

Lecture Notes in Computer Science 6068
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Roman Wyrzykowski Jack Dongarra
Konrad Karczewski Jerzy Wasniewski (Eds.)

Parallel Processing
and Applied Mathematics

8th International Conference, PPAM 2009
Wroclaw, Poland, September 13-16, 2009
Revised Selected Papers, Part II

13

Volume Editors

Roman Wyrzykowski
Konrad Karczewski
Czestochowa University of Technology
Institute of Computational and Information Sciences, Poland
E-mail:{roman, xeno}@icis.pcz.pl

Jack Dongarra
University of Tennessee, Department of Electrical Engineering
and Computer Science, Knoxville, TN 37996-3450, USA
E-mail: dongarra@cs.utk.edu

Jerzy Wasniewski
Technical University of Denmark, Department of Informatics
and Mathematical Modeling, 2800 Kongens Lyngby, Denmark
E-mail: jw@imm.dtu.dk

Library of Congress Control Number: 2010930224

CR Subject Classification (1998): D.2, H.4, D.4, C.2.4, D.1.3, F.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-14402-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-14402-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

We are pleased to present the proceedings of the 8th International Conference on
Parallel Processing and Applied Mathematics – PPAM 2009, which was held in
Wroc�law, Poland, September 13–16, 2009. It was organized by the Department
of Computer and Information Sciences of the Cz ↪estochowa University of Techno-
logy, with the help of the Wroc�law University of Technology, Faculty of Computer
Science and Management. The main organizer was Roman Wyrzykowski.

PPAM is a biennial conference. Seven previous events have been held in
different places in Poland since 1994. The proceedings of the last four conferences
have been published by Springer in the Lecture Notes in Computer Science series
(Na�l ↪eczów, 2001, vol.2328; Cz ↪estochowa, 2003, vol.3019; Poznań, 2005, vol.3911;
Gdańsk, 2007, vol. 4967).

The PPAM conferences have become an international forum for exchanging
ideas between researchers involved in parallel and distributed computing, includ-
ing theory and applications, as well as applied and computational mathematics.
The focus of PPAM 2009 was on models, algorithms, and software tools which
facilitate efficient and convenient utilization of modern parallel and distributed
computing architectures, as well as on large-scale applications.

This meeting gathered more than 210 participants from 32 countries. A strict
refereeing process resulted in the acceptance of 129 contributed presentations,
while approximately 46% of the submissions were rejected. Regular tracks of the
conference covered such important fields of parallel/distributed/grid computing
and applied mathematics as:

– Parallel/distributed architectures and mobile computing
– Numerical algorithms and parallel numerics
– Parallel and distributed non-numerical algorithms
– Tools and environments for parallel/distributed/grid computing
– Applications of parallel/distributed computing
– Applied mathematics and neural networks

Plenary and Invited Speakers

The plenary and invited talks were presented by:

– Srinivas Aluru from the Iowa State University (USA)
– Dominik Behr from AMD (USA)
– Ewa Deelman from the University of Southern California (USA)
– Jack Dongarra from the University of Tennessee and Oak Ridge National

Laboratory (USA)
– Iain Duff from the Rutherford Appleton Laboratory (UK)
– Anne C. Elster from NTNU, Trondheim (Norway)

VI Preface

– Wolfgang Gentzsch from the DEISA Project
– Michael Gschwind from the IBM T.J. Watson Research Center (USA)
– Fred Gustavson from the IBM T.J. Watson Research Center (USA)
– Simon Holland from Intel (UK)
– Vladik Kreinovich from the University of Texas at El Paso (USA)
– Magnus Peterson from the Synective Labs (Sweden)
– Armin Seyfried from the Juelich Supercomputing Centre (Germany)
– Boles�law Szymański from the Rensselaer Polytechnic Institute (USA)
– Jerzy Waśniewski from the Technical University of Denmark (Denmark)

Workshops and Minisymposia

Important and integral parts of the PPAM 2009 conference were the workshops:

– Minisymposium on GPU Computing organized by José R. Herrero from the
Universitat Politecnica de Catalunya (Spain), Enrique S. Quintana-Ort́ı from
the Universitat Jaime I (Spain), and Robert Strzodka from the Max-Planck-
Institut für Informatik (Germany)

– The Second Minisymposium on Cell/B.E. Technologies organized by Roman
Wyrzykowski from the Cz ↪estochowa University of Technology (Poland), and
David A. Bader from the Georgia Institute of Technology (USA)

– Workshop on Memory Issues on Multi- and Manycore Platforms organized
by Michael Bader and Carsten Trinitis from the TU München (Germany)

– Workshop on Novel Data Formats and Algorithms for High-Performance
Computing organized by Fred Gustavson from the IBM T.J. Watson Re-
search Center (USA), and Jerzy Waśniewski from the Technical University
of Denmark (Denmark)

– Workshop on Scheduling for Parallel Computing - SPC 2009 organized by
Maciej Drozdowski from the Poznań University of Technology (Poland)

– The Third Workshop on Language-Based Parallel Programming Models -
WLPP 2009 organized by Ami Marowka from the Shenkar College of Engi-
neering and Design in Ramat-Gan (Israel)

– The Second Workshop on Performance Evaluation of Parallel Applications
on Large-Scale Systems organized by Jan Kwiatkowski, Dariusz Konieczny
and Marcin Pawlik from the Wroc�law University of Technology (Poland)

– The 4th Grid Application and Middleware Workshop - GAMW 2009 orga-
nized by Ewa Deelman from the University of Southern California (USA),
and Norbert Meyer from the Poznań Supercomputing and Networking Cen-
ter (Poland)

– The 4th Workshop on Large Scale Computations on Grids - LaSCoG 2009
organized by Marcin Paprzycki from IBS PAN and SWPS in Warsaw (Poland),
and Dana Petcu from the Western University of Timisoara (Romania)

– Workshop on Parallel Computational Biology - PBC 2009 organized by
David A. Bader from the Georgia Institute of Technology in Atlanta (USA),
Denis Trystram from ID-IMAG in Grenoble (France), Alexandros Stamatakis
from the TU München (Germany), and Jaros�law Żola from the Iowa State
University (USA)

Preface VII

– Minisymposium on Applications of Parallel Computations in Industry and
Engineering organized by Raimondas Čiegis from the Vilnius Gediminas
Technical University (Lithuania), and Julius Žilinskas from the Institute of
Mathematics and Informatics in Vilnius (Lithuania)

– The Second Minisymposium on Interval Analysis organized by Vladik
Kreinovich from the University of Texas at El Paso (USA), Pawe�l
Sewastjanow from the Cz ↪estochowa University of Technology (Poland),
Bart�lomiej J. Kubica from the Warsaw University of Technology (Poland),
and Jerzy Waśniewski from the Technical University of Denmark (Denmark)

– Workshop on Complex Collective Systems organized by Pawe�l Topa and
Jaros�law W ↪as from the AGH University of Science and Technology in Cracow
(Poland)

Tutorials

The PPAM 2009 meeting began with four tutorials:

– GPUs, OpenCL and Scientific Computing, by Robert Strzodka from the
Max-Planck-Institut für Informatik (Germany), Dominik Behr from AMD
(USA), and Dominik Göddeke from the University of Dortmund (Germany)

– FPGA Programming for Scientific Computing, by Magnus Peterson from the
Synective Labs (Sweden)

– Programming the Cell Broadband Engine, by Maciej Remiszewski from IBM
(Poland), and Maciej Cytowski from the University of Warsaw (Poland)

– New Data Structures Are Necessary and Sufficient for Dense Linear Algebra
Factorization Algorithms, by Fred Gustavson from the the IBM T.J. Watson
Research Center (USA), and Jerzy Waśniewski from the Technical University
of Denmark (Denmark)

Best Poster Award

The PPAM Best Poster Award is given to the best poster on display at the
PPAM conferences, and was first awarded at PPAM 2009. This award is be-
stowed by the Program Committee members to the presenting author(s) of the
best poster. The selection criteria are based on the scientific content and on the
quality of the poster presentation. The PPAM 2009 winner was Tomasz Olas
from the Cz ↪estochowa University of Technology, who presented the poster “Par-
allel Adaptive Finite Element Package with Dynamic Load Balancing for 3D
Thermomechanical Problems.”

New Topics at PPAM 2009

GPU Computing: The recent advances in the hardware, functionality, and pro-
grammability of graphics processors (GPUs) have greatly increased their appeal

VIII Preface

as add-on co-processors for general-purpose computing. With the involvement of
the largest processor manufacturers and the strong interest from researchers of
various disciplines, this approach has moved from a research niche to a forward-
looking technique for heterogeneous parallel computing. Scientific and industry
researchers are constantly finding new applications for GPUs in a wide variety
of areas, including image and video processing, molecular dynamics, seismic sim-
ulation, computational biology and chemistry, fluid dynamics, weather forecast,
computational finance, and many others.

GPU hardware has evolved over many years from graphics pipelines with
many heterogeneous fixed-function components over partially programmable ar-
chitectures towards a more and more homogeneous general purpose design,
although some fixed-function hardware has remained because of its efficiency.
The general-purpose computing on GPU (GPGPU) revolution started with pro-
grammable shaders; later, NVIDIA Compute Unified Device Architecture
(CUDA) and to a smaller extent AMD Brook+ brought GPUs into the main-
stream of parallel computing. The great advantage of CUDA is that it defines
an abstraction which presents the underlying hardware architecture as a sea of
hundreds of fine-grained computational units with synchronization primitives on
multiple levels. With OpenCL there is now also a vendor-independent high-level
parallel programming language and an API that offers the same type of hardware
abstraction.

GPU are very versatile accelerators because besides the high hardware paral-
lelism they also feature a high bandwidth connection to dedicated device mem-
ory. The latency problem of DRAM is tackled via a sophisticated thread schedu-
ling and switching mechanism on-chip that continues the processing of the next
thread as soon as the previous stalls on a data read. These characteristics make
GPUs suitable for both compute- and data-intensive parallel processing.

The PPAM 2009 conference recognized the great impact of GPUs by in-
cluding in its scientific program two major related events: a minisymposium
on GPU Computing, and a full day tutorial on “GPUs, OpenCL and Scientific
Computing.”

The minisymposium received 18 submissions, of which 10 were accepted
(55%). The contributions were organized in three sessions. The first group was
related to Numerics, and comprised the following papers: “Finite Element Nu-
merical Integration on GPUs,”“ Reduction to Condensed Forms for Symmetric
Eigenvalue Problems on Multi-core Architectures,”“On Parallelizing the MRRR
Algorithm for Data-Parallel Coprocessors,” and “A Fast GPU Implementation
for Solving Sparse Ill-Posed Linear Equation Systems.” The second session dealt
with Applications. The papers presented were: “Simulations of the Electrical Ac-
tivity in the Heart with Graphic Processing Units,”“Stream Processing on GPUs
Using Distributed Multimedia Middleware,” and “A GPU Approach to the Sim-
ulation of Spatio–temporal Dynamics in Ultrasonic Resonators.”Finally, a third
session about General GPU Computing included presentations of three papers:
“Fast In-Place Sorting with CUDA Based on Bitonic Sort,” “Parallel Minimax

Preface IX

Tree Searching on GPU,”and“Modeling and Optimizing the Power Performance
of Large Matrices Multiplication on Multi-core and GPU Platform with CUDA.”

The tutorial covered a wide variety of GPU topics and also offered hands-
on examples of OpenCL programming that any paticipant could experiment
with on their laptop. The morning sessions discussed the basics of GPU ar-
chitecture, ready-to-use libraries and OpenCL. The afternoon session went in
depth on OpenCL and scientific computing on GPUs. All slides are available at
http://gpgpu.org/ppam2009.

Complex Collective Systems: Collective aspects of complex systems are attract-
ing an increasing community of researchers working in different fields and dealing
with theoretical aspects as well as practical applications. In particular, analyzing
local interactions and simple rules makes it possible to model complex phenom-
ena efficiently. Collective systems approaches show great promise in establishing
scientific methods that could successfully be applied across a variety of appli-
cation fields. Many studies in complex collective systems science follow either a
cellular automata (CA) method or an agent-based approach. Hybridization be-
tween these two complementary approaches gives a promising perspective. The
majority of work presented during the workshop on complex collective systems
represents the hybrid approach.

We can distinguish four groups of subjects presented during the workshop.
The first group was modeling of pedestrian dynamics: Armin Seyfried from

the Juelich Supercomputing Center presented actual challenges in pedestrian
dynamics modeling. Another important issue of crowd modeling was also taken
into account during the workshop: modeling of stop-and-go waves (Andrea Portz
and Armin Seyfried), calibration of pedestrian stream models (Wolfram Klein,
Gerta Köster and Andreas Meister), parallel design patterns in a pedestrian
simulation (Sarah Clayton), floor fields models based on CA (Ekaterina Kirik,
Tat’yana Yurgel’yan and Dmitriy Krouglov), and discrete potential field con-
struction (Konrad Ku�lakowski and Jaros�law W ↪as).

The second group dealt with models of car traffic: a fuzzy cellular model
of traffic (Bart�lomiej P�laczek), and an adaptive time gap car-following model
(Antoine Tordeux and Pascal Bouvry).

The third group included work connected with cryptography based on cellu-
lar automata: weakness analysis of a key stream generator (Frederic Pinel and
Pascal Bouvry), and properties of safe CA-based S-Boxes (Miros�law Szaban and
Franciszek Seredyński).

The fourth group dealt with various applications in a field of complex col-
lective systems: frustration and collectivity in spatial networks (Anna Mańka-
Krasoń, Krzysztof Ku�lakowski), lava flow hazard modeling (Maria Vittoria Avo-
lio, Donato D’Ambrosio, Valeria Lupiano, Rocco Rongo and William Spataro),
FPGA realization of a CA-based epidemic processor (Pavlos Progias,Emmanouela
Vardaki and Georgios Sirakoulis)

X Preface

Acknowledgements

The organizers are indebted to the PPAM 2009 sponsors, whose support was vital
to the success of the conference. The main sponsor was the Intel Corporation.
The other sponsors were: Hewlett-Packard Company, Microsoft Corporation,
IBM Corporation, Action S.A., and AMD. We thank to all members of the
International Program Committee and additional reviewers for their diligent
work in refereeing the submitted papers. Finally, we thank all of the local orga-
nizers from the Cz ↪estochowa University of Technology and Wroc�law University
of Technology who helped us to run the event very smoothly. We are especially
indebted to Grażyna Ko�lakowska, Urszula Kroczewska, �Lukasz Kuczyński, and
Marcin Woźniak from the Cz ↪estochowa University of Technology; and to Jerzy
Świ ↪atek, and Jan Kwiatkowski from the Wroc�law University of Technology.

PPAM 2011

We hope that this volume will be useful to you. We would like everyone who
reads it to feel invited to the next conference, PPAM 2011, which will be held
September 11–14, 2011, in Toruń, a city in northern Poland where the great
astronomer Nicolaus Copernicus was born.

February 2010 Roman Wyrzykowski
Jack Dongarra

Konrad Karczewski
Jerzy Waśniewski

Organization

Program Committee

Jan W ↪eglarz Poznań University of Technology, Poland
Honorary Chair

Roman Wyrzykowski Cz ↪estochowa University of Technology, Poland
Chair

Boles�law Szymański Rensselaer Polytechnic Institute, USA
Vice-Chair

Peter Arbenz ETH, Zurich, Switzerland
Piotr Ba�la N. Copernicus University, Poland
David A. Bader Georgia Institute of Technology, USA
Michael Bader TU München, Germany
Mark Baker University of Reading, UK
Radim Blaheta Institute of Geonics, Czech Academy of Sciences
Jacek B�lażewicz Poznań University of Technology, Poland
Leszek Borzemski Wroc�law University of Technology, Poland
Pascal Bouvry University of Luxembourg
Tadeusz Burczyński Silesia University of Technology, Poland
Jerzy Brzeziński Poznań University of Technology, Poland
Marian Bubak Institute of Computer Science, AGH, Poland
Raimondas Čiegis Vilnius Gediminas Tech. University, Lithuania
Andrea Clematis IMATI-CNR, Italy
Zbigniew Czech Silesia University of Technology, Poland
Jack Dongarra University of Tennessee and ORNL, USA
Maciej Drozdowski Poznań University of Technology, Poland
Erik Elmroth Umea University, Sweden
Anne C. Elster NTNU, Trondheim, Norway
Mariusz Flasiński Jagiellonian University, Poland
Maria Ganzha IBS PAN, Warsaw, Poland
Jacek Gondzio University of Edinburgh, Scotland, UK
Andrzej Gościński Deakin University, Australia
Laura Grigori INRIA, France
Frederic Guinand Université du Havre, France
José R. Herrero Universitat Politecnica de Catalunya, Barcelona,

Spain
Ladislav Hluchy Slovak Academy of Sciences, Bratislava
Ondrej Jakl Institute of Geonics, Czech Academy of Sciences
Emmanuel Jeannot INRIA, France
Grzegorz Kamieniarz A. Mickiewicz University, Poznań, Poland
Alexey Kalinov Cadence Design System, Russia
Ayse Kiper Middle East Technical University, Turkey

XII Organization

Jacek Kitowski Institute of Computer Science, AGH, Poland
Jozef Korbicz University of Zielona Góra, Poland
Stanislaw Kozielski Silesia University of Technology, Poland
Dieter Kranzlmueller Ludwig Maximillian University, Munich,

and Leibniz Supercomputing Centre, Germany
Henryk Krawczyk Gdańsk University of Technology, Poland
Piotr Krzyżanowski University of Warsaw, Poland
Jan Kwiatkowski Wroc�law University of Technology, Poland
Giulliano Laccetti University of Naples, Italy
Marco Lapegna University of Naples, Italy
Alexey Lastovetsky University College Dublin, Ireland
Vyacheslav I. Maksimov Ural Branch, Russian Academy of Sciences
Victor E. Malyshkin Siberian Branch, Russian Academy of Sciences
Tomas Margalef Universitat Autonoma de Barcelona, Spain
Ami Marowka Shenkar College of Engineering and Design, Israel
Norbert Meyer PSNC, Poznań, Poland
Jarek Nabrzyski University of Notre Dame, USA
Marcin Paprzycki IBS PAN and SWPS, Warsaw, Poland
Dana Petcu Western University of Timisoara, Romania
Enrique S.

Quintana-Ort́ı Universitat Jaime I, Spain
Yves Robert Ecole Normale Superieure de Lyon, France
Jacek Rokicki Warsaw University of Technology, Poland
Leszek Rutkowski Cz ↪estochowa University of Technology, Poland
Franciszek Seredyński Polish Academy of Sciences and Polish-Japanese

Institute of Information Technology, Warsaw, Poland
Robert Schaefer Institute of Computer Science, AGH, Poland
Jurij Silc Jozef Stefan Institute, Slovenia
Peter M.A. Sloot University of Amsterdam, The Netherlands
Masha Sosonkina Ames Laboratory and Iowa State University, USA
Leonel Sousa Technical University Lisbon, Portugal
Maciej Stroiński PSNC, Poznań, Poland
Domenico Talia University of Calabria, Italy
Andrei Tchernykh CICESE, Ensenada, Mexico
Carsten Trinitis TU München, Germany
Roman Trobec Jozef Stefan Institute, Slovenia
Denis Trystram ID-IMAG, Grenoble, France
Marek Tudruj Polish Academy of Sciences and Polish-Japanese

Institute of Information Technology, Warsaw, Poland
Pavel Tvrdik Czech Technical University, Prague
Jens Volkert Johannes Kepler University, Linz, Austria
Jerzy Waśniewski Technical University of Denmark
Bogdan Wiszniewski Gdańsk University of Technology, Poland
Ramin Yahyapour University of Dortmund, Germany
Jianping Zhu University of Texas at Arlington, USA

Table of Contents – Part II

Workshop on Scheduling for Parallel Computing
(SPC 2009)

Fully Polynomial Time Approximation Schemes for Scheduling Divisible
Loads . 1

Semi-online Preemptive Scheduling: Study of Special Cases 11

Fast Multi-objective Reschulding of Grid Jobs by Heuristics and
Evolution . 21

Comparison of Program Task Scheduling Algorithms for Dynamic SMP
Clusters with Communication on the Fly . 31

Study on GEO Metaheuristic for Solving Multiprocessor Scheduling
Problem . 42

Online Scheduling of Parallel Jobs on Hypercubes: Maximizing the
Throughput . 52

The Third Workshop on Language-Based Parallel
Programming Models (WLPP 2009)

Verification of Causality Requirements in Java Memory Model Is
Undecidable . 62

A Team Object for CoArray Fortran . 68

On the Definition of Service Abstractions for Parallel Computing 74

XIV Table of Contents – Part II

The Second Workshop on Performance Evaluation of
Parallel Applications on Large-Scale Systems

Performance Debugging of Parallel Compression on Multicore
Machines . 82

Energy Considerations for Divisible Load Processing 92

Deskilling HPL: Using an Evolutionary Algorithm to Automate Cluster
Benchmarking . 102

Monitoring of SLA Parameters within VO for the SOA Paradigm 115

A Role-Based Approach to Self-healing in Autonomous Monitoring
Systems . 125

Parallel Performance Evaluation of MIC(0) Preconditioning Algorithm
for Voxel μFE Simulation . 135

Parallel HAVEGE . 145

The Fourth Grid Applications and Middleware
Workshop (GAMW 2009)

UNICORE Virtual Organizations System . 155

Application of ADMIRE Data Mining and Integration Technologies in
Environmental Scenarios . 165

Performance Based Matchmaking on Grid . 174

Replica Management for National Data Storage . 184

Table of Contents – Part II XV

Churn Tolerant Virtual Organization File System for Grids 194

The Fourth Workshop on Large Scale Computations
on Grids (LaSCoG 2009)

Quasi-random Approach in the Grid Application SALUTE 204

Mobile Agents for Management of Native Applications in GRID 214

Leveraging Complex Event Processing for Grid Monitoring 224

Designing Execution Control in Programs with Global Application
States Monitoring . 234

Distributed MIND - A New Processing Model Based on Mobile
Interactive Documents . 244

A Framework for Observing Dynamics of Agent-Based Computations . . . 250

HyCube: A DHT Routing System Based on a Hierarchical Hypercube
Geometry . 260

Workshop on Parallel Computational Biology (PBC
2009)

Accuracy and Performance of Single versus Double Precision
Arithmetics for Maximum Likelihood Phylogeny Reconstruction 270

Automated Design of Assemblable, Modular, Synthetic Chromosomes . . . 280

GPU Parallelization of Algebraic Dynamic Programming 290

Parallel Extreme Ray and Pathway Computation . 300

XVI Table of Contents – Part II

Minisymposium on Applications of Parallel
Computation in Industry and Engineering

Parallelized Transient Elastic Wave Propagation in Orthotropic
Structures . 310

Parallel Numerical Solver for Modelling of Electromagnetic Properties
of Thin Conductive Layers . 320

Numerical Health Check of Industrial Simulation Codes from HPC
Environments to New Hardware Technologies . 330

Application of Parallel Technologies to Modeling Lithosphere Dynamics
and Seismicity . 340

AMG for Linear Systems in Engine Flow Simulations 350

Parallel Implementation of a Steady State Thermal and Hydraulic
Analysis of Pipe Networks in OpenMP . 360

High-Performance Ocean Color Monte Carlo Simulation in the Geo-info
Project . 370

EULAG Model for Multiscale Flows – Towards the Petascale
Generation of Mesoscale Numerical Weather Prediction 380

Parallel Implementation of Particle Tracking and Collision in a
Turbulent Flow . 388

A Distributed Multilevel Ant-Colony Approach for Finite Element
Mesh Decomposition . 398

Minisymposium on Interval Analysis

Toward Definition of Systematic Criteria for the Comparison of Verified
Solvers for Initial Value Problems . 408

Table of Contents – Part II XVII

Fuzzy Solution of Interval Nonlinear Equations . 418

Solving Systems of Interval Linear Equations with Use of Modified
Interval Division Procedure . 427

Remarks on Algorithms Implemented in Some C++ Libraries for
Floating-Point Conversions and Interval Arithmetic 436

An Interval Method for Seeking the Nash Equilibria of Non-Cooperative
Games . 446

From Gauging Accuracy of Quantity Estimates to Gauging Accuracy
and Resolution of Measuring Physical Fields . 456

A New Method for Normalization of Interval Weights 466

A Global Optimization Method for Solving Parametric Linear Systems
Whose Input Data Are Rational Functions of Interval Parameters 475

Direct Method for Solving Parametric Interval Linear Systems with
Non-affine Dependencies . 485

Workshop on Complex Collective Systems

Evaluating Lava Flow Hazard at Mount Etna (Italy) by a Cellular
Automata Based Methodology . 495

Application of CoSMoS Parallel Design Patterns to a Pedestrian
Simulation . 505

Artificial Intelligence of Virtual People in CA FF Pedestrian Dynamics
Model . 513

Towards the Calibration of Pedestrian Stream Models 521

XVIII Table of Contents – Part II

Two Concurrent Algorithms of Discrete Potential Field Construction . . . 529

↪

Frustration and Collectivity in Spatial Networks . 539

Weakness Analysis of a Key Stream Generator Based on Cellular
Automata . 547

Fuzzy Cellular Model for On-line Traffic Simulation 553

Modeling Stop-and-Go Waves in Pedestrian Dynamics 561

FPGA Realization of a Cellular Automata Based Epidemic Processor . . . 569

Empirical Results for Pedestrian Dynamics at Bottlenecks 575

Properties of Safe Cellular Automata-Based S-Boxes 585

Author Index . 593

Table of Contents – Part I

Parallel/Distributed Architectures and Mobile
Computing

Evaluating Performance of New Quad-Core Intel R©Xeon R©5500 Family
Processors for HPC . 1

Interval Wavelength Assignmentin All-Optical Star Networks 11

Graphs Partitioning: An Optimal MIMD Queueless Routing for
BPC-Permutations on Hypercubes . 21

Probabilistic Packet Relaying in Wireless Mobile Ad Hoc Networks 31

Numerical Algorithms and Parallel Numerics

On the Performance of a New Parallel Algorithm for Large-Scale
Simulations of Nonlinear Partial Differential Equations 41

Partial Data Replication as a Strategy for Parallel Computing of the
Multilevel Discrete Wavelet Transform . 51

Dynamic Load Balancing for Adaptive Parallel Flow Problems 61

A Balancing Domain Decomposition Method for a Discretization of a
Plate Problem on Nonmatching Grids . 70

Application Specific Processors for the Autoregressive Signal
Analysis . 80

A Parallel Non-square Tiled Algorithm for Solving a Kind of BVP for
Second-Order ODEs . 87

XX Table of Contents – Part I

Graph Grammar Based Petri Nets Model of Concurrency for
Self-adaptive hp-Finite Element Method with Rectangular Elements 95

Numerical Solution of the Time and Rigidity Dependent Three
Dimensional Second Order Partial Differential Equation 105

Hardware Implementation of the Exponent Based Computational Core
for an Exchange-Correlation Potential Matrix Generation 115

Parallel Implementation of Conjugate Gradient Method on Graphics
Processors . 125

Iterative Solution of Linear and Nonlinear Boundary Problems Using
PIES . 136

Paralel and Distributed Non-numerical Algorithms

Implementing a Parallel Simulated Annealing Algorithm 146

Parallel Computing Scheme for Graph Grammar-Based Syntactic
Pattern Recognition . 156

Extended Cascaded Star Schema for Distributed Spatial Data
Warehouse . 166

Parallel Longest Increasing Subsequences in Scalable Time and
Memory . 176

A Scalable Parallel Union-Find Algorithm for Distributed Memory
Computers . 186

Tools and Environments for
Parallel/Distributed/Grid Computing

Extracting Both Affine and Non-linear Synchronization-Free Slices in
Program Loops . 196

Table of Contents – Part I XXI

A Flexible Checkpoint/Restart Model in Distributed Systems 206

A Formal Approach to Replica Consistency in Directory Service 216

Software Security in the Model for Service Oriented Architecture
Quality . 226

Automatic Program Parallelization for Multicore Processors 236

Request Distribution in Hybrid Processing Environments 246

Vine Toolkit - Grid-Enabled Portal Solution for Community Driven
Computing Workflows with Meta-Scheduling Capabilities 256

Applications of Parallel/Distributed Computing

GEM – A Platform for Advanced Mathematical Geosimulations 266

Accelerating the MilkyWay@Home Volunteer Computing Project with
GPUs . 276

Vascular Network Modeling - Improved Parallel Implementation on
Computing Cluster . 289

Parallel Adaptive Finite Element Package with Dynamic Load
Balancing for 3D Thermo-Mechanical Problems . 299

Parallel Implementation of Multidimensional Scaling Algorithm Based
on Particle Dynamics . 312

XXII Table of Contents – Part I

Particle Model of Tumor Growth and Its Parallel Implementation 322

Applied Mathematics and Neural Networks

Modular Neuro-Fuzzy Systems Based on Generalized Parametric
Triangular Norms . 332

Application of Stacked Methods to Part-of-Speech Tagging of Polish 340

Computationally Efficient Nonlinear Predictive Control Based on
State-Space Neural Models . 350

Relational Type-2 Interval Fuzzy Systems . 360

Properties of Polynomial Bases Used in a Line-Surface Intersection
Algorithm . 369

Minisymposium on GPU Computing

A GPU Approach to the Simulation of Spatio–temporal Dynamics in
Ultrasonic Resonators . 379

Reduction to Condensed Forms for Symmetric Eigenvalue Problems on
Multi-core Architectures . 387

On Parallelizing the MRRR Algorithm for Data-Parallel
Coprocessors . 396

Fast In-Place Sorting with CUDA Based on Bitonic Sort 403

Finite Element Numerical Integration on GPUs . 411

Modeling and Optimizing the Power Performance of Large Matrices
Multiplication on Multi-core and GPU Platform with CUDA 421

Table of Contents – Part I XXIII

Stream Processing on GPUs Using Distributed Multimedia
Middleware . 429

Simulations of the Electrical Activity in the Heart with Graphic
Processing Units . 439

Parallel Minimax Tree Searching on GPU . 449

A Fast GPU Implementation for Solving Sparse Ill-Posed Linear
Equation Systems . 457

The Second Minisymposium on Cell/B.E.
Technologies

Monte Carlo Simulations of Spin Glass Systems on the Cell Broadband
Engine . 467

Montgomery Multiplication on the Cell . 477

An Exploration of CUDA and CBEA for Einstein@Home 486

Introducing the Algorithm . 496

Astronomical Period Searching on the Cell Broadband Engine 507

Finite Element Numerical Integration on PowerXCell Processors 517

The Implementation of Regional Atmospheric Model Numerical
Algorithms for CBEA-Based Clusters . 525

Adaptation of Double-Precision Matrix Multiplication to the Cell
Broadband Engine Architecture . 535

XXIV Table of Contents – Part I

Optimization of FDTD Computations in a Streaming Model
Architecture . 547

Workshop on Memory Issues on Multi- and
Manycore Platforms

An Orthogonal Matching Pursuit Algorithm for Image Denoising on
the Cell Broadband Engine . 557

A Blocking Strategy on Multicore Architectures for Dynamically
Adaptive PDE Solvers . 567

Affinity-On-Next-Touch: An Extension to the Linux Kernel for NUMA
Architectures . 576

Multi–CMP Module System Based on a Look-Ahead Configured Global
Network . 586

Empirical Analysis of Parallelism Overheads on CMPs 596

An Implementation of Parallel 3-D FFT with 2-D Decomposition on a
Massively Parallel Cluster of Multi-Core Processors 606

Introducing a Performance Model for Bandwidth-Limited Loop
Kernels . 615

Author Index . 625

Fully Polynomial Time Approximation Schemes

for Scheduling Divisible Loads

Joanna Berlińska

Faculty of Mathematics and Computer Science,

Adam Mickiewicz University,

Umultowska 87, 61-614 Poznań, Poland

joanna.berlinska@amu.edu.pl

Abstract. In this paper we study divisible loads scheduling in hetero-

geneous systems with high bandwidth. Divisible loads represent com-

putations which can be arbitrarily divided into parts and performed

independently in parallel. We propose fully polynomial time approxima-

tion schemes for two optimization problems. The first problem consists

in finding the maximum load which can be processed in a given time. It

turns out that this problem can be reduced to minimization of a half-

product. The second problem is computing the minimum time required

to process load of a given size. The FPTAS solving this problem uses a

dual approximation algorithm approach.

Keywords: scheduling, divisible loads, FPTAS.

1 Introduction

The divisible load model originated in the late 1980s [1,7] as a tool for modeling
processing of big volumes of data. It represents parallel computations which can
be divided into pieces of arbitrary sizes. In other words, the grains of parallelism
are negligibly small. It is assumed that there are no precedence constraints in
the computations, so that the pieces of data can be processed independently
in parallel. Divisible load model can be applied to problems such as: search
for patterns in text or database files [9], processing measurement data [7,17],
image and video processing [12,13,15]. Surveys of divisible load theory and its
applications can be found e.g. in [5,14].

The problem of scheduling a divisible application consists in selecting the
processors taking part in the computations, choosing the sequence of communi-
cations with the processors and the sizes of sent pieces of data. The aim is to
process load of data of a given size in the shortest possible time. Alternatively,
a dual goal may be to process the largest possible load in a given period of
time.

Scheduling divisible loads with no communication startup times was studied
in [4,6,3]. In each of these publications it was proved that if there are no com-
munication startup costs, then the load should be sent to the processors in the
order of nonincreasing bandwidth. However, the computational complexity of the

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 1–10, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 J. Berlińska

general problem remained open. In [10] it was proved that scheduling divisible
loads in a system with limited memory buffers and with non-zero communication
startup times is NP-hard. More complexity results, e.g. for systems with release
times and with processor deadlines, were shown in [8]. Finally, the NP-hardness
of divisible loads scheduling was proved in [16].

In this paper we study scheduling divisible loads in heterogeneous systems
with communication startup costs and without memory limits. We assume that
all working processors have infinite bandwidth, i.e. sending any amount of data
to a given processor requires constant time. As [16] proved that our schedul-
ing problem is NP-hard even in systems with infinite bandwidth, we propose
fully polynomial time approximation schemes for solving the analyzed
problems.

The rest of this paper is organized as follows. In Section 2 the analyzed prob-
lems are formulated. Sections 3 and 4 describe the algorithms designed to solve
the problems. The last section is dedicated to conclusions.

2 Problem Formulation

In this paper we assume that each processor comprises a CPU, memory and a
hardware network interface. The CPU and network interface can work in parallel
so that simultaneous communication and computation is possible. We assume
star interconnection. A set of working processors {P1, . . . , Pm} is connected to
a central server P0 called originator. Initially, some amount W of load to be
processed is located on the originator. We assume that the originator performs
no computations. In the opposite case, the computing capability of the origi-
nator can be represented as an additional processor. In a general model each
working processor Pi, 1 ≤ i ≤ m, is described by its computing rate Ai, commu-
nication rate Ci and communication startup time Si. In this paper we assume
that each processor has infinite bandwidth, i.e. Ci = 0 for 1 ≤ i ≤ m. Thus,
the time needed to transfer α units of load from P0 to Pi is Si, and the time
required to process this load on worker Pi is αAi. We assume that Ai and Si

are nonnegative integers, while W and schedule length are nonnegative rational
numbers. We will use the notation Smax = max1≤i≤m Si, Smin = min1≤i≤m Si,
Amax = max1≤i≤m Ai and Amin = min1≤i≤m Ai.

Let us note that as the bandwidth is infinite and there are no memory limita-
tions, sending more than one piece of data to a processor will not cause starting
any computations earlier. Therefore, without loss of generality, we can analyze
single-round schedules only.

We study two optimization problems, which can be formulated in the following
way (we use the terminology of [16]).

Problem 1. (DLS{Ci = 0}-OptW)
Given a rational time T > 0, m workers, their parameters Ai and Si for 1 ≤
i ≤ m, find the greatest rational number WOPT (T), such that it is possible to
process load of size WOPT (T) within time T .

FPTAS for Scheduling Divisible Loads 3

Problem 2. (DLS{Ci = 0}-OptT)
Given a rational workload size W > 0, m workers, their parameters Ai and Si

for 1 ≤ i ≤ m, find the smallest rational number TOPT (W) ≥ 0, such that it is
possible to compute the whole load within time TOPT (W).

Let us note that if we analyze the problem DLS{Ci = 0}-OptW and Si > T for
some processor Pi, then this processor can process no load in time T . Thus we
assume that Si ≤ T for 1 ≤ i ≤ m in the instances of DLS{Ci = 0}-OptW .

Moreover, if Aj = 0 for some processor Pj , then any amount of load can
be processed using only processor Pj in time Sj . If we analyze the problem
DLS{Ci = 0}-OptW , we can process infinite load during time T in this case,
as we assumed that Si ≤ T for all i. Alternatively, if the studied problem is
DLS{Ci = 0}-OptT , the optimum time needed to process load of size W using
processor Pj is Sj . Let T ′ be the minimum time needed to process load of size
W using only processors from the set P ′ = {Pi : Si < Sj}. Then the minimum
time needed to process W units of load using processors from the whole set
{P1, . . . , Pm} can be computed as TOPT (W) = min(Sj , T

′). Therefore, without
loss of generality we also assume that Ai > 0 for 1 ≤ i ≤ m in the instances of
both problems formulated above.

Both problems DLS{Ci = 0}-OptW and DLS{Ci = 0}-OptT were formulated
and studied in [16]. They were shown to be NP-hard and pseudo-polynomial dy-
namic programming algorithms solving them were proposed. Since pseudopoly-
nomial algorithms are in fact exponential, it can be more useful to create fully
polynomial time approximation schemes for these problems.

3 FPTAS for the Problem DLS{Ci = 0}-OptW

The key observation needed to construct an FPTAS solving the problem
DLS{Ci = 0}-OptW is the following proposition proved in [16].

Proposition 1. For a given time limit T and set P ′ ⊆ {P1, . . . , Pm} of workers
taking part in the computation the maximum load is processed if workers are
ordered according to nondecreasing values of SiAi for Pi ∈ P ′.

Proposition 1 can be proved by the interchange argument: ordering the pro-
cessors in P ′ according to nondecreasing SiAi does not reduce the amount of
processed load.

It follows from Proposition 1 that it is enough to choose the optimal subset
of processors taking part in computations to calculate the maximum load which
can be processed in a given time T . Namely, let us sort the processors in the
order of nondecreasing SiAi. Let us define a binary vector x = (x1, . . . , xm)
in the following way: xi = 1 if processor Pi receives some load to process and
xi = 0 in the opposite case. The maximum amount of load that can be processed
in time T using processors indicated by the vector x is equal to

WOPT (T,x) =
m∑

i=1

Txi

Ai
−

m∑
i=1

m∑
j=i

xixjSi

Aj
. (1)

4 J. Berlińska

The first sum in (1) is equal to the load which could be processed if there were
no communication delays and the second sum corresponds to the load which is
lost because of communication delays (cf. [8,16]).

From now on, we will always assume that processors P1, . . . , Pm are sorted
according to nondecreasing SiAi. Our aim is to maximize the size W of load
processed in a given period of time T as a function of a binary vector x =
(x1, . . . , xm). Instead of maximizing W (x), we can minimize the value of −W (x).
Using the fact that xi are binary and x2

i = xi, we can write

− W (x) = −
m∑

i=1

T − Si

Ai
xi +

∑
1≤i<j≤m

Si
1
Aj

xixj . (2)

A half-product [2] is a function of the form

f(x) = f(x1, . . . , xm) = −
m∑

i=1

pixi +
∑

1≤i<j≤m

qirjxixj . (3)

Hence, −W (x) is a half-product, with pi = T−Si

Ai
, qi = Si, rj = 1

Aj
.

Badics and Boros proposed an FPTAS for minimizing half-products in [2].
They assumed that parameters pi, qi, ri are nonnegative integers for 1 ≤ i ≤ m.
In our case all parameters are nonnegative, but pi = T−Si

Ai
and rj = 1

Aj
are not

integer. However, the assumption about integrality of pi and ri is used neither
for proving the correctness of the Badics and Boros algorithm, nor for estimating
its running time. Therefore, we can use the algorithm from [2] to minimize the
function −W (x). The algorithm receives parameters pi, qi, ri and a positive
approximation precision ε < 1. It returns a binary vector xε = (xε

1, . . . , x
ε
m).

For 1 ≤ k ≤ m, let gk(x) = −∑k
i=1 pixi +

∑
1≤i<j≤k qirjxixj and Qk(x) =∑k

i=1 qixi. The algorithm can be formulated as follows (cf. [2]):

MINIMIZE-HALF-PRODUCT((p1, . . . , pm), (q1, . . . , qm), (r1, . . . , rm), ε)
STEP 0: Let δ > 0 be defined by the equation (1 + δ)m = 1 + ε,
let Q =

∑m
i=1 qi,

let N = � 2m log Q
ε �,

let k = 0 and X0 = {()}.
STEP 1: Let k = k + 1, Xk = ∅, t = 0, s = 0,
L = {(y1, . . . , yk−1, 0), (y1, . . . , yk−1, 1)|(y1, . . . , yk−1) ∈ Xk−1}
STEP 2: while s ≤ N do

select z = (z1, . . . , zk) ∈ L for which
t ≤ Qk(z) < (1 + δ)s

and for which gk(z) is the smallest among all such z.
Let Xk = Xk ∪ {z}, t = (1 + δ)s, s = s + 1.

STEP 3: if k < m goto STEP 1, else goto STEP 4.
STEP 4: Select xε ∈ Xm with the smallest gm(xε), return xε.

FPTAS for Scheduling Divisible Loads 5

It was proved in [2] that

f(xε) ≤ f(x∗) + ε|f(x∗)|, (4)

where x∗ is a vector minimizing f , and the running time of algorithm
MINIMIZE-HALF-PRODUCT is O(m2 log(

∑m
i=1 qi)/ε) [2].

Now we propose an algorithm for the problem DLS{Ci = 0}-OptW . The
pseudocode of the algorithm is presented below.

FPTAS-OPT-W(T, ε)
for i = 1 to m do

pi = T−Si

Ai

qi = Si

ri = 1
Ai

xε=MINIMIZE-HALF-PRODUCT((p1, . . . , pm), (q1, . . . , qm), (r1, . . . , rm), ε)
return xF P T AS(T, ε) = xε, WFPTAS(T, ε) =

∑m
i=1

Txε
i

Ai
−∑m

i=1

∑m
j=i

xε
i xε

jSi

Aj

Proposition 2. The algorithm FPTAS-OPT-W is a fully polynomial time ap-
proximation scheme for the problem DLS{Ci = 0}-OptW .

Proof. As xF P T AS(T, ε) is the result of MINIMIZE-HALF-PRODUCT algo-
rithm for the function −W (x), we obtain from (4)

− WFPTAS(T, ε) ≤ −WOPT (T) + εWOPT (T). (5)

Consequently,
WFPTAS(T, ε) ≥ WOPT (T)(1 − ε). (6)

Moreover, the order of the running time of FPTAS-OPT-W is equal to the
running time of MINIMIZE-HALF-PRODUCT, and is equal to at most
O(m2 log(

∑m
i=1 Si)/ε) = O(m2(logm + logSmax)/ε). Hence, the algorithm

FPTAS-OPT-W is a fully polynomial time approximation scheme for the prob-
lem DLS{Ci = 0}-OptW . ��

4 FPTAS for the Problem DLS{Ci = 0}-OptT

In order to create an FPTAS for the problem DLS{Ci = 0}-OptT we will use
the approach of a dual approximation algorithm proposed in [11]. In a dual
approximation algorithm the goal is to find a superoptimal infeasible solution of
some optimization problem. The performance of the algorithm is measured by
the degree of infeasibility allowed.

We will create a dual approximation algorithm for the problem DLS{Ci = 0}-
OptW . Such an algorithm should accept a given period of time T and accuracy ε,
and deliver a schedule processing load of size at least WOPT (T) in time not longer
than T (1 + ε). Let us assume that ε < 1 and analyze the following algorithm.

DUAL-OPT-W(T, ε)
call FPTAS-OPT-W(T, ε/2)
return xDUAL(T, ε)=xF P T AS(T, ε/2), WDUAL(T, ε) =(1+ε)WFPTAS(T, ε/2)

6 J. Berlińska

In order to prove that the proposed algorithm is a valid dual approximation
algorithm for the problem DLS{Ci = 0}-OptW , we will use the following fact.

Proposition 3. If it is possible to process load of size W in time T using the
subset of processors indicated by a binary vector x = (x1, . . . , xm), then it is also
possible to process load of size W (1+ε) in time at most T (1+ε), using the same
subset of processors.

Proof. Let us denote by W ′ the maximum size of load which can be processed
in time T (1 + ε) using the processors indicated by the vector x. From (1) we
obtain

W ′ =
m∑

i=1

T (1 + ε)xi

Ai
−

m∑
i=1

m∑
j=i

xixjSi

Aj
(7)

and

W =
m∑

i=1

Txi

Ai
−

m∑
i=1

m∑
j=i

xixjSi

Aj
. (8)

Therefore,

W ′ = (1 + ε)W + ε
m∑

i=1

m∑
j=i

xixjSi

Aj
≥ W (1 + ε). (9)

��
Note that if T = TOPT (W), then by Proposition 3 we have that load of size
W (1 + ε) can be processed in time not longer than TOPT (W)(1 + ε). Hence, we
can formulate a corollary:

Corollary 1. For any numbers W ≥ 0 and ε > 0 we have

TOPT (W (1 + ε)) ≤ TOPT (W)(1 + ε).

We will say that an algorithm is a fully polynomial time dual approximation
algorithm for a given problem if it is a dual approximation algorithm for this
problem with approximation precision ε and its running time is polynomial in
both the problem size and 1/ε.

Proposition 4. The algorithm DUAL-OPT-W is a fully polynomial time dual
approximation algorithm for the problem DLS{Ci = 0}-OptW .

Proof. As WDUAL(T, ε) = (1 + ε)WFPTAS(T, ε/2), we get from (6)

WDUAL(T, ε) ≥ (1 + ε)WOPT (T)(1 − ε/2) ≥ WOPT (T), (10)

because ε < 1. Thus, the obtained solution is superoptimal. The time needed
to process the load WDUAL(T, ε) is at most T (1 + ε) by Proposition 3, as it is
possible to process load of size WFPTAS(T, ε/2) in time T .

The running time of the algorithm DUAL-OPT-W is determined by the
call of FPTAS-OPT-W(T, ε/2), whence it is equal to at most O(m2(logm +
logSmax)/ε). ��

FPTAS for Scheduling Divisible Loads 7

We will now construct a fully polynomial time approximation scheme for the
problem DLS{Ci = 0}-OptT using the above dual approximation algorithm for
DLS{Ci = 0}-OptW in the binary search process.

FPTAS-OPT-T(W, ε)
upper = Smax + WAmax

lower = 0
LoBo = WAmin/m

while (upper − lower) > ε(1−ε)
(2−ε) LoBo

Tp = (upper + lower)/2
call DUAL-OPT-W(Tp, ε)
if WDUAL(Tp, ε) < W (1 + ε)

then lower = Tp

else upper = Tp

call FPTAS-OPT-W(upper, ε/2)
return x = xF P T AS(upper, ε/2), T = upper

Proposition 5. The algorithm FPTAS-OPT-T is a fully polynomial time ap-
proximation scheme for the problem DLS{Ci = 0}-OptT .

Proof. Let us start with the observation that at the beginning of the algorithm
upper and lower are trivial upper and lower bounds for TOPT (W). LoBo is also
a lower bound on TOPT (W) and is positive, since we assumed that Ai > 0 for
1 ≤ i ≤ m.

First we will analyze the variable upper in order to prove that the algorithm
always returns a feasible solution. At the beginning of the algorithm upper =
Smax + WAmax. If this value is not changed during the binary search, then
the algorithm FPTAS-OPT-W is called for parameters T = upper = Smax +
WAmax and approximation precision ε/2 at the end of executing FPTAS-OPT-
T algorithm. The obtained schedule will allow for processing load of size at least
W , as it is enough to choose any nonempty subset of the workers to process W
units of load in time T = Smax + WAmax.

Now let us assume that the value of upper is changed at least once to Tp. This
happens only if WDUAL(Tp, ε) ≥ W (1 + ε). Therefore, as

WDUAL(T, ε) = (1 + ε)WFPTAS(T, ε/2), (11)

we have

WFPTAS(upper, ε/2) = WDUAL(upper, ε)/(1 + ε) ≥ W (12)

at any time during the execution of the algorithm. Hence, the solution obtained
by the algorithm FPTAS-OPT-T is always feasible.

Now let us estimate the quality of the obtained solution. We will show that

lower ≤ TOPT (W)(1 +
ε

2 − ε
) (13)

8 J. Berlińska

throughout the execution of the program. Since initially lower = 0, this condition
is true before beginning the binary search. The variable lower is updated to Tp

only when WDUAL(Tp, ε) < W (1 + ε). It follows from (11) that

(1 + ε)WFPTAS(lower, ε/2) < W (1 + ε). (14)

Furthermore, from (6) we get

(1 + ε)WOPT (lower)(1 − ε/2) < W (1 + ε), (15)

WOPT (lower) < W/(1 − ε/2) (16)

and finally
WOPT (lower) < W (1 +

ε

2 − ε
). (17)

Thus, it is impossible to process load W (1 + ε
2−ε) in time lower. Hence,

lower < TOPT (W (1 +
ε

2 − ε
)). (18)

By Corollary 1 we have

TOPT (W (1 +
ε

2 − ε
)) ≤ TOPT (W)(1 +

ε

2 − ε
), (19)

which proves that (13) is true during the execution of the binary search procedure.
The binary search is finished when upper ≤ lower+ ε(1−ε)

(2−ε) LoBo. Since LoBo ≤
TOPT (W), by (13) we get

upper ≤ TOPT (W)(1 +
ε

2 − ε
) +

ε(1 − ε)
(2 − ε)

TOPT (W) (20)

and consequently
upper ≤ TOPT (W)(1 + ε). (21)

Thus FPTAS-OPT-T delivers an ε-approximation of the optimal solution of the
problem.

The number of iterations in the binary search is at most equal to O(log
((Smax +WAmax)/(ε(1−ε)

(2−ε) WAmin/m))) = = O(log Smax+logAmax +log(1/ε)+
logm + max(logW, log(1/W))). The execution time of each iteration is O(m2

(logm+logSmax)/ε) due to calling the algorithm DUAL-OPT-W. Thus the run-
ning time of the whole algorithmFPTAS-OPT-T is atmostO((log Smax+logAmax

+ log(1/ε) + logm + max(logW, log(1/W)))m2(logm + log Smax)/ε). ��

5 Conclusions

In this paper we studied scheduling divisible loads in a heterogeneous star sys-
tem with high bandwidth. We formulated two optimization scheduling problems,
DLS{Ci = 0}-OptW and DLS{Ci = 0}-OptT . The first problem was computing

FPTAS for Scheduling Divisible Loads 9

the maximum load that can be processed in a given period of time, and the sec-
ond problem was calculating the minimum time needed to process load of a given
size. We proposed fully polynomial time approximation schemes for both of these
problems and a dual approximation algorithm for DLS{Ci = 0}-OptW . Future
research may include constructing fully polynomial time approximation schemes
for scheduling divisible loads in systems with finite bandwidth characterizing the
working processors.

References

1. Agrawal, R., Jagadish, H.V.: Partitioning Techniques for Large-Grained Paral-

lelism. IEEE Transactions on Computers 37(12), 1627–1634 (1988)

2. Badics, T., Boros, E.: Minimization of Half-products. Mathematics of Operations

Research 23(3), 649–660 (1988)

3. Beaumont, O., Casanova, H., Legrand, A., Robert, Y., Yang, Y.: Scheduling Divis-

ible Loads on Star and Tree Networks: Results and Open Problems. IEEE Trans-

actions on Parallel and Distributed Systems 16(3), 207–218 (2005)

4. Bharadwaj, V., Ghose, D., Mani, V.: Optimal Sequencing and Arrangement in

Single-Level Tree Networks with Communication Delays. IEEE Transactions on

Parallel and Distributed Systems 5(9), 968–976 (1994)

5. Bharadwaj, V., Ghose, D., Mani, V., Robertazzi, T.G.: Scheduling Divisible Loads

in Parallel and Distributed Systems. IEEE Computer Society Press, Los Alamitos

(1996)

6. Blażewicz, J., Drozdowski, M.: Distributed Processing of Divisible Jobs with Com-

munication Startup Costs. Discrete Applied Mathematics 76, 21–41 (1997)

7. Cheng, Y.-C., Robertazzi, T.G.: Distributed computation with communication de-

lay. IEEE Transactions on Aerospace and Electronic Systems 24, 700–712 (1988)

8. Drozdowski, M., Lawenda, M.: The combinatorics in divisible load scheduling.

Foundations of Computing and Decision Sciences 30(4), 297–308 (2005),

http://www.cs.put.poznan.pl/mdrozdowski/txt/divBB2.pdf

9. Drozdowski, M., Wolniewicz, P.: Experiments with scheduling divisible tasks in

clusters of workstations. In: Bode, A., Ludwig, T., Karl, W.C., Wismüller, R.

(eds.) Euro-Par 2000. LNCS, vol. 1900, pp. 311–319. Springer, Heidelberg (2000)

10. Drozdowski, M., Wolniewicz, P.: Optimum divisible load scheduling on heteroge-

neous stars with limited memory. European Journal of Operational Research 172,

545–559 (2006)

11. Hochbaum, D., Shmoys, D.: Using dual approximation algorithms for scheduling

problems: theoretical and practical results. Journal of the ACM 34(1), 144–162

(1987)

12. Li, X., Bharadwaj, V., Ko, C.C.: Distributed image processing on a network of

workstations. International Journal of Computers and Applications 25(2), 1–10

(2003)

13. Lim, T., Robertazzi, T.G.: Efficient parallel video processing through concurrent

communication on a multi-port star network. In: Proceedings of the 40th Confer-

ence on Information Sciences and Systems, Princeton, NJ, pp. 458–463 (2006)

14. Robertazzi, T.G.: Ten reasons to use divisible load theory. IEEE Computer 36,

63–68 (2003)

http://www.cs.put.poznan.pl/mdrozdowski/txt/divBB2.pdf

10 J. Berlińska

15. van der Raadt, K., Yang, Y., Casanova, H.: Practical divisible load scheduling on

grid platforms with APST-DV. In: Proceedings of the 19th IPDPS 2005, p. 29b

(2005)

16. Yang, Y., Casanova, H., Drozdowski, M., Lawenda, M., Legrand, A.: On the com-

plexity of Multi-Round Divisible Load Scheduling. INRIA Rhône-Alpes, Research

Report 6096 (2007)

17. Yu, D., Robertazzi, T.G.: Divisible load scheduling for grid computing. In: Proceed-

ings of the IASTED International Conference on Parallel and Distributed Com-

puting and Systems, PDCS 2003 (2003)

Semi-online Preemptive Scheduling:

Study of Special Cases

Tomáš Ebenlendr

Institute of Mathematics, AS CR, Žitná 25, CZ-11567 Praha 1, Czech Republic

ebik@math.cas.cz

Abstract. We use the duality of linear programing to obtain exact for-

mulas of competitive ratio for the semi-online preemptive scheduling on

three and four machines. We use the linear programs from [3]. Namely we

consider the online scheduling and the semi-online scheduling with known

sum of processing times. We solve the linear programs symbolically by

examining all basic solution candidates. All solutions are obtained by a

computer but all are verifiable by hand.

1 Introduction

We study the scheduling on uniformly related machines. Every machine has its
speed s, i.e., processing a job with processing time p in a machine with speed
s takes p/s time. Preemption is allowed: each job may be divided into several
pieces, these pieces can be assigned to different machines in disjoint time slots.
The objective is to minimize the makespan, i.e., the length of a schedule. In
the online problem, jobs arrive one-by-one and we need to assign each incoming
job without any knowledge of the jobs that arrive later. When a job arrives, its
assignment at all times must be given and we are not allowed to change this
assignment later. In other words, the online nature of the problem is given by
the ordering of the input sequence and it is not related to possible preemptions
and the time in the schedule.

The online algorithms are evaluated by their competitive ratio, that is the
worst-case ratio between the makespan of the output schedule of the algorithm
and the optimal (offline) makespan. I.e., the r-competitive algorithm produces
at most r times longer schedule than the best possible schedule for every input
sequence. Semi-online problems are derived from the original online problem by
providing some partial information in advance. In this paper we focus on the
knowledge of the total processing time. The competitive ratio of studied prob-
lems is given by several linear programs, their dimension depends on number of
machines quadratically. We deploy a method how to solve small parametrized
linear programs. We obtain exact competitive ratios for small numbers of ma-
chines (up to 4) for various semi-online scheduling problems this way.

This method is based on duality of linear programing, which says that it
suffices to examine all possible basic solutions. From a geometrical point of view,
we take all intersections of dimension zero of hyperplanes defined by the linear

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 11–20, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

12 T. Ebenlendr

conditions, and then we test if such an intersection is a feasible and optimal
solution. Note that the feasibility and the optimality of such a solution also
depends on the actual values of the parameters, so the result typically splits into
several cases. Searching through all such intersections would be tedious work as
it requires solving a system of linear equations and then examining the feasibility
of the result. Most of this work can be automated nowadays as there is various
algebraic software available.

2 Definitions of the Problem and Previous Results

We have m machines with speeds s1 ≥ s2 ≥ · · · ≥ sm > 0. We use a shorthand
for the total speed of all machines: S = s1 + s2 + · · · + sm. We use special
notation for the ratio α = S−s1

S = s2+s3+···+sm

s1+s2+s3+···+sm
also, as it occurs in resulting

formulas. The input sequence contains n jobs with processing times p1, p2, . . . , pn.
Note that n is unknown to the online algorithm. Again, we use a shorthand
P = p1 + p2 + · · ·+ pn for the total processing time. The optimal makespan can
be computed simply as a maximum of m numbers [5]:

C∗
max = max

{
pmax
1 /s1, . . . , (pmax

1 + · · · + pmax
m−1)/(s1 + · · · + sm−1), P/S

}
, (1)

where pmax
j is j-th maximal job in the input sequence.

We view every semi-online problem as a restriction of set of possible input
sequences of the online problem. Then we define a general semi-online input
restriction to be simply a set Ψ of allowed input sequences. We call an input
sequence a partial input if it is a prefix of some input sequence; the set of all par-
tial inputs is denoted pref(Ψ). Thus the partial inputs are exactly the sequences
that the algorithm can see at some point. We restrict the definition of C∗

max

only to Ψ -valid sequences of jobs as in [3], i.e., C∗,Ψ
max[J] = C∗

max[J] for J ∈ Ψ .
Then we extend it to the partial inputs in a natural way, i.e., denoting the least
achievable makespan over all valid continuations of such a partial input:

C∗,Ψ
max[I] = inf{C∗

max[J] | J ∈ Ψ & I is a prefix of J } . (2)

This simplifies to the similar formula as in (1) for our restrictions. That is crucial,
because then we are able to define C∗,Ψ

max as the minimum value satisfying several
linear inequalities. (We consider the speeds as fixed parameters, because they are
given at the start of the algorithm, while the processing times are the variables
as the algorithm does not know them in advance.)

We measure how bad are (semi-)online algorithms compared to optimal so-
lution by the competitive ratio. We say that an algorithm is r-competitive if it
manages to generate valid schedule with at most r times greater makespan than
the makespan of the optimal (offline) schedule. For randomized algorithms we
use expectation of the makespan over the random bits of the algorithm for each
input sequence.

The exact analysis of scheduling on two machines was given in [4,1,6] for
various semi-online problems, and in many more cases for non-preemptive

Semi-online Preemptive Scheduling: Study of Special Cases 13

scheduling. The paper [3] provides the framework to construct the algorithm
with best possible competitive ratio for arbitrary number of machines and gives
linear programs computing the optimal competitive ratio for several semi-online
problems. We solve these linear programs for the cases of up to four machines.
Below we list the restrictions studied in our paper.

Online scheduling. Here Ψ contains all sequences. In [2] is designed an optimal
online algorithm for all speed vectors, but the competitive ratio is given implicitly
by the linear program, which is solved there up to three machines. Here we
analyze the competitive ratio of four machines.

Known sum of processing times,
∑

pj = P̄ . For a given value P̄ , Ψ contains
all sequences with P = P̄ . The algorithm from [2] is extended in [3] to all
semi-online problems studied in this paper. There is also noted that the overall
ratio is surprisingly the same as in the general online case, but for m = 2,
1-approximation exists. We analyze the cases of m = 3, 4.

Other restrictions will be studied in full version of the paper.
The lower bound, as well as matching algorithm can be found in [3]. We

consider only nice restrictions, and for these is there proved that the best possible
competitive ratio (even for randomized algorithms) can be computed as rΨ (s) =
supJ r̄Ψ (s,J), where:

r̄Ψ (s,J) =
∑n

j=1 pj/
∑n

j=1 sn+1−j · C∗,Ψ
max[J[j]] , (3)

where sm+1 = sm+2 = · · · = 0, J is a prefix of Ψ -valid input sequence, J[j] is a
sequence containing first j jobs of the input sequence J and n = |J |. The lower
bound uses the argument of the total processing time available to (semi-)online
algorithm processing n jobs: after the time rC∗,Ψ

max[J[j]] only n − j machines can
be used as the algorithm is r-competitive semi-online, thus it has all jobs from
J[j] finished, and there are only n− j jobs in J \ J[j].

Following simplifications hold for the restrictions studied in this paper: It suf-
fices to consider only J where jobs are sorted from the smallest to the largest.
Also if n > m, it suffices to consider sequences with first n− m jobs tiny where
only their total processing time is interesting. Then it is easy to construct lin-
ear conditions exactly bounding C∗,Ψ

max[J[n−m+1]], . . . , C∗,Ψ
max[J[n]], and construct

a linear program with the objective function r̄Ψ (s,J), where the job sizes and
the optimal makespans are variables. These programs are already constructed
in [3].

3 Online Scheduling

The linear program in variables q1, . . . , qm and O1, . . . , Om, follows, each in-
equality labeled with corresponding dual variable (z?). The value of the optimal
solution is the competitive ratio of the problem for m machines. This program
is already solved for m ≤ 3 in [2].

14 T. Ebenlendr

maximize r = q1 + · · · + qm

subject to 1 = s1Om + s2Om−1 + · · · + smO1 (znorm)
q1 + · · · + qk ≤ (s1 + · · · + sm)Ok (zk) 1 ≤ k ≤ m
qj + · · · + qk ≤ (s1 + · · · + sk−j+1)Ok (zj,k) 2 ≤ j ≤ k ≤ m

qj ≤ qj+1 (z≤,j) 2 ≤ j ≤ m − 1
0 ≤ q1 , 0 ≤ q2 (z0,1) , (z0,2)

(4)

So we have the linear program and we solve it for all speed combinations of four
machines (m = 4).

The list of the cases follows. We list not only the resulting competitive ratio
and the validity domain of the case, (i.e., the conditions that define this domain),
but also the sizes of the jobs in the input sequence proving the lower bound and
also the dual coefficients proving that no better bound can be obtained from
(3). Note that the algorithm from [2] matches exactly this lower bound, i.e., if it
fails to achieve some competitive ratio, then it is due to the bound (3). (Recall
the definition α = S−s1

S .)

Case I Ratio: r = S/D , D = s1 + αs2 + α2s3 + α3s4

Conditions:

(A+: II) s2 ≥ αs1

(B+: IV) s2+s3 ≥ (α+α2)s1

Nonbasic dual vars:

z0,1,z0,2,z≤,2,z≤,3,

z2,3,z2,4,z3,4

Jobs:

q1 = α2(S−s1)/D

q2 = α2s1/D

q3 = αs1/D

q4 = s1/D

U.b. coefficients:

z1 = z2,2 = s4/D

z2 = (s3−(1−α)s4)/D

z3 = (s2−(1−α)(s3+αs4))/D

z4 = (s1−(1−α)(s2+αs3+α2s4))/D

z3,3 = (s3+αs4)/D

z4,4 = (s2+αs3+α2s4)/D

We use a shorthand D for the common denominator of all formulas in our case
description. Conditions state for which values of parameters is this case optimal.
The label (A+: II) of a condition should be read: The Case I is adjacent to the
Case II, where the opposite condition (A-): s2 ≤ αs1 holds. Jobs give the main
input sequence for lower bound. Note that the adversary may stop the sequence
after any number of jobs. (In the general semi-online case the adversary may need
to submit some more jobs, so that the input will be in Ψ , while maintaining C∗,Ψ

max.
But this is not needed in online scheduling.) The nonbasic dual variables are
labels of inequalities, which we allow to be not tight, i.e., all other inequalities
are turned into equations. The upper bound coefficients are values of nonzero
dual variables. These give the matching upper bound on the competitive ratio,
which is obtained by summing up the corresponding inequalities multiplied by
these coefficients. Note that all nonbasic dual variables have coefficients of zero
value (and thus are not listed), because of the dual complementary slackness of
linear programing.

Now we show how to check the correctness of Case I. The correctness of all
other cases and all other restrictions in this paper can be checked in the same
way. First we check the value of the objective function (using s1 = (1 − α)S):

q1 + q2 + q3 + q4 = α2S/D + α(1 − α)S/D + (1 − α)S/D = S/D = r

Semi-online Preemptive Scheduling: Study of Special Cases 15

Then we compute the values of the optima variables O1, . . . , O4. We know that
basic inequalities are satisfied by equality:

O1
(z1)= q1/S = α3/D

O2
(z2,2)
= q2/s1 = α2/D = (q1 + q2)/S

(z2)= O2

O3
(z3,3)
= q3/s1 = α/D = (q1 + q2 + q3)/S

(z3)= O3

O4
(z4,4)
= q4/s1 = 1/D = (q1 + q2 + q3 + q4)/S

(z4)= O4 .

The equal signs are labeled by labels of used equalities. Similarly the inequality
signs are labeled by labels of sufficient conditions in following text.

We can also easily verify that the equation (znorm) holds. We check the re-
maining (i.e., nonbasic) inequalities:

(z2,3) q2 + q3 = (α + α2)s1/D ≤A α(s1 + s2)/D = (s1 + s2)O3

(z2,4) q2 + q3 + q4 = (1 + α + α2)s1/D ≤B (s1 + s2 + s3)/D = (s1 + s2 + s3)O4

(z3,4) q3 + q4 = (1 + α)s1/D ≤A (s1 + s2)/D = (s1 + s2)O4 .

We get (z0,1), (z0,2), (z≤,2) and (z≤,3) trivially from α ≤ 1 and S ≥ s1. Thus we
know that our solution is feasible when A+ and B+ holds, so all algorithms are
at least r-competitive for such sets of speeds. The sequence that proves this is
for example: p1 = · · · = p4 = q1/4, p5 = q2, p6 = q3, p7 = q4.

Now we check the optimality of our solution. We check that all upper bound
coefficients are nonnegative with the exception of znorm:

z2D = (s3 − s4) + αs4 ≥ 0
z3D = (s2 − s3) + α(s3 − s4) + α2s4 ≥ 0

z4DS = s1S − s1(s2 + αs3 + α2s4) ≥ 0 .

The coefficient znorm is allowed to be negative, as (znorm) is an equation. So
we have all inequality coefficients nonnegative, thus we add up the inequalities
multiplied by their respective coefficients, and we use the resulting inequality:

q1 + q2 + q3 + q4 = q1(z1+z2+z3+z4)+q2(z2,2+z2+z3+z4)+q3(z3,3+z3+z4)+q4(z4,4+z4)

≤ O1Sz1 + O2(Sz2 + s1z2,2) + O3(Sz3 + s1z3,3) + O4(Sz4 + s1z4,4)
= (O1s4 + O2s3 + O3s2 + O4s1)S/D + (O1s4 + O2s3 + O3s2 + O4s1 − 1)znorm

= S/D .

This proves the optimality of our solution, i.e., there is no better solution and
the algorithm from [2] is r-competitive.

Now we continue the list of the cases:

Case II Ratio: r = S2/D , D =
∑4

i=1

∑4
j=i sisj + α(s3 + s4)s4 − s2

4

Conditions:

(A-: I) s2 ≤ αs1

(C+: III) s2+s3 ≥ α(s1+s2)

Nonbasic dual vars:

z0,1,z0,2,z≤,2,z≤,3,

=z2,2,z2,4,z3,3

Jobs:

q1 = (s3+s4)(S−s1)/D

q2 = (s3+s4)s1/D

q3 = s2S/D

q4 = s1S/D

U.b. coefficients:

z1 = z2,3 = s4S/D

z2 = z3,4 = s3S/D

z3 = (s2S−(s1+s2)s4)/D

z4 = (s1(s1+s4)−s2s3

−(1−α)(s3+s4)s4)/D

z4,4 = (s2S+(s3+s4)s4)/D

16 T. Ebenlendr

Case III Ratio: r = S2/D

D =
∑4

i=1

∑4
j=i sisj

Conditions: (A-: IV) s2 ≤ αs1

(C-: II) s2+s3 ≤ α(s1+s2)

Nonbasic dual vars:
z0,1,z0,2,z≤,2,z≤,3,

z2,2,z2,3,z3,3

Jobs:

q1 = s4S/D

q2 = s3S/D

q3 = s2S/D

q4 = s1S/D

U.b. coefficients:

z1 = z2,4 = s4S/D

z2 = z3,4 = s3S/D

z3 = z4,4 = s2S/D

z4 = (s1S−
4∑

i=2

i−1∑
j=1

sisj)/D

Case IV Ratio: r = S/D
D = s1 + αs2 + α2s3 + s2

4/S
Conditions: (A+: III) s2 ≥ αs1

(B-: I) s2+s3 ≤ (α+α2)s1

Nonbasic dual vars:
z0,1,z0,2,z≤,2,z≤,3,

z2,2,z2,3,z3,4

Jobs:

q1 = s4/D

q2 = (α(S−s1)−s4)/D

q3 = αs1/D

q4 = s1/D

U.b. coefficients:

z1 = z2,4 = s4/D

z2 = z3,3 = s3/D

z3 = (s2−(1−α)s3)/D

z4 = (s1−s4(S−s4)/S

−(1−α)(s2+s3α))/D

z4,4 = (s2+αs3)/D

We should also check that all listed cases cover whole space of the valid parame-
ters (the speeds of the machines). This is easy, as A splits the space to the cases
I+IV and the cases II+III. Then, I and IV are separated by B and fully cover
the halfspace A+. Similarly II and III are separated by C and fully cover A-.

4 Known Sum of Processing Times,
∑

pj = P̄

Here we are given a value P̄ and Ψ contains all J with P = P̄ . Here we have
to solve n − 1 linear programs for each n < m, and take the maximum of their
solutions. The linear program for arbitrary n follows. Note that the shorthand
S sums all speeds of the machines, i.e., including sn+1, . . . , sm.

maximize r = q1 + q2 + · · · + qn

subject to 1 = s1On + s2On−1 + · · · + snO1 (znorm)
q1 + · · · + qn ≤ SOk (zk) 1 ≤ k ≤ n− 1
qj + · · · + qk ≤ (s1 + · · · + sk−j+1)Ok (zj,k) 1 ≤ j ≤ k ≤ n

qk ≤ qk+1 (z≤,k) 1 ≤ k ≤ n− 1
0 ≤ q1 (z0) .

(5)

We omit the inequality (zn) as it is implied by (z1,n). (The implication follows
trivially from S = s1 + · · · + sn + sn+1 + · · · + sm.)

The linear program is trivial for n = 1, and we conclude that for m = 2 the
approximation ratio is equal to 1, i.e., there is an optimal algorithm.

m = 3. For m = 3, it remains to solve the linear program for n = 2. The ratio
splits to two cases:

Case I Ratio: r = (s1 + s2)S/D
D = s2(s1 + s2) + s1S

Conditions: (A+: II) s1(s1+s2) ≥ s2S

Nonbasic dual vars: z0,z≤,1,z1,1

Jobs:

q1 = s2S/D

q2 = s1S/D

U.b. coefficients:

z1 = s2(s1+s2)/D

z1,2 = s1S/D

Case II Ratio: r = s1(s1 + s2)/D
D = s2

1 + s2
2

Conditions: (A-: I) s1(s1+s2) ≤ s2S

Nonbasic dual vars: z0,z≤,1,z1

Jobs:

q1 = s1s2/D

q2 = s2
1/D

U.b. coefficients:

z1,2 = s1S/D

z1,1 = z2,2 = s2(s1+s2)/D

Semi-online Preemptive Scheduling: Study of Special Cases 17

m = 4. Here we solve the linear program for n = 3. Note, that the competitive
ratio is the maximum of results of linear programs for all n < m.

Case I Ratio: r = (s1 + s2 + s3)S/D , D = (s2 + s3)(s1 + s2 + s3) + s1S
Conditions:

(A+: II,III) (s1+s2)(s1+s2+s3) ≥ (s2+s3)S

Nonbasic dual vars:

z0,z≤,2,z1,1,z1,2,z2,2,z2,3

Jobs:

q1 = q2 = (s2+s3)S/(2D)

q3 = s1S/D

U.b. coefficients:

z2 = s2(s1+s2+s3)/D

z1,3 = s1S/D

z1 = s3(s1+s2+s3)/D

Case II Ratio: r = (s1 + s2)(s1 + s2 + s3)S/D
D = (s2

1 + s2(s1 + s2 + s3))S + s3(s1 + s2)(s1 + s2 + s3)
Conditions: (implicit: F+)

(A-: I) (s1+s2)(s1+s2+s3) ≤ (s2+s3)S

(B+: III) s1s3 ≥ s2
2

(C+: IV,V) s1(s1+s2+s3) ≥ s3S

U.b. coefficients:

z1 = s3(s1+s2)(s1+s2+s3)/D

z1,2 = z3,3 = s2(s1+s2+s3)S/D

z1,3 = s2
1S/D

Jobs:

q1 = s3(s1+s2)S/D

q2 = s2(s1+s2)S/D

q3 = s1(s1+s2)S/D

Nonbasic dual vars: z0,z≤,1,z≤,2,z2,z1,1,z2,2

Case III Ratio: r = (s1 + s2)(s1 + s2 + s3)S/D
D = (s2

1 + s2(s1 + s2 + s3))S + s3(s1 + s2)(s1 + s2 + s3)
Conditions: (A-: I) (s1+s2)(s1+s2+s3) ≤ (s2+s3)S

(B-: II) s1s3 ≤ s2
2

(D+: VII) s1(s1+s2)(s1+s2+s3) ≥ s2(s2+s3)S

Jobs: q1 = s2(s2+s3)S/D

q2 = s1(s2+s3)S/D

q3 = s1(s1+s2)S/D

Nonbasic dual vars:

z0,z≤,1,z≤,2,z2,z1,1,z2,3

U.b. coefficients:

z1 = s3(s1+s2)(s1+s2+s3)/D

z1,2 = z3,3 = s2(s1+s2+s3)S/D

z1,3 = s2
1S/D

Case IV Ratio: r = (s1 + s2)2S/D
D = (s2

1 + s1s2 + s2
2)(S − s1) + (s1 + s2)(s1s2 + s1s3 + s2s3)

Conditions:

(implicit: A-,B+)

(C-: II)) s1(s1+s2+s3) ≤ s3S

(E-: V)) s3
1 ≤ s3(s1+s2)2

(F+: VI)) s1(s
2
1+s1s2+s2

2) ≥ s2
2S

Jobs: q1 = s1(s1+s2)2/D

q2 = s2(s1+s2)(S−s1)/D

q3 = s1(s1+s2)(S−s1)/D

Nonbasic dual vars:

z0,z≤,1,z≤,2,z2,z1,3,z2,2

U.b. coefficients:

z1 = (s3(s1+s2)2−s3
1)/D

z1,1 = z2,3 = s2
1S/D

z1,2 = z3,3 = s2(s1+s2)S/D

Case V Ratio: r = s1(s1 + s2)(s1 + s2 + s3)/D
D = s1(s1 + s2)(s1 + s2 + s3) − (s1 − s3)(s2

1 − s2s3)
Conditions:

(implicit: A-)

(B+: VII) s1s3 ≥ s2
2

(C-: II) s1(s1+s2+s3) ≤ s3S

(E+: IV,VI) s3
1 ≥ s3(s1+s2)

2

Jobs: q1 = s3s1(s1+s2)/D

q2 = s2s1(s1+s2)/D

q3 = s2
1(s1+s2)/D

Nonbasic dual vars:

z0,z≤,1,z≤,2,z1,z2,z2,2

U.b. coefficients:

z1,1 = z2,3 = s3(s1+s2)(s1+s2+s3)/D

z1,2 = z3,3 = s1s2(s1+s2+s3)/D

z1,3 = (s3
1−(s1+s2)2s3)/D

18 T. Ebenlendr

Case VI Ratio: r = s1(s2
1 + s1s2 + s2

2)/D , D = s3
1 + s2

2(s1 + s3)
Conditions: (implicit: A-,C-)

(B+: VII) s1s3 ≥ s2
2

(E-: V) s3
1 ≤ s3(s1+s2)

2

(F-: VI) s1(s2
1+s1s2+s2

2) ≤ s2
2S

Nonbasic dual vars:

z0,z≤,1,z≤,2,z1,z2,z1,3

Jobs:

q1 = s1s2
2/D

q2 = s2
1s2/D

q3 = s3
1/D

U.b. coefficients:

z1,1 = s3(s2
1+s1s2+s2

2)/D

z1,2 = s1(s2
1+s2

2−s3(s1+s2))/D

z2,2 = (s3(s1+s2)2−s3
1)/D

z2,3 = s1(s2
1−s2s3)/D

z3,3 = s2(s1s2+s1s3+s2s3)/D

Case VII Ratio: r = s1(s1 + s2)(s1 + s2 + s3)/D
D = s2

1(s1 + s2) + s2(s1 + s3)(s2 + s3)
Conditions:

(implicit: A-)

(B-: V,VI) s1s3 ≤ s2
2

(D-: III) s1(s1+s2)(s1+s2+s3) ≤ s2(s2+s3)S

U.b. coefficients: z1,1 = z2,2 = s3(s1+s2)(s1+s2+s3)/D

z1,2 = s1(s2−s3)(s1+s2+s3)/D

z1,3 = s1(s
2
1−s2s3)/D

z3,3 = s1(s1+s3)(s1+s2+s3)/D

Nonbasic dual vars:

z0,z≤,1,z≤,2,z1,z2,z2,3

Jobs:

q1 = s1s2(s2+s3)/D

q2 = s2
1(s2+s3)/D

q3 = s2
1(s1+s2)/D

5 Techniques for Solving the Parametrized LPs

The solutions above were obtained by search through a large number of possibil-
ities (104). This is impossible to do manually and thus we developed a method
how to filter out most of the invalid possibilities by a computer. Remaining num-
ber of possible solutions is small enough to be solved by a man. Mathematical
software Maple 9.5 was used, but any modern algebraical software should do the
task. The description of the method follows.

We use the notation {max cTx | Ax ≤ b} for the primal linear program,
and {minyT b | yTA = cT ,y ≥ 0} for the corresponding dual linear program.
W.l.o.g., the number of the primal variables (the dimension of x) is smaller than
or equal to the number of the dual variables (the dimension of y).

We use the duality of the linear programing [7], i.e., if there is an optimal
solution to the primal program, then there is a pair of the primal and the dual
basic solutions which are optimal. Then we use the dual complementary slack-
ness: the primal inequalities not satisfied by equality imply zero values of the
corresponding dual variables. We also use the fact it suffices to examine the
vertices of the polytope. We know that the result is bounded, because there is
universal upper bound on competitive ratio and the input sequence with at least
one nonzero job gives a positive lower bound. Thus we take the set of the dual
variables and we generate all subsets of cardinality equal to the dimension of
the linear program (which is the number of the primal variables for all linear
programs that we examine). We get all points of intersections of the conditions
this way. We call them the solution candidates. Then we have to find the points
that are feasible and optimal for some valid values of input parameters. From the
duality slackness conditions, there is one to one mapping between the solution
candidates of primal program and the solution candidates of the dual one.

Now we stick to one arbitrary fixed subset Y of the dual variables and we
describe how the computer helps us to examine the solution pair induced by this

Semi-online Preemptive Scheduling: Study of Special Cases 19

subset. Let Y be a square matrix with yi,i = 1 if i ∈ Y and yi,j = 0 otherwise.
Now we have the primal candidate solution satisfying system of equations Y Ax =
Y b and the candidate dual solution satisfying yTA = cT & yT (I − Y) = 0. I.e.,
we set a primal inequality to equality if it corresponds to some selected dual
variable. We set the not selected dual variables to zero and we change the dual
inequalities to equations. We solve these two sets of linear equations using Maple,
and then we examine this solution pair.

At first we try to filter out the infeasible solution pairs. So how is our domain of
feasibility defined? The primal solution is feasible when all inequalities (namely
the inequalities corresponding to the not selected dual variables) are satisfied.
The dual solution is feasible when all variables are nonnegative.

It may happen that either the primal or the dual candidate solution does not
exist, i.e., the system of equations has no solution. But we already know that
optimal competitive ratio is bounded, which contradicts feasibility of such a so-
lution pair, we eliminate it. The positive lower bound also contradicts feasibility
of the solution pair, which has zero value of the resulting competitive ratio.

Now we examine the domain of feasibility of both primal and dual candidate
solutions. We developed a heuristic that uses the inequalities between the pa-
rameters (i.e., the speeds of the machines, the inequalities are si ≥ si+1 and
si ≥ 0) and determines the validity of the given inequality. The outcome of this
heuristic is one of the three cases: (i) surely always valid, (ii) surely always in-
valid or (iii) there may be values of parameters for which is the inequality valid
and another values for which is the inequality invalid. Note that inequality that
is always valid or always invalid may be so complex that our heuristic evalu-
ates it as the third case. Our heuristic also uses the factorization of polynomials
to eliminate factors that are always positive or always negative. This decreases
the polynomial degree of the inequality. So our heuristic may return a simpler
inequality that is equivalent to the original one in the third case.

The feasibility domain is given as a set of inequalities. We use our heuristic
on them. If we find an inequality that is always invalid (i.e., for all valid values
of parameters), we eliminate such a solution pair for infeasibility. If we do not
eliminate the pair, we eliminate the inequalities that are surely always valid, and
we replace the inequalities with the simpler versions, if our heuristic finds some.
We try to further eliminate the solution pair for infeasibility, or to simplify the
inequalities defining the feasible region.

Now we are done with single inequalities. So we consider pairs of inequalities.
We already have the set of inequalities reduced only to inequalities that may
be invalid for some values of parameters. A pair of such inequalities may be
in contradiction, then the solution pair is infeasible. Or one inequality may be
implied by another one, then we reduce the set of inequalities defining the feasible
region. To test the contradiction or the implication, we simply try to add or
subtract the conditions, one of them possibly multiplied by a factor from some
small predefined set of factors. We test the result using our heuristic again.

After all these computations are done, there remain several solution pairs that
have to be eliminated by hand. There may be a condition too complex for our

20 T. Ebenlendr

heuristic, or there may be three or more conditions in contradiction. Also, our set
of factors for testing contradiction may not contain the factor needed to prove
the contradiction of the two conditions. Number of these solution pairs vary, but
in general there were fewer such solution pairs than the valid ones. The tools
that we developed for the automated part are also useful here.

At last, sometimes there are more solution pairs with the same competitive
ratio. Domains of feasibility of such pairs may overlap, and sometimes they do.
But in all the examined cases there was one or several non overlapping solution
pairs, that covered the whole domain of such a formula for the competitive ratio,
while the remaining pairs were superfluous. We finish our inspection of solutions
by finding which cases are neighbor by which inequality, thus it can be easily
verified (even without using the computer), that the feasibility domains cover
the set of all valid values of parameters (the speeds of machines).

Conclusions.We solve the special casesofm = 3 andm = 4 for theonline schedul-
ing and for semi-online scheduling with known sum of processing times. The online
scheduling on four machines was more demanding on the computer, as there was(
12
5

)
= 792basic solution candidates,allbut sixwere found infeasible automatically

by computer.Fourof the remaining sixgive the four casesof theoptimalcompetitive
ratio. On the other hand, the semi-online scheduling with known sum of processing
times for prefixes of three jobs (the hardest case when solving four machines), has
only

(
10
5

)
= 252 basic solution candidates, all but 20 were found infeasible, and the

remaining 20 cases had to be processed manually. Only seven of them are relevant
for the optimal competitive ratio. Solving these cases exactly is now possible only
using our method (or a similar one), because of the amount of mathematical (alge-
braic) operations that must be done to go through all the cases. Our method can
be further improved, but this will not improve our results dramatically, because of
the exponential case explosion. This work also shows that the complexity of exact
formulas of competitive ratio grows dramatically with the number of machines.

References

1. Du, D.: Optimal preemptive semi-online scheduling on two uniform processors. In-

form. Process. Lett. 92(5), 219–223 (2004)

2. Ebenlendr, T., Jawor, W., Sgall, J.: Preemptive online scheduling: Optimal algo-

rithms for all speeds. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168,

pp. 327–339. Springer, Heidelberg (2006)

3. Ebenlendr, T., Sgall, J.: Semi-Online Preemptive Scheduling: Online Algorithm for

All Variants. In: Proc. 26st Symp. on Theoretical Aspects of Comput. Sci. (STACS),

Dagstuhl Seminar Proceedings, vol. 9001, pp. 346–360, IBFI (2009)

4. Epstein, L., Favrholdt, L.M.: Optimal preemptive semi-online scheduling to mini-

mize makespan on two related machines. Oper. Res. Lett. 30, 269–275 (2002)

5. Horwath, E., Lam, E.C., Sethi, R.: A level algorithm for preemptive scheduling. J.

ACM 24, 32–43 (1977)

6. Jiang, Y., He, Y.: Optimal semi-online algorithms for preemptive scheduling problems

with inexact partial information. Theoret. Comput. Sci. 44(7-8), 571–590 (2007)

7. Vazirani, V.V.: Approximation algorithms. In: LP duality, ch. 12. Springer, Heidel-

berg (2001)

Fast Multi-objective Reschulding of Grid Jobs

by Heuristics and Evolution

Wilfried Jakob, Alexander Quinte, Karl-Uwe Stucky, and Wolfgang Süß

Karlsruhe Institute of Technology (KIT), Institute for Applied Computer Science,

P.O. Box 3640, 76021 Karlsruhe, Germany

{wilfried.jakob,alexander.quinte,uwe.stucky,wolfgang.suess}@kit.edu

Abstract. Scheduling of jobs to a computational grid is a permanent

process due to the dynamic nature of the grid and the frequent arrival of

new jobs. Thus, a permanent rescheduling of already planned and new

jobs must be performed. This paper will continue and extend previous

work, which focused on the tuning of our Global Optimising Resource

Broker and Allocator GORBA in a static planning environment. A for-

mal definition of the scheduling problem and a classification will be given.

New heuristics for rescheduling exploiting the “old plan” will be intro-

duced and it will be investigated how they contribute to the overall

planning process. Furthermore, the maximal possible load, which can be

handled within the given time frame of three minutes, will be examined

for a grid of growing size of up to 6000 grid jobs and 600 resources.

1 Introduction

A computational grid can be regarded a virtualised and distributed computing
centre [1]. Users describe their application jobs, consisting of one or more basic
grid jobs, by workflows, each of which may be regarded a directed acyclic graph
defining precedence rules between the grid jobs. The users state which resources
like software, data storage, or computing power are needed to fulfil their grid
jobs. Resources may need other ones. A software tool, for instance, may require
a certain operating system and appropriate computer hardware to run on. This
leads to the concept of co-allocation of resources. Furthermore, users will give due
dates, cost budgets and may express a preference for cheap or fast execution [2].
For planning, execution times of the grid jobs are needed. In case of entirely new
jobs, this can be done by estimations or by the use of prediction systems only.
Otherwise, values coming from experience can be used. The grid middleware is
expected to support this by providing runtimes and adding them to the workflow
for further usage. According to the policy of their owners, resources are offered
at different costs depending on e.g. day time or day of the week and their usage
may be restricted to certain times. In addition, heterogeneous resources usually
differ in performance as well as cost-performance ratios.

To fulfil the different needs of resource users and providers, the following
four objectives are considered: completion time and costs of each application
job measured as fulfilment of user-given limits and averaged, and to meet the

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 21–30, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

22 W. Jakob et al.

demands of resource providers, the total makespan of all application jobs and
the ratio of resource utilisation. Some of these criteria like costs and time are
obviously conflicting.

As grid jobs are assumed to require computing time in the magnitude of
several minutes at the minimum, a certain but limited time frame for planning
is available. A time limit of three minutes was regarded reasonable for planning.
All grid jobs, which will be started within this time slot according to the old
schedule, are regarded fixed jobs and will not become subject of rescheduling.

In section 2 a formal definition of the problem, a classification, and a com-
parison with other scheduling tasks will be given. Section 3 will describe the
used algorithms, especially the new heuristics, and give a summary of the work
carried out so far. The results of the experiments for assessing the effect of the
new rescheduling heuristics will be presented in section 4, which will also report
about first investigations regarding the maximum possible load for a grid, the
size of which is growing proportionally to the amount of grid jobs.

2 Problem Definition and Classification

A notation common to the scheduling literature [3,4] is used to facilitate com-
parisons with other scheduling problems. Given are a set M of resources, a set
J of application jobs, and a set O of grid jobs. The n grid jobs of application
job Ji are denoted Oi1, ..., Oin. The following functions are given:

– a precedence function p : O × O → {TRUE, FALSE} for the grid jobs
– an assignment function μ : O → P(P(M)) from grid jobs to resource sets.

P(M) is the power set of M . μij is the set of all possible combinations of
resources from M , which together are able to perform the grid job Oij

– a function t : O × P(M) → R, which gives for every grid job Oij the time
needed for the processing on a resource set Rij ∈ μij

– a cost function, c : R × P(M) → R, which gives for every time z ∈ R the
costs per time unit of the given resource set

Optimisation is done by choosing suitable start times s(Oij) ∈ R and resource
allocations Rij ∈ μij . A valid solution must meet the following two restrictions:

1. All grid jobs are planned and resources are allocated exclusively:

∀ Oij : ∃ s(Oij) ∈ R, Rij ∈ μij : ∀Mj ∈ Rij :

Mj is in [s(Oij); s(Oij) + t(Oij , Rij)] exclusively allocated by Oij .

2. Precedence relations are adhered to:

∀ i, j �= k : p(Oij , Oik) ⇒ s(Oik) ≥ s(Oij) + t(Oij , Rij)

A violation of the two following soft constraints is treated by penalty functions
in such a way that the amount of time and cost overruns is considered as well
as the number of application jobs affected.

Fast Multi-objective Reschulding of Grid Jobs by Heuristics and Evolution 23

1. All application jobs Ji have a cost limit ci, which must be observed:

∀ i : ci ≥
ni∑

j=1

s(Oij) + t(Oij ,Rij)∫
s(Oij)

c(z,Rij) dz

2. All application jobs Ji have due dates di, which must be adhered to:

∀ i : di ≥ s(Oin) + t(Oin, Rin) where Oin is the last grid job of Ji

The fitness calculation is based on the above-mentioned four objectives and an
auxiliary objective described in [2]. Lower and upper estimations for costs and
processing times are calculated in the first planning stage of GORBA described
in the next section. Except for the utilisation rate the relative value rvi of every
criterion i is calculated based on its actual value vi,act relative to these limits:

rvi =
vi,act − vi,min

vi,max − vi,min

This makes the single values rvi independent of the task on hand and results in
a percentage-like range. These values are weighted and summed up, which yields
the raw fitness. To avoid unwanted compensation effects the criteria are sorted
singly or in groups according to priorities. The criteria of the highest priority
always contribute to the sum, while the others are added if all criteria of the next
higher priority fulfil a given threshold value. Weights and priorities are based on
experience and aimed at a fair compromise between users and resource providers.
The tuning of the suggested adjustment is left to the system administrator. If
the two soft constraints are violated, the raw fitness is lowered to the end fitness
by a multiplication by the corresponding penalty function, each of which delivers
a factor between 0 and 1. Otherwise, end fitness and raw fitness are identical.

Generalising, this task contains the job shop scheduling problem as a special
case. The extensions are co-allocation of heterogeneous and alternative resources
of different performances and time-dependent availability and costs, earliest start
times and due dates, parallel execution of grid jobs, and more than one objective.
As our task includes the job shop problem, it is NP-complete. For this reason
and because of the three minutes runtime limit, approximated solutions can be
expected only.

A comparable problem could not be found in literature, see e.g. [3] and [4] for
a comprehensive presentation of scheduling problems. This corresponds to the
results of the literature review found in [5]. There, it is concluded that only few
publications deal with multiple objectives in scheduling and, if so, they mostly
deal with single machine problems. Within the grid domain some papers dealing
with multi-criteria recently were published. In [6] it is reported that most of them
deal with two criteria, like e.g. [7], and that in most cases only one criterion
is really optimised, while the other serves as a constraint, see e.g. [8,9]. The
approach from [9] uses matrix-like chromosomes, which is probably the reason
why they can handle about 30 jobs within one hour only. Kurowski et al. [10]

24 W. Jakob et al.

use a modified version of the weighted sum for a real multi-criteria optimisation,
but do not handle workflows. Summarising, we did not find a report about a
comparable amount of resources and grid job organised in workflows subject to
a global multi-criteria optimisation. Of course, a lot of publications focus on
partial aspects of this problem. For instance, the well-known Giffler-Thompson
algorithm [11,12] was extended to the given problem, but surprisingly produced
inferior results than our heuristics [2] described below.

3 Algorithms of GORBA and First Results

GORBA [2,13] uses advanced reservations and is based on Globus toolkit 4 at
present. It executes a two-stage planning process. In the first stage the data
of new application jobs are checked for plausibility and a set of heuristics is
applied that immediately delivers first estimations of costs and completion times.
These results are also used to seed the start population of the subsequent run
of the Evolutionary Algorithm (EA) GLEAM (Global Learning Evolutionary
Algorithm and Method) [14].

Firstly, the old heuristics used for the tuning of GORBA reported in [2,13]
are described, followed by the new ones for rescheduling. Firstly, a sequence of
grid jobs is produced by one of the following three heuristic precedence rules:

1. Shortest due time: jobs of the application job with the shortest due time first
2. Shortest grid job working time: grid jobs with the shortest working time first
3. Shortest working time of application job: grid jobs of the application job with

the shortest working time first

In the next step resources are allocated to the grid jobs using one of the following
three resource allocation strategies (RAS):

RAS-1: Use the fastest of the earliest available resources for all grid jobs
RAS-2: Use the cheapest of the earliest available resources for all grid jobs
RAS-3: Use RAS-1 or RAS-2 for all grid jobs of an application job according

to its time/cost preference

As every RAS is applied to each grid job sequence, nine schedules are generated.
The new heuristics use the grid job sequence of the old plan for grid jobs, which are
subject to rescheduling, i.e. all grid jobs which have not already been started or will
be started within the next three minutes. The new grid jobs are sorted according
to one of the three heuristic rules already mentioned and added to the sequence of
old jobs, yielding three different sequences. Resources are allocated using the three
RAS and again, nine more schedules are generated, but this time based on the old
plan. The best of these eighteen schedules is the result of the first planning stage,
while all are used to seed the subsequent EA run of the second stage.

The EA GLEAM already contains some genetic operators designed for com-
binatorial problems. They are summarised here only, due to the lack of space,
and the intereste reader is referred to [14]. A chromosome consists of a sequence
of segments, containing a sequence of genes, each of which represents a grid job.

Fast Multi-objective Reschulding of Grid Jobs by Heuristics and Evolution 25

The gene sequence determines the scheduling sequence described later. Apart
from the standard mutation, which changes the sequence of genes by simply
shifting one of them, GLEAM contains the movement of gene segments and the
inversion of their internal order. As segment boundaries can be changed by some
mutations, the segments form an evolvable meta structure over the chromosomes.
Segment boundaries are also used for the standard 1- and n-point crossover op-
erators, which include a genetic repair that ensures that every offspring does not
lack genes in the end. The evolvable segmentation and its associated operators
among others distinguish GLEAM from most standard EAs. Besides the grid
job genes, each chromosome contains a special additional gene for the selection
of the RAS. A schedule is constructed from the grid job genes in the sequence
of their position within the chromosome as follows:

Step 1: The earliest start time of a grid job is either the earliest start time of
its application job or the latest end time of its predecessors, if any.

Step 2: According to the RAS selected by the RAS gene, a list of alternatives
is produced for every primary resource.

Step 3: Beginning with the first resources of the lists, the duration of the job is
calculated and it is searched for a free time slot for the primary re-
source and its depending ones, beginning at the earliest start time of
step 1. If no suitable slot is found, the resources at the next position of
the lists are used.

Step 4: The resources found are allocated to the grid job.

In a first development phase of GORBA the incorporated algorithms were tested
and tuned using four different benchmark scenarios for planning an empty grid.
They reflect all combinations of small/large resource alternatives (sR, lR) and
small/large grid job dependencies (sD, lD) and, together with four different loads,
yielded a total of 16 benchmarks [15]. We use synthetic benchmarks because it
is easier to ensure and steer dissimilarities. This investigation is based on the
results reported in [2,13]: Beside the described coding we use phenotypic repair of
possible violations of precedence rules of the grid jobs and as additional crossover
operator the well-known OX operator reported by Davis [16].

4 Experimental Results for Fast Rescheduling

There are various reasons for rescheduling, of which the introduction of new
application jobs is the most likely one. Others are job cancellations or termi-
nations, new resources, resource breakdowns, or changes in the availability or
prices of resources. The experiments are based on the most likely scenario of
new application jobs and shall answer the following three questions:

1. Does rescheduling benefit from the old plan? If so, to which fraction of
finished and new grid jobs?

2. How effective are the old and new heuristics and the subsequent EA run?
3. Up to which amount of grid jobs and resources does the EA improve the

best heuristically generated schedule?

26 W. Jakob et al.

As the two benchmark scenarios based on large degrees of dependencies have
turned out to be harder than those using small degrees [2,13], they are used here
for the experiments. They are denoted sRlD and lRlD (small or large Resource
alternatives / large Dependencies). As pointed out in [2] and [13], their time and
cost limits were set so tightly that the heuristics could not solve them without
violating these soft constraints. One criterion of the usefulness of the EA run
was to find fitting schedules, which was achieved in most, but not all cases. In
addition to this criterion, the end fitness values obtained were also compared for
the new investigations.

For the experiments reported here, the only EA parameter tuned was the
population size varying from 90 to 900 for the runs investigating the first two
questions. For the last question, smaller populations also had to be used, as will
be described later on. For every benchmark setting and population size, 50 runs
were done and the results were averaged. Confidence intervals and t-tests were
used to check the significance of differences at a confidence range of 99%.

For the first two questions, the two basic benchmark scenarios were used for
the first planning, with 10 resources and application jobs consisting of 100 and
200 grid jobs, respectively. Eight rescheduling events were compared, which take
place when 10 or 20% of the grid jobs are finished and new application jobs with
10, 20, 30, or 50% grid jobs (relating to the original schedule size) are added.
This results in 32 benchmark settings. We concentrated on small amounts of
already processed grid jobs, because this is more likely in practice and gives a
chance for the old schedule to be useful. Otherwise, the situation is coming closer
to the already investigated “new planning” situation.

Fig. 1 compares the results for all 32 benchmark settings. It must be mentioned
that a certain variation in the resulting normalised fitness values is not relevant,

Fig. 1. Comparison of the fitness shares obtained from the basic heuristics (dark grey),

rescheduling heuristics (light grey) and GLEAM (white) for all 32 rescheduling settings.

X-axis: fraction of new grid jobs in percent relative to the original schedule size, y-axis:

normalised end fitness. Abbreviations: lv : limit violations (mostly 1 to 3 application

jobs violating the due date), for sRlD and lRlD see previous page.

Fast Multi-objective Reschulding of Grid Jobs by Heuristics and Evolution 27

Table 1. Comparison of the contributions of all rescheduling heuristics for different

fractions of finished and new grid jobs. The best values of each column are marked

dark grey, while values which reach 90% of the best at the minimum are marked light

grey. Abbreviations: SWT: shortest work time, RAS: see section 3.

Finished grid jobs: 10% 20% Ave-

New grid jobs: 10% 20% 30% 50% 10% 20% 30% 50% rage

shortest due time & RAS-3 0.90 0.96 0.88 0.92 0.86 0.83 0.89 0.92 0.90

shortest due time & RAS-2 0.70 0.44 0.73 0.80 0.64 0.59 0.75 0.61 0.66

shortest due time & RAS-1 0.48 0.44 0.54 0.45 0.59 0.22 0.53 0.45 0.46

SWT of grid job & RAS-3 0.97 0. 86 0.81 0.69 0.94 0.78 0.81 0.62 0.81

SWT of grid job & RAS-2 0.74 0.42 0.63 0.53 0.66 0.50 0.68 0.39 0.57

SWT of grid job & RAS-1 0.47 0.41 0.46 0.28 0.57 0.24 0.54 0.26 0.40

SWT of appl. job & RAS-3 0.90 0.88 0.82 0.70 0.86 0.83 0.77 0.70 0.81

SWT of appl. job & RAS-2 0.70 0.41 0.70 0.56 0.64 0.51 0.57 0.46 0.57

SWT of appl. job & RAS-1 0.48 0.44 0.57 0.31 0.59 0.24 0.49 0.43 0.44

as the benchmarks are generated with some stochastic variations. Values between
50 and 70 may be considered good results. All GLEAM runs improve the fitness
significantly. Even for the smallest improvement of benchmark lRlD, 100 grid
jobs, 10% fin. jobs, the best heuristic fitness is clearly below the confidence
interval of the EA result. The most important outcome is that for 10% new grid
jobs, all eight scenarios perform well. The contribution of the heuristics is clearly
situation-dependent and if they yield poor results, GLEAM compensates this in
most cases. In other words, if the heuristics can solve the problem well, there
is smaller room left for an improvement at all. Another nice result is that this
compensation is also done to a certain extent for more new grid jobs, even if
the schedules cannot be made free of limit violations. It can be expected that
more new grid jobs will lower the contribution of the replanning heuristics and,
in fact, this is confirmed by Fig. 1 for the instance of 50% new grid jobs. The
case of lRlD, 200, and 10% finished grid jobs is somewhat exceptional, as the
replanning heuristics do not work well even in the case of few new jobs.

Table 1 illustrates the contribution of each rescheduling heuristic. For each
of the 32 benchmark settings, the fitness of each heuristic is calculated relative
to the best heuristic result for this setting. The four values for both grid job
amounts for sRlD and lRlD are averaged and shown in the table. The right
column again averages the values for the different finished and new grid job
fractions. The old heuristics based on short working times in the lower part of
the table show the same poor behaviour as for planning an empty grid [2], but
when taken as a basis for the new rescheduling heuristics, they contribute quite
well. According to the table, RAS-3 performs best, but the raw material not
shown here has thirteen cases, in which the two other RAS are the best ones.
Thus, it is meaningful to use them all.

To investigate the third question, the rescheduling scenario with 10% finished
and 10% new grid jobs is used with proportionally growing numbers for grid jobs
and resources for the two basic benchmarks sRlD and lRlD. The comparison is

28 W. Jakob et al.

Fig. 2. Success rate and EA improvement compared to the best heuristic at increasing

load for both basic benchmark scenarios and 10% finished and new grid jobs

based on the fitness improvement obtained by the EA compared to the best
heuristic result and on the success rate, which is the ratio between violation-free
and total runs per benchmark setting. Fig. 2 shows the results. As expected,
success rate and EA improvement decrease with growing load. The relatively
large variations of the EA improvement can be explained by the varying abil-
ity of the heuristics to produce schedules with more or less limit violations. As
limit violations are penalised severely, a small difference already can produce a
relatively large fitness alteration. No violations at all leave little room for im-
provements like in the two cases here marked by a white triangle or rectangle.
The sRlD benchmark is harder to get violation-free, as shown by Fig. 2. This
cannot be achieved in case of more than 500 grid jobs and 50 resources. If more
resource alternatives are available, as it is the case for the lRlD benchmark,
schedules free of limit violations can be achieved more easily and, in fact, this
can be observed for up to 800 grid jobs and 80 resources. For greater loads up
to 1600 grid jobs and 160 resources, there still is a chance of the schedules being
free of violations. Starting from this load, the improvement rate is decreasing
constantly. It may therefore be concluded that even for large loads like 6000
grid jobs and 600 resources, the EA delivers improvements below the level of
schedules observing the limits completely. In other words, the amount of ap-
plication jobs keeping the budgets is still increased compared to the heuristic
results.

The more grid jobs must be planned, the less evaluations can be processed
within the three minutes time frame. Fig. 3 shows that this amount decreases
continuously with growing load. The more resource alternatives are available,
the more must be checked by the RAS, which lasts longer and explains the lower
numbers for the lRlD case. In the long run, the evaluations possible decrease to
such an extent that the population size must be reduced to 20 or 30 to obtain
two dozens of generations at least in the end. It is obvious that with such small

Fast Multi-objective Reschulding of Grid Jobs by Heuristics and Evolution 29

Fig. 3. Evaluations possible within the three minutes time frame at increasing load.

For a better visibility, the diagram for 2400 and more grid jobs is shown separately.

numbers, only poor results can be expected and it is encouraging that even with
the largest load there still is a small improvement. Hence, a faster implementation
of the evaluation software will enlarge the possible load or deliver better results
for the loads investigated.

5 Conclusion and Future Work

It was shown that the problem of scheduling grid jobs to resources based on
realistic assumptions and taking the demands of resource users and providers
into account is a much more complex task than just job shop scheduling. The
task on hand enlarges the classical problem by alternative and heterogeneous
resources, co-allocation, and last, but not least by multi-objective optimisation.
The latter makes it hard to define a local searcher, as it is hard to decide whether
a small local change of e.g. a job sequence is an improvement or not without
setting up the complete allocation matrix. Consequently, we have not yet found
a useful local searcher up to now. The investigated problems are rescheduling
problems, which are the common case in grid resource management. Reschedul-
ing is necessary, if new jobs arrive, planned ones are cancelled, resources break
down or new ones are introduced, to mention only the more likely events. For
this purpose, new heuristics that exploit the information contained in the “old
plan” were introduced. It was shown that the solution for the common case of
smaller changes, i.e. in the range of up to 20% finished and new grid jobs, could
be improved significantly. The processible work load was also investigated for
10% finished and new grid jobs at an increasing number of jobs and resources.
It was found that for loads of up to 6000 grid jobs and 600 resources, it was still
possible to gain an improvement by the EA run within the given time frame of
three minutes runtime.

30 W. Jakob et al.

References

1. Foster, I., Kesselman, C.: The Anatomy of the Grid: Enabling Scalable Virtual

Organisations. Int. J. of Supercomputer Applications 15(3), 200–222 (2001)

2. Jakob, W., Quinte, A., Stucky, K.-U., Süß, W.: Fast Multi-objective Scheduling

of Jobs to Constrained Resources Using a Hybrid Evolutionary Algorithm. In:

Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008.

LNCS, vol. 5199, pp. 1031–1040. Springer, Heidelberg (2008)

3. Brucker, P.: Scheduling Algorithms. Springer, Heidelberg (2004)

4. Brucker, P.: Complex Scheduling. Springer, Heidelberg (2006)

5. Setamaa-Karkkainen, A., Miettinen, K., Vuori, J.: Best Compromise Solution for

a New Multiobjective Scheduling Problem. Comp. & OR 33(8), 2353–2368 (2006)

6. Wieczorek, M., Hoheisel, A., Prodan, R.: Taxonomy of the Multi-criteria Grid

Workflow Scheduling Problem. In: Talia, D., et al. (eds.) Grid Middleware and

Services - Challenges and Solutions, pp. 237–264. Springer, New York (2008)

7. Dutot, P.F., Eyraud, L., Mouni, G., Trystram, D.: Bi-criteria Algorithm for

Scheduling Jobs on Cluster Platforms. In: Symp. on Par. Alg. and Arch., pp. 125–

132 (2004)

8. Tsiakkouri, E., Sakellariou, S., Dikaiakos, M.D.: Scheduling Workflows with Budget

Constraints. In: Gorlatch, S., Danelutto, M. (eds.) Conf. Proc. CoreGRID Work-

shop Integrated Research in Grid Computing, pp. 347–357 (2005)

9. Yu, J., Buyya, R.: A Budget Constrained Scheduling of Workflow Applications on

Utility Grids using Genetic Algorithms. In: Conf. Proc. HPDC 2006. IEEE CS

Press, Los Alamitos (2006)

10. Kurowski, K., Nabrzyski, J., Oleksiak, A., Weglarz, J.: Scheduling Jobs on the Grid

- Multicriteria Approach. In: Computational Methods in Science and Technology,

vol. 12(2), pp. 123–138. Scientific Publishers OWN, Poland (2006)

11. Giffler, B., Thompson, G.L.: Algorithms for Solving Production Scheduling Prob-

lems. Operations Research 8, 487–503 (1960)

12. Neumann, K., Morlock, M.: Operations Research. Carl Hanser, Mnchen (2002)

13. Jakob, W., Quinte, A., Süß, W., Stucky, K.-U.: Tackling the Grid Job Planning

and Resource Allocation Problem Using a Hybrid Evolutionary Algorithm. In:

Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2007.

LNCS, vol. 4967, pp. 589–599. Springer, Heidelberg (2008)

14. Blume, C., Jakob, W.: GLEAM – An Evolutionary Algorithm for Planning and

Control Based on Evolution Strategy. In: Cantú-Paz, E. (ed.) GECCO 2002,

vol. LBP, pp. 31–38 (2002)

15. Süß, W., Quinte, A., Jakob, W., Stucky, K.-U.: Construction of Benchmarks for

Comparison of Grid Resource Planning Algorithms. In: Filipe, J., et al. (eds.) Conf.

Proc. ICSOFT 2007, vol. PL, pp. 80–87 (2007)

16. Davis, L. (ed.): Handbook of Genetic Algorithms. V.N. Reinhold, New York (1991)

Comparison of Program Task Scheduling
Algorithms for Dynamic SMP Clusters

with Communication on the Fly

Łukasz Maśko1, Marek Tudruj1,2,
Gregory Mounie3, and Denis Trystram3

1 Institute of Computer Science of the Polish Academy of Sciences
ul. Ordona 21, 01–237 Warsaw, Poland

2 Polish–Japanese Institute of Information Technology
ul. Koszykowa 86, 02–008 Warsaw, Poland

3 Laboratoire Informatique et Distribution – IMAG
51 rue J. Kuntzman, 38330 Montbonot St. Martin, France

{masko,tudruj}@ipipan.waw.pl, {mounie,trystram}@imag.fr

Abstract. The paper presents comparison of the two scheduling algo-
rithms developed for program structurization for execution in dynamic
SMP clusters implemented in Systems on Chip (SoC) technology. SoC
modules are built of a set of processors, memory modules and a multi–
bus interconnection network. A set of such SoCs is interconnected by
a global communication network. Inter–processor communication inside
SoC modules uses a novel technique of data transfers on the fly. The algo-
rithms present two different scheduling approaches. The first uses ETF–
based genetically supported list scheduling heuristics to map nodes of a
program to processors. The second is a clustering–based algorithm using
Moldable Tasks (MT) to structure the graph. Both algorithms structure
computations and local data transfers to introduce processor switching
and data transfers on the fly. The algorithms were tested using a set of
automatically generated parameterized program graphs. The results were
compared to results obtained using a classic ETF–based list scheduling
without data transmissions on the fly.

1 Introduction

The paper presents research results on scheduling for a new type of clustered
SMP system [8]. This system is built of shared memory multiprocessor (SMP)
modules implemented in a System on Chip (SoC) technology [4] connected via
a global network. Each SoC module consists of a set of processors and shared
memory modules, interconnected via a multi–bus local network. Processors are
connected to a number of local memory busses and may be dynamically switched
between them in runtime to form processor clusters. The local interconnection
network provides data reads on the fly, which reduces the number of reads of the
same data from shared memory to processor data caches for many processors
connected to the same local memory module.

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 31–41, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

32 Ł. Maśko et al.

Program scheduling for parallel systems in a general case is an NP–complete
problem. In the assumed architecture, apart from standard scheduling problems
such as mapping of nodes to processors and data transfers to communication
resources, one must also consider multi–level communication methods (trans-
ferring data in processor data caches between nodes, standard and on the fly
data transfers via local memory buses and communication through a global in-
terconnection network) and constraints on processor data caches. The paper
presents experimental results with scheduling parameterized program graphs in
the described architecture using two algorithms specially designed for such sys-
tem. First of them is a 2-phase algorithm, based on list mapping. Its first phase
considers mapping of tasks to processors located in different SoC modules and
uses a genetic algorithm supported by a list scheduling with a modified ETF
heuristics. The second phase transforms and schedules computations and com-
munications to use processor switching and read on the fly facilities inside SoC
modules. The second studied algorithm implements a clustering approach based
on the notion of Moldable Tasks (MT), which are parallel tasks that contain
some parallelism and may be executed on a different number of processors [3].
The program graph is first converted int MT–graph by dividing it into subgraphs
of a special form, constituting MTs. Each MT is then scheduled for a range of
numbers of processors, depending on the size of the SoC module in the target
system. This scheduling includes introduction of reads on the fly and processor
switchings to the MT graph. Finally, each task is alloted a number of processors
and the whole MT graph is scheduled in the target system.

The paper cosists of 3 parts: first, the assumed system architecture is out-
lined. Then the scheduling algorithms are described. Finally, the experiments
and comparison of the results obtained using the presented algorithms and a
standard list scheduling algorithm with the ETF heuristics are presented.

2 Dynamic SMP Clusters Based on SoC Technology

Fig. 1a presents the general structure of the proposed system. Its basic elements
are processors P and memory modules M. Fig. 1b presents the general structure
of a sub-system that uses a local data exchange network to connect processors
with memory modules. It includes a number of processors, a set of instruction
memory modules, a set of data memory modules, a set of separate data and
instruction caches and a set of local cluster networks to which processors (i.e.
their data caches) can be connected. Each processor is equipped with many
data cache modules, which provide multi-ported access to/from memory mod-
ules. Therefore, a processor can belong to many clusters at a time. This feature
strongly improves data communication efficiency. All memory modules are also
connected to the external peer to peer Global Network. Such structure can be
implemented as a VLSI SoC module. A number of such modules can be con-
nected via a global network such as memory bus or a crossbar switch. Special
inter-processor synchronization hardware has to be included in the system to
enable parallel execution of many synchronization operations for the program.

Comparison of Program Task Scheduling Algorithms 33

a) b)

Fig. 1. General system structure a) and architecture of a single SoC module b)

To control communication in clusters: data pre-fetch, write, read on the fly and
processor switching between clusters can be used. Reads on the fly are similar to
cache injection. They consist in reading data on the fly from a memory module
bus whose address lines are snooped by a special address snooping unit. Read on
the fly requests are stored in the address snooping tables. Exact synchronization
of a process that writes with reading ones is necessary. Requests such as memory
write or read requests and synchronized on the fly read requests are serviced
in processors by Communication Request Controllers (CRCs). Each memory
module has an arbiter, which co-ordinates memory requests issued by CRCs.
Processor switching between clusters consists in connecting a processor to a new
cluster (i.e. its local network). A processor switched to a cluster can bring in its
cache data, which are useful for the cluster. Other processors in this cluster can
read data on the fly, when the switched processor writes then to the memory.

Tasks in programs are built in such way, that they do not require data cache
reloading during their execution. All data have to be pre-fetched to processor
data cache before a task begins. Current task results are sent to the cluster
memory module only after task completes. This program execution paradigm,
called cache–controlled macro data–flow principle, completely prevents data
cache thrashing. The single assignment rule is used to avoid cache consistency
problem in a case, when data produced by a task are to be modified by other
parallel tasks.

More details on the architecture of the system can be found in [8].

3 Scheduling Algorithms

Program graph scheduling for the presented architecture deals with the following
problems:

– Mapping of computing nodes of a program graph to processors in the exec-
utive system. It also includes mapping of processors to SoC modules.

34 Ł. Maśko et al.

– Mapping of data transfers to busses and memory modules in the system.
Some of data transfers may already have these factors determined (if the
communicating processors are mapped to different SoC modules, the read
operation must use the global bus). For local data transfers this may include
addition of processor switching between local busses to adjust connection
configuration to local program needs.

– Analysis of local communication and its transformation to data transfers on
the fly, wherever it is profitable.

– Analysis of processor data caches and transformation of a graph to such
form, which obeys this constraint.

Optimization of data communication between data caches and memory modules
has strong influence on the execution time of the scheduled programs. The pro-
posed program transformations can be applied in a various order, giving various
algorithms of a different quality. Also, for each of the above aspects, a different
internal strategy may be used. The paper discusses two different approaches to
program scheduling described in two consecutive sections of the paper.

3.1 2–Phase List–Based Scheduling Algorithm

The first presented algorithm takes advantage of a list scheduling method, adapt-
ing it to a situation, where a set of available processors is divided into subsets
and communication between two processors may vary, depending on their place-
ment [9]. The proposed algorithm consists of the two steps.

Distribution of program nodes between processors. At the beginning, all
the computation nodes of the initial program graph must be distributed among
all the processors in the system. In this step a standard macro dataflow notation
of the program is used, in which program graph nodes correspond to computa-
tions and edges correspond to communications. The mapping is performed using
a list scheduling algorithm with an ETF heuristics modified in such a way, that
it respects the division of a set of all processors in the system to SoC modules.
Processors are interconnected via a full network, in which the links between pro-
cessors from the same SoC module are fast (local communication), while links
between different SoCs are slow (global communication). Therefore, the global
communications are penalized — their execution time is multiplied by the factor
equal to the parameter global_penalty. The higher the value of this parameter,
the more likely the nodes would be mapped to the processors in the same SoC
module, even if it means their sequential execution. In this way, it is possible to
optimally map communication–isolated subgraphs of the program graph, which
should not be asigned to processors from different SoC modules.

A mapping routine is provided with the mapping vector V = (a1, . . . , aMN),
0 ≤ ai < M , where N is the number of processors in a SoC module and M is the
number of SoC modules in the system. For each i, values in such a vector mean
that a logical processor i is mapped to a SoC module ai. The mapping is valid
iff the the size of a SoC module is equal to N . To find the best mapping, the

Comparison of Program Task Scheduling Algorithms 35

optimal mapping vector V must be provided. This vector depends on a scheduled
graph and its calculation requires theknowledge about the mapping algorithm.
Therefore, in a general case, all the possible vectors should be examined to find
the best one. For a given number M of SoC modules and N processors in a
module, the number of all the possible mapping vectors equals (MN)!

M !N !M . This
number grows rapidly as the number of SoC modules or processors per module
increases. Therefore the heuristic search algorithm must be used. To determine
the best mapping vector, we use a genetic algorithm. Each chromosome defines
one mapping vector (corresponds to one processor distribution scheme). It is
a sequence of MN integers (a1 . . . aMN), where ai denotes the SoC module to
which processor i is mapped. According to such placement, for every pair of
processors i and j, if ai �= aj all communication between these processors is done
through the global interconnection network. If ai = aj , then communications
between these processors use local communication networks, which implies, that
in the future they can be executed using data transfers on the fly.

For each chromosome, the scheduled program graph is mapped to proces-
sors using a list scheduling algorithm with ETF heuristics adopted to obey
the constraints derived from the mapping chromosome. The value of a fitness
function Fit for a chromosome C depends on the execution time of nodes
in so scheduled program graph and is determined by the following formula:
Fit(C) = const−

∑
v∈E end(v)

|E| , where G is the graph scheduled according to the
mapping given by a chromosome C, E is the set of nodes in G, which have no
successors, end(v) is the completion time of the node v and const is a constant,
such that Fit(C) > 0 for every possible C. The presented fitness function pro-
motes such chromosomes (from the ones which give the same graph execution
time), which are partially correct. It means, that some parts of the graph are
mapped optimally, while others may be not. The crossover and mutation opera-
tors consist in remapping random processors from one SoC module to another.
If it is necessary, a chromosome is fixed by redistribution of processors from the
SoC modules, which are too big, among other SoC modules according to the
Best Fit rule to preserve as many processors as possible in the same module.

Structuring a mapped program graph. The main goal of the second phase
is communication structuring. It aims at transforming local data transfers to
reads on the fly. It includes conversion of kinds of nodes (standard reads to read
on the fly), adding extra nodes to the graph (barriers, processor switchings). This
process is iterative and based on local subgraphs corresponding to a communi-
cation schemes such as broadcasts, reductions or a butterflys (many–to–many
communication), called basic structures [5]. Such transformations introduce syn-
chronization, which is necessary for proper execution of data reads on the fly.
Barriers impose delays in program execution or may lead to deadlocks. There-
fore, in some cases it is necessary to exclude some nodes from a transformation.
The nodes from the graph G are chosen according to times determined during
simulated execution.

Finally, the graph is tuned to include the last constraint — the size of the
processor data caches. The nodes are examined in the order determined by a

36 Ł. Maśko et al.

simulated execution of the graph. The algorithm calculates the data cache occu-
pancy for each processor. If in any time point the required cache size exceeds the
available cache capacity, the conflict is resolved so as to preserve the cache–driven
macro dataflow program execution principle. Program graph transformations are
automatically introduced which introduce additional steering edges, writes from
processor data caches to a shared memory and reloading of this data back to
processor data caches, when it is required.

3.2 MT–Based Scheduling Algorithm

The second discussed algorithm [6] works in three phases. First, the clustering
is used to divide a graph to subgraphs, constituting Moldable Tasks. Then, each
subgraph is analyzed separately. It is scheduled for a number of processors, using
a list scheduling principles similar to the scheduling in the first algorithm. Then,
for each MT, a number of processors is alloted and all the MTs are asssigned to
processors in a target system.

A program graph is divided into subgraphs (G′) of a limited size, which con-
stitute Moldable Tasks created according to the following rules:

– For each node v ∈ G′, if G′ contains any direct predecessor u of v, it contains
all direct predecessors of v.

– For each node u ∈ G′, if G′ contains any direct successor v of u, it contains
all direct successors of u.

– For each pair of nodes u, v ∈ G′, if there exists a path between u and v in
the graph, all the nodes on this path belong to G′.

The division is performed using clustering with a criterion based on a critical
path CP (i.e. the heaviest path) of the graph. In every step, one edge from the
current CP graph is selected. Then, the algorithm tries to merge the two MTs,
which are connected with the selected edge. The merge operation includes graph
closure operation, that follows the rules described above. If the newly created
graph is not too big, it is accepted, otherwise it is rejected. The procedure
continues until there are no unexamined edges (when all the edges on the CP
are examined, also others are taken into account).

Each MT subgraph is then structured for a number of processors, from 1 to
the number of processors in the SoC module. The structuring is performed in a
similar way to the one in the previous algorithm (the nodes are mapped to the
processors using a standard list scheduling, then communication and processors
caches utilization is examined). Each execution time is remembered.

In the final step, each MT is alloted a number of processors, on which it will
be executed and the tasks are assigned to processors in a target system. This
process starts with a set of free MTs, i.e. the ones that have no predecessors in
the MT–graph. They are communication–independent which means, that they
may be executed in any order. For this set, each combination of possible allot-
ment (assignment of the number of processors to a task) is examined and for
each such allotment they are scheduled in a target system. Execution time of

Comparison of Program Task Scheduling Algorithms 37

each task depends on the number of alloted processors and is equal to the time
determined in the previous step. The best allotment is chosen. After these tasks
are examined, their successors constitute a set of tasks without uncompleted
predecessors. Therefore the processors may be alloted to them in the same way
as to their predecessors. This process is iterated, until there are no unvisited
tasks. As a result, the program graph is structured and scheduled.

4 Experimental Results

As a testbed, a set of automatically generated semi–regular program graphs was
used. The graphs consisted of 4 communication-intensive subgraphs executed
in parallel. Each subgraph contained 7 layers of nodes, 3 to 4 nodes (randomly
chosen) in each layer, so they had width equal to 16. The communication inside
a subgraph took place only between consecutive layers. Additional rare random
communication between the subgraphs can was introduced (examined 0 and 25
such communication edges per graph). The whole randomly generated exemplary
graph is presented in Fig. 2. The communication–intensive elementary subgraphs
are denoted by ovals. The bold edges represent additional inter–subgraph com-
munication. Such graphs represent a higher level of difficulty then majority of
graphs for real algorithms (usually regular).

All the computing nodes had the same weights (equal to 100). In the exper-
iments we have assumed the following variable parameters: the input degree of
graph nodes (two variants: 1–2, 3–4), the weight of communication edges (data
volume: 25, 50, 100), the number of SoC modules and processors in the system
(1 to 4 SoC modules, up to 16 processors in total). The system contained twice
as many shared memory modules and local busses as the number of processors.
The size of processor data cache depended on the scheduled program graph and
was the same for each tested hardware configuration. For a given graph, the pro-
cessor data cache volume was set to twice the maximal data size required by any
of graph nodes. A set of graphs generated using these rules was automatically
scheduled using the implementation of the presented algorithms. We have also
examined a variant of these algorithms, when reads on the fly were not intro-

Fig. 2. A structure of an exemplary program graph

38 Ł. Maśko et al.

Fig. 3. Comparison of speedups obtained using the standard ETF scheduling, 2-phase
with reads on the fly and MT-based with reads on the fly algorithms

duced to the program graph, to check the influence of reads on the fly on the
execution time of graphs. The last scheduling algorithm (for comparison) was a
classical list scheduling with the ETF heuristics, without application of reads on
the fly, but with processor switching (due to mapping of transmissions to mem-
ory busses in a multi-bus SoC network). All the experiments were performed
using a cycle–acurate software simulator written in C++.

There were 6 parallel configurations tested: 1 SoC module with 4 processors
(1x4), 1 SoC module with 8 processors (1x8), 2 SoC modules with 4 processors
each (2x4), 1 SoC modules with 16 processors (1x16), 2 SoC modules with 8
processors each (2x8) and 4 SoC modules with 4 processors in each (4x4). We
have also evaluated the execution time of each graph on a single processor. Se-
quential execution obeyed the same constraints as the parallel one, including
limited processor data cache size. For each configuration, the communication–
to–computation speed ratio was set to 4. It meant that execution of a com-
munication node with a given weight lasted 4 times longer then execution of a
computation node with the same weight. The size of processor data cache for
each simulated graph was set to twice the the largest requirement of a node
in a graph (which is enough to execute a single thread without unnecessary
data reloads and with some additional space for data transfers in processor data
cache) and was the same for each hardware configuration, including sequential
execution.

Fig. 3 presents the speedups obtained using a standard ETF-based list schedul-
ing algorithm (ETF) compared to results obtained with presented algorithms.
The 2-phase scheduling algorithm (2F) gives a bit worse results than the MT-
based algorithm (MT). It is caused by the different approach to scheduling of by
both algorithms. Like each list scheduling, the 2-phase algorithm prefers map-
ping parallel nodes to separate processors (if the communication doesn’t disturb)
rather than placing them on the same processor. If the width of the graph ex-
ceeds the number of available processors, nodes from different (potentially not
related) parts of the graph are mixed on the same processor, reducing usage
of data transfers through processor’s data cache. MT-based scheduling algo-

Comparison of Program Task Scheduling Algorithms 39

rithm allows placing of parallel nodes on the same processor, but such nodes
are selected from the same subgraphs of the scheduled graph. It increases the
probability, that more data can be transferred via processor’s data cache, im-
proving execution time.

For configurations with 4 and 8 processors, the results obtained with a clas-
sic ETF-based algorithm were similar to the results of the 2–phase algorithm
and both give worse results then the MT–based algorithm. This is due to the
fact, that the serialization, which is necessary in this case, strongly decreases
the posibility of using reads on the fly. The superlinear speedups obtained for
graphs scheduled with the MT-based algorithm are caused by better utilization
of processor data caches, which is not disturbed by threads belonging to different,
not related parts of the graph. In configurations with the number of processors
equal to the width of a graph, we may observe, that both proposed algorithms
outperform the standard ETF-based scheduling. The results obtained with the
MT and 2-phase algorithms were even 2.4 (1.9) times better. The decrease of
performance in the case of 16 processors divided to 2 and 4 SoC modules (2x8,
4x4), regardless the algorithm, is caused by the global communication implied
by the system structure composed of many SoC modules.

The graphs presented in Fig. 4 show the influence of reads on the fly on
speedups obtained by both presented algorithms. When the number of processors
is small, each computing unit must execute nodes from more than 1 parallel
thread. This increases requirements on the size of processor data caches and
forces the processor to send some data to shared memory before read on the
fly transmission can take place. It makes such transmissions hardly possible or
not optimal, therefore their presence has small influence on program execution
time. Reads on the fly have a very impressive influence on execution speedups,
when the executive system is equipped with the number of processors equal
to the width of a scheduled graph (16 processors). In this case, each processor
executes the nodes only from one thread, therefore the requirements on the size
of processor data caches are weaker. In such situation there is no harmfull data
cache reloading. Therefore data transmissions on the fly are much more effective

a) b)

Fig. 4. Influence of reads on the fly (OTF) on speedups obtained using 2-phase (a)
and MT-based (b) algorithms

40 Ł. Maśko et al.

in this case. The speedups due to reads on the fly reached 50% for 2-phase
algorithm in a 1x16 configuration and over 43% for MT-based algorithm in 2x8
configuration. When the system is built of more than 1 SoC module (2x8, 4x4),
the results obtained by our algorithms without reads on the fly are still better
than the speedups for standard ETF-based list scheduling algorithm.

5 Conclusions

The paper describes two new algorithms for scheduling parallel programs for SoC
dynamic SMP clusters with communication on the fly. The first uses list schedul-
ing for mapping nodes to processors. Then it analyzes and transforms commu-
nication between processors, obeying processor cache size constraint. The sec-
ond algorithm uses clustering to divide a graph to subgraphs (Moldable Tasks).
Then, each subgraph is analyzed separately. It is scheduled for a number of pro-
cessors, using a list scheduling similar to the scheduling in the first algorithm.
Then, for each MT, a number of processors is alloted. Finally, all the MTs are
asssigned to processors in a target system. The two algorithms are based on dif-
ferent assumptions, therefore they produce solutions of a different quality. The
experimental results show, that they produce good results. They outperform a
classic list scheduling algorithm with ETF heuristics, even when no reads on the
fly are used. The results prove, that the algorithms are able to utilize all the
features of the presented architecture, including reads on the fly and processor
switching.

References

1. Hwang, J.-J., Chow, Y.-C., Anger, F.D., Lee, C.-Y.: Scheduling precedence graphs
in systems with interprocessor communication times. SIAM Journal on Comput-
ing 18(2) (1989)

2. Leung, J.Y.-T., Anderson, J.H.: Handbook of scheduling. In: Algorithms, Models
and Performance Analysis. Chapman and Hall, Boca Raton (2004)

3. Lepere, R., Trystram, D., Woeginger, G.J.: Approximation algorithms for scheduling
malleable tasks under precedence constraints. In: 9th Annual European Symposium
on Algorithms, LNCS. Springer, Heidelberg (2001)

4. Benini, L., De Micheli, G.: Networks on Chips: A New SoC Paradigm. IEEE Com-
puting, 70–78 (Janyary 2002)

5. Maśko, Ł.: Atomic operations for task scheduling for systems based on communica-
tion on–the–fly between SMP clusters. In: 2nd International Symposium on Parallel
and Distributed Computing, ISPDC 2003, Ljubljana, Slovenia. IEEE CS Press, Los
Alamitos (2003)

6. Maśko, Ł., Dutot, P.–F., Mounié, G., Trystram, D., Tudruj, M.: Scheduling Mold-
able Tasks for Dynamic SMP Clusters in SoC Technology. In: Wyrzykowski, R.,
Dongarra, J., Meyer, N., Waśniewski, J. (eds.) PPAM 2005. LNCS, vol. 3911, pp.
879–887. Springer, Heidelberg (2006)

Comparison of Program Task Scheduling Algorithms 41

7. Tchernykh, A., et al.: Two Level Job–Scheduling Strategies for a Computational
Grid. In: Wyrzykowski, R., Dongarra, J., Meyer, N., Waśniewski, J. (eds.) PPAM
2005. LNCS, vol. 3911, pp. 774–781. Springer, Heidelberg (2006)

8. Tudruj, M., Maśko, Ł.: Parallel Matrix Multiplication Based on Dynamic SMP
Clusters in SoC Technology. In: Thulasiraman, P., He, X., Xu, T.L., Denko, M.K.,
Thulasiram, R.K., Yang, L.T., et al. (eds.) ISPA Workshops 2007. LNCS, vol. 4743,
pp. 375–385. Springer, Heidelberg (2007)

9. Maśko, Ł., Tudruj, M.: Task Scheduling for SoC-Based Dynamic SMP Clusters with
Communication on the Fly. In: Proceedings of the ISPDC 2008 Conference, Kraków,
Poland. IEEE CS Press, Los Alamitos (2008)

Study on GEO Metaheuristic for Solving

Multiprocessor Scheduling Problem

Piotr Switalski1 and Franciszek Seredynski2,3

1 University of Podlasie, Computer Science Department,

3 Maja 54, 08-110 Siedlce, Poland

peter@ii.ap.siedlce.pl
2 Polish-Japanese Institute of Information Technology,

Koszykowa 86, 02-008 Warsaw, Poland
3 Institute of Computer Science, Polish Academy of Sciences,

Ordona 21, 01-237 Warsaw, Poland

sered@ipipan.waw.pl

Abstract. We propose a solution of the multiprocessor scheduling prob-

lem based on applying a relatively new metaheuristic called Generalized

Extremal Optimization (GEO). GEO is inspired by a simple coevolution-

ary model known as Bak-Sneppen model. The model describes an ecosys-

tem consisting of N species. Evolution in this model is driven by a process

in which the weakest species in the ecosystem, together with its nearest

neighbors is always forced to mutate. This process shows characteristic

of a phenomenon called a punctuated equilibrium which is observed in

evolutionary biology. We interpret the multiprocessor scheduling prob-

lem in terms of the Bak-Sneppen model and apply the GEO algorithm to

solve the problem. We compare GEO algorithm with well-known Simu-

lated Annealing (SA) algorithm. Both algorithms have some similarities

which are considered in this paper. Experimental results show that GEO

despite of its simplicity outperforms SA algorithm in all range of the

scheduling instances.

1 Introduction

Presently there exist many optimization problems in science and engineering
[12] which are difficult to solve. These problems are often NP-complete prob-
lems [6], for which no efficient solutions have been found. NP-complete problems
can be only solved approximately by existing techniques like randomization,
parametrization or using heuristics (metaheuristics). Most methods based on
local search algorithms applied to solve such complex problems, characterized
often by multiple local optima, converge usually to local minima [5].

A more general approach is to use a global search algorithm. In this case, we
can find a global optimum, but it requires a higher cost, e.g., computational time
for solving optimization problems. One of the classes of the global optimization
algorithms particularly worth considering are nature-inspired algorithms based
on natural phenomena. These algorithms are based on observation of natural

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 42–51, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Study on GEO Metaheuristic for Solving Multiprocessor Scheduling Problem 43

processes which are frequently self-optimized. The most commonly used algo-
rithms of this class are Genetic Algorithms (GA) [7], Simulated Annealing [9],
Particle Swarm Optimization algorithm [8], and Artificial Immune Systems [4].
Many of them have been recently applied to solve different variants of schedul-
ing problem in the context of multiprocessor systems, cluster systems or grid
computing (see, e.g., [15, 17, 2, 18]).

The multiprocessor task scheduling problem considered in the paper is one of
NP-complete problems. The problem is a key factor for a parallel multiprocessor
system to gain better performance. The objective of scheduling is usually to
minimize the completion time of a parallel application consisted of a number of
tasks executed in a parallel system [10]. In this problem the parallel application
is represented by a Directed Acyclic Graph (DAG). Tasks of the application must
be allocated into a multiprocessor system and a schedule of their execution in the
system minimizing the completion time should be found. An optimal solution
of the problem is difficult to find because of NP-hard nature of the problem.
As mentioned above, different metaheuristics have been applied to solve the
problem, however, the performance of these algorithms is still an open research
problem and is the subject of current intensive study.

In this paper, we propose a relatively new metaheuristic called GEO [14] to
solve the scheduling problem. Results of the experimental study show that the
algorithm is very efficient in solving the problem and provides better results than
SA, either for deterministic or random instances of the scheduling problem.

The paper is organized as follows. In the next section, we describe the multi-
processor scheduling problem. Section 3 presents the concept of GEO algorithm
and its application for the scheduling problem. In Section 4 we present SA-
based scheduling algorithm. Next, in Section 5 we show experimental results and
compare GEO with SA algorithm. The last section contains conclusions.

2 Multiprocessor Scheduling

The multiprocessor scheduling problem is defined as follows (see, e.g.,[13]). A
multiprocessor system is represented by an undirected unweighted graph Gs =
(Vs, Es), called a system graph. Vs is the set of Ns nodes of the system graph rep-
resenting processors with their local memories of a parallel computer of MIMD
architecture. Es is the set of edges representing bidirectional channels between
processors and defines a topology of the multiprocessor system. Fig. 1a shows
an example of a system graph representing a multiprocessor system consisting of
two-processors P0 and P1. It is assumed that all processors have the same com-
putational power and communication via links does not consume any processor
time.

A parallel program is represented by a weighted directed acyclic graph Gp =
(Vp, Ep), called a precedence task graph or a program graph. Vp is the set of Np

nodes of the graph representing elementary tasks, which are indivisible compu-
tational units. There exists a precedence constraint relation between the tasks k
and l in the precedence task graph if the output produced by task k has to be

44 P. Switalski and F. Seredynski

(a) (b)

Fig. 1. Examples of the program and the system graphs: the graph of two-processor

system in FULL2 architecture (a), an example of a program graph (b)

communicated to the task l. A program graph has two attributes: weights bk and
weights akl. Weights bk of the nodes describe the processing time (computational
cost) needed to execute a given task on any processor of a given multiproces-
sor system. Ep is the set of edges of the precedence task graph describing the
communication pattern between the tasks. Weights akl of the edges describe
communication time (communication cost) between pairs of tasks k and l when
they are located in the neighboring processors. If the tasks k and l are located in
the same processor, then the communication delay between them will be equal
to 0. In the other case, the communication cost is proportional to the shortest
distance between the processors i and j and it is equal to akl ∗ hopsij , where
hopsij is a number of direct links of the shortest path in Gs between nodes
(processors) i and j. Fig. 1b shows an example of the program graph consisting
of four tasks with their order numbers from 0 to 3. All communication costs of
the program graph are equal to 1 (see marked edges). Computational costs of
tasks (marked on their left side) are 1, 2, 4, and 2, respectively. The purpose of
scheduling is to distribute the tasks among the processors in such a way that
the precedence constraints are preserved, and the response time T is minimized.

3 The Generalized Extremal Optimization Algorithm

3.1 Bak-Sneppen Model and Its Representation in Scheduling
Problem

The idea of this algorithm is based on the Bak-Sneppen model [1]. Evolution in
this model is driven by a process in which the weakest species in the population,
together with its nearest neighbors, is always forced to mutate. The dynamics of
this extremal process show characteristics of Self-Organized Criticality (SOC),
such as punctuated equilibrium, that are also observed in natural ecosystems.
Punctuated equilibrium is a theory known in evolutionary biology. It states that
in evolution there are periods of stability punctuated by a change in an envi-
ronment that forces relatively rapid adaptation by generating avalanches, large
catastrophic events that effect the entire system. The probability distribution of
these avalanches is described by a power law in the form

pi = k−τ
i , (1)

Study on GEO Metaheuristic for Solving Multiprocessor Scheduling Problem 45

(a) (b)

Fig. 2. Population of species in the Bak-Sneppen model and its correspondence in the

GEO algorithm (a). Representation of the program graph and the system graph in

Bak-Sneppen model (b).

where pi is a probability of mutation of the i-th bit (species), k is a position
of the i-th bit (species) in the ranking, τ is a positive parameter. If τ → 0,
the algorithm performs a random search, while if τ → ∞, then the algorithm
provides deterministic searching. Bak and Sneppen developed a simplified model
of an ecosystem in which N species are placed side by side on a line. Fig. 2
shows the population of species in the Bak-Sneppen model and the idea of GEO
algorithm [14]. In the GEO approach, a population of species is a string of
bits that encodes the design variables of the optimization problem, and each
bit corresponds to one species. In Fig. 2 a two variable function F (x1, x2) is
optimized. Each variable is coded using seven bits, and the whole string - a
potential solution of the problem consists of 14 bits (upper part of Fig. 2(a)).
Each bit of the string is considered as the species (lower part of Fig. 2(a)) of the
Bak-Sneppen model. The number of bits per variable depends on the type of
the problem. The population of the GEO algorithm to solve the multiprocessor
scheduling problem contains a one n-bits string:

n = Np ∗ log2Ns, (2)

where:
Np - a number of tasks in a program graph, Ns - a number of processors.

Fig. 2(b) (upper part) presents an example of the GEO string for the task graph
scheduled into the multiprocessor system consisting of 8 processors. Groups of
bits of the string represent processors to which corresponding tasks were allo-
cated. One can see that, for example, the task 0 is allocated to processor 6, and
task 3 to processor 5. The whole string consists of n = 4 ∗ log28 = 12 bits. Fig.
2(b) (lower part) shows a relation between coding used in the GEO to solve the
scheduling problem and Bak-Sneppen model.

46 P. Switalski and F. Seredynski

3.2 The GEO Algorithm

In this algorithm each bit (species) is forced to mutate with a probability pro-
portional to its fitness. The fitness is a value associated with a given combination
of bits of the GEO string, related to a problem presented in this study. Change
of a single bit of the string results in changing its fitness and indicates the level
of adaptability of each bit in the string. The fitness can increase or decrease
if a bit is mutated (flipped). After performing a single changing of the string
bits and calculating corresponding values of fitness function we can create the
sorted ranking of bits by its fitness. From this moment on, the probability of
mutation pi of each i-th bit placed in the ranking can be calculated by Equation
1 described above. According to [14] the GEO algorithm can be described as
follows:

1. Initialize randomly a binary string of length L that encodes N design vari-
ables of bit length equal to L/N .

2. For the current configuration C of bits, calculate the objective function value
V and set Cbest = C and Vbest = V .

3. For each bit i do the following,
(a) flip the bit (from 0 to 1, or from 1 to 0) and calculate the objective

function value Vi of the string configuration Ci,
(b) set the bit fitness Fi as (Vi −R), where R is a constant. It serves only as

a reference number and can assume any value. The bit fitness indicates
the relative gain (or loss) that one has in mutating the bit.

(c) return the bit to its original value.
4. Rank the N bits according to their fitness values, from k = 1 for the least

adapted bit to k = N for the best adapted. In a minimization problem
higher values of Fi will have higher ranking, and vice versa for maximization
problems. If two or more bits have the same fitness, rank them in random
order, but follow the general ranking rule.

5. Choose with an equal probability a bit i to mutate according to the probabil-
ity distribution pi = k−τ , where τ is an adjustable parameter. This process
called a generation is continued until some bit is mutated.

6. Set C = Ci and V = Vi.
7. If Fi < Fbest (Fi > Fbest, for a maximization problem) then set Fbest = Fi

and Cbest = Ci.
8. Repeat steps 3 to 7 until a given stopping criterion is reached.
9. Return Cbest and Fbest.

4 The Simulated Annealing Algorithm

SA algorithm developed by Kirkpatrick [9] has been applied to solve a wide
range of NP-hard optimization problems. Its basic idea comes from physics. In
the SA method, each point S of the search space is analogous to a state of some
physical system, and the function C(S) to be minimized is analogous to the
internal energy of the system in that state. The goal is to bring the system, from

Study on GEO Metaheuristic for Solving Multiprocessor Scheduling Problem 47

an arbitrary initial state, to a state with the minimum possible energy. At each
step of the simulation, a new state S′ of the system is generated from the current
state S by giving a controlled acceptance/rejection rule with probability pSA:

pSA(S ⇒ S′) =
{

1, forC(S′) < C(S)
exp(−ΔE/k ∗ TEMP) in the other case, (3)

where E is the energy, TEMP is the temperature, and k is Boltzmann’s constant.
ΔE is described as C(S′) − C(S). This rule was proposed by Metropolis et al.
and called Metropolis Transition [11]. We repeat each step with a slow decrease
of temperature until the stop criterion is satisfied. Algorithm can be described
by a pseudocode presented in Fig. 3. On the beginning we generate randomly
an initial state S (solution of the problem) and estimate an initial temperature
TINIT . At the next step we generate a new state S′ from state S. If objective
function C(S′) is less than C(S) then we accept a new solution S′. In the other
case a new solution is accepted only with probability PSA. We repeat this step in
N iterations. After that the temperature TEMP is decreased by a small value.
The simplest and most common temperature decrement rule is:

TEMPi+1 = c ∗ TEMPi, (4)

where c is a cooling constant close to, but smaller than 1. The algorithm stops
when some specified stopping criterion is met e.g., when no improvement has
been found for some number of moves.

GEO algorithm has some similarities to this algorithm. In GEO fitness of
each bit Fi is determined by loss or gain when bit i is changed. In SA the loss
or gain determines ΔE. In the next step of these algorithms a new solution is
accepted with specified probability depends on actual temperature TEMP and
ΔE (SA algorithm), τ parameter and actual position of the bit k in the rank
(GEO algorithm). In the SA algorithm the solution is also represented by a one
string of bits, thus we use consistently the same coding of solution used by GEO.

start with an initial state S

set TEMP:=T_INIT (initial temperature)

set i:=0

repeat {

set i:=i+1

for j:=1 to N (predetermined constant) do {

choose a neighbour state S’ from S

set DELTA:=C(S’)-C(S)

if (DELTA<0) or (random(0,1) < exp(-DELTA/TEMP))

set S:=S’

}

TEMP:=c*TEMP (temperature reduction)

} until TEMP<LOW or END_TEST

Fig. 3. Pseudocode of the Simulated Annealing algorithm

48 P. Switalski and F. Seredynski

5 Experimental Results

A number of experiments with deterministic program graphs known in the lit-
erature and random program graphs (see, e.g., [13]) have been conducted. The
results were compared with those obtained with use of SA.

The probability pi has significant influence on the convergence of GEO al-
gorithm. A value of this probability depends intimately on the position of a
mutated bit in the rank and the parameter τ . This parameter controls a range
of potential bits to be mutated. Our previous work (see, [16]) was oriented on
defining the right value of τ . For small program graphs (less than 100 tasks)
only for τ = 1.25 the algorithm provides an optimal solution. For a big program
graphs (more than 100 tasks) as the optimal value of τ we assumed 1.75.

In the original form of the GEO algorithm only one bit is mutated in each
generation. For small problems, where the string is short the mutation should be
sufficient. Along with growing size of the population of bits, a mutation of one
bit per generation can be not efficient. In [16] we can observed that for a bigger
population (more than 200 species) mutation not a single bit, but mutation of
three bits gives optimal results.

Calculation of the fitness function T is the main source of the time complex-
ity of the considered algorithms. The complexity of an algorithm expressed by
a number of the fitness function calculations depends not only on a number
of tasks, but also on its topology and a relation between communication and
computational costs in a given program graph. We assumed an equal number of
evaluations of the fitness function for both algorithms. A number of evaluations
is in range NE ∈ {10000..500000}. We repeated each experiment 20 times.

In GEO, we used the following parameters in the experiments: τ ∈{1.25..1.75},
a number of mutated bits Nb ∈ {1..3}. For SA, we set a number of iterations
N ∈ {50..150}, initial temperature TINIT ∈ {30..100}, cooling constraint c =
0.98−0.99. At first, we conducted an experiment with use a two processor system
(system graph: FULL2, random program graph: g100 10). In Fig. 4 we show
a typical run of GEO algorithm (a) and SA algorithm (b). One can see that

 180

 200

 220

 240

 260

 280

100 200 300 400 500

re
sp

on
se

 ti
m

e
T

a number of evaluations of fitness function (x1000)

Random program graph g100_10; two processors in FULL2

V
V_best

(a)

 180

 200

 220

 240

 260

 280

100 200 300 400 500

re
sp

on
se

 ti
m

e
T

a number of evaluations of fitness function (x1000)

Random program graph g100_10; two processors in FULL2

V
V_best

(b)

Fig. 4. Typical run of GEO (a) and SA (b) algorithm for the program graph g100 10

and the system graph FULL2. The experiment was conducted with equal number of

NE = 500000 evaluations of fitness function.

Study on GEO Metaheuristic for Solving Multiprocessor Scheduling Problem 49

SA indicates that the temperature TEMP has significant impact on obtained
results. On the first phase of the algorithm temperature is high, so the best result
is highly diversified (for NE < 100000). After reduces the temperature TEMP
the best result found by the algorithm is steadying. In the opposite to SA, GEO
algorithm is finding the solution consistently and constantly. Simultaneously
GEO obtains considerably better result than SA.

After that, we conduct regular experiments with use more than two processor
system graphs (Ns = 4 and Ns = 8 processors). In this variant we are faced with
the major problem - the length of population grows rapidly with a number of
processors m. If we consider the program graph consisting of 406 tasks (g400 5)
in the four processor system, the size of the population is equal to 406 * 2 =
812 (2 bits for coding of the four processors in a binary form). Table 5 presents
results for the 4 and 8 processor systems. We analyzed difficult examples of
program graphs: one deterministic graph gauss18 and wide range of random
graphs. As the first graph we used gauss18. For this experiment we assumed
NE = 10000. Because of small graph for GEO we set τ = 1.25 and Nb = 1.
The optimal response time T for four and eight processors is 44. GEO found the
optimal solution. SA was noticeably worse. Afterwards we used random graphs
(g25, g100, g200 and g400). For these graphs we assumed NE = 500000. These
graphs are the most difficult instances of the problem for both algorithms. The
experiments are summed up in Tab. 5. We conducted series of the experiments
to find an optimal number Nb of bits to mutate and τ parameter. Table 5 shows
optimal parameters: τ and Nb found for GEO algorithm for each the program

Table 1. The results of the algorithms: GEO and SA for random program graphs in

the scheduling problem for Ns = 4 and Ns = 8 processors. The best response time T
and the average of T (in rounded brackets) values on the base of 20 times. The best

known results are in bold.

Ns = 4 Ns = 8

Program
graph

GEO SA GEO SA

τ (Nb) T (Tavg) T (Tavg) τ (Nb) T (Tavg) T (Tavg)

gauss18 1.25 (1) 44(45) 49(51) 1.25 (1) 44(47) 51(58)

g25 1 1.75 (1) 305(312) 334(342) 1.75 (2) 289(291) 304(309)

g25 5 1.75 (1) 96(97) 100(106) 1.75 (1) 96(102) 110(117)

g25 10 1.75 (1) 62(67) 95(103) 1.75 (2) 62(71) 112(119)

g100 1 1.75 (1) 775(787) 878(895) 1.75 (1) 582(591) 685(698)

g100 5 1.75 (3) 367(375) 415(426) 1.75 (3) 375(382) 412(413)

g100 10 1.75 (3) 170(174) 206(209) 1.75 (3) 184(192) 208(209)

g200 1 1.75 (1) 1543(1549) 1732(1755) 1.75 (3) 1059(1073) 1275(1293)

g200 5 1.75 (3) 451(457) 499(504) 1.75 (3) 422(426) 451(456)

g200 10 1.75 (3) 476(481) 506(510) 1.75 (3) 469(474) 486(488)

g400 1 1.75 (2) 3276(3286) 3605(3627) 1.75 (3) 2015(2035) 2398(2445)

g400 5 1.75 (3) 916(925) 1003(1008) 1.75 (3) 810(820) 869(877)

g400 10 1.75 (3) 506(508) 535(536) 1.75 (3) 481(486) 500(502)

50 P. Switalski and F. Seredynski

graph and the system graph. Program graphs (g25 1, g100 1, g200 1 and g400 1)
required small changes, so the parameter Nb has value 1 or 2. Only for more
complicated cases the value of this parameter is equal to 3. For other examples
of these graphs Nb must be increased to 3. τ parameter has persistent value 1.75.
Only for small graph gauss18 this parameter is set to 1.25.

As we can notice, GEO can find appreciably better outcomes than SA. The dif-
ferences are especially visible for graphs g100, g200 and g400. Explanation of these
results are consequence of behavior GEO and SA algorithms. GEO finding the so-
lution by calculating fitness function for each bit from population and accepting
population for which mutation of bit gave the best result. In SA we calculate fit-
ness function only once for a current state S in a given iteration of the algorithm.
In the next state S′ there is a solution which no guarantees that will be better.
In each step of GEO algorithm we can affirm that next solution will be better.
Both algorithms measure lose or gain of the solution, but SA does it for following
states which are generated randomly or by change a bit the previous state. In SA
only Metropolis Transition control the converge of the algorithm. On the other
side this method do not let to stop algorithm in local minimum. GEO finding a so-
lution more consequently by precisely valuation of the bits of the population and
choosing the most suitable population in the current step of the algorithm.

6 Conclusions

In this paper we have proposed a relatively new metaheuristic called GEO to solve
the multiprocessor scheduling problem. It is based on the Bak-Sneppen model
describing dynamics of ecosystems as the set of extremal processes known as Self-
OrganizedCriticality.Applying theGEOalgorithmto the task scheduling problem
has confirmed that this algorithm is useful for scheduling problem. Simplicity of the
GEOalgorithm is one of its advantages. The performance of the algorithmdepends
in fact only on two parameters: the value τ and the number of mutated bits. These
values were established experimentally for the scheduling problem.

We compared the results obtained by GEO with ones obtained by SA. In
experiments deterministic and random program graphs were used. The results of
the experiments show advantages of GEO over these well known metaheuristics.
For simple program graphs all algorithms found optimal solutions, but even
in this case GEO shows better average performance. SA seems to be similar
for GEO. However, this algorithm cannot find satisfactory solutions for more
complex program graphs due to mentioned disadvantages of SA.

References

[1] Bak, P., Sneppen, K.: Punctuated equilibrium and criticality in a simple model

of evolution. Phys. Rev. Lett. 71, 4083–4086 (1993)

[2] Beham, A., Winkler, S., Wagner, S., Affenzeller, M.: Distributed, Heterogeneous

Resource Management Using Artificial Immune Systems. In: Proc. of the 22nd

IEEE International Parallel & Distributed Processing Symposiumm, NIDISC

Workshop (2008)

Study on GEO Metaheuristic for Solving Multiprocessor Scheduling Problem 51

[3] Bollobas, B.: Random Graphs, pp. 34–42. Academic Press, New York (1985)

[4] Dasgupta, D.: Artificial Immune Systems and Their Applications. Springer, Berlin

(1999)

[5] Eldred, M.S.: Optimization Strategies for Complex Engineering Applications. San-

dia Technical Report SAND98-0340 (1998)

[6] Garey, M.P., Johnson, D.S.: Computers and intractability - a guide to NP-

completeness. W.H. Freeman and Company, San Francisco (1979)

[7] Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-

ing. Addison-Wesley, Reading (1989)

[8] Kennedy, J.: Swarm Intelligence. In: Zomaya, A.Y. (ed.) Handbook of Nature-

Inspired and Innovative Computing, pp. 187–219. Springer, Heidelberg (2006)

[9] Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simulated Annealing,

vol. 220(4598), pp. 671–680. ACM, New York (1983)

[10] Kwok, Y., Ahmad, I.: Static Scheduling Algorithms for Allocating Directed Task

Graphs to Multiprocessors. ACM Computing Surveys 31(4), 406–471 (1999)

[11] Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.:

Equation of State Calculations by Fast Computing Machines. Journal of Chemical

Physics 21(6), 1087–1092 (1953)

[12] Pardalos, P.M., Romeijn, H.E.: Handbook of Global Optimization, vol. 2.

Springer, Heidelberg (2002)

[13] Seredynski, F., Zomaya, A.Y.: Sequential and Parallel Cellular Automata-Based

Scheduling Algorithms. IEEE Trans. on Parallel Distributed Systems 13(10),

1009–1023 (2002)

[14] Sousa, F.L., Ramos, F.M., Galski, R.L., Muraoka, I.: Generalized Extremal Op-

timization: A New Meta-heuristic Inspired by a Model of Natural Evolution. In:

Recent Developments in Biologically Inspired Computing, pp. 41–60 (2004)

[15] Swiecicka, A., Seredynski, F., Zomaya, A.Y.: Multiprocessor Scheduling and

Rescheduling with use of Cellular Automata and Artificial Immune System Sup-

port. IEEE Trans. on Parallel Distributed Systems 17(3), 253–262 (2006)

[16] Switalski, P., Seredynski, F.: Generalized Extremal Optimization for Solving Mul-

tiprocessor Task Scheduling Problem. In: Li, X., Kirley, M., Zhang, M., Green, D.,

Ciesielski, V., Abbass, H.A., Michalewicz, Z., Hendtlass, T., Deb, K., Tan, K.C.,

Branke, J., Shi, Y. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 161–169. Springer,

Heidelberg (2008)

[17] Wilson, L.A.: Distributed, Heterogeneous Resource Management Using Artificial

Immune Systems. In: Proc. of the 22nd IEEE International Parallel & Distributed

Processing Symposium, NIDISC Workshop (2008)

[18] Xhafa, F., Alba, E., Dorronsoro, B.: Efficient Batch Job Scheduling in Grids using

Cellular Memetic Algorithms. In: Proc. of the 22nd IEEE International Parallel

& Distributed Processing Symposium, NIDISC Workshop (2007)

Online Scheduling of Parallel Jobs on

Hypercubes: Maximizing the Throughput

Ondřej Za j́ıček1, Jǐŕı Sgall2, and Tomáš Ebenlendr1

1 Institute of Mathematics, AS CR, Žitná 25, CZ-11567 Praha 1, Czech Republic
2 Dept. of Applied Mathematics, Faculty of Mathematics and Physics, Charles

University, Malostranské náměst́ı 25, CZ-11800 Praha 1, Czech Republic

Abstract. We study the online problem of scheduling unit-time parallel

jobs on hypercubes. A parallel job has to be scheduled between its release

time and deadline on a subcube of processors. The objective is to max-

imize the number of early jobs. We provide a 1.6-competitive algorithm

for the problem and prove that no deterministic algorithm is better than

1.4-competitive.

1 Introduction

We consider scheduling of parallel jobs on hypercubes with the objective to
maximize the number of jobs completed before their deadline. We focus on the
case where all processing times are equal to 1. In this case, each job is specified
by an integral release time and deadline, and the number of processors it needs,
which is required to be a power of two, to respect the hypercube topology.

In the online setting, the jobs arrive over time: Each job arrives at its release
time; at this time its complete specification is released. At each time step we
need to choose a subset of available jobs that are scheduled. Available jobs are
those that are already released, not yet scheduled, and with a deadline strictly
larger than the current time. The total number of processors required by the
chosen jobs needs to be at most the size of the hypercube.

The hypercube topology restricts the actual assignment of parallel jobs: The
processors are organized as a hypercube and each job has to be scheduled on
a subcube of the hypercube. However, since we consider only jobs with unit
processing times, this restriction is equivalent to the constraint that job sizes as
well as the total number of processors are powers of two. Once the total processor
requirement is at most the number of processors, we can always assign the chosen
jobs to subcubes in a greedy manner from the largest job to the smallest one.

Our results. We present a 1.6-competitive algorithm for this problem. In two
special cases we show that the algorithm is 1.5-competitive. The first special case
excludes jobs that require the whole hypercube. The second special case is that of
tall/small jobs, where each job may require either the whole hypercube or a single
processor. We show that the analysis of this algorithm is tight. Our algorithm is
memoryless, i.e., its action at each time depends only on the currently available
jobs.

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 52–61, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Online Scheduling of Parallel Jobs on Hypercubes 53

We prove that no deterministic algorithm is better than 1.4-competitive. This
is true even on a machine with two processors, which is a subcase of the tall/small
special case.

Related results. If we restrict ourselves to sequential jobs (i.e., jobs requiring a
single processor), the problem is trivial. The natural algorithm always schedules
the jobs with the smallest deadlines (among the available jobs). A standard
exchange argument shows that this is an optimal schedule. Once parallel jobs are
introduced, this no longer works. We need to find a rule to choose, for example,
between urgent parallel jobs and sequential jobs with large deadlines.

A simple approach to similar problems is the greedy algorithm. This works
even if we allow both parallel jobs and weights. In each time step, we schedule
a set of jobs with maximal total weight from the available jobs. A standard
charging argument shows that this algorithm is 2-competitive. For each job in
the optimal schedule, charge its weight to the timeslot in the online schedule
where it is scheduled; if it is not scheduled, charge it to the same timeslot. To
each timeslot in the online schedule, we charge at most twice the total weight
of the jobs scheduled by the online algorithm: First, we may charge each job
to itself. Second, we charge the jobs scheduled by the optimum at the same
time, but not scheduled by the online algorithm; these jobs are available, thus
their total weight is at most the weight of the jobs scheduled greedily. Summing
over all the timeslots, 2-competitiveness follows. Improving the competitive ratio
below 2 for this general problem is a challenging open problem.

The complexity of the offline problem is not known. Typically, parallel schedul-
ing problems are NP-hard because they include some partitioning problem. Ei-
ther partitioning the processors among the jobs, or partitioning the jobs into
groups with the same total processing time. The hypercube constraint and the
restriction to unit processing times make these packing problems trivial.

Nevertheless, polynomial algorithms are known only for a couple of special
cases. One can maximize the number of completed jobs if all the release times
are equal, see [3]. This was generalized to the case of nested intervals given by
the release times and the deadlines, see [4].

For general release times and deadlines, the only positive result exists for the
tall/small case studied in [1], see also [2] for an alternative proof; however, this
gives only an algorithm for testing if all jobs can be completed. The throughput
maximization is open even for the case of two processors, which is a special case
of the tall/small case.

Preliminaries. The problem has a parameter m giving the number of machines.
An instance of the problem consists of a set of n jobs. Each job J has an integral
release time rJ , an integral deadline dJ and a size sJ (the number of requested
processors). The numbers m and sJ are powers of two. As all times are integers
and jobs’ processing times are equal to one, instead of time we can consider
timeslots (aligned unit-time intervals) and every job requests one timeslot.

We say that job J is feasible at timeslot T if rJ ≤ T and T < dJ . We say
that job J is available at timeslot T if it is feasible and not scheduled yet. We
say that job J is urgent at timeslot T if dJ = T + 1. A schedule assigns to each

54 O. Zaj́ıček, J. Sgall, and T. Ebenlendr

processed job J find a timeslot T such that J is feasible at T , and sJ processors,
so that no processor is assigned to two jobs at the same time. The objective is
to find a schedule maximizing the number of processed jobs.

In the online variant of the problem, at the timeslot T , we get a knowledge
of all jobs J with rJ = T and we have to decide which jobs start to process at
timeslot T .

We consider a variant of the generalized problem where all jobs have unit
processing time (pJ = 1) and their release times and deadlines are integers. We
also restrict the size sJ of jobs and the number of processors m to be a power
of two. As mentioned in the introduction, this is equivalent to the requirement
that each job is scheduled on a subcube of the hypercube with m processors.

We fix an ordering ≺ on jobs that is a strict linear ordering based on the order-
ing of deadlines, in a case of equal deadlines it is defined arbitrarily. For example,
we take an ordering defined by formula Ji ≺ Jj ⇔ di < dj∨(di = dj ∧ i < j). We
suppose, w.l.o.g., that any algorithm chooses the ≺-minimal job from available
jobs of the same size when it needs to choose one job of that size.

We use ALG to denote the analyzed algorithm and OPT to denote an optimal
offline algorithm. Jobs of size m are called max-jobs, smaller jobs are called non-
max jobs. Jobs of size 2i are called i-jobs (where i is some number).

2 Algorithm

We want an algorithm that chooses from possible schedules according to these
four rules, in the order of importance, because such rules lead to invariants used
in the proof of the competitive ratio:

1. Prefer more smaller jobs over one bigger job.
2. Prefer an urgent job over a non-urgent job.
3. Prefer a bigger job over a smaller job.
4. Prefer ≺-minimal jobs among the jobs of the same size.

It is easy to convert these rules to a memoryless algorithm that (for each timeslot)
examines a set of currently available jobs and chooses its maximal schedulable
subset (a set such that the sum of the sizes of its members is less than or equal to
m) satisfying these rules (e.g., if there is a non-urgent job in the chosen subset,
then there is no urgent job of the same or smaller size outside of the chosen
subset). The chosen subset will be scheduled in that timeslot.

Lemma 1. The competitive ratio of the algorithm is at least 1.6.

Proof. We construct an instance on four machines. (For more machines, it can
be easily scaled up.) One 1-job X with deadline 3 and one 2-job A with deadline
5 are released at time 1. The algorithm chooses job A at time 1 (by rule 3).
Consequently, two 1-jobs Y and Z with deadline 3 and four 0-jobs B, C, D, E
with deadline 4 are released at time 2 and the algorithm chooses four 0-jobs (by
rule 1) and loses all three 1-jobs (X , Y , Z). OPT schedules all jobs: three 1-jobs
in the first two timeslots, four 0-jobs in timeslot 3 and the remaining 2-job in
timeslot 4. The proof is summed up in Figure 1. ��

Online Scheduling of Parallel Jobs on Hypercubes 55

X

A

B C D E

Y Z

ALG A B C D E

OPT X Y Z B C D E A

Fig. 1. The proof of the lower bound in a general case

A B C D

X Y

ALG A B C D

OPT A B C DX Y

A B

X

ALG A B

OPT A BX

Fig. 2. The proof of the lower bound in the restricted cases

Lemma 2. The competitive ratio of the algorithm is at least 1.5 in the tall/small
case and in the non-max case.

Proof. We construct two instances on four machines. Some urgent larger jobs
and more non-urgent smaller jobs are released at time 1. The algorithm chooses
more non-urgent smaller jobs and loses the urgent larger jobs. Details of sizes
and counts of jobs are summed up in Figure 2, the left-hand side is for the tall-
small case and the right-hand side is for the non-max case. The proof can be
easily scaled up for more machines. ��

3 Competitive Ratio

We prove the upper bound for the competitive ratio of ALG using a charging
scheme. When we consider jobs in ALG and OPT schedules as two sets of ver-
tices, then the charging scheme is a set of rules for a specification of weighted
edges between these two sets to create a bipartite graph. This graph obeys some
constraints: For each job in OPT schedule the sum of the weights of incident
edges is exactly 1 and for each job in ALG schedule the sum of weights of inci-
dent edges is at most 1.6 (or 1.5 in the restricted cases). These constraints (and
the fact that this scheme specifies such a matching for OPT and ALG schedules
of every instance) imply that the competitive ratio of the algorithm is at most
1.6 (or 1.5 in the restricted cases).

We introduce some terminology. When there is an edge between two jobs
with weight x we write that the job in OPT schedule sends x and the job in
ALG schedule receives x. The charging scheme uses mainly two kinds of edges:
diagonal edges and vertical edges. A diagonal edge is an edge from a job in OPT

56 O. Zaj́ıček, J. Sgall, and T. Ebenlendr

schedule to the same job in ALG schedule in a different timeslot. A vertical edge
is an edge from a job in OPT schedule to any job in ALG schedule in the same
timeslot. A job not scheduled by ALG (but possibly scheduled by OPT) is called
an unscheduled job. A job scheduled by OPT and not scheduled by ALG during
that or earlier timeslots (but possibly scheduled later) is called a free job because
it is available for ALG at the timeslot in which it is scheduled by OPT.

We use a job in two slightly different meanings. First, there is a particular
job from an instance of a problem. Second, the job is scheduled by a particular
schedule to some machines and some timeslot. The position occupied by some
job in the particular schedule is also called the job. Specifically, we use ALG-job
for the position of a job in ALG schedule and OPT-job for the position of a job
in OPT schedule. Obviously, the charging edges do not connect jobs in the first
sense, but ALG-jobs and OPT-jobs.

If there is a max-job in ALG schedule and in the same timeslot there is only
one non-max free job in OPT schedule, then we call this non-max free job a
red job. Other free jobs are called white jobs, non-free jobs (scheduled first by
ALG and later by OPT) are called black jobs. In the first part of proof we define
charging for white and black jobs, in the second part for red jobs.

The charging scheme is specified as follows: Each black job charges one diago-
nal edge (forwards to the same job in ALG schedule) and each white job charges
one vertical edge (upwards to an unspecified job in the same timeslot). We will
specify exact rules for a distribution of vertical edges to ALG-jobs later.

Matching of i-jobs at timeslot T is a process that finds a maximal matching
between a set of i-jobs in ALG schedule of timeslot T and a set of white i-jobs
in OPT schedule of timeslot T . If there is a job scheduled at timeslot T by
both ALG and OPT, then it is matched with itself, remaining jobs are matched
arbitrary with one restriction: any red jobs J in ALG schedule are matched at
the end, only when no other jobs remain. Some i-jobs may be left unmatched in
ALG or OPT schedule, but not in both schedules.

Lemma 3. If an ALG-job A (scheduled at some timeslot T) is matched with
OPT-job B, then A receives nothing diagonally (from OPT-job A).

Proof. Suppose ALG-job A receives diagonally from (black) OPT-job A. Jobs
A and B have to be different jobs, because OPT-job B is white. Because B is
a white job, it follows that ALG did not schedule B before or at timeslot T .
Because A is black, OPT scheduled A after timeslot T . Thus both A and B were
available to both ALG and OPT at timeslot T , but ALG scheduled A and didn’t
schedule B and OPT scheduled B and didn’t schedule A. This is a contradiction
because A and B are jobs of the same size and both algorithms choose the ≺-
minimal jobs from available jobs of the same size. ��
Lemma 4. For every timeslot it is possible to find a distribution of weight of
all incoming vertical edges between ALG-jobs of the timeslot such that every job
in ALG schedule can be categorized to at least one of these classes:

– Class C (common): The job receives at most 1/2 vertically.
– Class M (matched): The job receives 1 vertically from the matched job.

Online Scheduling of Parallel Jobs on Hypercubes 57

– Class U (urgent): The job is urgent and receives at most 1 vertically.
– Class S (special): The job is scheduled at a timeslot that is full of jobs of the

same size in ALG schedule. Furthermore, it is a non-max job and at most
one job per timeslot can be the class S job. The job receives 1 vertically from
the matched job and 1/2 vertically from another job.

Proof. The proof is done independently for each timeslot. We show that for each
white job in OPT schedule we find the same job or two other jobs in ALG
schedule (in the same timeslot). Let T be any fixed timeslot. We use ALGT (and
OPTT) schedule for ALG (and OPT) schedule restricted to timeslot T .

If there is no job in ALGT schedule, then all jobs in OPTT schedule have to
be black, because any white OPTT job could also be scheduled by ALG at T . So
suppose there are some jobs in ALGT schedule and the biggest job among them
is an i-job. Jobs smaller than 2i will be called small jobs. It is easy to see that
there is no more than one small white job in OPTT schedule—otherwise ALG
should schedule two (or more) small jobs instead of the i-job. We distinguish
two cases: one small white job and no small white job.

Case 1: There is exactly one small white job J in OPTT schedule. First we
match i-jobs in T . We split the timeslot in ALGT schedule to slots of size 2i. In
each slot there is either one i-job or more small jobs (there is neither an empty
slot nor a slot with one small job, otherwise the free space in that slot is large
enough that ALG should schedule the job J in it). Now we assign those slots
to OPTT white jobs. The idea is that each OPTT white i-job gets one slot and
larger white jobs get proportionally more slots. Slots with matched i-jobs are
assigned to matched OPTT white i-jobs. If there are remaining OPTT white
i-jobs, they get slots with more small jobs. If we disregard job J then the rest is
correct: matched ALGT i-jobs are class M jobs, smaller jobs (assigned together
to one job) are class C as well as remaining i-jobs assigned together to larger
jobs. Unused ALGT jobs may be class C as they receive nothing vertically. Now
we find the assignment for job J . There are two cases:

Case 1.1: There is at least one slot with more small jobs. Then we assign it in
the first place to job J (and those small jobs are class C) and the lemma holds.

Case 1.2: There are only i-jobs in ALGT schedule (and one i-job called job K is
assigned to job J). We have three cases distinguished by the structure of OPTT

schedule.

Case 1.2.1: There is at least one white i-job (job L) in OPTT schedule. Then
job L is matched with some ALGT i-job (job L′). Job L′ receives 1 vertically
from job L; hence, it can receive additional 1/2 from job J and become a class
S job. Additional constraints for a class S job also hold: L′ is a non-max job,
as otherwise ALG should have scheduled the two white jobs J and L by rule 1.
There is only one class S job, because there is only one J job. Job K receives
remaining 1/2 from job J , is a class C job and the lemma holds.

Case 1.2.2: There is no white i-job in OPTT schedule but there are some larger
white jobs. Then there are two unused slots in ALGT schedule, because the sum

58 O. Zaj́ıček, J. Sgall, and T. Ebenlendr

of sizes of larger OPTT jobs is a multiple of 2i+1 and the number of ALGT

i-jobs assigned to them is even. Therefore, there are at least two ALGT i-jobs
available, they receive 1/2 from job J and are class C.

Case 1.2.3: Job J is the only white job in OPTT schedule. If there are more than
one ALGT i-job then two of them receive 1/2 and are class C. If there is only
one job M , then M has to be max-job, because there is no empty slot (ALGT is
full of i-jobs). This case cannot appear, as job J , which is not a max-job because
it is a small job, would be a red job and not a white job.

Case 2: There is no small white job in OPTT schedule. Let j-jobs be the smallest
white OPTT jobs, obviously j ≥ i. First we match j-jobs (which does nothing
if j > i). We split timeslot T in ALGT schedule to slots of size 2j . No such slot
is empty (otherwise, ALG should schedule some white j-jobs scheduled by OPT
at T). At most one slot is not full (because job sizes are powers of two we can
always pack jobs from two half-empty slots to make one slot empty or full). Now
we assign the slots to OPTT white jobs as we did in the first case. If we have
only slots with either one j-job or with more smaller jobs then it is the same
argument as in first case (even easier because there is no job J). But the one
non-full slot can contain only one job (job N), which is smaller than j-job. In
that case job N has to be urgent: otherwise, ALG should schedule some white
j-job instead of job N , by rule 3. Therefore, job N is a class U job and the slot
with job N may be used much like a slot with two jobs. Even in this case the
lemma holds. ��
Lemma 5. Let I(J) (for any non-black job J) be a time interval starting by the
timeslot when the time when job J was scheduled by OPT and ending by the last
timeslot when J was available for ALG (it was scheduled by ALG or it was just
before the deadline for unscheduled job J). Then I(J) for all red jobs J do not
overlap.

Proof. Suppose two such intervals overlap. Let T be the first timeslot in their
intersection. In timeslot T both jobs are available for ALG, ALG should schedule
both jobs together (as they are non-max) but it scheduled one max-job instead.

��
Lemma 6. Let T be a timeslot when some unscheduled red job J is urgent. Then
either there is an ALG job receiving at most 1 in timeslot T , or there are at least
four ALG jobs in timeslot T .

Proof. We split timeslot T to slots of the same size as job J . In each slot there is
either one urgent job (or part of that job) or more than one job because if there
is an empty slot or a slot with a non-urgent job then ALG should schedule job
J in that slot instead. Because J is a non-max job there are at least two slots.
We choose two slots such that at least one of them does not contain a class S
job (or its part), which is possible, because any class S job is a non-max job.

Case 1: Both slots contain more jobs. Then there are at least four jobs and the
lemma holds.

Online Scheduling of Parallel Jobs on Hypercubes 59

Case 2: One slot contains more jobs and the other slot contains an urgent job
K. Then job K is not a class S job: otherwise all ALG jobs would have the same
size and all the slots would have to be full. If job K is class C, P or U then it
receives at most 1 vertically and nothing diagonally (because K is urgent) and
the lemma holds.

Case 3: Both slots contains one urgent job. At least one of the slots does not
contain class S job; hence, it contains a class C, P or U job, which receieves at
most 1 and the lemma holds as in case 2. ��

Lemma 7. Let OPT job J be a scheduled red job. Then ALG job J is not a
class S job.

Proof. Suppose that ALG job J is scheduled at timeslot T and is a class S i-
job. In that case timeslot T of ALG schedule is filled by i-jobs and there is one
smaller job in OPT schedule at timeslot T , as these are the assumptions of case
1.2.1 in Lemma 4 that are needed to classify a job as a class S job. Therefore, for
matching used for classification of jobs there are more i-jobs in ALG schedule
than in OPT schedule and by the definition of matching in that case job J as
only red job remains unmatched and thus cannot be classified as class S job.
Contradiction. ��

Theorem 1. The competitive ratio of ALG is at most 1.6 in a general case and
at most 1.5 in the tall/small case and in the non-max case.

