Roman Wyrzykowski
Jack Dongarra

Konrad Karczewski
Jerzy Wasniewski (Eds.)

Parallel Processing
and Applied Mathematics

8th International Conference, PPAM 2009
Wroclaw, Poland, September 2009
Revised Selected Papers, Part I|

Zbart 1l

LNCS 6068

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Alfred Kobsa

University of California, Irvine, CA, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund University, Germany
Madhu Sudan

Microsoft Research, Cambridge, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

6068

Roman Wyrzykowski Jack Dongarra
Konrad Karczewski Jerzy Wasniewski (Eds.)

Parallel Processing
and Applied Mathematics

8th International Conference, PPAM 2009
Wroclaw, Poland, September 13-16, 2009
Revised Selected Papers, Part 11

@ Springer

Volume Editors

Roman Wyrzykowski

Konrad Karczewski

Czestochowa University of Technology

Institute of Computational and Information Sciences, Poland
E-mail: {roman, xeno} @icis.pcz.pl

Jack Dongarra

University of Tennessee, Department of Electrical Engineering
and Computer Science, Knoxville, TN 37996-3450, USA
E-mail: dongarra@cs.utk.edu

Jerzy Wasniewski

Technical University of Denmark, Department of Informatics
and Mathematical Modeling, 2800 Kongens Lyngby, Denmark
E-mail: jw @imm.dtu.dk

Library of Congress Control Number: 2010930224

CR Subject Classification (1998): D.2, H4, D.4,C.2.4,D.1.3, F.2
LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-14402-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-14402-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

We are pleased to present the proceedings of the 8th International Conference on
Parallel Processing and Applied Mathematics — PPAM 2009, which was held in
Wroctaw, Poland, September 13-16, 2009. It was organized by the Department
of Computer and Information Sciences of the Czestochowa University of Techno-
logy, with the help of the Wroctaw University of Technology, Faculty of Computer
Science and Management. The main organizer was Roman Wyrzykowski.

PPAM is a biennial conference. Seven previous events have been held in
different places in Poland since 1994. The proceedings of the last four conferences
have been published by Springer in the Lecture Notes in Computer Science series
(Nateczéw, 2001, vol.2328; Czestochowa, 2003, vol.3019; Poznan, 2005, vol.3911;
Gdansk, 2007, vol. 4967).

The PPAM conferences have become an international forum for exchanging
ideas between researchers involved in parallel and distributed computing, includ-
ing theory and applications, as well as applied and computational mathematics.
The focus of PPAM 2009 was on models, algorithms, and software tools which
facilitate efficient and convenient utilization of modern parallel and distributed
computing architectures, as well as on large-scale applications.

This meeting gathered more than 210 participants from 32 countries. A strict
refereeing process resulted in the acceptance of 129 contributed presentations,
while approximately 46% of the submissions were rejected. Regular tracks of the
conference covered such important fields of parallel/distributed/grid computing
and applied mathematics as:

Parallel/distributed architectures and mobile computing

— Numerical algorithms and parallel numerics

Parallel and distributed non-numerical algorithms

Tools and environments for parallel/distributed/grid computing
— Applications of parallel/distributed computing

— Applied mathematics and neural networks

Plenary and Invited Speakers

The plenary and invited talks were presented by:

— Srinivas Aluru from the Iowa State University (USA)

Dominik Behr from AMD (USA)

— Ewa Deelman from the University of Southern California (USA)

Jack Dongarra from the University of Tennessee and Oak Ridge National
Laboratory (USA)

Tain Duff from the Rutherford Appleton Laboratory (UK)

Anne C. Elster from NTNU, Trondheim (Norway)

VI

Preface

Wolfgang Gentzsch from the DEISA Project

Michael Gschwind from the IBM T.J. Watson Research Center (USA)
Fred Gustavson from the IBM T.J. Watson Research Center (USA)
Simon Holland from Intel (UK)

Vladik Kreinovich from the University of Texas at El Paso (USA)
Magnus Peterson from the Synective Labs (Sweden)

