y0, Y1, Y01 to A.
– A sends x0, X1, X01 to B.
– If y∗

−1 = y′
0 and Y ∗

0 = Y ′
1 , then A sets Y∗

01 := Y ′
12; else A initiates resynchro-

nization.
– If x∗

−1 = x′
0 and X∗

0 = X ′
1, then B sets X ∗

01 := X ′
12, else if H(x′

0) = X∗
0 and

H(x′
0, X

′
1) = X ∗

01, then B sets x∗
−1 := x′

0, X∗
0 := X ′

1, X ∗
01 := X ′

12; else B
initiates resynchronization.

During resynchronization, A can only refresh the value Y∗
01, whereas B can either

refresh the value X ∗
01 or update x∗

−1, X∗
0 , X ∗

01.

3 Provoking an Unrecoverable Situation

If A or B suspects a communication failure or a possible adversarial intrusion,
it can initiate the resynchronization process. Here we show that

– an adversary can create a situation where A keeps on initiating the resyn-
chronization process, but the protocol does not recover, and

– an adversary can create a situation where B keeps on initiating the resyn-
chronization process, but the protocol does not recover.

It is worth noting that in both cases, modification of a single message on the
public channel is sufficient; i. e., the adversary does not have to stay “online” for
achieving this type of denial of service: these attacks are qualitatively different
from simply blocking communication between A and B. Section 4 builds on these
observations to create a successful forgery.



Cryptanalysis of a Message Recognition Protocol by Mashatan and Stinson 367

A’s internal state: B’s internal state:
(x0, x1, X0, X1,X01,⊥, Y0,Y01) (y0, y1, Y0, Y1,Y01,⊥, X0,X01)

execution of the protocol

A B

Receive input (m,B). Choose
random x2 and form X2 :=
H(x2), X12 := H(x1, X2).
Compute h := H(m,x0).

m,h−−→ Receive m′, h′.

Receive y′
0, Y ′

1 , Y ′
12.

y0,Y1,Y12←−−−−−− Choose a random y2 and form
Y2 := H(y2), Y12 := H(y1, Y2).

Suppose that H(y′
0) �= Y ∗

0 or
H(y′

0, Y
′
1) �= Y∗

01, hence initiate
resynchronization.

A’s internal state: B’s internal state:
(x0, x1, X0, X1,X01,⊥, Y0,Y01) (y0, y1, Y0, Y1,Y01,⊥, X0,X01)

resynchronization process

A B

Choose a random x2 and
form X2 := H(x2), X12 :=
H(x1, X2).

Choose a random y2 and form
Y2 := H(y2), Y12 := H(y1, Y2)

Receive y′
0, Y ′

1 , Y ′
12.

y0,Y1,Y12←−−−−−− Send y0, Y1, Y12

Send x0, X1, X12.
x0,X1,X12−−−−−−−→ Receive x′

0, X ′
1, X ′

12.

Since y∗
−1 �= y′

0 and Y0∗ �= Y ′
1 ,

initiate resynchronization.

Fig. 4. Unrecoverability after a resynchronization initiated by A
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A’s internal state: B’s internal state:
(x0, x1, X0, X1,X01,⊥, Y0,Y01) (y0, y1, Y0, Y1,Y01,⊥,X0,X01)

execution of the protocol

A B

Receive input (m, B). Choose
random x2 and form X2 :=
H(x2), X12 := H(x1, X2). Com-
pute h := H(m,x0).

m,h−−→ Receive m′, h′.

Receive y′
0, Y ′

1 , Y ′
12.

y0,Y1,Y12←−−−−−− Choose a random y2 and form
Y2 := H(y2), Y12 := H(y1, Y2).

Suppose that H(y′
0) = Y ∗

0

and H(y′
0, Y

′
1) = Y∗

01. Then
send x0, X1, X12 and up-
date the internal state to
(x1, x2, X1, X2,X12, y

′
0, Y

′
1 ,Y ′

12).

x0,X1,X12−−−−−−−→ Receive x′
0, X ′

1, X ′
12. Suppose

H(x′
0) �= X∗

0 , or H(x′
0, X

′
1) �=

X ∗
01, or h′ �= H(m′, x′

0); then ini-
tiate resynchronization.

A’s internal state: B’s internal state:
(x1, x2, X1, X2,X12, y

′
0, Y

′
1 ,Y ′

12) (y0, y1, Y0, Y1,Y01,⊥,X0,X01)

resynchronization process

A B

Choose a random x3 and form
X3 := H(x3), X23 := H(x2, X3).

Choose a random y2 and form
Y2 := H(y2), Y12 := H(y1, Y2)

Receive y′
0, Y ′

1 , Y ′
12.

y0,Y1,Y12←−−−−−− Send y0, Y1, Y12

Send x1, X2, X23.
x1,X2,X23−−−−−−−→ Receive x′

1, X ′
2, X ′

23.