Proof. We described the charging scheme for black and white OPT jobs earlier.
To complete the proof it remains to describe the charging scheme for red OPT
jobs and to show that each ALG job receives at most 1.6 (or 1.5). According to
Lemma 4 it is possible to distribute vertical edges between ALG jobs in such
a way that ALG jobs can be divided to four classes C, P, U and S. Class C
jobs receive at most 1/2 vertically (by definition) and at most 1 diagonally (as
every job). Class M jobs receive at most 1 vertically (by definition) and nothing
diagonally (by Lemma 3). Class U jobs receive at most 1 vertically (by definition)
and nothing diagonally because they are urgent and therefore they cannot be
scheduled later by OPT. Class S jobs receive at most 1.5 vertically and nothing
diagonally (by Lemma 3). Therefore, if there is no red job, then each ALG job
receives at most 1.5.

Now we describe charging scheme for red jobs. For each red (OPT) job J ,
there are two cases whether job J is scheduled or not by ALG. There is also a
max-job in ALG schedule (from the definition of red jobs) called job K. In the
first case, job J is scheduled, and it sends 1/2 vertically to ALG job K, the only
ALG job in that timeslot and 1/2 to itself in ALG schedule (ALG job J). In the
second case, job J is unscheduled, and it sends 0.6 vertically to ALG job K and
0.4 to the timeslot T when job J is urgent. According to Lemma 6, either there
is a ALG job in timeslot T receiving at most 1 from white and black jobs which
then receives 0.4 from job J , or there are some four jobs scheduled at timeslot
T and they receive 0.1.

60 O. Zaj́ıček, J. Sgall, and T. Ebenlendr

We showed that without red jobs the theorem holds. Now we show that even
if we add charging of red jobs, then the upper bounds hold. Because of Lemma 5,
the charging from different red jobs does not mix and we can deal with each red
job independently. In the first case of the definition of charging, job K received
nothing vertically from white jobs (as there is no such job in the same timeslot)
and at most 1 diagonally (as every job). Therefore we can add 1/2 from the red
job. ALG job J is not class S job according to Lemma 7. Therefore, it receives at
most 1 vertically from white jobs (because it is in class C, P or U) and nothing
diagonally (because OPT job J is red and not black) and we can add 1/2 from
the red job. In the second case, the argument for job K is the same as in the first
case, but we add 0.6 and therefore it receives at most 1.6 and we can add 0.1 to
each of some four jobs because without charging from red jobs they receive at
most 1.5, with that they receive at most 1.6. Therefore, we shown that if there
are no unscheduled red jobs, each ALG job receives at most 1.5, otherwise it
receives at most 1.6 and that proves the first part of the theorem.

In the first restricted case (no max-jobs) it is obvious that there are no red
jobs and therefore 1.5 is the upper bound for the competitive ratio. In the second
restricted case (tall/small jobs) suppose that there is an unscheduled red i-job J ,
which is urgent at timeslot T . Because there are no smaller jobs, ALG schedule
of timeslot T must be full of urgent i-jobs. As the algorithm does not specify
any preferences for choosing urgent jobs of the same size, ALG might choose job
J instead of one of these i-jobs (and similarly for other unscheduled red jobs).
As both jobs are urgent, such choice would not affect the remaining schedule.
In that case there would be no unscheduled red jobs and therefore upper bound
1.5 holds. But even if ALG did not choose job J then there is the same number
of jobs scheduled by ALG and therefore upper bound 1.5 holds. That proves the
second part of the theorem. ��

4 Lower Bound

Theorem 2. The competitive ratio of every deterministic algorithm for online
scheduling of parallel jobs on hypercubes is at least 1.4.

Proof. We fix a deterministic algorithm. We consider an instance on two ma-
chines; it can be easily scaled up for more machines. The instance and the proof
are summed up in Figure 3.

We start with two jobs A (rA = 1, dA = 3, sA = 1) and B (rB = 1, dB = 4,
sB = 2). If the algorithm schedules job B in the first timeslot, then we extend
the instance with an urgent job K (rK = 2, dK = 3, sK = 2) and finish. The
algorithm might schedule job A or job K, but loses the other job and it is
1.5-competitive (as OPT schedules all jobs). This is the first case in Figure 3.

Otherwise, the algorithm schedules job A in the first timeslot and OPT sched-
ules job B. We extend the instance with an urgent job C (rC = 2, dC = 3,
sC = 1). If the algorithm schedules job B in the second timeslot, then it loses
job A and it is 1.5-competitive (as OPT schedules all jobs). This is the second
case in Figure 3.

Online Scheduling of Parallel Jobs on Hypercubes 61

A

B

C

D

E F

G H

K

ALG B K

OPT A K B

ALG A B

OPT B A C

ALG A C E F

OPT B A C D E F

ALG A C B E F

OPT B A C E F G H

Fig. 3. The instance for the lower bound and the four cases in the proof

Otherwise, the algorithm schedules job C in the second timeslot and OPT
schedules jobs A and C. We extend the instance with an urgent job D (rD = 3,
dD = 4, sD = 2) and two smaller jobs E and F (rE = rF = 3, dE = dF = 5,
sE = sF = 1), If the algorithm schedules jobs E and F for the third timeslot,
then it loses jobs B and D and it is 1.5-competitive (as OPT schedules all jobs).
This is the third case in Figure 3.

Otherwise, the algorithm schedules job B or D in the third timeslot and OPT
schedules jobs E and F . We extend the instance with two urgent jobs G and H
(rG = rH = 4, dG = dH = 5, sG = sH = 1), The algorithm schedules two jobs
and loses the other two jobs from jobs E, F , G, H and it is 1.4-competitive,
as OPT schedules all these four jobs during last two timeslots, but loses job D.
This is the fourth case in Figure 3. ��
Acknowledgements. This research was partially supported by Institute for
Theoretical Computer Science, Prague (project 1M0545 of MŠMT ČR) and grant
IAA100190902 of GA AV ČR. Za j́ıček and Ebenlendr are also partially supported
by Institutional Research Plan No. AV0Z10190503.

References

1. Baptiste, P., Schieber, B.: A note on scheduling tall/small multiprocessor tasks with

unit processing time to minimize maximum tardiness. J. Sched. 6, 395–404 (2003)

2. Dürr, C., Hurand, M.: Finding total unimodularity in optimization problems solved

by linear programs. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168,

pp. 315–326. Springer, Heidelberg (2006)

3. Ye, D., Zhang, G.: Maximizing the throughput of parallel jobs on hypercubes. In-

form. Process. Lett. 102, 259–263 (2007)

4. Zaj́ıček, O.: A note on scheduling parallel unit jobs on hypercubes. Int. J. on Found.

Comput. Sci. 20(2), 341–349 (2009)

Verification of Causality Requirements in Java

Memory Model Is Undecidable

Matko Botinčan1, Paola Glavan2, and Davor Runje2

1 Department of Mathematics, University of Zagreb

matko.botincan@math.hr
2 Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb

{pglavan,davor.runje}@fsb.hr

Abstract. The purpose of the Java memory model is to formalize the be-

havior of the shared memory in multithreaded Java programs. The subtlest

points of its formalization are causality requirements that serve to provide

safety and security guarantees for incorrectly synchronized Java programs.

In this paper, we consider the problem of verifying whether an execution

of a multithreaded Java program satisfies these causality requirements and

show that this problem is undecidable.

Keywords: Java memory model, multithreading, verification.

1 Introduction

The Java language specification [1] and recent work on formalization of the
Java memory model (JMM) [2,3] attempt to give a precise specification of the
behavior of the shared memory for multithreaded Java programs. The JMM
has been designed having two goals in mind. The first one is to provide safety
guarantees to programmers by:

– ensuring sequentially consistent behavior of correctly synchronized (data
race free) programs, and

– promising that even for programs that are incorrectly synchronized with
respect to JMM semantics (i.e., programs with data races) the values should
not appear out of thin air.

The second one aims to guarantee compiler writers that common compiler op-
timization techniques are allowed as long as they do not violate these safety
guarantees.

The original specification of the JMM was shown to have serious flaws, e.g.,
Theorem 1 in [2,3] does not hold, infinite executions conflict with omega ordering
of default initialization actions in the definition of the JMM, it is unclear how
to handle dynamic allocation in this setting, etc. Although subsequent work on
JMM [4,5,6] managed to fix some of these problems, all variations of the JMM

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 62–67, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Verification of Causality Requirements in JMM Is Undecidable 63

definition contain an inherent deficiency regarding decidability which we address
in this paper.

The subtlest points of the JMM definition are causality requirements that
serve to provide safety guarantees for incorrectly synchronized Java programs.
The problem is that they are specified declaratively, and from this definition
it is not evident how to effectively check them. In [7], authors deal with the
problem of verifying the JMM causality requirements for a finite execution of a
multithreaded Java program containing no synchronization actions, actions on
final fields and external actions. They show that the problem is NP-complete,
however, their result holds only under additional assumption (implicit from the
proof) that all intermediate executions in the justification sequence are finite and
polynomially bounded, which is generally not true for arbitrary multithreaded
Java programs. In this paper, we consider what happens when this additional
assumption is left out and show that the problem of verifying the JMM causality
requirements for a finite execution of an arbitrary multithreaded Java program
is undecidable.

The rest of the paper is structured as follows. The formal definition of the
JMM is given in Section 3. Section 3 contains the main result of this paper. In
Section 4, we give concluding remarks.

2 The Java Memory Model

Let us first introduce the concepts from [3,2] that are needed for understanding
the definition of the Java Memory Model (JMM).

We consider a multithreaded Java program that spawns a set of threads. The
execution of each thread is represented as a sequence of actions. Formally, an
action is a tuple 〈t, k, v, u〉, where t is the thread performing the action; k is the
kind of the action: read, write, volatile read, volatile write, lock, unlock, thread
create, thread join or an external action; v is the variable or monitor involved
in the action; and u is an arbitrary unique identifier of the action (though, for
readability, we do not write u explicitly). Non-volatile read and write actions are
non-synchronization actions, the others are synchronization actions. In the rest
of the text, we do not deal with thread create, thread join and external actions,
however, we use the notion of initialization actions for setting up initial values
of shared variables.

An execution is a tuple E = 〈P,A,
po−→,

so−→,W, V,
swo−→,

hbo
< 〉,1 where

– P is a Java program;
– A is a set of actions;
–

po−→ is the program order — a partial order over actions in A that is a total
order over all actions preformed by the same thread;

– so−→ is the synchronization order — a total order over all synchronization
actions in A;

1 Here we denote binary relations with
α−→, for some label α. Transitive closure of

relation (
α−→)+ is denoted by <α, when it is a strict partial order.

64 M. Botinčan, P. Glavan, and D. Runje

– W is the write-seen function — a function assigning a write action W (r) to
each read action r in A;

– V is the value-written function — a function assigning a value V (w) to each
write action w in A;

– swo−→ is the synchronizes-with order — the smallest relation over synchroniza-
tion actions in A such that:
• if a1 is unlocking and a2 is locking the same object, and a1

so−→ a2, then
a1

swo−→ a2;
• if a1 is volatile writing to and a2 is volatile reading from the same loca-

tion, and a1
so−→ a2, then a1

swo−→ a2;.

–
hbo
< is the happens-before order — a strict partial order induced by the

synchronizes-with order and the program order, i.e.,
hbo
< = (

po−→ ∪ swo−→)+.

An execution E is well-formed if it obeys the Java intrathread semantics, i.e., if
it satisfies the following conditions:

(1) Each read of a variable x sees a write to x. All reads and writes of
volatile variables are volatile actions.

(2) The synchronization order is at most an omega order, i.e., for each
synchronization action x, the set {y | y <so x} is finite.

(3) Synchronization order is a strict total order consistent with pro-
gram order, i.e., <po |Dom(<so) ⊆<so.

(4) Lock operations are consistent with mutual exclusion, i.e., for all
lock actions l on monitor m and all threads t (different from the thread of l)
the number of locks of t before l in <so is the same as the number of unlocks
of t before l in <so.

(5) The execution obeys intra-thread consistency, i.e., for each thread t,
the actions preformed by t in A are executed in the same order that would
be generated if t is run as a single thread in isolation.

(6) The execution obeys synchronization-order consistency, i.e., for ev-
ery volatile read r ∈ A, it is not the case that r <so W (r), and addi-
tionally, there must not exists a write w on the same variable v such that
W (r) <so w <so r.

(7) The execution obeys happens-before consistency, i.e., for every read
r ∈ A, it is not the case that r <hbo W (r), and additionally, there must not
exist a write w on the same variable v such that W (r) <hbo w <hbo r.

A well-formed execution E is JMM-consistent if it satisfies the JMM causality
requirements, i.e., if there exists a committing sequence of sets of actions ∅ =
C0 ⊂ C1 ⊂ C2 ⊂ . . . such that A =

⋃
i Ci, that get justified through a sequence

of well-formed executions E1, E2, . . . of the program P . The sequences (Ci)i and
(Ei)i, where Ei = 〈P,Ai,

poi−→,
soi−→,Wi, Vi,

swoi−→, <hboi〉, are required to satisfy the
following conditions:

1. Ci ⊂ Ai;
2. <hboi |Ci =<hbo |Ci ;
3. soi−→|Ci=

so−→|Ci ;

Verification of Causality Requirements in JMM Is Undecidable 65

4. Vi |Ci= V |Ci ;
5. Wi |Ci−1= W |Ci−1 ;
6. ∀r ∈ Ai\Ci−1,Wi(r) <hboi r;
7. ∀r ∈ Ci\Ci−1,Wi(r) ∈ Ci−1,W (r) ∈ Ci−1.

3 Verification of the JMM Causality Requirements

We define the problem of verifying the JMM causality requirements as follows.
The input to the problem is a finite well-formed execution E of a Java program
P . The question we are interested in is whether E satisfies the JMM causality
requirements, i.e., whether E is JMM-consistent.

Let S be an arbitrary sequential program containing no synchronization ac-
tions, no actions on final fields, no external actions, and no references to global
variables. Let P be a multithreaded program with two threads Ta and Tb de-
scribed as follows:

Ta : y = x; Tb : if (y == 0) { S }
x = 1;

Assume that both x and y are initially set to 0 by initialization actions i1 and
i2 in an initialization thread I, and they happen before any other action in
the execution. We represent these facts by extending the program order. Let

E = 〈P,A,
po−→,

so−→,W, V,
swo−→,

hbo
< 〉 be a finite well-formed execution of P defined

by the following components:

- A = {i1 = 〈I, write, x〉, i2 = 〈I, write, y〉, a1 = 〈Ta, read, x〉,
a2 = 〈Ta, write, y〉, b1 = 〈Tb, read, y〉, b2 = 〈Tb, write, x〉};

-
po−→= {(a1, a2), (b1, b2), (i1, i2), (i1, a1), (i2, a1), (i1, b1), (i2, b1)};

- so−→= ∅;
- W = {(a1, b2), (b1, a2)};
- V = {(i1, 0), (i2, 0), (a2, 1), (b2, 1)};
- swo−→= ∅;
-

hbo
< = {(i1, a1), (i2, a1), (i1, b1), (i2, b1), (a1, a2), (b1, b2),
(i1, a2), (i2, a2), (i1, b2), (i2, b2)}.

Then the following lemmas hold.

Lemma 1. If S terminates, i.e., if S run as a singlethreaded program has a
finite execution, then E is JMM-consistent.

Proof. Assume that S terminates. Then the following sequence of actions (Ci)i

and executions (Ei)i satisfy the JMM causality requirements for E:

E1: - C1 = {i1, i2};
- W1 = {(a1, i1), (b1, i2)};
- V1 = {(i1, 0), (i2, 0), (a2, 0), (b2, 1)};

(note that b2 indeed can be executed “after” b1 since S terminates);

66 M. Botinčan, P. Glavan, and D. Runje

E2: - C2 = C1 ∪ {b2};
- W2 = {(a1, i1), (b1, i2)};
- V2 = {(i1, 0), (i2, 0), (a2, 0), (b2, 1)};

E3: - C3 = C2 ∪ {a1};
- W3 = {(a1, b2), (b1, i2)};
- V3 = {(i1, 0), (i2, 0), (a2, 0), (b2, 1)};

E4: - C4 = C3 ∪ {a2};
- W4 = {(a1, b2), (b1, i2)};
- V4 = {(i1, 0), (i2, 0), (a2, 1), (b2, 1)};

E5: - C5 = C4 ∪ {b1};
- W5 = {(a1, b2), (b1, a2)};
- V5 = {(i1, 0), (i2, 0), (a2, 1), (b2, 1)};

Lemma 2. If E is JMM-consistent then S terminates.

Proof. Assume that E is JMM-consistent and S does not terminate. We claim
that then the action b2 cannot be committed through any sequence of actions
(Ci)i, and thus cannot take place in the final execution E, implying that E is
not JMM-consistent. Namely, since C1 contains only initializations actions, it
cannot contain b2. Assume that b2 is not contained in some Ci−1. This means
that in the execution Ei, the read of y in Tb (the action b1) can only see either
the initial write of 0 to y (the action i2) or the write of 0 to y performed by Ta

through the action a2. Since in both cases the condition of the if-statement is
satisfied, statements of the program S get executed infinitely, thus not allowing
b2 to get executed. Therefore, b2 cannot be committed in Ci either.

Since determining whether a sequential program S terminates is undecidable,
from Lemma 1 and Lemma 2 we conclude the following:

Theorem 1. Verification of the JMM causality requirements is undecidable.

4 Conclusions

In this paper, we considered the problem of verifying whether a finite execution
of an arbitrary multithreaded Java program satisfies the causality requirements
stemming from the Java memory model. It has been shown that this problem is
undecidable.

We see this result as an important weakness of the JMM specification since
it shows that one cannot have a dedicated verification algorithm in the general
case. One can, however, employ the JMM definition in order to develop a simple
model checker that solves the problem for some specific cases (“small” with
respect to the number of program instructions, threads, and especially number
of data races, see [8]).

The sequential consistency memory model has also been shown to be unde-
cidable [9]. This result, however, did not make a definite verdict on the practical
aspect of the sequential consistency memory model verification [10]. Taking into
account Java practitioners needs, we could also expect verifiable fragments of
the JMM to appear in the future.

Verification of Causality Requirements in JMM Is Undecidable 67

References

1. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification, 3rd

edn. Addison-Wesley, Reading (2005)

2. Manson, J., Pugh, W., Adve, S.V.: The Java memory model (expanded version).

ACM Transactions on Programming Languages and Systems (submitted)

3. Manson, J., Pugh, W., Adve, S.V.: The Java memory model. In: Proceedings of

the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (POPL 2005), pp. 378–391. ACM Press, New York (2005)

4. Cenciarelli, P., Knapp, A., Sibilio, E.: The Java memory model: Operationally,

denotationally, axiomatically. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421,

pp. 331–346. Springer, Heidelberg (2007)

5. Aspinall, D., Sevcik, J.: Formalising Java’s data-race-free guarantee. In: Schnei-

der, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 22–37. Springer,

Heidelberg (2007)

6. Aspinall, D., Sevcik, J.: Java memory model examples: Good, bad and ugly. In:

Proceedings of the 1st International Workshop on Verification and Analysis of

Multi-threaded Java-like Programs, VAMP 2007 (2007)

7. Polyakov, S., Schuster, A.: Verification of the Java causality requirements. In: Ur,

S., Bin, E., Wolfsthal, Y. (eds.) HVC 2005. LNCS, vol. 3875, pp. 224–246. Springer,

Heidelberg (2006)

8. Manson, J.: The Java memory model. PhD thesis, University of Maryland, College

Park (2004)

9. Alur, R., McMillan, K.L., Peled, D.: Model-checking of correctness conditions for

concurrent objects. Inf. Comput. 160(1-2), 167–188 (2000)

10. Sezgin, A., Gopalakrishnan, G.: On the decidability of shared memory consistency

verification. In: Proceedings of the 3rd ACM & IEEE International Conference on

Formal Methods and Models for Co-Design (MEMOCODE 2005), pp. 199–208.

IEEE, Los Alamitos (2005)

A Team Object for CoArray Fortran

Robert W. Numrich

Minnesota Supercomputing Institute

University of Minnesota, Minneapolis, MN

Abstract. This paper outlines the features of a team object for CoArray

Fortran to support multi-disciplinary applications. It combines object-

oriented design, supported in Fortran 2003, with the parallel coarray

model, supported in Fortran 2008. It extends the coarray model by

adding state to a coarray object. The compiler and run-time environment

use this state to dereference co-indices relative to the team that created

the object. Methods are associated with a team object for synchroniza-

tion, memory allocation and collective operations across the team.

1 Introduction and Motivation

Fortran is now a true object-oriented language as defined by the Fortran 2003
standard [3]. The next standard, currently called Fortran 2008, will likely include
the parallel coarray extension as a standard feature [4,5,6]. Although earlier
versions of the coarray model included a primitive idea of teams, that is, a
subset of images that work together on a particular problem, the team concept
was considered insufficiently well defined and was deferred from the Fortran 2008
standard until a later revision. Since the team concept is open for discussion,
this paper proposes a new way to think about teams within the coarray model.
It is only a proposal, and there should be no assumption that it will or will
not become part of the standard language. Mellor-Crummey and co-workers [2]
have recently proposed an alternative approach for defining teams. The overlap
between the two proposals is large, but they are not identical.

The motivation for this proposal is to design teams in such a way that two
stand-alone codes, written in the coarray model, can be coupled together with
only small changes to the original codes. In other words, the components in a
coupled code look pretty much the same as they did as stand-alone codes. The
design is to some extent similar to a communicator as defined by the Message-
Passing Interface (MPI) [1,7]. The two ideas are not identical. The team object is
designed to fit the coarray model with as few new features added to the existing
model as possible.

The main problem that needs to be solved is related to memory allocation of
coarrays and dereferencing of codimensions. In the current coarray model [5], an
allocatable coarray,

real, allocatable :: x[:,:] (1)

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 68–73, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Team Object for CoArray Fortran 69

with multiple codimensions is allocated across all images,

allocate(x[p,*]) (2)

The co-indices [q,r] representing a coarray on a remote image,

y = x[q,r] (3)

are dereferenced relative to all the images based on the codimensions in the
allocate statement. Making teams useful requires allocation to occur across
just members of a team and dereferencing of co-indices to occur relative to the
members of the team. Similarly, synchronization should be allowed across a team
rather than across all images and collective operations among team members
alone need to be defined. The team object defined in this paper is one way to
extend the coarray model to provide these features.

2 Class AbstractTeam

A team object is an extension of an AbstractTeam object defined, for example,
in a module named ClassAbstractTeam,

module ClassAbstractTeam
Type,public,abstract :: AbstractTeam
contains
procedure(myTeam),public,pass(this),deferred :: isMyTeam
procedure(getSize),public,pass(this),deferred :: getTeamSize
procedure(getIndex),public,pass(this),deferred :: getTeamIndex
procedure(getList),public,pass(this),deferred :: getTeamList
procedure(alloc),public,pass(this),deferred :: allocate
procedure(dealloc),public,pass(this),deferred :: deallocate
procedure(sync),public,pass(this),deferred :: sync
procedure(sum),public,pass(this),deferred :: sum
procedure(max),public,pass(this),deferred :: max
procedure(min),public,pass(this),deferred :: min
procedure(run),public,pass(this),deferred :: run
end Type AbstractTeam
abstract interface
logical function isMyTeam(this)
import :: AbstractTeam
Class(AbstractTeam),intent(in) :: this
end interface

end module ClassAbstractTeam
(4)

The reader unfamiliar with Fortran 2003 should consult a reference book to
decipher this code sample [3].

A concrete class that extends this abstract class must provide the deferred
procedures that match specified interfaces such as the one shown for the function

70 R.W. Numrich

isMyTeam(). This function returns a logical true if the image that invokes the
function is in the team and logical false if it is not in the team. The function
getTeamIndex() returns the invoking image’s index relative to the team, and
the function getTeamSize() returns the number of images in the team. The
function getTeamList() returns a list of images in the team. The interfaces for
these functions are omitted for lack of space.

Some of the deferred procedures listed for the abstract class imply a change in
the coarray model. Each team, for example, defines its own memory allocation,
deallocation and synchronization procedures. In the current model, allocation of
a coarray is a collective operation across all images. In the team model, allocation
takes place only across members of the team. The compiler, then, for each coar-
ray, must keep track of its team context, and it must dereference codimensions
relative to the team. Synchronization takes place only among team members,
and collective operations, such as sum, max, min, take place only among team
members.

The programmer assigns work to each team by providing a run procedure
specific to the team perhaps something like example (10) shown in section 4.
This procedure might, for example, be a wrapper around an ocean model for one
team and a wrapper around an atmosphere model for another team. Inside one
of these wrappers, the programmer allocates coarrays and uses synchronization
procedures, as if it were a stand-alone code written in the coarray model, but
uses the procedures associated with the particular team that invoked the run
procedure.

Each concrete team supplies a constructor, as a function with the same name
as the team class, that returns a team object of that type. For example, for a
team of type AllTeam that includes all the images, the code sample,

Type(AllTeam) :: all
real,allocatable :: x[:]
real :: s
all = AllTeam()
call all%sync()
call all%allocate(x[*])
s=all%sum(x[*]) (5)

creates a team named all and uses the all%sync, all%allocate and all%sum
procedures associated with that team. This class essentially represents the ex-
isting coarray model. All images must invoke the constructor AllTeam, so they
all know they belong to the team, and the procedures all%sync, all%allocate,
all%sum and so forth are collective procedures across all images.

The programmer creates other kinds of teams by invoking a team constructor
specific to each team class. These team classes can be created by the program-
mer, as extensions of the abstract team class or through inheritance from other
concrete classes, and the programmer must provide a constructor for the class
along with all the other deferred procedures. The programmer may, of course,
add other procedures and data components specific to a particular class.

A Team Object for CoArray Fortran 71

For a coarray allocated by a team, the compiler must dereference codimensions
relative to the team. Keeping track of team information can be done, for example,
by adding a pointer to the team in the allocated object’s dope vector. This extra
layer of indirection may degrade performance, and it is important to define a
team in such a way to reduce this overhead. For example, a simple team might
be one that includes a contiguous subset of images.

Type(ContiguousTeam) :: air, ocean
p=num images()
air = ContiguousTeam(1,p/2)
ocean = ContiguousTeam(p/2+1,p)
if(air%isMyTeam()) then

call air%run()
elseif(ocean%isMyTeam()) then

call ocean%run()
end if (6)

The constructor for a contiguous team accepts two arguments specifying the
beginning and end of the image numbers contained in the team. The compiler
then uses a simple offset to dereference codimensions.

3 Collectives

Within a team, the programmer may want to form a subteam to compute, for
example, a global reduction across a particular codimension. A CoDimTeam class
might provide this capability. Its constructor might accept three arguments spec-
ifying the row relative to the codimension of a specific coarray, a stride between
images in the team, and the number of images in the row.

Type(CoDimTeam) :: rowTeam
real :: x[q,*]
real :: s
rowTeam=CoDimTeam(p,q,r)
s = rowTeam%sum(x) (7)

Each object of class team must provide a set of collective procedures. These
procedures should be written to optimize communication based on the known
relationships among members of the team.

4 Communication among Teams

Data exchange among different teams can take place through buffers created
across all images and passed to various subteams. Within each subteam, co-
indices for this buffer are dereferenced relative to the all the images because
it was allocated across all images. Two different teams can read data from or
write data to this buffer using coarray syntax. The programmer is responsible
for keeping track of how image numbers for each team are related.

72 R.W. Numrich

Type(AllTeam) :: all
Type(ContiguousTeam) :: air,ocean
real,allocatable :: buffer(:)[:]
call all%allocate(buffer(n)[*])
if(air%isMyTeam) call air%run(buffer)
if(ocean%isMyTeam) call ocean%run(buffer) (8)

The programmer is responsible for maintaining memory consistency using
proper synchronization procedures. A team may synchronize with itself or with
another team using overloaded versions of the synchronization procedure, for
example, as shown in the code sample,

if(air%isMyTeam()) then
call air%sync()
call air%sync(ocean)

elseif (ocean%isMyTeam()) then
call ocean%sync()
call ocean%sync(air)

endif (9)

Synchronization between pairs of teams, of course, must happen in pairs and the
programmer must guard against deadlocks.

As an example of two teams interacting with each other, consider the run
procedure provided by the programmer for the ocean team.

subroutine run(ocean,air,buffer)
Type(ContiguousTeam),intent(in) :: air,ocean
real,intent(inout) :: buffer(1:)[*]
integer :: airImage
!------local arrays-----
airImage = air%getTeamList(1)
call ocean%sync(air)
airBoundayConditions(:) = buffer(:)[airImage]
!-----some ocean work------
call ocean%sync(air)
airBoundayConditions(:) = buffer(:)[airImage]
!-----some more ocean work------

end subroutine run (10)

The atmosphere team writes boundary conditions needed by the ocean team
into the coarray buffer on the first image in its team. The ocean team does
the same with boundary conditions needed by the atmosphere into the buffer
on its first image. The programmer obtains the global image index for the first
member of the air team using the function air%getTeamList(1) and uses it as
a co-index to point to the buffer containing the boundary conditions supplied by
the atmosphere team. Since the buffer coarray was allocated by team all, the
compiler dereferences co-indices relative to all images.

A Team Object for CoArray Fortran 73

5 Remarks

This proposal adds something new to the coarray model. Codimensions have
always been interpreted locally, within the scope of each procedure, with the
hidden assumption that the compiler interprets a co-index relative to all images
fixed at run-time. In this new proposal, each coarray carries with it a team state.
The compiler still interprets codimensions locally but within the context of the
team that allocated the coarray. A team object contains information, for each
concrete instantiation, that the compiler uses to interpret codimensions and to
dereference co-indices.

This extra overhead may lead to a degradation in performance. If the images
in a team are some random collection, with no obvious rule that relates one to
another, the compiler may need to generate run-time code to compute an image
number from a co-index. But simple teams, like contiguous teams or codimension
teams, can be defined in such a way that the compiler can use a simple formula
to dereference co-indices. Nonetheless, within this new model, the programmer,
by extending the abstract team, may define a team based on a general graph
that defines a complicated relationship among the members of the team. The
programmer must be willing, then, to accept the extra overhead.

This proposal remains within the SPMD model assumed by the coarray model.
A team is a subset of the fixed number of images set at run-time. It resembles an
MPI intra-communicator within an MPI group. But the model could be extended
to add a new dynamic feature to the model where the run() procedure might
become, say, a spawn() procedure that launches a new set of images for each
team. This feature would resemble an MPI inter-communicator between different
MPI groups. Adding this dynamic feature to the coarray model would involve
extensive run-time support in addition to compiler support.

References

1. Gropp, W., Huss-Lederman, S., Lumsdaine, A., Lusk, E., Nitzberg, B., Saphir, W.,

Snir, M.: MPI: The Complete Reference. The MPI-2 Extensions, vol. 2. MIT Press,

Cambridge (1998)

2. Mellor-Crummey, J., Adhianto, L., Scherer III, W.: A New Vision for Coarray

Fortran. In: Proceedings PGAS 2009, October 5-8. George Washington University

(2009)

3. Metcalf, M., Reid, J., Cohen, M.: Fortran 95/2003 Explained. Oxford University

Press, Oxford (2004)

4. Numrich, R.W., Reid, J.K.: Co-arrays in the next Fortran standard. ACM Fortran

Forum (2005)

5. Reid, J.: Coarrays in the next Fortran Standard. ISO/IEC JTC1/SC22/WG5 N1787

(2009)

6. Reid, J., Numrich, R.W.: Co-arrays in the next Fortran Standard. Scientific Pro-

gramming 15(1), 9–26 (2007)

7. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI: The Complete

Reference, 2nd edn., vol. 1. MIT Press, Cambridge (1998)

On the Definition of Service Abstractions for

Parallel Computing

Hervé Paulino

Departamento de Informática, Universidade Nova de Lisboa, Portugal

herve@di.fct.unl.pt

Abstract. The availability of real parallelism in multi-core based archi-

tectures has resurrected the interest in concurrent computing in general,

and parallel computing in particular. New languages and libraries have

been recently proposed to increase productivity in the context of these

architectures. In this paper we present a novel approach that resorts to

the service abstraction for annotating parallelism.

1 Introduction and Motivation

Multi-core CPU architectures are ushering a new era in computer design and
organization. Recent years have seen parallelism become the driver for CPU
performance increase, making multi-core CPUs the de-facto standard in modern
CPU design. In fact, IBM researchers envision high-bandwidth interconnected
nodes composed of several multi-core processors with non-uniform memory hi-
erarchies as the emerging processor organization paradigm [1].

The widespread infrastructural support for real parallelism has resurrected the
interest in concurrent computing as a whole and in parallel computing in partic-
ular. MPI [2] and OpenMP [3] have been, until now, the community standards
for, respectively, the message-passing and shared-memory paradigms. However,
both have generally accepted limitations. The MPI programming model is error-
prone, forces per-processor implementation of the algorithms [4] and does not
have implementations that support the deploying of applications in heteroge-
neous environments. OpenMP features a higher degree of abstraction, usually
only requiring minor modifications on the sequential algorithms, but the global
shared-memory model limitation is inadequate for these new architectures.

This state-of-the-art has motivated the definition of new programming ab-
stractions and runtime systems to address the development and consequent de-
ployment of applications in these new generation of architectures. DARPA’s
(Defense Advanced Research Projects Agency) HPCS (High Productivity Com-
puting Systems) program funded research to tackle these issues, giving birth to
the X10 [1], the Chapel [4], and the Fortress [5] programming languages. Intel
is also researching on the increase of productivity in multi-core architectures,
proposing the Ct [6], and Intel Threading Building Blocks (TBB) [7] libraries.

This paper introduces initial research on a novel approach based on services for
the programming of parallel applications. Services are nowadays an established

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 74–81, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On the Definition of Service Abstractions for Parallel Computing 75

programming abstraction in the development of loosely-coupled distributed ap-
plications. It is our purpose to apply its modularity and intuitiveness to parallel
computing and, with that, provide a good framework for the design of non-
sequential code.

We intend to decouple functionality from resource awareness and provide a
two-level application construction scheme. On a first level functionalities are
aggregated into services that are implemented and accessed as if they where a
single entity in a global addressing space. The actual number of service instances
and their mapping into the processor pool is defined at a second level.

The remainder of the paper is structured as follows: section 2 presents our
service-based model; section 3, its relation to the current state-of-the-art; and,
finally, section 4, draws some conclusions and guidelines for future work.

2 A Service-Based Approach to Parallel Computing

We begin this section by giving a more comprehensive explanation of what is
a service in our model. A service is an abstraction that gathers (normally) re-
lated functionalities and provides them to the client as an interface. All the
services required by an application must be defined within, and compiled with
the remainder of the application. We are not in the presence of a distributed com-
puting model. There is no loose-coupling, no need for registering and searching
for service providers, nor for interoperability at this level.

A program is a collection of services plus a main section, that bootstraps the
execution. Although it is not explicit in the definition of a service, the later may
have several execution flows running in distinct computing elements, such as
distinct CPUs or computers. The number of execution flows and their mapping
in the execution environment is only defined at deployment-time.

Figure 1 illustrates the deployment of an application in a given architecture.
On the top left corner we have the application, which defines and uses services
S1, S2, and S3. Below, we have its mapping in the execution environment. This
information defines the number of instances of each service and how these map
in the processor pool of the target architecture. The syntax is declarative and
allows for statements of the following three forms:

n o f S // Launch n instances of service S
n o f S i n a // Launch each of the n instances of S in a architecture of type a
n o f S groupby a // Group the n instances of S in nodes of type a

where n denotes the number of instances, S the service identifier and a the target
architecture, for instance, dual, quad and node (for multiprocessor nodes).

Both the application and the mapping are fed to the application launcher that
has the responsibility of ensuring the matching between the later and the target
architecture. In figure 1 this architecture is composed of a set of single, dual
and quad-core machines. Note that the main section will execute in the machine
where the application is launched.

Next, we present our service-based programming model for the writing of
parallel applications.

76 H. Paulino

 m a i n { . . . }
 se rv ice S1 { . . . }
 se rv ice S2 { . . . }
 se rv ice S3 { . . . }

 3 of S1 groupby dual
 4 of S2 groupby quad
 1 of S3

Appl icat ion
launcher

Dual Core

S3 S1

Quad Core

S2 S2

Dual Core

S1 S1

S2 S2
Single
Core

Main

Fig. 1. Launching an application

2.1 The Programming Model

The model is orthogonal to the common general-purpose sequential and concur-
rent programming languages. Thus, it does not define a Turing-complete model,
but rather a set of primitives to annotate parallelism in applications. Through-
out this subsection we will use the C programming language to illustrate our
concepts. We are not defining a concrete syntax but rather making an exercise
to present the abstractions of the model.

Defining and Using Services: Consider the next three mathematical func-
tions: square-root (textsfsqrt), power (pow), and the Fibonacci function (fib)
written in the C language.

doub le s q r t (doub le d) { . . . }
doub le pow(doub le b , l ong e) { . . . }
l ong f i b (l ong n) { . . . }

Our objective is to have simple and intuitive abstractions, and with that increase
productivity. The syntax for the aggregation of these functions in a service can
be as simple as:

s e r v i c e Math {
doub le s q r t (doub le d) { . . . }
doub le pow(doub le base , l ong exp) { . . . }
l ong f i b (l ong n) { . . . }

}

For the sake of modularity a service may define local operations for internal
use only. In Java this can be easily achieved with the notion of private method.
In other languages, such as C, a special keyword (local) may be required. An
example that adds logging capability to the Math service follows:

s e r v i c e Math {
. . .

l o c a l :
vo id l o g (char message []) { . . . }

}

Service operation invocation: The invocation of service operations is synchronous,
meaning that the execution flow of the caller blocks until the result is available.
The syntax is borrowed from method selection in object-oriented languages, as
illustrated in the recursive implementation of the fib operation below.

l ong f i b (l ong n) { r e tu r n n < 2 ? 1 : Math . f i b (n−1) + Math . f i b (n−2); }

On the Definition of Service Abstractions for Parallel Computing 77

Concurrent invocations: In order to have full concurrency, both in the server
as in the client, we define a syntax for concurrent service operation invocation.
Both the left and right-hand sides of an attribution become sequences. The
left-hand side must hold the variables target of the operations’ results, whilst
the right-hand side must hold the actual invocations. The mapping is given by
the order of the elements in the sequences. Note that synchronous nature of the
operations is kept, the execution flow only proceeds to the next instruction when
all the results have been received. With this new feature we can provide a new
implementation of the fib operation where its invocations are done concurrently.

l ong f i b (l ong n) {
i f (n < 2) r e tu r n 1 ;
l ong x , y ;
x , y = Math . f i b (n−1) , Math . f i b (n−2);
r e tu r n x+y ;

}

This particular implementation raises a question: are the recursive invocations
of fib performed locally (by the current instance) or remotely (by some other
instance, if such instance exists)? Since invocations are synchronous, the local
processor will become idle after performing the calls, and can thus be used to
perform other computations. In this context, a natural choice would be to execute
at least one of the operations locally.

We provide this control in a simple way, the qualification of the operation with
the service’s identifier denotes a remote execution, while the non-qualification
denotes local execution. Thus, to execute fib(n-1) locally we only need to change
the statement to: x, y = fib(n-1), Math.fib(n-2).

Asynchronous invocations: Asynchronous invocations of service operations is also
featured in the model. The async keyword allows the definition of an handler
(a local function in C) that is triggered when the result arrives, and has the
purpose of handling such result.

An handler may be parameterized, being that the last parameter must stand
for the incoming result. As we be clear in the two examples below, this parameter
is transparent to the handler setting. The examples focus on the asynchronous
invocation of the Math.fib operation. The first simply prints the received result,
while the second assigns it to a variable passed by reference.

async Math . f i b (n) : p r i n tR e s () ;
vo id p r i n tR e s (i n t r e s) {

p r i n t f (”%d” , r e s) ; }

i n t x ;
async Math . f i b (n) : a s s i g nRe s(&x) ;

vo id a s s i g nRe s (i n t ∗var , i n t r e s) {
∗ va r = r e s ; }

The invocation also requires a dedicated syntax: S.addArray(a#[10]) stands for
sending the first 10 elements of array a, which can have a far superior length.

Sharing data among service instances: The Math example we introduced
in the beginning of this subsection is an example of a stateless service. However,
stateful services can also be implemented by defining a set of variables global to

78 H. Paulino

S S S S S

Shared da ta

S S S S S

Shared da ta

Fig. 2. (a) State sharing, (b) Shared parameters and returning shared data

S S S S S

Scater red data

S S S S S

Scater red data

Fig. 3. (a) State scattering, (b) Scattered parameters and returning scattered data

the service. For instance, an operation may allow for the uploading of data to a
service for its posterior manipulation by invoking one or more operations.

As stated before, although it is not explicit in the language, a service may be
executed by multiple flows of execution. As illustrated in figure 2 (a), these may
share part of the service’s state. In fact, each service instance holds a local copy
of the shared data. This allows read operations to be local, while writes require
inter-instance communication and synchronization.

The sharing of data can also be done at parameter level, which means that
a value passed to the operation must be sent to all instances processing that
invocation (figure 2 (b)). As is also illustrated in the figure, the return of a shared
variable must be performed by only one the instances, to avoid the reception of
multiple copies.

The next example illustrates a case where all instances of service DataMining
share variable data and hold a private copy of variable max. In turn, operation
process manipulates a shared array (input) received as argument. Shared variables
must be qualified with the shared keyword.

s e r v i c e DataMining {
char data [] : shared ;
i n t max = 1024;
vo id up load (char d [l e n g t h]) { data = d ; }
vo id p r o c e s s (char i n p u t [l e n g t h] : shared) { . . . }

}

Data parallelism: In order to achieve data parallelism and improve perfor-
mance, non-scalar values can be scattered among the instances of a service. As
with shared values, this can be applied to both state (figure 3 (a)) or parameter
variables (figure 3 (b)). In the later case, each instance receives only a subset
of the entire value. The return of a scattered value requires the collection and
integration of all its subsets.

On the Definition of Service Abstractions for Parallel Computing 79

An classic and intuitive example of data parallelism is the matrix multiplica-
tion problem. Each element of the result matrix is computed from one row of
the first matrix (M1) and one column of the second (M2). Thus, we can parti-
tion both matrices in such way that each instance only receives only a subset of
the rows of M1 and of the columns of M2. In our model, scattered arrays must
qualify the dimension to scatter with the scattered keyword, as is coded in the
following matrix multiplication implementation:

char [] [] mul (char m1[nRows : s c a t t e r e d] [nCRs] , // scattered by rows
char m2[nCRs] [nColumns : s c a t t e r e d]) { // scattered by columns

char ∗∗m = c a l l o c (nRows∗nColumns , s i z e o f (i n t)) ;
f o r (i n t i =0; i < nRows ; i++)

f o r (i n t j =0; j < nColumns ; j++)
f o r (i n t k=0; k < nCRs ; k++) m[i] [j] += m1[i] [k]∗m2[k] [j] ;

}
r e tu r n m;

}

nRows, ncolumns and nCRs denote the length of the respective arrays dimensions.
Note that later appears twice in the function’s signature, which requires a static
analysis to ensure value unification.

Data partitioning is, however, not always as linear as in the matrix multipli-
cation example. Consider the problem of checking if one string is a substring
of another. A linear partition will not cover the case where the string to match
crosses the boundaries of the partition.

To provide a modular framework that can coupe with problem-specific par-
titions, we introduce the concept of distribution that can also be found in the
Fortress language [5]. A distribution is the set of ranges of the target array to
be supplied to a given service instance. To ease the implementation of these dis-
tributions, we defined a set-based syntax that allows for operations over ranges.

A distribution is always parameterized by the index of the instance to which
the range is to sent, the number of instances target of the distribution, and the
length of the array to be scattered. Other parameters can be added, as in the
next example that implements a distribution for the substring search example.
The added parameter denotes the length of the substring to find.

d i s t myDist (i n t subSt r i ngLen , i n t i n s t a n c e , i n t n I n s t a n c e s , i n t a r ra yLen) {
i n t l e n = a r ra yLen / n I n s t a n c e s + subSt r i ngLen − 1 ;
r e tu r n [i n s t a n c e ∗ l en , min (i n s t a n c e ∗ l e n+len , a r rayLen −1)] ;

}

i n t f i n dSubS t r (char s t r [sLen] : myDist (sLen) , char subSt r [s sLen]) { . . . }

Scattered but locally shared variables: The mapping of services into processors
that share a memory hierarchy may sometimes profit from the sharing of the
scattered data within the node (figure 4). Only the services grouped by the
groupby annotation in the mapping stage can make use of this feature.

Merge (or reduce) data: When multiple service instances are computing an
operation in parallel it is often necessary to merge, or reduce, the multiple re-
ceived results to compute the final one. Our approach is to associate a merging
function to the variable holding to result to return. The next example merges

80 H. Paulino

S S S S S

shared shared

Scater red data

Fig. 4. Scattered but locally shared variables

the existing copy of a local array (x) with a new incoming result, computing, for
each cell, the maximum of the values of that same cell in both arrays. Naturally
some of the most used merging operations can be provided in a library.

s e r v i c e SomeServ i ce {
i n t [] someOperat ion () {

i n t x [] : mergewith f ;
. . .
r e tu r n x ;

}
l o c a l :

vo id f (i n t new [l e n]) {
wh i l e(−− l e n) i f (new [l e n] > x [l e n]) x [l e n] = new [l e n] ;

}}

Process synchronization: As in many other languages, a keyword (atomic)
is defined to delimit atomic blocks. Its unbound use (atomic {...}) ensures ex-
clusive access to all the shared variables in the block, as if a lock upon all is
performed before entering the block. Deadlock-free algorithms must be imple-
mented. Its binding to a variable of type sync ensures that the delimited sequence
of operations executes atomically, even if it does not access shared variables. An
example follows:

sync s ;
atomic s { p r i n t f (” He l l o ”) ; p r i n t f (” wor ld !\n”) ; }

Memory barriers are implicitly placed whenever an access is made to a shared
variable. We are yet to define if explicit barriers are to be included.

3 Related Work

The objective of our work is closely related to DARPA’s HPCS funded languages
and Intel’s multi-core related research. Due to space restrictions we chose to
focus solely on the first set, since the second relates only to shared-memory
models. IBM’s X10 [1] is language specially designed for NUCC architectures.
As Cray’s Chapel [4], it partitions the global addressing space into localities,
enabling affinities between processes and processors. An approach quite far from
our service abstractions. Even further is Sun’s Fortress [5] that provides a syntax
close to mathematical notation. Computation is parallel by nature, thus, instead
of providing constructs for parallel loops (as X10 and Chapel) it provides means
to serialize them. Distribution imposes parallel structures on generators, the
abstractions that define how data-structures map into the target architecture.

All three languages support the asynchronous spawning of tasks, much like in
Cilk [8] and pSystem [9] and array sub-languages to handle array specifics, such as

On the Definition of Service Abstractions for Parallel Computing 81

sparsematrices. Synchronization is achieved through the usual atomic code blocks.
Although the use of localities and array sub-languages provide a higher degree of
flexibility and abstraction, we think that the programming model is still too close
to what is done in Cilk [8], pSystem [9], or UPC [10]. Fortress’ idea of parallelism
by default seems to be a good path to follow. Nonetheless, regarding distributed
memory, we feel that the service approach is more intuitive and modular.

4 Conclusions and Future Work

The main objective of this paper is to expose our approach to the problem of
increasing productivity in architectures with real parallelism. It is our opinion
that the use of an established and intuitive abstraction, such is the service,
provides a good framework for designing of non-sequential code.

The model here proposed is still at an early development stage. Work in
progress focuses a formal definition and prototype implementations. A formal
framework will allow us to obtain correctness properties, such as the lack of
deadlocks, while prototype implementations will allow us to attest the behavior
of the model in large scale applications, both performance and code maintenance.
Currently implementations in Java and C are planed.

References

1. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von

Praun, C., Sarkar, V.: X10: an object-oriented approach to non-uniform cluster

computing. SIGPLAN Not. 40(10), 519–538 (2005)

2. Message Passing Forum: MPI: A Message-Passing Interface Standard. Technical

Report UT-CS-94-230, University of Tennessee, Knoxville, TN, USA (May 1994)

3. OpenMP Architecture Review Board: OpenMP Application Program Interface v

3.0 (May 2008)

4. Callahan, D., Chamberlain, B.L., Zima, H.P.: The cascade high productivity lan-

guage. In: Ninth International Workshop on High-Level Parallel Programming

Models and Supportive Environments (HIPS 2004), pp. 52–60 (2004)

5. Allen, E., Chase, D., Hallett, J., Luchangco, V., Maessen, J.W., Ryu, S.: Jr., G.L.S.,

Tobin-Hochstadt, S.: The Fortress Language Specification. Technical report, Sun

Microsystems, Inc. (2007)

6. Gholoum, A., Sprangle, E., Fang, J., Wu, G., Zhou, X.: Ct: A Flexible Parallel

Programming Model for Tera-scale Architectures. Intel Whitepaper (October 2007)

7. Reinders, J.: Intel Threading Building Blocks. O’Reilly & Associates, Inc., Se-

bastopol (2007)

8. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,

Y.: Cilk: An Efficient Multithreaded Runtime System. In: Proceedings of the Fifth

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming

(PPoPP), pp. 207–216 (July 1995)

9. Silva, F., Paulino, H., Lopes, L.: di pSystem: A Parallel Programming System

for Distributed Memory Architectures. In: Proceedings of the 6th European

PVM/MPI Users’ Group Conference, pp. 525–532. Springer, Heidelberg (1999)

10. El-Ghazawi, T., Smith, L.: UPC: uUnified Parallel C. In: SC 2006: Proceedings of

the 2006 ACM/IEEE Conference on Supercomputing, p. 27. ACM Press, New York

(2006)

Performance Debugging of Parallel Compression
on Multicore Machines

Janusz Borkowski

Polish-Japanese Institute of Information Technology,
86 Koszykowa Str., 02-008 Warsaw, Poland

janb@pjwstk.edu.pl
Infobright, www.infobright.com

Abstract. The power of contemporary processors is based more and
more on multicore architectures. This kind of power is accessible only
to parallel applications, which are able to provide work for each core.
Creating a scalable parallel/multithreaded application efficiently using
available cores is a difficult task, especially if I/O performance must be
considered as well. We consider a multithreaded database loader with a
compressing function. The performance of the loader is examined from
a number of perspectives. Because compression is a computationally in-
tensive task, parallel execution can potentially provide a big advantage
in this case. A list of performance related areas we encountered is pre-
sented and discussed. We identify and verify tools allowing us to deal
with specific performance areas. We find out, that only an orchestrated
employment of several tools can bring the desired effect. The discussion
provides a general procedure one can follow when improving the perfor-
mance of multithreaded programs. Key performance areas specific to the
database loader are pointed out. A special interest is directed towards
performance variations observed when many parallel threads are active
on a multicore CPU. A significant slowdown of computations is observed
if many threads are computing simultaneously. The slowdown is related
mainly to memory access and cache behavior and it is much larger for
Core2 Quad system than a dual Xeon machine.

1 Introduction

The increase of processor power has been traditionally bound to the increase of
clocking frequencies. However, new CPU architectures achieve their high pro-
cessing capacity differently. A single modern CPU contains a few computing
cores [1,2]. The cores can work in parallel, thus delivering higher performance
at a lower cost, than a single core working at a very high clock rate. Facing this
trend, scientists and engineers have adopted multicore CPUs in newly designed
computing clusters and servers e.g. [3]. The efficiency of multicore processors has
become a separate direction of research, aimed at performance evaluation and
finding better architectural solutions [4]. This research has been concentrated
mainly around High Performance Computing applications. On the other hand,

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 82–91, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Performance Debugging of Parallel Compression on Multicore Machines 83

multicore processors were originally designed to deliver more processing power at
a lower cost and with lower electric power consumption to business enterprises.

In the world of business applications, databases play a leading role. Standard
databases can benefit from multicore CPUs by allowing for more concurrent
clients, distributing clients’ queries among available cores (inter-query paral-
lelism), e.g. MySQL, High-end database systems can execute a single query in
parallel (intra-query parallelism). In both cases, the possible gain due to the
usage of multicore CPUs should be investigated in separation from HPC ap-
plication, due to different program characteristics. While HPC programs are
computationally intensive, database engines deal with accessing large amounts
of data – they tend to be more I/O intensive. In-memory databases are an excep-
tion here, but we will concentrate on main stream disk-based databases. While it
is relatively easy to take advantage of a multicore CPU by assigning a separate
core for each database client, more can be gained if a client (a single query)
can use all available processing power. An interesting proposal for employing
multicore processors in databases is presented in [5]. The authors claim, that
as the number of cores per CPU grows, soon a system will not be able to use
all the cores efficiently because of memory access bottleneck. Therefore some of
the cores should only prefetch data to cache for the convenience of other cores.
Our results shown later in this paper let us agree only partially with this idea.
The impact of cache performance in database systems becomes more important
as servers use more and more memory and are equipped with CPUs coupled
with large caches. In [6] the performance of database systems on multicore chips
is analyzed in respect to parameters of CPU cache. While this work presents
an excellent overview of cache-related problems and provides important sugges-
tions, it deals with database engines executing standard database workload. We
concentrate on the load process, which is separated from the normal database
operation and has different characteristics. Data warehouses can be defined ca-
sually as databases storing very large amounts of data to be analyzed. The data
is loaded into a data warehouse and is not (or rarely) modified later. Some of
the specific features of a data warehouse are as follows:

1. Stored data sets can be very large (many TB)
2. Data are accessed mainly for reading
3. The data is loaded usually periodically, e.g. once a day
4. The data load process should be quick

The last point is important, because it is often necessary to load many GB of
data in a few hours e.g. during a night break. Therefore the load speed is an
important factor in data warehouse product market. Quickly growing processing
capacity of processors made it possible to shift part of the strain from disk to
CPUs in data warehouse processing. Data compression makes data smaller, so
disk usage becomes less intensive, but a CPU must compress data during load.
This tradeoff can pay off. Therefore some database systems start using data
compression techniques nowadays [7,8].

In this paper we describe a data loader – a program which reads source data
files and stores compressed data in database tables. The loader is a part of the

84 J. Borkowski

Infobright database [9]. The need for data load speed has driven us to develop
a multithreaded version of the loader. Because the application is partially irreg-
ular and the inter-thread dependencies are sophisticated, we could not employ
standard parallel programming frameworks like Open-MP. We used pthreads
instead. The performance of the obtained solution and methods of investigat-
ing it are the main topics of the paper. The next section describes performance
problems, which can be encountered in a multithreaded parallel application with
heavy I/O. Suitable performance monitoring tools are introduced there. Section
3 explains the functionality of the loader and presents performance problems we
found in it. Performance profiling results are shown and the roots of the problems
are explained. Conclusions are communicated in the last section.

2 Different Tools for Different Performance Problems

The performance of an I/O intensive multithreaded application, like our data
loader, is much more difficult to investigate than the case of a simple compu-
tational process. A number of factors can be collectively responsible for perfor-
mance deficiencies.

1. Computationally intensive code can slow down the overall progress. The code
can use an inefficient algorithm or can be implemented inefficiently.

2. Stalls caused by disk access can exist. The program can wait for data read
from disk and it can wait until data are written to the disk.

3. The parallelization method can be not efficient. If not enough work is extracted
for parallel threads, then the hardware capabilities are not fully utilized.

4. The coordination between threads can cause a thread to wait one for another,
thus serializing computations.

5. Access to shared data guarded by mutexes can create bottlenecks.
6. Thread interaction can have a negative impact on the performance. Memory

and disk bandwidth can be exceeded if threads use them simultaneously. A
thread can remove from the cache data used by another thread.

7. Memory allocations done by all running threads can cause swapping. Swap-
ping slows done program execution by orders of magnitude.

Unfortunately, there is no single tool which can take all the performance factors
into account. It is necessary to use specific tools for specific problems separately.

Program execution profiling is a common method for finding hot-spots within
the program code. There two kinds of profiling: a) sampling b) tracing. Sampling
checks periodically the location of the execution point. A good tool is OProfile
[10]. It can do sampling with a low overhead using normal program binaries,
giving statistics derived from CPU hardware counters, e.g. about the percentage
of time spent in various methods. Unfortunately no stalls caused by I/O or
mutexes are taken into account. Also the coordination between threads and
parallelization method are not made visible.

Valgrind simulates program execution and it can give very detailed informa-
tion about time spent in each function, but it does not simulate multithreaded
programs properly for performance considerations [11]. Therefore we will not
consider it any more.

Performance Debugging of Parallel Compression on Multicore Machines 85

Specialized tools can be used to instrument the code to measure the actual
time spend in given functions. Such tools exist for profiling standard libraries e.g.
for MPI. We have developed our own simple tracing code, called FET (Function
Execution Times). The code, inserted into key methods, measured the time a
method was active – its stack frame existed. The time measured in this way in-
cluded all kind of stalls, which could elongate the actual method execution time.

It turned out to be difficult to find tools accurately measuring I/O waiting
time. To get an estimate of it we used system monitor available in Gnome desk-
top and vmstat system command. We applied a comparative approach as well,
checking the difference between the elapsed loading times once when the data
had to be read physically from the disk and next when the data was already
present in the system disk cache memory.

To our knowledge, the best existing tool, specifically targeted towards thread
performance monitoring, is Intel Thread Profiler (do not confuse it with Thread
Checker or Sun Studio Thread Analyzer, which are specialized in detecting
race and deadlock conditions). It is a commercial tool measuring and display-
ing graphically different aspects of threaded program execution. Unfortunately,
this tool was not available for us and additionally this tool is officially available
for Windows only, while our software runs mainly on Linux. We were aware of
another problem also. Our loader creates a lot of short living threads, making
it difficult to monitor them in a sensible way using such a tool. We would get
a rather incomprehensible for reading picture with thousands of life-lines. Sun
Studio contains also some useful profiling tools, however we couldn’t find there
the functionality offered by Intel Thread Profiler for C/C++ programs.

Lacking the commercial tools, we developed simple in-house solutions. We
measured the thread life time using our FET code mentioned above, taking a
summarized time across threads doing the same kind of job (see explanation
in the next section). This way we got a good insight into the complexity of
particular jobs. To check the time spent on waiting for a particular mutex, we
created another simple lock-wait profiling tool. This tool was based on a few spe-
cial #define preprocessor commands along with __LINE__ and __FILE__
predefined macros. The macros wrapped pthread calls with a sequence of time
measuring instructions and a call to a global recording object. As a result we got
summarized time spend in each code line containing a pthread function. Calls
to pthread_mutex_lock() were of the greatest interest to us.

Additionally, we measured the execution time of the program modifying the
number of parallel threads. Serial execution provided us with timings of all “jobs”
present in the program, which were to be distributed between threads in a par-
allel execution. The timings could tell us how much work could be dispatched
to parallel threads and how much remained serialized.

3 The Case – Compression of Loaded Data

Infobright database uses a patented compression algorithm to obtain high data
compression ratio, usually cited as 10:1, although some users claim to achieve
ratio more than 30:1. All data is compressed. In result, several TB of source

86 J. Borkowski

data can be stored on a standard hard disk. Because the compression is a very
important feature for Infobright and because Infobright targets databases (data
warehouses) several TB big, Infobright data loader must deal with data com-
pression very efficiently to provide high load speeds.

Infobright is a columnar database (see [12] for further references). The data
loading process divides the source data into rows and each row into fields. Data
items belonging to a particular column across the rows are assembled together
to form a so called data pack. A data pack contains up to 64K values from a
single column. To retrieve a single row from a table, constituent fields must be
extracted from data packs from each column. E.g. row 100000th is assembled by
taking 34464th item from the second data pack from each column. Of course,
for the efficiency only columns used in a query are retrieved.

While loading, there is one data pack opened per each column. When a data
pack gets full, it is compressed (each data pack is separately compressed) and
stored on disk. A fresh data pack is created to accommodate subsequently loaded
data items. For example, a source file containing 129000 rows, each row consisting
of 3 fields will be loaded into (129000 / 65536 + 1) * 3 data packs.

The multithreaded version of the loader uses the main thread to read the
source data, divide them into rows and columns, parse values and assemble
them into data packs. For each data pack a thread is created and its task is
to compress and save the data pack on disk. This solution worked quite well,
however in some cases we observed that on a 4-way machine only 2-3 cores were
efficiently used during the load process. We will come back to it later in the
next section. For our experiments we decided to use a standard data set – the
“part” table from the TPC-H test suite [13]. Because the load process performs
uniformly as it progresses, for our convenience we took a relatively small sample
of 3 200 000 rows.

3.1 Various Performance Related Areas

At first we confirmed, using OProfile-produced code execution profile
(CPU_CLK_UNHALTED events), that thread creation and destruction, al-
though performed fairly frequently (1 thread per 64K values), does not impose
any significant overhead on Linux 2.6 running on an Intel x64 CPU – much less
than 1 percent. Therefore we dropped an idea of introducing a thread pool.

The same execution profile showed that most of the computation time is
spent in compression and initial parsing of the source data. It was no surprise
as compression is known to be computationally intensive and the source files
were in a text format (the most frequent case for Infobright users) requiring
quite intensive processing. In Table 1we can see some details. The table shows
for how many percent of the total CPU time a given function is responsible.
The 3 first rows and the 5th row refer to compression related functions. Other
rows refer to functions responsible for text parsing. We can calculate that the
compression amounts to around 65% of the total computational effort (not to
be confused with computation/elapsed time). Therefore one can expect that
(by Amdahl’s low, taking parsing as a sequential code) through delegating the

Performance Debugging of Parallel Compression on Multicore Machines 87

compression to parallel threads, it should be possible to obtain a 2.8 speedup for
this case (“part” table). However, the practically observed speedup (elapsed time
of serial vs multithreaded loading) for the test data reached 2.1 only. We needed
to investigate why the loader could not reach the theoretical speedup limit. It
was also important to learn how the speedup depends on the characteristics of
load data sets and how the parallelization method can be improved.

The vmstat command has shown significant disk activity and CPU wait time
during load. There was a possibility, that loading cannot proceed faster because
of I/O bottleneck. Instead of careful analysis of vmstat output, we compared
the load time when all the data had to be fetched from disk with the case when
the whole source file had been preloaded into the Linux system disk cache. A
command echo 3 > /proc/sys/vm/drop_caches has been used to clear the
system disk cache. On the other hand, the source file has been small enough to
fit completely in the disk cache after being read initially from the disk. Reading
from disk turned out to be responsible for 24% slow down. At first we considered
it as a very important factor. However, the measurements were taken on a usual
PC with a single SAS drive 7200 rpm. In a server system this number should be
smaller. On a dual Xeon server box equipped with an Adaptec RAID controller
for the database storage and a Linux software RAID-0 for the source files, the
slow down dropped to 4% only. Therefore disk access has been eliminated from
the list of main factors limiting the speed of the load process. Moreover, the
observable speedup in the case when source data had been preloaded was still
around 2 only.

The loader uses a number of data shared between threads. It was crucial to
learn if waiting for exclusive access to these shared data was causing significant
delays. The output of our simple lock-wait profiling tool revealed that it was not
the case. This finding, supported by application-level monitoring of the number
of existing threads, has proved that the observed idling of some CPU cores was
caused by an insufficient number of threads rather than thread waiting. The
TPC-H “part” table has a few numeric columns and only 2 longer text (VAR-
CHAR) ones. A compressing and saving thread is started for each assembled
data pack for each column. By using our FET tool, we recorded the thread life
times summarized separately for each column and we captured also the execution

Table 1. Counted CPU_CLK_UNHALTED events for sequential loading of “part”
table

Samples % Symbol name
1384194 36.0123 IncWGraph::EncodeRec(unsigned
537732 13.9901 IncWGraph::Traverse(IncWGraph::Node*&,
469181 12.2066 FTree::GetEncodedValue(RCBString)
251769 6.5502 DataParserForText::GetRowSize(char*,
111539 2.9019 IncWGraph::Node::Duplicate(IncWGraph::Node*,
92712 2.4121 RSIndex_CMap::PutValue(RCBString&,
84231 2.1914 DataParserForText::ProcessEscChar(int)
78127 2.0326 DataParserForText::PrepareNulls()

88 J. Borkowski

times of compression procedures summarized for each column. We noticed, that
the compression amounts for almost the whole thread lifetime. Text compres-
sion (columns 1 and 8 in the “part” table, see Table2) turned out to be orders
of magnitude slower than numeric compression (other columns).

Comparing the compression time of a numeric column to the time spent on
parsing and assembling data packs (FET and OProfile results), we concluded,
that the time necessary to assemble a numeric data pack is not larger than
the time necessary to compress and save it. Therefore, a single compressing
thread is able to process data packs at the rate they are assembled. In other
words, sequential parsing turned out to be a bottleneck in the case of numeric
data, for which compression is quick. Here, two solutions could be proposed: a)
optimization of the parsing procedure and b) reengineering of the loader logic,
so that more work is shifted to parallel threads. We found both possibilities to
be feasible; however their further discussion is out of the scope of this paper.

3.2 Cache Behavior

In out tests we used a machine with an Intel Core2 Quad (4 cores) 2.4GHz CPU
equipped with 4MB of L2 cache. It should be possible to potentially achieve
load speedup up to 4 on this processor and the maximal speedup 2.8 calculated
for the considered case should be obtainable easily. As we stated above, only
speedup around 2 was observed. To explain it, we studied the profiling results in
more detail. The FET results for loading with one compression thread and with
many parallel compression threads are presented in Table 2. The same procedure
(compression) was taking up to 3 times more CPU time when many threads
were working in parallel. This result seemed puzzling, because the compression
procedure does not use any synchronization primitives, it does not access files
and not all CPU cores were fully used. The computations were just going slower
when many threads were active, even if the threads did not need to compete for
CPU access.

The OProfile tool uses hardware performance counters available on modern
CPUs to get a desired application performance profile. We decided make a num-

Table 2. CPU time used by column compression for single vs many parallel threads
compressing simultaneously on Intel Core2 Quad

Column name Time 1 thread Time many threads
P_PARTKEY 0.11 0.16

P_NAME 16.92 26.92
P_MFGR 0.12 0.38
P_BRAND 0.12 0.17
P_TYPE 0.12 0.14
P_SIZE 0.12 0.19

P_CONTAINER 0.12 0.19
P_RETAILPRICE 0.10 0.20

P_COMMENT 5.50 9.12

Performance Debugging of Parallel Compression on Multicore Machines 89

Table 3. Counted L2 cache line misses (MEM_LOAD_RETIRED events)

Symbol name #misses 1 thread #misses many threads
IncWGraph::EncodeRec 5891 6822
IncWGraph::Traverse 2364 2698

DataParserForText::PrepareObjsSizes 527 574

ber of different profiles to get an answer why the compression performance was
decreasing if more concurrent computational threads were active. The first guess
was that cache L2 misses were much more frequent in multithreaded case, as the
threads were competing for cache lines. The compression code caused most of
the L2 misses and indeed, there was less L2 misses if only 1 compression thread
was active, see Table 3. The shown numbers correspond to the number of cache
misses which occurred during the load. However the difference between using one
and many threads – around 17% - could not be entirely responsible for the ob-
served computation slow down. Further profiling covered data cache L1 misses,
here very small differences were discovered between single and multithreaded ex-
ecution. Similarly DTLB (Data Translation Lookaside Buffer) misses presented
only insignificant differences.

Table 4 top, reveals that multithreaded compression generated on average
1.66 times more memory transactions, than compression performed by a single
thread. The large absolute number of memory accesses must have had a signifi-
cant influence on the observed computational performance. It remained unclear
why multithreaded compression needed to access the memory more often to
compress the same amount of data. The answer came when we returned to L2
monitoring, but this time we observed how cache lines were removed from the
cache. Lines are evicted to make room for currently needed data. If an evicted
line had been modified, it must be written back to the main memory. On average
1.72 times more evictions happened for multithreaded compression, see Table 4,
bottom. Apparently most of the evicted L2 lines were “dirty”, triggering the

Table 4. Counted number of completed memory transactions (BUS_TRAN_MEM
events, top) and number of L2 cache line evictions (L2_LINES_OUT events, bottom)

Symbol name Samples 1 thread Samples many threads
IncWGraph::EncodeRec 36854 58855
IncWGraph::Traverse 14069 23398

DataParserForText::PrepareNulls() 4876 7200
FTree::Add 2474 5697

Symbol name Samples 1 thread Samples many threads
IncWGraph::EncodeRec 30305 47519
IncWGraph::Traverse 11346 19238

DataParserForText::PrepareNulls() 4772 6015
FTree::Add 1896 4952

90 J. Borkowski

Table 5. Comparison of CPU time used by column compression using single vs using
many parallel compressing threads on Intel 2x Xeon 3.2GHz with 2-way HyperThread-
ing and on Core2 Quad

Column name Time 1
thread Xeon

Time many
threads Xeon

Time 1
thread Core2

Time many
threads Core2

P_PARTKEY 0.22 0.72 0.11 0.16
P_NAME 32.40 37.90 16.92 26.92
P_MFGR 0.21 0.27 0.12 0.38

P_BRAND 0.23 0.32 0.12 0.17
P_TYPE 0.23 0.33 0.12 0.14
P_SIZE 0.23 0.26 0.12 0.19

P_CONTAINER 0.22 0.28 0.12 0.19
P_RETAILPRICE 0.28 0.33 0.10 0.20

P_COMMENT 12.43 16.29 5.50 9.12
SUM 46.45 56.70 23.23 37.47

Slowdown 1.22 1.61

reported memory accesses. While proper cache usage proofs to be important
for multithreaded computations, the software prefetching proposed in [5] cannot
help in this case. The prefetching can work only for cases when one can predict
what data will be needed in the near future, while compression accesses large
memory structures randomly. Also, prefetching data needed by one thread could
flush from the cache data used by another compressing thread.

All the results presented so far were taken on a Core2 Quad machine. For a
comparison we employed a server equipped with 2 Xeon 3.2 GHz CPUs. The
Xeons had HyperThreading extensions, making the whole the system to present
itself as a 4-way machine, with 2MB of cache per CPU. Unfortunately, Intel
Xeon/P4 performance counters are much different than in the case of Core2.
Therefore we turned towards FET measurements. We noticed that in the case
of Xeons multithreaded compression degraded the computational capacity of
the CPU much less than in the case of Core2, see Table 5. On Xeons a single
compression took on average 1.22 times more time if it was executed in parallel
with other compressions, while on Core2 Quad this average slowdown reached
1.61. We think, that Xeons performance was more stable for two reasons: a)
Xeons were slower in absolute terms (see the timings in Table 5, single-threaded
compression took 46.45 seconds on the Xeon and only 23.23 seconds on Core2),
so memory stalls were less expensive in terms of the amount of computations
which could be done in a time of a stall, b) the differences in CPU architectures,
especially cache, may play a role here.

4 Conclusions

Multithreaded programming is the clue to the power of modern multicore mi-
croprocessors. Unfortunately, the efficiency of a multithreaded program can be
lost due to many factors. A parallel data loader performing data compression

Performance Debugging of Parallel Compression on Multicore Machines 91

is an example of an application potentially facing I/O problems in addition to
performance problems common in multithreading, like serialization on mutexes.
We presented a rather complete list of issues influencing the loader performance,
along with a set of tools necessary to deal with those issues. We found that
proper performance debugging requires a fair number of experiments and com-
pels a programmer to employ various methods and tools in an orchestrated way.
We managed to identify two main factors limiting the performance of the mul-
tithreaded data compression: a) serial parsing too slow in comparison to the
compression of numerical data and b) a degradation of the CPU computational
performance due to much increased memory access rate caused by the compe-
tition for the cache. We noticed that the degradation is much more visible on
Core2 Quad than on a Xeon system. We plan to investigate more the architec-
tural differences leading to the observed performance variations, including also
AMD processors. We will also verify the loader performance for other data sets,
especially for data with more text columns. This way we will limit the influ-
ence of the serial parsing and allow for more speedup, possible exposing more
interesting differences between various CPUs.

References
1. AMD, http://multicore.amd.com/us-en/AMD-multi-core/

multi-core-advantage.aspx
2. Intel, http://www.intel.com/technology/architecture/downloads/

quad-core-06.pdf
3. Gepner, P., Fraser, D.L., Kowalik, M.F.: Performance evolution and power bene-

fits of cluster system utilizing quad-core and dual-core intel xeon processors. In:
Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2007.
LNCS, vol. 4967, pp. 20–28. Springer, Heidelberg (2008)

4. Tao, J., Kunze, M., Karl, W.: Evaluating the cache architecture of multicore pro-
cessors. In: Proc. of the 16th Euromicro Conference on Parallel, Distributed and
Network-Based Processing, PDP 2008, pp. 12–19. IEEE, Los Alamitos (2008)

5. Papadopoulos, K., Stavrou, K., Trancoso, P.: HelperCoreDB: Exploiting multicore
technology for databases. In: 16th International Conference on Parallel Architec-
ture and Compilation Techniques PaCT 2007 (2007)

6. Hardavellas, N., Pandis, I., Johnson, R., Mancheril, N.G., Ailamaki, A., Falsafi, B.:
Database servers on chip multiprocessors: Limitations and opportunities. In: Pro-
ceedings of the Biennial Conference on Innovative Data Systems Research (2007),
http://www.cidrdb.org/

7. Poess, M., Potapov, D.: Compression in oracle. In: VLDB 2003, pp. 937–947 (2003)
8. Holloway, L., Raman, V., Swart, G., DeWitt, D.J.: How to barter bits for chronons:

Compression and bandwidth trade offs for database scans. In: SIGMOD Conference
2007, pp. 937–947 (2007)

9. Infobright: http://www.infobright.org, www.infobright.com
10. OProfile - a system profiler for linux, http://oprofile.sourceforge.net
11. Valgrind, http://valgrind.org/
12. Slezak, D., Wroblewski, J., Eastwood, V., Synak, P.: Brighthouse: An analytic data

warehouse for ad-hoc queries. In: Proceedings of the VLDB Endowment, vol. 1(2),
pp. 1337–1345 (2008)

13. Transaction Processing Performance Council: http://www.tpc.org/tpch/

http://multicore.amd.com/us-en/AMD-multi-core/multi-core-advantage.aspx
http://multicore.amd.com/us-en/AMD-multi-core/multi-core-advantage.aspx
http://www.intel.com/technology/architecture/downloads/quad-core-06.pdf
http://www.intel.com/technology/architecture/downloads/quad-core-06.pdf
http://www.cidrdb.org/
http://www.infobright.org
www.infobright.com
http://oprofile.sourceforge.net
http://valgrind.org/
http://www.tpc.org/tpch/

Energy Considerations

for Divisible Load Processing

Maciej Drozdowski�

Institute of Computing Science, Poznań University of Technology,

Piotrowo 2, 60-965 Poznań, Poland

Maciej.Drozdowski@cs.put.poznan.pl

Abstract. In this paper we analyze energy usage in divisible load pro-

cessing. Divisible load theory (DLT) applies to computations which can

be divided into parts of arbitrary sizes, and the parts can be indepen-

dently processed in parallel. The shortest schedule for divisible load pro-

cessing is determined by the speed of computation and communication.

Energy usage for such a time-optimum schedule is analyzed in this pa-

per. We propose a simple model of energy consumption. Two states of

the computing system are taken into account: an active state and an idle

state with reduced energy consumption. Energy consumption is exam-

ined as a function of system parameters. We point out possible ways of

energy conservation. It is demonstrated that energy can be saved by use

of parallel processing.

Keywords: Energy-efficient computing, performance evaluation, divisi-

ble loads.

1 Introduction

Divisible load theory (DLT) is a new parallel processing paradigm applicable in
computations which can be divided into parts of arbitrary sizes and processed
independently on remote computers. In other words, the DLT assumptions are
relevant to computations with fine granularity and negligible data dependen-
cies. Processing big volumes of data is an example of divisible computation.
Consider searching for patterns in medical screening photographs. The set of
photographs can be partitioned with granularity of one picture. If the number of
pictures is big, then the resolution of partitioning the whole dataset is fine. The
photographs can be analyzed independently of each other. Other examples of di-
visible computations include processing measurement data (e.g. SETI@home),
image and video processing, linear algebra, search for combinatorial objects (e.g.
distributed.net). Divisible load theory originated in the late 1980s [1,3] as a way
to strike a compromise between the communication delays and the gains from
faster parallel processing. Surveys of DLT, and its practical applicability can be
found in [2,4,7].
� Partially supported by grant N N519 1889 33 of Polish Ministry of Science and

Higher Education.

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 92–101, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Energy Considerations for Divisible Load Processing 93

Energy consumption of contemporary data centers, and supercomputing facil-
ities is becoming a limiting factor to their growth [6]. Buying power is becoming
more and more expensive. For example, the average power usage of the first
5 supercomputers from the current (June 2009) top500 list [9] is over 3.2MW.
At the current prices in Poland (≈0.3PLN/kWh) this would cost ≈23.3k PLN
daily, and ≈8.5M PLN annually (resp. ≈5.5k, ≈2M EUR). Thus, careful and eco-
nomic use of energy is an indispensable element of the future high performance
computing.

The cost of divisible load processing in general has been analyzed in [5,8].
The cost considered in [5,8] could be monetary as well as energy. In both pub-
lications two problems were analyzed: to find the minimum cost schedule for
a given schedule length, or to find minimum schedule length for a given cost
limit. Both papers took into account the cost of computation only. In [8] the
sequence of activating heterogeneous computers minimizing the cost was pro-
posed, but computation startup costs were ignored. In [5] it was shown that the
above problems are computationally hard (strictly NP-hard) when the startup
time is non-negligible. Yet, for a given sequence of communications between the
processors and the load distributor the problem can be solved by reduction to
linear programming. In this paper we assume that performance is the primary
criterion. Therefore, the shortest schedules are used. Energy consumption is ex-
amined for such time-optimum schedules. Moreover, we concentrate on a more
energy-specific representation of the costs of load processing. It is assumed that
both the communication and the computations use energy. The costs of com-
putation initiation (startup costs) are taken into account. Similarly to [11] we
assume that computing system can be in two states: idle and active. In the idle
state power usage is reduced.

The rest of this paper is organized as follows. In the next section we formulate
the mathematic model of divisible load processing both with respect to the
timing and to the energy cost. In section 3 results of performance evaluation are
presented. In section 4 we provide conclusions and discuss lessons learned.

2 Problem Formulation

In this section we outline construction of the optimum length schedule, as well as
its energy consumption. Words computer, processor will be used interchangeably.
A processor consists of a CPU, memory, and network interface. The CPU and the
network hardware can work in parallel such that simultaneous communication
and computation is possible. The topology of the processor interconnection is a
star (a.k.a. single level tree). In the center of the star resides a processor P0 called
originator (also called master, server) which distributes the load to the remaining
processors P1, . . . , Pm (called slaves, workers). The star topology may represent
a computer cluster in a local area network or a set of computers interconnected
in the grid infrastructure. The computing environment is homogeneous.

Timing Model. It is assumed that initially volume V of load resides on the orig-
inator. The load is sent from the originator to processors P1, . . . , Pm in pieces

94 M. Drozdowski

of sizes α1, . . . , αm. To receive a piece of load a processor has to be activated
first. The activation process may include transition of the computer hardware
and software from the idle to the running state, loading the divisible applica-
tion runtime environment (such as virtual machines and libraries), starting the
application, allocating memory and bringing the application to the state of ac-
tive waiting for the message with the piece of load. The time of activation is
denoted S, and referred to as computation startup time. Sending αi units of
load to processor Pi takes time αiC. Computations for this amount of load take
time αiA. It is assumed that the time of returning the results to the originator
is very short and can be neglected. It is a common assumption in DLT made
for the sake of simplicity in mathematical modeling [2,4,7]. We distinguish two
cases depending on the participation in the computations of the originator. If
the originator is dedicated solely to distributing work then it receives no load
(Fig.1a). Otherwise, originator takes part in the computation and processes load
α0 > 0 (Fig.2a).

a)

computation

computation

idle

idle

idle

idle

active

active

active

active

computation

communication

P1

P1

P0

P0

Pi

Pi

Pi+1

Pi+1

Pm

Pm

�iC �m mC

�iC

�i+1C

�i+1C �i+1A

�1A

�iA

�mA

�1C

�1C

...

...

...

...

time

S

S

S S

S

S

S

active

�m mCS

b)

Fig. 1. Initiator is not computing. a) Communication and computation schedule. b)

Power usage schedule.

The optimum schedule length is obtained by selecting sizes of load chunks
α1, . . . , αm, and α0 if applicable. It has been shown in [2] that if the result
returning time can be neglected, then for the minimum schedule length all pro-
cessors must stop computations simultaneously.

Assume that the originator is not computing. The above observation leads to
the system of linear equations, from which chunk sizes are derived (cf. Fig.1a):

Aαi = S + (C + A)αi+1 for i = 1, . . . ,m− 1 (1)

Energy Considerations for Divisible Load Processing 95

m∑
i=1

αi = V (2)

Let us denote as σ = S/A, and ρ = 1 + C/A. Then,

αi = σ + ραi+1 =
= σ + ρ(σ + ραi+2) = σ + ρσ + ρ2αi+2 = . . .

= σ + ρσ + . . . + σρm−i−1 + ρm−iαm =

=
σ(1 − ρm−i)

1 − ρ
+ ρm−iαm. (3)

for i = 1, . . .m. From (2) and (3) we obtain

V =
m∑

i=1

αi =
m∑

i=1

(
σ(1 − ρm−i)

1 − ρ
+ ρm−iαm

)
=

=
σ

1 − ρ

(
m − 1 − ρm

1 − ρ

)
+

αm(1 − ρm)
1 − ρ

. (4)

Consequently,

αm =
V (1 − ρ)
1 − ρm

− σ(m(1 − ρ) − 1 + ρm)
(1 − ρm)(1 − ρ)

(5)

Note that in the above equation we have subtraction, and αm may become neg-
ative if σ and m are sufficiently big. All such combinations of V,m,C, S,A that
αm < 0 are rejected as infeasible. In practice αm < 0 means that the load V is
too small to employ all m processors for the current communication parameters
C, S and processing rate A. If the programmer still decided to use this num-
ber or more processors, then schedule length would grow instead of decreasing.
Consequently, efficiency of the schedule would also unnecessarily decrease.

When the originator is not computing schedule length is

T (m) = S + (C + A)α1, (6)

where α1 is calculated from (3) and (5).
If the originator is computing (Fig.2a) then partitioning of the load can be

derived in the same way as in the previous case, however, equations (1) and (2)
start from i = 0. Equation (3) is valid for i = 0, . . . ,m. Analogously to (4), (5)
we obtain

αm =
V (1 − ρ)
1 − ρm+1

− σ(m(1 − ρ) − ρ + ρm+1)
(1 − ρm+1)(1 − ρ)

. (7)

Schedule length is
T (m) = S + Aα0, (8)

where α0 is calculated from (7) and (3).

96 M. Drozdowski

a)

computation

computation

computation

idle

idle

idle

active

active

active

active

computation

P1

P1

P0

P0

Pi

Pi

Pi+1

Pi+1

Pm

Pm

�iC �m mC

�iC

�i+1C

�i+1C �i+1A

�1A

�0A

�iA

�mA

�1C

�1C

...

...

...

...

time

S

S

S

S S

S

S

S

activeb)

Fig. 2. Initiator is computing. a) Communication and computation. b) Power usage.

Energy Use Model. Now let us analyze the energy usage. Both the network and
the processors may be either active or idle. It is assumed that active processors
consume power PC , and the active network equipment consumes power PN . In
the idle state power consumption is k times smaller, i.e. PC/k, and PN/k, for
processors and for the network, respectively. To simplify mathematical formulae
we divide the energy usage into two parts: the idle state energy, and the energy
beyond the idle state consumed when processors and the network are running.
During the whole schedule of length T (m), the originator, m idle processors and
the idle network consume energy

EI = T (m)((m + 1)PC + PN)/k. (9)

The network is in the running state at the beginning of the schedule while
distributing the load (cf. Fig.1b, and Fig.2b). Suppose the originator is not
computing. Processor activation and the load distribution time is

∑m
i=1(S +

Cαi) = mS + CV . The energy consumed above the network idle state is

ERN = PN
k − 1
k

(mS + CV). (10)

The originator is active during the whole load distribution time mS + CV ,
which results in energy consumption PC

k−1
k (mS +CV). The remaining proces-

sors switch from the idle state to the running state when they are activated.
Thus, processor Pi is active for S + αi(C + A) units of time, consuming en-
ergy PC

k−1
k (S +αi(C +A)) above the idle state. The total computation energy

consumption beyond the idle state is

Energy Considerations for Divisible Load Processing 97

ERC = PC
k − 1
k

(
mS + CV +

m∑
i=1

(S + (C + A)αi)

)

= PC
k − 1
k

(2mS + (2C + A)V). (11)

Suppose the originator is computing. The time of communications is
∑m

i=1(S +
Cαi) = mS +C(V −α0). The energy consumed by the network beyond the idle
state is

ERN = PN
k − 1
k

(mS + C(V − α0)). (12)

The processors together consume beyond the idle state

ERC = PC
k − 1
k

(
S + Aα0 +

m∑
i=1

(S + (C + A)αi)

)
=

= PC
k − 1
k

((m + 1)S + V A + (V − α0)C) . (13)

The total energy consumed in the computation is

E = EI + ERN + ERC . (14)

3 Performance Evaluation

In this section we analyze the amount of energy E necessary to achieve certain
schedule length T (m).

Before presenting the details of the simulations let us examine a general rela-
tionship between the system and application parameters A,C, S, PN , PC , V , the
number of used processors m, processing time T (m), and energy E. As mentioned
in the previous section the number of processors m that can be exploited depends
on A,C, S, V . A general tendency in divisible load processing is that with grow-
ing C, S the number of usable processors decreases because communication delays
increase and preclude effective use of many processors. On the other hand, with
growing A, V the number of usable processors increases because relative contri-
bution of communication delays to the schedule length decreases [2,4,7]. Since the
reduction in processing time T (m) comes from applying more processors, and the
number of usable processors is limited, also the reductions in T (m) are limited.
Increasing C, S results in narrower range of processor numbers m where T (m) is
reduced. Conversely, increasing A, V widens the range of T (m) reductions. Note
that in the following charts T (m) will be shown on the horizontal axis. Now let
us examine energy as determined by equations (9) - (13). Intuitively, it can be ex-
pected that shorter schedules engage more processors, and hence, should be more
costly in energy. Indeed, in all the above equations energy consumption grows with
the processor number m. Beyond m, energy consumption depends on constants
V,A,C, S, PC , PN , k. Optimizing them for minimum power usage is beyond the
scope of this paper. Let us now proceed to the results of the simulations. In the

98 M. Drozdowski

a)

2.0E+15

2.2E+15

2.4E+15

2.6E+15

2.8E+15

1E7 1E8 1E9 1E10 1E11 1E12 1E131E14

originator is computing

originator not computing

E

T m()

m=1

m=1
m=10

m=100

m

b)

2.0E5

2.5E5

3.0E5

3.5E5

4.0E5

4.5E5

1E2 1E3 1E4

originator is computing

originator not computing

E

T m()

m=1

m=1

m=4

m=4

Fig. 3. Energy E vs. schedule length T (m) for A = 1, C = 1E-6, S = 1E2,PN =

50, PC = 200, k = 3. a) V = 1E13, b) V = 1E3.

following figures we present dependence of the total energy used as defined in (14)
versus schedule length defined in equations (6), or (8).

In Fig.3 energy consumption vs. processing time is shown. Values of the pa-
rameters used in Fig.3 can be interpreted as follows. Processing one unit of load
takes 1s (A = 1), transferring it from the originator to the remote processor takes
1μs (C = 1E-6), computation startup time is 100s, the network equipment uses
only 50W of power in the active state (PN = 50), a computing processor uses
200W of power (PC = 200), in the idle state power usage is three times smaller
(k = 3). Let us remind that T (m) is not a real independent variable, because
both T (m) and E change as a result of using more processors m. Surprisingly, E
as a function of T (m) has a minimum. With increasing processor number execu-
tion time is decreasing, as could be expected, but initially also the energy used is
decreasing. This behavior of E dependence on T (m) can be explained by several
phenomena. Let us assume that the originator is not computing. Note that in
(9) the idle state energy depends on T (m). With growing processor number m,
execution time T (m) decreases. Therefore, E initially decreases with decreasing
T (m). Most of this reduction can be attributed to shorter network and initiator
idle state. The relative difference between the highest and the lowest energy con-
sumption in the above experiments ranged from 30% to 40% (originator is not
computing). The extent of energy savings may be surprising, considering their
source. However, it is a result of long computation time when the communica-
tion system remains idle. On the other end of the diagram E is not growing to
the infinity because increasing m leads to αm < 0 in equation (5) which means
that it is impossible to activate all the processors with the given V . As noted in
the previous section we reject such cases as infeasible. A wide plateau of energy
usage in Fig.3a results from approximately equal effect of decreasing T (m) in
(9) and increasing component mS in (10), (11). With decreasing problem size
V the interval of T (m) with nearly flat energy usage narrows until disappear-
ing completely for V = 1E3, as shown in Fig.3b. The above observations apply
also if the originator is computing, though this case is more energy efficient.

Energy Considerations for Divisible Load Processing 99

a)

2.0E11

2.5E11

3.0E11

3.5E11

4.0E11

4.5E11

5.0E11

5.5E11

6.0E11

6.5E11

1E5 1E6 1E7 1E8 1E9

E
PN=1E3
PN=5E2
PN=1E2
PN=5E1
PN=1E1

T m()

b)

2.0E+11

2.5E+11

3.0E+11

3.5E+11

4.0E+11

4.5E+11

1E5 1E6 1E7 1E8 1E9

k=10
k=5
k=2
k=1

E

T m()

Fig. 4. Energy E vs. T (m) a) for changing PN at k = 3 b) for changing k at PN = 50,

and A = 1, C = 1E-6, S = 1E2,PC = 200, k = 3. Originator is not computing.

Consequently, energy savings are smaller. We further discuss the difference be-
tween the situation when the originator is computing, or not computing, at the
end of this section.

In Fig.4a energy consumption vs. processing time is shown for various values
of the network power usage PN when originator is not computing. The bigger
PN is, the bigger the initial decrease of E with decreasing T (m). On the other
hand, when m is big, and T (m) is near its minimum, ERC is dominating in E,
and all the functions end overlapping.

In Fig.4b energy consumption vs. processing time is shown for various values
of the active to idle power usage ratio k. For instance, k = 1 represents the
situation when power usage in idle state is no different than in the running
state. This means that the whole energy consumption is described in equation
(9). As it can be seen the biggest reduction in energy consumption takes place
just for k = 1 which confirms that the energy savings result from shortening of
the idle state. On the other hand, for k > 1 the energy savings are shallower in
Fig.4b, but the total energy consumption is smaller than for k = 1. Let us note
that one should not be confused that k = 1 is better than k > 1 because deeper
energy reductions are not the same as smaller overall energy use.

When the originator is computing the dependencies of E on T (m) for changing
PN , k are very similar. Therefore we do not present them here.

Let us now return to the difference between the cases when originator is and
is not computing. By subtracting (12) from (10) we obtain the difference in the
energy used by the network: Cα0PN (k − 1)/k. Analogously, from (11) and (13)
the difference in the energy used by the running processors is ((m−1)S+C(V +
α0))PC(k − 1)/k. The total difference in energy use is

ΔE = PN
k − 1
k

Cα0 + PC
k − 1
k

((m − 1)S + C(V + α0)). (15)

Startup times mS cannot dominate in the processing time because otherwise
distributed processing would be counterproductive. Hence, (m−1)SPC(k−1)/k

100 M. Drozdowski

does not constitute a big difference. The remaining components are related to CV
and Cα0. These gains are especially noticeable if C is big, e.g. C ≈ A. Moreover,
if the originator is computing it is possible to save energy by not sending load
α0 for remote processing. In this case we have an additional computer which
nearly immediately starts processing the load. The two cases are juxtaposed in
Fig.5. It confirms that the difference between the two cases is big when C ≈ A.
For example, for C = 0.5 the difference in energy used is in the range of 130%,
while for C = 1E-3 it is not more than 30%.

2.0E11

4.0E11

6.0E11

8.0E11

1.0E12

1.2E12

1.4E12

1E6 1E7 1E8 1E9 1E10

C=0.1initiator isnotcomputing

C=0.5initiator isnotcomputing

C=0.5initiator iscomputing

C=1E-3initiator isnotcomputing

C=1E-3initiator iscomputing

C=0.1initiator iscomputing

E

T m()

Fig. 5. Energy E vs. schedule length T (m) for A = 1, S = 1E2, V = 1E9, PN =

50, PC = 200, k = 3 and changing C

Let us observe that Fig.5 also demonstrates influence of communication rate
C on potential energy savings. As it can be seen, for small C energy consump-
tion initially decreases with increasing m, and hence decreasing processing time
T (m). The plateau of nearly flat energy consumption spans three orders of mag-
nitude in T (m). On the other hand, for big C energy consumption decreases only
marginally, and then quickly grows with m (while T (m) is nearly constant). It
can be concluded that small C is essential for allowing reduction in energy con-
sumption. It means that bandwidth must be high. This condition coincides with
the requirements for effective communication in parallel applications.

4 Conclusions

In this paper we analyzed energy use in distributed processing of divisible loads.
The energy consumed has been presented as a function of the execution time.
Surprisingly, it appeared that this function has a minimum, and with decreasing
processing time energy used is also decreasing. Hence, we have demonstrated that
it is possible to save energy by parallel processing. We compared two ways of
processing divisible loads: with and without computations on the load originator.

Energy Considerations for Divisible Load Processing 101

It turns out that using the originator is more energy-efficient. Yet, the differences
are apparent only if communication medium is slow.

Our analysis reveals that the savings come from shorter idle state of the
communication subsystem. The network idle time is specific to divisible load
processing. Similar idle intervals exist in other parallel processing models, e.g.,
bulk-synchronous processing [10]. Hence, also in other types of parallel appli-
cations reduction in network energy consumption should be possible. On the
other hand, parallel applications which are communication intensive would have
no such network idle time. Consequently, this kind of energy saving would not
materialize. The analysis conducted in this paper points to a new way of econ-
omizing on energy which is often overlooked. Namely, communication network
consumes energy, and also here considerable resources can be saved. Possibly,
further savings may be achieved by grouping communications, and switching off
the network when it is idle.

References

1. Agrawal, R., Jagadish, H.V.: Partitioning Techniques for Large-Grained Paral-

lelism. IEEE Transactions on Computers 37, 1627–1634 (1988)

2. Bharadwaj, V., Ghose, D., Mani, V., Robertazzi, T.: Scheduling divisible loads

in parallel and distributed systems. IEEE Computer Society Press, Los Alamitos

(1996)

3. Cheng, Y.-C., Robertazzi, T.G.: Distributed computation with communication de-

lay. Transactions on Aerospace and Electronic Systems 24, 700–712 (1988)

4. Drozdowski, M.: Scheduling for Parallel Processing. Springer, London (2009)

5. Drozdowski, M., Lawenda, M.: The combinatorics of divisible load scheduling.

Foundations of Computing and Decision Sciences 30, 297–308 (2005)

6. Katz, R.H.: Tech titans building boom. IEEE Spectrum 46(INT), 36–49 (2009),

http://www.spectrum.ieee.org/feb09/7327

7. Robertazzi, T.: Ten reasons to use divisible load theory. IEEE Computer 36, 63–68

(2003)

8. Sohn, J., Robertazzi, T.G., Luryi, S.: Optimizing computing costs using divisible

load analysis. IEEE Transactions on Parallel and Distributed Systems 9, 225–234

(1998)

9. TOP500 List (June 2009), http://top500.org/list/2009/06/100

10. Valiant, L.: A bridging model for parallel computation. Communications of the

ACM 33, 103–111 (1990)

11. Woo, D.H., Lee, H.-H.S.: Extending Amdahl’s law for energy-efficient computing

in the many-core era. IEEE Computer 41, 24–31 (2008)

http://www.spectrum.ieee.org/feb09/7327
http://top500.org/list/2009/06/100

Deskilling HPL

Using an Evolutionary Algorithm to Automate Cluster
Benchmarking

Dominic Dunlop, Sébastien Varrette, and Pascal Bouvry

CSC research unit, University of Luxembourg, Luxembourg

Firstname.Lastname@uni.lu

Abstract. The High-Performance Linpack (HPL) benchmark is the ac-

cepted standard for measuring the capacity of the world’s most powerful

computers, which are ranked twice yearly in the Top 500 List. Since

just a small deficit in performance can cost a computer several places, it

is important to tune the benchmark to obtain the best possible result.

However, the adjustment of HPL’s seventeen configuration parameters

to obtain maximum performance is a time-consuming task that must

be performed by hand. In a previous paper, we provided a preliminary

study that proposed the tuning of HPL parameters by means of an Evo-

lutionary Algorithm. The approach was validated on a small cluster. In

this article, we extend this initial work by describing Acbea, a fully-

automatic benchmark tuning tool that performs both the configuration

and installation of HPL followed by an automatic search for optimized

parameters that will lead to the best benchmark results. Experiments

have been conducted to validate this tool on several clusters, exploiting

in particular the Grid’5000 infrastructure.

1 Introduction

Statistics concerning high-performance computers are of major interest to manu-
facturers, users, and potential users. The Top500 project [2] operates at a world-
wide level as a reference contest to evaluate the 500 most powerful computer
systems. The list is updated twice a year and the computers are ranked by their
performance on the long-established High-Performance LINPACK (HPL) [17]
benchmark, despite the existence of newer alternative benchmarks [7]. HPL is
a software package that solves a (random) dense linear system using double-
precision (64 bit) floating-point arithmetic on distributed-memory computers.
Seventeen configuration parameters should be tuned and adapted to the com-
puting platform to obtain maximum performance. Even though some guidelines
exist to guide the search of the parameter space (firstly from the authors of HPL
themselves, and secondly in articles that discuss HPL tuning such as [5,19]), this
is generally a tedious task that is performed by hand. In a previous paper [6], we
showed how an evolutionary algorithm (EA) may be exploited to determine the

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 102–114, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Deskilling HPL 103

best possible parameters in a nearly automatic way, in order to maximize the
results of the benchmark. The approach was validated on a small cluster hosted
at the University of Luxembourg.

In this article, we describe the extension of this approach into a framework
called Acbea (Automatic Cluster Benchmark with Evolutionary Algorithm),
which provides a fully-automatic benchmark tuning tool based on an EA that
explores the parameter space with many small benchmark runs, delivering pa-
rameter combinations that are likely to produce outstanding results in larger
runs. The approach may be used iteratively if necessary, progressively reducing
the proportion of the parameter space explored.

2 Context and Problem Statement

HPL [17] solves a dense N by N system of linear equations A × x = b (divided
into blocks of size P ×Q) by Gaussian elimination with partial pivoting. As well
as N , P and Q, fourteen further parameters control HPL’s execution, and any
system administrator who has tried to evaluate the computing power of a cluster
with HPL can testify to the difficulty of manually tuning these parameters to
maximize the benchmark result. The problem is due to the size of the search
space and the fact that a single run can take more than half a day.

That this tuning is of crucial impor-

 0

 50

 100

 150

 200

 250

 300

 0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 s

ys
te

m
s

m
ov

in
g

do
w

n

Percentage decrease in HPL result

Fig. 1. Impact of HPL result reduction on

the Top500 rank

tance is illustrated by figure 1, which
shows how many systems in the Novem-
ber 2009 Top 500 list[2] would lose one
place or more if their HPL result were
slightly lower.

Our previous work [6] promoted the
idea that HPL can be seen as an
objective function for an Evolutionary
Algorithm (EA) in such a way that it
faciliates and automates the tuning
process. EA refers to a class of problem-
solving techniques based on the Dar-
winian theory of evolution. A possible
and acceptable solution i.e. a member

of the population is called an individual. Each iteration (or generation) of an
EA involves a set of genetic operators randomly applied to the individuals to-
gether with a competitive selection that weeds out poor individuals through the
evaluation of a fitness value that indicates their quality as a solution to the prob-
lem. More details on EAs may be found in [10]. The EA in [6] is configured as
follows. An individual corresponds to a set of eligible parameters for HPL. Its fit-
ness value is the benchmark result when running HPL on the cluster with those
parameters. Our initial study delegated the details of the evolutionary compu-
tation to Acovea, a framework initially designed to investigate the optimum
combination of command-line flags for a compiler (Acovea stands for Analysis

104 D. Dunlop, S. Varrette, and P. Bouvry

of Compiler Options via Evolutionary Algorithm). Using an adapter to match
HPL to the Acovea interface when benchmarking a small cluster, spectacular
results were obtained with little effort compared to classical hand-tuning.

This paper extends our initial proposal in two directions. Firstly, the details
of the evaluation process to find the most suitable library are set out (see §3.1).
Secondly, we describe an all-in-one framework called Acbea (see §3.2) for bench-
marking the computing power of a cluster through HPL. This tool is designed
to download, build and launch HPL in such a way that the process of parame-
ter tuning is handled internally and sequentially, starting from a small problem
size and moving to the largest possible. Hopefully, this last configuration will
produce the best benchmark result for the computing platform. Acbea makes
use of an EA to automate nearly all tedious processes such that the interaction
of the user is limited to an initial setup, some manual tuning for the last step
of the evaluation and finally the collection of the ultimate result (see §3.3). As
before, our approach is based on the assumption that individuals that produce
good results in small, short benchmarks are likely to produce good results in
larger, longer tests. This hypothesis follows from practical observations and is
discussed in §4.

3 Acbea Software Components

The software harness used in [6] was assembled quickly using scripting tools.
As such, it was difficult to run and to maintain, and suffered from a number
of inefficiencies. For example, the evaluation of each set of HPL parameters
required a batch job to be submitted to start a new instance of HPL on the
cluster’s compute nodes. Thus each evaluation incurred both batch submission
and HPL start-up overhead. For the follow-up work documented here, a more
flexible, efficient and maintainable package was developed from the ground up.
The package was designed with several constraints in mind. First of all, to have a
maximal portability: the software package should build and run in as many unix-
like environments as possible, and be able to utilize a choice of components for
the following elements:

– C and C++ compilation systems. GCC and HP’s aC++ were used in devel-
opment, but other products such as Intel’s icc can also be used.

– Batch job submission system. Development has been carried out exclusively
with OAR [4], but hooks are provided to allow alternative schedulers.

– BLAS (Basic Linear Algebra Subroutines) library implementation. We use
ATLAS [21] as a default, but alternative implementations can be used.

– Message Passing Interface. OpenMPI [8] was used in most tests, but alter-
natives are supported.

We also want to ensure minimal prerequisites, liberal licence terms, and finally
no modification to HPL source code.

Deskilling HPL 105

3.1 Choice of Evolutionary Algorithm Library

Thirteen evolutionary algorithm library packages, all written either in C or C++,
were evaluated against five criteria:

1. Portability. The packages were built in four environments: FreeBSD, HP/UX,
Linux and Mac OS X. Packages that built and passed their own test suites
in all environments were given a higher score. Points were deducted if the
build process was difficult and/or required additional packages.

2. MPI support. Two points were given to packages that included support for
MPI.

3. Currency. Packages having a recently-released revision were marked higher
than those that had not been updated for some time. The thinking behind
this was that a recent revision suggested the existence of an active develop-
ment community that would be able to provide support if necessary.

4. Maturity. The initial release date and the revision history of each package
were examined to judge its maturity. Packages that had been available for
several years and which had been regularly updated were marked higher than
new packages, or old packages that had seen few revisions.

5. Size. Small packages were marked higher than large. It should be noted that
the large packages support a wide variety of heuristic optimization meth-
ods. However, as it was not the aim of the research described here to test
alternative methods, this was not considered an advantage.

Table 1. EA library evaluation

Good Bundle Port- MPI Curr- Mat-

Package Ver. Date builds size ability support ency urity Size Total

Evocosm[13] 3.3.1 2008 5 532kB 4 0 5 5 4 18

GAlib[20] 2.4.7 2007 5 368kB 4 0 4 4 4 16

Open BEAGLE[9] 3.0.3 2007 5 4.8MB 4 0 4 5 3 16

PGAPack[15] 1.1 2008 5 548kB 4 2 3 3 4 16

EO[11] 1.0.1 2008 4 972kB 3 0 5 3 4 15

GAtoolbox[18] n.a. 2007 4 40kB 3 0 4 2 5 14

ParadisEO[3] 1.1 2008 4 20.5MB 3 2 5 3 0 13

The result of the evaluation for the seven highest-scoring packages is shown in
table 1. The Evocosm [13] package scored highest, and so was chosen as a basis
for Acbea. Evocosm implements a classical evolutionary algorithm as described
in [10]: individual experiments are described by a genome made up of genes
representing parameter values for the experiment; genomes that produce good
experimental results are more likely to be used in creating the genomes used in
the next generation than those that produce poor results. Each individual in the
next generation is created by choosing two parents, and selecting each gene in
the new individual from one of the parents at random1. Individual genes may
1 This differs from the classical concept of crossover in that no attempt is made to

preserve groups of genes that are adjacent to one another.

106 D. Dunlop, S. Varrette, and P. Bouvry

also mutate to a value that differs from either of the parent genes. Optionally,
an elitist strategy may be used to preserve the best individuals. Additionally,
Evocosm implements an island model i.e. it maintains several populations that
exchange some individuals periodically. Note that this library also underlies the
Acovea [12] framework used in our earlier work.

3.2 Acbea

Acbea consists of a suite of programs

Fig. 2. Acbea: population evaluation

that work together to automate the bench-
mark process. The most important of these
is runacbea, which runs on the head node
of a cluster and submits batch jobs for
the cluster’s compute nodes. The jobs are
typically handled by a batch job manager.

Runacbea’s XML-format configuration
file describes HPL’s parameters and their
allowable values. It also contains informa-
tion about the batch job manager and the
implementation of MPI that is to be used.

The program’s operation for a single
population of benchmark evaluations is
shown in figure 2. The sequence of oper-

ations is repeated for each population in a generation, and the overall sequence
is repeated until a specified number of generations has been run. If sufficient
compute nodes are available, the task of fitness assessment for each population
may be shared among several parallel jobs, so speeding evaluation. Each batch
of benchmarks is run using MPI to launch multiple copies of dhpl, a customized
variant of HPL’ s xhpl benchmark program. While xhpl uses a short configura-
tion file to describe a series of related tests, dhpl uses a file of arbitrary length
to define the series of unrelated tests that represents all or part of a population.
Conforming to the constraints presented in §3, the HPL problem solution code is
unchanged. The result output format has been changed as little as possible. On
terminating, runacbea summarizes its findings and produces a number of output
files. The first contains a configuration for a subsequent run with a problem dou-
ble the size on four times the number of cores. As four times the compute power
is being applied to a problem having eight times the complexity, each benchmark
will take almost twice as long as those defined by the original configuration file.
In order that the subsequent run may explore only the more profitable parts of
HPL’s parameter landscape, the parameter values allowed by the new configu-
ration file exclude those which appear only in most poorly-performing 33% of
individuals in the run. (This cut-off level may be changed.) The remaining out-
puts are configuration files for xhpl, representing the parameters that produced
the best-performing individual in the each population of the final generation.
These files may be used to run xhpl benchmarks directly. The decision to host
runacbea on the head node of a cluster may be questioned, as the intention is to

Deskilling HPL 107

benchmark the compute nodes, while the main task of the head node should be
to run administrative housekeeping functions for the cluster. In fact, runacbea
may itself be viewed a housekeeping program: tests show that it and its child
processes consume perhaps five seconds of processor time over an entire run,
during which the compute nodes may clock up hundreds of hours.

3.3 The Benchmarking Process

The benchmarking process with Acbea involves the following steps:

1. Gather information about the target cluster: nodes, cores and memory per
node, MPI implementation, batch job manager . . .

2. Use the provided ten-sec-n utility to obtain a value of N that makes HPL
run for ten seconds on a single core . Let Nten sec be this value.

3. Edit the runacbea configuration file to create one suitable for testing all the
cores in a small group of nodes n — four has been found to be a reasonable
choice for n. The value of N in this file may be calculated using N4 nodes =
Nten sec×0.7× 3

√
compute cores. The 0.7 factor compensates for the fact that

no inter-node communication is used during the determination of Nten sec.
4. Optimize HPL configuration for a benchmark on the small group of nodes. In

this step, runacbea runs an EA on five populations of forty individuals each
for twenty generations. Each individual is evaluated in around ten seconds
so this step may take half a day if a single group of nodes is used. The
evaluations may be done in parallel over several groups to reduce the time
required.

5. Use the best parameters found in step 4 for a new optimization run on groups
of nodes four times larger (i.e sixteen if step 4 used four), solving problems
of double the size: Nni nodes = 2i−1Nn nodes∀i ≥ 2. Repeat this step until
you reach a solution suitable for node groups having a size as near as possible
to (but not exceeding) the number of nodes in the cluster.

6. Use the best configuration found at the previous step for the final benchmark
evaluation on the full cluster. The problem size for this run can be calculated
from the cluster’s installed memory with the following formula:

Nfull theoretical � 0.8
√

Total Memory Size in bytes × sizeof(double)
8

The perfect value of N should be manually adapted from Nfull theoretical by
monitoring the memory usage on the cluster nodes to avoid swapping. This
is an activity that Acbea does not currently automate. Each run of this
last step takes one hour on a cluster having up to 500 cores and 1–2 GiB
of memory per core. Note that it is the only step that requires full cluster
reservation.

7. Choose the best result for publication as the HPL benchmark score.

4 Scalability

The methodology implemented by Acbea is based on two assumptions: (1) a
single run of an experiment will produce a result that is representative of the

108 D. Dunlop, S. Varrette, and P. Bouvry

results of multiple runs of the same experiment and (2) HPL parameters that
produce good results in small, short benchmarks are likely also to produce good
results in larger, longer tests. If the first assumption is not true, the fitness values
used by the EA may not be correct, with the result that the next generation does
not reflect the genomes of the truly most fit individuals. This issue is investigated
in §4.1. If the second assumption is false, there is no point in trying to use
small benchmarks to explore HPL’s parameter space; large, long-running tests
would be the only ones that could yield useful information about full-cluster
benchmarks. §4.2 reports on tests of scalability.

4.1 Individual Benchmark Repeatability

A series of tests was run on fifteen two-core nodes of the Chaos cluster (see table
2) to investigate the variability in the results obtained from repeated runs of the
same test. As figure 3 demonstrates, variance expressed as a percentage of the
result value drops rapidly at first, but the improvement becomes slower as run
time increases. This suggests that with this configuration, an N chosen to give
a run time of approximately twenty seconds provides a reasonable compromise
between the duration of an Acbea run (which typically entails 4,000 individual
benchmarks) and the expectation that a single result is representative (better
interconnect than Gigabit Ethernet was found to reduce variability). In further
tests (not reported here), variability reduced (and, of course, execution time
increased) as the number of nodes assigned to the problem was reduced. Conse-
quently, an execution time of ten seconds is sufficient for benchmarks involving
a small number of nodes.

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50 60 70

S
td

. d
ev

. (
%

)

Execution time (seconds)

Fig. 3. Variance in results of repeated

tests

Fig. 4. Effect of a badly-sized test

An alternative way of interpreting the findings is that the problem must not
be too small for the number of cores allocated to solve it. If it is, communications
activity begins to dominate calculation, resulting in performance figures that are
both poor and highly variable. This is illustrated in figure 4, which shows the
system CPU time used by a dual-core cluster node involved in solving the same
problem ten times, first on 32 cores, then on sixteen. In the 32 core case on the

Deskilling HPL 109

left, the percentage of system time is higher, indicating that the problem is badly
sized for the larger number of cores.

4.2 Interdependence between Parameters

Our earlier paper [6] reported an investigation into the effect of N , problem
size, on the optimum value of NB, block size, a parameter found to have a
large effect on performance. The conclusion was that the two were independent,
with the result that small problems could be used to determine an optimum
value of NB that would also be valid for large problems. The work did not
investigate the scalability of other parameter combinations, nor did it check
whether the findings were specific to the Intel platform, or to the Linux libraries
and tools used. Further studies reported here address these issues, and broadly
confirm that the results of small benchmarks may be used as a basis for larger
experiments.

Fig. 5. NB versus N on HP Precision Architecture

N versus NB. In order to check

 10

 20

 30

 40

 50

 60

 70

 80

 2000 4000 8000 16000

F
itn

es
s

(G
flo

ps
)

Problem size, N

P=2, Q=16
P=4, Q=8

P=1, Q=32
P=8, Q=4
P=16, Q=2
P=32, Q=1

Fig. 6. Relative performance of matrix

shapes versus N

whether the earlier conclusion was true
in general, similar tests were run on
other platforms and with a variety of
BLAS implementations. Space precludes
reporting these in detail, but they con-
firmed the original findings. Figure 5
shows representative results obtained
with two different BLAS libraries on
a four-core HP/PA host running
HP/UX.

P, Q versus N. To divide work among
a number of compute nodes, HPL con-
figures the nodes into a P × Q matrix.
The shape of the matrix affects communications patterns and volumes between
particular pairs of nodes. An investigation was carried out into whether a shape
that was optimal for small problems was also optimal for large. Figure 6 shows
a sample of the results. Increasingly large problems are solved while P and Q

110 D. Dunlop, S. Varrette, and P. Bouvry

are varied, keeping their product, and HPL’s other parameters constant. It can
be seen that the ordering of the curves barely changes as N is increased, sug-
gesting that information gained from small problems about matrix shape can
be applied in large problems. Because adjacent curves do cross on occasions,
Acbea includes new dimensions that are related to the old when creating the
configuration file for a subsequent run.

SWAPPING versus N. Studies were also carried out on several machines into
the scalability of the SWAPPING parameter, which determines when HPL
switches from one data-exchange strategy to another, and which has been ob-
served to have much less effect on benchmark performance than NB or P × Q.
Again, the trials suggested that a SWAPPING value that produces good results
in small benchmarks will also produce good results in large.

5 Cluster Benchmarking

This section is concerned exclusively with the results of the Acbea package’s
automatic tuning of HPL parameters; while it would be instructive to compare
automatically-produced results with those obtained by other methods such hand-
tuning, or the spreadsheet-assisted procedure proposed in [5], any such study
must be the subject of future work. Table 2 describes the clusters that were
targeted and the results achieved. It has been remarked, for example in [14,16],
that HPL is a good tool for “shaking down” compute clusters. This was certainly
found to be the case when Acbea was built and run on a variety of hosts.
Consequently, we are able to report fewer final results here than might have
been hoped. More complete descriptions of the French systems that participate
Grid’5000 may be found in [1].

Table 2. Acbea target systems

Cluster CPU type/ Total Mem/ Inter- Gflops/
name Location speed (Ghz) cores core connect MPI cores

capricorne Lyon Opteron/2 112 1GiB 1GE, Myri-2000 MPICH 48/32

chaos-b Luxembourg Xeon/3.4 16 4GiB 1GE OpenMPI 55/16

chaos-k Luxembourg Pentium D/3.2 32 2GiB 1GE OpenMPI 98/30

chinquint Lille Xeon/2.8 368 1GiB Myri-10G OpenMPI 160/32

genepi Grenoble Xeon/2.5 272 1GiB 1GE MPICH 45/8

granduc Luxembourg Xeon/2 176 2GiB 1GE OpenMPI 671/168

violette Toulouse Opteron/2.2 114 1GiB 1GE OpenMPI 262/96

Chaos-b, Luxembourg. Chaos-b consists of just two eight-core nodes. The
full Acbea procedure was run, and a benchmark score of 55.05 Gflops was
obtained with N = 25, 600, P = 1, Q = 16. This is a considerable improve-
ment upon the disappointing 26 Gflops reported for the same cluster in [6].
The reason for this discrepancy is not known, although the current tests used
a better-optimized BLAS library. A study was also made of the repeatability

Deskilling HPL 111

of the Acbea process: do repeated runs produce similar or identical recom-
mendations for optimum parameters? The results of four trials of the first
optimization phase were in broad agreement. For example, two of the tri-
als gave 72, 96, and 104 as the allowed values for NB in the second phase.
(The others gave just 72 and 96, and 72, 104 and 144 respectively.) Other
parameter choices were also similar or identical across the four runs. This
suggests that the Acbea process is repeatable — although see the discussion
of problem sizing in 4.1.

Chaos-k, Luxembourg. This sixteen-node cluster of two-core nodes was ex-
tensively benchmarked for [6], attaining 116 Gflops. One of its nodes was
unavailable during the testing reported here. Also, a new and larger Linux
kernel made it impossible to use the N = 84, 000 value used in those tests.
Consequently, results are not comparable. After a full run of Acbea, the five
resulting xhpl configuration files were used to obtain a best result of 98.47
Gflops with N = 80, 000, NB = 88, P = 3 and Q = 10. The parameters
were derived from those of the fifth-most-successful individual in the opti-
mization run, suggesting that the “best-of-best” individual does not always
deliver parameters that are optimum in a larger benchmark.

Granduc, Luxembourg. Currently the largest of the University of Luxem-
bourg’s clusters, granduc was able to run the full Acbea procedure. One
node being off-line, the final benchmarks were run on 21 nodes (168 cores),
giving a best result of 671 Gflops with N = 192, 000 (using almost all avail-
able memory), NB = 112, P = 2 and Q = 84.

Capricorne, Lyon. The Capricorne cluster is used by Grid’5000 for experi-
mental work, and was targeted as a test of Acbea portability because it
differs in three respects from the Luxembourg clusters: AMD rather than
Intel processors; MPICH instead of OpenMPI; and Myriad high-speed inter-
connect in addition to gigabit Ethernet. Unfortunately, we were unable to
configure MPICH to use the Myriad for data transport, so fell back to using
the slower, higher-latency Ethernet. Poor figures were obtained from an ini-
tial Acbea run using eight cores on four compute nodes: the best-performing
individual benchmark reached 15.33 Gflops. A second run targeting 32 cores
on sixteen nodes obtained a best result of 44.84 Gflops. Because of these
disappointing figures, a final test utilizing all cores was not run; the reason
for the poor performance was investigated instead. The cause of the problem
was found to be incorrect allocation of processes to nodes by MPICH: some
nodes were over-subscribed, some under-, and some had the correct number
of processes. The reason for this behaviour could not be determined, and the
benchmarking attempt was abandoned.

Chinqchint, Lille. A recently-commissioned and powerful system having 368
cores on 46 nodes with ten gigabit Myriad interconnect, chinquint proved
too unreliable to obtain anything approaching a full-system benchmark. It
was possible to run two parallel four-node (32 core) tests for runacbea’s full
twenty generations. The best individual test delivered an impressive bench-
mark result of 160.50 Gflops. This was almost twice the overall average of
83.11 Gflops in the final generation. Such a discrepancy is unusual. Sadly, it

112 D. Dunlop, S. Varrette, and P. Bouvry

was not possible to find sixteen nodes reliable enough to run the next stage
of the test, since it should have been possible to obtain well over a teraflop
from the whole cluster.

Genepi, Grenoble. Like capricorne (see above), genepi has MPICH installed
on its compute nodes. A first run of Acbea targeting the eight cores and
using eight parallel jobs yielded an average performance of 41.65 Gflops, with
the best individual benchmark achieving 44.78. By confining benchmarks to
single nodes, this configuration made essentially no use of the interconnect.
Sadly, several attempts to run the next stage of the Acbea process on 32
cores failed to run to completion due to intermittent MPICH problems with
secure login between nodes. The experiment was consequently abandoned.

Violette, Toulouse. It was possible to run the complete Acbea process on
violette using its installed OpenMPI package. Both stages of optimiza-
tion performed as expected, delivering five xhpl configuration files for final
benchmarking. As the cluster has 114 cores (of which some were unavail-
able) rather than the 64 targeted by the configuration files, the P and Q
parameters were adjusted to address 96 cores before final benchmarks were
run using N = 97, 600, a value that was found almost to saturate the nodes’
memory. A peak score of 262.3 Gflops was obtained from sixty evaluations
derived from the parameters of the five best-performing individuals in the
second-stage optimization. As expected, the best result was obtained using
the parameters of the “best-of-best” individual. Surprisingly, it used a layout
of P = 16, Q = 6, although over-square matrices generally perform poorly.

6 Conclusions and Future Work

This paper has described how an evolutionary algorithm may be used to produce
competitive HPL benchmark results for a computing cluster without the need
for intimate knowledge of the benchmark program, or of the software needed
to support it. The Acbea package has proved to be portable to a number of
systems, although these have been fairly uniform in operating environment, batch
job management and so on. However, portability alone is not sufficient: the target
system must be sufficiently robust to support both the demanding benchmark
and an evolutionary harness that launches it many thousands of times during
the course of an evaluation. At the current state of development, Acbea still
requires a fair amount of knowledge on the part of its user. Files must be edited
by hand to set up a starting problem size, and to define the node topology to
be used for the evolutionary process. This done, the user must step through
the lengthy procedure described in §3.3 in order to obtain a benchmark result.
Future work will be focused on increasing Acbea’s ease of use, and on using
discovery techniques to reduce the amount of information that must be supplied
before a benchmark can be run.

The focus of this paper has been on obtaining results: no attempt has been
made to compare Acbea’s results with figures that have been independently ob-
tained by hand-tuning or other methods, either in terms of performance attained,

Deskilling HPL 113

or of wall-clock time elapsed. It would be instructive to make such comparisons
in the future. The work reported in §4 suggests that HPL’s other parameters are
largely orthogonal to N , the problem size, but does not suggest theoretical or
physical reasons as to why this might be the case. Also, all clusters tested to date
have provided a fully-interconnected communications topology, which strongly
favours a BCAST parameter of zero. Consequently, no information has been
obtained as to whether BCAST is scalable or not. Future work could address
both of these issues.

The authors would like to thank the administrators and support staff of the
Grid’5000 project for their assistance.

References

1. The Grid’5000 Project, http://www.grid5000.fr

2. The Top500 project, http://www.top500.org

3. Cahon, S., Melab, N., Talbi, E.-G.: ParadisEO: A Framework for the Reusable

Design of Parallel and Distributed Metaheuristics. J. of Heuristics 10(4), 357–380

(2004)

4. Capit, N., et al.: A batch scheduler with high level components. In: Cluster com-

puting and Grid 2005, CCGrid 2005 (2005)

5. Microsoft Corporation. Building and Measuring the Performance of Windows HPC

Server 2008-Based Clusters for TOP500 Runs. Technical report (November 2008)

6. Dunlop, D., Varrette, S., Bouvry, P.: On the Use of a Genetic Algorithm in High

Performance Computer Benchmark Tuning. In: IEEE International Symposium on

Performance Evaluation of Computer and Telecommunication Systems (SPECTS

2008), Edinburgh, UK, pp. 105–113 (June 2008)

7. Eigenmann, R., Gaertner, G., Jones, W., Saito, H., Whitney, B.: SPEC hpc2002:

The next high-performance computer benchmark. In: ISHPC, pp. 7–10 (2002)

8. Gabriel, E., et al.: Open MPI: Goals, concept, and design of a next generation

MPI implementation. In: Proceedings of 11th European PVM/MPI Users’ Group

Meeting, Budapest, Hungary, September 2004, pp. 97–104 (2004)

9. Gagné, C., Parizeau, M.: Genericity in evolutionary computation software tools:

Principles and case study. Intl. J. on Artificial Intelligence Tools 15(2), 173–194

(2006)

10. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learn-

ing, January 1989. Addison-Wesley Professional, Reading (1989)

11. Keijzer, M., Merelo, J.J., Romero, G., Schoenauer, M.: Evolving objects: A gen-

eral purpose evolutionary computation library. In: 5th European Conference on

Artificial Evolution, London, UK, pp. 231–244. Springer, Heidelberg (2002)

12. Ladd, S.R.: Acovea: Using Natural Selection to Investigate Software Complexities

(2007), http://www.coyotegulch.com/products/acovea/

13. Ladd, S.R.: Evocosm: A C++ Framework for Evolutionary Computing (2007),

http://www.coyotegulch.com/products/libevocosm/

14. Levesque, J.: Breakthrough Science on a Petaflop XT5. In: Cray XT Workshop

(2009)

15. Levine, D.: Users Guide to the PGAPack Parallel Genetic Algorithm Library

(1996), ftp://info.mcs.anl.gov/pub/tech_reports/reports/ANL9518.ps.Z

16. Minyard, T., et al.: Experiences and Achievements in Deploying Ranger, The First

NSF “Path to Petascale” System. In: TeraGrid 2008 (June 2008)

http://www.grid5000.fr
http://www.top500.org
http://www.coyotegulch.com/products/acovea/
http://www.coyotegulch.com/products/libevocosm/
ftp://info.mcs.anl.gov/pub/tech_reports/reports/ANL9518.ps.Z

114 D. Dunlop, S. Varrette, and P. Bouvry

17. Petitet, A., Whaley, R.C., Dongarra, J., Cleary, A.: HPL — A Portable Imple-

mentation of the High-Performance Linpack Benchmark for Distributed-Memory

Computers (January 2004), www.netlib.org/benchmark/hpl/

18. Sastry, K.: Single and Multiobjective Genetic Algorithm Toolbox in C++ (2007),

http://www.illigal.uiuc.edu/pub/papers/IlliGALs/2007016.pdf

19. Sripathi, V., Krishnan, A.: Analyze and optimize the HPL benchmark on x86-64

cluster. Technical report, North Carolina State University (2008)

20. Wall, M.: GAlib — A C++ Library of Genetic Algorithm Components

21. Whaley, R.C., Petitet, A., Dongarra, J.: Automated empirical optimizations of

software and the ATLAS project. Parallel Computing 27(1-2), 3–35 (2001)

www.netlib.org/benchmark/hpl/
http://www.illigal.uiuc.edu/pub/papers/IlliGALs/2007016.pdf

Monitoring of SLA Parameters within VO for

the SOA Paradigm

Wlodzimierz Funika, Bartosz Kryza, Renata Slota, Jacek Kitowski,
Kornel Skalkowski, Jakub Sendor, and Dariusz Krol

Institute of Computer Science, AGH-UST,

al. Mickiewicza 30, 30-059 Krakow, Poland

{bkryza,funika,rena,kito}@agh.edu.pl

Abstract. Current trends in modern scientific and business IT infras-

tructures pose certain requirements in the middleware layer in order to

maximize the automation of all life-cycle phases of such infrastructures

including inception, deployment, execution, and dissolution. In case this

infrastructure is composed of resources of different organizations, for in-

stance in form of a Virtual Organization, the management of these re-

sources is especially needed for achieving new quality in business. In this

paper we deal with a specific aspect of the IT infrastructure management

related to autonomous enforcement of Service Level Agreement between

organizations sharing their resources within a Virtual Organization. The

presented framework utilizes semantic technologies in order to virtual-

ize the heterogeneity of underlying middleware components and to allow

integration of services between these organizations.

1 Introduction

Modern applications of various technologies developed in recent years such as
Grid computing or Service Oriented Architectures currently are being adopted in
more and more areas of computing including not only research institutions and
large corporations, but also more commonly even smaller SME companies. These
technologies are advocated as solutions to the problem of integration of resources
and services between both large parties as well as small entities. The latter,
however, often do not have sufficient funds or know-how in order to transfer their
IT infrastructures to modern technologies and then efficiently manage them - an
effort which still requires very specialized knowledge and experience.

That is why a crucial element in making use of these widespread technologies
is in making the process of participating in such IT based business collaborations
much easier and more affordable for even smaller parties. This can be achieved
by automating as much of the process of managing this infrastructure within the
middleware layer itself and thus limiting the burden imposed on the adminis-
trators and the IT staff of these organizations. For this purpose our recent work
involves the development of a complex solution for automatic Virtual Organiza-
tion management supporting several aspects. These include the reaching of an

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 115–124, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

116 W. Funika et al.

agreement between the organizations in the form of a distributed contract ne-
gotiation, automatic configuration, and deployment of the Virtual Organization
on the resources and services of organizations participating in such VO as well
as autonomous enforcement of the contract through monitoring of execution of
the Virtual Organization and proper security configuration.

In this paper we focus on one aspect of the VO management mentioned above
that concerns the monitoring and enforcement SLA parameters for the SOA
paradigm. This research is part of the work on the FiVO1 system [1].

The paper is organized as follows: in Section 2 related work on SLA enforce-
ment tools as well as some existing monitoring tools are presented. In Section 3
the architecture of the FiVO SLA Enforcement Tool is discussed in the context
of Virtual Organization management. Section 4 gives an overview of the Sem-
Mon semantic monitoring tool and, finally, Section 5, describing our approach
to integrate FiVO with the SemMon system, is followed by Conclusions.

2 Related Work

The monitoring of SLA fulfilment for VO requires taking into consideration a
few aspects: heterogenous environment (different monitoring systems installed
in various physical organizations), dynamic changes of SLA requirements, and
mapping of high-level SLA parameters onto low-level resources parameters.

The way these three aspects are considered depends on a chosen approach. A
first approach to the monitoring of SLA fulfilment is presented in [2]. This ap-
proach assumes that everything what is monitored is a Web Service. SLA in this
approach is defined using the Web Service Level Agreement (WSLA) framework.
WSLA is an IBM framework which supports SLA management. High-level SLA
parameters are mapped onto low-level resources parameters which are described
by the Common Information Model (CIM). In [3] there is presented an approach
assuming that the grid environments which follow the Open Grid Services Ar-
chitecture (OGSA) are monitored. The monitoring of SLA fulfilment on grids
and mobile grids are reached by introducing the Execution Management Service
which monitors both the network services and the application services. Another
approach is presented in [4]. In case of this approach only the network services
are monitored. QoS attributes are achieved in this case by implementing spe-
cial services. All the above approaches described are oriented toward monitoring
SLAs in special environments (e.g. grids). A comparison of some existing archi-
tectures oriented towards SLA monitoring presented in [5] shows that there is no
single architecture which could be applied in every case. In case of the approach
presented in this paper we focus on the issue of independence from the low-level
monitoring frameworks, which is a key feature if one wants to use the FiVO
framework in different physical organizations. This approach is needed in case of
the VO management when we deal with a heterogenous environment, consisting
of different low-level monitoring systems used in different physical organizations.

1 Framework for Intelligent Virtual Organizations.

Monitoring of SLA Parameters 117

A very important part of every SLA management framework is a monitoring
system, so below we present some of the existing monitoring systems.

The PushToTest TestMaker system [6] is a testing platform, which provides
support for various kinds of tests (functional tests, load tests, stress tests, per-
formance tests, smoke tests and others). It also provides support for enforcing
SLA. All tests are defined in a manually written script file.

Monitoring & Discovery System (MDS) [7] from Globus Toolkit Information
Services allows to discover resources (considered as a part of a virtual organiza-
tion), which are available on the grid and to monitor these resources. It provides
two services which determine the interface of this system: the index service and
the trigger service. The index service provides a query interface which allows to
send queries about monitored parameters. The trigger service allows to configure
special actions based on the monitoring data. The data provided by this system
contain the data on CPU and memory usage, size of queues, etc.A part of the
WS-Diamond (Web-Service Diagnosability, Monitoring and Diagnosis) system
[8] is a monitoring framework for QoS attributes, which enables to detect a fail-
ure situations, and also permits to plan and perform different recovery actions.
This functionality helps to achieve QoS objectives.

Grid-enabled OMIS-Compliant Monitoring System (OCM-G) [9] is oriented
towards support for performance analysis tools, for evaluating parallel and dis-
tributed applications, especially, those using MPI, and for monitoring grid
resources. Java Oriented Monitoring Infrastructure J-OCM [10] is aimed to mon-
itor and handle the execution of Java distributed applications. Like the OCM-G
system it is also oriented towards support for performance analysis tools.

Since the above systems are oriented towards the monitoring of resource pa-
rameters, they should be treated as low-level monitoring systems. In case of
monitoring for VO we need a system which enables automatic monitoring of
SLA fulfilment, based on a contract content. None of the above systems pro-
vides it. The PushToTest TestMaker system [6] allows to define complex tests,
but it is done manually, by writing a special script, so it cannot be useful in our
case. The other systems mentioned above are typical monitoring systems, which
are not targeted to monitor SLA fulfilment, sometimes they help us to achieve
QoS objectives only (e.g. WS-Diamond).

In case of the monitoring of SLA fulfilment in a heterogenous environment,
comprised of different low-level monitoring systems, we need more sophisticated
functionality which should constitute a bridge between the resources abstrac-
tion and the SLA abstraction, e.g. in form of a medium-level monitoring system,
which is able to map composite SLA metrics into low-level resources parameters.
This system has to provide a kind of semantic-reasoning engine, which allows
to map high-level SLA parameters onto the low-level resource parameters. One
of such systems is the Semantic Monitoring System (SemMon) [11]. A key fea-
ture of the SemMon system is its independence from a low-level monitoring
system, what means that the SemMon system constitutes an abstraction layer
over heterogeneous low-level monitoring systems. A more detailed description of
the SemMon system appears in Section 4.

118 W. Funika et al.

3 SLA Enforcement in Virtual Organizations

In general, FiVO, as mentioned in Introduction, is a comprehensive and dis-
tributed framework allowing for management of all the aspects of VO life-cycle.
Once an organization deploys its components in its premises, it becomes part of
a Virtual Breeding Environment, i.e. it can become a member of existing and
emerging Virtual Organizations managed by FiVO. In order to support this,
FiVO provides the organizations with several components responsible for the
distributed contract negotiation phase [12] as well as components providing se-
curity [1] and SLA enforcement in a VO context as defined in the contract. In
particular, in order to support the SLA enforcement aspect of VO, each orga-
nization must deploy the FiVO SLA Enforcement Tool and allow access to its
legacy monitoring infrastructure. After the contract is negotiated for a new VO,
the contract statements specific to each organization will be deployed by proper
FiVO instances in the underlying monitoring systems.

An example VO monitoring environment is shown in Fig. 1, where it is as-
sumed that inside a real-life organization all resources are monitored by a single
high-level monitoring system which gathers information from one or more low-
level monitoring systems. The environment of monitoring systems across differ-
ent real-life organizations in a Virtual Organization is usually heterogeneous.
Different organizations can monitor their resources using different systems and
even inside an organization, multiple types of monitoring tools may be used for
different types of resources. The monitoring of contract fulfilment and SLA en-
forcement procedure forces to build a VO monitoring tool which can cope with
the following requirements:

– interpreting of contract statements specified in the form of OWL ontology,
– automatic configuration of the legacy monitoring tools used in organizations

participating in a new VO,

Fig. 1. Virtual Organization monitoring environment

Monitoring of SLA Parameters 119

– distributed architecture which does not require that the organizations pro-
vide access to their middleware for external administrators

– ability of triggering corrective actions if contract statements are violated.

In FiVO SLA Enforcement Tool we prepared an architecture design consisting
of several modules which allow FiVO to meet the above requirements (please see
Fig. 2 - for simplicity, we assume that 3 organizations are sharing one FiVO SLA
Enforcement Tool instance). The values of SLA parameters are analyzed and ex-
tracted by the Ontology Analyzer from a VO contract. Contract statements
are negotiated between real-life organizations and are described using an OWL
ontology. As a result from Ontology Analyzer we acquire a list of the expected
QoS parameter values, retrieved from the SLA part of the contract, for each
resource or service shared by a real-life organization inside the VO. In the next

Fig. 2. SLA monitoring tool architecture overview

120 W. Funika et al.

step, performed by Monitoring System Configuration Service, QoS param-
eters are grouped by real-life organizations. Sets of metrics and measurements
are prepared for each organization which may use any high-level monitoring
system. The configuration of a specific monitoring system is done by adapters,
used to provide an abstraction layer between an organization-specific system
and FiVO SLA Enforcement Tool. A set of measurements for a single real-life
organization resources is passed to the adapter responsible for configuring the
organization-specific monitoring system to prepare measurements and retrieving
metrics values from it.

Along with the configuration of measurements goes the set-up of the noti-
fication system part. Penalty clauses or declared sets of actions to perform in
the situation when SLA statements are not met can also be described within
the contract. These actions are passed to Reaction Service. We also introduce
two more services that are required in order to provide the monitoring of SLA
parameters during the VO life-cycle:

– Metrics Aggregation Service - which enables storing metrics values his-
tory and provides access to aggregated values (e.g. mean metric value from
one day, one month)

– Metrics MonitoringService - which fills the gap between the Reaction Ser-
vice and monitoring systems; major role of this service is monitoring metrics
values or aggregates values and triggering actions in the Reaction Service.

High-level monitoring systems are usually capable of doing metrics aggregation
or statistics so the complexity of processing done by these services depends on
the real-life organization monitoring system features. The Reaction Service starts
receiving notifications when the expected SLA parameters values are not met.
This information can be passed further to different information channels (e-mail,
instant messenger, published on RSS/Atom feed) via the Notification Service
or a relevant action can be invoked by RMI or Web Services.

The proposed solution can also handle situations when we collect information
directly from low-level monitoring systems. In this case, communication between
an organization-specific monitoring tool and its adapter is increased. Also the
amount of data stored and processed by the Metrics Aggregation Service is
higher. Therefore using a high-level monitoring tool (e.g. SemMon, which is
capable of aggregating metrics from one or more low-level monitoring systems)
on the real-life organization site is very helpful. SemMon’s ability to hide the
complexity of low-level monitoring tools inside the real-life organization enables
to reduce difficulties connected with creating a custom metrics aggregation and
monitoring service. It should also decrease the amount of time spent on the
development of an adapter compared to the work on low-level monitoring tools.

4 The SemMon System Description

The SemMon2 monitoring system [11] is placed on top of the existing monitoring
stack and provides an additional functionality which is not possible to achieve
2 SemMon stands for Semantic-based Monitoring system.

Monitoring of SLA Parameters 121

otherwise. It aims to map data from the underlying low-level monitoring systems,
intended to provide physical information about the monitored system health onto
high-level information. By saying high-level information we mean performance
metrics that are not provided by the monitoring systems but can be derived
from them, e.g. as a combination. The SemMon can also notify the interested
users about previously defined situations, e.g. when a measurement of a given
metric and resource passed a defined threshold. This functionality may be helpful
when one wants to be informed about the violation of the previously defined
conditions. To do so a knowledgebase that contains semantic information about
available resources and metrics is used. It is described more detailed in the next
subsection.

An important feature of the SemMon system is its capability to cooperate
with any existing low-level monitoring system that exposes its data to the ex-
ternal clients. The cooperation takes place through the commonly used adapter
structural design pattern [13] and it is used for ’translation’ of all requests from
the internal SemMon format to the format appropriate for the underlying mon-
itoring system, e.g. J-OCM [10], OCM-G [9], etc.

Fig. 3. The SemMon architecture overview

4.1 System Architecture

An overview of SemMon’s architecture is depicted in Fig 3. The presented sys-
tem along with the monitored objects constitutes a kind of distributed system.
There can be multiple nodes with monitoring agents and multiple nodes with
GUI. The heart of the system is also separated into different subsystems (and
components), each of them can be run on a separate machine to provide scal-
ability and reliability. Each subsystem encapsulates some specific functionality
and can be run independently. The main elements of the SemMon monitoring
system are as follows: Core and Ontology subsystems, Monitoring agents, and
Graphical User Interface.

122 W. Funika et al.

The key part of the system are Core and Ontology subsystems that pro-
vide primary system functionality like processing an ontology with Resources
and Metrics, or storing monitoring data. To support knowledge persistency, a
database is required. This functionality is implemented in an ontology subsys-
tem. Another part of this node is the support for a ’physical’ monitoring system.
This subsystem has to provide functionality for registering monitoring agents as
well as processing the monitoring data.

Monitoring agents are just simple sensors that expose resources to the Sem-
Mon system in a well-defined way. All of the agents have to be registered in the
core part of the SemMon. Afterwards the Core can ask about available resources
and capabilities that can be monitored. High-level monitoring data is available
to external clients through an interface exposed by the Core subsystem. An ex-
ample of such external client is GUI which can attach to SemMon using the
Remote Graphical Interface. Similarly, other clients handling high-level infor-
mation, like SLA parameters or their derivatives can use the interface exposed
for using SemMon functionalities.

All of the core system functionality should be accessible via GUI (e.g. browse
a monitored resource, run a metric) in a simple and user friendly way. It has
to be optimally designed for the advanced user as well as for the beginner.
It is achieved on the one hand by exposing the most often performed options
to the foreground and on the other hand by allowing users to provide detailed
configurations options to the available operations. GUI will provide functionality
for collecting some parts of the knowledge base data - like a metric rank. GUI is
also an environment for collaborative work, e.g. users could share metrics ranks
between their instances of GUI.

4.2 Knowledge Usage

SemMon is a semantic-based monitoring system which means that it has some in-
built semantic knowledge about metrics and monitored system resources, which
can be explicitly extended by the users. It enables to perform monitoring at
different levels, from detection of hardware errors to high-level analysis. In this
context, semantic knowledge can greatly contribute to a multi-layer and multi-
source monitoring process giving the end-user an easy and efficient tool for semi-
automatic data analysis and monitoring guidelines. One of the possible benefits
that the user may get from the SemMon is providing suggestions on performing
an additional measurement of a metric semantically-related to the one that is
currently running. By doing so the user may explore the actual problem (e.g.
bottleneck) of the monitored application faster. It is especially helpful when the
user does not have thorough knowledge about the application and the underlying
infrastructure used. Another important aspect of using the ontology knowledge
representation which should be mentioned is the ability of customization to
specific situations. It is easier to provide support for new requirements (and
therefore to add some code to the core about the new classes of resources) than
to rewrite the whole business logic of the monitoring system which is, in most
cases, oriented to some particular type of applications.

Monitoring of SLA Parameters 123

5 SLA Support for VO

SLA contracts play a very important role in case of the FiVO system. During
the negotiation process, sides are agreeing what resources and on what terms
are to be available in the organization. The most important part of SLA from
the monitoring point of view is the one that holds information about the QoS
aspects. The ontological form of an SLA contract may be used to integrate the
systems that are involved in the management of Virtual Organizations. On the
FiVO system side, the knowledge about an agreement can be used to inform
the monitoring system about the monitored resources and metrics which should
be measured. Furthermore it can be used to define the conditions upon which
FiVO system should send a notification about a contract violation. Thus, the
FiVO system can be used as a guard that checks if the Service Level Agree-
ment is fulfilled properly. In addition, it can notify the management tools or the
system administrator about the contract violation. By applying the described
functionality the Virtual Organizations can become more reliable and efficient
in achieving their goals. By using a high-level monitoring system to monitor
particular physical organizations we reach full independence from low-level spe-
cific monitoring systems and improve the scalability and robustness of the FiVO
system. The scalability improvement results from dispatching the process of
mapping composite SLA parameters to low-level resource indicators from the
core of the FiVO system to the SemMon system engine.

6 Conclusions

In this paper we have presented a solution to the issue of monitoring and enforc-
ing agreements between partners in Virtual Organizations. The FiVO framework
for management of Virtual Organizations was presented along with its integra-
tion with the SemMon monitoring system. The proposed solution can improve
the adoption of modern Grid or SOA based infrastructures in various environ-
ments, especially, where the main problem is the lack of sufficient know-how
required to deploy and manage complex middleware. Additionally, the automa-
tion of the management process allows to cut down on the costs of monitoring
of the cooperation of organizations based e.g. on SOA frameworks and thus in-
crease the level of collaboration between organizations based solely on the IT
infrastructures.

Acknowledgments. This research is partly funded by the POIG.01.03.01–00-
008/08 Project ”IT-SOA” and the AGH grant 11.11.120.777.

References

1. Kryza, B., Dutka, L., Slota, R., Kitowski, J.: Security Focused Dynamic Virtual

Organizations in the Grid based on Contracts. In: Cunningham, P., Cunningham,

M. (eds.) Collaboration and the Knowledge Economy, Issues, Applications, Case

Studies, part II, vol. 5, pp. 1153–1160. IOS Press, Amsterdam (2008)

124 W. Funika et al.

2. Debusmann, M., Keller, A.: SLA-Driven Management of Distributed Systems Using

the Common Information Model. Integrated Network Management 246, 563–576

(2003)

3. Litke, A., Konstanteli, K., Andronikou, V., Chatzis, S., Varvarigou, T.: Manag-

ing service level agreement contracts in OGSA-based Grids. Future Generation

Computer Systems 24(4), 245–258 (2008)

4. Bouras, C., Campanella, M., Przybylski, M., Sevasti, A.: QoS and SLA aspects

across multiple management domains: the SEQUIN approach. Future Generation

Computer Systems 19(2), 313–326 (2003)

5. Barbosa, A.C., Sauve, J., Cirne, W., Carelli, M.: Evaluating architectures for in-

dependently auditing service level agreements. Future Generation Computer Sys-

tems 22(7), 721–731 (2006)

6. PushToTest TestMaker project site: http://www.pushtotest.com/products

7. Globus Toolkit Information Services: Monitoring & Discovery System project page,

http://www.globus.org/toolkit/mds/

8. WS-Diamond (Web-Service Diagnosability, Monitoring and Diagnosis) project

page, http://wsdiamond.di.unito.it/

9. Balis, B., et al.: Grid Environment for On-line Application Monitoring and Perfor-

mance Analysis. Scientific Pogrammning 12(4), 239–251 (2004)

10. Funika, W., Koch, M., Dziok, D., Smetek, M., Wismüller, R.: Performance Visu-

alization of Web Services Using J-OCM and SCIRun/TAU. In: Yang, L.T., Rana,

O.F., Di Martino, B., Dongarra, J. (eds.) HPCC 2005. LNCS, vol. 3726, pp. 666–

671. Springer, Heidelberg (2005)

11. Funika, W., Godowski, P., Pȩgiel, P.: A semantic-oriented platform for performance

monitoring of distributed Java applications. In: Bubak, M., van Albada, G.D.,

Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part III. LNCS, vol. 5103, pp. 233–

242. Springer, Heidelberg (2008)

12. Zuzek, M., Talik, M., Swierczynski, T., Wisniewski, C., Kryza, B., Dutka, L., Ki-

towski, J.: Formal Model for Contract Negotiation in Knowledge-Based Virtual

Organizations. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.)

ICCS 2008, Part III. LNCS, vol. 5103, pp. 409–418. Springer, Heidelberg (2008)

13. Johnson, R., Gamma, E., Helm, R., Vlissides, J.: Design Patterns. In: Elements of

Reusable Object-Oriented Software Addison-Wesley, Reading (1995)

http://www.pushtotest.com/products
http://www.globus.org/toolkit/mds/
http://wsdiamond.di.unito.it/

A Role-Based Approach to Self-healing in

Autonomous Monitoring Systems

W�lodzimierz Funika and Piotr Pȩgiel

Institute of Computer Science, AGH,

ul. Mickiewicza 30, 30-059 Kraków, Poland

Ph.: (+48 12) 617 44 66; Fax:(+48 12) 633 80 54

funika@agh.edu.pl, barca@wp.pl

Abstract. The main intention of this paper is to introduce the propo-

sition of a new role-based approach to self-healing monitoring. This is

preceded by an overview of existing approaches to the monitoring of dis-

tributed systems using self-healing features. Starting with a discussion

of autonomous monitoring systems, we will come to self-healing systems.

These systems should be able to automatically resolve the problems that

occur in a system under monitoring. The paper provides insight into var-

ious aspects of self-healing monitoring systems at the software and hard-

ware level. A detailed description of a new agent-based system, AgeMon,

is covered later on. The system is based on the roles played by different

types of agents. The self-healing features can be achieved by a form of co-

operation of agents, e.g. monitoring agents, rule agents, database agents.

The paper discusses the roles and gives an implementation background.

Keywords: Self-healing, monitoring, adaptive, rule-based systems,

failure detection.

1 Introduction

Nowadays systems are becoming very complex. They are, in fact, very frequently
built with many components which are working on different machines, in a dis-
tributed environment. It is impossible to monitor such systems manually, there
are too many different indicators to check (resource states, network traffic, oper-
ated system, etc.). This was the main reason why distributed monitoring systems
were developed. They help the user in managing a system – usually the user is
enabled to observe all interesting data in the monitoring system presentation
layer. In such systems the user is responsible for interpreting encountered prob-
lems and perform relevant actions.

The next stage in the evolution of monitoring systems is connected with the
concept of autonomous monitoring systems. Such systems do not need user in-
teraction to make a proper decision what should be monitored in a current
situation. Decision making is based on the knowledge gathered from the pre-
ceding monitoring results. The system could also guide the user what should be
done next, i.e. in the context of monitoring.

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 125–134, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

126 W. Funika and P. Pȩgiel

To fulfill these requirements for the guidance to the user, the monitoring sys-
tems became more “intelligent”. From this point it was a straight way for coping
with arising failures of different types – simply to enable self-healing, i.e. to pro-
vide a capability that a decision made by the monitoring system should force
the system under monitoring to behave more stable, reliable and predictable.

There can be more than a single aspect of self-healing: the monitoring system
could “heal” the system under monitoring or it could be “healed” by itself. We
can also distinguish between the levels of healing: the system can perform self-
healing in the physical (monitored hardware) layer or the logical (monitored
application/system) one. A brief of the monitoring systems evolution is depicted
in Fig. 1.

Monitoring
System

Monitored System

A lot of
monitoring data is

presented to
the users

Past Today

Monitoring
System

Monitored System

Monitoring system
presents only

suspected data

Today Future

Monitoring
System

Monitored System

Monitoring system
resolves the pro−

blem automatically,
no user action is

needed

Today Future

Fig. 1. Evolution of the monitoring systems

In the paper we aim to present an overview of monitoring systems and tech-
niques used in them for self-healing.

The rest of this paper is organised as follows: Section 2 discusses details of self-
healing monitoring systems at different levels. A case study of the existing self-
healing systems, technologies and approaches is provided in Section 3. The next
section introduces requirements for the self-healing monitoring system together
with the idea of a new approach to self-healing and a description of a new system
– AgeMon, followed by Summary.

2 Self-healing Monitoring Systems – Background

Two main aspects of self-healing monitoring systems can be distinguished be-
tween when self-healing systems are concerned. The first aspect is related to the
physical layer of the system (like computers, resources, and network), while the
second aspect regards the logical layer (applications, operating system). Moni-
toring the physical layer is usually more intuitive. We can imagine a situation
when an operating system can make a decision to automatically offline a faulty
resource. This functionality could even be implemented on the system level –
like in the Solaris 10 [1].

In the second aspect of self-healing, a needed functionality can be injected
into the monitored system. In this situation, technologies like Aspect Oriented

A Role-Based Approach to Self-healing in Autonomous Monitoring Systems 127

Programming can be used [2,3]. Using AOP techniques we can cross-cut the
business logic of the application to inspect its status. When an incorrect state
is detected the monitoring system can perform a recovery action. There are also
efforts to extend existing monitoring systems to enable self-healing - e.g. the
Nagios system can be used to automate recovery after service failures [4].

We can also consider self-healing from a different point of view: In case of
the first approach mentioned above – the self-healing of the monitored system,
the monitoring system should automatically detect failures in the system under
monitoring and heal it. The second approach is quite interesting as well – the
monitoring system can be able to perform a self-healing action “on itself”– we
can imagine that the system is composed of many autonomous agents which can
make a decision to disable an unstable agent.

A key point is to answer such questions as: How can we maximise availability,
reliability, safety, and maintainability for the monitoring system? How can the
monitoring system detect failures in its infrastructure, prevent from their affect,
and self-heal? Such a system should be distributed, and use a flexible commu-
nication protocol with failure detection. The decentralisation of the monitoring
system can be realised within an agent-based network. Some agents can be spe-
cialised in one of the following categories: monitoring agents, agents responsible
for storing monitoring data to the database, knowledge based failure detection
agents, decision agents, UI communication agents. Due to specialisation, one of
the election protocols should be considered. Some agents can be replicated like
those responsible for storing the data to the database. In case of problems with
one agent the system should detect a failure and perform an election procedure
to find a new persistent agent.

3 Overview of Existing Self-healing Monitoring
Approaches

In this section we aim to present the existing self–healing monitoring systems and
technologies that can be used to enable self-healing in systems under monitoring.
We will look at Aspect Oriented Programming and the existing solutions that
are based on this technology. Then we will discuss Solaris 10 – it is an example
where self-healing is done on the system level. At the end we will review a real-life
example of self-healing system.

3.1 Application Layer – Aspect Oriented Programming

Aspect Oriented Programming is a programming paradigm which enables sep-
aration of concerns (which increases the modularity of the program). It allows
also cross–cutting - for the place of the program where concerns “cut across”
multiple abstractions in the program. Procedures, functions, modules, classes –
these are the abstractions in the program which are used to group the concerns.
The encapsulation of concept is a good way of programming - but sometimes
it is required that some of the functionalities should “go across” the whole pro-
gram. This is the cross-cutting concern. Currently, the main usage of the AOP

128 W. Funika and P. Pȩgiel

techniques in the self-healing is to enable system recovery [3,6,8]. The decision
when a recovery should be performed is based on a user’s choice. Therefore these
systems cannot be treated as autonomous.

Glassbox. One of the most mature solutions for monitoring using Aspect Ori-
ented approach is the Glassbox Project1. Glassbox is a Java based monitoring
tool with an extended troubleshooting module. It helps developers in resolving
common problems like failing connections or a slow-running query instantly. It
can be used with most of the Java Application Servers (like JBoss, WebSphere,
WebLogic, Tomcat). Since it contains predefined knowledge it can be used just
after download. The problems are described in a plain English – without any
logs or complicated messages.

From the practical point of view, Glassbox instrumentation could be done at
compile time or at class load time (so Glassbox does not require code recompi-
lation). Fig. 2 depicts the structure of the Glassbox [9].

Glassbox
Troubleshooter

Glassbox
Introspector

JMX Console

JMX

Glassbox Client

AOP

Web Service Database

Web
Server

Java
Application

Java Virtual
Machine

Fig. 2. Glassbox architecture

There are two main subsystems of the GlassBox: Glassbox Inspector and
Glassbox Troubleshooter. The Inspector is used to monitor the activity of an ap-
plication. Monitoring information is exposed via JMX interface so it can simply
be read from any Java JMX client like JConsole. On the other hand this infor-
mation is passed to the Troubleshooter. This module is responsible for making
analysis and diagnosing problems and reporting them them trough a specialized
client UI.

The Glassbox is a powerful tool which easily enables troubleshooting of run-
ning an application with guidance to the user what action should be taken. It
does not require changes to the application code. It can also be used as a in-
frastructure layer for bigger monitoring systems which extend the functionality
with autonomous decisions – the system will be able to automatically make a
decision without interactions with the user.

1 Home page – http://www.glassbox.com/glassbox/Home.html

http://www.glassbox.com/glassbox/Home.html

A Role-Based Approach to Self-healing in Autonomous Monitoring Systems 129

AOP-Monitoring framework. While Glassbox is a good example of the As-
pect Oriented Monitoring – it is simple to use but very helpful, it is however not
an ideal tool – e.g. it is not possible to change the monitoring level at real time.
At the same time there are solutions that aim to resolve this problem, one of
them being AOP-Monitoring framework [2].

AOP-Monitoring framework is based on a simple architecture presented in
Fig. 3 a.

Application

Application Server
Under Monitoring

A1

A1

....

A i

Ai−1 A i

Monitor
Manager

a) b)

Monitor
ManagerSensor

Sensor Manager
Proxy

Fig. 3. AOP-Monitoring framework architecture: a) overview, b) sensor details

There are two main parts of the framework: Sensors and Monitor Manager.
Sensors are responsible for collecting data from the system - they are in fact
aspects injected into the code. Sensors can be defined on different monitoring
levels, e.g. when a method or constructor is called, before object initialisation,
before a field is read, etc. Data is purged to the Monitor Manager once a de-
fined threshold is achieved. In Fig. 3 b., there is a detailed presentation of the
sensor architecture. It is a composition of a real sensor (an entity defined using
AspectJ [10] and a Sensor Manager Proxy. The Sensor Manager Proxy is aimed
to communicate with the Monitor Manager.

The Monitor Manager is responsible for collecting all the data from all active
sensors and determine what policy should be applied. The Monitor Manager
allows failure prediction by using data mining or forecasting methods using the
collected sensor data. If the prediction methods need more data from the system
or low level monitoring, the Monitor Manager can activate new sensors and
deactivate others to obtain these data to accurately determine if there will occur
a failure or an error.

The AOP-Monitoring framework is a recent approach to the monitoring with
aspects. It is flexible and uses well known technologies like AspectJ. Currently
there is no final version of this framework – it is under development, there is a
first version but without data mining or prediction methods.

4 Self-healing Monitoring System

In this section we present requirements for the self-healing monitoring system to-
gether with a case study of the problems that may occur during the prototyping.
At the end we are going to present our solution.

4.1 System Architecture

The monitoring of a distributed system is not a trivial task. The system com-
ponents are usually located on different nodes or machines and communicate

130 W. Funika and P. Pȩgiel

through network. The most common (and probably the most natural) way of
monitoring such systems is to use an agent-based approach [7]. In this case the
monitoring system usually consists of a set of agents and some other components
like database with monitoring results or a User Interface. The agents are used
to pull monitoring information from the monitored system nodes. In self-healing
approaches such agents pull the information to the Oracle [17] which is used
for failure detection (described broader in the next subsection). As usually ad-
ditional components are running on separate machines. The problem with this
approach is the fact that a failure of one of these components leads to a failure
in the whole monitoring system (when a component with results is down the
system is not able to store any results). Therefore before enabling self-healing
in a monitored system the monitoring system should be able to heal its internal
problems.

4.2 AgeMon – Self-healing Monitoring System

To enable self-healing in the monitoring system, some additional work should
be done during the system design. Since the system is going to be based on the
agents(it is a reasonable approach in a distributed environment), and all of the
system components should work and behave as agents. This approach simplifies
the design and deployment of the monitoring system. Of course there should be
a kind of specialisation of the agents. In our approach we prefer to use term roles
that can be fulfilled by the agent. The following roles are designed:

– Regular monitoring role – this agent is used to collect the monitoring data
from the monitored system (it is working like a sensor). The data can be gath-
ered from various sources – directly from the application (e.g. by AOP), by
a specific monitoring system (like JMX), from the operating system (native
libraries, statistics files). This agent can also be used to enable self-healing
in the monitored system.

– GUI role – used to present the monitoring results to the user and allows
to manage the monitoring system. The user should be able to observe the
current state of the monitoring and monitored system, manage monitoring
(start, stop), see the results displayed on-line, compare different monitoring
results in one visualisation window.

– Database role – used to store the monitoring information in a persistent
database. The agent should also be able to serve the historical monitoring
information to other agents on demand.

– Rule role – the agent used to transform the monitoring results (e.g. by run-
ning metrics). Dependent on the results of the transformation the agent
should be able to decide on what action should be taken after the transfor-
mation (if any). There can be many different actions, e.g.: run a new metric,
send a predefined event to the monitoring system, send a predefined event to
the monitored system, send a notification to the user.

It is possible that an agent is able to work in more than one role. We can imagine
a situation when the agent that gathers the data, automatically pre-process them
and stores to the embedded database along with sending the results to GUI.

A Role-Based Approach to Self-healing in Autonomous Monitoring Systems 131

Fig. 4. Stack-based monitoring agent

Due to the above concept – one agent should be able to work in different roles
– the architecture of the agent should be based on well defined interfaces that
split implementations into well defined layers. Fig 4 presents an agent designed
based on this approach.

The main requirements for each layer:

- Communication Layer – this layer is used for communication between agents.
To save network bandwidth it should allow messaging to more than a single
agent at the same time (e.g. when an IP network is considered it should allow
IP-multicast). It should support tunnelling for larger networks, and be as user-
friendly (zero-configuration) as possible. One of the most important requirements
for this layer is to provide automatic discovery of a new agent attached to the
network.

During the prototype implementation we tested multiple libraries and pro-
tocols that can be used as a base in this layer: SLP [11] (OpenSLP, jSLP),
SSDP [12] (Microsoft UPnP SDK, UPNPLib) and JINI [13]. We have decided
to use JGroups2 – it is a lightweight, reliable multicast communication toolkit
with discovering of new agents. Of course the implementation is hidden behind
the interfaces, therefore it should be easy to change the implementation.

- Agent layer – implements the agent abstraction. This layer is a helper layer
between the communication layer (where each agent can be distinguished by the
name only) and the monitoring layer. It is responsible for keeping the updated
agent group that belongs to one monitoring group. It also hides the implemen-
tation of remotely executed monitoring tasks.

- Monitoring layer – is responsible for processing monitoring messages passed be-
tween agents. The messages can be divided into two groups: regular monitoring
messages (with results of the monitoring) and control messages. Control mes-
sages contain information about actions made by user/system and inform about

2 http://www.jgroups.org/

132 W. Funika and P. Pȩgiel

the current state of the system (e.g. present a list of the running monitoring
instances, describe capabilities, start/stop monitoring sessions).

- Roles layer – this layer contains the implementation of each role. Due to the
layer separation, each role can reuse lower layers independently.

In addition, based on the above idea, some other functionalities should be pro-
vided to enable self–healing in the monitoring system. Since the communication
layer is responsible for automatic discovery of new agents and notification if an
agent fails (disconnects from the network) an election algorithm can be started
to find a new agent that can be used for the selected roles.

Let’s consider an example with 4 agents - 2 monitoring agents, 1 transforma-
tion agent, and 1 database agent. When the database agent fails other agents can
start an election to find the agent that can work as a database agent (store the
monitoring results) until the primary database agent is restarted. Distributed
cache is also a nice technology that can be used to enable self-healing. The mon-
itoring configuration (what is monitored by an agent) can be stored in such a
cache and used to restore the monitoring configuration when network failures
are detected. The rule agent can be used to enable self-healing of the monitor-
ing system. It can be used for detecting the failures in the monitored system
as well as in the monitoring system - e.g. we can define a rule that whenever
the database agent is down the system should notify the user with a problem
description.

4.3 Enabling Self-healing in the Monitored System

Enabling self-healing in the monitored system is not a simple task. It can be
considered with different granularity levels [14,15].The most common solutions
are working with coarse-grained components. A common example is related to
load-balancing. A monitoring system based on the current load factor can make
a decision to run additional nodes that can handle more transactions per second.

More recent self-healing approaches operate at the system’s architectural level
by exploiting architecture reconfiguration strategies. The ability to dynamically
add redundant servers, add or remove components are some examples.

Enabling self-healing on the class or method level usually involves changing
the code of application. One of the example is the PANACEA framework. It is
based on the concept of the self-healing annotations used to decorate the objects
at the development time. Through these annotations the application developer
passes hints to run-time PANACEA healers, which may use them on-demand.
The second option is to use AOP (please refer to Section 3.1). It does not require
code changes but it involves good knowledge of the system source code and it can
be mainly used for gathering the data without notifying the monitored system.

As mentioned above each solution has its pros and cons. Monitoring the
system parameters (CPU usage, disk usage, network bandwidth) can be done
without extending the application. On the application level the AOP can be
considered together with exposing additional monitoring information – e.g. with
the JMX technology beans can be used. For handling the healing feedbacks from

A Role-Based Approach to Self-healing in Autonomous Monitoring Systems 133

the monitoring system, event based communication can be used (in case of JMX,
it can be notifications).

4.4 Prototype - AgeMon

A prototype of a new self-healing system, called AgeMon3, using the above
concept is being developed. It is written in Java and as mentioned it uses JGroups
as a communication layer. We have currently implemented the regular monitoring
role and GUI role. The monitoring role is using JMX as a connector to the
monitored system. Each capability that can be monitored is dynamically read
using JMX and converted to the abstract internal description and presented to
the user in a Swing based GUI. Owing to it, GUI is able to graphically manage
the group of the agents, define and run a new monitoring session and manage
the flow of the monitoring results (agent-to-agent connections).

Currently the database and rule role is under development. The database
role will be based on ’in-memory’ database (like Apache Derby). The rules and
actions can be based on Drools4 notation or stored in the ontology [16].

4.5 Summary

In this paper we presented the existing technologies that can be used for enabling
self-healing which goes beyond pure monitoring. Two of them are based on the
Aspect Oriented Programming – by using this technology we can enable self-
healing for the systems on the software level. Moreover, it is possible to enable
self-healing for legacy applications as well. An example of hardware level self-
healing may be Solaris 10 OS.

The second part of the paper focused on the requirements for and our approach
to building a self-healing monitoring system. A brief description of the prototype
of such a system is presented. The prototype is a first stage for implementing the
self-healing monitoring system. We have introduced a concept of roles together
with the description of each role. The stack-based agent was presented.

At the moment in the AgeMon system, the regular monitoring role and the
GUI role is implemented, so there is also some work to be done in further research
– we need to implement other roles like the database role or rule engine to make
the system complete.

Acknowledgements. This research is partially supported by the POIG project
“PL-Grid” and the AGH grant 11.11.120.865.

References

1. Predictive Self-Healing in the Solaris 10 Operating System - A Technical Introduc-

tion (September 2004),

http://www.sun.com/bigadmin/content/selfheal/selfheal_overview.pdf

3 AgeMon stands for Agent-based Monitoring System.
4 jboss.org/drools.

http://www.sun.com/bigadmin/content/selfheal/selfheal_overview.pdf

134 W. Funika and P. Pȩgiel

2. Alonso, J., Torres, J., Silva, L.M., Griffith, R., Kaiser, G.: Towards Self-adaptable

monitoring framework for self-healing, CoreGRID TR-0150, July 3 (2008),

http://www.coregrid.net/mambo/images/

stories/-TechnicalReports/tr-0150.pdf

3. Griffith, R., Kaiser, G.: Adding self-healing capabilities to the common language

runtime. Technical report, Columbia University (2005)

4. Using Nagios to monitor faults in a self-healing environment, by Mikko A.T. Pervilä

(2007),

http://www.cs.helsinki.fi/u/niklande/opetus/SemK07/-paper/pervila.pdf

5. Amin, M.: Toward self-healing energy infrastructure systems. Computer Applica-

tions in Power 14(1), 20–28 (2001)

6. Sidiroglou, S., Laadan, O., Keromytis, A.D., Nieh, J.: Using Rescue Points to Nav-

igate Software Recovery (Short Paper). In: Proceedings of the IEEE Symposium

on Security and Privacy (May 2007)

7. The Intelligent Software Agents Lab – Home Page,

http://www.cs.cmu.edu/~softagents/intro.htm

8. Baresi, L., Guinea, S., Pasquale, L.: Self-healing BPEL Processes with Dynamo and

the JBoss Rule Engine. In: Int. Workshop on Engineering of Software Services for

Pervasive Environments: in Conjunction with the 6th ESEC/FSE Joint Meeting,

Dubrovnik, Croatia, pp. 11–20 (2007)

9. Glassbox – How It Works, http://www.glassbox.com/glassbox/HowItWorks.html

10. AspectJ – Home page, http://www.eclipse.org/aspectj/

11. Guttman, E., Perkins, C., Veizades, J., Day, M.: RFC 2608 Service Location Pro-

tocol, Version 2 (June 1999), http://tools.ietf.org/html/rfc2608

12. Goland, Y.Y., Cai, T., Leach, P., Gu, Y., Albright, S.: Simple Service Discovery

Protocol/1.0. (October 28, 1999),

http://coherence.beebits.net/chrome/site/draft-cai-ssdp-v1-03.txt

13. Jini Discovery and Join Specification v3. September 4 (2006),

http://www.jini.org/wiki/Jini_Discovery_and_Join_Specification

14. PANACEA - Towards a Self-healing Development Framework. In: 10th IFIP/IEEE

International Symposium on Integrated Network Management, IM 2007, May 21,

pp. 169–178 (2007), ISBN: 1-4244-0798-2

15. HP Open View Self-Healing Services: Overview and Technical Introduction, HP

Labs (2006),

http://managementsoftware.hp.com/services/selfhealing_whitepaper.pdf

16. Funika, W., Godowski, P., Pȩgiel, P.: A Semantic-Oriented Platform for Perfor-

mance Monitoring of Distributed Java Applications. In: Bubak, M., van Albada,

G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part III. LNCS, vol. 5103, pp.

233–242. Springer, Heidelberg (2008)

17. Wuttke, J.: An approach to detecting failures automatically. In: Fourth Interna-

tional Workshop on Software Quality Assurance: in Conjunction With the 6th

ESEC/FSE Joint Meeting, Dubrovnik, Croatia, pp. 17–24 (2007)

http://www.coregrid.net/mambo/images/stories/-TechnicalReports/tr-0150.pdf
http://www.coregrid.net/mambo/images/stories/-TechnicalReports/tr-0150.pdf
http://www.cs.helsinki.fi/u/niklande/opetus/SemK07/-paper/pervila.pdf
http://www.cs.cmu.edu/~softagents/intro.htm
http://www.glassbox.com/glassbox/HowItWorks.html
http://www.eclipse.org/aspectj/
http://tools.ietf.org/html/rfc2608
http://coherence.beebits.net/chrome/site/draft-cai-ssdp-v1-03.txt
http://www.jini.org/wiki/Jini_Discovery_and_Join_Specification
http://managementsoftware.hp.com/services/selfhealing_whitepaper.pdf

Parallel Performance Evaluation of MIC(0)

Preconditioning Algorithm for Voxel μFE
Simulation

Ivan Lirkov1, Yavor Vutov1, Marcin Paprzycki2, and Maria Ganzha2

1 Institute for Parallel Processing, Bulgarian Academy of Sciences,

Acad. G. Bonchev, Bl. 25A, 1113 Sofia, Bulgaria

ivan@parallel.bas.bg, yavor@parallel.bas.bg

http://parallel.bas.bg/~ivan/, http://parallel.bas.bg/~yavor/
2 Systems Research Institute, Polish Academy of Sciences

ul. Newelska 6, 01-447 Warsaw, Poland

paprzyck@ibspan.waw.pl, maria.ganzha@ibspan.waw.pl

http://www.ibspan.waw.pl/~paprzyck/, http://www.ganzha.euh-e.edu.pl

Abstract. Numerical homogenization is used for up-scaling of a linear

elasticity tensor of strongly heterogeneous micro-structures. Utilized ap-

proach assumes presence of a periodic micro-structure and thus periodic

boundary conditions. Rotated trilinear Rannacher-Turek finite elements

are used for the discretization, while a parallel PCG method is used to

solve arising large-scale systems with sparse, symmetric, positive semidef-

inite matrices. Applied preconditioner is based on modified incomplete

Cholesky factorization MIC(0).

The test problem represents a trabecular bone tissue, and takes

into account only the elastic response of the solid phase. The voxel

micro-structure of the bone is extracted from a high resolution com-

puter tomography image. Numerical tests performed on parallel com-

puters demonstrate the efficiency of the developed algorithm.

Keywords: micro finite element simulation, modeling of human bone

tissue, parallel algorithms, PCG method, preconditioner, MIC(0) factor-

ization, parallel performance.

1 Introduction

Many, seemingly different materials, such as human bone tissue, geocompos-
ites, filtering media in industrial applications have very complex hierarchical
organization spanning multiple length scales and involve complex multi-physical
processes at some of these scales. However, their overall mechanical response and
ability to conduct fluids can be described using multilevel techniques that are
built upon basic conservation principles at the micro or nano levels.

In our work, we consider modeling of human bone tissue which is based on
the recently developed morphology of bones. In general, model used here has a
multilevel structure according to the specific material dimensions (and as such

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 135–144, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://parallel.bas.bg/~ivan/
http://parallel.bas.bg/~yavor/
http://www.ibspan.waw.pl/~paprzyck/
http://www.ganzha.euh-e.edu.pl

136 I. Lirkov et al.

generalizes to other problems mentioned above). At a length scale of about sev-
eral hundred nanometers, oriented, highly organized collagen molecules, the mi-
nority of the hydroxy-apatite crystals (present in bone tissues) and water, build
up (mineralized) fibrils. At the same length scale, but in the extra-fibrillar space,
the majority of (largely disordered) hydroxy-apatite crystals build up a mineral
foam (polycrystalline), with water filling the inter-crystalline (nano)space. At
a length scale of several micrometers, the fibrils and the extra-fibrillar space
builds up solid bone matrix or ultrastructure. Finally, at a length scale of sev-
eral millimeters, macroscopic bone material (cortical or trabecular bone) com-
prises solid bone matrix and the micro-porous space. This four-level model has
been validated by statistically and physically independent experiments, see e.g.
[11,13,15]. Having in mind that the aforementioned dosages (concentrations, vol-
ume fractions) are dependent on complex biochemical control cycles (defining
the metabolism of the organism), the purely mechanical theory can be linked to
biology, biochemistry, and, on the applied side, to clinical practice.

Many problems in bone modeling result in need to solve large- and very large-
scale linear systems. This, in turn, requires application of parallel computers.
Furthermore, even though recent advances in direct solvers for large-scale sparse
linear systems has to be acknowledged (see, [7,17], for an interesting comparison),
the method of choice for the problem at hand has to be iterative.

In this context, this study concerns development and tuning of solution meth-
ods, algorithms, and software tools for micro finite element (μFE) simulation
of human bones (e.g. [1,2]). Furthermore, the isotropic linear elasticity model
considered here is a brick in the development of a generalized toolkit for μFE
simulation of the bone micro-structure.

A boundary value problem can be discretized in various ways. Among the
most popular are: the finite volume method, the Galerkin finite element method
(FEM), and the mixed FEM. Many engineering problems need very accurate
velocity (flux) determinations in the presence of heterogeneities and large jumps
in the coefficient. This can be achieved through the mixed FEM. However, this
technique usually leads to an algebraic saddle point problem that is more diffi-
cult and more expensive to solve. An important discovery of Arnold and Brezzi
[4] is that the Schur system for the Lagrange multipliers can be obtained also
as a discretization by a Galerkin method using nonconforming elements. The
application of rotated trilinear hexahedral FEs is studied in this paper.

The resulting linear system is large, with a sparse, symmetric and positive
definite matrix. This implies use of preconditioned conjugate gradient (PCG)
solvers [5], while choice of preconditioning is crucial for the PCG performance.
It is also known that the PCG method converges for semidefinite matrices in the
orthogonal to the kernel subspace.

The elasticity stiffness matrix has a coupled block structure corresponding to
separable displacement ordering of the unknowns. Until now, the displacement
decomposition (see, [6,10]) remains one of the most robust approaches for precon-
ditioning of such matrices. Here, one of the most popular and the most successful
class of preconditioners is the class of incomplete LU (ILU) factorizations (see,

Parallel Performance Evaluation of MIC(0) Preconditioning Algorithm 137

e.g. [5,12]). However, one potential problem with the ILU preconditioners is that
they exhibit a limited degree of parallelism. To alleviate this problem we have
developed a preconditioning algorithm based on a parallel MIC(0) (Modified
Incomplete Cholesky) elasticity solver [20]. Suitable modification of the MIC(0)
algorithm allows efficient parallelization of the preconditioning.

2 Homogenization Technique

Let Ω be a hexagonal domain representing our reference volume element (RVE)
and u = (u1, u2, u3) be the displacements vector in Ω. Here, components of the
small strain tensor are:

εij (u (x)) =
1
2

(
∂ui(x)
∂xj

+
∂uj(x)
∂xi

)
(1)

We assume that Hooke’s law holds:⎡⎢⎢⎢⎢⎢⎢⎣
σ11

σ22

σ33

σ23

σ13

σ12

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
c1111 c1122 c1133 c1123 c1113 c1112
c2211 c2222 c2233 c2223 c2213 c2212
c3311 c3322 c3333 c3323 c3313 c3312
c2311 c2322 c2333 c2323 c2313 c2312
c1311 c1322 c1333 c1323 c1313 c1312
c1211 c1222 c1233 c1223 c1213 c1212

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
ε11

ε22

ε33

2ε23

2ε13

2ε12

⎤⎥⎥⎥⎥⎥⎥⎦ . (2)

Here, tensor c is called the stiffness tensor, while σ is the stress tensor.
The symmetric 6 × 6 matrix C is called the stiffness matrix. For an isotropic

material C has only two independent degrees of freedom. For materials contain-
ing three orthogonal planes of symmetry, matrix C has nine independent degrees
of freedom: three Young’s moduli E1, E2, E3, three Poisson’s ratios ν12, ν23, ν31

and three shear moduli μ12, μ23, μ31.

C = δ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − ν23ν32

E1

ν12 + ν31ν23

E1

ν31 + ν21ν32

E1
ν12 + ν13ν32

E2

1 − ν31ν13

E2

ν32 + ν31ν12

E2
ν13 + ν12ν23

E3

ν23 + ν13ν21

E3

1 − ν12ν21

E3 μ23

δ μ31

δ μ12

δ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3)

where
δ = 1 − ν12ν21 − ν13ν31 − ν23ν32 − 2ν12ν23ν31,

ν12

E1
=

ν21

E2
,

ν23

E2
=

ν32

E3
,

ν31

E3
=

ν13

E1
.

138 I. Lirkov et al.

Our goal was to obtain homogenized material properties of the trabecular bone
tissue. In other words, to find the stiffness tensor of a homogeneous material, with
the same macro-level properties as our RVE. In the proposed approach, we follow
the numerical up-scaling method from [14] (see also [9]). The homogenization
scheme requires finding functions ξkl = (ξkl

1 , ξkl
2 , ξkl

3), k, l = 1, 2, 3, satisfying the
following problem in a week formulation:∫

Ω

(
cijpq(x)

∂ξkl
p

∂xq

)
∂φi

∂xj
dΩ =

∫
Ω

cijkl(x)
∂φi

∂xj
dΩ, (4)

for an arbitrary Ω-periodic variational function φ ∈ H1(Ω). After computing
the characteristic displacements ξkl, from (4) we can compute the homogenized
elasticity tensor cH using the following formula:

cH
ijkl =

1
|Ω|

∫
Ω

(
cijkl(x) − cijpq(x)

∂ξkl
p

∂xq

)
dΩ. (5)

Due to symmetry of the stiffness tensor c, we have the relation ξkl = ξlk and it is
enough to solve only six problems (4) to obtain the homogenized stiffness tensor.