Armin Seyfried from the Juelich Supercomputing Centre (Germany)
Bolestaw Szymanski from the Rensselaer Polytechnic Institute (USA)
Jerzy Wasniewski from the Technical University of Denmark (Denmark)

Workshops and Minisymposia

Important and integral parts of the PPAM 2009 conference were the workshops:

Minisymposium on GPU Computing organized by José R. Herrero from the
Universitat Politecnica de Catalunya (Spain), Enrique S. Quintana-Ort{ from
the Universitat Jaime I (Spain), and Robert Strzodka from the Max-Planck-
Institut fiir Informatik (Germany)

The Second Minisymposium on Cell/B.E. Technologies organized by Roman
Wyrzykowski from the Czestochowa University of Technology (Poland), and
David A. Bader from the Georgia Institute of Technology (USA)

Workshop on Memory Issues on Multi- and Manycore Platforms organized
by Michael Bader and Carsten Trinitis from the TU Miinchen (Germany)
Workshop on Novel Data Formats and Algorithms for High-Performance
Computing organized by Fred Gustavson from the IBM T.J. Watson Re-
search Center (USA), and Jerzy Wasniewski from the Technical University
of Denmark (Denmark)

Workshop on Scheduling for Parallel Computing - SPC 2009 organized by
Maciej Drozdowski from the Poznan University of Technology (Poland)
The Third Workshop on Language-Based Parallel Programming Models -
WLPP 2009 organized by Ami Marowka from the Shenkar College of Engi-
neering and Design in Ramat-Gan (Israel)

The Second Workshop on Performance Evaluation of Parallel Applications
on Large-Scale Systems organized by Jan Kwiatkowski, Dariusz Konieczny
and Marcin Pawlik from the Wroctaw University of Technology (Poland)
The 4th Grid Application and Middleware Workshop - GAMW 2009 orga-
nized by Ewa Deelman from the University of Southern California (USA),
and Norbert Meyer from the Poznann Supercomputing and Networking Cen-
ter (Poland)

The 4th Workshop on Large Scale Computations on Grids - LaSCoG 2009
organized by Marcin Paprzycki from IBS PAN and SWPS in Warsaw (Poland)
and Dana Petcu from the Western University of Timisoara (Romania)
Workshop on Parallel Computational Biology - PBC 2009 organized by
David A. Bader from the Georgia Institute of Technology in Atlanta (USA),
Denis Trystram from ID-IMAG in Grenoble (France), Alexandros Stamatakis
from the TU Miinchen (Germany), and Jarostaw Zola from the Towa State
University (USA)

)

Preface VII

— Minisymposium on Applications of Parallel Computations in Industry and
Engineering organized by Raimondas Ciegis from the Vilnius Gediminas
Technical University (Lithuania), and Julius Zilinskas from the Institute of
Mathematics and Informatics in Vilnius (Lithuania)

— The Second Minisymposium on Interval Analysis organized by Vladik
Kreinovich from the University of Texas at El Paso (USA), Pawel
Sewastjanow from the Czestochowa University of Technology (Poland),
Barttomiej J. Kubica from the Warsaw University of Technology (Poland),
and Jerzy Wasniewski from the Technical University of Denmark (Denmark)

— Workshop on Complex Collective Systems organized by Pawel Topa and
Jarostaw Was from the AGH University of Science and Technology in Cracow
(Poland)

Tutorials

The PPAM 2009 meeting began with four tutorials:

— GPUs, OpenCL and Scientific Computing, by Robert Strzodka from the
Max-Planck-Institut fiir Informatik (Germany), Dominik Behr from AMD
(USA), and Dominik Goddeke from the University of Dortmund (Germany)

— FPGA Programming for Scientific Computing, by Magnus Peterson from the
Synective Labs (Sweden)

— Programming the Cell Broadband Engine, by Maciej Remiszewski from IBM
(Poland), and Maciej Cytowski from the University of Warsaw (Poland)

— New Data Structures Are Necessary and Sufficient for Dense Linear Algebra
Factorization Algorithms, by Fred Gustavson from the the IBM T.J. Watson
Research Center (USA), and Jerzy Wasniewski from the Technical University
of Denmark (Denmark)

Best Poster Award

The PPAM Best Poster Award is given to the best poster on display at the
PPAM conferences, and was first awarded at PPAM 2009. This award is be-
stowed by the Program Committee members to the presenting author(s) of the
best poster. The selection criteria are based on the scientific content and on the
quality of the poster presentation. The PPAM 2009 winner was Tomasz Olas
from the Czestochowa University of Technology, who presented the poster “Par-
allel Adaptive Finite Element Package with Dynamic Load Balancing for 3D
Thermomechanical Problems.”