Since x∗
−1 �= x′

1 and H(x′
1) �=

X∗
0 , initiate resynchronization.

Fig. 5. Unrecoverability after a resynchronization initiated by B
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3.1 Unrecoverability with Resynchronization Initiated by A

As depicted in Figure 4, assume that after a successful initialization phase,
A has internal state (x0, x1, X0, X1, X01,⊥, Y0,Y01), and B has internal state
(y0, y1, Y0, Y1, Y01,⊥, X0,X01). Now A starts executing a protocol as specified in
Section 2.2, sending a message m along with matching h-value to B. In response
to this, B sends y0, Y1 and Y12.

The adversary can replace y0 with a (random) value such that A’s validity
check H(y′

0) = Y0 and H(y′
0, Y

′
1) = Y∗

01 fails. Following the protocol specifica-
tion, now A initiates the resynchronization process (see upper part of Figure 4).
Note that so far A never updated its internal state and still has stored the values
y∗
−1 =⊥, Y0∗ = Y0, and Y∗

01 = Y01.
Now, in the resynchronization phase, B sends to A the values y′

0, Y ′
1 , and

Y ′
12. These values do not match the values stored by A, however. Consequently,

A initiates resynchronization again. Re-running the resynchronization will not
help the situation, so the protocol becomes unrecoverable. Figure 4 summarizes
the sequence of events.

3.2 Unrecoverability with Resynchronization Initiated by B

Consider a second scenario as in Figure 5. Assume that after a successful ini-
tialization phase A has internal state (x0, x1, X0, X1,X01,⊥, Y0,Y01), and B has
internal state (y0, y1, Y0, Y1,Y01,⊥, X0,X01) as before. As before, A initiates an
execution of the protocol in [MS08] by sending a message m along with matching
h-value to B. In response, A receives y′

0, Y ′
1 , and Y ′

12 from B. Our adversary
faithfully transmits these messages, so that A’s validity check succeeds, and A
updates its internal state to (x1, x2, X1, X2, X12, y

′
0, Y

′
1 ,Y ′

12). Further, A sends
x0, X1 and X12 to B. Our adversary can replace x0 with a (random) value so
that the values x′

0, X ′
1, and X ′

12 received by B from A do not verify. Conse-
quently, following the protocol specification in Section 2.2, B will initiate the
resynchronization process. Note that so far B never updated its internal state
and has stored x∗

−1 =⊥, X∗
0 = X0, and X ∗

01 = X01.
In the resynchronization process, A sends x1, X2, and X23 to B. Even if the

values x′
1, X ′

2, and X ′
23 received by B are identical to the values sent by A,

x′
1 
= x∗

−1 and H(x′
1) 
= X∗

0 cause B to initiate resynchronization again. Re-
running the resynchronization will not resolve the situation, and analogously, as
in the previous section the protocol becomes unrecoverable. Figure 5 summarizes
the sequence of events.

4 Creating a Forgery

To describe the attack, in subsequent figures we denote the adversary by F .
Messages delivered faithfully by F are denoted by ⇀ and the messages created
by F are denoted by ⇁. To begin our attack, we assume that A and B have
successfully completed the initialization phase of the protocol. From here on, the
attack unfolds in four steps:
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1. executing the message recognition protocol
2. first resynchronization (unsuccessful)
3. second resynchronization (successful)
4. executing the message recognition protocol a second time

The subsequent four subsections elaborate on each of these steps.

4.1 Execution of the Recognition Protocol

In this first step, the goal of F is to learn the initial password x0 from A. For
this, F proceeds as shown in Figure 6.

A’s internal state: B’s internal state:
(x0, x1, X0, X1,X01,⊥, Y0,Y01) (y0, y1, Y0, Y1,Y01,⊥, X0,X01)

A F B

Receive (m, B) as input. Choose
a random x2 and form X2 :=
H(x2), X12 := H(x1, X2). Com-
pute h := H(m,x0).

m,h−−⇀ Receive m, h.

Receive y0, Y1, Y12.
y0,Y1,Y12↼−−−−−− Choose a random y2 and form

Y2 := H(x2), Y12 := H(y1, Y2).

Since H(y0) = Y0 and
H(y0, Y1) = Y01, send
x0, X1, X12 and up-
date the internal state to
(x1, x2, X1, X2,X12, y0, Y1,Y12).

x̃,X1,X12−−−−−−⇁ Since H(x̃) �= X0 initiate resyn-
chronization.