Rotated trilinear (Rannacher-Turek) finite elements [18] are used for the nu-
merical solution of (4). This choice is motivated by the additional stability of the
nonconforming finite element discretization in the case of strongly heterogeneous
materials [4]. Construction of a robust non-conforming finite element method is
generally based on application of mixed formulation leading to a saddle-point
system. By the choice of non continuous finite elements for the dual (pressure)
variable, it can be eliminated at the (macro)element level. As a result we obtain
a symmetric positive (semi-)definite finite element system in primal (displace-
ments) variables. We utilize this approach, which is referred as the reduced and
selective integration (RSI).

3 Parallel Displacement Decomposition MIC(0)
Preconditioning

A preconditioning algorithm was developed using a parallel MIC(0) elasticity
solver [20], based on a parallel MIC(0) solver for the scalar elliptic problem [3].
The preconditioner uses the isotropic variant of the displacement decomposition
(DD) [6,10]. We write the DD auxiliary matrix in the form

MDD =

⎡⎣A
A

A

⎤⎦ (6)

where A is the stiffness matrix corresponding to the bilinear form

a(uh, vh) =
∫

Ω

E(x)

(
3∑

i=1

∂u

∂xi

∂v

∂xi

)
dx, (7)

Parallel Performance Evaluation of MIC(0) Preconditioning Algorithm 139

and u and v are Ω-periodic functions. Such approach is motivated by the second
Korn’s inequality, which holds for the RSI finite element discretization under
consideration. This means that the estimate for the relative condition number
of the preconditioned system

κ
(
M−1

DDK
)

= O (
(1 − 2ν)−1

)
holds uniformly with respect to the mesh size parameter, while K is the stiffness
matrix. Our preconditioner is obtained by the MIC(0) factorization of blocks
in (6).

Remark 1. To satisfy conditions for the stable MIC(0) factorization in the case
of a semi-definite matrix, we are using the perturbed version of the MIC(0)
algorithm, where the incomplete factorization is applied to the matrix Ã = A+D̃.
The diagonal perturbation D̃ = D̃(ξ) = diag(d̃1, . . . d̃N) is defined as follows:

d̃i =
{

ξaii if aii ≥ 2wi

ξ1/2aii if aii < 2wi

where 0 < ξ < 1 is a properly chosen parameter, and wi =
∑

j>i −aij .

The idea of the proposed parallel algorithm is to apply the MIC(0) factoriza-
tion on an auxiliary matrix B, which approximates A. This matrix B has a
special block structure, which facilitates implementation of a scalable parallel
solver. Following the standard FEM assembling procedure we write A in the
form A =

∑
e∈ωh

RT
e AeRe, where Ae is the element stiffness matrix, while Re

stands for the restriction mapping of the global vector of unknowns to the lo-
cal one corresponding to the current element e. Let us consider the following
approximation Be of Ae:

Ae =

⎡⎢⎢⎢⎢⎢⎢⎣
a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

a41 a42 a43 a44 a45 a46

a51 a52 a53 a54 a55 a56

a61 a62 a63 a64 a65 a66

⎤⎥⎥⎥⎥⎥⎥⎦ Be =

⎡⎢⎢⎢⎢⎢⎢⎣
b11 a12 a13 a14 a15 a16

a21 b22 a23 a24 a25 a26

a31 a32 b33 0 0 0
a41 a42 0 b44 0 0
a51 a52 0 0 b55 0
a61 a62 0 0 0 b66

⎤⎥⎥⎥⎥⎥⎥⎦
Local numbering applied here follows the pairs of the opposite nodes of the
reference element. Here, diagonal entries of Be are modified to hold the row-sum
criteria (for more details see [3]). Assembling the locally defined matrices Be we
obtain the global matrix B =

∑
e∈ωh

RT
e BeRe. The condition number estimate

κ(B−1A) ≤ 3 holds uniformly with respect to the mesh parameter and to possible
coefficient jumps (for the related analysis see discussion presented in [3]). After
this modification we obtain matrix B with its diagonal blocks (corresponding to
horizontal cross sections) being diagonal matrices. The solution of linear systems
with the preconditioner can be performed in parallel. It is important to note that
the use of periodic boundary conditions does not change diagonal blocks of the

140 I. Lirkov et al.

(a) (b) (c)

Fig. 1. Structure of the solid phase: (a) 32 × 32 × 32 voxels, (b) 64 × 64 × 64 voxels,

(c) 128 × 128 × 128 voxels

stiffness matrix A, and thus the same parallel algorithm can be applied also here.
The obtained preconditioner has the form.

MDDMIC(0) =

⎡⎣MMIC(0)(B)
MMIC(0)(B)

MMIC(0)(B)

⎤⎦ .

4 Experimental Results

Our test specimen is part of a trabecular bone tissue obtained from a high reso-
lution computer tomography [8]. The trabecular bone tissue has a strongly het-
erogeneous micro-structure composed of solid and fluid phases and thus matches
very well with the proposed approach. To obtain a periodic RVE the bone tissue
specimen is mirrored three times, see Fig. 1. The voxel size is 37 μm.

In this paper we focus on the parallel performance of the proposed numerical
up-scaling technique. Experiments to study the homogenized properties of the
RVE with dimensions n × n × n voxels were performed, where n = 32, 64, 128.
The Young moduli Es = 14.7 GPa for the solid phase, and Ef = 1.323 GPa for
the fluid phase were used. The same Poisson ratio νs = νf = 0.325 was used for
both phases. The iteration stopping criterion was ||rj ||M−1/||r0||M−1 < 10−3,
where rj stands for the residual at the j-th iteration step of the preconditioned
conjugate gradient method.

To solve the above described problems, a portable parallel FEM code was de-
signed and implemented in C++, while the parallelization has been facilitated
using the MPI library [19,21]. The parallel code has been tested on cluster com-
puter system located in the Oklahoma Supercomputing Center (OSCER) and
the IBM Blue Gene/P machine at the Bulgarian Supercomputing Center. In
our experiments, times have been collected using the MPI provided timer and

Parallel Performance Evaluation of MIC(0) Preconditioning Algorithm 141

Table 1. Experimental results on Sooner

n Problem size p Time Speed-up Efficiency

32 2 359 296 1 631.05

2 355.73 1.77 0.887

4 243.61 2.59 0.648

8 217.92 2.90 0.362

16 133.24 4.74 0.296

32 87.86 7.18 0.224

64 18 874 368 1 6317.35

2 3362.10 1.88 0.939

4 2270.16 2.78 0.696

8 1921.95 3.29 0.411

16 1154.40 5.47 0.342

32 774.10 8.16 0.255

64 588.81 10.73 0.168

128 150 994 944 1 82468.90

2 44902.69 1.84 0.918

4 28065.57 2.94 0.735

8 23621.77 3.49 0.436

16 12146.39 6.79 0.424

32 7212.52 11.43 0.357

64 4881.75 16.89 0.264

128 3761.78 21.92 0.171

we report the best results from multiple runs. We report the elapsed time Tp

in seconds on p processors, the parallel speed-up Sp = T1/Tp, and the parallel
efficiency Ep = Sp/p. The obtained up-scaled properties can be found in [16].

Table 1 summarizes results collected on Sooner. It is a Dell Pentium4 Xeon
E5405 (“Harpertown”) quad core Linux cluster located in the Oklahoma Super-
computing Center (see http://www.oscer.ou.edu/resources.php). It has 486
Dell PowerEdge 1950 III nodes and two quad core processors per node. Each
processor runs at 2 GHz. Processors within each node share 16 GB of memory,
while nodes are interconnected with a high-speed InfiniBand network. We have
used Intel C++ compiler and compiled the code with the following options: “-O3
-march=core2 -mtune=core2”.

As expected, the parallel efficiency improves with the size of the discrete
problems. The efficiency on 16 processors increases from 30% for the smallest
problems to 42% for the largest problems in this set of experiments. Also, the
execution times decrease with increasing number of processors which shows that
the communications in our parallel algorithm are mainly local.

Table 2 shows execution times on IBM Blue Gene/P machine at the Bulgarian
Supercomputing Center (see http://www.scc.acad.bg/). It consists of 2048
compute nodes with quad core PowerPC 450 processors (running at 850 MHz).
Each node has 2 GB of RAM. For the point-to-point communications a 3.4 Gb
3D mesh network is used. Reduction operations are performed on a 6.8 Gb tree

http://www.oscer.ou.edu/resources.php
http://www.scc.acad.bg/

142 I. Lirkov et al.

Table 2. Experimental results on IBM Blue Gene/P

n Problem size p Time Speed-up Efficiency

32 2 359 296 1 3442.29

2 1782.88 1.93 0.965

4 954.90 3.61 0.901

8 532.29 6.47 0.808

16 322.62 10.67 0.667

32 205.40 16.76 0.524

64 18 874 368 1 34166.01

2 17358.17 1.97 0.984

4 8975.65 3.81 0.952

8 4763.87 7.17 0.896

16 2633.40 12.97 0.811

32 1589.88 21.49 0.672

64 1003.19 34.06 0.532

128 150 994 944 8 55413.21

16 29132.86 0.951

32 15967.65 0.868

64 9773.76 0.709

128 6131.38 0.565

network. We have used IBM XL C++ compiler and compiled the code with the
following options: “-O5 -qstrict -qarch=450d -qtune=450”.

The memory available on a single node of Blue Gene/P is not sufficient to run
experiments for the largest problem and we report execution times starting from
eight processors located within different nodes. Therefore, for the largest prob-
lem, we report parallel efficiency related to results collected on eight processors.
Execution times on Blue Gene/P are substantially larger than that on Sooner,

102

103

104

105

 1 2 4 8 16 32 64 128

tim
e

number of processors

Execution time

Blue Gene/P n=128
Sooner n=128

Blue Gene/P n=64
Sooner n=64

Blue Gene/P n=32
Sooner n=32

Fig. 2. Execution times for the test problems

Parallel Performance Evaluation of MIC(0) Preconditioning Algorithm 143

but parallel efficiency obtained on the supercomputer is better. For instance,
the execution on 64 processors on Sooner is only twice faster than on the Blue
Gene/P, in comparison with five times faster performance on single processor.

To summarize, in Fig. 2 computing times on both parallel systems are shown.
The somehow slower performance on Sooner using 8 processors is clearly visible.
It can be stipulated that this effect is a result of limitations of memory sub-
systems and their hierarchical organization. One of them might be the limited
bandwidth of the main memory bus. This causes processors to “starve” for data,
thus, decreasing the overall performance. Note that L2 cache memory is shared
among each pair of cores within the processors of Sooner. This boosts perfor-
mance of programs utilizing only a single core within such pair. Conversely, this
leads to somewhat decreased performance when all cores are used.

5 Conclusions and Future Work

We have studied the parallel performance of the recently developed numerical
homogenization technique utilizing parallel MIC(0) factorization [16]. The per-
formance was evaluated on two different parallel architectures. Satisfying parallel
efficiency is obtained on the IBM Blue Gene/P. The efficiency on Sooner quickly
deteriorates with the increase of the number of the processors. Despite of the
worse efficiency, the faster CPUs on Sooner lead to shorter runtime, on the same
number of processors. The network latency is crucial for the parallel performance
of the algorithm. To hide some of the network latency, the computations were
overlapped with the communications wherever possible. We plan to investigate
the possibility to hide further the latency, solving simultaneously more than one
of the six independent problems (4).

Acknowledgments

Computer time grants from the Oklahoma Supercomputing Center (OSCER)
and the Bulgarian Supercomputing Center (BGSC) are kindly acknowledged.
This research was partially supported by grant DO02-147/2008 from the Bul-
garian NSF. Work presented here is a part of the Poland-Bulgaria collaborative
grant “Parallel and distributed computing practices”.

References

1. Arbenz, P., Flaig, C.: On smoothing surfaces in voxel based finite element analysis

of trabecular bone. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2007.

LNCS, vol. 4818, pp. 69–77. Springer, Heidelberg (2008)

2. Arbenz, P., Van Lenthe, G.H., Mennel, U., Muller, R., Sala, M.: A scalable multi-

level preconditioner for matrix-free μ-finite element analysis of human bone struc-

tures. Internat. J. Numer. Methods Engrg. 73(7), 927–947 (2008)

3. Arbenz, P., Margenov, S., Vutov, Y.: Parallel MIC(0) preconditioning of 3D el-

liptic problems discretized by Rannacher-Turek finite elements. Computers and

Mathematics with Applications 55(10), 2197–2211 (2008)

144 I. Lirkov et al.

4. Arnold, D.N., Brezzi, F.: Mixed and nonconforming finite element methods: Im-

plementation, postprocessing and error estimates. RAIRO, Model. Math. Anal.

Numer. 19, 7–32 (1985)

5. Axelsson, O.: Iterative solution methods. Cambridge Univ. Press, Cambridge

(1994)

6. Axelsson, O., Gustafsson, I.: Iterative methods for the solution of the Navier equa-

tions of elasticity. Comp. Meth. Appl. Mech. Eng. 15, 241–258 (1978)

7. Bängtsson, E., Lund, B.: A comparison between two solution techniques to solve

the equations of glacially induced deformation of an elastic earth. Internat. J.

Numer. Methods Engrg. 75, 479–502 (2008)

8. Beller, G., Burkhart, M., Felsenberg, D., Gowin, W., Hege, H.-C., Koller, B., Pro-

haska, S., Saparin, P.I., Thomsen, J.S.: Vertebral body data set esa29-99-l3,

http://bone3d.zib.de/data/2005/ESA29-99-L3/

9. Bensoussan, A., Lions, J.L., Papanicolaou, G.: Asymptotic analysis for periodic

structures. Elsevier, Amsterdam (1978)

10. Blaheta, R.: Displacement decomposition–incomplete factorization preconditioning

techniques for linear elasticity problems. Num. Lin. Alg. Appl. 1(2), 107–128 (1994)

11. Fritsch, A., Dormieux, L., Hellmich, C., Sanahuja, J.: Micromechanics of crystal

interfaces in polycrystalline solid phases of porous media: fundamentals and ap-

plication to strength of hydroxyapatite biomaterials. J. Materials Science 42(21),

8824–8837 (2007)

12. Golub, G.H., Van Loan, C.F.: Matrix computations, 2nd edn. Johns Hopkins Univ.

Press, Baltimore (1989)

13. Hellmich, C., Kober, C.: Micromechanics-supported conversion of computer tomog-

raphy (CT) images into anisotropic and inhomogeneous FE models of organs: the

case of a human mandible. Proceedings in Applied Mathematics and Mechanics 6,

71–74 (2006)

14. Hoppe, R.H.W., Petrova, S.I.: Optimal shape design in biomimetics based on ho-

mogenization and adaptivity. Math. Comput. Simul. 65(3), 257–272 (2004)

15. Kober, C., Erdmann, B., Hellmich, C., Sader, R., Zeilhofer, H.-F.: Consideration

of anisotropic elasticity minimizes volumetric rather than shear deformation in

human mandible. Comput. Meth. Biomech. Biomedic. Engin. 9(2), 91–101 (2006)

16. Margenov, S., Vutov, Y.: Parallel MIC(0) preconditioning for numerical upscaling

of anisotropic linear elastic materials. In: Lirkov, I., Margenov, S., Waśniewski, J.

(eds.) LSSC 2009. LNCS, vol. 5910, pp. 805–812. Springer, Heidelberg (2010)

17. Neytcheva, M., Bängtsson, E.: Preconditioning of nonsymmetric saddle point sys-

tems as arising in modelling of visco-elastic problems. ETNA 29, 193–211 (2008)

18. Rannacher, R., Turek, S.: Simple nonconforming quadrilateral Stokes element. Nu-

mer. Methods for Partial Differential Equations 8(2), 97–112 (1992)

19. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI: the complete

reference. Scientific and engineering computation series. The MIT Press, Cam-

bridge (1997) (second printing)

20. Vutov, Y.: Parallel DD-MIC(0) preconditioning of nonconforming rotated trilinear

FEM elasticity systems. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC

2007. LNCS, vol. 4818, pp. 745–752. Springer, Heidelberg (2008)

21. Walker, D., Dongarra, J.: MPI: a standard Message Passing Interface. Supercom-

puter 63, 56–68 (1996)

http://bone3d.zib.de/data/2005/ESA29-99-L3/

Parallel HAVEGE

Alin Suciu1, Tudor Carean1, Andre Seznec2, and Kinga Marton1

1 Technical University of Cluj-Napoca, Cluj-Napoca, Romania

{alin.suciu,tudor.carean,kinga.marton}@cs.utcluj.ro
2 IRISA/INRIA, Rennes, France

andre.seznec@irisa.fr

Abstract. The HAVEGE algorithm [1] [2] generates unpredictable ran-

dom numbers by gathering entropy from internal processor states that

are inheritably volatile and impossible to tamper with in a controlled

fashion by any application running on the target system. The method

used to gather the entropy implies that its main loop will almost monop-

olize the CPU; the output depends on the operating system and other

running applications, as well as some internal mechanisms that stir the

processor states to generate an enormous amount of entropy. The algo-

rithm was designed with the idea of single-core CPUs in mind, and no

parallelization; however the recent market explosion of multi-core CPUs

and the lack of results in increasing the CPU frequency justifies the need

to research a multithreaded parallel version of HAVEGE, capable of run-

ning the same algorithm loop on each core independently and transpar-

ently combine the results in one single output bitstream. This paper will

demonstrate how such a parallelization is possible and benchmark the

output speed of its implementation.

Keywords: random number generator, HAVEGE, parallel

implementation.

1 Introduction

The HAVEG (HArdware Volatile Entropy Gathering) algorithm family [1] in-
directly gathers entropy produced by external sources in the internal processor
states using the memory hierarchy and the branch prediction mechanism. The
algorithm uses the hardware clock counter to indirectly extract entropy from the
otherwise invisible hardware states.

The HAVEGE (HArdware Volatile Entropy Gathering and Expansion) gen-
erator [1] [2] combines a HAVEG algorithm of entropy extraction with a pseudo-
random number generator (two concurrent walks on a self modifying table). The
result is both a high bit rate as well as a high security level.

The security of the algorithm relies upon the fact that one can not completely
determine the internal state of the generator because this state is not only com-
posed of memory mapped data but of thousands volatile hardware states that
are inaccessible even to the user running the application.

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 145–154, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

146 A. Suciu et al.

There is no direct way to read these internal states without using special
debugging motherboards and hardware platforms. Any external event such as
an indirect attempt to read these states through software would cause a major
perturbation in themselves.

The algorithm relies on the hardware clock counter to have an idea of how
long it took to execute a particular code sequence. Since instruction execution
(number of CPU cycles) depends on many factors, most of them beyond the
control and observation area of the user or programmer, it is a good candidate
for inserting entropy in a pseudo-random number generator.

The internal workings of the HAVEGE algorithm are detailed in section 2,
followed in section 3 by the description of the parallelization solution that we
implemented and some experimental results in section 4; in section 5 we present
the conclusions.

2 The Internals of the HAVEGE Algorithm

If we consider a short instruction sequence with just a conditional jump and a
memory operation and measure how many clock cycles are needed for its execu-
tion at different times and possibly different conditions (suppose the content of
the variable tested for the jump and/or the memory location accessed changes),
different readings will be obtained each time. This is because a memory access
does not always need the same number of cycles to complete.

Systems try to avoid reading from a high latency memory such as the RAM as
much as possible by using two levels of (faster but much smaller) cache memory.
If the requested information is found in the L1 (level 1) cache the read will be
completed a lot faster than if it were in L2 (level 2) cache, in RAM or in the
worst case scenario in the operating systems swap file (which would require a
slow I/O operation).

In addition modern CPUs execute instructions in a pipeline so a read or
write could be delayed because of other instructions executing at the same time.
A memory access also needs to wait to get control of the bus. Another device
besides the CPU could be keeping the bus busy as well by doing a DMA transfer.
On the top of this, processors have a lot of internal buffers whose states also
influence the execution time in unpredictable ways (at least as seen from the
outside).

A simple memory access introduces a lot of uncertainty regarding execution
time but conditional jumps introduce even more. In order to implement pipelin-
ing, modern CPUs use branch prediction to deal with the uncertainty of the
outcome of the conditional test. A decision needs to be made about which side
of the jump is to be put in the pipeline even before the test is made.

Execution starts for instructions that may or may not need to run. Based
on several factors (that CPU manufacturers dont explain in too much detail) a
prediction is made and execution continues with one of the two branches.

Parallel HAVEGE 147

If the prediction was wrong everything executed will be undone, the pipeline
is emptied, and a jump is made at the right location. If the prediction was right
then the CPU has saved a lot of time.

The number of cycles needed for this is unknown and depends on the state
of the branch prediction table, the content of the pipeline and the result of the
conditional test. One could say that for a test done in a loop the outcome would
be the same but this is not always the case.

If the programmer intentionally aggravates things by using a random number
(possibly even obtained from past loops) for the test, not only the result is always
unknown but it would also confuse the branch predictor that tries to rely on data
locality and past results in the same loop.

Modern processors use more and more complex pipelining techniques, meant
to improve performance in favorable cases such as consecutive instructions that
can be executed independently and out of order, working with different registers
or memory locations, without having to wait for each others result. Many other
optimizations can be done like register renaming for example. In general the
longer the code sequence is the more uncertainty is introduced.

Moreover, interrupts occur at times out of the program’s control and these
alter the state of the cache memories, content of the pipelines and execution flow
in general. Considering a multitasking operating system, other programs, drivers
and kernel code need to be executed as well and will interrupt the HAVEGE
algorithm for unknown periods of time, which may have a big influence on the
internal state of the processor, adding more volatility and therefore entropy to
be gathered.

The instruction set of a PC does not offer any method to directly probe all
the hardware states. In an effort to break the security of the algorithm perhaps
a method could be devised to deduce some of them, but executing additional
instructions alters the state of the hardware making a guess useless. The only
thing that comes even close to monitoring the volatile hardware states are the
debugging platforms (special motherboards) used by processor manufacturers.

To make sure that the generated numbers are as random as possible the
algorithm works on a table that is twice the size of the level 1 cache doing
two self modifying concurrent walks. The fact that the indexes themselves are
random numbers and that the size of the array is twice the size of the level 1
cache gives a 50% probability of a cache miss.

The compiled size of the algorithms loop is also optimized to be as close as
possible to the size of the instruction cache, so that any interrupt issued by the
operating system would start causing cache misses. Nested if statements are used
to exercise the branch prediction mechanism by testing various bits of numbers
in the walk table (these numbers are also random).

Every now and then the algorithm reads the hardware clock counter and writes
a new value in the output table by combining the entropy just gathered from
the clock with values already present in the internal walk table. The iteration
continues until the output table is full with random numbers.

148 A. Suciu et al.

3 Parallelization of HAVEGE

To make the algorithm more secure against somebody trying to guess the next
sequence one could skip certain results (the HAVEGE authors called this feature
step hiding) by not returning from the function once the output buffer is full,
but instead uses this buffer (and overwrites it) to generate a new set of random
numbers.

This could be done several times (several steps), sacrificing speed for security.
While the algorithm with no such step hiding is very fast, generating around 350
MB/s of random data, the version recommended for cryptographic purposes that
skips 32 result sets, generates no more than 11 MB/s. The latter performance
measurement justifies the effort to create a parallel version of this algorithm in
order to crease the output rate (speed) of the generator.

Since the algorithm is designed to take over and monitor the buffers, caches
and branch prediction table of one processor core the only way to both paral-
lelize and to follow the initial idea behind the algorithm is to run a copy of the
algorithm independently on each separate core, each using the dedicated caches
and internal mechanisms of its core.

The implementation was done in Visual C++ with a MFC interface that
allows benchmarking the algorithms output rate with different settings; the user
can decide to store the random numbers on the disk or not.

The original algorithm was not designed with parallelization in mind so the
first step was to restructure the code by transforming the rigid functions and
global variables into a class that can be instantiated into independent random
number generators (objects) that can be used with different settings and don’t
influence each other. The new version can be run in different threads at the same
time and yield the same quality of random data, as long as different cores would
be used for each thread.

In order to obtain a unified generator that outputs data at a rate equal to
the sum of all the instantiated generators, a master thread needs to synchronize
them and gather/use the generated data. Such a master thread needs to tell each
generator when to start producing new numbers and when to stop and to make
sure that a generator waits enough until its output buffer has been consumed
before overwriting it again.

In order to avoid busy waiting and save CPU time the new HAVEGE generator
class exposes a set of WIN32 events that the master thread can use to synchronize
with the workers. The following pseudo-code explains the algorithm:

procedure HavegeGenerator ()
begin
repeat

wait for signal to start generating
run original Havege loop
signal master thread: buffer is full

until (shutdown = true)
end

Parallel HAVEGE 149

procedure MasterThread (nbOfHavegeThreads)
begin
nbOfPieces := fileSize / bufferSize
for i:=1 to nbOfHavegeThreads
begin
listOfGenerators[i] := new HavegeGenerator()
run the generator in a new thread
set the processor affinity mask of the new thread
signal generator to start generating

end
for i:=1 to nbOfPieces
begin
wait for a generator to finish
ind:= index of first generator that finished
consume the buffer of listOfGenerators[ind]
signal listOfGenerators[ind] to continue

end
shutdown threads

end

The resulting program benchmarks the parallelized versions of the two functions
provided by the original HAVEGE (ndrand and cryptondrand), also giving the
user the possibility to change parameters like step hiding. The user has the
option of selecting the number of cores to be used, and the possibility to save
the random data in a file for later use or examination.

Among other statistics the program shows the number of cores available on
the current machine and calculates the CPU optimization settings the program
was compiled with, such as the HAVEGE machine code loop size (that should
be as close as possible to the CPUs instruction cache) and the size of the data
cache the program is targeting (the HAVEGE walk table should be twice the
size of the CPUs data cache).

The application is designed to do two things: gather random data in a file for
further quality testing (the Generate button) as well to benchmark the speed of
the algorithm itself with no disk writing (the Benchmark button).

4 Experimental Results

The experiments were aimed at comparing the efficiency between running a
serial version of the algorithm (actually the parallel version running on a single
core) and a parallel version running on a different number of cores, as well as
determining the usefulness of a parallel version in a real life scenario where the
output needs to be consumed or stored on disk.

Tables 1 and 2 give the results of the tests on a system with 2 Intel Xeon E5405
at 2 GHz CPUs (8 cores total), 4 GB RAM, running Windows 2008 Server (64

150 A. Suciu et al.

Table 1. Generator speed (in MB/s) without disk writing

Threads/Algorithm ndrand cryptondrand Custom 664 Custom 128

1 476 14.77 7.39 3.69

2 915 29.83 14.90 7.43

3 1383 44.74 22.34 11.17

4 1747 59.74 29.86 14.93

5 2243 74.60 37.29 18.63

6 2661 89.67 44.83 22.40

7 3111 104.46 52.21 26.07

8 3203 119.47 59.66 29.82

Table 2. Generator speed (in MB/s) with disk writing

Threads/Algorithm ndrand cryptondrand Custom 664 Custom 128

1 57.42 13.14 6.96 3.59

2 58.72 26.46 13.92 7.20

3 58.95 39.01 21.08 10.77

4 59.02 52.07 28.07 14.44

5 59.56 61.15 34.12 17.96

6 58.94 60.20 41.37 21.59

7 59.33 59.31 47.20 26.08

8 59.61 59.36 55.08 28.84

bit edition). The speed values in the tables below are the average speeds after
generating 100 GB of random data.

Figures 1 and 2 show the results graphically; one can notice the linear increase
in speed as well as the limits imposed by writing to disk.

The tests were run both with and without storing the data on the disk to
measure the sheer power of the algorithm without capping the output rate by
the physical limitations of the hard drive, as well as under more usual conditions
where the data needs to be stored.

Increasing the number of threads results in greater speed until we reach the
upper limit of 8 threads, because the test system had two quad core CPUs. Any
value greater than the number of available cores will give the same performance
at best or a slightly lower one due to more inter-thread communication.

Also increasing the number of threads beyond the number of physically in-
dependent available cores could have a negative impact on the quality of the
random data. Each instance of the algorithm is supposed to work with only one
core and its cache memories.

The output speed difference between using 7 and 8 threads is very small
because running the master thread (the threads that controls the independent
generators and consumes the numbers) on the same core with a generator forces
them to compete for CPU time, resulting in decreased performance.

Parallel HAVEGE 151

Fig. 1. Generator speed (in MB/s) without disk writing

Fig. 2. Generator speed (in MB/s) with disk writing

When testing without disk writing the output speed increases linearly with the
number of threads used, as expected, and it decreases linearly with the increase
of the step hiding parameter. The ndrand function uses a step hiding value of 1
and the cryptondrand function a value of 32. Additionally two custom functions
were also tested, one with 64 steps and one with 128 steps.

When writing the data on disk, the output speed is capped by the maximum
disk writing speed. As long as the generators can match it, the speed remains
almost constant. The differences in values could be attributed to disk fragmen-
tation and background processes doing other I/O operations. In the cases where
the generator speed is lower than the disk writing speed, the total output speed
is a bit lower than the generator speed.

152 A. Suciu et al.

Table 3. Test results for α = 0.001

Test number ndrand cryptondrand Quantis

(% tests passed) (% tests passed) (% tests passed)

1 100.00 99.70 99.80

2 99.90 99.80 99.80

3 100.00 99.90 99.90

4 100.00 99.90 99.80

5 99.90 100.00 99.80

7 99.88 99.91 99.92

8 99.60 99.90 99.70

9 100.00 99.90 99.90

11 99.70 99.90 99.90

12 99.90 99.90 99.90

13 99.90 99.90 99.90

14 100.00 99.60 99.90

15 99.83 99.88 99.88

16 99.87 99.92 99.88

Table 4. Test results for α = 0.01

Test number ndrand cryptondrand Quantis

(% tests passed) (% tests passed) (% tests passed)

1 99.80 99.20 99.00

2 99.60 99.00 98.90

3 99.20 99.10 98.60

4 99.40 98.80 98.90

5 99.00 99.40 98.70

7 99.01 98.99 99.02

8 97.90 97.80 97.90

9 99.10 99.00 99.00

11 98.80 98.90 99.00

12 99.00 98.90 98.90

13 99.10 98.80 98.70

14 99.00 97.80 98.70

15 98.85 99.08 99.05

16 98.98 99.23 98.87

The experiment shows that each generator thread cumulates around 0.1 MB/s
overhead, probably due to extra code and time needed to make an I/O call. So
when using 8 threads to generate and store the numbers the output speed will
be around 1 MB/s smaller than the actual generators speed.

When testing the quality of a random number generator, one or more batteries
of statistical tests are usually used [3] [5] [6]; we used the well known NIST
Statistical Test Suite, which contains 16 statistical tests [3] [4], of which two are
no longer in use (tests 6 and 10).

Parallel HAVEGE 153

We compared the results of Parallel HAVEGE’s ndrand and cryptondrand
functions with the results given by a quantum based TRNG, called Quantis [7].
The amount of data collected from each source was 1000 MB, grouped in 1000
consecutive sequences of 1 MB each. Parallel HAVEGE was run with 4 parallel
generators on a quad core machine (Intel Core 2 Quad 6600 CPU with 2 GB of
RAM, running Windows XP).

An important issue here is the choice of α (significance level) which gives
the threshold for deciding whether a sequence passed or failed some statistical
test. Usual values for this parameter are 0.001 and 0.01, so we tested both these
scenarios. For an ideal random number generator, on average, in the first case
one should expect 1 sequence in 1000 to fail (99.90 % tests passed) while in
the second case one should expect 10 sequences in 1000 to fail (99.00 % tests
passed).

The results shown in Table 3 and 4 confirm the fact that Parallel HAVEGE
gives a high quality output, which is comparable to a quantum based TRNG.
Therefore we may conclude that parallelization did not affect in any way the
quality of the original HAVEGE implementation [1].

5 Conclusions

This paper presents a parallel version of the HAVEGE algorithm for generating
unpredictable random numbers based on hardware volatile entropy gathering
and expansion.

The experimental results show that a parallel version of HAVEGE is useful
if a large amount of unpredictable random numbers is needed. The use of any
function that is safer (and therefore slower) than the ndrand function could also
benefit from a speed boost in real life conditions where the numbers need to be
used, and usually the consumption rate is higher than the output rate.

The more steps performed by the custom harvesting function, the more volatile
values are involved in the generation, the more difficult will be for an adversary to
predict the output and therefore the greater the security of the algorithm. How-
ever, in a serial implementation this increase in security comes at a price: as we in-
crease the number of steps, the speed (throughput) of the generator will decrease
proportionally.

A significant advantage of having a parallel implementation of HAVEGE run-
ning on a multicore architecture is the ability to increase the security (number
of steps) while maintaining a constant throughput by increasing the number of
HAVEGE threads up to the number of available cores.

Acknowledgements

This work was supported by the CNMP funded CryptoRand project (nr. 11-
020/2007).

154 A. Suciu et al.

References

1. Seznec, A., Sendrier, N.: HAVEGE: a user-level software heuristic for generating

empirically strong random numbers. ACM Transaction on Modeling and Computer

Simulations 13(4) (2003)

2. Seznec, A., Sendrier, N.: Hardware Volatile Entropy Gathering and Expansion: gen-

erating unpredictable random numbers at user level. In: INRIA Research Report,

RR-4592 (2002)

3. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson, M.,

Vangel, M., Banks, D., Heckert, A., Dray, J., Vo, S.: A statistical test suite for

random and pseudorandom number generators for cryptographic applications, NIST

Special Publication 800-22 (revised August 2008),

http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22b.pdf

4. Kim, S., Umeno, K., Hasegawa, A.: Corrections of the NIST Statistical Test Suite

for Randomness, Cryptology ePrint Archive, Report 2004/018 (2004)

5. L’Ecuyer, P., Simard, R.: TestU01: A C library for empirical testing of random

number generators. ACM Trans. Math. Softw. 33(4), 22 (2007)

6. Knuth, D.E.: The Art of Computer Programming. In: Seminumerical Algorithms,

3rd edn., vol. 2, Addison-Wesley, Reading (1998)

7. IdQuantique, Quantis white paper,

http://www.idquantique.com/products/files/quantis-whitepaper.pdf

http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22b.pdf
http://www.idquantique.com/products/files/quantis-whitepaper.pdf

UNICORE Virtual Organizations System

Krzysztof Benedyczak1, Marcin Lewandowski1,
Aleksander Nowiński2, and Piotr Ba�la1,2

1 Faculty of Mathematics and Computer Science

Nicolaus Copernicus University

Chopina 12/18, 87-100 Toruń, Poland
2 Interdisciplinary Center for Mathematical

and Computational Modelling

Warsaw University

Pawińskiego 5a, 02-106 Warsaw, Poland

Abstract. In this paper we present a novel Virtual Organizations man-

agement system called UVOS, developed within the Chemomentum

project. It is a complete and production ready solution aiming at simplic-

ity of deployment and management without sacrificing a flexibility and

functionality. The system can be also used as an underlying technology

for more high level solutions. The system was designed mainly for the

UNICORE grid middleware but, as it uses the open SAML protocol and

implements numerous SAML profiles, its adoption for other grid middle-

wares is straightforward. The paper compares the UVOS system to the

other existing and popular solutions: VOMS and Shibboleth used with

GridShib.

1 Introduction

During the last few years significant effort was put into development of the
Virtual Organizations concept. Roughly we can divide it into two categories:
creation of a VO foundation technologies and high level solutions more concerned
about SLA, semi automatic creation of federations etc. Our work clearly belongs
to the first field.

The key difficulty in the realization of the Virtual Organizations idea is a stor-
age, access and management of its members and their corresponding privileges.
The typical solution which is used in classic IT systems is a directory service
keeping identities of system users, grouping them and assigning attributes which
can be used in an authorization process. The directory services (including the
most popular LDAP1 services) are difficult to be used in a nowadays grid envi-
ronment because of numerous reasons. Among others it is hard to ensure user’s
data privacy. Directory service authentication is not compatible with the grid
credentials. Therefore dedicated systems were created to support VO manage-
ment in the grid. The most commonly used are: VOMS [1] and GridShib [2].
1 LDAP — Lightweight Directory Access Protocol is a de facto standard solution for

authentication and authorization in nowadays operating systems.

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 155–164, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

156 K. Benedyczak et al.

VOMS is a complete but simple system. It organizes VO members in a pseudo-
hierarchical groups and allows for assigning roles. The role can be seen as a single
available attribute. VOMS stores grid identities internally (as taken from certifi-
cates) and can issue extended GSI (Grid Security Infrastructure) proxy certifi-
cates with an additional information about user’s roles and group membership,
which is called an attribute certificate.

GridShib is an adaptation of the Shibboleth [3] system for the Globus Toolkit.
Shibboleth is an advanced federation management system build by educational
community. Shibboleth itself does not store user’s data but relies on a 3rd party
software (eg. LDAP). Shibboleth offers a standardized SAML [4] interface and
it is de facto a reference SAML implementation. GridShib is clearly focused on
an authentication and a support of authorization of web browser users.

One of the principal aims of the Chemomentum project [5] was to create or
adopt a VO management solution which will serve the UNICORE grid platform
[6]. Naturally the system should be as interoperable as possible and not limited
to the UNICORE. After the evaluation of VOMS, Shibboleth and other solutions
(like Grid User Management System — GUMS) it turned out that in practice
they have a lot of disadvantages that effectively blocks their adoption in many
grid deployments. In particular, VOMS it is too proxy-certificates oriented and it
is not OGSA [7] enabled. Both those limitations could be eliminated with some
effort. However it was difficult to overcome another VOMS inflexibility: poor
support for arbitrary attributes (the “generic attributes” concept in VOMS was
not fully developed, e.g. the role attribute can be scoped while generic attributes
can not), lack of truly hierarchical groups and a missing support for web envi-
ronments. On the other hand Shibboleth posses a lot of required flexibility but
at enormous cost of complexity. In order to create a simple deployment for a
small-sized grid it is required to configure Shibboleth service provider, LDAP
backend, Signed/Grouper applications for permissions and group management.
Still additional modules are needed to provide grid support. Configuration of the
whole system is inherently complicated and requires a lot of work and expertise.

As we believe that the problem which must be solved by the low level VO
software is not as complicated to sacrifice either flexibility or easy of use we
have designed and created a new solution called UVOS – UNICORE Virtual
Organization System.

1.1 Project Aims

To overcome the problems presented above we have defined a set of concrete
goals for the UVOS system:

– Distributed environment : the single installation must be fully controlled
remotely.

– Openness : The system consumers must be able to communicate with it us-
ing open and well established protocols and data formats. Must not be too
UNICORE centric.

– Easy of Use: The system needs to be easily installed and managed.

UNICORE Virtual Organizations System 157

– Flexibility: The system should provide tools and features which will make it
useful in both OGSA (SOA) and WWW environments. Different deployment
styles should be supported.

In the next sections we describe our realization of the above fundamental require-
ments. Here we only want to stress that our vision was to create a solution which
will have a lot to offer out-of-the box and still will be an interesting platform for
more high level developments.

2 Architecture

UVOS architecture uses a central UVOS server which acts both as authentication
service and attribute authority. The server is used by two kinds of clients: con-
sumers and management clients. Consumers do not modify the UVOS contents
but query it. Management clients are used either by VO administrators or by other
management software to dynamically modify VO data. What is worth to note here
is that consumers use the standard and open SAML 2.0 protocol only.

The server uses relational database to store internally the whole data. There-
fore UVOS does not depend on any external service like LDAP. Relational
database engine can be easily changed as database access is performed through
the iBATIS library [8]. Typically embedded HSQL [9] database is used so it is
not needed to configure a standalone DBMS.

Network server is based on the embedded Jetty server. The UVOS server (as
the whole system) is written purely in Java so it is highly portable. All opera-
tions of the UVOS server are available via the web services interface. The server
supports multiple configurable authentication mechanisms (HTTP DIGEST Au-
thorization and TLS authentication with client’s certificate) so high flexibility is
achieved. Except of the authentication with X.509 certificate, it is also possible
to provide simple email and password credentials, what is especially useful in
WWW environments. The UVOS server also supports Explicit Trust Delegation
(ETD) [10] which allows for better integration with the UNICORE grid by using
delegated credentials. Using the ETD the UNICORE service can ask for user’s
attributes on this user’s behalf and UVOS server will authorize the caller as in
case of a self query.

The web service interface defines multiple port types, but conceptually we can
divide them into the two parts: a management part which uses a custom protocol
and a query part which implements SAML protocols [4]. The base server func-
tionality is exposed by the SAML Attribute Query Protocol. The SAML name
identifier mapping protocol and SAML authentication request protocol are also
implemented. In all cases the SOAP binding [11] is used. For the SAML au-
thentication protocol the HTTP POST binding is also implemented. The server
implements the core SAML specification as well as additional profiles to ensure
a greater interoperability level:

– XACML Attribute Profile [12].
– SAML Attribute Query Deployment Profile for X.509 Subjects [13],

158 K. Benedyczak et al.

– SAML Attribute Self-Query Deployment Profile for X.509 Subjects [13],
– OGSA Attribute Exchange Profile Version 1.2 [14],

Our effort to be compliant to SAML related standards provides a solid foun-
dation for an interoperability of the grid authorization systems. One of the
largest projects in this field is the IVOM (Interoperability and Integration of
VO-Management), a part of the D-Grid initiative. The IVOM aims to develop
services that enable integration of VOMS and Shibboleth-based VO management
systems with the grid middlewares used in Germany, in particular gLite, Globus
Toolkit 4 and UNICORE 5. As it is suggested in [15], development of SAML
enabled components for the grid middlewares can be seen as the most promising
approach to enabling cooperation of the various authorization systems.

An implementation of the basic features — attribute, identities and group
management — is obvious and won’t be discussed here. However there are some
features unique to the UVOS. The server keeps a whole history of performed
operations and a past VOs state. Thanks to it it is possible to (a) check a whole
content of the UVOS server as was used in any point in the past and (b) get
the list of all events which occurred at the specified time frame. The events
mechanism is also connected with an another UVOS functionality: notifications.
Administrator can define an arbitrary number of notifications to be issued in
a case of any modification operations. Currently only an e-mail notification is
supported but other messaging backends can be added.

Finally, the UVOS web server is truly extensible by means of classic Java web
applications (servlets), which can be simply installed by copying them into a
designated server’s installation directory. Two such web applications extending
server’s functionality are provided as ready to be used modules: one is providing
authentication form for the SAML authentication request protocol, the second
one supports enrollment of new users.

2.1 The Client Side

There are two management clients currently available: the UVOS command line
client (UVOS CLC) and UVOS VO Manager. The command line client can be
used to administer UVOS from the console in an interactive or batch mode. The
UVOS VO Manager is a powerful GUI application based on the Eclipse Rich
Client platform. It is much easier to use then a command line client, offers an
intuitive interface so usually UVOS VO Manager a preferred choice.

Finally there is a number of UVOS consumers available. We present here
consumers created in the Chemomentum project, but note that in principle any
other SAML 2.0 attribute consumer may be used with the UVOS server.

The most important consumer is the UVOS module built into (and distributed
with) UNICORE 6 server. This module is highly configurable and allows for
gathering authorization data and to use selected attributes as a local UNIX
account names. Thanks to the UVOS concept of attribute scopes, it is possible
to keep mappings for multiple sites in a one place.

UNICORE Virtual Organizations System 159

In addition to the UNICORE consumer there are currently available Globus
4.0 and 4.1+ consumers (there are two modules as both versions of the Globus
Toolkit use different internal authorization API) so called Policy Information
Point and PolicyEnforcment Point. They have similar functionality to the UNI-
CORE consumer. There is also a consumer for web applications. It can use the
UVOS to transparently authenticate web browser users. More information on
this topic is presented in the section 4.

All basic components which were discussed in this section are presented in
the figure 1.

Fig. 1. Main components of the UVOS system along with their interconnections. In

this figure the standard deployment in UNICORE grid middleware is presented.

3 VO Model

UVOS organizes entities within a hierarchical group structure. Top level groups
of this structure are called virtual organizations, however they are no different
then other groups. Each entity can be a member of arbitrary number of groups.
It may have assigned a set of attributes; an attribute is composed of a name and a
set of values, which can be empty. In addition, a single entity can possess multiple
representations, for example in different formats. These equivalent incarnations
of the same entity are called identities, and are usually invisible for an outside
user.

The group membership is inherited in UVOS. The member of the subgroup
becomes automatically the member of the parent group. This is different then
e.g. in VOMS.

160 K. Benedyczak et al.

Every entity has a unique label and one or more tokens that represent it. The
tokens must be in one of the supported formats, which currently are:

– a full X.509 certificate,
– an X.500 distinguished name,
– an e-mail address with an password used for authentication.

A token along with it’s type is called an identity. The entity typically possesses
one identity, but it can also have more. This reflects the real life situation where
the single user can possess multiple certificates and email accounts. Additional
identity formats may be added to the UVOS system with a intermediate level of
effort. It is worth pointing out that all identities that compose an entity share
the same characteristics (attributes, group membership, permissions, etc.): the
UVOS works using entities internally.

3.1 Attributes

Attributes are composed of a name and a list of values. A name is a URI, and
values are arbitrary strings. The value list can be empty. UVOS allows for three
different ways of attributes assignment:

– using global attributes: an entity can have an attribute assigned globally.
Such an attribute is valid always and in every context,

– using group-assigned attributes: an attribute can be assigned to a group, in
which case all members of this group automatically hold this attribute (no
matter if they were added later or prior to the creation of the group-assigned
attribute). It is worth pointing out that this attribute is valid only in the
scope of this group,

– using group-scoped entity attributes: those attributes are assigned to the
entity, just like global attributes, but have an additional group restriction
and are valid only in in the scope of the group.

The last two methods introduce a ”group-scoped validity“ of attributes, which
requires a further explanation. The requester can ask (using the API provided
by the UVOS service) for the entity’s attribute either globally or valid only in a
specified group. Global query returns global attributes only. A query limited to
a group will return all entity’s global attributes and all group-scoped attributes
valid within the specified group.

For an even greater flexibility UVOS provides group inheritance of the scoped
attributes. The group scoped attribute valid in a subgroup is also valid in its
parent group. To illustrate an application of this feature let’s consider group
/MainVO and its subgroup /MainVO/Admins. In such scenario all attributes of
the VO administrators who are the members of the later group are also valid for
them in the main VO/group /MainVO.

UVOS allows for disabling temporary an attribute without deleting it. It is
useful for instance to revoke some privileges for a period of time.

UNICORE Virtual Organizations System 161

3.2 UVOS Authorization

UVOS access is restricted by it’s own authorization stack. No external compo-
nents/services are used to perform authorization. The authorization mechanism
is advanced and probably the most advanced part of the whole UVOS system.
UVOS supports a lot of authorization related features:

– full remote administration
– as a single server may carry multiple VOs it must be possible to assign

management permissions for selected VOs/groups only
– the user should get additional permissions when accessing data about itself

(e.g. to be able to change a password)

The general authorization mechanism used in UVOS is described in detail in its
documentation. As it is quite extensive we have prepared a simple set of rules
(which are used in a default UVOS configuration) that allow for an easy con-
figuration of a secure UVOS access. The fundamental idea is to use a separate,
special attribute that grants UVOS access permissions (and is not used for ex-
ternal purposes) with a fixed authorization policy for all groups. By assigning
this attribute to VO members, the administrators can control privileges. Please
note that this allows for taking the advantage of all types of attribute granting.

4 Deployments

There are several typical deployments in which UVOS can be used.
In the the so called pull mode a service (e.g. UNICORE server) contacts the

UVOS server to obtain the attributes of a user who tries to use it. The attributes
received from the UVOS server can be used for an authorization (e.g. server’s
policy may permit only those users who are in a certain UVOS group or who
possess some attributes). Service may use received attributes to map requester
to a local UNIX account. Pull mode is transparent for the grid users. However
is more difficult for grid administrators to set it up: every grid site must be
correctly configured to use UVOS.

In the push mode user has to contact a UVOS server on her own and get
the list of possessed attributes in a signed assertion. Later this assertion can
be attached to the requests which are sent to the grid services. If the service
trusts the assertion issuer (i.e. the UVOS server which issued it) then it can use
the attributes for authorization. Note that user can ask the UVOS server for a
subset of owned attributes. In such case user can hide part of her/his identity or
alter the execution (e.g. by choosing her role). The pull mode is more scalable
in terms of server administration and easier to set up. However it requires user
interaction and thus is more suitable for advanced grid users. A problem with
expired assertions occurs here.

UVOS can be used to authenticate web browser users. SAML 2.0 authentica-
tion protocol is used to achieve it in a secure way. The UVOS server provides an
implementation of the required SAML protocol. To make whole process operable

162 K. Benedyczak et al.

a web login interface is required. Appropriate module is available in the UVOS
suite and can be installed as an extension of the core UVOS server. The details
of the authentication process can be read in appropriate SAML 2.0 specification
documents [11,12]. Here we only summarize that UVOS uses the SAML 2.0 SSO
authentication profile with the HTTP POST binding.

Web developers can easily take advantage of the authentication pattern de-
scribed above as software modules supporting it have been created. Currently
the modules for authentication in Tomcat 6 containers are available.

5 UVOS from the Users Perspective

UVOS in the grid environment may be nearly transparent for the users when
the pull mode is used. In this case only initial registration is required (if not
performed manually by the grid administrator). Things get a little bit more
complicated when the push mode or access via web portal is performed.

UVOS provides support for collecting and processing VO registration requests
(called VO applications) from the users interested to join VO. The registration
subsystem is flexible and offers many features. It is organized as follows:

– The VO application form is used to specify overall rules that applications
must obey. It also contains additional information about data presented to
the applying user. Examples of included information are: VO agreement, the
group to which the application is connected etc. The VO application form is
defined by the administrator and the UVOS server stores it. Multiple forms
may be stored simultaneously.

– The VO application form is made accessible via the web interface which
renders it.

– The VO application is issued by the user who files out the form using a web
browser. The application is stored in the UVOS server database.

– The VO form administrator processes and accepts or rejects the application.

The UVOS server provides all necessary facilities to deploy the registration pro-
cess except a WWW rendering of the VO application forms. To enable this
feature a special extension must be installed, which is available in UVOS suite
and installed in a similar manner as extension which supports the SAML au-
thentication.

The VO application forms must be defined using the UVOS command line
client (it is impossible to do this using the UVOS VO Manager). The specification
of the application form is done in XML format. A VO application form can define
its description, agreement, the linked group, identity types which are accepted
by the form and much more.

To process VO applications, the VO administrator can use either UVOS CLC
or UVOS VO Manager. It is suggested to use the latter one as it provides a
full featured interface where all the details of the application can be reviewed
and modified before committing. When the application form is accepted, a new
identity is added to the UVOS database. It becomes a member of the group linked

UNICORE Virtual Organizations System 163

to the application form. Additionally extra attributes (if such were provided)
may be assigned to the new identity.

In push mode deployments it is the user’s responsibility to select and pro-
vide a set of attributes which shall be used for authorization. A plugin for the
UNICORE Rich client was created with the required functionality. It basically
provides two features: simple browsing of all attributes which are defined for the
user and creation of assertions to be used in push mode.

Finally there was created an application (employing Java Web Start technol-
ogy) which allows for requesting an email account (typically users first registers
with their certificate, by using VO registration facilities described above). On
the server side it uses the same infrastructure as is used for the standard VO
applications submitted via WWW form. After acceptance user can log to the
portal without a need to load into a browser a certificate and a corresponding
private key.

6 Conclusions

UVOS is a powerful VO management solution. It provides a low-level infras-
tructure with many advanced and useful features so its adoption is very fruitful
for the grid. This was observed in Chemomentum project testbed grid where
UVOS proved its value. Despite its complexity we managed to keep the sys-
tem easy. For instance demo installation of the UVOS server takes around 5
minutes, and making it production ready requires, in most cases, to change
demo server’s certificate to a correct one. With an integrated support for the
UNICORE middleware, components for the web systems and (currently being
developed) Globus support modules, the UVOS can be seen as a good candidate
for an interoperable and advanced VO founding software. We can stress here
that during many months of testing in the Chemomentum testbed the UVOS
system proved to be very stable. Only few minor bugs/problems were reported,
and all were immediately fixed.

Deployment of UVOS does not mean that performance is scarified. Perfor-
mance evaluation of the UVOS engine (i.e. without taking into account the
network communication) as performed on the average hardware (Intel Core 2
Duo 3.16 GHz) with the embedded database, showed that UVOS can handle
more then 100 operations per second (for all operations except of the removal
of the group with complicated contents which is slightly slower). Most of the
typical read operations are performed at the speed varying from 300 up to 2000
operations per second. Those tests are obviously not very detailed but shows
that UVOS performance will not be a problem even in case of a large number
of users.

While UVOS system is mostly complete, we are still working on improving
it. The main effort currently is targeted at providing an easy to be used Globus
support. Currently all Globus 4 OGSA compatible services can be authorized
with the UVOS server. We plan to perform more interoperability tests with other
SAML solutions. Those tests will involve not only the server but also the client
side.

164 K. Benedyczak et al.

The UVOS releases can be downloaded from the UNICORE project web site
[6]. The UVOS possess its own web site [16] where additional information can
be found. This work was supported by European Commission under IST grant
Chemomentum (No. 033437).

References

1. Alfieri, R., et al.: From gridmap-file to VOMS: managing authorization in a Grid

environment. Future Generation Computer Systems (FGCS) 21(4), 549–558 (2005)

2. Welch, V., Barton, T., Keahey, K., Siebenlist, F.: Attributes, Anonymity, and Ac-

cess: Shibboleth and Globus Integration to Facilitate Grid Collaboration. In: 4th

Annual PKI R&D Workshop (2005),

http://grid.ncsa.uiuc.edu/papers/gridshib-pki05-final.pdf (2009)

3. The Shibboleth project (2009), http://shibboleth.internet2.edu

4. Cantor, S., et al. (eds.): Assertions and Protocols for the OASIS Security Assertion

Markup Language (SAML) V2.0, OASIS Standard (March 15, 2005),

http://docs.oasis-open.org/security/saml/v2.0/ (2009)

5. The Chemomentum project (2009), http://www.chemomentum.org

6. The UNICORE project (March 2009), http://www.unicore.org

7. Foster, I., et al. (eds.): The Open Grid Services Architecture, Version 1.5. Open

Grid Forum (July 24, 2006)

8. The iBATIS project (2009), http://ibatis.apache.org

9. The HSQL DB project (2009), http://hsqldb.org

10. Snelling, D., van den Berge, S., Li, V.: Explicit Trust Delegation: Security for Dy-

namic Grids. Fujitsu Scientific & Technical Journal (FSTJ), Special Issue on Grid

Computing 40(2) (December 2004); Important note: this paper describes the initial

ETD concept which was used in the UNICORE 5. Currently in the UNICORE 6 a

highly extended version of the ETD approach is used, and to our knowledge there

is no publication covering it yet

11. Cantor, S., et al. (eds.): Bindings for the OASIS Security Assertion Markup Lan-

guage (SAML) V2.0, OASIS Standard (March 15, 2005),

http://docs.oasis-open.org/security/saml/v2.0/ (2009)

12. Hughes, J., et al. (eds.): Profiles for the OASIS Security Assertion Markup Lan-

guage (SAML) V2.0, OASIS Standard, March 15 (2005),

http://docs.oasis-open.org/security/saml/v2.0/ (2009)

13. Scavo, T. (ed.): SAML V2.0 Deployment Profiles for X.509 Subjects, OA-

SIS Committee Specification (March 27, 2008), http://docs.oasis-open.org/

security/saml/Post2.0/sstc-saml2-profiles-deploy-x509-cs-01.pdf (2009)

14. Venturi, V., Scavo, T., Chadwick, D.: OGSA Attribute Exchange Profile Version

1.2. Open Grid Forum (2007)

15. Groeper, R., et al.: A concept for attribute-based authorization on D-Grid re-

sources. Future Generation Comp. Syst. 24(3) (2009)

16. The UVOS project (March 2009), http://uvos.chemomentum.org

http://grid.ncsa.uiuc.edu/papers/gridshib-pki05-final.pdf
http://shibboleth.internet2.edu
http://docs.oasis-open.org/security/saml/v2.0/
http://www.chemomentum.org
http://www.unicore.org
http://ibatis.apache.org
http://hsqldb.org
http://docs.oasis-open.org/security/saml/v2.0/
http://docs.oasis-open.org/security/saml/v2.0/
http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml2-profiles-deploy-x509-cs-01.pdf
http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml2-profiles-deploy-x509-cs-01.pdf
http://uvos.chemomentum.org

Application of ADMIRE Data Mining

and Integration Technologies
in Environmental Scenarios

Marek Ciglan1, Ondrej Habala1, Viet Tran1, Ladislav Hluchy1,
Martin Kremler2, and Martin Gera2

1 Institute of Informatics of the Slovak Academy of Sciences, Dubravska cesta 9,

84507 Bratislava, Slovakia
2 Comenius University, Faculty of Mathematics Physics and Informatics, Mlynska

dolina, 84248 Bratislava, Slovakia

Abstract. In this paper we present our work on the engine for integra-

tion of environmental data. We present a suite of selected environmental

scenarios, which are integrated into a novel data mining and integration

environment, being developed in the project ADMIRE . The scenarios

have been chosen for their suitability for data mining by environmen-

tal experts. They deal with meteorological and hydrological problems,

and apply the chosen solutions to pilot areas within Slovakia. The main

challenge is that the environmental data required by scenarios are main-

tained and provided by different organizations and are often in different

formats. We present our approach to the specification and execution of

data integration tasks, which deals with the distributed nature and het-

erogeneity of required data resources.

Keywords: Environmental applications, distributed data management,

data integration, OGSA DAI.

1 Introduction

We present our work in the project ADMIRE1, where we use advanced data min-
ing and data integration technologies to run an environmental application, which
uses data mining instead of standard physical modeling to perform experiments
and obtain environmental predictions. The paper starts with description of the
project ADMIRE, its vision and goals. Then we describe the history and current
status of the environmental application. The core of the paper then presents our
approach to the integration of data from distributed resources. We have devel-
oped a prototype of data integration engine that allows users to specify data
integration process in form of a workflow of reusable processing elements.
1 This work is supported by projects ADMIRE FP7-215024, APVV DO7RP-0006-08,

DMM VMSP-P-0048-09, SEMCO-WS APVV-0391-06, VEGA No. 2/0211/09.

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 165–173, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

166 M. Ciglan et al.

1.1 The EU ICT Project ADMIRE

The project ADMIRE (Advanced Data Mining and Integration Research for
Europe [1]) is a 7th FP EU ICT project aims to deliver a consistent and easy-
to-use technology for extracting information and knowledge from distributed
data sources. The project is motivated by the difficulty of extracting meaningful
information by mining combinations of data from multiple heterogeneous and
distributed resources. It will also provide an abstract view of data mining and
integration, which will give users and developers the power to cope with com-
plexity and heterogeneity of services, data and processes. One of main goals of
the project is to develop a language that serves as a canonical representation of
the data integration and mining processes.

1.2 Flood Forecasting Simulation Cascade

The Flood Forecasting Simulation Cascade is a SOA-based environmental ap-
plication, developed within several past FP5 and FP6 projects [2], [3], [4]. The
application’s development started in 1999 in the 5th FP project ANFAS [5]. In
ANFAS, it was mainly one hydraulic model (the FESWMS [6]). It then contin-
ued with a more complex scenario in 5th FP project CrossGrid, turned SOA in
6th FP projects K-Wf Grid and MEDIgRID, and finally extended the domain to
environmental risk management in ADMIRE. The application is now comprised
of a set of environmental scenarios, with the necessary data and code to deploy
and execute them. The scenarios have been chosen and prepared in cooperation
with leading hydro-meteorological experts in Slovakia, working mainly for the
Slovak Hydrometeorological Institute (SHMI), Slovak Water Enterprise (SWE),
and the Institute of Hydrology of the Slovak Academy of Sciences (IH SAS).
We have gathered also other scenarios from other sources, but in the end de-
cided to use the ones presented below, because they promise to be the source
of new information for both the environmental domain community, as well as
for the data mining community in ADMIRE. Together with the scenarios, we
have gathered a substantial amount of historical data. SWE has provided 10
years of historical data containing the discharge, water temperature, and other
parameters of the Vah Cascade of waterworks (15 waterworks installations and
reservoirs in the west of Slovakia). SHMI has provided 9 years of basic meteo-
rological data (precipitation, temperature, wind) computed by a meteorological
model and stored in a set of GRIB (Gridded Binary) files, hydrological data for
one of the scenarios, and also partial historical record from their nation-wide
network of meteorological data. They have also provided several years of stored
weather radar data, necessary for one of the scenarios. The programs used by
the application are in the context of ADMIRE described in Data Mining and
Integration Lanuage (DMIL) [7]. The processes described in DMIL perform data
extraction, transformation, integration, cleaning and checking. Additionally, in
some scenarios we try to predict future values of some hydro-meteorological vari-
ables; if necessary, we use a standard meteorological model to predict weather
data for these cases.

Environmental Scenarios in ADMIRE 167

2 Environmental Scenarios of ADMIRE

In this chapter we present the suite of environmental scenarios, which we use to
test the data mining and integration capabilities of the ADMIRE system. The
scenarios are part of the Flood Forecasting and Simulation Cascade application,
which has been in the meantime expanded beyond the borders of flood predic-
tion into a broader environmental domain. There are four scenarios, which are in
the process of being implemented and deployed in the ADMIRE testbed. These
scenarios have been selected from more than a dozen of candidates provided by
hydro-meteorological, water management, and pedological experts in Slovakia.
The main criterion for their selection was their suitability for data mining ap-
plication. The scenarios are named ORAVA, RADAR, SVP, and O3, and they
are in different stages of completion, with ORAVA being the most mature one,
and O3 only in the beginning stages of its design.

2.1 ORAVA

The scenario named ORAVA has been defined by the Hydrological Service divi-
sion of the Slovak Hydrometeorological Institute, Bratislava, Slovakia. Its goal
is to predict the water discharge wave and temperature propagation below the
Orava reservoir, one of the largest water reservoirs in Slovakia.

The pilot area covered by the scenario (see Figure 1) lies in the north of
Slovakia, and covers a relatively small area, well suitable for the properties of
testing ADMIRE technology in a scientifically interesting, but not too difficult
setting.

The data, which has been selected for data mining, and which we expect to
influence the scenario’s target variables - the discharge wave propagation, and
temperature propagation in the outflow from the reservoir to river Orava - is
depicted in Table 1.

For predictors in this scenario, we have selected rainfall and air temperature,
the discharge volume of the Orava reservoir and the temperature of water in the
Orava reservoir. Our target variables are the water height and water tempera-
ture measured at a hydrological station below the reservoir. As can be seen in
Figure 1, the station directly below the reservoir is no.5830, followed by 5848 and
5880. If we run the data mining process in time T, we can expect to have at hand
all data from sensors up to this time (first three data lines in Table 1). Future
rainfall and temperature can be obtained by running a standard meteorological
model. Future discharge of the reservoir is given in the manipulation schedule
of the reservoir. The actual data mining targets are the X and Y variables for
times after time T (T being current time).

2.2 RADAR

This experimental scenario tries to predict the movement of moisture in the
air from a series of radar images (see for example). Weather radar measures
the reflective properties of air, which are transformed to potential precipitation
before being used for data mining. An example of already processed radar sample

168 M. Ciglan et al.

Table 1. Depiction of the predictors and variables of the ORAVA scenario

Time Rainfall TempAir Discharge TempReservoir HeightStation TempStation
T-2 RT − 2 FT − 2 DT − 2 ET − 2 XT − 2 YT − 2

T-1 RT − 1 FT − 1 DT − 1 ET − 1 XT − 1 YT − 1

T RT FT DT ET XT YT

T+1 RT + 1 FT + 1 DT + 1 ET + 1 XT + 1 YT + 1

T+2 RT + 2 FT + 2 DT + 2 ET + 2 XT + 2 YT + 2

Fig. 1. The geographical area of the pilot scenario ORAVA

(with the reflection already re-computed to millimeters of rainfall accumulated
in an hour) can be seen in Figure 2.

The scenario once again uses both historical precipitation data (measured by
sensors maintained by SHMI) and weather predictions computed by a meteoro-
logical model. Additionally to these, SHMI has provided several years’ worth of
weather radar data (already transformed to potential precipitation).

2.3 SVP

This scenario, which is still in the design phase, is the most complex of all
scenarios expected to be deployed in the context of ADMIRE. It uses the statis-
tical approach to do what the FFSC application did before ADMIRE - predict
floods. The reasons why we decided to perform this experiments are mainly the
complexity of simulation of floods by physical models when taking into account
more of the relevant variables, and the graceful degradation of results of the data

Environmental Scenarios in ADMIRE 169

Fig. 2. An example of weather radar image with potential precipitation

mining approach when facing incomplete data - in contrast to the physical mod-
eling approach, which usually cannot be even tried without having all the nec-
essary data.

For predicting floods, we have been equipped with 10 years of historical data
from the Vah cascade of waterworks by the Slovak Water Enterprise, 9 years
of meteorological data (precipitation, temperature, wind) computed by the AL-
ADIN model at SHMI, hydrological data from the river Vah, again by SHMI,
and additionally with measured soil capacity for water retention, courtesy of our
partner Institute of Hydrology of the Slovak Academy of Sciences. We base our
efforts on the theory, that the amount of precipitation, which actually reaches
the river basin and contributes to the water level of the river is influenced by
actual precipitation and its short-term history, water retention capacity of the
soil, and to lesser extent by the evapotranspiration effect.

3 Data Integration Engine for Environmental Data

In this section, we discuss the data integration engine designed for the environ-
mental data integration and mining. It is motivated by the scenarios described
in previous section. We first describe requirements that we took into account
and then we present our approach to environmental data integration. In the
discussion, we give examples mainly from Orava scenario; the first scenario im-
plemented using our data integration engine.

In Orava river management scenario, the data from three different sources are
used. The data are owned and maintained by different organizations. To allow the

170 M. Ciglan et al.

data mining operations proposed for this scenario, the data from those different
sources must be integrated first. Furthermore, the data are kept in different
formats. In the case of Orava scenario, two data sets are stored in relational
database (waterworks data, water stations measurements) and one is kept in
binary files (precipitation data are stored in GRIB files - binary file format for
meteorological data). From technical point of view, we must be able to work
with the heterogeneous data stored in distributed, autonomous resources. In our
work, we have considered so far the data in the form of lists of tuples.

In the following, we use the term data resource to denote a service providing
access to data, with a single point of interaction. We use the term processing
resource to denote a service capable of performing operations on the input lists
of tuples. Data resource can have capabilities of a processing resource.

Atomic units used for data access and transformations are called processing
elements (PE). Following types of processing elements are needed:

– Data retrieval PEs - operations able to retrieve the data from different, het-
erogeneous data sources. Data retrieval PEs are executed at data resources.
This class of PEs is also responsible for transforming raw data sets to the
form of tuples.

– Data transfer PE - able to transfer list of tuples between distinct processing
resources.

– Data transformation PE - operations that transform input list of tuples.
These PEs can perform data transformation on per tuple basis, or can be
used to aggregate tuples in the input lists.

– Data integration PEs - given input lists of tuples, data integration operations
combine the tuples from input lists into a coherent form.

An operation has one or more inputs and one or more outputs. Inputs can be
either literals or list of tuples and a outputs are list of tuples. Operations can be
chained to form a data integration workflow - an oriented graph, where nodes
are operations and edges are connection of inputs and outputs of the operations.

The term Application Processing Element (APE) will denote a data integra-
tion workflow that can be executed at a single resource. APE is a composition
of atomic operations that provides functionality required by a data integration
task. For example, in Orava scenario we use the precipitation data from GRIB
files. The GRIB reader processing element extracts the data from GRIB files;
it has two inputs - the first is a list of GRIB files and the second is a list of
indexes in GRIB value arrays. The GRIB reader activity outputs all the values
at input indexes from all the input files. We use an operation that queries the
GRIB metadata database to determinate GRIB files of interest and another op-
eration that transform given geo-coordinates in WGS84 to the indexes consumed
by GRIB reader activity. This small workflow of three operations forms a single
APE that provides precipitation data for given time period and geo-coordinates.
The idea behind APE is to provide data integration blocks that can be executed
at a single processing or data resource and can be reused for in multiple data
integration tasks. Similarly to atomic PE, the inputs of APE can be literals or
list of tuples and outputs are list of tuples.

Environmental Scenarios in ADMIRE 171

Fig. 3. Orava river management scenario - APEs workflow

The goal of our proposed data integration engine is to provide means of exe-
cuting data integration tasks that are composed of multiple APEs and can in-
tegrate the data from distributed, autonomous and possibly heterogeneous data
resources. Our data integration engine is designed to run the data integration
tasks, given the input parameters and the APE workflow specification.

APE workflow specification is composed of four components: definition of
APEs instances, mapping between inputs and outputs of connected APEs, map-
ping between the definition of integration task parameters and the parameter
inputs of APEs in workflow and the definition of the result output.

In alignment with ADMIRE project vision, the APEs are specified in Data
Mining and Integration Language (DMIL) [7] that is being developed within the
project. The goal of DMIL is to be a canonical representation of data integration
process, described in an implementation independent manner. The APE instance
is specified by the DMIL description of the process that should be executed, the
specification of the data/processing resource it should be executed at and APE
instance identifier that is unique within the APE workflow specification. Figure 3
depicts the APEs workflow of the Orava river management scenario.

In our view, the main advantage of proposed data integration engine is that
user can specify sub-workflows that are executed on a separate data resources
and the engine automatically connects the results of APEs executed on dis-
tributed resources. This helps to deal with the complexity of the distributed
data integration.

172 M. Ciglan et al.

Fig. 4. GUI showing results of DIEED - APEs workflow and its results

3.1 Implementation

The prototype of proposed data integration engine for environmental data
(DIEED) is implemented in JAVA programming language. It uses OGSA-DAI
([8], [9]) framework as the platform for exposing data resources in the distributed
testbed and for executing the partial workflows of processing elements; it also
provide us with the data transfer capabilities and streaming of the list of tuples
between remote nodes. The data integration engine takes as inputs the integra-
tion task parameters and APE workflow specification. From the APE workflow
specification, the engine constructs an oriented graph of APEs (defined by the
mapping between inputs and outputs of APEs). For each node of the graph
(containing an APE specified in DMIL) the DIEED performs following actions:

1. Compiles DMIL code - the DMIL specification of the node process is com-
piled to JAVA class that constructs an OGSA-DAI workflow.

2. JAVA class containing OGSA-DAI workflow is compiled by JAVA compiler,
it is instantiated and OGSA-DAI workflow object is created

3. workflow object is submitted to OGSA-DAI service for execution
4. workflow execution on remote server is monitored

The whole APEs workflow is monitored during execution (providing information
on the state of each of APEs); after execution is finished, the results can be
retrieved in form of WebRowSet object.

Environmental Scenarios in ADMIRE 173

DIE was integrated with the toolkit being developed in the project; this allows
the user to submit APEs workflows, visualize the specified workflow and monitor
its execution via graphical user interface based on Eclipse platform. Figure 4
depicts the graphical user interface for DIEED.

4 Conclusion

In this paper, we have presented preliminary results of our ongoing work on the
data integration engine for environmental data that is being developed in the
scope of ADMIRE project. We have first described four scenarios dealing with
the integration and mining of environmental data. The main challenge is that
the environmental data required by scenarios are maintained and provided by
different organizations and are often in different formats. Our work concentrated
on providing a platform that would allow integration of data from distributed,
heterogeneous resources. Our results allow users to construct reusable applica-
tion processing elements specified in DMIL [7] (language for data mining and
integration, which is being designed within the project) and the engine executes
them transparently on distributed data resources.

References

1. ADMIRE. EU FP7 ICT project: Advanced Data Mining and Integration Research

for Europe (ADMIRE), 2008-2011. Grant agreement no. 215024,

http://www.admire-project.eu (accessed November 2009)

2. CROSSGRID. EU FP5 IST RTD project: Development of Grid Environment for

Interactive Applications (2002-05) IST-2001-32243, http://www.eu-crossgrid.org

(accessed April 2009)

3. K-Wf Grid. EU FP6 RTD IST project: Knowledge-based Workflow System for Grid

Applications (2004-2007) FP6-511385, call IST-2002-2.3.2.8,

http://www.kwfgrid.eu (accessed August 2008)

4. MEDIGRID. EU FP6 RTD Sust. Dev. project: Mediterranean Grid of Multi-Risk

Data and Models (2004-2006) GOCE-CT-2003-004044, call FP6-2003-Global-2

5. ANFAS. EU FP5 IST RTD project: datA fusioN for Flood Analysis and decision

Support (2000-2003) IST-1999-11676

6. Finite Element Surface Water Modeling System (FESWMS),

http://smig.usgs.gov/SMIC/model_pages/feswms.html

(accessed November 2009)

7. Atkinson, M., et al.: ADMIRE White Paper: Motivation, Strategy, Overview and

Impact, v0.9 (2009)

8. Antonioletti, M., Atkinson, M.P., Baxter, R., Borley, A., Chue Hong, N.P., Collins,

B., Hardman, N., Hume, A., Knox, A., Jackson, M., Krause, A., Laws, S., Magowan,

J., Paton, N.W., Pearson, D., Sugden, T., Watson, P., Westhead, M.: The Design

and Implementation of Grid Database Services in OGSA-DAI. Concurrency and

Computation: Practice and Experience 17(2-4), 357–376 (2005)

9. Karasavvas, K., Antonioletti, M., Atkinson, M.P., Chue Hong, N.P., Sugden, T.,

Hume, A.C., Jackson, M., Krause, A., Palansuriya, C.: Introduction to OGSA-DAI

Services. In: Herrero, P., S. Pérez, M., Robles, V. (eds.) SAG 2004. LNCS, vol. 3458,

pp. 1–12. Springer, Heidelberg (2005)

http://www.admire-project.eu
http://www.eu-crossgrid.org
http://www.kwfgrid.eu
http://smig.usgs.gov/SMIC/model_pages/feswms.html

Performance Based Matchmaking on Grid

Andrea Clematis1, Angelo Corana2, Daniele D’Agostino1, Antonella Galizia1,
and Alfonso Quarati1

1 IMATI-CNR, via De Marini 6, 16149 Genova, Italy

{dagostino,clematis,galizia,quarati}@ge.imati.cnr.it
2 IEIIT-CNR, via De Marini 6, 16149 Genova, Italy

corana@ieiit.cnr.it

Abstract. Grid Technologies supply users with high computational and

storage resources to execute demanding applications. To this end, Grid

environments must provide query and discovery tools, able to select the

most suitable resource(s) satisfying application requirements. A descrip-

tion of application and resources, grounded on a common and shared

basis, is therefore crucial to favour an effective pairing. A viable crite-

rion to match demand (job) with supply (computational resource) is to

characterize resources by means of their performance evaluated through

benchmarks relevant to the application. We introduce GREEN, a dis-

tributed matchmaker, based on a two-level benchmarking methodology.

GREEN facilitates the submission of jobs to the Grid, through the spec-

ification of both syntactic and performance requirements, independently

of the underlying middleware and thus fostering Grid interoperability.

1 Introduction

One of the primary issues in Grid Computing is the “clever” discovery and se-
lection of resources, so that a user could find quickly the resources he needs.
Unfortunately, Grid middlewares offer basic services for the retrieving of infor-
mation on single resources, and thus they are often inadequate to meet specific
user requirements. A matchmaking component (e.g. broker, matchmaker) is re-
sponsible for carrying out this supply-demand coupling process [1].

We present a methodology to improve the matchmaking process based on in-
formation about performance of computational resources. Our aim is to integrate
the information available via the Grid Information and Monitoring services by
annotating resources with both low-level and application-specific performance
metrics. These semantically relevant aspects of resources could be examined by
a/the broker to filter out the solutions that best fit application requirements. A
widespread method to measure and evaluate the performance of computer plat-
forms is through benchmarking [2]. Application-specific benchmarks are widely
acknowledged tools in the HPC domain, to measure the performance of resources
stressing simultaneously several aspects of the system. Notwithstanding, so far
application benchmarks have not been extensively considered on the Grid, due
to diversified types of applications, architectural complexity, dynamic Grid be-
havior and heavy computational costs [3].

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 174–183, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Performance Based Matchmaking on Grid 175

On these bases, we developed GREEN (GRid Environment ENabler), a Grid
service addressed both to Grid administrators and users. It assists administrators
in the insertion of benchmark information related to every Physical Organization
(PO) composing the Grid, and provides users with features which a) facilitate
the submission of job execution requests, by specifying both syntactic and per-
formance requirements on resources; b) support the automatic discovery and
selection of the most appropriate resources. The aim of GREEN is the discovery
of the resources that satisfy user requirements and their ordering by performance
ranking. The selection phase is left to a (meta)scheduler, allowing to apply the
preferred scheduling policies to meet specific purposes.

An important design goal of GREEN is interoperability. To this end, a unique
standard language, JSDL [4], is used to express job submission requirements,
and an internal translation to the job submission languages used by the vari-
ous middlewares is performed. Middleware independence is pursued through an
extension of JSDL based on the Glue2.0 schema [5]. Moreover, since we are in-
terested in the execution of parallel applications, we borrowed from SPMD [6]
some extensions to JSDL related to concurrency aspects.

The paper is organized as follow. Section 2 shortly describes related works;
Sect. 3 discusses the main contributions in the job and resource characterization
languages. Section 4 outlines the two-level benchmarking methodology. The de-
scription of design issues of GREEN and an analysis of the extensions operated
to existing languages are reported in Sect. 5. Section 6 gives concluding remarks.

2 Related Works

The implementation of an efficient and automatic mechanism for the effective
discovery of the resource that best suits a user job is one of the major problems
in present Grids. The Globus toolkit does not provide a resource matchmak-
ing/brokering as core service, but the GridWay metascheduler [7] was included
as an optional high-level service since June 2007. GridWay allows users to spec-
ify only a fixed and limited set of resource requirements, most of them related
to queue policies. This choice limits resource ranking, and benchmarks are not
considered at all. On the contrary gLite has a native matchmaking/brokering
service taking into account more requirements and benchmark values, although
they are fixed and the service is based on a semi-centralized approach [8].

A way to improve the efficiency of resource discovery is to drive the search to-
wards resources showing good performance in the execution of jobs with similar
or known behavior. As explained in Sect. 4, the characterization of Grid resources
based on pre-computed benchmarks seems a valid strategy to follow. The impor-
tance of benchmarking computational resources of Grids is largely acknowledged
together with its criticality [9]. Actually, besides the set of interesting parame-
ters to measure (e.g. CPU speed, memory size) different factors have to be taken
into account when considering the execution of a benchmark on Grid. Several
works proposed tools to manage and execute benchmarks on Grid. The Grid
Assessment Probes [10] test and measure performance of basic Grid functions,

176 A. Clematis et al.

such as job submission, file transfers, and Grid Information Services (ISs). The
GridBench tool [11] provides a graphical interface to define, execute and admin-
istrate benchmarks, also considering interconnection performance and resource
workload. The NAS Grid Benchmark (NGB) suite [12] defines a set of compu-
tationally intensive benchmarks representative of scientific, post-processing and
visualization workloads. A brokering mechanism based on benchmarking of Grid
resources is proposed in [13]. However, the scope of the broker is focused on the
ARC middleware and the NorduGrid and SweGrid production environments,
and it adopts xRSL, an extension of RSL, to submit users jobs.

3 Resource and Job Characterization

To accomplish the matchmaking task, a proper description of resources is re-
quired both on owner and job/user side. To this end, different projects and
research groups have proposed different languages.

On the resource-side, adequate information is required to advertise resource
static (e.g. OS, number of processors) and dynamic (e.g. number of executing
tasks, amount of free memory) properties. Actually, the main efforts in the di-
rection of a standard resource-language come from the GLUE (Grid Laboratory
Uniform Environment) Working Group, which deployed the Glue schema [5]. It
is a conceptual model of Grid entities comprising a set of information specifica-
tions for Grid resources; an implementation through an XML Schema is given
in [14]. As the schema has evolved, different versions have been used by various
middlewares, leading to the Glue 2.0 specification. It foresees the benchmarking
characterization of resources by specifying the Benchmark t complex type ref-
erencing benchmarks of type defined by BenchmarkType t. Through the latter,
an open and extensible enumeration type, it is possible to specify a benchmark
amongst a list of six values (e.g. specint2000, specfp2000, cint2006). Other values
compatible with the string type and the recommended syntax are allowed.

On the client-side, a job submission request expressed via a Job Submis-
sion Languages (JSL), in addition to stating the application-related attributes
(e.g. name and location of source code, input and output files), should express
syntactic requirements (e.g. number of processors, main memory) and ranking
preferences (if any) to guide and constraint the matching process on resources.

The Job Description Document (JDD) [15], introduced by Globus Alliance
with the Web Services versions of the Globus Toolkit, defines an XML language
closer to the XMLish dialects used in the WSRF family. The main purpose of a
JDD document is to set the parameters for the correct execution of a job. The
selection of the facilities to use has to be performed in advance by interacting
with the WS MDS services of the available resources. In the JDD schema, it is
possible to specify only few requirements, as the minimum amount of memory,
or to set useful information as the expected maximum amount of CPU time. It
is however possible to extend the schema with user-defined elements.

The Data Grid Project proposed the Job Description Language (JDL), af-
terwards adopted by the EGEE project [16]. A JDL document contains a flat

Performance Based Matchmaking on Grid 177

list of argument-value pairs, specifying two classes of job properties: job specific
attributes and resources-related properties (e.g. Requirements and Ranks) used
to guide the matching process towards the most appropriate resources. These
values can be arbitrary expressions, which use fields published by resources in
the MDS, and are not part of the predefined set of attributes for the JDL, as
their naming and meaning depend on the adopted Information Service schema.
In this way, JDL is independent of the resources information schema adopted.

The Job Submission Description Language (JSDL) developed by the JSDL-
Working Group [4] of the Global Grid Forum, aims to synthesize consolidated
and common features present in other JSLs, obtaining a standard language for
the Grid. JSDL contains a vocabulary and normative XML Schema facilitating
the declaration of job requirements as a set of XML elements. Likewise JDL,
job attributes may be grouped in two classes. The JobIdentification, Applica-
tion and DataStaging elements describe job-related properties. The Resources
element lists some of the main attributes used to constraint the selection of the
feasible resources (e.g. CPUArchitecture, FileSystem, TotalCPUTime). As only
a rather reduced set of these elements is stated by the JSDL schema, an exten-
sion mechanism is foreseen. Examples of JSDL extension able to capture a more
detailed description of the degree of parallelism of jobs are presented in [6,17].

4 A Two-Level Benchmarking Methodology

To describe Grid resources, we propose a two-level methodology aimed to give a
useful enriched description of resources and to facilitate the matchmaking pro-
cess. Our methodology considers two approaches: I) the use of micro-benchmarks
to supply a basic description of resource performance; II) the deployment of
application-driven benchmarks to get closer insight into the behavior of resources
under more realistic conditions of a class of applications. Through application-
driven benchmarks, it is possible to add an evaluation of the resources on the
basis of the system indicators that are more stressed by an application. Our
present aim is to provide a proper description of Grid resources in isolation, i.e.
without considering complexity aspects of Grid environments. Future develop-
ments of this work would capture some of these aspects.

4.1 Micro-benchmarks

In order to supply a basic resource characterization, mainly based on low-level
performance capacity, we consider the use of traditional micro-benchmarks. To
this aim, a reasonable assumption is that the performance of a machine mainly
depends on CPU, memory and cache, and interconnection performance [18];
therefore, we individuated a concise number of parameters to evaluate aimed to
provide an easy-to-use description of the various nodes. Table 1 shows resource
properties and related metrics measured by the employed micro-benchmarks.
The micro-benchmarks used in this phase generally return many values. To
obtain results usable in the matchmaking process, we considered for each bench-
mark synthetic parameters or the most significant value. They are used to charac-
terize resources by populating the benchmark description managed by GREEN.

178 A. Clematis et al.

Table 1. Low-level benchmarks and related metrics

Resource capability CPU Memory Memory-Cache Interconnection I/O

Metric MFLOPS MBps MBps MBps MBps

Benchmark Flops Stream CacheBench Mpptest Bonnie

4.2 Application-Specific Benchmarks

Micro benchmarks are a good solution when the user has little information about
the job he is submitting, and for applications that are not frequently executed.
Indeed, very often the participants to a Virtual Organization have similar aims,
and therefore it is possible to identify a set of the most used applications. In these
cases the most suitable approach is to evaluate system performance through
application-specific benchmarks that approximate at best the real application
workload. These benchmarks represent the second level of our methodology.

As case studies we considered applications of our interest, i.e. image process-
ing, isosurface extraction, and linear algebra. For the first two classes, we choose
a light version code aiming to emphasize precise aspects of the code. For image
processing, we selected a compute intensive elaboration applied to a reference
image of about 1 MB; in this way CPU metrics are mainly stressed. The isosur-
face extraction application provides a more exhaustive performance evaluation
of the system, as it also heavily involves I/O operations. In this case, we consid-
ered the processing of a small 3D data set of 16 MB, producing a result of 67
MB. On the contrary, to represent the class of applications based on linear alge-
bra, we used the well known Linpack benchmark [19]. The metric considered is
execution time, the results are stored in the internal data structure of GREEN.

5 Benchmark-Driven Matchmaking

A huge gap separates users and resources, and tools that allow the two parts to
better come to an agreement are highly useful. In [20] we presented GREEN, a
Grid service based on a distributed and cooperative approach for Grid resource
discovery. It supplies users with a structured view of resources (single machines,
homogeneous and heterogeneous clusters) at the PO level, and leverages on an
overlay network infrastructure which connects the various POs constituting a
Grid. For each PO, a GREEN instance is deployed to keep updated information
about the state of all PO’s resources, and to exchange them with other GREEN
instances in the discovery phase.

In this work, we describe an advanced version of GREEN able to charac-
terize Grid resources through benchmark evaluations. Acting as a distributed
matchmaker, GREEN manages and compares the enriched view of resources
with user-submitted jobs, with the goal of selecting the most appropriate re-
sources. Operating at intermediate level between applications (e.g. schedulers)
and middleware, GREEN aims to discover the whole set of resources satisfy-
ing user requirements ordered by ranks. The selection of a particular resource

Performance Based Matchmaking on Grid 179

is left to a (meta)scheduler, to which the resources set is forwarded, to apply
the preferred scheduling policies optimizing target functions (e.g. Grid through-
put, QoS). Once the “best” resource is chosen, GREEN will be re-invoked to
carry-out the submission of the job on it, via the Execution Environment (EE).

5.1 Benchmarking Grid Resources

GREEN supplies Grid administrators with the facility of submitting, executing
benchmarks (both micro and application-related) against the resources belonging
to a certain administrative domain (PO), and storing results.

To support the matching mechanism (i.e. the comparison with resources infor-
mation contained in the previously acquired XML) the benchmark-value copies
are directly represented as Glue entities according to the XML reference realiza-
tions of Glue 2.0. By employing the openness of BenchmarkType t (as recalled
in Sect. 3), the set of recognized benchmarks is extensible without any change
to the document schema. An example of a benchmark document related to the
execution of micro-benchmark Flops against the resource identified by the IP
150.145.8.160, resulting in 480 MFlops is:

<Benchmark>
<LocalID>150.145.8.160</LocalID>
<Type>MFlops</Type>
<Value>480</Value>
<BenchLevel>micro</BenchLevel>

</Benchmark>

Through the use of the extension mechanism defined in Glue specification, we
enriched the Benchmark t type by adding the element BenchLevel which specifies
the benchmark level (by accepting two string values micro and application)
according to our two-level methodology.

Once a benchmark is executed and its results collected, an XML fragment,
similar to the one reported above, is created for each resource and inserted in
an XML document (namely Benchmark image), managed by GREEN, which
collects all benchmarks evaluation for the PO.

5.2 Extending JSDL

The counterpart of benchmarking resources is the ability for users submitting a
job to express their preferences about the performance of target machines. As
explained in Sect. 3, both JDD and JSDL do not provide any construct to this
aim. We introduce an element Rank (of complex type Rank Type) devoted to
this task, which embeds a sub-element BenchmarkType t corresponding to the
one contained in our extension of the Glue Schema. In the context of JSDL, the
Value sub-element (see list below) is to be intended as a threshold to be satisfied
by the corresponding Value (related to the benchmark stated by Type) contained
in the Benchmark element of any resource to be selected by the matchmaker.

180 A. Clematis et al.

<?xml version="1.0" encoding="UTF-8"?>

<jsdl:JobDefinition

xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"

xmlns:posix="http://schemas.ggf.org/jsdl/2005/11/jsdl-posix"

xmlns:spmd="http://schemas.ogf.org/jsdl/2007/02/jsdl-spmd"

xmlns:rank="http://saturno.ima.ge.cnr.it/ima/jsdl/2009/01/jsdl-rank">

<jsdl:JobDescription>

<jsdl:Application>

<jsdl:ApplicationName>ParIsoExtrctn</jsdl:ApplicationName>

<spmd:SPMDApplication>

<posix:Executable>parisoextraction</posix:Executable>

<posix:Argument> inputvolume.raw</posix:Argument>

<posix:Argument>200</posix:Argument>

<posix:Output>isosurface.raw</posix:Output>

<spmd:NumberOfProcesses>4</spmd:NumberOfProcesses>

<spmd:ProcessesPerHost>2</spmd:ProcessesPerHost>

<spmd:SPMDVariation>http://www.ogf.org/jsdl/2007/02/

jsdl-spmd/MPICH2<spmd:SPMDVariation/>

</spmd:SPMDApplication>

</jsdl:Application>

<jsdl:Resources>

<jsdl:OperatingSystemType>

<jsdl:OperatingSystemName>LINUX</jsdl:OperatingSystemName>

</jsdl:OperatingSystemType>

<rank:Rank>

<rank:Type>IsoSurface_Benchmark</rank:Type>

<rank:Value>300</rank:Value>

<rank:BenchLevel>application</rank:BenchLevel>

</rank:Rank>

</jsdl:Resources>

</jsdl:JobDescription>

</jsdl:JobDefinition>

As we are interested in the execution of parallel applications, we borrowed from
SPMD [6] an extension to JSDL that supports users with a description set of ap-
plications and resources related to concurrency aspects (e.g. number of processes,
processes per host). An example of an extended JSDL document is presented, it
contains the extensions related to parallel requirements, along with our extension
to rank resources on benchmark specification. The document is requesting for
nodes able to execute the application-level “IsoSurface Benchmark” in no more
than 300 time units. Note how the Rank element has been located inside the
Resource one, according to the extension mechanism provided by JSDL schema.

5.3 Distributed Matchmaking Process

Figure 1 shows the main components of a GREEN instance along with some
of their interactions with other middleware services, notably IS and EE, by
considering a Grid composed of three POs. The Job Submission (JS) component
receives requests of jobs submission initiated by users; depending on the activa-
tion mode it behaves just like a messages dispatcher or as a translator of JSL

Performance Based Matchmaking on Grid 181

documents, carrying out their subsequent submission to the EE. The Benchmark
Evaluation (BE) supports administrators in the performance-based characteri-
zation of PO resources. The Resource Discovery (RD) is in charge of feeding
GREEN with the state of Grid resources. RD operates both locally and globally
by carrying out two tasks: 1) to discover the state of the PO resources; 2) to
dispatch requests to other GREEN instances. As to the first task, RD dialogues
with the underlying IS (e.g. MDS, gLite IS) that periodically reports the state
of the PO in the form of an XML file conformed to the Glue version adopted by
the underlying middleware. This document (namely the PO snapshot) is stored,
as it is, and managed by GREEN to answer to external queries issued by various
clients (e.g. other GREEN instances, meta-schedulers). To deal with different un-
derlying middlewares transparently to Grid users and applications, the syntactic
differences among the various versions of Glue are managed by GREEN through
a conversion mapping at matching time. To accomplish the dispatching task,
RD handles the so-called neighbors view. Depending on the number of POs, i.e.
GREEN instances running, their management could consider different strategies,
whose description is beyond the scope of the paper. The Matchmaker performs
the matching among resources in the Grid, and their subsequent ranking, with
the requirements expressed by the users through the application submission doc-
ument. More in detail: a user submits an extended JSDL document through a
Grid portal (1). The document is managed by the Resource Selector component,
which initiates the distributed matchmaking by forwarding it to the JS compo-
nent of a randomly selected GREEN instance (2) (e.g. PO2). JS activates the
Matchmaker (3). This instance of matchmaker, namely the Master Matchmaker

Fig. 1. Example of the matching phase with three GREEN instances

182 A. Clematis et al.

(MM), is responsible to provide the set of candidate resources to the Resource
selector for this specific request. MM through RD forwards the document to
all the other known GREEN instances and contemporaneously checks its local
memory (4-5). All the matchmakers filter their PO snapshot selecting the set of
PO resources satisfying the query. By analyzing the pre-computed Benchmark
image, the satisfying resources with a Value element (for the chosen benchmark)
that fulfils the threshold fixed in the corresponding Rank element of the JSDL
document are extracted. The resources identifiers and their corresponding bench-
mark values are included in a list, called PO list which is returned to MM (6-10).
MM merges these lists with its own PO list, producing a Global List ordered on
the ranking values. The Global list is passed to JS (11) which returns it back
to RS (12). Besides applying the selection policy to determine the resource to
use, the Resource Selector calls the JS of the GREEN responsible of the PO
owning the selected machine (GREEN PO1s instance in our case), by sending
it the extended JSDL document along with the data identifying the selected
resource (13). JS translates the information regarding the job execution of the
original JSDL document in the format proper of the specific PO middleware,
stating the resource on which the computation takes place. In particular, it will
produce a JDD document for GT4 resources or a JDL document for the gLite
ones. Finally, it activates the Execution Environment in charge of executing the
job represented in the translated document (14).

6 Conclusions

To fill-in the gap separating users and resources, we designed GREEN, a dis-
tributed matchmaker providing Grid users with features to facilitate the submis-
sion of job execution requests containing performance requirements, in order to
support the automatic discovery and selection of the most suitable resource(s).
GREEN relies on a two-level benchmarking methodology: resources are char-
acterized by means of their performance evaluated through the execution of
low-level and application specific benchmarks. According to our methodology,
every resource of a PO is tagged with the results obtained through the two levels
of benchmarks and hence selectable, on performance basis, during the match-
making phase. To ensure a good degree of independence from the underlying
middlewares, GREEN leverages on two standards such as JSDL and Glue, that
have been properly extended to take into account the performance-based de-
scription of resources.

References

1. Bai, X., Yu, H., Ji, Y., Marinescu, D.C.: Resource matching and a matchmak-

ing service for an intelligent grid. International Journal of Computational Intelli-

gence 1(3), 163–171 (2004)

2. Hockney, R.W.: The science of computer benchmarking. In: Software, environ-

ments, tools. SIAM, Philadelphia (1996)

Performance Based Matchmaking on Grid 183

3. Dikaiakos, M.D.: Grid benchmarking: vision, challenges, and current status. Con-

currency and Computation - Practice & Experience 19(1), 89–105 (2007)

4. Anjomshoaa, A., Brisard, F., Drescher, M., Fellows, D., Ly, A., McGough, S., Pul-

sipher, D., Savva, A.: Job Submission Description Language (JSDL) Specification

v1.0. Grid Forum Document GFD, 56 (2005)

5. Andreozzi, S.: GLUE Specification v. 2.0, rev. 3 (2009)

6. Savva, A. (ed.): JSDL SPMD Application Extension, Version 1.0. Grid Forum

Document GFD.115, Open Grid Forum, OGF (2007)

7. Huedo, E., Montero, R.S., Llorente, I.M.: A Framework for Adaptive Scheduling

and Execution on Grids. Software - Practice & Experience 34(7), 631–651 (2004)

8. gLite 3.1 User Guide, Doc. CERN-LCG-GDEIS-722398 (January 7, 2009),

https://edms.cern.ch/file/722398/1.2/gLite-3-UserGuide.html

9. Nadeem, F., Prodan, R., Fahringer, T., Iosup, A.: Benchmarking Grid Applica-

tions for Performance and Scalability Predictions. In: CoreGRID Workshop on

Middleware. Springer, Dresden (2007)

10. Chun, G., Dail, H., Casanova, H., Snavely, A.: Benchmark probes for grid as-

sessment. In: 18th International Parallel and Distributed Processing Symposium

(IPDPS 2004), Santa Fe, New Mexico, USA. IEEE Computer Society, Los Alamitos

(2004)

11. Tsouloupas, G., Dikaiakos, M.D.: GridBench: A Tool for the Interactive Perfor-

mance Exploration of Grid Infrastructures. Journal of Parallel and Distributed

Computing 67, 1029–1045 (2007)

12. Frumking, M., Van der Wijngaart, R.F.: NAS Grid Benchmarks: A tool for Grid

space exploration. Cluster Computing 5(3), 315–324 (2002)

13. Elmroth, E., Tordsson, J.: Grid resource brokering algorithms enabling advance

reservations and resource selection based on performance predictions. Future Gen-

eration Computer Systems 24(6), 585–593 (2008)

14. GLUE v. 2.0 Reference Realizations to Concrete Data Models (2008)

15. Job Description Document,

http://www.globus.org/toolkit/docs/4.0/execution/wsgram/schemas/

gram job description.html

16. Job Description Language, https://edms.cern.ch/file/555796/1/

EGEE-JRA1-TEC-555796-JDL-Attributes-v0-8.pdf

17. Rodero, I., Guim, F., Corbal, J., Labarta, J.: How the JSDL can Exploit the

Parallelism? In: Sixth IEEE International Symposium on Cluster Computing and

the Grid (CCGRID 2006), pp. 275–282 (2006)

18. Tsouloupas, G., Dikaiakos, M.: Characterization of Computational Grid Resources

Using Low-level Benchmarks. In: Proceedings of the 2nd IEEE International Con-

ference on e-Science and Grid Computing. IEEE Computer Society, Los Alamitos

(2006)

19. Brent, R.: The LINPACK Benchmark on the AP 1000. Frontiers, pp. 128–135,

McLean, VA (1992)

20. Clematis, A., Corana, A., D’Agostino, D., Gianuzzi, V., Merlo, A., Quarati, A.: A

distributed approach for structured resource discovery on Grid. In: Int. Conference

on Complex, Intelligent and Software Intensive Systems, Barcelona, pp. 117–125.

IEEE Computer Society, Los Alamitos (2008)

https://edms.cern.ch/file/722398/1.2/gLite-3-UserGuide.html
http://www.globus.org/toolkit/docs/4.0/execution/wsgram/schemas/gram_job_description.html
http://www.globus.org/toolkit/docs/4.0/execution/wsgram/schemas/gram_job_description.html
https://edms.cern.ch/file/555796/1/EGEE-JRA1-TEC-555796-JDL-Attributes-v0-8.pdf
https://edms.cern.ch/file/555796/1/EGEE-JRA1-TEC-555796-JDL-Attributes-v0-8.pdf

Replica Management for National Data Storage

Renata S�lota1, Darin Nikolow1, Marcin Kuta1, Mariusz Kapanowski1,
Kornel Ska�lkowski1, Marek Pogoda2, and Jacek Kitowski1,2

1 Institute of Computer Science, AGH-UST, al. Mickiewicza 30,

30-059, Kraków, Poland
2 Academic Computer Center CYFRONET-AGH, ul. Nawojki 11,

30-950 Kraków, Poland

{darin,rena,kito}@agh.edu.pl

Abstract. National Data Storage is a distributed data storage system

intended to provide high quality backup, archiving and data access ser-

vices. These services guarantee high level of data protection as well as

high performance of data storing and retrieval by using replication tech-

niques. In this paper some conceptual and implementation details on

creating a Prediction and Load Balancing Subsystem for replica manage-

ment are presented. Preliminary real system test results are also shown.

1 Introduction

National Data Storage (NDS) is a distributed data storage system intended to
provide high quality backup, archiving and data access services [1]. These services
are capable of providing high level of data protection, data availability and data
access performance. In order to guarantee these things replication techniques are
used. Two problems arise with using this approach: selecting physical storage
locations for newly created replicas and choosing the best replica for a given data
transfer. If these problems are properly solved we can count on decreasing the
access time to data. A side effect of using geographically distributed replicated
data sets is also higher network and storage total throughput.

The client access to NDS is provided by Access Nodes (ANs). ANs spread over
the country are located in national computer centers having direct links to the
NDS Pionier backbone network [2]. The general idea is that client requests come
via different ANs and the requested data is served by the most appropriate
Storage Node (SN), selected separately for each request, being the one which
can provide requested data fastest. In this way some natural load balancing is
achieved depending on the client access pattern.

One of the tasks in the NDS project is to build a replica management sub-
system with the high performance of data transfers in mind. This subsystem is
called Prediction and Load Balancing Subsystem (PLBS). This paper presents
some conceptual and implementation details on creating PLBS. Essential part
of this research concerns replication and the development of replication policies,
which should help achieving reasonable level of storage load balancing. These
policies, described further, are based on the storage model mentioned above.
Preliminary test results are also shown.

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 184–193, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Replica Management for National Data Storage 185

The rest of the paper is organized as follows: The next section presents the
state of the art. The third section describes the Hierarchical Storage Management
(HSM) model used in this research and how it is represented in the database
tables. The forth section gives some overview of the replication strategies used
in the system. The test results are presented in the fifth section and the last
section concludes the paper.

2 State of the Art

In [3] five replication strategies for read only data are presented. The strategies
have been tested using three different access patterns. The study assumes tiered
network with a central data source. Similar network model having constant stor-
age nodes locations in the network hierarchy is studied in [4]. Park et al. in [5]
study replication with another network hierarchy with no central storage node,
where the node distance is expressed as link bandwidth. Their technique might
be better in the case when the Internet is used for data transfer.

The mentioned studies assume static hierarchy and do not take into account
the dynamic changes of bandwidth and latency resulting from the load of dis-
tributed system. In [6] an attempt to cope with this problem has been made.
For replica selection they propose a neural net based algorithm predicting the
network transfer time of a replica. Another example of research on replica access
time prediction based on previous data transfers measurements is [7] in which
the Markov chains are used for prediction.

Authors of paper [8] propose 3 heuristic algorithms for selecting the location of
new replica based on network latency parameters and number of client requests
observed in a certain time interval from the past. Fair-Share replication presented
in [9] for choosing new replica location takes into account previous access load of
server as well as availability of storage device represented by their storage load.
In this way better load balancing among the storage servers is achieved.

Tests of the proposed replication strategies in the studies mentioned by now
are conducted by using simulations. Results of real implementation of pro-
posed models and strategies using monitoring of existing storage environment
are shown in [10] and in their previous studies. The presented in these papers
replication algorithms embody, besides the data access cost imposed by the net-
work, also the cost caused by storage devices capabilities. In the case when a
distributed storage system uses high bandwidth network it turns out that the
system bottleneck are the storage devices, which bandwidth can be additionally
limited according to their actual access load.

The majority of replica selection algorithms assumes that many users access
the same data sets. In the case of data storage service holding mainly private
user data, users will rather access their own particular files (holding backups or
archives). That is why, essential in this case is access load balancing increasing
the overall system utilization and thus reducing the access cost. In the proposed
solution essential part of the process of existing replica selection and the pro-
cess of new replica location selection is focused on the evaluating of storage

186 R. S�lota et al.

system performance and evaluating of server load. The evaluation is based on
the adopted Common Mass Storage System Model (CMSSM) proposed in [11].

3 PLBS Architecture

Prediction and Load Balancing System (PLBS) is responsible for load balancing
of data access requests among the storage nodes being part of the NDS. PLBS
consists of three subsystems (see Fig.1): adopted JMX Infrastructure Monitoring
System (JIMS) [12], database for keeping the values of monitored parameters
and Advanced Monitoring and Prediction Daemon (AMPD).

The JIMS based monitoring system consists of Monitoring Agents (JIMS MA)
installed on every HSM system being part of NDS, JIMS Gateway collecting data
from the agents and storing it to PLBS database. The AMPD is responsible for
proposing the best replica and location according to the chosen replication policy
(see section 5). One of the requirements for the AMPD is that it must quickly
respond, so the user requesting a storage operation does not experience system
or data unavailability. Monitoring parameters are measured cyclically by back-
ground threads and are stored in the database. In this way the actual parameters
(for a certain time interval) can be quickly retrieved from the database and the
AMPD can return the results.

The HSM monitoring parameters are derived from the CMSSM model pro-
posed in [11]. The model specifies essential parameters of HSM systems which
need to be monitored for later use by system performance prediction algorithms.
Two types of parameters have been defined: static parameters changing their val-
ues rarely and dynamic parameters changing their values frequently. Part of the
model used by the replication policies implemented in PLBS so far is presented
below along with the database description.

Monitoring Node

MA
JIMS

MA
JIMS

MA
JIMS

AN

AMPD

Client

Database
PLBS

Gateway
JIMS

HSM HSM HSM
System System System

Krakow SN Poznan SN Wroclaw SN

Fig. 1. The PLBS architecture

Replica Management for National Data Storage 187

4 The PLBS Database

The goal of the PLBS database is to collect monitored parameters (from the
CMSSM model) of distributed nodes in a single place. The approach to store
current values of monitored parameters in a database has been chosen, because
it allows to completely separate a application logic layer from a monitoring layer.

Fig. 2. The PLBS database diagram

The PLBS database is realized in the standard relational model and conforms
to the CMSSM model. The structure of the database is derived from the structure
of the monitored systems, which means that the database tables suit to essential
HSM components, such as: libraries, drives, pools, tapes, disk cache, etc. The pa-
rameters, stored in the database, are divided into two groups: static parameters
and dynamic parameters. A simple diagram showing relations between the PLBS
database tables is shown in Fig. 2. The table columns specification is omitted for
simplicity. The dynamic hsm parameters history table stores history of changes
of the dynamic HSM parameters. This table allows the application logic layer to
make decisions based not only on the current values of parameters, but also on
their statistical values over a certain time period.

Table 1 presents summary of the static parameters stored in the PLBS database,
which are used in the replication policies. Updates of these parameters are per-
formed only on user’s demand, for example after a HSM system reconfiguration.
Some of these parameters constitutes averagevalues (like averagedisk cache trans-
fer rate), which are provided by external measurements.

Table 2 presents summary of the dynamic parameters stored in the PLBS
database, which are used in the NDS replication policies. These parameters are
updated periodically. The update interval is set manually in the PLBS configu-
ration files.

188 R. S�lota et al.

Table 1. Description of static parameters used in the replication policies

Parameter name Description Implementation

TotalCapacity Estimated total capacity of

a storage system installed on

a single server.

The value of this parameter

is estimated as a sum of disk

cache capacities

TotalDCCapacity Total capacity of a single

HSM system disk cache.

The value of this parameter is

received from the df UNIX sys-

tems command.

AverageDCReadRate Estimated value of average

disk cache read transfer rate.

The value of this parameter

is measured by special bench-

marks.

AverageDCWriteRate Estimated value of average

disk cache write transfer

rate.

The value of this parameter

is measured by special bench-

marks.

NumberOfLibraries Total number of tape li-

braries connected to a single

server.

The value of this parameter

is received from configuration

files.

Table 2. Description of dynamic parameters, which are used in the replication policies

Parameter name Description Implementation

FreeCapacity Estimated free capacity of a

storage system installed on a

single server.

The value of this parameter is esti-

mated as a sum of free tapes capac-

ity.

FreeDCCapacity Free space in a single HSM

system disk cache.

The value of this parameter is ob-

tained from the df UNIX systems

command.

CurrentRate Transfer rate value from the

last measurement.

The value of this parameter is mea-

sured by periodically.

HSMLoad Number of requests waiting

or being processed by the

HSM system.

The value of this parameter is re-

ceived from the dsmq command for

the Tivoli Storage Manager (TSM)

systems and from the fsejob com-

mand for the File System Extender

(FSE) systems.

5 Replication Policies

The selection of SN for a given data access request is done by heuristic methods
taking into account relevant monitoring parameters described in the previous
section. Depending on the user profile an appropriate method (called further
policy) is used. The AMPD component implements 4 replication policies: reading
in shortest time - R ST, reading from the minimally loaded device - R ML,
writing replicas of big files - W BF, writing replicas to the minimally loaded
device - W ML. Each policy selects the location, for which the value Loc, defined
in equations 1-4, is maximized.

Replica Management for National Data Storage 189

The R ST policy is defined by:

Loc = α1 · RD
RDMax

+ α2 · CT
RD

+ α3 · 1
1 + HL

, (1)

where RD – average disk cache read transfer rate, RDMax – maximal value of
average disk cache read transfer rate, taken over all locations, CT – current
transfer rate, HL – hsm load,

∑
i∈{1..3} αi = 1, αi > 0. The exact meaning of

these values is given in Tables 1 and 2.
Equation (2) expresses the R ML policy:

Loc = β1 · ND
NDMax

+ β2 · 1
1 + HL

+ β3 · 1
1 + CL

, (2)

where ND – number of drives, NDMax – maximal value of number of drives,
taken over all locations, CL – CPU load,

∑
i∈{1..3} βi = 1, βi > 0.

Each writing policy determines first whether enough free space is available in
a HSM system. Equation 3 defines the W BF policy.

Loc = γi · FC DC

TC DC
+ γ2 · FC

TC
+ γ3 · WR

WRMax
+ γ4 · 1

1 + HL
, (3)

where FCDC – free disk cache capacity, TC DC – total disk cache capacity, FC –
free capacity, TC – total capacity, WR – average disk cache write transfer rate,
WRMax – maximal value of average disk cache write transfer rate, taken over
all locations,

∑
i∈{1..4} γi = 1, γi > 0.

The policy W ML is defined by equation 4,

Loc = δ1 · FC DC

TC DC
+ δ2 · WR

WRMax
+ δ3 · 1

1 + HL
, (4)

where
∑

i∈{1..3} δi = 1, δi > 0.
α, β, γ and δ are coefficients specifying the impact of the particular monitoring

parameters being used in the above formulas. They need to be tuned for the given
environment. The above policies are chosen according to the client profile making
request and the type of the request. For instance, if the client has defined in the
profile that it needs the data as fast as possible than the R ML policy is chosen.

6 Test Results

Three types of tests has been conducted:

– Monitoring influence tests - showing PLBS impact on the performance of
the monitored HSM systems,

– Response time tests - showing the time of PLBS responds to prediction
queries,

– Load balancing tests - showing data access requests distribution among the
storage nodes in multi user and multi requests data access paradigm.

190 R. S�lota et al.

Table 3. Test environment nodes

name location type CPU HSM tape drives HSM cache [GB]

smok Krakow SN 2×Xeon 3.3GHz HP FSE 4x LTO 2000

worm Poznan SN 2×Xeon 2.8GHz IBM TSM 3x LTO 400

kmd-pilot3 Wroclaw SN 2×Xeon 2.8GHz IBM TSM none 8

kmd2 Krakow MN 2×Xeon 2.8GHz na na na

SN - Storage Node, MN - Monitoring Node.

The tests have been conducted in the following environment: 4 nodes described
in detail in Table 3 and connected via Pionier network with 1Gb links.

The results are presented in the following subsections.

6.1 Influence Tests

In order for the JIMS to retrieve monitoring data from storage nodes a monitor-
ing agent (JIMS MA) (see Fig.1) needs to be present on these nodes. The goal
of these tests is to measure the influence to performance of storage system when
the JIMS MA is running on the same node. These tests were performed on the
smok SN (see Table 3). This HSM system is in production and the measurements
were done during periods of low activity. The smok SN is an HP Proliant DL580
server running File System Extender (FSE) under Linux RHEL5. The main disk
storage of the server resides on HP EVA8000 disk array and is attached via 2 FC
2Gb/s links. Repeated patterns of simulated users activities were generated by

 0

 40

 80

 120

 160

 0 300 600 900 1200 1500 1800

D
is

k
I/O

 [M
B

/s
] total reads

total writes

 0

 20

 40

 60

 0 300 600 900 1200 1500 1800

U
se

r
I/O

 [M
B

/s
]

user data rate (read)

 0
 20
 40
 60
 80

 100
 120

 0 300 600 900 1200 1500 1800

C
P

U
 u

til
iz

at
io

n
[%

]

time [s]

%CPU system
%CPU iowait

%CPU idle

Fig. 3. An example result of monitoring influence test

Replica Management for National Data Storage 191

ftp transfers from other hosts (HSM clients). The JIMS MA performed measure-
ments every 10 minutes. Disk reads and writes generated by the measurements
had little impact (maximum 5%) on overall execution times of data transfers to
and from clients. An example test result is shown in Fig. 3.

The most influence of JIMS MA activity on users data transfers occurs in
short periods when the agent measures disk write performance used to calculate
AverageDCWriteRate (see Table 1). The system utilization statistics come from
sar program. The user data rates were taken from network traffic statistics as
there was no other network traffic on the server during the tests.

6.2 Response Tests

Response tests measure the time of processing prediction requests to AMPD.
Table 4 presents test results for the implemented replication policies. Each value
is taken as an average over 5000 requests. We distinguished two cases: (1) the
client is on the same machine that AMPD, (2) the client is located remotely
to the AMPD component. For each of these two cases the time of processing a
request by AMPD (AMPD columns) and time of processing a request together
with communication overhead (client columns) are provided.

Table 4. Time of serving prediction requests

Replication policy

Response time [ms]

local remote

AMPD client AMPD client

Reading in shortest time 27.91 31.19 29.46 87.01

Reading from the minimally loaded device 19.42 23.99 21.19 84.60

Writing big files 17.15 21.72 17.41 79.33

Writing to the minimally loaded device 14.50 17.75 16.05 77.60

We can see that the response times are acceptable for all policies and they do
not exceed 90 ms for remote clients. The network overhead has great influence
on the final response times - without it the processing time is less than 30 ms.

6.3 Load Balancing Test

Load balancing test shows how the requests get distributed among the storage
nodes. One monitoring node and three storage nodes have taken part in this test
(see Table 3). A script requesting a new replica location prediction and placing
data in the result location has been executed on one of the ANs. The script
starts new requests until 5 concurrent transfers get present. When a transfer is
over another request is started. 5000 requests have been done in 20 hours.

Figure 4 provides results of prediction tests for the W BF policy with the
following coefficient values: γ1 = 0.6, γ2 = 0.2, γ3 = 0.1 and γ4 = 0.1. Each
point represents the fraction of requests for which a particular host has been
selected within the time interval of 1 h.

192 R. S�lota et al.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

time [h]

re
qu

es
ts

 [%
]

smok
worm

kmd-pilot3

Fig. 4. Replication tests for W BF policy

We can see that the requests are distributed between the nodes according to
their storage processing power - the most powerful host (smok) has served the
majority of requests. Periodic change of the leader occurs because monitoring
data are put into the database in 30min intervals.

7 Summary and Future Work

In this paper the PLBS subsystem being a part of the NDS system has been pre-
sented. The system makes use of replication techniques to increase availability
and performance of data access. Monitoring parameters, methods for retrieving
them and replication policies have been described. The influence tests showed
that the monitoring did not cause essential storage system performance degrada-
tion. The system response times are within the tens of milliseconds range which
is satisfying. Load balancing test shows that requests get distributed between
the nodes proportionally according to their storage processing power. In the
near future we plan to extend the set of available policies according to client
requirements and to conduct the tests when NDS will be in production.

Acknowledgments

This research is partially supported by the MNiSW grant nr R02055 03 and
AGH-UST grant nr 11.11.120.865. Thanks go to Rafa�l Miko�lajczak for valuable
help with the TSM system and to NDS partners for sharing storage resources.

References

1. National Data Storage project, Polish MNiSW grant nr R02055 03,

https://kmd.pcss.pl

2. Pionier - Polish Optical Internet, http://www.pionier.gov.pl

3. Ranganathan, K., Foster, I.: Identifying Dynamic Replication Strategies for a High-

Performance Data Grid. In: Proc. Int. Workshop on Grid Computing, Denver

(November 2001)

https://kmd.pcss.pl
http://www.pionier.gov.pl

Replica Management for National Data Storage 193

4. Lamehamedi, H., Szymański, B., Deelman, E.: Data Replication Strategies in Grid

Environments, pp. 378–383. IEEE Computer Science Press, Los Alamitos (2002)

5. Park, S., Kim, J., Ko, Y., Yoon, W.: Dynamic Data Grid Replication Strategy

Based on Internet Hierarchy. In: Li, M., Sun, X.-H., Deng, Q.-n., Ni, J. (eds.) GCC

2003. LNCS, vol. 3033, pp. 838–846. Springer, Heidelberg (2004)

6. Rahman, R.M., Barker, K., Alhajj, R.: A Predictive Technique for Replica Selection

in Grid Environment. In: 7th IEEE Int. Symp. on Cluster Computing and the Grid.

IEEE Computer Society, Los Alamitos (2007)

7. Li, J.: A Replica Selection Approach based on Prediction in Data Grid. In: Proc.

Third Int. Conf. on Semantics, Knowledge and Grid - SKG 2007, Xi’an, Shan Xi,

China, October 29-31, pp. 274–277 (2007)

8. Rahman, R.M., Barker, K., Alhajj, R.: Replica placement Strategies in Data Grid.

J. Grid Computing 6, 103–123 (2008)

9. Rasool, Q., Li, J., Oreku, G.S., Zhang, S., Yang, D.: A load balancing replica

placement strategy in Data Grid. In: Pichappan, P., Abraham, A. (eds.) Third

IEEE Int. Conf. on Digital Information Management (ICDIM), Proc. IEEE 2008,

London, UK, November 13-16, pp. 751–756 (2008)

10. S�lota, R., Skita�l, L., Nikolow, D., Kitowski, J.: Algorithms for Automatic Data

Replication in Grid Environment. In: Wyrzykowski, R., Dongarra, J., Meyer, N.,

Waśniewski, J. (eds.) PPAM 2005. LNCS, vol. 3911, pp. 707–714. Springer, Hei-

delberg (2006)

11. Nikolow, D., S�lota, R., Kitowski, J.: Grid Services for HSM Systems Monitoring.

In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM

2007. LNCS, vol. 4967, pp. 321–330. Springer, Heidelberg (2008)

12. Zieliński, K., Jarza̧b, M., Balos, K., Wieczorek, D.: Open Interface for Autonomic

Management of Virtualized Resources in Complex Systems - Construction Method-

ology. FGCS 24(5), 390–401 (2008)

Churn Tolerant Virtual Organization File

System for Grids�

Leif Lindbäck1, Vladimir Vlassov1,
Shahab Mokarizadeh1, and Gabriele Violino2,��

1 Royal Institute of Technology (KTH), Stockholm, Sweden
2 Net Result AB, Stockholm, Sweden

Abstract. A Grid computing environment allows forming Virtual Or-

ganizations (VOs) to aggregate and share resources. We present a VO

File System (VOFS) which is a VO-aware distributed file system that

allows VO members to share files. VOFS supports access and location

transparency by maintaining a common file namespace, which is decen-

tralized in order to improve robustness. VOFS includes a P2P system of

file servers, a VO membership service and a policy and role based secu-

rity mechanism. VOFS can be mounted to a local file system in order

to access files using POSIX file API. VOFS can operate in a dynamic

Grid environment (e.g. desktop Grids) since it tolerates unplanned re-

source arrival and departure (churn) while maintaining a single uniform

namespace. It supports transparent disconnected operations that allow

the user to work on files while being disconnected.

Keywords: Grid file system; peer-to-peer; security; namespace.

1 Introduction

A Grid computing environment allows forming Virtual Organizations (VOs).
A VO is a collection of users or institutions that pools their resources into a
single virtual administrative domain. A VO File System (VOFS) aggregates
data objects (files, directories and disk space) exposed by VO members. Expose
here means to make a data object accessible via VOFS. One major challenge in
such a file system is namespace management. Uniform and globally unique path
names should be associated with data objects [1]. Uniform here means access
and location transparency of exposed data objects, and the same view of the
file system at all nodes. This requires mapping a logical name of a file in VOFS
namespace to its physical location. The global nature of grids enforces logical
names to be uniform across different administrative domains. In this work we
consider ad-hoc grids and propose a user-level VOFS that allows creating and
maintaining work spaces by exposing and sharing data objects by VO members.
The proposed VOFS has the following features.
� This research is supported by the FP6 Project Grid4All funded by the European

Commission (Contract IST-2006-034567).
�� Gabriele Violino was at the Royal Institute of Technology while doing this work.

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 194–203, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Churn Tolerant Virtual Organization File System for Grids 195

1. VOFS includes a security mechanism that protects exposed data objects
from unauthorized access, and includes VO membership management, au-
thentication and role-based authorization according to VO policies;

2. VOFS maintains a uniform namespace despite of unplanned resource arrival
and departure (churn);

3. VOFS allows ordinary applications to access the VOFS using a standard
POSIX file API, i.e. the applications do not need to be modified to access
files in the VOFS;

4. VOFS is easy to use for non-experienced users;
5. VOFS can operate under any OS that has WebDAV [2] mount support, e.g.

MS Windows, Linux, Mac OS X.
6. VOFS supports transparent disconnected operations that allow the user to

work on files while being disconnected.

2 Overview

Fig. 1. Schematic view of VOFS architecture

This work builds on our pre-
vious work presented in [3]
that proposed three ways of
maintaining the namespace:
a centralized name service;
a distributed directory; and
a DHT-based name service.
In [3] we have presented
VOFS with the centralized
name service that has the ma-
jor disadvantage to induce a
single point of failure and a
potential performance bottle-
neck. In this paper, we pro-
pose to build VOFS with
a namespace maintained as
a distributed directory where
the namespace information is distributed among peers. In this design every peer
can potentially learn the entire namespace (i.e. location of exposed data ob-
jects) via a gossiping mechanism. The data objects can be exposed to any path
in VOFS. An exposed directory offers disk space which is used by VO members
to create new objects.

Each peer runs a file server that provides and controls access to data objects
exposed from the local node, see Fig. 1. Access to the exposed objects is achieved
by mounting the local VOFS peer to a mount point, e.g. a local path. We use
the WebDAV protocol [2] to access and transfer files between peers. Use of Web-
DAV allows accessing VOFS through any mount utility supporting WebDAV,
e.g davfs2 [4], which offers a POSIX compliant API. Once mounted, access to
VOFS is no different from access to local file system.

196 L. Lindbäck et al.

3 VOFS Namespace and File Tree

VOFS is formed as an ordinary file tree. Exposed objects are given logical names,
which are paths in VOFS. The VOFS namespace is a set of mappings of logical
names to physical locations. A VOFS path may include names of virtual direc-
tories, which are not hosted by any peer, i.e. they do not exist. Thus, VOFS
consists of exposed real data objects and virtual directories that may contain
virtual directories and real data objects.

Initially, the VOFS tree contains only the root, which is initially virtual. The
VOFS namespace, hence the VOFS tree, is formed explicitly and gradually as a
result of exposing and unexposing data objects. Virtual directories help to main-
tain the namespace. If to assume that all directories in the VOFS tree are real
(i.e. physically exist), then unexposing a real directory may cause partitioning of
the tree as the data objects under the unexposed directory can not be properly
identified. This motivates introducing virtual directories. The unexposed real
directory becomes virtual; and names of all objects under it remain unchanged.

When looking up location of an object given its fully-specified VOFS path, a
longest prefix match is done. The object can be accessed if the exposing peer is
online despite of whether other peers are online or not.

Mappings of logical names to physical locations are the major metadata of
VOFS. The metadata associates exported data objects with paths in the VOFS
namespace. The same metadata are kept at every node in two tables: remote.db,
which stores location information of data objects exposed by other peers; and
local.db that stores location information of objects exposed by this peer. When
a data object is exposed, the exposing peer adds a pair of local file system path
and VOFS path to the local.db table while all other peers adds a pair of VOFS
path and physical host address to their remote.db table. When a data object is
unexposed, this information is removed from all peers. The namespace changes
only when peers perform expose or unexpose operations. Peers communicate
metadata by gossiping as explained below. All peers know the entire namespace,
i.e which data objects are exposed and who exposes them.

3.1 Algorithm for Namespace Updates

To transfer namespace updates between peers we use a gossip algorithm based on
the lazy probabilistic broadcast algorithm described in [5]. When a peer updates
the namespace it sends an update message to all or some of its neighbours. Each
peer that receives an update message forwards it to all or some of its neighbours.
There will be no loops since a peer never sends the same message twice.

The following recovery mechanism is used when messages are lost. Original
sender id and a sequence number are attached to each message. Since there is
FIFO delivery of messages, if a peer receives a message with a sequence number
larger than the previous number plus one, it knows that some messages were
lost. It will then send a require message to a subset of its neighbours, indicating
which message was lost and which peer is requiring it. A peer, which receives the
require message checks if it has the required message. If yes, it sends the required

Churn Tolerant Virtual Organization File System for Grids 197

update message to the requiring peer. If not, it forwards the require message to
its neighbours. Require messages are forwarded only a specified number of times.
Each peer maintains information about transmitted messages on its hard disk.

The gossip algorithm described above is used only for namespace updates. All
other communication, e.g. file transfer, involve only two peers. Due to gossiping,
there is no need to search for data objects since each peer maintains its own view
of the namespace which is almost the same as views of other peers, even though
there might be some inconsistencies between views caused by update latency.

4 VOFS Peers

A user exposing data objects must run a VOFS peer on her computer; while a
user accessing VOFS does not need to run a peer. In the latter case, the user
must know an address of a peer to mount it and to access VOFS. If the user
runs a peer, it can be mounted to become the entry point to VOFS. In this case,
there is no need to keep addresses of well-known mount points. All VOFS peers
provide (un)expose, join, mount, and cache services, which are described below.
The services can be accessed through the GUI of the VOFS peer.

(Un)Expose. When exposing, the user defines a data object to be exposed
and specifies its VOFS path. The expose service stores the logical-to-physical
name mapping in the local table and initiates the update gossip algorithm. If
the specified path does not exist, virtual directories are introduced to allow
traversing the tree from root to the exposed data object. The root of VOFS is
always /. It can be either virtual or mapped to a real directory. Name collision
occurs when the user tries to assign a name which is already taken. Name collision
is resolved as follows: if the data object to be exposed is a file, its mapping
overrides the mapping of the object previously exposed with the same name; in
case of directories exposed with the same name, their contents are merged.

Join. When a user starts a VOFS peer, the peer joins the P2P VOFS system.
At startup, the peer downloads a list of all VO peers from the VO Membership
Service (VOMS) described in 5.1. Then the peer connects to some other peers
selected from the list. The chosen peers and the new peer become neighbours.
In the current VOFS prototype, selection of neighbours is random, but it could
be done in a sophisticated way. They also exchange their VOFS views stored in
their local and remote metadata tables described earlier. It is possible for the
user to manually edit a peer’s neighbour list through the GUI of the VOFS peer.

Mount. The user can mount VOFS with any mount utility supporting WebDAV;
therefore we have not developed any mount utility; instead, we use davfs [4] on
Linux and NetDrive [6] on MS Windows. VOFS has not been tested on other
OSs but Mac OS X has WebDAV support built in.

Once the VOFS is mounted, all POSIX file API is supported for manipulating
data objects (provided the mount utility offers a POSIX API). The mount utility
will translate the POSIX calls to WebDAV calls to the VOFS peer.

198 L. Lindbäck et al.

Cache. Each VOFS peer maintains a file cache. Read and write latency over
network is compensated by the caching mechanism, which also allows offline
work. VOFS uses last write wins reconciliation policy (a traditional file system
policy for concurrent writes), which can be replaced by a more sophisticated
reconciliation policy implemented using, for example, Telex [7]. The cached copy
is checked for update (compared to the master copy) when the file is read. When a
file is written the new content is stored in the cache and sent to the exposing peer,
which informs all other peers caching the file about the update. Also directory
listings are cached, but unlike files they have an expiry time.

5 Security

The security infrastructure is based on the XACML authorization model [8].
Its goal is to provide authentication and authorization. When authenticating,
the user’s credentials are checked and the user gets a token, which can be used
to prove her identity in authorization checks. Authorization grants that users
can only access resources to which they have right according to VO policies.
Authorization is policy-based, policies are expressed in XACML.

5.1 Components

The VOFS security infrastructure is built of the following components.

Virtual Organization Membership Service, VOMS keeps a database of
users and roles in the VO. It has a web based management interface for
updating this data. This interface is protected by a PEP. The VOMS is also
responsible for authenticating users.

Policy Enforcement Point, PEP protects a resource (VOFS peer, VOMS,
PAP). Each resource has a local PEP. The PEP sends authorization re-
quests to the PDP and caches the answers. To improve performance the
PDP answers not only to the request sent by the PEP, but to requests with
the same subject and resource with all existing actions.

Policy Decision Point, PDP evaluates requests from PEPs according to the
policies in PR. Policies are cached in memory. Invalidation of the PDP’s
cache also invalidates all PEP’s caches.

Policy Information Point, PIP contacts VOMS to validate the user’s identy
and get the user’s roles. The answer from VOMS is cached.

Policy Administration Point, PAP is a server that makes updates to PR.
The PAP is protected by a PEP. A client to the PAP is provided.

Policy Repository, PR stores policies as XACML files.

We suppose that except for PEP there will be one instance of each component
per VO. Each PEP should be placed on the same host as the protected resource.

5.2 Scenarios

A typical scenario of interactions between security components and VOFS peers
is depicted in Fig. 2. We distinguish four different phases: creating users and
roles, setting security policies, authentication and access control.

Churn Tolerant Virtual Organization File System for Grids 199

Fig. 2. Security components

Creating users and roles (1) VO admin uses VOMS to create users and roles.
Setting policies (2) The administrator uses PAP to create policies. (3) PAP

stores the policies in PR. PAP will invalidate PDP’s cache. It can be specified
in a policy when it is valid. This can be specified as time, date and day of
week ranges and any combination of these.

Authentication (4) The requester logs in to VOMS, using a web based inter-
face. If the requester is authenticated, VOMS returns a token that is stored
on the requester’s computer.

VOFS access (5) The requester uses an application that accesses VOFS. The
mount utility sends the token along with the call to VOFS. The call is inter-
cepted by the PEP protecting the VOFS peer. (6) PEP asks PDP whether
the requester is allowed to access the peer. (7) PDP asks PIP for the re-
quester’s roles. (8) PIP contacts VOMS to check if the token is valid and to
get the requester’s roles. (9) PDP evaluates the policies stored in PR. (10)
If access was granted, the call is let through to the VOFS peer.

5.3 Secure Communication

The goals of secure communication are

1. To guarantee that PEPs get answers from the correct PDP;
2. To guarantee that PDP gets answer from the correct VOMS;
3. To guarantee that the token identifying a user is not stolen. If it is stolen it

can be used to impersonate that user.

The first two goals can be met using certificates to identify PDP and VOMS.
Regarding the third goal, there are the following risks that the token is stolen:

1. During transfer (this risk is eliminated with encrypted communication);
2. From the user’s computer;
3. By a malicious node pretending to be a VOFS peer;

The second risk can be reduced if the VOMS encrypts the token with the user’s
public key. The third risk is eliminated if peers only communicate with other

200 L. Lindbäck et al.

peers that can prove they are part of VOFS. This can be achieved by using
a certificate signed by a trusted certificate authority, CA. Each peer gets its
certificate from the VOMS at startup. None of the above solutions require the
user to be aware that certificates are used. This makes the VOFS easy to use
also for non-experienced users.

6 VOFS Prototype

The prototype is implemented using Java Servlets, Fig. 3 shows its main com-
ponents. It comes bundled with Apache Tomcat.

Fig. 3. VOFS implementation

PEP is a servlet filter that intercepts all incoming requests. It translates the
WebDAV method of the call to a VOFS operation and calls PDP to check if
the operation is allowed. If not, an HTTP 403 (forbidden) code is returned.

WebdavServlet The access point for remote peers and the local mount utility.
ClientStub Forwards requests to the correct component.
MetaDataModule Keeps metadata and performs longest prefix match.
LocalFileSystemStorage Provides access to exposed files and directories.
Cache Caches remote data objects. If a searched object is not in the cache the

call is forwarded to the remote peer hosting it. The returned object is cached.
WebDAV client api Reads and writes data objects from remote peers.
ReconciliationMonitor Continuously monitors cache to see if an item in cache

is newer than the master, if so updates the master.

Churn Tolerant Virtual Organization File System for Grids 201

7 Related Work

Sprite Network File System [9] is a distributed file system similar in some aspects
to VOFS. Meta-data in VOFS with decentralized name service is handled in a
similar way to Sprite. A main difference between VOFS and Sprite is that Sprite
does not handle partitioning of the file tree since lookup starts from root and
proceeds downwards; whereas in VOFS longest prefix match is done on the entire
path. Support for virtual directories and disconnected operation makes VOFS
churn tolerant.

There exist P2P file systems, e.g. OceanStore [10], which were developed as
a storage for file sharing. A typical P2P file system has no support for neither
POSIX file API, nor security. Grid file systems in contrast to P2P file sharing
systems strongly require authentication and authorization to protect files from
unauthorised access. VOFS allows the VO members to define and set VO security
policies to be enforced by the VOFS security infrastructure.

Examples of Grid file systems include gLite file catalogs [11], Gfarm [12],
and Distributed File Services, DFS [13]. The gLite file catalogue service [11] is
used to maintain location information about files and their replicas. In contrast
to VOFS, gLite catalogue service is centralized and is a single point of failure.
The Gfarm file system [12] uses a virtual tree and virtual directories mapped to
physical files by a metadata server, like the centralized solution described in [3].
Gfarm is designed to be very scalable; however, its metadata server can become
a bottleneck and is a single point of failure since it is not replicated in contrast
to VOFS. DFS [13] is a P2P file and storage system that can be integrated with
a Grid security mechanism. DFS, in contrast to the presented VOFS, has no
hierarchical namespace, but instead offers two P2P networks: one for storage
space and one for names and metadata. DFS is implemented using FUSE [14]
that limits its usage only to Linux, while the WebDAV-based VOFS can run on
multiple (if not all) operating system, e.g. MS Windows, Linux, Mac OS X.

8 Performance Evaluation

We have evaluated performance of namespace updates, file transfer and file
lookup. The nodes are PCs with 1.86 GHz Intel Centrino CPUs and 1 GB RAM
on a dedicated 100 Mbps LAN.

Fig. 4. Namespace update performance

202 L. Lindbäck et al.

Fig. 5. Lookup perfor-

mance

We have done two measurements of the names-
pace update algorithm (see Fig. 4). The first mea-
surement concerns updates without lost messages. It
shows how long time it takes for an update message
to reach a node that is one, two, four and eight net-
work hops away from the updating node. The second
measurement shows recovery of missed namespace up-
date messages due to a node being disconnected from
the node performing the updates. Figure 4 shows how
long it takes to get information about all namespace
updates performed while the node was disconnected.
This is measured whith one, two, four and eight missed
update messages. The time is reduced if all lost messages are required and re-
sent with one message, now there is one require and one resend per lost message.
Figure 4 shows that the algorithm scales well.

Figure 5 shows how long time it takes to find out which node exposes a given
file. This is a local operation, since all nodes have information about the entire
namespace. The lookup time is about 0.7 ms per file no matter how many files
are looked up.

Fig. 6. File transfer performance

The read test copies
100 files from a remote
peer to the local file sys-
tem (outside VOFS). The
file cache is big enough
to contain all files. The
results are presented in
Fig. 6. The figure also de-
picts timings for copying
files within the local file
system in order to com-
pare performances of the
local file system and VOFS. Bandwidth when transferring smaller files is lower
because overhead takes proportionally more time. The overhead is mainly due
to that the mount utility (davfs2) reads file properties before transferring files.

The write test copies 100 files from the local file system (outside VOFS) to
a remote peer. Results of write test are in Fig. 6. Cache does not speed up
performance since file content is written both to cache and to remote peer.

9 Conclusion

We have presented a churn tolerant VOFS that maintains a uniform namespace
in a dynamic environment, that is when nodes frequently join or leave the VOFS.
The VOFS provides a shared workspace for VO members and it is easy to use. It
includes VO membership management, authentication and authorization. The
VOFS Prototype is available at http://www.isk.kth.se/~leifl/vofs/

http://www.isk.kth.se/~leifl/vofs/

Churn Tolerant Virtual Organization File System for Grids 203

Acknowledgement

Special thanks to Chen Xing (chenxing@kth.se) who implemented the first ver-
sion of the VOMS and the gossip based protocol.

References

1. Anderson, O.T., et al.: Global namespace for files. IBM systems Journal 43(4),

702–722 (2004)

2. WebDAV Community, http://www.webdav.org/

3. Mizani, H.R., Zheng, L., Vlassov, V., Popov, K.: Design and Implementation of

Virtual Organization File System for Dynamic VOs. In: Proc. of the 11th IEEE Int.

Conf. on Computational Science and Engineering, Workshops, pp. 77–82 (2008)

4. davfs2, mount utility for WebDAV on Linux, http://dav.sourceforge.net/

5. Guerraoui, R., Rodrigues, L.: Introduction to Reliable Distributed Programming.

Springer, Heidelberg (2006)

6. NetDrive, mount utility for WebDAV and FTP, http://www.netdrive.net/

7. Benmouffok, L., Busca, J., Marqus, J.M., Shapiro, M., Sutra, P., Tsoukalas, G.:

Telex: Principled System Support for Write-Sharing in Collaborative Applications.

Research Report, INRIA RR-6546 (2008)

8. Lang, B., Foster, I., Siebenlist, F., Ananthakrishnan, R., Freeman, T.: A Multi-

policy Authorization Framework for Grid Security. In: Proc. of the Fifth IEEE

Symposium on Network Computing and Application, pp. 269–272 (2006)

9. Welch, B., Ousterhout, J.: Prefix Tables: A Simple Mechanism for Locating Files in

a Distributed System. Report No. UCB/CSD 56/261, Computer Science Division,

University of California, Berkeley, California (1985)

10. Rhea, S., Eaton, P., Geels, D., Weatherspoon, H., Zhao, B., Kubiatowicz, J.: Pond:

the OceanStore Prototype. In: Proc. of the 2nd USENIX Conf. on File and Storage

Technologies, pp. 1–14 (2003)

11. gLite, middleware for grid computing, http://glite.web.cern.ch/glite/

12. Tatebe, O., Sekiguchi, S., Morita, Y., Soda, N., Matsuoka, S.: GFARM V2: A Grid

File System that Supports High-Performance Distributed and Parallel Data Com-

puting. In: Computing in High Energy Physics and Nuclear Physics, Interlaken,

Switzerland, p. 1172 (2004)

13. Chazapis, A., Tsoukalas, G., Verigakis, G., Kourtis, K., Sotiropoulos, A., Koziris,

N.: Global-scale peer-to-peer file services with DFS. In: 2007 8th IEEE/ACM Int.

Conf. on Grid Computing, pp. 251–258 (2007)

14. FUSE: Filesystem in Userspace, http://fuse.sourceforge.net/

http://www.webdav.org/
http://dav.sourceforge.net/
http://www.netdrive.net/
http://glite.web.cern.ch/glite/
http://fuse.sourceforge.net/

Quasi-random Approach in the Grid

Application SALUTE�

Emanouil Atanassov, Aneta Karaivanova, and Todor Gurov

Institute for Parallel Processing - Bulgarian Academy of Sciences,

Acad. G. Bonchev St., Bl.25A, 1113 Sofia, Bulgaria

{emanouil,anet,gurov}@parallel.bas.bg

Abstract. Stochastic ALgorithms for Ultra-fast Transport in sEmicon-

ductors (SALUTE) is a Grid application which integrates a set of novel

Monte Carlo, quasi-Monte Carlo and hybrid algorithms for solving vari-

ous computationally intensive problems important for industry (design of

modern semiconductor devices). SALUTE studies memory and quantum

effects during the femtosecond relaxation process due to electron-phonon

interaction in one-band semiconductors or quantum wires.

There are two main reasons for running this application on the Grid:

(i) quantum problems are very computationally intensive; (ii) the inher-

ently parallel nature of Monte Carlo applications makes efficient use of

Grid resources.

In this paper we study the quasirandom approach in SALUTE, using

the scrambled Halton, Sobol and Niederreiter sequences. A large number

of tests have been performed on the SEEGRID grid infrastructure using

specially developed grid implementation scheme. Novel results for en-

ergy and density distribution, obtained in the inhomogeneous case with

applied electric field are presented.

Keywords: Grid computing, Monte Carlo methods, Quasi-Monte Carlo,

Scrambled Halton, Sobol and Niederreiter sequences, Ultra-fast carrier

transport.

1 Introduction

The Monte Carlo Methods (MCMs) for quantum transport in semiconductors
and semiconductor devices have been actively developed during the last two
decades, [3,9,12]. These Monte Carlo calculations need large amount of compu-
tational power and the reason is as follows: If temporal or spatial scales become
short, the evolution of the semiconductor carriers cannot be described in terms of
the Boltzmann transport and therefore a quantum description is needed. Let us
note that in contrast to the semiclassical transport when the kernel is positive,
the kernel in quantum transport can have negative values. The arising prob-
lem, sometimes referred to as the ”negative sign problem”, leads to additional
computational efforts for obtaining the desired solution.
� Supported by the Ministry of Education and Science of Bulgaria under Grant No.

DO02-146/2008.

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 204–213, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Quasi-random Approach in the Grid Application SALUTE 205

Usually Monte Carlo methods have convergence rate of O(N−1/2) One generic
approach to improving the convergence of MCMs has been the use of highly
uniform random numbers (called quasirandom sequences - QRNs) in place of
the usual pseudo random numbers (PRNs). The methods based on quasirandom
sequences are called quasi-Monte Carlo methods (QMCMs), a term proposed by
H. Niederreiter. The successful application of the QMCMs for multiple integrals
in financial mathematics (late 90s) was followed by an active work in the area
of QMCMs for Markov chain based problems.

In this paper we present quasirandom approach for ultrafast carrier transport
simulation. Due to correlation, the direct quasirandom variants of Monte Carlo
methods do not give adequate results. Instead of them, we propose hybrid algo-
rithms with pseudorandom numbers and scrambled quasirandom sequences. We
use scrambled modified Halton [2], scrambled Sobol [1] and scrambled Nieder-
reiter sequences. In this paper we present also our grid implementation scheme
which uses not only the computational capacity of the grid but also the available
grid services in a very efficient way. With this scheme we were able to obtain new
estimates about important physical quantities. The paper is organised as follows:
Section 2 describes very briefly the problem and the Monte Carlo algorithms,
section 3 presents the quasirandom sequences and hybrid algorithms, section 4
describes the grid implementation scheme, section 4 contains the new estimates
and performance analisys.

2 Background (Brief Description of SALUTE)

The first version of SALUTE was designed in 2005 as a set of Monte Carlo algo-
rithms for simulation of ultra-fast carrier transport in semiconductors together
with simple Grid implementation, [3,4]. Later on, we extended the the area of
application (quantum wires), the algorithms (more complicated equations to be
solved) and the implementation scheme. In this paper we present the quasir-
andom approach in SALUTE and discuss the new results. The physical model
describes a femtosecond relaxation process of optically excited electrons which
interact with phonons in one-band semiconductor, [13]. The interaction with
phonons is switched on after a laser pulse creates an initial electron distribu-
tion. In our model we consider a low-density regime, where the interaction with
phonons dominates the carrier-carrier interaction. Two cases are studied using
SALUTE: electron evolution in presence and in absence of electric field.

As a mathematical model we consider Wigner equation for the nanometer
and femtosecond transport regime. In the homogeneous case we solve a ver-
sion of the Wigner equation called Levinson (with finite lifetime evolution), or
Barker-Ferry equation (with infinite lifetime evolution). Another formulation of
the Wigner equation considers inhomogeneous case when the electron evolution
depends on the energy and space coordinates. Particularly we consider a quan-
tum wire, where the carriers are confined in the plane normal to the wire by
infinite potentials. The initial condition is assumed both in energy and space
coordinates. We recall the integral form of the quantum-kinetic equation, [13]:

206 E. Atanassov, A. Karaivanova, and T. Gurov

fw(z, kz, t) = fw(z − �kz

m
t +

�F
2m

t2, kz , 0)+
∫ t

0

∂t′′
∫ t

t′′
∂t′

∫
dq′

⊥

∫
dk′

z × (1)[
S(k′

z , kz, t
′, t′′,q′

⊥)fw

(
z − �kz

m
(t − t′′) +

�F
2m

(t2 − t′′2)+
�q′z
2m

(t′ − t′′), k′
z, t

′′
)

−S(kz, k
′
z , t

′, t′′q′
⊥)fw

(
z − �kz

m
(t − t′′) +

�F
2m

(t2 − t′′2) − �q′z
2m

(t′ − t′′), kz , t
′′
)]

S(k′
z, kz, t

′, t′′,q′
⊥) =

2V
(2π)3

|G(q′
⊥)F(q′

⊥, kz − k′
z)|2 ×[

(n(q′) + 1)cos
(
ε(kz) − ε(k′

z) + �ωq′

�
(t′ − t′′) +

�

2m
F.q′z(t

′2 − t′′2)
)

+n(q′)cos
(
ε(kz) − ε(k′

z) − �ωq′

�
(t′ − t′′) +

�

2m
F.q′z(t

′2 − t′′2)
)]

Here, fw(z, kz, t) is the Wigner function described in the 2D phase space of the
carrier wave vector kz and the position z, and t is the evolution time.

F = eE/�, where E is a homogeneous electric field along the direction of the
wire z, e being the electron charge and � - the Plank’s constant.

nq′ = 1/(exp(�ωq′/KT) − 1) is the Bose function, where K is the Boltzmann
constant and T is the temperature of the crystal, corresponds to an equilibrium
distributed phonon bath.

�ωq′ is the phonon energy which generally depends on q′ = q′
⊥ + q′z = q′

⊥ +
(kz − k′

z), and ε(kz) = (�2k2
z)/2m is the electron energy.

F is obtained from the Fröhlich electron-phonon coupling by recalling the
factor i� in the interaction Hamiltonian:

F(q′
⊥, kz − k′

z) = −
[
2πe2ωq′

�V

(
1
ε∞

− 1
ε s

)
1

(q′)2

] 1
2

,

where (ε∞) and (εs) are the optical and static dielectric constants. The shape
of the wire affects the electron-phonon coupling through the factor

G(q′
⊥) =

∫
dr⊥eiq′

⊥r⊥ |Ψ(r⊥)|2 ,

where Ψ is the ground state of the electron system in the plane normal to the
wire.

Detailed description of MCMs for this problem can be found in [3,11,12]. Let
us mention that MCMs have the advantage that MCMs estimate directly the
necessary quantities, i.e. without calculating the solution of the Wigner function
in the whole domain. The serious problem with MCMs is the large variance
of the random variable which is proportional to the exp(T 2) where T is the
evolution time. As the physicists are interested in the quatum effects for large
evolution time, the problem becomes computationally very intensive - we have to
perform bilions of trajectories in order to obtain reasonable results. This was our
motivation for applying quasirandom approach and using computational grid.

Quasi-random Approach in the Grid Application SALUTE 207

3 Quasirandom Approach in SALUTE

Quasi-Monte Carlo methods proved to be efficient in many areas ranging from
physics to economy. We have applied quasirandom approach for studying quan-
tum effects during ultrafast carrier transport in semiconductors and quantum
wires in order to reduce the error and to speedup the computations. Next, we
have used scrambled sequences for two main reasons: (i) the problem is very
complicated (the use of scrambling corrects the correlation problem found when
we have used a purely quasi-Monte Carlo algorithm), and, (ii) the Grid imple-
mentation needs parallel streams.

The computational Grid proved to be very efficient computing model. The
Grid goes well beyond simple communication between computers and aims ul-
timately to turn the global network of computers into one vast computational
resource, [10]. Using the Grid is especially useful for Monte Carlo applications
as there the amount of similar calculations that has to be done is huge. Techni-
cally Grid coordinates resources which are not a subject to central administra-
tive control and utilizes general-purpose protocols. Another distinction is that a
Grid could in principle have access to parallel computers, clusters, farms, local
Grids, even Internet computing solutions, and would choose the appropriate tool
for a given calculation. In this sense, the Grid is the most generalised form of
distributed computing. One major advantage of Monte Carlo methods is that
they are usually very easy to be parallelized. This is, in principal, also true of
quasi-Monte Carlo methods. However, the successful parallel implementation of
a quasi-Monte Carlo application depends crucially on various quality aspects
of the parallel quasirandom sequences used [7,8]. Much of the recent work on
parallelizing quasi- Monte Carlo methods has been aimed at splitting a quasir-
andom sequence into many subsequences which are then used independently on
the various parallel processes, for example in [1,2,5]. This method works well for
the parallelization of pseudorandom numbers, but due to the nature of quality
in quasirandom numbers, this technique has some difficulties. Our algorithms
are based on scrambling (suitable for heterogeneous computing environments).

3.1 Quasirandom Sequences

The main reason to use low-discrepancy sequences instead of pseudorandom
numbers, is that one can achieve convergence rates that are close to O(N−1),
where N is the number of trajectories. The convergence rate of the integra-
tion depends on measures of non-uniformity of the sequence. The most popular
measure is the star discrepancy, due to the famous Koksma-Hlawka inequality,
[6]. Sequences that have the best possible order O(log(N)s/N) are called low-
discrepancy sequences or quasirandom sequences. The most popular sequences
for practical applications are those of Halton, Sobol, Niederraiter and Faure, not
necessarily in this order. In the computations presented in this paper, we use
scrambled Halton, Sobol and Niederreiter sequences.

Halton sequence. We use the modified Halton sequences introduced in [2]
for which the discrepancy has a very small leading term. This construction is

208 E. Atanassov, A. Karaivanova, and T. Gurov

based on the existence of some numebrs, called ”admissible”. Here we recall the
definitions of admissible numbers and modified Halton sequence.

Definition 1. Let p1, . . . , ps be distinct primes. The integers k1, . . . , ks are called
admissible for them, if pi � ki and for each set of integers m1, . . . ,ms, pi � mi,
there exists a set of integers α1, . . . , αs, satisfying the congruences

ki
αi

∏
1≤j≤n, j
=i

pj
αj ≡ mi(mod pi), i = 1, . . . , s.

Definition 2. Let p1, . . . , ps be distinct primes, and the integers k1, ...ks are admis-
sible for them. The modified Halton sequence σ(p1, . . . , ps; k1, . . . , ks) = {(xn

(1),
. . . , xn

(s))}n = {0,∞} is constructed by setting each sequence {xn
(i)}n=0

∞
to be a

generalized Van der Corput - Halton sequence in base pi, with the sequence of per-
mutations τj

(i)(t) to be the reminder of tki
j modulo pi, τj

(i)(t) ∈ {0, . . . , pi − 1}.
Determining ”admissible” generation of modified Halton sequence can be found
in [2]. In the experiments described in this paper we use the following scrambling:
We change the formulas for the permutations as

τj
(i)(t) ≡ tki

(j+1) + bj
(i)(mod pi),

where the integers bj
(i) are chosen independently in the interval [0, pi − 1]. The

scrambled sequence has the same estimate for its discrepancy as if for any integers
m1, . . . ,ms the congruences

ki
αi

∏
1≤j≤n, j
=i

pj
αj ≡ mi(mod pi), i = 1, . . . , s (2)

have a solution, then the same is true for the congruences

ki
αi+1

∏
1≤j≤n, j
=i

pj
αj + bj ≡ mi(mod pi), i = 1, . . . , s. (3)

The chosen algorithm is very fast, requires a small ammount of memory and gen-
erates the terms of sequences with maximal error less that 10−14 when 106 terms
are generated. It shows superior results compared to other Halton generators.

Niederreiter and Sobol sequences. We use the Definition 3 (below), which
covers most digital (t,m, s)-nets in base 2. The Sobol sequence is a (t, s)-sequence
in base 2 and is a particular case of this definition.

Definition 3. Let A1, . . . , As be infinite matrices Ak = {a(k)
ij }, i, j = 0, 1, . . . ,

with a
(k)
ij ∈ {0, 1}, such that a

(k)
ii = 1 for all i and k, a

(k)
ij = 0 if i < j. The

τ (1), . . . , τ (s) are sequences of permutations of the set {0, 1}. Each non-negative
integer n may be represented in the binary number system as

n =
r∑

j−0

bi2i.

Quasi-random Approach in the Grid Application SALUTE 209

Then the nth term of the low-discrepancy sequence σ is defined by

x(k)
n =

r∑
j=0

2−j−1τ
(k)
j (⊕j

i=0bia
(k)
ij),

where by ”⊕” we denote the operation ”bit-wise addition modulo 2”.

To obtain the results presented in this paper we have used the scrambled Sobol
and Niederreiter sequences. The algorithm for generating scrambled Sobol se-
quence is described in [1]. We have modified this algorithm for generating scram-
bled Niederreiter sequence. We have to note that not all optimizations for Sobol
sequence can be applied for Niederreiter (due to the structure of metrices A′s.
This algorithm allows consecutive terms of the scrambled sequence to be ob-
tained with essentially only two operations per coordinate: one floating point
addition and one bit-wise xor operation (this omits operations that are needed
only once per tuple). This scrambling is achieved at no additional computational
cost over that of unscrambled generation as it is accomplished totally in the ini-
tialization. In addition, the terms of the sequence are obtained in their normal
order, without the usual permutation introduced by Gray code ordering used
to minimize the cost of computing the next Sobol element. This algorithm is
relatively simple and very suitable for parallel and grid implementation.

3.2 Hybrid Algorithms in SALUTE

We have constructed hybrid Monte Carlo algorithm that uses pseudorandom
numbers for some dimensions and scrambled quasirandom numbers for other
dimensions. A schematic description of the algorithm is given below, assuming
that we only need to compute the Wigner function at one point (k1, z1). In the
algorithm, ε1 is the truncation parameter.

– Input: number of trajectories to be used N , relaxation time T , other param-
eters, describing the initial condition.

– For i from 1 to N sample a trajectory as follows:
• set time t := T , weight W := 1, k = k1, z := z1

• prepare the next point of the quasirandom sequence to be used (Nider-
reiter, Halton or Sobol) (x1, x2, . . . , xn), with n sufficiently big (n = 100
in our case), and set j = 1

• repeat until t > ε1:
∗ k is simulated using pseudorandom numbers
∗ t′, t are simulated using consecutive dimensions of the quasirandom

sequence, i.e. the points x2j−1, x2j , by the formulae

t2 := tx2j−1, t1 := t2 + x2j(t− t2), t′ := t1, t = t2

∗ multiply the weight: W := W � t(t − t2)
∗ compute the two kernels K1 and K2

∗ select which one to use with probability proportional to their abso-
lute values.

210 E. Atanassov, A. Karaivanova, and T. Gurov

∗ multiply the weight: W := W � (|K1| + |K2|)sgn(Km) if Km is the
kernel selected

∗ sample q using a spline approximation of the inverse function
∗ multiply the weight by the appropriate integral: W := W � I
∗ modify k, depending on the kernel and the electric field applied:

knew = k − c3 � (t − t2) if K1 was chosen or knew = k − c3 � (t − t2)
if K2 was chosen

∗ modify z : znew = z − c1 � k � (t − t2) − c2 � (t − t2) � (t + t2)
∗ compute the contribution of this iteration to the Wigner function:

add W � ψ(z, k) to the estimator, where ψ(z, k) is the value of the
initial condition

∗ increment j := j + 1

The constructive dimensionality of the algorithm is 4n, where n is the maximal
length of the trajectory. We use 2n pseudorandom numbers for each trajectory,
and the dimensionality of the Halton sequence is 2n.

4 Grid Implementation

The computations are performed on the SEE-GRID infrastructure (www.see-
grid-sci.eu) which integrates computational and storage resources in South East-
ern Europe. Currently there are more than 30 clusters with a total of more than
2000 CPUs and more than 10 TB of storage. The SEE-GRID infrastructure
was built using the gLite middleware. Each of the SEE-GRID clusters has the
mandatory Grid services: Computing Element, Worker Nodes, Storage Element
and MON box. The Worker Nodes provide the computational resource of the
site, and the Storage Element provides the storage resources. The set of services,
that are not tied to the specific site are called core services. They include VOMS
(Virtual organisation management system), MyProxy, R-GMA registry/schema
server (distributed data-base), BDII (provides comprehensive information about
the resources), WMS (distributes and manages the jobs among the different grid
sites), FTS (file transfer service), AMGA (metadata catalog).

4.1 Grid Implementation Scheme

In our grid implementation scheme we incorporated the use of the FTS and
AMGA services, available in the gLite, and we were able to include the estimation
of several new physical quantities, which increased the total amount of data to
be generated, stored, processed and visualized.

On the User Interface (UI) computer the scientist launches the Graphical
User Interface (GUI) specially designed for this application. The job submission,
monitoring and analysis of the results is controlled from there. The jobs are
monitored from a monitoring thread, started from the GUI, and information
about their progress is displayed to the user. Another thread run from the GUI
is responsible for collecting the output results from the various Storage Elements

Quasi-random Approach in the Grid Application SALUTE 211

to the local one. For each output file a request for transfer is sent to the File
Transfer Service (FTS) computer.

The Web service computer (WS) provides a grid-enabled secure gateway to
the MySQL database. It accepts requests for new computations, distributes sub-
tasks with the appropriate input parameters by requests from Worker Nodes
and registeres successful computations and file transfers. The AMGA (ARDA
Metadata Catalog) is used to hold information about the results obtained so far
by the user - for example input parameters, number of jobs executed, execution
date etc.

The WMS sends the job to the Grid sites. When the job starts on the WN
(Worker Node), it downloads the executable from the Storage element. The ex-
ecutable obtains the input parameters from the WS, performs the computations
and stores the results in the local Storage Element. It registers the output. One
of the Worker Nodes is responsible for gradual accumulation of the output of
the jobs. At regular intervals the accumulated results are registered and made
available to the user.

The FTS is used in order to limit the number of files that are transferred
simultaneously, because of the limited bandwidth available. In this way we also
avoid some scalability limitations of the middleware and we try not to overload
the Storage Elements. This approach is efficient, because in most cases it will
not lead to increase of the total time necessary for completing all transfers,
since they compete for the same network resource. Additional benefit of the
FTS is that it provides reliable transfer of the files, by retrying the transfers if
necessary.

0 50 100 150 200 250 300 350 400
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fig. 1. Wave vector obtained with MCM and Hybrid1 (with Niedereiter) and Hybrid2

(with Halton) algorithm. The electric field is 15[kW/cm] along to the nanowire.

212 E. Atanassov, A. Karaivanova, and T. Gurov

Fig. 2. The Wigner function at 140fs presented in the plane z × kz. The electric field

is 15[kV/cm] along to the nanowire.

5 Numerical Tests and Grid Performance Analysis

The problems arising when we solve the Wigner equation using Monte Carlo
approach are due to the large statistical error. This error is a product of two
factors: standard deviation and sample size on the power one half. The standard
deviation increases exponentially with time, so in order to achieve reasonable
accuracy, we must increase considerably the sample size. This implies the need
of computational resources.

Using the grid and above described grid implementation scheme, we were able
to obtain new results about important physical quantities: Wigner function, wave
vector, electron density and energy density. The results presented here are for
inhomogeneous case with applied electric field for 140 femtoseconds evolution
time. Normally, the execution times of the jobs at the different sites are similar,
and the delay in starting is caused by lack of free Worker Nodes. Thus our new
scheme allows the user to achieve the maximum possible throughput.

We have performed experiments with pseudorandom, and scrambled Nieder-
reiter, Sobol and Halton sequences. In order to achieve the sufficient accuracy
we have implemented 400 jobs (each with 4000000 trajectories) with our Monte
Carlo algorithm, and 64 jobs (each with 222 trajectories) with the hybrid al-
gorithm (correspondingly, with scrambled Halton, Niederreiter and Sobol se-
quences). The mean square errors of rez

(i)
MCM − rez

(i)
Hybrid, where rezi means

wave vector, electron density energy density and Wigner function has order rang-
ing from O(10−4) to O(10−5). But to achieve the same results with the hybrid
method we performed 6 times less trajectories.

On the Figures 1 and 2 one can see the quantum effects - there is no symmetry
when electric field is applied. The results obtained with MCM and the three

Quasi-random Approach in the Grid Application SALUTE 213

variants of the hybrid algorithm are plotted on the same picture for each of
the estimated quantities. They are not visible on Fig. 2 because the error is
very small. The best results are obtained using the Niederreiter sequence (in our
version with the described scrambling algorithm). But the most important fact
is that we achieved the same estimations with the hybrid method using 6 times
less trajectories, i.e., six times less CPU time comparing to Monte Carlo.

References

1. Atanassov, E.: A New Efficient Algorithm for Generating the Scrambled Sobol’

Sequence. In: Dimov, I.T., Lirkov, I., Margenov, S., Zlatev, Z. (eds.) NMA 2002.

LNCS, vol. 2542, pp. 83–90. Springer, Heidelberg (2003)

2. Atanassov, E.I., Durchova, M.K.: Generating and Testing the Modified Halton

Sequences. In: Dimov, I.T., Lirkov, I., Margenov, S., Zlatev, Z. (eds.) NMA 2002.

LNCS, vol. 2542, pp. 91–98. Springer, Heidelberg (2003)

3. Atanassov, E., Gurov, T., Karaivanova, A., Nedjalkov, M.: Monte Carlo Grid Ap-

plication for Electron Transport. In: Alexandrov, V.N., van Albada, G.D., Sloot,

P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3993, pp. 616–623. Springer,

Heidelberg (2006)

4. Atanassov, E., Gurov, T., Karaivanova, A.: SALUTE Application for Quantum

Transport New Grid Implementation Scheme. In: Proceedings of Spanish e-Science

Grid Conference, pp. 23–32, ISBN: 987-84-7834-544-1, NIPO: 654-07-015-9

5. Bromley, B.C.: Quasirandom Number Generation for Parallel Monte Carlo Algo-

rithms. Journal of Parallel Distributed Computing 38(1), 101–104 (1996)

6. Caflisch, R.: Monte Carlo and quasi-Monte Carlo methods. Acta Numerica 7, 1–49

(1998)

7. Chi, H., Jones, E.: Generating Parallel Quasirandom Sequences by using Random-

ization. Journal of distributed and parallel computing 67(7), 876–881 (2007)

8. Chi, H., Mascagni, M.: Efficient Generation of Parallel Quasirandom Sequences

via Scrambling. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.)

ICCS 2007. LNCS, vol. 4487, pp. 723–730. Springer, Heidelberg (2007)

9. Fischetti, M.V., Laux, S.E.: Monte Carlo Analysis of Electron Transport in Small

Semiconductor Devices Including Band-Structure and Space-Charge Effects. Phys.

Rev. B 38, 9721–9745 (1988)

10. Foster, J., Kesselmann, C.: The Grid: Blueprint for a New Computing Infrastruc-

ture. Morgan Kaufmann, San Francisco (1998)

11. Gurov, T., et al.: Femtosecond Evolution of Spatially Inhomogeneous Carrier Ex-

citations: Part II: Stochastic Approach and GRID Implementation. In: Lirkov, I.,

Margenov, S., Waśniewski, J. (eds.) LSSC 2005. LNCS, vol. 3743, pp. 157–163.

Springer, Heidelberg (2006)

12. Kosina, H., Nedjalkov, M., Selberherr, S.: An event bias technique for Monte Carlo

device simulation. Math. and Computers in Simulation 62, 367–375 (2003)

13. Nedjalkov, M., Kosina, H., Selberherr, S., Ringhofer, C., Ferry, D.K.: Unified par-

ticle approach to Wigner-Boltzmann transport in small semiconductor devices.

Physical Review B 70, 115319–115335 (2004)

Mobile Agents for Management of Native

Applications in GRID

Rocco Aversa, Beniamino Di Martino, Renato Donini,
and Salvatore Venticinque

Second University of Naples, Aversa (CE), Italy

{rocco.aversa,salvatore.venticinque}@unina2.it,
renato.donini@gmail.com, beniamino.dimartino@unina.it

Abstract. Mobile Agents technology can be exploited to develop mo-

bile Grid services. Here we present a Grid service for jobs management,

implemented by Mobile Agents. Grid users can exploit the service by a

WSRF interface being unaware about agents technology. A console has

been designed to interface user applications with agents. Programmers

are able to extend their applications with the ability to be check-pointed,

suspended, resumed, cloned, dispatched. It can be done simply by adding

some methods to their code, which specialize management on occur-

rence of particular events. We mean that applications do not need to be

rewritten into different languages or adopting specific programming mod-

els. We realized a prototype implementation for management of native

applications.

1 Introduction

We aim here at investigating how Mobile Agents technology can be used to
develop advanced services for management of resources in distributed systems.
Mobile Agents mechanisms such as autonomy, reactivity, clone-ability and mo-
bility can be exploited for resource management and load balancing when system
conditions change dynamically. Most of all mobile agents platforms are executed
by Virtual Machines which make transparent the hardware/software architecture
of the hosting node. It allows to distribute and execute mobile agents code on
heterogeneous environments in a flexible way. On the other hand, most of legacy
applications have been implemented by languages such as FORTRAN and C, and
they are compiled for a target machine in order to optimize their performances.
Here we present a mobile agent based service that allows for management of
native applications on heterogeneous distributed systems. Agent technology has
been used to provide management facility on any node where the execution of
applications will be started. Programmers, in order to exploit the management
service, can extend their application without modify the original code, but by
overriding some methods which specialize the application life-cycle. We aim at
supporting checkpoint, resume, migration and monitoring. Furthermore service
is targeted to each Grid user, who is unaware about Agent technology and can
exploit services facilities by a compliant WSRF interface. A console that allows

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 214–223, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Mobile Agents for Management of Native Applications in GRID 215

the application control by an agent has been designed and implemented. An
agent based service designed and implemented to automatically perform man-
agement strategies. In the second section related works on management services
and load balancing mechanism are described. In section 3 we describe the fa-
cilities we have implemented in order to control the application life-cycle. In
section 4 the software architecture of our service is presented. Section 5 provides
an example of simple application that has been extended in order to exploit the
service.

2 Related Work

Application management and migration are mechanisms developed in many en-
vironments for common purposes. There are many platforms which exploit mi-
gration to implement load balancing in distributed and parallel systems. When
we deal with homogeneous clusters, process migration is supported to share re-
sources dynamically and adaptively. MOSIX [1] provides a set of algorithms to
react in real time to the changes of resources utilization in a cluster of worksta-
tions. Migration of processes is preemptive and transparent. The objective is to
provide high performances to parallel and sequential applications. OpenMosix
[2] is a decentralized version of MOSIX. Each node behaves as an autonomous
system. Kerrighed [3] supports thread migration. When a node is less loaded a
process is moved there from a more busy node. OpenSSI [3] does not need to
save part of the process on the original hosting node. System calls are called
locally. Not all the processes are candidates for migration.

On the other hand in heterogeneous systems process migration is not gen-
erally supported. Different environments are virtualized by a middleware that
hides architectural details to the applications and supports portability. In this
case is possible to migrate code and status of applications, but not to resume
the process status. An hybrid approach that manage a Grid of homogeneous
clusters is presented in [4] as an advance of research cited above. Some rele-
vant contributions, which exploit Mobile Agents technology are [5,6]. We aim at
exploiting flexibility of Mobile Agent programming to manage legacy applica-
tions without changing the original code and without rewriting the application
into another language or adopting a new programming paradigm. Some ap-
proaches which should be compared with the one presented in this paper are
cited below. [7] presents an approach to support mobility of applications in a
GRID environment. A mobile agent is described by an UML-like language called
blueprint. The blueprint description is transferred together its status. The re-
ceiving platform translates the agent blueprint description in a Java or a Python
application that implement the original functionalities Blueprint is a language
for a high level specification of agent functionalities and of its operational se-
mantics. A specification describes the behavior of an agent in terms of its basic
building blocks: components, control flow and data flow. Agent factories inter-
pret the agent blueprint description and generate executable code composed of,
for example, Java, Python, or C components. To support migration of common

216 R. Aversa et al.

user applications, [8] provides the possibility to insert same statements, such
as go() or hop(), between blocks of computation, such as for/while loops. A
pre-compiler, such as ANTLR for C/C++ and JavaCC for Java source code, is
used to substitute these statements with code that implements mobility. A user
program may be entirely coded in C/C++ and executed in native mode. As a
result Java agent starts the native code using a wrapper implemented by the
JNI technology. In our approach programmers who want to support migration
do not need to deal with any models, but they have just to handle such events
which ask to save or resume the application status.

3 Management Facilities and Application Life-Cycle

We exploited Mobile Agents technology to allow services execution on heteroge-
neous platforms. We mean that we can execute monitoring and control facilities
on heterogeneous nodes in a distributed environment. Furthermore we can move
dynamically a service instance from a node to another resuming the execution
at destination. Mechanisms of Mobile Agents technology have been adopted to
design and implement advanced management facilities. Besides we provide the
possibility to extend the same facilities to the managed application. Our model
of application life-cycle is shown in Fig: 1. Regardless of the location, the pro-
cess state could assume the following values: started, suspended, stopped and
resumed. In the suspended mode, the application status has been saved in order
to allow process restoring when a resume action will be invoked. Let us clar-
ify that the application status is saved not the process one. That’s because we
aim at supporting mobility across heterogeneous architectures. Life-cycle can be
monitored and controlled by a software console that generates and handles the
following events:

1. start : starts the execution of a native application on a cluster node
2. suspend : suspends the native application saving its execution status.
3. resume: resumes the native application restoring the status saved on the last

suspension.

Fig. 1. Application life-cycle

Mobile Agents for Management of Native Applications in GRID 217

4. stop: stops the native application.
5. checkpoint : saves the status of the native application without stopping its

execution.
6. migrate: migrates the native application to a target node restoring its status

at destination.
7. split : clones the native application and splits the job between the clones.

We have developed both an interactive GUI and a batch interpreter for submit-
ting commands to the application console.

4 Service Architecture

As shown in Fig:2 software architecture of the management service is composed
of different elements at different levels. A first set of components implements
a portable service executed by Mobile Agents. Distributed Agents perform dif-
ferent roles. They implement user interface, application monitoring and control,
code management. A monitor detects relevant changes of system conditions and
notifies these events to the Agent Scheduler. The Agent Scheduler reacts in or-
der to avoid performance degradation. It communicate and coordinates other
agents. The Proxy Agent is responsible of the application execution. It receives
requests from other agents and manages the application by a Java console. An
abstract console defines the interface between the proxy and the application. It is
obviously independent by the kind of application that will be controlled. Native
applications will be linked to the console by mean of a native implementation of
abstract methods. In order to support the execution on heterogeneous architec-
tures, the programmer has to make available a new shared library that overrides
native methods and that has been compiled for a target architecture. Libraries
will be stored on a remote repository and the proxy agent is able to automatically
download them, when the execution is moved to a new heterogeneous node.

Fig. 2. Software Architecture

218 R. Aversa et al.

4.1 Agent Level

Agent Proxy. An Agent Proxy is delegated to manage an instance of users’
application. It can:

– save and resume the status of the native application (save, resume);
– migrate, clone or split the application;
– handle special conditions such as termination.

For instance whenever the agent manager requires the migration of a native
application to a selected node, the Agent Proxy has to transparently:

– suspend the native application as soon as possible;
– save the status of the native application;
– migrate to the target node;
– detect the target node hardware and software equipment;
– whenever it is necessary download and install the right library;
– restore the status of the native application;
– resume the native application.

Agent Manager. The Agent Manager provides a graphic interface for creating,
migrating, cloning and destroying both Agent Proxies and the native applica-
tions. It sends standard ACL messages (ACl stands for Agent Communication
Language) to ask for the actions should be taken by ProxyAgents. The Manager
allows to load references to libraries which have been built and made available for
different hardware and software architecture. It can handle independently multi-
ple execution instances of the same application. A snapshot of the Management
Console GUI is shown in Figure 3.

Fig. 3. Management Console Gui

Agent Monitor. Our architecture includes a monitor module to detect relevant
changes of system conditions and notifies these events to the Autonomous Agent.
As shown in the following the system is able to react to the events which affect
the performance of the both service and application. The way to generate the
events to send to the Batch Agent, could be less o more complex according to
the particular requirements. Currently a simple configuration of management
strategy based on threshold mechanisms is supported. The agent monitor checks
the application’s performance and compares it with a target input, such as the
throughput of a web server; when a performance degrade was detected the right
actions could be performed.

Mobile Agents for Management of Native Applications in GRID 219

Agent Scheduler. The Agent Scheduler uses management facilities provided
by Agent Proxies in order to carefully distribute the cluster workload or to
optimize performance of applications. For instance, it can migrates native ap-
plications from a platform to another one that is less loaded. It can redistribute
groups of applications in order to reduce network traffic by minimizing inter-
communications, or reducing the overhead due to data transfer. Actually the
user can configure the Scheduler behavior by associating a set of actions to a
notification event. When a specific ACL messages has been received from the
agent monitor the related batch file is interpreted and executed. A batch file
can be written as described in Figure 4.2. In the example we show a sequence
of commands which are executed on the occurrence of two events: idle node and
busy node. Parameters of commands are extracted from content of related events
notified by ACL messages. We are planning to adopt a more complete language
such as the ones which support choreography or orchestration [9].

4.2 Console Level

In order to make transparent the management of different kinds of applications
we defined the ApplicationManager abstract class. An implementation needs to
support management of each kind of application. We provided a NativeManager
class with java and native methods. Other classes implements special utilities.
In particular:

– ApplicationManager: is an abstract class that represents an application
manager.

– NativeManager: is a class that extends ApplicationManger It overrides ab-
stract methods in order to interface with native applications.

– ApplicationThread: is a thread that starts native application and waits for
events.

– Library: is a class that contains a set of parameters, which are used to
identify and retrieve the compliant version of application library for the
target machine architecture.

– ManagementException: is a class that implements an exception that could
be thrown by the ApplicationManager.

JNI (Java Native Interface) is the technology that has been used to link the na-
tive implementation of the ApplicationManager to the Java implementation. JNI
defines a standard naming and calling convention so the Java virtual machine
can locate and invoke native methods. A native implementation of these meth-
ods have been developed in POSIX C and compiled for different architectures
(AMD64, IA32, ...). As it is shown in Figure 4, in order to allow its application
to be managed a programmer has to add those methods which override the ones
defined in the native console. Linking the original application code with the new
methods and the native console, a dynamic library for a target machine can be
built. The native console is implemented by two POSIX processes: a father and
its son. The son is spawn when the application starts. The father waits for re-
quests from the Java part of the service, forwards them to the son that executes

220 R. Aversa et al.

<?xml version="1.0" encoding="UTF-8" ?>

<batch>

<activation>

<and>

<event name="idle_node">

<event name="busy_node">

</and>

</activation>

<sequence>

<operation>

<command type="suspend" agent="$busy_node.agent_name[0]"/>

</operation>

<operation>

<command type="move" agent="$busy_node.agent_name[0]">

<parameters>

<parameter>$idle_node.container[0] </parameter>

</parameters>

</command>

</operation>

<operation>

<command type="resume" agent="$busy_node.agent_name[0]"/>

</operation>

<sequence>

</batch>

the application code by POSIX signals. The son before to start registers signal
handlers and communicate by two POSIX pipes with the father. Pipes are used
by the son to communicate to the father the file name where the application
status has been stored and to communicate events such as a termination. Han-
dlers can be specialized by the programmer by overriding the following methods
(using C, FORTRAN, or any other native languages): start (), resume (char

Fig. 4. Building a new library

Mobile Agents for Management of Native Applications in GRID 221

status[]), stop (char status[]), suspend (char status[]), checkpoint (char status[]),
split (char status[]), whose meanings has been described in the previous sections.

5 Case Study

We set up our Grid test-bed on an IBM blade cluster composed of 7 nodes, each
of them with two Intel Xeon processors, 1 GB RAM, 72 GB hard disk, dou-
ble (Giga) Ethernet network. The system is managed using a Rocks 5.1 Linux
distribution. We chose, as case study, a POSIX C application to accomplish a
brute force attack to drop an OTP like key. It is a computing intensive applica-
tion with a regular behavior. This choice allows us to simplify our preliminary
experiments. The application knows both plain text and cipher text. It ciphers
plain text, and evaluates the result, using different set of keys till right one has
been found. Cloning and migration can be exploited to distribute the workload
on different nodes in order to improve the throughput of the application[10].
Succesfull experiments demonstrated that the prototype works properly, in fact
the platform successfully supports checkpoint, resume, migration and monitor-
ing of a native application. Results allowed us to evaluate the overhead due to
cloning and migration when it is necessary to migrate the native code, which
was previously compiled for the target machine.In this case migration overhead
does not affect the application performance. However the migration time could
be too high for certain kinds of applications. An analysis on the time required
by each phase of the migration operation shows that the library downloading
and installation is a rlelvant contribute to the relocation time as it can seen in
Figure 5(a) while the size of the application status is not relevant in this case.
Figure 5 shows the migration time when it is necessary to download the applica-
tion library. In this case the agent suspends the application, migrates to a new
node, downloads the library and the application status. In order to reduce the
overhead we experimented a smart strategy for migration. A specialized agent

(a) Full migration time (b) Smart migration time

Fig. 5. (a) Full migration vs (b) smart migration

222 R. Aversa et al.

is sent to destination for downloading the library before to suspend the applica-
tion. In this case the time elapsed between suspension and resume is reduced as
it is can be seen in Figure 5 (b). Performance measures for a comparison of the
two migration strategies are showed in the table.