New Topics at PPAM 2009

GPU Computing: The recent advances in the hardware, functionality, and pro-
grammability of graphics processors (GPUs) have greatly increased their appeal

VIII Preface

as add-on co-processors for general-purpose computing. With the involvement of
the largest processor manufacturers and the strong interest from researchers of
various disciplines, this approach has moved from a research niche to a forward-
looking technique for heterogeneous parallel computing. Scientific and industry
researchers are constantly finding new applications for GPUs in a wide variety
of areas, including image and video processing, molecular dynamics, seismic sim-
ulation, computational biology and chemistry, fluid dynamics, weather forecast,
computational finance, and many others.

GPU hardware has evolved over many years from graphics pipelines with
many heterogeneous fixed-function components over partially programmable ar-
chitectures towards a more and more homogeneous general purpose design,
although some fixed-function hardware has remained because of its efficiency.
The general-purpose computing on GPU (GPGPU) revolution started with pro-
grammable shaders; later, NVIDIA Compute Unified Device Architecture
(CUDA) and to a smaller extent AMD Brook+ brought GPUs into the main-
stream of parallel computing. The great advantage of CUDA is that it defines
an abstraction which presents the underlying hardware architecture as a sea of
hundreds of fine-grained computational units with synchronization primitives on
multiple levels. With OpenCL there is now also a vendor-independent high-level
parallel programming language and an API that offers the same type of hardware
abstraction.

GPU are very versatile accelerators because besides the high hardware paral-
lelism they also feature a high bandwidth connection to dedicated device mem-
ory. The latency problem of DRAM is tackled via a sophisticated thread schedu-
ling and switching mechanism on-chip that continues the processing of the next
thread as soon as the previous stalls on a data read. These characteristics make
GPUs suitable for both compute- and data-intensive parallel processing.

The PPAM 2009 conference recognized the great impact of GPUs by in-
cluding in its scientific program two major related events: a minisymposium
on GPU Computing, and a full day tutorial on “GPUs, OpenCL and Scientific
Computing.”

The minisymposium received 18 submissions, of which 10 were accepted
(55%). The contributions were organized in three sessions. The first group was
related to Numerics, and comprised the following papers: “Finite Element Nu-
merical Integration on GPUs,” “ Reduction to Condensed Forms for Symmetric
Eigenvalue Problems on Multi-core Architectures,” “On Parallelizing the MRRR
Algorithm for Data-Parallel Coprocessors,” and “A Fast GPU Implementation
for Solving Sparse Ill-Posed Linear Equation Systems.” The second session dealt
with Applications. The papers presented were: “Simulations of the Electrical Ac-
tivity in the Heart with Graphic Processing Units,” “Stream Processing on GPUs
Using Distributed Multimedia Middleware,” and “A GPU Approach to the Sim-
ulation of Spatio—temporal Dynamics in Ultrasonic Resonators.” Finally, a third
session about General GPU Computing included presentations of three papers:
“Fast In-Place Sorting with CUDA Based on Bitonic Sort,” “Parallel Minimax

Preface IX

Tree Searching on GPU,” and “Modeling and Optimizing the Power Performance
of Large Matrices Multiplication on Multi-core and GPU Platform with CUDA.”

The tutorial covered a wide variety of GPU topics and also offered hands-
on examples of OpenCL programming that any paticipant could experiment
with on their laptop. The morning sessions discussed the basics of GPU ar-
chitecture, ready-to-use libraries and OpenCL. The afternoon session went in
depth on OpenCL and scientific computing on GPUs. All slides are available at

http://gpgpu.org/ppam2009.