Fig. 6. First step of the attack: execution of the protocol

Summarizing, in this first step of the attack F does the following:

– Forward m, h faithfully from A to B.
– Forward the values y0, Y1, Y12 sent from B faithfully to A.
– Choose a (random) x̃ 
= x0 so that that H(x̃) 
= X0.
– Send x̃, X1, X12 to B, i. e., replace the value x0 sent by A with x̃.

Since H(x̃) 
= X0 , B initiates resynchronization after A has already updated its
internal state to (x1, x2, X1, X2,X12, y0, Y1,Y12), and we are in similar situation
to that discussed in Section 3.2.
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4.2 First Resynchronization (Unsuccessful)

In this second step of the attack, F extracts the value x1 from A, using the
resynchronization process as shown in Figure 7.

Thus F ’s actions in this step of the attack can be summarized as follows:

– Forward the values y0, Y1, Y12 sent by B faithfully to A.
– Receive x1, X2, X23 from A.
– Send x̃, X1, X12 to B, i. e., the same values as above.

Since y0 and Y1 match what A has stored, A refreshes the value Y12 with the
new one sent by B. Recall that B has two sets of conditions to check, as shown in
Figure 3. As B has not accepted a password from A yet, we clearly have x−1 
= x̃
and the first condition is not met. Further, we have H(x̃) 
= X0, so the second
condition is not met either. Hence the resynchronization is unsuccessful and B
initiates resynchronization a second time. Note that at this point, F knows both
x0 and x1.

A’s internal state: B’s internal state:
(x1, x2, X1, X2,X12, y0, Y1,Y12) (y0, y1, Y0, Y1,Y01,⊥, X0,X01)

A F B

Choose a random x3, and
form X3 := H(x3), X23 :=
H(x2, X3).

Choose a random y2 and form
Y2 := H(y2), Y12 := H(y1, Y2).

Receive y0, Y1, Y12.
y0,Y1,Y12↼−−−−−− Send y0, Y1, Y12.

Send x1, X2, X23
x̃,X1,X12−−−−−−⇁ Since x∗

−1 �= x̃, and H(x̃) �=
X0, initiate resynchronization.

Fig. 7. Second step of the attack: unsuccessful resynchronization

4.3 Second Resynchronization (Successful)

During this second resynchronization, B will update its internal state. In prepa-
ration of the subsequent forgery, F binds the x1-value received from A to F ’s own
value x̃. Figure 8 delineates the sequence of events during this second (successful)
resynchronization.

Summarizing, F does the following:

– Forward the values y0, Y1, Y12 sent by B faithfully to A.
– For the random x̃ from the first step of the attack, form X̃ := H(x̃) and
X̃ := H(x1, X̃) .

– Send x0, X1, X̃ to B.
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A’s internal state: B’s internal state:
(x1, x2, X1, X2,X12, y0, Y1,Y12) (y0, y1, Y0, Y1,Y01,⊥, X0,X01)

A F B

Receive y0, Y1, Y12.
y0,Y1,Y12↼−−−−−− Choose a random y2 and form

Y2 := H(y2), Y12 := H(y1, Y2).
Send y0, Y1, Y12.

Choose a random x3 and
form X3 := H(x3), X23 :=
H(x2, X3).

x0,X1,X̃−−−−−⇁ Verify that H(x0) = X0,
H(x0, X1) = X01, then updates
internal state.

Fig. 8. Third step of the attack: successful resynchronization

Since y0 and Y1 match what A has stored, A refreshes the value Y12 with
the new one sent by B once again. As H(x0) = X0 and H(x0, X1) = X01,
the second set of B’s conditions is met, and B updates its internal state to
(y0, y1, Y0, Y1,Y01, x0, X1, X̃ ). Hence, the second resynchronization is successful,
and F can initiate an execution of the message recognition protocol with B.

4.4 Executing the Message Recognition Protocol a Second Time

In the final step of the attack, F uses x1 and the committing hash value X̃ with
the x̃ chosen earlier. As seen in Figure 9, only F is communicating with B at

B’s internal state:

(y0, y1, Y0, Y1,Y01, x0, X1, X̃ )

F B

Choose a message m̃ �= m. Com-
pute h := H(m̃, x1).

m̃,h−−⇁ Receive m̃, h.

Receive y0, Y1, Y12.
y0,Y1,Y12↼−−−−−− Choose a random y2 and form

Y2 := H(y2), Y12 := H(y1, Y2).
Send y0, Y1, Y12.

Choose a random x̂ and form
X̂ := H(x̂) and X̂ := H(x̃, X̂).

x1,X̃,X̂−−−−−⇁ Verify that H(x1) = X1

and H(x1, X̃) = X̃ , then
update internal state to
(y1, y2, Y1, Y2,Y12, x1, X̃, X̂ )
and output (A, m̃).