Full Smart
min time 1942ms 24ms
max time 2792ms 189ms
average time 2376.89ms 49.2ms
accuracy 25.25ms 3,81ms

6 Conclusions

We presented a Mobile Agents based service for application management. Pro-
grammers can extend their native applications in order to support checkpoint,
migration, suspension, resuming, etc. Service implementation is in Java. It is
portable and mobile. Application portability on heterogeneous node is supported
through the dynamic linking of native libraries compiled for the target machine.
The application life cycle can be controlled interactively from a GUI or can
be programmed by a scheduler that reacts to changes in the environment. An
abstract console defines the methods which are used by agents in order to inter-
face with the application. An implementation for POSIX application has been
implemented and tested. Future work will deal with the design of automatic
management strategies for distributing the workload in order to optimize sys-
tem utilization or application performance.

References

1. Barak, A., La’adan, O.: The MOSIX Multicomputer Operating System for High

Performance Cluster Computing. Journal of Future Generation Computer Sys-

tems 13(4-5), 361–372 (1998)

2. Bilbao, J., Garate, G., Olozaga, A., del Portillo, A.: Easy clustering with open-

Mosix. World Scientific and Engineering Academy and Society (2005)

3. Lottiaux, R., Boissinot, B., Gallard, P., Valle, G., Morin, C.: openMosix, OpenSSI

and Kerrighed: a comparative study, INRIA (2004)

4. Maoz, T., Barak, A., Amar, L.: Combining Virtual Machine Migration with Process

Migration for HPC on Multi-Clusters and Grids. In: IEEE Cluster 2008, Tsukuba

(September 2008)

5. Foster, I., Jennings, N.: Kesselman, Brain Meets Brawn: Why Grid and Agents

Need Each Other. In: Proceeding of the 3rd Joint Conference Autonomous Agents

and Multi-Agent Systems, pp. 8–15 (2004)

6. Di Martino, B., Rana, O.F.: Grid Performance and Resource Management using

Mobile Agents. In: Getov, V., et al. (eds.) Performance Analysis and Grid Com-

puting, pp. 251–264. Kluwer Academic Publishers, Dordrecht (2004)

7. Brazier, F.M.T., Overeinder, B.J., van Steen, M., Wijngaards, N.J.E.: Agent Fac-

tory: Generative Migration of Mobile Agents in Heterogeneous Environments. In:

Proceedings of the 2002 ACM Symposium on Applied Computing, pp. 101–106

(2002), ISBN:1-58113-445-2

Mobile Agents for Management of Native Applications in GRID 223

8. Fukuda, M., Tanaka, Y., Suzuki, N., Bic, L.F., Kobayashi, S.: A mobile-agent-based

PC grid. In: Autonomic Computing Workshop, pp. 142–150 (June 2005), ISBN:

0-7695-1983-0

9. Peltz, C.: Web Services Orchestration and Choreography. IEEE Computer Maga-

zines (2003)

10. Donini, R., Aversa, R., Di Martino, B., Venticinque, S.: Load balancing of mobile

agents based applications in grid systems. In: Proceedings of 8 IEEE 17th Workshop

on Enabling Technologies: Infrastructure for Collaborative Enterprises, Rome, June

23-25. IEEE, Los Alamitos (2008)

Leveraging Complex Event Processing for Grid

Monitoring�

Bartosz Balis1,2, Bartosz Kowalewski2, and Marian Bubak1,2

1 Institute of Computer Science, AGH, Poland

{balis,bubak}@agh.edu.pl, kowalewski.bartosz@gmail.com
2 Academic Computer Centre – CYFRONET, Poland

Abstract. Currently existing monitoring services for Grid infrastruc-

tures typically collect information from local agents and store it as data

sets in global repositories. However, for some scenarios querying real-

time streams of monitoring information would be extremely useful. In

this paper, we evaluate Complex Event Processing technologies applied

to real-time Grid monitoring. We present a monitoring system which uses

CEP technologies to expose monitoring information as queryable data

streams. We study an example use case – monitoring for job reschedul-

ing. We also employ CEP technologies for data reduction, measure the

overhead of monitoring, and conclude that real-time Grid monitoring is

possible without excessive intrusiveness for resources and network.

Keywords: Grid computing, real-time monitoring, event-driven archi-

tecture, complex event processing, event correlation.

1 Introduction and Motivation

Monitoring services are integral part of large scale Grid infrastructures. Typi-
cally, monitoring activities focus on reporting the current status and utilization
of resources, and gathering historical data in order to enable retrospective anal-
ysis. Monitoring information is usually collected locally and disseminated to
a site-level or central server where it is stored, refreshed periodically and ex-
posed for querying by consumers. However, in certain cases a more real-time
access to monitoring information streams would be desired. Examples of these
include SLA contract monitoring, real-time system misuse detection, failure de-
tection, or real-time monitoring of resource utilization for the purpose of steering
and adaptive algorithms, such as job rescheduling [4]. Given the dynamic nature
of the Grid which is characterized by variable resource demands and dynamic
application behavior, this type of monitoring is particularly important.

Complex Event Processing (CEP) [10] is a general term that describes all ap-
proaches that take streams of atomic events, enable querying over those streams,
and produce derived complex events. Nowadays advanced event processing mech-
anisms [6] are being introduced and CEP engines are capable of discovering
� This work is supported through Polish PL-Grid Project, AGH grant 11.11.120.865,

and ACC CYFRONET AGH grant 500-08.

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 224–233, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Leveraging Complex Event Processing for Grid Monitoring 225

sophisticated patterns in the event stream. Surprisingly, though monitoring in-
formation can be viewed as streams of data reflecting current status and happen-
ings within the Grid infrastructure, CEP technologies have not been employed
to build Grid monitoring services.

The goal of this paper is to evaluate the Complex Event Processing technolo-
gies as a basis of Grid monitoring services. We have built a Grid monitoring
infrastructure – GEMINI2 – which uses a CEP engine Esper to provide mon-
itoring information as real-time streams [12]. We show that CEP technologies
benefit Grid monitoring services as in several ways: (1) Enable to expose moni-
toring information as queryable data streams accessible in real-time; (2) Provide
highly expressive querying constructs and high-performance engines that enable
such capabilities as filtering, aggregation, sliding window calculations, and event
correlation; (3) Enable data reduction based on buffering, filtering and aggrega-
tion. We study a use case – monitoring used for job rescheduling in the Grid,
and evaluate the overhead of monitoring services on the Grid resources.

This paper is organized as follows. Section 2 presents related work. The GEM-
INI2 infrastructure is described in section 3. Section 4 overviews the current
implementation of GEMINI2. In section 5, GEMINI2 is evaluated, including the
case study scenario, and monitoring overhead evaluation. Section 6 concludes
the paper.

2 Related Work

In existing Grid monitoring and information systems, monitoring information
is typically collected by local sensors and disseminated to a site-level or global
repository, subsequently queried by consumers. A representative Grid monitor-
ing service which adopts those design principles is GridICE [1], a system used
within the EGEE project. In GridICE, sensors collect monitoring information
about local resources and disseminate it to a site collector where it is converted
and stored according to a data model – the Glue schema [2]. The monitoring
information can be collected from individual sites through the Grid information
system interface, and aggregated at the global level by a GridICE server.

A similar architecture is featured by Inca 2 [11], a monitoring tool used in the
TeraGrid project. Inca 2 focuses on detection of problems in the Grid infrastruc-
ture. To this end, testing of Grid software and services is periodically performed
by local agents, called reporters, which are managed by reporter managers. The
results of the tests are stored in a depot, which can be queried by consumers.
Several other existing Grid monitoring systems, which cannot be described here
because of space limitations, adopt similar design principles.

R-GMA [5] is to some extent similar to our approach in that it views monitor-
ing information as streams published by producers and requested by consumers
via distributed queries. As R-GMA adopts a relational model for monitoring in-
formation, the streams are tuples (table rows), requested by consumers via SQL
queries. However, SQL and the relational model impose several restrictions onto
processing and querying over data streams. On the other hand, CEP technolo-
gies have the advantage of being specifically designed for this purpose. In CEP,

226 B. Balis, B. Kowalewski, and M. Bubak

unlike in SQL / relational model, features such as aggregation, sliding window
calculations or correlation are naturally available.

In summary, existing Grid monitoring services are not oriented towards en-
abling real-time subscriptions for monitoring information. Most solutions do not
expose monitoring information as queryable data streams, but convert it to data
sets stored in a permanent repository. While this is useful for certain scenarios
(e.g., those where historical data is needed), it is not well-suited for real-time
querying. For example, temporal aspects of data streams are lost during con-
version, along with querying capabilities that rely on it (such as sliding window
calculations or correlations).

The work described here is a result of our previous experience in event-driven
systems [8] and monitoring in the Grid based on an earlier non-CEP based
monitoring system GEMINI [3].

3 Concept of GEMINI2

Generic Monitoring Infrastructure (GEMINI2) is a lightweight framework de-
signed to provide event-based mechanisms for distributed environments. Though
we demonstrate its use for monitoring, it can provide event-based mechanisms
for any distributed system.

3.1 Requirements

A few important assumptions were made in the initial stages of the project that
had a significant impact on the final design of the framework. These prerequi-
sites were to clearly draw a distinction between the currently available solutions
and set of features expected to be provided by GEMINI2. Amongst the main
requirements that were identified at that stage are usability, configurability, per-
formance, scalability, and standards-based approach.

GEMINI2 as a generic monitoring infrastructure also needs to define a tax-
onomy for events passed through the system and provide a standard way of
representing these events as event objects. The monitoring events’ hierarchy will
be based on already available documentation that attempted to summarize the
set of monitoring events currently used in Grid environments. There are several
papers and memos that cover this subject. Nevertheless, event types used in
monitoring measurements haven’t been standardized yet.

3.2 Leveraging Complex Event Processing

Applied to monitoring, CEP enables real-time processing of monitoring infor-
mation streams, including among others: (1) aggregation of smaller events in
order to provide a high-level view of a process – statistics, summaries, etc.; (2)
correlation of events generated by different event sources; (3) long-term met-
rics/measurements.

A CEP engine incorporated into a monitoring infrastructure not only provides
powerful stream querying capabilities and discoverability, but also enables data

Leveraging Complex Event Processing for Grid Monitoring 227

reduction, essential to avoid network flooding. Section 3.4 describes this aspect
in more detail.

GEMINI2 aims at providing interchangeable building blocks that will signif-
icantly simplify deploying a monitoring (or, more generally, eventing) infras-
tructure based on CEP, in a distributed environment. GEMINI2 exposes event
dissemination and management interfaces using standard communication tech-
nologies while delegating the responsibility of identifying complex situations to
an exchangeable CEP engine. The initial versions of the infrastructure are built
upon Codehaus Esper, a popular and powerful open-source CEP solution.

Consequently, the interface to request monitoring information is based on
Event Processing Language (EPL), used by Esper. EPL is a declarative language
for expressing queries over event streams, using an intuitive SQL-like syntax. The
drawback of EPL is that it is not an industry standard. Supporting the process
of CEP standardization is one of the future goals of GEMINI2.

3.3 Design

In order to support configurability and usability, GEMINI2 infrastructure was
divided into a group of interchangeable components that could be used to easily
assemble a solution suitable for any particular distributed environment.

Fig. 1 presents a simplified view over the architecture of GEMINI2. At the
same time this diagram depicts a standard deployment configuration to be used
in a distributed environment instrumented using GEMINI2.

Fig. 1. High-level view over GEMINI2 architecture and a sample deployment of its

components

There are three main logical entities that build every distributed monitoring
environment: Sensors, Monitors and Clients. Sensors are responsible for sampling
the environment (nodes, network, etc.) and generating simple events. They can
also incorporate an Event Dispatch (CEP) engine in order to apply Complex
Event Processing mechanisms directly to stream of events generated during the
sampling process. This way event objects disseminated by the sensor are already
preprocessed in order to decrease data volume.

228 B. Balis, B. Kowalewski, and M. Bubak

Monitors are responsible for handling subscription-related control messages
coming from Clients and processing high volumes of event objects received from
Sensors. The incoming events are passed to an Event Dispatch (CEP) engine
which contains definitions of complex queries associated with particular client
subscriptions. New event streams produced by the Dispatch Engine are then
disseminated to proper Clients.

Monitors can be used to build complex topologies of cooperating server nodes.
This makes the deployment architecture even more flexible and scalable.

Clients subscribe to monitors for particular complex events. Such control
messages as subscribe, renew subscription and unsubscribe are passed to the
Monitoring Service running inside a Monitor. Clients then accept event objects
disseminated by the Monitor through a separate communication channel.

Each of the three constituent parts of the infrastructure is assembled using
exactly the same set of reusable components. GEMINI2 employs an Inversion
of Control (IoC) container in order to enable one to easily create their own in-
frastructure setup. The common set of components includes event dissemination
engines, monitoring service subparts and stubs, Event Dispatch Engine, Web
Services transport endpoints for control messages, JMS transport endpoints for
event channels, and many more.

3.4 Data Reduction

Data reduction is important in the Grid in order to avoid excessive network
overhead due to monitoring. Complex Event Processing constructs naturally
enable one to achieve data reduction by buffering, filtering or aggregation, for
example:

– select * from CpuInfoMsg(idletime<0.5)

Send CpuInfoMsg events, but only those where CPU idle time drops below
0.5.

– select * from CpuInfoMsg.win:time batch(5 sec)

Notify collected events in one batch every 5 seconds.
– select avg(cpu.idletime) from CpuInfoMsg.win:time(3 min) as cpu having

avg(cpu.idletime)<0.5 output last every 30 seconds

Compute average of a CPU idle time over a 3 minutes time window, and
report it once every 30 seconds, but only when it drops below 0.5.

The most important principle for data reduction is to process events as close
to their source as possible. Therefore, we employ the CEP engine also at the
sensors’ side.

Sensors which measure a certain quantity by sampling are characterized by
a certain sampling rate, for example CPU idle time may be measured once
per 30 seconds. The sampled measurements are reported as event stream to
the local sensor’s CEP engine. A Monitor may subscribe to this stream for the
most accurate and fine-grained measurements. However, for any measurement,
additional streams may be defined which expose the measurement in a more
aggregated form.

Leveraging Complex Event Processing for Grid Monitoring 229

Let us consider an example of CpuInfoEventMessage measurement which,
among others, delivers the current idle time of a CPU. In order to subscribe
for the event stream representing this measurement, a Monitor may simply send
the following request to a sensor: select * from CpuInfoEventMessage. This will
result in sending events at the sensor’s sampling rate. However, a sensor may be
configured to also internally activate the following subscription:

insert into CpuInfoAvg select avg(cpu.idletime) as idletime

from CpuInfoEventMessage.win:time(5 min) as cpu

output last every 5 minutes

This request simply consumes the CpuInfoEventMessage stream, computes
an average of the cpu.idletime attribute over a 5 minute window and reports
this average once per every 5 minutes. The EPL insert into construct inserts
the resulting event stream back to the engine, so that new CpuInfoAvg stream
is available for subscription by consumers. The expression as idletime simply
ensures that the attribute names in the output CpuInfoAvg stream are the
same as in the original one. As a result, the two streams can be used in the
same way. The Monitor, by subscribing to the CpuInfoAvg stream receives one
aggregated event per 5 minutes, instead of one per every 30 seconds.

4 Implementation

The infrastructure is implemented in Java, making it naturally suitable for
Java-based applications. Nevertheless, GEMINI2 is based on widely accepted
standards, which make the infrastructure interoperable. Main control interfaces
defined by Monitoring Service are exposed using Web Services (SOAP over
HTTP). Event dissemination is based on JMS (ActiveMQ). Support other mes-
saging technologies is also planned. The complexity of used technologies is hidden
to end users behind standard building blocks and intuitive interfaces.

Standards upon which GEMINI2 is built include Web Services (SOAP over
HTTP), WS-* (WS-Security) being planned to be supported in future versions
of the system; XML, JAXB; JMS; Google Protocol Buffers; REST (planned to
be supported in future versions of the system).

Technologies employed in the infrastructure include Apache CXF; Spring IoC
container; Apache ActiveMQ; Codehaus Esper CEP engine (foundation for the
first version of the Event Dispatcher engine); SIGAR (Hyperic’s System Infor-
mation Gatherer) for collecting data from the monitored nodes.

5 Evaluation

5.1 Case Study Scenario

Let us consider a representative scenario in which the benefits of using CEP for
monitoring can be observed – job rescheduling. It has been pointed out that
for complex Grid applications, such as workflows [7] which can be described as

230 B. Balis, B. Kowalewski, and M. Bubak

DAGs of tasks, static scheduling strategies are not optimal. Therefore, dynamic
scheduling is employed in which dynamic information about resource usage and
application progress is used in order to dynamically change the mapping of tasks
to resources. In a typical scenario, when a node currently listed in a schedule dis-
plays a prolonged performance degradation or a failure, a rescheduling algorithm
is triggered which attempts to find a better candidate. A solution for monitor-
ing for this scenario involves real-time monitoring of event streams, filtering,
aggregation, and event correlation – all provided by CEP technologies.

Fig. 1 presents a sample deployment of monitoring components for a single
node monitored by a scheduler. A Worker Node (WN) is assigned in the current
schedule for a task of a workflow job to be executed. A sensor deployed on the
WN monitors the current capacity of the CPU (measured as its idle time). At the
same time, a Node Availability Sensor deployed on a remote server periodically
checks whether the node is available. Let us assume that the scheduler requires
a notification if the average CPU availability measured over last 3 minutes drops
below 70%, or the node fails (becomes unavailable). When either happens, the
scheduler will attempt to find another candidate node for the task in question.

The following two EPL statements are sufficient to create a monitoring infor-
mation stream required by the scheduler (the statements are simplified in that
specific resource identifiers are omitted):

insert into AvgCpu3 select avg(idletime) as avgCpuIdle from

CpuInfoEventMessage.win:time(3 min)

having avg(idletime)<0.7 output last every 30 seconds

select cpu.idletime as cpuIdle, node.avail as nodeAvail from

pattern [every (cpu=AvgCpu3 or node=NodeInfoMsg(avail=0))

The first statement consumes the CpuInfoEventMessage stream and creates
a new event stream AvgCpu3 which computes average CPU idle time over a 3
minute time window and reports the measurement every 1 minute, but only if the
computed average drops below 0.7. In reality, this measurement would be more
complex given that currently nodes feature many CPUs and cores. However, it
would not be difficult to generalize this request for multiple cores.

The second statement selects properties from two event streams – AvgCpu3
and NodeInfo, and returns events that contain information about CPU capacity
or node availability, but only if the conditions required by the scheduler are met.

5.2 Monitoring Overhead

The approach described in this paper attempts to prove that network and CPU
load caused by a monitoring infrastructure does not necessarily have to be huge.
We conducted several experiments that were to clearly show that if config-
ured properly, GEMINI2 only adds little overhead. Monitors and sensors do not
influence nodes’ operation and do not introduce the risk of performance
degradation.

Leveraging Complex Event Processing for Grid Monitoring 231

For tests, sensors were deployed on 5 nodes (40 cores) of the CYFRONET’s
Zeus cluster1, while a monitor was deployed on ui.cyf-kr.edu.pl. The tests
only covered channels used to disseminate events, excluding Web Services-based
control channels where traffic is much lower.

Three scenarios were evaluated: Raw, Aggregated and Buffered, described in
Table 1. A client deployed on ui.cyf-kr.edu.pl requested a simple EPL query:

select avg(cpu.idletime) from

CpuInfoEventMessage.win:time(3 min) as cpu

output last every 3 minutes

During the tests we measured CPU utilization and memory consumption for the
monitor process and for one of the sensors. We also analyzed network traffic
between the monitor and sensors. CPU utilization levels were similar in all sce-
narios. With only 5 sensors deployed the Monitor process did not consume a lot
of CPU time. In all our experiments CPU usage was rounded to 0.0%. Sizes of
the processes were also the same in all of the configurations. Table 1 presents
network traffic measurements. Each of the experiments lasted around a day.

Table 1. Overhead test scenarios and network overhead measurements

Scenario
No.

Description Avg traffic
(KB/min)

1: Raw Sensor samples its CPUs every 2 sec and disseminates 8

events (one per core) immediately

161.5

2: Aggre-

gated

Sensor samples CPUs every 2 sec, computes average over 30

measurements and disseminates 8 events every minute

6.3

3:

Buffered

Sensor samples CPUs every 2 sec and disseminates 30 ∗ 8

events in a batch every minute

153.0

We can clearly see that the network overhead varies depending on the config-
uration being used. If CEP-based mechanisms are introduced close to the sensor,
the traffic is significantly reduced.

GEMINI2 uses a high compression rate for the events being disseminated be-
tween Sensors and a Monitor, and between a Monitor and clients. Google Proto-
buf which is used to marshal objects ensures that data is packaged optimally. On
the other hand, wire format employed by Message Oriented Middleware (MOM)
implementation used as a transport for event objects (Apache ActiveMQ) is far
from being optimal. It adds substantial overhead, both when event object is dis-
seminated and the message is acknowledged, and also when executing standard
messaging-related tasks, i.e. establishing JMS connections, JMS sessions, JMS
consumers, sending keep-alive packets, etc.

Simple tests were conducted in order to measure overhead added by Ac-
tiveMQ. Wireshark was used to capture TCP traffic and provide overall size
1 HP Cluster Platform 3000 BL 2x220 – 256 2-CPU, 4-core ‘blade’ nodes, Intel Xeon

Quadcore 2.5 GHz, 2GB RAM per core.

232 B. Balis, B. Kowalewski, and M. Bubak

of data sent over the wire. The experiment showed that sending two subsequent
events with CPU usage information caused between 20 and 30 packets to be
sent. The overall size of information sent reached 1,5 KB, while packets used to
carry event objects and acknowledge them had overall size of 0,4 KB. What is
more, the average size of single Protobuf-encoded CPU usage event is around
0,1 KB, so only 0,2 KB out of 1,5 KB of data was meaningful from the point of
view monitoring.

The experimental data clearly shows that the overhead added by GEMINI2
is small. If properly configured, GEMINI2 components minimize data exchange
via a significant data reduction. Moreover, we showed that the main source of
the network overhead are the technologies used to transmit event objects. In
future we may consider optimizing wire format used by ActiveMQ or evaluating
other MOM solutions. Our experiments also showed one potential risk of using
GEMINI2. The infrastructure provides one with extremely powerful mechanisms
and at the same time it is highly configurable. Low overhead observed in our
environments was a consequence of proper configuration of GEMINI2 compo-
nents. Incorrectly configured GEMINI2 can easily lead to an excessive network
utilization.

6 Conclusion

We have evaluated Complex Event Processing technologies for real-time moni-
toring of the Grid infrastructure. We have presented GEMINI2 – a Grid moni-
toring system which leverages Complex Event Processing technologies in order
to expose monitoring information as queryable event streams. It was shown that
CEP technologies enable high-performance, real-time access to monitoring in-
formation, at the same time providing means to data reduction so that excessive
intrusiveness due to monitoring can be substantially reduced.

We have found that the EPL stream query language provides expressive-
ness sufficient to support complex scenarios, not achievable through traditional
database query languages. The Esper engine, on the other hand, enables high
performance event processing.

Future plans for the GEMINI2 project include, amongst all the other goals,
experimenting with various CEP-related technologies and approaches. All the
possible ways of creating CEP rules need to be evaluated, including, but not
limited to, XML-based, SQL-based and SQL-like queries. A possibility of cre-
ating a new custom CEP engine dedicated for the monitoring use cases is also
taken into account. One of the goals of GEMINI2 is also to support the process
of standardization of Complex Event Processing mechanisms and languages. An
attempt to improve event processing formalisms will be made as a part of the
mentioned standardization process. We also plan to expand our tests in a real
Grid environment to a much larger number of nodes, extend measurements to
new objects, including Grid jobs, and conduct experiments with highly complex
queries.

Leveraging Complex Event Processing for Grid Monitoring 233

Acknowledgements. We would like to thank Patryk Lason for his help when
configuring Grid environment and conducting experiments.

References

1. Andreozzi, S., Bortoli, N.D., Fantinel, S., Ghiselli, A., Rubini, G.L., Tortone, G.,

Vistoli, M.C.: GridICE: a monitoring service for Grid systems. Future Generation

Computer Systems 21, 559–571 (2005)

2. Andreozzi, S., Sgaravatto, M., Vistoli, M.C.: Sharing a conceptual model of grid

resources and services (2003)

3. Balis, B., Bubak, M., Pelczar, M.: From Monitoring Data to Experiment Informa-

tion – Monitoring of Grid Scientific Workflows. In: Third IEEE Int. Conference

on e-Science and Grid Computing, e-Science 2007, pp. 187–194. IEEE Computer

Society, Los Alamitos (2007)

4. Berman, F., et al.: New grid scheduling and rescheduling methods in the GrADS

project. Int. J. Parallel Program. 33, 209–229 (2005)

5. Cooke, A., Gray, A., et al.: R-GMA: An Information Integration System for Grid

Monitoring. In: Meersman, R., Tari, Z., Schmidt, D.C. (eds.) CoopIS 2003, DOA

2003, and ODBASE 2003. LNCS, vol. 2888, pp. 462–481. Springer, Heidelberg

(2003)

6. Faison, T.: Event-Based Programming: Taking Events to the Limit, ch. 1. Apress

(2006)

7. Gunter, D.K., Jackson, K.R., Konerding, D.E., Lee, J.R., Tierney, B.L.: Essential

Grid Workflow Monitoring Elements. In: International Conference on Grid Com-

puting and Applications. CSREA Press (2005)

8. Kowalewski, B., Bubak, M., Balis, B.: An Event-Based Approach to Reducing

Coupling in Large-Scale Applications. In: Proc. Computational Science - ICCS

2008, 8th International Conference, Part III, Kraków, Poland, June 23-25 (2008)

9. Legrand, I.C., Newman, H.B.: MonALISA: An Agent based, Dynamic Service Sys-

tem to Monitor, Control and Optimize Grid based Applications. In: CHEP 2004

(2004)

10. Luckham, D.C., Frasca, B.: Complex Event Processing in Distributed Systems.

In: Program Analysis and Verification Group, Computer Systems Lab. Stanford

University (1998)

11. Smallen, S., Ericson, K., Hayes, J., Olschanowsky, C.: User-level grid monitoring

with Inca 2. In: GMW 2007: Proceedings of the 2007 Workshop on Grid Monitoring,

pp. 29–38. ACM, New York (2007)

12. Wu, E., Diao, Y., Rizvi, S.: High-Performance Complex Event Processing over

Streams. In: 2006 ACM SIGMOD Int. Conference on Management of Data (2006)

Designing Execution Control in Programs with
Global Application States Monitoring

Janusz Borkowski1 and Marek Tudruj1,2

1 Polish-Japanese Institute of Information Technology,
86 Koszykowa Str., Warsaw, Poland

2 Institute of Computer Science, Polish Academy of Sciences,
21 Ordona Str., Warsaw, Poland
{janb,tudruj}@pjwstk.edu.pl

Abstract. The paper is concerned with methodology for designing ece-
cution control based on application global states monitoring in parallel
and distributed programs. The principles of global state monitoring i
parallel programs are recalled. Then new control statement semantics
related with the global states monitoring are proposed, including syn-
chronous and asynchronous approach to the maintenance of information
used for the global states-control in programs. Proposals of syntactical
solutions for designing a control language which accounts for program
global states in execution control in parallel/distributed programs are
presented.

1 Introduction

It has been commonly noticed that execution control in parallel and distributed
programs is inherently composed of two constituent components: local control
embedded inside host processors at the level of processes or threads and global
control that is defined based on information on global parallel states in many
constituent processors. Currently existing parallel programming message passing
environments provide a programmer only with very basic primitives to express
program execution control in parallel programs. A programmer has to design by
himself the necessary inter-process communication and to include into parallel
processes, so that the knowledge of the computation parallel state by constituent
processes could enable to implement the desired control in the programs at the
global application level. Designing such control is complicated and error-prone
if the global control conditions should account for states of many distributed
processes. Additionally existing parallel programming methods usually mix the
main computation code with control statements. With such a practice, the logic,
which supervises execution of a parallel application, is difficult to maintain.

The approach discussed in this paper applies the notion of the global states
and predicates computed on global states in the distributed systems for the
on-line control of programs execution. The control flow conditions in programs
are decoupled from the program code as predicates embedded in well defined
syntactic program elements, which are easily identified, understood, verified and

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 234–243, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Designing Execution Control in Programs with Global Application 235

modified if necessary. The global states related control primitives can be directly
applied for program correctness verification in an analogous way to distributed
debuggers. The control directly based on global control predicates can also make
the programs correct by construction. The notion of global application states
has been known for a long time and used in practice concerned with parallel and
distributed program debugging. Earlier works e.g. [1] provided methods for cap-
turing a global state which is consistent. Later the research was more focused on
obtaining a whole consistent global state space and checking its properties [2,3].
The checking was aimed at detecting unwanted system behavior (monitoring for
faults) and ensuring proper system operation.

In [4] a system has been proposed, in which control statements in process code
could take into account states of other processes. The states were expressed as
values of special variables replicated among processes in defined intervals. Our
work can be seen as enhancing this work by using global consistent states theory
to provide a sound framework for global application control.

Our approach was to develop a high-level synchronization method, allowing
for separation of the control logic from computational code, and providing the
programmer with a global view of the state of a parallel application, even in
distributed environments. We proposed a novel framework for control of paral-
lel/distributed applications, which clearly separates the global control subsystem
responsible for application control from a local process code, and which detaches
control network traffic from bulk data exchange [5]. Processes report their local
states to a monitor. A monitor hierarchy can be used if a single monitor does not
perform adequately, so even large systems can be controlled with the proposed
method [6]. A monitor observes application global states constructed from re-
ceived local states and evaluates global predicates. The results of the evaluation
influence the control flow of application processes.

A similar approach has been implemented in the PS-Grade system, based on
graphical design of parallel programs. PS-Grade has been developed as an en-
hancement to an existing graphical parallel programming system (P-GRADE).
It supported interesting but limited functionality in the area of application global
control – application state on-line monitoring combined with asynchronous reac-
tions using the theoretical approach described in point 3.2. The PS-Grade project
will be continued by designing a new control framework with more general ap-
proach to internal control design based on global states monitoring. Influencing
program execution control by global states monitoring can be implemented using
a number of ways, including the different methods of global states observation,
extending their morfology, defining global states representation and respective
predicates functionality, the structure of the control traffic embedding and su-
pervising and finally the different types of direct affecting the behaviour of appli-
cation program components. This work is an introductory work concerned with
designing such more generalized control approach.

The paper is composed of 3 main parts. In the first part the principles of global
application state monitoring are recalled. In the second part the control state-
ment semantics related with the global states monitoring are discussed, including

236 J. Borkowski and M. Tudruj

synchronous and asynchronous reactions to global states control predicates in
programs. The third part presents some syntactical solutions for designing a
control language which accounts for global states in execution control in paral-
lel/distributed programs.

2 Global Application State Monitoring

A monitor observing a running application gets local state reports from appli-
cation processes. The reports are transferred by means of message passing to
be easily implementable in distributed environments. The sequence of reports as
seen by a monitor may not be the same as a sequence of events in reality, because
delays in message construction, transfer and processing can occur. Therefore, the
received messages can be used only as input data for consistent state construc-
tion algorithms [7]. A consistent global state is a global state consisting of process
local states which are pair wise concurrent.

Usually logical vector clocks are used as event timestamps allowing for con-
currency verification. Global state algorithms working with logical time are very
costly or they can deal with a restricted class of global predicates only. Alter-
natively, real-time timestamps obtained with the use of partially synchronized
local process clocks can be employed to construct Strongly Consistent Global
States (SCGS) [8]. A SCGS is a state, which has really occurred (as opposed
to potential global states obtained with the use of logical clocks) and could be
discovered by a monitor by analyzing received reports about process events an-
notated with timestamps of assumed uncertainty. Event report processing and
consistent states construction delays control decisions. Therefore, we use consis-
tent states only when they are necessary.

3 Control Statement Semantics for Global States
Monitoring

The presented synchronization method based on global predicate evaluation as-
sumes, that predicate fulfillment is communicated to application process. The
processes should react accordingly. Further control implementation issues such
as the way in which processes receive information about predicate fulfillment
and the method for programming the reaction on predicate fulfillment will be
discussed in next sections.

3.1 Synchronous Global Control Statements

Synchronous global control statements are a part of the normal process sequential
code. They are executed when the execution point reaches them. We propose
using global control statements g(ϕ), e.g. if(ϕ) or while(ϕ), where ϕ is a global
predicate defined at a monitor. A similar, but simpler idea was proposed in
[4], without a notion of global states, proposing shared replicated variables and
phased program execution with replication taking place between phases.

Designing Execution Control in Programs with Global Application 237

In the discussed approach, the parallel application control is composed of the
following components:

1. a way of expressing process states e.g. values of chosen variables,
2. global predicates definitions, created at a monitor to reflect the desired syn-

chronization pattern,
3. modality of global predicates, defining on what global states the predicates

are evaluated, e.g. SCGS as described in the previous section,
4. a way of choosing a particular global state, on which predicate ϕ is evaluated

in a global control statement g(ϕ),
5. code of processes using synchronous global control statements g(ϕ).

Point 4 requires more in-depth considerations. We propose the following alter-
native methods to determine the concrete global state used for global predicate
evaluation:

fully synchronous – a synchronous global control statement is present in the
code of all parallel processes composing an application. Upon reaching
the global control statement in a process, the execution suspends until all
the other processes reach the same control statement. The global state used
for predicate evaluation is composed of local states existing at the moment of
reaching the global control statement. This idea resembles predicate modal-
ity currently [3].

phased execution – the previous proposition requires the processes arriving
early at a global control statement to wait until all other processes reach
this statement. To get rid of waiting, the predicates may use some historical
– already known – global state. The program execution can be split into
phases. Then, to evaluate predicates in phase n, we should take into account
the last state from phase n-1. One can notice here a resemblance to phased
data transfers in BSP model [9].

snapshot – a snapshot represents a single global state of a parallel application
obtained by running a special distributed snapshot algorithm. A process
executing a global control statement can initiate a snapshot algorithm, e.g.
[1], to obtain a global state on which a predicate can be evaluated. Process
execution must be suspended until the snapshot is ready. In this case no
monitor is necessary. However, the obtained snapshot is not deterministic
(because the considered system is not synchronous and the clocks are not
ideally synchronized), so this method may be used to test stable predicates
only. A stable predicate has a property, that once it becomes fulfilled it stays
so forever.

the current state – a process executing a global control statement evaluates
the global predicate on a global state containing its current local state. Many
such global states can exist. We distinguish three ways of choosing a single
one:

• earliest – a global control statement g(ϕ) in process Pi is evaluated on the
earliest global state containing the current local state of Pi . Such a global
state is uniquely defined if SCGS are used. In Fig. 1, the global predicate is
evaluated on global state S1 if earliest mode is applied.

238 J. Borkowski and M. Tudruj

• recent – a global control statement g(ϕ) in process Pi is evaluated on a recently
known (latest) global state, containing the current local state of Pi . When
using the recent mode in Fig. 1, the global predicate is evaluated on global
state S1, S2 or S3, depending on which events from S1 were known (reports
about them have arrived) just when the evaluation is requested. This mode
uses the latest available state information, but does not select global states
deterministically.

• moment – a global control statementg(ϕ) in process Pi is evaluated on a global
state comprising the moment of reaching g(ϕ) by Pi. To be able to pinpoint
such a moment, real time timestamps and SCGS can be used. In Fig. 1, the
global predicate in the moment mode is evaluated on the global state S2 .
However, there can exist no SCGS comprising the moment, when the process
execution reaches g(ϕ). Then, the first following global state should be used.

S1

S2

S3

S4

P1
e1

1 e1
2

e2
1 e2

2 e2
3

S1
A global state ei

k event occurence

P2

reaching a global
control statement g(ϕ)

the time the process execution is suspended until the
global predicate ϕ is evaluated

Application message

Fig. 1. Evaluation of a global predicate for synchronous global control statements in
the current state mode

The behavior of parallel program controlled with synchronous reactions is de-
terministic. It is possible to perform a static or trace-based analysis of possible
execution flows. It may be possible to obtain programs correct by construction –
a predicate usually used as an invariant in proving of program correctness, can
be used directly to control the execution, thus making it correct. Synchronous
reactions are a natural extension to classic single-process-level control statements
and therefore are easy to comprehend and employ. No special system functional-
ities are needed to implement them. A number of synchronous reactions variants
have been described above: it requires further investigations to understand well
which variant is best suited in what situations.

3.2 Asynchronous Global Control Statements

A monitor can let a process know about a fulfillment of a global predicate in an
asynchronous way. The process can react by suspending current computations

Designing Execution Control in Programs with Global Application 239

and triggering a handling procedure, associated with a predicate. We designed a
detailed mechanism supporting this novel approach. Because the program never
waits for synchronization condition – it is interrupted when necessary – this
method can lead to better performance [10]. A similar approach – asynchronous
updates of data used in computations – has been taken by other researches as
well [11].

Similarly to synchronous reactions, program implementation of asynchronous
reactions can be decomposed into a number of components:

1. a way of expressing process states e.g. values of chosen variables,
2. global predicates definitions, created at a monitor to reflect the desired syn-

chronization pattern,
3. modality of global predicates, defining on what global states the predicates

are evaluated, e.g. SCGS as described in the previous section,
4. asynchronous notification about predicate fulfillment
5. rules of accepting the notifications (when to accept, when to ignore, when

to delay a reaction)
6. code of processes separated into the main computational code and notifica-

tion handling procedures

The reaction to predicate fulfillment takes place immediately when a special
message from the monitor arrives. In Fig. 2(top) the arc arrows show how the
application control system works in this case. An arrow begins at a global state
in which a global predicate was fulfilled. As a result, the notification about the
fulfillment was sent from a monitor (not shown in the figure) to a process. The
heads of zigzag arrows point to the process reaction triggered immediately at
the notification arrival. It is clear that the reactions can be delayed, like reaction
e2
2 at process P2. We discuss this problem later.
There is a number of options concerning point 5 in the above list of com-

ponents. We describe here static reaction scope option, according to which a
syntactically defined region of code is made sensitive to predicate fulfillments.
Whenever a notification about predicate fulfillment is received while the execu-
tion point is located within a notification sensitive region in the program code,
the normal execution is suspended and an associated handling procedure is acti-
vated. Fig. 2 (bottom) illustrates how notifications can be accepted or discarded
using static reaction scope option. A global predicate was fulfilled in global state
S1. Notifications were sent to P2 and P3. At P3 the notification arrived when the
process execution point was within a region sensitive to notifications, while at
P2 the notification was discarded (a crossed dashed arrow), because the process
execution has left a region sensitive to notifications already (event e1

2 stands for
this leaving).

4 Global Control Structuring in Programs

We had considered asynchronous reactions as particularly interesting. Therefore
we have chosen them for implementation. In [12] we describe the created parallel

240 J. Borkowski and M. Tudruj

P1

P2

e1
2 e1

3 e1
5

e2
1

e1
4

e2
2

S1

S2

S3

P1

P2

e1
1

e2
1

e1
2

P3

region sensitive to notifications

notification about a global predicate fulfillment

e3
1

global state ei
k event occurence

Fig. 2. Asynchronous delivery of notification about predicate fulfillment (top) and
Accepting and discarding predicate fulfillment notifications (bottom)

programming system supporting process asynchronous reactions for predicate
fulfillment. Now we would like to verify the other variants of reactions for global
predicate satisfaction and to develop a textual language (in opposition to the
graphical design method used in [12]) capable of expressing program execution
flow based on global predicates. Below we present the current draft versions of the
language. Our aim is to implement at least two variants of it. The implementation
of asynchronous reactions, also technically challenging, should be relatively easy
for us, due to our previous work. However, a proper (pre)compiler must be
developed, once a final version of the control language is prepared.

To express asynchronous reactions in the code of a program we need to intro-
duce a novel notation. The overall idea of information flow is presented in Fig. 3
on the left side, while the notation is presented below:

Global signal declaration, stating what data is contained in it:

Signal int sig
Computational process Pi:
Process() {
observed v //list of state variables
received sig // list of signal names
watching-signal sig { //start of signal-sensitive region
onSignal (int p){

Designing Execution Control in Programs with Global Application 241

monitor

predicat

Process 1

...
v = ...
....

Signal
handling
code

Process 2

...
v = ...
....

Signal
handling
code

State report

Signal notifying
about predicate
fulfilment

Process 1

...
v = ...
....
if (ϕ) {
...
}

Process 2

...
v = ...
....
if (ϕ) {
...
}

Global
function ϕ

Requested
function

Fig. 3. Program control with asynchronous reactions (left) and Program control with
synchronous global control statements (right)

...// signal handling code, possibly using the data item passed
with the signal
}
...// program code
v := newVal // new value of v is communicated to the monitor
} }
A monitor observing the defined global predicates can be defined as follows:
Monitor Mon {
predicate pname
observing v //list of variables declared as observed, watched by
predicate
sent-signals sig //list of signals sent
... // predicate code
... // contains: send-signal(sig(n), proces1);
}
A process is connected to a proper monitor automatically during compilation by
matching the lists of watched/observed variables and the lists of sent/watched
signals. A value of a observed variable v from each process connected to a monitor
is stored in an array. E.g. v[3] represents the recently reported value of v from the
third process among processes connected to the monitor. A signal can contain
some data, which can be used be the receiving process, the sample code given
above illustrates this.

Synchronous global control statements can be expressed with a more standard
notation. A global predicate can be used in the program code as a function and
the values provided by the function can be tested. A predicate is a boolean
function. However, it is much more useful to treat global predicates as functions
having any declared data type. A process can use the value provided by the
function in its code similarly as a value carried in a control signal is used in
the case of asynchronous reactions. Therefore it is more appropriate to use the
term “global functions” rather than “global predicates”. Fig. 3,right-hand side,
presents the general idea of using global functions to control process execution.
Global function declaration:

242 J. Borkowski and M. Tudruj

Global int p(int process) { //the parameter identifies the
process requesting function evaluation

observing v;
... // code
return r }

Computational process Pi:
Process() {

observed v //list of state variables
global p();
...
int i = p();
if (i>0) { ... }
...
while (p() > 0) {
...
v := newVal // new value of v is communicated to predicate p

} }

In the notation shown above, processes are associated with global functions dur-
ing compilations through matching “observed” variable list with “observing” list
and matching names of declared global functions with names on the “global” list
in processes. The notation does not define how global functions are implemented:

- are they implemented in a monitor process, similarly as for asynchronous
reactions, or

- are they computed locally by each process.
Both the modality and the choice of a particular global state, on which a

global function is evaluated (see p. 3.1) can be decided freely without (almost)
any change to the notation. Surely, the choices should be made in relation to
each other to provide a sound functionality and efficient implementation. For
“phased execution” global state selection mode an additional statement can be
introduced, defining the start of the next phase. Alternatively, an implementation
can assume, that a phase lasts until an observed variable gets a new value, leaving
the proposed notation completely unchanged.

Program control using predicates determined on global aplication states has
been verified practically by simulations and a real-world implementation [12,10].
So far we have tested the performance of a few numerical applications using
the proposed approach, including parallel adaptive integration and branch-and-
bound search. The obtained results and experience show, that availability of
global information makes design and implementation of distributed programs
easier, while the performance can be even better than using the classic - explicit
message passing - approach.

5 Conclusions

Discussion of execution control implementation based on global application states
monitoring was presented in the paper. Synchronous and asynchronous reactions

Designing Execution Control in Programs with Global Application 243

to the fulfilment of control predicates defined on global states enable rich func-
tional expressiveness in control statements. The proposed diversified semantics of
program execution control can be easily encoded using alphanumerical notation
in de-coupled control statements of a programming language oriented towards
programming of the global state-driven execution control.

References

1. Chandy, K., Lamport, L.: Distributed snapshots - determining global states of
distributed systems. ACM Transactions on Computer Systems 3(1), 63–75 (1985)

2. Garg, V.K.: Methods for observing global properties in distributed systems. IEEE
Concurrency 5(4), 69–77 (1997)

3. Cooper, R., Marzullo, K.: Consistent detection of global predicates. In: Proceedings
ACM/ONR Workshop on Parallel Distributed Debugging, pp. 163–173 (1991)

4. Tudruj, M.: Fine-grained global control constructs for parallel programming envi-
ronments. In: Bakkers, A. (ed.) Parallel Programming and Java: WoTUG-20. IOS,
Amsterdam (1997)

5. Borkowski, J.: Global predicates for on-line control of distributed applications. In:
Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2004.
LNCS, vol. 3019, pp. 269–277. Springer, Heidelberg (2004)

6. Borkowski, J.: Parallel program control based on hierarchically detected consistent
global states. In: International Conference on Parallel Computing in Electrical
Engineering (PARELEC 2004), pp. 328–333. IEEE, Los Alamitos (2004)

7. Babaoglu, O., Marzullo, K.: Consistent global states of distributed systems: funda-
mental concepts and mechanisms. In: Distributed Systems. Addison-Wesley, Read-
ing (1995)

8. Stoller, S.D.: Detecting global predicates in distributed systems with clocks. Dis-
tributed Computing 13(2), 85–98 (2000)

9. Skillicorn, D.B., Hill, J.M.D., McColl, W.F.: Questions and answers about BSP.
Scientific Programming 6(3), 249–274 (1997)

10. Borkowski, J., Tudruj, M., Kopanski, D.: Global predicate monitoring applied for
control of parallel irregular computations. In: 15th Euromicro Conference on Par-
allel, Distributed and Network-Based Processing PDP 2007, Naples, Italy. IEEE,
Los Alamitos (2007)

11. Bahi, J., Contassot-Vivier, S., Couturier, R.: Dynamic load balancing and efficient
load estimators for asynchronous iterative algorithms. Transactions on Parallel and
Distributed Systems 16(4), 289–299 (2005)

12. Tudruj, M., Borkowski, J., Kopanski, D.: Graphical design of parallel programs
with control based on global applications states using an extended p-grade system.
Distributed and Parallel Systems 777, 113–120 (2004)

Distributed MIND – A New Processing Model

Based on Mobile Interactive Documents

Magdalena Godlewska and Bogdan Wiszniewski

Gdańsk University of Technology

Faculty of Electronics, Telecommunications and Informatics

ul. Narutowicza 11/12, 80-233 Gdańsk

{magdal,bowisz}@eti.pg.gda.pl

Abstract. Collaborative computing involves human actors and artificial

agents interacting in a distributed system to resolve a global problem,

often formed dynamically during the computation process. Owing to the

open nature of the system and non-cooperative settings, its computations

are in general non-algorithmic, i.e. their outcome cannot be calculated in

advance by any closed distributed system. Authors advocate for a new

processing model, based on exchange of documents implemented as au-

tonomous and mobile agents, providing adaptive and self-aware content

as interface units.

Keywords: collaborative computing, intelligent documents.

1 A Mobile Document Concept

Collaborative computing processes are often based on knowledge that shall
be created and acquired dynamically. It involves human actors who cooperate
within a certain organizational structure by creating and exchanging documents.
Their cooperation is not algorithmic, thus process outcome cannot be calculated
in advance by a computer system. Moreover, documents being exchanged are
the only visible interfaces to the respective processes, and constitute indepen-
dent units of information necessary to elaborate a final result upon which all
related documents have to be archived in a form enabling their future reuse.

A key feature of this scheme is an exchange of information objects, which are
electronic documents, and owing to their logical structure mark-up, are readible
simultaneously to humans and computers. Collaborative computing systems of
today are typically based on a pool of servers dealing with electronic documents
as passive information units, rather then autonomous and interactive objects.
It may be expected that augmenting electronic documents with embedded ser-
vices (functionality) will enable realistic integration of human agents and their
programmatic counterparts in one computation process.

MIND builds upon two concepts (see Figure 1): an automatic XML data
binding, which allows for representing units of information in an XML document
as a set of functional objects in computer memory, and mobile agents augmenting
these objects to make them capable of migrating from one computer to another

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 244–249, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Distributed MIND – A New Processing Model 245

to continue execution. Owing to that, a static document template represented by
a schema is converted to component objects, which as autonomous agents will
next implement their individual actions at designated destinations. This process
is initiated by a document originator, who designs a hub document based on a
schema defining a logical structure and functionality of a document template of
interest.

hub document component 2

component 1

component N

...

final document

migration path

document schema

other policies

document originator collaborators archivist

embedded services

templates repository

Fig. 1. Lifecycle of a MIND document

Key parts of the hub document are: components with information (data) con-
tent, which upon unmarshalling become mobile objects, document migration
path (specified in a form of a document workflow) and specification of embedded
services. Embedded services are implemented with plugins, expanding dynami-
cally document functionality, according to the current context of the local host
upon arrival of the agent. Users who interact with components incoming to their
local workstations are collaborators; they make decisions based on the content of
other components they have access to, and if necessary create new components in
the form of dynamic annotations, linked to other components of interest. Upon
reaching its goal, each migrating object (document component) returns to its
document originator to be marshalled with other returning objects back to an
XML document. Files with XML documents are archived by an archivist in a
repository for future use (mainly extration of accumulated knowledge).

2 Technological Challenges for MIND

Implementation of the MIND concept involves specific combination of just a few
existing Web technologies. However, their survavibility as standards is important
to consider the MIND architecture as a reasonable alternative to data-centric
computation models.

Below a quick review of the MIND core technologies and their state-of-the-
art has been given to assess prospects of a new distributed processing model
advocated in the paper.

2.1 Logical Document Structure Definition

With the advent of XML, a uniform mark-up notation for describing logical
structure of data has been established as a global standard. Representing the

246 M. Godlewska and B. Wiszniewski

logical structure of documents and their components is important for MIND,
since according to the concept illustrated in Figure 1 documents are converted
to interactive components, enabling collaborators to manipulate their content.
Several languages have been proposed to model a schema, to which a struc-
ture of a particular XML document should conform in a checking process called
validation. Any schema language is a certain compromise between its power
of expression, simplicity, and features, being more or less suitable for partic-
ular types of applications. The problem is to choose a schema language best
fitted for the class of documents supporting collaborative computing processes
today and in the future. Equally important is the support by organizations and
vendors providing standards and tools to promise survival of the chosen lan-
guage and guarantee forward compatibility of archived documents. For example,
Document Type Definition (DTD), historically rooted in the SGML mark-up
language, provides a very simple grammar mechanism and allows for structure
rules to be parameterized and customized. It has also an excellent vendor sup-
port and prospects for survival as a default schema language. Unfortunately, its
expressiveness is low, as DTD has been shown to be in the most restrictive lo-
cal tree grammar (LTG) subclass of regular tree grammar (RTD) languages [7].
The intent of XML Schema language is to reconstruct the facilities provided by
DTDs parameter entities and marked sections into a full type-lattice system with
type inheritance, type extensions and type restriction. Although relatively more
complex to use than DTD, it has been shown to be a member of a less restric-
tive single-type tree grammar (STG) subclass [7]. Algorithms for constructing a
unique interpretation of a document when validating it against a schema writ-
ten in any STG language are widely used. Finally, RELAX NG [2], has been so
far the least restrictive schema language, as it properly belongs to the topmost
class of RTG languages. This freedom, however, implies difficulties in checking
for ambiguity in matching regular expression patterns (an algorithms for that
has been discovered later on [4]).

2.2 Document Component Data Binding to Functional Objects

In order to convert an XML document into a set of objects enabling manipulation
of data one needs a tool for XML data binding to these objects. A potentially
serious challenge may be that XML data binding tools cannot operate on doc-
ument fragments, i.e., cannot extract data from one or more fragments of an
XML document, expose that data using schema-specific objects, and re-write
those fragments to the document, leaving the rest of the document unchanged.
This is a real problem in workflow scenarios, where many applications work on
one document, each modifying and passing part of it to the next application.
Architecture of MIND outlined in Figure 1 can cope with that challenge, since
document fragments extracted once from the global hub document are bound
to the application run by a document originator to objects with embedded func-
tionality driven by externally defined policies and making these objects active
“applications”, capable of operating on their related document fragments.

Distributed MIND – A New Processing Model 247

2.3 Augmenting Document Component Objects with Mobility

In order to enable migration of document components to remote sites for process-
ing, they have to be converted to mobile objects (agents). Since their invention
over a decade ago and dozens of different platforms developed, agents have been
claimed to become a breakthrough in distributed computing with such obvious
benefits as loose coupling, adaptability and support of heterogeneous systems.
Surprisingly, it is relatively difficult to point to successful large-scale implemen-
tations of agent systems. Probably the reason is that the basic paradigm of agent
technology involves functional specialization and autonomous interaction with
the local environment, narrowing the class of realistic applications to just a few,
such as resource management and maintenance of complex systems, or delivery
of personalized content and e-commerce, for each of which a volume of agents
should rather not be excessive. MIND concept of representing documents as func-
tionally autonomous and mobile objects requires, however, taking a closer look
at scalability of the most popular agent programming platforms in terms of exces-
sive message sending and agent migration actions, since the volume of component
objects might be sometimes as large as few thousands for particularly complex
collaborative computing processes (eg. court trials). A recent survey of a variety
of agent platforms representing the current state in the field [6] indicates that
for agent applications of a moderate size (up to 100 agents, each one performing
few hundred movements and communications) the differences in reliability and
performance are nor significant, and only some platforms have problems with
reliable execution when agents move and communicate; agents that only move
usually have less problems. Another experiment [3] aimed at flooding of a single
node with incoming agents indicates that a JADE based application could reli-
ably perform with up to 800-1000 incoming agents. These results are promising
for MIND applications. Another issue is stability of the selected agent platform
to guarantee survivability of MIND technology. An important point of reference
here are the abstract platform and agent management specifications provided
by FIPA; so far JADE, offers a platform with the strongest resemblance to this
specification.

2.4 Workflow of a Document Component Object

Collaborators interact in a virtual space with document component objects to co-
edit or otherwise modify their content. Inspiration for that form of collaboration
has been development of open source software by large groups of programmers.
A key feature of that is a global scope of work, hard to achieve with paper-
based documents. Each collaborator processes the assigned piece of content, by
executing elementary operations like insert, cut and replace, while a system sup-
porting the society of workers has to assure consistency and completeness of all
so produced components. Historically, there have been two possible approaches
for such a collaboration: pessimistic, where a unique copy of the edited document
is shared at a central server, and optimistic, where before edition, a document is
replicated and copies are sent over a network to each respective co-worker, who
edits locally the received copy. Disadvantages of the former are the necessity

248 M. Godlewska and B. Wiszniewski

to stay on-line by all collaborators and no provision for concurrency, while for
the latter a need to implement a complex mechanism for transforming editing
actions performed locally with messages received from remote sites. Unfortu-
nately, many algorithms already published in the literature have been found
flawed in that regard as not assuring consistency of document copies processed
in parallel [1].

MIND proposes a third, realistic approach, with a document transformed into
a set of objects forming a certain hierarchy implied by its logical structure, and
having their own local memory and methods. One advantage is the potential of
using well-defined object-oriented mechanisms for document processing, in an
open multi-agent system fashion, allowing for dynamic expansion and migration
of document components.

The content of distributed document components, augmented with mobility,
enables information flows that can be organized into work processes involving
intellectual resources of collaborators. These processes can be formally described
with a workflow definition language as patterns of activities, which together with
embedded services of document components, implemented with plug-in actions,
and predefined migration paths, implicitly related to the document component
type and semantics, constitute a sort of an actionable meaning of the docu-
ment content. Owinf to XSLT, forward compatibility of MIND may be secured
practically for any workflow definition language based on XML.

2.5 Location Control of a Document Component Object

During processing along their respective workflows, components of a distributed
document may need to refer to one another in the form of links, citations or
bookmarks. The common addressing structure for the Web, based on the URLs,
combining logical names with physical IP addresses to identify and locate digi-
tal objects, fails whenever the resources are moved between locations – what is
the case of mobile MIND objects. Moreover, some of these mobile objects may
be dynamic in the sense that they are created after originating the workflows
of document components defined by a schema of the document template. One
example are dynamic annotations that may be created and linked by knowledge
workers to other components at any time during the document lifecycle (see
Figure 1). The notion of a persistent identifier is needed, i.e. the one that tracks
specific objects it refers to regardless of their physical location. Two primary
persistent identifier applications have emerged and are strongly supported: the
Persistent URL (PURL) [5], and the Handle System [8]. Both approaches pro-
vide registration and resolution services to map the persistent identifier to the
current physical location of the digital object of interest and implement a sort
of a redirection mechanism. PURL assigned to a mobile document points to
the special resolver record in a resolver table maintained by a dedicated PURL
server; the resolver record contains information to redirect the PURL to the
current URL of the object, while the resolver table is updated each time any
actual URL stored in it changes. Owing to this, the referred objects PURL does
not change when the object migrates. The Handle System is an interoperable

Distributed MIND – A New Processing Model 249

network of distributed resolver servers, linked through a Global Handle Server;
a local Handle Server can resolve any handle through the global server to the
current URL of the migrating object. Besides that the resolution of one handle to
multiple objects, to other handles or even email accounts is possible. Persistent
identification of MIND objects can adopt any of these mechanisms for dynamic
annotations management.

3 Conclusions

Document-centric processing model advocated in the paper provides a natural
mechanism for incorporating intelligence of human actors in computations of an
open multi-agent system. Brief review of candidate Web technologies presented
in the paper indicate that they can widely support MIND, despite of some minor
concerns regarding forward compatibility of the model, implied by their surviv-
ability as standards. In that regard adoption of XML based notations is certainly
a must, so the first prototype implementation of MIND developed by the au-
thors involved: XML Schema for logical document structure definition, XML
Beans for document data binding and XPDL for component workflow specifi-
cation. The agent platform chosen for this implementation was JADE, which
seems to be stable as well. Early experiments with the MIND prototype indi-
cate that intelligent, autonomous and adaptive document content enabled by
MIND should significantly speed up and ease complex interaction and leverage
knowledge bound organizations with virtual collaboration to enable resolving
non-algorithmic decision problems, such as court trials, integrative bargaining,
medical consultations, or crash investigations.

References

1. Oster, G., Molli, P., Urso, P., Imine, A.: Tombstone transformation functions for

ensuring consistency in collaborative editing systems. In: Proc. Collaborative Com-

puting: Networking, Applications and Worksharing (2006)

2. Clark, J., Murata, M.: RELAX NG specification. OASIS TC Specification (Decem-

ber 3, 2001), http://www.oasis-open.org/committees/relax-ng

3. Chmiel, K., Gawinecki, M., Kaczmarek, P., Szymczak, M., Paprzycki, M.: Efficiency

of (JADE) agent platform. Scientific Programming 13 (2005)

4. Murata, M., Lee, D., Mani, M.: Taxonomy of XML schema languages using formal

language theory. In: Proc. Extreme Markup Languages (2000)

5. PURLS. A project of OCLC research. OCLC Online Computer Library Center,

http://www.purl.org
6. Trillo, R., Ilarri, S., Mena, E.: Comparison and performance evaluation of mobile

agent platforms. In: Proc. 3rd Int. Conf. on Autonomic and Autonomous Systems,

ICAS 2007 (2007)

7. Gao, S., Sperberg-McQueen, C.M., Thompson, H.S. (eds.): W3CXML Schema Def-

inition Language (XSD) 1.1 Part 1: Structures, Part 2: Datatypes. W3C Working

Draft, January 30 (2009), www.w3.org/TR/xmlschema11-1/
8. Handle System. Unique persistent identifiers for internet resources,

http://www.handle.net

http://www.oasis-open.org/committees/relax-ng
http://www.purl.org
www.w3.org/TR/xmlschema11-1/
http://www.handle.net

A Framework for Observing Dynamics of

Agent-Based Computations

Jaros�law Kawecki and Maciej Smo�lka

Institute of Computer Science, Jagiellonian University, Kraków, Poland

smolka@ii.uj.edu.pl

http://www.ii.uj.edu.pl/~smolka/

Abstract. The paper contains a description of a framework designed for

observing dynamics of mobile-agent computational applications. Such

observations are thought to provide a basis for the experimental ver-

ification of an existing stochastic model of agent-oriented distributed

computations. Some test results are also provided, which show that the

proposed observational environment does not disturb an observed sys-

tem’s dynamics.

1 Introduction

Multi-agent systems (MAS) are considered one of significant paradigms for dis-
tributed system design in the industry (cf. [1]). In the science they are used to
solve some complex problems such as evolutionary global optimization (cf. [2],
[3]). However it is still not very common to apply multi-agent paradigm in the
implementation of large-scale distributed computational systems, even if the idea
of self-organizing computational application being a collection of mobile tasks
which migrate over a network according to a diffusion-based policy in order to
find the best environment for computations is known for several years ([4]). Thus
it was quite straightforward to merge the two ideas, i.e. to enclose a computa-
tional task together with its data in a mobile agent box, giving the agent the
abilities to migrate, to communicate with other agents, to split itself and to sense
its environment properties, and finally providing the agent with some logic to
decide which abilities to use in order to perform its task. Such a computational
multi-agent system has been constructed ([5], [6]) on the basis of Java/CORBA
platform. Sec. 2 describes its main features.

During the development of the system many theoretical questions has been
raised. As an answer a formal model of multi-agent computations has been pro-
posed ([7], [8]). It describes a multi-agent computational application as a con-
trolled Markov chain. The model provides us with the definition of optimal
scheduling and some results on the existence and characterization of optimal
scheduling strategies. The model is briefly described in Sec. 3.

However the model itself needs experimental validation. The first step to-
wards this goal is the construction of a framework for monitoring the dynamics
of quantities appearing in the model. The present paper describes such a frame-
work. It is designed as an extensible additional module for the above-mentioned

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 250–259, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Framework for Observing Dynamics of Agent-Based Computations 251

computational MAS platform. Design and implementation issues are covered in
Sec. 4, some test results showing good features of the monitor are contained in
Sec. 5.

2 Computational MAS

As the above-mentioned computational MAS is the basis for our new-projected
framework let us first briefly describe its main architectural principles. For a
more complete description and some implementation details we refer the reader
to [5] and [6].

The architecture of the system is composed of a computational environment
(MAS platform) and a computing application being a collection of mobile agents
called Smart Solid Agents (SSA). The computational environment is the triple
(N, BH , perf), where:

N = {P1, . . . , PN} , where Pi is a MAS server called a Virtual Computational
Node (VCN). Each VCN can maintain a number of agents.

BH is the connection topology BH = {N1, . . . ,NN},Ni ⊂ N is a direct neigh-
bourhood of Pi (including Pi as well).

perf = {perf1, . . . , perfN}, perfi : R+ → R+ is a family of functions where perfi

describes the relative performance of VCN Pi with respect to the total mem-
ory request M i

total of all agents allocated at the node.

The MAS platform is responsible for maintaining the basic functionalities of the
computing agents. Namely it delivers the information about the local load con-
centration, performs agent destruction, hibernation, partitioning and migration
between neighbouring VCN’s and finally supports the transparent communica-
tion among agents.

We shall denote an SSA by Ai where index i stands for an unambiguous agent
identifier. Each Ai contains its computational task and all data necessary for its
computations. Every agent is also equipped with a shell which contains the agent
logic. At any time Ai is able to denominate the pair (Ei,Mi) where Ei is the
estimated remaining computation time measured in units common for all agents
of an application and Mi is the agent’s RAM requirement in bytes. An agent
may undertake autonomously one of the following actions: continue executing
its internal task, migrate to a neighbouring VCN or decide to be partitioned,
which results in creating two child agents.

3 Formal Model Overview

In this section we introduce some key concepts appearing in our formal model
of computing multi-agent systems. The detailed description of the model can be
found in [7] and [8].

The main idea behind the model is the following. Instead of considering a
single agent’s behaviour we observe the time evolution of some global quanti-
ties characterizing the state of the whole computational application. The set

252 J. Kawecki and M. Smo�lka

of state variables may typically include: the total number of allocated agents
with respect to a VCN, the total remaining time of computations with respect
to a VCN, the total memory requirement of agents with respect to a VCN. In
addition some control variables have been introduced in the model. Namely we
control the number of agents migrating between nodes, the number of agents
splitting themselves and optionally the number of agents being hibernated or
dehibernated. Finally equations of system evolution have been formulated de-
scribing a computational multi-agent system as a controlled Markov chain. It
allows us to answer many fundamental questions (such as the question about
the existence of optimal control strategies) by means of the stochastic control
theory machinery.

Such a model needs an experimental verification. We are going to observe
the dynamics of existing and new computational applications in order to check
if the model describes them properly. But to this end we need a monitoring
infrastructure which would register the time evolution of interesting applica-
tion parameters and which, on the other hand, would not disturb the system
behaviour significantly.

4 Monitoring Subsystem Architecture

4.1 Overview

The subsystem monitoring the agent dynamics is designed as a wrapper for a
single MAS server and it focuses only on tracing the state of its host. Different
wrappers do not communicate with each other hence they do not generate any
network traffic. However such an approach needs an external synchronization
mechanism to gather data with global time stamps for further processing and
analyzing.

The monitor uses the SNTP protocol to set global time among servers. Each
of monitors carries its own time service. Measurements taken during a monitor’s
work are stamped with time provided by this service. To stay accurate the time
service periodically sends synchronization requests to the NTP server. The result
is stored as a time offset and it is used to calculate the global time.

Calculations on the MAS platform are performed by agents. Significant as-
pects of the agent life-cycle activities (such as agent creation, migration or de-
struction) are traced using an event-driven approach. Namely every time an
agent is born, leaves a server, enters another server or dies a trigger can be fired.
It is marked with the current time stamp and with the agent identifier, so the
whole agent traffic can be reconstructed after the experiment. The event-driven
approach is reliable because it takes into account every event that occurs at the
monitored server. However it is not possible to implement triggers totally outside
the platform environment. The event infrastructure needs code integration with
the platform server and the agent.

Some quantities should not be traced using the event-driven approach due
to performance issues. Triggers are not efficient when a quantity value changes
really often. On the other hand some quantities can change in an unpredictable

A Framework for Observing Dynamics of Agent-Based Computations 253

way, so there is no place where the trigger could be hooked. A snapshot mech-
anism is meant to support triggers in such situations. It is a kind of task that
periodically takes a snapshot of a server’s parameters. Such an approach avoids
drawbacks of the event-driven approach and allows to gather more data for
further analysis. Without it the server memory consumption or the processor
utilization could not be traced.

4.2 Implementation Issues

A single monitor server consists of three main parts that are sequentially ini-
tialized (see Fig. 1). The first to launch is the monitor’s observation subject, i.e.
a MAS server (cf. [5]). The server is running on a dedicated thread. The time
service is started next. It is used for periodical sending of SNTP requests to
the time server in order to keep the most up-to-date offset to the global time.
Third essential component called the Experiment is started as the last. It ini-
tializes triggers, snapshots and file output where measurement data are stored.
The global time provided by the time service is used to stamp measurements.
Experiment class is closely coupled to the MAS server and this dependency is
bidirectional. Using snapshots the Experiment observes the state of the server,
while the server fires triggers which are stored in the Experiment.

OctopusExperimentExperiment

start() : void

GlobalTimeService

timeOffset : long

synchronize() : void
getGlobalDate() : Date
start() : void

create

start

<<thread>>

OctopusLauncher

start() : void
run() : void

run

OctopusServer

Fig. 1. Main components of a server monitor (UML class diagram)

The time service uses the SNTP client to get the offset value from the time
server. This is performed periodically. To this end the service spawns its own
thread which sleeps during the most of its lifetime. It is only awaken once for a
defined period and then it tells the service to update the time offset. Each time
the update is done the service invokes the synchronization trigger. It allows us
to store the retrieved time offset in an output file.

254 J. Kawecki and M. Smo�lka

ExperimentLogger Experiment

start() : void

SnapshotTask

run() : void

TriggerTemplate

register() : void

*

1
11

1

*

Fig. 2. Experiment (UML class diagram)

The main responsibility of the Experiment is to create all configured snap-
shots, triggers and instantiate the experiment logger (see Fig. 2). When all these
items are created the experiment may be started. Then the experiment logger is
initialized, all snapshots are scheduled and finally all triggers are registered. It
means that since then triggers are able to receive calls from the MAS code. It is
worth noticing that scheduling snapshots does not mean an immediate execution.
The idea of the snapshot is to catch the consistent state of the whole platform.
To this end two conditions must be met: all snapshots start at the same time
and they are repeated with the same frequency. Both of these parameters are
passed by the configuration file. The start time is defined as the globally defined
moment common for all monitors. Before that moment no snapshots are taken,
therefore no experiment activity should be performed. Only after the start time
the platform is capable to work and all parameters are properly monitored.

A snapshot itself (see Fig. 3) does not observe a server state directly. It
only provides environment for execution of measurements such as memory or
processor utilization. The static part of the snapshot allows to assign some

java.util

MeasurementTemplate

takeMeasure() : void
getValue() : Object

Snapshot

addMeasurement(name : String) : void
fire() : void
getID() : Guid

SnapshotTask

run() : void

TimerTask Timer

1

1

1

*

Fig. 3. Snapshots (UML class diagram)

A Framework for Observing Dynamics of Agent-Based Computations 255

measurements. Then the dynamic part runs the snapshot. As s consequence
all the assigned measurements are taken and sent to the experiment logger. As
mentioned before the snapshot runs periodically. The facility that provides this
behavior belongs to the Java standard library. The Timer object can schedule
running objects whose classes extend the TimerTask abstract class. There is a
major advantage of using the Java Timer, namely it is able to correct delays in
the task execution. As a result the snapshots do not accumulate time shift.

MeasurementTemplate

takeMeasure() : void
getValue() : Object

JavaMemoryMeasure LocalAgentsMeasure

Fig. 4. Measurements (UML class diagram)

A measurement (Fig. 4) is a piece of code which is responsible for measuring
one parameter of the server. It takes the measure, stores the result and makes
the value of the measure available for the experiment logger. The measurement
is always considered in the context of a snapshot. Currently two kinds of mea-
surements are implemented. The memory measurement monitors free memory.
The agents measurement checks how many agents are currently located on a
MAS server.

A trigger (Fig. 5) from a point of view is similar to a measurement described
before. It is also connected with a single parameter of the MAS server. Despite

MeasurementTemplate

takeMeasure() : void
getValue() : Object

TriggerTemplate

register() : void

AgentSerializationTrigger AgentFinishTrigger

AgentDeserializationTrigger

AgentCreationTriggerSNTPSynchronizationTrigger

Fig. 5. Triggers (UML class diagram)

256 J. Kawecki and M. Smo�lka

the similarity the trigger can work without any snapshot. Not being a part of a
snapshot has a downside effect. The code of trigger needs to be executed directly
from the MAS platform code. Two MAS platform classes had to be modified in
order to launch triggers related to agents: SerializedObjectStreamService and
TaskBase (cf. [5]). Code changes were kept as small as possible. Currently five
types of triggers are implemented. Serialization and deserialization triggers are
responsible for tracing migration and hibernation of agents. Next two trigger
types are designed for monitoring agent creation and destruction, hence in par-
ticular they can be used to observe partitioning. The last trigger type is fired
when a synchronization with the time server occurs.

5 Monitor Performance Tests

The MAS platform monitor was designed to impose the lowest overhead possi-
ble. Of course since the monitor integrates with the platform code, it impacts
utilization of such resources as processor, memory and network. Hence in order
to determine the scale of the actual overhead some tests have been performed.
They compared the total execution time for the Subdomain-by-Subdomain (SBS)
distributed linear solver (cf. [5]).

The platform consisted of 12 PCs organized in a star topology and equipped
with the Fedora operating system. There was also one PC outside the platform
dedicated for the administration purposes such as: launching MAS servers in a
specified order, initializing and deploying SBS computational agents and obtain-
ing the test results. The monitor configuration consisted of:

– SNTP synchronization run every 10 seconds using vega.cbk.poznan.pl
NTP stratum 1 server;

– all 5 triggers enabled (i.e. synchronization, agent serialization, deserializa-
tion, creation and destruction);

– first snapshot run every second tracing current number of agents located on
a server;

– second snapshot run every 2 seconds logging free server memory.

All agents were deployed on the central server (s213-03) and then they were
allowed to migrate according to a diffusion-based policy (cf. [6]).

The tests were organized into 16 groups. They varied by the number of agents
involved in the computations and the size of the matrix computed by one agent.
The tests took into account the total computation time. Each of the test groups
was run 8 times for the unobserved MAS platform and other 8 times for the
platform observed by the monitor.

Figs. 6 and 7 show that computations on the platform with the monitor are
not significantly slower (at least in average) than those on the platform with-
out the monitor. Thus the test results allow us to treat observations performed
by the monitor as quite reliable, which means that the monitor does not disturb
the agent dynamics.

A Framework for Observing Dynamics of Agent-Based Computations 257

32 64 128 256

72 54875 ms 106125 ms 194500 ms 362250 ms

144 66250 ms 105375 ms 206250 ms 391750 ms

288 67875 ms 118125 ms 232625 ms 448500 ms

576 108375 ms 191500 ms 348750 ms 677857 ms

Number of Agents

S
iz

e
of

 M
at

rix

32 64 128 256

72 54375 ms 103375 ms 196875 ms 353125 ms

144 62125 ms 105125 ms 203125 ms 395375 ms

288 66375 ms 117375 ms 231625 ms 429625 ms

576 106500 ms 187500 ms 348500 ms 678000 ms

Number of Agents

S
iz

e
of

 M
at

rix

Fig. 6. Average execution time without (on the left) and with (on the right) the monitor

32 64 128 256

72 3257 ms 8462 ms 11576 ms 18012 ms

144 27954 ms 7761 ms 9189 ms 20553 ms

288 6030 ms 5372 ms 4998 ms 29270 ms

576 3672 ms 9539 ms 7462 ms 21557 ms

Number of Agents

S
iz

e
of

 M
at

rix

32 64 128 256

72 2288 ms 7936 ms 12752 ms 2368 ms

144 10959 ms 9545 ms 10105 ms 28026 ms

288 2118 ms 4973 ms 10086 ms 15588 ms

576 2449 ms 4243 ms 7665 ms 15344 ms

Number of Agents

S
iz

e
of

 M
at

rix

Fig. 7. Execution time standard deviation without and with the monitor

6 Sample Observation of Formal Model Quantities

Next let us present some capabilities of the monitor in the area of observing quan-
tities appearing in the previously-described formal model. The data presented
in this section were obtained using the same topology as for the verification
purposes. 256 agents were created at the external server and deployed onto the

Fig. 8. Number of agents on platform servers

258 J. Kawecki and M. Smo�lka

Fig. 9. Serialization and deserialization events

platform. Each of them resolved a linear equation system with the matrix of size
72. The data is presented with the precision of 500 milliseconds.

Fig. 8 shows the number of agents allocated on platform servers. The data
were gathered using snapshots. Another view of the same quantity is given by
Fig. 9 which shows serialization and deserialization activity on the servers regis-
tered by triggers. It turned out that SBS was quite predictable when it comes to
the migration of agents. The first phase lasted about 90 seconds. Agents were de-
ployed to the s213-03 server which was the centre of the star connection topology.
There was noticeable increase of agent number at this server till 50th second.
Then the immigration to the s213-03 stopped and agents were only migrating
to leaves of the topology. After allocation agents to servers the migration pro-
cess ended and all agents were busy with computations. The computation phase
lasted approximately the same amount of time for all agents. At the end every
agent returned the computation results to its parent and left the platform.

7 Conclusions and Further Research

An important goal for the designed monitoring subsystem was to avoid any
disturbance in observed system dynamics. As test results suggest, the goal has
been achieved. Moreover the constructed framework introduced only very small
changes in the MAS platform code. The resulting framework is already quite use-
ful because it can measure all basic formal model quantities, yet it is extensible
enough to forecast some future needs such as new kinds of triggers or snapshot
measurements possibly introduced in more sophisticated versions of the model.

A Framework for Observing Dynamics of Agent-Based Computations 259

A natural consequence of the monitor construction shall be gathering observa-
tion data from computational applications other than SBS and validating the
model through the analysis of the data.

References

1. Wooldridge, M.: An Introduction to Multi-agent Systems. Wiley, Chichester (2002)

2. Cetnarowicz, K., Kisiel-Dorohinicki, M., Nawarecki, E.: The application of evolu-

tion process in multi-agent world (MAW) to the prediction system. In: Tokoro, M.

(ed.) Proceedings of 2nd International Conference on Multi-Agent Systems (ICMAS

1996), Osaka, Japan. AAAI Press, Menlo Park (1996)

3. Byrski, A., Kisiel-Dorohinicki, M.: Agent-based evolutionary and immunological op-

timization. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS

2007. LNCS, vol. 4488, pp. 928–935. Springer, Heidelberg (2007)

4. Luque, E., Ripoll, A., Cortés, A., Margalef, T.: A distributed diffusion method for

dynamic load balancing on parallel computers. In: Proceedings of EUROMICRO

Workshop on Parallel and Distributed Processing, San Remo, Italy, January 1995,

pp. 43–50. IEEE Computer Society Press, Los Alamitos (1995)

5. Uhruski, P., Grochowski, M., Schaefer, R.: Multi-agent computing system in a het-

erogeneous network. In: Proceedings of the International Conference on Parallel

Computing in Electrical Engineering (PARELEC 2002), Warsaw, Poland, Septem-

ber 22-25, pp. 233–238. IEEE Computer Society Press, Los Alamitos (2002)

6. Grochowski, M., Schaefer, R., Uhruski, P.: Diffusion based scheduling in the

agent-oriented computing systems. In: Wyrzykowski, R., Dongarra, J., Paprzycki,

M., Waśniewski, J. (eds.) PPAM 2004. LNCS, vol. 3019, pp. 97–104. Springer, Hei-

delberg (2004)

7. Smo�lka, M.: A formal model of multi-agent computations. In: Wyrzykowski, R.,

Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2007. LNCS, vol. 4967,

pp. 351–360. Springer, Heidelberg (2008)

8. Smo�lka, M.: Task hibernation in a formal model of agent-oriented computing sys-

tems. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS

2008, Part III. LNCS, vol. 5103, pp. 535–544. Springer, Heidelberg (2008)

HyCube: A DHT Routing System Based

on a Hierarchical Hypercube Geometry

Artur Olszak

Institute of Computer Science, Warsaw University of Technology

A.Olszak@ii.pw.edu.pl

Abstract. This paper presents a DHT routing system based on a hi-

erarchical hypercube geometry. An approach employing a novel variable

metric adopting the Steinhaus transform is presented. The use of this

metric and the hierarchical hypercube geometry allows to reach very

good performance of the network and a very high level of resilience to

node failures. The architecture of the network and the routing algorithm

are presented. The results of the simulations have been included in the

paper and compared with existing solutions.

Keywords: peer-to-peer network, distributed hash table, Steinhaus

transform, hierarchical hypercube.

1 Introduction

Recently, we observe an increase in interest in peer-to-peer networks, in partic-
ular routing algorithms. Most of the networks currently developed are based on
a distributed hash table algorithm (DHT). DHT systems store key-value pairs
and the set of keys is distributed among the nodes in the network. The nodes
in DHTs usually share storage or computation resources with other nodes. Each
node has its unique identifier. The resources (values) are located by searching
for a node responsible for the resource key. Usually this is the node (or nodes)
with the id closest to the key. Every node stores a set of references to other
nodes - a routing table. The routing table is built in a way that allows to send a
message, decreasing the distance left to the destination node in each routing step
(distance between identifiers, according to the chosen metric). DHT systems can
be divided into groups according to their geometry (connections graph) which
defines the overlay network. The overlay network implies the structure of the
routing tables. The most important DHT geometries are ring (e.g. Chord [1]),
XOR metric (e.g. Kademlia[2]), tree (e.g. Pastry[3]), hypercube (e.g. CAN [4]),
butterfly (e.g. Viceroy[5]). The geometry influences mostly the route lengths,
but it also affects the level of resilience to node failures.

In [6], the authors analyze the impact of the routing geometry on static re-
silience1 and on the average route length and present the results of the simu-
lations. Authors claim that flexibility in the next hop selection (which can be
1 The ability of the network to route messages between nodes in the presence of node

failures without the aid of recovery mechanisms.

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 260–269, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

HyCube: A DHT Routing System 261

measured by the number of nodes in the routing table to which a message can be
routed) has an impact on static resilience. Different geometries imply different
levels of flexibility in the next hop selection and the simulations prove that it
has a great impact on the static resilience.

In some DHT systems, nodes maintain sets of so called sequential neighbors.
Sequential neighbors are the preceding node and the following node (existing
nodes with identifiers closest to the node’s identifier that appear directly before
or after it according to a certain sequence). Nodes form a logical ring using
connections with predecessors and successors. The leaf set in Pastry and the
predecessor and the successor in Chord are examples of sequential neighbors.
Messages can always be routed to these nodes, decreasing the distance left to
the destination - depending on the direction in which the destination is located,
either the predecessor or the successor is chosen. In order to increase the level
of resilience to node failures, in some DHT networks, nodes maintain sets of
several preceding and several following nodes so that packets can be routed to
the next hop, even in the presence of failures of many nodes. The results of
the experiments presented in [6] show that sequential neighbors greatly improve
static resilience but the average route length may significantly increase. For
this reason, nodes usually store some constant number of sequential neighbors
to provide tolerance to node failures, whereas efficient routing is provided by
routing tables specific for particular DHT algorithms.

This paper presents the routing geometry and the routing algorithm of Hy-
Cube - a DHT peer-to-peer network based on a hierarchical hypercube geometry.
Routing is based on a variable metric adopting the Steinhaus transform which
defines distances between nodes. Using such a metric results in a very high degree
of flexibility in the next hop selection. In comparison to schemes using sequential
neighbors, this approach allows to achieve a very high level of static resilience
and a shorter average path length in the presence of node failures.

The rest of this paper is organized as follows. Section 2 presents the design
of HyCube, including a description of the routing geometry and the routing
algorithm. Section 3 describes the metric used in HyCube. Experimental results
are presented in Section 4. Section 5 concludes.

2 HyCube

In this section, the routing procedure of HyCube is described. Section 2.1 presents
the routing geometry, Section 2.2 describes routing tables that nodes maintain
to support the routing procedure, Section 2.3 presents the routing algorithm.

2.1 Routing Geometry

The routing geometry of HyCube is a combination of a tree geometry and a
hypercube geometry. It is based on Plaxton mesh[7] but nodes are also logically
located on a d-dimensional torus. Nodes in the network are distributed in vertices
of a hierarchical hypercube. Figure 1 presents the structure of the network for 3
dimensions and 2 hierarchy levels.

262 A. Olszak

Fig. 1. A hierarchical hypercube (3 dimensions and 2 levels of hierarchy)

A hierarchical hypercube is a hypercube whose vertices are also hypercubes.
Vertices of the hypercubes at the lowest level are positions which may be occu-
pied by nodes. The position of a node in a hierarchical hypercube is determined
by its identifier. The identifier of a node is a string of d-bit groups determining the
positions of the node in hypercubes at particular levels (starting with the highest
level). The position in a hypercube is a string of bits corresponding to the location
of the node in the hypercube in particular dimensions. The length of the identifier
equals d · l, where d is the number of dimensions and l is the number of levels. The
structure of a hierarchical hypercube and a tree are isomorphic. However, looking
at it as on a hierarchical hypercube gives an idea of the spatial arrangement of the
nodes in the network. The numbers formed from bits corresponding to particular
dimensions relate to the coordinates of the node in these dimensions in the system
of coordinates with the center in point 0. Thus, considering the highest level hy-
percube as a segment of Rd space, the distance between nodes can be defined by
any metric in Rd space. The geometry of HyCube has one more property - the set
of positions (coordinates) in each dimension is treated as on a ring. That means
that after the point 2l − 1, point 0 is located. The network should therefore not
be treated as a d-dimensional space limited in each dimension by 0 and 2l − 1 but
as a d-dimensional torus with the perimeter equal to 2l in each dimension. This
modification will be important in determining distances between nodes - in every
dimension the distance is determined like on a ring - the shorter of the distances
in either direction is chosen. In order to obtain a short average path length and
a reasonable size of the routing tables, in HyCube, the number of dimensions is 4
and the number of levels is 32 (to obtain a 128-bit address space).

2.2 Routing Tables

Primary Routing Table. The primary routing table has the same structure
as in Plaxton mesh. It has l levels (the number of hierarchy levels). At each level

HyCube: A DHT Routing System 263

there are 2d cells (d - the number of dimensions). In the routing table of a node
X in the cell j at level i (i ≥ 0), a reference is stored to a node that is in the
same hypercube at level i+1 and in the hypercube corresponding to the number
j at level i (lower level). At each level i > 0, there is a cell corresponding to the
hypercube in which the node X exists. This cell is empty as the routing table
contains a whole level corresponding to it.

Secondary Routing Table. The secondary routing table of a node X contains
nodes from adjacent hypercubes to the hypercube of node X in each dimension,
in both directions, at each level. An adjacent hypercube is one whose coordinate
in the particular dimension is greater or smaller by 1 than the coordinate of
the hypercube of X at the particular level (taking into consideration passing
coordinate 0 - like on a ring). The secondary routing table does not contain
nodes in cells at the highest level as hypercubes corresponding to them are
included in the primary routing table. Also, one of the sibling hypercubes on
each level in each dimension is covered by the primary routing table.

The secondary routing table gives a higher level of flexibility in the next hop
selection. If the distance between nodes is defined by a metric in Rn space, it
is very likely that the secondary routing table contains nodes that are closer to
any arbitrarily chosen node.

Neighborhood Set (Closest Neighbors Set). Beside two routing tables de-
scribed above, nodes maintain sets of closest to them (according to the chosen
metric) nodes existing in the network. These sets allow to route messages (de-
creasing the distance left), even if there are no appropriate nodes in both routing
tables. Such sets greatly increase the probability of delivering a message in the
presence of node failures. In HyCube, the size of this set is 16.

The neighborhood set should provide a possibility to route packets regard-
less of the direction in which the destination node is located. Therefore, it is
important that nodes in neighborhood sets be evenly distributed in respect of
directions. There might be a scenario where some nodes would have more neigh-
bors in one direction and no neighbors in other directions. In such a case, the
nodes would not be able to route packets in all directions (using neighborhood
sets). The problem becomes more significant in the presence of node failures.

Ensuring even distribution of nodes in respect of directions may cause some
more distant nodes to be included in neighborhood sets and pass over some closer
nodes. Thus, both, proximity and even distribution, should be considered.

The technique of ensuring even distribution of nodes adopted by HyCube splits
the space into parts (quadrants of the system of coordinates with the center in
the node whose neighborhood set is considered) and attempts to ensure that in
each part, the number of nodes is the same. Nodes are chosen to the particular
parts by proximity.

2.3 Routing

In each routing step, the cells from the primary routing table are selected that
correspond to nodes that share at least one group of d bits longer prefix of id

264 A. Olszak

with the destination node id than with the current node id. In a hierarchical
hypercube, these cells correspond to hypercubes in which the destination node
is located, at lower levels than the lowest level hypercube containing both, the
current and the destination node.

If no node is found, the cells from the secondary routing table are selected that
correspond to sibling hypercubes in the direction in which the destination node
is located, in each dimension, at levels log2 ddim! and �log2 ddim�, where ddim

is the distance from the current node to the destination node in the dimension
dim (the distance between the coordinates on the ring). Only those nodes that
share at least one d-bit group longer prefix of id with the destination node or
share the same number of d-bit groups but are closer to the destination than the
current node (according to the chosen metric) should be considered.

If still no nodes are found, all nodes from both routing tables and the neigh-
borhood set that share at least one d-bit group longer prefix with the destination
node or share the same number of d-bit groups but are closer to the destination
than the current node (according to the chosen metric) are considered.

From the set of the nodes selected in the steps above, the node sharing the
longest prefix of id with the destination (number of d-bit groups) is chosen. If
there is more than one such node, the node closest to the destination (according
to the routing metric in use) is chosen.

In the final part of a route, when a packet is relatively close to the destination
node, the routing algorithm may omit some nodes that are close to the destina-
tion, but do not share the same long or longer prefix of id with the destination
node than with the current node. The problem becomes more significant if a mul-
tidimensional metric is used. In HyCube, before choosing the next hop, each node
checks if the distance to the destination is shorter than the average distance to the
nodes in the neighborhood set multiplied by the factor λ: ddest < avg(dneigh) · λ.
If this condition is satisfied, all further nodes on the route are chosen based only
on their distance to the destination node. They might not share the same long
or longer prefix of the identifier. At first, nodes from the secondary routing table
at levels log2 ddim! and �log2 ddim� are checked. If no nodes are found, all nodes
from both routing tables and the neighborhood set are checked. The greater the
value of λ, the longer parts of routes will be determined based only on the distance
left. This value should be large enough to ensure a high probability of packet de-
livery. However, too large values of λ would cause an increase in path lengths. The
value 1, 35 was determined experimentally and is a good compromise between the
path length and the probability of packet delivery.

The expected route length is log2dN hops and, on average, log2dN ·(2d−1) cells
are populated in the primary routing table and (log2dN − 1) · d in the secondary
routing table, where N is the number of nodes in the network2.

3 Metric

The choice of the metric, i.e. how distances between nodes are determined, has a
great impact on the average route length and the probability of packet delivery.
2 Based on the assumption that nodes are distributed evenly in the space.

HyCube: A DHT Routing System 265

Choosing a one-dimensional metric allows the use of sequential neighbors, which
greatly improves the static resilience. If the number of sequential neighbors is s,
half are predecessors and half are successors of the node, the packet would be
dropped only if all s/2 nodes in the appropriate direction failed. However, the
use of sequential neighbors may cause a significant increase in path lengths in
the case of node failures, when many routing table cells are empty. In HyCube,
a multidimensional metric is used (a metric in a multidimensional space), which
significantly decreases the expected path length when routing using only neigh-
borhood sets. The expected path length equals d

√
N ·

√
d

2 , while for sequential
neighbors it is proportional to N . This fact becomes very important when con-
sidering network maintenance algorithms. By using a multidimensional metric,
the network loses properties connected with existence of sequential neighbors.
However, the use of the variable metric adopting the Steinhaus transform yields
better static resilience than with the use of sequential neighbors.

Let us consider routing using only neighborhood sets and assume that in
each step, the next hops are chosen only by the distance left to the destination,
without ensuring the prefix condition. Only some part of the neighborhood set
nodes is closer to the destination node than the current node. It is crucial that
the number of such nodes be as large as possible (so even in the case of many
node failures the packet will not be dropped). We may estimate the expected
ratio of the number of nodes to which the packet may be routed to the number
of all nodes in the neighborhood set as the probability that the packet may be
routed to a single node in the neighborhood set.

The most common metrics in Rn space are Minkowski distances:

Lm(x, y) =

(
d−1∑
i=0

|xi − yi|m
) 1

m

,m ≥ 1 (1)

In particular, L1 is the Manhattan (taxicab) distance, L2 is the Euclidean
distance and L∞ is the Chebyshev distance. L2 is the only metric from the
Minkowski distances that preserves distances between nodes after space rota-
tion. This causes some undesirable properties of metrics L1 and L3 to L∞. When
these metrics are used, if the destination node is located in different directions,
the expected numbers of nodes in the neighborhood set to which the packet may
be routed are different. For this reason, only L2 was considered.

If the Euclidean metric is used, the probability that a packet may be routed
to a node in the neighborhood set may be calculated as a function of k = d

r ,
where d is the distance left to the destination node and r is the distance from the
neighborhood set node to the current node. It is the ratio of the number of points
that are in the distance r from the current node and are closer to the destination
than d, to the number of all points being at the distance r from the current node.
To simplify, the numbers of points were determined as lengths of the curves,
areas of the surfaces and their equivalents for spaces with more dimensions. The
calculated values of the probability that a node in the neighborhood set is closer
to the destination (for varying numbers of dimensions) are presented in Fig. 2.
The figure shows that the number of nodes in the neighborhood set, to which

266 A. Olszak

a packet may be routed, strongly depends on k. The closer the packet is to the
destination node, the fewer appropriate nodes. The situation gets worse as the
number of dimensions increases. This fact has a great impact on static resilience
- fewer node failures may cause the packet to be dropped.

0

0,1

0,2

0,3

0,4

0,5

1 2 3 4 5 6 7 8 9 10

P

k

2 dimensions

3 dimensions

4 dimensions

Fig. 2. Probability that a node in the neighborhood set is closer to the destination

node than the current node

In [8], the Steinhaus transform was described. The theorem presented says
that if X is a set and D is a metric in this set, D′ is also a metric in X for any
a ∈ X , where:

D′(x, y) =
2D(x, y)

D(x, a) + D(y, a) + D(x, y)
(2)

Applying a metric with the Steinhaus transform for every route, setting a to
the id of the source node, causes the next hops to be chosen in such a way that
they are closer to the destination node and more distant from the source node.
Such a solution increases the expected number of neighborhood set nodes to
which packets can be routed in each step - it allows sending packets using more
roundabout routes, but still being convergent to the destination node.

The use of the Steinhaus transform yields very good routing parameters and
very high static resilience for networks containing relatively few nodes. For net-
works containing much more nodes, the addend D(x, a) in the denominator,
where x is the current node, has less influence on the value of the distance as its
changes in particular steps are very minor compared with the value of the entire
denominator. Thus, the more nodes in the network, the lesser the influence of the
Steinhaus transform on the static resilience. However, some modification can be
introduced - a variable metric adopting the Steinhaus transform, where point a
is changed by nodes on routes. Point a is initially set to the source node id. The
following nodes, before choosing the next hops, check whether they are closer
(in terms of the Euclidean metric) to the destination than the current point a.
In such a case, point a is changed and gets the value of the current node. Such
a way of changing point a ensures that the routing is convergent to the desti-
nation (there will be no cycles on routes) and gives a high level of flexibility in
the next hop selection along the whole route, regardless of the network size. The
expected route length is still proportional to d

√
N and owing to the increase in

the flexibility in the next hop selection, static resilience is even better than in

HyCube: A DHT Routing System 267

networks using sequential neighbors, which can be seen in the simulation results
presented in the remainder of the paper. Figure 3 presents a comparison of sim-
ulation results for different metrics for a 4-dimensional network containing 1000
nodes. The routing algorithm simulated did enforce the common id prefix length
condition. For comparison, if packets were routed using sequential neighbors, the
curve would keep at about 0.5, regardless of the distance left.

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

1 2 3 4 5 6 7 8 9 10

P

k

Euclidean
metric

Steinhaus
metric

Variable
Steinhaus
metric

Fig. 3. Probability that a packet may be routed to a node in the neighborhood set

The final steps of routing with the use of a metric with the Steinhaus transform
may cause a packet to be sent to a node that is more distant from the destination
than it would be if the Steinhaus transform was not applied. When a node on
a route cannot find the next hop in its routing tables and neighborhood set,
it is possible that the route is broken in a point that is not the closest one to
the destination in terms of the Euclidean metric. In some cases, it is crucial to
reach the closest possible node if the destination node is not reached. Thus, one
more modification was introduced to HyCube - when a packet cannot be routed
by a node, the node tries to route it based only on the Euclidean distance left
to the destination. All next hops after that should be chosen in the same way.
Such an approach will cause that in the case the packet is dropped, a relatively
close node to the destination is reached. From the experiments (for a network
containing 1000 nodes, with 50% failed nodes, routing using only neighborhood
sets), it appears that applying this phase in routing allows packets to be sent to
a closer node in 79% cases and also increases the static resilience of the network.

4 Experimental Results

This section presents experimental results obtained in simulations of HyCube
and Pastry. The properties evaluated were the static resilience and the average
route length (based only on successful routes). For this purpose, a network gen-
erator and a simulator were implemented. The network generator generates a
random network (HyCube or Pastry) containing the requested number of nodes
- random node identifiers and random nodes in routing tables. Neighborhood
sets are generated according to the criteria described in Section 2.2. The simula-
tor reads the network generated by the network generator and simulates routing

268 A. Olszak

between random pairs of nodes in the presence of varying numbers of random
node failures. A node failure means removing the node from the network and
from the routing tables of all nodes maintaining a reference to it.

Figure 4 presents the results of the simulations of static resilience of HyCube
containing 1000 and 10000 nodes with the use of different metrics. It can be
seen that for the network containing 10000 nodes, the influence of the Steinhaus
transform is very little. However, the variable Steinhaus metric gives a significant
increase in the successful path rate, regardless of the network size.

Fig. 4. Static resilience of HyCube - 1000 nodes (left) and 10000 nodes (right)

Figure 5 presents a comparison of simulation results of HyCube and Pastry
networks containing 10000 nodes. In the simulations, the secondary routing table
was not used (because it does not exist in Pastry). The figure shows that HyCube
is more resilient to node failures and the average route length is shorter than
in Pastry. The results prove that despite the absence of sequential neighbors, a
more robust architecture was achieved.

Fig. 5. Static resilience and path length increase in HyCube and Pastry (10000 nodes)

5 Conclusion

In this paper, the routing geometry and the routing algorithm of HyCube were
presented - a DHT network based on a hierarchical hypercube geometry.

The experimental results indicate that the most crucial in terms of efficiency
and static resilience was the choice of an appropriate metric and neighbor

HyCube: A DHT Routing System 269

selection algorithms (the way the nodes are chosen to the routing tables). The
simulations proved that the approach presented gives shorter average path lengths
in the case of many node failures in comparison to solutions using sequential
neighbors. The decrease in path lengths results from the use of a multidimen-
sional metric. However, despite the absence of sequential neighbors, a very high
level of static resilience was reached, which was achieved by the use of the vari-
able metric adopting the Steinhaus transform.

In comparison with Pastry, HyCube has better results both, in respect of the
packet delivery probability and the path length increase in the presence of node
failures. Moreover, HyCube has a very important advantage over Pastry - when
routing using only neighborhood sets, the average path length is proportional to
d
√
N , whereas when routing using only sequential neighbors, the expected path

length is proportional to the number of nodes in the network.
To summarize, HyCube is an efficient and credible implementation of a dis-

tributed hash table. It is scalable and provides efficient routing of messages, even
in the case of a large number of node failures.

References

1. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A

Scalable Peer-to-peer Lookup Service for Internet Applications. In: Proc. of the

ACM SIGCOMM 2001 Technical Conference, pp. 149–160 (2001)

2. Maymounkov, P., Mazières, D.: Kademlia: A Peer-to-peer Information System Based

on the XOR Metric. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS

2002. LNCS, vol. 2429, p. 53. Springer, Heidelberg (2002)

3. Rowstron, A.I., Druschel, P.: Pastry: Scalable, decentralized object location and

routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware

2001. LNCS, vol. 2218, p. 329. Springer, Heidelberg (2001)

4. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A Scalable Content-

Addressable Network. In: Proc. of the ACM SIGCOMM 2001 Technical Conference

(2001)

5. Malkhi, D., Naor, M., Ratajczak, D.: Viceroy: A Scalable and Dynamic Emulation

of the Butterfly. In: Proc. of the 21st ACM Symposium on Principles of Distributed

Computing, PODC 2002 (2002)

6. Gummadi, K., Gummadi, R., Gribble, S., Ratnasamy, S., Shenker, S., Stoica, I.:

The impact of DHT routing geometry on resilience and proximity. In: Proc. of the

2003 Conference on Applications, Technologies, Architectures, and Protocols For

Computer Communications, SIGCOMM 2003 (2003)

7. Plaxton, C.G., Rajaraman, R., Richa, A.W.: Accessing Nearby Copies of Replicated

Objects in a Distributed Environment. In: Proc. of the 9th Annual ACM Symposium

on Parallel Algorithms and Architectures, pp. 311–320 (1997)

8. Clarkson, K.L.: Nearest-Neighbor Searching and Metric Space Dimensions. In:

Nearest-Neighbor Methods for Learning and Vision: Theory and Practice. MIT

Press, Cambridge (2006)

Accuracy and Performance of Single versus

Double Precision Arithmetics for Maximum
Likelihood Phylogeny Reconstruction

Simon A. Berger and Alexandros Stamatakis�

The Exelixis Lab, Dept. of Computer Science, Technische Universität München

Boltzmannstr. 3, 85748 Garching b. München, Germany

{bergers,stamatak}@in.tum.de

http://wwwkramer.in.tum.de/exelixis/

Abstract. The multi-core revolution and the biological data flood that

is generated by novel wet-lab techniques pose new technical challenges

for large-scale inference of phylogenetic trees from molecular sequence

data. We present the first assessment of accuracy and performance trade-

offs between single and double precision arithmetics and the first SSE3

vectorization for computing the Phylogenetic Likelihood Kernel (PLK)

which forms part of many state-of-the art tools for phylogeny reconstruc-

tion and consumes 90-95% of the overall execution time of these tools.

Moreover, the PLK also dominates memory consumption, which means

that deploying single precision is desirable to accommodate increasing

memory requirements and to devise efficient mappings to GPUs. We find

that the accuracy provided by single precision is sufficient for conduct-

ing tree searches, but that the increased amount of scaling operations

to prevent numerical underflow, even when using SSE3 operations that

accelerate the single precision PLK by 60%, generates run-time penal-

ties compared to double precision on medium-sized datasets. However,

on large datasets, single precision can yield significant execution time

savings of 40% because of increased cache efficiency and also reduces

memory footprints by 50%.

Keywords: Phylogenetic inference, single versus double precision arith-

metics, RAxML, Maximum Likelihood, SSE3 instructions.

1 Introduction

The emergence of many-core architectures and accelerator devices as well as the
moleculardatafloodgeneratedbynovelhigh-throughputsequencing techniques re-
quire new approaches for orchestrating compute-intensive Bioinformatics kernels.

Within this context, we assess speed and accuracy trade-offs between sin-
gle precision (henceforth abbreviated as SP) and double precision (henceforth

� This work is funded under the auspices of the Emmy-Noether program by the Ger-

man Science Foundation (DFG).

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 270–279, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://wwwkramer.in.tum.de/exelixis/

Accuracy and Performance of Single versus Double Precision Arithmetics 271

abbreviated as DP) floating point arithmetics for the Phylogenetic Likelihood
Kernel (PLK [1]) that is used to reconstruct phylogenetic (evolutionary) trees
from molecular sequence data.

A phylogenetic tree is an unrooted binary tree that represents the evolution-
ary relationships among species. The input of a phylogenetic analysis is a mul-
tiple sequence alignment comprising nucleotide or protein sequence data from
organisms that are alive today. The alignment is an n × m data matrix, that
contains, e.g., n DNA sequences which all have a length of m nucleotide charac-
ters (columns/sites). The output is an unrooted binary tree that represents the
evolutionary history of those organisms. The tips (also called leaves or taxa) of
the tree represent species alive today in contrast to internal (ancestral) nodes
that represent species that have become extinct.

The PLK is one of the most widely used optimality criteria to score and thus
chose among distinct evolutionary scenarios (phylogenetic trees). Many program
packages are available that implement the PLK, either for standard Maximum
Likelihood analyses (RAxML [2], GARLI [3]) or to conduct Bayesian phylogenetic
inference (MrBayes [4], BEAST [5]). All PLK-based phylogenetic inference pro-
grams spend the largest part of overall run time (90-95%) in the computation of
the likelihood function [6]. The aforementioned tools are widely used by biologists
and have accumulated over 20,000 citations. Therefore, it is important to assess
and devise HPC solutions for this important Bioinformatics kernel.

We present the first accuracy assessment between SP and DP arithmetics for
the PLK and also exploit the usage of SSE3 instructions in the PLK. SP arith-
metics can also solve memory bottlenecks in analyses of large-scale phylogenomic
datasets that can already require up to 120GB of main memory under DP. The
deployment of SP for the PLK can reduce memory requirements by almost 50%.
SP arithmetics are also required to map the PLK onto GPUs, since at present
SP arithmetics are approximately one order of magnitude faster than DP arith-
metics on GPUs. We find that SP arithmetics are sufficiently accurate to conduct
ML-based tree searches on trees with less than approximately 2,000 taxa and
hence can be used for accelerating the kernel on Graphics Processing Units.
We also achieve performance improvements of more than 40% (DP) and 60%
(SP) via deployment of SSE3 instructions on general purpose CPUs. Finally, we
demonstrate that SP can be used to significantly accelerate PLK computations
on large phylogenomic datasets because of increased cache efficiency.

The remainder of this paper is organized as follows: In Section 2 we briefly
describe how the likelihood is calculated on phylogenetic trees. Thereafter, we
cover related work on floating point implementations and usage of accelerators
for the PLK (Section 3). In Section 4 we describe the SSE3 and SP implementa-
tions and provide experimental results in the subsequent Section 5. We conclude
in Section 6.

2 Computing the Likelihood of a Tree

The input of a standard phylogenetic analysis consists of a multiple sequence
alignment with n sequences (taxa/tips) and m alignment columns. The output

272 S.A. Berger and A. Stamatakis

is an unrooted binary tree; the n taxa are located at the leaves of the tree and the
inner nodes represent common extinct ancestors. The branch lengths essentially
represent the relative time of evolution between nodes in the tree. To compute
the likelihood on a fixed tree topology several additional ML model parameters
are required: the instantaneous nucleotide substitution matrix Q which contains
the transition probabilities for time dt between nucleotide (4 × 4 matrix) or
Amino Acids (20 × 20 matrix) characters. Additionally, the prior probabilities
of observing the nucleotides, e.g., πA, πC , πG, πT (for DNA data), and the α
shape parameter that forms part of the Γ model [7] of rate heterogeneity need
to be determined. The Γ model accounts for the fact that different sites evolve
at different speeds. Finally, one also requires the 2n − 3 branch lengths in the
unrooted tree topology.

To compute the likelihood of a fixed unrooted binary tree topology given
these parameters, initially one needs to compute the entries for all internal
probability vectors (located at the inner nodes) that contain the probabilities
P (A), P (C), P (G), P (T), of observing an A,C,G, or T at each site/column c of
the input alignment at the specific inner node. Those probability vectors are
computed bottom-up from the tips towards a virtual root that can be placed
into any branch of the tree using a procedure known as the Felsenstein pruning
algorithm [1]. Under certain standard model restrictions (time-reversibility of
the model) the likelihood score will be the same, regardless of the placement of
the virtual root.

Every probability vector entry L(c) at a position c (c = 1...m) of the tips and
the inner nodes of the tree topology, contains the four probabilities P (A), P (C),
P (G), P (T) of observing a nucleotide A, C, G, T, at a specific column c of the
input alignment. The probabilities at the tips (leaves) of the tree for which ob-
served data is available are set to 1.0 for the observed nucleotide character at the
respective position c, e.g., for the nucleotide A: L(c) = [1.0, 0.0, 0.0, 0.0]. Given
a parent node k, and two child nodes i and j (with respect to the virtual root),
their probability vectors L(i) and L(j), the respective branch lengths leading
to the children bi and bj, and the transition probability matrices P (bi), P (bj),
the probability of observing an A at position c of the ancestral (parent) vector
L

(k)
A (c) is computed as follows:

L
(k)
A (c) =

(T∑
S=A

PAS(bi)L
(i)
S (c)

)(T∑
S=A

PAS(bj)L
(j)
S (c)

)
(1)

The transition probability matrix P (b) for a given branch length is obtained
from Q via P (b) = eQb. Once the two probability vectors L(i) and L(j) to the
left and right of the virtual root (vr) have been computed, the likelihood score
l(c) for an alignment column c (c = 1...m) can be calculated as follows, given
the branch length bvr between nodes i and j:

l(c) =

T∑
R=A

(
πRL

(i)
R (c)

T∑
S=A

PRS(bvr)L
(j)
S (c)

)
(2)

Accuracy and Performance of Single versus Double Precision Arithmetics 273

The overall score is then computed by summing over the per-column log likeli-
hood scores: LnL =

∑m
c=1 log(l(c)).

An important property of the likelihood function is the assumption, that
sites evolve independently, i.e., all entries c of the probability vectors L can be
computed independently. This property represents the main source of fine-grain
parallelism in the PLK [6].

In order to compute the Maximum Likelihood value for a fixed tree topology
all individual branch lengths, as well as the parameters of the Q matrix and
the α shape parameter, must also be optimized via an ML estimate. For the Q
matrix and the α shape parameter the most common approach consists in using
Brent’s algorithm. In order to evaluate changes in Q or α the entire tree needs
to be re-traversed, i.e., a full tree traversal needs to be conducted in order to
correctly re-compute the likelihood. For the optimization of branch lengths, the
Newton-Raphson method is commonly used. In order to optimize the branches
of a tree, the branches are repeatedly visited and optimized one-by-one until the
achieved branch length change is smaller than some pre-defined ε. The bulk of
all of the likelihood computations consists of for-loops over the length m of the
vectors L. These for-loops require for instance 95% of total execution time in
RAxML.

Avoiding Numerical Underflow: The methods deployed for avoiding numer-
ical underflow represent an important implementation and performance issue.
As can be derived from Formula 1, the values in the probability vectors L at
the inner nodes of the tree will progressively become smaller as we approach the
virtual root, since we are conducting successive multiplications with the proba-
bility values in the transition probability table P . Especially for trees with many
taxa, measures need to be taken to avoid numerical underflow in the probability
vectors.

The scaling in RAxML is conducted as follows: At a column c of an ancestral
probability vector L we scale the entries if LA(c) < ε ∧ LC(c) < ε ∧ LG(c) <
ε ∧ LT (c) < ε, where ε = 1/2256 for DP and ε = 1/232 for SP. If probability
vector column c at vector L needs to be scaled, we simply multiply all entries
LA(c),LC(c),LG(c),LT (c) by 2256 (DP) and 232 (SP) respectively. In order to
annihilate the scaling events at the virtual root we keep track of the total number
of scaling events conducted per column by using integer vectors U that maintain
the scaling events and correspond to the respective probability vectors. At the
virtual root, given L(i),L(j) and the corresponding scaling vectors U (i),U (j) we
compute the likelihood as follows:

l(c) =
1

2256

U(i)(c)+U(j)(c)(T∑
R=A

(
πRL

(i)
R (c)

T∑
S=A

PRS(bvr)L
(j)
S (c)

))
(3)

If we take the logarithm of l(c) and ε = 1/2256 this can be re-written as:

log(l(c)) = (U (i)
(c) + U (j)

(c))log(ε) + log
(T∑

R=A

(
πRL

(i)
R (c)

T∑
S=A

PRS(bvr)L
(j)
S (c)

))
(4)

274 S.A. Berger and A. Stamatakis

Memory Requirements: The memory requirements for ML-based phylogeny
programs are dominated by the space required for the inner probability vectors
L and the inner scaling vectors U . Depending on the memory organization
and data structures used, we need to assign at least one probability vector and
one scaling vector to each of the n − 2 inner nodes of the tree. Since for the
values at the leaves we only have 15 alternative probability vector entries using
ambiguous DNA character encoding, we only need to store one vector L of length
15 which can then be accessed using the input sequences as index. The input
sequences can be stored as simple char arrays. Hence, the memory requirements
for computing the likelihood on a DNA alignment (without accommodating for
rate heterogeneity) with n taxa and m columns requires n·m·1 bytes for the input
sequences, (n−2)·m ·4 ·8 bytes for the probability vectors and (n−2)·m ·4 bytes
for the scaling vectors. If we use the standard Γ model of rate heterogeneity the
space requirements for the probability vectors increase to (n−2) ·m ·16 ·8 bytes.
Hence, the memory requirements are dominated by the space required for the
inner probability vectors and can be reduced by factor 2 using SP arithmetics.
This is an important issue since we are receiving an increasing number of reports
from RAxML users that encounter memory shortages.

3 Related Work

We are not aware of any related work that assesses accuracy and speed trade-
offs between SP and DP floating point arithmetics for the PLK. However, such
analyses have been conducted for standard numerical linear algebra kernels,
e.g., systems of linear equations [8] where the authors propose a mixed precision
approach, i.e., an initial optimization under SP and a final refinement under
DP. Such a procedure that dynamically switches from SP to DP, could also
be applied to phylogenetic inference, i.e., one could initially infer a rough tree
structure (the big picture) under SP and then refine it under DP. However, we
find that this is not necessary and that the loss of accuracy is insignificant with
respect to the tree topology (see Section 5).

Nonetheless, there is some on-going work to port GARLI [3] to SP (Derrick
Zwickl, personal communication) for the same reasons as RAxML. Surprisingly,
no efforts have been undertaken and published with respect to deploying SSE
instructions to improve performance of the PLK on new-generation x86 archi-
tectures. The only documented usage of SIMD instructions for the PLK on the
CELL processor is described in [9].

MrBayes [4], which is a program for Bayesian phylogenetic inference, has
been ported down to SP five years ago, mainly to better accommodate the sig-
nificantly larger memory requirements caused by the multiple heated and cold
Markov Chains in the Metropolis-Coupled search procedure. Bayesian floating
point implementations are more straight-forward since no iterative procedures
(Newton-Raphson, Brent’s algorithm) are required to optimize ML model pa-
rameters. We are also not aware of any study that deals with the accuracy
trade-offs regarding tree topologies in MrBayes following the transition from DP

Accuracy and Performance of Single versus Double Precision Arithmetics 275

to SP. In addition, the MrBayes source code also contains SSE3 instructions, but
potential performance gains have not been documented and SSE3 does not form
part of the standard distribution. Finally, increased scaling events for SP also oc-
cur in MrBayes. According to profiling runs of MrBayes using gprof within the
framework of an OpenMP parallelization, we found that the scaling procedure
requires approximately 20% of overall execution time.

The Bayesian program BEAST [5] has also recently been ported to SP in
order to be mapped to a GPU (Bioinformatics, in press, preprint at
http://tree.bio.ed.ac.uk/publications/390/). The porting to SP was
mainly conducted for efficiently computing 60-state Codon models on GPUs
for which impressive speedups of two orders of magnitude are achieved. How-
ever, the speedup obtained in comparison to a DP C implementation for DNA
data between CPU and GPU is only around factor 4 since the mathematical op-
erations that are required for a 4-state transition matrix can not be mapped as
efficiently to a GPU. Moreover, the performance comparison between GPU and
CPU could be improved in favor of the CPU. The code on the multi-core CPU,
an Intel Core 2 Extreme with a total of 4 cores, is run sequentially and not using
an OpenMP or Pthreads-based fine-grained parallelization of the PLK, i.e., a
speedup of factor 4 could be achieved via multi-threading. If SSE3 instructions
were deployed for the PLK, an additional two-fold speedup over the GPU could
be achieved. Finally, the performance analysis is only conducted using a single 63
taxon dataset. Hence, a potential performance degradation caused by increased
scaling events as more taxa are added to the alignment is not assessed.

4 Implementation

Single Precision Version: The SP version of RAxML was implemented us-
ing a similar strategy as in MrBayes. We still conduct a large portion of the
numerically sensitive operations, like base frequency computations or Eigen-
value/Eigenvector decomposition that are required to compute P (t) = eQt in
DP and then cast the P (t) matrix to SP. We also compute the derivatives of
P (t) that are required for conducting the Newton-Raphson procedure for branch
length optimization in DP and then cast them to SP. Thus, only the main bulk
of operations as outlined in Equations 1 and 2 is actually conducted under SP.
Based on prior experience with several unsuccessful attempts to port RAxML to
SP, this approach seems to yield the numerically most stable implementation.

Finally, we also empirically adapted (increased) various ε settings that deter-
mine the number of iterations in the Newton-Raphson as well as in the iterative
procedures for optimization of the remaining ML model parameters Q and α.
The convergence parameters were adapted in such a way that the SP version
carries out approximately as many iterations for branch length and ML model
parameter optimization as the DP version. These increased settings yield slightly
worse likelihood scores than the DP version, but we find that this has no signif-
icant impact on the relative likelihood-based order of trees (see Section 5).

http://tree.bio.ed.ac.uk/publications/390/

276 S.A. Berger and A. Stamatakis

SSE3 for Likelihood Computations: We vectorize computations that are
special cases of a general dense matrix multiplication; the computations on L(i)

and L(j) in Formula 1 over all sites c and all nucleotides A, C, G, T are matrix
products of the form P · L(i) and P · L(j). We assessed the usage of highly
optimized ATLAS-BLAS routines [10], but because of the unfavorable matrix
dimensions (multiplication of the 4 × 4 matrix P with the 4 × m matrix L) we
even observed a slowdown. We also deploy the horizontal addition instructions
in SSE3 for the reduction operations that are required to efficiently complete
the scalar product as indicated in Formula 1.

SSE3 for Likelihood Scaling: We also vectorized the scaling procedure as
outlined in Section 2 using SSE3. This is particularly important for the SP
implementation, since the number of scaling events increases by one order of
magnitude (see Figure 2). SSE3 instructions are used to efficiently determine the
maximum value of LA(c),LC(c),LG(c),LT (c) (see Section 2) and then compare
the maximum to the ε value, thereby eliminating several conditional statements.
SSE3 vectorization was implemented by inserting SSE3 intrinsics into the C code,
rather than via inline assembly. This leaves room for further optimizations of the
instruction schedule and register allocation by the compiler. It is important to
note that, the Intel icc compiler (v 11.1) is not able to vectorize the for-loops
of the PLK, despite numerous attempts to re-write the loops for facilitating
auto-vectorization.

5 Experimental Setup and Results

To assess accuracy of the SP versus the DP version we initially generated collec-
tions of “good” trees that are encountered during a tree search under DP on 9
single-gene real-world DNA datasets containing 150 up to 1,908 taxa. Thereafter,
we applied the RAxML function for scoring a set of trees (-f n option, for de-
tails please refer to the RAxML Manual) under the standard GTR+Γ model of
nucleotide substitution to score the respective tree collections under SP and DP.
The absolute likelihood values are not important for a tree search, but only the
relative scores, i.e., how well can our SP implementation discriminate between
alternative trees via the likelihood value. To this end, we computed the Spear-
man rank correlation coefficient ρ between the likelihood-based tree rankings
obtained via DP and SP tree evaluations to assess if SP provides a sufficient de-
gree of accuracy. We also used the above experiments to obtain execution times
for the SP and DP versions, as well as for the SSE3-based and standard versions
of the code. As test platform we used a SUN x4600 multi-core system equipped
with 32 AMD Opteron cores running at 2.7GHz and a total of 64GB of RAM.
We used gcc (v. 4.3.2) to compile all versions of the code.

In Table 1 we provide the number of taxa in the test datasets (column:
taxa), the number of trees in the respective tree collections (column:
trees), the Spearman correlation between SP and DP likelihood-based tree orders
(column: ρ), the speedup between the standard SP and DP versions (column:
S/D), between the SSE3-based SP and DP versions (column: S-SSE3/D-SSE3),

Accuracy and Performance of Single versus Double Precision Arithmetics 277

-167520

-167500

-167480

-167460

-167440

-167420

-167400

-167380

-167520 -167500 -167480 -167460 -167440 -167420 -167400 -167380

Li
ke

lih
oo

d
(f

lo
at

)

Likelihood (double)

Fig. 1. Scatter plot of SP and DP tree scores for a datasets with 1,604 sequences

between the standard and SSE3-based SP versions (column: S-SSE3/S) and be-
tween the standard and SSE3-based DP versions (column: D-SSE3/D). Overall,
the order of trees induced by SP and DP likelihood scores is highly correlated
and hence SP suffices to conduct full tree searches. In Figure 1 we provide a
scatter plot of SP versus DP likelihood scores for the worst-case Spearman co-
efficient of 0.95 on the alignment with 1,604 taxa. The average slowdown of SP
over DP is approximately factor 2, but improves to 1.5 for the respective SSE3
implementations. This improvement is due to the higher speed gains of approxi-
mately 60% in the SP SSE3 implementation compared to about 40% in the DP
SSE3 implementation.

Table 1. Test datasets, number of trees in tree collections, Spearman coefficients, and

speedup values between all code versions

taxa # trees ρ SP/DP SP-SSE3/DP-SSE3 SP-SSE3/SP DP-SSE3/DP

150 200 0.99 1.39 0.83 0.36 0.61

218 260 0.99 2.58 1.71 0.42 0.64

354 160 0.97 1.44 0.78 0.36 0.67

500 300 0.99 2.31 1.62 0.44 0.63

628 180 0.95 1.39 0.80 0.36 0.62

714 320 0.99 2.41 1.70 0.43 0.61

1,512 520 0.99 2.63 1.82 0.44 0.63

1,604 220 0.95 2.38 1.69 0.40 0.63

1,908 360 0.99 1.29 0.78 0.40 0.66

In Figure 2 we outline the number of scaling events over the number of taxa
(note the log scale on the y-axis) for the evaluation of a single tree. As men-
tioned before, the SP version requires about one order of magnitude more scaling
operations. In Figure 3 we provide corresponding execution times (note the log
scale on the y-axis) for the evaluation of a single tree using the standard SP and

278 S.A. Berger and A. Stamatakis

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

sc

al
in

g
ev

en
ts

taxa

single precision
double precision

Fig. 2. Number of scaling events for SP

and DP versions over the number of taxa

 10

 100

 1000

 10000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

tim
e

(s
)

taxa

single precision
double precision

Fig. 3. Execution times in seconds for SP

and DP versions over the number of taxa

DP versions of the code. The similar shapes of the two curves clearly show that
scaling operations dominate SP run times.

In a second set of experiments we measured execution times and inference
accuracy for the Pthreads-based RAxML code on a large-scale phylogenomic
protein dataset with 321,145 distinct alignment patterns and 232 taxa which
requires approximately 40GB of RAM under DP and the Γ model of rate het-
erogeneity. On a 16-core SUN x4600 system (code without SSE3) we found that
an inference under SP is 40% faster and yields an equally good final tree, when
scored under DP, while reducing the memory requirements to 20GB. On a 32-
core SUN x4600 system (code with SSE3) we found that the SP-based code using
the CAT approximation of rate heterogeneity [11] is three times faster than a
standard Γ -based inference under DP, yields a slightly better final likelihood
score, and only requires 5GB of main memory.

Finally, we also assessed numerical stability on alignments containing ≥ 2,000
taxa and found that the code encounters problems with numerical stability
on such large alignments under SP. Similar observations were made by Der-
rick Zwickl (personal communication) on his SP implementation of GARLI, i.e.,
problems with numerical stability on many-taxon datasets seems to be a general
problem.

6 Conclusion

We have presented the first thorough assessment of accuracy and speed trade-offs
with respect to using SP versus DP floating-point arithmetics for the Phyloge-
netic Likelihood Kernel in a Maximum Likelihood framework. In addition, we
have conducted the first SSE3-based vectorization of the PLK. Our results indi-
cate that SP can be deployed to accurately infer phylogenetic trees with less than
2,000 taxa. In addition, SP arithmetics significantly reduce memory requirements
of large phylogenomic analyses and substantially improve inference times via in-
creased cache efficiency. Thereby, in combination with the CAT approximation
of rate heterogeneity, we can design tools that enable large-scale phylogenomic

Accuracy and Performance of Single versus Double Precision Arithmetics 279

inference “for the masses” by significantly reducing computational resource re-
quirements. We also find that, SSE3 yields significant run time improvements;
we achieve 60% for SP and approximately 40% for DP. Thus, users can chose
between the DP-SSE3 and SP-SSE3 versions for DNA or protein data in the
current RAxML release (v. 7.2.3), depending one their memory and CPU time
constraints as well as on the alignment shape.

Future work, will cover a more detailed analysis of the numerical stability on
many-taxon datasets as well as work on a GPU version of RAxML.

References

1. Felsenstein, J.: Evolutionary trees from DNA sequences: a maximum likelihood

approach. J. Mol. Evol. 17, 368–376 (1981)

2. Stamatakis, A.: RAxML-VI-HPC: maximum likelihood-based phylogenetic analy-

ses with thousands of taxa and mixed models. Bioinformatics 22(21), 2688–2690

(2006)

3. Zwickl, D.: Genetic Algorithm Approaches for the Phylogenetic Analysis of Large

Biological Sequence Datasets under the Maximum Likelihood Criterion. PhD the-

sis, University of Texas at Austin (April 2006)

4. Ronquist, F., Huelsenbeck, J.: MrBayes 3: Bayesian phylogenetic inference under

mixed models. Bioinformatics 19(12), 1572–1574 (2003)

5. Drummond, A., Rambaut, A.: BEAST: Bayesian evolutionary analysis by sampling

trees. BMC Evol. Biol. 7(214), 1471–2148 (2007)

6. Ott, M., Zola, J., Aluru, S., Stamatakis, A.: Large-scale Maximum Likelihood-

based Phylogenetic Analysis on the IBM BlueGene/L. In: Proc. of IEEE/ACM

Supercomputing Conference 2007, SC 2007 (2007)

7. Yang, Z.: Maximum likelihood phylogenetic estimation from DNA sequences with

variable rates over sites. J. Mol. Evol. 39, 306–314 (1994)

8. Kurzak, J., Dongarra, J.: Implementation of mixed precision in solving systems of

linear equations on the Cell processor. Concurrency and Computation 19(10), 1371

(2007)

9. Blagojevic, F., Nikolopoulos, D.S., Stamatakis, A., Antonopoulos, C.D.: RAxML-

Cell: Parallel Phylogenetic Tree Inference on the Cell Broadband Engine. In: Proc.

of International Parallel and Distributed Processing Symposium, IPDPS 2007

(2007)

10. Whaley, R., Dongarra, J.: Automatically tuned linear algebra software (ATLAS).

In: Proc. Supercomputing, vol. 98 (1998)

11. Stamatakis, A.: Phylogenetic Models of Rate Heterogeneity: A High Performance

Computing Perspective. In: Proc. of IPDPS 2006. HICOMB Workshop, Proceed-

ings on CD, Rhodos, Greece (April 2006)

Automated Design of Assemblable, Modular,

Synthetic Chromosomes

Sarah M. Richardson1,2, Brian S. Olson3, Jessica S. Dymond1,4,
Randal Burns6, Srinivasan Chandrasegaran5, Jef D. Boeke1,4,

Amarda Shehu3, and Joel S. Bader1,7

1 High Throughput Biology Center, Johns Hopkins University School of Medicine,

Baltimore, MD 21205, USA
2 McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School

of Medicine, Baltimore, MD 21205, USA
3 Department of Computer Science, George Mason University, Fairfax, VA 22030

4 Department of Molecular Biology and Genetics, Johns Hopkins University School

of Medicine, Baltimore, MD 21205, USA
5 Department of Environmental Health Sciences, Johns Hopkins University

Bloomberg School of Public Health, Baltimore, MD 21205, USA
6 Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218

7 Department of Biomedical Engineering, Johns Hopkins University,

Baltimore MD 21218

Abstract. The goal of the Saccharomyces cerevisiae v2.0 project is the

complete synthesis of a re-designed genome for baker’s yeast. The result-

ing organism will permit systematic studies of eukaryotic chromosome

structure that have been impossible to explore with traditional gene-at-

a-time experiments. The efficiency of chemical synthesis of DNA does

not yet permit direct synthesis of an entire chromosome, although it is

now feasible to synthesize multi-kilobase pieces of DNA that can be com-

bined into larger molecules. Designing a chromosome-sized sequence that

can be assembled from smaller pieces has to date been accomplished by

biological experts in a laborious and error-prone fashion. Here we pose

DNA design as an optimization problem and obtain optimal solutions

with a parallelizable dynamic programming algorithm.

1 Introduction

Synthetic biology requires careful design of nucleotide sequences. Practical ap-
plications of synthetic biology include modifying proteins through amino acid
changes and redesigning multi-gene pathways. Synthetic biology enables the
study of genes that are difficult to manipulate by traditional means, such as
ancestral genes inferred from phylogenetic studies of extant biological sequences.

Design tools for synthetic DNA sequences have been limited primarily to gene-
length sequences. For example, GeneDesign assists gene editing and synthesis
at the physical level of nucleotides and oligos that can be ordered and used in-
house for inexpensive gene assembly [1]. Other software packages perform logical-
level checks of the syntax and grammar of well-formed transcriptional units,

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 280–289, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Automated Design of Assemblable, Modular, Synthetic Chromosomes 281

such as whether genes have promoters, start codons, non-inhibitory secondary
structures, and properly located termination sequences [2,3].

While full genomes are an attractive synthesis target, scaling up synthetic
routes from genes (thousands of nucleotides) to genomes (millions of nucleotides)
is proving difficult [4]. Some groups have avoided this problem by focusing on
genomes so small that they can be put together exactly as though they were
merely very large genes, as the Endy group did when refactoring part of the 39
kilobase (kb) genome of bacteriophage T7 [5]. This approach is limited to vi-
ral genomes [6] or bacterial plasmids and is impractical for groups interested in
larger prokaryotes or eukaryotes. Other groups are using a top-down approach,
which involves taking an existing genome and editing it in place as the Blattner
group did for Escherichia coli [7], with edits usually limited to deletions rather
than insertions or substitutions. Alternatively, a bottom-up approach was used to
synthesize the entire bacterial Mycoplasma genitalium genome [8]. Overlapping
oligos were assembled into larger cassettes, combined in yeast into a complete
genome. Ultimately it must be transplanted as a complete genome into the host
cell, which has been achieved for natural but not synthetic DNA [9]. The obli-
gate parasite M. genitalium has a single 582 kb circular genome, much smaller
than the 4.7 megabase (Mb) E. coli. The bottom-up approach is unlikely to
scale to larger synthetic targets and delays integration and testing to the very
end.

Our group has launched an effort to synthesize the genome of the yeast Sac-
charomyces cerevisiae. Yeast has a 12 Mb genome comprising sixteen linear chro-
mosomes, ten of which are each larger than the entire genome of M. genitalium,
and the smallest of which is five times larger than the genome of T7. As a eu-
karyote, yeast has more chromosomal features than viral and bacterial genomes.
Our synthetic target is an edited version of the native yeast genome that includes
the biological equivalent of debug statements that will allow us to identify and
remove the DNA-equivalent of dead code and probe the cryptic function of non-
protein-coding regulatory sequences, many of which await discovery by methods
such as ours.

The synthetic strategy combines bottom-up synthesis with in-place editing,
which permits it to scale to whole chromosomes and genomes. In a hierarchical
procedure, DNA sequences of 60 nucleotides are ordered and combined using
PCR and genetic engineering into larger synthetic pieces that can then be in-
troduced into yeast to replace cognate wild-type sequences through homologous
recombination. The experimental workflow is sufficiently streamlined for adapta-
tion to undergraduate teaching laboratories [10]. This strategy should therefore
be a valuable addition to the field of synthetic biology.

Our synthetic strategy, and genetic engineering in general, requires the use
of restriction enzymes to cut and recombine DNA molecules at enzyme-specific
recognition sites, also termed restriction or cut sites. Requirements for the occur-
rence of suitable restriction sites introduce constraints on any target sequence
we wish to synthesize. If a synthetic target does not satisfy the constraints,
it is possible to modify the target by editing its DNA sequence, at the cost of

282 S.M. Richardson et al.

possibly introducing unwanted and unpredictable changes to biological function.
Restriction enzymes have varying prices, and less expensive enzymes often per-
form better. Furthermore, solutions with roughly equal spacing between cut sites
are preferred to solutions with widely varying spacings.

Optimal design has been a practical problem for our in-house project because
the combinatorial complexity prevents human experts from reliably generating
acceptable error-free solutions, and there are too many sub-optimal solutions
for a brute-force computational enumeration. Our design requires that a chro-
mosome be split into 10 kb chunks delimited by restriction enzyme cut sites.
We permit the chunk boundaries to vary within a 1000 nt window to include
protein-coding regions where we can introduce restriction enzyme cut sites by
synonymous recoding of protein-coding sequences. The yeast genome is 70%
protein-coding, and each 1 kb interval contains approximately 700 protein-coding
nucleotides, or codons for 233 amino acids. Due to genetic code redundancy, a
restriction enzyme with a 6-bp recognition site will usually recognize at least 6
different amino acid pairs (three reading frames, two directions). The probability
that 6 pairs out of the 202 total possible pairs are absent in a 233 amino acid
sequence is approximately e−233×6/400, or 3%. This theoretical expectation that
each possible 6-cutter is individually feasible for each cut site is borne out in
practice. With over 100 restriction enzymes with 6-nt recognition readily avail-
able, there are over 10026 possible solutions for a small yeast chromosome. A
larger chromosome requiring 130 cut sites could have a search space of 100130

solutions. We found that top-down, greedy approaches are inefficient because
feasible solutions are sparse, and even algorithms with long look-aheads lead to
dead ends.

Here we formulate optimal design as a constrained optimization problem for
a combined cost reflecting the edit distance and the efficiency of the synthetic
strategy. We present an algorithm that computes the optimal solution. The
algorithm uses a parallelizable indexing step to catalog all edits that are un-
likely to affect gene function (i.e., those that involve purely synonymous base
substitutions). Next, the algorithm uses dynamic programming to divide the
search into optimal sub-problems that can be computed in parallel. It uses
dead-end elimination to remove sub-optimal paths from the search tree. A re-
cent human design for 90 kb assisted with available computational tools re-
quired over 40 man-hours of work. Scaling to the yeast genome would require
nearly 3 years of this dedicated expert. In contrast, our implementation takes
2.5 minutes for the same 90 kb region, roughly a 1000× speed-up, and only 5
to 6 hours for the entire genome. Furthermore, the algorithm produces output
that is superior to all of our expert-generated results, allowing us to quickly
create several plans of action for inspection and evaluation — and perhaps con-
current synthesis. The algorithm is implemented in Perl and Python for com-
patibility with our existing synthetic biology software and for access to core
I/O and visualization functionality from the Generic Model Organism Database
project [11].

Automated Design of Assemblable, Modular, Synthetic Chromosomes 283

2 Biological Constraints

Restriction enzymes are proteins that cleave DNA at exquisitely predictable
recognition sites. We use a set of 121 commercially-available enzymes from RE-
BASE [12], a restriction enzyme database. Genetic engineering techniques often
require that an enzyme has one, and only one, recognition site in a large piece
of DNA. Sites must therefore be rare (to avoid multiple cuts) but not too rare
(to avoid the absence of a site altogether). Synthetic biology offers the ability
to manipulate the distribution of recognition sites in target DNA molecules by
recoding the native sequence to add or remove recognition sites. That is, we
can place n − 1 restriction enzyme recognition sites very precisely in our syn-
thetic sequence, and then, rather than synthesizing a single long molecule, we
can synthesize and assemble n shorter molecules, cut them with the appropriate
enzymes, and ligate them together into the long molecule we wish to obtain.

For instance, the enzyme BamHI will cut any double stranded DNA molecule
that contains its recognition site 5′ GGATCC 3′, striking asunder both strands
between G and GATCC: 5′ G

3′ C

|GATC
CTAG|

C 3′
G 5′ . The two double-stranded cleavage products

can be ligated back to their original partners in a process called re-ligation, or
ligated to other pieces of DNA that have been cut with enzymes that leave the
same “overhang”. In the case of BamHI, cleavage leaves two DNA molecules,
both with overhangs that read 5′ GATC 3′. Because this overhang sequence is
palindromic (note that palindromes in DNA are distinct from natural language
due to antiparallel DNA strands), the two species of cleavage products may ligate
to themselves or to each other, yielding a mix of three ligation products. Mixed
products are undesirable because they reduce the yield of the desired product
and produce potentially inhibitory or deleterious side-products. Enzymes leav-
ing non-palindromic overhangs are much more desirable because they ensure a
single canonical product from an assembly reaction. Our algorithm filters en-
zymes by relevant criteria, including price, but most importantly, by the kind
of overhang left after cleavage. Of the 121 available enzymes, 55 are capable of
generating non-palindromic cleavage sites. Not all enzymes are alike in efficiency,
availability, or price, and the algorithm uses a real-valued cost to rank the overall
performance of each enzyme.

The algorithm also requires a chromosome whose protein-coding regions are
annotated. The annotations are used to enforce a hard constraint imposed by our
limited knowledge of biology; we have implemented a design rule that all DNA
changes to introduce or remove restriction sites must be accomplished within
protein-coding regions. Edits to non-protein-coding DNA are not permitted be-
cause intergenic and intronic sequences house yet-uncharacterized regulatory
sequences that could be disrupted by a single base change. Algorithms to eval-
uate the cost of different edits therefore require knowledge of the boundaries
between introns (sequences transcribed from DNA to RNA but then spliced
out), exons (sequences remaining in the processed RNA transcript including
all protein-coding sequences), and intergenic sequences (DNA sequence that
is not transcribed but which may contain important regulatory or structural
features).

284 S.M. Richardson et al.

Feasible edits to protein-coding sequences are achieved by substituting syn-
onymous codons, three-nucleotide sequences that encode the same amino acid.
Synonymous edits exploit the redundancy of the genetic code. Isolated edits
that leave the amino acid sequence unchanged usually do not affect protein ex-
pression or activity. Widespread edits, however, are more likely to change RNA
secondary structure or affect protein activity by changing the speed of transla-
tion, which can in turn alter protein levels or generate mis-folded protein. When
genes overlap, edits must retain the amino acid sequences of both proteins.

We use the standard Generic Feature Format (.gff), which consists of tab-
delimited entries annotating features followed by actual nucleotide sequence in
FASTA format. GFF files for many different organisms are easily obtained from
public genome repositories on the Internet; the yeast chromosomes were taken
from the Saccharomyces Genome Database [13].

3 Data Collection and Indexing

Once the algorithm is provided with a list of enzyme recognition sites and an
annotated chromosome sequence, it generates a database of every single restric-
tion enzyme site in the chromosome. Every intergenic sequence is parsed for
existing recognition sites. Those that are found are treated as immutable; they
may be used as boundaries if they are fortuitously placed, but nothing can be
done to improve their placement or the overhangs they leave. A suffix tree is
created from all possible 6-frame translations of restriction enzyme recognition
sites, such that each node in the tree is an amino acid string that may be reverse
translated to be a recognition site. Every exonic sequence in the chromosome
is then searched with the suffix tree both for existing recognition sites and for
sites where a recognition site could be introduced without changing the pro-
tein sequence of the gene using. As long as they occur within protein coding
genes, existing and potential recognition sites may be manipulated to yield any
of several different overhangs, all of which are computed by the algorithm. It is
necessary that every extant site be indexed so that later in the algorithm, when
potential sites are considered, the number of sites that must be modified is a
known contribution to the cost. The construction of the enzyme database may
be executed in parallel because parsing each gene and intergenic sequence for
restriction sites is completely independent; no processing element working on a
region need communicate with any other processing element. We implemented
this collection step in multi-threaded Perl for compatibility with existing code.

4 Landmark Selection

The current implementation of our global assembly scheme requires restriction
enzyme sites as landmarks that divide the chromosome into segments of about
10 kb, which may then be built up from oligos [10]. To enforce hierarchical mod-
ularity, some of these landmarks will have additional uniqueness requirements.
Landmark 1 sites will be 10 kb landmarks that can also divide the chromosome

Automated Design of Assemblable, Modular, Synthetic Chromosomes 285

into 100 kb segments; landmark 2 sites will be 10 kb landmarks that can also
divide the chromosome into 30 kb segments. Every other 10 kb landmark is a
landmark 3 site (Fig. 1). The innermost landmark 3 sites are not permitted to
occur anywhere else within their flanking landmark 1 or 2 sites; likewise, the land-
mark 2 sites may not appear anywhere within their flanking landmark 1 sites,
and any consecutive landmark 1 sites may not be the same. The overhangs left
by any two consecutive landmark sites should be different and non-palindromic.
These constraints prevent enzymes from cutting the DNA at unwanted locations
or yielding a mix of ligation products from cross-reactions.

The goal is to select the optimal permutation of landmark enzymes for a full
complement of evenly spaced landmark sites. From now on we will refer to a
permutation of restriction enzyme recognition sites and locations as a plan. A
valid plan must meet the adjacency and uniqueness constraints described above
and is then given a real-valued cost reflecting editing costs and penalties. The
optimization goal is to identify the plan with the lowest cost.

Each landmark separates two regions of size L (L = 100 kb for landmark 1
sites, 30 kb for landmark 2 sites, and 10 kb for landmark 3 sites). The algorithm
checks the database for all eligible sites E within the upstream and downstream
regions, a window of 2L. The cost for enzyme E at location X is

Cost(E) = ln Price(E)+A×max[0,
|X − X0|

L
−Δ]+B0n0 +B1n1 +B2n2. (1)

The optimal position of the landmark, X0, is at the midpoint of the 2L window.
In order to penalize changes to critical genes more heavily, counts of edited genes
are categorized as non-essential (n0), slow growth (n1), and essential (n2). The
cost of the enzyme in US dollars per unit is Price(E). We use the parameters
A = 15, Δ = 0.1, B0 = 0.1, B1 = 0.6, and B2 = 1.1. This objective function
was selected to match generally with the intuition of biological experts. To keep
costs on a uniform scale, enzyme prices are sensitive to fold-ratios and optimal
positions are calculated relative to an allowed 10% variation. The fixed parameter
values, and even the entire form of the objective function, are open to re-analysis
subsequent to experimental tests of designed sequences.

4.1 Dynamic Programming

Brute-force enumeration of all valid plans fails because the time to enumer-
ate grows exponentially as O(mn), where m is the number of possible enzyme
choices per landmark (55 commercially available enzymes capable of leaving
non-palindromic overhangs) and n is the number of landmarks required (scal-
ing linearly with chromosome size with one landmark per 10,000 nucleotides).
For yeast chromosomes, n ranges from approximately 25 to 180. We have de-
veloped an efficient approach that employs dynamic programming and dead-end
elimination to run in O(nm6) time.

Since the chromosome is divided into 100 kb regions by landmark 1 sites
(Fig. 1), the optimal plan for the chromosome additively combines the optimal
plans for each of these regions. Finding the optimal plans for each region are

286 S.M. Richardson et al.

Flanking Landmark 1 Pairs

~100 kilobases

Nested Overlapping Sub-Problems

Landmark 2 Pairs Landmark 3 Pairs

Fig. 1. Each sub-problem is bounded by a pair of flanking landmark 1 sites

overlapping subproblems due to the landmark 1 sites shared by consecutive
regions. Optimal sub-structure and overlapping sub-problems are the hallmarks
of dynamic programming [15].

A few iterations of the algorithm’s progress through the dynamic program-
ming matrix are displayed (Fig. 2). Columns 0 to n − 1 correspond to regions.
Rows correspond to pairs of flanking landmark 1 enzymes. Each cell in the matrix
maintains the optimal cost, opt-cost(i, j), for a particular row i and a particular
column j. Each cell is initialized with an ‘x’ to represent an invalid or infinite
cost. The costs are computed as

opt cost(i, j) = cost(i, j) + mincompatiblei′{opt cost(i′, j − 1)} (2)

where cost(i, j) refers to the cost associated with a particular region j and a
particular pair of enzymes i, and compatible i′ refers only to those rows i′ that
are compatible with row i. Compatibility here refers to the flanking constraint:
the enzyme pair (e1, e2) at column j − 1 is compatible with the enzyme pair
(e3, e4) at position j if and only if e2 = e3. The cost associated with the optimal
plan for the chromosome will be found in the cell with the minimum value in
the last column of the matrix. As in classic dynamic programming, the plan
associated with the minimum cost can be recovered by tracing back from the
optimum.

Each sub-problem requires computing the optimal cost (i, j) for a given region
and a given selection of enzymes for the flanking landmark 1 sites. A brute
force approach to the sub-problems yields a runtime of O(nm10), where the
exponent 10 refers to the total number of landmark sites: two for landmark 1,
two for landmark 2, and six for landmark 3 (Fig. 1). The complexity of the
problem becomes O(nm2) plus the cost of pre-computing the sub-problems. As
we explain below, the complexity is actually bounded by the computation of
the sub-problems. For this reason pre-computing the sub-problems is ideal as it
facilitates parallelization.

Sites for landmarks 2 and 3 can be grouped into pairs, and a dynamic pro-
gramming algorithm similar to the one described for landmark 1 sites can then
be applied. The order of enzymes in a sub-plan matters for the cost, but not
for the uniqueness constraints. Therefore the algorithm need only store the cost
associated with combinations rather than permutations of the sub-plans. This

Automated Design of Assemblable, Modular, Synthetic Chromosomes 287

x

1

-2

-1(BstEII,DraIII)

0

x

(DraIII,PasI)

x

(PasI,BstEII)

x

x

(BstEII,PasI)

(PasI,DraIII)

x

x

-2

x

x

x

x

(DraIII,BstEII)

2

-4

x

xx

RegionFlanking Landmarks

BstEII

PasI

BstEII
DraIII
PasI

DraIII
PasI

BstEII
DraIII

0 1 2

BstEII

PasI

BstEII
DraIII
PasI

DraIII
PasI

BstEII
DraIII

0 1 2

-6

1

-2

-1(BstEII,DraIII)

0

-11

(DraIII,PasI)

x

(PasI,BstEII)

x

x

(BstEII,PasI)

(PasI,DraIII)

x

-3

-2

x

-7

x

-10

(DraIII,BstEII)

2

-4

-4

-5x

RegionFlanking Landmarks

Fig. 2. A small example of the dynamic programming algorithm. All cells were initial-

ized as null. The optimal path is displayed in red. Cost is as computed by Eq. 2.

yields an overall running time of O(m6) for each sub-problem, since each sub-
problem contains m2 choices for the flanking landmark 1 pair, m2 choices for
the landmark 2 pair, and 3m2 choices for the landmark 3 pairs. Furthermore,
the number of sub-problems is linear with respect to the size of the chromosome,
making the over-all running time of our dynamic programming algorithm

O(sub − problems + global − problem) = O(nm6 + nm2) = O(nm6) (3)

4.2 Dead-End Elimination

Although O(nm6) time improves on exponential scaling, it is still inconvenient
for m = 55 possible restriction enzymes. We have developed a dead-end elimi-
nation algorithm to reduce the effective size of m.

We observed that landmarks often have enzyme choices that are not con-
strained by any other sites (Fig. 3). In this example, landmark site 9 may use
enzymes AccI and BanI regardless of which enzymes are chosen for sites 8, 10,
11, 14, and 17. Since AccI and BanI are independent, either choice may be used
regardless of all other landmarks. Therefore, there is no need to keep any enzyme
choice that has a cost greater than the minimum of cost(AccI) and cost(BanI)
(in this case AccI). For any landmark plan that uses BanI, DrdI, or FokI in land-
mark site 9, we can always improve the cost by substituting AccI; using BanI,
DrdI, or FokI is guaranteed to produce a sub-optimal result.

In practice, the dead-end elimination algorithm reduces the size of of m by
25% or more on the yeast chromosomes considered in this work, speeding the
run time by a factor of (4/3)6 or about 5.6.

4.3 Parallel Implementation

Since the performance of the enzyme selection algorithm is bounded by the
pre-processing of independent sub-problems, we used the PP (Parallel Python)

288 S.M. Richardson et al.

DrdI
FokI
SfiI

AccI -5
BanI -4
DrdI -3
FokI -4
SfiI -7

DrdI
FokI
SfiI

PfoI
DraIII
BstEII

BseYI
BsiYI
AvaII

DrdI
FokI
BseYI
AvaII

~10 kb

Fig. 3. The enzyme choice for site 9 is constrained by the choices for 8, 10, 11, 14, and

17. Using Dead-end Elimination, we can prune BanI, DrdI, and FokI from site 9.

module to facilitate parallelization across multiple independent machines. This
module allows seamless addition of processor cores across multiple physical sys-
tems. This approach scales up to n cores, where n is the number of landmark
1 delimited regions in the chromosome. Each landmark 1 region is sent to a
different core. For the biggest yeast chromosome, the run time decreased from
155 sec to 30 sec, a 5× speedup, using 16 cores in a cluster of quad-core 2.6
GHz Opteron processors with 4GB of RAM each. In practice, the speed-up from
parallelization is limited by the region with the highest effective m value — the
single region that takes the most time to compute.

5 Results and Discussion

Manual design of even the smallest yeast chromosome is a laboriously slow and
error-prone process that does not guarantee an optimal solution. We have trans-
formed this synthetic biology design problem into a formal optimization problem
which we solve with an efficient implementation using suffix-tree indexing, dy-
namic programming, and dead-end elimination. Our approach produces optimal
designs with a 1000× speed advantage over human experts. The input is an anno-
tated target chromosome and list of restriction enzyme specifications and costs.
The output is a minimally edited synthetic target, and existing downstream
software can convert this into oligonucleotides for ordering from a vendor.

Designs generated by this algorithm are currently being synthesized and ex-
perimentally tested as part of a project to create a yeast cell with synthetic
DNA [10]. We hope that our code will be useful to others planning similar
projects at any scale. All source code is available from the authors’ website,
www.baderzone.org, under an open source BSD license.

Acknowledgments. We thank Pamela Meluh, Yan Qi, and John Kloss for
careful reading of the manuscript and discussion. S.M.R. was supported by
Department of Energy Computational Science Graduate Fellowship DE-FG02-
97ER25308. This project was supported in part by a Microsoft Research Award
to J.S.B and J.D.B., and grant MCB 0718846 from the National Science Foun-
dation to J.D.B, J.S.B and S.C.

Automated Design of Assemblable, Modular, Synthetic Chromosomes 289

References

1. Richardson, S.M., Wheelan, S.J., Yarrington, R.M., Boeke, J.D.: GeneDesign:

rapid, automated design of multikilobase synthetic genes. Genome Res. 16, 550–556

(2006)

2. Cai, Y., Hartnett, B., Gustafsson, C., Peccoud, J.: A syntactic model to design and

verify synthetic genetic constructs derived from standard biological parts. Bioin-

formatics 23, 2760–2767 (2007)

3. Villalobos, A., Ness, J.E., Gustafsson, C., Minshull, J., Govindarajan, S.: Gene

Designer: a synthetic biology tool for constructing artificial DNA segments. BMC

Bioinformatics 7, 285–293 (2006)

4. Czar, M.J., Anderson, J.C., Bader, J.S., Peccoud, J.: Gene synthesis demystified.

Trends Biotechnol. 27, 63–72 (2009)

5. Chan, L.Y., Kosuri, S., Endy, D.: Refactoring bacteriophage T7. Mol. Sys. Bio. 1

(2005), doi: 10.1038/ msb4100025

6. Cello, J., Paul, A.V., Wimmer, E.: Chemical synthesis of poliovirus cDNA: genera-

tion of infectious virus in the absence of natural template. Science 297, 1016–1018

(2002)

7. Pósfai, G., Plunkett, G., Fehér, T., Frisch, D., Keil, G.M., Umenhoffer, K., Kolisny-

chenko, V., Stahl, B., Sharma, S.S., Arruda, M., Burland, V., Harcum, S.W., Blat-

tner, F.R.: Emergent properties of reduced-genome. Escherichia coli. Science 312,

1044–1046 (2006)

8. Gibson, D.G., Benders, G.A., Andrews-Pfannkoch, C., Denisova, E.A., Baden-

Tillson, H., Zaveri, J., Stockwell, T.B., Brownley, A., Thomas, D.W., Algire, M.A.,

Merryman, C., Young, L., Noskov, V.N., Glass, J.I., Venter, J.C., Hutchison, C.A.,

Smith, H.O.: Complete chemical synthesis, assembly, and cloning of a Mycoplasma
genitalium genome. Science 319, 1215–1220 (2008)

9. Lartigue, C., Glass, J.I., Alperovich, N., Pieper, R., Parmar, P.P., Hutchison,

C.A., Smith, H.O., Venter, J.C.: Genome transplantation in bacteria: changing

one species to another. Science 317, 632–638 (2007)

10. Dymond, J., Scheifele, L., Richardson, S.M., Lee, P., Chandrasegaran, S., Bader,

J.S., Boeke, J.D.: Teaching Synthetic Biology, Bioinformatics, and Engineering to

Undergraduates: The Interdisciplinary Build-a-Genome Course. Genetics 181, 13–

21 (2009)

11. Stein, L.D., Mungall, C., Shu, S., Caudy, M., Mangone, M., Day, A., Nickerson,

E., Stajich, J.E., Harris, T.W., Arva, A., Lewis, S.: The Generic Genome Browser:

A Building Block for a Model Organism Database. Genome Res. 12, 1599–1610

(2002)

12. Roberts, R.J., Vincze, T., Posfai, J., Macelis, D.: REBASE–enzymes and genes for

DNA restriction and modification. Nucl. Acids Res. 35, D269–D270 (2007)

13. Fisk, D.G., Ball, C.A., Dolinski, K., Engel, S.R., Hong, E.L., Issel-Tarver, L.,

Schwartz, K., Sethuraman, A., Botstein, D., Michael, C.J.: Saccharomyces cere-
visiae S288C genome annotation: a working hypothesis. Yeast 23, 857–865 (2006)

14. Mattson, T.G., Sanders, B.A., Massingill, B.L.: Patterns for Parallel Programming,

1st edn. Addison-Wesley, Reading (2004)

15. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,

2nd edn. McGraw-Hill, New York (2001)

GPU Parallelization

of Algebraic Dynamic Programming

Peter Steffen1,2, Robert Giegerich1, and Mathieu Giraud2

1 Technische Fakultät, Universität Bielefeld, D-33501 Bielefeld, Germany

psteffen@techfak.uni-bielefeld.de, robert@techfak.uni-bielefeld.de
2 CNRS, LIFL, Université Lille 1, 59 655 Villeneuve d’Ascq cedex, France

mathieu.giraud@lifl.fr

Abstract. Algebraic Dynamic Programming (ADP) is a framework to

encode a broad range of optimization problems, including common bioin-

formatics problems like RNA folding or pairwise sequence alignment. The

ADP compiler translates such ADP programs into C. As all the ADP

problems have similar data dependencies in the dynamic programming

tables, a generic parallelization is possible. We updated the compiler

to include a parallel backend, launching a large number of independent

threads. Depending on the application, we report speedups ranging from

6.1× to 25.8× on a Nvidia GTX 280 through the CUDA libraries.

1 Introduction

Dynamic programming in bioinformatics. In biological sequence analysis, there
arise numerous combinatorial optimization problems that are solved by dynamic
programming. Pattern matching in DNA or protein sequences, comparison for
local or global similarity, and structure prediction from RNA sequences are fre-
quent tasks, as well as the modeling of families of proteins and RNA structures
with the widely used Hidden Markov Models (HMMs) and stochastic context free
grammars (SCFG), respectively [5]. The scoring schemes associated with these
optimization problems can be quite sophisticated. The thermodynamic model
for RNA structure prediction, for example, has more than thousand parameters.
This requires elaborate case analysis. Objective functions often ask for more than
a single answer, such as the best non-overlapping pattern hits to a genome above
a certain score threshold. Finally, biological sequences tend to be long (from 77
characters for a tRNA, 10000 for a gene, 3 ∗ 106 for a bacterial genome, to the
3 ∗ 109 nucleotides of a mammalian genome such as human or mouse). The time
and space requirements for a dynamic programming algorithm are often limiting
factors for the problems the biologists need to solve. The development of reliable
and efficient dynamic programming algorithms in bioinformatics is a recurring
challenge, in sharp contrast to the simplicity suggested by the textbook examples
of dynamic programming which we use to teach computer science students.

Algebraic dynamic programming. In all these optimization problems, the log-
ical problem decomposition follows the decomposition of the input sequence

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 290–299, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

GPU Parallelization of Algebraic Dynamic Programming 291

into subwords. It has been observed early that the resulting dynamic program-
ming recurrences strongly resemble those of a Cocke-Younger-Kasami [3] type
parsing algorithm [20]. Pursuing this analogy, we have developed an algebraic
style of dynamic programming (ADP) over sequential data. The search space of
the optimization problem at hand is described by a yield grammar, which is a
regular tree grammar generating a tree language, and implicitly a context-free
language as the set of leaf sequences of these trees. Scoring and optimization
are described by an evaluation algebra, which interprets the tree operators as
functions that compute local score contributions, and hence solve larger prob-
lems when given optimal solutions of smaller ones, consistent with the general
paradigm of dynamic programming. This leads to a complete specification of
dynamic programming algorithms on a rather high level of abstraction.

Fig. 1. ADP workflow. The goal of this study is to conceive and implement an auto-

matic GPU parallelization (bottom).

General-purpose computation on GPU. For a few years, issues with heat dis-
sipation have prevented the processors from having higher frequencies. One of
the answers to maintain the Moore’s Law is the use of parallel processing with
massively manycore architectures. Graphic processing units (GPUs) are a first
step towards those architectures, and recent trends blur the line between such
GPUs and multi-core processors.

GPUs were used in bioinformatics since 2005 for phylogenetic studies [4],
then for multiple sequence alignment based on an optimized Smith-Waterman
implementation [10]. The CUDA libraries, first released in 2007 [2], have deeply
simplified the development on GPUs. Recent papers provide speedups on applica-
tions involving suffix trees [19] or again Smith-Waterman comparisons [9,11,13],
error correction in DNA short-reads sequencing [21], computation with position
weight matrices [8], RNA folding [18], and neighbor-joining trees for multiple
sequence alignments [12].

The current Nvidia architectures [2] offer two levels of parallelism. For the
coarse-grained level, several multiprocessors execute blocks of independent com-
putations. Each multiprocessor is then a kind of large SIMD device, able to
process several different fine-grained threads at a given time. All those threads
are executing exactly the same instructions: if a divergence in a condition occurs,
the branches of the condition are serialized.

Contents. In this paper we describe an approach to extend the ADP compiler
such that it generates parallel programs (Figure 1). This approach has been

292 P. Steffen, R. Giegerich, and M. Giraud

implemented in the ADP compiler with the CUDA libraries [2]. Our new con-
tribution is thus a generic method to create parallel CUDA programs for bioin-
formatics applications – classical and yet-to-be written ones. The next section
presents background on Algebraic Dynamic Programming. Section 3 presents
the GPU parallelization of ADP. Section 4 gives some results and discussion:
depending on the application, we get speedups ranging from 6.1× to 25.8× on
a Nvidia GTX 280.

2 Algebraic Dynamic Programming

We briefly introduce the Algebraic dynamic programming (ADP) methodol-
ogy on a simple Nussinov type RNA secondary structure prediction problem,
the maximization of the number of base pairs [15]. Section 4 reports results
for several other applications. See [6] for a complete presentation of the ADP
method.

gucaugcaguguca

(...)((...))..

t1 =
Split

Pair

’g’ Split

Right

Nil ’u’

Right

Right

Nil ’c’

’a’

’u’

Split

Pair

’g’ Pair

’c’ Split

Right

Nil ’a’

Right

Right

Nil ’g’

’u’

’g’

’u’

Right

Right

Nil ’c’

’a’

gucaugcaguguca

.(.(((...))).)

t2 =
Split

Right

Nil ’g’

Pair

’u’ Split

Right

Nil ’c’

Split

Pair

’a’ Pair

’u’ Pair

’g’ Split

Right

Nil ’c’

Right

Right

Nil ’a’

’g’

’u’

’g’

’u’

Right

Nil ’c’

’a’

Fig. 2. Two candidates in the search space for the best secondary structure for the

sequence gucaugcaguguca

When designing a dynamic programming algorithm in algebraic style, we need
to specify four constituents: the input alphabet, the search space, the scoring of
the candidates, and the objective function.

Alphabet. The input RNA sequence is a string over the alphabet A = {a, c, g, u}.

Search space. Given an input sequence w ∈ A∗, the search space is the set of all
possible secondary structures the sequence w can form. In the ADP terminology,
the elements of the search space for a given input sequence are called candidates.

GPU Parallelization of Algebraic Dynamic Programming 293

Figure 2 gives example of candidates for RNA folding. This tree representation
of candidates exists for any application of dynamic programming [23]. To de-
scribe the candidates, the ADP methodology uses the notion of tree grammar.
Figure 3 shows the grammar nussinov78, origin of our two example trees. For
each sequence w ∈ A∗, the grammar defines a search space PG(w) that is the set
of all parses of the sequence w for G.

nussinov78 Z = s

s → nil

empty

| right

s base

| pair

base s base

with basepairing

| split

s s

Fig. 3. Tree grammar nussinov78 consists of one production with four alternatives.

Symbol Z denotes the axiom of the grammar.

Scoring and objective. Given an element of the search space as a tree t ∈ PG(w),
we need to score this element. In our example we are only interested in counting
base pairs, so scoring is very simple: the score of a tree is the number of pair -
nodes in t. For the two candidates of Figure 2 we obtain scores of 3 (t1) and
4 (t2). Moreover, we need to choose one or several solutions from the pool of
candidates. For this purpose we add an objective function h which chooses one
or more elements from a list of candidate scores.

bpmax = (nil, right, pair, split, h) where

nil(s) = 0

right(s,b) = s

pair(a,s,b) = s + 1

split(s,s’) = s + s’

h([]) = []

h([s1, . . . , sr]) = [max1≤i≤r si]

Scoring schemes with objective functions are called evaluation algebras in ADP.
The above example is the evaluation algebra bpmax for maximizing the number
of base pairs. The flexibility of the algebraic approach lies in the fact that we
don’t have to stop with definition of one algebra: simply define another algebra
and get other results for the same search space. We use the notation E(t) to
indicate the value obtained from t under evaluation with algebra E . All that is
left to do is to evaluate the candidates in a given algebra, and make our choice
via the objective function h. For example, candidates t1 and t2 of Figure 2 are
evaluated by algebra bpmax, with h(bpmax(t1), bpmax(t2)) = [max(3, 4)] = [4].

This example was fairly simple: complete RNA folding algorithms are typi-
cally based on energy minimization, and include energies of stacking regions (or
helices), bulge loops, internal loops, hairpin loops and multiple loops. Figure 4
shows an excerpt of the real RNAfold.lhs grammar that includes the full Turner
model [14]. The grammar can be read as a standard context-free grammar. The

294 P. Steffen, R. Giegerich, and M. Giraud

operator ~~~ connects succeeding symbols and the operator ||| divides alter-
native productions for a non-terminal. The symbol <<< denotes application of
an algebra function and ... denotes application of the evaluation function h.
Finally, the operator with denotes the use of a filter function, that means that
(base ~~~ closed ~~~ base) ‘with‘ basepairing is only successful if the
two bases can form a base pair.

rnafold alg f = axiom struct where
(sadd,cadd,is,sr,hl,bl,br, il, il11, il12, il21, il22,
dl, dr, dlr, edl, edr, edlr, drem, cons, ul, pul, addss, ssadd, nil, combine, h) = alg

struct = tabulated (sadd <<< base ~~~ struct |||
cadd <<< initstem ~~~ struct |||
nil <<< empty ... h)

initstem = tabulated (is <<< loc ~~~ closed ~~~ loc ... h)
closed = tabulated (stack ||| ((hairpin ||| leftB ||| rightB ||| iloop ||| multiloop)

‘with‘ stackpairing) ... h)

stack = (sr <<< base ~~~ closed ~~~ base) ‘with‘ basepairing ... h
hairpin = hl <<< base ~~~ base ~~~ (region ‘with‘ (minsize 3)) ~~~ base ~~~ base ... h
leftB = bl <<< base ~~~ base ~~~ region ~~~ initstem ~~~ base ~~~ base ... h
rightB = br <<< base ~~~ base ~~~ initstem ~~~ region ~~~ base ~~~ base ... h
iloop = il <<< base ~~~ base ~~~ (region ‘with‘ (maxsize 30)) ~~~ closed ~~~

(region ‘with‘ (maxsize 30)) ~~~ base ~~~ base ... h

Fig. 4. Excerpt from the ADP grammar RNAfold.lhs. The complete grammar includes

further productions for multiloop structures.

3 Automatic Parallelization of ADP

Principle. A compiler that translates ADP programs into C was previously
developed [7]. This task includes some advanced optimization techniques, see
[22] for a detailed overview. With the option -cuda, the compiler is now switched
into the CUDA code generation mode. The compiler uses the same backend both
for CPU and GPU code generation and only differs in the following parts:

1. The dynamic programming tables need to be stored both on the host and on
the global memory of the GPU. The compiler generates code to synchronize
these tables.

2. For each dynamic programming table, the compiler generates a calculation
function. This is the same function both for CPU and GPU mode, so the
only change is that it is declared to be executed as a GPU kernel. Figure 5
shows the CUDA code for the dynamic programming main loop in the RNA
secondary structure prediction program. The kernel function, calc all, con-
tains the calls for the calculation of the six dynamic programming tables.

3. In CPU mode, all table elements are calculated sequentially with increasing
subword length. This order of computation has to be changed to enable
parallelization. For the RNA secondary structure prediction program, the
calculation of a table element (i, j) depends only on the elements in the
triangle in the lower left (see Figure 6, on the left). So all elements in one

GPU Parallelization of Algebraic Dynamic Programming 295

diagonal can be calculated in parallel. The whole dynamic programming
table is then calculated in a loop over all diagonals (see Figure 5). This
approach can be generalized to all dynamic programming algorithms over
sequence data: in all ADP grammars, all results are combined from results
of shorter subsequences. Therefore, the calculation of a table element (i, j)
depends only on results that lie between the indices (i, j).

All these changes are done automatically by the compiler and do not require any
changes to the ADP grammar. The number of blocks and threads used for the
calculation can be configured as a parameter at runtime.

__global__ static void calc_all(int diag, int n) {

int i = blockIdx.x*blockDim.x+threadIdx.x;

int j = i + diag;

if ((i <= n) && (j <= n)) {

calc_closed(i, j);

calc_initstem(i, j);

calc_struct(i, j);

calc_block(i, j);

calc_comps(i, j);

}

}

static void mainloop() {

for (int diag=0; diag<=n; diag++) {

(...)

calc_all <<< grid, threads >>> (diag, n);

}

}

Fig. 5. Kernel and main CUDA code for the dynamic programming main loop cor-

responding to the grammar shown on Figure 4. Note that each kernel thread also

computes inner loops for the folding calculations. Actual codes are available on the

ADP website (http://bibiserv.techfak.uni-bielefeld.de/adp/cuda.html).

Window mode. It does not make any sense to fold a complete genome as a single
RNA molecule. This remark is the same for other applications: for example, a
thermodynamic matcher [17] looks for some small sub-sequences (50 to some
hundreds bases) matching a given structural pattern in a large sequence. In
those applications, we need to compute only some diagonals above the main
diagonal (Figure 6, on the right). The option -cudaw sets the ADP compiler
in window mode. Whereas the CPU version sequentially computes all windows,
the GPU version loads a large sequence into the GPU and launches a large
number of independent threads, thus increasing the parallelism. This is also
done automatically by the compiler and does not require any changes to the
source program.

296 P. Steffen, R. Giegerich, and M. Giraud

Fig. 6. Left: data dependencies for RNA secondary structure prediction. The computa-

tion of the table element (i, j) needs the O((j−i)2) elements in the underlying triangle.

Right: window mode. With a large genome (of size n), we just need to fold sequences

on small windows (of size w).

4 Results

Table 1 shows the results on three different applications with RNA sequences:
RNAfold (see previous section), pknotsRG (detection of pseudo-knots [16]),
and a tRNA thermodynamic matcher. The program pknotsRG predicts RNA
secondary structures including a restricted class of pseudoknots. The thermo-
dynamic matcher was created by the graphical tool Locomotif [17]. Practical
9.9×, 14.5× and 6.1× speedups are obtained on those real applications with a
GTX 280. In these speedups, the main bottlenecks are in memory transfers, as
only the global memory of the GPU is used.

In the original RNAfold.lhs grammar, a part of production calc closed
is in fact computed for only 6 out of the 16 possible basepairs (filter ‘with‘
stackpairing on Figure 4). This brings a large divergence between the threads
and breaks the GPU SIMD model. To confirm this fact, we tested a special ver-
sion of this grammar, RNAfold-bp.lhs, that computes for every basepair the
full recurrence equations (penalizing non-pairs): the speedup with the GTX 280
is almost doubled. This indicates that a similar speedup would result for the cal-
culation of stochastic grammars, since here arbitrary base pairs are considered.

It should be noted that our speedups are lower than the best possible ones.
For example, Rizk and Lavenier [18] developed an optimized GPU RNAfold
implementation: in particular, they pack together the 6/16 computations corre-
sponding to the production calc closed. They obtain a 17× speedup on a GTX
280 against one core of a 2.66GHz Xeon (applied on a whole sequence, without
window mode), whereas our best speedup without window mode is only 2.8×
(results not shown). However, as our approach is generic, it can be applied on
several algorithms with few efforts to the user.

GPU Parallelization of Algebraic Dynamic Programming 297

Table 1. Time (real times, in seconds) for executing different ADP grammars. CPU

versions are compiled with adpc, and executed on a 2.4 GHz Core2 processor (PC1,

1 core used). and on a 3.0 GHz Xeon X5472 processor (PC2, 1 core used). GPU CUDA

versions are compiled adpc -cudaw, and executed on a GeForce 8800 (PC1) and on a

GTX 280 (PC2). Because of its increased number of cores and of its better handling of

uncoalesced memory loads, the GTX 280 gives better speedups than the GeForce 8880.

Note that the performance of the CPU does not impact the times reported for the GPU

versions. For example, for RNAfold, the 19.22s for the PC1 GPU include only 0.20s of

non-kernel computations, mainly for traceback in the DP matrix. Tests on RNAfold

and tRNA-matcher were done on the 160 kbp genome of Candidatus Carsonella ruddii

(Genbank reference NC 008512). Tests on pknotsRG were done on the first 20 kbp of

the same genome.

Grammar, PC1 PC2

window size, Core2 + GeForce 8800 Xeon + GTX 280

time complexity CPU GPU speedup CPU GPU speedup

RNAfold-bp.lhs -w 80 O(w2n) 176.09 19.22 9.1× 133.77 5.18 25.8×
RNAfold.lhs -w 80 O(w2n) 43.43 8.08 5.4× 35.57 3.59 9.9×
tRNA-matcher.lhs -w 100 O(w2n) 52.46 6.76 7.8× 43.60 3.01 14.5×
pknotRG.lhs -w 80 O(w3n) 26.82 10.64 2.5× 23.54 3.25 7.2×
pknotRG.lhs -w 160 O(w3n) 188.68 87.65 2.2× 166.27 27.22 6.1×

On pknotsRG, runs with w = 160 get a little smaller speedup than with
w = 80. As w is fixed, this does not limit the scalability of our approach: the
input data size, n, can always grow with the same speedup.

Current limitations. Whereas grammars involving several sequences can be en-
coded in the ADP formalism, the ADP compiler now only works for one input
sequence. Removing this limitation would allow to study other dynamic pro-
gramming problems, as for example Smith-Waterman sequence alignment or
RNA co-folding [6]. Finally, for some grammars (including the tRNA matcher),
the ADP automatic table design generates some recursive functions, and those
functions cannot be compiled with the CUDA libraries (there is no stack on
the current cards). This automatic table design is removed through omitting
the -cto option, but, in this case, the grammar should specify precisely which
symbols of the grammar are to be “tabulated”.

5 Perspectives

We implemented a parallel GPU CUDA backend for the ADP compiler, which
works out-of-the-box for several grammars dealing with RNA sequences. The
new ADP compiler and some example codes are available on the ADP web-
site (http://bibiserv.techfak.uni-bielefeld.de/adp/cuda.html).Our ap-
proach is generic and requires few efforts to the user, even if the speedups are not
the best ones that could be obtained by manually optimized implementations.
We plan to remove the limits explained above. Other perspectives include the
following points.

298 P. Steffen, R. Giegerich, and M. Giraud

Shared memory. The ADP compiler could be improved to better use the memory
hierarchy of the card. In the Nvidia architecture, a 16 KB shared memory is
available for the threads in the same block. This local memory is very fast and
should be used to maximize the efficiency, for example in storing portions of
some dynamic programming tables. This memory is not used in our current
implementation. Of course, the best usage of the shared memory depends on
the application: for now, we did not find a generic way to determine from the
grammar this best usage. Some hints given in the grammar file could indicate to
the compiler which dynamic programming tables should be handled in this way.

Static evaluation of grammars. We plan to test other grammars, in bioinfor-
matics as in other domains. Which grammars are efficient to parallelize, and
why?

Other targets. We plan to test the ADP methodology on other manycore archi-
tectures, in particular through the new OpenCL standard [1]. Again, the fact
that the ADP methodology is generic allows to write portable solutions.

Acknowledgements

Part of this research was done during P. Steffen’s stay in Université Lille 1. This
research was carried through the “NVIDIA Professor Partnership” program.

References

1. The Khronos Group, OpenCL 1.0 specification (2008)

2. Nvidia CUDA programming guide 2.0 (2008)

3. Aho, A.V., Ullman, J.D.: The Theory of Parsing, Translation and Compiling.

Prentice-Hall, Englewood Cliffs (1973), I and II

4. Charalambous, M., Trancoso, P., Stamatakis, A.: Initial experiences porting a

bioinformatics application to a graphics processor. Adv. in Informatics, 415–425

(2005)

5. Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological Sequence Analysis. Cam-

bridge University Press, Cambridge (1998)

6. Giegerich, R., Meyer, C., Steffen, P.: A discipline of dynamic programming over

sequence data. Science of Computer Programming 51(3), 215–263 (2004)

7. Giegerich, R., Steffen, P.: Challenges in the compilation of a domain specific lan-

guage for dynamic programming. In: Proceedings of the 2006 ACM Symposium on

Applied Computing (2006)

8. Giraud, M., Varré, J.-S.: Parallel position weight matrices algorithms. In: Interna-

tional Symposium on Parallel and Distributed Computing, ISPDC 2009 (2009)

9. Ligowski, L., Rudnicki, W.: An efficient implementation Smith-Waterman algo-

rithm on GPU using CUDA, for massively parallel scanning of sequence databases.

In: IEEE International Workshop on High Performance Computational Biology,

HiCOMB 2009 (2009)

GPU Parallelization of Algebraic Dynamic Programming 299

10. Liu, W., Schmidt, B., Voss, G., Müller-Wittig, W.: GPU-ClustalW: using graphics

hardware to accelerate multiple sequence alignment. In: Robert, Y., Parashar, M.,

Badrinath, R., Prasanna, V.K. (eds.) HiPC 2006. LNCS, vol. 4297, pp. 363–374.

Springer, Heidelberg (2006)

11. Liu, Y., Maskell, D., Schmidt, B.: CUDASW++: optimizing Smith-Waterman se-

quence database searches for CUDA-enabled graphics processing units. BMC Re-

search Notes 2(1), 73 (2009)

12. Liu, Y., Schmidt, B., Maskell, D.: Parallel reconstruction of neighbor-joining trees

for large multiple sequence alignments using CUDA. In: IEEE International Work-

shop on High Performance Computational Biology, HiCOMB 2009 (2009)

13. Manavski, S.A., Valle, G.: CUDA compatible GPU cards as efficient hardware ac-

celerators for Smith-Waterman sequence alignment. BMC Bioinformatics 9(Suppl.

2), S10 (2008)

14. Mathews, D., Sabina, J., Zuker, M., Turner, D.: Expanded sequence dependence

of thermodynamic parameters improves prediction of RNA secondary structure.

Journal of Molecular Biology 288, 911–940 (1999)

15. Nussinov, R., Pieczenik, G., Griggs, J.R., Kleitman, D.J.: Algorithms for loop

matchings. SIAM J. Appl. Math. 35, 68–82 (1978)

16. Reeder, J., Giegerich, R.: Design, implementation and evaluation of a practi-

cal pseudoknot folding algorithm based on thermodynamics. BMC Bioinformat-

ics 5(104) (2004)

17. Reeder, J., Reeder, J., Giegerich, R.: Locomotif: From graphical motif description

to RNA motif search. Bioinformatics 23(13), 391–400 (2007)

18. Rizk, G., Lavenier, D.: GPU accelerated RNA folding algorithm. In: Using Emerg-

ing Parallel Architectures for Computational Science / International Conference

on Computational Science, ICCS 2009 (2009)

19. Schatz, M.C., Trapnell, C., Delcher, A.L., Varshney, A.: High-throughput sequence

alignment using graphics processing units. BMC Bioinformatics 8, 474 (2007)

20. Searls, D.B.: Linguistic approaches to biological sequences. CABIOS 13(4), 333–344

(1997)

21. Shi, H., Schmidt, B., Liu, W., Mueller-Wittig, W.: Accelerating error correction

in high-throughput short-read DNA sequencing data with CUDA. In: IEEE Inter-

national Workshop on High Performance Computational Biology, HiCOMB 2009

(2009)

22. Steffen, P.: Compiling a Domain Specific Language for Dynamic Programming.

PhD thesis, Bielefeld University (2006)

23. Steffen, P., Giegerich, R.: Versatile and declarative dynamic programming using

pair algebras. BMC Bioinformatics 6(224) (2005)

Parallel Extreme Ray and Pathway Computation

Marco Terzer and Jörg Stelling

Biosystems Science and Engineering, ETH Zürich, CH-8092 Zürich, Switzerland

{marco.terzer,joerg.stelling}@bsse.ethz.ch

Abstract. Pathway analysis is a powerful tool to study metabolic re-

action networks under steady state conditions. An Elementary pathway

constitutes a minimal set of reactions that can operate at steady state

such that each reaction also proceeds in the appropriate direction. In

mathematical terms, elementary pathways are the extreme rays of a

polyhedral cone—the solution set of homogeneous equality and inequal-

ity constraints. Enumerating all extreme rays—given the constraints—is

difficult especially if the problem is degenerate and high dimensional. We

present and compare two approaches for the parallel enumeration of ex-

treme rays, both based on the double description method. This iterative

algorithm has proven efficient especially for degenerate problems, but is

difficult to parallelize due to its sequential operation. The first approach

parallelizes single iteration steps individually. In the second approach,

we introduce a born/die matrix to store intermediary results, allowing

for parallelization across several iteration steps. We test our multi-core

implementations on a 16 core machine using large examples from com-

binatorics and biology.