Complex Collective Systems: Collective aspects of complex systems are attract-
ing an increasing community of researchers working in different fields and dealing
with theoretical aspects as well as practical applications. In particular, analyzing
local interactions and simple rules makes it possible to model complex phenom-
ena efficiently. Collective systems approaches show great promise in establishing
scientific methods that could successfully be applied across a variety of appli-
cation fields. Many studies in complex collective systems science follow either a
cellular automata (CA) method or an agent-based approach. Hybridization be-
tween these two complementary approaches gives a promising perspective. The
majority of work presented during the workshop on complex collective systems
represents the hybrid approach.

We can distinguish four groups of subjects presented during the workshop.

The first group was modeling of pedestrian dynamics: Armin Seyfried from
the Juelich Supercomputing Center presented actual challenges in pedestrian
dynamics modeling. Another important issue of crowd modeling was also taken
into account during the workshop: modeling of stop-and-go waves (Andrea Portz
and Armin Seyfried), calibration of pedestrian stream models (Wolfram Klein,
Gerta Koster and Andreas Meister), parallel design patterns in a pedestrian
simulation (Sarah Clayton), floor fields models based on CA (Ekaterina Kirik,
Tat’yana Yurgel’van and Dmitriy Krouglov), and discrete potential field con-
struction (Konrad Kutakowski and Jarostaw Was).

The second group dealt with models of car traffic: a fuzzy cellular model
of traffic (Bartlomiej Placzek), and an adaptive time gap car-following model
(Antoine Tordeux and Pascal Bouvry).

The third group included work connected with cryptography based on cellu-
lar automata: weakness analysis of a key stream generator (Frederic Pinel and
Pascal Bouvry), and properties of safe CA-based S-Boxes (Mirostaw Szaban and
Franciszek Seredynski).

The fourth group dealt with various applications in a field of complex col-
lective systems: frustration and collectivity in spatial networks (Anna Marnka-
Krason, Krzysztof Kutakowski), lava flow hazard modeling (Maria Vittoria Avo-
lio, Donato D’Ambrosio, Valeria Lupiano, Rocco Rongo and William Spataro),
FPGA realization of a CA-based epidemic processor (Pavlos Progias, Emmanouela
Vardaki and Georgios Sirakoulis)

X Preface

Acknowledgements

The organizers are indebted to the PPAM 2009 sponsors, whose support was vital
to the success of the conference. The main sponsor was the Intel Corporation.
The other sponsors were: Hewlett-Packard Company, Microsoft Corporation,
IBM Corporation, Action S.A., and AMD. We thank to all members of the
International Program Committee and additional reviewers for their diligent
work in refereeing the submitted papers. Finally, we thank all of the local orga-
nizers from the Czestochowa University of Technology and Wroctaw University
of Technology who helped us to run the event very smoothly. We are especially
indebted to Grazyna Kolakowska, Urszula Kroczewska, Lukasz Kuczyriski, and
Marcin Wozniak from the Czestochowa University of Technology; and to Jerzy
Swiatek, and Jan Kwiatkowski from the Wroctaw University of Technology.

PPAM 2011

We hope that this volume will be useful to you. We would like everyone who
reads it to feel invited to the next conference, PPAM 2011, which will be held
September 11-14, 2011, in Torun, a city in northern Poland where the great
astronomer Nicolaus Copernicus was born.

February 2010 Roman Wyrzykowski
Jack Dongarra

Konrad Karczewski

Jerzy Wagniewski

Organization

Program Committee

Jan Weglarz
Roman Wyrzykowski
Bolestaw Szymanski

Peter Arbenz
Piotr Bata

David A. Bader
Michael Bader
Mark Baker
Radim Blaheta
Jacek Blazewicz
Leszek Borzemski
Pascal Bouvry
Tadeusz Burczyniski
Jerzy Brzezinski
Marian Bubak
Raimondas Ciegis
Andrea Clematis
Zbigniew Czech
Jack Dongarra
Maciej Drozdowski
Erik Elmroth
Anne C. Elster
Mariusz Flasiriski
Maria Ganzha
Jacek Gondzio
Andrzej Gosciniski
Laura Grigori
Frederic Guinand
José R. Herrero