Fig. 9. Fourth step of the attack: inserting a forged message
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this stage, and the message m̃ can chosen arbitrarily (with m 
= m̃ to achieve
indeed a forgery).

The actions of F in this last part of the attack can be summarized as follows:

– Choose a message m̃ 
= m and compute h := H(m̃, x1).
– Send m̃, h to B.
– Receive y0, Y1, Y12 from B.
– Choose a random x̂ and form X̂ := H(x̂) and X̂ := H(x̃, X̂).
– Send x1, X̃ , X̂ to B.

5 Conclusion

The above discussion shows that the message recognition protocol suggested by
Mashatan and Stinson in [MS08] does not provide the intended security guar-
antees: the resynchronization procedure can be abused to provoke a situation
where the protocol does not recover and enables a successful forgery attack.
Consequently, the protocol from [MS08] should not be used in the present form.
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Abstract. There have been many studies on modeling the propagation
patterns of Internet worms since the advent of Morris worm. Among
them, there is a well defined propagation model, which is generally called
random constant spread (RCS) model. However, there are some limita-
tions to model the propagation patterns of new emergent Internet worms
with the RCS model because the model uses the only number of infected
hosts as the factor of a worm’s propagation. The new worms have sev-
eral considerable characteristics: utilization of a faster scanning strategy,
miniaturization of the size of a worm’s propagation packet, denial of ser-
vice by network saturation, and maximum damage before human-mediated
responses. These characteristics make it difficult to notice much harder
than before whether a worm propagates itself or not. Therefore, a ba-
sic factor instead of the number of infected hosts, which is used by the
RCS model, is required to model the propagation patterns of new worms.
In this paper, only analysis and simulation results based on usage rate
of network bandwidth, which can be considered as a basic factor, are
presented about the propagation pattern of a worm with random scan-
ning strategy. Miniaturization of the size of a propagation packet and
utilization of a faster scanning strategy are related to the size of worm’s
propagation packet and its propagation rate, respectively. It is presented
that the latter is more sensitive than the former.

Keywords: Propagation pattern of a worm, random scanning strategy,
usage rate of network bandwidth.

1 Introduction

On November 2, 1988, a self-propagating program, called Morris worm, was
released, and it is considered as the first computer worm on the Internet. The
results of this worm are reported that about 6,000 major Unix machines were
infected, and the cost of the damage was $10M ∼ $100M announced by the
Government Accountability Office (GAO) in U.S. [1].

After this dramatic event, there have been the incidents of the infection by
various worms, such as Code Red I/II, Nimda, Melissa, Slammer, and so on.

D. Lee and S. Hong (Eds.): ICISC 2009, LNCS 5984, pp. 374–385, 2010.
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Until now, there have been many studies conducted to model these kinds of
worm’s propagation patterns because it is reported to need to be preceded in
order to detect the advent of worms in early stage and then to prevent worms
from spreading. Basically, to model the propagation pattern of a worm means
to explain how it chooses its victims like modeling human diseases. (e.g. the
biological model, [2], the classic susceptible and infected epidemic model [3]).

In general, various mathematical and analytical models have been presented
for this because each worm has a different propagation pattern. Among them
one of the most well-defined model (especially for worms using random scanning
strategy) is the random constant spread (RCS) model explained in [4][5].

However, there are some limitations to model the propagation patterns of new
emergent Internet worms with the RCS model because the RCS model uses the
only number of infected hosts as the factor of a worm’s propagation. The new
worms have several considerable characteristics:

– Utilization of a faster scanning strategy
– Miniaturization of the size of a propagation packet
– Denial of service by network saturation
– Maximum damage before human-mediated responses

These characteristics make it difficult to notice much harder than before whether
a worm propagates itself or not. So, a basic factor, instead of the number of
infected hosts which is generally used by many propagation models as well as
the RCS model, is required to clearly explain the propagations of new worms.

In this paper, only analysis and simulation results based on usage rate of
network bandwidth, which can be considered as a basic factor, are presented
about the propagation pattern of a worm with random scanning strategy. The
remainder of this paper are organized as follows. Section 2 describes character-
istics of new emergent Internet worms, and Section 3 explains the RCS model,
which is based on the only number of infected hosts and is reported to be a ma-
jor propagation model of worms using random scanning strategy. Section 4 and
Section 5 describe the analysis and simulation results of the propagation pattern
of a worm with a random scanning strategy in the perspective of usage rate of
network bandwidth, respectively. Finally, this paper is concluded in Section 6.

2 Characteristics of New Emergent Internet Worms

Kienzle and Elder [6] presented a broad overview of recent worm activities.
They extracted a number of trends subjectively from their study of past and
present worms, and these trends in a qualitative perspective are as follows: com-
moditization, convergence, social engineering, additional propagation vectors,
technology/vulnerabilities, speed of propagation, countermeasure awareness, and
common platforms and software. More descriptions are in [6].