Availability: The implementation is available at http://csb.ethz.ch

in the tools section (Java binaries); sources are available from the authors

upon request.

Keywords: Extreme ray enumeration, metabolic pathway analysis, ele-

mentary modes, double description method, born/die algorithm.

1 Introduction

Biochemical reaction networks are typically characterized by a matrix Sm×r

containing the stoichometric coefficients, where a negative (positive) entry (i, j)
stands for the consumption (production) of metabolite i in reaction j; zero entries
indicate that the metabolite does not participate in the reaction. Concentration
changes are expressed by

dc

dt
= S v (1)

where v represents a flux vector, assigning a flux value to each of the r reac-
tions. For many considerations, (quasi) steady state is assumed, meaning that
(internal) metabolite concentrations remain constant. To comply with thermo-
dynamical feasibility, flux values have to be nonnegative (reversible reactions

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 300–309, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://csb.ethz.ch

Parallel Extreme Ray and Pathway Computation 301

are usually split into a forward and backward part). Hence, flux values are con-
strained as follows:

S v = 0 (2)
v ≥ 0 (3)

The resulting flux space is a (pointed) polyhedral cone. Its extreme rays are
called elementary modes, and every possible flux vector v can be constructed as
nonnegative combination of the elementary modes [1,2].

Enumerating extreme rays is computationally challenging, especially if the
problem is degenerate. Polynomial algorithms exist for nondegenerate cases [3],
where no point satisfies more than d inequalities for a d-dimensional cone. Unfor-
tunately, many practical problems are degenerate, like most biological examples,
and no efficient algorithm is known [4].

Here, we introduce two approaches to parallelize the double description method
initially invented in [5]. The standard sequential algorithm is described in sec-
tion 1.1. The parallel approaches are presented in section 2, where we also derive
our new born/die approach (2.2) and prove the correctness of the algorithm. Fi-
nally, we test our multi-core implementation with difficult problems from com-
binatorics and biology (2.3).

1.1 Double Description Method

The double description method starts with an initial cone and adds remaining
constraints iteratively. Each constraint, represented by a halfspace, is intersected
with the cone of the previous step (Fig. 1A). The cone is defined by equalities
and nonnegativity constraints:

P = {x ∈ IRd | Ax = 0 , x ≥ 0} (4)

This form readily reflects the steady state (eq. 2) and irreversibility constraints
(eq. 3) in biochemical reaction networks. Note that any other cone can be trans-
formed into this form.

For the initial cone, we use a special form of the kernel matrix K, a basis for
the nullspace of A. We can assume that A a×d has full row rank a, and hence
we have d − a columns in K. Using the row-echelon form for K as proposed in
[6], we get:

K = [K̃T , I]T with K̃ ∈ IRa×(d−a) (5)

Since AK = 0, and since all entries in K are nonnegative for rows i > a, the
remaining work is to ensure that they are nonnegative for all rows. By iteratively
processing the rows i ≤ a, each column with a negative entry at row i is removed
at iteration i. New columns are derived by combining removed columns with
other columns with positive entry at row i, such that the value at row i vanishes
for the new column.

It is important that columns are only added if they are extreme rays. Thus,
every new column is tested for extremity, or equivalently, only adjacent ray pairs

302 M. Terzer and J. Stelling

A

0 1 2 3 4

0

1

2

3

4

born column

die row

I

F

N

B

Fig. 1. A: Iteration step of the double description method. The added constraint rep-

resented by a halfspace cuts the preliminary cone, possibly generating new extreme

rays lying in the seperating hyperplane. B: Born/die matrix with sample cells. The

highlighted blue cell (I) contains initial rays dying at iteration t = j + 1 (here: t = 2),

that is, rays r in the cell have rk ≥ 0 for k < t and rt < 0. The green cell (F) contains

final rays, meaning that rk ≥ 0 ∀k. Rays in the red cell (N) are born during the first

iteration i, and they die in the third iteration t = j + 1.

are used to generate new columns. In fact, most of the computation time is spent
for extreme ray or adjacency testing, and we presuppose an efficient method to
generate new extreme rays [7,8].

2 Results

2.1 Per-step Parallelization

A first approach to exploit multi-core CPUs parallelizes each iteration step indi-
vidually. When we intersect the previous cone with the halfspace, new extreme
rays are generated and every ray is tested for extremity. This generation and
testing process can be executed with multiple threads. We have proposed this
technique in [8] and compare it here with an alternative approach applying par-
allelization across multiple iteration steps.

2.2 The Born/Die Approach

Born/die matrix and basic idea

At iteration t, intermediary extreme rays r with negative value rt < 0 are re-
moved, that is, they die at step t. New extreme rays q are created from adjacent
ray pairs (r, s) with rt < 0 and st > 0, that is, they are born at iteration t.
We can thus assign a born/die index pair (i, j) to each extreme ray, and for
iterations 1, . . . , n, we get:

– i = 0: initial ray, a column in the initial kernel matrix K
– i ∈ [1, . . . , n]: ray born during iteration t = i
– j ∈ [0, . . . , (n− 1)]: ray dies during iteration t = j + 1
– j = n: ray never dies, final extreme ray, part of algorithm output

Parallel Extreme Ray and Pathway Computation 303

Note that j ≥ i, since a ray can only die after being born. Each ray can be
associated with a cell in a lower triangular born/die matrix (Fig. 1B). The (n+
1) columns and rows account for born and die indices, respectively. Column 0
contains initial, row n final extreme rays. The die index j of a ray r is determined
as follows:

j =
{

n if rk ≥ 0 ∀k ∈ [1, n]
min{k : rk < 0, k ∈ [1, n]} − 1 otherwise (6)

The general idea of the algorithm exploits that every cell in the born/die matrix
contains rays dying at a certain iteration step (except for cells in the last row).
The matrix is filled up by pairing the dying rays with rays from other cells. The
pairing jobs can be run concurrently, but we have to be careful: newly generated
rays are again stored in the born/die matrix, and a pairing job should not be
started before the involved cells have gathered all rays.

Definition 1. The generation process of new rays q from rays r in cell (i, j),
dying at iteration j+1, and rays s adjacent to r from a cell (k, l) with sj+1 > 0,

is called pairing job or pairing task θ(i, j)

(
(k, l)

)
. We call the cell (i, j) pairing

cell, and (k, l) partner cell of θ, and we say that pairing cell (i, j) initiates
pairing jobs θ(i, j)

(
�
)
.

Cell stages

Before we can use the rays of a cell, we must ensure that the cell has already
collected all rays to be stored in it ((A)ccumulating stage). When the cell has col-
lected all rays, it enters the (B)earing stage. After actively triggering pairing jobs,
it is still involved in pairing jobs triggered by other bearing cells ((C)ollaborating
stage). Finally, if the rays in the cell are not used anymore, they are dropped and
the cell is in the (D)one stage. The cell stages (A)-(D) are summarized in the
table below, and an exemplarily born/die matrix with cells at different stages is
shown in Fig. 2A.

(A)ccumulating: The cell is collecting rays generated by pairing jobs, but is
not involved in pairing jobs in a constitutive way.

(B)earing: The cell is initiating pairing jobs as pairing cell. It might also be
involved in other pairing jobs as partner cell.

(C)ollaborating: The cell is involved in pairing jobs as partner cell, but has
completed the initiation of pairing jobs.

(D)one: The cell is not involved in pairing jobs anymore. If it is not a final
row cell, the rays previously stored in the cell have been dropped.

Conditions for cell stage transitions

Lemma 1 (Pairing Lemma). Let t = j + 1, and r be a ray in cell (i, j) with
i ∈ [0, n − 1], j ∈ [0, n − 1]. Then, r is paired with adjacent rays s with st > 0
found in cells

Π(i, j) = {(k, l) : k ∈ [0, j] , l ∈ [j + 1, n]}

304 M. Terzer and J. Stelling

0 1 2 3 4 5 6 7 8 9 10

0
1
2
3
4
5
6
7
8
9
10

born column

die row

D
D
D
D
D
D

D
D
D
D
D

D
D
D
D

D
D
D

D
D

D

A
A
A
A

A
A
A

A
A

A
B
B
B
B

B
B
B
B

B
B
B
B

B
B
B
B

B
B
B
B

B
B
B
B

B
B
B
BC C C

C C C C C C C

A

0 1 2 3 4 5 6 7 8 9 10

0
1
2
3
4
5
6
7
8
9
10

born column

die row

R
R
R
R

R
R
R
R

R
R
R
R

R
R
R
R

R
R
R
R

R
R
R
R

R
R
R
R

P

Q
Q
Q
Q

B

Fig. 2. A: Hypothetical intermediary cell stages (A)ccumulating, (B)earing,

(C)ollaborating and (D)one. Collaborating cells can only occur in the final row n,

and in the first bearing row ρ (here: ρ = 6). Rays in cells of the final row never die,

and are thus never bearing; cells in rows between ρ and n have pending partner cells in

column ρ + 1, which are still accumulating. Cells above row ρ are always in the Done

stage, cells with column index > ρ are always accumulating. B: Born/die matrix with

an exemplarily red pairing cell (P) and yellow destination cells (Q) for pairing jobs

involving P. All green cells (R) are partner cells for P. Note that any other pairing cell

in row 6 has the same destination and partner cells as P.

Proof. From the main lemma of the double description method (see [9]), we
know that at iteration t, rays r with rt < 0 are paired with adjacent rays s with
st > 0. Here, we also have rt < 0 since r is stored in row j, that is, it dies at
iteration t = j + 1. It remains to prove that partner rays s can only be found
in the cells Π(i, j) = {(k, l)}. Clearly, k ≤ j, otherwise, the partner ray would
not yet be born at iteration t. Furthermore, s must die after step t, that is,
l ≥ j + 1. ��
Lemma 2 (Dependency Lemma). Every extreme ray q stored in cell (i, j)
with i ∈ [1, n], j ∈ [1, n] has been generated from an ancestor ray in

Ψ(i, j) = {(k, l) : k ∈ [0, i − 1], l = i − 1}
Proof. Since i ≥ 1, a ray q stored in cell (i, j) must have been generated from a
dying ray r with rt < 0 and a surviving ray s with st > 0. The dying ancestor
must be dying during the same iteration step as ray q is born, that is, at iteration
t = i, and we have l = i − 1. It is not relevant when ray s was born, and hence
k ∈ [0, i − 1]. ��
The dependency lemma 2 not only tells us when to start pairing jobs, but also
where the new rays created from those jobs will be stored. The rays stored in
cell (i, j) are connected to ancestor cells only through column index i, and all
ancestor cells with dying rays are contained in row i− 1 (Fig. 2B). This leads to
the following corollary:

Parallel Extreme Ray and Pathway Computation 305

Corollary 1 (Destination Cells). Rays q generated from a pairing job θ(�, i)

(
�
)

initiated by a pairing cell from row i are placed in column i + 1.

Stages (B) and (C) are active since cells are involved in pairing jobs during
those stages. The following corollary from lemma 2 yields the condition for the
activation of a cell:

Corollary 2 (Activation Condition: transition A–B). Cells in column i
with i ∈ [1, n] have collected all rays if all pairing jobs θ(�, k)

(
�
)

involving a
pairing cell from row k = i − 1 have completed.

The sequential algorithm keeps rays which are feasible at least until the next
iteration. Infeasible rays are dropped after the generation of new rays with ad-
jacent partner rays. To the same effect, we derive a deallocation condition for
rays stored in the born/die matrix:

Proposition 1 (Deallocation Condition: transition C–D). Rays stored in
cells of row j with j ∈ [0, n − 1] can be dropped if all pairing jobs θ(�, k)

(
�
)

initiated by a pairing cell from row k ≤ j have completed.

Proof. As a precondition, the cell in row j is not used as pairing cell, and thus
also not as partner cell as implied by pairing lemma 1. Consequently, the rays
in the cell are not used in any pairing job, and because j < n, they are also not
final rays, that is, they can be dropped. ��
To account for the last transition from (B) to (C), we count the completed pairing
jobs initiated by a cell, and introduce a remaining job counter Θ as follows:

Θ
(
(i, j)

)
= remaining jobs, initiated by (i, j)
= |θ(i, j)

(
�
)|total − |θ(i, j)

(
�
)|completed

= (j + 1)(n − j) − |θ(i, j)

(
�
)|completed

(7)

The counter Θ
(
(i, j)

)
is initialized with (j + 1)(n − j) according to pairing

lemma 1, and decremented whenever a pairing job θ(i, j)

(
�
)

terminates. We can
also derive the activation and deallocation conditions from Θ by computing the
minimum index ρ of a row with at least one cell with remaining jobs:

ρ =

⎧⎨⎩ n if Θ
(
(i, j)

)
= 0 ∀ i, j

min{j : ∃i : Θ
(
(i, j)

)
> 0} otherwise

(8)

Our observations are summarized in Table 1.

Implementation aspects

For the concurrent execution of pairing jobs, operations modifying the cell counter
Θ must be thread-safe. In our Java implementation, we use variables from

306 M. Terzer and J. Stelling

Table 1. Conditions for cell stages and algorithm termination

Object Stage Condition

(i, j) (A)ccumulating i > ρ

(i, j) active, (B) or (C) i ≤ ρ ≤ j

(i, j) (B)earing (i, j) is active and Θ
(
(i, j)

)
> 0

(i, j) (C)ollaborating (i, j) is active and Θ
(
(i, j)

)
= 0

(i, j) (D)one j < ρ

algorithm terminates ρ = n

the atomic package of the standard library. The classes AtomicInteger and
AtomicIntegerArray offer atomic, thread-safe and lock-free decrementAndGet
and compareAndSet operations. An additional helper variable Ω(j) for j ∈ [0, n−
1] is initialized with j + 1, accounting for the number of cells in row j which
are still (or not yet) bearing. The implementation of the conditions in Table 1
is illustrated in pseudo-code procedure PairingJobTermination. In addition to
the state variables Θ

(
(i, j)

)
, Ω(j) and ρ used to control cell stage conditions

and algorithm termination, also adding rays to an accumulating matrix cell and
job queue operations must be thread-safe.

Procedure PairingJobTermination

desc: Called before terminating a concurrently executed pairing job θ(i, j)

(
	
)

begin

jobsLeft ← decrementAndGet Θ
(
(i, j)

)
if (jobsLeft = 0) then

cellsLeft ← decrementAndGet Ω(j)
while (cellsLeft = 0) do /* no bearing cells left in row j */

if (ρ← compareAndSet ρ = j, j + 1) then /* j was ρ */

if (ρ = n) then
terminate;

else
queue new pairing jobs involving a cell of the activated
column ρ
j← j + 1

cellsLeft ← Ω(j)
end

else
cellsLeft ← −1 /* j was not ρ ⇒ break loop */

end

end

end

end

Parallel Extreme Ray and Pathway Computation 307

We have now all elements for the born/die algorithm:

1. Initialize: Θ
(
(i, j)

)
= (j + 1)(n− j) and Ω(j) = j + 1

2. Add rays from the initial kernel matrix K to column 0 in the born/die
matrix.

3. Setup an empty job queue.
4. Start concurrent working threads, processing queued jobs if available.
5. Activate column 0 by setting ρ = 0 and queue new pairing jobs involving

only cells from column 0. All further pairing jobs will be added to the queue
by terminating jobs as illustrated in procedure PairingJobTermination.

6. Await termination condition ρ = n.
7. Terminate working threads and return resulting extreme rays stored in ma-

trix row n.

2.3 Experimental Results

We have tested the two approaches on five large problems from combinatorics
and systems biology. Two examples are part of the cddlib sample files [10]: ccp7
(116, 764 facets of a 0/1 polytope in 21 dimensions) and mit71-61 (3, 149, 579
vertices, 60 dimensions). Three examples concern elementary modes (EMs) of
central metabolism of E.coli, namely coli-S2 (507, 632 EMs corresponding to
extreme rays of a polyhedral cone in 64 dimensions, configuration S2 in [8]),
coli-S3 (2, 450, 787 EMs, 68 dimensions) and coli-L1 (26, 381, 168 EMs, 76
dimensions).

The born/die approach seems to have a larger overhead especially with few
threads (Table 2), which is not surprising since the work is split into many (pos-
sibly fine-grained) pairing jobs. The scale-up behaviour of the methods is com-
parable, and for some examples, both algorithms scale poorly beyond 8 threads.

Table 2. Computation times for per-step and born/die approach with 1,2,4,8 and

16 threads (arbitrary precision integer arithmetic for ccp7 and mit71-61, double pre-

cision arithmetic for coli examples, adjacency test with rank updating and modulo

arithmetic), and sequential single-threaded times for cddlib (V0.94f with double arith-

metic, [10]) and 4ti2 (V1.3.2 with 64 bit integers, [11]). The tests are run on a 64bit

linux 2.6.18 machine with 4 Intel Xeon X7350 Quad Core CPUs with 2.93GHz. We

used a Sun Java 64-Bit Server VM (1.6.0 15-b03) with at most 8GB memory, except

for coli-L1 (32GB). All times (in seconds unless otherwise indicated) are the mean of

the median 6 measurements of 10 runs, except for cddlib and 4ti2, where the timing

is taken from a single test run. Supplementary information for all tests is available at

http://csb.ethz.ch in the publications section.

Problem Per-step Born/die cddlib 4ti2
Threads 1 2 4 8 16 1 2 4 8 16 (1)1 (1)1

ccp7 806 418 253 151 97 1,278 626 313 178 138 22,652 525
mit71-61 481 270 158 113 116 539 294 158 116 117 >4d 13,253
coli-S2 38 22 15 14 15 60 29 17 16 14 – –
coli-S3 338 199 144 121 115 579 319 187 145 138 – –
coli-L1 5,204 3,229 2,359 1,884 1,925 10,291 5,146 2,989 2,496 2,448 – –

308 M. Terzer and J. Stelling

On the other hand, we have solid speedup for ccp7, indicating that scalability
depends strongly on the problem instance. Both variants also compete well with
the sequential implementations cddlib [10] and 4ti2 [11], even if a comparison
is difficult1. The systems biology examples did not terminate with cddlib and
4ti2, possibly due to missing pre-processing e.g. to compress input matrices [7].

3 Conclusions

We have presented and compared two different approaches to parallelize the in-
herently sequential double description method. In a per-step approach, we apply
parallelization to the individual iteration steps. The second and novel born/die
algorithm stores intermediary results in matrix cells, which enables for a cross-
step parallelization. Numerous pairing jobs can be run concurrently if certain
dependency conditions are considered. Both approaches compete well with al-
ternative implementations if run on a single-core system, and scale comparably
well on multi-core architectures. The multi-threaded implementation runs within
the same virtual machine. However, we are confident that the born/die approach
is also a promising candidate for distributed computation – in particular through
its sophisticated storage model for intermediary rays.

Acknowledgment

This work was carried out under the HPC-EUROPA project (contract No. RII3-CT-

2003-506079). It was hosted by the Centrum Wiskunde & Informatica (CWI) and

supported by SARA Computing and Networking Services, Amsterdam. We thank the

scientific hosts, F.J. Bruggeman and L. Stougie.

References

1. Schuster, S., Hilgetag, C.: On elementary flux modes in biochemical reaction sys-

tems at steady state. J. Biol. Syst. 2, 165–182 (1994)

2. Stelling, J., Klamt, S., Bettenbrock, K., Schuster, S., Gilles, E.: Metabolic network

structure determines key aspects of functionality and regulation. Nature 420, 190–

193 (2002)

3. Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Appl. Math. 65(1-

3), 21–46 (1996)

4. Khachiyan, L., Boros, E., Borys, K., Elbassioni, K., Gurvich, V.: Generating all

vertices of a polyhedron is hard. Discrete Comput. Geom. 39(1), 174–190 (2008)

5. Motzkin, T.S., Raiffa, H., Thompson, G., Thrall, R.M.: The double description

method. In: Kuhn, H., Tucker, A. (eds.) Contributions to the Theory of Games II.

Annals of Math. Studies, vol. 8, pp. 51–73. Princeton University Press, Princeton

(1953)

6. Wagner, C.: Nullspace approach to determine the elementary modes of chemical

reaction systems. J. Phys. Chem. B 108, 2425–2431 (2004)

1 Computation times are not directly comparable, because (i) the sequential tools use

only one thread, and since (ii) internal pre-processing steps and (iii) input ordering

have a significant impact on the running time. In particular (ii) and (iii) affect the

order of the constraint processing and hence the number of intermediary rays.

Parallel Extreme Ray and Pathway Computation 309

7. Gagneur, J., Klamt, S.: Computation of elementary modes: A unifying framework

and the new binary approach. BMC Bioinformatics 5, 175 (2004)

8. Terzer, M., Stelling, J.: Large scale computation of elementary flux modes with bit

pattern trees. Bioinformatics 24(19), 2229–2235 (2008)

9. Fukuda, K., Prodon, A.: Double description method revisited. In: Combinatorics

and Computer Science, pp. 91–111 (1995)

10. Fukuda, K.: cddlib-094, C–library for polyhedral computations,

http://www.ifor.math.ethz.ch/~fukuda/cdd_home/index.html

11. 4ti2 team: 4ti2—a software package for algebraic, geometric and combinatorial

problems on linear spaces, www.4ti2.de

http://www.ifor.math.ethz.ch/~fukuda/cdd_home/index.html
www.4ti2.de

Parallelized Transient Elastic Wave Propagation

in Orthotropic Structures

Peter Arbenz1, Jürg Bryner2, and Christine Tobler1,2,�

1 ETH Zürch, Computer Science Department, 8092 Zürich
2 ETH Zürch, Institute of Mechanical Systems, 8092 Zürich

christine.tobler@sam.math.ethz.ch

Abstract. We discuss the parallelization of a Velocity-Stress FDTD

(VS-FDTD) code for the simulation of the propagation of mechanical

waves in three-dimensional microstructures. The C++ code has been

parallelized using MPI making extensive use of the Blitz++ library for

local computation. We present numerical results for pyramid shaped do-

mains, representing the tip of a focusing lens. We discuss the parallel

implementation on a cluster consisting of Opteron 250 nodes connected

by a high-speed Quadrics QsNet II network.

1 Introduction

The laser acoustic pump-probe technique is well established for non-destructive
measurements of thin films and microstructures [11,16,1,15]. An in-depth reso-
lution in the order of 10 nm can easily be achieved with this technique, whereas
the lateral resolution is in the order of the wavelength of the laser light, typically
800nm for near infrared lasers. Microscopic silicon tips can be used as acoustic
focusing lenses in order to improve the lateral resolution [9]. The optimization of
the geometry of such focusing tips requires the simulation of the wave propaga-
tion within the tip. Silicon is a probable candidate for the material of microscopic
focusing tips and a widely used material for Micro-Electro-Mechanical Systems
(MEMS) components. Single crystal silicon has cubic orthotropic material prop-
erties which is the main motivation for the following calculations of the wave
propagation in three dimensional anisotropic structures, which are carried out
with the VS-FDTD method on a staggered grid.

The Velocity-Stress Finite-Difference Time-Domain (VS-FDTD) method with
a staggered grid for mechanical waves was presented 1976 by Madariaga for
an axisymmetric two-dimensional model [8]. In 1984 and 1986 Virieux investi-
gated the SH- and P-SV-wave propagation with a staggered two-dimensional VS-
FDTD formulation for geophysical problems [13, 14]. In 1988 Temple presented
a three-dimensional numerical model where the PDEs for the displacement were
directly discretized [10]. In this work a three-dimensional model is solved with
the VS-FDTD method using the staggered grid that was suggested by Fellinger
� Corresponding author. Present address: ETH Zürch, Seminar for Applied Mathe-

matics, 8092 Zürich.

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 310–319, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Parallelized Transient Elastic Wave Propagation in Orthotropic Structures 311

et al. [4]. The VS-FDTD approach gives direct access to both, the displacement
components and the stress components.

Since the grid spacing is determined by the wave length of the incoming wave,
the number of grid points is proportional to the volume of the geometry under
consideration. In order to be able to simulate geometries of practically relevant
sizes we had to parallelize our VS-FDTD code originally written in Matlab.
We decided to rewrite the code in C++. For optimal portability we chose to
parallelize the code using MPI [5,7]. Extensive use of the Blitz++ library should
guarantee good local performance [12]. We present this effort with a particular
emphasis on the distribution of the data for the pyramid shaped domains that
are typical for acoustic focusing lenses. We report on results that we obtained
on a Quadrics-connected Beowulf cluster [2].

2 The Problem

The field variables of elastodynamics are the motion-related particle displace-
ment u(x, t), the velocity v(x, t) = u̇(x, t), strain tensor ε(x, t), and stress tensor
T(x, t). They all are functions of 3D space x and time t.

If the orthotropic axes of the considered structure are chosen in parallel to
the calculation axes then the stress-strain relation is given by

T =

⎡⎢⎢⎢⎢⎢⎢⎣
Txx

Tyy

Tzz

Txy

Txz

Tyz

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 2C44 0 0
0 0 0 0 2C44 0
0 0 0 0 0 2C44

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
εxx

εyy

εzz

εxy

εxz

εyz

⎤⎥⎥⎥⎥⎥⎥⎦ = Cε. (1)

The strains depend on the displacements as

εpq =
1
2
(∂puq + ∂qup), p = x, y, z, (2)

where, for some differentiable function φ, ∂xφ = ∂φ/∂x, ∂yφ = ∂φ/∂y, ∂zφ =
∂φ/∂z.

The wave propagation is described by the equations of motion,

ρ v̇p =
∑

q=x,y,z

∂qTpq + fp, p = x, y, z, (3)

by the constitutive equations

Ṫpp = C11ε̇pp + C12

∑
q
=p

ε̇qq + gpp, p = x, y, z,

Ṫpq = 2C44ε̇pq, pq = xy, xz, yz,

(4)

and the kinematic relations,

ε̇pq =
1
2
(∂pvq + ∂qvp), p, q = x, y, z. (5)

312 P. Arbenz, J. Bryner, and C. Tobler

Here, the dotted quantities denote time derivatives. In (3), ρ is the material
density and fx, fy, and fz are volume force densities. In (4), gxx, gyy, gzz, are
stress excitation terms. In our computations we assume zero volume forces.

Substituting the kinematic relations into the constitutive equations leads to
the six equations for the normal and shear stresses,

Ṫpp = C11∂pvp + C12

∑
q
=p

∂qvq + gpp, Ṫpq = C44(∂pvq + ∂qvp), (6)

that together with the equations of motion and appropriate initial conditions for
displacements, velocities, and stresses completely describe the wave propagation
for the case that the orthotropic axes of the material are in parallel with the
coordinate directions x, y, and z.

3 Solution Method

The SV-FDTD discretization is done using a staggered grid as described by
Fellinger [4]. In Fig. 1 the positions of the various field components are illus-
trated. The unit cell with the edge lengths Δx, Δy, and Δz is chosen such that
the normal stresses are at the center of the cell, the shear stresses are at the
midpoints of the edges, and the velocities are in the middle of the surfaces. Cor-
respondingly, the domain is represented as a structure with I ×J ×K unit cells.
I, J , K are the numbers of unit cells in x, y, and z-direction, respectively. The
arrangement is designed in a way that spatial derivatives can be replaced by di-
vided differences. The same holds true for the temporal derivatives. We denote

Fig. 1. Unit cell for the discretization at the position x = i, y = j, z = k

Parallelized Transient Elastic Wave Propagation in Orthotropic Structures 313

a quantity q discretized at (x, y, z) = (iΔx, jΔy, kΔz), t = �Δt by q
()
(i,j,k). Then

we advance the discretized velocity field at integer times,

v()
p = v(−1)

p + v̇
(− 1

2)
p Δt, p = x, y, z, (7)

and the discretized displacement and stress fields at intermediate times,

u
(+ 1

2)
p = u

(− 1
2)

p + v()
p Δt, T

(+ 1
2)

pq = T
(−1

2)
pq + Ṫ ()

pq Δt, p, q = x, y, z. (8)

For the temporal derivative of Txx and Txy we obtain from (6)

Ṫxx(i′,j′,k′) = C11Δxvx(i′,j′,k′) + C12

∑
q=y,z

Δqvq(i′,j′,k′) + gxx(i′,j′,k′), (9)

Ṫxy(i,j,k′) = C44

(
Δxvy(i,j,k′) + Δyvx(i,j,k′)

)
, (10)

where i′ = i + 1/2, j′ = j + 1/2, k′ = k + 1/2, and the three centered divided
differences are given by

Δxφ(i,j,k) =
φ(i+ 1

2 ,j,k) − φ(i− 1
2 ,j,k)

Δx
, Δyφ(i,j,k) =

φ(i,j+ 1
2 ,k) − φ(i,j− 1

2 ,k)

Δy
,

Δzφ(i,j,k) =
φ(i,j,k+ 1

2) − φ(i,j,k− 1
2)

Δz
.

Similar equations hold for the rest of the stress components. The discretization
of, e.g., the first equation of motion (3) reads

ρ v̇p(i,j′,k′) =
∑

q=x,y,z

ΔqTpq(i,j′,k′) + fp(i,j′,k′). (11)

As the initial conditions the displacements u(0)
(i,j,k), velocities v(0)

(i,j,k), and stresses

T(0)
(i,j,k) must be prescribed.
All simulations presented below are calculated with stress-free boundary con-

ditions. The shear stress grid points positioned at the boundaries are simply
set to zero. The velocity grid points at the boundaries are calculated by one-
sided differences assuming that the normal stresses at the boundaries vanish, see
Bryner et al. [3] for details.

A stability condition limits the time step [4, 3],

Δt ≤ Δx√
3cpo

,

where cpo is the speed of the fastest primary wave.

4 Implementation Details

We implemented the VS-FDTD algorithm in C++ for parallel processing, using
the Blitz++ library [12] for storing data and MPI for passing messages [5, 7].

314 P. Arbenz, J. Bryner, and C. Tobler

In this paper we consider domains of the shape of a pyramid with square base.
We store the variables Tpq and up, p, q = x, y, z, layer by layer from the base
(z = 0) to the tip of the pyramid. Because of the symmetry in the geometry,
only a quarter of the data has to be stored. On the symmetry planes x = 0 and
y = 0 homogeneous Neumann boundary conditions are imposed. In each time
step, updating the variables Tpq and up requires individual for-loops for interior
points, boundary points, and points on the symmetry planes.

Fig. 2. Pyramid distributed on 6 proces-

sors. View on a symmetry plane.

For the parallelization, the pyra-
mid is partitioned in z-direction, from
base to tip. Each processor is given
an equal fraction of the volume of
the pyramid. So, the number of lay-
ers owned by a processor increases
from base to tip, cf. the sketch in
Fig. 2. Logically, the processors are
arranged in an array such that each
of them has at most two neighbors. In
each iteration step of the FDTD al-
gorithm, information on interface lay-
ers is exchanged among neighboring
processors.

In a first approach, the variables
were stored in a 3D-array each. Stor-
age for data at grid points outside of
the pyramid was allocated but never
accessed. The data was distributed ac-
cording to the workload which is pro-
portional to the grid points inside the pyramid. So, the processors handling the
top portions of the pyramid store many more data layers than the others. This
storage scheme was easy to implement but entailed a severe restriction on the
problem sizes we could deal with.

Therefore, in a second approach, each of the 3D-arrays was replaced by an
array of 2D-arrays where each of the latter stores quantities of a horizontal
layer of the pyramid. The number of elements per layer and thus per 2D-array
decreases from the base to the tip. In this approach, the data and computational
load are balanced equally among the processors. However, the volume of the data
that has to be communicated among processors is much smaller close to the tip
of the pyramid than at the base.

Regarding communication, the straightforward strategy is to exchange the
data corresponding to the layers interfacing two processors. This requires com-
municating 9 messages in each direction, the six stresses Tpq and the three ve-
locities vp. Some of the communication can be hidden by computation. A second
strategy is to communicate the velocity data vx, vy and vz corresponding to two
layers nearest to the interface. In this case, only three (however double-sized)
messages need to be sent per time step. The missing Tpq values can be recovered

Parallelized Transient Elastic Wave Propagation in Orthotropic Structures 315

by means of formula (9) and (10). In this way we reduce the communication
volume by one third, at the expense of calculating some values twice.

For the run-time analysis let us assume that the base layer contains m × m
grid points and that there are n layers from base to tip of the pyramid. If
the top layer consists of just one grid point then there are about m2n/3 grid
points inside the pyramid. We distribute the data on the processors in contiguous
layers such that each of the processors handles about m2n/3p grid points. The
volume of the messages that are exchanged between processors j and j + 1 is
not easily estimated. The largest messages are about m2 data items long; the
smallest messages are considerably smaller. Since there are about 75 floating
point operations per grid point and time step, the overall execution time for the
first approach on p processors is about

tp ≈
(

75m2n

3p
+ 4 · 30m2

)
tflop + 6 tstartup + 6m2 tword. (12)

Here, tflop, tstartup, and tword denote the times for executing one (double pre-
cision) floating point operation, for the communication startup overhead (MPI
latency) and for sending one (8-byte) word of data [6]. We discuss these numbers
in the next section.

According to Amdahl’s law [6], a parallel program executes efficiently only
if the fraction that does not scale well is relatively small. Here, besides the
communication, this fraction consists of the redundant work in the two double-
layers at the interfaces of the subgrids.

5 Numerical Results

The calculations were carried out on Brutus, a Beowulf cluster at ETH Zurich [2].
The subcluster we used consists of compute nodes, each one containing two AMD
Opteron 250 processors running at 2.4GHz and 8GB of RAM. The nodes are
interconnected via a high-speed Quadrics QsNet II network of about 900MB/s
band width and 1.25μs MPI latency. So, for the quantities in (12) we get
tstartup = 1250 ns and tword = 8.88 ns. From one-processor runs we estimate
tflop ≈ 1 ns. This also corresponds roughly to the memory bandwidth of the
Opteron. Note that tflop very much depends on the kind of computation that are
performed.

The first simulation is of a pyramid with an opening angle of 13.7◦, a quadra-
tic base of 1.5μm side length and a tip of 0.1μm side length. The width of the
incoming wave is 1.4μm, fading out to the sides with a Hanning distribution.
The computational domain is embedded in a 377×377×1442 grid, corresponding
to 6.5GB of memory for the second approach. The layer at the tip consists of
26 × 26 grid points. We simulated a period of 700ps, using 7000 time steps.

The second simulation pyramid has an opening angle of 20◦, 1.7μm wide at
the base and 0.1μm at the tip. The incoming wave is the same as with the first
simulation. The size of the rectangular grid encasing the computational domain
is 427 × 427 × 1102 grid points, corresponding to 6.4GB of memory. The tip

316 P. Arbenz, J. Bryner, and C. Tobler

layer again consists of 262 grid points. We simulated a period of 530ps, using
5300 time steps.

Both simulations were executed on 16 and 64 processors (i.e., 8 and 32 nodes),
using the first and second approaches described in Section 4. (They are too big
to be executed on a single processor.) The execution times and speedups are
listed in Table 1.

Table 1. Execution times in seconds for the two simulations (using 16 processors)

Opening angle Number of First approach Second approach

processors time speedup time speedup

13.7◦ 16 15730 s 12244 s

64 3789 s 4.15 3582 s 3.42

20◦ 16 10547 s 7563 s

64 2753 s 3.83 2485 s 3.04

Comparing the first to the second approach, the memory usage is reduced
considerably, by about a factor of 3. The execution time is not reduced so much
of course, but only by roughly 25% using 16 processors, and by roughly 10%
using 64 processors. The latter is due to the fact that the load could be balanced
reasonably well on 64 processors as the tip portion did fit in the memory of a
single processor.

Comparing execution times of the 16 to 64 processor runs, we observe speed-
ups between 3.04 and 4.15, corresponding to a relative efficiency between 75%
and over 100%. The first approach scales better than the second approach. This
is because the processors that handle the grid close to the tip cannot store as
many layers as load balance would require. This situation is improved for 64
processors. Since the first (13.7◦) model has more layers than the second (20◦)
model (1441 vs. 1102) the overhead due to redundant computation (2nd term
in (12)) is relatively smaller. So, we observe better speedups with the former.

The one-dimensional block data distribution takes its toll. As just noticed,
if the number of layers is not big enough then the nonscaling portions in (12),
communication and redundant computation, soon become significant.

The results that interest the engineers, the wave propagation in the orthotropic
structure, are given in Fig. 3 to 5 for the pyramid with an opening angle of 13.7◦.
As displayed in Fig. 3, after 100ps there are two main wave packets moving

down the pyramid. The wave packet in front consists of quasi-longitudinal waves
(vertical components), the second wave packet of quasi-shear waves (horizontal
components). From analytical results, the velocities of these wave packets should
be 8432m/s and 5843m/s, respectively. This agrees with the results of the simu-
lation. Fig. 4 shows the situation after 300ps: due to reflection at the borders of
the cylinder, there are two additional wavefronts, with other minor ones. After
390ps, the waves have been reflected at the tip of the pyramid, see Fig. 5.

Finally, we discuss another speedup analysis that we conducted with a smaller
model that could be run on a single processor. This example has a base of

Parallelized Transient Elastic Wave Propagation in Orthotropic Structures 317

Fig. 3. The displacement fields on the yz-symmetry plane after 100 ps. utot: displace-

ment amplitude, uy : displacement in y direction, uz: displacement in z direction.

Fig. 4. The displacement fields on the yz-symmetry plane after 300 ps. utot: displace-

ment amplitude, uy : displacement in y direction, uz: displacement in z direction.

Fig. 5. The displacement fields on the yz-symmetry plane after 390 ps. utot: displace-

ment amplitude, uy : displacement in y direction, uz: displacement in z direction.

318 P. Arbenz, J. Bryner, and C. Tobler

Table 2. Analysis of the 176 × 176 × 618 case

Number of processors 1 2 4 8 12 16

Execution time 1574 s 834 s 448 s 232 s 162 s 133 s

Speedup 1.0 1.9 3.5 6.8 9.7 11.8

Efficiency 1.0 0.94 0.88 0.85 0.81 0.74

Formula (12) 1 0.99 0.97 0.93 0.89 0.85

0.696μm, an opening angle of 13.7◦ and a simulation time of 80ps, corresponding
to 800 time steps. The size of the computational domain is 176×176×618, which
corresponds to 678MB of memory. Only the second approach is analyzed.

The simplistic formula (12) reproduces reasonably well the efficiencies given
in Tab. 2. It however does not take into account that the nodes have two pro-
cessors that communicate through a shared memory with insufficient memory
bandwidth.

These data again confirm that the redundant portion of the computation
which is a fixed amount of work independent of the processor number p domi-
nates very soon, already for small processor numbers. This is not too surprising
for the factor m2, i.e., the number of grid points in the base layer, and the fact
that the processors close to the base store only very few layers, cf. Fig. 2.

A last simulation concerns weak scalability. The small model of Table 2 was
solved with a higher resolution: the cell sizes Δx, Δy, Δz were halved, as was
the time step Δt. As a result, the memory consumption and computational cost
increases by a factor of 8 and 16, respectively. This simulation was executed
on 128 processors. For a perfectly scaling program, the execution time would
correspond to twice that of 16 processors in the original model in Table 2, i.e.,
2 · 133 s. The actual execution time was 1039 s which is 3.9 times as much. Thus,
the relative efficiency is 26%. The reason for the low efficiency is, again, that,
after the lowest slices have reached their minimal width, adding more processors
does not decrease the overall execution time any further.

6 Conclusions

The parallelization of our VS-FDTD code was successful in that we can now
solve the problem of the relevant sizes. The problem sizes are determined by the
geometry of the orthotropic structure to be analyzed and by the wave length of
the incoming wave.

The speedups that we measured with a small test example on one to 16 proces-
sors of the Beowulf cluster at ETH Zurich were satisfactory. This cluster connects
dual-core Opteron 250 nodes by a Quadrics QsNet II network. The solution of rel-
evant problem sizes requires 1–4 hours wall clock time on 16–64 processors.

The parallelization strategy is based on an array arrangement of the proces-
sors that is quite easy to adapt to the pyramidal geometry of our structures.
In this way it is easy to balance the computational work. However, the com-
munication volume among adjacent processors is varying considerably. The 1D

Parallelized Transient Elastic Wave Propagation in Orthotropic Structures 319

arrangement of the processor becomes the bottleneck of the computations if too
many processors are employed for solving a problem.

References

1. Bonello, B., Perrin, B., Romatet, E., Jeannet, J.C.: Application of the picosecond

ultrasonic technique to the study of elastic and time-resolved thermal properties

of materials. Ultrasonics 35(3), 223–231 (1997)

2. Beowulf cluster Brutus website: http://www.clusterwiki.ethz.ch/brutus

3. Bryner, J., Vollmann, J., Aebi, L., Dual, J.: Wave propagation in pyrami-

dal tip-like structures with cubic material properties. Wave Motion (2009),

doi:10.1016/j.wavemoti.2009.07.003

4. Fellinger, P., Marklein, R., Langenberg, K.J., Klaholz, S.: Numerical modeling of

elastic-wave propagation and scattering with EFIT – elastodynamic finite integra-

tion technique. Wave Motion 21(1), 47–66 (1995)

5. Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel Programming

with the Message-passing Interface, 2nd edn. MIT Press, Cambridge (1999)

6. Kumar, V., Grama, A., Gupta, A., Karypis, G.: Introduction to Parallel Comput-

ing. Benjamin/Cummings, Redwood City (1994)

7. Open MPI website: http://www.open-mpi.org

8. Madariaga, R.: Dynamics of an expanding circular fault. Seism. Soc. Am. 66(3),

639–666 (1976)

9. Profunser, D.M., Vollmann, J., Dual, J.: Ultrasonic wave propagation in focussing

tips with arbitrary geometries. Ultrasonics 40(1), 747–752 (2002)

10. Temple, J.A.G.: Modeling the propagation and scattering of elastic-waves in inho-

mogeneous anisotropic media. J. Phys. Appl. Phys. 21(6), 859–874 (1988)

11. Thomsen, C., Grahn, H.T., Maris, H.J., Tauc, J.: Surface generation and detection

of phonons by picosecond light-pulses. Phys. Rev. B 34(6), 4129–4138 (1986)

12. Veldhuizen, T.: Blitz++ User’s Guide (March 2006),

http://www.oonumerics.org/blitz/

13. Virieux, J.: SH-wave propagation in heterogeneous media: velocity-stress finite-

difference method. Explor. Geophys. 15(4), 265 (1984)

14. Virieux, J.: P-SV wave propagation in heterogeneous media: velocity-stress finite-

difference method. Geophysics 51(4), 889–901 (1986)

15. Vollmann, J., Profunser, D.M., Dual, J.: Sensitivity improvement of a pump-

probe set-up for thin film and microstructure metrology. Ultrasonics 40(1), 757–763

(2002)

16. Wright, O.B.: Laser picosecond acoustics in double-layer transparent films. Optics

Letters 20(6), 632–634 (1995)

http://www.clusterwiki.ethz.ch/brutus
http://www.open-mpi.org
http://www.oonumerics.org/blitz/

Parallel Numerical Solver for Modelling of

Electromagnetic Properties of Thin Conductive
Layers

Raimondas Čiegis1, Žilvinas Kancleris2, and Gediminas Šlekas2

1 Vilnius Gediminas Technical University

Saulėtekio al. 11, LT10223 Vilnius, Lithuania

rc@fm.vgtu.lt
2 Semiconductor Physics Institute

A. Goštauto 11, LT01108 Vilnius, Lithuania

kancleris@pfi.lt

Abstract. In this paper we develop the parallel numerical algorithm for

modelling of electromagnetic properties of thin conductive layers. The

explicit finite difference scheme is obtained after approximation of the

system of differential equations on the staggered grid. The parallelization

of the discrete algorithm is based on the domain decomposition method.

The tool of parallel linear algebra objects ParSol is used to get a semiau-

tomatical implementation of this parallel algorithm on distributed mem-

ory computers. Some results of numerical simulations are presented and

the efficiency of the proposed parallel algorithm is investigated.

Keywords: parallel algorithms, finite-difference method, numerical sim-

ulation, semiconductors, wave radiation.

1 Introduction

Thin high conductivity layers, in particular the layers with two-dimensional elec-
tron gas, are widely employed in high frequency electronics. Microwave detectors
are not the exception. In [3] the planar asymmetrically shaped homogeneous
semiconductor structure for the measurement of microwave power has been pro-
posed. Due to asymmetrical geometry of the structure the non-uniform electron
heating takes place in it when the detector is subjected by the microwaves and
a DC voltage appears on the ends of the structure enabling microwave power
measurement. Since electron heating effect is put on a basis of the proposed
device performance, it can be used in a wide frequency range up to a terahertz
region [11,12], where a traditional semiconductor diode based on microwave cur-
rent rectification is of a little use. To measure microwave power the proposed
detector either was inserted into waveguide [3,11] or the measurements in free
space were performed by direct illuminating of the sensor by terahertz radiation
[11,12]. In the latter case the metallic parts of the structure act as a bow-tie
antenna coupling the structure with terahertz radiation. Although the detector

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 320–329, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Parallel Numerical Solver for Modelling of Electromagnetic Properties 321

(a)

(b)

(c)

Fig. 1. The structures under investigation: (a) the simplified model, (b) a nicked mesa,

(c) their installation into narrowed waveguide. Grey colour in (a) and (b) shows semi-

conducting layer – mesa, black colour corresponds to the metallic contacts.

is in general a multilayered structure grown on a semi insulating substrate, the
thin layer conducting current through the structure is of a great importance for
the whole device performance. Thus interaction of electromagnetic wave with
the conductive layer should be considered and the electric field distribution in it
should be calculated to determine the characteristics of the proposed sensor or
engineer the sensor with desirable characteristics.

In the present paper we have concentrated on the interaction of an electro-
magnetic wave with a thin conducting layer placed in the waveguide. Millimeter
wave frequency region has been considered. We have used finite-difference (FD)
method originally proposed by Yee [8] and described in a monograph [13]. Since
the thickness of the active layer is much less than the wavelength of the electro-
magnetic field, direct account of it in the FD calculation procedure needs very
fine grid. Due to complicated geometrical shape of the structure fine grid in the
transverse direction is also desirable. To account the thin material layer in the
FD calculation we use the method proposed by Maloney and Smith [10]. This
approach allows to use space step size that is much larger than the thickness of
the layer.

322 R. Čiegis, Ž. Kancleris, and G. Šlekas

2 Mathematical Model

The shape of the considered structures is shown in Figure 1. In Figure 1(a)
the simplified model of the structure is shown. It consists of the thin layer of
GaAs inserted between two metallic layers covering its ends. The length of the
mesa (i.e. semiconductor layer) comprises roughly 1/7 part of the whole length
of the structure. A nicked mesa is depicted in Figure 1(b). It is seen that at
l/L = 0.5 the structure is symmetrical, the asymmetry of the mesa depends
on the ratio l/L. The electric field in the nicked mesa becomes inhomogeneous
when the structure is subjected by the microwave radiation. Overall length of the
structure was 1 mm, therefore it is placed in the waveguide in the plain normal to
the falling electromagnetic wave and a vector of electric field is oriented along the
sample. The considered sample occupies full height of the narrowed waveguide
window. It is schematically shown in Figure 1(c).

Depending on the considered frequency range the size of the wide wall a
is changed. We have considered two frequency bands: Ka-band, a = 7.2 mm,
f = 26−40 GHz and U-band, a = 4.4 mm, f = 43−65 GHz. Wishing to check up
the algorithms used for calculation we also considered the solid semiconducting
layer occupying full window of the waveguide. In this case computed results have
been compared with an analytical solution. Investigated mesas are characterized
by their width w, thickness d, a specific conductivity σ and a relative dielectric
constant ε. The ratio l/L was the characteristic of the nicked mesas. In the
waveguide a regular TE10 (H10) type wave has been excited. The electric field
distribution in the mesa, its average value and the reflection coefficient from the
structure were the main characteristics of the model considered in the paper.

FD method for the calculation of electromagnetic field components was used
[13]. We employed a Cartesian coordinate system and dimensionless coordinates
and time: x/a, y/a, z/a, tv/a where v is the velocity of light in free space and
a is a size of wide wall of the waveguide. The section of the waveguide has
been simulated the length of which corresponds roughly to two wavelengths of
excited oscillations in a waveguide λb. At some distance from the beginning of
the section the TE01 type wave is excited. It propagates into both sides from
the excitation plane. The investigated structure is placed at one wavelength in
the waveguide ahead from the excitation plane and at the same distance before
the end of the modelled waveguide section. Non reflecting boundary conditions
have been fulfilled on both open ends of the waveguide section.

Before the obstacle the partly standing wave is formed from the amplitude
of which the reflection coefficient from the investigated structure has been de-
termined. As it is seen from Figure 1(c) the investigated layer is inserted in the
center of the waveguide window. Therefore, saving computer resources only half
of the window has been modelled.

Note, that in a vicinity of the inhomogeneous structure all electromagnetic
field components might appear. Therefore, to determine the electric field com-
ponents in the layer, the Maxwell equations have to be solved computing all six
components of the electric and magnetic fields. Making use of dimensionless vari-
ables and measuring up the magnetic field strength in electric field units Z0H ,

Parallel Numerical Solver for Modelling of Electromagnetic Properties 323

where Z0 is an impedance of free space, the well-known Maxwell equations in
the 3D semiconductor plate can be written in a following way [7]:

∂E

∂t
=

1
ε
(∇ × H − γE),

∂H

∂t
= −∇× E. (1)

Here γ = Z0aσ accounts for losses in the structure. It was assumed that μ = 1
for the entire simulation area. Outside the semiconductor obstacle γ = 0 and
σ = 1. The metal surfaces of the structure have been treated as a perfect metal
conductor. Calculated electric field has been normalized to the maximum of the
electric field component Ey in the empty waveguide.

3 Finite Difference Scheme

The differential problem is approximated by using the finite difference method
which is applied on the staggered grids in space and time [13]. The grid, where the
particular component is computed is shifted by a half of the step with respect to
the other components (see [8], where this procedure was proposed). Let consider
the reference grids in space

ωh = {(xi, yj , zk) : xi = ihx, yj = jhy, zk = khz, 0 ≤ i, j, k ≤ Nw, w = i, j, k}.

and time ωt = {tn : tn = nht, n = 0, . . . , Nt}. As example, let us consider the
equation for the component Ex defined in a free space:

ε
∂Ex

∂t
= −∂Hy

∂z
+

∂Hz

∂y
.

Then we define functions Ex, Hy and Hz on grids shifted with respect to each
other in space and time coordinates: En

x,i,j−0.5,k+0.5, H
n+0.5
y,i,j−0.5,k, Hn+0.5

z,i,j,k+0.5. All
derivatives are approximated by using the forward or backward finite differences,
giving the symmetrical approximation formulas:

En+1
x,i,j−0.5,k+0.5 = En

x,i,j−0.5,k+0.5 − ht

εhz

(
Hn+0.5

y,i,j−0.5,k+1 − Hn+0.5
y,i,j−0.5,k

)
(2)

+
ht

εhy

(
Hn+0.5

z,i,j,k+0.5 − Hn+0.5
z,i,j−1,k+0.5

)
.

Due to the fact that electric and magnetic fields are calculated at different time
moments and on staggered grids in space, we get the second order accuracy of
approximation of space and time derivatives. We note that a similar strategy was
used also to solve numerically systems of nonlinear Schrödinger type equations
arising in simulation of laser devices [5,9].

The implementation of the discrete scheme is very simple and efficient, since
the discrete solution is obtained by a direct explicit algorithm. The main limi-
tation of this finite difference scheme consists in its conditional stability, which
gives a CFL type restriction on the discrete time step.

324 R. Čiegis, Ž. Kancleris, and G. Šlekas

Our main goal is to simulate devices where a thin layer of GaAs is inserted
between two metallic layers. Since the proposed finite difference scheme is only
conditionally stable, we would like to avoid the usage of non-uniform (or adap-
tive) space grids, since small space steps in some part of domain will lead to
necessity to select a very small time step ht. We assume the thin semi-conductor
layer has a small thickness in the x direction and is large in the y and z directions.

A subcell method is proposed in [10] for including thin material layers in
the finite-difference method. It introduces additional cells where the electric
field component normal to the layer is split into two parts. One of the split
components accounts for the properties of the layer, while in the other one the
electric field component in the free space close to the layer is stored. In the case
of Ex component the solution in the free space en+1

xo,i,j−0.5,k+0.5 is calculated by
using the standard approximation (2). However the electric field component in
the thin metal layer is computed by using the following modified equation

εs

en+1
xs,i,j−0.5,k+0.5 − en

xs,i,j−0.5,k+0.5

ht
+ γ

en+1
xs,i,j−0.5,k+0.5 + en

xs,i,j−0.5,k+0.5

2
(3)

= −hn+0.5
y,i,j−0.5,k+1 − hn+0.5

y,i,j−0.5,k

hz
+

hn+0.5
z,i,j,k+0.5 − hn+0.5

z,i,j−1,k+0.5

hy
.

The accuracy of approximation of this component reduces to the first order. The
averaged value of both components exo and exs have to be taken into account
when magnetic field components tangential to the layer are calculated. The de-
tails of the application of this technique for the calculation of semiconductor
obstacle placed in the waveguide can be found in [7].

4 Parallel Numerical Algorithm

The parallel algorithm is based on the domain decomposition method. The dis-
crete grid wh is distributed among p processors. The load balancing problem is
solved at this step: each processor obtains the same number of grid points and
the sizes of overlapping regions of subdomains are minimized (due to the stencil
of the grid, processors require information from the neighbouring processors). In
this paper we apply the 3D block domain decomposition algorithm, decompos-
ing the grid in all three directions. Since the proposed finite difference scheme
is explicit, the parallel version of the solver implements exactly the sequential
version of the algorithm. The parallel algorithm is generated semiautomatically
by using the tool of parallel linear algebra objects ParSol [6] (for more applica-
tions of ParSol see [4,5]). Parallel vectors, which are used to store the discrete
solution, are created by specifying three main attributes:

– the dimension of the parallel vector is 3D;
– the topology of processors is 3D;
– the 3D grid stencil is defined by the 27 points box.

Parallel Numerical Solver for Modelling of Electromagnetic Properties 325

Next we present some results of computational experiments. Computations were
performed on Vilkas cluster of computers at Vilnius Gediminas Technical Uni-
versity, consisting of nodes with Intel(R) Core(TM)2 Quad processor Q6600.
Four processing cores are running at 2.4 GHz each and sharing 8 MB of L2
cache and a 1066 MHz Front Side Bus. Each of the four cores can complete
up to four full instructions simultaneously. Obtained performance results are
presented in Table 1. Here for each number of processors p the coefficients of
the algorithmic speed up Sp = T1/Tp and efficiency Ep = Sp/p coefficients are
presented. Tp(Nx, Ny, Nz) denotes the CPU time required to solve the problem
on the given grid ωh using p processors. We have solved the discrete problem on
two grids of sizes (131 × 51 × 284) and (261 × 101 × 569).

Table 1. Results of computational experiments on Vilkas cluster

2× 1 1× 2 4× 1 2× 2 1× 4 8× 1 4× 2 16× 1 8× 2

Sp(1) 1.98 1.63 3.27 3.11 1.65 6.14 5.59 11.84 10.8

Ep(1) 0.99 0.82 0.82 0.79 0.42 0.77 0.70 0.74 0.68

Sp(2) 1.98 1.63 3.27 3.11 1.65 6.14 5.59 11.84 10.8

Ep(2) 0.99 0.82 0.82 0.79 0.42 0.77 0.70 0.74 0.68

The presented results confirm the conclusions of the standard scaling analysis
of the parallel DD algorithm. In the case when up to two cores per node are
used, the efficiency is improved, when the size of the problem is increased. It
can be recommended to use till two cores per one node in practical simulations.
In the case of four cores per node data reading/writing operations start to be
a bottle-neck of the parallel algorithm, since the discrete scheme is defined on
a very sparse stencil and no intensive local computations are needed to update
the solution at each grid point.

5 Simulation Results and Discussions

Initially we compute the reflection coefficient from the conducting layer that
fills whole waveguide’s window. On the one hand, such installation of the layer
simplifies numerical computation since problem reduces to a two-dimensional
and subcell method [10] might be compared with a standard FD method in a
wider range of the layer thickness. On the other hand, the reflection coefficient
from the layer can be found analytically therefore one can estimate the accuracy
of numerical calculation. Results of calculations have shown that the standard
FD method and the Maloney-Smith method lead to very similar solutions. But
in the subcell method the step in a wave propagation direction dz = 50μm has
been used and the thickness of the layer thickness is roughly four orders less
than the step.

Considering the structures we confine ourselves to a fixed thickness of the
mesa d = 0.1μm and width w = 100μm those correspond to the experimentally

326 R. Čiegis, Ž. Kancleris, and G. Šlekas

realized structures [2]. Initially we investigated the simplified structure shown
in Figure 1(a) having different specific conductivities of the mesa. Calculated
dependencies of the reflection coefficient and average electric field component
Ey on mesa’s specific electrical conductivity are shown in Figure 2.

(a) (b)

Fig. 2. The dependence on a conductivity of the mesa for different frequency bands:

(a) of the reflection coefficient for the structure with uniform mesa, (b) of the average

electric field in it. Calculation parameters: ε = 12, d = 0.1μm, f = 33.4 GHz for

Ka-band and f = 54.3 GHz for U-band.

As one can see from the figure, when the conductivity of the mesa decreases
the reflection coefficient and average electric field are approaching some limit-
ing values defined by the properties of the metallic layers rather than by the
properties of the mesa. Since metallic layers comprise significant part of the
investigated structure they caused in themselves some reflection. Reflection co-
efficient is larger for U-band since the normalized width of the structure w/a
is larger in comparison with the same quantity for Ka-band. The increase of σ
results in the growth of the reflection coefficient, whereas the averaged electric
field in the mesa decreases. At σ = 0, the equivalent circuit of the structure is
comprised of two inductances with a capacitance in between. While the specific
conductivity of the mesa increases conductive currents begin to shunt the capac-
itance causing in turn the increase of the reflection since the conductive current
begins to dominate in a whole structure under consideration.

For the investigation of nicked mesa we choose the specific conductivity of
it 500 S/cm. At such conductivity the electric field distribution within uniform
mesa is homogeneous for both frequency bands under consideration and the
averaged electric field in it remains sufficiently large. Calculation results for
the nicked mesa with the different ratios of l/L are shown by points in Figure 3.
Minimum width of the mesa corresponds to the size of the step in the x direction
dx = 5μm.

As one can see from the figure the distribution of the electric field is symmet-
rical for the symmetrical mesa (l/L = 0.5) and asymmetry is growing with the

Parallel Numerical Solver for Modelling of Electromagnetic Properties 327

(a) (b)

Fig. 3. Dependence of the component Ey of electric field averaged in x direction on a

coordinate y for the nicked mesa with different ratio l/L: (a) f = 33.4 GHz, Ka-band,

(b) f = 54.3 GHz, U-band. Here y = 0 corresponds to the left metal-mesa interface

in Figure 1(b). Points correspond to the calculation results, solid line demonstrates

approximation (4). Calculation parameters: ε = 12, σ = 500 S/cm, d = 0.1μm, the

ratio l/L is indicated in the figure.

asymmetry of the mesa. The maximum of the electric field appears in the nar-
rowest part of the mesa. It should be noticed that it is practically independent
of the ratio of l/L. Furthermore, comparing results shown in Figure 3(a) and (b)
it is seen that for investigated mesas electric field distribution is similar in both
frequency bands. Distribution of electric field is not sensitive to the frequency
within considered frequency band as well.

These facts supports the idea that the electric field in the nicked conductive
mesa is practically determined by its shape and the dependence of the electric
field on coordinate can be approximated by the expression obtained by solving
Poisson equation in a DC electric field for a special case when the drift velocity
of the electrons is independent of the electric field. For this simple approach
electric field amplitude in the mesa can be expressed as [1]

〈Ey〉(y) = 〈Ey〉c wc

w(y)
, (4)

where 〈Ey〉c is the electric field amplitude near the mesa-metal interface, wc and
w(y) are the regular and coordinate dependent width of the mesa, respectively.

Calculated according to (4) electric field dependencies on y are shown in
Figure 3 by a solid line. It is seen, that the used approximation fits well with
calculated results. It should be notice that this simple approximation (4) can
be used for the mesa in which conducting currents are dominated. When the
specific conductivity of the mesa decreases the electric field does not follow the
geometry of the mesa.

Considering the other components of the electric field in the mesa it should
be pointed out that due to symmetry of the layer Ex component is zero on the

328 R. Čiegis, Ž. Kancleris, and G. Šlekas

Fig. 4. Dependence of the reflection coefficient from the structure with nicked mesa

on frequency within considered frequency range for the different ratio l/L. Calculation

parameters: ε = 12, σ = 500 S/cm, d = 0.1μm, f = 33.4 GHz for Ka-band and f = 54.3
GHz for U-band.

y axis. It slightly increases with x whereas the amplitude of the Ez is negligible.
In general, the component Ey dominates within the mesa.

Dependencies of the reflection coefficient from the investigated structures on
frequency are shown in Figure 4. Calculation results for different shape structures
within both frequency bands are presented. It is seen that reflection coefficient
in U-band is larger comparing it with the reflection coefficient in Ka-band. It
should be noticed that for the structures under investigation the ratio w/a is
larger in the U-band and this is a reason for the larger value of the reflection
coefficient in this band.

6 Conclusions

The structure consisting of the thin conducting layer with metal contacts in-
serted in the waveguide has been considered. It has been shown that the strong
increase of the electric field appears in the narrowest point of the mesa when the
conducting currents dominate. It was found that at this condition the distribu-
tions of the electric field depends on the geometry of the mesa and is practically
independent of frequency in the considered frequency range. A simple approach,
based on the solution of Poisson equation in a DC electric field with the assump-
tion that the drift velocity of the electrons is independent of the electric field,
fits well calculated dependences of the electric field in the waveguide for high
conductivity mesas.

Acknowledgments. The first author was supported by the Agency for Interna-
tional Science and Technology Development Programmes in Lithuania within the
EUREKA Project E!3691 OPTCABLES and by the Lithuanian State Science
and Studies Foundation within the project on B-03/2007 ”Global optimization
of complex systems using high performance computing and GRID technologies”.

Parallel Numerical Solver for Modelling of Electromagnetic Properties 329

The last two authors acknowledge the partial their support by the Lithuanian
Science and Studies Foundation within the project P-01/2009 ”Nanostructures
for microwave and terahertz electronics”.

References

1. Ašmontas, S.: Electrogradient Phenomena in Semiconductors, Vilnius, Mokslas

(1984) (in Russian)

2. Ašmontas, S., Gradauskas, J., Kozic, A., Shtrikmann, H., Sužiedelis, A.: Submi-

crometric heavily doped n-GaAs structures for microwave detection. Acta Phys.

Pol. A 107(1), 147–150 (2005)

3. Ašmontas, S., Gradauskas, J., Sužiedelis, A., Valušis, G.: Submicron semiconductor

structures for microwave detection. Microelectronic Engineering 53, 553–556 (2000)

4. Čiegis, R., Čiegis, R., Jakušev, A., Šaltenienė, G.: Parallel variational iterative algo-

rithms for solution of linear systems. Mathematical Modelling and Analysis 12(1),

1–16 (2007)

5. Čiegis, R., Radziunas, M., Lichtner, M.: Numerical algorithms for simulation of

multisection lasers by using traveling wave model. Mathematical Modelling and

Analysis 13(3), 327–348 (2008)

6. Jakušev, A., Čiegis, R., Laukaitytė, I., Trofimov, V.: Parallelization of linear algebra

algoritms using ParSol library of mathematical objects. In: Čiegis, R., Henty, D.,

Kagstrom, B., Žilinskas, J. (eds.) Parallel Scientific Computing and Optimization.

Advances and Applications. Springer Optimization and Its Applications, vol. 27,

pp. 25–36 (2009)

7. Kancleris, Ž., Tamošūnas, V., Dagys, M., Simnǐskis, R., Agee, F.: Interaction of

a semiconductor sample partly filling a waveguide’s window with milimeter wave

radiation. IEE Proc. Microw. Antennas Propag. 152(4), 240–244 (2005)

8. Yee, K.S.: Numerical solution of initial boundary problems involving Maxwell’s

equation in isotropic media. IEEE Trans. Antennas Propagation 14(3), 302–307

(1966)

9. Laukaitytė, I., Čiegis, R.: Finite-difference scheme for one problem of nonlinear

optics. Mathematical Modelling and Analysis 13(2), 211–222 (2008)

10. Maloney, J.G., Smith, G.S.: The efficient modelling of thin material sheets in the

FDTD method. IEEE Trans. Antennas and Propagation 40, 323–330 (1992)

11. Seliuta, D., Širmulis, E., Tamošiūnas, V., Balakauskas, S., et al.: Detection of tera-

hertz/ sub-terahertz radiation by asymmetrically-shaped 2DEG layers. Electronics

Letters 40(10), 631–632 (2004)

12. Seliuta, D., Kašalynas, I., Tamošiūnas, V., Balakauskas, S., et al.: Silicon lens-

coupled bow-tie InGaAs-based broadband terahertz sensor operating at room tem-

perature. Electronics Letters 42(14), 825–827 (2006)

13. Taflove, A., Hagness, S.: Computational Electrodynamics: The Finite-Difference

Time-Domain Method. Artech House, Norwood (2000)

Numerical Health Check of Industrial

Simulation Codes from HPC Environments to
New Hardware Technologies

Christophe Denis

EDF Research and Development,

SINETICS Department,

1 avenue du Général de Gaulle,

92141 Clamart CEDEX, France

Christophe.Denis@edf.fr

Abstract. The numerical health check of industrial codes is crucial to

give confidence about the computed results performed by studying the

round-off error propagation. This problem is exacerbated in a super-

computing environment where trillions of floating-point operations may

be performed every second. A parallel program based on domain decom-

position as shown in this paper could compute slightly different results

depending on the number of processors. This numerical health check is

also needed to verify if a numerical code (or some parts of the numerical

code) could still have an acceptable accuracy when using single preci-

sion instead of double precision which is useful to run numerical codes

on new hardware technologies like GPU where the double precision is

unavailable or expensive. The round-off error propagation is measured

with the MPFI (interval arithmetic approach) and CADNA (probabilis-

tic approach) libraries.

1 Introduction

The EDF Research and Development direction covers all EDF group businesses.
High performance simulation offers a real opportunity for various EDF group
businesses that have to deal with increasing complexity and demands. Even if
the academic research on HPC deals more often only on performance, the ac-
curacy of sequential and parallel codes developed at EDF R&D is crucial. It is
then important to study the effect of the round-off error propagation on the com-
puted results. Several methods exist to perform round-off analysis, for example
the inverse analysis method [6]. Among these methods, the CADNA library and
MPFI libraries seem to be at our point of view less intrusive in the original code.
The CADNA library is an implementation of discrete stochastic arithmetic for
code written in FORTRAN, C and C++ [13]. Several libraries implementing the
interval arithmetic exist: we use the MPFI library for programs written in C
[8]. Preliminary works about the numerical health check by using CADNA for a
sequential code has been presented in [11].

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 330–339, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Numerical Health Check of Industrial Simulation Codes 331

This paper is organised as follows. The numerical health check tools are pre-
sented in Section 2. Section 3 summarises the work done around the numerical
validation on new hardware technologies like GPU. On this architecture, the use
of the double precision floating point arithmetic can be expensive and the use of
single precision speeds up the computing. Nevertheless, it is necessarily to carry
out a rigorous numerical verification of the single precision computation to give
confidence in the accuracy of the computed results.

Section 4 deals with the communication scheme of the parallel finite element
code TELEMAC3D solving the full 3D free surface Navier-Stokes equations. The
parallelism is based on domain decomposition and the communication scheme is
implemented by using the MPI library. The domain decomposition involves inter-
face nodes duplicated on several processors. Each processor sums on its interface
nodes contributions coming from other processors. Unfortunately, round-off er-
rors occurs during the summation and different values could be assigned for the
same interface node on different processors. Finally, we present our concluding
remarks and our future work.

2 Numerical Health Check Tools

Many simulation programs are large software systems developed to enable vir-
tual experiments to be conducted on some physical system. The development
process, extending from the physical world to the mathematical model, then to
the computational model and finally to the computer implementation, involves
a number of approximations: physical effects may be discarded, continuous func-
tions replaced by discretized ones and real numbers replaced by finite precision
representations. In consequence, approximation is woven into the very fabric
of scientific software and cannot be eliminated. Unfortunately, despite develop-
ments in software engineering, there is every reason to believe that the comment
made by Leslie Fox in 1971 [3] is still valid today, I have little doubt that about
80 per cent of all the results printed from the computer are in error to a much
greater extent than the user would believe. It is incumbent, therefore, on the com-
putational scientist to understand the source and propagation of these errors and
to manage them judiciously. The theme of accuracy and reliability in scientific
computation has recently been explored and is amplified in [2]. The propaga-
tion of these errors must be addressed to avoid the production of computed
results with few or no significant digits. In particular, numerical verification is
required to give confidence that the computed results are acceptable. Prelimi-
nary works about numerical health check of a sequential code has been as done
in [11].

Several methods and tools have been developed over the years to analyse
round-off error propagation. These include direct analysis, inverse analysis [6],
methods based on algorithmic differentiation, interval arithmetic, CESTAC
method and randomised interval arithmetic [12]. Among these methods, the
CADNA library and MPFI libraries seem to be at our point of view less intru-
sive in the original code. We present now these two methods.

332 C. Denis

2.1 The CADNA Library

The CADNA library is an implementation of discrete stochastic arithmetic
(DSA), which is based on the CESTAC method, devoted to programs writ-
ten in ADA, C, C++ and Fortran [13]. Where no overflow occurs, the exact
result, r, of any non exact floating-point arithmetic operation is bounded by two
consecutive floating-point values R− and R+. The basic idea of the method is
to perform each arithmetic operation N times, randomly rounding each time,
with a probability of 0.5, to R− or R+. The computer’s deterministic arithmetic,
therefore, is replaced by a stochastic arithmetic where each arithmetic operation
is performed N times before the next arithmetic operation is executed, thereby
propagating the round-off error differently each time. This is the essence of the
CESTAC method. The method furnishes us with N samples, Ri, of the computed
result R. The value of the computed result, R, is the mean value of {Ri} and the
number of exact significant digits in R, CR, is estimated using the mean value
and the standard deviation of {Ri}. The computational zero has been defined
as follows:

Definition 1. During the run of a code using the CESTAC method, an inter-
mediate or a final result R is a computational zero, denoted by @.0, if one of the
two following conditions holds:

– ∀i, Ri = 0
– CR ≤ 0

Any computed result R is a computational zero if either R = 0, R being signif-
icant, or R is non significant. In other words, a computational zero is a value
that cannot be differentiated from the mathematical zero because of its rounding
error.

2.2 The MPFI Library

MPFI is intended to be a portable library written in C for arbitrary precision
interval arithmetic with intervals represented using MPFR reliable floating-point
numbers [8]. It is based on the GNU MP library and on the MPFR library. The
purpose of an arbitrary precision interval arithmetic is on the one hand to get
guaranteed results, thanks to interval computation, and on the other hand to
obtain accurate results, thanks to multiple precision arithmetic.

The basic principle of interval arithmetic consists in enclosing every number
by an interval containing it and being representable by machine numbers: for
instance it can be stored as its lower and upper endpoints and these bounds are
machine numbers, or as a centre and a radius which are machine numbers. For
example, on a radix-10 machine with 3 digits of mantissa, π would be represented
by the interval [3.14, 3.15]. The arithmetic operations are extended for interval
operands in such a way that the exact result of the operation belongs to the
computed interval.

Numerical Health Check of Industrial Simulation Codes 333

2.3 A First Example: The Precariousness of Relying on Extended
Precision

The aim of this example is to present the precariousness of relying on extended
precision to give confidence about the computed results. Consider the following
innocuous looking function proposed in [9] to be evaluated at x = 77617 and
y = 33096:

f(x, y) = 333.75y6 + x2(11x2y2 − y6 − 121y4 − 2) + 5.5y8 + x/(2y) (1)

Note that the numerical result could differ if the summation order changed but
the purpose of this example is to only underline the round-off errors problem.
A Fortran implementation of Eq. (1), executed on an Itanium processor using
the Intel ifort compiler, in single, double and quadruple precision produces the
results shown in the first three entries of Table 1. The first three entries might
lead the unwary to conclude that the single precision result is incorrect and that
the double precision result is accurate to 14 decimal digits. Unfortunately, the
interval result computed by MPFI (in single or double precision) shows that
f(x, y) is very badly computed due to round-off error propagation. As double
precision is concerned, f(x, y) is guaranteed to be between −1.180591621× 1022

and 7.083549725× 1021: the interval is too large. The same phenomenon is ob-
served with CADNA in single or double precision. The result f(x, y) is @.0 that
is to say it has no significant digit. A good approximation of the computed results
is obtained with MPFI with 130 bits in mantissa (f(x, y) = −8.2739...× 10−1).
This example illustrates that round-off error can seriously compromise the re-
liability of a fixed precision floating-point computation and the importance of
round-off error analysis tools to detect this problem.

Table 1. The computation of f(x, y) = 333.75y6 + x2(11x2y2 − y6 − 121y4 − 2) +

5.5y8 + x/(2y)

Method f(77617, 33096)

Fortran:single precision 6.3382530 × 1029

Fortran:double precision 1.17260394005318

Fortran:quad precision 1.17260394005317863185883490452018

MPFI:single precision [−8.239728902 × 1030,
8.239729506e30]

MPFI: double precision [−1.180591621e22,
7.083549725e21]

CADNA:single precision @.0

CADNA:double precision @.0

MPFI:“nearby exact” value [−8.273960600 × 10−1,
(130 bits in mantissa) −8.273960599 × 10−1]

334 C. Denis

3 Impact on the Accuracy by Using Single Precision
Instead of Double Precision

The new multi-core architectures with reduced clock frequencies like GPU pro-
vide an high power computing power for a relatively low power consumption. In
these architectures, the double precision could be unavailable or expensive. On
CPU, the use of single precision reduces the computing time and the amount
of memory required. It is then important to estimate the number of significant
digits obtained with single precision. We have worked in this topic during a re-
search fellow position on a financial program written in C based on Monte-Carlo
computations. It returns the value v of the portfolio of swaptions. Only four sig-
nificant digits are required for v. More information about the LIBOR code could
be found in [14]. The CADNA and the MPFI libraries has been implemented
in the LIBOR code. The code has been performed by using single and double
precision. Table 2 reports the values of v by using the CADNA and MPFI li-
braries with the single and double precision. Only the significant digits given by
CADNA are printed in these two tables.

Table 2. The values of v by using the CADNA and MPFI libraries in single and double

precision

Initial Precision Number of samples v (with CADNA) v (with MPFI)

Double precision 1000 2.2432331204357e2 [2.2432331204356563e2,

2.2432331204357712e2]

Double precision 10000 2.2432331204357e2 [2.2432331204356557e2,

2.2432331204357718e2]

Single precision 1000 2.243232e2 [2.24320236e2,

2.24326386e2]

Single precision 10000 2.243232e2 [2.24320236e2,

2.24326371e2]

For all results presented in Table 2, the results given by CADNA are inside
the interval computed by MPFI. The number of samples does not influence
the accuracy of the computed results. The number of significant digits given
by CADNA of the results computed with double precision is 14. This number
decreases to 6 by using single precision. Using single precision is then sufficient
as four significant digits are required for v.

4 Domain Decomposition and Round-Off Errors

The domain decomposition is widely used to solve in parallel numerical applica-
tions. The domain decomposition is a divide and conquer strategy:

1. The domain (finite element mesh or finite volume mesh) is divided into Ns

subdomains.
2. Each subdomain is assigned to a processor and local computations are per-

formed on it.

Numerical Health Check of Industrial Simulation Codes 335

3. Communications are performed to gather local computations located at the
interface between subdomains.

The communication algorithm has been here explicitly developed but for exam-
ple the Parsol library could be used to build parallel linear algebra algorithms
[7]. The numerical results have to be identical on interface nodes among sub-
domains. It is not always the case as round-off errors occur in the context of
floating point computations. Consequently, a parallel code based on a domain
decomposition could give some slightly different results in contrast with the se-
quential code. The objective of this section is to enlight this phenomena by tak-
ing as example the parallel finite element code TELEMAC3D. It is a joint work
done with E. Razafindrakoto from the EDF National Hydraulics and Environ-
ment Laboratory. The section is organised as follows. Firstly, the TELEMAC3D
code is briefly described. After describing its communication scheme, we show
why it could produce different values on interface nodes among subdomains.
These differences could produce deadlocks between processors in particular dur-
ing the computing of derivatives on interfaces nodes. A development modifying
the communication scheme has been made to avoid these numerical differences.
Unfortunately, even if differences disappear, this development does not ensure
the accuracy of the results. The last point of this section presents the round-off
error propagation effects on the original and modified communication scheme.

4.1 The TELEMAC3D Code

TELEMAC3D is a program contained in the TELEMAC system designed
and used by the EDF National Hydraulics and Environment Laboratory. The
aim of TELEMAC system is to study the numerical modelling system for free
surface hydrodynamics, sedimentology, water quality waves and underground
flows. TELEMAC3D solves the full 3D free surface Navier-Stokes equations. It
is mostly based on the finite element method and the basic principles of the
solution procedure are detailed in [4]. The finite element mesh is composed
of super-imposition of 2D triangles meshes so that the 3D finite element is a
prism. The upper level follows the free surface. The parallelism is based on do-
main decomposition and the communication scheme is implemented by using the
MPI library. The parallelism in TELEMAC3D is based on the message passing
paradigm. The finite element mesh is divided into Ns subdomains SD(j) without
finite element overlapping by using the graph partitioning tool METIS. Due to
the domain decomposition, there exist nodes - called interface nodes - shared by
several subdomains. Alg. 1 summarises the two main steps of the TELEMAC3D
parallel version: the computation and the communication steps.

4.2 Problem of the Communication Scheme and First Solution

At the end of each communication step, entries of V must have the same values
among subdomains.

Consider a node a shared by four subdomains. Each subdomain SD(j) has
a one entry V j

a corresponding to the node a. During the communication step,

336 C. Denis

for all timestep t do
{Computation step}

New values of the nodes - including interface nodes - are locally computed in

parallel on each subdomain SD(j). Depending of the type of computation, one to

three contributions are computed and stored into one to three arrays V1, V2, V3.

Without loss of generality, we consider in the rest of the paper that there is only

one contribution per node stored in V . Entries of V correspond to internal nodes or

interface nodes.

{Communication step}

The entries of V corresponding to interface nodes scattered on several

subdomains need to be gathered. The gather operation could be the sum, the

maximum value, the minimum value or the maximum absolute value.

end for

Algorithm1. Main steps of the TELEMAC3D parallel version

each subdomain receive the value of this node coming from the three other
subdomains. These values will be successively added with the local value. Each
subdomains could compute in parallel these sums in different order depending
on the communication network :

V 1
a ← V 1

a + V 2
a + V 3

a + V 4
a , V 2

a ← V 2
a + V 1

a + V 3
a + V 4

a ,

V 3
a ← V 3

a + V 1
a + V 2

a + V 4
a , V 4

a ← V 4
a + V 1

a + V 2
a + V 3

a

Unfortunately, as floating point computation is concerned, the result of the sums
could not be the same on each subdomain due to round-off errors. The floating
point sum is not associative. The first solution given was to assign on each inter-
face node the maximum value of the sums among subdomains. The drawbacks
of this solution are the increase of the communication volume and the problem
of round-off errors is hidden but still exists. Indeed, the maximum value of the
sum is not necessarily the solution with few round-off errors. The communication
phase has been modified in order to compute the sum in the same order among
subdomains (the ascending order of MPI process). This modification allows to
avoid computing the maximum value. The gain obtained on the computing time
is from 2.5% (1 024 subdomains) to 9% (2 048 subdomains).

5 Measuring the Accuracy of the Floating Point
Summation

The CADNA library has been implemented in the TELEMAC3D communication
scheme to control the accuracy of the floating point summation. The test case is
a numerical study having a finite element mesh with 6 352 954 3D nodes and 12
083 160 3D finite elements. The number of time steps of TELEMAC3D has been

Numerical Health Check of Industrial Simulation Codes 337

Table 3. Number of significant digits obtained during the summation by using 1024

to 8192 MPI process on BG/P

1 024 subdomains

nsd Original communication scheme Ascending order of MPI processes

Percentage of sums having nsd Percentage of summation having nsd
significant digits significant digits

15 96.5% 97.1%

14 2.98% 2.68%

13 0.27% 0.23%

12 0.3% 0.03%

11 0.01% 0.003%

10 0.0002% 0.0002%

9 0.0002% 0%

2 048 subdomains

nsd Original order Ascending order of MPI processes

Percentage of sums having nsd Percentage of summation having nsd
significant digits significant digits

15 96.9% 96.7%

14 2.85% 2.96%

13 0.27% 0.3%

12 0.03% 0.03%

11 0.003% 0.004%

10 0.0006 0.0002%

9 0 0

4 096 subdomains

nsd Original order Ascending order of MPI processes

Percentage of sums having nsd Percentage of summation having nsd
significant digits significant digits

15 96.1% 95.6%

14 2.76% 3.8%

13 0.91% 0.3%

12 0.22% .04%

11 0.02% 0.002%

10 0.00045% 0.0002

9 0 0

8 192 subdomains

nsd Original order Ascending order of MPI processes

Percentage of sums having nsd Percentage of summation having nsd
significant digits significant digits

15 97,6% 97,39%

14 2.23% 2.23%

13 0.19% 0.21%

12 0.02% 0.02%

11 0.002% 0.002%

10 0.0002% 0.0002%

1 0.0005% 0

338 C. Denis

fixed to 1000. The test case has been run from 1 024 to 8 192 processors on the
EDF IBM BG/P supercomputer. Table 3 represents the percentage of summa-
tion having nsd significant digits for the original and modified communication
scheme. The total number of summation during a computing is about 400000.
Not surprisingly, the summation performed in original order and the summation
made in the ascending order of MPI processes produce both round-off errors.
Moreover, the number of instabilities does not increase with the number of sub-
domains. In a large number of cases (more than 96% of the number of sums),
there is no round-off error: the sum having the same magnitude. The number of
significant digits decreased - for one case the sum has only one significant digit
- when the magnitude of operands differs. Even if the modified communication
scheme permits to have the same value on interface nodes among subdomains,
round-off error problems remains. The future work consist to implement and
evaluate with CADNA error-free transformation for the sum of two floating
point numbers [10].

6 Conclusion and Future Work

The results presented in the paper underline that numerical health tools like
CADNA is useful to give confidence about the computed results. It is more
important in the context of industrial codes than the speed of the computing.

A numerical health check permits also to know if the single precision could
be used instead of the double precision. This is important to reduce the amount
of memory required by a program: why using double precision if the single pre-
cision give satisfactory results ? This is also more important on new hardware
technologies like GPU where the double precision is unavailable or expensive.
In the context of parallel numerical code, these experimental results show that
domain decomposition could produce round-off errors even if the sequential pro-
gram is accurate. The future work is to implement error-free transformation for
the floating sum in the TELEMAC3D communication scheme. This work will
be also tested on other EDF parallel codes based on domain decomposition.

References

1. Alt, R., Lamotte, J.-L.: Experiments on the evaluation of functional ranges using

random interval arithmetic. Mathematics and Computers in Simulation 56(1), 17–

34 (2001)

2. Einarsson, B. (ed.): Accuracy and Reliability in Scientific Computing. SIAM,

Philadelphia (2005)

3. Fox, L.: How to get meaningless answers in scientific computation (and what do

about it), IMA Bulletin (1971)

4. Hervouet, J.-M.: Hydrodynamics of Free Surface Flows: Modelling with the Finite

Element Method, Xiley (April 2007), IBSN : 978-0-470-03558-0

5. Higham, N.J.: The accuracy of floating point summation. SIAM Journal on Scien-

tific Computing (1993)

Numerical Health Check of Industrial Simulation Codes 339

6. Higham, N.J.: Accuracy and Stability of Numerical Algorithms. SIAM, Philadel-

phia (1996)

7. Jakušev, A., Čiegis, R., Laukaitytė, I., Trofimov, V.: Parallelization of linear algebra

algorithms using ParSol library of mathematical objects. In: Čiegis, R., Henty, D.,

Kagstrom, B., Žilinskas, J. (eds.) Parallel Scientific Computing and Optimization.

Advances and Applications. Springer Optimization and Its Applications, vol. 27,

pp. 25–36 (2009)

8. Revol, N., Rouillier, F.: Motivations for an arbitrary precision interval arithmetic

and the mpfi library. Reliable Computing 11(4), 275–290 (2005)

9. Rump, S.M.: Reliability in Computing. In: The Role of Interval Methods in Scien-

tific Computing. Academic Press, London (1998)

10. Rump, S.M., Ogita, T., Oishi, S.: Accurate Floating-point Summation Part I:

Faithful Rounding. SIAM Journal on Scientific Computing (SISC) 31(1), 189–224

(2008)

11. Scott, N.S., Jezequel, F., Denis, C., Chesneaux, J.-M.: Numerical ‘health check’ for

scientific codes: the CADNA approach. Computer Physics Communications 176(8),

507–521 (2007); Scientific Computing, Academic Press (1998)

12. Zilinskas, J., Bogle, I.D.L.: Evaluation ranges of functions using balanced random

interval arithmetic. Informatica 14(3), 403–416 (2003)

13. CADNA: Control of Accuracy and Debugging for Numerical Applications. Univer-

sité Pierre et Marie Curie, Paris, http://www.lip6.fr/cadna

14. http://people.maths.ox.ac.uk/~gilesm/hpc/

15. The TELEMAC system, http://www.telemacsystem.com

http://www.lip6.fr/cadna
http://people.maths.ox.ac.uk/~gilesm/hpc/
http://www.telemacsystem.com

Application of Parallel Technologies to

Modeling Lithosphere Dynamics and Seismicity�

Boris Digas, Lidiya Melnikova, and Valerii Rozenberg

Institute of Mathematics and Mechanics,

Ural Branch of Russian Academy of Sciences,

S. Kovalevskoi Str. 16, 620219 Ekaterinburg, Russia

{digas,meln,rozen}@imm.uran.ru

http://www.imm.uran.ru

Abstract. A problem of modeling some processes in the crust is consid-

ered. A brief description of different modifications of the spherical block

model of lithosphere dynamics and seismicity is presented; the emphasis

is on incorporation of lithospheric inhomogeneities into the model. An

approach to program realization based on the use of parallel technologies

is applied. Results of numerical experiments with an approximation of

the global system of tectonic plates are discussed.

Keywords: Block models, tectonic plates, earthquake catalogs.

1 Introduction

Study of earthquakes with the statistical and phenomenological analysis of real
catalogs has the disadvantage that the reliable data cover, in general, a time in-
terval of about one hundred years or less, which is very short in comparison with
the duration of tectonic processes responsible for the seismic activity. Therefore,
the patterns of the earthquake occurrence identifiable in a real catalog may be
only apparent and may not repeat in the future. In this connection, mathe-
matical models of seismicity, i.e., of temporal-spatial earthquake sequences, are
important tools that yield synthetic catalogs, which may cover a very long time
interval in order to acquire, by means of appropriate optimization procedures,
more reliable estimates of parameters of a seismic flow and to search for premon-
itory patterns preceding large earthquakes [2]. Every event in a synthetic catalog
is characterized by a time moment, epicenter coordinates, a depth, a magnitude,
and, for some models, an intensity. Simulation of lithosphere dynamics allows
us to obtain velocity fields for different depths, forces, displacements induced by
these forces, as well as characteristics of the structural interaction.

� The work was performed within the framework of the Program of Presidium of

Russian Academy of Sciences “Intellectual information technologies, mathematical

modeling, system analysis, and automatization” and was supported by the Rus-

sian Foundation for Basic Research (Project 09-01-00378) and by the Ural-Siberian

Interdisciplinary Project.

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 340–349, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.imm.uran.ru

Modeling Lithosphere Dynamics and Seismicity 341

There exist many different approaches to modeling lithospheric processes (see,
e.g., [2] and its bibliography); nevertheless, we can mark out the two main di-
rections. The first direction is based on detailed investigation of one specific
tectonic fault, or, rather often, one strong earthquake in order to reproduce cer-
tain pre- and/or post-seismic phenomena (relevant to this fault or event). In
contrast, models of the second direction developed relatively recently treat the
seismotectonic process in rather abstract way; the main goal of simulation is
reproducing general universal properties of observed seismicity (primarily, the
Gutenberg – Richter law on frequency-magnitude relation, clustering, migration
of events, seismic cycle and so on). However, it seems that an adequate model
should reflect some universal features of nonlinear systems as well as the specific
geometry of interacting faults. The block models of lithosphere dynamics and
seismicity (see, for example, [9,10]) have been developed with both requirements
taken into account. This approach to modeling is based on the representation
of tectonic plates as a system of perfectly rigid blocks, which is in a quasi-static
equilibrium state; model events are stress-drops occurring on faults separating
blocks under the action of external forces. The plane block model [9, 10], in
which a block structure is bounded by two horizontal planes, has been the most
extensively studied. Approximations of real seismic regions have been built on
its basis. But while trying to simulate the motion of a system of global tectonic
plates with the plane block model, significant distortions were revealed. In order
to overcome them, the spherical geometry has been involved [8]. The present pa-
per, being a continuation of the investigations [6,8], actually represents the brief
review of designed modifications of the spherical block model and the discussion
on some results of numerical experiments. One of the goals of this work is to
demonstrate that there is a natural succession in algorithmic and program re-
alization, including parallelization, of plane and spherical block models, despite
the fact that the latter is much more complicated.

2 Different Modifications of the Spherical Block Model

Let us briefly describe the spherical block model of lithosphere dynamics and
seismicity.

A block structure is a limited and simply connected part of the spherical layer
of depth H bounded by two concentric spheres. The outer sphere represents the
Earth’s surface and the inner one represents the boundary between the litho-
sphere and the mantle. The partition of the structure into blocks is defined by
faults intersecting the layer. Each fault is a part of a cone surface inclined at
a certain angle to the outer sphere. Faults intersect along curves, which meet
the outer and inner spheres at points called vertices. Fragments of faults limited
by adjacent vertices are called segments. The common parts of blocks with the
limiting spheres are spherical polygons, those on the inner sphere are called bot-
toms. A block structure may be a part of the spherical shell and be bordered by
boundary blocks, which are adjacent to boundary segments. Another possibil-
ity is to consider the structure including the whole spherical shell (covering the

342 B. Digas, L. Melnikova, and V. Rozenberg

whole surface of the Earth) without boundary blocks. All block displacements
are considered as negligible, compared with block sizes. Therefore, the geometry
of the block structure does not change during the simulation, and the structure
does not move as a whole. All blocks have six degrees of freedom. The displace-
ment of each block consists of translation and rotation components. The motions
of the boundary blocks and of the underlying medium are assumed to be known;
they are described as rotations on the sphere, i.e., axes of rotation and angular
velocities are given.

Depending on the way of treating the depth of the spherical layer, several
modifications of the model are worked out. In the first modification (without
depth) [8], it is assumed that all characteristics of points belonging to the block
structure are determined only by their coordinates and do not depend on the
depth, since this depth is significantly less than the linear dimensions of blocks.
The modification with constant depth [6] uses the idealized assumption that the
lithosphere is homogeneous (in the sense that all the blocks have the same depth
H , and all parts of a block/a fault have the same properties). The modification
with varying depth announced in [6] and being under development now provides
a possibility of specifying different depths for different blocks and of changing
fault parameters depending on its depth. Note that this is the first attempt
of taking into account the lithospheric inhomogeneities (e.g., differences in the
structure of continental and oceanic crust) within the framework of block models.

Because the blocks are perfectly rigid, all deformations take place in the faults
and at the block bottoms; forces arise on the inner sphere due to displacements
of blocks with respect to the underlying medium and on fault surfaces due to
displacements of neighboring blocks. The elastic force per unit area (ft, fl, fn)
is defined by

ft = Kt(Δt − δt), fl = Kl(Δl − δl), fn = Kn(Δn − δn). (1)

Here (t, l, n) is the coordinate system connected with the point of application
of the force (the axes t and l lie on the plane tangent to the fault’s surface,
the axis n is perpendicular to it); Δt, Δl, Δn are components of the relative
displacement in the system (t, l, n) of the neighboring blocks or of the block and
the underlying medium of the neighbor; δt, δl, δn are corresponding inelastic
displacements, the evolution of which is described by the equations

dδt

dt
= Wtft,

dδl

dt
= Wlfl,

dδn

dt
= Wnfn. (2)

The coefficients Kt, Kl, and Kn (1), characterizing the elastic properties of
the fault, and the coefficients Wt, Wl, and Wn (2), characterizing the viscous
properties of the fault, may be different for different faults and, in addition, may
depend on the depth.

The formulas for calculating forces and inelastic displacements on block bot-
toms are obtained by analogy. Components of the translation vectors of any
inner block and angles of its rotations are found from the condition that the
total force and the total moment of forces acting on the block are equal to zero.

Modeling Lithosphere Dynamics and Seismicity 343

This is the condition of quasi-static equilibrium of the system. Since in the model
we consider the linear dependence of forces and moments on displacements and
rotations of blocks, the system of equations for determining these values must
be also linear:

Aw = b. (3)

Here, the components of the unknown vector w = (w1, w2, ..., w6n) are the com-
ponents of translation vectors of inner blocks and angles of their rotation (n
is the number of such blocks). The matrix A (of dimension 6n × 6n) does not
depend on time and can be calculated only once, at the beginning of the process.
To calculate various curvilinear integrals, one should discretize (divide into cells)
the spherical surfaces of the block bottoms and fault segments. The values of
forces and inelastic displacements are assumed to be equal for all points of the
cell. System (3) is solved at discrete time moments ti.

Calculating the force acting on a fault, we find the ratio of the stress to the
pressure by the formula

κ =

√
f2

t + f2
l

P − fn
. (4)

Here P is the parameter, which may be interpreted as the difference between
the lithostatic and the hydrostatic pressure. The interaction between the blocks
(between the block and the neighboring underlying medium) is visco-elastic (a
“normal state”), so long as the value κ (4) at the fault separating the elements of
the structure is below a certain strength level. If, at some moment, a critical value
is reached (the admissible thresholds are a priori specified and may be different
for different faults) then, in accordance with the dry friction model, a stress-
drop (a “failure”) occurs through abrupt changing the inelastic displacements
δt, δl, and δn. The failures represent earthquakes. Immediately following the
earthquake for some period of time (so called healing time), the corresponding
parts of the faults are in a “creep state”. This state differs from the normal one
because of the more rapid growth of inelastic displacements and continues until
the stress falls below a given level.

A synthetic earthquake catalog is produced as a main result of the simulation
process. All cells of the same fault, in which the failures occurred at the same
time ti, are considered as a single earthquake. The parameters of the earthquake
are defined as follows: (a) the time of the event is ti; (b) the epicentral coordinates
and the depth are the weighted sums of the corresponding coordinates and the
depths of the cells involved in the earthquake (the weight of each cell is given
by its area divided by the sum of areas of all cells involved in the earthquake);
(c) the magnitude is calculated by the known in seismology formula [11]:

M = 0.98 lg S + 4.07, (5)

where S is the total area of cells (in km2) involved in the earthquake. In addition,
the model allows us to obtain the instantaneous kinematics of blocks and the
information on their interaction along the boundaries. It should be noted that
formulas (1)–(5) look like corresponding formulas for the plane model (compare

344 B. Digas, L. Melnikova, and V. Rozenberg

with [10]) but all the forces and displacements are to be calculated on the sphere.
For a detailed description of the block models, see, e.g., [6, 9].

3 Parallelization: Efficiency and Scalability Analysis

The computational experiments show that the spherical block model of litho-
sphere dynamics and seismicity during performing on sequential computers re-
quires very considerable expenditures of memory and processor time. Due to this
reason, the problem of simulating dynamics for structures with a large number of
blocks and small enough steps of the temporal-spatial discretization needs spe-
cial solving tools. However, the approach applied to modeling admits effective
parallelization of calculations on a multiprocessor machine. The standard scheme
“master-worker” (“processor farm”) successfully used in the plane model [10] is
applied to the spherical model as well. The flowchart of the main calculative
procedure looks exactly the same as in [10]. Let us give some explanations. In
the beginning of the work, a specific processor, which the program has loaded
to, is detected by its number (zero number becomes the master). Then the in-
formation on the block structure is read, and auxiliary calculations (the space
discretization, calculation of the matrix A of system (3)) are performed. At ev-
ery time step, the most time-consumable procedure is calculation of the values
of forces and inelastic displacements in all cells of the block bottoms and fault
segments. Since these calculations can be performed independently from each
other, it is necessary to share them uniformly between all processors. Note that,
calculating all the values above at its own portion of cells, the master plays the
role of the worker as well. The key elements of the parallel algorithm in question
are the uniform distribution of cells and the optimal exchange between proces-
sors. The information exchange is realized according to the following scheme. At
every time step, the master calculates the new values of block, boundary block,
and underlying medium displacements (it requires insignificant time due to the
small dimension of system (3)), then necessary parameters are transferred to
the workers. After recalculation of the forces and inelastic displacements, the
workers return their parts of the vector b to the master, then the next time step
is carried out. For processing the situation treated as an earthquake, the scheme
is slightly complicated, since in this case the master should ask all the workers
until cells of segments in the critical state exist; then the master receives the
information on model events and writes it into a file of special structure. For
such a scheme, the time of calculations on each processor is much more than
the time of exchange. Therefore, rather high useful loading of each processor is
achieved.

The simulation was performed at the Joint Supercomputer Center (Moscow,
Russia; Supercomputer MVS-15000M, 574 processors 2 × PowerPC 970 (2.2
GHz), the peak performance is about 10 TFlops) and at the Institute of Math-
ematics and Mechanics (Ekaterinburg, Russia; UM64 machine, 108 processors
Opteron (2.6 GHz), the peak performance is about 560 GFlops). In addition, on
UM64 machine, the experiments for testing the dependence of time necessary

Modeling Lithosphere Dynamics and Seismicity 345

for solving the problem on the number of processors were carried out. A time-
taking variant with a considerable number of earthquakes occurred was chosen;
100 time steps were considered (note that a typical variant needs 20 000 steps).
The speedup, the granularity level, and the efficiency were analyzed. The results
of testing are presented in Table 1.

It follows from Table 1 that for p ≤ 20 the speedup Sp is slightly less than p,
the efficiencies E1

p and E2
p are rather high, not less than 0.9. The value E2

p ,
which is calculated without executing the sequential algorithm, appropriately
approximates E1

p ; this is in agreement with theoretical results [5]. It is impor-
tant that, after introducing the spherical geometry, the volume of calculations
essentially increases, whereas the exchanges between processors remain almost
the same. Therefore, the share of calculation time (in the total time) increases
with respect to the share of idle and exchange time; this results in the efficiency
increase comparing with the plane model [10].

Table 1. Dependence of speedup and efficiency on the number of processors

p tcalc texch ttot Sp E1
p G E2

p

1 6335.84 – 6335.84 – – – –

2 3256.52 34.60 3291.12 1.92 0.96 94.12 0.99

4 1626.94 38.52 1665.46 3.80 0.95 42.24 0.98

8 814.74 33.98 848.72 7.46 0.93 23.98 0.96

10 654.34 27.93 682.27 9.29 0.93 23.43 0.96

16 417.36 22.26 439.62 14.41 0.90 18.75 0.95

20 331.23 22.33 353.56 17.92 0.90 14.83 0.94

28 237.08 28.53 264.61 23.94 0.86 8.31 0.89

Notation: p is the number of processors, tcalc is calculation time, texch is idle and

exchange time, ttot is total expenditure time (all in seconds), Sp = T1/Tp is speedup,

T1 is performance time for sequential algorithm, Tp is performance time for parallel

algorithm on p processors, G = tcalc/texch is granularity level, E1
p = Sp/p, E2

p =

G/(G+1) = tcalc/ttot are efficiencies (the last one is also called processor utilization).

All the times presented above are measured on the master and, therefore, cor-
respond to the most time-taking process. Note that since the master also plays
the role of the worker, its idle time can be considered as negligible. Some fluc-
tuations of the exchange time (when the number of processors is increased) are
possibly explained by the architecture of the machine and/or by the specificity
of send/receive procedures in use. Due to the fact that all the processors are
almost uniformly loaded with respect to calculations, it seems that the approach
applied here to estimate the efficiency is valid.

Now pass to some theoretical analysis of the parallel algorithm. We are inter-
ested in evaluating the scalability of the algorithm in the following sense: how the
problem size (the amount of necessary calculations) must scale with the number
of processors to keep the efficiency constant [1]. Toward this aim, we consider
an idealized performance model introducing different characteristics of the total
expenditure time ttot = tcalc + texch.

346 B. Digas, L. Melnikova, and V. Rozenberg

Let us estimate the calculation time in a single time step as the time necessary
for calculations at spatial cells (the rest job, including solving system (3), requires
quite negligible resources):

tcalc = tsgNsg + tblNbl,

where tsg and tbl are the average calculation times at a single cell of segment
and block bottom discretization; Nsg and Nbl are the numbers of segment and
block bottom cells, respectively. The last two parameters determine the problem
size for a fixed block structure. To estimate the exchange time in a single time
step, we introduce the time tmsg required to send (to receive) a message of size
L words:

tmsg = ts + twL,

where ts is the message startup time, tw is the transfer time per word (both are
machine parameters). In the algorithm, L = Anbl +B (here nbl is the number of
blocks in the structure, A and B are constants, which can be explicitly written).
Hence, the exchange time for p processors (the master and p− 1 workers), with
taking into account send/receive procedures, is

texch = 2(p− 1)(ts + tw(Anbl + B)).

The performance times T1 and Tp can be calculated as follows:

T1 = tcalc = tsgNsg + tblNbl,

Tp = tcalc/p + texch = (tsgNsg + tblNbl)/p + 2(p− 1)(ts + tw(Anbl + B)).

From the above it follows that the efficiency is

E1
p = T1/pTp =

tsgNsg + tblNbl

tsgNsg + tblNbl + 2p(p− 1)(ts + tw(Anbl + B))
.

Thus, the efficiency (a) decreases with increasing p, ts, tw, and nbl; (b) increases
with increasing tsg, tbl, Nsg, and Nbl.

For the constant efficiency, we need to obtain T1 ≈ E1
ppTp, i.e.,

tsgNsg + tblNbl ≈ E1
p(tsgNsg + tblNbl + 2p(p− 1)(ts + tw(Anbl + B))).

In order to make this relation p-insensitive, it is necessary to choose the de-
pendencies Nsg = c1p(p − 1) and Nbl = c2p(p − 1), where c1 and c2 are some
constants. In this case, we obtain the condition under which the efficiency re-
mains constant with increasing p:

c1tsg + c2tbl ≈ E1
p(c1tsg + c2tbl + 2ts + 2tw(Anbl + B)).

So, for a fixed block structure, increasing the numbers of segment and block
bottom cells (thereby improving the accuracy of calculations) proportionally to
p(p− 1), we obtain the constant efficiency independent from p.

Modeling Lithosphere Dynamics and Seismicity 347

4 Some Results of Numerical Simulation

In this section, some results of application of the spherical block model to study-
ing dynamics and seismicity of the global system of tectonic plates covering the
whole surface of the Earth are presented. The structure contains 15 plates (see
Fig. 1), for which the following notation is used: NA – North America, SA –
South America, N – Nazca, Af – Africa, Ca – Caribbean, Co – Cocos, P – Pa-
cific, S – Somalia, Ar – Arabia, E – Eurasia, I – India, An – Antarctica, Au –
Australia, Ph – Philippines, F – Juan de Fuca. The motion of the underlying
medium (this is the only reason of the motion of the closed block structure in the
case when boundary blocks are absent) is specified as the rotation on the sphere
according the model of plate kinematics HS3-NUVEL-1 [4]. The model plate
depths are chosen with allowance for distribution of real seismicity in depth.

Fig. 1. The global system of tectonic plates and results of simulation of the charac-

ter of plate boundaries: divergent plate boundaries (spreading, light shading), conver-

gent plate boundaries (subduction, dark shading), transform plate boundaries (sliding,

toothed shading)

The behavior of boundary points belonging to plate boundaries, for which
one of three types (divergent, convergent, and transform) is clearly marked, is
investigated. Such characteristic boundaries [7] (e.g., as South America/Nazca,
Pacific/Nazca, South America/Africa, India/Eurasia, surrounding Philippines,
etc.) are considered. By means of two displacements of a boundary point in the
coordinate system connected with this point as a point of right and left blocks,
respectively, its relative displacement was computed. Relative displacements of
boundary points characterize qualitatively the interaction between plates along
their boundaries, thereby allow us to mark the boundary types (see Fig. 1),

348 B. Digas, L. Melnikova, and V. Rozenberg

Fig. 2. Epicenters of strongest earthquakes with M ≥ 7.5; NEIC (left) and synthetic

(right) catalogs

which are rather similar to real ones [7]. As a main parameter characteriz-
ing the quality of simulation, the spatial distribution of the strongest earth-
quakes is considered. The comparative analysis of the synthetic catalogs that
are composed by means of formula (5) and the real one extracted from the
global catalog NEIC [3] and containing events with the magnitude M ≥ 7.5
for the time period 01.01.1900–31.12.2008 without any restrictions by depth
and area of location (Fig. 2) is performed. Note that, since model events oc-
cur only on the block boundaries, we cannot obtain earthquakes inside
tectonic plates. For all the modifications of the spherical block model, the syn-
thetic catalogs (see one of them (the case of varying depth) in Fig. 2) reflect
the most important patterns of global seismicity, namely: (a) two large seismic
belts, the circum-Pacific and Alpine-Himalayan (the first is more well-defined),
where most of the strong earthquakes occur; (b) extensive, but less pronounced
seismicity at mid-oceanic ridges; (c) increased seismic activity associated with
triple junctions of plate boundaries. As the most active seismic regions, one
can point out such boundaries as Nazca/South America, Cocos/Caribbean, In-
dia/Eurasia, California region, Arabia/Eurasia, south-east, east, north-east and,
especially, north of Australia, and the Philippine plate margin. The level of syn-
thetic seismicity is extremely small at such boundaries as south of Pacific plate,
Nazca/Pacific, east and south-west of Africa, India/Australia, North Amer-
ica/Eurasia. These locations agree in principle with observations (compare the
diagrams in Fig. 2); this fact indicates a rather high degree of adequacy of the
model.

At the same time, in some regions with rather high seismicity we did not obtain
strong earthquakes in all the variants (e.g., at the boundary Africa/Eurasia). Our
conjecture is that the motion of global tectonic plates is not a main driving force
of seismic activity in these regions. In addition, we analyzed other characteristics,
including parameters of the Gutenberg – Richter law on frequency-magnitude
relation and the distribution of earthquakes with respect to depth. The modi-
fication with varying depth produced a better (in all the aspects listed above)
synthetic catalog. This happened as a consequence of the model improvement,
without any parameter fitting.

Modeling Lithosphere Dynamics and Seismicity 349

5 Conclusions

Simplifications accepted in the model give no opportunity to draw conclusions
on the correspondence between observed and synthetic seismicity at any specific
point or in relatively small regions. However, some similarity of the model results
and the real data in the global scale is certainly a positive fact; it stimulates a
further development of the model. The most perspective is the modification
with varying depth, being an attempt of taking into account the lithospheric
inhomogeneities within the framework of the spherical block model.

In the paper, we demonstrated that there was a natural succession in algorith-
mic and program realization of the plane and spherical block models. Concerning
parallelization, it is important that, after introducing the spherical geometry,
the volume of calculations essentially increased, whereas the exchanges between
processors remained almost the same; this resulted in the efficiency increase
comparing with the plane model.

Note that the parallel algorithm used in the problem provides an opportunity
to consider it as a test problem for approbating new distributed computing
environments.

References

1. Foster, I.: Designing and Building Parallel Programs (1995),

http://www.mcs.anl.gov/~itf/dbpp/

2. Gabrielov, A.M., Newman, W.I.: Seismicity Modeling and Earthquake Prediction:

a Review. Geophysical Monograph 83 18, 7–13 (1994)

3. Global Hypocenters Data Base CD-ROM. NEIC/USGS, Denver, CO (2008)

4. Gripp, A.E., Gordon, R.G.: Young Tracks of Hotspots and Current Plate Velocities.

Geophys. J. Int. 150, 321–361 (2002)

5. Kwiatkowski, J.: Evaluation of Parallel Programs by Measurement of its Gran-

ularity. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.)

PPAM 2001. LNCS, vol. 2328, pp. 145–153. Springer, Heidelberg (2002)

6. Melnikova, L.A., Rozenberg, V.L.: Spherical Block Model of Lithosphere Dynamics

and Seismicity: Different Modifications and Numerical Experiments. Proceedings

of IMM UB RAS 13(3), 95–120 (2007) (in Russian)

7. Mutter, J.C.: Seismic Images of Plate Boundaries. Sci. Amer. 254, 66–75 (1986)

8. Rozenberg, V.L., Sobolev, P.O., Soloviev, A.A., Melnikova, L.A.: The Spherical

Block Model: Dynamics of the Global System of Tectonic Plates and Seismicity.

Pure Appl. Geophys. 162, 145–164 (2005)

9. Soloviev, A.A., Ismail-Zadeh, A.T.: Models of Dynamics of Block-and-Fault Sys-

tems. In: Keilis-Borok, V.I., Soloviev, A.A. (eds.) Nonlinear Dynamics of the Litho-

sphere and Earthquake Prediction, pp. 71–139. Springer, Heidelberg (2003)

10. Soloviev, A.A., Maksimov, V.I., Rozenberg, V.L., Ermoliev, Y.M.: Block Models of

Lithosphere Dynamics: Approach and Algorithms. In: Wyrzykowski, R., Dongarra,

J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2001. LNCS, vol. 2328, pp. 572–579.

Springer, Heidelberg (2002)

11. Wells, D.L., Coppersmith, K.L.: New Empirical Relationships among Magnitude,

Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. Bull.

Seism. Soc. of America 84(4), 974–1002 (1994)

http://www.mcs.anl.gov/~itf/dbpp/

AMG for Linear Systems in Engine Flow

Simulations

Maximilian Emans

AVL List GmbH, Hans-List-Platz 1, 8020 Graz, Austria

maximilian.emans@gmx.at

Abstract. The performance of three fundamentally different AMG sol-

vers for systems of linear equations in CFD simulations using SIMPLE

and PISO algorithm is examined. The presented data is discussed with

respect to computational aspects of the parallelisation. It indicates that

for the compressible subsonic flows considered here basic AMG methods

not requiring Krylov acceleration are faster than approaches with more

expensive setup as well as recently presented k-cycle methods, but also

that these methods will need special treatment for parallel application.

1 Introduction

The three-dimensional simulation of combustion engines requires the approxi-
mate solution of the Navier-Stokes equations and an energy equation for un-
steady compressible flows in terms of pressure, temperature, and velocity fields.
Turbulence treatment, models for combustion processes, formation of NOx and
soot e.g., are attached to this kernel. Contemporary simulation tools such as
AVL FIRE(R) 2009 provide a considerable amount of freedom with respect to
geometry that requires a discretisation on unstructured meshes. Due to the reso-
lution necessary for reasonable modelling, the size of the problems is in the range
of one million grid cells or more which makes the use of parallel computers using
typically a few CPUs inevitable to keep computing times at an acceptable level.

A common approach to solve the Navier-Stokes equations in this context is
the family of algorithms derived from SIMPLE, a general template of algorithms
for pressure linked equations. For the solution of the appearing systems of linear
equations a fast and sufficiently robust solver is needed. AMG methods are a
reasonable option here. However, the development of these methods has not yet
ceased and fundamentally new ideas have just been published recently, e.g. by
De Sterck et al. [3] and Notay [8]. In this contribution we shall compare the
performance of deliberately chosen AMG algorithms applied as linear solvers for
systems that appear in the simulation of mainly subsonic flow at the example
of a combustion engine. In contrast to related work, e.g. of Čiegis et al. [1] or
Starikovičius [12] who have devised a detailed analysis of a single solver algo-
rithm along with a method to predict the parallel performance, we shall merely
observe the performance of different algorithms and discuss the opposed effects of
increased parallel overhead and decreased memory requirement (per processor)
with a growing degree of parallelism onto the effective computing time.

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 350–359, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

AMG for Linear Systems in Engine Flow Simulations 351

2 Pressure-Correction Equation

Any algorithm for the solution of the Navier-Stokes equations has to cater for
the non-linearity of this system and has to provide a feasible way to couple the
equations. Common in commercial tools are the iterative algorithms SIMPLE
and PISO, both ensuring the pressure-velocity coupling by the solution of a
pressure-correction equation which drives the velocity field towards the condition
imposed by the continuity equation through an appropriate correction of the
pressure field. For details of the SIMPLE algorithm we refer to Patankar [10],
the extension to compressible flows has been provided by Demirdžić [2]; for the
PISO algorithm see Issa [6]. PISO can be considered a refined variant of SIMPLE:
Where in the correlation between pressure-correction and velocity update of
SIMPLE certain terms are simply neglected, the same terms are approximated
by an additional iteration in PISO, requiring the solution of linear systems,
such that the latter algorithm guarantees continuity within each (outer) PISO
iteration. The additional linear systems differ only in the right-hand side.

The most time consuming step of both algorithms is the approximate solution
of these pressure-correction equations which have positive definite system ma-
trices for the cases presented here. We know from experience that a reduction of
any norm of the residual by a factor between 100 and 10000 is sufficient to allow
the SIMPLE or PISO algorithm to converge; this distinguishes our task from
the majority of applications of linear equation solvers that are characterised by
a much lower residual tolerance.

3 AMG Algorithms

In this section we refer to papers providing detailed descriptions of the algo-
rithms under examination in this contribution and describe our own necessary
amendments e.g. for parallelisation.

3.1 General Aspects of Parallel AMG

The fundamental AMG algorithm is not repeated here; for this we refer the
reader to the literature, e.g. to the appendix of Trottenberg et al. [13]. We follow
the Galerkin approach, see Trottenberg et al. [13], to compute the coarse-grid
operator. Given a system matrix A and a restriction operator R we use RT as
interpolation operator and compute the coarse-grid operator AC explicitly as

AC = RART . (1)

Accepting a deterioration of the parallel convergence of the algorithms, we allow
only local (with respect to the domain assigned to a certain processor) inter-
polation to avoid the necessity to transfer parts of the matrix A and to reduce
the data transfer during setup. A full parallelisation of the solution phase is
also not feasible since the most appropriate smoothers are inherently sequential.
The usual practice is to employ fully parallel Jacobi on the boundaries between
two domains after the values on the boundaries have been exchanged, and to
continue with a Gauß-Seidel scheme for the interior points. This technique is
referred to as hybrid Gauß-Seidel smoother, see van Emden and Meier-Yang [4].

352 M. Emans

3.2 AMG Based on Smoothed Aggregation – ams1cg

This method divides the set of fine-grid points into a number of disjoint subsets
that are called aggregates. These aggregates become the coarse-grid points. The
tentative interpolation operator with constant interpolation is smoothed by ap-
plication of one Jacobi step along the paths of the graph of the fine-grid matrix
to improve the quality of the interpolation. This serial Smoothed-Aggregation
method is described in detail in Vaněk et al. [15]. In the parallel case we do not
permit aggregates that range over more than one subdomain and restrict the
smoothing to local points since more complex approaches do not seem necessar-
ily to result in better performance, in particular not for low processor numbers,
see Tuminaro and Tong [14]. We follow the suggestion of Fujii et al. [5] and start
the aggregation process at points adjacent to inter-domain boundaries.

This AMG method is used as a preconditioner for the conjugate gradient
algorithm, see Saad [11]. We implemented a v-cycle scheme with two pre- and
two post-smoothing hybrid Gauß-Seidel sweeps. In the parallel case grids with
less than 200 nodes are merged to one of the neighbours. The equation system
of the coarsest grid is solved directly by Gaußian elimination.

3.3 Aggregation-Based AMG with Krylov-Acceleration – amk1fc

This method has recently been suggested by Notay and Vassilevski [8]. To ensure
that the computation of the coarse-grid operator is cheap, it splits the set of
fine-grid nodes into aggregates of four nodes and uses constant interpolation.
For details of the algorithm we refer to Notay [9].

In the solution phase of this algorithm the standard v-cycle is replaced by an
adaptive algorithm that approximates the solution of the coarse-grid systems by
one or two iterations of a Krylov-subspace method that is recursively precondi-
tioned by itself, see again Notay [9] for details. Due to the adaptive precondi-
tioning the “flexible conjugate gradient” method of Notay [7] (restarted after six
iterations) is employed instead of a standard conjugate gradient method. Again
two pre- and two post-smoothing hybrid Gauß-Seidel sweeps are performed.
The grid hierarchy is complete once one grid has less than 200 cells, while the
particular coarse-grid treatment suggested by Notay [9] is not applied since its
parameters appeared to be somewhat arbitrary. The equations system of the
coarsest grid is solved by a parallel block Gauß-Seidel with four iterations.

3.4 Basic AMG – amggs2

The most obvious application of algebraic (and also geometric) multigrid is its
use as a “stand-alone” solver rather than as a preconditioner. As a matter of fact
none of the AMG methods described above will show good performance when
used as “stand-alone” solver, since convergence is poor. Better results are ob-
tained with methods where the quality of the interpolation is rather high and the
computation of the coarse-grid operator is very efficient. The second requirement
precludes the application of expensive interpolation methods such that constant
interpolation will be the method of choice. Then the first requirement can only

AMG for Linear Systems in Engine Flow Simulations 353

be met if the number fine-grid points per aggregate or C-point is very low, e.g.
2 or 4.

For the coarse-grid selection in our basic AMG we use the algorithm of Notay
[9] that produces aggregates comprising not more than two fine-grid nodes since
it is documented in an excellent manner. The cycling scheme is an F-cycle, see
Trottenberg et al. [13], i.e. recursively a w-cycle is followed by a v-cycle. Only
two hybrid Gauß-Seidel sweeps are performed after the return to the finer grid,
i.e. no pre-smoothing is done. The coarse-grid treatment is the same as that of
the algorithm amk1fc.

4 Computations of Flows in an Engine

Our test cases are taken from the simulation of a full cycle of a gasoline engine.
The three-dimensional computational domain is subject to change in time: It
contains the interior of the cylinder and the parts of the ducts through which the
air is sucked into the cylinder or expelled from it. A three-dimensional simulation
of a full engine cycle comprises the simulation of the (compressible) flow of
cold air into the cylinder while the piston is moving downward, the subsequent
compression after the valves are closed, the combustion of the explosive mixture,
and the discharge of the hot gas while the piston moves upward. Since a single
simulation run on a parallel computer will still take a few hours computing time,
we pick out four short periods of a few time steps, one from each of these four
strokes of the cycle. Typical data of the engine cycle is shown in figure 1, the
geometry and slices through the meshes can be seen in figure 2.

4.1 Description of the Numerical Experiments

The computationally relevant information about the cases is compiled in table 1
that contains e.g. the memory size of the matrix information, the time step dt,

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 400 500 600 700 800 900 1000

pr
es

su
re

 /
kP

a,
 te

m
pe

ra
tu

re
 /

K

angle / deg

CTEC-GASOLINE - Pressure and Temperature

valves closed ignition valves opened

0000

0228

0972

1296

pressure
temperature

piston position

Fig. 1. Scheme of the engine cycle along with notation for the considered partial

problems

354 M. Emans

Fig. 2. Slices through the 3-dimensional meshes of the partial problems, from left top

clockwise: load, compression, combustion, discharge

Table 1. Characterisation of the cases

no. stroke angle size dt nt boundaries nsy nsy nse

[MB] [s] SIMPLE PISO

0000 load 360◦ 111.0 3.03 · 10−5 5 mass flow, wall 130 120 52

0228 compression 585◦ 23.0 3.03 · 10−5 20 wall 172 224 69

0972 combustion 746◦ 18.6 6.06 · 10−6 20 wall 378 512 201

1296 discharge 1013◦ 52.1 3.03 · 10−5 15 pressure, wall 175 130 58

the number of time steps nt, the number of systems to solve nsy for SIMPLE
and PISO and the number of setups nse for PISO (for SIMPLE it equals nsy).

The AMG algorithms described in the previous section are compared to each
other and to a reference, a conjugate gradient solver with incomplete Cholesky
factorisation as preconditioner, referred to as ichpcg. We ran each case for
each number of processors once using each of these algorithms as solver of the
pressure-correction equations of the SIMPLE algorithm. All computations were
repeated employing PISO instead of SIMPLE. The number of time steps nt was
the same for SIMPLE and PISO, as expected the number of SIMPLE and PISO
iterations however was different.

For the measurements we used up to four nodes à 2 quad-cores (i.e. 8 cores)
of a Linux-cluster (Intel Xeon CPU X5365, 3.00GHz, main memory 16 GB, L1-
cache 2·4·32 kB, L2-cache 2·2·4 MB) connected by an Infiniband (Mellanox)
network with an effective bandwidth of approximately 750 Gbit/s. The part of

AMG for Linear Systems in Engine Flow Simulations 355

Table 2. Number of iterations, operator complexity, and number of levels (in brackets)

of the computations with the linear AMG solvers

Case np 1 4 16 1 4 16 1 4 16

ams1cg c/(nl) amk1fc c/(nl) amggs2 c/(nl)

0000 416 446 484 1.51 776 733 731 1.57 569 568 564 2.56

0000P 419 447 477 (3) 724 684 683 (7) 538 525 524 (14)

0228 316 348 400 1.52 480 464 464 1.59 419 417 424 2.60

0228P 427 498 534 (3) 673 659 659 (6) 555 554 574 (11)

0972 788 1125 1134 1.50 1414 1376 1313 1.59 1148 1149 1147 2.60

0972P 1534 1664 1817 (3) 2734 2211 1929 (6) 1761 1759 1747 (11)

1296 372 430 455 1.53 570 532 594 1.60 447 451 499 2.62

1296P 308 373 393 (3) 454 444 486 (6) 402 412 447 (12)

the program related to the solver was compiled by Intel-FORTRAN compiler
10.1, the communication is performed through calls to hp-MPI subroutines (C-
binding). The test cases were run within the environment of the software AVL
FIRE(R) 2009 on 1, 2, 4, 8, and 16 processors, where the domain decomposition
was performed once for each case by the standard algorithm provided with this
software. Computations with 1, 2, and 4 processors were done on a single node,
for 8 and 16 processors we used 2 and 4 nodes respectively such that each
processor had full access to 4 MB L2-cache since in preliminary experiments it
has been found that the L2-cache is the bottleneck for such kind of computations.
Although distributing two or four tasks to two or four nodes would increase the
performance, we used a single node for these computations since the gain in
performance does usually not justify the occupation of the additional cores in
the practical applications.

The raw data of our evaluation is the computing time of the setup that is
independent of the number of iterations and the computing time of the solution
phase for the SIMPLE and PISO computations, see figures 3 and 4. Furthermore,
we present the operator complexity

c =
∑
(l)

number of matrix elements of level l

number of matrix elements of level 1
, (2)

and the cumulative iteration count in table 2. From the measured times the
parallel efficiency Ep is computed as Ep = t1

p·tp
, where tp denotes the computing

time on p processors. The values of Ep for SIMPLE and PISO are very similar;
for SIMPLE they may be found in figures 3 and 4.

4.2 Performance with SIMPLE Algorithm

The curves are influenced by two main opposed effects. On the one hand, Ep

becomes worse as the number of processors is increased. This has three reasons:
First the well-known parallel overhead that depends on communication require-
ments of the algorithm: without further analysis as for example done by Čiegis

356 M. Emans

 10

 100

 1000

168421

co
m

pu
tin

g
tim

e
/ s

processors

Problem 012-0000 - 1.4 mio cells, load

ams1cg, total time
ams1cg, setup time

amk1fc, total time
amk1fc, setup time
amggs2, total time

amggs2, setup time
ichpcg, total time 10

 100

 1000

168421

processors

Problem 012-0000P - 1.4 mio cells, load

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

168421

pa
ra

lle
l e

ffi
ci

en
cy

 /
%

processors

ams1cg, setup
ams1cg, solution

amk1fc, setup
amk1fc, solution

amggs2, setup
amggs2, solution

ichpcg, solution

 10

 100

168421

co
m

pu
tin

g
tim

e
/ s

processors

Problem 012-0228 - 290000 cells, compression

ams1cg, total time
ams1cg, setup time

amk1fc, total time
amk1fc, setup time
amggs2, total time

amggs2, setup time
ichpcg, total time

 10

 100

168421

processors

Problem 012-0228P - 290000 cells, compression

 20

 40

 60

 80

 100

 120

 140

168421

pa
ra

lle
l e

ffi
ci

en
cy

 /
%

processors

ams1cg, setup
ams1cg, solution

amk1fc, setup
amk1fc, solution

amggs2, setup
amggs2, solution

ichpcg, solution

Fig. 3. Computing times for cases 0000 and 0228, using SIMPLE (left) and PISO

(middle), and parallel efficiency for solution and setup phase (right) for SIMPLE

et al. [1] this effect is difficult to quantify. However, it depends on the number of
exchange operations and is consequently much higher for algorithm amggs2, the
algorithm that has the most levels and visits them most frequently due to the
F-cycle. Second, certain hardware resources such as memory access are depleted
since the computations on up to four processors take place on one node of the
cluster; this effect is mainly responsible for the decrease of the parallel efficiency
for computations on up to four processors. The third reason is the deterioration
of the convergence that is due to imperfect parallelisation; it leads to an increase
in the number of iterations of the solver and is independent of the hardware.
This effect is essentially only seen for algorithm ams1cg.

The opposed effect is a superlinear acceleration of the computation of the
smaller distributed problems due to a decreased probability of cache misses. It is
also very hard to predict this effect quantitatively, for a detailed description of a
simple test case we refer to Čiegis et al. [1]. Here, the visible consequence is that

AMG for Linear Systems in Engine Flow Simulations 357

 10

 100

168421

co
m

pu
tin

g
tim

e
/ s

processors

Problem 012-0972 - 240000 cells, combustion

ams1cg, total time
ams1cg, setup time

amk1fc, total time
amk1fc, setup time
amggs2, total time

amggs2, setup time
ichpcg, total time

 10

 100

168421

processors

Problem 012-0972P - 240000 cells, combustion

 20

 40

 60

 80

 100

 120

 140

168421

pa
ra

lle
l e

ffi
ci

en
cy

 /
%

processors

ams1cg, setup
ams1cg, solution

amk1fc, setup
amk1fc, solution

amggs2, setup
amggs2, solution

ichpcg, solution

 10

 100

168421

co
m

pu
tin

g
tim

e
/ s

processors

Problem 012-1296 - 660000 cells, discharge

ams1cg, total time
ams1cg, setup time

amk1fc, total time
amk1fc, setup time
amggs2, total time

amggs2, setup time
ichpcg, total time

 10

 100

168421

processors

Problem 012-1296P - 660000 cells, discharge

 20

 40

 60

 80

 100

 120

 140

168421

pa
ra

lle
l e

ffi
ci

en
cy

 /
%

processors

ams1cg, setup
ams1cg, solution

amk1fc, setup
amk1fc, solution

amggs2, setup
amggs2, solution

ichpcg, solution

Fig. 4. Computing times for cases 0972 and 1296, using SIMPLE (left) and PISO

(middle), and parallel efficiency for solution and setup phase (right) for SIMPLE

the parallel efficiency of certain algorithms rises for computations on more than
four cores although one would expect it to decrease due to degraded convergence
and additional communication cost. The parallel efficiency may exceed 100% in
cases where the gain through cache effects is stronger than the loss through par-
allelisation. Whereas for algorithm ams1cg the obviously positive and negative
effects onto the run-time partly annihilate each other and the positive ones pre-
vail, for algorithm amggs2, characterised by the highest number of levels and the
largest memory consumption, only in the largest case (0000) the positive effects
dominate over the negative ones.

The significant increase of Ep of amk1fc for two processors is due to the
instruction of Notay [9] to use a stricter criterion to determine if a second pre-
conditioning iteration is needed for the parallel case, leading to lower iteration
numbers and consequently to lower solution times. The parallel efficiency of
amggs2 and amk1fc for 16 processors does not drop in the largest case 0000 the

358 M. Emans

same way as in the other cases since the ratio of communication cost to cost of
other tasks is significantly lower in case 0000; the reason is that this case is much
larger than the other cases which entails a larger amount of internal work.

As mentioned, algorithm ams1cg is most vulnerable to the simplification of the
parallel setup leading to degradation of the convergence in parallel runs; while
this affects the performance only marginally, acceleration through reduction of
cache misses and comparatively low impact of communication overhead cater
for good parallel efficiency. However, for processor numbers lower than eight this
algorithm is slower than the other ones since its setup is expensive.

In all four cases the basic AMG amggs2 is the fastest algorithm for compu-
tations on up to four processors, amk1fc comes close in some cases, whereas
ams1cg is significantly slower (note the logarithmic scale in figures 3 and 4).
For computations on more than four processors the parallelisation reduces the
computing time reasonably for ams1cg, but not for amggs2 and amk1fc.

4.3 Performance with PISO Algorithm

While the parallel efficiency is essentially the same as for SIMPLE (and is there-
fore not shown here) the computing times are different. One observes first that
the portion of setup time of the AMG solvers is reduced dramatically as ex-
pected since expensively computed coarse-grid hierarchies can be reused several
times. As a consequence, ichpcg is significantly slower now than these algorithms
for up to eight processors. For the same reason, the difference between ams1cg
and amggs2 for up to four processors has been reduced. The performance of
the new algorithm amk1fc lies between that of the other two AMG algorithms
and ichpcg. Similar as for SIMPLE, amggs2 shows deficiencies at high processor
numbers.

5 Conclusions

If this kind of problem is to be solved on less than eight processors, the fastest
AMG algorithm of our selection is a basic multigrid method with a very lean
setup and without Krylov-acceleration. Even if we apply PISO to permit the
reuse of the grid hierarchies, algorithms with expensive setup such as ams1cg
are not observed to be significantly quicker. For runs using more than eight
processors, or if the coarse-grid hierarchy can be used several times, however,
the Smoothed Aggregation algorithm should be preferred due to its good parallel
efficiency.

Whereas the Smoothed Aggregation algorithm is slightly affected by the sim-
plifications of the parallelisation, the basic multigrid method suffers from parallel
overhead that is due to the high number of levels. It shares this principal prob-
lem with the recently presented k-cycle AMG of Notay [9]. Modifications to
this kind of algorithms are needed such that they can be used efficiently for
parallel computations if it is not possible to reuse the coarse-grid hierarchy. Fi-
nally, Smoothed Aggregation AMG is a good choice for modern Linux-clusters
whenever the coarse-grid hierarchy can be used more than once.

AMG for Linear Systems in Engine Flow Simulations 359

References

1. Čiegis, R., Iliev, O., Lakdawala, Z.: On Parallel Numerical Algorithms for Simu-

lating Industrial Filtration Problems. Computational Methods in Applied Mathe-

matics 7, 118–134 (2007)

2. Demirdžić, I., Lilek, Ž., Perić, M.: A Collocated Finite Volume Method for Predict-

ing Flows at All Speeds. International Journal for Numerical Methods in Fluids 27,

1029–1050 (1993)

3. De Sterck, H., Falgout, R.D., Nolting, J.W., Meier-Yang, U.: Distance-two Inter-

polation for Parallel Algebraic Multigrid. Numerical Linear Algebra with Applica-

tions 15, 115–139 (2008)

4. van Emden, H., Meier-Yang, U.: BoomerAMG: a Parallel Algebraic Multigrid

Solver and Preconditioner. Applied Numerical Mathematics 41, 155–177 (2001)

5. Fujii, A., Nishida, A., Oyanagi, Y.: Evaluation of Parallel Aggregate Creation Or-

ders: Smoothed Aggregation Algebraic Multigrid Method. In: Proc. of the Work-

shop on High Performance Computational Science and Engineering, HPCSE 2004,

Toulouse, France, pp. 99–122 (2004)

6. Issa, R.I.: Solution of the Implicit Discretised Fluid Flow Equations by Operator

Splitting. Journal of Computational Physics 62, 45–60 (1985)

7. Notay, Y.: Flexible Conjugate Gradients. SIAM Journal of Scientific Computing 22,

1444–1469 (2000)

8. Notay, Y., Vassilevski, P.S.: Recursive Krylov-based Multigrid Cycles. Numerical

Linear Algebra with Applications 15, 473–487 (2008)

9. Notay, Y.: An Aggregation-based Algebraic Multigrid Method, Report No.

GANMN 08-02, Service de Métrologie Nucléaire, Université Libre de Bruxelles

(2000)

10. Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing

(1980)

11. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadel-

phia (2003)

12. Starikovičius, V., Čiegis, R., Iliev, O., Lakdawala, Z.: A parallel solver for the 3D

simulation of flows through oil filters. In: Čiegis, R., Henty, D., Kagstrom, B.,

Žilinskas, J. (eds.) Parallel Scientific Computing and Optimization. Advances and

Applications. Springer Optimization and Its Applications, vol. 27, pp. 181–192

(2009)

13. Trottenberg, U., Oosterlee, C., Schüller, A.: MULTIGRID. Elsevier Academic

Press, London (2001)

14. Tuminaro, R.S., Tong, C.: Parallel Smoothed Aggregation Multigrid: Aggregation

Strategies on Massively Parallel Machines. In: Proc. of 2000 ACM/IEEE Confer-

ence on Supercomputing, Dallas, USA, article no. 5 (2000)

15. Vaněk, P., Brezina, M., Mandel, J.: Algebraic Multigrid by Smoothed Aggregation

for Second and Fourth Order Elliptic Problems. Computing 56, 179–196 (1996)

Parallel Implementation of a Steady State

Thermal and Hydraulic Analysis of Pipe
Networks in OpenMP

Mykhaylo Fedorov

Computer Science Department, West Pomeranian University of Technology,

70210, Zolnierska 49, Szczecin, Poland

mfedorov@wi.ps.pl

Abstract. The considerable computation time of a practical application

of sequential algorithms for simulating thermal and flow distribution in

pipe networks is the motivating factor to study their parallel implemen-

tation. The mathematical model formulated and studied in the paper

requires the solution of a set of nonlinear equations, which are solved by

the Newton-Raphson method. An object-oriented solver automatically

formulates the equations for networks of an arbitrary topology. The hy-

draulic model that is chosen as a benchmark consists of nodal flows and

loop equations. A general decomposition algorithm for analysis of flow

and temperature distribution in a pipe network is presented, and results

of speedup of its parallel implementation are demonstrated.

Keywords: pipe networks, steady state, flow and thermal analysis,

parallel implementation, OpenMP.

1 Introduction

The domain of application of a pipeline network analysis is very wide, e.g. air-
plane hydraulic, fuel or environmental control systems, district heating systems,
air-conditioning systems of buildings, trains or ships, water or gas distribution
systems, and so on. The task of a pipeline network system is to convert the
magnitudes of parameters fixed at certain boundary system points into the
magnitudes prescribed at the other ones. Such parameters are called bound-
ary conditions. The conversion is a result of mutual transformations of different
forms of energies. The moving forces of the transformations are finite tempera-
ture and pressure differences. To answer the question how such transformations
are realized by the system requires solving analysis problem. To do this, we have
additionally to fix magnitudes of geometrical parameters (e.g. for tube they are
tube diameter, length, roughness, wall thickness, etc.) and boundary conditions
(temperatures, pressures). The result of the analysis is a vector of the thermo-
dynamic parameters (pressures, temperatures, enthalpies, etc.) and flow rates.
Practical simulations of aircraft environmental control systems [1] demonstrate
the dependence of flow on temperature. It follows from the fact that a Reynolds

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 360–369, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Parallel Implementation of Thermal-Hydraulic Analysis of Pipe Networks 361

number depends on dynamic viscosity being a function of temperature, in turn.
For fluids, change of temperature on 20 K changes the dynamic viscosity almost
twice, which can easily be seen from the water property tables [2]. Being a cri-
terion parameter Reynolds’ number makes impact on the values of resistances
and heat exchange intensity. The impact of a Reynolds number change due to
temperature is more essential for laminar or smooth pipe flows [3]. If a pipe net-
work is controllable [4], then any kind of flow (laminar, turbulent) can take place
in its various parts. To account the temperature impact, the joint thermal and
hydraulic simulation should be performed. Individually, the analysis methods
for the simulation of flow distribution and temperatures have been addressed
in literature. For the flow steady state analysis the most common methods are
those in which independent variables are expressed in terms of the link or chord
flows, of the loop flow correction or the nodal heads. In [5], a lack of stability
of the nodal method [5,6,7] is reported. In [8,9] the numerical superiority of the
flow method over the nodal head method has been proved. The comprehensive
analysis, history and examples of the use of these methods are available in [1],
[10,11,12,13,14,15]. The methods of the second order are described in [15,16]. In
[17] the value of a full-set equation approach is demonstrated which lends itself to
the technique of introducing additional equations to describe modified or added
network characteristics meeting specified conditions. Being a more general for-
mulation the full-set approach is also employed in this study. The thermal model
is a particular form of the first thermodynamic law. The matrix formulation of
thermal model is studied, in detail, in [18,19] and, later, in [20]. The general
methodology of the thermal-hydraulic simulation is addressed in [21]. The use of
it for more and more large networks is becoming more and more time-consuming.
It is the motivating factor to study a parallel implementation of the sequential
methodology [21]. The OpenMP standard [23] is chosen as a tool for paralleling,
because its use is very straightforward.

2 The Mathematical Model

We consider the stationary thermal and flow simulation of incompressible fluid in
a pipe network. We do not explicitly take into account pumps in the network, but
they could easily be incorporated, as well as the given discharges from the interior
nodes. Three basic conservation physical principles are necessary to formulate
the model: continuity, momentum and energy. The first one determines a flow
rate in the pipe and nodal equations

Fi =
∑

∀k∈Ei

ṁk = 0 i = 1, v (1)

implying that at each node i, the sum of flows in pipes incident to i, which
numbers belong to the subset Ei is zero. In (1) v is a number of thermal system
nodes for which |Ei| ≥ 2, ṁk is a flow rate in pipe k. The second principle
expresses pressure differences between the pipe section 1 (Pk,1) and the pipe
section 2 (Pk,2)

362 M. Fedorov

Fv+k = Pk,1 − Pk,2 − Kk |ṁk| ṁk = 0 k = 1, e . (2)

through flow rates and pipe resistances Kk

Kk =
(
Lλ/2ρDhA

2
c

)
k

, (3)

where Dh- hydraulic diameter, Ac- cross-sectional area, ρ- density, λ - Darcy-
Weisbach friction factor, L - pipe length. We use the following formulas for
friction factors in this study [24]

λ = 64/Re , Re ≤ 2300, laminar flow , (4)

λ = 0.11
(

Δ

Dh
+

68
Re

)0.25

, Re ≥ 2300 , turbulent flow , (5)

where Δ is an inner surface pipe roughness, Re is the the Reynolds number

Re = ṁDh/μAc , (6)

where μ is a dynamic viscosity. The third principle yields two equations

Φk = Tk,i1 −e(
UAs
Cṁ L)

kTk,i2 +
[
e(

UAs
Cṁ L)

k − 1
]
Tk,w = 0 , k = 1, e , i1 �= i2 , (7)

Φe+i =
∑

∀k∈Ei

CkṁkTk,i = 0 , i = 1, v , (8)

where Tk,i1 , Tk,i2 , are temperatures at pipe ends incident to nodes i1 and i2, Tk,w

is a boundary temperature (e.g. a tube wall temperature); U is a overall heat
transfer coefficient, C is an average heat capacity, As is an inner heat transfer
area. The overall heat transfer coefficient is obtained from the following formula
(see e.g. [2])

UAs =

⎡⎣ 1
hAs

+
Dh,1 ln Dh,2

Dh,1

kwAs

⎤⎦−1

, (9)

which is the integral of the differential equation of heat conduction through a
cylindrical wall with the given temperature on the tube outer surface as the
boundary condition. In (9), Dh,1 ≡ Dh, but Dh,2 is an outer tube diameter, h is
a heat transfer coefficient, kw is a thermal conductivity. In turn, equation (7) is
a form of the analytical solution of the differential equation of convection heat
transfer between incompressible fluid flow in the tube and the inner surface of a
tube cylindrical wall (see e.g. [2]). Equation (8) means nodal energy balance. The
heat transfer coefficient h in (9) is obtained from the definition of the Nusselt
number

Nu = hDh/k , (10)

which is determined, in turn, as follows [25]

Nu = 0.0021Re0.8Pr0.43(Pr/Prw)0.14 , Re ≥ 104 , (11)

Parallel Implementation of Thermal-Hydraulic Analysis of Pipe Networks 363

Nu = (Nu6.267
l /Nu5.267

t)Re0.68 lnNut/Nul , 2300 ≤ Re < 104 , (12)

Nu = 1.55(PrReDh/L)1.33(μ/μw)0.14 , Re < 2300 , (13)

for turbulent, transitional and laminar flows, respectively. Into (11)-(13) the
Prandtl number quantity enters. It is defined as follows

Pr = Cμ/k , (14)

In (12) Nul is computed from (13) at Re = 2300, and Nut is computed from
(11) at Re = 104. All working fluid properties (C, k, μ) are assumed to be
functions of mean temperatures (Tm) for every pipe network element. Hence, all
the criterial parameters (Re, Nu, Pr) are also functions of temperature. Model
(1)-(14) is a nonlinear set of algebraic equations, which is solved with Newton-
Raphson method, in this paper. The computer representation of (1) is somewhat
different

[Ai,j]v+1,e+vb
[ṁj]e+vb

= 0 . (15)

Equation (15) shows that a pseudo-node is introduced to which all the nodes
with the given pressures are connected; pseudo-edges vb in number. In doing so
(2) takes the form

diag [Ki,j |ṁj|]︸ ︷︷ ︸
(e+vb)×(e+vb)

[ṁj]e+vb
= [Ai,j]

T
e+vb,v+1 [Pj]v+1 . (16)

Being generated by a graphic editor, equations (16) represent an undirected
graph, at first. To give directions (coordinates) to the graph edges, the depth-
first algorithm is used. Equations (16) (its left part) can easily be transformed
to the loop form by eliminating the same pressure variables from its right part.
Doing so, the right part transforms to a vector of pressure differences at the
bounds of pseudo-loops (those having edges being incident to the pseudo-node)
or zeros for loops. As a result the final model is a nonlinear set of equations that
depends on flow rate and temperature, only.

3 Results and Discussion

From temperature model (7)-(14) analysis it follows that it doesn’t have full
rank. Consequently, some additional equations must be automatically formed
and added to the model [19,21]. To do this, the flow rate distribution must be
known. Assuming that it holds, we find out outflow pipes for each node. After
mixing each outflow pipe has the same temperature. Then, if Ē is a set of outflow
pipes of node i, then their

∣∣Ē∣∣ − 1 pairs form for each node i a set of equations
of the following form.

Φe+i+l = TĒi(l) − TĒi(l+1) = 0 , l = 1, ni − 1 , ni =
∣∣Ēi

∣∣ , (17)

Together, SLE (7)-(8), (17) has a full rank. With the model at hand, we can
go over to answer the question how many times faster we can solve (3)-(17) in

364 M. Fedorov

Fig. 1. The benchmark pipe network

parallel than sequentially. With this end in view, a number of pipe networks
configurations followed from the benchmark network (see Fig. 1) have been
solved sequentially and in parallel. The configurations of pipe networks with the
pipe number less than 66 are not depicted. Adding incrementally blocks of 66
pipes the maximum pipe number networks that has been solved has 528 pipes.
Numerical experiments have been performed on the computer with 2×Quad
Core Processors (Intel Xeon E5405 Quad Core Processor) under the Windows
Server 2003 operation system. A pipe network solver is developed and compiled
in the Visual Studio Team 2008 environment. The parallel implementation of the
sequential algorithm is coded with the OpenMP standard, which substantially
simplifies studies on parallelization, because programming with this standard is
very straightforward [23]. Experience shows [1,12,21,26] that a general solution
algorithm of the nonlinear model described in section 2 can be decomposed into
several stages (see the pseudo-code below): hydraulic, thermal and working fluid
property ones. Stage 1 operates at fixed mean temperatures. The hydraulic model
computes flow rates at constant resistances with Newton’s method [27], followed
by parallel computation of new resistances being functions of flow rates. As a
component of Newton’s method, the parallel sparse LU solver is implemented
that uses Crout-like reduction with row pivoting. At each Newton iteration, the
LU solver solves the following set of linear equations (SLE)

J(ṁi)Δṁi = −F (ṁi) , (18)

Parallel Implementation of Thermal-Hydraulic Analysis of Pipe Networks 365

obtained from linearizing (15)-(16) and transforming (16) to the loop form, for
the full-step flow correction vector, Δṁi.

function ṁ = hydraulic model() { \\ the fine-grained parallelization is

\\ implemented for all loops in the below functions

while(δK > ε1) { \\ resistance fixed-point iterations

while(δṁ > ε) { \\ Newton iterations for flow model analysis

form hydlaulic model SLE(in K, in ṁ, out J, out F);

ṁnew =solve SLE in parallel(in J, in F); \\ it solves (18)

ṁnew =line search(in ṁnew);

δṁ =estimate relative error(in ṁnew, in ṁ);

ṁ = ṁnew ;

}
#pragma omp for \\ independent loop iterations

for(i=0;i<number of pipes;i++)

Knew = compute resistances(in ṁ); \\ evaluates (5) or (6)

δK = estimate relative error(in Knew, in K);

}
}
function thermal-hydraulic model() { \\ a mean temperature is given

while(δTm > ε2) { \\ mean temperature fixed-point iterations

\\ the first stage

ṁ = hydraulic model();

\\ the second stage. B is a right part of (7), (8), (17)

form temperature model SLE(in C, in ṁ, out Φ, out B);

T =solve SLE in parallel(in Φ, in B);

\\ the third stage

#pragma omp for \\ independent loop iterations

for(i=0;i<number of pipes;i++) {
compute mean temperatures(in T,out T new

m) ;
compute fluid properties and model parameters(in T new

m);

}
δTm = estimate relative error(in T new

m , in Tm);

}
}

To assure decreasing ‖F (ṁ)‖2
2 /2, a line search technique [27] is employed to

correct Δṁi, if necessary. Stage 2 operates both at fixed flow rates and mean
temperatures (see pseudocode). In this case, (7)-(8), (17) constitute an SLE with
constant coefficients (9)-(14). Stage 3 computes average temperatures and fluid
properties. Each iterative algorithm of the general one solves for one type of
parameter vector and requires about 6-9 iterations to converge with accuracy
ε ≤ 10−9, ε ≤ 10−6, ε2 ≤ 10−3 for flow rates, resistances and mean tempera-
tures, respectively. One of the basic activities of the algorithm is to solve SLE.
Figure 2 depicts matrix portraits of flow and thermal equations of the pipeline

366 M. Fedorov

Fig. 2. Matrix portrets of flow (left) and thermal (right) models

network shown in Fig. 1. The SLEs are unsymmetrical and sparse that requires
implementation of the solution algorithm for this general case of SLE. Numer-
ical experiments have shown that the speedup of solving SLE benchmarks [28]
of size of order 1000 by the LU factorization method doesn’t exceed 2, for the
given hardware (which configuration can be essential to achieving high parallel
performance [22]). Therefore, we can expect that the speedup of the whole al-
gorithm will be of the similar order. Newton’s method is largely sequential in
nature. It consists of the sequence of subtasks such as formulation equations,
symbolic factorization, solving SLE, computing gradients and norms, etc., with
numerous conditional constructs, reduction variables and a set of loops hav-
ing small number of operations. Paralleling each task individually we realize
fine-grained parallelization that requires the current task to be synchronized be-
fore running the next one that, in turn, might cause essential synchronization
overheads. Despite the fact, numerical experiments verify (Fig. 3) scalability of
fine-grained parallelism. Indeed, we can observe stable, though not intensive,
growth in speedup and efficiency starting even with relatively small pipe net-
work sizes (about 150 pipes). The next numerical experiments that are made
give insight in the speedup effects of applying fixed-point iterations (the model
decomposition) to the algorithm virsus pipe network sizes and types of the mod-
els being solved, and that may be individually commercially useful. The aim is
to verify growth in speedup with increase in element models complexity. Curve
1 in Fig. 4 demonstrates the speedup of parallelization of the flow model anal-
ysis, where resistances K are kept fixed (see the pseudocode). We can note,
that speedup is observed for networks sizes being greater than 250 pipes (see
Fig. 4). Experiments with the hydraulic model (curve 2) and the complete model
(curve 3) demonstrate that speedup substantially increases. In comparison to the
flow model the speedup observed is for minimal synchronization overheads in-
curred with the parallel inmplementation of the relaxation method, which correct

Parallel Implementation of Thermal-Hydraulic Analysis of Pipe Networks 367

Fig. 3. The speedup and efficiency

Fig. 4. Speedup of models corresponding different algorithm stages

368 M. Fedorov

resistances (stage 1), and average temperatures and working fluid properties
(stage 3). Speedup will increase even greater if elements model (e.g. heat ex-
changer) of a pipe network require more computations for evaluating resistances
and mean temperatures.

4 Conclusions

In the paper, the parallel implementation of the steady-state thermal-hydraulic
analysis in OpenMP is presented. The mathematical model studied contains
all typical tasks inherent to such an application domain. To demonstrate the
influence of each task on the final speedup numerical experiments have been
carried out for different sets of subtasks and sizes of pipe networks on computer
with 2×Quad Core Processors (Intel Xeon E5405 Quad Core Processor) under
the Windows Server 2003 operation system. The object-oriented C++ code of the
thermal-hydraulic analysis solver, which proved to be robust and scalable, has
been implemented and compiled in Visual Studio Team 2008 environment. The
paper demonstrates that the fine-grained parallel implementation in OpenMP
of the decomposition algorithm considered results in speedup of order 2 for the
network of 528 pipes, and the potential in speedup increase exists for larger
sizes of pipe networks. It has been achieved by parallelization of the algorithm
for solving SLE, being a dominant functionality of the flow model anaysis and
temperature submodels. It has been shown that SLE parallelization contribution
to the overall speedup grows slowly when a pipe network size increases, while two
fixed-point iteration procedures that compose the submodels into the whole are
the major sources of the earned speedup value. It is clear that the model can be
easily extended to simulate pipe networks with more complex models of element
(e.g. with heat exchangers) or working fluid properties (e.g. with account for
phase transitions); doing so the speedup will always grow.

References

1. Kondrashenko, V., Vinnichuk, S., Fedorov, M.: Simulation of Gas and Liquid Dis-

tributing Systems. Naukova Dumka, Kiev (1990) (in Russian)

2. Massoud, M.: Engineering Thermofluids. Springer, Heidelberg (2005)

3. Idelchik, I.E.: Handbook of Hydraulic Resistances. Machynostrojenije, Moscow

(1992) (in Russian)

4. Fedorov, M.: On Software Design of Thermal Systems Steady State Control. Polish

J. Environm. Stud. 4C, 279–283 (2008)

5. Donachie, R.P.: Digital Program for Water Network Analysis. J. Hydraulics

Div. 100, 393–403 (1974)

6. Chandrashekar, M.: Extended Set of Components in Pipe Networks. J. Hydraulic

Div. 106, 133–149 (1980)

7. Nogueira, A.C.: Steady-State Fluid Network Analysis. J. Hydraulic Eng. 119(3),

431–436 (1993)

8. Nielsen, B.N.: Methods for Analyzing Pipe Networks. J. Hydraulic Eng. 115(2),

139–157 (1989)

Parallel Implementation of Thermal-Hydraulic Analysis of Pipe Networks 369

9. Altman, T., Boulos, P.F.: Convergence of Newton Method in Nonlinear Network

Analysis. Mathl. Comput. Modelling 21(4), 35–41 (1995)

10. Chandrashekar, M.: Extended Set of Components in Pipe Networks. J. Hydraulic

Div. 106, 133–149 (1980)

11. Evdokimov, A.G.: Optimal Problems of Engineering Networks. Wyzsha Shkola,

Charkov (1976) (in Russian)

12. Merenkov, A.P., Chasilev, V.J.: Theory of Hydraulic Circuits. Nauka, Moscow

(1985) (in Russian)

13. Larock, B.E., Jeppson, R.W., Watters, G.Z.: Hydraulics of Pipeline Systems. CRC

Press, Boca Raton (2000)

14. Osiadacz, A.J.: Steady-state Simulation of Gas Networks. Fluid systems Sp.,

Warszawa (2001) (in Polish)

15. Sennikova, E.V., Sidler, V.G.: Mathematical Simulation and Optimization of

Evolving Heat Supply Systems. Nauka, Novosibisk (1987) (in Russian)

16. Stevanovic, V.D., Prica, S., Maslovaric, B., Zivkovic, B., Nikodijevic, S.: Efficient

Numerical Method for District Heating System Hydraulics. Energy Conversion &

Management 48, 1536–1543 (2007)

17. Boulos, P.F., Wood, D.J.: Explicit Calculation of Pipe Network Parameters. J.

Hydraulic Eng. 116, 1329–1344 (1990a)

18. Fedorov, M.: Automation of Mathematical Model Construction for the Analysis

of Heat Regimes of Heat Exchanger Systems by the Method of Gauss Convolu-

tion. Electronic Modeling 22(6), 19–25 (2000) (in Russian); Engineering Simulation

vol.18, pp. 727–734 (2001) (English translation)

19. Fedorov, M.: Steady-State Simulation of Heat Exchanger Networks. Electronic

Modeling 24(1), 101–111 (2002) (in Russian)

20. Filho, L.O.F., Queiroz, E.M., Costa, A.L.H.: A Matrix Approach for Steady-State

Simulation of Heat Exchanger Networks. Applied Thermal Eng. 27, 2385–2393

(2007)

21. Fedorov, M.: Thermal Modes Simulation of Heat Exchanger Networks Having

Turbo-machines. In: Proceedings of the Int. Conf. on Marine Technology IV, pp.

309–314. WIT Press, Southampton (2001)

22. Čiegis, R., Čiegis, R., Meilūnas, M., Jankevičiūtė, G., Starikovičius, V.: Parallel

mumerical algorithm for optimization of electrical cables. Mathematical Modelling

and Analysis 13(4), 471–482 (2008)

23. OpenMP Standard, http://openmp.org

24. Altschul, A.D.: Hydraulic Resistances. Nedra, Moscow (1970) (in Russian)

25. Kanevets, G.E.: Heat Exchangers and Heat Exchanger Systems. Naukowa Dumka,

Kiev (1982) (in Russian)

26. Bialecki, R.A., Kruczek, T.: Frictional Diathermal Flow of Steam in a Pipeline.

Chem. Eng. Sc. 51(19), 4369–4378 (1996)

27. Dennis, J., Schnabel, R.: Numerical Methods for Unconstrained Optimization and

Nonlinear Equations. SIAM, Philadelphia (1996)

28. Rice, J.R.: Matrix computations and mathematical software. McGraw-Hill, New

York (1996)

http://openmp.org

High-Performance Ocean Color Monte Carlo

Simulation in the Geo-info Project

Tamito Kajiyama1, Davide D’Alimonte2,
José C. Cunha1, and Giuseppe Zibordi3

1 CITI, Departamento de Informática, Faculdade de Ciências e Tecnologia,

Universidade Nova de Lisboa, Quinta da Torre, 2829–516 Caparica, Portugal

t.kajiyama@di.fct.unl.pt, jcc@di.fct.unl.pt
2 CENTRIA, Departamento de Informática, Faculdade de Ciências e Tecnologia,

Universidade Nova de Lisboa, Quinta da Torre, 2829–516 Caparica, Portugal

davide.dalimonte@gmail.com
3 Global Environment Monitoring Unit, Joint Research Centre, 21027 Ispra, Italy

giuseppe.zibordi@jrc.it

Abstract. The Geo-Info project aims to provide Geoscience experts

with software toolkits tailored for selected target application domains.

Within this framework, high-performance computing (HPC) solutions

are here applied to optimize a Monte Carlo (MC) code to support Ocean

Color (OC) investigations. The present paper introduces the Geo-Info

project, describes the HPC solutions applied for the OC MC case study,

and gives early performance results focusing on runtime, speedup, and

parallel efficiency.

1 Introduction

Scientific computing for Geosciences (e.g., Earth, Ocean and Space sciences)
increasingly depends on high-performance computing (HPC) resources because
of computation time and memory requirements. This poses various Computer
Science issues whose solution requires a tailored support by means of HPC tech-
niques. Nowadays computer architectures are highly complex because parallelism
and heterogeneity are ubiquitous. Achieving high-performance on the modern
computer hardware tends to require sophisticated parallelization and optimiza-
tion, while relevant technologies rapidly change both in terms of hardware and
software aspects. Therefore, a close collaboration between researchers in Geo-
sciences and Computer Science is of particular importance to make best use of
HPC resources for real-world problem solving.

Aiming at promoting interdisciplinary research in Geosciences and Computer
Science, a grant-in-aid project named Geo-Info has been established. The project,
funded by the Portuguese Ministry of Science, Technology and Higher Edu-
cation (MCTES), intends to facilitate joint efforts among the Centre of In-
formatics and Information Technology (CITI), Centre of Artificial Intelligence
(CENTRIA), Centre of Geological Science and Engineering (CICEGe), and Cen-
tre of Oceanography (CO), the first three belonging to the Universidade Nova
de Lisboa and the last to the Universidade de Lisboa.

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 370–379, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

High-Performance OC Monte Carlo Simulation in the Geo-info Project 371

The general objective of the Geo-Info project is to provide domain experts
with software toolkits tailored for selected target application domains in Geo-
sciences. The project aims at addressing a diversity of issues including program-
ming support for the development of domain-specific models and algorithms,
packaging of the models and algorithms into reusable software components, work-
flow specifications by means of the software components, as well as execution
management of the software components dynamically mapped onto distinct par-
allel and distributed computing environments.

The case study presented here supports scientific experimentation in the
Ocean Color (OC) application domain. Specifically, HPC solutions are designed
for optimizing the execution time of a Monte Carlo (MC) code developed to
model the radiative transfer processes in seawater [1,2] and analyze uncertain-
ties in radiometric products derived from in-water optical profiles. The MC code
traces the trajectories of a large number of photons that undergo random events
of scattering and absorption in the seawater medium. The accuracy of OC MC
simulations depends on the photon population size, which directly translates into
computation time. Hence, OC MC simulations are clearly a prime example of
computationally highly demanding applications that require specifically geared
HPC support.

This paper is organized as follows. Section 2 overviews the HPC framework
for Geosciences. Section 3 presents MC simulations of radiative transfer pro-
cesses within the context of OC applications. Finally, Section 4 presents
preliminary performance results obtained in two different parallel computing
environments.

2 The HPC Framework for Geosciences

This section presents the HPC framework under development in the Geo-Info
project. The HPC framework is composed of two major layers, the domain-
specific layer and the generic layer, as shown in Fig. 1 (a) and described in the
following paragraphs.

The domain-specific layer consists of 1) domain-specific solutions, 2) HPC
toolkits, and 3) low-level application program interfaces (APIs). The domain-
specific solutions comprise application-oriented scientific models and algorithms,
implemented and executed based on HPC toolkits offered by the HPC frame-
work. The HPC toolkits provide domain scientists with an easy-to-use suite of
programming tools and libraries specifically designed for selected target applica-
tion domains in Geosciences. The HPC toolkits also give access to the domain-
specific solutions through the low-level APIs.

The generic layer provides a high-level interface to access the domain-specific
solutions. These solutions are packaged into reusable software components so
that they can be executed through high-level APIs using scientific workflow
engines.

Users can apply domain-specific solutions in two different ways: 1) directly
through the low-level APIs (useful for application developers to locally execute

372 T. Kajiyama et al.

High-level APIs

Generic workflow
components

Low-level APIs

HPC toolkits
(programming tools & libraries)

Direct access Access via workflow

Generic layer

Domain-specific
layer

Domain-specific solutions
(models & algorithms)

(a) Layered architecture.

Workflow
engine

HPC
toolkits

Execution
environments

Dynamic information

Components

Component attributes
(static & dynamic info)

Component
repository

Component mapping

Execution scheduling
Performance monitoring

Workflow
composition

Execution results
Dynamic information

Execution results

(b) Basic building blocks.

Fig. 1. Schematic overview of the HPC framework for Geosciences

and debug the HPC applications being implemented); and 2) through the high-
level APIs using the workflow engines (useful for domain experts to conduct
experiments by running the reusable software components remotely).

Figure 1 (b) shows four basic building blocks of the HPC framework. A ded-
icated workflow engine is built (based on extensions to existing workflow en-
gines [3,4]) to meet scientific needs of the target applications, as well as special
requirements for high-performance computing. The workflow engine enables, in
terms of a graphical language, a composition of workflow that describes the data
flow among processing tasks. Note that processing tasks are execution units in
the workflow engine and their enactment involves the invocation of reusable
software components.

A component repository is meant to supply software components to the work-
flow engine together with component attributes describing static and dynamic
aspects of each component. The component attributes are used to dynamically
map each software component onto an appropriate execution environment.

HPC toolkits reside between the workflow engine and execution environments,
managing the execution of software components. The HPC toolkits are also in-
tended to offer various runtime services, for instance execution scheduling and
performance monitoring. Dynamic information, such as the performance of soft-
ware components on a particular execution environment, is gathered and stored
in the component repository. Information of this kind constitutes the dynamic
component attributes to tune the mapping of software components onto execu-
tion environments at runtime.

3 Monte Carlo Simulations for Ocean Color Applications

Monte Carlo simulations of radiative transfer processes in the Ocean Color appli-
cation domain were selected as a case study for a joint effort of oceanographers
and computer scientists in the context of the Geo-Info project. The scope of
the simulations is to support the understanding of uncertainties affecting data
products derived from in-water optical profiles.

High-Performance OC Monte Carlo Simulation in the Geo-info Project 373

3.1 Ocean Color

Ocean color remote sensing allows for retrieving the concentration and optical
properties of the so-called optically significant seawater components, which affect
the in-water light field [1]. Remote sensing OC products are derived applying
bio-optical algorithms to reflectance spectra measured by space-born sensors.
Chlorophyll-a concentration, generally used as a proxy for biomass concentra-
tion, is the most known and utilized OC product. It is exploited in climate change
studies [5] and has potential use to water quality monitoring [6].

Accurate in situ radiometric measurements are fundamental for the validation
of remote sensing (RS) primary products (i.e., RS radiometric data corrected for
the atmospheric perturbations) and for the development of schemes for the de-
termination of higher level RS products (i.e., the concentration and properties of
optically significant seawater components). Within such a framework, an uncer-
tainty of at most 5% is the common target for in situ radiometric measurements
[7] applied to OC calibration and validation activities.

The present study relies on MC simulations of radiative transfer processes to
investigate perturbations introduced by the wave effects and sensor tilt, which
are commonly neglected in uncertainty budgets of in situ radiometric products.
Results are expected to contribute to a more thorough application of in situ
measurements within current OC space missions (i.e., MERIS on-board of the
ENVISAT platform and MODIS on-board of the AQUA platform).

3.2 Field Measurements

In situ radiometric products can be derived from in-water optical profiles taken
with free-fall systems (Fig. 2). Radiometric quantities of interest are the up-
welling radiance Lu, as well as the upward and downward irradiance Eu and
Ed [8,9]. It is recalled that Lu is the spectral radiant energy at nadir view
per unit time, unit area and solid angle, and generally expressed in units of
mW cm−2 μm−1 sr−1. The quantities Eu and Ed are the spectral radiant en-
ergy incident per unit time and unit area upon a horizontal surface. These are
generally expressed in units of mW cm−2 μm−1.

The light intensity decreases exponentially as a function of depth in a water
layer with homogeneous optical properties [1]. Omitting for brevity the wave-
length dependence and indicating with R the radiometric quantities defined
above (i.e., Lu, Eu or Ed), the value of R(z) at depth z can then be expressed in
terms of its subsurface value R(0−) and the diffuse attenuation coefficient KR

as
R(z) = R(0−)e−KR·z.

In practice, given a series of N measurements of R at various depths zi in a layer
close to the sea surface (z1 < zi < z2, see Panel (c) in Fig. 2), the subsurface
value R(0−) and the slope KR are determined from the least square regression
of log-transformed R(zi) as a function of zi.

Other in situ radiometric products, in addition to the subsurface values and
the diffuse attenuation coefficients, are the irradiance reflectance R and the nor-
malized water leaving radiance LWN computed as

374 T. Kajiyama et al.

D
ep

th
 [z

]

Measured value [ln{R(z)}]

Wave and tilt
effects

Optical
stratification

Re
gr

es
sio

n
la

ye
r

z1

z2

z0

ln{R(0-)}Lu

Ed

Eu

Deployment
cableSea

surface

Zenith

Nadir b ca

Fig. 2. Panel (a) shows an example of a free-fall profile system used to measure the

in-water light distribution (Courtesy of Scott McClean, Satlantic Inc., Halifax). The

positions of the sensors to measure the up-welling radiance (Lu), and the upward and

downward irradiance (Eu and Ed, respectively) are highlighted in Panel (b). The joint

effect of the surface wave focusing and the instrument tilt is schematically shown in

the radiometric profile of Panel (c).

R = Eu(0−)/Ed(0−)

and
LWN = 0.54 · F 0·Lu(0−)/Ed(0+),

where F 0 is the mean extraterrestrial solar irradiance, 0.54 is the transmittance
for the up-welling radiance from below to above the sea surface and Ed(0+) is
the above water downward irradiance. The normalized water leaving radiance is
the reference quantity for validating remote sensing data products.

3.3 Monte Carlo Simulations

The overall uncertainty budget of in situ radiometric products depends on
various sources. These include uncertainties in the absolute calibration, sensi-
tivity change of radiometers responsivity between successive calibrations, envi-
ronmental effects and measurement perturbations. Among the various sources
of uncertainty, the least explored and quantified are those due to environmental
perturbations like wave effects, and those induced by variations of the asset (i.e.,
tilt) of radiometers during profiling. Wave effects mostly result in light focusing
and defocusing by surface wave facets which alter the light distribution in the
water column [10,11]. Radiometer tilt (i.e., inclination of the sensor longitudinal
axis with respect to the ideal zenith-nadir direction) produces artifacts in pro-
file data. The instrument tilt recorded during the radiometer deployment can
be used to restrict the data analysis to those measurements performed with tilt

High-Performance OC Monte Carlo Simulation in the Geo-info Project 375

below a threshold (i.e., typically 5 degrees). However, once the threshold has
been applied, the residual tilt effects are convoluted with wave effects, which de-
pend on the radiometer deployment speed and the characteristics of the waves
at the sea surface. As a matter of fact, the accurate quantification of individual
uncertainties due to wave and tilt effects cannot be easily addressed experimen-
tally [11]. This limitation can be overcome through theoretical investigations
with MC simulations of in-water radiometric fields.

By restricting simulations to inelastic processes, the interactions of light with
the molecules and particles constituting the seawater medium are described
through absorption and scattering. In this study, MC simulations of photon
transport are addressed as follows [1,2]:

1. The photon travel distance is derived from the optical path-length l sampled
from an exponential probability density function p(l) = exp(−l) where l > 0.
Assuming homogeneous inherent optical properties, the geometrical travel
distance s is computed as s = l/c, where c is the attenuation coefficient.

2. The probabilities that a photon undergoes an absorption or scattering pro-
cess are a/c and 1 − a/c, respectively (with a indicating the absorption
coefficient).

3. The photon scattering angle θ is here sampled from the Henyey-Greenstein
scattering phase function pHG = 0.5 · (1− g2)/

[
(1 − 2 cos θ + g2)3/2

]
, where

g describes the degree of anisotropy [12].

The present MC application has been designed to generate two-dimensional rep-
resentations of Lu, Eu and Ed. These representations are used to produce virtual
in-water radiometric profiles. As in the real world, virtual profiles obtained with
the same illumination conditions and water volume optical properties might dif-
fer from each other due to the random effects of tilt and wave perturbations.
MC simulations offer then the unique opportunity to compare profile data and
derived radiometric products, with and without accounting for the variability in-
troduced by the wave and tilt perturbations. The demonstration case illustrated
in this study shows the applicability of the method without comprehensively
compiling the uncertainty budget for tilt and wave perturbations under different
environmental conditions.

4 Preliminary Performance Results

Based on a sequential MATLAB code implementing the MC algorithm described
in the previous section, a parallel OC MC code in C was developed with the aims
of 1) providing oceanographers with a handy tool to accelerate experimentation
in the OC domain; and 2) identifying domain-specific issues to be addressed with
the HPC framework in the Geo-Info project.

MC simulations of radiative transfer processes belong to the class of embar-
rassingly parallel problems, since transport of each photon can be computed
independently of the others. We developed 2 parallel versions of the MC code
using MPI and OpenMP. In both versions, the total number of photons P is

376 T. Kajiyama et al.

Table 1. Performance of the MPI-based MC code on a heterogeneous AMD Opteron

cluster. The number of photons in each test is 106.

#procs. Time [sec.] Speedup Efficiency

1 448.6 1.00 100.0%

2 267.7 1.68 83.8%

4 131.6 3.41 85.2%

8 66.02 6.80 84.9%

12 44.72 — 87.4%

evenly divided into N processors. Each processor computes the trajectories of
P/N photons using a different random number seed and generates 3 matrices to
record two-dimensional representations of Lu, Eu and Ed. For each radiometric
quantity, matrices on the N processors are gathered and summed up at the end
of the simulation. A matrix summation requires N − 1 matrix additions, so that
the total number of matrix additions is 3N − 3.

The parallel MC code was tested in 2 different cluster environments. Since the
MPI and OpenMP versions of the MC code showed similar performance, only
the results with the MPI version are presented.

4.1 Small Heterogeneous Cluster Case

Performance results of the MPI-based code on a small PC cluster are shown in
Table 1. The cluster consists of 4 compute nodes, where 2 nodes have 4-way AMD
Opteron 2.2 GHz processors and the other 2 nodes have 2-way AMD Opteron 2.0
GHz processors (the total number of cores is 12). The nodes are interconnected
by Infiniband. The cluster runs Scientific Linux 5.0, and LAM/MPI 7.1.2 and
GCC 4.1.2 (with -O3 -march=opteron options) were used. The number of traced
photons is P = 106.

Only the 2.2 GHz processors were used to perform simulations with N ≤ 8.
In these homogeneous cases, speedup S and parallel efficiency E are defined as
S = T (1)/T (N) and E = S/N , where T (1) and T (N) are the execution times
with 1 and N processors, respectively, in units of seconds.

The classical definitions of speedup and efficiency are no longer applicable
in the heterogeneous case with N = 12. In this case, the parallel efficiency
was evaluated by applying the definition of efficiency by Colombet et al. [13].
Suppose that u1% of the photons are assigned to each of the eight 2.2 GHz
processors and u2% of the photons to each of the four 2.0 GHz processors.
Similarly, v1% and v2% of 3N −3 matrix additions are assigned to each 2.2 GHz
and 2.0 GHz processor, respectively. Assessed average tracing time per photon
is U1 = 4.49 × 10−4 sec. on a 2.2 GHz processor and U2 = 5.15 × 10−4 sec. on a
2.0 GHz processor, while a matrix addition takes V1 = 1.37× 10−2 sec. on a 2.2
GHz processor and V2 = 1.56× 10−2 sec. on a 2.0 GHz processor. Now, consider
the following linear programming problem:

High-Performance OC Monte Carlo Simulation in the Geo-info Project 377

Minimize T subject to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
U1Pu1 + V1(3N − 3)v1 = T
U2Pu2 + V2(3N − 3)v2 = T
8u1 + 4u2 = 1
8v1 + 4v2 = 1
u1 ≥ 0, u2 ≥ 0, v1 ≥ 0, v2 ≥ 0

The solution T of this problem is a lower bound of the parallel execution time
and thus can be considered as the ideal execution time Tid. Parallel efficiency on
heterogeneous processors is then defined as E = Tid/T (N). In the case of P =
106, the result is Tid = 39.1 sec. (with u1 = 8.72%, u2 = 7.57%, v1 = 0%, v2 =
25.0%) and E = 87.4%. Although the MPI-based MC code was tested without
any load balancing mechanism, the analysis above shows that the parallelization
strategy of evenly distributing the photons to the 12 heterogeneous processors
was indeed quite efficient.

4.2 Large-Scale Homogeneous Cluster Case

Figure 3 shows performance results of the MPI-based code on TACC Ranger
(University of Texas at Austin). Ranger consists of 3936 SMP compute nodes
interconnected with Infiniband. Each node has 4-way quad-core AMD Opteron
2.3 GHz processors and 32 GB memory, running a Linux OS. The code was built
with MVAPICH 1.0.1 and Intel C Compiler 10.1 (with -O3 -xW -ipo options).
The number of traced photons is 4 × 106 in all cases with different numbers of
processors. The MC code showed a linear scalability up to 2048 cores. The serial
execution time was 1424.0 sec., whereas the parallel execution time with 2048
processors was 1.6572 sec. (i.e., S = 859.30 and E = 42.0%). The relatively low
efficiency with the largest number of processors is attributed to the the number
of photons per processor, which was very small in this experiment, as well as to
the increase in the O(log logN) time spent for parallel matrix summations.

Figure 4 illustrates 3 output matrices populated with the trajectories of 109

photons. The execution time was 1771.5 sec. using 256 cores on Ranger. The
large number of photons was intended to reduce MC intrinsic noise in the Lu

distribution, since the Lu sensor has a narrow field-of-view angle (20 degrees
in this simulation) and only a relatively small fraction of photons are recorded

1E-01

1E+00

1E+01

1E+02

1E+03

1E+04

1 2 4 8 16 32 64 128 256 512 1K 2K

Number of processors

T
im

e
[s

ec
.]

Photon tracing

Matrix summations

Fig. 3. Performance of the MPI-based MC code on TACC Ranger. The number of

traced photons in each test is 4× 106.

378 T. Kajiyama et al.

0 2 4 6 8 10

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

2

4

x [m]

D
ep

th
 [

m
]

ed

0 2 4 6 8 10

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

2

4

x [m]

D
ep

th
 [

m
]

eu

0 2 4 6 8 10

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

2

4

x [m]

D
ep

th
 [

m
]

lu

Fig. 4. Examples of simulated light distribution. The number of traced photons is 109.

into the corresponding output matrix when compared with Eu and Ed. This
exemplifies the computationally demanding nature of OC MC simulations, thus
motivating the use of large-scale parallel computing environments like Ranger.

5 Concluding Remarks

This paper presented an HPC framework for Geosciences developed in the Geo-
Info project. A case study to support radiative transfer simulations for OC ap-
plications was conducted to collect preliminary performance results of a parallel
MC code. It is remarked that it would be cumbersome for OC domain scientists
to use classical programming and execution strategies to gather, in a reasonable
amount of time, the statistical figures needed to investigate the tilt and wave
focusing effects with MC simulations. On the contrary, the performance results
from the pilot investigation discussed here have shown that the HPC approach
ultimately opens the venue – both in terms of computational efficiency and
application transparency – to additional investigations aiming at a more com-
prehensive exploitation of in situ radiometric measurements for the calibration
of space sensors and the validation of remote sensing data products.

Our future work includes the development of HPC solutions based on hybrid
application of message passing (MPI) and shared memory (OpenMP) models
to run OC MC simulations on a wider range of heterogeneous parallel and dis-
tributed computing environments, as well as their performance evaluation with
realistic simulation settings. Outcomes are expected to enable the exploration of
large-scale solutions to further increase the accuracy of MC simulations.

Acknowledgments. We would like to thank Dr. Daniel Stanzione and the staff
of the Texas Advanced Computing Center (TACC) for their help with large-scale
experiments on Ranger in the framework of the Advanced Computing initiative

High-Performance OC Monte Carlo Simulation in the Geo-info Project 379

of the UT Austin-Portugal Program, funded by the Portuguese Foundation for
Science and Technology (FCT).