Ladislav Hluchy
Ondrej Jakl
Emmanuel Jeannot
Grzegorz Kamieniarz
Alexey Kalinov

Ayse Kiper

Poznan University of Technology, Poland
Honorary Chair

Czestochowa University of Technology, Poland
Chair

Rensselaer Polytechnic Institute, USA
Vice-Chair

ETH, Zurich, Switzerland

N. Copernicus University, Poland

Georgia Institute of Technology, USA

TU Miinchen, Germany

University of Reading, UK

Institute of Geonics, Czech Academy of Sciences

Poznan University of Technology, Poland

Wroctaw University of Technology, Poland

University of Luxembourg

Silesia University of Technology, Poland

Poznan University of Technology, Poland

Institute of Computer Science, AGH, Poland

Vilnius Gediminas Tech. University, Lithuania

IMATI-CNR, Italy

Silesia University of Technology, Poland

University of Tennessee and ORNL, USA

Poznan University of Technology, Poland

Umea University, Sweden

NTNU, Trondheim, Norway

Jagiellonian University, Poland

IBS PAN, Warsaw, Poland

University of Edinburgh, Scotland, UK

Deakin University, Australia

INRIA, France

Université du Havre, France

Universitat Politecnica de Catalunya, Barcelona,
Spain

Slovak Academy of Sciences, Bratislava

Institute of Geonics, Czech Academy of Sciences

INRIA, France

A. Mickiewicz University, Poznan, Poland

Cadence Design System, Russia

Middle East Technical University, Turkey

XII Organization

Jacek Kitowski
Jozef Korbicz
Stanislaw Kozielski
Dieter Kranzlmueller

Henryk Krawczyk
Piotr Krzyzanowski
Jan Kwiatkowski
Giulliano Laccetti
Marco Lapegna
Alexey Lastovetsky

Vyacheslav I. Maksimov

Victor E. Malyshkin
Tomas Margalef
Ami Marowka
Norbert Meyer
Jarek Nabrzyski
Marcin Paprzycki
Dana Petcu
Enrique S.
Quintana-Orti
Yves Robert
Jacek Rokicki
Leszek Rutkowski
Franciszek Seredynski

Robert Schaefer
Jurij Sile

Peter M.A. Sloot
Masha Sosonkina,
Leonel Sousa
Maciej Stroinski
Domenico Talia
Andrei Tchernykh
Carsten Trinitis
Roman Trobec
Denis Trystram
Marek Tudruj

Pavel Tvrdik

Jens Volkert

Jerzy Wagniewski
Bogdan Wiszniewski
Ramin Yahyapour
Jianping Zhu

Institute of Computer Science, AGH, Poland
University of Zielona Géra, Poland

Silesia University of Technology, Poland
Ludwig Maximillian University, Munich,

and Leibniz Supercomputing Centre, Germany
Gdansk University of Technology, Poland
University of Warsaw, Poland

Wroctaw University of Technology, Poland
University of Naples, Italy

University of Naples, Italy

University College Dublin, Ireland

Ural Branch, Russian Academy of Sciences
Siberian Branch, Russian Academy of Sciences
Universitat Autonoma de Barcelona, Spain
Shenkar College of Engineering and Design, Israel
PSNC, Poznan, Poland

University of Notre Dame, USA

IBS PAN and SWPS, Warsaw, Poland
Western University of Timisoara, Romania

Universitat Jaime I, Spain

Ecole Normale Superieure de Lyon, France
Warsaw University of Technology, Poland
Czestochowa University of Technology, Poland
Polish Academy of Sciences and Polish-Japanese
Institute of Information Technology, Warsaw, Poland
Institute of Computer Science, AGH, Poland
Jozef Stefan Institute, Slovenia

University of Amsterdam, The Netherlands

Ames Laboratory and Towa State University, USA
Technical University Lisbon, Portugal