Qing and Wen also presented several characteristics in [7]. According to the
analysis of function structure of Internet worms, there are four stages in worm’s
execution: collection information, probing, attacking, and propagating. Among
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them, the last propagating is reported to be a very important stage to worms’
outbreak, and this stage of each worm may be different as which scanning strat-
egy is chosen by the worm. Also, they categorized scanning strategy into six:
random scan, sequential scan, hit-list scan, routable scan, DNS scan, and divide-
conquer scan.

There are further researches [8][9][10] on this, but only random scan can be
explained by mathematical and analytical models even though it is not always
faster than any others. This is the main reason to choose in our paper. So, which
features of new emergent Internet worms should be considered? Especially, which
characteristics of them may be derived from these in terms of propagation? Four
characteristics can be inferred from [6][7][11][12][13], and more descriptions are
as follows:

Utilization of a faster scanning strategy. A scanning strategy used by a
worm is reported to be a very important factor than others (such as the
total number of susceptible hosts, the threaded number of a worm in an
infected host, etc.). It is considered that new emergent worms will choose a
faster scanning strategy to cause much damage without effort (however, this
is not always agreed to). ([6][7] can be referred to.)

Miniaturization of the size of a worm’s propagation packet. Generally,
as the size of a worm’s propagation packet is smaller, as more packets can be
generated within an unit time and then be used to propagate under limited
network bandwidth or system resources. As an example, the size of Code
Red is 4 Kbytes, and that of Slammer is 404 bytes. It is reported that Slam-
mer was two orders of magnitude faster than Code Red. (Code Red spreads
so fast to infect more than 359,000 hosts on July 19, 2001 [14]).

Denial of service by network saturation. Generally a denial of service at-
tack is defined as a behavior to make a host abnormal, so the host cannot
do its proper jobs. It also includes one to exploit vulnerabilities of computer
systems or to exhaust system or network resources. Recently, denial of ser-
vice attacks mainly saturate resources of networks (or systems), or overflow
the workload of them in short period, so they do not provide normal service
any more. The characteristics of a worm’s propagation are similar to that of
recent denial of service attacks. ([6][7] can be referred to).

Maximum damage before human-mediated response. Code Red I in
2001 is reported to infect almost 360,000 hosts over 14 hours [14]. Slam-
mer in 2003 is also done to infect more than 90% of vulnerable hosts within
10 minutes, and about 75,000 distinct IP addresses sending its propagation
packets are monitored in the first 30 minutes of its early stage. This evidence
shows that new emergent worms’ propagation cannot be limited or defeated
by human-mediated response any more.

Needless to say, there may be some differences depending on the main charac-
teristics of a worm such as which network is used, which propagation strategy
is used, and so on.
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3 Random Constant Spread (RCS) Model

This is a model based on the epidemiology in which the propagation pattern of
a worm is similar to that of a disease in human being. That is, in RCS model, a
worm generally spreads its propagation packet using random scanning strategy;
it randomly selects IP addresses based on random number generator effectively
seeded, sends its propagation packet, and eventually infects all susceptible hosts
on the Internet. Finally, the number of infected victims increases exponentially
until there is no susceptible host or all hosts are infected. But actually it does not
do because during the worms’ propagation there may be some removal processes
to affect the propagation: human countermeasures, system or network failure,
security patches, and so on. For the explanation of this, there are two fine models:
Kermack-Mekendrick model [15] and Two-factor model [16].

However, the RCS model cannot explain all propagation patterns of detected
or undiscovered worms. Code Red II spreads its propagation packets based on the
local strategy. An infected host gives consequence to send propagation packets
to destination ones belonging to the same local network because in general most
of hosts in same local network adopt a homogeneous security policy. Nimda or
Melissa worms move in other susceptible hosts based on the specific lists, such
as email lists or connected network drives. For these reasons, the RCS model
cannot explain the propagation patterns of all worms, and there are no exact
propagation models until analyzing worm’s source code that is publicly addressed
or reverse engineering of its binary code is done.

3.1 Traffic Analysis of Code Red I

The worm’s propagation pattern which uses random scanning strategies may be
explained by the RCS model and has great concerns of many researchers. In this
paper, the analysis results of raw data of Code Red I are presented. This data is
acquired from the Cooperative Association for Internet Data Analysis (CAIDA)
[17] and is handled into a few types of data which include the number of new
infected hosts and the cumulative number of infected hosts after the advent of
the worm. This is shown in Figure 1.