References

1. Mobley, C.D.: Light and Water: Radiative Transfer in Natural Waters. Academic

Press, London (1994)

2. Leathers, R.A., Downes, T.V., Davis, C.O., Mobley, C.D.: Monte Carlo radiative

transfer simulations for ocean optics: A practical guide. Technical report, Naval

Research Laboratory, NRL/MR/5660–04–8819, Washington, DC (September 2004)

3. Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludäscher, B., Mock, S.: Kepler: An

extensible system for design and execution of scientific workflows. In: Proc. 16th

Intl. Conf. on Scientific and Statistical Database Management (SSDBM 2004), pp.

21–23 (June 2004)

4. Taylor, I., Shields, M., Wang, I., Harrison, A.: Visual Grid workflow in Triana.

Journal of Grid Computing 3(3-4), 153–169 (2005)

5. Sarmiento, J.L., Slater, R., Barber, R., Bopp, L., Doney, S.C., Hirst, A.C., Kleypas,

J., Matear, R., Mikolajewicz, U., Monfray, P., Soldatov, V., Spall, S.A., Stouffer,

R.: Response of ocean ecosystems to climate warming. Global Biogeochemical Cy-

cles 18 (2004)

6. Hu, C., Chen, Z., Clayton, T.D., Swarzenski, P., Brock, J.C., Muller-Karger, F.E.:

Assessment of estuarine water-quality indicators using MODIS medium-resolution

bands: Initial results from Tampa Bay, FL. Remote Sensing of Environment 93(3),

423–441 (2004)

7. McClain, C.R., Feldman, G.C., Hooker, S.B.: An overview of the SeaWiFS project

and strategies for producing a climate research quality global ocean bio-optical

time series. Deep Sea Research Part II: Topical Studies in Oceanography 51(1-3),

5–42 (2004); Views of Ocean Processes from the Sea-viewing Wide Field-of-view

Sensor (SeaWiFS) Mission: Volume 1

8. Zibordi, G., Berthon, J.F., Doyle, J.P., Grossi, S., van der Linde, D., Targa, C.,

Alberotanza, L.: Coastal Atmosphere and Sea Time Series (COASTS), Part 1:

A Tower-Based, Long-Term Measurement Program, NASA Goddard Space Flight

Center, SeaWiFS Postlaunch Technical Report Series, TM–2002–206892, Green-

belt, MD, June 2002, vol. 19, pp. 1–29 (2002)

9. D’Alimonte, D., Zibordi, G.: The JRC Data Processing System. NASA Goddard

Space Flight Center, SeaWiFS Postlaunch Technical Report Series, TM–2001–

206892 Greenbelt, MD, vol. 15, pp. 52–56 (May 2001)

10. Zaneveld, J.R., Boss, E., Hwang, P.: The influence of coherent waves on the re-

motely sensed reflectance. Optics Express 9(6), 260–266 (2001)

11. Zibordi, G., D’Alimonte, D., Berthon, J.F.: An evaluation of depth resolution

requirements for optical profiling in coastal waters. Journal of Atmospheric and

Oceanic Technology 21(7), 1059–1073 (2004)

12. Henyey, L., Greenstein, J.: Diffuse radiation in the galaxy. Astrophysical Jour-

nal 93, 70–83 (1941)

13. Colombet, L., Desbat, L.: Speedup and efficiency of large-size applications on het-

erogeneous networks. Theoretical Computer Science 196, 31–44 (1998)

EULAG Model for Multiscale Flows – Towards

the Petascale Generation of Mesoscale
Numerical Weather Prediction

Zbigniew P. Piotrowski, Marcin J. Kurowski,
Bogdan Rosa, and Michal Z. Ziemianski

Institute of Meteorology and Water Management,

ul. Podlesna 61, 01-673 Warsaw, Poland

Zbigniew.Piotrowski@imgw.pl

http://www.imgw.pl/

Abstract. EULAG is an established, highly parallel model for simulat-

ing fluid flows across a wide range of scales. It is known to scale well up

to 16000 processors on IBM Blue Gene/W. It is noteworthy for its non-

oscillatory integration algorithm MPDATA, advanced elliptic solver and

generalized coordinate formulation. In this paper we focus on complex

orographic flows and present the perspective of implementing EULAG

as a high resolution weather prediction tool for Europe.

As resolution of numerical models improves, numerical weather pre-

diction enters the phase where traditional convection parameterization

becomes obsolete and is replaced with a cloud-resolving approach. The

boundary conditions, especially the topography, are becoming more and

more complicated, demanding higher accuracy and better conservation

properties from the numerical model construction. This calls for seeking

fast and precise fluid solvers.

We present preliminary results of simulations of the flow over realistic

topography of the Alps, which proves the model capability to handle

steep slopes. We demonstrate performance of the code on IBM Blue

Gene/L architecture and compare different I/O strategies, from simple

one-node operations to MPI I/O solution. An example of application of

VAPOR, a tool for visualization and analysis of tera-scale sized data sets

is provided.

1 Introduction

During the recent 50 years, numerical weather prediction (NWP) became the
basic tool used for operational weather forecasting. NWP is based on numerical
solution of physical equations describing atmospheric flows and processes, for
given initial conditions based on observations and measurements.

Atmospheric flows are characterized by spatial scales ranging from global
(107 m) to micro (about 1 m) for the boundary layer and even much less (10−5 m)
for microphysical processes in clouds. The NWP requires, on one hand, possibly
high spatial resolution to adequately describe the essential physical processes

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 380–387, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

EULAG Model for multiscale Flows 381

influencing weather and, on the other hand, a solution time significantly shorter
than the time of physical realization of the process itself.

In consequence, during the recent decades, the operational NWP employs the
highest obtainable computer resources and a nested technique with basically two
classes of models. They are: global, solved for the whole planetary atmosphere, and
mesoscale, solved for limited areas with higher resolutions and boundary condi-
tions provided by the global ones. The spatial resolution of operational NWP mod-
els results from a compromise between the two requirements, defined above, and
increases with growing computer capabilities. It currently reaches about 50 km for
global models, and 5 to 2 km for the mesoscale ones. Atmospheric processes with
scales unresolved by the models have to be parameterized by appropriate proce-
dures, mimicking their statistical effects on resolved parameters.

Currently, with the spatial resolution of operational mesoscale NWP models
approaching 1 km scale, they become able, at least partly, to represent explicitly
convective processes, responsible for important classes of weather events, espe-
cially the severe ones (strong showers leading to flush-floods, thunderstorms,
strong wind bursts, etc). On the other hand, the dynamical cores of the current
mesoscale models encounter significant problems, as robust numerical stability
is required for representing strong convective flows and steep orography.

Academic communities and national weather services of many countries con-
tinue research and development work on NWP models. Some of the services,
especially in Europe, established scientific consortia, to join their efforts. Pol-
ish Institute of Meteorology and Water Management (IMGW) is a member of
the two international consortia of mesoscale modeling: ALADIN and COSMO.
IMGW established a new scientific team to participate in a work of consortium
COSMO on a development of a robust dynamical NWP core, applicable for res-
olutions of 1 km, and beyond, in the frame of a “Conservative Dynamical Core”
project. IMGW proposes to base the research on a dynamical core of the EULAG
model, developed in National Center for Atmospheric Research (NCAR), USA,
as the scientific multi-scale model for general flows and to test its applicability
for NWP purposes.

The task to adopt EULAG for use in NWP is challenging and includes numer-
ous changes to the model physics, code structure and interfaces. In this paper,
the authors present the first steps in the adaptation process, namely experiments
with flow past steep orography, code scaling test with parallel Tau profiler, 3D
visualization using Vapor package, as well as give an example of new MPI/IO
module application with relevant performance information.

2 Methodology

Governing equations of EULAG model (1) (see also www.mmm.ucar.edu/eulag)
defined in an anelastic approach have the expanded form (2):

Dv
Dt

= −∇
(
p′

ρ̄

)
+ g

θ′

θ̄
− f × v′ + M′ + D, (1)

382 Z.P. Piotrowski et al.

Dθ

Dt
= Dθ, (2)

∇ · (ρ̄v) = 0, (3)

where v, θ and p are the velocity vector, potential temperature and pressure
respectively, D/Dt denotes material derivative. All primed variables are devia-
tions from the ambient (environmental) state, ρ̄ is an ambient density profile,
M′ symbolizes appropriate metric forces due to coordinate transformations, D
and Dθ are diffusion terms for kinematic viscosity and thermal diffusivity, f and
g are Coriolis and gravity parameters respectively.

Each prognostic equation of any fluid variable ψ (e.g. temperature, velocity,
water vapour, cloud condensate, precipitation mixing ratio, etc.), written as:

∂ψ

∂t
+ ∇ · (vψ) = R, (4)

where R combines all forcings and/or sources, is discretized with a use of non-
oscillatory forward-in-time (NFT), 2nd order (in time and space) scheme:

ψn+1
i = LE i(ψn +

1
2
ΔtFn) +

1
2
ΔtFn+1

i . (5)

Here, LE represents either an advective semi-Lagrangian or a flux-form Eule-
rian transport operator (MPDATA, e.g. (3)). Indices i and n denote spatial
and temporal location on a Cartesian mesh, respectively, and Δt is the time
step of the model. The Eulerian algorithm employs point-wise integrals of evo-
lution equations while semi-Lagrangian one is based upon the trajectory-wise
approach. Equation (5) represents an implicit system with respect to the de-
pendent variable ψ. Completion of the model algorithm requires a straightfor-
ward algebraic inversion of equation (5), resulting in the formulation of the
boundary value problem for pressure implied by the mass continuity constraint
(3). The resulting elliptic equations are solved, subject to appropriate boundary
conditions, using the preconditioned generalized conjugate-residual approach, a
non-symmetric Krylov-subspace solver; cf. (4) and references therein for com-
prehensive discussions. The model has several preconditioning options. Here, we
used two iterations (per each iteration of the Krylov solver) of an implicit station-
ary Richardson scheme, in the spirit of an ADI or block-Jacobi preconditioner;
see (4) for further details.

3 Results

With refining resolution of mesoscale NWP models, complexity of topography
becomes an increasingly important challenge for forecasting codes. Integrating
flow along steep slopes can result in numerical instability of model solution.
Smoothing the orography is sometimes applied to ensure the stability, however,
such simplification modifies the physical problem and puts in question correct-
ness of the result.

EULAG Model for multiscale Flows 383

a)

[km]

[km]
b)

[km]

[km]

Fig. 1. 2D flow over the undulating terrain. Potential temperature perturbation distri-

bution a) and corresponding velocity flow field b) obtained using the EULAG model.

The picture illustrates solution after about 7 hours of simulated time. The environ-

mental horizontal component of velocity is equal 30 m/s.

384 Z.P. Piotrowski et al.

Fig. 2. Orographically forced convection over the Alps after 12 h of constant (7 m/s)
environmental inflow from NE direction. Grey isosurfaces depict cloud regions while

the streamlines indicate the instantaneous direction of the wind flow between 0-3 km

height with bright lines at lower levels to dark lines in the upper layer.

We present results of experiments performed using EULAG model, which
suggest that the code is capable to preserve numerical stability even for the
flows over strongly undulated topography. Two different cases, i.e. two- and
three-dimensional (2D and 3D) are analyzed. The first simulation corresponds
to the experiment described by Schär et al. (5). In order to imitate the effects of
complex topography we employ the mountain with a finescale structure. Several
tests with different wind speed and different amplitude of the hills were per-
formed. The example result for a case of strong wind (30 m/s) and elevated hill
(5 km) is shown in Fig. 1. We observe local circulations resolved between steep
slopes of the valleys.

More realistic scenario of the three dimensional test alludes the NWP for-
mulation. Uniform environmental windflow about 7 m/s from the North-East
direction is simulated over Central and Western Europe. Topographic data are
based on an unfiltered MeteoSwiss orography. Resolution of the domain is 700×
700 × 121 nodes and the unstretched grid box size (i.e., before terrain-following
transformation of coordinates) is about 2.2 km × 2.2 km × 125 m, which re-
produces a typical setup of current advanced operational NWP models. Ambi-
ent relative humidity was constant in the whole domain and was set to 0.82.
To emphasize orographic effects, we dismiss radiative processes and surface
fluxes. Subgrid scale processes are represented by implicit LES property of MP-
DATA scheme (see (6) for recent application and references therein). Clouds are

EULAG Model for multiscale Flows 385

forming solely due to orographically induced vertical air currents. Such phe-
nomenon is typically responsible for moist processes (condensation, evaporation
and precipitation) in mountain regions. In our model the basic bulk approach
of moist thermodynamic has been employed (7). Figure 2 displays the volumes
of clouds and instantaneous direction of the air flow (streamlines) after 12 h of
the real time integration (wall clock time of the whole run is about 5 h on 500
two-processor nodes of IBM Blue Gene/L - BGL machine).

Figure 2 has been produced with Vapor1 (8), an advanced graphical 3D tool.

4 Model Performance

Several tests of EULAG code performance has been completed using parallel
profiler from Tau2 package on NCAR IBM Blue Gene/L system with 1024
compute nodes (2048 processors). In the first test we compare the speedup of
the code for runs with different number of processors. The speedup is defined as
the ratio TNmin/TN where TNmin corresponds to the total time of the run with the
smallest number of processors (here Nmin=140). TN is the duration of runs with
larger number of CPUs (here N = 250, 500, 1000). For testing purpose we used
3D setup described in the previous paragraph, complexity of which is somewhat
representative to the NWP model. Figure 3 presents almost linear scalability of
the code up to 1000 CPUs. The results are close to an ideal scaling and for 1000
CPUs the difference is merely ∼ 10%. Additional scaling tests were performed in

Fig. 3. Strong scaling results

1 Vapor is a modern visualization and analysis platform designed for terascale datasets,

capable for displaying volume rendered data, isosurfaces, probes of 3D data, stream-

lines and trajectories. It may be coupled with IDL interpretive data language.

(www.vapor.ucar.edu).
2 TAU Performance System is a portable profiling and tracing toolkit for performance

analysis of parallel programs (www.cs.uoregon.edu/research/tau).

386 Z.P. Piotrowski et al.

Table 1. Time in seconds spent for saving output data of the size ∼ 9 GB

#CPUs Sequential Parallel

250 196.8 48.3

500 172.4 36.7

1000 158.3 32.0

order to evaluate the time needed to save model variables set to a disk space. For
use in NWP, data needs to be stored in one of the recognized data formats. His-
torically, EULAG model allowed only sequential Fortran tape dump. Recently
implemented parallel method of writing data to disc storage is based on MPI-I/O
technology provided by Parallel Netcdf, an extension to popular meteorological
data format Netcdf. Table 1 contains the information about the time spent for
saving the same amount of data (full set of model variables, here ∼ 9 GB) with
different number of CPUs. Parallel method of data saving is about 4 times (for
250 CPUs) and almost 5 times (for 1000 CPUs) faster then sequential one. For
extensive discussion of EULAG’s scaling on different architectures, see (9).

5 Summary

We have presented EULAG, an established computational model for simulat-
ing flows, set in a scenario of future weather prediction models with horizontal
resolution of order O(1 km). We have demonstrated model capability to resolve
flows past steep and complicated idealized and realistic mountainous terrain.
We have performed, using parallel profiler, the scaling tests of realistic 3D flow
simulation, which proved good scalability of the model. Implementing MPI I/O
solution with Parallel Netcdf package has shown to reduce I/O overhead several
times. Construction of the next-generation NWP prediction model is a chal-
lenging task. EULAG model reveals to be a promising fluid solver for weather
forecasting applications with an excellent tolerance to the complicated topogra-
phy. This paper confirms and expands earlier results of very good scalability of
the model, as well as shows its significant improvement due to parallelisation of
its I/O procedures.

Acknowledgments

Computer time was provided by NSF MRI Grant CNS-0421498, NSF MRI Grant
CNS-0420873, NSF MRI Grant CNS-0420985, NSF sponsorship of the National
Center for Atmospheric Research, the University of Colorado, and a grant from
the IBM Shared University Research (SUR) program and Academic Computer
Centre in Gdansk (TASK).

References

[1] Smolarkiewicz, P.K., Margolin, L.G.: On forward-in-time differencing for fluids: An

Eulerian/semi-Lagrangian nonhydrostatic model for stratified flows. Atmos.-Ocean

Special 35, 127–152 (1997)

EULAG Model for multiscale Flows 387

[2] Lipps, F.B., Helmer, R.S.: A scale analysis of deep moist convection and some

related numerical calculations. J. Atmos. Sci. 39, 2192–2210 (1982)

[3] Smolarkiewicz, P.K., Margolin, L.G.: MPDATA: A finite-difference solver for geo-

physical flows. J. Comput. Phys. 140, 459–480 (1998)

[4] Smolarkiewicz, P.K., Temperton, C., Thomas, S.J., Wyszogrodzki, A.A.: Spectral

preconditioners for nonhydrostatic atmospheric models: extreme applications. In:

Proceedings of the ECMWF Seminar Series on Recent developments in numerical

methods for atmospheric and ocean modelling, Reading, UK, September 6-10, pp.

202–220 (2004)

[5] Schär, C., Leuenberger, D., Führer, O., Luthi, D., Girard, C.: A new terrain-

following vertical coordinate formulation for atmospheric prediction models. Mon.

Weather Rev. 130, 2459–2480 (2002)

[6] Piotrowski, Z.P., Smolarkiewicz, P.K., Malinowski, S.P., Wyszogrodzki, A.A.: On

numerical realizability of thermal convection. J. Comput. Phys. 228, 6268–6290

(2009)

[7] Grabowski, W.W., Smolarkiewicz, P.K.: A multiscale anelastic model for meteoro-

logical research. Mon. Weather Rev. 130, 939–956 (2002)

[8] Clyne, J., Mininni, P., Norton, A., Rast, M.: Interactive desktop analysis of high

resolution simulations: application to turbulent plume dynamics and current sheet

formation. New J. Phys. 9(8), 301 (2007)

[9] Prusa, J.M., Smolarkiewicz, P.K., Wyszogrodzki, A.A.: EULAG, a computational

model for multiscale flows. Comp. Fluids 37(9), 1193–1207 (2008)

Parallel Implementation of Particle Tracking and

Collision in a Turbulent Flow

Bogdan Rosa1 and Lian-Ping Wang2

1 Institute of Meteorology and Water Management,

ul. Podlesna 61, 01-673 Warsaw, Poland

bogdan.rosa@imgw.pl
2 Department of Mechanical Engineering, 126 Spencer Laboratory,

University of Delaware, Newark, Delaware 19716-3140, USA

lwang@udel.edu

http://www.me.udel.edu/∼lwang/

Abstract. Parallel algorithms for particle tracking are central to the

modeling of a wide range of physical processes including cloud formation,

spray combustion, flows of ash from wildfires and reactions in nuclear sys-

tems. Here we focus on tracking the motion of cloud droplets with radii

in the range from 10 to 60 µm that are suspended in a turbulent flow

field. The gravity and droplet inertia are simultaneously considered. Our

codes for turbulent flow and droplet motion are fully parallelized in MPI

(message passing interface), allowing efficient computation of dynamic

and kinematic properties of a polydisperse suspension with more than

107 droplets. Previous direct numerical simulations (DNS) of turbulent

collision, due to their numerical complexity, are typically limited to small

Taylor microscale flow Reynolds numbers (∼ 100), or equivalently to a

small physical domain size at a given flow dissipation rate in a turbulent

cloud. The difficulty lies in the necessity to treat simultaneously a field

representation of the turbulent flow and free movement of particles. We

demonstrate here how the particle tracking and collision can be handled

within the framework of a specific domain decomposition. Our newly

developed MPI code can be run on computers with distributed memory

and as such can take full advantage of available computational resources.

We discuss scalability of five major computational tasks in our code: col-

lision detection, advancing particle position, fluid velocity interpolation

at particle location, implementation of the periodic boundary condition,

using up to 128 CPUs. In most tested cases we achieved parallel efficiency

above 100 %, due to a reduction in effective memory usage. Finally, our

MPI results of pair statistics are validated against a previous OpenMP

implementation.

1 Introduction

Air turbulence plays an important role in warm rain development. The process
has been extensively investigated in many scientific studies (1; 2; 3), but complete
quantitative understanding is still insufficient. The general description of the mul-
tiscale interaction of cloud droplets with turbulent air flow is a challenging task due

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 388–397, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Parallel Implementation of Particle Tracking and Collision 389

to inherent nonlinearities, inhomogeneities and coupling over disparate length and
time scales. One of the main tools being used for cloud microphysics study is direct
numerical simulation (DNS). Numerical complexity limits the DNS of turbulent
collision to small Taylor microscale Reynolds number (Rλ ∼100). In real clouds
the value is a few orders of magnitude larger (Rλ ∼ 104). Achieving such high
Reynolds numbers in numerical simulation is not feasible, but fortunately small
flow structures are mainly responsible for droplets collision thus a truncated rep-
resentation of turbulence is useful. Here, we intend to bring the numerical mod-
eling closer to the physical conditions by extending the size of the computational
domain. Serial codes or codes parallelized in OpenMP (e.g. (4)) for particle track-
ing can be run only on computers with shared memory where computational re-
sources are limited to a single node. This restricts the grid resolution typically
below 2563. To perform simulation of turbulent collision on 5123 grid or higher,
different method of parallelization has to be applied.

In this paper, we report on the development of DNS of turbulent collision
with parallel MPI library so the resulting code can be run on platforms with a
distributed memory. Such a treatment allows the use of a larger number of pro-
cessors (up 1024), memory, and improved cache utilization, leading to a much
better overall computational efficiency. Our basic strategy of parallelization is
domain decomposition, similar to what was previously utilized by Homman et al.
(5). The whole computational domain is divided into thin slabs in one direction
and number of slabs corresponds to number of processors used. The differences
between our implementation and Homman’s lie in velocity interpolation and
computation of particle pair statistics. Our new code computes in parallel radial
distribution function (RDF (6) - a measure of the deviation of density distri-
bution from uniform distribution), pair relative velocity, and dynamic collision
rate. The parallel efficiency of these computations will be examined here.

2 Methodology

2.1 Flow Simulation

The usual pseudo-spectral method is employed to perform DNS of a forced
isotropic homogenous turbulent flow. The incompressible Navier-Stokes and the
continuity equation:

∂U
∂t

= U × ω − ∇
(
P

ρ
+

1
2
U2

)
+ ν∇2U + f (x, t) , (1)

∇ · U = 0 (2)

are solved in a periodic cubic box. The flow domain is discretized uniformly into
N3 grid points, where in this study N takes the value of 128, 256, or 512. ω
and P denote the fluid vorticity and pressure, respectively. The random forc-
ing term f (x, t) is nonzero only for very low wave numbers (i.e., k ≤ 1.5),
providing an energy source to sustain the air turbulence. Further details can

390 B. Rosa and L.-P. Wang

be found in (7). The main difference between the current and previous imple-
mentation is the implementation of FFT (fast fourier transform). FFT demands
free access to data from every grid point in the whole computational domain.
Domain decomposition limits access of a given process to data in a given subdo-
main. This difficulty was overcome by splitting the full 3D (three dimensional)
FFT into a series of 2D FFTs, parallel matrix transposition and then 1D FFTs.
The transposition step reorganizes data to facilitate 2D and 1D FFTs within
each process. To minimize the transpose operation, the domain is decomposed
into slabs in the kz direction in the wavevector space, but along the y−direction
in the physical space (8). The kinetic energy from low wave numbers propagates
to small scales until viscous dissipation becomes active, eventually a quasi-steady
kinetic energy balance is reached and flow becomes statistically stationary. This
typically takes about 4 to 5 eddy turnover times after a random initialization of
the flow field.

2.2 Particle Tracking

When the turbulent flow reaches the statistically stationary stage, we introduce
particles at random positions with a uniform distribution. The random numbers
for setting the initial particle location are generated only by one master process.
Then, the master process sends position data for particles within a given subdo-
main to an appropriate process. Although, such a treatment is not parallel, it is
usually fast and only needs to be performed once. For example, generating posi-
tions of 5 million particles and distributing them among 64 processors takes only
0.7 [s]. This method ensures a true random distribution in the whole computa-
tional domain as only one seed for the random number generator is needed.

Assuming that the particles are small in comparison with the Kolmogorov
microscale and particle density is much larger than the fluid density, the following
equation of motion (9) {

dV(t)
dt = u(Y,t)−V(t)+W

τp

dY(t)
dt = V(t)

(3)

is solved, where V(t) and Y(t) are the velocity and the centre position of parti-
cle, respectively, τp is the particle inertial response time, u is the fluid velocity at
the particle location, W = τpg is the still-fluid terminal velocity, and g is grav-
itational acceleration. Equation 3 was solved by the 4th order Adams Bashford
method. The initial particle velocity is set to the fluid velocity at the particle
location plus the terminal velocity.

2.3 Velocity Interpolation

To compute the drag force acting on a particle, the fluid velocity at the par-
ticle location has to be interpolated from the solved fluid velocity field on a
regular grid. Several different interpolation techniques have been developed pre-
viously, some of the more popular ones are shown in Table 1. In our MPI code

Parallel Implementation of Particle Tracking and Collision 391

Table 1. Available interpolation schemes for fluid velocity at particle position

Yeung, P. K. and S. B. Pope 1989 (10) Third order,

thirteen-point fourth-order cubic spline

Balachandar S, Maxey MR, 1989 (11) 6-pt Lagrangian interpolation

Squires, K. D. and J. K. Eaton 1990 (12) Tri-linear

Rovelstad et al. 1994 (13) Spectral, Tri-linear, Cubic spline, Hermite -

mathematically equivalent to tri-cubic

Rouson et al. 1997,2008 (14; 15) Tri-linear

Bec J 2005 (16) Spectral (few modes)

Franklin et al. 2005, 2007 (17; 18) Tri-linear

Lekien and Marsden 2005 (19) Tri-cubic (implementation no DNS)

Busse et al. 2007 (20) Tri-cubic

Homann et al 2007a, 2007b (5; 21) Tri-cubic an tri-linear

we implemented a Lagrangian interpolation scheme using 6 grid points in each
spatial direction (7; 11). This requires data communication between neighboring
processes in order to make sure that the full stencil of grid-based fluid veloc-
ity is always available when a particle is located in the vicinity of subdomain
boundaries.

2.4 Periodic Boundary Condition

Particles moving in the turbulent flow field constantly change their subdomains
or leave the computational box. When a particle moves into a different subdo-
main, the dynamic data occupied on the old process have to be transferred to a
new process. Since the displacement of a particle during a time step is small, the
particle will travel only to a neighboring slab. When a particle leaves the compu-
tational domain, periodic boundary condition is used to place the particle into a
proper new process. Periodicity is realized by adding or subtracting the length
of the computational box size from the particle coordinates. The communica-
tion time for moving data through processes depends on machine architecture
and the number of nodes employed. Setting up separate communication between
processors for sending and receiving data for every single particle is time con-
suming. Instead, we first made copies of the data in temporary buffer and then
transferred the whole buffer in one operation. The original data table for par-
ticles within a given process is updated by removing selected items associated
with particles that have left the subdomain, adding new particles just entered,
and then re-indexing the whole table.

2.5 Collision Detection

The algorithm for collision detection implemented in the MPI code follows the
idea presented by Wang et al. (22), with several modifications resulting from
different memory management. Dynamic collision detection is executed in two
steps. In the first step, collisions within a given subdomain are detected using an

392 B. Rosa and L.-P. Wang

efficient linked list method (23). In the second step the algorithm detects colli-
sions occurring between particles from two different processes. The second step
is faster because searching is limited only to a narrow slice covering overlapping
region between two neighboring processors. To perform this step, the complete
set of data with particles location, velocity and particles size has to be trans-
ferred to a neighboring process. The above treatment retains full parallelism and
minimizes amount of data which has to be sent and received between CPUs.

2.6 Radial Distribution Function and Relative Velocity

Radial distribution function is computed based on the definition proposed in (6).
Domain decomposition introduces additional boundaries inside the domain and
complicates the detection of all particle pairs with separation distance in the
range from r− δ to r+ δ, where δ is small fraction of collision radius ∼ 2%. This
problem was solved again by a two-step procedure, similar to that used in the
collision detection. Namely, particle pairs inside any given subdomain are de-
tected first, then additional pairs involving particles from different processes are
found. Relative velocity is computed for every pair used for the RDF calculation.
These kinematic statistics are further averaged over time.

3 Parallel Performance

To examine the scalability of the MPI code, a number of numerical experiments
were performed. All tests presented in this paper were conducted on an IBM
Power 575 cluster (4064 POWER6 processors running at 4.7 GHz) at NCAR’s
supercomputing center.

In the first test we compare times designated for five major parts of the
code: evolution of the turbulent flow, collision detection, velocity interpolation,
advancing particle position and the implementation of the periodic boundary
condition. The wall clock times using different number of processors and a given
number of time steps are collected to determine the scalability for each of the
tasks separately. The total measured time is the sum of computational and com-
munication time. Additional time spent for saving data is negligible compared to
either the computational or communication time. Maximal number of processors
used in the test is 128 (4 full nodes). Figure 1 shows the total time needed for
each task as a function of the number of processors.

The time spent for tasks related to the particle motion (collision detection,
velocity interpolation, advancing particle position and periodic boundary condi-
tion) is inversely proportional to the number of processors. For the flow evolution
the time also decreases but only for small number of processors (up to 32). For
larger number of processors (64 and 128), the computational time appears to sat-
urate, due to the increasing communication time associated with parallel FFT.

On the right panel of Fig. 1 we show the ratio of total computational time over
the total execution (computational plus communication) time as a function of the
number of processors. The computational time takes about half of the time for

Parallel Implementation of Particle Tracking and Collision 393

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

10
1

10
2

Number of processors (P)

Ti
m

e
(s

ec
on

ds
) p

er
 ti

m
es

te
p

Turbulent fluid flow

Collision detection

Velocity interpolation at particle location

Advancing particle position

Periodic boundary condition for particles

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of processors (P)

T
c
o
m

p
/T

to
ta

l

MPI 2M particles
MPI 5M particles

Fig. 1. Left panel: Scalability of the five major tasks in the DNS code in terms of the

total execution time. Right panel: The ratio of Tcomputation/Ttotal as a function of the

number of processors. The grid size is 5123.

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

Number of processors (P)

T
im

e
 (

s
e

c
o

n
d

s
)

p
e

r
ti
m

e
s
te

p
 i
n

 f
lo

w
 s

o
lv

e
r

5123 Total communication time
2563 Total communication time
1283 Total communication time
5123 Total computation time
2563 Total computation time
1283 Total computation time

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

10
1

10
2

Number of processors (P)

T
im

e
 (

s
e

c
o

n
d

s
)

p
e

r
ti
m

e
s
te

p
 f

o
r

p
a

rt
ic

le
 t

ra
c
k
in

g

5123 Total communication time, Np=2*106

2563 Total communication time, Np=8*105

1283 Total communication time, Np=3*105

5123 Total computation time, Np=2*106

2563 Total computation time, Np=8*105

1283 Total computation time, Np=3*105

Fig. 2. Scalability of computational and comunication time for the flow solver (left

panel) and the particle part (right panel), as a function of the number of processors

intermediate numbers of processors, but less than one third for larger numbers
of processors. This shows that it is very critical to minimize the communication
overhead in the MPI code.

In the second analysis, computational time and communication time for three
different grid sizes 1283, 2563 and 5123 are examined separately. Here the tasks
are only divided into two groups: the flow solver part and particle part. Separate
scaling performances are shown in Fig. 2. The computational time for both
parts decreases roughly linearly with the number of processors, in the log-log
plots. The dependence of the communication time on the number of processors

394 B. Rosa and L.-P. Wang

10
0

10
1

10
2

10
0

10
1

10
2

Number of processors (P)

S
pe

ed
up

 (
T

1/T
P
)

MPI, only particles (5*106)

MPI, only particles (2*106)

MPI, particles (5*106) + flow

MPI, particles (2*106) + flow
MPI, only flow

Open MP, particles (5*106) + flow

Open MP, particles (2*106) + flow

10
0

10
1

10
2

10
−0.6

10
−0.5

10
−0.4

10
−0.3

10
−0.2

10
−0.1

10
0

10
0.1

10
0.2

10
0.3

Number of processors (P)
E

ffi
ci

en
cy

 (
T

1/P
T

P
)

MPI 5M particles

MPI 2M particles

Open MP 5M particles

Open MP 2M particles

Fig. 3. Comparison of speedup (left panel) and computational efficiency (right panel)

of the DNS codes parallelized with two different libraries (MPI and OpenMP). Grid is

5123.

is more complex. For the flow evolution part, a reduction of communication
time is realized with an increase in the number of processors from 1 to 32. This
can be explained because amount of data being transferred between processes
decreases with increasing number of processors. For larger number of processors
more connections have to be established and the communication time in fact
increases eventually with the number of processes. For the particle part the
communication time is insensitive to the number of processors used.

In the third analysis, we compare the performance of two codes: our new MPI
code and an OpenMP code developed previously by Ayala et al. (4). Both codes
are functionally the same and yield identical results of collision statistics. Here
we compare the speedup, efficiency (Fig. 3), and the memory usage (Fig. 4) of
the codes, under an identical setting (the same initial flow field, the same number
of particles, the same initial particle location and the same particle size). The
speedup presented in Fig. 3 is determined by simulating 2 and 5 million particles
starting from the same particle location and the same flow velocity field. Results
obtained with OpenMP code show that, for the maximum allowed number of
processors (32 on a single node), the speedup cannot exceed 10. In contrast,
the MPI code can be run on more than one node and as such can be run on
any number of processes. Figure 3 shows that, for the MPI code, the highest
achievable speedup for 2 million particles occurs at 64 processors while for 5
million particles the highest speedup is for 128 processors. We can conclude that
the speedup depends on the number of particles tracked. For 20 million particles,
we expect that more than 128 processors can be used to achieve an efficiency
close to 100%. In the Open MP code, efficiency decreases monotonically with
the number of processes and it does not exceed 30%.

The small difference between two MPI curves in Fig. 4 shows that the majority
of memory is used for flow solver rather than for the particle part. The memory

Parallel Implementation of Particle Tracking and Collision 395

10
0

10
1

10
2

10
−1

10
0

10
1

10
2

Number of processors (P)

M
em

or
y

(G
B

)

MPI, Np=5*106

MPI, Np=2*106

OpenMP, Np=5*106

OpenMP, Np=2*106

5123

MPI, Np=106

MPI, Np=8*105

OpenMP, Np=106

OpenMP, Np=8*105

2563

MPI, Np=5*105

MPI, Np=3*105

OpenMP, Np=5*105

OpenMP, Np=3*105

1283

Fig. 4. Memory usage

a1=30 μm

Fig. 5. Comparison of dynamic and kinematic collision kernels for sedimenting droplets

in turbulent air computed in the MPI and OpenMP codes

usage for the particle part will not exceed 10 GB for 20 million particles. The
high increase of memory usage between 32 processors and 128 is due to the
allocation of additional buffers needed for communication. In the MPI code

396 B. Rosa and L.-P. Wang

the matrices with particle data was oversized by around 30 % in order to handle
the particles which are moving between processes. Since in the Open MP code
there is no need to allocate such oversized matrices and particle data size is
defined precisely, memory usage is about 10 GB and is significantly less than in
the MPI code.

Finally, we compare dynamic and kinematic collision kernels computed using
the two codes (MPI and OpenMP). Figure 5 shows that the two codes give the
same results and differences are within the statistical uncertainties of the data.

4 Conclusions

MPI implementation has been developed for a code designed to study turbulent
collision of particles in a turbulent flow. This is a challenging task since turbulent
flow and particle transport require different implementation strategies. Here we
discussed major issues and implementation details, along with considerations for
minimizing the communication overhead. A number of numerical tests are used
to show scalability, speedup, and overall efficiency, and times required for differ-
ent tasks are compared. The MPI code performs better than an earlier OpenMP
code, and can take full advantage of distributed memory hybrid computers. Our
next step is the MPI implementation for particle-particle aerodynamic interac-
tion which requires considerations of both short and long-range interactions.

Acknowledgements

This work was supported by the National Science Foundation (NSF) under
grants ATM-0527140 and NSF ATM-0730766. Computing resources are provided
by National Center for Atmospheric Research (NCAR CISL-35751010).

References

[1] Ayala, O., Rosa, B., Wang, L.P., Grabowski, W.W.: Effects of turbulence on the

geometric collision rate of sedimenting droplets. Part 1. Results from direct nu-

merical simulation. New Journal of Physics 10 (2008)

[2] Ayala, O., Rosa, B., Wang, L.P.: Effects of turbulence on the geometric collision

rate of sedimenting droplets. Part 2. Theory and parameterization. New Journal

of Physics 10 (2008)

[3] Collins, L.R., Keswani, A.: Reynolds number scaling of particle clustering in tur-

bulent aerosols. New Journal of Physics 6 (2004)

[4] Ayala, O., Grabowski, W.W., Wang, L.-P.: A hybrid approach for simulating tur-

bulent collisions of hydrodynamically-interacting particles. JCP, 51–73 (2007)

[5] Homann, H., Dreher, J., Grauer, R.: Impact of the floating-point precision and

interpolation scheme on the results of DNS of turbulence by pseudo-spectral codes.

Computer Physics Communications 177(7), 560–565 (2007)

[6] Wang, L.-P., Wexler, A.S., Yong, Z.: Statistical mechanical description and mod-

elling of turbulent collision of inertial particles. J. Fluid Mech., 117–153 (2000)

Parallel Implementation of Particle Tracking and Collision 397

[7] Wang, L.P., Maxey, M.R.: Settling velocity and concentration distribution of

heavy-particles in homogeneous isotropic turbulence. Journal of Fluid Mechan-

ics 256, 27–68 (1993)

[8] Dmitruk, P., Wang, L.P., Matthaeus, W.H., Zhang, R., Seckel, D.: Scalable parallel

FFT for spectral simulations on a Beowulf cluster. Parallel Computing 27(14),

1921–1936 (2001)

[9] Maxey, M.R., Riley, J.J.: Equation of motion for a small rigid sphere in a nonuni-

form flow. Physics of Fluids 26(4), 883–889 (1983)

[10] Yeung, P.K., Pope, S.B.: Lagrangian statistics from direct numerical simulations

of isotropic turbulence. Journal of Fluid Mechanics 207, 531–586 (1989)

[11] Balachandar, S., Maxey, M.R.: Methods for evaluating fluid velocities in spectral

simulations of turbulence. JCP, 96–125 (1989)

[12] Squires, K.D., Eaton, J.K.: Particle response and turbulence modification in

isotropic turbulence. Physics of Fluids a-Fluid Dynamics 2(7), 1191–1203 (1990)

[13] Rovelstad, A.L., Handler, R.A., Bernard, P.S.: The effect of interpolation errors

on the lagrangian analysis of simulated turbulent channel flow. Journal of Com-

putational Physics 110(1), 190–195 (1994)

[14] Rouson, D.W.I., Kassinos, S.C., Moulitsas, I., Sarris, I.E., Xu, X.: Dispersed-

phase structural anisotropy in homogeneous magnetohydrodynamic turbulence at

low magnetic Reynolds number. Physics of Fluids 20(2), 19 (2008)

[15] Damian, W.I., Rouson, J.K.E., Abrahamson, S.D.: A direct numerical simulation

of a particle-laden turbulent channel flow. No. TSD-101 (1997)

[16] Bec, J.: Multifractal concentrations of inertial particles in smooth random flows.

Journal of Fluid Mechanics 528, 255–277 (2005)

[17] Franklin, C.N., Vaillancourt, P.A., Yau, M.K., Bartello, P.: Collision rates of cloud

droplets in turbulent flow. Journal of the Atmospheric Sciences 62(7), 2451–2466

(2005)

[18] Franklin, C.N., Vaillancourt, P.A., Yau, M.K.: Statistics and parameterizations of

the effect of turbulence on the geometric collision kernel of cloud droplets. Journal

of the Atmospheric Sciences 64(3), 938–954 (2007)

[19] Lekien, F., Marsden, J.: Tricubic interpolation in three dimensions. International

Journal for Numerical Methods in Engineering 63(3), 455–471 (2005)

[20] Busse, A., Muller, W.C., Homann, H., Grauer, R.: Statistics of passive tracers in

three-dimensional magnetohydrodynamic turbulence. Physics of Plasmas 14(12)

(2007)

[21] Homann, H., Grauer, R., Busse, A., Mueller, W.: Lagrangian statistics of Navier-

Stokes and MHD turbulence. Journal of Plasma Physics 73, 821–830 (2007)

[22] Wang, L.-P., Franklin, C.N., Ayala, O., Grabowski, W.W.: Probability distribu-

tions of angle of approach and relative velocity for colliding droplets in a turbulent

flow. JAS, 881–900 (2006)

[23] Allen, M.P., Tildesley, D.J.: Computer simulation of liquids, p. 408. Oxford Uni-

versity Press, New York (1987)

A Distributed Multilevel Ant-Colony Approach

for Finite Element Mesh Decomposition

Katerina Taškova, Peter Korošec, and Jurij Šilc

Jožef Stefan Institute, Computer Systems Department

Jamova cesta 39, SI-1000 Ljubljana, Slovenia

{katerina.taskova,peter.korosec,jurij.silc}@ijs.si

Abstract. The k-way finite element mesh (FEM) decomposition prob-

lem is an NP-complete problem, which consists of finding a decompo-

sition of a FEM into k balanced submeshes such that the number of

cut edges is minimized. The multilevel ant-colony algorithm (MACA) is

quite new and promising hybrid approach for solving different type of

FEM-decomposition problems. The MACA is a swarm-based algorithm

and therefore inherently suitable for parallel processing on many levels.

Motivated by the good performance of the MACA and the possibility to

improve it’s performance (computational cost and/or solution quality),

in this paper we discuss the results of parallelizing the MACA on largest

scale (on colony level). Explicitly, we present the distributed MACA

(DMACA) approach, which is based on the idea of parallel independent

runs enhanced with cooperation in form of a solution exchange among

the concurrent searches. Experimental evaluation of the DMACA on a

larger set of benchmark FEM-decomposition problems shows that the

DMACA compared to the MACA can obtain solutions of equal quality

in less computational time.

1 Introduction

Finite element method is a well known numerical method that efficiently solves
complex system of partial differential equations. Based on the problem, gener-
ated mesh structure can have large number of elements, making them compu-
tationally expensive. Therefore a common approach involves decomposition of
a large-scale finite element mesh (FEM) into less complex and well balanced
submeshes that can be solved in a multiprocessor environment with minimal
possible inter-processor communication. Unfortunately, this makes the FEM-
decomposition problem a NP-hard combinatorial optimization problem which is
computationally expensive, as well.

A variety of metaheuristic methods are used for solving the FEM-decomposi-
tion problem [1,5,6,7]. Recently, based on the ant-colony optimization
empowered with the multilevel approach for faster convergence and problem
size reduction, the multilevel ant-colony algorithm (MACA) [8] was proposed
for solving FEM-decomposition problem.

The MACA is a swarm-based algorithm and therefore inherently suitable for
parallel processing on many levels. Motivated by the good performance of the

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 398–407, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Distributed Multilevel Ant-Colony Approach for FEM Decomposition 399

MACA in the previous work [8] and the possibility to improve it’s performance
(computational cost and/or solution quality), we discuss the results of paralleliz-
ing the MACA on largest scale (on colony level [10]), executing entire algorithm
runs concurrently on a cluster of workstations. Explicitly, we present and exper-
imentally evaluate the distributed MACA (DMACA), initially introduced in [12]
as the semi-independent DMACA.

We have to stress out that the purpose of this study was not to compare
the DMACA with state-of-the-art optimization methods used for FEM decom-
position, but to explore the possibility of improvement of the MACA method
exploiting the inherent property of parallelism given a distributed memory mul-
tiprocessor environment. On the other hand adequate experimental evaluation
and comparison of the MACA algorithm was performed in [8], where was shown
that the MACA is superior to the classical k-METIS and Chaco 2.0 methods,
and comparable to the MLSATS algorithm and to the JOSTLE Evolutionary
algorithm. (References for the methods can be find in [8].)

The rest of the paper is organized as follows. Section 2 describes in brief the
MACA algorithm and Section 3 introduces the DMACA algorithm for solving
the FEM-decomposition problem. The experimental setup along with the ob-
tained results are presented and discussed in Section 4. Conclusions and possible
directions for further work are given in Section 5.

2 Sequential Multilevel Ant-Colony Algorithm

The main idea of the ant-colony algorithm for k-way FEM decomposition is very
simple [9]. We have k colonies of ants that perform probabilistic moves on a grid
(represents the ants’ habitat) and compete for food (initially randomly placed
on the grid cells), which in this case is represented by the elements of the mesh.
Final outcome of ants activities is stored food in their nests, i.e., they decompose
the mesh into k submeshes.

1: structure[0] = Initialization()

2: for � = 0 to L− 1 do
3: structure[� + 1] = Coarsening(structure[�])
4: end for
5: for � = L downto 0 do
6: Solver(structure[�]) //basic ACO method

7: if � > 0 then
8: structure[�− 1] = Refinement(structure[�])
9: BucketInitialization()

10: end if
11: end for

Algorithm 1. MACA

The MACA algorithm is an ant-colony algorithm for k-way FEM decom-
position enhanced with a multilevel technique [15] to promote faster conver-
gence of the optimization metaheuristic and solution to a larger problems. It is

400 K. Taškova, P. Korošec, and J. Šilc

a recursive-like procedure that combines four basic methods: graph partition-
ing (solver, i.e., the basic ACO method), graph contraction (coarsening), graph
expansion (refinement) and vertex arrangement (bucket sorting). Algorithm 1
outlines top-level MACA pseudo code. Details on the particular methods can be
found in [8].

3 Distributed Multilevel Ant-Colony Algorithm

Initial study on parallelization of the MACA [12] examined two distributed ver-
sions of the MACA.

Master:

1: StartAllSlaves()
2: while not ending condition do
3: while all slaves not finished level do
4: ReceiveFromSlave(BestLevelSlaveMeshDecomposition)

5: AllBestLevelMeshDecomposition=Add(BestLevelSlaveMeshDecomposition)

6: end while
7: LevelBestMeshDecomposition=Calculate(AllBestLevelMeshDecomposition)

8: BroadcastToSlaves(LevelBestMeshDecomposition)

9: if last level finished then
10: BestMeshDecomposition=LevelBestMeshDecomposition

11: end if
12: end while
13: StopAllSlaves()

Slave:

1: ReceiveFromMaster(Parameters)

2: MeshStructure[0]=Initiliazation (Parameters)

3: for � = 0 to L− 1 do
4: MeshStructure[� + 1] = Coarsening(MeshStructure[�])
5: end for
6: for � = L downto 0 do
7: BestLevelMeshDecomposition=Solver(MeshStructure[�]) //basic ACO method

8: SendToMaster(BestLevelMeshDecomposition)

9: ReceiveFromMaster(BestLevelMeshDecomposition)

10: Update(MeshStructure[�],BestLevelMeshDecomposition)

11: if � > 0 then
12: MeshStructure[�− 1] = Refinement(MeshStructure[�])
13: BucketInitialization()

14: end if
15: end for

Algorithm 2. DMACA

The first one was based on the parallel interactive colony approach which,
by definition, implied master/slave implementation and synchronized commu-
nication. Disadvantage of this version was the synchronization/communication
overhead, since information exchange across the concurrent processors was ini-
tiated every time a piece of food had been taken or dropped on a new position.

A Distributed Multilevel Ant-Colony Approach for FEM Decomposition 401

Furthermore, the master kept and updated its own local grid matrix of temporal
food positions (played a role of a shared memory) in order to maintain normal
and consistent slaves activities.

Trying to avoid the communication and still exploit some level of parallelism,
the second version distributes the MACA on the idea of parallel independent
runs [11] enhanced with cooperation in form of a solution exchange among the
concurrent searches. In this paper we consider the second approach, referred to
as the DMACA.

The DMACA is basically approach that allows exchange of the best temporal
solution at the end of every level of the multilevel optimization process. This
exchange requires that the parallel executions of the MACA instances on the
available processors have to be synchronized once per level. Namely, the mas-
ter processor is responsible for synchronizing the work of all slave processor that
execute a copy of the DMACA, by managing the exchange information and com-
munication process, while the slave processors have to execute the instances of
the DMACA code, signal when finish the current level optimization and send
the best partition to the master. When all finish the current level, the master
determines the best solution and broadcasts it to the slaves. In order to pro-
ceed with next level optimization, slave processors have to first update local
memory structures (grid matrix) and afterwards perform partition expansion
(refinement). The main idea of the DMACA is outlined in Algorithm 2.

4 Experimental Evaluation

Proposed DMACA was applied on a set of benchmark FEM-decomposition prob-
lems and the results from experimental evaluation on 2-way and 4-way FEM
decomposition are presented and discussed in this section.

4.1 Performance Measures

The solution quality is evaluated with regard to the FEM decomposition quality
measures: the total number of edges connecting the submeshes (cut-size) and the
maximal difference in the size of the obtained submeshes (imbalance). Since the
imbalance of the final obtained solutions is kept in a predefined range of values,
we report the quality in terms of the cut-size.

Statistical significance test was performed to check the difference in the quality
of the obtained solutions by the MACA and the DMACA. We used pairwise
comparisons with the Wilcoxon signed-ranks test [16] and multiple comparisons
with the Bergmann-Hommel dynamic post-hoc procedure [3].

Reporting results from experiments with parallel algorithms is not a straight-
forward task [2]. Moreover, in the case of stochastic algorithms, as the DMACA
is, the repeatability of its outcome is questionable, making the performance eval-
uation procedure even more difficult. The standard way of reporting results with
the mean value and the corresponding variance of the best found solutions over
all performed executions (runs) is not always sufficient (the mean value could be

402 K. Taškova, P. Korošec, and J. Šilc

far away from the global optimal). Therefore, instead of maximizing the number
of function evaluations that guarantee a success (finding the global best solution,
fg), the aim is to find the number of runs that maximize the success rate (proba-
bility of hitting the global optimum). For a given tolerance tolf , the success rate
is calculated as the fraction of m runs that found solution in the range between
−∞ and fg + tolf , where tolf is problem dependent.

Finally, the effectiveness of the parallel algorithm is in our case given by the
speed-up measure

S(n) =
tS

tT(n)

and by the relative speed-up measure

Sr(n) =
tT(1)
tT(n)

.

Here, tS is the time to solve a problem with the sequential code (MACA), tT(1) is
time to solve a problem with the parallel code (DMACA) with one processor, and
tT(n) is time to solve the same problem with the parallel code on n processors.
According to the study [2], the speed-up results were calculated based on the
mean value of the time for the serial code, while the final result was presented
as harmonic mean of the speed-up values of all runs.

4.2 Setup

Based on the MACA sequential code, the DMACA is implemented in Borland Del-
phi, using TCP/IP protocol for the server/client communication, based on the
open source library Indy Sockets 10. All experiments were performed on a 8-node
cluster connected via a Giga-bit switch, where each node consists of two AMD
Opteron 1.8-GHz processors, 2GB of RAM, and Windows XP operating system.

The benchmark FEMs used in the experimental analysis were taken from
[4,13] (Table 1).

Table 1. Description of the benchmark FEMs

FEM Description Vertices Edges

grid1 Grid graph 252 476

grid2 Grid graph 3296 6432

U1000.05 Random geometric graph 1000 2394

U1000.10 Random geometric graph 1000 4696

U1000.20 Random geometric graph 1000 9339

crack 2D nodal graph 10240 30380

data 2851 15093

vibrobox Sparse matrix 12328 165250

wing nodal 3D nodal graph 10937 75488

bcsstk33 3D stiffness matrix 8738 291583

crack dual 2D nodal graph 20141 30043

big Numerical grid 15606 45878

A Distributed Multilevel Ant-Colony Approach for FEM Decomposition 403

The total number of ants per colony was 120. The number of ants per sub-
colony was determined from the number n of processors as 1

n of the total number
of ants. We set a fixed number (600) of iterations per colony per ant per level in
both, the MACA and the DMACA, except on the last level when the algorithms
were driven by the solution quality improvement and stopped when in the last
successive 600 iterations no improvement was obtained. Additionally, the search
of the optimal submesh was limited inside of 1.5% imbalance only on the last
level. The experiments were applied on all FEMs and executed 200 times in
order to guarantee an error of 0.05 on the probability of success with 95% level
of confidence [14].

4.3 Results

Results on cut-size performance for the MACA and the DMACA are presented
in Table 2 and Table 3, respectively.

Table 2. Cut-size obtained by the MACA for 2-way and 4-way FEM decomposition

and 1.5% imbalance. The best, mean and standard deviation values are calculated from

200 runs.

k = 2 k = 4

FEM best mean std best mean std

grid1 18 18.01 0.07 38 39.75 1.27

grid2 34 45.97 13.42 93 104.64 6.55

U1000.05 1 1.30 0.51 7 14.47 5.17

U1000.10 39 61.98 7.54 80 117.23 14.31

U1000.20 219 268.66 37.81 463 580.30 83.76

crack 184 204.28 19.36 374 433.86 45.32

data 212 247.37 7.08 406 489.98 42.25

vibrobox 11249 11963.54 254.88 20061 21086.26 375.40

wing nodal 1712 1753.23 26.93 3622 3817.25 141.18

bcsstk33 10883 11299.23 635.51 22741 24581.27 860.46

crack dual 80 90.80 8.37 171 205.49 22.27

big 139 254.28 41.40 341 444.42 45.88

Based on cut-size results, Tables 4 and 5 present pairwise comparisons with
the Wilcoxon signed-ranks test and multiple comparisons with the Bergmann-
Hommel dynamic post-hoc procedure, respectively. The test confirms that in
general there is not significant difference in the quality of generated solutions
with the MACA and the DMACA. For 1% significance level all hypotheses are
retained.

When compared the MACA and the DMACA with respect to the success
rate (Table 6) is evident that fair discrimination between them is highly associ-
ated with the determination of the tolf factor. In our case we set tolf = 0.01 and

404 K. Taškova, P. Korošec, and J. Šilc

T
a
b
le

3
.

C
u
t-

si
z
e

o
b
ta

in
e
d

b
y

th
e

D
M

A
C

A
fo

r
2
-w

a
y

a
n
d

4
-w

a
y

F
E

M
d
e
c
o
m

p
o
si
ti
o
n

a
n
d

1
.5

%
im

b
a
la

n
c
e
.

T
h
e

b
e
st

,
m

e
a
n

a
n
d

st
.

d
e
v
ia

ti
o
n

v
a
lu

e
s

a
re

c
a
lc

u
la

te
d

fr
o
m

2
0
0

ru
n
s.

n
=

1
n

=
2

n
=

4
n

=
8

n
=

1
6

k
F
E

M
b
e
st

m
e
a
n

st
d

b
e
st

m
e
a
n

st
d

b
e
st

m
e
a
n

st
d

b
e
st

m
e
a
n

st
d

b
e
st

m
e
a
n

st
d

g
ri
d
1

1
8

1
8
.0

0
0
.0

0
1
8

1
8
.0

0
0
.0

0
1
8

1
8
.0

1
0
.0

7
1
8

1
8
.0

9
0
.3

0
1
8

1
8
.9

1
1
.1

8

g
ri
d
2

3
4

4
2
.1

6
1
1
.7

4
3
4

3
7
.4

1
6
.2

4
3
5

3
8
.1

5
6
.4

2
3
5

5
1
.4

2
1
3
.4

5
3
7

6
5
.7

9
8
.3

3

U
1
0
0
0
.0

5
1

1
.2

1
0
.4

2
1

1
.0

4
0
.2

0
1

1
.0

0
0
.0

0
1

1
.0

0
0
.0

0
1

1
.0

0
0
.0

0

U
1
0
0
0
.1

0
3
9

6
1
.1

7
8
.1

0
3
9

5
7
.1

8
8
.0

5
3
9

5
9
.5

3
6
.9

6
3
9

5
8
.6

4
5
.4

1
4
0

5
7
.3

5
4
.3

4

U
1
0
0
0
.2

0
2
1
9

2
6
5
.8

7
4
2
.1

4
2
1
9

2
7
7
.0

9
5
3
.6

9
2
1
9

2
7
3
.6

3
5
2
.9

6
2
1
8

2
6
9
.2

6
5
3
.2

8
2
1
9

2
6
8
.5

9
5
0
.9

6

2
cr

ac
k

1
8
4

1
9
4
.0

4
1
6
.3

4
1
8
4

1
9
5
.9

2
1
1
.8

5
1
8
4

1
9
9
.2

2
1
2
.2

7
1
8
5

2
0
4
.3

2
1
3
.0

2
1
8
8

2
1
6
.3

7
1
2
.6

8

d
at

a
2
1
2

2
4
7
.4

3
7
.7

1
2
0
4

2
4
6
.4

2
1
4
.0

6
2
1
2

2
3
4
.5

1
2
1
.2

8
2
1
6

2
2
2
.4

8
9
.4

1
2
1
6

2
2
2
.7

6
6
.0

0

vi
b
ro

b
ox

1
1
3
8
2

1
1
9
0
0
.4

2
2
0
2
.2

7
1
1
2
5
8

1
1
8
5
8
.3

2
1
6
4
.7

5
1
1
6
8
4

1
1
9
6
7
.5

9
1
7
0
.1

9
1
1
8
3
4

1
2
2
1
4
.9

3
1
7
0
.0

6
1
2
0
1
1

1
2
4
9
6
.0

4
1
7
8
.5

9

w
in

g
n
o
d
al

1
7
1
4

1
7
5
6
.3

3
2
8
.4

3
1
7
1
4

1
7
7
3
.7

3
4
1
.7

9
1
7
1
9

1
7
8
5
.4

6
4
2
.7

5
1
7
3
4

1
7
8
7
.0

6
3
8
.3

3
1
7
5
4

1
7
9
5
.6

9
3
6
.4

1

b
cs

st
k
3
3

1
0
8
7
3

1
1
2
3
5
.2

4
6
7
4
.6

2
1
0
5
6
5

1
1
3
2
8
.9

5
7
5
0
.3

3
1
0
5
9
4

1
1
2
3
2
.4

7
7
9
1
.3

8
1
0
6
1
0

1
1
0
4
6
.4

0
5
6
2
.8

8
1
0
8
5
0

1
1
0
6
8
.3

3
3
7
2
.5

2

cr
ac

k
d
u
al

8
0

9
0
.0

4
8
.0

7
7
9

8
8
.9

3
4
.7

7
8
0

9
0
.7

6
5
.1

7
8
0

9
0
.8

8
4
.0

3
8
2

9
2
.0

7
7
.5

3

b
ig

1
3
9

2
5
7
.1

1
3
7
.1

1
1
4
0

2
4
1
.1

5
4
2
.0

9
1
4
0

2
4
1
.8

1
3
7
.3

5
1
4
3

2
4
0
.5

3
3
6
.5

0
1
4
4

2
4
7
.1

4
3
5
.9

9

g
ri
d
1

3
8

3
9
.4

7
1
.1

2
3
8

3
8
.3

3
0
.6

3
3
8

3
8
.0

9
0
.3

0
3
8

3
8
.0

5
0
.3

0
3
8

3
8
.1

2
0
.3

8

g
ri
d
2

9
2

1
0
4
.9

7
6
.5

9
9
2

1
0
4
.8

2
6
.1

8
9
2

1
0
3
.7

7
6
.7

3
9
2

1
0
4
.4

5
7
.7

3
9
3

1
0
7
.1

4
7
.8

1

U
1
0
0
0
.0

5
7

1
4
.3

7
5
.3

1
7

1
4
.4

7
4
.9

1
7

1
3
.4

9
3
.7

4
6

1
2
.2

3
2
.8

2
7

1
1
.6

5
2
.2

7

U
1
0
0
0
.1

0
9
1

1
1
5
.9

1
1
2
.2

6
8
8

1
1
2
.1

5
1
1
.7

1
8
7

1
1
1
.0

3
1
1
.8

7
8
7

1
1
1
.8

0
1
0
.9

6
8
4

1
1
1
.1

9
1
0
.9

9

U
1
0
0
0
.2

0
4
8
5

5
9
6
.8

3
9
7
.3

1
4
8
1

5
9
1
.9

7
8
0
.7

0
4
8
1

6
1
5
.5

4
7
8
.4

2
4
8
0

6
2
8
.0

9
8
5
.8

4
4
7
9

6
2
0
.0

9
9
2
.9

7

4
cr

ac
k

3
7
1

4
1
8
.7

4
3
7
.9

7
3
7
2

4
1
3
.5

2
3
2
.4

8
3
7
1

4
1
5
.1

9
2
8
.7

3
3
7
3

4
2
2
.4

4
3
2
.1

5
3
7
5

4
3
1
.3

1
3
5
.0

2

d
at

a
4
0
7

4
8
1
.6

1
3
7
.3

8
4
0
7

4
6
8
.5

8
3
6
.7

3
4
0
8

4
6
1
.5

7
3
3
.4

6
4
0
7

4
6
7
.5

7
3
2
.5

2
4
0
9

4
6
9
.7

3
3
1
.2

6

vi
b
ro

b
ox

2
0
0
5
3

2
0
9
5
3
.2

2
4
0
7
.3

5
1
9
9
4
2

2
0
9
1
9
.0

1
3
8
1
.2

8
1
9
9
3
8

2
0
9
9
8
.8

0
3
7
3
.4

4
1
9
9
8
8

2
1
2
0
8
.9

4
3
2
5
.1

0
2
0
5
9
3

2
1
3
8
3
.9

5
2
7
0
.4

9

w
in

g
n
o
d
al

3
6
4
7

3
7
7
4
.5

6
1
1
5
.4

9
3
6
7
2

3
7
4
5
.4

0
4
3
.0

6
3
6
6
6

3
7
4
8
.1

7
2
9
.4

8
3
6
9
3

3
7
5
8
.5

9
2
9
.8

2
3
7
0
7

3
7
6
8
.2

0
2
9
.1

7

b
cs

st
k
3
3

2
2
3
1
3

2
4
3
4
6
.8

8
6
9
7
.5

0
2
3
2
1
7

2
4
1
0
5
.1

8
4
7
0
.4

4
2
3
1
3
0

2
3
9
0
1
.7

7
4
6
4
.9

7
2
3
0
1
1

2
3
9
5
4
.2

0
5
3
7
.5

6
2
3
1
6
3

2
3
9
6
3
.1

4
5
5
3
.6

4

cr
ac

k
d
u
al

1
7
1

2
0
0
.0

6
1
9
.2

1
1
6
8

1
9
3
.5

5
1
7
.5

0
1
7
0

1
9
6
.1

5
1
4
.9

5
1
7
7

2
0
2
.1

3
1
5
.3

1
1
7
8

2
1
0
.3

8
1
9
.4

3

b
ig

3
4
7

4
4
3
.2

3
4
0
.5

6
3
4
2

4
5
0
.2

8
4
0
.9

1
3
4
4

4
4
2
.8

5
3
9
.3

8
3
4
7

4
4
1
.1

8
4
5
.1

3
3
4
7

4
4
4
.4

5
4
2
.0

5

A Distributed Multilevel Ant-Colony Approach for FEM Decomposition 405

Table 4. Pairwise comparisons with the Wilcoxon test

k = 2 k = 4

Hypothesis R+ R− p-value R+ R− p-value

MACA vs. DMACAn=1 16 62 0.077 12 66 0.034

MACA vs. DMACAn=2 28 50 0.424 10 68 0.042

MACA vs. DMACAn=4 19 59 0.240 9 69 0.016

MACA vs. DMACAn=8 39 39 1 20 58 0.151

MACA vs. DMACAn=16 34 44 0.733 30 48 0.519

Table 5. Multiple comparisons with the Bergmann-Hommel procedure

Adjusted p-value

Hypothesis k = 2 k = 4

DMACAn=1 vs. DMACAn=2 1 0.560

DMACAn=1 vs. DMACAn=4 1 0.030

DMACAn=1 vs. DMACAn=8 1 0.560

DMACAn=1 vs. DMACAn=16 1 1

DMACAn=2 vs. DMACAn=4 1 0.787

DMACAn=2 vs. DMACAn=8 1 1

DMACAn=2 vs. DMACAn=16 0.612 0.560

DMACAn=4 vs. DMACAn=8 1 0.787

DMACAn=4 vs. DMACAn=16 1 0.030

DMACAn=8 vs. DMACAn=16 1 0.560

global best solutions fg were adopted according to the best available solutions
for the considered FEM-decomposition problems. The results show that in case
on 2-way decomposition of grid1, the MACA has better success rate than the
DMACAn=16, slightly better success rate than the DMACAn=8 and equal good
success rate with the DMACAn=2,4. Similar in case on 2-way decomposition of
crack, the MACA has better success rate than the DMACAn=4,8,16 and in case
of 4-way decomposition on U1000.20, the MACA has better success rate than
the DMACAn=2,4,8,16. The DMACA has better convergence than the MACA, in
case of 2-way decomposition on U1000.05, 4-way decomposition on grid1, 4-way
decomposition on grid2 (n = 4, 8), 4-way decomposition on crack (n = 2, 4),
4-way decomposition on data (n = 2, 4, 8). In the rest of the cases it is not
possible to make a difference because, either the tolerance factor is too small
or the threshold for the error on the success rate is to high. Having in mind
that the quality of the DMACA is preserved, then any speed-up we can gain is
a benefit. Results on speedup are presented in Table 7. We observe speedup in
case when the DMACA executed on 4 or more processors. General observation
is that parallel performance of the system with respect to speed-up over the
serial MACA is poor compared to the theoretical expected speed-up. This is to
some level expected, since MACA was optimally designed for single processor
execution.

406 K. Taškova, P. Korošec, and J. Šilc

T
a
b
le

6
.

S
u
c
c
e
ss

ra
te

o
b
ta

in
e
d

fo
r

2
-w

a
y

a
n
d

4
-w

a
y

F
E

M
d
e
c
o
m

p
o
si
ti
o
n

a
n
d

1
.5

%
im

b
a
la

n
c
e
,

b
a
se

d
o
n

to
l f

=
0
.0

1
a
n
d

2
0
0

ru
n
s.

L
e
g
e
n
d

–
b
o
ld

-v
a
lu

e
:
D

M
A

C
A

b
e
tt

e
r

th
a
n

o
r

e
q
u
a
l
to

M
A

C
A

,
it
a
li
c
-v

a
lu

e
:
D

M
A

C
A

w
o
rs

e
th

a
n

M
A

C
A

,
n
o
rm

a
l-
v
a
lu

e
:
n
o

d
e
c
is
io

n

k
=

2
k

=
4

D
M

A
C

A
D

M
A

C
A

F
E

M
M

A
C

A
n

=
2

n
=

4
n

=
8

n
=

1
6

M
A

C
A

n
=

2
n

=
4

n
=

8
n

=
1
6

g
ri
d
1

0
.9

9
5

1
.0

0
0

0
.9

9
5

0
.9

1
5

0
.4

9
5

0
.1

4
5

0
.7

4
5

0
.9

1
5

0
.9

6
5

0
.9

0
5

g
ri
d
2

0
.0

1
0

0
.0

1
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

4
0

0
.0

6
0

0
.1

1
0

0
.1

0
5

0
.0

2
5

U
1
0
0
0
.0

5
0
.7

3
0

0
.9

6
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
5

0
.0

0
0

U
1
0
0
0
.1

0
0
.0

1
5

0
.0

3
5

0
.0

2
0

0
.0

1
0

0
.0

0
0

0
.0

3
5

0
.0

5
5

0
.0

8
0

0
.0

3
0

0
.0

6
5

U
1
0
0
0
.2

0
0
.0

3
5

0
.0

4
0

0
.0

7
0

0
.0

7
5

0
.0

5
5

0
.4

6
5

0
.3

9
5

0
.2

7
0

0
.2

5
0

0
.3

1
5

cr
ac

k
0
.2

2
5

0
.2

3
0

0
.0

9
0

0
.0

1
0

0
.0

0
0

0
.0

3
0

0
.1

0
0

0
.0

8
5

0
.0

4
5

0
.0

1
5

d
at

a
0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

4
5

0
.1

4
5

0
.1

9
0

0
.1

5
5

0
.0

9
0

vi
b
ro

b
ox

0
.0

2
5

0
.0

1
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
5

0
.0

4
5

0
.0

3
0

0
.0

0
5

0
.0

0
0

w
in

g
n
o
d
al

0
.0

4
0

0
.0

6
5

0
.0

2
0

0
.0

0
0

0
.0

0
0

0
.0

0
5

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

b
cs

st
k
3
3

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
5

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

cr
ac

k
d
u
al

0
.0

0
5

0
.0

3
5

0
.0

1
0

0
.0

0
5

0
.0

0
0

0
.0

0
0

0
.0

2
0

0
.0

0
5

0
.0

0
0

0
.0

0
0

b
ig

0
.0

4
5

0
.0

1
0

0
.0

1
0

0
.0

0
0

0
.0

0
0

0
.0

3
5

0
.0

1
5

0
.0

4
0

0
.0

6
0

0
.0

2
0

T
a
b
le

7
.
S
p
e
e
d
-u

p
o
b
ta

in
e
d

fo
r

2
-w

a
y

a
n
d

4
-w

a
y

F
E

M
d
e
c
o
m

p
o
si
ti
o
n

a
n
d

1
.5

%
im

b
a
la

n
c
e
,
b
a
se

d
o
n

2
0
0

ru
n
s

S
r
(n

)
S
(n

)

k
=

2
k

=
4

k
=

2
k

=
4

F
E

M
n

=
2

4
8

1
6

2
4

8
1
6

1
2

4
8

1
6

1
2

4
8

1
6

g
ri
d
1

0
.4

8
0
.9

2
2
.8

3
2
.9

0
0
.4

7
0
.9

0
3
.0

4
2
.7

1
1
.0

1
0
.4

9
0
.9

3
2
.8

7
2
.9

3
0
.9

8
0
.4

6
0
.8

8
2
.9

8
2
.6

6

g
ri
d
2

0
.7

8
1
.4

7
2
.4

1
3
.2

0
0
.7

3
1
.3

4
2
.6

1
3
.3

5
0
.8

9
0
.6

9
1
.3

0
2
.1

4
2
.8

3
0
.7

6
0
.5

6
1
.0

2
1
.9

8
2
.5

4

U
1
0
0
0
.0

5
1
.0

3
1
.4

2
2
.6

9
4
.7

1
0
.8

6
1
.2

4
1
.8

2
2
.0

3
0
.9

4
0
.9

7
1
.3

4
2
.5

3
4
.4

4
0
.8

5
0
.7

3
1
.0

5
1
.5

5
1
.7

3

U
1
0
0
0
.1

0
0
.7

3
1
.2

9
2
.2

7
2
.7

4
0
.5

7
1
.0

8
2
.9

6
3
.1

0
0
.9

5
0
.6

9
1
.2

3
2
.1

7
2
.6

1
0
.8

6
0
.4

9
0
.9

3
2
.5

4
2
.6

6

U
1
0
0
0
.2

0
0
.6

4
1
.2

3
2
.5

9
2
.7

4
0
.5

5
1
.0

9
3
.1

5
3
.0

1
0
.9

6
0
.6

2
1
.1

9
2
.5

0
2
.6

5
0
.9

2
0
.5

1
1
.0

0
2
.8

9
2
.7

6

cr
ac

k
1
.0

3
1
.6

4
2
.3

8
3
.5

0
1
.1

1
1
.8

0
2
.6

5
4
.2

4
0
.7

9
0
.8

1
1
.3

0
1
.8

8
2
.7

6
0
.8

1
0
.9

0
1
.4

6
2
.1

5
3
.4

4

d
at

a
0
.6

6
1
.2

2
1
.9

1
2
.5

3
0
.6

7
1
.2

6
2
.4

1
3
.2

5
1
.0

1
0
.6

6
1
.2

3
1
.9

2
2
.5

5
0
.7

6
0
.5

1
0
.9

6
1
.8

3
2
.4

7

vi
b
ro

b
ox

1
.3

0
1
.6

2
1
.8

6
2
.1

6
1
.2

3
1
.6

7
2
.0

6
2
.6

9
0
.8

1
1
.0

6
1
.3

2
1
.5

1
1
.7

6
0
.7

5
0
.9

3
1
.2

6
1
.5

5
2
.0

2

w
in

g
n
o
d
al

1
.0

8
1
.5

4
2
.1

4
2
.8

1
1
.2

2
1
.8

1
2
.6

5
3
.7

7
0
.8

4
0
.9

1
1
.2

9
1
.8

0
2
.3

7
0
.7

2
0
.8

7
1
.3

0
1
.9

0
2
.7

1

b
cs

st
k
3
3

1
.0

0
1
.1

9
1
.2

9
1
.3

9
0
.9

5
1
.1

6
1
.3

0
1
.4

2
0
.8

6
0
.8

6
1
.0

2
1
.1

1
1
.1

9
0
.8

9
0
.8

5
1
.0

4
1
.1

6
1
.2

7

cr
ac

k
d
u
al

0
.9

9
1
.7

9
2
.4

5
3
.2

5
1
.1

6
2
.1

3
3
.0

8
4
.5

2
0
.7

7
0
.7

7
1
.3

9
1
.9

0
2
.5

2
0
.7

6
0
.8

8
1
.6

2
2
.3

5
3
.4

5

b
ig

1
.0

3
1
.8

5
2
.3

6
3
.0

9
1
.1

2
1
.8

6
2
.7

7
4
.1

4
0
.7

9
0
.8

2
1
.4

7
1
.8

7
2
.4

6
0
.7

4
0
.8

3
1
.3

8
2
.0

5
3
.0

6

A Distributed Multilevel Ant-Colony Approach for FEM Decomposition 407

5 Conclusions

This paper presents the distributed multilevel ant colony algorithm (DMACA)
which is based on the idea of parallel independent runs enhanced with cooper-
ation in form of a solution exchange among the concurrent searches. The ex-
perimental evaluation shows that the DMACA can get the quality obtained by
sequential algorithm, while decreasing the overall computational cost.

Since distributed implementation suffers from increased communication and
local memory updates (as evident in [12]), logical and possible further step will
be to test a corresponded shared memory implementation.

References

1. Bahreininejad, A., Topping, B.H.V., Khan, A.I.: Finite Element Mesh Partitioning

Using Neural Networks. Adv. Eng. Softw. 27, 103–115 (1996)

2. Barr, R., Hickman, B.: Reporting Computational Experiments with Parallel Algo-

rithms: Issues, Measures, and Experts’ Opinion. ORSA J. Comput. 5, 2–18 (1993)

3. Bergmann, B., Hommel, G.: Improvements of General Multiple Test Procedures

for Redundant Systems of Hypotheses. In: Bauer, P., Hommel, G., Sonnemann,

E. (eds.) Multiple Hypothesenprfung–Multiple Hypotheses Testing, pp. 100–115.

Springer, Berlin (1988)

4. Graph Partitioning – Graph Collection. Visited (October 2009),

http://wwwcs.uni-paderborn.de/cs/ag-monien/RESEARCH/PART/graphs.html
5. Kad�luczka, P., Wala, K.: Tabu Search and Genetic Algorithms for the Generalized

Graph Partitioning Problem. Control Cybern. 24, 459–476 (1995)

6. Kaveh, A., Shojaee, S.: Optimal Domain Decomposition via p-median Methodology

Using ACO and Hybrid ACGA. Finite Anal. Elem. Des. 44, 505–512 (2008)

7. Kernighan, B.W., Lin, S.: An Efficient Heuristic Procedure for Partitioning Graph.

Bell Sys. Tech. J. 49, 291–307 (1970)

8. Korošec, P., Šilc, J., Robič, B.: Solving the Mesh-partitioning Problem with an

Ant-colony Algorithm. Parallel Comput. 30, 785–801 (2004)

9. Langham, A.E., Grant, P.W.: Using Competing Ant Colonies to Solve k-way Parti-

tioning Problems with Foraging and Raiding Strategies. In: Floreano, D., Mondada,

F. (eds.) ECAL 1999. LNCS, vol. 1674, pp. 621–625. Springer, Heidelberg (1999)

10. Randall, M., Lewis, A.: A Parallel Implementation of Ant Colony Optimization. J.

Parallel Distr. Com. 62, 1421–1432 (2002)

11. Stützle, T.: Parallelization Strategies for Ant Colony Optimization. In: Eiben, A.E.,

Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp.

722–741. Springer, Heidelberg (1998)

12. Taškova, K., Korošec, P., Šilc, J.: A Distributed Multilevel Ant Colonies Approach.

Informatica 32, 307–317 (2008)

13. The Graph Partitioning Archive (visited October 2009),

http://staffweb.cms.gre.ac.uk/~c.walshaw/partition/
14. Vasile, M., Minisci, E., Locatelli, M.: Testing Approaches for Global Optimization

of Space Trajectories. In: Filipič, B., Šilc, J. (eds.) Bioinspired Optimization Meth-

ods and their Applications, pp. 81–91. Jožef Stefan Institute, Ljubljana (2008)

15. Walshaw, C., Cross, M.: Mesh Partitioning: A Multilevel Balancing and Refinement

Algorithm. SIAM J. Sci. Comput. 22, 63–80 (2001)

16. Wilcoxon, F.: Individual Comparisons by Ranking Methods. Biometrics Bull. 1,

80–83 (1945)

http://wwwcs.uni-paderborn.de/cs/ag-monien/RESEARCH/PART/graphs.html
http://staffweb.cms.gre.ac.uk/~c.walshaw/partition/

Toward Definition of Systematic Criteria for the

Comparison of Verified Solvers for Initial Value
Problems

Ekaterina Auer1 and Andreas Rauh2

1 Faculty of Engineering, INKO, University of Duisburg-Essen,

D-47048 Duisburg, Germany

auer@inf.uni-due.de
2 Chair of Mechatronics, University of Rostock,

D-18059 Rostock, Germany

andreas.rauh@uni-rostock.de

Abstract. Solving initial value problems for ordinary differential equa-

tions is a common task in many disciplines. Over the last decades, several

different verified techniques have been developed to compute enclosures

of the exact result numerically. The obtained bounds are guaranteed to

contain the corresponding solution to the initial value problem. Ideally,

we want to calculate tight enclosures over sufficiently long time intervals

for systems with uncertainties in both the initial conditions and system

parameters. However, the existing solvers are not always equal in at-

taining this goal. On the one hand, the quality of the obtained results

depends strongly on the types of ordinary differential equations that de-

scribe a given dynamical system. On the other hand, a great influence of

the considered uncertainties can be observed. Our general aim is to pro-

vide assistance in choosing an appropriate verified initial value problem

solver with its most suitable ‘tuning parameters’ for the application at

hand. In this paper, we make first steps toward setting up a framework

for the fair comparison of the different approaches. We suggest criteria,

benchmark scenarios, and typical applications which can be used for the

quantification of the efficiency of verified initial value problem solvers.

1 Introduction

In many research projects and practical applications, verified solvers of initial
value problems (IVPs) for ordinary differential equations (ODEs) have been
employed efficiently to characterize the dynamic behavior of a given system with
bounded uncertainties in initial conditions or other parameters as described, for
instance, in [1]. However, these successful examples remain largely unnoticed by
a typical industry engineer. One of the reasons for this is the lack of information
on which tool to choose for a specific application. Especially, the choice of the
‘optimal’ settings for the solver, that is, conditions under which the best result
(in a given sense) can be obtained, might prove to be difficult for a person
unacquainted with the algorithm.

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 408–417, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Definition of Systematic Criteria for the Comparison of Solvers 409

This is not a problem characterizing verified algorithms in particular. For
floating point based tools, comparison criteria were being developed since the
1970s to allow users to choose the right program in dependence on their task.
In the field of IVP solvers, the works on DETEST [2],[3] stand out. They were
continued at the INdAM Bari by the project group Codes and Test Problems for
Differential Equations, which resulted in the appearance of TESTSET [4].

In these works, the authors develop a set of example problems and a set of
criteria to highlight the typical properties of the considered solvers in a uni-
fied manner. In DETEST and StiffDETEST, all systems are divided into stiff
and non-stiff. Further, the non-stiff problems are classified into single equa-
tions, small systems, moderate systems, orbit equations and higher order
equations, whereas the classes for stiff problems are linear with real/non-real
eigenvalues, nonlinear coupling as well as nonlinear with real/non-real eigen-
values. The groups in TESTSET are defined according to the type of the con-
sidered IVP: for ordinary differential and explicit/implicit differential-algebraic
equations.

The comparison criteria in DETEST are designed to describe the long-term
behavior of a given solver. They are based on the number of function evaluations
and the overhead. Moreover, the authors address the aspect of reliability by
counting the number of ‘deceptions’, that is, cases in which the true error exceeds
the tolerance given by the user. In TESTSET, the most important criteria are:
the minimum number of significant correct digits in the numerical solution at
the end of the integration interval, the overall number of steps performed by
the solver, the number of evaluations of the system function and its Jacobian
and the CPU time (on a reference computer). As far as we know, there is no
comparable systematics in the verified case although a few single aspects were
covered from the theoretical point of view [5].

In the non-verified case, there exists (web-based) software supporting both
the user during the choice of the appropriate solver and the developer during
the characterization of the product1. Aside from the web sites describing verified
IVP solvers or general overview sites2, there are no platforms addressing such
topics in the verified case at the moment. Our general (ideal) goal is to provide
such a framework which will feature not only the assessment and comparison
of different verified solvers but also supply users with means to determine the
degree of reliability of their own applications. In this paper, we consider the
methodological and theoretical aspects induced by this task.

The paper is structured as follows. In Section 2, we define the problems of
interest and introduce a classification scheme for them. In Section 3, we suggest
several general criteria for the comparison of verified IVP solvers and discuss
the importance of each criterion from the point of view of several application
scenarios. In Section 4, the intended presentation form for the comparison is
exemplified for two solvers. Finally, we describe the directions for future work in
the last section.

1 e.g. [6], http://num-lab.zib.de/
2 For example, http://www.cs.utep.edu/interval-comp/

http://num-lab.zib.de/
http://www.cs.utep.edu/interval-comp/

410 E. Auer and A. Rauh

2 Benchmark Problems

Development of a comprehensive set of benchmark problems is one of the funda-
mental tasks on the way to the development of the comparison framework. We
begin this section by defining the class of problems we are generally interested in
throughout this paper. Next, we specify a possible classification which might be
helpful in showing which solver qualifies best for a given application. Finally, we
provide a template for submission of a user problem to the overall set of problems.

2.1 General Problem Formulation

In this paper, we are interested in continuous IVPs for ODEs

ẋ (t) = f
(
x (t) , t

)
, x (t0) ∈ [x0] , (1)

where t0 = 0 without loss of generality, t ∈ [0; tf] ⊂ R for some tf > 0, f ∈
Cq−1(D) for some q > 1, D ⊆ Rn × R is open, and f : D &→ Rn. Exact initial
values of the variables x are assumed to be inside the (point) interval [x0] =
[x0 ; x0]. The function f can depend on bounded parameters p, uncertainties
in which are denoted by [p] =

[
p ; p

]
. In this notation, underlined variables

denote lower interval bounds (infima) of all components of the corresponding
vector, while overlined variables denote upper bounds (suprema). In the case of
autonomous ODEs, the notation (1) is abbreviated by ẋ (t) = f (x (t)).

The problem is discretized on a grid 0 < t1 < · · · < tf = tm with hk−1 =
tk − tk−1. Denote the solution with the initial condition x(tk−1) = xk−1 by
x(t; tk−1, xk−1) and the set of solutions {x(t; tk−1, xk−1) | xk−1 ∈ [xk−1]} by
x(t; tk−1, [xk−1]). The solution of (1) is the set of vectors [xk] for which the
relation x(tk; 0, [x0]) ⊆ [xk], k = 1, . . . ,m holds.

Some of the verified solvers do not discretize the problem. In this case, [xk]
contains the exact solution not only through the point tk but over the time
interval [tk−1; tk], k = 1, . . . ,m. However, we will always consider the former
definition for the purposes of uniformity.

A common practice while assessing non-verified solvers is to link the solution
and its precision because the former possesses only a limited accuracy. There are
also (several different) uses for such tolerances in the verified case [7]. However,
they are not as important as for usual numerical solvers because we guarantee
the exact solution to lie inside the computed bounds. In this sense, the obtained
enclosures are always accurate. What the tolerances do change, is, for example,
the break-down time tbd (cf. Criterion 6). That is why it is crucial to unify
the definition of tolerances for all considered solvers and to convert varying
definitions to the unified one for comparison.

2.2 Classification of Benchmark Problems

The proposed classification is visualized in Fig. 1. As already mentioned, we
consider only IVPs for ODEs in this paper3. Besides, we cover only the class of
3 Further practically important tasks would be boundary value problems, differential-

algebraic equations or partial differential equations.

Definition of Systematic Criteria for the Comparison of Solvers 411

non-stiff problems P.I from the two main classes P.I and P.II here, the latter re-
ferring to stiff and moderately stiff systems. This classification seems reasonable
because of [2],[4],[5],[6]. In both P.I and P.II, there are the following second-level
classes: L for linear and L for nonlinear systems. Further, we subdivide each of
the second-level classes into

A simple problems with analytical solutions (which help to visualize the validity
of the solver),

B moderately complicated systems (with respect to dimension, order, coupling
structure, types of nonlinearities) and

C complicated systems.

Even in the linear case, the third-level classes A-C will be helpful to distin-
guish between simple and more complicated systems. For example, verified in-
tegration of high-dimensional, strongly coupled systems with uncertainties is in
general much more demanding than the integration of strongly decoupled or
low-dimensional ones. For the class P.II, an intermediate subdivision between
L/L and A/B/C levels might become necessary. Important distinguishing char-
acteristics would be the stability of the system, real/non-real eigenvalues as well
as linear/nonlinear coupling.

In each of the third-level classes, we differentiate between problems with and
without uncertainties (classes U and U, respectively). Types of uncertainties
which can be considered in class U are, for example, not exactly known initial
values and parameter uncertainties.

Problems

IVPs for ODEs

non-stiff

linear

simple moderate complicated

uncertain

or

definite

IVPs for DAEs, etc.

stiff

uncertain

or

definite

uncertain

or

definite

nonlinear

simple moderate complicated

uncertain

or

definite

uncertain

or

definite

uncertain

or

definite

P

P.I

L

A B C

U

U

P.II

U

U

L

U

U

A B C

U

U

U

U

U

U

Fig. 1. Classification of benchmark problems for verified IVP solvers.

The problems inside each class are denoted by arabic numbers. In the follow-
ing, we provide an example problem for each of the classes mentioned above.
The notation P.I.L.A.U.1, for instance, means the first example in the class of
non-stiff, linear, simple problems without uncertainties (cf. Fig. 1).

412 E. Auer and A. Rauh

P.I.L.A.U.1 The problem A1 from [2]: ẋ = −x, x(0) = 1, x(t) = e−t.
P.I.L.A.U.1 ẋ = −a · x, x(0) = 1, x(t) = e−a·t, a ∈ [−2;−1].

P.I.L.B.U.1 B2 from [2]: ẋ = Ax, x(0) = [2 0 1]T, A =

⎛⎝−1 1 0
1 −2 1
0 1 −1

⎞⎠ .

P.I.L.B.U.1 As above but with x(0) ∈ [[2 − ε; 2 + ε] 0 1]T, ε = 0.5.
P.I.L.C.U.1 The problem C4 from [2]: ẋ = Ax, x(0) = [1 0 . . . 0]T, (A)51×51

is a triple diagonal matrix with −2 on the main diagonal and 1 on the two
parallel diagonals.

P.I.L.C.U.1 As above but with x(0) ∈ [1 0 . . . 0]T ± [ε 0 . . . 0]T, ε = 0.5.
P.I.L.A.U.1 The problem A2 from [2]: ẋ = −x3/2, x(0) = 1, x(t) = 1/

√
t + 1.

P.I.L.A.U.1 As above but with x(0) ∈ [x0;x0] = [0.5; 1.5], x(t) ∈ 1/
√

t + [x0]−2.

P.I.L.B.U.1 The problem B1 from [2]:
{

ẋ1 = 2(x1 − x1x2), x1(0) = 1
ẋ2 = −(x2 − x1x2), x2(0) = 3 .

P.I.L.B.U.1 As above but with x1(0) ∈ [1 − ε; 1 + ε], ε = 0.1.
P.I.L.C.U.1 C5 from [2] (the five body problem).
P.I.L.C.U.1 The problem C5 as above but with k2 ∈ [2.950; 2.951] (the solar

gravitational constant).

This classification can be revised after the first testing is done. Groups of prob-
lems for which solvers do not show different behavior should be merged. That is,
if CQ(mek, pri) = CQ(mek, prj) holds for the problem groups pri, prj , the solver
method mek for each k, and the criterion (cost) CQ for each Q, then pri can
be merged with prj . Vice versa, if the problems inside of a problem class induce
different overall behavior from each solver, this problem class can be split.

The examples above are, of course, only the representatives of each class that
should consist of many more of them.

2.3 Template for Problems’ Description

In Section 2.2, we classified some basic benchmark problems. However, the users
should be encouraged to submit their own problems to the overall framework.
For the description of new problems, a format similar to that of [4] can be chosen.
At first, the mathematical formulation of each system should be given, including
initial values, dimension, exact solution if known, and (uncertain) parameters.
An important issue is to specify the desired time horizon [0 ; tf] for which the
verified simulation has to be performed. Next, the origins of the problem should
be briefly described, which includes the sources of uncertainty in the problem.
It might be useful to write down if the problem is chaotic or not, asymptotically
stable, neutrally stable or unstable, and constructed or real-life. Preferably, a
physical motivation should be given for the chosen values of tf . Finally, statistics
about the numerical solution of the problem based on criteria from Section 3
should be gathered using a specialized program.

Definition of Systematic Criteria for the Comparison of Solvers 413

3 Criteria for the Comparison of Verified IVP Solvers

The development of the appropriate criteria set for comparing different verified
solvers is as important as the development of the set of benchmark problems, but
more demanding. It includes definition of quality measures that characterize the
solvers and highlight their advantages and drawbacks. In the verified case, we do
not have to worry about the reliability of the software, which is a priori proven
to produce the enclosure of the exact result. That is, xtrue(tk) lies inside [xk].
One of the primary concerns is to quantify the overestimation produced by the
solver, that is, the degree of pessimism the solver adds to the computed upper
and lower bounds on the true solution, diam([xk] − xtrue(tk)). In this section,
we discuss several such measures inside the set of possible comparison criteria.
Afterwards, we classify the proposed criteria with respect to their relevance to
a given application scenario using several examples.

3.1 Discussion of General Criteria

The following criteria seem essential while comparing or assessing verified IVP
solvers. They are not ordered according to importance or any other attribute.
Their sequence is arbitrary because each of them is more or less important
depending on the task at hand (cf. Section 3.2). Some of the information required
by these criteria should be provided by the developers of the verified software
themselves. That includes interfaces for obtaining, for example, the number of
function evaluations, etc. The rest of the statistics should be gathered by a
specialized program.

C1. Number of arithmetic operations at a time step
C2. Number of function/ Jacobian, etc./ inverse matrix evaluations
C3. Overhead
C4. Wall clock time
C5. User CPU time wrt. resulting interval widths
C6. Time to break-down tbd for each solver.
C7. Total number of steps and the number of accepted steps.

Below, we would like to clarify the exact meaning of those of the criteria which
are not self-explanatory.

C1: We are interested in the minimum and maximum number of arithmetic op-
erations as well as the typical number of operations for the suggested default
settings. Since switching of rounding modes, memory access, and pipelining can
significantly overshadow the influence of the number of arithmetic operations,
the criterion will not be used directly for the comparison of verified IVP solvers.
However, it seems important because it can help the user to choose appropriate
settings for a selected program. Ideally, the developers should provide informa-
tion on how the number of arithmetic operations will change if solver parameters
different from the default settings are set (e.g. increased order of the method,

414 E. Auer and A. Rauh

etc.). This can help the user to find a suitable compromise between the achievable
enclosure quality and the required effort.

C3: Analogously to [2], we define overhead as the overall user CPU time minus
the user CPU time for function evaluations.

C4: The wall clock time should be computed on selected reference environments
for a predefined time [0 ; th], where th should preferably be equal to tf . For
solvers using fixed step sizes, the considered time horizon is a multiple of the step
size. Analogously to C1, the influence of the most important tuning parameters
of a solver is of interest (the minimum and maximum time, typical time for the
suggested default settings). Again, this criterion will not be used directly for the
comparison, because it does not take into account the quality of the enclosures.
However, it seems important since it shows the user what computing times are
achievable and can be expected in principle.

C5: We consider the width wh =
n

max
i=1

wh,i of the resulting enclosure at th for a
given problem and all the solvers while gathering statistics for a problem. For a
given solver, we average wh for each problem class A–C without uncertainties.
The width wh is computed for different tolerances and different method orders
(if applicable) but otherwise default settings. For each width, the user CPU time
required to obtain the corresponding enclosure on a reference machine is plotted
analogously to work-precision diagrams (WPD) from [8].

The definition of quality measures has a direct influence on how fair or ‘lifelike’
the representation of all solvers in WPDs is. In our opinion, such measures should
characterize the resulting overestimation. For systems without uncertainties, a
width of the enclosure as described above can give an idea about that. A further
possible measure can be the upper bound on the global excess as described in [7].

For systems with uncertainties, the width wh of the guaranteed enclosure it-
self does not quantify its tightness with respect to the true solution set. One
possibility to measure (and detect) overestimation in a verified way is to evalu-
ate constraints derived independently, for example, on the basis of conservation
laws if the mathematical model in question describes a mechanical problem [9].
Alternatively, guaranteed bounds for each interval bound xtrue

i (t) and xtrue
i (t),

i = 1, . . . , n, can be computed in the following way4.
First, we compute a guaranteed enclosure [x (t)] := [x (t) ; x (t)] of the solution

to the IVP for the given initial conditions [x0]. After that, we determine guaranteed
enclosures

[
x<j> (t)

]
:=

[
x<j> (t) ; x<j> (t)

]
, j = 1, . . . , L, for L selected IVPs

with the initial conditions x<j> (0) ∈ [x0]. Alternatively, intervals
[
x<j> (0)

]
can

be considered which are determined by subdivision of [x0]. As shown in Fig. 2, left,
the exact lower bound xtrue

i (t) and the exact upper bound xtrue
i (t) of the true

solution set are then guaranteed to be contained in the intervals[
xtrue

i (t)
]

:= [x (t) ; ξi (t)] , where ξi (t) := min
j=1,...,L

{
x<j> (t)

}
,[

xtrue
i (t)

]
:= [ζi (t) ; x (t)] , where ζi (t) := max

j=1,...,L

{
x<j> (t)

}
.

4 To keep the exposition simple, we consider only uncertainties in initial conditions.

Definition of Systematic Criteria for the Comparison of Solvers 415

����������������������
����������������������
����������������������
����������������������
����������������������

����������������������
����������������������
����������������������
����������������������
����������������������

for x (0) ∈ [x (0)]
verified state enclosure verified state enclosure

for x<j+1> (0)

verified state enclosure
for x<j> (0)

t

xi (t)

x<j>
i (0)

x<j+1>
i (0)

ζi(t)

ξi(t)

����
����
����
����
����

����
����
����
����
����

verified state enclosure
for x (0) ∈ [x (0)]

xi

exact solution set

xi+1

xi,true xi,true

xi+1,true

xi+1,true

verified state enclosure for x<j>(0)
verified state enclosure for x<j+1>(0)

Fig. 2. Verified enclosures for upper and lower bounds of the true solution

For cooperative systems, it is sufficient to consider all vertices x0,i, x0,i of the ini-
tial state enclosure [x0] to obtain optimal bounds [10]. Otherwise, interior points
should be taken into account. Note that ξi (t) ≤ ζi (t) not necessarily holds. Fur-
thermore, an interval box which is guaranteed to be contained in the interior of
the true solution set cannot be derived from ξi (t) and ζi (t) (cf. Fig. 2, right).
Of course, this measure can be computed exactly, if the true solution is known
analytically (e.g. for the problem P.I.L.A.U.1).

C6: Here, we take down the point tbd, after which it is no longer possible to
obtain the verified result. The tightness of bounds at tbd is also of interest.

3.2 Applications versus Importance of Each Comparison Criterion

Depending on the kind of practical task at hand, all criteria can be classified
into primary and secondary. For simulation of dynamical systems with numerical
modeling software5, criterion C2 is of primary importance. If we want to compute
verified but rough a priori enclosures fast, the major criteria are C4 and C5,
whereas C6 is not significant. This type of enclosures might become necessary,
for example, in parameter estimation and for state observers with large sampling
periods. Sometimes, an offline verification of mathematical system models is
necessary, for instance, for sensitivity analysis of systems to their parameters,
verification of functionality and safety, or optimization of dynamical systems. In
this case, C6 is important whereas C4, C5 are of a lesser significance.

The future tests with respect to the benchmark problems will show which
criteria are crucial for linear/ nonlinear, stable/ unstable or chaotic systems. To
take into account the considerations above, we suggest to differentiate between
applications using numerical modeling software as well as online and offline ap-
plications. Each new submitted task should be integrated into one of the groups
as to allow for an easy choice of the most appropriate criteria. The users can be
asked to fill out a questionnaire about their application to find the corresponding
group automatically. If it does not fit any group, a new group should be created
by an expert who would also provide the right choice of criteria.

5 That is, software that does not produce symbolic expressions for the resulting IVPs.

416 E. Auer and A. Rauh

4 A Presentation Form for the Comparison

We propose to begin the presentation of the comparison results by a summary
similar to that from [2] (averaged performance of solvers on classes of problems,
cf. Table 1). As an example of a comparison, we analyzed the solvers ValEncIA-
IVP6 and VNODE-LP7 quasi-manually. So far, we automated the generation of
the files with IVPs for each solver from the same source and the subsequent simu-
lation using both of them (with SmartMoMaple [11]). The reference computer
was a four processor dual core (Intel Xeon CPU 2.00GHz) under Linux.

Table 1. Summary over nominal/uncertain problems for th = 1s and default settings

C4 (U) C5 (U) ... C4 (U) C5 (U) ...

time width time width

VNODE-LP 0.3653 0.3525 < 10−10 0.3580 0.3507 1.4043

ValEncIA-IVP 28.7393 28.6078 0.0261 24.5238 24.1897 6.4190

Next, the user might consult the detailed statistics about each benchmark
problem. They should include WPDs similar to that in Fig. 3, left. Besides,
details on each solver are necessary. Here again, analogously to [4], general infor-
mation about each solver should be provided, that is, the name, the author(s),
the date of the first release, the programming language, availability, web links,
etc. The theory should be briefly explained and implementation details given
including special options and features, if necessary. This should be followed by
showing how to solve simple examples with the given program. Detailed perfor-
mance statistics for the benchmark problems should include WPDs analogous
to Fig. 3, right. For our toy comparison, we chose to use step sizes 0.02, 0.002
and 0.0002 in VaEncIA-IVP and orders 15, 20 and 25 in VNODE-LP (as rec-
ommended by the authors).

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
−3

10
−2

10
−1

10
0

10
1

max. deviation to exact width at t
h
 = 1 (log.)

us
er

 C
P

U
 ti

m
e

in
 s

ec
on

ds
 (

lo
g.

)

 ValEncIA-IVP
VNODE-LP

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
−2

10
−1

10
0

10
1

10
2

10
3

max. width at t
h
 = 1 (log.)

us
er

 C
P

U
 ti

m
e

in
 s

ec
on

ds
 (

lo
g.

)

 P.I.L.A.U

P.I.L.B.U

P.I.L.C.U

P.I.L.A.U

P.I.L.B.U

P.I.L.C.U

Fig. 3. WPDs for the problem P.I.L.A.U.1, left, and ValEncIA-IVP, right

6 http://valencia-ivp.com/, basic version without exponential state enclosures.
7 http://www.cas.mcmaster.ca/~nedialk/vnodelp/

http://valencia-ivp.com/
http://www.cas.mcmaster.ca/~nedialk/vnodelp/

Definition of Systematic Criteria for the Comparison of Solvers 417

From the table and the diagrams, it is possible to induce that for the given
problems, VNODE-LP is faster and in most cases less affected by overestimation
than the basic version of ValEncIA-IVP.

5 Conclusion

In this paper, we presented a possible framework for comparison of verified
IVP solvers. It included a set of problems and a set of criteria that allowed
us to characterize the solvers empirically. This work provides a basis for the
corresponding software and a web-based platform planned to be implemented in
the future.

We would like to thank N.S. Nedialkov and M.A. Stadtherr for their valuable
suggestions. This work is funded by the DFG (German Research Foundation).

References

1. Rauh, A., Auer, E., Hofer, E.P., Luther, W. (eds.): Special Issue of the International

Journal of Applied Mathematics and Computer Science AMCS, Verified Methods:

Applications in Medicine and Engineering, vol. 19(3). University of Zielona Góra

Press (2009)

2. Hull, T.E., Enright, W.H., Fellen, B.M., Sedgwick, A.E.: Comparing Numerical

Methods for Ordinary Differential Equations. SIAM Journal on Numerical Analy-

sis 9(4), 603–637 (1972)

3. Enright, W.H., Hull, T.E., Lindberg, B.: Comparing Numerical Methods for Stiff

Systems of O.D.E:s. BIT Numerical Mathematics 15, 10–48 (1975)

4. Mazzia, F., Iavernaro, F.: Test Set for Initial Value Problem Solvers. Technical

Report 40, Department of Mathematics, University of Bari, Italy (2003),

http://pitagora.dm.uniba.it/~testset/

5. Neher, M., Jackson, K., Nedialkov, N.: On Taylor Model Based Integration of

ODEs. SIAM Journal on Numerical Analysis 45(1), 236–262 (2007)

6. Hall, G., Enright, W., Hull, T., Sedgwick, A.: DETEST: A Program For Compar-

ing Numerical Methods For Ordinary Differential Equations. Technical Report 60,

Dept. of Computer Science and Technology, Univ. of Toronto, Toronto (1973)

7. Nedialkov, N.: Computing Rigorous Bounds on the Solution of an Initial Value

Problem for an Ordinary Differential Equation. PhD thesis, Department of Com-

puter Science, University of Toronto, Toronto, Canada (1999)

8. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and

Differential-Algebraic Problems, 2nd revised edn. Springer Series in Comput. Math-

ematics, vol. 14. Springer, Heidelberg (1996)

9. Freihold, M., Hofer, E.P.: Derivation of Physically Motivated Constraints for Effi-

cient Interval Simulations Applied to the Analysis of Uncertain Dynamical Systems.

Special Issue of the Intl. Journal of Applied Mathematics and Computer Science

AMCS 19(3), 485–499 (2009)

10. Angeli, D., Sontag, E.: Monotone Control Systems. IEEE Transactions on Auto-

matic Control 48(10), 1684–1698 (2003)

11. Reinke, I.: Teilautomatische Aufbereitung von formalen Mehrkörpermodellen zur

numerischen Verifikation. Master’s thesis, University of Duisburg-Essen (2008)

http://pitagora.dm.uniba.it/~testset/

Fuzzy Solution of Interval Nonlinear Equations

Ludmila Dymova

Institute of Comp. & Information Sci., Czestochowa University of Technology,

Dabrowskiego 73, 42-200 Czestochowa, Poland

dymowa@icis.pcz.pl

Abstract. In [10,12], a new concept of interval and fuzzy linear equa-

tions solving based on the generalized procedure of interval extension

called “interval extended zero” method has been proposed. The central

for this approach is the treatment of “interval zero” as an interval cen-

tered around 0. It is shown that such proposition is not of heuristic

nature, but is a direct consequence of interval subtraction operation. It

is shown that the resulting solution of interval linear equation based on

the proposed method may be naturally treated as a fuzzy number. In the

current report, the method is extended to the case of nonlinear interval

equations. It is shown that opposite to the known methods, a new ap-

proach makes it possible to get both the positive and negative solutions

of quadratic interval equation.

Keywords: interval nonlinear equation, fuzzy solution, interval zero.

1 Introduction

The problem of interval or fuzzy nonlinear equations is now open since in the
literature, there are no universal methods proposed for solving such equations.
Although many different numerical methods were proposed for solving interval
and fuzzy equations including such complicated as Neural Net solutions [4,5] and
fuzzy extension of Newton’s method in [1,2], only particular solutions valid in
specific conditions were obtained. For example, in [1,3], only the positive root of
the quadratic fuzzy equation was obtained, although negative solution can exist
too. In our opinion, the root of such problems is the interpretation of the interval
and fuzzy extensions. It is known that the equations F (X)−B = 0, F (X) = B,
where B is an interval or fuzzy value, F (X) is some interval or fuzzy function,
are not equivalent ones. Moreover, the main problem is that the conventional
interval extension (and the fuzzy as well) of usual equation, which leads to the
interval or fuzzy equation such F (X) − B = 0 is not a correct procedure. Less
problems we meet when dealing with interval or fuzzy equation in form F (X) =
B, but in many cases its roots are inverted intervals, i.e., such that x < x. To
alleviate these problems in the case of linear interval and fuzzy equations, in
[10,12] we proposed a new “interval extended zero” method. It was presented
rather as useful heuristic [7], which make it possible to solve the system of
linear interval equations. In [11], we have used this heuristic for the solution of

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 418–426, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Fuzzy Solution of Interval Nonlinear Equations 419

the specific nonlinear financial problem in the fuzzy setting. Therefore, a more
general presentation of this method applied to the solution of nonlinear interval
equations seems to be reasonable. In the current report, we show that “interval
extended zero” method may be successfully used for solving nonlinear interval
equations. Using the same example as in [1,3], we get not only the positive fuzzy
solution, but the negative too. The rest of the paper is set out as follows. In
Section 2, to clarify the origins of the proposed approach, we recall briefly the
basics of “interval extended zero” method in the case of linear interval equations.
Section 3 is devoted to presentation of “interval extended zero” method in the
case of quadratic interval equation. Section 4 concludes with some remarks.

2 The Basics of “Right Hand Side” Problem and the
Solution of Interval Linear Equation

An important methodological problem of interval equations solution, is what we
name “interval equation’s right hand side problem” [10,12] . Suppose there exists
some basic, non-interval algebraic equation

f(x) = 0. (1)

Its natural interval extension can be obtained by replacement of its variables with
interval ones and all arithmetic operations with relevant interval operations. As
a result we get an interval equation [f]([x]) = 0. Observe that this equation
is senseless because its left part represents an interval value, whereas the right
part is the non-interval degenerated zero. Obviously, if [f](x) = [f, f] , then
equation [f]([x]) = 0 is true only when f = f . It is easy to show that the
equation [f]([x]) = 0, in general, can be verified only for an inverted interval [x],
i.e., when x < x. That is why, let us turn to the problem from another point of
view. Formally, when extending equation Eq. (1) one obtains not only interval
on its left hand side, but interval zero on the right hand side, and in general
case, this interval zero cannot be degenerated interval [0, 0]. Strictly speaking,
in the framework of conventional interval analysis, any interval extension of
Eq. (1) is not a correct operation since we obtain an interval mathematical
expression only in the left hand side of equation, whereas in its right hand side
the usual zero integer is not changed. In our opinion, the root of problem is
that conventional approach to interval extension does not involve an operation
we call “interval zero extension”. In other words, we propose an operation of
“interval zero extension” to obtain an “interval zero” in the right side of extended
Eq. (1). Since “interval zero” is not a degenerated interval, such approach makes
it possible to solve the problem of correct interval extension of Eq. (1). First of all,
what is “interval zero” ? In conventional interval analysis, it is usually assumed
that any interval containing zero may be considered as “interval zero”. This is
a satisfactory definition to suppress the division by zero in conventional interval
arithmetic, but for our purposes a more restrictive definition is needed. Let us
look to this problem from another point of view. Without loss of generality, we

420 L. Dymova

can define the degenerated (usual) zero as the result of operation a−a , where a
is any real valued number or variable. Hence, in a similar way we can define an
“interval zero” as the result of operation [a]−[a], where [a] is an interval. It is easy
to see that for any interval [a] we get [a, a]− [a, a] = [a− a, a− a]. Therefore, in
any case the result of interval subtraction [a]− [a], is an interval centered around
0. Thus, if we want to treat a result of subtraction of two identical intervals as
“interval zero”, then the most general definition of such “zero” will be “interval
zero is an interval symmetrical with respect to 0”. It must be emphasized that
introduced definition says nothing about the width of “interval zero”.

Let us consider the linear equation

ax− b = 0. (2)

When extending equation such Eq. (2) with previously unknown values of vari-
ables in the left hand side, only what we can say about right hand side is that it
should be interval symmetrical with respect to 0 with not defined width. Hence,
as the result of interval extension of Eq. (2) in general case we get

[a, a][x, x]− [b, b] = [−y, y]. (3)

In fact, the right hand side of Eq. (3) is some interval centered around zero,
which can be treated as interval extension of the right hand side of Eq. (2), in
other words, as an interval extension of 0. This is the reason for us to call our
approach “interval extended zero” method. Of course, the value of y in Eq. (3)
is not yet defined and this seems to be quite natural since the values of x, x are
also not defined. At first, consider the case of positive interval numbers [a] and
[b], i.e., a, a,b, b > 0. Then from Eq. (3) we get{

ax− b = −y, ax− b = y. (4)

Finally, from Eq. (4) we obtain only one linear equation with two unknown
variables x and x:

ax + ax− b− b = 0. (5)

If there are some restrictions on the values of unknown variables x and x, then
Eq. (5) with these restrictions may be considered as the so called Constraint
Satisfaction Problem (CSP) [6] and its interval solution may be obtained. The
first restriction on the variables x and x is a solution of Eq. (5) assuming x = x.
In this degenerated case we get the solution of Eq. (5) as xm = b+b

a+a . It is easy
to see that xm is an upper bound for x and a lower bound for x. The natural
low bound for x and upper bond for x may be defined using basic definitions
of interval arithmetic [8,9] as x = b

a , x = b
a . Thus, we have [x] = [b

a , xm] and

[x] = [xm, b
a]. These intervals can be narrowed taking into account Eq. (5),

which in the spirit of CSM is treated as the restriction. It is clear that the right
bound of x and left bound of x , i.e., xm, can not be changed as they present the

Fuzzy Solution of Interval Nonlinear Equations 421

degenerated (crisp) solution of (5). So let us focus of the left bound of x and
right bound of x. From (5) we have

x =
b + b− ax

a
, x ∈ [xm,

b

a
], x =

b + b− ax

a
, x ∈ [

b

a
, xm]. (6)

Obviously, when x is maximal, i.e., x = b
a , we get the minimal value of x,

i.e., xmin = b+b
a − ab

a2 . Similarly, from (6) we get the maximal value of x, i.e.,

xmax = b+b
a − ab

a2 . Since it is possible that xmin < b
a and xmax > b

a , we get the
following interval solution:

[x] =
[
xmax,

b + b

a + a

]
, [x] =

[
b + b

a + a
, xmin

]
, (7)

where xmax = max
(

b
a , b+b

a − ab
a2

)
,xmin = min

(
b
a , b+b

a − ab
a2

)
. It is important

that in the framework of CSP , the following relations between xmax and xmin

should be fulfilled in calculations: if xmax = b
a , then xmin = b+b

a − ab
a2 ; if xmin = b

a ,

then xmax = b+b
a − ab

a2 . Expressions (7) define all possible solutions of Eq. (3).
The values of xmin, xmax constitute an interval which produce the widest in-
terval zero after substitution of them in Eq. (4). In other words, the maximum
interval solution’s width wmax = xmin−xmax corresponds to the maximum value
of y: ymax = ab

a − b. Substitution of degenerated solution x = x = xm in Eq. (3)

produces the minimum value of y: ymin = a·b−a·b
a+a . It is clear that for any permis-

sible solution x′ > xmax we have corresponding x′ < xmin, for each x′′ > x′ the
inequalities x′′ < x′ and y′′ < y′ take place. Thus, the formal interval solution
(7) factually represents the continuous set of nested interval solutions of Eq.(3).
Hereinafter, we show that this set of interval solutions can be naturally inter-
preted as a fuzzy number. We can see that values of y characterize the closeness
of right hand side of Eq. (3) to degenerated zero and minimum value ymin is
defined exclusively by interval parameters [a] and [b]. Hence, the values of y may
be considered, in a certain sense, as a measure of interval solution’s uncertainty
caused by the initial uncertainty of Eq. (3). Therefore we introduce

α = 1− y − ymin

ymax − ymin
, (8)

which may be treated as a certainty degree of interval solution of Eq. (3). We can
see that α rises from 0 to 1 with decreasing of interval’s width from maximum
value to 0, i.e., with increasing of solution’s certainty. Consequently, the values
of α may be treated as labels of α-cuts representing some fuzzy solution of Eq.
(3). Finally, we obtain a solution in form of triangular fuzzy number

x̃ =
{

xmax,
b + b

a + a
, xmin

}
. (9)

422 L. Dymova

In a similar way, the fuzzy solutions of Eq. (3) were obtained for other placements
of intervals [a] and [b] (see [10,12]). Obviously, we can assume the support of
obtained fuzzy number to be a solution of analyzed problem. Such a solution
may be treated as the “pessimistic” one since it corresponds to the lowest α-
cuts of resulting fuzzy value. We use here the word “pessimistic” to emphasize
that this solution is charged with the largest imprecision as it is obtained in
the most uncertain conditions possible on the set of considered α -cuts. On the
other hand, it seems natural to utilize all additional information available in
the fuzzy solution. We can reduce the resulting fuzzy solution to the interval
solution using well known defuzzification procedures. In our case, defuzzified left
and right boundaries of the solution can be represented as

xdef =

∫ 1

0 x(α)dα∫ 1

0
dα

, xdef =

∫ 1

0 x(α)dα∫ 1

0
dα

(10)

For example, in the case of [a], [b] > 0, from (3) and (8) we get the expres-
sions for x(α) and x(α). Substituting them into (10) we obtain xdef = b

a −
ymax+ymin

2a , xdef = b
a + ymax+ymin

2a .

It is easy to prove that obtained interval [xdef , xdef] is included into support
interval of initial fuzzy solution, i.e., [xmax, xmin]. It is shown in [10,12] that
the proposed method provides the considerable reducing of resulting interval’s
length in comparison with that obtained using conventional interval arithmetic
rules.

3 Fuzzy Solution of Nonlinear Interval Equation

The general approach described in previous Section can be adapted for solving
nonlinear equations. The method we develop in this Section can be applied for
solving a wide range of nonlinear interval equations if some initial restrictions
on the solution’s bounds are known. Nevertheless to present our method more
transparent, we consider the well known example of quadratic fuzzy equation
[1,3] that factually can be treated as the test task:

ax2 + bx− c = 0, (11)

where a, b, c are intervals.
Although in [1,3], the parameters a, b and c were presented by trapezoidal

and triangular fuzzy numbers, here for our purpose it is enough to use only their
supports: a = [3, 5], b = [1, 3], c = [1, 3].

Whereas it is stated in [1,3] that Eq. (11) with these parameters have no
negative fuzzy root, we shall obtain such root. In the spirit of “interval extended
zero” method described in Section 2, we represent Eq. (11) in the following form:

[a, a][x, x]2 + [b, b][x, x]− [c, c] = [−y, y], (12)

Fuzzy Solution of Interval Nonlinear Equations 423

where y is undefined parameter (see Section 2). Using conventional interval arith-
metic rules from Eq.(12) we get

[ax + b, ax + b][x, x]− [c, c] = [−y, y]. (13)

Firstly consider the case of positive interval root of Eq.(13) ,i.e., x, x > 0. Then
from (13) we obtain

ax2 + bx− c = −y, ax2 + bx− c = y. (14)

The sum of Eqs.(14) results in

ax2 + bx− c + ax2 + bx− c = 0. (15)

As in the case of real valued a, b, c, the positive root of (11) is presented by the
expression x = −b+

√
b2+4ac
2a , the “natural restrictions” on the positive interval

solution of (11) can be represented as

xmin =
−b +

√
b2 + 4ac

2a
, xmax =

−b +
√

b
2

+ 4ac

2a
. (16)

Similar to the case of linear interval equation (see Section 2) we consider the
real valued (degenerated) solution of Eq.(15), xm, as the natural top bound for
positive x, i.e., x ≤ xm and bottom bound for positive x, i.e., xm ≤ x. For the
case of x = x = xm from (15) we get

xm =
−(b + b) +

√
(b + b)2 + 4(a + a)(c + c)

2(a + a)
. (17)

Eq.(15) with described above restrictions xmin ≤ x ≤ xm, xm ≤ x ≤ xmax is
a typical Constraint Satisfaction Problem [6] and its interval solution can be
obtained. From Eq.(15) we get the expressions

x = f(x) = −b+
√

b2+4a(c+c−ax2−bx)

2a , x = f(x) =
−b+

√
b
2
+4a(c+c−ax2−bx)

2a .

Generally, the interval solution of the above constraint satisfaction problem can
be represented as follows:

[x] = [xmin, xm] ∩ [x∗
1, x

∗
2], [x] = [xm, xmax] ∩ [x∗

1, x
∗
2], (18)

where x∗
1 = min f(x), x∗

2 = max f(x) (xm ≤ x ≤ xmax); x∗
1 = min f(x), x∗

2 =
max f(x) (xmin ≤ x ≤ xm).

It is easy to see that in our case

x∗
1 = −b+

√
b2+4a(c+c−ax2

max−bxmax)

2a , x∗
2 = −b+

√
b2+4a(c+c−ax2

m−bxm)

2a ,

x∗
1 =

−b+

√
b
2
+4a(c+c−ax2

m−bxm)

2a , x∗
2 =

−b+

√
b
2
+4a(c+c−ax2

min−bxmin)

2a .

424 L. Dymova

It is clear that Exp. (18) leads to the interval solution

[x] = [xmin, xmax], [x] = [xmin, xmax], (19)

where xmin = max(xmin, x∗
1), xmax = min(xm, x∗

2), xmin = max(xm, x∗
1), xmax =

min(xmax, x
∗
2).

In the considered numerical example (a = [3, 5], b = [1, 3], c = [1, 3]), we have
obtained xmax = xmin = xm. As in the linear case (see Section 2), substituting
the widest possible interval solution [xmin, xmax] into Eq. (13) we get the maximal
value of y, i.e. ymax, and substituting in this equation the shortest possible
solution [xmax, xmin]= [xm, xm] we obtain ymin. As in the linear case, the formal
interval solution (19) factually represents the continuous set of nested interval
solutions of Eq.(13) and we can use the Exp.(8) to calculate the values of y
on the α-cuts. For α rising from 0 to 1 using (8) we get the value of y and
substituting them into (14) we obtain the set of interval solutions [x, x]α on
the corresponding α-cuts. As the result, the positive fuzzy solution presented in
Fig.1 has been obtained.

Using the proposed method, the negative root (x, x < 0) of fuzzy Eq.(13) can
be obtained as well. For this case we get the following set of expressions:

ax2 + bx− c = −y, ax2 + bx− c = y. (20)

ax2 + bx− c + ax2 + bx− c = 0. (21)

xm =
−(b + b)−

√
(b + b)2 + 4(a + a)(c + c)

2(a + a)
, (22)

xmin =
−b−

√
b
2

+ 4ac

2a
, xmax =

−b−
√

b2 + 4ac

2a
. (23)

x = f(x) =
−b−

√
b
2

+ 4a(c + c− ax2 − bx)
2a

,

x = f(x) =
−b−

√
b2 + 4a(c + c− ax2 − bx)

2a
(24)

[x] = [xmin, xm] ∩ [x∗
1, x

∗
2], [x] = [xm, xmax] ∩ [x∗

1, x
∗
2], (25)

where x∗
1 = min f(x), x∗

2 = max f(x) (xm ≤ x ≤ xmax); x∗
1 = min f(x), x∗

2 =
max f(x) (xmin ≤ x ≤ xm).

The numerical algorithm we have used to obtain the negative root is similar
to that we have presented above for the positive root. The result is presented in
Fig.1.

Fuzzy Solution of Interval Nonlinear Equations 425

Fig. 1. The fuzzy roots of quadratic interval equation: 1,3-fuzzy solution obtained with

use of “interval extended zero” method, 2-interval solution from [1,3]

It is seen that our positive fuzzy solution in the considered example is wider
than the interval solution obtained in [1,3]. Nevertheless, it does not mean that
the results from [1,3] are more “true” since the methods proposed in [1,3] ex-
cept the obtaining of negative roots. Besides, our results may be substantially
shortened using the reduction of fuzzy solution to an interval one with a help of
defuzzification procedure (10).

Summarizing we can say that the proposed method allows us to get posi-
tive and negative fuzzy solutions of interval quadratic equations, whereas known
approaches do not provide negative solutions. In [11], we have shown that our
method can be successfully used for solving more complicated nonlinear prob-
lems, but in [11], the method is performed rather as a heuristic approach.

4 Conclusion

The aim of the paper is to present an extension of the so called “interval extended
zero“ method proposed in [10,12], to the case of nonlinear interval equations. The
key idea of this method is the treatment of “interval zero” as an interval sym-
metrical with respect to 0. It is shown that such approach is a direct consequence
of interval subtraction operation. It is shown that the method provides a fuzzy
solution of nonlinear interval equations. It is important that opposite to the
known approaches, the method makes it possible to get both the positive and
negative fuzzy solutions of interval quadratic equation.

References

1. Abbasbandy, S., Asady, B.: Newton’s method for solving fuzzy nonlinear equations.

Applied Mathematics and Computation 159, 349–356 (2004)

2. Abbasbandy, S.: Extended Newton’s method for a system of nonlinear equations

by modified Adomian decomposition method. Applied Mathematics and Compu-

tation 170, 648–656 (2005)

426 L. Dymova

3. Buckley, J.J., Qu, Y.: Solving linear and quadratic fuzzy equations. Fuzzy Sets and

Systems 38, 43–59 (1990)

4. Buckley, J.J., Eslami, E.: Neural net solutions to fuzzy problems: The quadratic

equation. Fuzzy Sets and Systems 86, 289–298 (1997)

5. Buckley, J.J., Eslami, E., Hayashi, Y.: Solving fuzzy equations using neural nets.

Fuzzy Sets and Systems 86, 271–278 (1997)

6. Cleary, J.C.: Logical Arithmetic. Future Computing Systems 2, 125–149 (1987)

7. Dymova, L., Gonera, M., Sevastianov, P., Wyrzykowski, R.: New method for inter-

val extension of Leontiefs input-output model with use of parallel programming.

In: Proc. Int. Conf. on Fuzzy Sets and Soft Computing in Economics and Finance,

St. Petersburg, pp. 549–556 (2004)

8. Jaulin, L., Kieffir, M., Didrit, O., Walter, E.: Applied Interval Analysis. Springer,

London (2001)

9. Moore, R.E.: Interval analysis. Prentice-Hall, Englewood Cliffs (1966)

10. Sevastjanov, P., Dymova, L.: Fuzzy solution of interval linear equations. In: Proc.

of 7th Int. Conf. Paralel Processing and Applied Mathematics, Gdansk, pp. 1392–

1399 (2007)

11. Sewastjanow, P., Dymowa, L.: On the Fuzzy Internal Rate of Return. In: Kahra-

man, C. (ed.) Fuzzy Engineering Economics with Applications, pp. 105–128.

Springer, Heidelberg (2008)

12. Sevastjanov, P., Dymova, L.: A new method for solving interval and fuzzy equa-

tions: linear case. Information Sciences 17, 925–937 (2009)

Solving Systems of Interval Linear Equations

with Use of Modified Interval Division
Procedure

Ludmila Dymova, Mariusz Pilarek, and Roman Wyrzykowski

Institute of Comp.& Information Sci., Czestochowa University of Technology,

Dabrowskiego 73, 42-200 Czestochowa, Poland

dymowa@icis.pcz.pl

Abstract. A new approach to interval division based on the concept of

“interval extended zero” method [10,11] is proposed. This modified inter-

val devision is used for solving the systems of interval linear equations.

The seven known examples are used as an illustration of the method’s

efficacy. It is shown that a new method provides results close to the

so-called maximal inner solution. The method not only allows us to de-

crease the excess width effect, but makes it possible to avoid the inverted

interval solutions too.

Keywords: system of interval linear equations, interval zero method,

modified interval devision.

1 Introduction

The system of linear interval equations can be presented as follows

Ax = b, (1)

where A is an interval matrix, b is an interval vector and x is an interval vec-
tor solution. Generally, such a system has no exact solutions, since usually it is
not possible to find such interval x for which Ax is exactly equal to the inter-
val b. Nevertheless, the different particular solutions of Eqs.(1)were proposed in
the literature. Now the dominant approaches to the solution of linear interval
and fuzzy systems are based on the treating of Eqs. (1) as a set of real val-
ued equations whose parameters belong to the corresponding intervals or fuzzy
intervals A and b [3]. In this framework, the important are the concepts of the
united solution set (USS), its subsets called the tolerable solution set (TSS) and
the controllable solution set [3]. The undesirable feature of known approaches to
the solution of Eqs. (1) is the so-called excess width effect. Therefore, recently
the considerable efforts were made to reduce it with use of various versions of the
stationary single-step iteration method proposed by V. Zyuzin [13]. Kupriyanova
[4] proved the convergence of this iterative process to the so-called maximal inner
solution of problem (1) under special (implicit) restrictions on the input data A,

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 427–435, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

428 L. Dymova, M. Pilarek, and R. Wyrzykowski

b and on the initial approximation. Markov [6,7] formulated these restrictions
explicitly in context of Jacobi type iterative method for the solution of Eqs. (1).
It is important that these iterative methods provide the so-called maximal inner
solutions, i.e., approximate solutions with minimal excess width effect. Another
approach aspiring to reduce the excess width effect in the solution of Eqs. (1)
is based on the so-called “interval extended zero” method [10]. In [11], we have
used this approach to solve the interval extended Leontief’s Input -Output prob-
lem [5] without drastic increase of the resulting intervals. It is worthy to note
that this problem is characterized by the specific form of matrix A. So the ob-
tained good results can not to be considered as a solid evidence of the method’s
efficacy. In the current report, we show that “interval extended zero” method
can be naturally treated as the modified interval division and use this division
for building effective algorithms for solving linear interval systems. To illustrate
a new method, we present the results obtained for known examples repeatedly
used in the literature as the tests for numerical methods in the interval setting.
Comparing our results with those obtained using Markov’s method [6,7] and
usual interval Gauss elimination procedure we show that the proposed method
not only allows us to decrease the excess width effect, but makes it possible to
avoid inverted interval solutions too. The rest of the paper is set out as follows.
In Section 2, we recall the foundations of “interval extended zero” method and
present its interpretation as the modified interval division. Section 3 presents
the application of modified interval division to the solution of interval problem
(1) and illustrative examples. Section 4 concludes with some remarks.

2 “Interval Extended Zero” Method and Its
Interpretation as Modified Interval Division

Let us consider the simplest equation

ax − b − 0, (2)

where a,b are real values. Its conventional interval extension leads to the interval
equation

[a][x] − [b] = 0, (3)

which seems to be senseless because its left part represents an interval value,
whereas the right part is the non-interval degenerated zero. It is easy to show
that Eq.(3) can be verified only for an inverted interval [x], i.e., when x < x. That
is why, let us turn to the problem from another point of view. Formally, when
extending Eq. (2) one obtains not only interval on its left hand side, but interval
zero on the right hand side. Generally, this interval zero cannot be degenerated
interval [0, 0]. Therefore, the concepts of “interval zero extension” and “inter-
val zero” has been proposed in [10]. The operation of “interval zero extension”
provides an “interval zero” in the right side of extended Eq. (2). Since “interval
zero” is not a degenerated interval, such approach makes it possible to solve the
problem of correct interval extension of Eq. (2). The concept of “interval zero”

Solving Systems of Interval Linear Equations 429

is based on the following reasoning [10,11]. In conventional interval analysis, it is
usually assumed that any interval containing zero may be considered as “interval
zero”. Let us look to this problem from another point of view. Without loss of
generality, we can define the degenerated (usual) zero as the result of operation
a−a , where a is any real valued number or variable. Hence, in a similar way we
can define an “interval zero” as the result of operation [a]− [a], where [a] is an in-
terval. It is easy to see that for any interval [a] we get [a, a]− [a, a] = [a−a, a−a].
Therefore, in any case the result of interval subtraction [a] − [a], is an interval
centered around 0. Thus, if we want to treat a result of subtraction of two iden-
tical intervals as “interval zero”, then the most general definition of such “zero”
will be “interval zero is an interval symmetrical with respect to 0”. It must be
emphasized that introduced definition says nothing about the width of “interval
zero”.

Thus, when extending Eq. (2) with previously unknown values of variables
in the left hand side, only what we can say about the right hand side is that
it should be an interval symmetrical with respect to 0 with not defined width.
Hence, as the result of interval extension of Eq. (2) in general case we get

[a, a][x, x] − [b, b] = [−y, y]. (4)

In fact, the right hand side of Eq. (4) is some interval centered around zero,
which can be treated as interval extension of the right hand side of Eq. (2),i.e.,
as an interval extension of 0. The value of y in Eq. (4) is not yet defined since
the values of x, x are also not defined. As there are three unknowns (x,x and
y) in Eq. (4), it has no real valued solution. But, if there are some constraints
on the values of unknown variables x and x, then Eq. (4) with these constraints
may be considered as the so-called Constraint Satisfaction Problem (CSP) [1]
and its interval solution may be obtained [10,11].

Since Eq. (4) is the interval extension of Eq. (2) which can be presented in
algebraically equivalent form x = b

a , this solution can be considered also as the

result of modified interval devision [x] mod =
(

[b]
[a]

)
mod

. Such a treatment of

the solution of Eq. (4) appears to be very efficient in the solution of interval
linear systems (see Section 3). The modified interval devision can be treated as
an alternative to the conventional interval devision: x = b

a , x = b
a .

At first, let us obtain the solution of Eq. (4) or [x] mod in the case of positive
interval numbers [a] and [b], i.e., a, a,b, b > 0. In this case, from Eq. (4) we get

ax − b = −y, ax − b = y. (5)

From Eq. (5) we obtain only one linear equation with two unknown variables x
and x:

ax + ax − b − b = 0. (6)

If there are some constraints on the values of unknown variables x and x, then
Eq. (6) with these constraints may be considered as the so-called Constraint
Satisfaction Problem (CSP) [1] and its interval solution may be obtained. The

430 L. Dymova, M. Pilarek, and R. Wyrzykowski

first constraint on the variables x and x is a solution of Eq. (6) assuming x = x. In
this degenerated case we get the solution of Eq. (6) as xm = b+b

a+a . It is seen that
xm is the upper bound for x and the lower bound for x. The natural low bound
for x and upper bond for x may be defined using basic definitions of interval
arithmetic [8] as x = b

a , x = b
a . Thus, we have [x] = [b

a , xm] and [x] = [xm, b
a].

These intervals can be narrowed taking into account Eq. (6), which in the spirit
of CSM is treated as a constraint. From (6) we get

x =
b + b − ax

a
, x ∈ [xm,

b

a
], x =

b + b − ax

a
, x ∈ [

b

a
, xm]. (7)

Obviously, when x is maximal, i.e., x = b
a , we get the minimal value of x,

i.e., xmin = b+b
a − ab

a2 . Similarly, from (7) we get the maximal value of x, i.e.,

xmax = b+b
a − ab

a2 . Since it is possible that xmin < b
a and xmax > b

a , we get the
following interval solution:

[x] =
[
xmax,

b + b

a + a

]
, [x] =

[
b + b

a + a
, xmin

]
, (8)

where xmax = max
(

b
a , b+b

a − ab
a2

)
,xmin = min

(
b
a , b+b

a − ab
a2

)
.

Expressions (8) define all possible solutions of Eq. (4). The values of xmin,
xmax constitute the interval which produces the widest interval zero after substi-
tution of them in Eq. (4). In other words, the maximum interval solution’s width
wmax = xmin − xmax corresponds to the maximum value of y: ymax = ab

a − b.

Substitution of degenerated solution x = x = xm in Eq. (4) produces the min-
imum value of y: ymin = a·b−a·b

a+a . It is clear that for any permissible solution
x′ > xmax we have corresponding x′ < xmin, for each x′′ > x′ the inequalities
x′′ < x′ and y′′ < y′ take place. Thus, the formal interval solution (8) factually
represents the continuous set of nested interval solutions of Eq.(4). It is shown
in [10] that this set of interval solutions can be naturally interpreted as a fuzzy
number. We can see that values of y characterize the closeness of right hand side
of Eq. (4) to degenerated zero and minimum value ymin is defined exclusively
by interval parameters [a] and [b]. Hence, the values of y may be considered,
in a certain sense, as a measure of interval solution’s uncertainty caused by the
initial uncertainty of Eq. (4). Therefore we introduce

α = 1 − y − ymin

ymax − ymin
, (9)

which may be treated as a certainty degree of interval solution of Eq. (4). We can
see that α rises from 0 to 1 with decreasing of interval’s width from maximum
value to 0, i.e., with increasing of solution’s certainty. Consequently, the values
of α may be treated as labels of α-cuts representing some fuzzy solution of Eq.
(4). Finally, the solution is obtained in form of triangular fuzzy number

x̃ =
{

xmax,
b + b

a + a
, xmin

}
. (10)

Solving Systems of Interval Linear Equations 431

In a similar way, the fuzzy solutions of Eq. (4) were obtained for other placements
of intervals [a] and [b] ([10,11]).

In the case of [a] < 0, [b] > 0, i.e., a, a < 0 , b, b > 0 we get ax−b+ax−b = 0,

x̃ =
{
xmax,

b+b
a+a , xmin

}
, xmax = max(b

a , b+b
a − ab

a2), xmin = min(b
a , b+b

a − ab
a2).

In the case of [a] > 0, [b] < 0, i.e., a, a > 0 , b, b < 0 we get ax−b+ax−b = 0,

x̃ =
{
xmax,

b+b
a+a , xmin

}
, xmax = max

(
b
a , b+b

a − ab
a2

)
, xmin = min

(
b
a , b+b

a − ab
a2

)
.

In the case of [a] < 0, [b] < 0, i.e., a, a < 0 , b, b < 0 we get ax−b+ax−b = 0,

x̃ =
{
xmax,

b+b
a+a , xmin

}
, xmax = max

(
b
a , b+b

a − ab
a2

)
, xmin = min

(
b
a , b+b

a − ab
a2

)
.

In the case of [a] > 0, 0 ∈ [b], we get ax−b+ax−b = 0, x̃ =
{

xmax,
b+b
2a , xmin

}
,

xmax = max
(

b
a , b+b

a − b
a

)
, xmin = min

(
b
a , b+b

a − b
a

)
.

In the case of [a] < 0, 0 ∈ [b], we get ax−b+ax−b = 0, x̃ =
{

xmax,
b+b
2a , xmin

}
,

xmax = max
(

b
a , b+b

a − b
a

)
, xmin = min

(
b
a

b+b
a − b

a

)
.

Obviously, the support of obtained fuzzy number, i.e., the widest interval
solution, can considered as a solution of Eq.(4) or the result of modified interval
division. Hereinafter such result will be denoted as [x] mod . On the other hand, it
seems natural to utilize all additional information available in the fuzzy solution.

The resulting fuzzy solution can be reduced to the interval one using well
known defuzzification procedures. In our case, defuzzified left and right bound-
aries of the solution can be represented as follows:

xdef =

∫ 1

0 x(α)dα∫ 1

0
dα

, xdef =

∫ 1

0 x(α)dα∫ 1

0
dα

(11)

For example, in the case of [a], [b] > 0, in [10,11] from (5), (9) and (11) the
following expressions have been obtained:xdef = b

a − ymax+ymin

2a , xdef = b
a +

ymax+ymin

2a .
Hereinafter, such interval solutions which can be treated also as the results

of modified interval division will be denoted for all placements of [a] and [b] as
[x] mod def .

It is shown in [10,11] that proposed method provides the considerable reducing
of resulting interval’s length in comparison with that obtained using conventional
interval arithmetic rules.

3 The Use of Modified Interval Division for the Solution
of Systems of Interval Linear Equations

The developed method is based on the modification of usual interval Gauss
elimination procedure (UIGEP) which briefly can be presented as follows.

Let [A][x] = [b] be a system of interval linear equations, where [A] is n × n
interval matrix with interval entries [aij], [b] is a column interval vector with n
entries [bi], [x] is an interval solution vector.

432 L. Dymova, M. Pilarek, and R. Wyrzykowski

In the Forward Elimination stage, the system is reduced to the triangular
form using elementary row operations:

[aij](k+1) = [aij](k) − [aik](k)[akj](k)

[akk](k)
,

[bi](k+1) = [bi](k) − [aik](k)[bk](k)

[akk](k)
,

[akk](k) �= 0, (k = 1, 2, ..., n− 1; i, j = k + 1, k + 2, ..., n), (12)

where k is the row number.
In the Backward Elimination stage, the interval solution vector is obtained as

follows:

[xn] =
[bn](n)

[ann](n)
, [xi] =

[bi](i) −
n∑

j=i+1

[aij](i)[xj]

[aii](i)
,

(i = n − 1, n− 2, ..., 2, 1). (13)

The usual interval arithmetic rules have been used in UIGEP . To improve nu-
merical stability of the above algorithm, the Partial pivoting based on the means
of interval entries has been employed in the Forward Elimination stage.

To get the modified interval Gauss elimination procedure (MIGEP), the
usual interval division operation in (12) and (13) was substituted for the modified
interval division presented in Section 2.

The two versions of MIGEP were examined: the first is based on the widest
interval result of modified division [x] mod , the second - on the defuzzified result
of modified division [x] mod def (see Section 2).

Therefore, the solutions obtained using UIGEP and MIGEP will be denoted
as [xi], [xi] mod ,[xi] mod def , i = 1, ..., n, respectively.

The seven well known from the literature examples were used to compare the
methods:

Example 1 from [2]:

A =

⎡⎣ [0.7, 1.3] [−0.3, 0.3] [−0.3, 0.3]
[−0.3, 0.3] [0.7, 1.3] [−0.3, 0.3]
[−0.3, 0.3] [−0.3, 0.3] [0.7, 1.3]

⎤⎦ B =

⎡⎣ [−14, 7]
[9, 12]
[3, 3]

⎤⎦
Example 2 from [9]:

A =

⎡⎣ [3.7, 4.3] [−1.5,−0.5] [0.0, 0.0]
[−1.5,−0.5] [3.7, 4.3] [−1.5,−0.5]

[0.0, 0.0] [−1.5,−0.5] [3.7, 4.3]

⎤⎦ B =

⎡⎣ [−14, 14]
[9, 9]

[−3, 3]

⎤⎦
Example 3 from [9]:

A =

⎡⎣ [3.7, 4.3] [−1.5,−0.5] [0.0, 0.0]
[−1.5,−0.5] [3.7, 4.3] [−1.5,−0.5]

[0.0, 0.0] [−1.5,−0.5] [3.7, 4.3]

⎤⎦ B =

⎡⎣ [−14, 0]
[−9, 0]
[−3, 0]

⎤⎦

Solving Systems of Interval Linear Equations 433

Example 4 from [9]:

A =

⎡⎣ [3.7, 4.3] [−1.5,−0.5] [0.0, 0.0]
[−1.5,−0.5] [3.7, 4.3] [−1.5,−0.5]

[0.0, 0.0] [−1.5,−0.5] [3.7, 4.3]

⎤⎦ B =

⎡⎣ [0, 14]
[0, 9]
[0, 3]

⎤⎦
Example 5 from [9]:

A =

⎡⎣ [3.7, 4.3] [−1.5,−0.5] [0.0, 0.0]
[−1.5,−0.5] [3.7, 4.3] [−1.5,−0.5]

[0.0, 0.0] [−1.5,−0.5] [3.7, 4.3]

⎤⎦ B =

⎡⎣ [2, 14]
[−9,−3]
[−3, 1]

⎤⎦
Example 6 from [9]:

A =

⎡⎣ [3.7, 4.3] [−1.5,−0.5] [0.0, 0.0]
[−1.5,−0.5] [3.7, 4.3] [−1.5,−0.5]

[0.0, 0.0] [−1.5,−0.5] [3.7, 4.3]

⎤⎦ B =

⎡⎣ [2, 14]
[3, 9]

[−3, 1]

⎤⎦
Example 7 from [2]:

A =
[
[2, 3] [0, 1]
[1, 2] [2, 3]

]
B =

[
[0, 120]
[60, 240]

]
The numbers of the examples correspond to the numbers in Table 1. These exam-
ples are characterized by some specific features and can be considered as critical
tests. In the Table 1, the results obtained with use of usual interval Gauss elimina-
tion procedure ([xi]), modified interval Gauss elimination procedure ([xi] mod and
[xi] mod def) are compared with those obtained using Markov’s Jacobi type itera-
tion method as the Markov’s results can be treated as the maximal inner solution.

It is seen that only in the examples 2,5 and 7 the Markov’s method provides
non inverted interval solutions which can be treated as inner interval estimates of
the solution set since it was proved by Shary [12] that “If a proper (non inverted)
interval vector [x] is a formal solution to the equation [A][x] = [b] then [x] is an
inner interval estimate of the solution set.” Hence, inverted solutions obtained
by Markov in the other examples are not maximal inner solutions. Of course
in the frameworks of directed interval arithmetic, “modular” arithmetic or the
extended interval arithmetic developed by Kaucher, inverted interval solutions
make a sense from purely mathematical point of view. But it is rather impossible
to interpret inverted intervals in economic or mechanic terms. We can see that
in the examples 2,5 and 7, the results obtained with use of our methods are close
enough to the Markov’s solutions (an exception is the example 7 where Markov’s
method provides the considerable narrower solution than our method). But the
most important is the fact that in all considered examples, our methods provide
non inverted interval solutions which are considerable more narrow that those
obtained with use of usual interval Gauss Elimination procedure.

In [11], the proposed method has been tested on the examples of greater
sizes of interval matrix [A]. To do this, three interval Leontiev’s technological
coefficients matrices 10 × 10, 100 × 100 and 500 × 500 were used. It was shown
that obtained results are not charged by the considerable excess width effect
and are substantially more narrow that those obtained with use of usual interval
Gauss Elimination procedure.

434 L. Dymova, M. Pilarek, and R. Wyrzykowski

Table 1. The comparison of obtained solutions

Markov’s method [xi] mod def
[xi] mod

[xi]
without deffuzification

1.

[-9.13, -13.05] [-14.19, 8.80] [-37.29, 31.91] [-101, 91]

[16.77, 7.16] [3.45, 11.60] [-10.22, 25.21] [-62.25, 99]

[11, -2.68] [-8.59, 12.43] [-22.12, 25.92] [-66, 90]

2.

[-2.93, -2.93] [-2.43, 2.43] [-6.30, 6.30] [-6.38, 6.38]

[-0.94, -0.94] [-2.67, 2.67] [-6.21, 6.21] [-6.40, 6.40]

[-0.37, -0.37] [-1.50, 1.50] [-3.15, 3.15] [-3.40, 3.40]

3.

[-3.46, -0.94] [-3.40, -1.28] [-4.73, 0.00] [-6.38, 0.00]

[-2.31, -1.77] [-3.16, -1.19] [-4.23, 0.00] [-6.40, 0.00]

[-0.90, -0.94] [-1.62, -0.54] [-2.25, 0.00] [-3.40, 0.00]

4.

[0.94, 3.46] [1.28, 3.40] [0.00, 4.73] [0.00, 6.38]

[1.77, 2.31] [1.19, 3.16] [0.00, 4.23] [0.00, 6.40]

[0.94, 0.90] [0.54, 1.62] [0.00, 2.25] [0.00, 3.40]

5.

[0.39, 2.87] [0.67, 2.41] [-0.69, 3.76] [-1.09, 4.29]

[-1.11, -1.09] [-1.82, -0.07] [-3.03, 1.17] [-4.02, 1.24]

[-0.82, -0.18] [-1.17, 0.05] [-1.84, 0.71] [-2.44, 0.78]

6.

[1.46, 3.54] [1.69, 3.62] [0.52, 4.82] [0.52, 6.25]

[2.46, 2.28] [1.66, 3.32] [0.46, 4.27] [0.45, 6.07]

[0.11, 0.52] [-0.15, 1.23] [-0.87, 2.02] [-0.88, 2.73]

7.
[0, 17.14] [-12.4, 30.33] [-53.22, 71.74] [-120, 90]

[30, 68.57] [-1.33, 67.55] [-42.00, 106.44] [-60, 240]

4 Conclusion

The aim of the paper is to present a new modified approach to interval division
based on the concept of “interval extended zero” method [10,11] and its appli-
cation to the solution of the systems of interval linear equations. To illustrate
a new method, we present the results obtained for known seven examples re-
peatedly used in the literature as the tests for numerical methods in the interval
setting. Comparing our results with those obtained using Markov’s Jacobi type
iterative method and usual interval Gauss elimination procedure, we show that
the proposed method not only allows us to decrease the excess width effect, but
makes it possible to avoid inverted interval solutions too. It is important that
our results are close to the so-called maximal inner solutions, i.e., approximate
solutions with minimal excess width effect.

References

1. Cleary, J.C.: Logical Arithmetic. Future Computing Systems 2, 125–149 (1987)

2. Hansen, E.: Bounding the solution of interval linear equations. SIAM J. Numer.

Anal. 29(5), 1493–1503 (1992)

3. Kearfott, B.: Rigorous Global Search: Continuous Problems. Kluwer Academic

Publishers, The Netherlands (1996)

Solving Systems of Interval Linear Equations 435

4. Kupriyanova, L.: Inner estimation of the united solution set to interval linear al-

gebraic system. Reliable Computing 1(1), 15–31 (1995)

5. Leontief, W.: Quantitative input-output relations in the economic system of the

United States. Review of Economics and Statistics 18, 100–125 (1936)

6. Markov, S.: An iterative method for algebraic solution to interval equations. Ap-

plied Numerical Mathematics 30, 225–239 (1999)

7. Markov, S., Popova, E., Ullrich, C.: On the Solution of Linear Algebraic Equa-

tions Involving Interval Coefficients. In: Margenov, S., Vassilevski, P. (eds.) Itera-

tive Methods in Linear Algebra II, IMACS Series in Computational and Applied

Mathematics, vol. 3, pp. 216–225 (1996)

8. Moore, R.E.: Interval analysis. Prentice-Hall, Englewood Cliffs (1966)

9. Ning, S., Kearfott, R.B.: A comparison of some methods for solving linear interval

equations. SIAM J. Numer. Anal. 34(4), 1289–1305 (1997)

10. Sevastjanov, P., Dymova, L.: Fuzzy solution of interval linear equations. In: Proc.

of 7th Int. Conf. Paralel Processing and Applied Mathematics, Gdansk, pp. 1392–

1399 (2007)

11. Sevastjanov, P., Dymova, L.: A new method for solving interval and fuzzy equa-

tions: linear case. Information Sciences 17, 925–937 (2009)

12. Shary, S.P.: A New Technique in Systems Analysis under Interval Uncertainty and

Ambiguity. Reliable Computing 8, 321–418 (2002)

13. Zyuzin, V.: An iterative method for solving system of algebraic segment equations

of the first order. In: Differential Equations and the Theory of Functions, pp. 72–82.

Saratov State University, Saratov (1989) (in Russian)

Remarks on Algorithms Implemented in Some

C++ Libraries for Floating-Point Conversions
and Interval Arithmetic

Malgorzata A. Jankowska

Poznan University of Technology, Institute of Applied Mechanics

Piotrowo 3, 60-965 Poznan, Poland

malgorzata.jankowska@put.poznan.pl

Abstract. The main aim of the paper is to give a short presentation of

selected conversion functions developed by the author. They are included

in two C++ libraries. The FloatingPointConversion library is dedicated

for conversions in the area of floating-point numbers and the second one,

the IntervalArithmetic library, carries out the similar task for interval

values as well as supports computations in the floating-point interval

arithmetic with a suitable CInterval class. The functions considered are

all intended to be used with the Intel Architectures (i.e. the IA-32 and

the IA-64) and dedicated for C++ compilers that specify 10 bytes for

the long double data type.

Keywords: IEEE standard 754 for binary floating-point arithmetic,

floating-point interval arithmetic, floating-point conversions.

1 Introduction

The concept of floating-point interval arithmetic and reliable computing was
a natural consequence of a desire of scientists and engineers to develop such
methods and tools that would ensure some kind of accuracy of results obtained.
The development of interval methods and interval arithmetic entailed the ap-
pearance of many different libraries and even computational environments that
implement floating-point interval arithmetic in computer. Let us mention at
least some of them starting from the XSC (eXtensions for Scientific Computa-
tion) languages, which include Pascal-XSC and C-XSC (see e.g. [3]). Then, the
COSY that is a language for verified global optimization and ODE solving and
is based on intervals and Taylor models with reminder bounds (see e.g. [14]).
Next the VNODE which is a C++ package for computing rigorous bounds on
the solution of the IVP for ODEs (see e.g. [18]). Furthermore, there are the C++
and Fortran 95 interval arithmetic libraries provided with the Sun Studio C++
compiler and the IntBLAS that is a C++ Interval BLAS (Basic Linear Algebra
Subprograms) implementation (for more information on the different libraries
and computational environments see also Languages for Interval Computations
at http://www.cs.utep.edu/interval-comp/).

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 436–445, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Remarks on Algorithms Implemented in Some C++ Libraries 437

Regardless of that Marciniak proposed the IntervalArithmetic unit (for the
last version 2.13 see [15]) which was originally written in Delphi Pascal. Shortly
afterwards, Jankowska translated the code to Borland C++ language. The In-
tervalArithmetic unit supports all the functionality needed for computations
on intervals. Hence, it became a part of the OOIRK (Object Oriented Interval
Runge-Kutta) system which is dedicated for solving the IVP for ODEs by in-
terval methods of Runge-Kutta type (see e.g. [15]). Similarly, its Borland C++
version 1.0 was used for the development of the IMMSystem (Interval Multi-
step Methods System) designed for solving the IVP for ODEs by the interval
multistep methods of Adams type (see e.g. [13]).

The plans of the author to perform parallel computations on multi-core pro-
cessors influenced the decision about changing a compiler to the Intel C++
compiler for Windows (or Linux). It occurred soon that the direct transfer of
the library code and recompilation with the Intel C++ compiler was impossi-
ble. Some problems arose because there is no support for the printf function for
80-bit long double values in any Intel or Microsoft Windows standard libraries.
We can use the long double data type that is 80-bit floating-point (with /Qlong-
double compiler option) but before we print a number we have to convert it
to double. In this way we cannot see all decimal digits of significand which are
available due to the 80-bit floating-point format. Furthermore, even though the
detailed tests of standard conversion functions were not in the area of my inter-
est it occurred soon that there are also some problems with the atoldbl member
function of the Microsoft C++ stdlib.h library. This function converts a string
that represents a real number to a long double value, but as one can check (see
e.g. [7]) we have as follows:

– the conversion of a string to a long double value fails for some denormalized
numbers,

– the return value sometimes gives misleading information about the underflow
exception,

– the conversion process succeeds even if a string value does not represent a
real number correctly.

All these facts influenced the decision to develop the FloatingPointConversion
library (for the last version 1.1 see [7]) and a new set of functions for the Inter-
valArithmetic library (the last version 2.1 is given in [8]).

The C++ libraries considered are dedicated for:

– the Intel Architecture (the IA-32 and the IA-64) that defines three floating-
point data types: single-precision, double-precision and double extended-
precision (note that the data formats for these data types are compliant
with the IEEE Standard 754-1985 (see [4])),

– the C++ compilers that specify 10 bytes for the long double data type to
store the floating-point numbers (for detailed information on the implemen-
tation of the C++ floating-point data types i.e. float, double and long double
in accordance to selected 16-, 32- and 64-bit C++ compilers see e.g. [1]).

438 M.A. Jankowska

Up to now the libraries have been carefully tested with the Intel C++ compiler
11.0.074 [IA-32] for Windows. As soon as possible, they will be moved to Linux
operating system and then tested with Intel C++ compiler for Linux and GCC
compiler.

Algorithms of conversion functions proposed in the next sections are based
on the rules set in the IEEE Standard 754 for Binary Floating-Point Arithmetic
(see e.g. [6], [19]) about the real numbers representation in computer. Let us
only mention that the processor represents real numbers in the following form:

(−1)s 2E (b0Δb1b2 . . . bp−1) , (1)

where s = 0or 1 is the signfield that states if the number is positive or negative,E is
a decimal value of exponent, the significand field is represented by b0Δb1b2 . . . bp−1,
where bi = 0 or 1, p is the number of precision bits, and Δ indicates an assumed
binary point. The real numbers are stored in a three-field binary format:

“sign exponent (in biased form) significand (i.e. integer and fraction)”,

where the biased exponent equals the actual exponent E increased by a con-
stant (also called an exponent bias) which is dependent on the number of bits
used to store the biased exponent and hence, it is different for each data type.
Some information on floating-point encodings for signed zeros, denormalized fi-
nite numbers, normalized finite numbers and signed infinities are also given in
Table 1 (for details see [6], [19]).

Table 1. Floating-point encodings for signed zeros, denormalized finite numbers, nor-

malized finite numbers and signed infinities

In the paper we present just a short description of the functions designed
for the floating-point conversions (see Section 2) as well as for the conversions
in the area of the floating-point intervals (see Section 3). Additionally, two al-
gorithms for the conversion of a string representing a real number given in the

Remarks on Algorithms Implemented in Some C++ Libraries 439

decimal format to a long double floating-point number (i.e. the ExStrTo LDouble
function) and a long double floating-point number to a string that represents it
in the decimal exponent format (i.e. the LDoubleTo ExponentStr function) are
proposed. Finally, we give some conclusions and formulate future plans.

2 C++ Library for Floating-Point Conversions

All functions defined in the FloatingPointConversion library can be divided into
two groups in accordance to a kind of conversion. Hence, we can convert:

– a string that represents a real number given in the decimal format (the
StrTo LDouble and ExStrTo LDouble functions) or in the binary double
extended-precision format (the BinaryStrTo LDouble function) to a long
double floating-point number,

– a long double floating-point number to a string that represents a given num-
ber in the binary double extended-precision format (the LDoubleTo BinaryStr
function), the decimal fixed-point format (the LDoubleTo FixedPointStr
function) and the decimal exponent format, also called the scientific format
(the LDoubleTo ExponentStr function).

Most of these functions make use of some enumerated data types defined in the
unit and given in the following list:

enum TRoundingMode {rmNearest,rmDown,rmUp,rmZero};

enum TFloatingPointNumber {fpnPositiveZero,fpnNegativeZero,

fpnDenormal,fpnNormal,fpnPosInfinity,fpnNegInfinity};

enum TException {exNone,exUnderflow,exOverflow,exConversionError};

enum TFloatingPointConstant {fpcZero,fpcPositiveZero,fpcNegativeZero,

fpcSmallestPositiveDenormal,fpcLargestPositiveDenormal,

fpcSmallestPositiveNormal,fpcLagestPositiveNormal,

fpcSmallestNegativeDenormal,fpcLargestNegativeDenormal,

fpcSmallestNegativeNormal,fpcLagestNegativeNormal,

fpcPositiveInfinity,fpcNegativeInfinity};

Now let us propose the algorithm of the ExStrTo LDouble function. It is based
only on standard C++ language features and hence, it is independent of the
implementation of C++ language and standard conversion functions, provided
that such C++ implementation meets ISO/IEC 14882:2003 standard.

Function:
long double ExStrTo_LDouble (const string & sx ,

TException & exception,
bool & exact_result,
TFloatingPointNumber & floating_point_number,
TRoundingMode rounding = rmNearest);

Input parameters:
sx - a string that is converted into a long double floating-point number;
rounding (a default value is rmNearest) - a rounding mode; it is used if the number

given by the string sx cannot be represented exactly in the double extended-precision
format;

440 M.A. Jankowska

Output parameters:
exception - informs if any of possible exceptions occurred during the conversion process;

if so, it gives a kind of exception (see TException data type);
exact_result - is equal to true if the number given in the string sx has the exact

representation in the double extended-precision format; otherwise its value is equal
to false;

floating_point_number - gives the information about the class, that the floating-point
number converted from a string sx , belongs to;

Return value:
It is equal to a floating-point number which is an exact representation of a real number
given in the string sx , or if such exact conversion is not possible, it is equal to
a floating-point number chosen according to the rounding mode.

Utility functions:
long double GetLDouble (char sign, vector<char> bnumber, int exponent)

- a function returns a floating-point number which is the exact representation
in the double extended-precision format of a real number given in the string sx ;

long double GetLDouble_Rounded (char sign, vector<char> bnumber, int exponent,
TRoundingMode rounding, TException & exception,
TFloatingPointNumber & floating_point_number)

- a function that is called when a real number given in the string sx does not have
the exact representation in the double extended-precision format; a return value is
then a floating-point number chosen according to the rounding mode specified in the
rounding parameter; furthermore, the exception and floating_point_number parameters
are set;

long double GetLDouble_Overflow (char sign , TRoundingMode rounding,
TFloatingPointNumber & floating_point_number)

- a function that is called when a real number given in the string sx is larger or
equal to a floating-point number that represents the positive/negative infinity in
the double extended-precision format; a return value is then a floating-point
representation of the positive/negative infinity or the largest positive/negative
normal number in accordance to the rounding mode specified in the rounding parameter;
furthermore, the floating_point_number parameter is set;

long double GetPositiveInfinity () - a function returns a floating-point number that
is equal to the positive infinity in the double extended-precision format;

long double GetNegativeInfinity () - a function returns a floating-point number that
is equal to the negative infinity in the double extended-precision format;

Remarks:
a size of a given string or a vector object is the number of its elements;

Algorithm:
Step 1: sa = sx

Step 2: Convert a string value sa into the form that shows its decimal fixed-point repre-
sentation as follows:

sign(+/-) decimal_integer_part separator(,/.) decimal_fraction_part

Step 3: sign = ’+’, if a given number is positive;
otherwise, sign = ’−’

Step 4: is_frac_part_zero = false, if there is a nonzero decimal fraction part
otherwise, is_frac_part_zero = true

Step 5: if (sa == +0,0) or (sa == +0.0), then
exception = exNone
exact_result = true
floating_point_number = fpnPositiveZero
return +0.0

Remarks on Algorithms Implemented in Some C++ Libraries 441

Step 6: if (sa == -0,0) or (sa == -0.0), then
exception = exNone
exact_result = true
floating_point_number = fpnNegativeZero
return -0.0

Step 7: Find the binary representation of an integer part of a real number given in sa and
save it in the bnumber vector object. Note that only first 16386 binary digits
are required.

Step 8: exponent = the size of bnumber - 1

Step 9: comment: Check if the overflow exception occurred ...
if (exponent == 16384) or (exponent == 16385), then

comment: Check if there is the exact representation of the infinity ...
if (exponent == 16384) and (is_frac_part_zero == true), then

if (bnumber[1] == 0, ... , bnumber[16384] == 0), then
exception = exOverflow
exact_result = true

if (sign == ’+’), then
floating_point_number = fpnPositiveInfinity
return GetPositiveInfinity()

else
floating_point_number = fpnNegativeInfinity
return GetNegativeInfinity()

comment: The true result has to be rounded ...
exception = exOverflow
exact_result = false
return GetLDouble_Overflow(sign,rounding,floating_point_number)

Step 10: comment: All 64 precision bits are used. Hence, if there is no fraction part
and exponent >= 63, then a given number has the exact representation or can be
rounded according to the current rounding mode. Similarly, if exponent >= 66.
Note that if it is possible we take no less than three additional precision bits
to round the true result to the nearest floating-point value correctly.

if ((exponent >= 63) and (is_frac_part_zero == true)) or (exponent >= 66), then

if (bnumber[64] == 0, ... , bnumber[exponent] == 0), then
is_nonzero_digit = false

else
is_nonzero_digit = true

comment: Check if there is the exact representation of a given number ...
if (is_frac_part_zero == true) and (is_nonzero_digit == false)

exception = exNone
exact_result = true
floating_point_number = fpnNormal
return GetLDouble(sign,bnumber,exponent)

comment: The true result has to be rounded ...
else

exact_result = false
return GetLDouble_Rounded(sign,bnumber,exponent,rounding,exception,

floating_point_number)

Step 11: comment: Check if there is a nonzero integer part of a given number ...
if (bnumber[0] == 1), then

Find the binary representation of a fraction part of a given number and
add it to the bnumber vector object. Note that only first 67 binary digits
in bnumber are required.

442 M.A. Jankowska

comment: Check if there is the exact representation of a given number ...
if (size of bnumber - 1 <= 63)

exception = exNone
exact_result = true
floating_point_number = fpnNormal
return GetLDouble(sign,bnumber,exponent)

comment: The true result has to be rounded ...
else

exact_result = false
return GetLDouble_Rounded(sign,bnumber,exponent,rounding,exception,

floating_point_number)

Step 12: comment: A given number is a decimal fraction ...

Find the normalized binary representation of a fraction part of a given number
and save it in the bnumber vector object with exponent <= 16382.

If the exponent value reaches 16383, then find the appropriate denormalized
representation. Note that exponent is an absolute value of the true exponent.
Furthermore, only first 67 binary digits in bnumber are required.

if (exponent <= 16382)

if (size of bnumber - 1 <= 63)
exception = exNone
exact_result = true
floating_point_number = fpnNormal
return GetLDouble(sign,bnumber,-1*exponent)

else
exact_result = false
return GetLDouble_Rounded(sign,bnumber,-1*exponent,rounding,exception,

floating_point_number)

else if (exponent == 16383)

if (size of bnumber - 1 <= 63)
exception = exUnderflow
exact_result = true
floating_point_number = fpnDenormal
return GetLDouble(sign,bnumber,-1*exponent)

else
exact_result = false
return GetLDouble_Rounded(sign,bnumber,-1*exponent,rounding,exception,

floating_point_number)

Step 13:
exception = exConversionError
return +0.0

Probably, the most widely used function is LDoubleTo ExponentStr. Hence,
let us now shortly explain the way it works (see also [7]).

Function:
string LDoubleTo_ExponentStr (long double x ,

short precision = 18,
short digits = 4,
TRoundingMode rounding = rmNearest);

Input parameters:
x - a long double floating-point number to be converted into a string;
precision (by default it is equal to 18) - a parameter that sets the number of decimal

significant digits with one digit before and precision - 1 digits after the decimal
separator; it can be any integer that satisfies the condition 2 ≤ precision ≤ 18;

Remarks on Algorithms Implemented in Some C++ Libraries 443

digits (by default it is equal to 4) - a parameter that sets the minimal number
of decimal exponent digits; it can be any integer that satisfies the condition
1 ≤ digits ≤ 4;

rounding (a default value is rmNearest) - a parameter that sets the rounding mode which
is used when the floating-point number x cannot be represented exactly with a given
precision;

Return value:
It is equal to a string value that gives the representation of x in the decimal
scientific format, i.e. the number is shown in the following form:

‘‘sign (+/-) significand (i.e. integer and fraction) (precision decimal digits)
E(+/-) exponent (at least digits decimal digits)’’.

Utility functions:
string LDoubleTo_FixedPointStr (long double x)

- a function that returns a string that gives the exact representation of x
in the decimal fixed-point format, i.e. the number is shown in the following form:

‘‘sign(+/) decimal_integer_part separator(, /.) decimal_fraction_part’’;

Local variables:
sx - a string value that stores the return representation of x in the decimal scientific

format;

Algorithm:
Step 1: sx = LDoubleTo_FixedPointStr(x)

Step 2: exponent ← the decimal exponent of the number represented by the string sx

Step 3: sx ← the significand of the number represented by the string sx ; the maximum
number of significant digits that are taken for rounding procedures equals 19 (with
one digit before and 18 after the decimal separator; note the last digit is used
only to make the rounding correctly); the remaining ones are neglected;

Step 4: switch (rounding)
case rmZero:

comment: Round the number represented by the string sx toward zero (chop) with
the precision decimal digits and store the significand in sx (see [7]).
DecimalRoundZero(sx ,precision)
break

case rmNearest:
comment: Round the number represented by the string sx to the nearest/even with
the precision decimal digits and store the significand in sx ;
if it is required modify the value of the exponent parameter (see [7]).
DecimalRoundNearest(sx ,exponent,precision)
break

case rmDown:
comment: Round the number represented by the string sx down with
the precision decimal digits and store the significand in sx ;
if it is required modify the value of the exponent parameter (see [7]).
DecimalRoundDown(sx ,exponent,precision)
break

case rmUp:
comment: Round the number represented by the string sx up with
the precision decimal digits and store the significand in sx ;
if it is required modify the value of the exponent parameter (see [7]).
DecimalRoundUp(sx ,exponent,precision)
break

Step 5: comment: Add the string representing the decimal exponent given in the exponent
parameter to the significand stored in the string sx
AddExponent(sx ,exponent,digits)

Step 6: return sx

444 M.A. Jankowska

3 C++ Library for Interval Floating-Point Arithmetic

Now let us shortly present the new version of the IntervalArithmetic library.
Taking advantage of some C++ language features we define the CInterval class
in which the basic operators (i.e. addition, subtraction, multiplication and di-
vision) are overloaded. Hence, you can perform the elementary arithmetic op-
erations on intervals as objects of the CInterval class in a reasonably simple
way. Furthermore, there are also several useful conversion functions defined in
the library. They carry out two main tasks. First one is to convert a string rep-
resenting a real number given in the decimal format (the StrTo Interval and
ExStrTo Interval functions) or in the binary double extended-precision format
(the BinaryStrTo Interval function) to a machine interval. We define a machine
interval as an interval whose endpoints are equal or are two subsequent floating-
point numbers. Such interval contains the real number represented by a given
string. The StrTo Interval function is similar to the one given by Marciniak (see
e.g. [15]). Now in the ExStrTo Interval function we propose another algorithm
that is based on the similar idea as in the case of the ExStrTo LDouble func-
tion (see Section 2). The second task (see the IntervalTo ExponentStr function
in [7]) is to convert a machine interval stored in the CInterval object to strings
that represent its left and right endpoints in the decimal scientific format. The
algorithm of the IntervalTo ExponentStr function is originally based on the idea
of Marciniak (see e.g. [15]). Its new version uses the LDoubleTo ExponentStr
function to get the appropriate string values of the endpoints and hence, we can
also specify the number of digits of the significand and the exponent as well. In
this way we control the decimal scientific format of the endpoints.

4 Conclusions

The author proposes the FloatingPointConversion library and the extended ver-
sion of the IntervalArithmetic library. Furthermore, two selected algorithms for
the floating-point conversions are described in detail (see Section 2). The li-
braries considered are dedicated for programmers dealing with scientific com-
putations in conventional floating-point arithmetic as well as in floating-point
interval arithmetic. The conversion functions and the CInterval class proposed
are of great importance because most of them are frequently used especially
when developing computational applications. As it occurred, they are not al-
ways supported in a given C++ compiler implementation or even if they are
they can differ in name or the way they work. The usage of the libraries pro-
posed makes the programmer independent of such problems. It was not the aim
of the paper to present all the functions supported by the libraries. The user
and reference guides for the libraries considered can be found in Software at
http://www.mjank.user.icpnet.pl/. Furthermore, the appropriate static libraries
are available from the author upon request. Up to now the static libraries have
been created and carefully tested with the Intel C++ compiler 11.0.074 [IA-32]
for Windows. They will be also moved to Linux operating system and then tested
with Intel C++ compiler for Linux and GCC compiler.

Remarks on Algorithms Implemented in Some C++ Libraries 445

References

1. Fog, A.: Calling conventions for different C++ compilers and operating systems,

Copenhagen University College of Engineering (last updated in 2008),

http://www.agner.org/optimize/

2. Gajda, K., Jankowska, M., Marciniak, A., Szyszka, B.: A Survey of Interval

Runge-Kutta and Multistep Methods for Solving the Initial Value Problem. In:

Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2007.

LNCS, vol. 4967, pp. 1361–1371. Springer, Heidelberg (2008)

3. Hammer, R., Hocks, M., Kulisch, U., Ratz, D.: Numerical Toolbox for Verified

Computing I. Basic Numerical Problems. Springer, Berlin (1993)

4. IEEE Computer Society, IEEE Standard 754 for Floating-Point Arithmetic (1985)

5. IEEE Computer Society, IEEE Standard 754 for Floating-Point Arithmetic (2008)

6. Intel 64 and IA-32 Architectures Software Developers Manual, Volume 1: Basic

Architecture (2008)

7. Jankowska, M.A.: C++ Library for Floating-Point Conversions. User and Refer-

ence Guide, Poznan University of Technology. Last updated (2009), Software at

http://www.mjank.user.icpnet.pl/

8. Jankowska, M.A.: C++ Library for Floating-Point Interval Arithmetic. User and

Reference Guide, Poznan University of Technology (last updated 2009), Software

at http://www.mjank.user.icpnet.pl/

9. Jankowska, M., Marciniak, A.: Implicit Interval Multistep Methods for Solving the

Initial Value Problem. Computational Methods in Science and Technology 8(1),

17–30 (2002)

10. Jankowska, M., Marciniak, A.: On Explicit Interval Methods of Adams-Bashforth

Type. Computational Methods in Science and Technology 8(2), 46–57 (2002)

11. Jankowska, M., Marciniak, A.: An Interval Version of the Backward Differentiation

(BDF) Method. In: SCAN 2006 Conference Post-Proceedings IEEE-CPS Product

No. E2821 (2007)

12. Jankowska, M., Marciniak, A.: On Two Families of Implicit Interval Methods of

Adams-Moulton Type. Computational Methods in Science and Technology 12(2),

109–113 (2006)

13. Jankowska, M.: Interval Multistep Methods of Adams type and their Implementa-

tion in the C++ Language. Ph.D. Thesis, Poznan University of Technology, Poznan

(2006)

14. Makino, K., Berz, M.: COSY INFINITY Version 9. Nuclear Instruments and Meth-

ods A558, 346–350 (2005)

15. Marciniak, A.: Selected Interval Methods for Solving the Initial Value Problem.

Publishing House of Poznan University of Technology, Poznan (2009)

16. Jaulin, L., Kieffer, M., Didrit, O., Walter, É.: Applied Interval Analysis. Springer,

London (2001)

17. Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)

18. Nedialkov, N.S., Jackson, K.R.: The Design and Implementation of a Validated

Object-Oriented Solver for IVPs for ODEs, Technical Report 6, Software Quality

Research Laboratory, Department of Computing and Software, McMaster Univer-

sity, Harnilton (2002)

19. Pentium Processor Family Developers Manual, Volume 3: Architecture and Pro-

gramming Manual (1995)

http://www.agner.org/optimize/
http://www.mjank.user.icpnet.pl/
http://www.mjank.user.icpnet.pl/

An Interval Method for Seeking the Nash

Equilibria of Non-cooperative Games

Bart�lomiej Jacek Kubica and Adam Woźniak

Institute of Control and Computation Engineering, Warsaw University of Technology,

Nowowiejska 15/19, 00-665 Warsaw, Poland

Abstract. Computing Nash equilibria in continuous games is a diffi-

cult problem. In contrast to discrete games, algorithms developed for

continues ones are rather inefficient. This paper proposes a new ap-

proach – making use of interval methods we try to solve the problem

directly, seeking points that fulfill Nash conditions. We also consider a

shared-memory parallelization of the proposed algorithm. Preliminary

numerical results are presented. Some new practical aspects of interval

methods are considered.

1 Introduction

A Nash equilibrium [12], defined first in 1950, is one of basic concepts in the
game theory. For a non-cooperative game the Nash equilibrium is a situation
(an assignment of strategies to all players), when it is not beneficial to any of
the players to change their strategy unless others will do so.

Formally, let us consider a game with n players, each of them trying to choose
the decision variable xi ∈ Xi to minimize the cost qi(x1, . . . , xi, . . . , xn), i =
1, . . . , n.

The tuple (x∗
1, . . . , x

∗
n) is a Nash equilibrium, iff:

∀i = 1, . . . , n ∀xi qi(x∗
1, . . . , x

∗
i−1, xi, x

∗
i+1, . . . , x

∗
n) ≥ qi(x∗

1, . . . , x
∗
n) . (1)

In the simplest case the player’s strategy is simply a tuple of numbers (vector)
they choose from the given set, i.e. xi =

(
x

(i)
1 , . . . , x

(i)
ki

) ∈ Xi ⊆ IRki . Let us
denote x = (x1, . . . , xn).

The structures of domains Xi may vary widely, defining different types of
games. Most often various types of discrete games are considered (e. g. [15]).

However, continuous games are also an interesting and widely applicable
model, encountered in several branches of economical sciences and decision mak-
ing theory. Example applications include water resource systems [7], [16], so-
called mechanism implementation in economy [18] and cellular networks [10].

Cellular power control game. There is a fixed number of agents – users of cel-
lular transmitters in a cell. Each of them chooses the power level pi ∈ [0, pmax].
And each of them gets a level of SINR (signal-to-interference-and-noise-ratio),
depending on his own transmission power level and levels of other users. When

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 446–455, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

An Interval Method for Seeking the Nash Equilibria 447

assuming a CDMA technique, a (minimized) cost of each agent can be computed,
using the BER (bit-error-rate) function as:

ui(p1, . . . , pn) =
R

pi
·
(
1− 2BER

(
f(p1, . . . , pn)

))L

,

where R is the transmission rate, L is the size of a packet (in bits) and f(p1, . . . , pn)
is the SINR.

Computing Nash equilibria for a continuous game is in general much more
difficult than for a discrete one. It is also less often considered in the literature.
Most approaches to solve it belong to one of three classes:

– minimization of the function defined by Nikaidô and Isoda [14] or a similar
one,

– Rosen type algorithms [17] for finding fixed points of a properly defined
mapping,

– Gabay and Moulin [1] approach using differential calculus.

We propose an alternative method – making use of interval methods we try to
solve the problem directly, seeking points that fulfill Nash conditions.

2 Basics of Interval Computations

Now, we shall define some basic notions of intervals and their arithmetic. We
follow a widely acknowledged standards (cf. e.g. [2], [4], [5], [13]).

We define the (closed) interval [x, x] as a set {x ∈ IR | x ≤ x ≤ x}.
Following [6], we use boldface lowercase letters to denote interval variables,

e.g. x, y, z, and IIIR denotes the set of all real intervals.
We design arithmetic operations on intervals so that the following condition

was fulfilled: if we have
 ∈ {+,−, ·, /}, a ∈ a, b ∈ b, then a
 b ∈ a
 b. The
actual formulae for arithmetic operations (see e.g. [2], [4], [5]) are as follows:

[a, a] + [b, b] = [a + b, a + b] ,
[a, a]− [b, b] = [a− b, a− b] ,
[a, a] · [b, b] = [min(ab, ab, ab, ab), max(ab, ab, ab, ab)] ,
[a, a] / [b, b] = [a, a] · [1 / b, 1 / b

]
, 0 /∈ [b, b] .

The definition of interval vector x, a subset of IRn is straightforward: IRn ⊃
x = x1 × · · · × xn. Traditionally interval vectors are called boxes.

Links between real and interval functions are set by the notion of an inclusion
function, see e.g. [4]; also called an interval extension, e.g. [5].

Definition 1. A function f : IIIR → IIIR is an inclusion function of f : IR → IR,
if for every interval x within the domain of f the following condition is satisfied:

{f(x) | x ∈ x} ⊆ f(x) .

The definition is analogous for functions f : IRn → IRm.

448 B.J. Kubica and A. Woźniak

When computing interval operations, we can round the lower bound downward
and the upper bound upward. This will result in an interval that will be a bit
overestimated, but will be guaranteed to contain the true result of the real-number
operation.

3 The Proposed Approach

The general schema is going to be a specific variant of the branch-and-bound (b&b)
method (see e.g. [2], [5], [13]). The boxes are stored in a queue – a stack would be
appropriate, too, but the queue is better for parallelization (see Section 4).

Thanks to the virtues of interval methods we may solve the problem more
directly than by Nikaidô-Isoda type transformations. We shall seek for points
satisfying the given conditions defined by (1).

Please note that these conditions say simply that some functions should have
minima in certain points. So, from well-known optimality conditions (and assum-
ing proper smoothness) we can derive necessary conditions for Nash equilibria.
For unconstrained problems, it will be:

∂qi

∂x
(i)
j

(x) = 0 i = 1, . . . , n, xj ∈ {x(i)
1 , . . . , x

(i)
ki
} . (2)

The above equations form a system of N equations in N variables, where N =∑n
i=1 ki.
Handling arbitrary-constrained problems is a bit more difficult, but for un-

constrained and bound-constrained problems, we can use the above conditions
as a powerful rejection/reduction tool for the b&b algorithm. Obviously, the test
cannot be used on boxes tangent to the bound constraints.

Similarly, we can get an analog of the monotonicity test ([2], [5], [13]) – checking
if a function qi(·) is monotonous with respect to any of the variables fromVi (mono-
tonicity wrt other variables does not preclude existence of a Nash equilibrium!).

The b&b process terminates with the list of boxes that possibly contain Nash
equilibria. Do they really do? To find out we should compare actual criteria values
in these points and in proper subsets of the domain. It can be done in a few ways.

First of all, we can actually solve related optimization problems or constraint
satisfaction problems of the form:

qi(x∗
1, . . . , x

∗
i−1, xi, x

∗
i+1, . . . , x

∗
n) ≤ qi(x∗) .

This means applying a b&b method for each box – a b&b method in a reduced
space, but still it sounds hopelessly inefficient and we have not implemented this
solution.