PSNC, Poznan, Poland

University of Calabria, Italy

CICESE, Ensenada, Mexico

TU Miinchen, Germany

Jozef Stefan Institute, Slovenia

ID-IMAG, Grenoble, France

Polish Academy of Sciences and Polish-Japanese
Institute of Information Technology, Warsaw, Poland
Czech Technical University, Prague

Johannes Kepler University, Linz, Austria
Technical University of Denmark

Gdansk University of Technology, Poland
University of Dortmund, Germany

University of Texas at Arlington, USA

Table of Contents — Part 11

Workshop on Scheduling for Parallel Computing
(SPC 2009)

Fully Polynomial Time Approximation Schemes for Scheduling Divisible
Loads . ..o
Joanna Berliniska

Semi-online Preemptive Scheduling: Study of Special Cases............
Tomds Ebenlendr

Fast Multi-objective Reschulding of Grid Jobs by Heuristics and
Evolutiono
Wilfried Jakob, Alexander Quinte, Karl-Uwe Stucky, and
Wolfgang Sif3

Comparison of Program Task Scheduling Algorithms for Dynamic SMP
Clusters with Communication on the Fly........
Lukasz Masko, Marek Tudruj, Gregory Mounie, and Denis Trystram

Study on GEO Metaheuristic for Solving Multiprocessor Scheduling
Problem
Piotr Switalski and Franciszek Seredynski

Online Scheduling of Parallel Jobs on Hypercubes: Maximizing the
Throughputot
Ondrej Zajicek, Jiri Sgall, and Tomds FEbenlendr

The Third Workshop on Language-Based Parallel
Programming Models (WLPP 2009)

Verification of Causality Requirements in Java Memory Model Is
Undecidable
Matko Botincan, Paola Glavan, and Davor Runje

A Team Object for CoArray Fortran
Robert W. Numrich

On the Definition of Service Abstractions for Parallel Computing
Hervé Paulino

11

21

31

42

92

62

68

74

X1V Table of Contents — Part 11

The Second Workshop on Performance Evaluation of
Parallel Applications on Large-Scale Systems

Performance Debugging of Parallel Compression on Multicore
Machines 82
Janusz Borkowski

Energy Considerations for Divisible Load Processing.................. 92
Maciej Drozdowski

Deskilling HPL: Using an Evolutionary Algorithm to Automate Cluster
Benchmarking 102
Dominic Dunlop, Sébastien Varrette, and Pascal Bouvry

Monitoring of SLA Parameters within VO for the SOA Paradigm 115
Wlodzimierz Funika, Bartosz Kryza, Renata Slota, Jacek Kitowski,
Kornel Skalkowski, Jakub Sendor, and Dariusz Krol

A Role-Based Approach to Self-healing in Autonomous Monitoring
SYSEEIMS . . oottt 125
Wtodzimierz Funika and Piotr Pegiel

Parallel Performance Evaluation of MIC(0) Preconditioning Algorithm
for Voxel pFE Simulation 135
Ivan Lirkov, Yavor Vutov, Marcin Paprzycki, and Maria Ganzha

Parallel HAVEGE 145
Alin Suciu, Tudor Carean, Andre Seznec, and Kinga Marton

The Fourth Grid Applications and Middleware
Workshop (GAMW 2009)

UNICORE Virtual Organizations System 155
Krzysztof Benedyczak, Marcin Lewandowski,
Aleksander Nowinski, and Piotr Bata

Application of ADMIRE Data Mining and Integration Technologies in
Environmental Scenariosc i 165
Marek Ciglan, Ondrej Habala, Viet Tran, Ladislav Hluchy,
Martin Kremler, and Martin Gera

Performance Based Matchmaking on Grid 174
Andrea Clematis, Angelo Corana, Daniele D’Agostino,
Antonella Galizia, and Alfonso Quarati

Replica Management for National Data Storage 184
Renata Stota, Darin Nikolow, Marcin Kuta, Mariusz Kapanowski,
Kornel Skatkowski, Marek Pogoda, and Jacek Kitowski