As seen in Figure 1, during the first time interval (0 < t < 3, 500), the
worm starts finding susceptible hosts necessary to spread until the number of
infected hosts increases enough to be as a stepping-stone. The time required
by this interval is variable as network environments and is taken until it is
assured that the number of infected hosts reaches the value confirmed to expo-
nentially spread. During the second (3, 500 < t < 4, 500), based on the amount
of previously infected hosts, the cumulative number of infected hosts increases
exponentially until it reaches about 60% of total susceptible hosts. During the
third (4, 500 < t < 7, 000), the cumulative number of infected hosts increases
linearly. The reasons why this phenomenon exists are explained later. During
the last (7, 000 < t), the propagation of the worm becomes slower and stops
due to a few reasons that most susceptible hosts are infected, removal processes
such as human countermeasure and network failure have been done, or its own
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Fig. 1. Graph drawn based on both the number of new infected hosts and the cumu-
lative number of infected hosts by Code Red I. The raw data come from CAIDA [18].
The x-axis shows relative start time monitored; the left y-axis shows the number of
new infected hosts, and the right y-axis shows the cumulative number of infected hosts.

expiration mechanism is activated. (ex. Code Red I stops its propagation 00:00
UTC of July 20, 2001 by its own expiration mechanism).

From the perspective of the cumulative number of infected hosts, it can be
seen that there are four phases in the results of traffic analysis of Code Red I :
slow start, exponential spread, linear spread, and slow finish. In the first phase,
the worm’s propagation starts slowly until the number increases enough to be
as a stepping-stone of propagation. The worm’s clones spread exponentially and
spread linearly. (Detailed descriptions are explained later.). Lastly, the worm’s
propagation finishes slowly until entire susceptible hosts are infected. A previous
research [12] however has three phases in simple epidemic model: slow start, fast
spread, and slow finish. Furthermore, in Figure 1 there is an important phase-
transition around 4,500 of the x-axis in the aspect of the cumulative number of
infected hosts. That is, the rate of exponentially increased cumulative number
of infected hosts suddenly becomes linear. In addition, two more facts can be
found.

– Increasing rate of new infected hosts is stable within 4, 000 < t < 4, 500
The numbers of new infected hosts within this interval are less than those
within 5, 100 < t < 5, 200 even if it is temporary, and the increasing rate
of new infected hosts is stable, while the total numbers of infected hosts
increase exponentially. For these reasons, it cannot be recognized for human
countermeasures, such as security patches or removal processes, to be done
against the propagation. In addition, during exponentially increasing in the
aspect of the cumulative numbers of infected hosts, the worm’s propagation
does not need to be stable.
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– Numbers of new infected hosts suddenly drop within 4, 600 < t < 5, 100
The numbers of new infected hosts within this interval are a little more than
those in slow start phase, and there are two short intervals in which the
numbers of new infected hosts are suddenly higher than other intervals. For
these, human countermeasures have been done especially during the interval
to stop the propagation of Code Red I, and it cannot be explained why the
numbers of new infected hosts suddenly become high?

As these facts, we can think why there is a transition from exponential spread
phase to linear spread phase. Is there any particular reason? For this, analytic
point of view in two aspects may be considered. First is that, as previous research
results [12][16][18] presented, human countermeasures like security patches and
the removal of susceptible or infected hosts stop worms from spreading. The other
is that, as [19] expounded, worms propagation packets spread so rapidly that
network saturations seem to be occurred in many bottleneck network nodes. The
key reason of the transition can be based on the latter rather than the former;
that is, it can be inferred that huge propagation packets of Code Red I produces
denial of network service and continues until human reactions or no propagations
with several reasons. The basis for it is reasonable through previous research
results. In this situation, to monitor usage rate of network bandwidth may make
it possible to detect a worm’s propagation because network bandwidth is one
of limited resources in the Internet and can be a sensitive factor to determine
whether something wrong occurs or not. In 7, 000 < t of Figure 1, the cumulative
numbers of infected hosts do not increase anymore because of major two reasons:
the overall infection of susceptible hosts, the propagation stop.

3.2 Previous Studies of Slammer

There is an another example, Slammer, to show that network bandwidth can
be an important factor to detect worms’ propagation. According to the previous
research result [19] by Moore et al. using Dshield data set, in principle a host
infected by Slammer can send propagation packets at 300,000 scans per a second
through 100 Mbps. However, in practice the host can send propagation packets
at the maximum 26,000 scans per a second because of limited network bandwidth
and packet overhead in intermediate network nodes. These show that Slammer
can send its propagation packets at 4,000 scans per a second in early spreading
phase over the Internet. The propagation phase of Slammer is reported to change
from exponential spread phase to slow finish phase without linear spread phase
due to the limitation of network bandwidth as [19] expounded.