The second possibility is to compare values of considered boxes during the b&b
process. As it seems natural, it occurred to be extremely inefficient; traversing
the list of all boxes in each iteration is very time consuming. Also, for parallel
computations it requires not to change the queue of boxes while some threads
are traversing it to compare criteria values. This solution was discarded, too.

An Interval Method for Seeking the Nash Equilibria 449

The third possibility is to compare only values of the selected boxes in a “second
phase”. It is far more efficient than the previous variant, but still has a quadratic
complexity with respect to the number of boxes. It has to be noted that – as this
variant works perfectly for considered examples – it is weaker than the other ones;
someboxes thatwould be discarded by previous algorithmswould not be discarded
now. Nevertheless, it is the reference variant in current implementation.

The fourth possibility is to have a specific data structure for each player,
where the values they may obtain for specific inputs from other users will be
stored. The check can be done either during the b&b process or in a “second
phase”, after finishing the b&b process. There is a very adequate data structure
to store such information, called an interval tree (see [21]). This approach seems
promising, but has not been implemented yet.

Rejection/reduction tests. Rejection/reduction tests are commonly used in in-
terval branch-and-bound methods (see e.g. [2],[4], [5], [13]) In our case two tests
are used; they were already mentioned above. They are:

– a variant of the monotonicity test,
– a Gauss-Seidel operator with the inverse-midpoint preconditioner, applied

to solve equations system (2).

The overall algorithm. The following pseudocode expresses the main schema of
the solver:

seek_Nash_equilibria (x(0); f1, . . . , fn)
// x(0) is the initial box,
// fi(·) is the interval extension of the function fi : IRN → IR, i = 1, . . . , n
// Lsol is the list of boxes verified to contain a Nash point
L = ∅ ;
Lsol = ∅ ;
enqueue (L, x(0)) ;
while (L is nonempty)

dequeue (L, x) ;
process the box x, using the rejection/reduction tests ;
if (x does not contain a solution) then discard x ;
else if (x is verified to contain a solution) then enqueue (Lsol, x) ;
else if (diam(x) ≤ ε) then enqueue (Lsol, x) ;
else

bisect (x), obtaining x(1) and x(2);
x = x(1) ;
enqueue (L, x(2)) ;

end if ;
end while
// Second phase
foreach (x in Lsol)

if (x cannot contain a Nash equilibrium) then discard x ;
end foreach

450 B.J. Kubica and A. Woźniak

4 Parallelization

As discussed in Section 3, the algorithm has two phases:

– the branch-and-bound phase, seeking points satisfying necessary conditions
for Nash equilibria,

– discarding boxes that do not contain equilibria – comparisons between boxes,
computed by the first phase.

As our previous experiments show ([8], [9]), using several threads can significantly
increase the efficiency of the computations, so we parallelized the computations.
Both phases are parallelized independently.

In the first phase boxes are stored in a queue and processed in parallel by
a few threads. There is a clever implementation of a queue with two locks (see
[11]) that allows parallel put and get operations on both ends of the queue.
Specifically, one lock guards the access to the head of the list, another one – the
tail and there is a dummy node at the head, so that the ultimate element could
not be deleted during the insertion. Details can be found in [11].

In the second phase a few threads are traversing the list simultaneously to
find if different boxes should be discarded or not.

POSIX threads [23] were used for the parallelization, but any other tool
(specifically OpenMP) could also be used with minor changes only.

5 Numerical Experiments

We shall present results for three test problems – all of them first discussed in
[19] and then considered in [3], [7].

The game has two players, each of them may control one decision variable.

min
x1

(
q1(x1, x2) = (x1 − x2 + 1)2

)
(3)

min
x2

(
q2(x1, x2) = (x2 − x2

1)
2 + (x1 − 1)2

)
,

x1 ∈ [−1, 2.5] , x2 ∈ [−1, 3] .

This game has three Nash equilibria: (2, 3) on the boundary and two in the
interior of the feasible set: (−0.618034, 0.381966) and (1.618033, 2.618033).

Second game is also a game of two players, but now each of them has 9 decision
variables.

min
x1,...,x9

(
q1(x) = (x1 − 1)2 + (x2 − 1)2 + x2

3 + (x4 − 1)2 + x2
5 + (x6 − 1)2 + (4)

+(x7 − 1)2 + x2
8 + x2

9 + x2
11 + (x12 − 0.5)2 + x2

13 + (x16 + 0.5)2 + (x18 − 1)2
)

,

min
x10,...,x18

(
q2(x) = (x10 + 1)2 + x2

11 + (x12 − 1)2 + x2
13 + x2

14 + (x15 + 1)2 +

+(x17 − 1)2 + x2
16 + (x18 − 1)2 + (x2 − 0.5)2 + x2

3 + (x4 − 0.5)2 + (x8 − 0.5)2 ,
xi ∈ [−2, 2] i = 1, 2 .

An Interval Method for Seeking the Nash Equilibria 451

The game has one Nash equilibrium: (1, 1, 0, 1, 0, 1, 1, 0, 0,−1, 0, 1, 0, 0,−1, 0, 1, 1).
In the third game we have three players, with two decision variables each.

min
x1,x2

(
q1(x) = (x1 + 1)2(x1 − 1)2 + (x2 + 1)2(x2 − 1)2 + x3x4 + x5x6

)
(5)

min
x3,x4

(
q2(x) = (x4 − 0.5)2(x4 + 1)2 + (x3 + 1)2 + x1x2 + x5x6

)
,

min
x5,x6

(
q3(x) = (x5 + 0.5)2(x5 − 1)2 + (x6 − 1)2 + x1x2 + x3x4

)
,

xi ∈ [−2, 2] i = 1, . . . , 6 .

This game has 16 Nash equilibria (they are listed in [7] and [19]).
Numerical experiments were performed on a computer with 16 cores, i. e. 8

Dual-Core AMD Opterons 8218 with 2.6GHz. The machine ran under control
of a Fedora 10 Linux operating system. The solver was implemented in C++,
using C-XSC 2.2.3 library for interval computations. The GCC 4.3.2 compiler
was used.

Results are given in Tables 1–4.
For all experiments the accuracy ε = 10−7 was set. Solutions computed for

problem (3):

x =
(
[−0.618034,−0.618033], [0.381966, 0.381967]

)
,

x =
(
[1.618033, 1.618034], [2.618033, 2.618034]

)
,

x =
(
[1.999999, 2.000001], [3.000000, 3.000000]

)
.

The solution computed for problem (4):

x =
(
[1.000000, 1.000000], [1.000000, 1.000000], [−0.000000, 0.000000],

[1.000000, 1.000000], [−0.000000, 0.000000], [1.000000, 1.000000],
[1.000000, 1.000000], [−0.000000, 0.000000], [−0.000000, 0.000000],
[−1.000000,−1.000000], [−0.000000, 0.000000], [1.000000, 1.000000],
[−0.000000, 0.000000], [−0.000000, 0.000000], [−1.000000,−1.000000],
[−0.000000, 0.000000], [1.000000, 1.000000], [1.000000, 1.000000]

)
.

Table 1. Numerical results for test problem (3)

computational time (sec.) 0.014

criteria evals. 6

criteria grad. evals. 26

criteria Hesse matrix evals. 204

bisections 49

boxes bisected by GS step 0

boxes deleted by comparisons 0

boxes deleted by monot. test 42

boxes deleted by GS step 5

resulting boxes 3

452 B.J. Kubica and A. Woźniak

Table 2. Numerical results for the test problem (4)

domain original [−2, 2.4]18

computational time (sec.) 2483392 0.370

criteria evals. 524288 2

criteria grad. evals. 524288 2

criteria Hesse matrix evals. 18878160 182

bisections 4719540 45

boxes bisected by GS step 0 0

boxes deleted by comparisons 0 0

boxes deleted by monot. test 4457400 45

boxes deleted by GS step 0 0

resulting boxes 262144 1

First four solutions computed for problem (5):

x =
(
[0.999999, 1.000001], [−1.000001,−0.999999], [−1.000000,−1.000000],

[−1.000001,−0.999999], [0.999999, 1.000001], [1.000000, 1.000000]
)

,
x = [0.999999, 1.000001], [−1.000001,−0.999999], [−1.000000,−1.000000],

[−1.000001,−0.999999], [−0.500001,−0.499999], [1.000000, 1.000000]
)

,
x = [−1.000000,−1.000000], [−1.000000,−1.000000], [−1.000000,−1.000000],

[0.499999, 0.500001], [0.999999, 1.000001], [1.000000, 1.000000]
)

,
x = [−1.000000,−1.000000], [−1.000000,−1.000000], [−1.000000,−1.000000],

[0.499999, 0.500001], [−0.500001,−0.499999], [1.000000, 1.000000]
)

.

Table 3. Numerical results for test problem (5)

domain original [−2, 2.4]6

computational time (sec.) 47.703 1.410

criteria evals. 13392 243

criteria grad. evals. 83088 2286

criteria Hesse matrix evals. 149925 6297

bisections 21827 683

boxes bisected by GS step 3160 366

boxes deleted by comparisons 3440 65

boxes deleted by monot. test 14748 870

boxes deleted by GS step 5776 99

resulting boxes 1024 16

Table 4. Numerical results of the parallelized algorithm for test problem (5)

threads num. 1 2 4 6 7 8

time (sec.) 48 24 12 9 10 9

speedup 1.00 2.00 4.00 5.33 4.80 5.33

An Interval Method for Seeking the Nash Equilibria 453

6 Results

For test problem (3) the problem performed perfectly – the computations were
extremely fast and it found precisely all three solutions; also the one on the
boundary (2, 3) that was missed by algorithms in [7] and [19]i, based on Nikaidô
and Isoda transformation.

For test problems (4) and (5) the algorithm preformed worse, initially (left
columns in Tables 2 and 3).

The reason was a bit unusual, but interesting – the solutions are located
exactly in the corners of boxes resulting from the bisection process and hence
they have to be enclosed by clusters of boxes. It is easy to see that for 18
dimensions the solution has to be enclosed by 218 = 262144 boxes, so all of the
boxes enclose this one solution! Also for 6 dimensions we need 26 = 64 boxes for
one solution and 16 · 64 = 1024 for 16 of them; again that is the reason of the
large number of boxes.

As we can see from Tables 2 and 3 increasing (!) the domain only slightly
undoes this effect and improves the performance of the algorithm incredibly.

Comment. Actually, it is worth noting that this embarrassing difference (in case
of problem (4) from several hours to a couple of milliseconds) shows two facts:

– how significant it is to choose test problems adequately,
– how sensitive interval methods are to this – unlikely, but possible – phe-

nomenon of “unfortunate location” of solutions.

Possibly algorithms should pay more attention to the second problem, e. g. by
doing some local search and and constructing boxes around such solutions.

7 Conclusions

As we have seen, interval methods can be quite efficient at finding all Nash
equilibria of continuous games. As usually, they are also robust – the find also
equilibrium points that are missed by most other algorithms. For the considered
example (5), the parallelization worked perfectly for up to four threads; for a
higher number of threads some improvement was still observed.

Still many improvements can be done to the algorithms, e. g. to include arbi-
trary constraints for the domain of decision variables.

In any case there is obviously one – probably impossible to overcome– limitation
for the use of interval methods: they require that some central authority knows
formulae for criteria of the players. In the situation when the central authority
does not have such knowledge – or even she does not want the players to pass too
much information, but only she observes their behavior – it is difficult to imagine
application of interval methods; at least in their traditional form.

Nevertheless, we can imagine several situations where the criteria functions
are given by known mathematical formulae; then there is no obstacle to apply
interval methods.

454 B.J. Kubica and A. Woźniak

Acknowledgments

The research has been supported by the Polish Ministry of Science and Higher
Education under grant N N514 416934.

The computer on which experiments were performed is shared with the In-
stitute of Computer Science of our University. Thanks to Jacek B�laszczyk for
maintaining it.

References

1. Gabay, D., Moulin, H.: On the uniqueness and stability of Nash-equilibria in non-

cooperative games. In: Bensoussan, A., Kleindorfer, P., Tapiero, C. (eds.) Applied

Stochastic Control in Econometrics and Management Science, pp. 271–293. North

Holland, Amsterdam (1980)

2. Hansen, E., Walster, G.E.: Global Optimization Using Interval Analysis, Second

edn. Revised and Expanded. Marcel Dekker, New York (2004)

3. Jauernig, K., Ko�lodziej, J., Stys�lo, M.: HGSNash evolutionary strategy as an effec-

tive method of detecting the Nash equilibria in n-person non-cooperative games.

In: Proceedings of KAEiOG 2006, Murzasichle, pp. 171–178 (2006)

4. Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis. Springer,

London (2001)

5. Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht

(1996)

6. Kearfott, R.B., Nakao, M.T., Neumaier, A., Rump, S.M., Shary, S.P., van Henten-

ryck, P.: Standardized notation in interval analysis,

http://www.mat.univie.ac.at/~neum/software/int/notation.ps.gz

7. Ko�lodziej, J., Jauernig, K., Cieślar, A.: HGSNash strategy as the decision-making

method for water resource systems with external disagreement of interests. In:

Proceedings of PARELEC 2006, Wroc�law, pp. 313–318 (2006)

8. Kubica, B.J.: Interval methods for solving underdetermined nonlinear equations

systems. In: SCAN 2008 Conference, El Paso, Texas (2008)

9. Kubica, B.J., Woźniak, A.: A multi-threaded interval algorithm for the Pareto-front

computation in a multi-core environment. In: PARA 2008 Conference, Trondheim,

Norway (2008)

10. MacKenzie, A.B., Wicker, S.B.: Game theory in communications: Motivation, ex-

planation, and application to power control. In: Proceedings of IEEE GLOBECOM

2001, pp. 821–826 (2001)

11. Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and block-

ing concurrent queue algorithms. In: Proceedings of the Fifteenth Annual ACM

Symposium on Principles of Distributed Computing, pp. 267–275 (1996)

12. Nash, J.F.: Equilibrium points in n-person games. Proceedings of National Asso-

ciation of Science 36, 48–49 (1950)

13. Neumaier, A.: Interval methods for systems of equations. Cambridge University

Press, Cambridge (1990)

14. Nikaidô, H., Isoda, K.: Note on noncooperative convex games. Pacific Journal of

Math. 5(Suppl. I), 807–815 (1955)

15. Pavlidis, N.G., Parsopoulos, K.E., Vrahatis, M.N.: Computing Nash equilibria

through computational intelligence methods. Journal of Computational and Appl.

Math. 175, 113–136 (2005)

http://www.mat.univie.ac.at/~neum/software/int/notation.ps.gz

An Interval Method for Seeking the Nash Equilibria 455

16. Petrosyan, L.A., Zakharov, V.V.: Introduction to mathematical ecology. Izd. LGU,

Leningrad (1986) (in Russian)

17. Rosen, J.B.: Existence and uniqueness of equilibrium points for concave n-person

games. Econometrica 33, 520–534 (1965)

18. Serrano, R.: The theory of implementation of social choice rules. SIAM Review 46,

377–414 (2004)

19. Ślepowrońska, K.: A parallel algorithm for finding Nash equilibria (in Polish). Mas-

ter’s thesis under supervision of A. Woźniak, WUT (1996)

20. Nash equilibrium, DDWiki article,

http://ddl.me.cmu.edu/ddwiki/index.php/

Nash equilibrium#Formal Description

21. Interval tree, Wikipedia article,

http://en.wikipedia.org/wiki/Interval_tree

22. C-XSC interval library, http://www.xsc.de

23. POSIX Threads Programming,

https://computing.llnl.gov/tutorials/pthreads

http://ddl.me.cmu.edu/ddwiki/index.php/Nash_equilibrium#Formal_Description
http://ddl.me.cmu.edu/ddwiki/index.php/Nash_equilibrium#Formal_Description
http://en.wikipedia.org/wiki/Interval_tree
http://www.xsc.de
https://computing.llnl.gov/tutorials/pthreads

From Gauging Accuracy of Quantity Estimates

to Gauging Accuracy and Resolution of
Measuring Physical Fields

Vladik Kreinovich1 and Irina Perfilieva2

1 University of Texas, El Paso, TX 79968, USA

vladik@utep.edu
2 University of Ostrava, Inst. for Research and Applications of Fuzzy Modeling,

70100 Ostrava, Czech Republic

Irina.Perfilieva@osu.cz

Abstract. For a numerical physical quantity v, because of the mea-

surement imprecision, the measurement result ṽ is, in general, different

from the actual value v of this quantity. Depending on what we know

about the measurement uncertainty Δv
def
= ṽ − v, we can use different

techniques for dealing with this imprecision: probabilistic, interval, etc.

When we measure the values v(x) of physical fields at different lo-

cations x (and/or different moments of time), then, in addition to the

same measurement uncertainty, we also encounter another type of local-
ization uncertainty: that the measured value may come not only from

the desired location x, but also from the nearby locations.

In this paper, we discuss how to handle this additional uncertainty.

1 Formulation of the Problem

Need for data processing. In many real-life situations, we are interested in the
value of a quantity which is difficult (or even impossible) to measure directly.
For example, we may be interested in the distance to a star, or in the amount of
water in an underground water layer. Since we cannot measure the corresponding
quantity y directly, we measure it indirectly. Specifically,

– we find easier-to-measure quantities x1, . . . , xn which are related to the de-
sired quantity y by a known dependence y = f(x1, . . . , xn);

– we measure the values of the auxiliary quantities x1, . . . , xn; and
– we use the results x̃1, . . . , x̃n of measuring the auxiliary quantity to compute

the estimate ỹ = f(x̃1, . . . , x̃n) for the desired quantity y.

Example. To find the distance y to a star, we can use the following parallax
method:

– we measure the orientations x1 and x2 to this star at two different seasons,
– we measure the the distance x3 between the spatial locations of the corre-

sponding telescopes at these two seasons (i.e., in effect, the diameter of the
earth orbit);

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 456–465, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Gauging Accuracy and Resolution of Measuring Physical Fields 457

– then, reasonably simply trigonometric computations enable us to describe
the desired distance y as a function of the easier-to-measure quantities x1,
x2, and x3.

General case. In general, computations related to such indirect measurements
form an important particular case of data processing.

Need to take uncertainty into account. Measurements are never absolutely ac-
curate. As a result, the measurement results x̃i are, in general, different from
the actual (unknown) values xi of the measured quantities: Δxi

def= x̃i − xi �= 0.
Because of this, the result ỹ = f(x̃1, . . . , x̃n) of data processing is, in general,
different from the actual (unknown) value y = f(x1, . . . , xn): Δy

def= ỹ − y �= 0.
Thus, in practical applications, we need to take this uncertainty into account.

Interval uncertainty. In practice, we often only know the upper bound Δi on
the measurement errors Δxi

def= x̃i − xi: |Δxi| ≤ Δi. In this case, the only
information that we have about the actual values xi is that xi belongs to the
interval xi

def= [x̃i −Δi, x̃i + Δi].
Under such interval uncertainty, we need to find the range of possible values

of y: y = {f(x1, . . . , xn) : xi ∈ xi}. The problem of computing this range is
known as interval computations; see, e.g., [4].

Need to measure physical fields. In practice, the situation is often more complex:
the values that we measure can be:

– values v(t) of a certain dynamic quantity v at a certain moment of time t
– or, more generally, the values v(x, t) of a certain physical field v at a certain

location x and at a certain moment of time t.

For example, in geophysics, we are interested in the values of the density at
different locations and at different depth.

Need to take uncertainty into account when measuring physical fields. When we
measure physical fields, not only we get the measured value ṽ ≈ v with some
inaccuracy, but also the location x is not exactly known. Moreover, the sensor
picks up the “averaged” value of v at locations close to the approximately known
location x̃. In other words, in addition to inaccuracy ṽ �= v, we also have a finite
(spatial) resolution x̃ �= x.

Estimating uncertainty related to measuring physical fields: challenging problems.
In general, the measured value ṽi differs from the averaged value vi by the
measurement imprecision Δvi = ṽi− vi. In the interval case, we know the upper
bound Δi on this measurement error |Δvi| ≤ Δi. Thus, the averaged quantity vi

can take any value from the interval [vi, vi], where vi
def= ṽi−Δi and vi

def= ṽi+Δi.
Based on these bounds on vi, what can we learn about the original field v(x)?

The answer to this questions depends on what we know about the averaging, i.e.,
on the dependence of vi on v(x). In principle, there are three possible situations:

458 V. Kreinovich and I. Perfilieva

– sometimes, we know exactly how the averaged values vi are related to v(x);
– sometimes, we only know the upper bound δ on the location error x̃−x (this

is similar to the interval case);
– sometimes, we do not even know δ.

In the following sections, we describe how to process all these types of uncertainty.

2 Possibility of Linearization

Sometimes, the signal v(x) that we are measuring is large, i.e., the values of the
signal are much larger than the noise (and the measurement errors in general).
In such situations, the measured values well represent the actual signal, and for
many applications, the measurement errors can be safely ignored.

The need to take into account measurement errors becomes important only
when the signal v(x) is relatively weak. In this case, we can expand the de-
pendence of vi on v(x) in Taylor series. To describe this expansion, let us first
consider a simplified case in which there are only finitely many spatial points x(1),
. . . , x(N), so the field v(x) is described by finitely many values v(j) def= v

(
x(j)

)
,

j = 1, . . . , N . In this case, the dependence of the quantity vi on these values
v(1), . . . , v(N) can be expanded into Taylor series

vi = ai +
N∑

j=1

aij · v(x(j)) +
N∑

j=1

N∑
j=k

aijk · v(x(j)) · v(x(k)) + . . . (1)

The description in terms of finitely many spatial points is an approximate de-
scription of the actual field v(x). The more points we consider and the denser
they are located in the domain D on which this field is defined, the more accu-
rate the corresponding approximation. In the limit, when the distance between
the points tends to 0 (and the approximation accuracy tends to 0), the sums in
(1) turn into integrals, so the formula (1) takes the form

vi = ai +
∫

D

wi(x) · v(x) dx +
∫

D×D

wi(x, x′) · v(x) · v(x′) dx dx′ + . . . (2)

for appropriate functions wi(x), wi(x, x′), etc.
Since the signal v(x) is relatively weak, we can safely ignore quadratic and

higher order terms in this dependence. Also, we know that in the absence of the
field, when v(x) = 0, the differences vi are 0s, so we have ai = 0. As a result, we
get a linear expression for vi in terms of v(x): vi =

∫
D wi(x) · v(x) dx.

3 Case of Full Information about the Resolution

Description. In this section, we consider the case when we know the exact ex-
pression for this dependence, i.e., when we know the weights wi(x).

Gauging Accuracy and Resolution of Measuring Physical Fields 459

The notion of fuzzy transform. Intuitively, each “averaged” value vi can be
viewed as the value of the field v(x) at a “fuzzy” point characterized by uncer-
tainty wi(x). Because of this interpretation, the transformation from the original
function v(x) to the set of values v1, . . . , vn is also known as a fuzzy transform;
see, e.g., [6,7].

Comment. From the physical viewpoints, the weights wi(x) are not probabilities.
However, since probability theory is the oldest – and most developed – formalism
for describing uncertainty, it is not surprising that often, computational techniques
from probability theory can be efficiently used to described other types of uncer-
tainty as well. In particular, in the following text, we will see that for our problem,
techniques from imprecise probability theory can be very useful.

What we want to predict. Based on the measurement results ṽ1, . . . , ṽn, we would
like to reconstruct the field v(x). From the pragmatic viewpoint, knowing the
field means being able to predict the results of all other measurements of this
field.

Each such measurement can be characterized by its own averaging function
w(x). Thus, predicting the result of the measurement means predicting the cor-
responding averaged value y =

∫
D

w(x) · v(x) dx.
Of course, the space of functions is infinite-dimensional, which means that to

uniquely reconstruct a function, we need to know infinitely many parameters.
Thus, based on n numbers ṽ1, . . . , ṽn, we cannot uniquely reconstruct the func-
tion v(x) – and thus, we cannot uniquely reconstruct the desired averaged value
y. So, the problem is to find the range [y, y] of this value y.

Prediction problem as a particular case of (infinite-dimensional) linear program-
ming (LP). The lower endpoint y is the smallest possible value of y, the upper
endpoint y is the largest possible value of y. Thus, the problems of finding the
desired endpoints y and y can be formulated in the following optimization form:
minimize (maximize) y − ∫

D
w(x) · v(x) dx under the constraints

vi ≤
∫

D

wi(x) · v(x) dx ≤ vi, 1 ≤ i ≤ n. (3)

In both problems, we optimize the value of a linear functional under linear con-
straints. In the finite-dimensional case, when we have finitely many unknowns,
such constraint optimization problems are known as linear programming (LP)
problems. In our case, an unknown is a function v(x), and the linear space of
all possible functions is infinite-dimensional. Thus, from the mathematical view-
point, our problems are infinite-dimensional analogues of linear programming
(LP) problems; see, e.g., [1].

Without prior restrictions on the field v(x), we cannot predict anything. In gen-
eral, if we do not impose any conditions on the function v(x), then both bounds

460 V. Kreinovich and I. Perfilieva

are infinite – unless w(x) is a linear combination of wi(x). Indeed, it is known
that every vector w which is orthogonal to all the vectors t, which are orthogonal
to all the vectors w1, . . . , wn, belongs to the linear space generated by the vectors
w1, . . . , wn – i.e., is a linear combination of w1, . . . , wn. Thus, if a vector w cannot
be represented as a linear combination of the vectors w1, . . . , wn, then there exists
a vector t which is orthogonal to all wi but not to w. With respect to the space
of all the functions, this means that if w(x) cannot be represented as a linear
combination of the functions wi(x), then there exists a function t(x) which is
orthogonal to all wi(x) (in the sense that 〈wi, t〉 def=

∫
D wi(x) · t(x) dx = 0) but

not to w(x) (〈w, t〉 �= 0).
For an arbitrary real number λ, instead of the actual field v(x), we can now

consider a new field vλ(x) def= v(x) + λ · t(x). For this new field vλ(x), the values
of vi are the same as for the original field v(x) – and hence, satisfy the same
inequalities. However, the new value y is equal to yλ = 〈w, v〉 + λ · 〈w, t〉. Since
〈w, t〉 �= 0, for appropriate λ, we can get this value yλ equal to any given real
number. Thus, indeed, the smallest possible value of y is y = −∞, and the
largest possible value of y is y = +∞.

Non-negative fields. In many practical problems, the field v(x) can only have
non-negative values v(x) ≥ 0. For example, in geophysics, the density v(x) can-
not be negative. Under this additional restrictions, we already have non-trivial
bounds y and y.

Dual LP techniques. For solving these problems, we can use the experience
of imprecise probabilities [5,9] where we have similar LP problems. In these
problems, the unknown function v(x) is the non-negative probability density
function (pdf), and the observed values have the same form

vi =
∫

D

wi(x) · x(x) dx. (4)

For example, the second moment of the probability distribution with the pdf
v(x) has the form

∫
D x2 · v(x) dx, so it has the desired form with the weight

function wi(x) = x2.
In the imprecise probability theory, it is reasonable to ask what is, e.g., the

interval of possible values of the third moment if we know values of (or bounds
on) the first and the second moments. In mathematical terms, we thus arrive at
the same infinite-dimensional LP problems as in our measurement cases.

According to the experience of imprecise probabilities, many efficient algo-
rithms for solving the corresponding LP problems come from considering dual
LP problems, i.e., by computing the range [v, v], where

v = sup
{∑

yi · vi :
∑

yi · wi(x) ≤ w(x)
}

; (5)

and v = inf {∑ yi · vi : w(x) ≤∑
yi · wi(x)} .

Indeed, if
∑

yi·wi(x) ≤ w(x), then, by multiplying both sides of this inequality
by v(x) ≥ 0 and integrating over x, we conclude that

∑
yi · vi ≤ y. Since we

Gauging Accuracy and Resolution of Measuring Physical Fields 461

know that vi ≥ vi, we thus get a lower bound for y: y ≥ ∑
yi · vi. Thus, y is

larger than the largest of these bounds, i.e., y ≥ v. So, we can conclude that
y ≥ v. Similarly, we can conclude that y ≤ v, i.e., that the dual LP interval [v, v]
is the enclosure for the desired range [y, y].

Comments.

– For finite-dimensional LP problems, the dual interval is exactly equal to the
original one.

– Our problems are easier than the imprecise probability ones, since the func-
tions wi(x) are usually localized and thus, for each x, usually at most a few
functions wi(x) differ from 0. This makes checking the sums easier.

– Checking the inequalities like
∑

yi · wi(x) ≤ w(x) is even easier in a prac-
tically important case of piece-wise linear functions wi(x) and w(x). In this
case, it is sufficient to check this inequality at endpoints of linearity intervals
– then, due to linearity, it will be automatically true for all internal points
as well.

4 Situations in Which We Only Know Upper Bounds

General idea. In other cases – similarly to the interval setting – we do not only
know the upper bounds δ on the location error x̃ − x. A natural question is:
when is a model v(x) consistent with the given observation (ṽ, x̃)?

In this case, the measured value ṽ is Δ-close to a convex combination of values
v(x) for x s.t. ‖x− x̃‖ ≤ Δx. Thus, vδ(x̃)−Δ ≤ ṽ ≤ vδ(x̃) + Δ, where:

vδ(x̃) def= inf{v(x) : ‖x− x̃‖ ≤ δ}, and vδ(x̃) def= sup{v(x) : ‖x− x̃‖ ≤ δ}. (6)

Case of interval models. In real life, we rarely have an exact model v(x). Usually,
we have bounds on v(x), i.e., an interval-valued model v(x) = [v−(x), v+(x)]. An
observation (ṽ, x̃) consistent with this “interval-valued” model if there exists a
model v(x) ∈ v(x) which is consistent with this observation.

Since the values vδ and vδ monotonically depend on v(x), this consistency
leads to v−

δ (x̃)−Δ ≤ ṽ ≤ v+
δ (x̃) + Δ.

Relation to Hausdorff metric. In many practical problems, the field v(x) contin-
uously depends on x. For continuous functions, inf and sup on a bounded closed
set {x : ‖x − x̃‖ ≤ δ} are attained at some value. Thus, the above criterion for
consistency between a model and observations can be simplified.

Namely, in this case, the set m̃ of all measurement results (ṽ, x̃) is consistent
with the model v(x) if and only if

∀(ṽ, x̃) ∈ m̃∃(v(x), x) ∈ v−1 ((ṽ, x̃) is (Δ, δ)-close to (v(x), x)), (7)

i.e., |ṽ − v| ≤ Δ and ‖x − x̃‖ ≤ δ. In this formula, v−1 def= {(v(x), x) : x ∈ D},
i.e., v−1 is the inverse relation to the relation v = {(x, v(x)) : x ∈ D} describing
the function v(x).

462 V. Kreinovich and I. Perfilieva

The notion of (Δ, δ)-closeness between points (v, x) and (v′, x′) can be for-
mally described as d((v, x), (v′, x′)) ≤ (Δ, δ), where

d((v, x), (v′, x′)) def= (|v−v′|, ‖x−x′‖); (Δ, δ) ≤ (Δ′, δ′)⇔ ((Δ ≤ Δ′)& (δ ≤ δ′)).

This definition is similar to the standard definition of the Hausdorff metric dH :
dH(A, B) ≤ ε means that

∀a ∈ A∃b ∈ B (d(a, b) ≤ ε) and ∀b ∈ B ∃a ∈ A (d(a, b) ≤ ε). (8)

(This similarity was noticed in [2].)
Specifically, the above definition is an asymmetric two-dimensional version

of Hausdorff metric. Let us show, on a simple example, that our “distance” is
indeed asymmetric.

Case 1: ��

�

In this example,

– the actual field has the form v(0) = 1 and v(x) = 0 for x �= 0, and
– the measurements results are all zeros, i.e., ṽ = 0 for all x̃.

In this case, all the measurements are consistent with the model:

– the values ṽ = 0 for x̃ �= 0 are consistent with v = 0 for x = x̃, and
– the value ṽ = 0 for x̃ = 0 is consistent with v(x) = 0 for x = δ s.t. |x̃−x| ≤ δ.

Case 2: ��

�

In this example,

– the actual field is all zeros, i.e., v(x) = 0 for all x, and
– the measurement results are ṽ = 1 for x̃ = 0, and ṽ = 0 for all x̃ �= 0.

Here, when Δ < 1, the measurement (1, 0) is inconsistent with the model, be-
cause for all x which are δ-close to x̃ = 0, we have v(x) = 0 hence we should
have |x̃− v(x)| = |x̃| ≤ Δ.

5 Case of Minimal Knowledge about Uncertainty

Idea. Yet another case is when we do not even know δ. It happened, e.g., when
we solve the seismic inverse problem to find the velocity distribution. In this
case, a natural heuristic idea is:

– to add a perturbation of size δ0 (e.g., sinusoidal) to the reconstructed field
ṽ(x),

– to simulate the new measurement results,
– to apply the same algorithm to the simulated results, and
– to reconstruct the new field ṽnew(x).

If the perturbations are not visible in ṽnew(x) − ṽ(x), this means that details
of size δ0 cannot be reconstructed and so, the actual resolution is δ > δ0. This
approach was partially described in [3,8].

Gauging Accuracy and Resolution of Measuring Physical Fields 463

Linearization and its consequences. Which perturbations should we choose? To
select the optimal perturbations, we will take into account the fact that since
perturbations are usually small, we can safely linearize their effects. Thus, if we
know the results Δv1(x), . . . , Δvk(x) of applying perturbations e1(x), . . . , ek(x),
we can predict the result Δv(x) of applying a linear combination

e(x) = c1 · e1(x) + . . . + ck · ek(x), (9)

as Δv(x) = c1 · Δv1(x) + . . . + ck · Δvk(x). In other words, once we know the
results of applying k different perturbations e1(x), . . . , ek(x), we thus also know
the results of applying an arbitrary perturbation from the linear space L =
{c1 ·e1(x)+ . . .+ck ·ek(x)}. From this viewpoint, it does not matter what exactly
perturbations ei(x) we select as long as they are within the same space L.

Thus, the question of optimally selecting a given number k of perturbations
can be formulated as the question of optimally selecting a k-dimensional linear
subspace L in the space of all functions.

Shift-invariance: a natural requirement. To select the space L, let us use the fact
that in most physical problems, there is no preferred spatial location. Thus, in
principle, we can choose different locations as origins (x = 0) of the coordinate
system.

It is reasonable to require that the optimal family of perturbations do not
change if we simply change the origin x = 0. For example, if we select a point
with the original coordinates x0 as the origin of a new coordinate system, then
the new coordinates will have the form xnew = x−x0. In the original coordinates,
the optimal family of perturbations has the form {c1·e1(x)+. . .+ck·ek(x)}. In the
new coordinates xnew, we should expect the exact same family of perturbations
{c1 · e1(xnew)+ . . .+ ck · ek(xnew)}. In terms of the original coordinates, this new
family has the form {c1 · e1(x − x0) + . . . + ck · ek(x− x0)}.

This “shifted” family must coincide with the original one. In particular, every
basis function ei(x−x0) from the shifted basis must belong to the original family,

i.e., must have the form ei(x + x0) =
k∑

j=1

cij(x0) · ej(x) for some coefficients cij

which are, in general, depending on the shift x0.

Smoothness: an additional requirement. In many physical problems, it is reason-
able to consider smooth perturbations, i.e., perturbations for which the functions
ei(x) are differentiable. In this case, by considering different values x, we get a
system of linear equations for determining cij(x0) in terms of the smooth func-
tions ei(x + x0) and ej(x). The solution of a system of linear equations is – due
to Cramer’s rule – a smooth function of the coefficients and of the right-hand
sides. Thus, the solutions cij(x0) are also smooth.

From the requirements to the description of the desired family L. Let us fix one of
the spatial coordinates, e.g., the coordinate x1. For shifts w.r.t. this coordinate,

we have ei(x1 + x0, x2, . . .) =
k∑

j=1

cij(x0) · ej(x1, x2, . . .)

464 V. Kreinovich and I. Perfilieva

Since the functions ei(x1+x0, . . .) and cij(x0) are smooth, we can differentiate
both sides of the above equation with respect to x0 and take x0 = 0. For each
components of x0, we get a system of linear differential equations e′i =

∑
c′ij(0)·ej

with constant coefficients. A general solution to such a system is well known: it
is a linear combination of expressions x

k1j

1 · exp(a1j ·x1) with complex values a1j

(eigenvalues of the matrix c′ij(0)) and integers k1j ≥ 0 (multiplicities of these
eigenvalues).

Some of these solutions tend to infinity exponentially fast. Such solutions are
not useful as perturbations, since perturbations must be uniformly small. So, it
is reasonable to restrict ourselves to bounded perturbations.

This boundedness eliminates the terms with Re(a1j) �= 0. Thus, the only re-
maining terms correspond to imaginary values a1j – i.e., to sinusoids. For these
terms, boundedness also eliminates terms with k1j > 0, so we only get pure sinu-
soids: ei(x1, x2, . . .) =

∑
j

Cj(x2, . . .) · sin(ω1j · x1). The functions Cj(x2, . . .) can

be computed as linear combinations of the values ei(x1, x2, . . .) corresponding to
different values x1. On the other hand, the dependence of ei on x2 is also a linear
combination of sinusoids. Thus, the functions Cj(x2, . . .) are linear combinations
of sinusoids in x2. Substituting these linear combinations instead of Cj(x2, . . .)
into the above formula, and taking into account that sin(a) · sin(b) is a linear
combination of cos(a + b) and cos(a− b), we conclude that the dependence of ei

on x1 and x2 takes the form

ei(x1, x2, x3, . . .) =
∑

k

Ck(x3, . . .) · sin(ω1k · x1 + ω2k · x2). (10)

Similarly, we can add x3, etc., and conclude that each function ei(x) is a linear
combination of the sinusoids sin(

∑
ωj · xj + ϕ).

Resulting recommendation. We conclude that the optimal perturbations are lin-
ear combinations of sinusoids. We thus arrive at the following recommendation:
to find the spatial resolution δ with which we can reconstruct the field v(x), add
a sinusoid with spatial wavelength δ0 to the reconstructed field ṽ(x), simulate
the new measurement result, reconstruct the new field ṽnew(x), and see if the
perturbations are visible in ṽnew(x) − ṽ(x).

6 Conclusions

When we measure the values v(x) of physical fields at different locations x
(and/or different moments of time), then, in addition to the measurement un-
certainty, we also encounter another type of localization uncertainty: that the
measured value may come not only from the desired location x, but also from
the nearby locations. In this paper, we discuss how to handle this additional
uncertainty. Specifically:

– in situations in which we know the exact dependence of the measured value
on the field v(x), we can use infinite-dimensional versions of linear program-
ming techniques;

Gauging Accuracy and Resolution of Measuring Physical Fields 465

– in situations in which we only know upper bounds on localization errors, we
can use 2-dimensional versions of Hausdorff metric; and

– in situations in which we have no information about localization uncertainty,
we can use sinusoidal perturbations to acquire this information.

Acknowledgments. This work was supported in part by the National Science
Foundation grant HRD-0734825, by Grant 1 T36 GM078000-01 from the Na-
tional Institutes of Health, and by Grant MSM 6198898701 from MŠMT of
Czech Republic. The authors are thankful to the anonymous referees and to the
participants of PPAM’09 for valuable suggestions.

References

1. Anderson, E.J., Nash, P.: Linear Programming in Infinite-Dimensional Spaces. Wi-

ley, New York (1987)

2. Anguelov, R., Markov, S., Sendov, B.: The set of Hausdorff continuous functions –

the largest linear space of interval functions. Reliable Computing 12, 337–363 (2006)

3. Averill, M.G.: A Lithospheric Investigation of the Southern Rio Grande Rift, PhD

Dissertation, University of Texas at El Paso, Department of Geological Sciences

(2007)

4. Jaulin, L., et al.: Applied Interval Analysis. Springer, London (2001)

5. Kuznetsov, V.: Interval Statistical Methods. Radio i Svyaz Publ., Moscow (1991)

(in Russian)

6. Perfilieva, I.: Fuzzy transforms: theory and applications. Fuzzy Sets and Sys-

tems 157, 993–1023 (2006)

7. Perfilieva, I., Novák, V., Dvorák, A.: Fuzzy transform in the analysis of data. Inter-

national Journal of Approximate Reasoning 48(1), 36–46 (2008)

8. Pinheiro da Silva, P., et al.: Propagation and Provenance of Probabilistic and Inter-

val Uncertainty in Cyberinfrastructure-Related Data Processing and Data Fusion.

In: Muhanna, R.L., Mullen, R.L. (eds.) Proceedings of the International Workshop

on Reliable Engineering Computing REC 2008, Savannah, Georgia, February 20-22,

pp. 199–234 (2008)

9. Walley, P.: Statistical Reasoning with Imprecise Probabilities. Wiley, Chichester

(1991)

A New Method for Normalization of Interval

Weights

Pavel Sevastjanov, Pavel Bartosiewicz, and Kamil Tkacz

Institute of Comp. & Information Sci., Czestochowa University of Technology,

Dabrowskiego 73, 42-200 Czestochowa, Poland

sevast@icis.pcz.pl

Abstract. A new method for normalization of interval weights based

on the so-called “interval extended zero” method is proposed. The three

desirable intuitively obvious properties of normalization procedure are

defined. The main of them is based on the assumption that the sum of

normalized interval weights should be an interval centered around 1 with

a minimal width. The advantages of a new method are illustrated with

use of six numerical examples. It is shown that a new method performs

better than known methods for normalization of interval weights as it

provides the results with the properties which are close to the desirable

ones.

Keywords: interval weights, normalization.

1 Introduction

The problem of interval and fuzzy weights normalization is of perennial interest,
as it is related to the problems of Multiple Criteria Decision Making (MCDM)
and the Depmpster-Shafer theory of evidence in the interval and fuzzy settings.
For example, when the interval or fuzzy AHP is used in MCDM , the inter-
val and fuzzy weights obtained from an interval or fuzzy pairwise comparison
matrix should be normalized [1,2,16,19]. Moreover, normalized interval or fuzzy
weights also facilitate the computation of interval and fuzzy weighted average
[5,8,7,10,11]. In the Dempster-Shafer theory, imprecise evidence such as interval
or fuzzy belief structures [4,17,20] also needs to be normalized. Therefore, the
development of appropriate methods for interval and fuzzy weighs normalization
is an important problem.

Let us consider the known methods for interval weights normalization. These
methods are usually based on interval or fuzzy arithmetic. In the interval setting,
the use of conventional interval arithmetic leads to the following reasoning [19].

Let [wi] = [wL
i , wU

i] and [ŵi] = [ŵL
i , ŵU

i], i = 1, . . . , n be non-normalized and
normalized interval weights, respectively. Then

[ŵL
i , ŵU

i] =
[wi]

n∑
j=1

[wj]
=

⎡⎢⎢⎣ wL
i

n∑
j=1

wU
j

,
wU

i
n∑

j=1

wL
j

⎤⎥⎥⎦ , i = 1, . . . , n. (1)

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 466–474, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A New Method for Normalization of Interval Weights 467

It is known that expression (1) produces too wide normalized intervals, i.e.,
intervals [ŵi] usually are substantially wider than initial non-normalized intervals
[wL

i , wU
i]. It is seen that expression (1) is a formal interval extension of the

normalization procedure used in the case of real valued weights. It is important
that in the case of real valued weights, the normalization provides the weights,
the sum of which is equal to 1, whereas in the interval setting, the equality
n∑

i=1

[ŵi] = 1 seems to be senseless as it holds only in the case of degenerated

intervals (ŵL
i = ŵU

i , i = 1, . . . , n) or when at least one of intervals [ŵi] is
inverted (ŵL

i > ŵU
i).

So the properties of interval normalization should be defined. Such properties
which can be treated also as the definition of normalization are proposed in [18]
as follows.

Let N =
{

X = (x1, . . . , xn)|ŵL
i ≤ xi ≤ ŵU

i , i = 1, . . . , n,
n∑

i=1

xi = 1
}

be a

set of normalized weight vectors. Then the interval weight vector
[ŵ] =([ŵL

1 , ŵU
1],...,[ŵL

n , ŵU
n]) is said to be normalized if and only if it satisfies

the following two conditions:

(1). There exists at least one normalized weight vector X = (x1, . . . , xn) in the
set N (N is none empty);
(2) All ŵL

i and ŵU
i , i = 1, . . . , n are attainable in N .

It is shown in [18] that condition (1) is fulfilled if
n∑

i=1

ŵL
i ≤ 1 and

n∑
i=1

ŵU
i ≥ 1.

Condition (2) means that each bound of [ŵi], i = 1, . . . , n is attained for at
least one vector in N , i.e., there exists such X ∈ N that xj = ŵL

i , xi ≤ ŵU
i , i =

1, ..., n, i �= j and xk = ŵL
i , xi ≥ ŵL

i , i = 1, ..., n, i �= k with
n∑

i=1

xi = 1. The

violation of condition (1) leads to the violation of condition (2), but the reverse

is not always true. The above two conditions are fulfilled if
n∑

i=1

ŵL
i + max

j
(ŵU

j −

ŵL
j) ≤ 1,

n∑
i=1

ŵU
i − max

j
(ŵU

j − ŵL
j) ≥ 1. It is show in [18] that if for an initial

interval weight vector the condition (1) is violated, then it can be normalized
with use of the following model:

min / maxwi = zi/

n∑
j=1

zj , s.t.wL
j ≤ zj ≤ wU

j , j = 1, ..., n.

This model results in the expression [18]:

[ŵi] = [ŵL
i , ŵU

i] =

⎡⎢⎣ wL
i

wL
i +

∑
j
=i

wU
j

,
wU

i

wU
i +

∑
j
=i

wL
j

⎤⎥⎦ . (2)

468 P. Sevastjanov, P. Bartosiewicz, and K. Tkacz

The following model is proposed in [18] when only the condition (2) is violated:

min / max ŵi, s.t.wL
j ≤ ŵj ≤ wU

j , j = 1, ..., n,

n∑
j=1

ŵj = 1.

This model is a particular case of the possibility distribution model proposed by
Dubois and Prade [6] and leads to the expression:

[ŵi] = [ŵL
i , ŵU

i] =

⎡⎣max

⎛⎝wL
i , 1−

∑
j
=i

wU
j

⎞⎠ , min

⎛⎝wU
i , 1−

∑
j
=i

wL
j

⎞⎠⎤⎦ . (3)

Conditions (1) and (2) are rather of mathematical nature and do not form an
exhaustive set of desirable properties of the interval weights normalization.

Our intension is to introduce such properties of interval weights normalization
which are close to those of the normalization of real valued weights.

The first such property can be formulated as follows. As the sum of normalized

real valued weights is always equal to 1, it seems natural to require
n∑

i=1

[ŵi]

=“near 1”, where “near 1” may be presented by an interval.
The second desirable property of the interval weights normalization may be

the remaining of ratios between the means of normalized intervals as close as
possible to those of initial intervals as the normalization of real valued weights
does not change these ratios at all. It is intuitively obvious also that after a
proper normalizing procedure the ratios between interval lengths should be close
enough to those before normalization. This is the third desirable property.

In the current report, we propose a new method for normalizing interval
weights which provides the results with above three properties.

The rest of the paper is set out as follows. In Section 2, we recall the basics of
the so-called “interval extended zero” method for the solution of linear interval
equations [14,15] and show that it can be used for the normalization of interval
weights. Section 3 is devoted to the comparison of the results obtained with
use of approaches developed in [18] and a new method proposed in the current
paper. Section 4 concludes with some remarks.

2 The Use of “Interval Extended Zero” Method for the
Interval Weights Normalization

As the equation
n∑

i=1

[ŵi] = 1 is not verified for positive regular intervals [ŵi],

i = 1, . . . , n, we propose to find such interval normalization factor [x] that

n∑
i=1

[ŵi][x] = “near 1”, (4)

where “near 1” may be presented by an interval too. The more precise definition
of “near 1” may be obtained using the following reasoning [14,15]: “Without loss

A New Method for Normalization of Interval Weights 469

of generality, we can define the degenerated (usual) zero as the result of operation
a-a, where a is any real valued number or variable. Hence, in a similar way we can
define an “interval zero” as the result of operation [a] - [a], where [a] is an interval.
It is easy to see that for any interval [a] we get [a, a]-[a, a]=[a−a, a−a]. Therefore,
in any case, the result of interval subtraction [a]-[a] is an interval centered around
0.” Similarly we can define the “near 1” as an interval centered around 1.

The problem (4) can be solved with use of “interval extended zero” method
[14,15].

Let us denote [a] =
n∑

i=1

[ŵi]. Then the problem
n∑

i=1

[ŵi] = 1 can be presented

in the more general form:
[a][x]− [b] = 0, (5)

where [a], [b] are positive intervals or real values. Of course, when [a] or [b] or
both are intervals, the equation (5) has no solution as in the left hand side we
have interval, whereas the right hand side is the degenerated zero (non-interval
value). It is shown in [14,15] that if we treat the equation (5) as the result of
interval extension of usual real valued equation ax − b = 0 then the right hand
side of this equation (zero) should be extended too using the above definition of
“interval zero”. It must be emphasized that this definition says nothing about
the width of “interval zero”. Really, when extending equation with previously
unknown values of variables in the left hand side, only what we can say about
the right hand side is that it should be interval symmetrical with respect to 0
with not defined width. Hence, as the result of interval extension of ax − b = 0
in general case we get

[a, a][x, x]− [b, b] = [−y, y]. (6)

Of course, the value of y in Eq.(6) is not yet defined and this seems to be quite
natural since the values of x, x are also not defined. In the case of positive
intervals [a] and [b], i.e., a, a, b, b > 0 from Eq. (6) we get{

ax− b = −y, ax− b = y. (7)

Finally, from Eq. (7) we obtain only one linear equation with two unknown
variables x and x:

ax + ax− b− b = 0. (8)

If there are some constraints on the values of unknown variables x and x, then
Eq. (8) with these constraints may be considered as the so called Constraint Sat-
isfaction Problem (CSP)[3] and an interval solution may be obtained. The first
constraint on the variables x and x is a solution of Eq. (8) assuming x = x. In this
degenerated case, we get the solution of Eq. (8) as xm = b+b

a+a . It is easy to see that
xm is the upper bound for x and the lower bound for x (if x > xm or x < xm we get
an inverted solution of Eq. (8)). The natural low bound for x and upper bond for x

may be defined using basic definitions of interval arithmetic [9,13] as x= b
a , x = b

a .

Thus, we have [x] = [b
a , xm] and [x] = [xm, b

a]. These intervals can be narrowed
taking into account Eq. (8), which in the spirit of CSP is treated as a constraint.

470 P. Sevastjanov, P. Bartosiewicz, and K. Tkacz

It is clear that the right bound of x and the left bound of x , i.e., xm, can not be
changed as they present the degenerated (crisp) solution of (8). So let us focus
of the left bound of x and right bound of x.

From (8) we have

x =
b + b− ax

a
, x ∈ [xm,

b

a
], x =

b + b− ax

a
, x ∈ [

b

a
, xm]. (9)

It is shown in [15] that for the positive [a] and [b], Eq. (9) have the following
interval solution:

[x] =
[
xmax,

b + b

a + a

]
, [x] =

[
b + b

a + a
, xmin

]
, (10)

where xmax = b
a , xmin = b+b

a − ab
a2 . Expressions (10) define all possible solutions of

Eq. (6). The values of xmin, xmax constitute an interval which produce the widest
interval zero after substitution of them in Eq. (6). In other words, the maximum
interval solution’s width wmax = xmin−xmax corresponds to the maximum value
of y: ymax = ab

a −b. Substitution of the degenerated solution x = x = xm in Eq. (6)

produces the minimum value of y: ymin = a·b−a·b
a+a . Obviously, for any permissible

solution x′ > xmax there exists corresponding x′ < xmin, for each x′′ > x′ the
inequalities x′′ < x′ and y′′ < y′ take place. Thus, the formal interval solution
(10) factually represents the continuous set of nested interval solutions of Eq.(6)
which can be naturally interpreted as a fuzzy number [14,15]. It is seen that values
of y characterize the closeness of the right hand side of Eq. (6) to the degenerated
zero and the minimum value ymin is defined exclusively by the interval parame-
ters [a] and [b]. Hence, the values of y may be considered, in a certain sense, as
a measure of interval solution’s uncertainty caused by the initial uncertainty of
Eq. (6). Therefore, the following expression was introduced in [14,15]:

α = 1− y − ymin

ymax − ymin
, (11)

which may be treated as a certainty degree of interval solution of Eq. (6). We
can see that α rises from 0 to 1 with decreasing of he interval’s width from
the maximum value to 0, i.e., with increasing of the solution’s certainty. Con-
sequently, the values of α may be treated as labels of α-cuts representing some
fuzzy solution of Eq. (6). Finally, the solution is obtained in [14,15] in the form
of triangular fuzzy number

x̃ =
{

xmax,
b + b

a + a
, xmin

}
. (12)

Obviously, we can assume the support of obtained fuzzy number to be a solution
of analyzed problem. Such a solution may be treated as the “pessimistic” one
since it corresponds to the lowest α-cuts of resulting fuzzy value. The word
“pessimistic”is used here to emphasize that this solution is charged with the
largest imprecision as it is obtained in the most uncertain conditions possible
on the set of considered α -cuts. On the other hand, it seems natural to utilize

A New Method for Normalization of Interval Weights 471

all additional information available in the fuzzy solution. The resulting fuzzy
solution can be reduced to the interval solution using well known defuzzification
procedures. In the considered case, the defuzzified left and right boundaries of
the solution can be represented as

xdef =

∫ 1

0
x(α)dα∫ 1

0 dα
, xdef =

∫ 1

0
x(α)dα∫ 1

0 dα
(13)

In the case of [a], [b] > 0, from (6) and (11) the expressions for x(α) and x(α)
can be obtained. Substituting them into (13) we get

xdef =
b

a
− ymax + ymin

2a
, xdef =

b

a
+

ymax + ymin

2a
. (14)

It is shown in [14,15] that the proposed method provides the considerable re-
ducing of resulting interval’s length in comparison with that obtained using
conventional interval arithmetic rules.

Let us turn to the normalization problem. To obtain the interval normalization
factor [x] in Eq. (4), we rewrite Eq. (6) as follows:

n∑
i=1

[wi] · [x]− [1, 1] = [−y, y].

The solution is obvious and can be obtained substituting
n∑

i=1

[wi] instead of [a]

and 1 instead of b, b, in (10). As the result we get

[x] =

⎡⎢⎢⎢⎣ 1
n∑

i=1

wU
i

,
2

n∑
i=1

wU
i

−

n∑
i=1

wL
i(

n∑
i=1

wU
i

)2

⎤⎥⎥⎥⎦ . (15)

Thus, the normalization procedure can be presented as

[ŵi] = [wi] · [x], i = 1, ..., n. (16)

It is easy to see that for normalized weights [ŵi], i = 1, ..., n always
n∑

i=1

[ŵi] ⊂

[0, 2] and the sum
n∑

i=1

[ŵi] is an interval centered around 1. In our case, the

expressions (14) take the form:

[x]def =

⎡⎢⎢⎣ 1
n∑

i=1

wL
i

− ymax + ymin

2
n∑

i=1

wL
i

,
1

n∑
i=1

wU
i

+
ymax + ymin

2
n∑

i=1

wU
i

⎤⎥⎥⎦ , (17)

where ymax = 1−
n∑

i=1
wL

i

n∑
i=1

wU
i

, ymin =

n∑
i=1

wU
i −

n∑
i=1

wL
i

n∑
i=1

wL
i +

n∑
i=1

wU
i

.

472 P. Sevastjanov, P. Bartosiewicz, and K. Tkacz

The normalization is presented as follows:

[ŵi] = [wi] · [x]def , i = 1, ..., n. (18)

3 The Comparison of a New Method with the Known
Approaches for Interval Weights Normalization

As a base of comparison, we analyze here the six interval weights vectors num-
bered as follows:

1. [w] = [0.06, 0.99], [0.1, 0.11], [0.5, 0.55].
2. [w] = [0.3, 0.4], [0.3, 0.7], [0.4, 0.5], [0.5, 0.6].
3. [w] = [0.3, 0.6], [0.2, 0.4], [0.1, 0.2].
4. [w] = [0.01, 0.99], [0.01, 0.7], [0.01, 0.5].
5. [w] = [2, 3], [3, 4], [1, 5].
6. [w] = [3, 5], [2, 6], [7, 10], [1, 6], [3, 7], [6, 7].

The numbers of the above examples correspond to the numbers in Table 1 and

Table 2. In Table 1, the sums of normalized interval weights
n∑

i=1

[ŵi] obtained

with use of the known methods (expressions (1),(2),(3)) and a new method (ex-
pressions 16,18) are presented.

In the examples 2,5 and 6, the condition 1 (see Section 1) is not fulfilled.
Therefore, the expression (3) can not be used and the corresponding entries in
Table 1 and Table 2 are empty.

It is seen that only a new method (expressions (16) and (18)) provides results

such that
n∑

i=1

[ŵi] = “near 1”, where “near 1” is an interval centered around 1.

Thus, only a new method is characterized by the first desirable property defined
in Section 1. Moreover, a new method, especially expression (18), provides sub-

stantially more narrow sums
n∑

i=1

[ŵi] than known approaches.

To analyze the other two desirable properties defined in Section 1, the corre-
sponding measures of closeness of compared ratios were introduced.

Let mi = wL
i +wU

i

2 , li = wU
i −wL

i , i = 1, ..., n be the means and lengths of non-
normalized weights and m̂i, l̂i be the means and lengths of normalized weights.

Table 1. The sums of normalized weights

N Non − normalized Exp. 1 Exp. 2 Exp. 3 Exp. 16 Exp. 18

1 [0.66, 1.65] [0.4, 2.5] [0.46, 1.56] [0.94, 1.06] [0.4, 1.6] [0.49, 1.51]

2 [1.5, 2.2] [0.68, 1.47] [0.74, 1.31] [0.68, 1.32] [0.75, 1.25]

3 [0.6, 1.2] [0.5, 2] [0.62, 1.45] [0.7, 1.2] [0.5, 1.5] [0.58, 1.42]

4 [0.03, 2.19] [0.01, 73] [0.02, 2.91] [0.03, 2.18] [0.01, 1.99] [0.02, 1.98]

5 [6, 12] [0.5, 2] [0.58, 1.5] [0.5, 1.5] [0.58, 1.42]

6 [32, 61] [0.52, 1.91] [0.55, 1.73] [0.52, 1.48] [0.61, 1.39]

A New Method for Normalization of Interval Weights 473

Table 2. The aggregated measures σm and σl

N
Exp. 1 Exp. 2 Exp. 3 Exp. 16 Exp. 18

σm σl σm σl σm σl σm σl σm σl

1 1.036 46.63 1.095 51.67 0.869 51.22 0.563 42.95 0.27 36.154

2 0.035 1.139 0.028 1.417 0.026 1.008 0.013 0.705

3 0 0 0.219 0.821 0.215 0.646 0 0 0 0

4 0.012 0.013 0.629 0.657 0.014 0.014 0.006 0.007 0.003 0.007

5 0.114 0.239 0.135 0.406 0.074 0.174 0.038 0.104

6 0.121 0.992 0.079 1.037 0.079 0.866 0.04 0.65

Then the aggregated measure of closeness of ratios mi

mj
to ratios m̂i

m̂j
may be

presented as σm = 1
n(n−1)

√
n∑

i=1

n∑
j
=i=1

(
mi

mj
− m̂i

m̂j

)2

.

Similarly we define the aggregated measure of closeness of ratios li
lj

to ratios

l̂i
l̂j

as σl = 1
n(n−1)

√
n∑

i=1

n∑
j
=i=1

(
li
lj
− l̂i

l̂j

)2

.

The resulting σm and σl are presented in Table 2. It is seen that in all examples
a new method provides substantially less values of σm and σl than the known
methods. The best results are obtained with the use of expression (18).

It is worthy to note that in all examples, the condition 1 (see Section 1) for
resulting normalized interval weights is verified and the condition 2 is fulfilled
in most cases. In our opinion, the condition 2 seems to be rather artificial one,
since in many cases it is in contradiction with the more natural desirable property
n∑

i=1

[ŵi] = “near 1”.

4 Conclusion

A new method for normalization of interval weights based on the so-called “in-
terval extended zero” method is developed. The three desirable properties of
normalization procedure are defined. The fist of them is based on the assump-
tion that the sum of normalized interval weights should be an interval centered
around 1 with a minimal width. The other desirable property is the remain-
ing of ratios between the means of normalized intervals as close as possible to
those of initial interval weights. The third desirable property is based on the
intuitively obvious assumption that after a proper normalizing procedure the
ratios between interval lengths should be close enough to those before normal-
ization.

With use of six numerical examples, it is shown that a new method pro-
vides the results with the properties that are substantially close to the de-
fined three desirable ones than the known methods for normalization of interval
weights.

474 P. Sevastjanov, P. Bartosiewicz, and K. Tkacz

References

1. Bonder, C.G.E., Graan, J.G., Lootsma, F.A.: Multi-criteria decision analysis with

fuzzy pairwise comparisons. Fuzzy Sets and Systems 29, 133–143 (1989)

2. Chang, P.T., Lee, E.S.: The estimation of normalized fuzzy weights. Comput. Math.

Appl. 29(5), 21–42 (1995)

3. Cleary, J.C.: Logical Arithmetic. Future Computing Systems 2, 125–149 (1987)

4. Denoeux, T.: Reasoning with imprecise belief structures. Internat. J. Approx. Rea-

son. 20, 79–111 (1999)

5. Dong, W.M., Wong, F.S.: Fuzzy weighted averages and implementation of the

extension principle. Fuzzy Sets and Systems 21, 183–199 (1987)

6. Dubois, D., Prade, H.: The use of fuzzy numbers in decision analysis. In: Gupta,

M.M., Sanchez, E. (eds.) Fuzzy Information and Decision Processes, pp. 309–321.

North-Holland, Amsterdam (1982)

7. Guh, Y.Y., Hon, C.C., Wang, K.M., Lee, E.S.: Fuzzy weighted average: a max-min

paired elimination method. Comput. Math. Appl. 32(8), 115–123 (1996)

8. Guh, Y.Y., Hon, C.C., Lee, E.S.: Fuzzy weighted average: the linear programming

approach via Charnes and Cooper’s rule. Fuzzy Sets and Systems 117, 157–160

(2001)

9. Jaulin, L., Kieffir, M., Didrit, O., Walter, E.: Applied Interval Analysis. Springer,

London (2001)

10. Kao, C., Liu, S.T.: Fractional programming approach to fuzzy weighted average.

Fuzzy Sets and Systems 120, 435–444 (2001)

11. Liou, T.S., Wang, M.J.: Fuzzy weighted average: An improved algorithm. Fuzzy

Sets and Systems 49, 307–315 (1992)

12. Mikhailov, L.: Deriving priorities from fuzzy pairwise comparison judgments. Fuzzy

Sets and Systems 134, 365–385 (2003)

13. Moore, R.E.: Interval analysis. Prentice-Hall, Englewood Cliffs (1966)

14. Sevastjanov, P., Dymova, L.: Fuzzy solution of interval linear equations. In: Proc.

of 7th Int. Conf. Paralel Processing and Applied Mathematics, Gdansk, pp. 1392–

1399 (2007)

15. Sevastjanov, P., Dymova, L.: A new method for solving interval and fuzzy equa-

tions: linear case. Information Sciences 17, 925–937 (2009)

16. Wang, Y.M., Yang, J.B., Xu, D.L.: Interval weight generation approaches based

on consistency test and interval comparison matrices. Appl. Math. Comput. 167,

252–273 (2005)

17. Wang, Y.M., Yang, J.B., Xu, D.L., Chin, K.S.: The evidential reasoning approach

for multiple attribute decision making using interval belief degrees. European J.

Oper. Res. (in Press)

18. Wang, Y.-M., Elhag, T.M.S.: On the normalization of interval and fuzzy weights.

Fuzzy Sets and Systems 157, 2456–2471 (2006)

19. Xu, R.: Fuzzy least-squares priority method in the analytic hierarchy process. Fuzzy

Sets and Systems 112, 359–404 (2000)

20. Yager, R.R.: Dempster-Shafer belief structures with interval valued focal weights.

Internat. J. Intelligent Systems 16, 497–512 (2001)

A Global Optimization Method for Solving

Parametric Linear Systems Whose Input Data
Are Rational Functions of Interval Parameters

Iwona Skalna

AGH University of Science and Technology

Faculty of Management, Department of Applied Computer Science

ul. Gramatyka 10, 60–067 Krakow, Poland

skalna@galaxy.uci.agh.edu.pl

Abstract. An interval global optimization method combined with the

Direct Method for solving parametric linear systems is used for com-

puting a tight enclosure for the solution set of parametric linear system

whose input data are non-linear functions of interval parameters. Re-

vised affine arithmetic is used to handle the nonlinear dependencies. The

Direct Method performs the monotonicity test to speed up the conver-

gence of the global optimization. It is shown that the monotonicity test

significantly increases the convergence of the global optimization method.

Some illustrative examples are solved by the discussed method, and the

results are compared to literature data produces by other methods.

Keywords: parametric linear systems, non-affine dependencies, revised

affine arithmetic (RAA), global optimization.

1 Introduction

Many real-life problems can be modelled by systems of linear equations or safely
transformed to the linear case. When uncertain model parameters are introduced
by intervals, then a parametric interval linear system must be appropriately
solved to meet all possible scenarios. The problem of solving parametric interval
linear system in not trivial. Usually, a parametric solution set is not an interval
vector. Hence, instead of the parametric solution set itself, an interval vector
containing the parametric solution set, outer interval solution, is calculated. The
tightest outer interval solution is called the interval hull solution. In general case,
the problem of computing the hull solution is NP-hard ([27]). However, when the
parametric solution is monotone with respect to all interval parameters, interval
hull solution can be calculated by solving at most 2n real linear systems. The
monotonicity approach and the combinatorial approach are favoured by many
authors. However, these approaches are valid only under some assumptions. In
general case, when the parametric solution is not monotone, the problem of
computing the interval hull solution can be solved using optimization techniques.
To compute the hull, 2n constrained optimization problems must be solved.

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 475–484, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

476 I. Skalna

Depending on the problem to be solved, parametric systems can be clas-
sified into two types: systems involving affine-linear dependencies and systems
involving nonlinear dependencies. So far, mainly problems involving affine-linear
dependencies have been solved. In this work, the global optimization method is
used to solve parametric linear system involving non-affine dependencies. Non-
linear functions of parameters are transformed into revised affine forms [33] using
affine arithmetic. Then, the Direct Method for solving parametric linear systems
with affine dependencies is used to calculate inclusion function of the objective
function and to perform the monotonicity test to speed up the convergence of
the optimization. The Direct Method is an alternative to the more popular self-
validated parametric iteration developed by Rump [28] and usually gives better
results. The global optimization method produces hull solution of the paramet-
ric interval system with affine dependencies which is an outer solution to the
original parametric linear system with nonlinear dependencies. The evolution-
ary optimization method [30] which approximates from below hull solution is
used to measure the quality of the solution produced by the proposed approach.

The paper is organized as follows: Sect.2 contains preliminaries on paramet-
ric interval linear systems. Section 3 introduces affine arithmetic. Then, revised
affine forms and operations on them a re described. Section 4 is devoted to the
problem of solving parametric linear systems involving nonlinear dependencies.
In Sect.4 the optimization problem is outlined. This is followed by description of
the global optimization algorithm. Next, some illustrative examples and the re-
sults of computational experiments are presented. The paper ends with summary
conclusions.

2 Preliminaries

Real quantities will be denoted by italic faces, while their interval counterparts
will be denoted by bold italic faces. Capital letters will be used to denote sets and
matrices. Let �� denote the set of real compact intervals. Then, ��n will denote
interval vectors, and ��

n×n will denote square interval matrices ([21]). For an
interval x = [x, x] = {x ∈ � | x � x � x}, some characteristics are defined: the
midpoint x̌ = (x + x)/2 and the radius rad (x) = (x− x)/2. They are applied to
interval vectors and matrices componentwise.

Now, consider linear algebraic system

A(p)x(p) = b(p) , (1)

where p = (p1, . . . , pk)T is a k-dimensional vector of parameters, A(p) is an
n × n matrix, and b(p) is an n-dimensional vector. The elements of A(p) and
b(p) are continuous (nonlinear) functions of parameters:

aij(p) = fij(p), bi(p) = fi(p) , (2)

fi, fij : �k −→ �, i, j = 1, . . . , n.

A Global Optimization Method for Solving Parametric Linear Systems 477

When the parameters are considered to be unknown (or uncertain) and vary
within prescribed intervals pi ∈ pi, i = 1, . . . , k, a family of linear systems is
obtained. It is usually written in a compact form

A(p)x(p) = b(p) (3)

and called a parametric interval linear system. A set of all solutions, parametric
(united) solution set, is defined ([10,12,28]) as follows:

S(p) = {x | A(p)x = b(p), for some p ∈ p} . (4)

The solution set S(p) is bounded if A(p) is non-singular for every p ∈ p. For
a nonempty bounded set S ⊂ �

n an interval hull is defined by

�S = [inf S, sup S] =
⋂
{Y ∈ ��n | S ⊆ Y } . (5)

3 Affine Arithmetic

Affine arithmetic is an extension of interval arithmetic which enables to take
into account dependencies between the variables. In affine arithmetic, a partially
unknown quantity x is represented by an affine form x̂ which is a first degree
polynomial [32]:

x̂ = x0 + x1ε1 + . . . + xnεn , (6)

where xi ∈ �, εi ∈ [−1, 1]. The central value of the affine form x̂ is denoted
by x0, xi are partial deviations, and εi are dummy variables [35] (noise symbols
[32], variation variables [6]). The magnitude of the dependency between two
quantities x and y represented by affine forms x̂ and ŷ is determined by partial
deviations xi and yi. The sign of the partial deviations defines the direction of
the correlation between x and y.

The fundamental invariant of affine arithmetic states that, at any instant
between AA operations, there is a single assignment of values from [−1, 1] to
each of the dummy variables in use that makes the value of every affine form x̂
equal to the true value of the corresponding ideal quantity x.

3.1 Revised Affine Arithmetic

One of the limitations of the standard affine arithmetic is that the number of
dummy variables grows gradually during the computation, and the computation
cost heavily depends on this number. The remedy, following [11], [15], [33], is to
use revised affine forms. The revised affine form, defined as

x̂ = x0 + x1ε1 + . . . + xnεn + ex[−1, 1] , (7)

consists of two separate parts: the standard affine part of length n, and the error
[−ex, ex], ex > 0 (ex is called an error variable). In rigorous computations, ex is
also used to accumulate the rounding errors in floating-point arithmetic.

478 I. Skalna

3.2 Affine Operations

In order to evaluate a formula with RAA, each elementary operation on real
quantities must be replaced by a corresponding operation on their affine forms,
returning an affine form.

Let
x̂ = x0 + x1ε1 + . . . + xnεn + ex[−1, 1] ,
ŷ = y0 + y1ε1 + . . . + ynεn + ey[−1, 1] .

If an RAA operation f(x̂, ŷ) is an affine function of x̂ and ŷ, then ẑ = f(x̂, ŷ)
is an affine combination of the dummy variables εi, and the accumulative error
ez is a combination of error variables ex, ey. Thus, for any α, β, γ ∈ �,

ẑ = αx̂ + βŷ + γ =

(αx0 + βy0 + γ) +
n∑

i=1

(αxi + βyi)εi + (|α|ex + |β|ey)[−1, 1] .

In particular, x̂− x̂ = 0.
Now, consider multiplication of affine forms ẑ = f(x̂, ŷ) = x̂ŷ. The product is

a quadratic polynomial f∗(ε1, . . . , εn, ex, ey) of the dummy variables and error
variables. Following [32], the range estimate ±rad(x̂)rad(ŷ) for the nonlinear
term might be used. Then, the multiplication will return

ẑ = x0y0 +
n∑

i=1

(x0yi + xiy0)εi + (|x0|ey + |y0|ex + rad(x̂)rad(ŷ))[−1, 1] .

Based on the multiplication formula proposed by Kolev [11], another multipli-
cation method have been suggested in [33]:

x̂ · ŷ =
(
x0y0 + 0.5

n∑
i=1

xiyi

)
+

n∑
i=1

(x0yi + xiy0)εi

+
(
exey + eyu + exv + uv − 0.5

n∑
i=1

|xiyi|
)
[−1, 1] ,

(8)

where u = |x1|+ |x2|+ . . . + |xn|, v = |y1|+ |y2|+ . . . + |yn|.
The reciprocal 1/ŷ of an affine form ŷ = y0+y1ε1+y2ε2+. . .+ynεn+ey[−1, 1]

can be calculated using Chebyshev approximation ([11], [18]). Then, the division
rule can be defined as (cf. [7]):

x̂

ŷ
=

x0

y0
+

1
ŷ

(
n∑

i=1

(
xi − x0

y0
yi

)
εi + |ex − x0

y0
ey|[−1, 1]

)
. (9)

In particular, x̂/x̂ = 1.
For elementary univariate functions, an affine approximations can be found

via Theorem 2 from [32] or Theorem 1 from [33]. For the purposes of this paper,
Chebyshev approximation is used.

A Global Optimization Method for Solving Parametric Linear Systems 479

4 Solving Parametric Linear Systems With Non-affine
Dependencies

Consider system of parametric linear interval equations (3). The coefficients
are then non-affine function of interval parameters aij(p) = fij(p), bi(p) =
fi(p). Affine arithmetic enables to transform the nonlinear coefficients into re-
vised affine forms (7). A new linear system A(q)x(q) = b(q) with affine-linear
dependencies:

aij(q) = ωij0 + ωT
ijq ,

bi(q) = ωi0 + ωT
i q ,

(10)

where ωij , ωi ∈ �l (i, j = 1, . . . , n), qi = [−1, 1], is thus obtained.
A parametric linear system with coefficients given by formula (10) can be

solved using the Direct Method [29] for solving parametric linear systems. Affine
forms (10) are inclusion functions of non-affine coefficients (2). The Direct
Method will then produce an interval enclosure of the solution set of the original
parametric linear system with non-affine dependencies.

It is worth to mention that the iterative method proposed by Rump [28] is
widely used to solve parametric linear systems with interval coefficients, while
the Direct Method usually gives better results for problems involving affine-linear
dependencies.

5 Optimization Problem

The problem of computing the interval hull solution for the parametric linear
system (3) with affine dependencies (10) can be written as a problem of solving
2n (n is the number of equations) constrained optimization problems:

min
q∈([−1, 1])l

xi(q), max
q∈([−1, 1])l

xi(q) , (11)

(i = 1, . . . , n), where xi(q) =
{
A(q)−1b(q)

}
i

is an implicitly given objective
function for the i-th optimization problem.

Theorem 1. Let A(q) be regular, q ∈ ��
l. Let xi

min and xi
max denote global

solutions of the i-th minimization and maximization problems (11), respectively.
Then the interval vector

x = [xmin, xmax] =
([

xi
min, xi

max

])n

i=1
= �S(e) . (12)

5.1 Global Optimization

Optimization problems (11) are solved using an interval global optimization
(GOM) method with selected acceleration techniques. The maximization prob-
lem is transformed into the respective minimization problem, hence the research
focuses on global minimization. Inclusion functions of the objective functions
xi(p) are calculated using the Direct Method.

480 I. Skalna

5.2 Monotonicity Test

The monotonicity test is used to figure out whether the function f is strictly
monotone in a subbox y ⊆ x. Then, y cannot contain a global minimizer in its
interior. Therefore, if f satisfies

∂f

∂xi
(y) < 0 ∨ ∂f

∂xi
(y) > 0 , (13)

then the subbox y can be reduced to one of its edges. The proper endpoint,
degenerated subbox, is then entered into the list.

Monotonicity test is performed this time using the MCM [31] method which
is based on the Direct Method ([29]) for solving parametric linear systems. This
special treatment is necessary since the objective functions are given implicitly
(see Sect.5). The detailed description of the method for checking the monotonic-
ity can be found in [31].

5.3 Global Optimization Algorithm

Below the global optimization algorithm with the monotonicity test is presented.

1. Set y = q, f = minx(y)
2. Initialize the list L = {(f, y)} and the cutoff level z = max x(y)
3. Remove (f, y) from the list L
4. Bisect y: y1 ∪ y2

5. Calculate x(yi), fi = min x(yi) (i = 1, 2), z = min
i
{z, max x(yi)}

6. Discard the pair (fi, yi) if fi > z (i = 1, 2) (cutoff test)
7. Perform the monotonicity test using the MCM method
8. Add any remaining pairs to L so that the list remains increasingly

sorted by function value; if the list becomes empty then STOP
9. If w(y) ≤ ε (where ε is an algorithm parameter), then print

x(y), y and STOP, else GOTO 3.

6 Examples and Numerical Results

To check the performance of the proposed approach, some illustrative exam-
ples of parametric interval linear systems with general (non-affine) dependencies
([5,13,23]) are considered. The Evolutionary Optimization Method (EOM) (cf.
[30]) is used to verify the overestimation. The EOM method produces a very
good inner approximation of the hull solution of the original parametric linear
systems with nonlinear dependencies.

Example 1 ([5], [13]).(−(p1 + p2)p4 p2p4

p5 p3p5

)(
x1

x2

)
=

(
1
1

)
,

p1, p3 ∈ [0.96, 0.98], p2 ∈ [1.92, 1.96], p4, p5 ∈ [0.48, 0.5].

A Global Optimization Method for Solving Parametric Linear Systems 481

Table 1. Solutions of Ex.1: the solution enclosures generated by the Global Optimiza-

tion Method and the Evolutionary Optimization Method

GOM EOM

x1 [0.3773261, 0.4545408] [0.3776424, 0.4541765]

x2 [1.6259488, 1.7280411] [1.6260162, 1.7272530]

Example 2 ([5], [13])⎛⎝−(p1 + 1)p2 p1p3 p2

p2p4 p2
2 1

p1p2 p3p5
√

p2

⎞⎠⎛⎝x1

x2

x3

⎞⎠ =

⎛⎝1
1
1

⎞⎠ ,

p1 ∈ [1, 1.2], p2 ∈ [2, 2.2], p3 ∈ [0.5, 0.51], p4, p5 ∈ [0.39, 0.4].

Table 2. Solutions of Ex.2: the solution enclosures generated by the Global Optimiza-

tion Method and the Evolutionary Optimization Method

GOM EOM

x1 [0.0563815, 0.0652607] [0.0567702, 0.0652458]

x2 [0.0775223, 0.0899316] [0.0775458, 0.0894860]

x3 [0.5594312, 0.6060671] [0.5597984, 0.6054807]

Example 3 ([3], [24]) Consider parametric linear system described by the
following relations (all components not specified below are equal to zero):

a11 = a66 = u7 + 12u6, a13 = a31 = a68 = a86 = 6u4,
a16 = a61 = −u7, a22 = a77 = u8 + 12u5,
a24 = a25 = a42 = −a47 = a52 = −a57 = −a74 = −a75 = −a78 = −a87 = 6u3,
a27 = a72 = −12u5, a33 = a55 = a88 = α + 4u2,
a34 = a43 = a58 = a85 = −α, a44 = α + 4u1, a45 = a54 = 2u3,
b1 = H ,

where
u1 = (EbIb)/Lb, u2 = (EcIc)/Lc,
u3 = (EbIb)/L2

b , u4 = (EcIc)/L2
c ,

u5 = (EbIb)/L3
b , u6 = (EcIc)/L3

c ,
u7 = (AbEb)/Lb, u8 = (AcEc)/Lc,

Typical nominal parameter values Eb, Ec, Ib, Ic, Ab, Ac, α, H , and the corre-
sponding worst case uncertainties as proposed in [3] are shown in Tab.3. Linear
system, where Lb, Lc and H are replaced by their nominal values, is solved with
parameter uncertainties which are 1% of the value in the last column of Tab.3:

Eb, Ec ∈ [28965200, 29034800], Ib ∈ [509.49, 510.51], Ic ∈ [271.728, 272.272]
Ab ∈ [10.287, 10.313], Ac ∈ [14, 3856, 14.4144], α ∈ [276195960, 278726040].

482 I. Skalna

Table 3. Parameters for Ex.3, their nominal values and the worst case uncertainties

Parameter Nominal value Uncertainty

Eb 29 · 106 lbs/in2 ±348 · 104

Ec 29 · 106 lbs/in2 ±348 · 104

Ib 510 in4 ±51

Ic 272 in4 ±27.2

Ab 10.3 in2 ±1.3
Ac 14.4 in2 ±1.44

α 2.77461 · 109 lb-in/rad ±1.26504 · 109

H 5305.5 lbs

Lb 144 in

Lc 288 in

Table 4 lists both the guaranteed outer enclosure of the parametric solution
set produced by GOM method and inner estimation of the hull solution obtained
by EOM method. Coincident digits are underlined.

Table 4. Solutions of Ex.3: the solution enclosures generated by the Global Optimiza-

tion Method and the Evolutionary Optimization Method

GOM EOM

x1 [0.1528387, 0.1536945] [0.1528665, 0.1536661]

x2 [0.0003229, 0.0003262] [0.0003229, 0.0003261]

x3 [−0.0009678, −0.0009615] [−0.0009676, −0.0009617]

x4 [−0.0004672, −0.0004641] [−0.0004671, −0.0004642]

x5 [−0.0004285, −0.0004255] [−0.0004284, −0.0004256]

x6 [0.1502880, 0.1511376] [0.1503158, 0.1511092]

x7 [−0.0006700, −0.0006625] [−0.0006699, −0.0006626]

x8 [−0.0009359, −0.0009296] [−0.0009357, −0.0009298]

7 Conclusions

The global optimization method for solving parametric linear systems involving
nonlinear dependencies is proposed. It is demonstrated that guaranteed sharp
solution enclosures are generated by the proposed method. Contrary to other
approaches, present method is highly automated. It requires no preliminary spe-
cialized construction method and no additional tools. The quality of the solution
depends only on a quality of approximation of non-affine forms by revised affine
forms. The main drawback of the proposed approach is the computational com-
plexity. However, this can be overcome by using parallel programming which will
be the subject of the future work.

A Global Optimization Method for Solving Parametric Linear Systems 483

References

1. Aughenbaugh, J., Paredis, C.: Why are intervals and imprecisions important in

engineering design? In: Muhanna, R.L., Mullen, R.L. (eds.) Proceedings of the NSF

Workshop on Reliable Engineering Computing (REC 2006), pp. 319–340 (2006)

2. Casado, L.G., Garcia, I., Csendes, T.: A new multisection technique in interval

methods for global optimization. Computing 65, 263–269 (2000)

3. Corliss, G., Foley, C., Kearfott, R.B.: Formulation for reliable analysis of structural

frames. Reliable Computing 13, 125–147 (2007)

4. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-

ing. Addison-Wesley, Reading (1989)

5. El-Owny, H.: Parametric Linear System of Equations, whose Elements are Non-

linear Functions. In: 12th GAMM - IMACS International Symposion on Scientific

Computing, Computer Arithmetic and Validated Numerics, SCAN (2006)

6. Fang, C.F., Chen, T., Rutenbar, R.: Floating-point error analysis based on affine

arithmetic. In: Proceedings of IEEE International Conference on Acoustic, Speech

and Signal Processing (ICASSP), vol. 2, pp. 561–564 (2003)

7. Hansen, E.R.: A Generalised Interval Arithmetic. LNCS, vol. 29, pp. 7–18.

Springer, Heidelberg (1975)

8. Hansen, E.: Global optimization using interval analysis - the multidimensional case.

Numerical Mathematics 43, 247–270 (1980)

9. Hansen, E.: Global optimization using interval analysis. Marcel Dekker, New York

(1992)

10. Jansson, C.: Interval linear systems with symmetric matrices, skew-symmetric ma-

trices and dependencies in the right hand side. Computing 46(3), 265–274 (1991)

11. Kolev, L.V.: An Improved Interval Linearization for Solving Nonlinear Problems.

Numerical Algorithms 37(1-4), 213–224 (2004)

12. Kolev, L.V.: A method for outer interval solution of linear parametric systems.

Reliable Computing 10(3), 227–239 (2004)

13. Kolev, L.V.: Solving Linear Systems whose Elements are Non-linear Functions of

Intervals. Numerical Algorithms 37, 213–224 (2004)

14. Lallemand, B., Plessis, G., Tison, T., Level, P.: Modal Behaviour of Structures

Defined by Imprecise Geometric Parameters. Proceedings of International Modal

Analysis Cconference 4062(2), 1422–1428 (2000)

15. Messine, F.: Extentions of Affine Arithmetic: Application to Unconstrained Global

Optimization. Journal of Universal Computer Science 8(11), 992–1015 (2002)

16. Mullen, R., Muhanna, R.L.: Efficient interval methods for finite element solutions.

In Proceedings of the 16th Annual International Symposium on High Performance

Computing Systems and Applications, 161–168 (2002)

17. Miyajima, S., Miyata, T., Kashiwagi, M.: On the Best Multiplication of the Affine

Arithmetic. Transactions of the Institute of Electronics, Information and Commu-

nication Engineers J86-A(2), 150–159 (2003)

18. Miyajima, S., Kashiwagi, M.: A dividing method utilizing the best multiplication

in affine arithmetic. IEICE Electronics Express 1(7), 176–181 (2004)

19. Muhanna, R.L., Erdolen, A.: Geometric uncertainty in truss systems: an interval

approach. In: Muhanna, R.L., Mullen, R.L. (eds.) Proceedings of the NSF Work-

shop on Reliable Engineering Computing (REC), pp. 229–244 (2006)

20. Muhanna, R.L., Kreinovich, V., Solin, P., Cheesa, J., Araiza, R., Xiang, G.: Interval

finite element method: New directions. In: Muhanna, R.L., Mullen, R.L. (eds.) Pro-

ceedings of the NSF Workshop on Reliable Engineering Computing (REC 2006),

Savannah, Georgia, USA, pp. 229–244 (2006)

484 I. Skalna

21. Neumaier, A.: Interval Methods for Systems of Equations, Encyclopedia of Math-

ematics and its Applications. Cambridge University Press, Cambridge (1990)

22. Neumaier, A., Pownuk, A.: Linear Systems with Large Uncertainties, with Appli-

cations to Truss Structures. Reliable Computing 13(2), 149–172 (2007)

23. Popova, E.D.: Solving Linear Systems Whose Input Data Are Rational Functions

of Interval Parameters. Numerical Methods and Applications, 345–352 (2006)

24. Popova, E., Iankov, R., Bonev, Z.: Bounding the Response of Mechanical Structures

with Uncertainties in all the Parameters. In: Muhanna, R.L., Mullen, R.L. (eds.)

Proceedings of the NSF Workshop on Reliable Engineering Computing (REC), pp.

245–265 (2006)

25. Ratz, D.: Automatische Ergebnisverifikation bei globalen Optimierungsproblemen.

Ph.D. Thesis, Universität Karlsruhe, Karlsruhe, Germany (1992)

26. Ratz, D., Csendes, T.: Subdivision Direction Selection in Interval Methods for

Global Optimization. SIAM Journal on Numerical Analysis 34(3), 922–938 (1997)

27. Rohn, J., Kreinovich, V.: Computing exact componentwise bounds on solutions of

linear systems with interval data is NP-hard. SIAM Journal on Matrix Analysis

and Applications (SIMAX) 16, 415–420 (1995)

28. Rump, S.M.: Verification Methods for Dense and Sparse Systems of Equations. In:

Herzberger, J. (ed.) Topics in Validated Computations – Studies in Computational

Mathematics, pp. 63–136. Elsevier, Amsterdam (1994)

29. Skalna, I.: A Method for Outer Interval Solution of Systems of Linear Equations

Depending Linearly on Interval Parameters. Reliable Computing 12(2), 107–120

(2006)

30. Skalna, I.: Evolutionary Optimization Method for Approximating the Solution Set

Hull of Parametric Linear Systems. In: Boyanov, T., Dimova, S., Georgiev, K.,

Nikolov, G. (eds.) NMA 2006. LNCS, vol. 4310, pp. 361–368. Springer, Heidelberg

(2007)

31. Skalna, I.: On Checking the Monotonicity of Parametric Interval Solution. In:

Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2007.

LNCS, vol. 4967, pp. 1400–1409. Springer, Heidelberg (2008)

32. de Figueiredo, L.H., Stolfi, J.: Self-Validated Numerical Methods and Applications.

Brazilian Mathematics Colloquium monograph (1997)

33. Vu, X., Sam-Haroud, D., Faltings, B.V.: A Generic Scheme for Combining Multiple

Inclusion Representations in Numerical Constraint Propagation. Artificial Intelli-

gence Laboratory, Swiss Federal Institute of Technology in Lausanne (EPFL), Tech.

Report No. IC/2004/39 (2004)

34. Zalewski, B., Muhanna, R.L., Mullen, R.: Bounding the response of mechanical

structures with uncertainties in all the parameters. In: Muhannah, R.L., Mullen,

R.L. (eds.) Proceedings of the NSF Workshop on Reliable Engineering Computing

(REC 2006), pp. 439–456 (2006)

35. http://www.ic.unicamp.br/ stolfi/EXPORT/projects/affine-arith/

Welcome.html

http://www.ic.unicamp.br/~stolfi/EXPORT/projects/affine-arith/Welcome.html
http://www.ic.unicamp.br/~stolfi/EXPORT/projects/affine-arith/Welcome.html

Direct Method for Solving Parametric Interval

Linear Systems with Non-affine Dependencies

Iwona Skalna

AGH University of Science and Technology

Faculty of Management, Department of Applied Computer Science

ul. Gramatyka 10, 60–067 Krakow, Poland

skalna@galaxy.uci.agh.edu.pl

Abstract. Many real-life problems can be modelled by systems of lin-

ear equations or safely transformed to the linear case. When uncertain

model parameters are introduced by intervals, then a parametric inter-

val linear system must properly be solved to meet all possible scenarios

and yield useful results. In general case, system coefficients are nonlinear

functions of parameters. The Direct Method for solving such systems is

proposed. Affine arithmetic is used to handle nonlinear dependencies.

Some illustrative examples are solved and the results are compared to

the literature data produced by other methods.

Keywords: parametric linear systems, non-affine dependencies, affine

arithmetic (AA), Direct Method.

1 Introduction

When dealing with real-world problems, one can rarely avoid uncertainty. At the
empirical level, uncertainty is an inseparable companion of almost any measure-
ment. The difference between the measured and the actual values is called a mea-
surement error. Since the absolute value of the measurement error can usually
be bounded, it is therefore guaranteed that the actual (unknown) value of the
desired quantity belongs to the interval with the midpoint being the measured
value, and the radius being the upper bound for the (absolute) value of the
possible errors. Moreover, outward rounding forces the result to be the interval
approximation of the correct real interval.

One of the main obstacles in the wide-spread use of interval methods is that
the range estimates computed with naive (straightforward) interval arithmetic
(IA) tend to be too large, especially in complicated expressions or long iter-
ative computations. This is mainly due to the dependency problem (interval
dependency). The formulas for the basic arithmetic operations assume that the
(unknown) values of the operands vary independently over their given intervals.
Therefore, when arguments of expression are partially dependent on each other
or expression contains multiple instances of one or more variables, the result
obtained by interval arithmetic may be much wider then the exact range of
the result quantity. To decrease excess width, it is therefore desirable to keep

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 485–494, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

486 I. Skalna

track of how the values in the expression depend on each other and how the
corresponding intermediate result depend on the input. This idea has been suc-
cessfully implemented by two approaches, Hansen’s generalized interval arith-
metic [5] and affine arithmetic [29]. Hansen’s generalized interval arithmetic and
affine arithmetic keep track of correlations between computed and input quan-
tities, and therefore are able to provide much tighter bounds for the computed
quantities. Affine arithmetic is somewhat similar to Hansen’s generalized inter-
val arithmetic, but differs in several important details (cf. [20]). There are also
other models that provide first-order approximations of dependencies in interval
expressions, including centered forms [18], first-order Taylor arithmetic [18], and
the ellipsoidal calculus of Chernousko, Kurzhanski, and Ovseevich [14]. Affine
arithmetic seems to have several advantages over them, including a wider range
of applications and a more convenient programming interface (cf. [29]).

Many real-life problems can be described by systems of linear equations, or
safely transformed to the linear case, involving uncertain model parameters.
When uncertain parameters are introduced by intervals, then a parametric inter-
val linear system is obtained with components that are, in general case, nonlinear
functions of parameters. Several methods for solving parametric interval linear
systems with affine linear dependencies has been developed during last years
[1],[3], [19], [22], [24], [26],[28]. The Direct Method for solving such systems been
proposed in [30].

The goal is to expand the Direct Method to solve parametric linear systems
with general (nonlinear) dependencies. Affine arithmetic is used to estimate non-
linear functions of parameters by affine linear forms. This results in a new para-
metric linear system with affine-linear dependencies which can be solved using
the Direct Method.

The paper is organised in five sections. In Sect.2, preliminary information
on parametric interval linear systems is presented. Section 3 introduces affine
arithmetic. The Direct Method for solving parametric interval linear systems
with non-affine dependencies is described in Sect.4. This is followed by some
numerical examples. The paper ends with summary conclusions.

2 Parametric Interval Linear Systems

The set of n-dimensional interval vectors and the set of n×m interval matrices
will be denoted, respectively, by ��n and ��

n×m. Italic faces will be used for
real quantities, while bold italic faces will denote their interval counterparts.

For a square interval matrix A = (aij) the comparison matrix 〈A〉 is de-
fined as the matrix with diagonal components 〈a〉ii = 〈aii〉 and off-diagonal
components 〈a〉ij = −|aij | (for i �= j), where 〈aij〉 = min {|aij | | aij ∈ aij},
|aij | = max {|aij | | aij ∈ aij}.

A square interval matrix A is an H-matrix iff there exist a real vector u > 0
such that 〈A〉u > 0.

Now, consider linear algebraic system

A(p)x(p) = b(p) , (1)

Direct Method for Solving Parametric Interval Linear Systems 487

where p = (p1, . . . , pk)T is a k-dimensional vector of parameters, A(p) is an
n × n matrix, and b(p) is an n-dimensional vector. The elements of A(p) and
b(p) are continuous (nonlinear) functions of parameters:

aij(p) = fij(p), bi(p) = fi(p) , (2)

fi, fij : �k −→ �, i, j = 1, . . . , n.
When the parameters are considered to be unknown (or uncertain) and vary

within prescribed intervals pi ∈ pi, i = 1, . . . , k, a family of linear systems is
obtained. It is usually written in a compact form

A(p)x(p) = b(p) (3)

and called a parametric interval linear system. The set of all solutions, parametric
(united) solution set is defined as follows:

S(p) = {x | A(p)x = b(p), for some p ∈ p} . (4)

The solution set is bounded if A(p) is non-singular for every p ∈ p. For a nonempty
bounded set S ⊂ �

n an interval hull is defined as follows:

�S =
⋂
{Y ∈ ��n | S ⊆ Y } . (5)

It is quite expensive to obtain the solution set S(p) or its interval hull �S(p)
(interval hull solution). In general case, the problem of computing the hull solu-
tion is NP-hard. Therefore, an interval vector x∗ ⊇ �S(p) ⊇ S(p), called outer
interval solution, is computed instead, and the goal is x∗ to be as narrow as
possible.

3 Affine Arithmetic

In affine arithmetic, a partially unknown quantity x is represented by an affine
form x̂ which is a first degree polynomial [29]:

x̂ = x0 + x1ε1 + . . . + xnεn , (6)

where xi ∈ �, εi ∈ [−1, 1]. The central value of the affine form x̂ is denoted
by x0, xi are partial deviations, and εi are dummy variables [33], also called
noise symbols [29] or variation symbols [4]. Affine forms enables to keep track of
dependencies between the variables. The magnitude of the dependency between
two quantities x and y represented by affine forms x̂ and ŷ is determined by par-
tial deviations xi and yi. The sign of the partial deviations defines the direction
of the correlation between x and y.

An affine form x̂ = x0 + x1ε1 + . . . + xnεn implies an interval for the corre-
sponding variable x:

x ∈ x = [x0 + r, x0 − r] , (7)

488 I. Skalna

where r is the sum of partial deviations. This is the smallest interval that con-
tains all possible values of x, assuming that each εi ranges independently over
the [−1, 1]. Conversely, any interval x = [x̌−r, x̌+r] representing some quantity
x has equivalent affine form given by x̂ = x̌+ rεν , where the dummy variable εν

must be distinct from all other dummy variables used so far in computations.
For example, consider the following affine forms:

x̂ = 9 + 1ε1 − 2ε3 + 2ε4 ,
ŷ = 6 + 2ε1 + 1ε2 − 1ε4 .

They imply intervals x = [4, 14] for x̂ and y = [2, 10] for ŷ. However, since x̂ and
ŷ include the same dummy variables ε1 and ε4 they are not entirely independent
of each other. In interval representation this information is lost, e.g. x̂− ŷ implies
[−4, 10], and x− y = [−6, 12].

The fundamental invariant of affine arithmetic states that, at any instant
between AA operations, there is a single assignment of values from [−1, 1] to
each of the dummy variables in use that makes the value of every affine form x̂
equal to the true value of the corresponding ideal quantity x.

3.1 Affine Operations

In order to evaluate a formula with AA, each elementary operation on real
quantities must be replaced by a corresponding operation on their affine forms,
returning an affine form.

Let
x̂ = x0 + x1ε1 + . . . + xnεn ,
ŷ = y0 + y1ε1 + . . . + ynεn .

If an AA operation f(x̂, ŷ) is an affine function of x̂ and ŷ, then ẑ = f(x̂, ŷ) is
an affine combination of the dummy variables εi. For any α, β, γ ∈ �,

ẑ = αx̂ + βŷ + γ = (αx0 + βy0 + γ) + (αx1 + βy1)ε1 + . . . + (αxn + βyn)εn .

In particular, x̂− x̂ = 0.
Now, consider multiplication of affine forms ẑ = f(x̂, ŷ) = x̂ŷ. The product of

affine forms is a quadratic polynomial f∗(ε1, . . . , εn) of the dummy variables. In
general, the problem of computing the (exact) range of quadratic function under
interval uncertainty is NP-hard. Stolfi [29] proposes to use the range estimate
±rad (x̂)rad (ŷ) for the nonlinear term in f∗ and return

ẑ = x0y0 +
n∑

i=1

(x0yi + xiy0)εi + rad (x̂)rad (ŷ)εnew .

Another multiplication method have been suggested in [7]:

x̂ · ŷ = (x0y0 + 0.5
n∑

i=1

xiyi) +
n∑

i=1

(x0yi + xiy0)εi

+

(
n∑

i=1

|xi|
n∑

i=1

|yi| − 0.5
n∑

i=1

|xiyi|
)

εnew .

(8)

Direct Method for Solving Parametric Interval Linear Systems 489

The method for the best multiplication of affine forms has been proposed in [16].
It gives the narrowest inclusion, which is the theoretical limit of the multiplica-
tion, thought it requires much more computation than other methods.

The reciprocal 1/ŷ of an affine form ŷ = y0+y1ε1+. . .+ynεn can be calculated
using Chebyshev approximation ([7], [17]). Then, the division rule, as suggested
in [7] (cf. [5]), can be defined as:

x̂

ŷ
= x̂ · 1

ŷ
=

x0

y0
+

1
ŷ

n∑
i=1

(
xi − x0

y0
yi

)
εi . (9)

In particular, x̂/x̂ = 1.
For elementary univariate functions, affine approximations can be found via

Theorem 2 from [29] or Theorem 1 from [32]. For the purposes of this paper,
Chebyshev approximation is used.

For operations other than negation, rounding errors must be taken into ac-
count. In order to preserve the fundamental invariant, whenever a computed
coefficient differs from its correct value, this error must be accounted by adding
an extra term with a dummy variable that does not occur in any other affine
form [29], [32].

4 Direct Method

4.1 Background

Consider a system of parametric linear interval equations (3) involving affine-
linear dependencies:

aij(p) = ωij0 + ωT
ijp, bi(p) = ωi0 + ωT

i p , (10)

where ωi0, ωij0 ∈ �, ωij , ωi ∈ �
k, i, j = 1, . . . , n. The Direct Method for

solving such systems has been proposed in [30]. The method is based on following

Theorem 1. ([30]) Let A(p)x(p) = b(p) with p ∈ IRk, aij(p), bi(p) be given
by (10), R ∈ �n×n, and x̃ ∈ �n. Define D(p) and z(p) with components

dij(p) =
n∑

ν=1

riνωνj0 +
(n∑

ν=1

riνωνj

)T

p , (11)

zi(p) =
n∑

j=1

rij

(
ωj0 −

n∑
ν=1

ωjν0x̃ν

)
+

(
n∑

j=1

rij

(
ωj −

n∑
ν=1

ωjν x̃ν

))T

p . (12)

If D(p) is an H-matrix then

�S(p) ⊆ x̃ + 〈D(p)〉−1|z(p)|[−1, 1] .

It is recommended to choose R = A−1(p̌) and x̃ = A−1(p̌) · b(p̌), where p̌ is the
midpoint vector of p, so that D(p) and z(p) are of small norms.

490 I. Skalna

4.2 General Dependencies

Consider a linear system of equations (1) with general dependencies (2). The
coefficients are then nonlinear functions of system parameters. In the proposed
approach, the nonlinear functions are estimated by affine forms that enclose their
range and a new system with affine linear dependencies is obtained:

A(ε)x(ε) = b(ε) , (13)

where
a(ε)ij = ωij0 + ωT

ijε, b(ε)i = ωi0 + ωT
i ε , (14)

and ε (εi ∈ [−1, 1]) is a vector of dummy variables which are considered as new
interval parameters. Parametric linear system (13) with affine dependencies (14)
can be solved using the Direct Method. The solution of system (13) produced
by the Direct method contains the solution of original system (1).

5 Numerical Experiments

Example 1 ([11], [23])⎛⎝−(p1 + 1)p2 p1p3 p2

p2p4 p2
2 1

p1p2 p3p5
√

p2

⎞⎠⎛⎝x1

x2

x3

⎞⎠ =

⎛⎝1
1
1

⎞⎠ ,

p1 ∈ [1, 1.2], p2 ∈ [2, 2.2], p3 ∈ [0.5, 0.51], p4, p5 ∈ [0.39, 0.4].

Table 1 lists the results obtained by the Direct Method, El-Owny’s [23]
method, Kolev’s method [11] and Interval-Affine Gaussian Elimination [1].

Table 1. Comparison of the results for Example 1

Direct Method El-Owny [23] Kolev [11] IAGE [1]

[0.055488, 0.066073] [0.055479, 0.066083] [0.055081, 0.066443] [0.049960, 0.071690]

[0.076315, 0.090294] [0.076096, 0.090512] [0.075930, 0.090906] [0.072889, 0.093943]

[0.557476, 0.606111] [0.557139, 0.606451] [0.555988, 0.607462] [0.556478, 0.607841]

To assess the improvement of the Direct Method over three competing meth-
ods, the merit proposed by Kolev ([10]) is used. The 1.55% improvement over
El-Owny’s method, 6.3% improvement over Kolev’s method, and 28.62% over
Interval-Affine Gaussian Elimination have been obtained.

Example 2 ([11], [23])(−(p1 + p2)p4 p2p4

p5 p3p5

)(
x1

x2

)
=

(
1
1

)
,

p1, p3 ∈ [0.96, 0.98], p2 ∈ [1.92, 1.96], p4, p5 ∈ [0.48, 0.5].

Direct Method for Solving Parametric Interval Linear Systems 491

Table 2. Comparison of the results for Example 2

Direct Method El-Owny [23] Kolev [11]

[0.374762, 0.456527] [0.374648, 0.456641] [0.367181, 0.464108]

[1.621595, 1.729273] [1.621478, 1.729391] [1.613711, 1.737157]

In this case, the 0.24% improvement over El-Owny’s method and 16.2% improve-
ment over Kolev’s method have been obtained.

Example 3 ([13], [24]). All matrix coefficients not specified below are equal
to zero.

1
2a11 = a12 = a21 = a65 = −a74 = p1 ,
a22 = 2p1 + 2p3, a33 = 3p2 + 2p3, a66 = p1 + p2 ,
a23 = a32 = −2p3, a68 = p3, a86 = p2 ,
a47 = a48 = a54 = a55 = a56 = −a61 = −a71 = a72 = −a83 = 1 ,

b =
(

0, 0, −3
8
p4p

3
2, 0, p2p4, p2p4(p1 +

1
2
p2), 0,

1
2
p2
2p4

)T

.

First, the system is solved for 1% uncertainty in all parameters, that is

p = ([0.0995, 1.005], [0.0995, 1.005], [0.74625, 0.75375], [9.95, 10.05])T .

Interval estimates of the solution set are summarised in Tab. 3. The table includes
the estimates produced by the Direct Method, the results of Popova’s parametric
fixed-point iteration [24], and the hull solution. The results of the Direct Method
and the fixed-point iteration show good sharpness of the enclosure for all solution
components. The quality of both estimates is comparable.

Table 3. Comparison of the results for Example 3 with 1% uncertain parameters

Direct Method Popova [24] Hull

[0.24464, 0.25537] [0.24470, 0.25537] [0.24479, 0.25529]

[−0.51070, −0.48934] [−0.51070, −0.48945] [−0.51059, −0.48958]

[−1.01726, −0.98281] [−1.0173, −0.98304] [−1.01710, −0.98309]

[−0.76990, −0.73016] [−0.76990, −0.73032] [−0.76973, −0.73072]

[6.66883, 6.83118] [6.6691, 6.8312] [6.66989, 6.83089]

[3.95951, 4.04054] [3.9599, 4.0406] [3.96010, 4.04010]

[−0.6860, −0.64738] [−0.6860, −0.64887] [−0.68420, −0.64953]

[0.64738, 0.6860] [0.64887, 0.6860] [0.64953, 0.68420]

Next table lists the solutions for 2% uncertainties in three first parameters
and 30% uncertainty in last parameter.

The results of the Popova’s method are slightly narrower which requires some
comment. This difference is mainly due to the method of bounding nonlinear

492 I. Skalna

Table 4. Comparison of the results for Example 3 with 2% uncertain lengths and 30%

uncertain load

Direct Method Popova [24] Hull

[0.201774, 0.298301] [0.20409, 0.29831] [0.205777, 0.296805]

[−0.595828, −0.404322] [−0.59583, −0.40897] [−0.593610, −0.411554]

[−1.181037, −0.819263] [−1.1811, −0.82856] [−1.177780, −0.829733]

[−0.902773, −0.597452] [−0.90278, −0.60442] [−0.899410, −0.611219]

[5.623301, 7.876724] [5.6390, 7.8768] [5.658540, 7.870740]

[3.340685, 4.659515] [3.3618, 4.6596] [3.366000, 4.646000]

[−0.850811, −0.482722] [−0.85082, −0.49464] [−0.799475, −0.543306]

[0.482722, 0.850811] [0.49464, 0.85082] [0.543306, 0.799475]

functions. Popova uses generalized interval arithmetic, while Direct Method
uses affine arithmetic. Generalized interval arithmetic usually gives narrower
enclosures. For example, consider the following expression:

z(p) = −0.12 + 0.0192(p1 + p2)/p4 + 0.0048p2p4 − 0.0224p3/p5 + 0.0896p5 ,

with p1, p3 ∈ [0.96, 1.04], p2 ∈ [1.92, 2.08], p4, p5 ∈ [0.48, 0.52]. Generalized in-
terval arithmetic gives z(p) = [−0.0143946, 0.0148305], while affine arithmetic
gives z(p) = [−0.0149484, 0.0150612]. However, computing bounds with gener-
alized interval arithmetic requires some additional calculations, the global mono-
tonicity of the function with respect to all variables has to be checked. Affine
calculations does not require any additional effort and hence performs faster,
and thus the overall method performs faster, approximately five times faster in
the first case and three times faster in the second case. It is worth to mention
that in case of parametric linear systems with affine-linear dependencies, the
Direct Method gives narrower results then the fixed-point iteration.

6 Conclusions

The goal of this work was to propose a highly automated efficient method for
solving parametric linear systems with nonlinear dependencies and to study the
behaviour of the presented approach. Using several examples, it was demon-
strated that the proposed Direct Method is superior to other considered (known
in the literature) methods based on affine or generalized affine arithmetic.

The Direct Method have been also compared with the interval fixed-point
iteration combined with generalized interval arithmetic for range enclosure. The
results of the fixed-point iteration are slightly narrower which is mainly due to
the range enclosure technique. In case of affine-linear dependencies, the Direct
Method produces narrower enclosures than the fixed-point iteration. Neverthe-
less, the results of the Direct Method based on affine arithmetic are comparable
with the results of the fixed-point iteration, while the presented method per-
forms faster. Moreover, the Direct Method combined with affine arithmetic can

Direct Method for Solving Parametric Interval Linear Systems 493

be easily implemented using available software and can handle different types
of nonlinear dependencies. Combining this method with more sophisticated tool
for range enclosure would probably result in a very powerful method for solving
parametric linear systems with complicated dependencies.

The method yield validated inclusions computed by a finite precision arith-
metic. The present approach, is also applicable to other uncertainty theories such
as fuzzy set theory or random set theory.

References

1. Akhmerov, R.R.: Interval-affine Gaussian algorithm for constrained systems. Reli-

able Computing 11(5), 323–341 (2005)

2. Alefeld, G., Frommer, A., Lang, B. (eds.) Scientific Computing and Validated Nu-

merics. Mathematical Research 90. Proceedings of the International Symposium on

Scientific Computing Computer Arithmetic and Validated Numerics (SCAN-95),

Wuppertal, Germany. Akademie-Verlag (1996)

3. Chen, S., Lian, H., Yang, X.: Interval static displacement analysis for structures

with interval parameters. International Journal for Numerical Methods in Engi-

neering 53(2), 393–407 (2001)

4. Fang, C.F., Chen, T., Rutenbar, R.: Floating-point error analysis based on affine

arithmetic. In: Proc. 2003 International Conf. on Acoustic, Speech and Signal Pro-

cessing, Part II, vol. 2, pp. 561–564 (2003)

5. Hansen, E.R.: A Generalised Interval Arithmetic. LNCS, vol. 29, pp. 7–18.

Springer, Heidelberg (1975)

6. Kearfott, R.B.: Decomposition of arithmetic expressions to improve the behaviour

of interval iteration for nonlinear systems. Computing 47(2), 169–191 (1991)

7. Kolev, L.V.: An Improved Interval Linearization for Solving Nonlinear Problems.

Numerical Algorithms 37(1-4), 213–224 (2004)

8. Kolev, L.V.: New Formulae for Multiplication of Intervals. Reliable Comput-

ing 12(4), 281–292 (2006)

9. Kolev, L.V.: Automatic Computation of a Linear Interval Enclosure. Reliable Com-

puting 7(1), 17–28 (2001)

10. Kolev, L.V.: A method for outer interval solution of linear parametric systems.

Reliable Computing 10(3), 227–239 (2004)

11. Kolev, L.V.: Solving Linear Systems whose Elements are Non-linear Functions of

Intervals. Numerical Algorithms 37, 199–212 (2004)

12. Kramer, W.: Generalized Intervals and the Dependency Problem. In: PAMM 2007,

vol. 6(1), pp. 683–684 (2007)

13. Kulpa, Z., Pownuk, A., Skalna, I.: Analysis of linear mechanical structures with

uncertainties by means of interval methods. Computer Assisted Mechanics and

Engineering Sciences 5(4), 443–477 (1998)

14. Kurzhanski, A.B.: Ellipsoidal calculus for uncertain dynamics. In: Abstracts of the

International Conference on Interval and Computer-Algebraic Methods in Science

and Engineering (INTERVAL/1994) p. 162, St. Petersburg, Russia (1994)

15. Messine, F.: Extentions of Affine Arithmetic: Application to Unconstrained Global

Optimization. Journal of Universal Computer Science 8(11), 992–1015 (2002)

16. Miyajima, S., Miyata, T., Kashiwagi, M.: On the Best Multiplication of the Affine

Arithmetic. Transactions of the Institute of Electronics, Information and Commu-

nication Engineers J86-A(2), 150–159 (2003)

494 I. Skalna

17. Miyajima, S., Kashiwagi, M.: A dividing method utilizing the best multiplication

in affine arithmetic. IEICE Electronics Express 1(7), 176–181 (2004)

18. Moore, R., Hansen, E., Leclerc, A.: Rigorous methods for global optimization. In:

Recent Advances in Global Optimization, pp. 321–342. Princeton University Press,

Princeton (1992)

19. Muhanna, R.L., Erdolen, A.: Geometric uncertainty in truss systems: an interval

approach. In: Muhannah, R.L. (ed.) Proceedings of the NSF Workshop on Reliable

Engineering Computing (REC): Modeling Errors and Uncertainty in Engineering

Computations, Savannah, Georgia USA, pp. 239–247 (2006)

20. Nedialkov, N.S., Kreinovich, V., Starks, S.A.: Interval Arithmetic, Affine Arith-

metic, Taylor Series Methods: Why, What Next? Numerical Algorithms 37(1-4),

325–336 (2004)

21. Neumaier, A.: Interval Methods for Systems of Equations. In: Encyclopedia of

Mathematics and its Applications, pp. xvi + 255. Cambridge University Press,

Cambridge (1990)

22. Neumaier, A., Pownuk, A.: Linear Systems with Large Uncertainties, with Appli-

cations to Truss Structures. Reliable Computing 13(2), 149–172 (2007)

23. El-Owny, H.: Parametric Linear System of Equations, whose Elements are Non-

linear Functions. In: 12th GAMM - IMACS International Symposion on Scientific

Computing, Computer Arithmetic and Validated Numerics, pp. 26–29 (2006)

24. Popova, E.D.: On the Solution of Parametrised Linear Systems. In: Kraemer, W.,

von Gudenberg, J.W. (eds.) Scientific Computing, Validated Numerics, Interval

Methods, pp. 127–138. Kluwer Acad. Publishers, Dordrecht (2001)

25. Popova, E.D.: Solving Linear Systems Whose Input Data Are Rational Functions

of Interval Parameters. In: Boyanov, T., Dimova, S., Georgiev, K., Nikolov, G.

(eds.) NMA 2006. LNCS, vol. 4310, pp. 345–352. Springer, Heidelberg (2007)

26. Rohn, J.: A Method for Handling Dependent Data in Interval Linear Systems.

Academy of Science of the Czech Republic, Institute of Computer Science, Tech-

nical report No. 911 (2004)

27. Rump, S.M.: Verification Methods for Dense and Sparse Systems of Equations. In:

Herzberger, J. (ed.) Topics in Validated Computations – Studies in Computational

Mathematics, pp. 63–136. Elsevier, Amsterdam (1994)

28. Shary, S.P.: Solving tied interval linear systems. Siberian Journal of Computational

Mathematics 7(4), 363–376 (2004)

29. de Figueiredo, L.H., Stolfi, J.: Self-Validated Numerical Methods and Applications.

Brazilian Mathematics Colloquium monograph (1997)

30. Skalna, I.: A method for outer interval solution of systems of linear equations de-

pending linearly on interval parameters. Reliable Computing 12(2), 107–120 (2006)

31. Skalna, I.: Evolutionary optimization method for approximating the solution set

hull of parametric linear systems. In: Boyanov, T., Dimova, S., Georgiev, K.,

Nikolov, G. (eds.) NMA 2006. LNCS, vol. 4310, pp. 361–368. Springer, Heidel-

berg (2007)

32. Vu, X., Sam-Haroud, D., Faltings, B.V.: A Generic Scheme for Combining Multi-

ple Inclusion Representations in Numerical Constraint Propagation. Artificial In-

telligence Laboratory, Swiss Federal Institute of Technology in Lausanne (EPFL),

Technical Report No. IC/2004/39 (2004)

33. http://www.ic.unicamp.br/ stolfi/EXPORT/projects/affine-arith/

Welcome.html

http://www.ic.unicamp.br/~stolfi/EXPORT/projects/affine-arith/Welcome.html
http://www.ic.unicamp.br/~stolfi/EXPORT/projects/affine-arith/Welcome.html

Evaluating Lava Flow Hazard at

Mount Etna (Italy) by a Cellular Automata
Based Methodology

Maria Vittoria Avolio1, Donato D’Ambrosio1, Valeria Lupiano2,
Rocco Rongo2, and William Spataro1,3,�

1 Department of Mathematics and High Performance Computing Center,

University of Calabria, Italy
2 Department of Earth Sciences and High Performance Computing Center,

University of Calabria, Italy
3 Department of Mathematics, University of Calabria,

Via Pietro Bucci, I-87036 Rende, Italy

spataro@unical.it

Abstract. The individuation of areas that are more likely to be inter-

ested by lava eruptions is of fundamental relevance for mitigating possible

consequences, both in terms of loss of human lives and material proper-

ties. Here we show a methodology for defining flexible high-detailed lava

invasion susceptibility maps. It relies on both an adequate knowledge

of the volcano, assessed by an accurate analysis of its past behaviour,

a reliable Cellular Automata model for simulating lava flows on present

topographic data and on High Performance Parallel Computing for in-

creasing computational efficiency. The application of the methodology to

the case of Mt Etna, the most active volcano in Europe, points out its

usefulness in land use planning and Civil Defence applications.

Keywords: Cellular Automata, Simulation, Lava flows, Hazard

Assessment.

1 Introduction

Many volcanic areas around the world are densely populated and urbanized.
In Italy, Mt Etna is home to approximately one million people, though being
the most active volcano in Europe [1]. More than half of the events occurred in
the last four centuries report damage to human properties in numerous towns on
the volcano flanks. In particular, eruptions in 1669 and 1928 destroyed entire vil-
lages and, in the earlier case, portions of Catania, the main city of the region [2].
In last decades, the vulnerability of the Etnean area has increased exponentially
due to continued, sometimes wild, urbanization, with the consequence that new
eruptions may involve even greater risks. In recent crises, countermeasures based
on embankments or channels were adopted to stop or deflect lava [3]. In some

� Corresponding Author.

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 495–504, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

496 M.V. Avolio et al.

cases, even exceptional actions were necessary which, for instance, involved the
adoption of explosive and/or cement tapping inside the active craters in order to
reduce lava emission. Such kind of interventions are generally performed while
the eruption is in progress, by both not guarantying their effectiveness, and by
inevitably putting into danger the safety of involved persons. Lava flows fore-
casting could significantly change this scenario. A modern and widely adopted
approach is the application of algorithms that permit numerical simulations of
lava flows ([4] and [5]), for the purpose of individuating affected areas in advance.
For instance, in 2001 the path of the eruption that threatened the town of Ni-
colosi on Mt Etna was correctly predicted by means of a lava flows simulation
model [6], providing useful information for Civil Defence. However, this modus
operandi does not take into account the fact that an eruption can have different
characteristics (e.g. different flow-rates). As a matter of fact, an a priori knowl-
edge of the degree of exposure of the volcano surrounding areas is desirable in
order to allow both the realization of preventive countermeasures, and a more
rational land use planning. Here we show results of a new methodology for the
definition of flexible high-resolution lava invasion susceptibility maps, and show
results and applications related to the South-Eastern flank of Mt Etna, the most
densely populated sector of the volcano.

2 An Integrated Methodology for Lava Flows Impact
Prediction

The methodology here proposed relies on the application of a lava flows com-
putational model for simulating new events on present topographic data, and
on a new criterion for evaluating the impact of performed simulations in terms
of spatial hazard. The computational model should be well calibrated and vali-
dated and thus able to reproduce the events which characterise the considered
volcano with a high level of accuracy. Furthermore, it should be as much efficient
as possible since, depending on the extent of the considered area, a great number
of simulation could be required.

An accurate analysis of the past behaviour of the volcano is required for
the purpose of classifying the events that historically interested the region. By
assuming that the volcano’s behaviour will not dramatically change in the near
future, a representative case is selected for each of the individuated classes and
triggered from each crater of a grid which opportunely covers the area. In such
a way, a meaningful database of plausible simulated lava flows can be obtained,
by characterising the study area both in terms of areal coverage, and lava flows
typologies.

Subsequently, such data are processed by considering a proper criterion of
evaluation. It is worth to note that a first solution could simply consist in con-
sidering lava flows overlapping, by assigning a greater hazard to those sites in-
terested by a higher number of simulations. However, a similar choice could be
misleading. In fact, depending on their particular traits (such as the location of
the main crater, the duration and the amount of emitted lava, or the effusion

Evaluating Lava Flow Hazard by a Cellular Automata Based Methodology 497

rate trend), different events can occur with different probabilities, which should
be taken into account in evaluating the actual contribution of performed sim-
ulations with respect to the definition of the overall susceptibility of the study
area. In most cases, such probabilities can be properly inferred from the sta-
tistical analysis of past eruptions, allowing for the definition of a more refined
evaluation criterion. Accordingly, in spite of a simple hitting frequency, a mea-
sure of lava invasion susceptibility can be obtained in probabilistic terms. In the
following, we show how such approach was applied to the South-Eastern flank
of Mt Etna.

3 Lava Invasion Map Compilation

Natural complex phenomena such as lava flows are usually difficult to simulate
using traditional methods based on differential equations systems [7]. Among
alternative methods, usually based on heuristic and approximation techniques,
Cellular Automata (CA) [8] are gaining the attention of the International Sci-
entific Community for their robustness, reliability and range of applicability,
despite their apparent simplicity [9]. Cellular Automata applications are very
broad, ranging from fluid-dynamics [10] to traffic control [11], from theoretical
issues [8] to image processing [12], from cryptography [13] to economics and
social sciences [14]. In particular, applications concerning fluid-dynamics of geo-
logical processes have produced interesting and considerable results in the field
of simulation of lava, landslide and pyroclastic flows. In the classic view of CA
systems, space and time are discrete. They are based on a regular division of
the space in regular cells. Time is sub-divided in steps, which may be considered
as constant time intervals. Each cell embeds an identical computational element
whose state specifies the cell condition throughout a computational step. The
overall dynamics of the system emerges as the result of the simultaneous appli-
cation, at discrete time steps, of proper “local rules” of evolution to each cell of
the CA.

Our research group is experienced in this field since 1982, when a first com-
putational model of basaltic lava flows was proposed [15]. In recent years we
enriched the SCIARA family of lava flows simulation models, by proposing im-
proved releases and applying them to the simulation of diverse Etnean cases of
study [6]. For the purposes of this work, being the South-Eastern flank of mount
Etna a vast area of about 237km2 (cf. Fig. 1), a great number of simulation
were originally planned to be executed (cf. below) and thus a computational
model that is at the same time accurate and efficient seemed to be the best
choice. For this reason, the SCIARA-fv release (simply SCIARA in the follow-
ing), based on the Cellular Automata computational paradigm and, specifically,
on the Macroscopic Cellular Automata approach for the modelling of spatially
extended dynamical systems [16], was chosen as the reference computational
algorithm.

In order to execute a simulation, SCIARA requires a hexagonal discretisa-
tion of the topography over which the event will be simulated (for the purpose

498 M.V. Avolio et al.

Fig. 1. The South-Eastern flank of Mt Etna. Grey colouring indicate crater activa-

tion probability, in decreasing order, corresponding to 0.645, 0.33, 0.02, 0.005 and 0,

respectively; dots represent the grid of 208 craters considered in this work.

of minimising the intrinsic anisotropic effects of discrete modelling of continu-
ous systems), the craters coordinates and the emission rate history, besides the
specification of a set of parameters related to the magma rheology.

Accordingly, the considered Etnean sector was digitalised as a DEM (Digital
Elevation Model) of 2272 × 1790 hexagonal cells, each with a 5m apothem, by
considering the GIS vectorialization of good-quality 1 : 10000 scale topographic
maps. A proper calibration and validation phases, carried out by the adoption of
a Parallel Master Slave Genetic Algorithm, helped in devising a suitable set of
model’s parameters, by allowing the model to reproduce Etnean lava flows with
a high level of accuracy [17]. At the same time, many computational refinements
were implemented, significantly speeding up the model. Still, even a sensitivity
analysis study was performed, by excluding unpredictable changes in simulation
outcomes when small changes are considered in input data, thus demonstrating
the overall robustness of the computational algorithm.

Eventually, with the exception of few isolated cases, a typical effusive be-
haviour was strongly evidenced by the analysis of the volcano past activity. As
a consequence, we suppose that such behaviour will not dramatically change in
the near future and thus that the SCIARA lava flows simulation model, cali-
brated and validated on a set of effusive eruptions, is adequate for simulating
new events on Mt Etna.

3.1 Study of the Volcano

As specified above, the proposed methodology involves a preliminary study of
the past activity of the volcano for the purpose of characterising the study area in

Evaluating Lava Flow Hazard by a Cellular Automata Based Methodology 499

terms of eruptive behaviour. Accordingly, such study was performed by analysing
a significant set of 64 events occurred on Mt Etna since 1600 AD, from which
information is quite reliable [1], classified on the basis of both their duration and
the amount of emitted lava, and giving rise to 50 not empty classes. For each of
them, values were normalized into the range [0,1], obtaining the probability, pc,
that a new hypothetical event can occur, depending on which class it belongs
to. Eventually, 50 representative cases were selected, one for each of the individ-
uated classes. As regards the effusion rate trend to be considered, and on the
basis of performed analysis of past eruptions, two typical effusion rate trends for
Etnean lava flows were taken into account. In particular, both typologies can be
considered equi-probable and well approximated by Gaussian-like distributions
with maximum flow rate values at 1/6 and 1/3 of the total duration. Accord-
ingly, a trend probability, pt, was defined and imposed to the constant value of
0.5 for both the individuated trends. Consequently, by considering the combina-
tion of the 50 representative events in terms of emitted-lava/duration and the
two representative effusion rate trends, a total of 100 representative typologies
of lava flows were obtained which we assumed adequate for representing all the
possible behaviour of the volcano from the emissive point of view. Further de-
tails regarding the classification procedure and effusion rate determination can
be found in [18].

Further, depending on their position, different sites can have different prob-
ability to trigger new lava flows. Many volcanological and geo-structural (some-
times conflicting) studies attempted to individuate Etnean sectors that are more
prone to generate new eruptive events. Among these, Behncke et al. [1], pro-
posed a characterisation of the study area in terms of probability of activation
of new craters by statistically analysing historical eruptions in terms of spa-
tial distribution of eruptive fractures, vent density and their concentration in
rift zones, tectonic structures and proximity to the summit area of the volcano
(where eruptions are statistically more frequent). The result of such study is
shown in Fig. 1, where the Southern-East flank of Mt Etna is subdivided into
five sectors, representing areas characterised by different probabilities of acti-
vation of new craters. For the purpose of this study, in agreement with the
authors of the original research, such probabilities were assumed to be 0.645,
0.33, 0.02, 0.005 and 0, respectively, by considering the vent and fracture den-
sity of each area. Accordingly, a probability of activation for a generic crater
in the study area, ps, was defined, which assumes one of the above specified
values depending on which sector it is located in (cf. Fig. 1). In short, we
made the fundamental assumption that events on Mt Etna can be classified
on the basis of the following peculiar features: the amount of emitted lava
and the event duration, the emission rate trend, as well as the source posi-
tion. Moreover, for each of the above cited features, characteristic probabilities
were defined on the basis of the statistical analysis of past eruptions. Conse-
quently, if a new event is conjectured to be triggered in the study area, an
overall (conditioned) probability of occurrence, pe, can be defined by simply

500 M.V. Avolio et al.

considering the product of the individual probabilities of its characteristic
features:

pe = pc · pt · ps (1)

3.2 Lava FLOW Hazard Susceptibility at Mt Etna

Once representative lava flows were devised in terms of both volume/duration
and effusion rate trend, a set of simulations were planned to be executed in
the study area by means of the SCIARA lava flows simulation model. At this
purpose, a grid composed of 208 craters was defined on the considered SE flank
of Mt Etna, as shown in Fig. 1. It is composed of two 1km spaced sub grids, the
latter displaced by 500m along South and East directions with respect to the
former. This choice allowed to both adequately and uniformly cover the study
area, besides considering a relatively small number of craters.

It is worth to note that, as well as representative lava flows can be charac-
terised by the conditioned probability pc · pt (being pc the probability related to
the event’s membership class, and pt the probability related to the event’s emis-
sion rate trend), still a crater in the grid can be characterised by the probability
of activation ps, depending on in which sector it belongs to (cf. Fig. 1). In this
way, a representative lava flow on Mt Etna can be simulated by considering a
given point of the defined grid as source location, by evaluating its probability
of occurrence by simply applying equation 1.

Therefore, all the 100 representative lava flows were simulated for each of
the 208 craters of the grid, thus obtaining a set of N = 20800 simulations.
By considering the extent of the study area and the duration of the events
to be simulated (which ranges from 15 to 500 days), computing times would
have resulted in the order of about one year on standard sequential architec-
tures, in spite of the high computational efficiency of the employed lava flow
simulation model. Accordingly, the simulation phase was performed on two
high performance parallel machines, namely a 16 Itanium processor NEC TX7
NUMA super computer and a 4 bi-quadcore G5 processor Apple Xserve cluster,
thus reducing the overall execution to less than one month. [18] shows prelim-
inary results of the proposed methodology, which is described in the following
paragraphs.

Lava flow invasion susceptibility was then punctually evaluated by considering
the contributions of all the simulations which affected a generic site in terms of
their probability of occurrence, with a resulting detail which exclusively depends
on the resolution of the considered DEM. Thus, if a given DEM cell of co-
ordinates x, y was affected by nx,y ≤ N simulations, its susceptibility was defined
as the sum of the probabilities of occurrence of involved lava flows, p

(i)
e (i =

1, 2, . . . , nx,y):

sx,y =
nx,y∑
i=1

p(i)
e (2)

Evaluating Lava Flow Hazard by a Cellular Automata Based Methodology 501

Thus, on the basis of the previous assumptions, the following pseudo-code can
be adopted for determining lava invasion susceptibility for a certain area:

lava_invasion_computation(){
for each DEM cell (x,y)
compute number simulations n(x,y) affecting cell (x,y)
for i=0 to n(x,y)

s(x,y) = s(x,y) + pe(i)
}

where: pe(i) is the probability of occurrence (as defined in section 3.1) of flow i
and s(x, y) the lava invasion susceptibility of cell with coordinates (x, y). The
resulting final lava invasion susceptibility map, shown in Fig. 2, represents the
probability that future events will affect the study area. A similar map results
particularly suitable for land use planning purposes, since it gives an overall
information about the vulnerability of the entire study area with respect to the
occurrence of new lava flows, independently from their effective source locations
and emissive behaviours.

Fig. 2. Hazard map of the study area based on the 20,800 simulations. As a compromise

between map readability and reliability, 5 classes are reported (grey colouring), in

increasing order of susceptibility (probability of lava invasion).

Eventually, since the obtained results are strongly related to morphological
conditions, they could require to be updated each time topographic alterations
occur. In this case, it will be sufficient to consider a DEM representing the actual

502 M.V. Avolio et al.

topography, and re-simulate only the (generally few) representative events which
involve the modified areas. A new susceptibility map can then be obtained by
simply reprocessing the new set of simulations, which is a quite rapid procedure
even on sequential computers. At the contrary, if a certain number of events
will occur on Mt. Etna, whose characteristics determine a modification of the
previously individuated representative set of lava flows, a new overall simulation
phase will be required in order to obtain a correct susceptibility scenario.

3.3 Civil Defence Applications

The availability of a large number of scenarios of different eruption types, magni-
tudes and locations simulated for this study allows an instantaneous extraction
of various scenarios on demand, since they are already stored in the simula-
tion data base. This would be especially relevant once premonitory signs such
as localized seismicity and ground deformation indicate the possible site of an
imminent eruption.

Such scenarios may concern eruptions from single vents, which would in the
ideal case coincide with the hypothetical vents of the simulation grid. If the

Fig. 3. Hazard map related to a single hypothetical event of unknown emission rate.

In grey the probability (in percentage terms) of lava invasion. Key: 1) real lava source

crater 2) the 3 nearest craters to the lava source point.

Evaluating Lava Flow Hazard by a Cellular Automata Based Methodology 503

actual vent does not coincide with any of those vents, it would be possible to
extract the combined lava flow scenarios from the nearest three hypothetical
vents next to the true one (Fig 3).

Further Civil Defence oriented applications are possible. For instance, our
methodology permits to identify all source areas of lava flows capable of af-
fecting a given area of interest, such as a town or a significant infrastructure.
This application is rapidly accomplished by a reprocessing of the simulation set,
by simply eliminating the events that do not affect the area of interest and by
circumscribing the source locations of the remaining events. This kind of appli-
cation allows to rapidly assess the threat posed by an eruption from a given area
and thus represents a useful tool for decision support.

4 Conclusions

The fundamental problem of assessing the impact of future lava eruptions on
a vast volcanic region is a crucial aspect for risk mitigation. This paper shows
the application of a new kind of criterion for the compilation of lava invasion
susceptibly maps, based on Cellular Automata and Parallel Computing, applied
to the South-Eastern flank of Mt Etna (South Italy).

Different Civil Defence applications can be devised on the proposed method-
ology. For instance, it is possible to identify all source areas of lava flows capable
of affecting a given area of interest. Still, a specific category of simulation can
be dedicated to the assessment of protective measures, such as earth barriers,
for mitigating lava invasion susceptibility in given areas.

Even if a more rigorous assessment of the reliability of the methodology is
certainly desirable for effective usage in Civil Defense - such as the compilation
of the map on a subset of sample events (e.g. occurred in the first 300 years)
and validating it over the remaining ones - the proposed method seems to be
more reliable when compared with a more classical criterion of hazard mapping.
Current work regards the application of the methodology to other areas of the
volcano and a rigorous study on a map validation procedure.

Acknowledgments. Authors thank Dr. B. Behncke and Dr. M. Neri from the
Istituto Nazionale di Geofisica e Vulcanologia of Catania (Sicily, Italy), who
provided topographic maps and the volcanological data. The authors are also
grateful to Prof. G.M. Crisci for his precious comments and the common re-
searches.

References

1. Behncke, B., Neri, M., Nagay, A.: Lava flow hazard at Mount Etna (Italy): New

data from a GIS-based study. Spec. Pap. Geol. Soc. Am. 396, 187–205 (2005)

2. Chester, D.K., Duncan, A.M., Dibben, C., Guest, J.E., Lister, P.H.: Mascali, Mount

Etna Region Sicily: An Example of Fascist Planning During the 1928 Eruption and

Its Continuing Legacy. Nat. Hazards 19, 29–46 (1999)

504 M.V. Avolio et al.

3. Barberi, F., Brondi, F., Carapezza, M.L., Cavarra, L., Murgia, C.: Earthen barriers

to control lava flows in the 2001 eruption of Mt. Etna. J. Volcanol. Geotherm.

Res. 123, 231–243 (2003)

4. Ishihara, K., Iguchi, M., Kamo, K.: Lava flows and domes: emplacement mecha-

nisms and hazard implications. In: IAVCEI Proceedings, pp. 174–207. Springer,

Heidelberg (1990)

5. Del Negro, C., Fortuna, L., Herault, A., Vicari, A.: Simulations of the 2004 lava flow

at Etna volcano using the magflow cellular automata model. Bull. Volcanol. 70,

805–812 (2008)

6. Crisci, G., Rongo, R., Di Gregorio, S., Spataro, W.: The simulation model SCIARA:

the 1991 and 2001 lava flows at Mount Etna. J. Volcanol. Geotherm. Res. 132, 253–

267 (2004)

7. McBirney, A.R., Murase, T.: Rheological properties of 731 magmas. Annu. Rev.

Earth Planet. Sci. 12, 337–357 (1984)

8. Von Neumann, J.: Theory of self reproducing automata. Univ. Illinois Press, Ur-

bana (1966)

9. Chopard, B., Droz, M.: Cellular Automata Modeling of Physical Systems. Cam-

bridge University Press, Cambridge (1998)

10. Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford

University Press, Oxford (2004)

11. Di Gregorio, S., Festa, D., Rongo, R., Spataro, W., Spezzano, G., Talia, D.: A

microscopic freeway traffic simulator on a highly parallel system. In: D’Hollander,

F.P.E.H., Joubert, G.R., Trystam, D. (eds.) Parallel Computing: State-of-the-Art

and Perspectives, pp. 69–76 (1996)

12. Rosin, P.L.: Training Cellular Automata for Image Processing. IEEE Trans. on

Image Process. 15(7), 2076–2087 (2006)

13. Tomassini, M., Perrenoud, M.: Cryptography with cellular automata. Appl. Soft

Comput. 1(2), 151–160 (2001)

14. Page, S.: On Incentives and Updating in Agent Based Models. Comput.

Econ. 10(1), 67–87 (1997)

15. Crisci, G.M., Di Gregorio, S., Ranieri, G.: A cellular space model of basaltic lava

flow. In: Proceedings Int. Conf. Applied Modelling and Simulation 82, Paris-France,

vol. 11, pp. 65–67 (1982)

16. Di Gregorio, S., Serra, R.: An empirical method for modelling and simulating some

complex macroscopic phenomena by cellular automata. Fut. Gener. Comp. Syst. 16,

259–271 (1999)

17. Rongo, R., Spataro, W., D’Ambrosio, D., Avolio, M.V., Trunfio, G.A., Di Gregorio,

S.: Lava flow hazard evaluation through cellular automata and genetic algorithms:

an application to Mt. Etna. volcano. Fund. Inform. 8, 247–268 (2008)

18. Crisci, G.M., Iovine, G., Di Gregorio, S., Lupiano, V.: Lava-flow hazard on the SE

flank of Mt. Etna. (Southern Italy). J. Volcanol. Geotherm. Res. 177(4), 778–796

(2008)

Application of CoSMoS Parallel Design Patterns

to a Pedestrian Simulation

Sarah Clayton, Neil Urquhard, and Jon Kerridge

School of Computing, Edinburgh Napier University, Merchiston Campus,

Edinburgh EH10 5DT, United Kingdom

Abstract. In this paper, we discuss the implementation of a simple

pedestrian simulation that uses a multi agent based design pattern de-

veloped by the CoSMoS research group. Given the nature of Multi Agent

Systems (MAS), parallel processing techniques are inevitably used in

their implementation. Most of these approaches rely on conventional par-

allel programming techniques, such as threads, Message Passing Inter-

face (MPI) and Remote Method Invocation (RMI). The CoSMoS design

patterns are founded on the use of Communicating Sequential Processes

(CSP), a parallel computing paradigm that emphasises a process oriented

rather than object oriented programming perspective.

1 Introduction

The realistic simulation of pedestrian movement is a challenging problem, a
large number of individual pedestrians may be included in the simulation. Rapid
decisions must be made about the trajectory of each pedestrian in relation to the
environment and other pedestrians in the vicinity. Parallel processing has allowed
such simulations to include tens of thousands of pedestrian processes travelling
across large areas. The multi-agent systems paradigm has recently been used to
significant effect within pedestrian simulation, typically each pedestrian within
the simulation equates to a specific agent. Examples of these are described in
[1][2]. In [2], the parallel aspect of the simulation is implemented using MPI.

The Complex Systems Modelling and Simulation infrastructure (CoSMoS) re-
search project [3], a successor to the TUNA [4][5] research project, is an attempt
to develop reusable engineering techniques that can be applied across a whole
range of MAS and simulations. Examples include three dimensional simulations
of blood clot formation in blood vessels, involving many thousands of processes
running across a number of networked computers [6].

The aims of the CoSMoS environment are to provide a ‘massively-concurrent
and distributed’ [7] system through the use of the process-oriented programming
model. The process-oriented paradigm derives from the concept of CSP [8] and
pi-calculus. The purpose of these methods is the elimination of perennial prob-
lems in programming using conventional parallel techniques, such as threads.
These problems include deadlock, livelock and race hazards.

Examples produced by the CoSMoS research group are implemented using
the language occam-pi, a language developed to write programmes that comply

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 505–512, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

506 S. Clayton, N. Urquhard, and J. Kerridge

with the principles of both CSP and pi-calculus. To this end, the Kent Retar-
getable occam Compiler (KRoC) [9] was developed at the University of Kent
Computing Laboratory. Similar language features are also provided by the more
accessible Java Communicating Sequential Processes (JCSP) application pro-
gramming interface (API), also developed at the University of Kent [10]. This
provides a means of implementing the semantics of CSP, that uses the underly-
ing Java threading model, without the developer needing to be concerned with
this. Although most of the examples from CoSMoS are developed using KRoC,
the work described here has been created using JCSP.

2 CSP and pi-Calculus

In this section, we give a brief overview of CSP and pi-calculus, and part of
the rich set of semantics for concurrent programming that they offer. These are
available as language features in the occam-pi programming language, and the
JCSP API. The work done by the CoSMoS research group [3] has mostly been
done using occam-pi. However, the work done here is based on JCSP, although
the language primitives are more or less equivalent between the two [10].

2.1 Processes

The main difference between CSP and traditional programming approaches is
that it is process-oriented rather than object-oriented. Instead of separate classes,
computational tasks are divided into processes. Unlike objects, these processes
entirely encapsulate their data and maintain their own state. These cannot be
altered by other processes [11].

2.2 Channels and Barriers

Instead of being propagated by listeners, events in CSP based environments
are communicated using channels and barriers. Barriers are a fundamental part
of Bulk Synchronous Processing (BSP) [12]. They are analogous to events in
in CSP [8]. They allow multiple and heterogeneous processes to synchronise
their activities, and enforce lockstep parallelism between them. When a process
synchronises on a Barrier, it waits until all other processes enrolled on the Barrier
have also synchronised before continuing processing.

Processes communicate between each other using channels. Channels are syn-
chronous. Any process writing to a channel will block until the reader is able
to process the message. Although it is possible to implement buffering in these
channels using JCSP, no buffered channels are used here. One2OneChannels
allow point to point communication between processes, and Any2OneChannels
allow many processes to communicate with a single process. Other channel types
are available but are not discussed here.

Application of CoSMoS Parallel Design Patterns 507

3 Implementation

The simulation is at a fine grained level of granularity, and is highly scalable. It
has three main elements, agents, sites, and an overall site server. These are im-
plemented as processes rather than passive objects, and communicate with each
other using channels, rather than through method calls. This allows processes
and their data to be completely encapsulated. Any change of state or control
information is communicated to other process through channels.

The space to be simulated is modelled by multiple Site processes, in a way
similar to the one described in [5]. A Site process acts as a server to any number
of Agent client processes. The use of a client-server architecture here eliminates
the dangers of deadlock.

Agents are mobile across sites, they may deregister themselves from any given
Site and migrate to another. Each Site has a register channel for this purpose,
where it receives registration requests from Agents, in the form of their server
channel ends. This allows communication to be immediately established between
the Agent as client and the Site as server. The SiteServer operates in a manner
conceptually similar to that described in [2]. Agents communicate their current
location to the Site they are currently registered with. Sites then engage in a
client-server communication with the SiteServer, which aggregates all this in-
formation. In the next phase of the communication, the SiteServer returns this
global information to each Site, which then passes it on to each Agent. Agents
then act on this information and alter their current position. This is described
in the code snippets below , and compares the three main processes of the simu-
lation. The implementation of the pedestrian simulation is illustrated in Fig. 1.

3.1 Discover and Modify

In order to ensure that all processes are updated and modified in parallel, two
Barriers are used: discover and modify. During the discover phase, all Sites are
updated by the SiteServer with the global coordinates of every Agent. Each Site
then updates all Agents that are registered with it.

As explained in [13], autonomous software agents perceive their environment
and then act on it. This creates a two phase process for each step of the simula-
tion, discovery and modification, that all processes comply with. These phases
are enforced by barriers, described above. The tasks carried out by each type of
process for each step of the simulation are described in the Table 1.

All communications between processes are on a client-server basis. In effect,
a client-server relationship involves the client sending a request to the server, to
which the server is guaranteed to respond [14][15]. Processes at the same level
do not communicate directly with each other, only with the process at the next
level up. As stated in [16] ‘such communication patterns have been proven to be
deadlock free.’

3.2 Description of Space

The division of space between sites allows for a simulation that is scalable and
robust, separating out the management of agents between many processes. The

508 S. Clayton, N. Urquhard, and J. Kerridge

Table 1. Processing Sequence

Agent Site SiteServer

Synchronise on discover barrier

Request global → Receive requests

coordinates

Receive global ← Send global

coordinates coordinates

Request update→ Receive requests

Receive update ← Send global

coordinates

Synchronise on modify barrier

Modify state

Send state → Receive state

Receive ACK ← Send ACK

Send updates → Receive updates

Receive ACK ← Send ACK

Aggregate updates

into global

coordinates

Fig. 1. Process layers

Site processes themselves have no knowledge of how they are situated. Each
Agent class has a Map object that provides information about the area that a
Site is associated with and the means with which the Agent can register with
this site. In this way, Site processes can be associated with spaces of any shape or
size. Theoretically, these spaces can range from triangles, the simplest co-planar
two dimensional areas, up to complex three dimensional shapes.

At the edges of each space, an Agent may either migrate to the next Site, or
encounter a hard boundary, requiring it to change direction. This is determined
by the existence of a reference to the adjacent Site, if one exists. This is a reference
to the Site’s register channel, an Any2OneChannel,which allowsmany writers (the
Agents seeking to register) and only one reader (the destination Site).

Application of CoSMoS Parallel Design Patterns 509

The register process happens in two phases. First the Agent must inform its
current Site that it wishes to deregister, during the discovery phase. During the
modify phase, before any other operation or communication is carried out, the
Agent writes a reference to its communication channels to the register channel of
the new Site, and waits for an acknowledgement. In this way, while an arbitrary
number of Agents may wish to migrate from Site to Site at any one time, these
attempts will always succeed.

Fig. 2. Example application

4 Results

A number of test runs were performed to evaluate how the simulation performed
when the number of agents was incremented. This was done in order to demon-
strate the scalability of the system. This test was carried out with one Site
object, and the number of agents incremented by ten for each run. The results
are summarised in Table 2.

Table 2. Results from test runs

Number Total Avg time per Avg time per

of agents time step (ms) Agent (ms)

10 151 15.11 1.51

50 2057 41.13 0.82

100 7817 78.17 0.78

150 17454 116.36 0.78

200 31104 155.52 0.78

As can be seen from Table 2, the time to update each Agent during each step
of the simulation is more or less constant. This is illustrated in Fig. 3 below.

These average times tend to decrease as the number of Agents increase. This
reflects the overhead of setting up support processes, such as the display pro-
cesses. Thereafter, the average times per Agent tend to settle at around 0.78 ms.

510 S. Clayton, N. Urquhard, and J. Kerridge

Fig. 3. Average update times per Agent (ms) by test run

5 Future Work

The current work implements simple reactive agents. These contain little in the
way of intelligence in making their choices. Below is an image from software
showing simple reactive Agents. Their field of view replicates that of humans.
The span of human vision is 160 degrees. Central vision only occupies 60 degrees
of this, with peripheral vision on each side occupying 50 degrees [17]. The mini-
mum distance between agents is delimited by the inner arc of their field of view.
Should any other Agent approach this, they will react by choosing a different
direction.

Although many simple agents have been used to simulate emergent behaviour
[18], the purpose of the TRAMP project is the simulation of human behaviour
derived from data collected by infra-red sensors. As shown in Fig.4 actual hu-
man movements, when navigating across a space, are described by elegant and
coherent curves. This is difficult to replicate using simple agents. In order to
achieve this aim, agents trained using Learning Classifier Systems (LCS) will be
developed, and their interactions studied.

Fig. 4. Pedestrian trajectory recorded using infra-red sensors

Application of CoSMoS Parallel Design Patterns 511

6 Conclusion

In this paper, the application of CoSMoS design patterns in the development
of MAS simulations has been discussed. The principles of concurrent processing
using non-conventional techniques based on CSP and pi-calculus, that guarantee
livelock and deadlock free concurrence, as well as eliminating race hazards have
been explained. Other advantages of this approach, scalability and robustness,
have also been demonstrated. This offers a firm foundation for future work, using
MAS, to replicate pedestrian behaviour.

References

1. Dijkstra, J., Timmermans, H.J., Jessurun, A.: A Multi-Agent Cellular Automata

System for Visualising Simulated pedestrian Activity. In: Bandini, S., Worsch, T.

(eds.) Theoreteical and Practical Issues on Cellular Automata - Proceedings on

the 4th International Conference on Cellular Automata for research and Industry,

October 2000, pp. 29–36. Springer, Heidelberg (2000)

2. Quinn, M., Metoyer, R.A., Hunter-Zaworski, K.: Parallel implementation of the

social forces model. Pedestrian and Evacuation Dynamics, 63–74 (2003)

3. Stepney, S., Welch, P., Timmis, J., Alexander, C., Barnes, F., Bates, M., Polack, F.,

Tyrrell, A.: CoSMoS: Complex Systems Modelling and Simulation infrastructure,

EPSRC grants EP/E053505/1 and EP/E049419/1 (April 2007),

http://www.cosmos-research.org/

4. Welch, P.H., Barnes, F., Polack, F.: Communicating complex systems. In: Hinchey,

M.G. (ed.) Proceedings of the 11th IEEE International Conference on Engineering

of Complex Computer Systems (ICECCS-2006), Stanford, California, August 2006,

pp. 107–117. IEEE, Los Alamitos (2006)

5. Sampson, A., Welch, P.H., Barnes, F.: Lazy Cellular Automata with Communi-

cating Processes. In: Broenink, J., Roebbers, H., Sunter, J., Welch, P.H., Wood,

D.C. (eds.) Communicating Process Architectures 2005. Concurrent Systems Engi-

neering Series, September 2005, vol. 63, pp. 165–175. IOS Press, The Netherlands

(2005)

6. Welch, P.H., Vinter, B., Barnes, F.: Initial experiences with occam-pi simulations

of blood clotting on the minimum intrusion grid. In: Arabnia, H.R. (ed.) Proceed-

ings of the 2005 International Conference on Parallel and Distributed Processing

Techniques and Applications (PDPTA 2005), Las Vegas, Nevada, USA, June 2005,

pp. 201–207. CSREA Press (2005)

7. Andrews, P., Sampson, A., Bjrndalen, J.M., Stepney, S., Timmis, J., Warren, D.,

Welch, P.H., Noble, J.: Investigating patterns for the process-oriented modelling

and simulation of space in complex systems. In: Bullock, S., Noble, J., Watson, R.,

Bedau, M.A. (eds.) Artificial Life XI: Proceedings of the Eleventh International

Conference on the Simulation and Synthesis of Living Systems, Cambridge, MA,

pp. 17–24. MIT Press, Cambridge (2008)

8. Hoare, C.A.R.: Communicating sequential processes. Prentice Hall, Englewood

Cliffs (1985), ISBN 0 13 153271 5 (Hard), 0 13 153289 8 (Pbk)

9. Welch, P.H., Barnes, F.: Communicating mobile processes: introducing occam-pi.

In: Abdallah, A.E., Jones, C.B., Sanders, J.W. (eds.) Communicating Sequential

Processes. LNCS, vol. 3525, pp. 175–210. Springer, Heidelberg (2005)

http://www.cosmos-research.org/

512 S. Clayton, N. Urquhard, and J. Kerridge

10. Welch, P.H., Brown, N.C., Moores, J., Chalmers, K., Sputh, B.: Integrating and

Extending JCSP. In: McEwan, A.A., Ifill, W., Welch, P.H. (eds.) Communicating

Process Architectures 2007, pp. 349–369 (July 2007)

11. Hansen, P.B.: Java’s insecure parallelism. SIGPLAN Not 34(4), 38–45 (1999)

12. McColl, W.F.: Scalable computing. In: Computer Science Today: Recent Trends

and Developments, pp. 46–61. Springer, Heidelberg (1996)

13. Wooldridge, M.: An Introduction to MultiAgent Systems. John Wiley & Sons,

Chichester (2002)

14. Welch, P.H., Justo, G., Willcock, C.: Higher-Level Paradigms for Deadlock-Free

High-Performance Systems. In: Grebe, R., Hektor, J., Hilton, S., Jane, M., Welch,

P.H. (eds.) Transputer Applications and Systems 1993, Proceedings of the 1993

World Transputer Congress, Aachen, Germany, September 1993, vol. 2, pp. 981–

1004. IOS Press, Netherlands (1993)

15. Martin, J.M., Welch, P.H.: A Design Strategy for Deadlock-Free Concurrent Sys-

tems. Transputer Communications 3(4) (July 1997) (in Press)

16. Ritson, C.G., Welch, P.H.: A Process-Oriented Architecture for Complex System

Modelling. In: McEwan, A.A., Ifill, W., Welch, P.H. (eds.) Communicating Process

Architectures 2007, pp. 249–266 (July 2007)

17. Bruce, V., Green, P., Georgeson, M.: Visual Perception: Physiology, Psychology,

and Ecology. Psychology Press, New York (1996)

18. Blue, V., Embrechts, M., Adler, J.: Cellular automata modeling of pedestrian move-

ments. In: 1997 IEEE International Conference on Systems, Man, and Cybernetics,

Computational Cybernetics and Simulation, Orlando, FL, vol. 3, pp. 2320–2323

(1997)

Artificial Intelligence of Virtual People

in CA FF Pedestrian Dynamics Model

Ekaterina Kirik1,2, Tat’yana Yurgel’yan2, and Dmitriy Krouglov1,3

1 Institute of Computational Modelling of

Siberian Branch of Russian Academy of Sciences,

Krasnoyarsk, Akademgorodok, Russia, 660036

kirik@icm.krasn.ru
2 Siberian Federal University, Krasnoyarsk, Russia

3 V.N. Sukachev Institute of Forest of

Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, Russia

Abstract. This paper deals with mathematical model of pedestrian

flows. We focus here on an “intelligence” of virtual people. From macro-

scopic viewpoint pedestrian dynamics is already well simulated but from

microscopic point of view typical features of people movement need to be

implemented to models. At least such features are “keeping in mind” two

strategies – the shortest path and the shortest time and keeping a certain

distance from other people and obstacles if it is possible. In this paper

we implement mathematical formalization of these features to stochastic

cellular automata (CA) Floor Field (FF) model.

Keywords: cellular automata; pedestrian dynamics; transition

probabilities.

1 Introduction

Modelling of pedestrian dynamics is actual problem at present days. Different
approaches from the social force model ([1] and references therein) based on dif-
ferential equations to stochastic CA models (for instance, [6,2,10] and references
therein) are developed. They reproduce many collective, so to say, macroscopic
properties including lane formation, oscillations of the direction at bottlenecks,
the so-called “faster-is-slower” effect. These are an important and remarkable
basis for pedestrian modelling. But there are still things to be done from micro-
scopic point of view. The better individual pedestrian behavior is more realistic
collective interaction and shape of flow are.

We have focused on a fact that in regular situations (non emergent) pedes-
trians choose their route more carefully [1]. And our aim is to mathematically
formalize some features of individual behavior and as a result to improve sim-
ulation of individual and collective dynamics of people flow. We focus on im-
plementation to a model such behavioral aspects of decision making process as:
pedestrians keep a certain distance from other people and obstacles if it is pos-
sible; while moving people follow at least two strategies — the shortest path

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 513–520, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

514 E. Kirik, T. Yurgel’yan, and D. Krouglov

and the shortest time. Strategies may vary, cooperate and compete depending
on current position.

Our model takes inspiration from stochastic floor field (FF) CA model [6]
that provides pedestrians with a map which “shows” the shortest distance from
current position to a target.

There were introduced [3] already some innovations (“people patience”, “vis-
ibility radius”, “environment analyzer”) that allowed to extend basis FF model
towards behavioral aspect and make more flexible/realistic decision making pro-
cess. By this reason model obtained was named as Intelligent FF CA model. In
this paper we extend previous result and develop further intelligence of virtual
people in the sense mentioned above.

The article is organized as follows. In the next section, the problem is stated.
In Section 3.1, we describe the model in general and update rules. Section 3.2
contains probability formulas. It is followed by the discussion and the presenta-
tion of the simulation results.

2 Statement of the Problem

The space (plane) is known and sampled into cells 40cm× 40cm in size (it is an
average space occupied by a pedestrian in a dense crowd [6]) which can either
be empty or occupied by one pedestrian (particle) only:

fij =
{

1, cell (i, j) is occupied by a pedestrian;
0, cell (i, j) is empty.

Cells may be occupied by walls and other nonmovable obstacles:

wij =
{

1, cell (i, j) is occupied by an obstacle;
0, cell (i, j) is empty.

Starting people positions are known. Target point for each pedestrian is the
nearest exit. Each particle from cell (i, j) can move to one of four its next-
neighbor cells or to stay in the present cell (the von Neumann neighborhood =
{(i−1, j), (i, j+1), (i+1, j), (i, j−1), (i, j)}) at each discrete time step t→ t+1,
e.i., vmax = 1.

The direction to move for each particle at each time step is random and
determined in accordance with transition probabilities distribution and rules.

Thus, to simulate the intelligent people movement (directed with typical fea-
tures) the main task is to determine “right” transition probabilities and transi-
tion rules.

3 Solution

3.1 Update Rules

A typical scheme for stochastic CA models is used here. There is step of some
preliminary calculations. Then at each time step transition probabilities are cal-
culated and direction is chosen. If there are more then one candidates to one

Artificial Intelligence of Virtual People 515

cell a conflict resolution procedure is applied, and then simultaneous transition
of all particles is made.

In our case, preliminary step includes calculations of static Floor Field (FF)
S [6]. Field S coincides with the sampled space. Each cell Si,j saves shortest
discreet distance from cell (i, j) to the nearest exit. It doesn’t evolve with time
and isn’t changed by the presence of the particles. One can consider S as a map
that pedestrians use to move to the nearest exit. While calculating field S we
admit diagonal transitions and consider that vertical and horizontal movement
to the nearest cell has a length of 1; length of diagonal movement to the nearest
cell is

√
2. (And it’s clear that movement through a corner of wall or collum is

forbidden, and roundabout movement only is admitted in such cases.) It is made
discreet distance more close to continuous one.

The probabilities to move from cell (i, j) to each of the four nearest cells are
calculated in the following way:

pi−1,j =
p̃i−1,j

Ni,j
, pi,j+1 =

p̃i,j+1

Ni,j
, pi+1,j =

p̃i+1,j

Ni,j
, pi,j−1 =

p̃i,j−1

Ni,j
, (1)

where Ni,j = p̃i−1,j + p̃i,j+1 + p̃i+1,j + p̃i,j−1.
Moreover, pi−1,j = 0, pi,j+1 = 0, pi+1,j = 0, pi,j−1 = 0 only if wi−1,j =

1, wi,j+1 = 1, wi+1,j = 1, wi,j−1 = 1 correspondingly.
We don’t calculate probability to stay the at present cell directly. But decision

rules are organized in a way that such opportunity may be realized and people
patience is reproduced by this means.

The decisions rules are [4]:

1. If Normi,j = 0, motion is forbidden; otherwise, a target cell (l, m)∗ is chosen
randomly using the transition probabilities.

2. (a) If Normi,j �= 0 and (1 − f∗
l,m) = 1, then target cell (l, m)∗ is fixed.

(b) If Normi,j �= 0 and (1 − f∗
l,m) = 0, then cell (l, m)∗ is not available

for moving and “people patience” can be realized. For this purpose, the
probabilities of cell (l, m)∗ and all the other occupied adjacent cells are
given for the current position. Again, the target cell is chosen randomly
using the transformed probability distribution1.

3. Whenever two or more pedestrians have the same target cell, we use sim-
ple scheme to resolute conflicts [6]2. Movement of all involved pedestrians is
denied with probability μ, i.e., all pedestrians remain at their places. With
probability 1−μ one of the candidates moves to the desired cell. The pedes-
trian that is allowed to move is chosen randomly.

1 This trick of choosing the current position is provoked by the fact that when moving

directionally people usually stop only if the preferable direction is occupied. The

original FF model [9] never gives zero probability to the current position, and it

may be chosen independent of the environment.
2 Advanced method is reproduced here [10]. But present research doesn’t concentrate

on exit problems, we only need to provide flow path through narrow places.

516 E. Kirik, T. Yurgel’yan, and D. Krouglov

4. The pedestrians allowed to move perform their motion to the target cell.
5. The pedestrians that stand in the exit cells are removed from the space.

These rules are applied to all the particles at the same time. , i.e., parallel update
is used.

3.2 Probability

In stochastic CA pedestrian flow models the update rules preferably answer
the question “How” to make movement. The transition probability preferably
determines “Where” to move. To simulate the collective pedestrian movement
with the realistic shape of flow one should use the “right” probability formulas.
To make them “right” means to “remember” that in normal situations people
choose their rout following some subconscious common rules (see [1] and refer-
ence therein). The rules are: a) pedestrians keep a certain distance from other
people and obstacles, and more tight crowd this distance smaller, b) while mov-
ing people follow at least two strategies – the shortest path and the shortest time.
Thus, mostly in this paper we focus on transition probabilities. And our aim is
the attempt of mathematical formalization of the features mentioned above.

In FF models people move to the nearest exit and their wish to move there
doesn’t depend on current distance to exit. From probability view point this
means that for each particle among all the nearest neighbor cells a neighbor
with the smallest S should have the largest probability. So the main driving
force for each pedestrian is to minimize FF S at each time step. But in this case,
only the strategy of shortest path is mainly realized. This results in the fact that
in the models people density does not regulate distance between people, and a
slight regard to avoidance of congestions is supposed.

An idea to improve dynamics in FF model is to introduce environment ana-
lyzer in the probability formula. It should regulate distance between people and
decrease the influence of the shortest path strategy and increase the possibility
to move to a direction with favorable conditions for moving.

There were attempts already to introduce some environment analyzers into
probabilities in stochastic CA models [5], [3]. A model presented in [3] reproduces
individual dynamics in a proper way (pedestrian moved using more natural path
and avoiding obstacles ahead). But collective dynamics was reproduced properly
only in the certain rooms with simple geometry (room with one exit preferably
in the middle of the wall; there were no turnings, bottlenecks, obstacles, etc.).
A main reason of it was that the environment analyzer was not flexible and
spatially adaptive and its weight was considerably less than the weight of the
driving force.

In this paper we introduce revised idea of the environment analyzer [3] and
make an attempt to mathematically formalize complex decision making process
that people do choosing their path.

First, we present the transition probability formula; below, we will discuss it
in detail. For example, the probability of movement from cell (i, j) to the upper
neighbor is

p̃i−1,j = ASFF
i−1,jA

people
i−1,j Awall

i−1,j(1 − wi−1,j). (2)

Artificial Intelligence of Virtual People 517

Here

– ASFF
i−1,j = exp (kS�Si−1,j) is the main driven force:
1. �Si−1,j = Si,j − Si−1,j ;
2. kS ≥ 0 is the (model) sensitivity parameter which can be interpreted as

knowledge of the shortest way to the destination point or a wish to move
to the destination point. The equality kS = 0 means that the pedestrians
ignore the information from field S and move randomly. The higher kS ,
the better directed the movement.

Since field S increases radially from the exit(s) in our model, then,�Si−1,j >
0 if cell (i− 1, j) is closer to the exit than the current cell (i, j), �Si−1,j < 0
if the current cell is closer, and �Si−1,j = 0 if cells (i, j) and (i − 1, j) are
equidistant from the exit.

In contrast to other authors that deal with FF model (e.g., [6], [2], [10]),
we propose to use�Si−1,j . From mathematical view point, it is the same but
computationally this trick has a great advantage. Values of FF may be too
high (depending on the space size) and exp(kSSi−1,j) may be uncomputable.
This is a significant restriction. At the same time 0 ≤ �Si−1,j ≤ 1, and
problem of computing ASFF

i−1,j is absent;
– Apeople

i−1,j = exp
(−kP Di−1,j(r∗i−1,j)

)
is factor that takes into account people

density in the given direction:
1. r�

i−1,j is a distance to the nearest obstacle in this direction (r�
i−1,j ≤ r);

2. r > 0 is the visibility radius (model parameter) representing the max-
imum distance (number of cells) at which the people density and the
presence of obstacles influence on the probability in the given direction;

3. the density lies within 0 ≤ Di−1,j(r∗i−1,j) ≤ 1; if all the r∗i−1,j cells are
empty in this direction, we have Di−1,j(r∗i−1,j) = 0; if all the r∗i−1,j cells
are occupied by people in this direction, we have Di−1,j(r∗i−1,j) = 1.
We estimate the density using the idea of the kernel Rosenblat-Parzen’s
density estimate ([8], [7]):

Di−1,j(r∗i−1,j) =

r∗
i−1,j∑
m=1

Φ
(

m
C(r∗

i−1,j)

)
fi−m,j

r∗i−1,j

,

were

Φ(z) =

{(
0.335− 0.067(z)2

)
4.4742, |z| ≤ √5;

0; |z| > √
5,

(3)

C(r∗i−1,j) =
r∗

i−1,j+1√
5

;
4. kP is the (model) people sensitivity parameter which determines the

effect of the people density. The higher parameter kP , the more pro-
nounced the shortest time strategy;

– Awall
i−1,j = exp

(
−kW (1− r∗

i−1,j

r)1̃(�Si−1,j −max�Si,j)
)

is the factor that
takes into account walls and obstacle:

518 E. Kirik, T. Yurgel’yan, and D. Krouglov

1. kW ≥ kS is the (model) wall sensitivity parameter which determines the
effect of walls and obstacles;

2. max�Si,j = max{�Si−1,j,�Si,j+1,�Si+1,j ,�Si,j−1},
1̃(φ) =

{
0, φ < 0,

1 otherwise.
An idea of the function 1̃(�Si−1,j −max�Si,j)

comes from the fact that people avoid obstacles only when moving to-
wards the destination point. When people make detours (in this case,
field S is not minimized), approaching the obstacles is not excluded.

– NOTE that only walls and obstacles turn the transition probability to “zero”.

The probabilities of movement from cell (i, j) to each of the four neighbors
are:

pi−1,j = N−1
i,j exp

[
kS�Si−1,j − kP Di−1,j(r∗i−1,j)−

− kW (1− r∗i−1,j

r
)1̃(�Si−1,j −max�Si,j)

]
(1 − wi−1,j); (4)

pi,j+1 = N−1
i,j exp

[
kS�Si,j+1 − kP Di,j+1(r∗i,j+1)−

kW (1− r∗i,j+1

r
)1̃(�Si,j+1 −max�Si,j)

]
(1 − wi,j+1); (5)

pi+1,j = N−1
i,j exp

[
kS�Si+1,j − kP Di+1,j(r∗i+1,j)−

− kW (1− r∗i+1,j

r
)1̃(�Si+1,j −max�Si,j)

]
(1 − wi+1,j); (6)

pi,j−1 = N−1
i,j exp

[
kS�Si,j−1 − kP Di,j−1(r∗i,j−1)−

− kW (1− r∗i,j−1

r
)1̃(�Si,j−1 −max�Si,j)

]
(1 − wi,j−1); (7)

In expressions (4)-(7), the product ApeopleAwall is the environmental analyzer
that deals with people and walls. The following restrictions take place 0 ≤ �S ≤
1, 0 ≤ D(r∗) ≤ 1, and 0 ≤ 1− r∗

r ≤ 1. These allows adjusting sensitivity of the
model to the people density and the approaching to obstacles using parameters
kP and kW , respectively. To be pronounced people and wall terms should not
have parameters less then kS (kP ≥ kS , kW ≥ kS).

Following the shortest time strategy means to take detour around high density
regions if it is possible. Term Apeople works as the reduction of the main driving
force (that provides the shortest path strategy) and the probability of detours
becomes higher. The higher kP the more pronounced the shortest time strategy.
Note that low people density makes influence of Apeople small and probability of
the shortest path strategy increases for particle. Parameters kP allows to tune
sensitivity of the model to people density.

Term Awall corresponds only to avoidance of the ahead obstacles so it is not
be discussed here. Assume that kW = kS .

Artificial Intelligence of Virtual People 519

a) Field S. b) Initial positions.

Fig. 1.

4 Simulations

Here we present some simulations result to demonstrate that our idea works. We
use one space and compare 2 sets of parameters. Size of space is 14.8m× 13.2m
(37 cells × 33 cells) with one exit (2.0m). Static field S is presented in fig. 1a. In
Fig. 1b are stating positions of the particles. They move towards the exit with
the velocity v = vmax = 1.

Here we don’t present some quantity results and only demonstrate quality
difference of flow dynamics for 2 sets of model parameters for model presented.

The first set of parameters is kS = kW = 4, kP = 6, r = 10. The second set is
kS = kW = 4, kP = 18, r = 10. Following moving condition are reproduced by
both sets – pedestrians know way to exit very well, they want go to exit (it is
determined by kS), visibility is good (r), attitude to walls is “loyal” (kW = kS).
Only parameter kP varies here.

t = 25 t = 135 t = 180

Fig. 2. Evacuation for 300 people, kS = kW = 4, r = 10, kP = 6; Ttot = 270[step]

t = 25 t = 135 t = 180

Fig. 3. Evacuation for 300 people, kS = kW = 4, r = 10, kP = 18; Ttot = 270[step]

520 E. Kirik, T. Yurgel’yan, and D. Krouglov

If kP = 6 prevailing moving strategy is the shortest path (Fig. 2).
The other set of parameters kS = kW = 4, kP = 18, r = 10 (see Fig. 3) allows

to realize both strategies depending on conditions and regulate distance between
people depending on density.

5 Conclusion

Under equal movement conditions kS = kW = 4, r = 10 different density sensi-
tive parameters give significant divergence in the dynamics of the model. Com-
bining of the shortest path and the shortest time strategies (kP = 18) gives
faster evacuation process, Ttot = 270[step] (if kP = 6, when the shortest path
strategy predominates, Ttot = 320[step]), the higher turn radius, the using of
detours facilities, the effective use of the exit width, and more realistic shape
of flow in a whole. Model dynamics proper needs careful investigation and it
is going on. Necessity of kP spatial adaptation is already clear. It should be a
function on space capacity.

References

1. Helbing, D.: Traffic related self-driven many-particle systems. Rev. Mod.

Phys. 73(4), 1067–1141 (2001)

2. Henein, C.M., White, T.: Macroscopic effects of microscopic forces between agents

in crowd models. Physica A 373, 694–718 (2007)

3. Kirik, E., Yurgel’yan, T., Krouglov, D.: An intelligent floor field cellular automa-

tion model for pedestrian dynamics. In: Proceedings of The Summer Computer

Simulation Conference 2007. The Mission Valley Marriott San Diego, California,

pp. 1031–1036 (2007)

4. Kirik, E., Yurgel’yan, T., Krouglov, D.: The Shortest Time and/or the Shortest

Path Strategies in a CA FF Pedestrian Dynamics Model. Journal of Siberian Fed-

eral University, Mathematics and Physics 2(3), 271–278 (2009)

5. Malinetskiy, G.G., Stepantcov, M.E.: An application of cellular automation for

people dynamics modelling. Journal of Computational Mathematics and Mathe-

matical Physics 44(11), 2108–2112 (2004)

6. Nishinari, K., Kirchner, A., Namazi, A., Schadschneider, A.: Extended floor field

CA model for evacuation dynamics. IEICE Trans. Inf. & Syst. E87-D, 726 (2004)

7. Parzen, E.: On estimation of probability Density Function. Ann. Math. Stat. 33,

1065–1076 (1962)

8. Rosenblat, M.: Remarks on some non-parametric estimates of a density function.

Ann. Math. Stat. 27, 832–837 (1956)

9. Schadschneider, A., Seyfried, A.: Validation of CA models of pedestrian dynamics

with fundamental diagrams. Cybernetics and Systems 40(5), 367–389 (2009)

10. Yanagisawa, D., Nishinari, K.: Mean-field theory for pedestrian outflow through

an exit. Physical review E76, 061117 (2007)

Towards the Calibration of Pedestrian Stream

Models

Wolfram Klein, Gerta Köster�, and Andreas Meister

Siemens AG, Germany

{gerta.koester,wolfram.klein}@siemens.com

Abstract. Every year people die at mass events when the crowd gets

out of control. Urbanization and the increasing popularity of mass events,

from soccer games to religious celebrations, enforce this trend. Thus,

there is a strong need to gain better control over crowd behavior. Sim-

ulation of pedestrian streams can help to achieve this goal. In order to

be useful, crowd simulations must correctly reproduce real crowd be-

havior. This usually depends on the actual situation and a number of

socio-cultural parameters. In other words, what ever model we come up

with, it must be calibrated. Fundamental diagrams capture a large num-

ber of the socio-cultural characteristics in a very simple concept. In this

paper we represent a method to calibrate a pedestrian stream simulation

tool so that it can reproduce arbitrary fundamental diagram with high

accuracy. That is, it correctly reproduces a given dependency of pedes-

trian speed on the crowd density. We demonstrate the functionality of

the method with a cellular automaton model.

Keywords: cellular automaton, pedestrian simulation, fundamental

diagram, calibration.

1 Introduction

Crowd behavior has gained a lot of interest in the past years, fueled by the
insight that mass events with their growing popularity represent a risk for civil
security. Overall a comparably large variety of potentially dangerous scenarios
is known. The scenarios range from environmental disasters to terrorist attacks.
Each scenario comes with its own scale (building, housing block or city), cultural
(e.g. India or Germany) [1] or event-specific [2] (e.g. sports game or religious
celebration) characteristics.

To a large extend they all share the same quite general trait that in dense
crowds that press towards a certain goal an individual can easily suffocate or be
trampled to death. And of course there is always the need to evacuate people as
fast as possible. Without being complete this illustrates the need to gain better
control over crowd behavior.

Simulation of crowd streams can help to achieve this goal: Simulations allow
running through a number of scenarios in a critical situation and thus to find
� Corresponding author.

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 521–528, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

522 W. Klein, G. Köster, and A. Meister

adequate measures to improve security. In order to be useful, crowd simulations
must correctly reproduce crowd behavior. Primarily, the model must capture the
system dynamics, namely the most important mechanisms of interaction. Grad-
ually increasing the details of modeling and comparing simulation results and
empirical data has been established as a successful strategy for identifying these
mechanisms. While the underlying mechanisms of interaction can be assumed
to be quite universal, they depend on a large number of parameters. Especially
rather basic or universal rules of interaction cannot be expected to capture every
situation and need to be adapted to the scenario of interest. This is a vital issue
for practical applications focusing on high-fidelity reproduction of a wide range
of scenarios, each characterized by a corresponding set of parameters.

In other words, what ever model we come up with, it must be calibrated.
Calibration, in our context, means that the model we use is adapted to spe-
cific information from the real world. This information can be extremely varied.
Widely known dependencies are for example the basic environmental conditions
like structural constraints imposed by the architecture of a surrounding building
[3]. Recently also socio-cultural aspects have been investigated [1]. Obviously
the range of possible parameters is large and the impact differs from scenario to
scenario.

Hence, the first challenge of calibration is to decide where to begin. The
present work proposes the use of the so-called fundamental diagram of pedes-
trian flow as the source of parameters capturing the most relevant parameters
characterizing different scenarios. Originating from vehicular highway traffic [4],
[5], the diagram describes the function relation between the number of cars on a
road section and their velocity. In recent years fundamental diagrams have also
been obtained for various other systems based on motile constituents [6], [7], [8].

Among these systems one also finds the empirical fundamental diagram of
pedestrian dynamics [9], [6], [10]. The functional relation between the density
of pedestrians and walking speed has been measured by several groups. For a
detailed survey we refer to [9]. Overall we found clear indication that, indeed, a
major number of parameters such as cultural differences are captured. Appar-
ently ‘the speed of Indian test persons is less dependent on density than the
speed of German test persons’[1].

Besides these effects also a scenario dependence can be expected. In case of
counterflowing streams of pedestrians or at a bottleneck, the average walking
speed in one direction might also depend on the density of pedestrians moving
in the opposite direction [11], [12].

From that it becomes clear, that there is no fundamental diagram that is true
for every scenario, culture, location. Simulating crowds in a rail station in, say,
Berlin should yield significantly different results from a rail station in Delhi. So
ideally, before running a simulation, we would obtain a fundamental diagram – or
a collection of such diagrams – that is suitable for the scenario we are interested
in. Then we would calibrate our model, so that it reproduces the phenomenon
expressed through the fundamental diagram. There are, of course, many more
aspects worth investigating. Our choice is to start with the fundamental diagram.

Towards the Calibration of Pedestrian Stream Models 523

In this paper we represent a method to calibrate a pedestrian stream simulation
tool so that it can reproduce any given fundamental diagram. We demonstrate
the functionality of the method with a cellular automaton model. Nevertheless,
this approach might also be applied in a modified way to models of other classes.

2 A Glance at the Model

Our model of choice is a cellular automaton. This approach allows us to in-
corporate directly observable interaction in a very simple way. As we focus on
application in real scenarios simulation speed, namely faster-than-real-time ca-
pability is a major issue. Experience from vehicular traffic [13] or pedestrian
dynamics [6], [10] shows that these requirements are usually well met even for
large systems. We investigate an area that may be bounded by walls and contain
obstacles. Persons are leaving and entering through sources and sinks, namely
entrances and exits.

The persons move in one single plane or several planes such as floors. So we may
restrict ourselves to two dimensions. We cover the area of interest by cells. In prin-
ciple, triangular, rectangular and hexagonal cells are possible [10], [14]. Although
square cells seem to be the most popular choice, we prefer a hexagonal grid for
its two additional ‘natural’ directions of movement compared to the square grid.
Each cell, at each time step, has a state: It is either empty or occupied. A cell can
be occupied by a single person. The cell size is chosen to accommodate an average
sized European male (in light summer attire and without baggage). Sources and
targets of pedestrians as well as obstacles also occupy cells.

The simulation dynamics themselves follow a specific kind of sequential update
scheme. That is, the cells containing persons are updated in the order the persons
have entered the scenario from a source.

The core of the model is contained in the ‘automaton’, that is, the set of
rules according to which the cell states are updated when we step one ahead
in time. For this, we burrow from physics namely electrodynamics. In principle
pedestrians are treated as charged particles, say electrons. So pedestrians are
attracted by positive charges, such as exits and repelled by negative charges
such as other pedestrians or obstacles.

The forces between pedestrians, targets and obstacles are calculated through
a potential field, using the properties of conservative force fields from physics,
where the force can be expressed as the gradient of a suitable scalar function:
the potential. In this, the model is very similar to any typical cellular automaton
model based on potentials as, for example, described in [15], [16], [10], [17], [12],
[18], [19] or in the web-published handbook of the TraffGo tool [20]. The pure
electron based approach clearly has its limitations when modeling human behav-
ior. For example, humans use what they see in front of them to coordinate their
movement. There is no radial symmetry. Hence, our model enriches the basic
ideas by a number of sub-models to compensate the most relevant shortcomings.
Using the terminology in [10] our model is:

1. Microscopic.
2. Discrete.

524 W. Klein, G. Köster, and A. Meister

3. Deterministic with stochastic aspects.
4. Rule based but potential driven.

In this paper we do not strive to give another complete description of the, very
successful, cellular automaton approach based on potential fields. Nor do we
intend to describe our particular choice of sub-models. Instead, we want to en-
hance any such model by an aspect that we think of the utmost importance for
useful application: calibration. Hence, we will focus on those model parameters
that the calibration algorithm needs.

The model parameter that we will use for calibration is the walking speed.
It is directly accessible through experiments and measurements. Each person is
generated with an individual speed that the person tries to achieve – and indeed
does achieve when the path is free: the free flow velocity [13], [5] or, as we call it,
the ‘desired velocity’. The distribution of the speeds follows the suggestions in
[9]. That is, we assume a normal distribution about some medium desired speed.
Some persons wish to go faster, if given the chance, others are slower by habit.
The different velocities are made possible by allowing a person to move forward
multiple cells per simulation step.

Fig. 1. A cellular automaton based on a grid with hexagonal cells. Pedestrians move

from a source to a target avoiding obstacles on the way. We prefer a hexagonal grid

over a square grid for its 2 additional ‘natural’directions of movement.

3 The Challenge

The simulation results of our model without calibration show that it is suitable to
qualitatively reproduce the fact that the denser the crowd, the slower the velocity
of each person. That is, people are hindered by each other in their movement.
However, in our simulations, they still move too fast compared to well known
fundamental diagrams such as the popular diagram described by Weidmann [9].
See Figure 2 and Figure 3. This observation is – or was – shared by others
simulation projects. See, for instance, the analysis according to the RIMEA
guidelines conducted by [21]: test 4. In addition the simulated pedestrians appear
to be ‘short sighted’and do not decelerate before they literally ‘bump’ into a
dense crowd.

Towards the Calibration of Pedestrian Stream Models 525

Results are somewhat improved – at least when we only consider the fun-
damental diagram according to [9] – when the number of discrete speeds with
which a person may move is increased. Please refer to Figure 2 and Figure 3.
However, it is impossible to tune the basic model – e.g. by adjusting the repulsive
force of indivuduals – so that it reproduces an arbitrary fundamental diagram
with satisfactory accuracy on a quantitative level.

4 Solution Strategies

To meet the challenge of reproducing the given fundamental diagram quantita-
tively we introduce the new concept of deceleration classes. The basic idea is to
measure the density of the crowd in the direction in which a person moves and
then to adapt the person’s velocity to the one suggested by the fundamental di-
agram of choice. The execution of the idea, however, is a little more complicated
because the world of a cellular automaton is discretized through cells. Also, we
do not want to loose individual differences in the human behavior.

Measuring the density means to count the number of persons in a reasonable
number of cells that lie in the field of vision of a walking person. The field of
vision is aligned with the direction in which the person walks. By this we reduce
the basically two dimensional problem to the quasi one-dimensional situation for
which fundamental diagrams are usually employed. As a result the pedestrians
are no longer ‘short sighted’but react to congestions ahead of them.

The model is first calibrated such that the mean free flow cell velocity – the
average number of cells a person covers per simulation step when the path is
free – corresponds to 1.34m

s as suggested in [9]. The cell velocities are normally
distributed about this mean cell velocity (mcv). We get 2 · mcv − 1 discrete
velocities.

When a person is surrounded by a dense crowd on the way to the chosen
target, which lies in the direction of the lowest potential, the person’s speed is
adapted: More precisely, each person’s desired velocity is temporarily reduced.
Note that it still depends on the availability of a free path, whether the person
can really achieve this new desired velocity. The number of cells by which the
desired velocity of an individual is reduced for a certain density also depends on
the original free flow velocity of the person, so that we maintain the individual
differences in the walking speed. In our approach, the speed reduction depends
on the density and free flow velocity. The dependency is expressed in a set of
rules that involve artificial calibration parameters. Since the model’s world is
partitioned in cells the densities are discrete too. We therefore speak of den-
sity classes and, accordingly, of ’deceleration classes’ to denote the calibration
parameters that we introduced in the rules. Now, the deceleration classes must
be tuned according to the fundamental diagram. This means, the model can be
calibrated.

The impact of the calibrated deceleration classes on the simulation results is
evident in Figure 4. We achieve an excellent fit with the fundamental diagram
we used for calibration (taken from [9]).

526 W. Klein, G. Köster, and A. Meister

Fig. 2. Uncalibrated flow: without decleration model. The basic model does not cor-

rectly reproduce the dependency of the velocity on the density in a crowd.

Fig. 3. Uncalibrated flow: without decleration model. The basic model does not cor-

rectly reproduce the dependency of the velocity on the density in a crowd. Increasing

the number of possible velocities improves the results qualitatively, but does not allow

to tune the model to an arbitrary fundamental diagram.

Fig. 4. Calibrated flow: with deceleration model. Introducing the deceleration model

allows calibration. Parameters are tuned to an excellent fit with the fundamental

diagram.

Towards the Calibration of Pedestrian Stream Models 527

5 Conclusion

In this paper we discuss a first step towards the calibration of pedestrian stream
models based on scenario specific fundamental diagrams. We consider the fun-
damental diagram as a behavioral model that aggregates a multitude of socio-
cultural and even scenario dependent parameters. Ultimately, the differences in
– say gender, nationality, fitness dependent on day time – find their expression
in the way people walk as individuals and surrounded by a crowd. The walking
speed is the crucial parameter. It depends on the density.

Thus, we do not need to identify each socio-cultural parameter of which, as a
rule, we cannot quantify the influence anyway. Instead we feed the appropriate
fundamental diagram into the simulation. In a learning phase, we adjust the
way people slow down when they are walking in a crowd until the particular
fundamental diagram is faithfully reproduced by computer simulations of our
model.

To illustrate our calibration approach we have chosen a potential-based cellu-
lar automation model. We suggested so-called deceleration classes in this cellular
automaton model to slow down persons when they approach a crowd on their
way to a chosen target. We demonstrated that the calibrated deceleration classes
are suitable to obtain a very good fit to a given fundamental diagram.

In an ideal set up, each scenario would have its own fundamental diagram.
We therefore believe that the sort of calibration suggested here, is absolutely
necessary to tune a simulation model to the scenario of interest. Clearly the
number of measured fundamental diagrams currently available to the researcher
is very limited. However, with new methods to gain data, such as video analysis
or radio technologies, this deficiency may soon be overcome and it will become
necessary to devise methods to automatically calibrate a simulation tool.

Robustness of our calibration, that is, sensitivity to variations and errors in the
data is another vital issue. Furthermore, we will strive to refine and enlarge our
method according the insight we expect from the increasing number of empirical
fundamental diagrams.

We would like to thank Alexander John for useful discussions and pointing
out some aspects regarding the presentation of the discussed material.

References

1. Chattaraj, U., Seyfried, A., Chakroborty, P.: Comparison of pedestrian fundamen-

tal diagram across cultures. arXiv:0903.0149, physics.soc-ph (2009)

2. Johansson, A., Helbing, D., A-Abideen, H.Z., Al-Bosta, S.: From crowd dynamics

to crowd safety: A video-based analysis. Advances in Complex Systems 11(4), 497–

527 (2008)

3. Predtetschenski, W., Milinski, A.: Personenströme in Gebäuden - Berech-

nungsmethoden für die Modellierung. Müller, Köln-Braunfeld (1971)

4. Greenshields, B.D.: A study of highway capacity. Proceedings Highway Research

Record 14, 448–477 (1935)

5. May, A.D.: Traffic Flow Fundamentals. Prentice-Hall, Englewood Cliffs (1990)

528 W. Klein, G. Köster, and A. Meister

6. Kretz, T.: Pedestrian Traffic. Simulation and Experimens. PhD thesis, Universität

Duisburg-Essen (2007)

7. Chowdhury, D., Schadschneider, A., Nishinari, K.: Physics of transport and traffic

phenomena in biology: from molecular motors and cells to organisms. Physics of

Life Reviews 2, 318 (2005)

8. John, A., Schadschneider, A., Chowdhury, D., Nishinari, K.: Characteristics of ant-

inspired traffic flow: Trafficlike collective movement of ants on trails: Absence of a

jammed phase, http://arxiv.org/abs/0903.1434

9. Weidmann, U.: Transporttechnik für Fussgänger. Schriftenreihe des IVT 90 (1992)

10. Schadschneider, A., Klingsch, W., Klüpfel, H., Kretz, T., Rogsch, C., Seyfried, A.:

Evacuation dynamics: Empirical results, modeling and applications,

http://arxiv.org/abs/0802.1620

11. Kretz, T., Grünebohm, A., Schreckenberg, M.: Experimental study of pedestrian

flow through a bottleneck. J. Stat. Mech (2006)

12. John, A., Schadschneider, A., Chowdhury, D., Nishinari, K.: Characteristics of ant-

inspired traffic flow: Applying the social insect metaphor to traffic models. Swarm

Intelligence 2 (2008)

13. Nagel, K., Schreckenberg, M.: A cellular automation model for freeway traffic. J.

Phys. I France 2, 2221–2229 (1992)

14. Kinkeldey, C., Rose, M.: Fussgängersimulation auf der Basis sechseckiger zellularer

Automaten, http://www.bauinf.uni-hannover.de/publikationen

15. Kluepfel, H.L.: A cellular automation model for crowd movement and egress sim-

ulation. PhD thesis, Universität Duisburg-Essen (2003)

16. Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedes-

trian dynamics using a 2-dimensional cellular automation. Physika (Amster-

dam) 295A, 507 (2001)

17. Hamacher, H.W., Tjandra, S.A.: Mathematical Modelling of Evacuation Problem:

A State of the Art. Springer, Heidelberg (2002)

18. Kinkeldey, C.: Fussgängersimulation auf der Basis zellularer Automaten: Studien-

arbeit im Fach Bauinformatik (2003)

19. Rogsch, C.: Vergleichende Untersuchungen zur dynamischen Simulation von Per-

sonenströmen, Diplomarbeit an der Bergischen Universtät Wuppertal (2005)

20. TraffGo: Handbuch,

http://www.traffgo-ht.com/de/pedestrians/downloads/index.html

21. Hebben, S.: Analyse RIMEA Projekt, TraffGo HT GmbH (2006),

http://www.ped-net.org

http://arxiv.org/abs/0903.1434
http://arxiv.org/abs/0802.1620
http://www.bauinf.uni-hannover.de/publikationen
http://www.traffgo-ht.com/de/pedestrians/downloads/index.html
http://www.ped-net.org

Two Concurrent Algorithms of Discrete Potential
Field Construction

Konrad Kułakowski and Jarosław Wąs

Institute of Automatics,
AGH University of Science and Technology

Al. Mickiewicza 30,
30-059 Cracow, Poland

Abstract. Increasing demand for computational power in contempo-
rary constructions has created the need to build faster CPUs and con-
struct more efficient algorithms. In this context especially the concurrent
algorithms seem to be very promising. Depending on the number of avail-
able CPUs they may offer significant reductions in computation time.

In this article two concurrent algorithms of potential field generation
are proposed. They present two different approaches to problem domain
partitioning called by the authors respectively as tearing and nibbling. It
is shown that depending on the problem topology either Tear algorithm
or Nibble algorithm is faster. Conclusions are summed up in form of
experimental results presenting how the algorithms work in practice.
However algorithms construct a discrete potential field according to some
specific scheme, there should be no major problems with generalization
them to other potential field schemes.

1 Introduction

Potential field as a way of describing a space’s local property is very popular
in many different fields of science, such as physics, chemistry or mathematics.
In computer science and automatics potential field is very often used in robot
path planning [1,2,3,4], navigation and simulation of complex phenomena, such
as pedestrian dynamics [5,6,7]. Depending on their specific application, potential
fields may have different representations and construction algorithms. One pos-
sible form of discrete potential field is a regular grid, where the value of potential
is assigned to every cell of a space [8,9]. Such a grid represents the occupancy
of a space (occupancy grid) in which every cell may have several states corre-
sponding to different types of objects that may occupy the cell (figure 1). Every
cell has a value of potential assigned to it. Thus, every object in a space may
find a collision-free way to potential sources (points of interest) by following the
increasing or decreasing potential values. This property is often used in different
navigation algorithms using potential field [9,10]. In static models, potential field
is constructed once, at the beginning of path planning or simulation. In dynami-
cally changing environments, potential field has to be recalculated every time the
environment is changed. In such cases the time indispensable for re-construction

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 529–538, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

530 K. Kułakowski and J. Wąs

of potential field may significantly impact on the total time of simulation, step
of path planning routine etc. For this reason it is important to work on practical
and efficient algorithms of potential field construction.

In this paper two such algorithms are presented. They are designed to be run
on MIMD (Multiple Instructions, Multiple Data) architecture with shared mem-
ory [11]. Both algorithms minimize the computation time in comparison to their
sequential versions. The obtained speedup depends on the space topology and
might be different for each algorithm. Experimental results are also presented.

Both algorithms are presented using “object-oriented pseudo-code”. Although
the authors hope it is intuitive, it seems that some syntactic elements need to
be explained in more detail. Thus, all the beginnings and endings of classes and
methods are denoted by phrase class, end class, method, end method. Blocks of
code are written using the same indentation depth. The assignment operator is
denoted with the help of the sign← and the method call on an object is denoted
by “.” operator.

2 Potential Field Construction

For the purpose of this paper a rather simple function describing the distribution
of potential has been chosen. The space for which the potential field is defined
is represented by an occupancy grid with square cells. Every cell may represent
an obstacle, an empty space, or a source of potential (e.g. a door in the case of
indoor pedestrian dynamics). The Moore neighbourhood defined for the cell c is
a set of eight cells where each has at least one point of its border common with
the border of c. The Moore neighbourhood of c will be denoted by M(c). So, the
potential function fp for the cell c is defined as follows:

fp(c) =

⎧⎪⎨⎪⎩
0 ⇐⇒ c represents a potential source
1 + mink∈M(c)(fp(k)) ⇐⇒ c represents an empty space
not defined ⇐⇒ c represents an obstacle

(1)

In the figure 1 we can see the hypothetical space with two potential sources
(brighter squares on the left and upper edge) with the fp calculated for every
cell of the space which is not an obstacle (black cells).

Fig. 1. Distribution of fp for the small room (space) with two doors (two potential
sources)

Two Concurrent Algorithms of Discrete Potential Field Construction 531

It is worth noticing that the calculation of fp(c) is local, which means that only
a few other cells’ fp (to be more precise their Moore neighbourhood) have to be
known to estimate fp(c). This fact enables parallelization of the whole potential
field calculation process. Since many other potential construction algorithms
require only local information to compute the value of potential in the given
place, this fact should also allow the presented solutions to be generalized to
the other types of potential fields e.g. using different definitions of distance [5]
etc. Another benefit of fp is that the potential field described by this function is
local minima free and trap free.

2.1 Class Task

The common part of both the Tear and Nibble algorithms is a class Task (listing
1). This constructs the value of potential for some cells following the scheme given
by the function fp. The class Task has two fields: row and nextRow. The whole
calculation take places in the function makeStep().

Code listing 1: Task class responsible for local potential field calculation

class Task1
row2
nextRow3
method Task(Cell source)4

row.add(source)5
end method6

method makeStep()7
foreach c in row do8

mr ← getMooreNeighbourhood(c)9
foreach m in mr do10

lock the access to m and c11
if c.potential + 1 < m.potential then12

m.potential ← c.potential + 113
nextRow.add(m);14

unlock the access to cells m and c15
row ← nextRow16
makeEmpty(nextRow)17

end method18

method isNotFinished()19
return row.isNotEmpty()20

end method21

end class22

At the very beginning of this method the row contains cells for which the
value of potential is known, whilst the nextRow is empty. While browsing the
Moore neighbourhoods for every cell c coming from row (line 10)the potential
value for every neighbour of c is calculated (lines 12 - 13). Every cell which

532 K. Kułakowski and J. Wąs

gets a new value of potential is added to nextRow (line 14). This is because the
cell may impact on the potential values of its neighbours, so it should be taken
into further consideration (line 16). Different tasks may be executed in different
concurrent threads. Because cells are the resources shared between tasks every
read and write value of potential from a cell has to be protected by a monitor. In
the class Task the synchronization block simultaneously protects access to the
two variables c and m (lines 11 - 15). In the case of c the monitor protects the
read access whilst in the case of m it protects read and write access. The task is
considered as finished if there are no cells for further processing in the row. In
such a case the second call of makeStep() over the given worker is not necessary.
Thus the typical usage of instance of the class Tasks consists of initialization
of the row (by e.g. a potential source) and successive calls of the methods:
makeStep() and isNotFinished().

2.2 Tear Algorithm

The algorithm implemented by the class Task (listing 1) allows for computation
of potential field generated by a single potential source. Thus, calculation of
potential field with respect to many potential sources requires subsequent calls
of makeStep() over all the tasks associated with these sources. Since different
workers may have different sets of tasks, the whole calculation can be done
concurrently. The Tear algorithm (listing 2) is just an implementation of this
concurrent computation scheme. The Tear algorithm starts with initialization
of variables storing potential sources and workers (lines 24, 25). It is assumed
that there are as many task objects as potential sources and as many workers
as logical processors (hereafter referred to as CPUs) in the system.

(a) (b)

Fig. 2. Workers’ distribution in Tear algorithms for two different topologies.
(a) a square space (30 × 30 cells) with eight potential sources and eight workers and,
(b) a space with a corridor where six potential sources are placed closely to each other
at the end of the corridor, and two potential sources are placed at the beginning of the
corridor.

Two Concurrent Algorithms of Discrete Potential Field Construction 533

Code listing 2: Tear concurrent potenential field generation algorithm

method TearPotentialFieldMaker23
sources ← initPotSources()24
workers ← initWorkers()25
foreach s in sources do26

w ← chooseFrom(workers)27
t ← Task(s)28
w.add(t)29

parfor w in workers do30
w.go()31

end method32

class Worker {33
Queue taskQueue34

method add(task)35
taskQueue.add(task)36

end method37

method go() {38
repeat39

Task t ← taskQueue.poll()40
t.makeStep()41
if t.isNotFinished() then42

taskQueue.add(t)43
until taskQueue.isEmpty()44

end method45

end class46

Next, the tasks are evenly assigned to the workers (lines 27, 29), then all
the workers start concurrently (line 30). Since there might be more tasks than
workers (usually there are many potential sources but only a limited number of
CPUs) a single worker has to be able to handle more than one task. Thus the
core functionality of the class Worker relies on queuing tasks (lines 36, 43) and
subsequent calculation steps over the queued tasks (line 41). Recurrent calling
of makeStep() over the given task lasts as long as the task is not finished. Ob-
serving how workers calculate the value of potential for different cells, some may
think that every worker tries to tear for itself as much of the space as possible.
In figure 2 we can see the result of Tear applied to two spaces of different shapes.
Distinct colors (shades of grey) represent distinct workers. The difference in the
cell count computed by different threads comes from the fact that for test pur-
poses the parfor command has been implemented as an ordinary for command
and workers, in fact, are started subsequently in loop. In such a small space as
30×30 cells the order of running workers is important, however, in larger spaces
it does not matter. The strength of the Tear algorithm relies on its simplicity.
It is a natural concurrent generalization of a sequential algorithm generating
potential field according to the scheme given by the function fp. It uses only one
synchronization block connected directly with updating the potential value in

534 K. Kułakowski and J. Wąs

cells. This fact, connected with the algorithms’ simplicity makes them reason-
ably fast and easy to implement. Permanent assignment of a potential source to
a task and a task to a worker makes the algorithm simple, but it also means they
are not flexible enough in spaces with more complex topologies. For instance,
workers that have tasks holding potential sources actually placed close together
are able to tear less space than workers with tasks having potential sources lo-
cated far from each other. An example of such a situation is presented in the
figure 2b. Here it might be observed how two workers responsible for two differ-
ent potential sources “close” the exit of the corridor and do not allow the other
workers to reach the main part of the space. As a result two workers out of eight
do over eighty percent of the indispensable calculation, which is of course not
optimum. For this reason more complex topologies require an algorithm which
is able to allocate the computations more evenly.

2.3 Nibble Algorithm

Whilst the Tear algorithm might be not efficient in some specific cases, the new
Nibble algorithm (listing 3) tries to overcome this problem. In the new algorithm
the assignment task to a worker is not fixed and it might change once per step.
Moreover it is possible to split a task into several sub-tasks if the task is too
large. As a result, one worker may calculate values of potential in many different
parts of the space. It looks like the worker would like to nibble some cell here,
a little bit there (figure 3a and 3b).

At the beginning, the Nibble algorithm (similarly to Tear one) prepares po-
tential sources and workers (lines 48, 49). Next, (line 50) the WorkerManager
object is initialized. This object is responsible for workers’ pooling and assigning
tasks to workers. Since its functionality agrees with a thread pool pattern known
from literature [12] it is not discussed here in detail. In the next two lines the
first group of tasks are scheduled for execution. Every task is initialized by a sin-
gle potential source. The most significant difference between Tear and Nibble

(a) (b)

Fig. 3. Workers’ distribution in a Nibble algorithm applied to (a) a square space,
(b) a space with a corridor

Two Concurrent Algorithms of Discrete Potential Field Construction 535

algorithms might be observed in the Worker’s method go() (lines 59 – 67). First
(line 60), it is checked whether the given task is not to large (i.e. whether the
list of cells intended to process in the current step) is not larger than the sum
of the size of all the processed tasks divided by the number of workers. If so,
the current task (line 2) is split into an appropriate number of sub-tasks (Task
splitting relies on dividing the list variable row into sub-lists). Next, all the sub-
tasks but one are scheduled for execution by the WorkerManager. Then, the
method makeStep() of the left task is called (line 64). Afterwards it is checked
whether the task is not finished (line 65) and if so, the task is scheduled for
further processing (line 66).

Code listing 3: Nibble concurrent potenential field construction algorithm

method NibblePotentialFieldMaker47
sources ← initPotentialSources()48
workers ← initWorkers()49
workerManager ← initWorkerManager(workers)50
foreach s in source do51

workerManager.scheduleToExecution(Task(s))52
end method53

class Worker {54
Task task55

method Worker(t)56
task ← t57

end method58

method go() {59
if size(task) > optimalSize(task) then60
split the ’task ’ to several subtasks t1, . . . ,tk so that every ti has an optimal61

size
schedule tasks t2, . . . ,tk to execution62
task← t163

task.makeStep()64
if task.isNotFinished() then65

workerManager.scheduleToExecution(task)66
end method67

end class68

Because in the Nibble algorithm tasks are not permanently associated with
workers (but the assignment may change between steps), the situation that some
workers throttle the others will never happen again. Moreover, the ability to split
task into sub-tasks ensures that the algorithm always tries to maximise the usage
of workers. As a result the Nibble algorithm works well even if there are some
irregularities in the topology of the space or in the distribution of potential
sources.

536 K. Kułakowski and J. Wąs

3 Experimental Results

Both algorithms have been implemented and tested for potential fields of dif-
ferent size and topology (figures 2a, 2b). As an implementation platform Java
Standard Edition 6 was used. The performance tests were carried out on a server
box equipped with four dual core processors Intel Xeon E5310 and 3GB of
RAM. The concurrent implementations of the Tear and Nibble algorithms writ-
ten in Java use standard objects and interfaces available in the Java package
java.util.concurrent. For instance, classes such as Task and Worker are imple-
mented as instances of the interface Runnable. WorkerManager was implemented
as a ThreadPoolExecutor equipped with customized ThreadFactory. During tests
all the CPUs were available for the JVM (Java Virtual Machine). From the ob-
servation of CPU usage it appears that JVM tries to maximize utilization of all
the available CPUs. Because Java classes are loaded into JVM on demand and
this property of Java may forge the performance results (it may introduce super
linear speedup), every series of tests has been preceded by JVM warm-up. Dur-
ing the warm-up phase the tested algorithm was run a couple of times so that
the run time of the algorithm stabilized around some value. For both algorithms
the appropriate charts showing dependency between the number of workers and
execution time are presented (figure: 4). Besides the performance the speed up
of algorithms is also shown on charts (figure 5). It is calculated as the quotient
T1/Tp where Tp is the execution time with the use of p workers.

Fig. 4. Execution time of the Tear and Nibble algorithms with (a) a square room and
(b) a room with a corridor

The conducted tests show that for a space with simple topology the multi-
threaded version of the Tear algorithm is able to run almost three times faster
than a single-thread algorithm. The multi-threaded Nibble algorithm is able to
run two and a half times faster than its single-threaded version (figure: 5b). The
speedup is not linear. This is because of many different reasons where the most
important seem to be as follows:

– increase in synchronization overhead along the increase in number of workers,
– demand for resources from Java Virtual Machine (garbage collecting, mem-

ory allocation),

Two Concurrent Algorithms of Discrete Potential Field Construction 537

– property of the algorithms that the value of potential for the given cell might
be calculated more than once.

The first two of the above are conclusions from the profiling sessions. The last
one is a feature of both algorithms and is connected with the fact that for some
cells the value of potential is calculated more than once by different threads.
Fortunately, tests prove, that the overhead connected with the last issue is not
so huge, and only about 3 − 5% of cells are updated more than once. All the
tests were carried out for the grid size 1000× 1000 cells.

Fig. 5. Speedup of the Tear and Nibble algorithms with (a) a square room and
(b) a room with a corridor

4 Summary

In this paper the two concurrent algorithms of discrete potential field calculation
have been presented. Both, the Tear and Nibble algorithms are able to accelerate
potential field calculation on a multi-core machine, however, depending on space
topology and potential source deployment both algorithms, might sometimes be
better. The preliminary tests prove that they offer up to threefold speedup using
five – six processors. The experiments have been conducted on an ordinary Linux
based multi-core computer and the whole solution has been implemented using
freely available technologies.

Although the algorithms have been provisionally tested and tuned, it seems
that there is still some room for further improvement. Some questions have
also not yet been answered. For instance, the question about the efficiency of
these algorithms in other software and hardware platforms is still open. For this
reason, further development of these algorithms, besides the theoretical research,
will also be focused on implementation issues. The authors hope that work in
this subject brings further interesting and valuable results in future.

Acknowledgment

This research is financed by the Polish Ministry of Education and Science, project
no.: N N516 228735 and by AGH University of Science and Technology, contract
no.: 10.10.120.105.

538 K. Kułakowski and J. Wąs

References

1. Geraerts, R., Overmars, M.H.: The Corridor Map Method: Real-Time High-Quality
Path Planning. In: Proceedings of International Conference on Robotics and Au-
tomation, ICRA (2007)

2. Heinemann, P., Becker, H., Zell, A.: Improved path planning in highly dynamic
environments based on time variant potential fields. VDI BERICHTE (2006)

3. Wang, Y., Chirikjian, G.S.: A new potential field method for robot path planning.
In: Proceedings of International Conference on Robotics and Automation (2000)

4. Barraquand, J., Langlas, B., Latombe, J.C.: Numerical potential field techniques
for robot path planning. IEEE Trans. Systems, Man and Cybernetics (1992)

5. Kretz, T., Bonisch, C., Vortisch, P.: Comparison of various methods for the calcu-
lation of the distance potential field (2008)

6. Dudek-Dyduch, E., Wąs, J.: Knowledge representation of Pedestrian Dynamics
in Crowd. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.)
ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 1101–1110. Springer, Heidelberg (2006)

7. Treuille, A., Cooper, S., Popović, Z.: Continuum crowds. In: Proceedings of Inter-
national Conference on Computer Graphics and Interactive Techniques (2006)

8. Murphy, R.R.: Introduction to AI Robotics. MIT Press, Cambridge (2000)
9. Behring, C., Bracho, M., Castro, M., Moreno, J.A.: An algorithm for robot path

planning with cellular automata. In: Proceedings of the Fourth International Con-
ference on Cellular Automata for Research and Industry (2000)

10. Xiaoxi, H., Leiting, C.: Path planning based on grid-potential fields. In: Proceedings
of International Conference on Computer Science and Software Engineering (2008)

11. Flynn, M.: Some computer organizations and their effectiveness. IEEE Transac-
tions on Computers (1972)

12. Lea, D.: Concurrent Programming in Java. In: Design Principles and Patterns, 2nd
edn. Addison-Wesley Longman Publishing Co., Inc., Amsterdam (1999)

Frustration and Collectivity in Spatial Networks

Anna Mańka-Krasoń and Krzysztof Ku�lakowski

Faculty of Physics and Applied Computer Science, AGH University of Science and

Technology, al. Mickiewicza 30, PL-30059 Kraków, Poland

impresja@gmail.com, kulakowski@novell.ftj.agh.edu.pl

Abstract. In random networks decorated with Ising spins, an increase

of the density of frustrations reduces the transition temperature of the

spin-glass ordering. This result is in contradiction to the Bethe theory.

Here we investigate if this effect depends on the small-world property of

the network. The results on the specific heat and the spin susceptibility

indicate that the effect appears also in spatial networks.

Keywords: spatial networks; spin-glass.

1 Introduction

A random network is an archetypal example of a complex system [1]. If we dec-
orate the network nodes with some additional variables, the problem can be
mapped to several applications. In the simplest case, these variables are two-
valued; these can be sex or opinion (yes or no) in social networks, states ON and
OFF in genetic networks, ’sell’ and ’buy’ in trade networks and so on. Informa-
tion on stationary states of one such system can be useful for the whole class
of problems in various areas of science. The subject of this text is the antifer-
romagnetic network, where the variables are Ising spins Si = ±1/2. As it was
discussed in [1], the ground state problem of this network can be mapped onto
the MAX-CUT problem, which belongs to the class of NP-complete optimization
problems. Also, the state of the antiferromagnetic network in a weak magnetic
field gives an information on the minimal vertex cover of the network, which is
another famous NP-complete problem [1]. Further, in the ground state of the
antiferromagnetic network all neighboring spins should be antiparallel, i.e. their
product should be equal to -1. This can be seen as an equivalent to the problem
of satisfiability of K conditions imposed on N variables, where N is the number
of nodes and K is the number of links. The problem of satisfiability is known
also to be NP-complete [2]. Here we are particularly interested in an ifluence
of the network topology on the collective magnetic state of the Ising network.
The topology is to be characterized by the clustering coefficient C, which is a
measure of the density of triads of linked nodes in the network. In antiferromag-
netic systems, these triads contribute to the ground state energy, because three
neighboring spins of a triad cannot be antiparallel simultaneously to each other.
This effect is known as spin frustration. When the frustration is combined with
the topological disorder of a random network, the ground state of the system

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 539–546, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

540 A. Mańka-Krasoń and K. Ku�lakowski

is expected to be the spin-glass state, a most mysterious magnetic phase which
remains under dispute for more than thirty years [3,4,5]. These facts suggest that
a search on random network with Ising spins and antiferromagnetic interaction
can be worthwhile.

Here we are interested in an influence of the density of frustration on the phase
transition from the disordered paramagnetic phase to the ordered spin-glass
phase. In our Ising systems, the interaction is short-ranged and the dynamics is
ruled by a simple Monte-Carlo heat-bath algorithm, with one parameter J/kBT ,
i.e. the ratio of the exchange energy constant J to the thermal energy kBT [6].
Despite this simplicity, the low-temperature phase is very complex and multi-
degenerate even in periodic systems, where the topological disorder is absent [7].
Current theory of Ising spin-glasses in random networks ignores the contribution
of frustrations, reducing the network to a tree [1]. In a ’tree-like structure’ closed
loops as triads are absent. In the case of trees the Bethe theory is known to work
well [1,8]. In our considerations, the Bethe formula for the transition temperature
TSG from the paramagnetic to the spin glass phase [1]

−2J

TSG
= ln

√
B + 1√
B − 1

(1)

serves as a reference case without frustrations. Here B = z2/z1 is the ratio of
the mean number of second neighbours to the mean number of the first neigh-
bours. Then, the transition temperature TSG depends on the network topology.
We note that in our network there is no bond disorder; all interactions are an-
tiferromagnetic [9].

In our former texts, we calculated the transition temperature TSG of the
Erdös-Rényi networks [10] and of the regular network [11]. The results indicated
that on the contrary to the anticipations of the Bethe theory TSG decreases with
the clustering coefficient C. However, in both cases we dealt with the networks
endowed with the small-world property. It is not clear what dimension should
be assigned to these networks, but it is well known that the dimensionality and
in general the network topology influences the values of temperatures of phase
transitions [12,8,13]. On the other hand, many real networks are embedded in
the three-dimensional space - these are called spatial networks [14]. In particu-
lar, magnetic systems belong obviously to this class. Therefore, the aim of this
work is to calculate the phase transition temperature TSG again for the spatial
networks. As in our previous texts [10,11] the clustering coefficient C is varied
as to investigate the influence of the density of frustrations on TSG.

In the next section we describe the calculation scheme, including the details on
the control of the clustering coefficient. Third section is devoted to our numerical
results. These are the thermal dependences of the magnetic susceptibility χ(T)
and of the spacific heat Cv(T). Final conclusions are given in the last section.

2 Calculations

The spatial network is constructed as follows. Three coordinates of the positions
of nodes are selected randomly from the homogeneous distribution between 0

Frustration and Collectivity in Spatial Networks 541

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 5 10 15 20

P
(k

)

k

C=0.46
C=0.50
C=0.56

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 5 10 15 20

P
(k

)

k

C=0.46
C=0.50
C=0.56

Fig. 1. The degree distribution for the mean degree < k >= 9 and three different

values of the clustering coefficient C

and 1. Two nodes are linked if their mutual distance is not larger than some
critical value a. In this way a controls the mean number of neighbours, i.e. the
mean degree < k > of the network. In networks obtained in this way, the degree
distribution P (k) agrees with the Poisson curve. As a rule, the number of nodes
N = 105. Then, to obtain < k >= 4 and < k >= 9 we use a = 0.0212 and
a = 0.0278. The mean degree < k > is found to be proportional to a2.91. This
departure from the cubic function is due to the open boundary conditions. In
two above cases, the values of the clustering coefficient C are respectively 0.42
and 0.47.

Now we intend to produce spatial networks with given mean degree < k >
and with enhanced clusterization coefficient C. This is done in two steps. First
we adjust the radius a to obtain a smaller < k >, than desired. Next we apply
the procedure proposed by Holme and Kim [15]: for each pair of neighbours of
the same node a link between these neighbours is added with a given probability
p′. This p′ is tuned as to obtain a desired value of the mean degree < k >.
Simultaneously, the clustering coefficient C is higher. In this way we obtain C
between 0.42 and 0.46 for < k >= 4, and between 0.47 and 0.56 for < k >= 9.
The degree distribution P (k) in the network with enhanced C differs from the
Poisson distribution, as shown in Fig. 1.

The dynamics of the system is ruled by the standard Monte Carlo heat-bath
algorithm [6]. We checked that for temperature T > 0.5, the system equilibrates
after 103 Monte Carlo steps; in one step each spin is checked. Sample runs
ensured that after this time, the specific heat Cv calculations from the thermal
derivative of energy and from the energy fluctuations give - within the numerical
accuracy - the same results.

542 A. Mańka-Krasoń and K. Ku�lakowski

3 Results

In Fig. 2 we show the thermal dependence of the static magnetic susceptibility
χ(T) for the network with mean degree < k >= 4. Fig. 3 displays the magnetic

 0.15

 0.16

 0.17

 0.18

 0.19

 0.2

 0.21

 0.22

 0.23

 0.24

 0.25

 0.5 1 1.5 2 2.5

χ

T

C=0.42
C=0.43
C=0.44
C=0.45
C=0.46

Fig. 2. The magnetic susceptibility χ(T) for < k >= 4 and different values of the

clustering coefficient C

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.5 1 1.5 2 2.5 3

C
v

T

C=0.42
C=0.44
C=0.45
C=0.47

Fig. 3. The magnetic specific heat Cv(T) for < k >= 4 and different values of the

clustering coefficient C

Frustration and Collectivity in Spatial Networks 543

specific heat Cv(T) for the same network. The plots of the same quantities for
< k >= 9 are shown in Figs. 4 and 5. The positions of the maxima of χ(T) and
Cv(T) can be treated as approximate values of the transition temperature TSG

[16,3]. Most curves displayed show some maxima except two cases with highest

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.5 1 1.5 2 2.5 3 3.5 4

χ

T

C=0.47
C=0.48
C=0.49
C=0.50
C=0.53

Fig. 4. The magnetic susceptibility χ(T) for < k >= 9 and different values of the

clustering coefficient C

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.5 1 1.5 2 2.5 3

C
v

T

C=0.47
C=0.50
C=0.53
C=0.56

Fig. 5. The magnetic specific heat Cv(T) for < k >= 9 and different values of the

clustering coefficient C

544 A. Mańka-Krasoń and K. Ku�lakowski

C for < k >= 4, where the susceptibility for low temperatures does not decrease
- this is shown in Fig. 2. Still it is clear that the observed maxima do not appear
above T = 1.1 for < k = 4 > and above T = 1.7 for < k >= 9. Moreover, the
data suggest that when the clustering coefficient C increases, the positions of the
maxima of χ(T) and Cv(T) decrease. This is visible in particular for < k >= 9,
in Figs. 4 and 5.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58

T
S

G

C

Fig. 6. The transition temperature TSG for < k >= 4 (left side of the figure, continuous

line) and < k >= 9 (right side, dotted line), against the clustering coefficient C. Points

mark the results of the numerical simulations: for < k >= 4 stars come from χ and

rhombs from Cv, and for < k >= 9 X’s come from χ and squares from Cv. Lines are

the theoretical plots from Eq. 1.

In Fig. 6 we show approximate values of the transition temperatures TSG,
as read from Figs. 2-5. These results are compared with the theoretical values
of TSG, obtained from Eq. 1. On the contrary to the numerical results, the
Bethe theory indicates that TSG is almost constant or increases with C. This
discrepancy is our main numerical result. It is also of interest that once the
clustering coefficient C increases, the susceptibility χ increases but the specific
heat Cv decreases. This can be due with the variation of the shape of the free
energy, as dependent on temperature and magnetic field.

4 Discussion

Our numerical results can be summarized as follows. The temperature TSG of the
transition from the paramagnetic phase to the spin-glass phase decreases with
the clustering coefficient C. We interpret this decrease as a consequence of the

Frustration and Collectivity in Spatial Networks 545

increase of the density of frustrations. More frustrated triads make the energy
minima more shallow and then a smaller thermal noise is sufficient to throw
the system from one to another minimum. This result is in contradiction to the
Bethe theory. However, in this theory the frustration effect is neglected. Then
the overall picture, obtained previously [10,11] for the small-world networks, is
confirmed here also for the spatial networks.

This interpretation can be confronted with recent numerical results of Herrero,
where the transition temperature TSG increases with the clustering coefficient
C in the square lattice [17]. As it is shown in Fig. 7 of [17], TSG decreases from
2.3 to 1.7 when the rewiring probability p increases from zero to 0.4. Above
p = 0.4, TSG remains constant or increases very slightly, from 1.7 to 1.72 when
p = 1.0. The overall dependence can be seen as a clear decrease of TSG. On the
other hand, the clustering coefficient C does not increase remarkably with the
rewiring probability p. The solution of this puzzle is that in the square lattice
with rewiring the frustrations are not due to triads, but to two interpenetrating
sublattices, which are antiferromagnetically ordered in the case when p = 0. The
conclusion is that it is the increase of the density of frustrations what always
leads to a decrease of TSG.

A few words can be added on the significance of these results for the science
of complexity, with a reference to the computational problem of satisfiability.
In many complex systems we deal with a number of external conditions, when
all of them cannot be fulfilled. Second premise is that in many complex systems
a noise is ubiquitous. These are analogs of frustration and thermal noise. In
the presence of noise and contradictive conditions, the system drives in its own
way between temporally stable states, similarly to the way how the Ising spin
glass wanders between local minima of energy. Once the number of contradictive
tendencies or aspirations increases, the overall structure becomes less stable.

Acknowledgements. We are grateful to Carlos P. Herrero for his comment. The
calculations were performed in the ACK Cyfronet, Cracow, grants No. MNiSW
/SGI3700 /AGH /030/ 2007 and MNiSW /SGI3700 /AGH /031/ 2007.

References

1. Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: Critical phenomena in complex

networks. Rev. Mod. Phys. 80, 1275–1335 (2008)

2. Garey, M.R., Johnson, D.S.: Computers and Intractability. In: A Guide to the

Theory of NP-Completeness. W. H. Freeman and Comp., New York (1979)

3. Binder, K., Young, A.P.: Spin glasses: Experimental facts, theoretical concepts,

and open questions. Rev. Mod. Phys. 58, 801–986 (1986)

4. Fischer, K.H., Hertz, J.A.: Spin Glasses. Cambridge UP, Cambridge (1991)

5. Newman, C.M., Stein, D.L.: Ordering and broken symmetry in short-ranged spin

glasses. J. Phys.: Cond. Mat. 15, R1319–R1364 (2003)

6. Heermann, D.W.: Computer Simulation Methods in Theoretical Physics. Springer,

Berlin (1986)

546 A. Mańka-Krasoń and K. Ku�lakowski

7. Krawczyk, M.J., Malarz, K., Kawecka-Magiera, B., Maksymowicz, A.Z.,

Ku�lakowski, K.: Spin-glass properties of an Ising antiferromagnet on the

Archimedean (3, 122) lattice. Phys. Rev. B 72, 24445 (2005)

8. Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press,

London (1982)

9. Stauffer, D., Ku�lakowski, K.: Why everything gets slower? TASK Quarterly 7,

257–262 (2003)

10. Mańka, A., Malarz, K., Ku�lakowski, K.: Clusterization, frustration and collectivity

in random networks. Int. J. Mod. Phys. C 18, 1765–1773 (2007)

11. Mańka-Krasoń, A., Ku�lakowski, K.: Magnetism of frustrated regular networks.

Acta Phys. Pol. B (in Print) (arXiv:0812.1128)

12. Stanley, H.E.: Introduction to Phase Transitions and Critical Phenomena. Claren-

don Press, Oxford (1971)

13. Aleksiejuk, A., Ho�lyst, J.A., Stauffer, D.: Ferromagnetic phase transitions in

Barabási-Albert networks. Physica A 310, 260–266 (2002)

14. Herrmann, C., Barthélemy, M., Provero, M.: Connectivity distribution of spatial

networks. Phys. Rev. E 68, 026128 (2003)

15. Holme, P., Kim, B.J.: Growing scale-free networks with tunable clustering. Phys.

Rev. E 65, 026107 (2002)

16. Morgenstern, J., Binder, K.: Magnetic correlations in three-dimensional Ising spin

glasses. Z. Physik B 39, 227–232 (1980)

17. Herrero, C.P.: Antiferromagnetic Ising model in small-world networks. Phys. Rev.

E 77, 041102 (2008)

Weakness Analysis of a Key Stream Generator

Based on Cellular Automata

Frédéric Pinel and Pascal Bouvry

University of Luxembourg

Faculty of Sciences, Communication and Technology

6, rue Coudenhove Kalergi

L-1359 Luxembourg-Kirchberg, Luxembourg

frederic.pinel@uni.lu, pascal.bouvry@uni.lu

Abstract. This paper exposes weaknesses of a secret-key cipher based

on pseudo-random number generation. The pseudo-random number gen-

erator was previously described as high quality and passing various statis-

tical tests (entropy, Marsaglia tests). It is operated by one-dimensional,

two-state, non-uniform cellular automata with rules of radius one. Spe-

cial rule assignments generate number sequences with zero entropy. The

paper proposes a systematic construction that leads to such assignments,

as well as the computation of the size of the weak key space. Finally, we

envision solutions to this problem, and discuss the possibility to discover

additional issues.

1 Introduction

Two types of cryptographic systems are used today: secret-key and public-key
systems. An extensive overview of currently known or emerging cryptography
techniques used in both types of systems can be found in [1]. One promising
cryptographic technique is the use of cellular automata (CA). CA for secret-
key systems were first studied by Wolfram [2], and later by Habutsu et al. [3],
Nandi et al. [4] and Gutowitz [5]. More recently, they were a subject of study
by Tomassini & Perrenoud [6], and Tomassini & Sipper [7], who considered one
(1D) and two dimensional (2D) CA for their encryption scheme.

In this paper, we limit our study to secret-key systems. In such systems the
encryption key and the decryption key are identical (and must therefore be kept
secret). The secret-key encryption scheme we study is based on the generation
of pseudo-random bit sequences. The bit sequence serves as the key stream. CA
can effectively be used to generate pseudo-random number sequences. The 1D,
non-uniform CA presented in [6] shows good statistical security characteristics.
It indeed passes the classical Marsaglia tests [8]. Yet, the present article exposes
a risk in the proposed system and shows potential paths for mitigating it. Such
a risk comes from the existence in the key space of weak keys which lead to zero
entropy bit sequences.

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 547–552, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

548 F. Pinel and P. Bouvry

2 Cellular Automata and Cryptography

Secret-key cryptography uses the same key for encryption and decryption. A
secret-key encryption scheme called the Vernam cipher is known to be [9,1]
perfectly safe if the key stream is truly unpredictable and used only once. Let
P be a plain-text message consisting of m bits p1p2...pm, and k1k2...km be a bit
stream of a key k. Let ci be the i− th bit of a cipher-text obtained by applying
XOR (exclusive-or) enciphering operation:

ci = pi XOR ki.

The original plain-text bit pi of a message can be recovered by applying a XOR
operation on ci with the same bit stream key ki. As mentioned earlier, CA can
produce pseudo-random number sequences which can serve as key streams.

We now provide definitions for CA in general and additional information
specific to the CA-based random number generator presented in [6]. 1D CA
consists of a lattice of cells. The values for each cell is restricted to a small, finite
set of integers. Here, this set is {0, 1}. Each row of the CA corresponds to the
cell space at a certain time step, and is called a configuration. The first row of
the CA is the initial configuration. The value of each cell at a given time step
is a function of the values of the neighboring cells, at the previous time step.
This function is called a rule. The rule function is defined by specifying the ”rule
table” of values for every possible neighborhood. A neighborhood of radius r for
cell i consists of 2r + 1 cells: the cell i, which is updated by the function, and
the r-cells adjacent to it in both directions. So, the value qt+1

i of a cell i at time
t + 1 is given by

qt+1
i = f(qt

i−r, q
t
i−r+1, . . . , q

t
i , . . . , q

t
i+r−1, q

t
i+r).

The temporal sequence [10] of a cell is defined as the successive values taken
by the cell over time, Ti = {qt

i , t = 0, 1, . . .}. Wolfram proposed to name rules
according to the decimal representation of the truth table. In Fig. 1, the truth
table for a rule of radius 1, where values are in {0, 1}, can be represented as
01001011, this is the binary representation of the decimal number 75. In CA
with a finite configuration size, a cyclic boundary condition results in a circular
grid, where the cells located at the edges of the configuration are adjacent to
each other. If all cells apply the same rule, the CA is said to be uniform. In
contrast with a non-uniform CA, where different cells may apply different rules.
The random number sequences in a CA are, for example, the different temporal

Fig. 1. Rule 75

Weakness Analysis of a Key Stream Generator Based on Cellular Automata 549

sequences. The successive bits can be grouped together, producing a sequence
of h-bit numbers, if h is the size of the group.

The CA-based random number generator presented in [6] is 1D, cyclic bound-
ary, non-uniform with a neighborhood of radius r = 1 and with values for cells
in {0, 1}. The rules cells can apply are 90, 105, 150, 165 (under Wolfram’s rule
naming convention described above). In [6], only the temporal sequence of the
central cell is used, but it is common to allow the choice of the cell from which
to read the sequence. In this paper, the cell from which to read the temporal
sequence is not fixed and can be chosen freely.

3 Analysis of a Non-uniform CA for Random Number
Generation

3.1 X-Weak Keys

In the system presented [6], a key is a choice of an initial configuration, a cell-
to-rule mapping for every cell which defines the rule to apply at this cell, and
the cell from which the random sequence will be read (its temporal sequence).

A weak key for a cryptosystem facilitates its cryptanalysis. In the context
of our pseudo-random number generator, a weak key is an initial configuration
and a cell-to-rule mapping such that the temporal sequence of the central cell
displays repetition. This brings sequences of generated numbers to the com-
plexity size O(log(L)), L being the original solution space. The set of rules is
{90, 105, 150, 165}. The key space is then L = N × 2N × 4N = N × 23N .

In this paper, we consider a stronger definition for weak keys. Let x-weak keys,
for extremely weak keys, be this subset of the weak keys. An x-weak key is a
choice of an initial configuration and a cell-to-rule mapping which leaves the
initial configuration unchanged. Figure 2 illustrates this behavior.

Fig. 2. Example of an x-weak key effect

Temporal sequences for all cells are a repetition of the same bit, the initial
configuration’s cell value. The entropy for such a sequence is 0. Since all cells
produce a temporal sequence which is a repetition of one bit, an x-weak key does
not need to include the chosen cell of the CA, as any key does.

3.2 Production of X-Weak Keys

In spite of the excellent random number generation properties previously re-
ported in [6], such x-weak keys exist. One trivial x-weak key is a configuration

550 F. Pinel and P. Bouvry

Table 1. Truth tables

Neighborhood 90 105 150 165

000 0 1 0 1

001 1 0 1 0

010 0 0 1 1

011 1 1 0 0

100 1 0 1 0

101 0 1 0 1

110 1 1 0 0

111 0 0 1 1

where all cells are 0, and apply rule 90. Besides this trivial key, which may not
be encountered given its regularity (although it is a valid key for the CA scheme
considered), there are other x-weak keys.

Table 1 presents the truth tables of the rules cells can apply. It can be observed
that for every possible neighborhood, there are always 2 rules out of 4, which
leave the cell unchanged. Let an identity rule be a rule which leaves the cell
unchanged, for a given neighborhood. Since an x-weak key must leave the entire
configuration unchanged, all cells must be assigned an identity rule.

A simple procedure to construct an x-weak key is to first choose a random
initial configuration. Then for each cell, determine its neighborhood and map it
to one of the 2 identity rules matching this neighborhood. Figure 3 illustrates
this construction.

Fig. 3. Constructing an x-weak key

3.3 Size of X-Weak Key Space

When selecting a key under this CA scheme, the probability to choose an identity
rule is 1

2 , for any neighborhood. Therefore for any configuration, each cell can be
mapped to an identity rule with probability 1

2 . If the 1D CA is of size N , then
the probability to choose an x-weak key is 1

2N . As the random number sequence

Weakness Analysis of a Key Stream Generator Based on Cellular Automata 551

is read from any chosen cell, and not from the central cell, the x-weak key space
K is:

K = L× 1
2N

= N × 23N × 1
2N

= N × 22N .

3.4 Other Weak Keys

In addition to x-weak keys defined above, other types of weak keys exist. A
transient x-weak key produces good random sequences for each cell until a given
configuration is reached, after which the rules applied keep repeating this config-
uration. The entropy for the temporal sequences is zero from this step onwards.
Table 1 shows that any of the 4 rules is an identity rule for half of the neighbor-
hoods. So at any time step, the probability to leave a cell unchanged exists, as
well as the probability to leave the configuration unchanged.

Also, even if only a part of configuration is changed, the more cells are left
unchanged, the lower the entropy of the temporal sequences becomes.

3.5 Risk Mitigation

There are several ways to mitigate the risk of x-weak keys.
The x-weak key probability is 1

2N , so increasing the value for N reduces the
probability. With a value for N of 100 or greater, this probability is sufficiently
low.

If the value for N cannot be increased then another way to mitigate the risk is
to reduce the probability of mapping a cell to an identity rule. This probability
directly depends on the rule set of the non-uniform CA. The rule set is obtained
through a cellular programming approach [11], where CA rules with the desired
properties (random temporal sequences in this case) are evolved. Each cellular
programming run evolves rules (through their truth table) to discover those
which produce good random temporal sequences. The rules discovered most
often compose the rule set. They are not evaluated collectively. Therefore this
process cannot be adapted to mitigate the x-weak key risk, which results from
the collective behavior of the rule set. In [12], an evolutionary algorithm is used
to identify the subset of rules which shows the best collective behavior, from
a given set of rules previously discovered by cellular programming. The fitness
function of this algorithm can be modified to mitigate the x-weak key risk. An
indication of the probability to map a cell to an identity rule can be weighted
in the original fitness function, which computes the average entropy of temporal
sequences of all cells, over several initial configurations. This indication is, for
example, the number of identity rules over the total rule set, averaged over all
neighborhoods.

4 Conclusion

In this paper, we extended the results reported in [6] by analyzing the weak keys
of a secret-key cryptographic system based on a non-uniform, one-dimension,

552 F. Pinel and P. Bouvry

cellular automata. The CA is used to generate random number sequences. We
defined extremely weak keys (x-weak), quantified their presence in the key space,
and proposed counter measures based on [12]. If the probability to encounter
such x-weak keys is low, their effect is the generation of a key stream with zero
entropy. Future work will include the analysis of other non-uniform CA-based
random number generators.

References

1. Schneier, B.: Applied Cryptography. Wiley, Chichester (1996)

2. Wolfram, S.: Cryptography with cellular automata. In: Williams, H.C. (ed.)

CRYPTO 1985. LNCS, vol. 218, pp. 429–432. Springer, Heidelberg (1986)

3. Habutsu, T., Nishio, Y., Sasase, I., Mori, S.: A secret key cryptosystem by iterating

a chaotic map. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp.

127–140. Springer, Heidelberg (1991)

4. Nandi, S., Kar, B.K., Chaudhuri, P.P.: Theory and applications of cellular au-

tomata in cryptography. IEEE Trans. Computers 43(12), 1346–1357 (1994)

5. Gutowitz, H.: Cryptography with dynamical systems. In: Goles, E., Boccara, N.

(eds.) Cellular Automata and Cooperative Phenomena. Kluwer Academic Press,

Dordrecht (1993)

6. Tomassini, M., Perrenoud, M.: Stream cyphers with one- and two-dimensional cel-

lular automata. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer,

M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 722–731.

Springer, Heidelberg (2000)

7. Tomassini, M., Sipper, M., Perrenoud, M.: On the generation of high-quality

random numbers by two-dimensional cellular automata. IEEE Trans. Comput-

ers 49(10), 1146–1151 (2000)

8. Marsaglia, G.: Diehard (1998), http://www.stat.fsu.edu/pub/diehard/

9. Menezes, A., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-

raphy. CRC Press, Boca Raton (1996)

10. Jen, E.: Aperiodicity in one-dimensional cellular automata. In: Gutowitz, H. (ed.)

Cellular Automata, Theory and Experiment, vol. 45, pp. 3–18. Physica D/MIT

(1990)

11. Sipper, M.: Evolution of Parallel Cellular Machines. In: Sipper, M. (ed.) Evolution

of Parallel Cellular Machines. LNCS, vol. 1194. Springer, Heidelberg (1997)

12. Szaban, M., Seredynski, F., Bouvry, P.: Collective behavior of rules for cellular

automata-based stream ciphers. In: IEEE Congress in Evolutionary Computation

(2006)

http://www.stat.fsu.edu/pub/diehard/

Fuzzy Cellular Model for On-Line Traffic

Simulation

Bart�lomiej P�laczek

Faculty of Transport, Silesian University of Technology,

ul. Krasinskiego 8, 40-019 Katowice, Poland

bartlomiej.placzek@polsl.pl

Abstract. This paper introduces a fuzzy cellular model of road traffic

that was intended for on-line applications in traffic control. The pre-

sented model uses fuzzy sets theory to deal with uncertainty of both

input data and simulation results. Vehicles are modelled individually,

thus various classes of them can be taken into consideration. In the pro-

posed approach, all parameters of vehicles are described by means of

fuzzy numbers. The model was implemented in a simulation of vehicles

queue discharge process. Changes of the queue length were analysed in

this experiment and compared to the results of NaSch cellular automata

model.

1 Introduction

Road traffic models are often used in on-line mode to determine current and
actual traffic parameters as well as to forecast future state of the flow for traffic
control purposes. The term on-line means that the traffic model works in real
time and gathers current traffic data acquired by vehicle detectors. An example
can be given here of an on-line traffic model that uses counts of detected vehicles
to calculate discharge time of a vehicles queue in a crossroad approach. The an-
ticipation ability of traffic parameters is essential for actuated and synchronized
traffic control.

Available systems of adaptive traffic control (e.g. SCOOT [1], UTOPIA [2])
use traffic models that describe queues or groups of vehicles rather than in-
dividual cars and their parameters. However, individual characteristics related
to class of a vehicle are very important from the traffic control point of view,
as they have a significant influence on traffic conditions and capacity of road
infrastructure.

Modern traffic control systems are mostly intended for cooperation with traffic
detectors that recognise presence or passing of vehicles and count them (e.g.
inductive loops). Additional functionalities offered by vision based sensors cannot
be fully utilised in systems of this kind [3]. Video-detection technology is usually
simply adopted as a substitute for inductive loops, thus important data available
for vision based sensors is discarded.

Properties of particular vehicles are considered when using microscopic traffic
models. Computationally efficient and sufficiently accurate models have been

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 553–560, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

554 B. P�laczek

developed based on the cellular automata theory [4]. In the literature there is
a lack of information about experiments on cellular models implementation in
traffic control systems.

In this paper a fuzzy cellular traffic model is introduced. This model was in-
tended for on-line applications in traffic control. It enables utilisation of complex
traffic data registered by vision based sensors. Development of this model was
motivated by the following requirements.: (1) A vehicle influence on traffic con-
ditions depends on its individual features, thus various classes of vehicles have
to be modelled. (2) The traffic model has to provide data interfaces for many
sources - detectors of different types. (3) The uncertainty has to be described
in traffic model to take into account random nature of traffic processes as well
as rough character of vehicles recognition (detection) results. (4) Computational
complexity of the model has to be appropriately low to allow on-line processing.

The rest of this paper is organised as follows. Section 2 includes a brief survey
of cellular automata applications in road traffic modelling. A fuzzy cellular traffic
model is introduced in section 3. In section 4 simulation results of vehicles queue
discharge process are discussed for the proposed model and compared with those
of NaSch cellular automaton. Finally, in section 5 conclusions are drawn.

2 Cellular Automata in Traffic Modelling

Due to their simplicity, cellular automata have become a frequently used tool
for microscopic modelling of road traffic processes. Traffic models using cellu-
lar automata have high computational efficiency and allow sufficiently accurate
simulation of real traffic phenomena [5].

The cellular automaton model for road traffic simulation was introduced by
Nagel and Schreckenberg (NaSch) [4] in 1992. In this model the traffic lane was
divided into cells of 7,5 m. Each vehicle is characterised by its position (cell
number) and velocity (a positive discrete value lower than fixed maximum). The
velocity is expressed as a number of cells that vehicle advances in one time step.
Movement of vehicles in this model is described by a simple rule that is executed
in parallel for each vehicle. It has the capability of mapping of real traffic streams
parameters (fundamental diagram) and enables simulation of phenomena that
can be observed in reality (e.g. traffic jam formation).

In the literature many traffic models can be found that are based on the
Nagel-Schreckenberg concept. Numerous models have been introduced that uses
so-called slow-to-start rules to reflect metastable state of traffic flow [6,7,8,9].
According to the slow-to-start (s2s) rule stopped vehicles accelerate with lower
probability than moving ones. Different rules of this kind takes into account
various factors: number of free cells in front of a vehicle (gap), present or previous
state of a vehicle (velocity). In [10] a new set of rules has been proposed to better
capture driver reactions to traffic that are intended to preserve safety on the
highway.

On the basis of the NaSch cellular automaton multi-lane traffic models have
been formulated [11,12,13,14]. Rules of these models comprise two steps: first,

Fuzzy Cellular Model for On-Line Traffic Simulation 555

additional step takes into account lanes changing behaviour and second, basic
step describes forward movement of a vehicle.

Cellular automata have also been used for junctions modelling. The simplest
cellular model of a crossroad [15] did not take into account region inside the
junction as well as priority rules. Vehicles were just randomly selected to pass
the crossroad. In [16] other simple model has been proposed of cellular automa-
ton with closed boundary conditions (ring of cells) for crossroads simulation. All
junctions in this case were modelled as roundabouts. For more realistic simula-
tions sophisticated models have been applied that include definitions of traffic
regulations (priority rules, signs, signalisation) and allow for determination of
actual junction capacity [17].

Little research work has been done in the application of microscopic cellular
models for traffic control in road networks. Certain methods have been proposed
of optimal route selection in urban networks [18]. The cellular automata model of
road network has been used in this approach to evaluate current traffic conditions
for particular connections. In [19] similar model was adopted to calculate basic
parameters of coordination plan for signalised intersections network. However,
the analysed cases were significantly simplified and far from practical solutions.

In the field of road traffic modelling several methods are known using cells
defined as road segments for macroscopic flow description. Although the term
cell is used in these methods, they are not derived from cellular automata theory.
One cell in this case can be occupied by many vehicles thus its state is described
using parameters of traffic stream (density, intensity). A model of this type was
implemented for traffic control purposes in the UTOPIA method [2], different
models have been introduced for highway traffic analysis [20].

3 Fuzzy Cellular Model of Road Traffic Flow

The fuzzy cellular model of road traffic flow is proposed as an extension of the
NaSch traffic model. It assumes a division of traffic lane into cells that correspond
to road segments of equal length. The traffic state is described in discrete time
steps. Vehicle position, its velocity and other parameters are modelled as fuzzy
numbers defined on the set of integers.

State of a cell c in time step t is defined by fuzzy set of vehicles (n) that
currently occupy this cell:

Sc,t =
{
μSc,t(n)/n

}
. (1)

Thus, one cell can be occupied by more than one vehicle in the same time.
Conventionally, μA(x) denotes value of membership function of fuzzy set A for
an element x. Position of vehicle n in time step t is a fuzzy number defined on
the set of cells indexes (c):

Pn,t =
{
μPn,t(c)/c

}
. (2)

Vehicle n is described by its class and velocityVn,t (in cells per time step). The
class determines properties of vehicle n: length Ln (in cells), maximal velocity

556 B. P�laczek

V max
n , and acceleration An. All these quantities are expressed by fuzzy numbers.

Velocity of the vehicle n in time step t is computed according to formula:

Vn,t = m̃in
{
Vn,t−1+̃An, Gn,t, V

max
n

}
. (3)

The tilde (˜) symbol is used to distinguish operations on fuzzy numbers [21].
Gap Gn,t is the number of free cells in front of vehicle n:

Gn,t = m̃in
m
=n

{
Pm,t−̃Lm−̃Pn,t : Pm,t>̃Pn,t

}
. (4)

If there is no vehicle m fulfilling the condition in (4), gap Gn,t is assumed to be
equal to the maximal velocity V max

n .
Position of vehicle n in the next time step (t + 1) is computed on the basis of

the model state in time t:

Pn,t+1 = d̃il
(
Pn,t+̃Vn,t

)
, (5)

d̃il denotes fuzzy set dilation:

μ
d̃il(Pn,t+̃Vn,t) (x) =

[
μ(Pn,t+̃Vn,t) (x)

]e

, (6)

where 0 < e ≤ 1.
Dilating the fuzzy set increases the fuzziness (uncertainty) of the vehicles po-

sition. This operation corresponds to the randomization step of traffic models
based on NaSch cellular automaton. In the models that use s2s rules the random-
ization level decreases with increasing velocity of a vehicle as the random driver
behaviours are more intense at low velocity range. To achieve similar effect for
the presented model the exponent e in (6) was defined as an increasing function
of velocity. It was also assumed that when the maximal velocity is reached the
vehicle position is no further dilated (e = 1). A simple linear dependency was
used to control the dilation:

e = α +
1− α

v̂max
n

v̂n,t, (7)

where 0 ≤ α ≤ 1 and v̂ denotes defuzzified (crisp) value of velocity:

v̂n,t = arg max
y

μVn,t (y) . (8)

Fig. 1 presents results of a traffic simulation that was performed using the fuzzy
cellular model. Simulation was started with single vehicle (n = 0) stopped in
the first cell (c = 0): P0,0 = {1/0}, V0,0 = {1/0}, the vehicle properties was
set: L0 = {1/0}, V max

0 = {0, 2/4; 1/5; 0, 2/6}, A0 = {0, 2/0; 1/1; 0, 2/2}. Space-
time diagrams in fig. 1 depict how the vehicle accelerates, its fuzzy positions are
showed using gray levels. If the colour is darker for a cell, the value of membership
function of fuzzy set P0,t is higher in this cell (white colour indicates empty cells,
black indicates cells where μP0,t(c) = 1).

Fuzzy Cellular Model for On-Line Traffic Simulation 557

Fig. 1. Space-time diagram for the single-vehicle simulation: a) α = 0, 9 b) α = 0, 1

Results of the single vehicle movement simulation are compared in fig. 1 for
two values of parameter α , which was used for controlling the dilation (eq. 7).
It shows that decreasing value of α causes increase in fuzziness of the vehicle
position (higher level of model uncertainty).

4 Vehicles Queue Modelling

The fuzzy cellular model presented in previous section was applied for a simula-
tion of vehicles queue discharge process that corresponds to real-life situations
observed at approaches of signalised crossroads when green signal is given. Dur-
ing this experiment length of vehicles queue was analysed in sequence of time
steps. This section includes discussion of the simulation results as well as their
comparison with experimental data obtained using NaSch traffic model.

Only one class of vehicles was used in this simulation defining their maximal
velocity: Vmax = {0, 2/2; 1/3; 0, 2/4} and remaining properties that were set
identically to those of single-vehicle experiment reported in section 2. Dilation
operation (6) was applied with parameter α = 0, 9. In the first step of simulation
all fifty vehicles (n = 0 . . . 49) were stopped in a queue: Pn,0 = {1/n}, Vn,0 =
{1/0}, it means that at the beginning length of the queue was equal to the
number of vehicles.

In subsequent time steps the traffic model was updated according to equations
(3), (5) and the queue length Qt was evaluated. For the introduced traffic model
Qt is defined as fuzzy value using following fuzzy rule:

if veh 0 is in queue and veh 1 is in queue and...and veh x− 1 is in queue

and veh x is not in queue and...and veh m is not in queue then Qt is x, (9)

558 B. P�laczek

where veh n stands for ”vehicle n”, m denotes number of vehicles and variable
in queue is determined by another fuzzy rule taking into account position and
velocity of a vehicle:

if Pn,t is n and Vn,t is 0 then veh n is in queue. (10)

Results of vehicles queue length computations based on fuzzy cellular simulation
are presented in fig 2 a), gray scale was used in this case to depict membership
function value of Qt (darker colour correspond to higher value). These results are
compared with experimental data on vehicles queue discharge that was collected
from traffic simulation driven by NaSch cellular automaton (fig. 2 b).

Fig. 2. Results of the vehicles queue discharge simulation

Vehicles characteristics as well as starting conditions for the simulation us-
ing NaSch model were similar to those defined for fuzzy cellular simulation.
Probabilistic parameter p of the NaSch model was set to 0,2 and vmax was 3.
Simulation was executed over two hundred times to gather the data presented
in fig. 2 b). Gray levels in this chart correspond to experimental probability of
specific queue length evaluated for a given time step of the simulation.

The fuzzy cellular model was validated with regard to the traffic flow theory
by comparing fundamental diagrams (dependency between traffic density and
flow volume). Experimental data for the NaSch model (fig. 4 d) was collected
from 200 executions of traffic simulation. Black dots in this diagram indicate

Fuzzy Cellular Model for On-Line Traffic Simulation 559

traffic states that have experimental probability higher or equal 0,1, gray dots
correspond with lower probabilities. Figure 4 c) includes diagram obtained for
the fuzzy cellular model. Flow volume was determined as a fuzzy number for
each value of traffic density. The black dots in this diagram indicate maximal
values of the flow membership functions and the gray lines correspond to alfa-
cuts computed using threshold value of 0,99.

Comparison of the simulation results (fig. 2) shows that proposed fuzzy cel-
lular model adequately describes the process of traffic flow. It should be noted
that single simulation using fuzzy cellular model gives comparable results to the
distribution of experimental probability computed for many NaSch simulations.
The proposed model inherently describes uncertainty of traffic states. Conven-
tional cellular automaton needs many instances of the model and additional
statistics to explore uncertainty of traffic parameters i.e. range of their possible
values.

5 Conclusions

Fuzzy cellular model of road traffic was formulated on the basis of cellular au-
tomata approach. Parameters of vehicles are individually described by means
of fuzzy numbers, thus various classes of vehicles can be modelled. Application
of fuzzy sets theory allows to represent uncertainty of traffic states using single
instance of the model. It takes into account random nature of traffic processes
and makes the model suitable for collecting imprecise data from traffic detectors.

The uncertainty is described applying fuzzy definitions of vehicles parameters.
E.g. uncertain position of a vehicle is expressed by a fuzzy number defined on the
set of cells indexes. This uncertain position in the model can correspond with im-
precise results of vehicle detection. Thus, the main advantage of fuzzy approach
is the model’s ability to utilise imprecise traffic data for on-line simulation.

Experimental results of the vehicles queue discharge simulation reported in
this contribution show that fuzzy cellular model adequately describes the process
of traffic flow. The queue lengths and fundamental diagrams were analysed in
this experiment and compared to the results of NaSch cellular automata model.
Further tests are necessary to evaluate the model applicability for other real-
traffic situations. Planned research will also involve design of communication
procedures that are needed to input data from traffic detectors into the model.

References

1. Martin, P.T., Hockaday, S.L.M.: SCOOT: An update. ITE Journal 65(1), 44–48

(1995)

2. Mauro, V., Taranto, C.: UTOPIA. In: Proceedings of the 6th IFAC/IFORS Conf.

on Control, Computers and Communications in Transport, Paris, pp. 245–252

(1989)

3. Placzek, B., Staniek, M.: Model Based Vehicle Extraction and Tracking for Road

Traffic Control. In: Kurzynski, M., et al. (eds.) Advances in Soft Computing. Com-

puter Recognition Systems, vol. 2, pp. 844–851. Springer, Heidelberg (2007)

560 B. P�laczek

4. Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. J.

Physique I 2, 2221–2241 (1992)

5. Placzek, B.: The method of data entering into cellular traffic model for on-line

simulation. In: Piecha, J. (ed.) Trans. on Transport Systems Telematics, pp. 34–

41. Publishing House of Slesian Univ. of Technology, Gliwice (2006)

6. Barlovic, R., Santen, L., Schadschneider, A., Schreckenberg, M.: Metastable states

in cellular automata for traffic flow. The European Physical Journal B 5(3), 793–

800 (1998)

7. Chowdhury, D., Santen, L., Schadschneider, A.: Statistical physics of vehicular

traffic and some related systems. Physic Reports 329, 199–329 (2000)

8. Emmerich, H., Rank, E.: An improved cellular automaton model for traffic flow

simulation. Physica A 234(3-4), 676–686 (1997)

9. Pottmeier, A., Berlovic, R., Knopse, W., Schadschneider, A., Schreckenberg, M.:

Localized defects in a cellular automaton model for traffic flow with phase separa-

tion. Physica A 308(1-4), 471–482 (2002)

10. Shih-Ching, L., Chia-Hung, H.: Cellular Automata Simulation for Traffic Flow

with Advanced Control Vehicles. In: The 11th IEEE Int. Conf. on Computational

Science and Engineering Workshops, pp. 328–333. IEEE, Los Alamitos (2008)

11. Rickert, M., Nagel, K., Schreckenberg, M., Latour, A.: Two Lane Traffic Simula-

tions using Cellular Automata. Physica A 231(4), 534–550 (1995)

12. Knopse, W., Santen, L., Schadschneider, A., Schreckenberg, M.: Disorder in cellular

automata for two-lane traffic. Physica A 265(3-4), 614–633 (1999)

13. Wagner, P., Nagel, K., Wolf, D.E.: Realistic Multi-Lane Traffic Rules for Cellular

Automata. Physica A 234(3-4), 687–698 (1996)

14. Xianchuang, S., Xiaogang, J., Yong, M., Bo, P.: Study on Asymmetric Two-Lane

Traffic Model Based on Cellular Automata. In: Sunderam, V.S., van Albada, G.D.,

Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2005. LNCS, vol. 3514, pp. 599–606.

Springer, Heidelberg (2005)

15. Rickert, M., Nagel, K.: Experiences with a Simplified Microsimulation for the Dal-

las/Fort Worth Area. Int. J. of Modern Physics C 8(3), 483–503 (1997)

16. Dupuis, A., Chopard, B.: Parallel simulation of traffic in Geneva using cellular

automata. In: Kuhn, E. (ed.) Virtual shared memory for distributed architectures,

pp. 89–107. Nova Science Publishers, New York (2001)

17. Esser, J., Schreckenberg, M.: Microscopic simulation of urban traffic based on cel-

lular automata. Int. J. of Modern Physics C 8(5), 1025–1036 (1997)

18. Wahle, J., Annen, O., Schuster, C., Neubert, L., Schreckenberg, M.: A dynamic

route guidance system based on real traffic data. European Journal of Operational

Research 131(2), 302–308 (2001)

19. Brockfeld, E., Barlovic, R., Schadschneider, A., Schreckenberg, M.: Optimizing

traffic lights in a cellular automaton model for city traffic. Physical Review

E 64(056132), 1–12 (2001)

20. Daganzo, C.: The cell transmission model. Part II: Network traffic. Transportation

Research B 29(2), 79–93 (1995)

21. Dubois, D., Prade, H.: Operations on fuzzy numbers. International Journal of Sys-

tems Science 9(6), 613–626 (1978)

Modeling Stop-and-Go Waves in Pedestrian
Dynamics

Andrea Portz and Armin Seyfried

Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany

Abstract. Several spatially continuous pedestrian dynamics models
have been validated against empirical data. We try to reproduce the
experimental fundamental diagram (velocity versus density) with sim-
ulations. In addition to this quantitative criterion, we tried to repro-
duce stop-and-go waves as a qualitative criterion. Stop-and-go waves are
a characteristic phenomenon for the single file movement. Only one of
three investigated models satisfies both criteria.

1 Introduction

The applications of pedestrians’ dynamics range from the safety of large events
to the planning of towns with a view to pedestrian comfort. Because of the
computational effort involved with an experimental analysis of the complex col-
lective system of pedestrians’ behavior, computer simulations are run. Models
continuous in space are one possibility to describe this complex collective system.

In developing a model, we prefer to start with the simplest case: single lane
movement. If the model is able to reproduce reality quantitatively and quali-
tatively for that simple case, it is a good candidate for adaption to complex
two-dimensional conditions.

Also in single file movement pedestrians interact in many ways and not all
factors, which have an effect on their behavior, are known. Therefore, we follow
three different modeling approaches in this work. All of them underlie diverse
concepts in the simulation of human behavior.

This study is a continuation and enlargement of the validation introduced
in [7]. For validation, we introduce two criteria: On the one hand, the relation
between velocity and density has to be described correctly. This requirement is
fulfilled, if the modeled data reproduce the fundamental diagram. On the other
hand, we are aiming to reproduce the appearance of collective effects. A char-
acteristic effect for the single file movement are stop-and-go waves as they are
observed in experiments [5]. We obtained all empirical data from several exper-
iments of the single file movement. There a corridor with circular guiding was
built, so that it possessed periodic boundary conditions. The density was var-
ied by increasing the number of the involved pedestrians. For more information
about the experimental set-up, see [5],[6].

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 561–568, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

562 A. Portz and A. Seyfried

2 Spatially Continuous Models

The first two models investigated are force based and the dynamics are given by
the following system of coupled differential equations

mi
d vi

d t
= Fi with Fi = F drv

i + F rep
i and

d xi

d t
= vi (1)

where Fi is the force acting on pedestrian i. The mass is denoted by mi, the
velocity by vi and the current position by xi. This approach derives from sociol-
ogy [4]. Here psychological forces define the movement of humans through their
living space. This approach is transferred to pedestrians dynamics and so Fi is
split to a repulsive force F rep

i and a driven force F drv
i . In our case the driving

force is defined as

F drv
i =

v0
i − vi

τ
, (2)

where v0
i is the desired velocity of a pedestrian and τ their reaction time.

The other model is event driven. A pedestrian can be in different states. A
change between these states is called event. The calculation of the velocity of
each pedestrian is straightforward and depends on these states.

2.1 Social Force Model

The first spatially continuous model was developed by Helbing and Molnár [3]
and has often been modified. According to [2] the repulsive force for pedestrian
i is defined by

F rep
i (t) =

∑
j
=i

fij(xi, xj)+ξi(t) with fij(xi, xj) = −∂xA(Δxi,j −D)−B, (3)

with A = 0.2, B = 2, D = 1 [m], τ = 0.2 [s] and Δxi,j is the distance between
pedestrians i and j. The fluctuation parameter ξi(t) represents the noise of the
system. In two-dimensional scenes, this parameter is used to create jammed
states and lane formations [2]. In this study, we are predominantly interested
in the modeled relation between velocity and density for single file movement.
Therefore the fluctuation parameter has no influence and is ignored.

First tests of this model indicated that the forces are too strong, leading to
unrealistically high velocities. Due to this it is necessary to limit the velocity to
vmax, as it is done in [3]

vi(t) =
{

vi(t), if |vi(t)| ≤ vmax

vmax, otherwise . (4)

In our simulation we set vmax = 1.34 [m
s].

Modeling Stop-and-Go Waves in Pedestrian Dynamics 563

2.2 Model with Foresight

In this model pedestrians possess a degree of foresight, in addition to the current
state of a pedestrian at time step t. This approach considers an extrapolation of
the velocity to time step t + s. For it [8] employs the linear relation between the
velocity and the distance of a pedestrian i to the one in front Δxi,i+1(t).

vi(t) = a Δxi,i+1(t)− b (5)

For a = 0.94 [m
s] and b = 0.34 [1s] this reproduces the empirical data. So with

(5) vi(t + s) can be calculated from Δxi,i+1(t + s) which itself is a result of the
extrapolation of the current state

Δxi,i+1(t) + Δv(t) s = Δxi,i+1(t + s) (6)

with Δv(t) = vi+1(t) s− vi(t) s. Finally, the repulsive force is defined as

F rep
i (t) = −v0

i − vi(t + s)
τ

. (7)

Obviously the impact of the desired velocity v0
i in the driven force is negated by

the one in the repulsive term. After some simulation time, the system reaches
an equilibrium in which all pedestrians walk with the same velocity. In order to
spread the values and keep the right relation between velocity and density, we
added a fluctuation parameter ζi(t). ζi(t) uniformly distributed in the interval
[−20, 20] reproduced the scatter observed in the empirical data.

2.3 Adaptive Velocity Model

In this model pedestrians are treated as hard bodies with a diameter di [1]. The
diameter depends linearly on the current velocity and is equal to the step length
st in addition to the safety distance β

di(t) = e + f vi(t) = sti(t) + βi(t) . (8)

Based on [9] the step length is a linear function of the current velocity with
following parameters:

sti(t) = 0.235 [m] + 0.302 [s] vi(t) . (9)

e and f can be specified through empirical data and the inverse relation of (5).
Here e is the required space for a stationary pedestrian and f affects the velocity
term. For e = 0.36 [m] and f = 1.06 [s] the last equations (8) and (9) can be
summarized to

βi(t) = di(t)− sti(t) = 0.125 [m] + 0.758 [s] vi(t) . (10)

By solving the differential equation

dv

dt
= F drv =

v0 − v(t)
τ

⇒ v(t) = v0 + c exp
(
− t

τ

)
, for c ∈ IR, (11)

564 A. Portz and A. Seyfried

d

st

β__
2

β__
2

(a) Demonstration of the
parameters d, st and β

(b) Conception of the adaptive velocity

Fig. 1. Left: connection between the required space d, the step length st and the safety
distance β. Right: The adaptive velocity with acceleration until tdec1, than deceleration
until tacc1, again acceleration until tdec2 and so on.

the velocity function is obtained. This is shown in Fig. 1 together with the
parameters of the pedestrians’ movement.

A pedestrian is accelerating to their desired velocity v0
i until the distance to

the pedestrian in front is smaller than the safety distance. From this time on,
he/she is decelerating until the distance is larger than the safety distance and so
on. Via Δxi,i+1, di and βi those events could be defined: deceleration (12) and
acceleration (13).

To ensure good performance for high densities, no events are explicitly cal-
culated. But in each time step, it is checked whether an event has taken place
and tdec, tacc or tcoll are set to t accordingly. The time step, Δt, of 0.05 seconds
is chosen, so that a reaction time is automatically included. The discrete time
step could lead to configurations where overlapping occurs. To guarantee volume
exclusion, case (14) is included, in which the pedestrians are too close to each
other and have to stop.

t = tdec, if: Δxi,i+1 − 0.5 ∗ (di(t) + di+1(t)) ≤ 0 (12)
t = tacc, if: Δxi,i+1 − 0.5 ∗ (di(t) + di+1(t)) > 0 (13)
t = tcoll, if: Δxi,i+1 − 0.5 ∗ (di(t) + di+1(t)) ≤ −βi(t) (14)

3 Validation with Empirical Data

For the comparison of the modeled and experimental data, it is important to
use the same method of measurement. [5] shows that the results from different
measurement methods vary considerably. The velocity vi is calculated by the
entrance and exit times tini and tout

i to two meter section.

vi =
2 [m]

(tout
i − tini)[s]

. (15)

Modeling Stop-and-Go Waves in Pedestrian Dynamics 565

To avoid discrete values of the density leading to a large scatter, we define the
density by

ρ(t) =
∑N

i=1 Θi(t)
2 m

, (16)

where Θi(t) gives the fraction to which the space between pedestrian i and i + 1
is inside the measured section, see [6]. ρi is the mean value of all ρ(t), where
t is in the interval [tini , tout

i]. We use the same method of measurement for the
modeled and empirical data. The fundamental diagrams are displayed in Fig. 2,
where N is the number of the pedestrians.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.5 1 1.5 2

v i
 [

m
/s

]

ρi [ped./m]

N=15
N=20
N=25
N=30
N=34

(a) Social force model

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.5 1 1.5 2

v i
 [

m
/s

]

ρi [ped./m]

N=15
N=20
N=25
N=30
N=34

(b) Model with foresight

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.5 1 1.5 2

v i
 [

m
/s

]

ρi [ped./m]

N=15
N=20
N=25
N=30
N=34

(c) Adaptive velocity model

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.5 1 1.5 2

v i
 [

m
/s

]

ρi [ped./m]

N=15
N=20
N=25
N=30
N=34

(d) Empirical data

Fig. 2. Validation of the modeled fundamental diagram with the empirical data (down
right) for the single file movement

566 A. Portz and A. Seyfried

The velocities of the social force model are independent of the systems density
and nearly equal to the desired velocity vi = v0

i ∼ 1.24 [m
s]. Additionally we

observe a backward movement of the pedestrians and pair formation. Because
of these unrealistic phenomena are not observed in the other models, we suggest
that this is caused by the combination of long-range forces and periodic boundary
conditions.

In contrast, the model with foresight results in a fundamental diagram in
good agreement with the empirical one. Through the fluctuation parameter, the
values of the velocities and densities vary as in the experimental data.

We are satisfied with the results of the adaptive velocity model. For reducing
computing time, we also tested a linear adaptive velocity function, leading to a
70% decrease in computing time for 10000 pedestrians. The fundamental diagram
for this linear adaptive velocity function is not shown, but also reproduces the
empirical one.

4 Reproduction of Stop-and-Go Waves

During the experiments of the single file movement, we observed stop-and-go
waves at densities higher than two pedestrians per meter, see Fig. 5 in [5]. There-
fore, we compare the experimental trajectories with the modeled ones for global
densities of one, two and three persons per meter. The results are shown in Fig.3.
Since the social force model is not able to satisfy the criterion for the right rela-
tion between velocity and density, we omit this model in this section. Figure 3
shows the trajectories for global average densities of one, two and three persons
per meter. From left to right the data of the model with foresight, the adaptive
velocity model and the experiment are shown.

In the experimental data, it is clearly visible that the trajectories get unstead-
ier with increasing density. At a density of one person per meter pedestrians stop
for the first time. So a jam is generated. At a density of two persons per me-
ter stop-and-go waves pass through the whole measurement range. At densities
greater than three persons per meter pedestrians can hardly move forward.

For the extraction of the empirical trajectories, the pedestrians’ heads were
marked and tracked. Sometimes, there is a backward movement in the empirical
trajectories caused by self-dynamic of the pedestrians’ heads. This dynamic is
not modeled and so the other trajectories have no backward movement. This
has to be accounted for in the comparison.

By adding the fluctuation parameter ζi(t) ∈ [−20, 20] to the model with fore-
sight a good agreement with experiment is obtained for densities of one and two
persons per meter. The irregularities caused by this parameter are equal to the
irregularities of the pedestrians dynamic. Nevertheless, this does not suffice for
stopping so that stop-and-go waves appear, Fig.3(d) and Fig.3(g).

With the adaptive velocity model stop-and-go waves already arise at a density
of one pedestrian per meter, something that is not seen in experimental data.
However, this model characterizes higher densities well. So in comparison with
Fig. 3(h) and Fig. 3(i) the stopping-phase of the modeled data seems to last for

Modeling Stop-and-Go Waves in Pedestrian Dynamics 567

 0

 20

 40

 60

 80

 100

-200 -150 -100 -50 0 50 100 150 200

t
[s

]

x [cm]

ρ=1

(a) Model with foresight

 0

 20

 40

 60

 80

 100

-200 -150 -100 -50 0 50 100 150 200

t
[s

]

x [cm]

ρ=1

(b) Adaptive velocity model

 0

 20

 40

 60

 80

 100

-200 -150 -100 -50 0 50 100 150 200

t
[s

]

x [cm]

ρ=1

(c) Experimental data

 0

 20

 40

 60

 80

 100

 120

 140

-200 -150 -100 -50 0 50 100 150 200

t
[s

]

x [cm]

ρ=2

(d) Model with foresight

 0

 20

 40

 60

 80

 100

 120

 140

-200 -150 -100 -50 0 50 100 150 200

t
[s

]

x [cm]

ρ=2

(e) Adaptive velocity model

 0

 20

 40

 60

 80

 100

 120

 140

-200 -150 -100 -50 0 50 100 150 200
t

[s
]

x [cm]

ρ=2

(f) Experimental data

 0

 20

 40

 60

 80

 100

 120

 140

-200 -150 -100 -50 0 50 100 150 200

t
[s

]

x [cm]

ρ=3

(g) Model with foresight

 0

 20

 40

 60

 80

 100

 120

 140

-200 -150 -100 -50 0 50 100 150 200

t
[s

]

x [cm]

ρ=3

(h) Adaptive velocity model

 0

 20

 40

 60

 80

 100

 120

 140

-200 -150 -100 -50 0 50 100 150 200

t
[s

]

x [cm]

ρ=3

(i) Experimental data

Fig. 3. Comparison of modeled and empirical trajectories for the single lane movement.
The global density of the system is one, two or three persons per meter (from top to
bottom).

the same time as in the empirical data. But there are clearly differences in the
acceleration phase, the adaptive velocity models acceleration is much lower than
seen in experiment.

Finally other studies of stop-and-go waves have to be carried out. The occur-
rence of this phenomena has to be clearly understood for further model modi-
fications. Therefore it is necessarry to measure e. g. the size of the stop-and-go
wave at a fixed position. Unfortunately it is not possible to measure over a time
interval, because the empirical trajectories are only available in a specific range
of 4 meters.

568 A. Portz and A. Seyfried

5 Conclusion

The well-known and often used social force model is unable to reproduce the
fundamental diagram. The model with foresight provides a good quantitative
reproduction of the fundamental diagram. However, it has to be modified fur-
ther, so that stop-and-go waves could be generated as well. The model with
adaptive velocities follows a simple and effective event driven approach. With
the included reaction time, it is possible to create stop-and-go waves without
unrealistic phenomena, like overlapping or interpenetrating pedestrians.

All models are implemented in C and run on a simple PC. They were also
tested for their computing time in case of large system with upto 10000 pedes-
trians. The social force model offers a complexity level of O(N2), whereas the
other models only have a level of O(N). For this reason the social force model
is not qualified for modeling such large systems. Both other models are able to
do this, where the maximal computing time is one sixth of the simulated time.

In the future, we plan to include steering of pedestrians. For these models
more criteria, like the reproduction of flow characteristics at bottlenecks, are
necessarry. Further we are trying to get a deeper insight into to occurrence of
stop-and-go waves.

References

1. Chraibi, M., Seyfried, A.: Pedestrian Dynamics With Event-driven Simulation. In:
Pedestrian and Evacuation Dynamics (2008/2009), arXiv:0806.4288 (in Print)

2. Helbing, D., Farkas, I.J., Vicsek, T.: Freezing by Heating in a Driven Mesoscopic
System. Phys. Rev. Let. 84, 1240–1243 (2000)

3. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev.
E 51, 4282–4286 (1995)

4. Lewin, K. (ed.): Field Theory in Social Science. Greenwood Press, New York (1951)
5. Seyfried, A., Boltes, M., Kähler, J., Klingsch, W., Portz, A., Schadschneider, A.,

Steffen, B., Winkens, A.: Enhanced empirical data for the fundamental diagram
and the flow through bottlenecks. In: Pedestrian and Evacuation Dynamics 2008.
Springer, Heidelberg (2008/2009) (in print), arXiv:0810.1945

6. Seyfried, A., Steffen, B., Klingsch, W., Boltes, M.: The fundamental diagram of
pedestrian movement revisited. J. Stat. Mech., P10002 (2005)

7. Seyfried, A., Steffen, B., Lippert, T.: Basics of modelling the pedestrian flow. Physica
A 368, 232–238 (2006)

8. Steffen, B., Seyfried, A.: The repulsive force in continous space models of pedestrian
movement (2008), arXiv:0803.1319v1

9. Weidmann, U.: Transporttechnik der Fussgänger. Technical Report Schriftenreihe
des IVT Nr. 90, Institut für Verkehrsplanung,Transporttechnik, Strassen- und Eisen-
bahnbau, ETH Zürich, ETH Zürich, Zweite, ergänzte Auflage (1993)

FPGA Realization of a Cellular Automata Based

Epidemic Processor

Pavlos Progias, Emmanouela Vardaki, and Georgios Ch. Sirakoulis

Laboratory of Electronics, Department of Electrical and Computer Engineering,

Democritus University of Thrace, 67100 Xanthi, Greece

(pp8646,ev4925,gsirak)@ee.duth.gr

Abstract. More and more attention is paid to epidemics of infectious

diseases that spread through populations across large regions and under

condition may result on increased mortality in the infected population.

In this paper, a FPGA processor based on Cellular Automata (CA) able

to produce successive epidemic fronts, as it is expected by theory, is pre-

sented. The proposed CA SIR (Susceptible, Infectious and Recovered)

model successfully includes the effect of movement of individuals, on

the epidemic propagation as well as the effect of population vaccination

which reduces the epidemic spreading. The FPGA design results from the

automatically produced synthesizable VHDL code of the CA model and

is advantageous in terms of low-cost, high speed and portability. Finally,

the resulted hardware implementation of the CA model is considered

as basic component of a wearable electronic system able to provide real

time information concerning the epidemic propagation on the under test

part of the examined population.

Keywords: Epidemic Spreading, Cellular Automata, SIR, FPGA.

1 Introduction

In epidemiology, an epidemic (from Greek words epi- upon + demos people)
occurs when new cases of a certain disease spread in a given human population,
during a given period, substantially exceed what is “expected”, based on recent
experience [1]. An epidemic may be restricted to one locale (an outbreak), more
general (an “epidemic”) or even, more critical, global (pandemic). According
to the World Health Organization (WHO), a pandemic can start when three
conditions meet [2]: Emergence of a disease new to a population, agents infect
humans, causing serious illness and agents spread easily and sustainably among
humans. Famous examples of epidemics have been recorded in mankind history
and include HIV (present), the pandemic of the 14th century known as the Black
Death, the Great Influenza Pandemic which coincided with the end of World War
I and many mores. However, even in recent days, with the 2009 outbreak of a
new strain of Influenza A virus sub-type H1N1, the WHO’s pandemic alert level,
which has been three for some years, was moved to four and till this moment
at five. On the other hand, several of the existing computational intelligence

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 569–574, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

570 P. Progias, E. Vardaki, and G.C. Sirakoulis

techniques can be adopted for solving epidemic problems, and new methods are
developed. In general, epidemics have been modeled using differential equations
[3]. However this approach has some serious drawbacks [5]: it neglects the local
character of the spreading process, it does not include variable susceptibility
of individuals, and can not handle the complicated boundary and initial con-
ditions. Cellular Automata (CAs) [4] are an alternative to partial differential
equations and they can easily handle complicated boundary and initial condi-
tions, inhomogeneities and anisotropies [5]. Furthermore, CAs can overcome the
above drawbacks, and consequently have been used by several researchers as an
alternative method of modeling epidemics [5,6].

In this paper, a CA model able to simulate epidemic spreading in which the
state of the cell is obtained from the fraction of the number of individuals which
are susceptible, infected, or recovered from the disease is presented [5,6]. More-
over, the proposed two-dimensional (2-d) CA SIR (Susceptible, Infectious and
Recovered) model successfully includes the effect of movement of individuals, in
a hypothetical homogeneous population, on the epidemic propagation as well as
the effect of population vaccination which reduces the epidemic spreading. The
distance of movement and the number of individuals that are going to move are
the two most important parameters, which are taken into consideration by our
model. The increment of the aforementioned parameters resulted in our CA in
the same way, as it is theoretical assigned, i.e. when the percentage of the mov-
ing population is increased, or the maximum distance of population movement
is increased, the epidemic fronts lose their symmetry (i.e. their circular shape)
and the spreading of the epidemic disease is accelerated. Furthermore, because
of the inherent parallelism of CAs, the proposed model is hardware implemented
with the help of Very High Speed Integrated Circuit (VHSIC) Hardware Descrip-
tion Language (VHDL) synthesizable code in order to speed up the application
of CA to the study of epidemic spreading. More specifically, a translation al-
gorithm is used, that checks the CA parameters values previously determined
by the user and automatically produces the synthesizable VHDL code that de-
scribes the aforementioned CA. It should be mentioned that CAs are one of
the computational structures best suited for hardware realization. In this paper,
the design processing of the finally produced VHDL code, i.e. analysis, elabo-
ration and simulation, has been checked out with the help of the Quartus II
design software of the ALTERA Corporation. Consequently, the implementa-
tion of the resulting VHDL code results in a FPGA, which is considered as basic
component of a wearable electronic system able to provide real time informa-
tion concerning the epidemic propagation on the under test part of the examined
population. More specifically, taking into account GPS (Global Position System)
tracking, the resulted processor is fed with real data about possible roads and
railways routes for population movement and feedbacks with a support decision
system providing on time information regarding the possible epidemic propa-
gation. The proposed wearable electronic system should be also equipped with
wi-fi transceiver-transmitter for communication reasons as well as with proper
detectors corresponding to the certain epidemic characteristics.

FPGA Realization of a Cellular Automata Based Epidemic Processor 571

2 Modeling of Epidemic Spreading in Terms of CA

As mentioned before, differential equation models were used to describe epi-
demic models from the early beginnings of previous century, e.g. the Kermack
and McKendrick (1927) SIR model [3], with the system of ordinary differential
equations.

Ṡ = −aSI, İ = aSI − bI, Ṙ = bI (1)

where S is the susceptible part, I the infected part, and R the recovered part of
the population. Here it is assumed that the population is well mixed, an assump-
tion which in reality is not valid. Also, it is assumed that the total population is
constant, i.e. external effects, such as death, movement, imported objects etc.,
are neglected. The variable susceptibility of individuals is also neglected. In order
to avoid such the CA approach is used. More specifically, the population over
which the epidemic propagation will be modeled is assumed to exist in a 2-d
space and it is homogenous. The 2-d space is divided into a matrix of identical
square cells, with side length a, and it is represented by a CA [5]. Each CA cell
includes a number of individuals living there. The number of spatial dimensions
of the CA array is: n = 2. The widths of the two sides of the CA array are
taken to be equal, i.e. w1 = w2. The size of the array (i.e. the values of w1,2) is
defined by the user of the model, and it is a compromise between accuracy and
computation time. The width of the neighborhood of a CA cell is taken to be
equal to 3 in both array sides, i.e. d1 = d2 = 3.

The state Ct
i,j of the (i, j) CA cell, at time t, is:

Ct
i,j =

{
P t

i,j , INF t
i,j , IMF t

i,j

}
(2)

where INF t
i,j is a flag called the infectious flag. The value of this flag indicates

whether some of the individuals located in the (i, j) cell are infected by the
disease at time t. If INF t

i,j = 1, then P t
i,j is the fraction of the number of

individuals in the (i, j) cell infected by the disease, at time t:

P t
i,j =

St
i,j

T t
i,j

(3)

where St
i,j is the infected part of the population and T t

i,j is the total population
in the (i, j) cell. P t

i,j may take any value between 0 and 1, but, in order to keep
the number of states of the CA finite, P t

i,j is made to take 21 discrete values
leveling from 0.00 to 0.05 and so on till 1.00. Obviously, if INF t

i,j = 0, then
P t

i,j = 0.
The time duration of the disease is user defined and it can be assumed to be

equal to tin. After that time the population has recovered from the disease and
has acquired a temporal immunity to this disease. After tin time steps, the flag
INF t

i,j will change its value from 1 to 0. At this time the flag IMF t
i,j will also

change its value from 0 to 1. IMF t
i,j is called the immune flag and indicates

whether the population located in the (i, j) cell is immune to the disease or
not. The immune population loses its immunity after time tim, it becomes again

572 P. Progias, E. Vardaki, and G.C. Sirakoulis

susceptible to the disease, and the value of the flag IMF t
i,j becomes equal to 0.

The time duration tim is also user defined. Recapitulating, the CA cells may be
found in one of the following three general states:

1. If INF t
i,j = 0, and IMF t

i,j = 0, then the population in the (i, j) cell is
susceptible to the disease.

2. If INF t
i,j = 1, IMF t

i,j = 0, and 0 < P t
i,j ≤ 1, then the population in the

(i, j) cell is infected.
3. If INF t

i,j = 0, and IMF t
i,j = 1, then the population in the (i, j) cell is

immune to the disease.

Each CA cell starts as susceptible and becomes infected, if some CA cell in its
neighborhood is infected. It remains infected for time tin, and then it becomes
immune. It remains immune for time tim, and then it becomes susceptible again.
The transition from the susceptible state to the infected state is done according
to:

P t+1
i,j = P t

i,j+k
(
P t

i−1,j , P
t
i,j−1, P

t
i,j+1, P

t
i+1,j

)
+l

(
P t

i−1,j−1, P
t
i−1,j+1, P

t
i+1,j−1, P

t
i+1,j+1

)
(4)

In Eq. 4, the effect of the adjacent nearest neighbors is multiplied by k, whereas
the effect of the diagonal adjacent neighbors is multiplied by l. It is expected that
the (i, j) cell will be infected more quickly, if it has an infected adjacent nearest
neighbor, than if it has an infected diagonal adjacent neighbor, because of the
more extensive contact between populations. Therefore, it is always k > l [5].

As mentioned before, the distance of movement and the number of individ-
uals that are going to move are the two most important parameters in case of
population movement. In all examing cases the central CA cell was assumed to
be infectious and that it spreads the epidemic to its neighborhood, only once.
Different percentages of the population that was about to move and different
maximum distances of movement max distance were taken into account. The
possible directions of population movement could be given in accordance to the
road and railway connection of the geographical area under study. Finally, in
order to simulate the effect of vaccination, we assumed that a small part of the
initial population is vaccinated. In all simulations the CA model was able to
produce successive epidemic fronts, as it was expected by theory.

3 FPGA Implementation

After the performance and the functional correctness of the CA epidemic model
is checked, a CA translation algorithm, written in a high-level scripting lan-
guage, is used. This translation algorithm receives the programming code of
the CA model originally written in Matlab as its input, and automatically pro-
duces, as output, a synthesizable VHDL code. The final VHDL code produced
by translation algorithm, including both the behavioral and structural parts,
addresses the basic VHDL concepts. To achieve its goal, the translation algo-
rithm collects information from the disease CA model by checking its primary

FPGA Realization of a Cellular Automata Based Epidemic Processor 573

Fig. 1. The block diagram of the CA cell with its inputs and outputs

parameters. To be more specific, the entity declaration of a CA cell describes the
input/output ports of the module, which happens to be the main component in
our VHDL code. As shown in Fig. 1, the contributions of the North, Northeast,
..., and Northwest neighbours to the change of the state of the CA cell are loaded
through input s, input n, input ne, . . . , input nw, while inject imf stands for the
value of immunity flag placed into the cell, inj flag enables loading of values into
the cell, and inject input loads an initial value into the cell. In correspondence,
the state of the cell after the CA rule execution at the next time step is given
by output, while output signals inf and imf stand for the infected flag and im-
munity flag, respectively. The architecture body of the behavioral part of VHDL
code displays the implementation of the entity CA cell. Subsequently, the trans-
lation algorithm searches the CA code to detect the lattice size, the boundary
and initials CA conditions, in order to construct the structural part of the final
VHDL code. The structural part implements the final module as a composition
of subsystems, like the aforementioned main component. In addition, it includes
component instances of previously declared entity/architecture pairs, port maps
in components and wait statements.

The automatically produced synthesizable VHDL CA code is translated into
a hardware schematic of the defined architecture using predetermined timing
constraints in Quartus II, v. 7.2 design software. Design of the proposed processor
results in an ALTERA Stratix EP1S60F1020C5 FPGA device, which indicates
a maximum clock rate around 100MHz, consists of 250 CA cells and uses 73%
of the total available logic elements. Initial data can be loaded in a semi-parallel
way and the automatic response of the processor provides the CA epidemic
propagation. Furthermore, there is always a possibility of functional simulation
of the VHDL code with the use of the appropriate automatically generated test
benches as presented at Fig. 2. As a result, the simulation results of the VHDL
code are found in complete agreement with the compilation results of the CA
model.

574 P. Progias, E. Vardaki, and G.C. Sirakoulis

Fig. 2. Timing diagram of the presented FPGA processor for modelling epidemic

spreading

4 Conclusions

In this paper, a FPGA processor able to reproduce the effects of population
movement and vaccination on epidemic propagation is presented. The FPGA
design results from the automatically produced synthesizable VHDL code of
the CA model and succeeds to maximize the CA performance, brings reliability
and low total cost to its potential user and enables portability by its low power
dissipation. The later is crucial since, the resulted FPGA is considered as basic
component of a wearable electronic system able to provide real time information
concerning the epidemic propagation on the under test part of the examined
population. As a result, the proposed FPGA could serve as the basis of a support
decision system for monitoring epidemic propagation under condition depending
on the rest characteristics of the electronic system.

References

1. Definition of Epidemic in Wikipedia, http://en.wikipedia.org/Epidemic

2. World Health Organization: Changing History. The World Health Report 2004,

Geneva (2004)

3. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of

epidemics. Proc. R. Soc. A115, 700–721 (1927)

4. Wolfram, S.: Cellular Automata and Complexity. Addison-Wesley, Reading (1994)

5. Sirakoulis, G.C., Karafyllidis, I., Thanailakis, A.: A cellular automaton model

for the effect of population movement on epidemic propagation. Ecological Mod-

elling 133(3), 209–223 (2000)

6. del Rey, Á.M., Hoya White, S., Sánchez, G.R.: A model based on cellular automata

to simulate epidemic diseases. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.)

ACRI 2006. LNCS, vol. 4173, pp. 304–310. Springer, Heidelberg (2006)

http://en.wikipedia.org/Epidemic

Empirical Results for Pedestrian Dynamics at

Bottlenecks

Armin Seyfried1 and Andreas Schadschneider2

1 Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany

a.seyfried@fz-juelich.de
2 Institut für Theoretische Physik, Universität zu Köln, 50937 Köln, Germany

as@thp.uni-koeln.de

Abstract. In recent years, several approaches for modeling pedestrian

dynamics have been developed. Usually the focus is on the qualitative re-

production of empirically observed collective phenomena like the dynam-

ical formation of lanes. Although this gives an indication of the realism

of a model, for practical applications as in safety analysis reliable quan-

titative predictions are required. This asks for reliable empirical data.

Here we discuss the current status of one of the basic scenarios, the dy-

namics at bottlenecks. Here there is currently no consensus even about

the qualitative features of bottleneck flows.

keywords: empirical data, bottlenecks, fundamental diagram.

1 Introduction

The investigation of pedestrian dynamics is not only of scientific interest, e.g.
due to the various collective phenomena that can be observed, but also of great
practical relevance [1]. Therefore it is quite surprising that the empirical and
experimental situation is still unsatisfactory. Even for the most basic quanti-
ties used for the characterization of pedestrian streams no consensus has been
reached. For the flow-density relation, usually called fundamental diagram, prop-
erties like the maximal possible flow (capacity) or the density of complete flow
breakdown vary by factors of 2 to 4 in different studies and even in safety guide-
lines [2,3,4,5,6,7,8,9].

The situation for one of the most important scenario in pedestrian dynamics,
the behaviour at bottlenecks where the maximal flow or throughput is locally
reduced, is very similar. A thorough understanding of such situation is highly
relevant for evacuations where typically the bottlenecks have a strong influence
on the evacuation time. Here even the qualitative dependence of the capacity on
the bottleneck width is disputed. Some guidelines and studies find a step-wise
increase whereas others find strong evidence for a continuous increase.

Obviously these issues have to be settled to increase the reliability of any safety
analysis. On the other hand, a consensus on the empirical results is essential for
the validation and calibration of modelling approaches. So far most models have

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 575–584, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

576 A. Seyfried and A. Schadschneider

only been tested qualitatively, e.g. by their ability to reproduce the observed
collective phenomena like lane formation in counterflow situations.

In the following we will discuss various aspects of measurements on pedestrian
streams. After introducing the basic quantities and discussing the influence of the
measurement methods we will focus on bottleneck experiments. We will report
results from recent large-scale laboratory experiments that have been performed
under controlled conditions [10,11,12].

2 Basic Quantities of Pedestrian Flows

The main characteristic quantities for the description of pedestrian streams are
flow and density. The flow J of a pedestrian stream is defined as number of
pedestrians crossing a fixed location of a facility per unit of time. It can be
measured in different ways. The most natural approach determines the times ti
at which pedestrians have passed a fixed measurement location. The flow is then
calculate from the time gaps Δti = ti+1−ti between two consecutive pedestrians
i and i + 1:

J =
1

〈Δti〉 with 〈Δti〉 =
1
N

N∑
i=1

(ti+1 − ti) . (1)

The analogy with fluid dynamics suggest another method to measure the flow
of a pedestrian stream. It relates the flow through a facility of width b with the
average density ρ and the average speed v of the pedestrian stream,

J = ρ v b = Js b , (2)

where the specific flow1

Js = ρ v (3)

gives the flow per unit-width. This relation is also known as hydrodynamic rela-
tion. The quantities involved can be obtained by determining entrance and exit
times for a test section, e.g. from video recordings or time-lapse photography.
This allows to calculate the velocity of each pedestrian. The associated density
ρ = N/A is measured by counting the number of pedestrians N within the se-
lected area A at the time when the moving pedestrian was at the center of the
section.

Another way to quantify the pedestrian load of facilities has been proposed
by Fruin [13]. The “pedestrian area module” is given by the reciprocal of the
density. Predtechenskii and Milinskii [2] consider the ratio of the sum of the
projection area fj of the bodies and the total area of the pedestrian stream A,
defining the (dimensionless) density

ρ̃ =

∑
j fj

A
. (4)

1 In strictly one-dimensional motion often a line density (dimension: 1/length) is used.

Then the flow is given by J = ρv.

Empirical Results for Pedestrian Dynamics at Bottlenecks 577

Since the projection area fj depends strongly on the type of person (e.g. it
is much smaller for a child than an adult), the densities for different pedes-
trian streams consisting of the same number of persons and the same stream
area can be quite different. An alternative definition is introduced in [9] where
the local density is obtained by averaging over a circular region of radius R,
ρ(r, t) =

∑
j f(rj(t) − r), where rj(t) are the positions of the pedestrians j

in the surrounding of r and f(...) is a Gaussian, distance-dependent weight
function.

Most of these measurements combine an average velocity or flow with some
instantaneous density. This is an additional factor why measurements in similar
settings can differ in a large way. Beside technical problems due to camera dis-
tortions and camera perspective there are several conceptual problems, like the
association of averaged with instantaneous quantities, the necessity to choose an
observation area in the same order of magnitude as the extent of a pedestrian
together with the definition of the density of objects with non zero extent and
much more. A detailed analysis how the way of measurement could influences
the relations is outlined in the next section.

3 Influence of the Measurement Method

To demonstrate the magnitude of the variations due to different measurement
methods we choose the simplest possible system, namely the movement of pedes-
trians along a line with closed boundary conditions. Examples for exemplary
trajectories can be found elsewher in these procedings, see [14]. The situation
is similar to that of vehicular traffic which allows us to adopt the discussion in
[15,16] to the case of pedestrian streams. In the following we will discuss the
two principle approaches to measure observables like flow, velocity and density.
These are illustrated in in Fig. 1.

Fig. 1. Left: Experimental setup to determine the fundamental diagram for the move-

ment of pedestrians along a line (b = 0.7m). The measurement area is dashed. Right:
Illustration of different measurement methods to determine the fundamental diagram.

Local measurements at cross-section with position x averaged over a time interval Δt
have to be distinguished from measurements at certain time averaged over space Δx.

Method A is based on local measurements of the observable O at a certain
location x, averaging then over a time interval Δt. Such averages will be denote

578 A. Seyfried and A. Schadschneider

by 〈O〉Δt. Measurements at a certain location allow a direct determination of
the flow J and the velocity v:

〈J〉Δt =
N

Δt
=

1
〈Δti〉Δt

and 〈v〉Δt =
1
N

N∑
i=1

vi . (5)

The flow is given as the number of persons N passing a specified cross-section
at x per unit time. Usually it is taken as a scalar quantity since only the flow
normal to the cross-section is considered. To relate the flow with a velocity one
measures the individual velocities vi at location x and calculates the mean value
of the velocity 〈v〉Δt of the N pedestrians. In principle it is possible to determine
the velocities vi and crossing times ti of each pedestrian and to calculate the time
gaps Δti = ti+1 − ti defining the flow as the inverse of the mean value of time
gaps over the time interval Δt.

Method B averages the observable O over space Δx at a specific time tk
which gives 〈O〉Δx. By introducing an observation area with extend b, Δx the
density ρ and the velocity v can be determined directly:

〈ρ〉Δx =
N ′

b Δx
and 〈v〉Δx =

1
N ′

N ′∑
i=1

vi . (6)

This method was used in combination with time-lapse photos. Due to cost
reasons often only the velocity of single pedestrians and the mean value of the
velocity during the entrance and exit times were considered [6,7].

Flow equation: The hydrodynamic equation J = ρ v b allows to relate these
methods and to change between different representations of the fundamental
diagram. It is possible to derive the flow equation from the definition of the
observables introduced above by using the distance Δx̃ = Δt 〈v〉Δt. Thus one
obtains

J =
N

Δt
=

N

bΔx̃

bΔx̃

Δt
= ρ̃ b 〈v〉x with ρ̃ =

N

bΔx̃
. (7)

At this point it is crucial to note that the mean values 〈v〉x and 〈v〉t do not
necessarily correspond. This is illustrated by Fig. 1. The upper lane consists of
faster pedestrians than the lower lane. Averaging over Δx does not consider the
last pedestrian in the lane above while avereraging over Δt at x0 for appropriate
Δt does. Thus densities calculated by ρ̃ = 〈J〉Δt/〈v〉Δt can differ from direct
measurements via 〈ρ〉Δx. We come back to this point later.

As already mentioned above we choose the most simple system for our own
experiments [12] to get an estimation for the lower bound of deviations resulting
between different measurement methods. To measure the fundamental diagram
of the movement along a line we performed 12 runs with varying number of
pedestrians, N = 17 to N = 70. For the movement along a line we set b = 1 in
the equations introduced above. We note again that the different measurements
shown in the next figures are based on the same set of trajectories determined

Empirical Results for Pedestrian Dynamics at Bottlenecks 579

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

<
v>

x
[m

/s
]

<J>x [1/s]

N=14
N=17
N=20
N=22
N=25
N=28
N=34
N=39
N=45
N=56
N=62
N=70

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.5 1 1.5 2 2.5 3

<
v>

t [
m

/s
]

<ρ>t [1/m]

N=14
N=17
N=20
N=22
N=25
N=28
N=34
N=39
N=45
N=56
N=62
N=70

Fig. 2. Fundamental diagrams measured at the same set of trajectories but with differ-

ent methods. Left: Measurement at a certain cross-section averaging over time inter-

val (Method A). Right: Measurement at a certain point in time averaging over space

(Method B). Large diamonds give the overall mean value of the velocity for one density

value.

automatically from video recordings of the measurement area with high accuracy
(xerr ± 0.02 m) [11]. The data analysis is restricted to the stationary state.

Fig. 2 shows the direct measurements according to Method A and B. For
Method A we choose the position of the cross-section in the middle of the scene
x = 0 m and a time interval of Δt = 30s. For Method B the area ranges from
x = −2 m to x = 2 m, and we performed the averaging over space each time
tk a pedestrian crossed x = 0. For Method B we note that the fixed length
of the observation area of 4 m results in discrete density values with distance
Δρ = (4m)−1. For each density value large fluctuations of the velocities 〈v〉t are
observed. The large diamonds in Fig. 2(right) represent the mean values over all
velocities 〈v〉t for one density. The flow equation (7) allows to switch the direct
measurement of Method A and B into the most common representation of the
fundamental diagram J(ρ).

Fig. 3 shows a comparison of fundamental diagrams using the same set of
trajectories but different measurement methods. In particular for high densities,
where jam waves are present, the deviations are obvious. For the high density
regime the trajectories show inhomogeneities in time and space, which do not
correspond, see [14]. The averaging over different degrees of freedom, the time
Δt for Method A and the space Δx for Method B leads to different distributions
of individual velocities. Thus one reason for the deviations is that the mean
values of the velocity measured at a certain location by averaging over time do
not necessarily conform to mean values measured at a certain time averaged
over space. However, the straightforward use of the flow equation neglects these
differences. In [15] it was stated that the difference can be cancelled out by
using the harmonic average for the calculation of the mean velocity for Method
A. We have tested this approach and found that the differences do not cancel
out in general and the data are only in conformance if one takes into account

580 A. Seyfried and A. Schadschneider

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.5 1 1.5 2 2.5 3

J
[1

/s
]

ρ [1/m]

Method A
Method B

Fig. 3. Fundamental diagram determined by different measurement methods. Method
A: Direct measurement of the flow and velocity at a cross-section. The density is

calculated via ρ = 〈J〉Δt/〈v〉Δt. Method B: Measurement of the density and velocity at

a certain time point averaged over space. The flow is given by J = ρ 〈v〉Δx.

the fluctuations and calculates the mean velocity by the harmonic average. But
for states where congestions lead to an intermittent stopping, fluctuations of the
density measured with Method A are extremly large and can span over the whole
density range observed. This due to the fact that in Method A the density is
determined indirectly by calculating ρ̃ = 〈J〉Δt/〈v〉Δt. In the high density range
the flow as well as the velocity have small values causing high fluctuations for
the calculated density.

4 Experiments at Bottlenecks

We now discuss another important scenario, namely the flow of pedestrians
through bottlenecks, i.e. areas where the capacity is reduced. It shows a rich
variety of phenomena, e.g. the formation of lanes at the entrance to the bot-
tleneck [17,18,19], or clogging and blockages at narrow bottlenecks [2,20,21,22].
Moreover, bottleneck capacities provide important information for the design
and dimensioning of pedestrian facilities. In the following we present results of
an experiment performed to analyze the influence of the width and the length
of a bottleneck.

Fig. 4 shows the different experimental setups used in various studies, as dis-
cussed in [19]. It shows considerable differences in the geometry of the bottleneck
and the initial distribution of pedestrians. We consider here only the experiments
by Kretz [18], Müller [21] and Seyfried [19] (Fig. 4(a), 4(c), 4(e)) which study
the motion of an evenly distributed group through a symmetrical bottleneck.

Our experiment was performed in 2006 in the wardroom of the ”Bergische
Kaserne Düsseldorf” with a test group that was comprised of soldiers. The

Empirical Results for Pedestrian Dynamics at Bottlenecks 581

(a) Kretz [18]. (b) Muir [22]. (c) Müller [21]. (d) Nagai [23]. (e) Seyfried[19].

Fig. 4. Experimental setups used in various studies of bottleneck flow

experimental setup allows to probe the influence of the bottleneck width and
length. In one experiment the width b was varied (from 90 to 250 cm) at fixed
corridor length, the other experiment investigated varying the corridor length l
(6, 200, 400 cm) at fixed b = 160 cm. Wider bottlenecks with more test persons
were studied than in previous experiments.

Fig. 5(b) shows a sketch of the experimental setup used to analyze the flow
through bottlenecks and Fig. 5(a) a still taken from the experiment. To ensure
an equal initial density for every run, holding areas were marked on the floor
(dashed regions). All together 99 runs with up to 250 people were performed
over five days.

(a) Still taken from experi-

ment.

(b) Experimental setup.

Fig. 5. Experimental setup used in our bottleneck experiments

Fig. 6 shows the time evolution of the density in front of the bottleneck. In
the bottleneck width experiment the dependence on b is immediately obvious
(Fig. 6(a)) with the highest densities being seen in front of the narrowest bot-
tlenecks (between 20 and 30 seconds the densities are 5.46 ± 0.75, 4.79 ± 1.00
and 3.52± 0.87 [m−2] for b = 90, 160, 250 cm, respectively. For experiments with
different bottleneck lengths no appreciable difference in the densities can be
observed, Fig. 6.

Due to the accurate trajectories that we could determine using an automated
video analysis, the process of lane formation can be studied in detail.

In Figs. 7(a) and 8(a), N the total number of pedestrians passing the measure-
ment line can be seen to curve downwards. Therefore the flow is time-dependent,
diminishing as the experiment runs its course. The flow will depend on the num-
ber of pedestrians considered. In this analysis we calculate the flow using the
first 150 people. Previous experiments have not observed this time dependence,

582 A. Seyfried and A. Schadschneider

(a) Dependence on b. (b) Dependence on l.

Fig. 6. Time evolution of the density in front of bottleneck

(a) N . (b) Flow.

Fig. 7. (a) Total number N of pedestrians passing the measurement line and (b) vari-

ation of the flow J with bottleneck width b

as the participation in the experiments was not high enough (for example in [24]
only 100 pedestrians took part). As expected the flow exhibits a strong depen-
dence on the width of the bottleneck b, see Fig. 7. The bottleneck length l exerts
virtually no influence on the flow, except for the case of an extremely short con-
striction (Fig. 7) where three lanes can be formed. In Figs. 7(b) and 8(b), the
flow from our experiment is compared with previous measurements. The black
line in Fig. 7(b) represents a constant specific flow of 1.9 (ms)−1. The difference
between the flow at l = 6 cm and l = 200, 400 cm is ΔJ � 0.5 s−1.

The datapoints of Müller’s experiments lie significantly above the black line.
The Müller experimental setup features a large initial density of around 6 Pm−2

and an extremely short corridor. The discrepancy between the Müller data and

Empirical Results for Pedestrian Dynamics at Bottlenecks 583

(a) N . (b) Flow.

Fig. 8. (a) Total number N of pedestrians passing the measurement line and (b) vari-

ation of the flow J with bottleneck length l

the empirical J = 1.9b line is roughly ΔJ � 0.5 s−1. This difference can be
accounted for due to the short corridor, but may also be due to the higher initial
density in the Müller experiment.

5 Conclusions

In this contribution we have discussed the fact that our understanding of pedes-
trian dynamics suffers from the lack of consensus about empirical results. This
concerns even basic qualitative properties of the most relevant quantities, like
the fundamental diagram or bottleneck flows.

One factor are the different measurement methods used in various experimen-
tal studies. We have argued that this can have a considerable influence on the
results and makes the comparison of different experiments difficult.

One promising method to obtain reliable and reproducable empirical data are
large scale experiments under controlled conditions. We have presented results
from a recent study, focussing on the bottleneck scenario. Using a technique
to determine the positions of the pedestrians automatically provided us with
high quality data for the trajectories. This allows reliable conclusions about the
behaviour. As an example, strong evidence for a continuous, in contrast to a
stepwise, increase of the bottleneck capacity with the width has been found.

References

1. Schadschneider, A., et al.: Evacuation dynamics: Empirical results, modeling and

applications. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and System Sci-

ence. Springer, Heidelberg (2008)

2. Predtechenskii, V.M., Milinskii, A.I.: Planing for foot traffic flow in buildings.

Amerind Publishing, New Dehli (1978)

584 A. Seyfried and A. Schadschneider

3. Weidmann, U.: Transporttechnik der Fussgänger. Schriftenreihe des IVT Nr. 90,

ETH Zürich (1993)

4. Nelson, H.E., Mowrer, F.W.: Emergency movement. In: DiNenno, P.J. (ed.) SFPE

Handbook of Fire Protection Engineering, 3rd edn. (2002)

5. Hankin, B.D., Wright, R.A.: Passenger Flow in Subways. Operational Research

Quarterly 9, 81–88 (1958)

6. Older, S.J.: Movement of Pedestrians on Footways in Shopping Streets. Traffic

Engineering and Control 10, 160–163 (1968)

7. Navin, P.D., Wheeler, R.J.: Pedestrian flow characteristics. Traffic Engineering 39,

31–36 (1969)

8. Mori, M., Tsukaguchi, H.: A new method for evaluation of level of service in pedes-

trian facilities. Transp. Res. 21A(3), 223–234 (1987)

9. Helbing, D., et al.: Dynamics of Crowd Disasters: An Empirical Study. Phys. Rev.

E 75, 046109 (2007)

10. Seyfried, A., Boltes, M., Kähler, J., Klingsch, W., Portz, A., Rupprecht, T., Schad-

schneider, A., Steffen, B., Winkens, A.: Enhanced empirical data for the funda-

mental diagram and the flow through bottlenecks. In: Pedestrian and Evacuation

Dynamics 2008, p. 133. Springer, Heidelberg (2010) (in Print)

11. Boltes, M., Seyfried, A., Steffen, B., Schadschneider, A.: Automatic Extraction

of Pedestrian Trajectories from Video Recordings. In: Pedestrian and Evacuation

Dynamics 2008, p. 39. Springer, Heidelberg (2010) (in Print)

12. http://www.fz-juelich.de/jsc/math/RD/projects/ped_dynamics/

13. Fruin, J.J.: Pedestrian Planning and Design. In: Metropolitan Association of Urban

Designers and Environmental Planners, New York (1971)

14. Portz, A., Seyfried, A.: Modeling Stop-and-Go Waves in Pedestrian Dynamics. In:

Wyrzykowski, R., et al. (eds.) PPAM 2009, Part II. LNCS, vol. 6068, pp. 561–568.

Springer, Heidelberg (2010)

15. Leutzbach, W.: Introduction to the Theory of Traffic Flow. Springer, Berlin (1988)

16. Kerner, B.S.: The Physics of Traffic. Springer, Berlin (2004)

17. Hoogendoorn, S., Daamen, W.: Pedestrian Behavior at Bottlenecks. Transp.

Sc. 39(2), 147–159 (2005)

18. Kretz, T., Grünebohm, A., Schreckenberg, M.: Experimental study of pedestrian

flow through a bottleneck. J. Stat. Mech. 10, P10014 (2006)

19. Seyfried, A., Passon, O., Steffen, B., Boltes, M., Rupprecht, T., Klingsch, W.: New

insights into pedestrian flow through bottlenecks. Transp. Sc. 43, 395–406 (2009)

20. Dieckmann, D.: Die Feuersicherheit in Theatern, Jung, München (1911) (in Ger-

man)

21. Müller, K.: Die Gestaltung und Bemessung von Fluchtwegen für die Evakuierung

von Personen aus Gebäuden. Dissertation, Technische Hochschule Magdeburg, Vor-

lage (1981)

22. Muir, H., Bottomley, D., Marrison, C.: Effects of Motivation and Cabin Configu-

ration on Emergency Aircraft Evacuation Behavior and Rates of Egress. Int. Jour.

Aviation Psychology 6, 57–77 (1996)

23. Nagai, R., Fukamachi, M., Nagatani, T.: Evacuation of crawlers and walkers from

corridor through an exit. Physica A 367, 449–460 (2006)

24. Daamen, W., Hoogendoorn, S.: Capacity of doors during evacuation conditions.

In: Proc. 1st Int. Conf. on Evacuation Modeling and Management (2009)

http://www.fz-juelich.de/jsc/math/RD/projects/ped_dynamics/

Properties of Safe Cellular Automata-Based

S-Boxes

Miroslaw Szaban1 and Franciszek Seredynski2,3

1 Institute of Computer Science, University of Podlasie, 3-go Maja 54, Siedlce, Poland

mszaban@ap.siedlce.pl
2 Institute of Computer Science, Polish Academy of Sciences,

Ordona 21, 01-237 Warsaw, Poland
3 Polish-Japanese Institute of Information Technology

Koszykowa 86, 02-008 Warsaw, Poland

sered@ipipan.waw.pl

Abstract. In the paper we use recently proposed cellular automata

(CA) - based methodology [9] to design 8 × n (n ≤ 8) S-boxes func-

tionally equivalent to S-boxes used in current cryptographic standards.

We provide an exhaustive experimental analysis of the proposed CA-

based S-boxes in terms of non-linearity, autocorrelation and scalability,

and compare results with other proposals. We show that the proposed

CA-based S-boxes have cryptographic properties comparable or better

than currently offered classical S-box tables.

Keywords: Cellular Automata, S-boxes, Block Cipher, Cryptography.

1 Introduction

In the modern world, two main cryptography approaches are used today to
provide a secure communication: secret key and public key systems. The main
concern of this paper are cryptosystems with a secret key. The main interest
of this work are CA and their application to design S-boxes. S-boxes function-
ally realize some Boolean functions, important from point of view of requested
cryptographic features in secret key systems.

Many known secure standards of symmetric key cryptography, such as, e.g.
presented in [3], [4], use efficient and secure algorithms working on the base of
S-boxes. S-boxes are ones of the most important components of block ciphers,
which are permanently upgraded, or substituted by new better constructions.

In the next section the concept of the S-box and its most known applications
in DES cryptographic standards are presented. Section 3 describes the main
cryptographic criteria to examine Boolean functions. In section 4 two different
Boolean functions describing the work of S-boxes are proposed and measures of
evaluating their cryptographical properties such as non-linearity and autocorre-
lation. Section 5 outlines the concept of CA and the idea of creating CA-based
S-boxes. Section 6 presents results of examination of cryptographic features of
CA-based S-boxes and their comparison with other proposals. The last section
concludes the paper.

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 585–592, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

586 M. Szaban and F. Seredynski

2 S-Boxes in Cryptography

S-box (see, [3]) is a function f : Bn → Bk, which from each of n Boolean input
values of Bn block consisting of n bits bi (i ≤ n) generates some k Boolean
output values called Bk block consisting of k bits bj (j ≤ k and k ≤ n), what
corresponds to the mapping bit strings (b0, b1, ..., bn) → (b0, b1, ..., bk). When n is
equal to k, the function f, from n different input values maps n different outputs
values, and such a S-box is called bijective [5].

Let us note that the classical S-boxes (DES and its successor AES, see, [4]) are
fixed, not flexible structures requesting predefined sizes of memory. Therefore,
it is hard to use them in new designed cryptographic algorithms, which request
using dynamic S-boxes. The purpose of this study is to design flexible S-boxes,
ready to use in cryptographic algorithms with dynamic S-boxes.

3 Preliminaries for Evaluation of Boolean Functions

The quality of S-boxes designed with use of CA must be verified by required
properties of S-boxes. The most important definitions and dependencies related
to this issue are recalled below from cryptographic literature [1], [2], [10], [11].

A Boolean function f : Z n
2 → Z2 maps n binary inputs to a single binary

output. The list of the size of 2n of all possible outputs is the truth table. Polarity
form of the truth table is denoted by f̂ (x) and defined as: f̂(x) = (−1)f(x).

The non-linearity Nf of a Boolean function f is the minimal distance of the
function f to the set of affine functions and is calculated as:

Nf =
1
2
(2n −WHmax(f)), (1)

where the WHmax is the maximal value of the Walsh Hadamard Transform.
Ciphers with high non-linearity (low WHmax) are known to be more difficult to
cryptanalysis.

The next important property of ciphers is autocorrelation ACf . Autocorre-
lation defines correlation between polar form f(x) and its polar shifted version,
f(x⊗ s). Autocorrelation of a Boolean function f is defined by Autocorrelation
Transform given by the equation: r̂f (s) =

∑
x f̂(x)f̂ (x⊗ s), where s ∈ Zn

2 −{0}.
The absolute maximum value of any autocorrelations is denoted by the equation:

ACf = maxs
=0|
∑

x

f̂(x)f̂ (x⊗ s)|. (2)

Ciphers with low autocorrelation are known to be more secure.

4 Measuring Cryptographic Properties of S-Boxes

S-boxes as functions mapping n input bits into k output bits under condition
k ≤ n, generally do not satisfy conditions to be a Boolean function, because the

Properties of Safe Cellular Automata-Based S-Boxes 587

number of output bits of S-boxes is usually higher then one bit (1 ≤ k). However,
the quality of block ciphers received with use of S-boxes is usually measured by
criteria proper to Boolean functions. The question which arises is how to apply
these criteria to S-boxes (block ciphers). Let us consider two possible methods
to solve this problem.

4.1 Method 1: Linear Combination of Single-Output S-Boxes

A Boolean function returns as output one bit. To use Boolean functions criteria
to examine S-boxes, we need to transform all k bits output of an S-box into one
output bit. After this modification, we obtain a new Boolean function which can
be defined as: fβ : Bn → B1, and expressed by the formula (see, [1], [8]):

fβ(x) = β1f1(x)⊗ β2f2(x) ⊗ ...⊗ βkfk(x). (3)

The new function is a linear combination of k functions fi(x), i ≤ k, where
βi ∈ Bk. Each of these functions is defined as a simple S-box (single-output
S-box, a part of the n× k S-box). The relationship (vector (β1, ..., βk)) between
simple S-boxes is used as a result of the S-box table composition.

Under this approach cryptographical properties of S-boxes presented in sec-
tion 3 are calculated with use of the Boolean function fβ(x).

4.2 Method 2: Set of Single-Output S-Boxes

In this method the S-box is considered as a set of simple S-boxes. A simple S-box
satisfies conditions to be a Boolean function. Each simple S-box is a function:
fi : Bn → B1, where i = 1, 2, ..., k and the 1-bit output is one of k output bits
of the S-box.

Cryptographic properties of an S-box are measured under this method sepa-
rately for each simple S-box ({f1, ..., fk}), where k is the number of output bits
in the n × k S-box. To analyze the n × k S-box, using the single-output S-box
method, the k single-output S-boxes are considered. It results in analyzing the k
Boolean functions corresponding to single-output S-boxes and evaluating their
non-linearities and autocorrelations. Partial results are compared and the worst
ones become the final evaluation of the analyzed S-box. Such an approach was
recently used in cryptanalysis of known ciphers or in [7] to analyze the 6 × 6
S-boxes.

5 CA-Based S-Boxes Designing

5.1 The Concept of Cellular Automata

One dimensional (1D) CA is in the simplest case a collection of two-state ele-
mentary cells arranged in a lattice of the length N , and locally interacting in a
discrete time t. For each cell i called a central cell, a neighbourhood of a radius r
is defined, consisting of ni = 2r+1 cells, including the cell i. When considering a

588 M. Szaban and F. Seredynski

finite size of CA, and a cyclic boundary condition is applied, it results in a circle
grid. It is assumed that a state qt+1

i of a cell i at the time t + 1 depends only on
states of its neighbourhood at the time t, i.e. qt+1

i = TF (qt
i , q

t
i1, q

t
i2, , q

t
in), and a

transition function TF , called a rule, which defines a rule of updating a cell i. A
length L of a rule and a number of neighbourhood states for a binary uniform
CA is L = 2n, where n = ni is a number of cells of a given neighbourhood, and
a number of such rules can be expressed as 2L.

5.2 Construction of CA-Based S-Boxes

In our study we propose to use CA as a function which can be characterized
by the same properties and realize the same functions as wide known S-boxes.
A motivation for applying CA to realize S-boxes steams from potentially very
interesting features of CA. CA have a computational possibilities equivalent
to Universal Turing Machine, what means that such Boolean functions can be
realized.

A classic S-box is a function expressed as a table containing natural numbers.
Cryptographic literature shows many examples and methods of searching S-
box tables. The quality of S-boxes are measured with use of different functions
which examine their different properties [6], [1], [8], [10], [11]. Some of the most
important test functions were presented in section 3. In [6], [1], [8], [5], authors
treat the problem of designing S-box tables as a combinatorial optimization
problem and apply different metaheuristics to search solutions in the huge space
of S-box tables solutions. Recently [9] we have proposed CA-based approach to
create S-boxes in the form not tables, but some virtual entities.

The CA-based S-box can be seen as CA composed of the following elements:

– a number of CA cells performing the role of background
– a number of CA cells performing the role of input/output of CA-based S-box
– an initial state of CA
– an appropriate rule/rules of CA.

It is assumed that CA will evolve during a number of time steps. Selected
cells of CA (in its initial state) serve as input bits of the S-box, and the same
cells, after declared time steps, are considered as the output of the S-box. To
construct CA performing the S-box function it is necessary to find appropriate
CA rules and verify produced results according to the S-box functions criteria.

The first step in constructing the n×k CA-based S-box is selecting a number
of CA cells. A number of CA cells must be not lower than max|n, k|. This number
should be also enough large to generate cycles longer than the number of CA
time steps [7]. Construction of n × n S-box is simple (see, [9]), because we can
use n cells of CA and from n inputs we obtain n outputs. How to use CA to
construct n× k S-boxes, when n ≥ k? For this purpose we propose to consider
the first n CA cells at the time step t = 0 as input cells, and the first k CA cells
at the last time step as output cells.

Properties of Safe Cellular Automata-Based S-Boxes 589

0

20

40

60

80

100

120

0 100 200 300 400 500

Time Steps (step=10)

V
al

u
es

 o
f

n
o

n
-l

in
ea

ri
ty

Rule 30 Nf: Rule 86 Nf: Rule 135 Nf: Rule 149 Nf:

0

20

40

60

80

100

120

0 100 200 300 400 500

Time Steps (step=10)

V
al

u
es

 o
f

n
o

n
-l

in
ea

ri
ty

Rule 30 Nf: Rule 86 Nf: Rule 135 Nf: Rule 149 Nf:

a) b)

0

50

100

150

200

250

0 100 200 300 400 500

Time Steps (step=10)

V
al

u
es

 o
f

au
to

co
rr

el
at

io
n

Rule 30 ACf: Rule 86 ACf: Rule 135 ACf: Rule 149 ACf:

0

50

100

150

200

250

0 100 200 300 400 500

Time Steps (step=10)

V
al

u
es

 o
f

au
to

co
rr

el
at

io
n

Rule 30 ACf: Rule 86 ACf: Rule 135 ACf: Rule 149 ACf:

c) d)

Fig. 1. Evaluation cryptographic properties of 8×8 CA-based S-boxes (the worst from

1000 random initial states) in time steps for selected CA rules. Non-linearity: Method

1 (a) and Method 2 (b); autocorrelation: Method 1 (c) and Method 2 (d).

In [9] we used quite long CA (with a number CA cells = 100), where sig-
nificant input/output-bit cells collectively cooperate with other cells called the
background. This construction is large enough to satisfy condition for non-cycle
construction. The number of time steps which satisfy this condition is equal to
100 (see, [9]). The number of time steps was also determined by behavior of CA
in different time steps. Experiments (see, Fig. 1) show that CA provides stable
and highest quality of cryptographic properties (Fig. 1a - non-linearity, Fig. 1c
- autocorrelation, calculated by Method 1, and Fig. 1b - non-linearity, Fig. 1d -
autocorrelation, calculated by Method 2) for time steps not lower than 100. In
the next study the number of time steps will be equal to 100.

Not every CA rule is suitable to provide proper quality for CA-based S-box.
From the all set of 256 elementary CA rules (CA rules with neighborhood radius
r = 1), we selected four rules {30, 86, 135, 149} as only proper for this purpose
(see also, [9]).

The initial state of CA (the first n bits interpreted as the S-box input) is
randomly set and CA starts to run. After a predefined number of time steps the
CA stops and after 100 time steps the first k bits are treated as output bits,
which are next used to evaluate quality of CA-based S-boxes.

590 M. Szaban and F. Seredynski

6 Analysis and Comparison of S-Boxes

6.1 8 × k S-Boxes Analysis

In [9] we proposed the 8×8 CA-based S-boxes, which offer cryptographic quality
in general comparable or better then nowadays constructed S-box tables. To
complement our proposition it is needed to study 8×k (where k ≤ 8) CA-based S-
boxes and compare results with other approaches. We analyze CA-based S-boxes
composed of: 100 CA cells (initial state), 100 time steps and CA rules 30, 86,
135 and 149 (only these rules are proper for this purpose). During experiments
we analyzed 10000 randomly selected CA-based S-boxes (initial states of CA)
and calculated their non-linearities and autocorrelations, for each of CA rules.

Table 1. The best values of non-linearity and autocorrelation (Nf , ACf) of 8 × k
CA-based S-boxes and other proposals, calculated by Method 1. * - no data.

Input × Millan Clark Nedjah, Our approach: CA-based S-box

Output et al. [6] et al. [1] Mourelle [8] Rule 30, Rule 86, Rule 135, Rule 149

8× 2 (110, 48) (114, 32) (116, 34) (111, 44), (110, 44), (111, 44), (111, 44)

8× 3 (108, 56) (112, 40) (114, 42) (111, 44), (110, 44), (110, 44), (110, 44)

8× 4 (106, 64) (110, 48) (110, 42) (111, 44), (111, 40), (110, 44), (110, 44)

8× 5 (104, 72) (108, 56) (110, 56) (111, 44), (111, 44), (111, 44), (111, 44)

8× 6 (104, 80) (106, 64) (106, 62) (110, 40), (110, 40), (110, 40), (110, 40)

8× 7 (102, 80) (104, 72) (102, 70) (110, 44), (111, 40), (112, 40), (112, 40)

8× 8 (100, *) (102, 80) (*, *) (111, 44), (111, 44), (111, 44), (111, 44)

Table 1 shows the best values of non-linearity and autocorrelation for S-box
tables discovered by Millan et al. [6], Clark et al. [1], Nedjah and Mourelle [8],
and our CA-based S-boxes (with four CA rules). Presented results were obtained
with use of the Method 1, which constructs a Boolean function from single S-
boxes (see, section 4). Heuristic methods of search the best S-box tables such as
Genetic Algorithm or Simulated Annealing were used by these authors. Results
were calculated with use of all possible linear combination of simple s-boxes.

One can see that our results presented in Table 1 are always better than
Millan et al. results (Millan best result is Nf=110, ACf=48, but our result is
Nf=110, ACf=44 for k = 2). Clark et al. and Nedjah & Mourelle obtained a
bit better values than our proposal for output bits k < 4. In other cases (k ≥ 4)
our approach gives higher Nf and lower ACf . Advantage of CA-based S-boxes
over other approaches grows with growing the number of output bits.

Another observation is that our approach gives stable values of non-linearity
(ranging {110, 112}) and autocorrelation (ranging {40, 44}) independently on
the number of outputs (and used CA rules) in opposite to another approaches
where calculated values became worse with growing number of outputs.

Table 2 presents values of non-linearity and autocorrelation for CA-based S-
boxes calculated by two different methods (see, section 4). Values of non-linearity

Properties of Safe Cellular Automata-Based S-Boxes 591

Table 2. The best values of non-linearity and autocorrelation (Nf , ACf) of 8 × k
CA-based S-boxes and other proposals, calculated by two methods

In. × Method 1 - lin. comb. of simple s-boxes Method 2 - simple s-boxes

Out. Rule 30, Rule 86, Rule 135, Rule 149 Rule 30, Rule 86, Rule 135, Rule 149

8× 2 (111, 44), (110, 44), (111, 44), (111, 44) (108, 48), (109, 48), (108, 48), (109, 48)

8× 3 (111, 44), (110, 44), (110, 44), (110, 44) (107, 56), (108, 56), (108, 56), (108, 52)

8× 4 (111, 44), (111, 40), (110, 44), (110, 44) (107, 56), (107, 56), (107, 56), (107, 56)

8× 5 (111, 44), (111, 44), (111, 44), (111, 44) (106, 60), (107, 56), (106, 56), (107, 56)

8× 6 (110, 40), (110, 40), (110, 40), (110, 40) (106, 60), (106, 60), (106, 56), (106, 56)

8× 7 (110, 44), (111, 40), (112, 40), (112, 40) (106, 60), (105, 64), (105, 60), (105, 60)

8× 8 (111, 44), (111, 44), (111, 44), (111, 44) (105, 64), (105, 64), (105, 60), (105, 60)

in Method 2 is lower than in Method 1, and values of autocorrelation in Method
2 is higher than in Method 1, because in Method 2 we analyze simple S-boxes
and the worst values expressed quality of examined S-box.

6.2 Scalability of n × n S-Boxes

In this section we study the scalability of n×n S-boxes. Table 3 shows values of
nonlinearity and autocorrelation for different sizes of input/output bits of S-box.

Table 3. The best values of non-linearity and autocorrelation (Nf , ACf) of n × n
CA-based S-boxes (calculated for 1000 CA) and other proposals, calculated by linear

combination of simple s-boxes. * - no data.

Input × Millan Clark Our approach: CA-based S-box

Output [5] et al. [1] Rule 30, Rule 86, Rule 135, Rule 149

5× 5 (10, *) (10, 16) (12, 8), (12, 8), (12, 8), (12, 8)

6× 6 (20, *) (22, 32) (26, 16), (26, 12), (25, 12), (25, 16)

7× 7 (46, *) (48, 48) (53, 24), (53, 28), (53, 24), (53, 24)

8× 8 (100, *) (102, 80) (111, 44), (111, 44), (111, 44), (111, 44)

10× 10 (*, *) (*, *) (470, 112), (470, 112), (469, 116), (470, 112)

12× 12 (*, *) (*, *) (1946, 280), (1945, 284), (1946, 280), (1948, 284)

One can see in Table 3 that, CA-based S-box keeps higher non-linearity and
lower autocorrelation than Millan and Clark et al. results, despite of the number
of inputs/outputs of S-box. The third column in Table 3 presents values of non-
linearity and autocorrelation for n×n CA-based S-boxes. One can see that with
the growth of n, values for non-linearity also grow proportionally and values
of autocorrelation, proportionally fall down. It means that CA-based S-boxes
characterize by proportionally better values of non-linearity and autocorrelation
for higher dimensions of S-box (values are better with growing n).

592 M. Szaban and F. Seredynski

7 Conclusions

The paper presents an idea of creating S-boxes using CA-based approach. Clas-
sical S-boxes based on tables are fixed structure constructions. We are interested
in creating CA-based S-boxes, which are dynamical structures. CA from input
block of bits generates output block of bits and is evaluated by the same examine
criteria like the traditional S-box. Conducted experiments have shown that the
8× k CA-based S-boxes are characterized by a high non-linearity and low auto-
correlation independently on the method of calculation. These values in many
cases are better than classical tables of S-boxes. CA-based S-boxes keep the
property of scalability. It means that for higher dimensions of S-box it is charac-
terized by proportionally better values of nonlinearity and autocorrelation. They
are very well suited for cryptographic systems with dynamic S-boxes.

Acknowledgements

This work was supported by Polish Ministry of Science and Higher Education
as the grant No. N N519 388036.

References

1. Clark, J.A., Jacob, J.L., Stepney, S.: The Design of S-Boxes by Simulated Anneal-

ing. New Generation Computing 23(3), 219–231 (2005)

2. Dowson, E., Millan, W., Simpson, L.: Designing Boolean Functions for Crypto-

graphic Applications. Contributions to General Algebra 12, 1–22 (2000)

3. Federal Information Processing Standards Publication, Fips Pub 46-3, DES (1999),

http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
4. Federal Information Processing Standards Publications, FIPS PUBS 197, AES

(2001), http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
5. Millan, W.: How to Improve the Non-linearity of Bijective S-boxes. LNCS, vol. 143,

pp. 181–192. Springer, Heidelberg (1998)

6. Millan, W., Burnett, L., Carter, G., Clark, A., Dawson, E.: Evolutionary Heuristics

for Finding Cryptographically Strong S-Boxes. In: Varadharajan, V., Mu, Y. (eds.)

ICICS 1999. LNCS, vol. 1726, pp. 263–274. Springer, Heidelberg (1999)

7. Mukhopadhyay, D., Chowdhury, D.R., Rebeiro, C.: Theory of Composing Non-

linear Machines with Predictable Cyclic Structures. In: Umeo, H., Morishita, S.,

Nishinari, K., Komatsuzaki, T., Bandini, S. (eds.) ACRI 2008. LNCS, vol. 5191,

pp. 210–219. Springer, Heidelberg (2008)

8. Nedjah, N., de Macedo Mourelle, L.: Designing Substitution Boxes for Secure Ci-

phers. International Journal Innovative Computing and Application 1(1), 86–91

(2007)

9. Szaban, M., Seredynski, F.: Cryptographically Strong S-Boxes Based on Cellular

Automata. In: Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T., Bandini,

S. (eds.) ACRI 2008. LNCS, vol. 5191, pp. 478–485. Springer, Heidelberg (2008)

10. Webster, A.F., Tavares, S.: On the Design of S-Boxes. In: Williams, H.C. (ed.)

CRYPTO 1985. LNCS, vol. 218, pp. 523–534. Springer, Heidelberg (1986)

11. Youssef, A., Tavares, S.: Resistance of Balanced S-boxes to Linear and Differential

Cryptanalysis. Information Processing Letters 56, 249–252 (1995)

http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

Author Index

Acebrón, Juan A. I-41

Acevedo, Liesner I-51

Alania, Michael V. I-105

Alonso, Pedro I-51, I-379

Anderson, David I-276

Araya-Polo, Mauricio I-496

Arbenz, Peter II-310

Atanassov, Emanouil II-204

Auer, Ekaterina II-408

Aversa, Rocco II-214

Avolio, Maria Vittoria II-495

Bader, Joel S. II-280

Ba�la, Piotr II-155

Balis, Bartosz II-224

Banaś, Krzysztof I-411, I-517

Bartosiewicz, Pavel II-466

Bartuschat, Dominik I-557

Belletti, Francesco I-467

Bemmerl, Thomas I-576

Benedyczak, Krzysztof II-155

Berger, Simon A. II-270

Berlińska, Joanna II-1

Bézy-Wendling, Johanne I-289

Bielecki, Wlodzimierz I-196

Bientinesi, Paolo I-387, I-396

Bierbaum, Boris I-576

Blaheta, Radim I-266

Boeke, Jef D. II-280

Boltuc, Agnieszka I-136

Borkowski, Janusz II-82, II-234

Bos, Joppe W. I-477

Botinčan, Matko II-62

Bouguerra, Mohamed-Slim I-206

Bouvry, Pascal I-31, II-102, II-547

Breitbart, Jens I-486

Bryner, Jürg II-310

Brzeziński, Jerzy I-216

Bubak, Marian II-224

Burns, Randal II-280

Campos, Fernando O. I-439

Carean, Tudor II-145

Cela, José Maŕıa I-496

Chandrasegaran, Srinivasan II-280

Čiegis, Raimondas II-320

Ciglan, Marek II-165

Clayton, Sarah II-505

Clematis, Andrea II-174

Corana, Angelo II-174

Cunha, José C. II-370

Cytowski, Maciej I-507

Czech, Zbigniew J. I-146

D’Agostino, Daniele II-174

D’Alimonte, Davide II-370

D’Ambrosio, Donato II-495

de la Cruz, Raúl I-496

Denis, Christophe II-330

Desell, Travis I-276

Digas, Boris II-340

Di Martino, Beniamino II-214

Domagalski, Piotr I-256

Donini, Renato II-214

dos Santos, Rodrigo W. I-439

Drozdowski, Maciej II-92

Dunlop, Dominic II-102

Dymond, Jessica S. II-280

Dymova, Ludmila II-418, II-427

Dziubecki, Piotr I-256

Dzwinel, Witold I-312, I-322

Ebenlendr, Tomáš II-11, II-52

Eckhardt, Wolfgang I-567

Emans, Maximilian II-350

Fedorov, Mykhaylo II-360

Flasiński, Mariusz I-156

Fraser, David L. I-1

Fras, Mariusz I-246

Funika, W�lodzimierz II-115, II-125

Galizia, Antonella II-174

Ganzha, Maria II-135

Garcia, Victor M. I-51

Gautier, Thierry I-206

Gepner, Pawel I-1, I-299

Gepner, Stanis�law I-61

Gera, Martin II-165

Giegerich, Robert II-290

594 Author Index

Giraud, Mathieu II-290

Glavan, Paola II-62

Godlewska, Magdalena II-244

Gorawski, Marcin I-166

Guidetti, Marco I-467

Gurov, Todor II-204

Haase, Gundolf I-439

Habala, Ondrej II-165

Hager, Georg I-615

Hluchy, Ladislav II-165

Ignac, Tomasz I-31

Igual, Francisco D. I-387

Iwaszyn, Radoslaw I-236

Jakl, Ondřej I-266

Jakob, Wilfried II-21

Jamro, Ernest I-115

Janczewski, Robert I-11

Jankowska, Malgorzata A. II-436

Jung, Jean-Pierre I-21

Jurczuk, Krzysztof I-289

Jurek, Janusz I-156

Kaihara, Marcelo E. I-477

Kajiyama, Tamito II-370

Kancleris, Žilvinas II-320

Kapanowski, Mariusz II-184

Karaivanova, Aneta II-204

Kawecki, Jaros�law II-250

Kerridge, Jon II-505

Khanna, Gaurav I-486

Kirik, Ekaterina II-513

Kitowski, Jacek I-340, II-115, II-184

Klein, Wolfram II-521

Koch, Andreas I-457

Kohut, Roman I-266

Kolaczek, Grzegorz I-226

Konieczny, Dariusz I-246

Kopta, Piotr I-256

Korošec, Peter II-398

Korytkowski, Marcin I-332

Köster, Gerta II-521

Köstler, Harald I-557

Kowalewski, Bartosz II-224

Kowalik, Michal F. I-1

Kreinovich, Vladik II-456

Kremler, Martin II-165

Krȩtowski, Marek I-289

Kressner, Daniel I-387

Krol, Dariusz II-115

Krouglov, Dmitriy II-513

Krusche, Peter I-176

Krużel, Filip I-517

Krysinski, Michal I-256

Kryza, Bartosz II-115

Kubica, Bart�lomiej Jacek II-446

Kuczynski, Tomasz I-256

Ku�lakowski, Konrad II-529

Ku�lakowski, Krzysztof II-539

Kurowski, Krzysztof I-256

Kurowski, Marcin J. II-380

Kuta, Marcin I-340, II-184

Kwiatkowski, Jan I-236, I-246

Lankes, Stefan I-576

Laskowski, Eryk I-586

�Lawryńczuk, Maciej I-350

Leśniak, Robert I-299

Lessig, Christian I-396

Lewandowski, Marcin II-155

Liebmann, Manfred I-439

Lindbäck, Leif II-194

Lirkov, Ivan II-135

Ludwiczak, Bogdan I-256

Lupiano, Valeria II-495

Luttenberger, Norbert I-403

Macio�l, Pawe�l I-411

Magdon-Ismail, Malik I-276

Maiorano, Andrea I-467

Majewski, Jerzy I-61

Ma�lafiejska, Anna I-11

Ma�lafiejski, Micha�l I-11

Mańka-Krasoń, Anna II-539

Manne, Fredrik I-186

Mantovani, Filippo I-467

Marcinkowski, Leszek I-70

Marowka, Ami I-596

Marton, Kinga II-145

Maśko, �Lukasz I-586, II-31

Maslennikowa, Natalia I-80

Maslennikow, Oleg I-80

Meister, Andreas II-521

Melnikova, Lidiya II-340

Mikanik, Wojciech I-146

Mikushin, Dmitry I-525

Mokarizadeh, Shahab II-194

Mounie, Gregory II-31

Myśliński, Szymon I-156

Author Index 595

Nabrzyski, Jaroslaw I-256

Newberg, Heidi I-276

Newby, Matthew I-276

Nikolow, Darin II-184

Nowiński, Aleksander II-155

Numrich, Robert W. II-68

Olas, Tomasz I-125, I-299

Olson, Brian S. II-280

Olszak, Artur II-260

Palkowski, Marek I-196

Paprzycki, Marcin II-135

Paszyński, Maciej I-95

Patwary, Md. Mostofa Ali I-186

Paulino, Hervé II-74

Pawliczek, Piotr I-312

Pawlik, Marcin I-246

Pȩgiel, Piotr II-125

Pérez–Arjona, Isabel I-379

Perfilieva, Irina II-456

Peters, Hagen I-403

Pilarek, Mariusz II-427

Pinel, Frédéric II-547

Piontek, Tomasz I-256

Piotrowski, Zbigniew P. II-380

P�laczek, Bart�lomiej II-553

Plank, Gernot I-439

P�laszewski, Przemys�law I-411

Pogoda, Marek II-184

Portz, Andrea II-561

Progias, Pavlos II-569

Przystawik, Andreas I-276

Quarati, Alfonso II-174

Quintana-Ort́ı, Enrique S. I-387

Quinte, Alexander II-21

Ratuszniak, Piotr I-80

Rauh, Andreas II-408

Remiszewski, Maciej I-507

Ren, Da Qi I-421

Repplinger, Michael I-429

Richardson, Sarah M. II-280

Rocha, Bernardo M. I-439

Rocki, Kamil I-449

Rodŕıguez-Rozas, Ángel I-41

Rojek, Krzysztof I-535

Rokicki, Jacek I-61

Rongo, Rocco II-495

Rosa, Bogdan II-380, II-388

Rozenberg, Valerii II-340

Runje, Davor II-62

Sakho, Ibrahima I-21

Sánchez–Morcillo, Victor J. I-379

Schadschneider, Andreas II-575

Scherer, Rafa�l I-332, I-360

Schifano, Sebastiano Fabio I-467

Schulz-Hildebrandt, Ole I-403

Sendor, Jakub II-115

Seredynski, Franciszek II-42, II-585

Seredynski, Marcin I-31

Sergiyenko, Anatolij I-80

Sevastjanov, Pavel II-466

Seyfried, Armin II-561, II-575

Seznec, Andre II-145

Sgall, Jǐŕı II-52

Shehu, Amarda II-280

Šilc, Jurij II-398

Sirakoulis, Georgios Ch. II-569

Ska�lkowski, Kornel II-115, II-184

Skalna, Iwona II-475, II-485

Skinderowicz, Rafa�l I-146

Šlekas, Gediminas II-320

S�lota, Renata II-115, II-184

Slusallek, Philipp I-429

Smo�lka, Maciej II-250

Smyk, Adam I-547

Sobaniec, Cezary I-216

Soszyński, Igor I-507

Spataro, William II-495

Spigler, Renato I-41

Srijuntongsiri, Gun I-369

Stamatakis, Alexandros II-270

Starczewski, Janusz T. I-360

Starý, Jǐŕı I-266

Steffen, Peter II-290

Stelling, Jörg II-300

Stepanenko, Victor I-525

Stock, Florian I-457

Stpiczyński, Przemys�law I-87

Stucky, Karl-Uwe II-21

Stürmer, Markus I-557

Suciu, Alin II-145

Suda, Reiji I-421, I-449

Süß, Wolfgang II-21

Switalski, Piotr II-42

Szaban, Miroslaw II-585

Szejnfeld, Dawid I-256

596 Author Index

Szustak, �Lukasz I-535

Szymanski, Boleslaw K. I-276

Szymczak, Arkadiusz I-95

Takahashi, Daisuke I-606

Tarnawczyk, Dominik I-256

Taškova, Katerina II-398

Terzer, Marco II-300

Tiskin, Alexander I-176

Tkacz, Kamil II-466

Tobler, Christine II-310

Tomas, Adam I-80

Tran, Viet II-165

Treibig, Jan I-615

Tripiccione, Raffaele I-467

Trystram, Denis I-206, II-31

Tudruj, Marek I-547, I-586, II-31, II-234

Urquhard, Neil II-505

Vardaki, Emmanouela II-569

Varela, Carlos A. I-276

Varrette, Sébastien II-102

Vavasis, Stephen A. I-369

Venticinque, Salvatore II-214

Vidal, Antonio M. I-51

Vincent, Jean-Marc I-206

Violino, Gabriele II-194

Vlassov, Vladimir II-194

Vutov, Yavor II-135

Wang, Lian-Ping II-388

Wasilewski, Adam I-226

Waters, Anthony I-276

Wawrzynczak, Anna I-105

Wawrzyniak, Dariusz I-216

Wcis�lo, Rafal I-322

Weinzierl, Tobias I-567

Wiatr, Kazimierz I-115

Wielgosz, Maciej I-115

Wiszniewski, Bogdan II-244

Witkowski, Krzysztof I-256

W ↪as, Jaros�law II-529

Wójcik, Wojciech I-340

Wolniewicz, Malgorzata I-256

Woźniak, Adam II-446

Wozniak, Marcin I-125

Wrzeszcz, Micha�l I-340

Wyrzykowski, Roman I-125,

I-299, II-427

Yurgel’yan, Tat’yana II-513

Zaj́ıček, Ondřej II-52

Zibordi, Giuseppe II-370

Ziemianski, Michal Z. II-380

Zieniuk, Eugeniusz I-136

	Title Page
	Preface
	Organization
	Table of Contents
	Workshop on Scheduling for Parallel Computing (SPC 2009)
	Fully Polynomial Time Approximation Schemes for Scheduling Divisible Loads
	Introduction
	Problem Formulation
	FPTAS for the Problem DLS{C_i = 0}-OptW
	FPTAS for the Problem DLS{C_i = 0}-OptT
	Conclusions
	References

	Semi-online Preemptive Scheduling: Study of Special Cases
	Introduction
	Definitions of the Problem and Previous Results
	Online Scheduling
	Known Sum of Processing Times, $$pj = ¯ P$$
	Techniques for Solving the Parametrized LPs
	References

	Fast Multi-objective Reschulding of Grid Jobs by Heuristics and Evolution
	Introduction
	Problem Definition and Classification
	Algorithms of GORBA and First Results
	Experimental Results for Fast Rescheduling
	Conclusion and Future Work
	References

	Comparison of Program Task Scheduling Algorithms for Dynamic SMP Clusters with Communication on the Fly
	Introduction
	Dynamic SMP Clusters Based on SoC Technology
	Scheduling Algorithms
	2–Phase List–Based Scheduling Algorithm
	MT–Based Scheduling Algorithm

	Experimental Results
	Conclusions
	References

	Study on GEO Metaheuristic for Solving Multiprocessor Scheduling Problem
	Introduction
	Multiprocessor Scheduling
	The Generalized Extremal Optimization Algorithm
	Bak-Sneppen Model and Its Representation in Scheduling Problem
	The GEO Algorithm

	The Simulated Annealing Algorithm
	Experimental Results
	Conclusions
	References

	Online Scheduling of Parallel Jobs on Hypercubes: Maximizing the Throughput
	Introduction
	Algorithm
	Competitive Ratio
	Lower Bound
	References

	The Third Workshop on Language-Based Parallel Programming Models (WLPP 2009)
	Verification of Causality Requirements in Java Memory Model Is Undecidable
	Introduction
	The Java Memory Model
	Verification of the JMM Causality Requirements
	Conclusions
	References

	A Team Object for CoArray Fortran
	Introduction and Motivation
	Class AbstractTeam
	Collectives
	Communication among Teams
	Remarks
	References

	On the Definition of Service Abstractions for Parallel Computing
	Introduction and Motivation
	A Service-Based Approach to Parallel Computing
	The Programming Model

	Related Work
	Conclusions and Future Work
	References

	The Second Workshop on Performance Evaluation of Parallel Applications on Large-Scale Systems
	Performance Debugging of Parallel Compression on Multicore Machines
	Introduction
	Different Tools for Different Performance Problems
	The Case – Compression of Loaded Data
	Various Performance Related Areas
	Cache Behavior

	Conclusions
	References

	Energy Considerations for Divisible Load Processing
	Introduction
	Problem Formulation
	Performance Evaluation
	Conclusions
	References

	Deskilling HPL Using an Evolutionary Algorithm to Automate Cluster Benchmarking
	Introduction
	Context and Problem Statement
	Acbea Software Components
	Choice of Evolutionary Algorithm Library
	Acbea
	The Benchmarking Process

	Scalability
	Individual Benchmark Repeatability
	Interdependence between Parameters

	Cluster Benchmarking
	Conclusions and Future Work
	References

	Monitoring of SLA Parameters within VO for the SOA Paradigm
	Introduction
	Related Work
	SLA Enforcement in Virtual Organizations
	The SemMon System Description
	System Architecture
	Knowledge Usage

	SLA Support for VO
	Conclusions
	References

	A Role-Based Approach to Self-healing in Autonomous Monitoring Systems
	Introduction
	Self-healing Monitoring Systems – Background
	Overview of Existing Self-healing Monitoring Approaches
	Application Layer – Aspect Oriented Programming

	Self-healing Monitoring System
	System Architecture
	AgeMon – Self-healing Monitoring System
	Enabling Self-healing in the Monitored System
	Prototype - AgeMon
	Summary

	References

	Parallel Performance Evaluation of MIC(0) Preconditioning Algorithm for Voxel $μ$FE Simulation
	Introduction
	Homogenization Technique
	Parallel Displacement Decomposition MIC(0) Preconditioning
	Experimental Results
	Conclusions and Future Work
	References

	Parallel HAVEGE
	Introduction
	The Internals of the HAVEGE Algorithm
	Parallelization of HAVEGE
	Experimental Results
	Conclusions
	References

	The Fourth Grid Applications and Middleware Workshop (GAMW 2009)
	UNICORE Virtual Organizations System
	Introduction
	Project Aims

	Architecture
	The Client Side

	VO Model
	Attributes
	UVOS Authorization

	Deployments
	UVOS from the Users Perspective
	Conclusions
	References

	Application of ADMIRE Data Mining and Integration Technologies in Environmental Scenarios
	Introduction
	The EU ICT Project ADMIRE
	Flood Forecasting Simulation Cascade

	Environmental Scenarios of ADMIRE
	ORAVA
	RADAR
	SVP

	Data Integration Engine for Environmental Data
	Implementation

	Conclusion
	References

	Performance Based Matchmaking on Grid
	Introduction
	Related Works
	Resource and Job Characterization
	A Two-Level Benchmarking Methodology
	Micro-benchmarks
	Application-Specific Benchmarks

	Benchmark-Driven Matchmaking
	Benchmarking Grid Resources
	Extending JSDL
	Distributed Matchmaking Process

	Conclusions
	References

	Replica Management for National Data Storage
	Introduction
	State of the Art
	PLBS Architecture
	The PLBS Database
	Replication Policies
	Test Results
	Influence Tests
	Response Tests
	Load Balancing Test

	Summary and Future Work
	References

	Churn Tolerant Virtual Organization File System for Grids
	Introduction
	Overview
	VOFS Namespace and File Tree
	Algorithm for Namespace Updates

	VOFS Peers
	Security
	Components
	Scenarios
	Secure Communication

	VOFS Prototype
	Related Work
	Performance Evaluation
	Conclusion
	References

	The Fourth Workshop on Large Scale Computations on Grids (LaSCoG 2009)
	Quasi-random Approach in the Grid Application SALUTE
	Introduction
	Background (Brief Description of SALUTE)
	Quasirandom Approach in SALUTE
	Quasirandom Sequences
	Hybrid Algorithms in SALUTE

	Grid Implementation
	Grid Implementation Scheme

	Numerical Tests and Grid Performance Analysis
	References

	Mobile Agents for Management of Native Applications in GRID
	Introduction
	Related Work
	Management Facilities and Application Life-Cycle
	Service Architecture
	Agent Level
	Console Level

	Case Study
	Conclusions
	References

	Leveraging Complex Event Processing for Grid Monitoring
	Introduction and Motivation
	Related Work
	Concept of GEMINI2
	Requirements
	Leveraging Complex Event Processing
	Design
	Data Reduction

	Implementation
	Evaluation
	Case Study Scenario
	Monitoring Overhead

	Conclusion
	References

	Designing Execution Control in Programs with Global Application States Monitoring
	Introduction
	Global Application State Monitoring
	Control Statement Semantics for Global States Monitoring
	Synchronous Global Control Statements
	Asynchronous Global Control Statements

	Global Control Structuring in Programs
	Conclusions
	References

	Distributed MIND – A New Processing Model Based on Mobile Interactive Documents
	A Mobile Document Concept
	Technological Challenges for MIND
	Logical Document Structure Definition
	Document Component Data Binding to Functional Objects
	Augmenting Document Component Objects with Mobility
	Workflow of a Document Component Object
	Location Control of a Document Component Object

	Conclusions
	References

	A Framework for Observing Dynamics of Agent-Based Computations
	Introduction
	Computational MAS
	Formal Model Overview
	Monitoring Subsystem Architecture
	Overview
	Implementation Issues

	Monitor Performance Tests
	Sample Observation of Formal Model Quantities
	Conclusions and Further Research
	References

	HyCube: A DHT Routing System Based on a Hierarchical Hypercube Geometry
	Introduction
	HyCube
	Routing Geometry
	Routing Tables
	Routing

	Metric
	Experimental Results
	Conclusion
	References

	Workshop on Parallel Computational Biology (PBC 2009)
	Accuracy and Performance of Single versus Double Precision Arithmetics for Maximum Likelihood Phylogeny Reconstruction
	Introduction
	Computing the Likelihood of a Tree
	Related Work
	Implementation
	Experimental Setup and Results
	Conclusion
	References

	Automated Design of Assemblable, Modular, Synthetic Chromosomes
	Introduction
	Biological Constraints
	Data Collection and Indexing
	Landmark Selection
	Dynamic Programming
	Dead-End Elimination
	Parallel Implementation

	Results and Discussion
	References

	GPU Parallelization of Algebraic Dynamic Programming
	Introduction
	Algebraic Dynamic Programming
	Automatic Parallelization of ADP
	Results
	Perspectives
	References

	Parallel Extreme Ray and Pathway Computation
	Introduction
	Double Description Method

	Results
	Per-step Parallelization
	The Born/Die Approach
	Experimental Results

	Conclusions
	References

	Minisymposium on Applications of Parallel Computation in Industry and Engineering
	Parallelized Transient Elastic Wave Propagation in Orthotropic Structures
	Introduction
	The Problem
	Solution Method
	Implementation Details
	Numerical Results
	Conclusions
	References

	Parallel Numerical Solver for Modelling of Electromagnetic Properties of Thin Conductive Layers
	Introduction
	Mathematical Model
	Finite Difference Scheme
	Parallel Numerical Algorithm
	Simulation Results and Discussions
	Conclusions
	References

	Numerical Health Check of Industrial Simulation Codes from HPC Environments to New Hardware Technologies
	Introduction
	Numerical Health Check Tools
	The CADNA Library
	The MPFI Library
	A First Example: The Precariousness of Relying on Extended Precision

	Impact on the Accuracy by Using Single Precision Instead of Double Precision
	Domain Decomposition and Round-Off Errors
	The TELEMAC3D Code
	Problem of the Communication Scheme and First Solution

	Measuring the Accuracy of the Floating Point Summation
	Conclusion and Future Work
	References

	Application of Parallel Technologies to Modeling Lithosphere Dynamics and Seismicity
	Introduction
	Different Modifications of the Spherical Block Model
	Parallelization: Efficiency and Scalability Analysis
	Some Results of Numerical Simulation
	Conclusions
	References

	AMG for Linear Systems in Engine Flow Simulations
	Introduction
	Pressure-Correction Equation
	AMG Algorithms
	General Aspects of Parallel AMG
	AMG Based on Smoothed Aggregation – ams1cg
	Aggregation-Based AMG with Krylov-Acceleration – amk1fc
	Basic AMG – amggs2

	Computations of Flows in an Engine
	Description of the Numerical Experiments
	Performance with SIMPLE Algorithm
	Performance with PISO Algorithm

	Conclusions
	References

	Parallel Implementation of a Steady State Thermal and Hydraulic Analysis of Pipe Networks in OpenMP
	Introduction
	The Mathematical Model
	Results and Discussion
	Conclusions
	References

	High-Performance Ocean Color Monte Carlo Simulation in the Geo-info Project
	Introduction
	The HPC Framework for Geosciences
	Monte Carlo Simulations for Ocean Color Applications
	Ocean Color
	Field Measurements
	Monte Carlo Simulations

	Preliminary Performance Results
	Small Heterogeneous Cluster Case
	Large-Scale Homogeneous Cluster Case

	Concluding Remarks
	References

	EULAG Model for Multiscale Flows – Towards the Petascale Generation of Mesoscale Numerical Weather Prediction
	Introduction
	Methodology
	Results
	Model Performance
	Summary
	References

	Parallel Implementation of Particle Tracking and Collision in a Turbulent Flow
	Introduction
	Methodology
	Flow Simulation
	Particle Tracking
	Velocity Interpolation
	Periodic Boundary Condition
	Collision Detection
	Radial Distribution Function and Relative Velocity

	Parallel Performance
	Conclusions
	References

	A Distributed Multilevel Ant-Colony Approach for Finite Element Mesh Decomposition
	Introduction
	Sequential Multilevel Ant-Colony Algorithm
	Distributed Multilevel Ant-Colony Algorithm
	Experimental Evaluation
	Performance Measures
	Setup
	Results

	Conclusions
	References

	Minisymposium on Interval Analysis
	Toward Definition of Systematic Criteria for the Comparison of Verified Solvers for Initial Value Problems
	Introduction
	Benchmark Problems
	General Problem Formulation
	Classification of Benchmark Problems
	Template for Problems’ Description

	Criteria for the Comparison of Verified IVP Solvers
	Discussion of General Criteria
	Applications versus Importance of Each Comparison Criterion

	A Presentation Form for the Comparison
	Conclusion
	References

	Fuzzy Solution of Interval Nonlinear Equations
	Introduction
	The Basics of “Right Hand Side” Problem and the Solution of Interval Linear Equation
	Fuzzy Solution of Nonlinear Interval Equation
	Conclusion
	References

	Solving Systems of Interval Linear Equations with Use of Modified Interval Division Procedure
	Introduction
	“Interval Extended Zero” Method and Its Interpretation as Modified Interval Division
	The Use of Modified Interval Division for the Solution of Systems of Interval Linear Equations
	Conclusion
	References

	Remarks on Algorithms Implemented in Some C++ Libraries for Floating-Point Conversions and Interval Arithmetic
	Introduction
	C++ Library for Floating-Point Conversions
	C++ Library for Interval Floating-Point Arithmetic
	Conclusions
	References

	An Interval Method for Seeking the Nash Equilibria of Non-cooperative Games
	Introduction
	Basics of Interval Computations
	The Proposed Approach
	Parallelization
	Numerical Experiments
	Results
	Conclusions
	References

	From Gauging Accuracy of Quantity Estimates to Gauging Accuracy and Resolution of Measuring Physical Fields
	Formulation of the Problem
	Possibility of Linearization
	Case of Full Information about the Resolution
	Situations in Which We Only Know Upper Bounds
	Case of Minimal Knowledge about Uncertainty
	Conclusions
	References

	A New Method for Normalization of Interval Weights
	Introduction
	The Use of “Interval Extended Zero” Method for the Interval Weights Normalization
	The Comparison of a New Method with the Known Approaches for Interval Weights Normalization
	Conclusion
	References

	A Global Optimization Method for Solving Parametric Linear Systems Whose Input Data Are Rational Functions of Interval Parameters
	Introduction
	Preliminaries
	Affine Arithmetic
	Revised Affine Arithmetic
	Affine Operations

	Solving Parametric Linear Systems With Non-affine Dependencies
	Optimization Problem
	Global Optimization
	Monotonicity Test
	Global Optimization Algorithm

	Examples and Numerical Results
	Conclusions
	References

	Direct Method for Solving Parametric Interval Linear Systems with Non-affine Dependencies
	Introduction
	Parametric Interval Linear Systems
	Affine Arithmetic
	Affine Operations

	Direct Method
	Background
	General Dependencies

	Numerical Experiments
	Conclusions
	References

	Workshop on Complex Collective Systems
	Evaluating Lava Flow Hazard at Mount Etna (Italy) by a Cellular Automata Based Methodology
	Introduction
	An Integrated Methodology for Lava Flows Impact Prediction
	Lava Invasion Map Compilation
	Study of the Volcano
	Lava FLOW Hazard Susceptibility at Mt Etna
	Civil Defence Applications

	Conclusions
	References

	Application of CoSMoS Parallel Design Patterns to a Pedestrian Simulation
	Introduction
	CSP and pi-Calculus
	Processes
	Channels and Barriers

	Implementation
	Discover and Modify
	Description of Space

	Results
	Future Work
	Conclusion
	References

	Artificial Intelligence of Virtual People in CA FF Pedestrian Dynamics Model
	Introduction
	Statement of the Problem
	Solution
	Update Rules
	Probability

	Simulations
	Conclusion
	References

	Towards the Calibration of Pedestrian Stream Models
	Introduction
	A Glance at the Model
	The Challenge
	Solution Strategies
	Conclusion
	References

	Two Concurrent Algorithms of Discrete Potential Field Construction
	Introduction
	Potential Field Construction
	Class Task
	Tear Algorithm
	Nibble Algorithm

	Experimental Results
	Summary
	References

	Frustration and Collectivity in Spatial Networks
	Introduction
	Calculations
	Results
	Discussion
	References

	Weakness Analysis of a Key Stream Generator Based on Cellular Automata
	Introduction
	Cellular Automata and Cryptography
	Analysis of a Non-uniform CA for Random Number Generation
	X-Weak Keys
	Production of X-Weak Keys
	Size of X-Weak Key Space
	Other Weak Keys
	Risk Mitigation

	Conclusion
	References

	Fuzzy Cellular Model for On-Line Traffic Simulation
	Introduction
	Cellular Automata in Traffic Modelling
	Fuzzy Cellular Model of Road Traffic Flow
	Vehicles Queue Modelling
	Conclusions
	References

	Modeling Stop-and-Go Waves in Pedestrian Dynamics
	Introduction
	Spatially Continuous Models
	Social Force Model
	Model with Foresight
	Adaptive Velocity Model

	Validation with Empirical Data
	Reproduction of Stop-and-Go Waves
	Conclusion
	References

	FPGA Realization of a Cellular Automata Based Epidemic Processor
	Introduction
	Modeling of Epidemic Spreading in Terms of CA
	FPGA Implementation
	Conclusions
	References

	Empirical Results for Pedestrian Dynamics at Bottlenecks
	Introduction
	Basic Quantities of Pedestrian Flows
	Influence of the Measurement Method
	Experiments at Bottlenecks
	Conclusions
	References

	Properties of Safe Cellular Automata-Based S-Boxes
	Introduction
	S-Boxes in Cryptography
	Preliminaries for Evaluation of Boolean Functions
	Measuring Cryptographic Properties of S-Boxes
	Method 1: Linear Combination of Single-Output S-Boxes
	Method 2: Set of Single-Output S-Boxes

	CA-Based S-Boxes Designing
	The Concept of Cellular Automata
	Construction of CA-Based S-Boxes

	Analysis and Comparison of S-Boxes
	$8 × k$ S-Boxes Analysis
	Scalability of $n × n$ S-Boxes

	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