Two cases, Code Red I and Slammer, show that network bandwidth is the
most important and sensitive factor to affect worms’ propagations. Usage rate
of network bandwidth can make it possible to determine whether a worm sends
propagation packets or not.
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4 Usage Rate of Network Bandwidth

The RCS model illustrates how a worm propagates itself over the Internet. In
this model, two factors are used; a susceptible host and an infected host. The
former is a host which is vulnerable to the worm attack. The latter is a host
which has been infected by the worm and sends propagation packets. Let N
denote the number of susceptible hosts in a network, and β is the propagation
rate of a worm. At time t, the increasing rate of infected hosts dIt/dt is defined
as follows:

dIt/dt = βIt−1(N − It) (1)

Eq. 1 is the basic one of the RCS model, and the increasing rate of infected hosts
continuously rises until all susceptible hosts are totally infected. In this paper,
Eq. 1 is used to define usage rate of network bandwidth by propagation packets
of a worm, and additional notations have to be defined as follows.

At time t, let WBt and NBt denote usage rate of network bandwidth used by
worm traffic and one by normal traffic, respectively. Total usage rate of network
bandwidth TBt can be defined as TBt = WBt + NBt, however, during the
propagation of a speedy worm in a short period, usage rate of normal traffic
may be considered as a constant value, that is, NBt

∼= C (ex. Slammer can send
its propagation packets at 26,000 scans per a second.). Therefore, total usage
rate of network bandwidth, TBt, can be defined as TBt = WBt +C. Usage rate
of network bandwidth used by a worm is reported to be proportional to worm’s
propagation rate as well as the size of its propagation packet. Ultimately, usage
rate of network bandwidth during the propagation of a worm can be derived
from Eq. 1 as follows:

dWBt/dt = εIPv4ItβPsize(B −WBt) (2)

In Eq. 2, an effective value, εIPv4, is a constant value that means the portion
of IPv4 addresses which is assigned by Internet Assigned Numbers Authority
(IANA) [20] as public IP addresses. According to the research results, the por-
tion is about 65.2% except reserved or private IP addresses; only 21.2% has
not been allocated, and 13.7% is reserved. Actually, the reserved and unallo-
cated portions can not have a worm’s propagation packets. Even though valid
addresses are not geographically and hierarchically distributed, various mecha-
nisms like Classless Inter-Domain Routing (CIDR) or using private IPv4 address
can make the distribution of IPv4 addresses uniformed on the Internet in terms
of network bandwidth. In addition, only random scan among scanning strategies
is concerned in our paper.

The value Psize means the size of a worm’s propagation packet, and B means
the rate of allocated network bandwidth. Using Eq. 2, the simulation results
are presented later with usage rate of network bandwidth which is explained as
an important factor to detect whether a worm propagates or not as a worm’s
propagation rate or the size of its propagation packet.
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5 Simulation and Results

One of popular network simulators, NS-2 [21], is used to draw concretely nu-
merical values, and reliable results are presented using MATLAB [22] based on
the drawn numerical values. That is, because it is difficult to define usage rate
of network bandwidth over the Internet as specific values, reliable parameters
are simulated and drawn using a method that an abstract network is configured.
The abstract network organized using NS-2 is shown in Figure 2.

Fig. 2. Abstract network organized using NS2

As seen in Figure 2, the left side represents a protected network, and the
right side does the Internet constituted by 360,000 nodes which number is drawn
from previous research results. Firstly, a worm propagates in the Internet within
the right side of the figure. Secondly, the number of infected hosts increases
as time goes, and lastly the worms send propagation packets to the left side
of the figure, the protected network. In this case, when the allocated network
bandwidth at the gateway of the protected network is 100 Mbps (delay time is
10ms), it is monitored the number of propagation packets passing through the
network link during an unit time. The reason why the network bandwidth is
100 Mbps is because the propagation rate of an abstract worm is presented by
previous research results to be 4,000 scans per a second.

All parameters are identical to that of Slammer; the size of a propagation
packet is 404 bytes, the worm’s propagation rate is 4,000 scans per a second,
and UDP protocol is used to propagate. After several simulations, about 13,200
propagation packets per an unit time pass through the network link shown in
Figure 2, and about approximately 42.8% of network bandwidth is used. Based
on these results, the ratio between a propagation packet and the number of
propagation packets, which saturate allocated network bandwidth, is 1 to 13,200.
To simulate correlation between usage rate of network bandwidth and either a
worm’s propagation rate or the size of a propagation packet using MATLAB,
several research results [12][16][18] are used. Additional parameters of previous
studies are also used.

Firstly, the simulation environment is configured, being similar with the prop-
agation pattern of a worm based on the RCS model. All hosts in this network
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are susceptible, and the four phases are also appeared. Several parameters for
simulation are as follows:

– Number of susceptible hosts: 5× 216

– Propagation rate: 1.4 / (the number of susceptible hosts)
– Size of a propagation packet: 1

Next, as described in Eq. 2, εIPv4 (=0.6758), β (=1.4/(5×216)), and Psize (=32)
are set regardless of simulation time t. Based on these data, simulation result is
shown in Figure 3.

Fig. 3. Simulation result of usage rate of network bandwidth compared with the RCS
model (The x-axis shows simulation time, and the y-axis shows the relative ratio of
network bandwidth occupied by our model)

In Figure 3, the reason why the ratio of network bandwidth on the y-axis is
used is to prove that it is more sensitive, compared with the number of infected
hosts used by the RCS model. Because this factor can not be described with
numerical values, the relative ratio to the factor of the RCS model needs to
be presented explicitly. That is to say, the metric is used to show proportional
values between our factor, usage rate of network bandwidth, and that of the
RCS model. Based on these data, the correlation result between the size of a
worm’s propagation packet and usage rate of network bandwidth is illustrated
in Figure 4.

As seen in Figure 4, when the ratio of a worm’s propagation packet and the
number of propagation packets which saturate the allocated network bandwidth
(100 Mbps) is 1 to 13,200, it is shown the required time to saturate the allocated
network as the size varies. Even though the size of a propagation packet becomes
larger four times, it takes just only one simulation time to saturate the network.
In addition, even though the size of a propagation packet becomes larger forty
times from 0.1 to 4 on simulation, it takes just about three simulation time to
saturate the allocated network bandwidth. However, a worm’s propagation rate
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Fig. 4. Correlation between usage rate of network bandwidth and the sizes of a prop-
agation packet (The x-axis shows simulation time, and the y-axis shows the relative
ratio of network bandwidth occupied by our model)

Fig. 5. Correlation between usage rate of network bandwidth and the worm’s propa-
gation rates (The x-axis shows simulation time, and the y-axis shows the relative ratio
of network bandwidth occupied by our model)

requires a considerable change rather than the size of a propagation packet, even
though the difference is very small. This simulation result is shown in Figure 5.

As seen in Figure 5, when the ratio of a propagation packet and the number
of propagation packets which saturate the allocated network bandwidth (100
Mbps) is 1 to 13,200, it is shown the required time to saturate the allocated
network as the propagation rate varies. When the propagation rate increases
about 60% from 1.0 to 1.6, it is reduced approximately by four simulation time
to saturate the network. In addition, even though a worm’s propagation rate
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increases about 14.2% from 1.4 to 1.6 on simulation, it takes just about one
simulation time to saturate the allocated network bandwidth.

In addition, the simulation results shown in Figure 5 and Figure 6 explain that
a worm’s propagation packet to saturate allocated network bandwidth. That is,
among several characteristics of new worms, described before, miniaturization of
the size of a propagation packet and utilization of a faster scanning strategy can
be related to the size of worm’s propagation packet and its propagation rate,
respectively. It is presented that the latter is more sensitive than the former.
This simulation is done assuming that normal traffic is considered as C where
TBt = WBt + C. So it may take short time to saturate real networks because
normal traffic always exists. Consequently, there is a sudden change of usage
rate of network bandwidth at the start part of a worm’s propagation, so that
it can be possible to decide whether a worm propagates or not. On the other
hand, there is one problem, a false-positive phenomenon, to decide which kind
of traffic results in the sudden change. This issue is left for future work.

6 Conclusions

There have been many research results and studies on modeling the propagation
patterns of various kinds of worms, and a well defined propagation model is the
RCS model based on the only number of infected hosts. However, in terms of
new emergent Internet worms, there are some limitations to model the propaga-
tion patterns of these worms with the RCS model because the advent of a worm
should be detected in early stage. In addition, new worms have several consider-
able characteristics: utilization of a faster scanning strategy, miniaturization of
the size of a worm’s propagation packet, denial of service by network saturation,
and maximum damage before human-mediated responses. These characteristics
make it difficult to notice much harder than before whether a worm propagates
itself. Therefore, a basic factor instead of the number of infected hosts is required
to detect new worms.

In this paper, only analysis and simulation results were presented about the
propagation pattern of a worm with random scanning strategy based on usage
rate of network bandwidth, which can be considered as the factor to detect
worms’ appearances. The simulation results explained that a worm’s propaga-
tion rate is a sensitive factor rather than the size of a propagation packet to
saturate allocated network bandwidth. That is, miniaturization of the size of a
propagation packet and utilization of a faster scanning strategy are related to
the size of worm’s propagation packet and its propagation rate, respectively. It
is presented that the latter is more sensitive than the former.
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