Table of Contents — Part 11 XV

Churn Tolerant Virtual Organization File System for Grids............ 194
Leif Lindbdck, Vladimir Vlassov, Shahab Mokarizadeh, and
Gabriele Violino

The Fourth Workshop on Large Scale Computations
on Grids (LaSCoG 2009)

Quasi-random Approach in the Grid Application SALUTE 204
Emanouil Atanassov, Aneta Karaivanova, and Todor Gurov

Mobile Agents for Management of Native Applications in GRID 214
Rocco Aversa, Beniamino Di Martino, Renato Donini, and
Salvatore Venticinque

Leveraging Complex Event Processing for Grid Monitoring 224
Bartosz Balis, Bartosz Kowalewski, and Marian Bubak

Designing Execution Control in Programs with Global Application
States Monitoring 234
Janusz Borkowski and Marek Tudruj

Distributed MIND - A New Processing Model Based on Mobile
Interactive Documents 244
Magdalena Godlewska and Bogdan Wiszniewski

A Framework for Observing Dynamics of Agent-Based Computations ... 250
Jarostaw Kawecki and Maciej Smotka

HyCube: A DHT Routing System Based on a Hierarchical Hypercube
GEOMEETY .« oottt 260
Artur Olszak

Workshop on Parallel Computational Biology (PBC
2009)

Accuracy and Performance of Single versus Double Precision
Arithmetics for Maximum Likelihood Phylogeny Reconstruction 270
Simon A. Berger and Alexandros Stamatakis

Automated Design of Assemblable, Modular, Synthetic Chromosomes... 280
Sarah M. Richardson, Brian S. Olson, Jessica S. Dymond,
Randal Burns, Srinivasan Chandrasegaran, Jef D. Boeke,
Amarda Shehu, and Joel S. Bader

GPU Parallelization of Algebraic Dynamic Programming.............. 290
Peter Steffen, Robert Giegerich, and Mathieu Giraud

Parallel Extreme Ray and Pathway Computation 300
Marco Terzer and Jorg Stelling

XVI Table of Contents — Part 11

Minisymposium on Applications of Parallel
Computation in Industry and Engineering

Parallelized Transient Elastic Wave Propagation in Orthotropic
SEIUCHUTES . ottt e e e e e e e e
Peter Arbenz, Jiirg Bryner, and Christine Tobler

Parallel Numerical Solver for Modelling of Electromagnetic Properties
of Thin Conductive Layers i,
Raimondas Ciegis, Zilvinas Kancleris, and Gediminas Slekas

Numerical Health Check of Industrial Simulation Codes from HPC
Environments to New Hardware Technologies........................
Christophe Denis

Application of Parallel Technologies to Modeling Lithosphere Dynamics
and SeiSMICIEY « . . oot
Boris Digas, Lidiya Melnikova, and Valerii Rozenberg

AMG for Linear Systems in Engine Flow Simulations
Mazimilian Emans

Parallel Implementation of a Steady State Thermal and Hydraulic
Analysis of Pipe Networks in OpenMP.........
Mykhaylo Fedorov

High-Performance Ocean Color Monte Carlo Simulation in the Geo-info

Project ... o
Tamito Kajiyama, Davide D’Alimonte, José C. Cunha, and
Giuseppe Zibordi

EULAG Model for Multiscale Flows — Towards the Petascale

Generation of Mesoscale Numerical Weather Prediction
Zbigniew P. Piotrowski, Marcin J. Kurowski, Bogdan Rosa, and
Michal Z. Ziemianski

Parallel Implementation of Particle Tracking and Collision in a
Turbulent Flow
Bogdan Rosa and Lian-Ping Wang

A Distributed Multilevel Ant-Colony Approach for Finite Element
Mesh Decomposition
Katerina Taskova, Peter Korosec, and Jurij Silc

Minisymposium on Interval Analysis

Toward Definition of Systematic Criteria for the Comparison of Verified
Solvers for Initial Value Problems
Ekaterina Auer and Andreas Rauh

Table of Contents — Part 11

Fuzzy Solution of Interval Nonlinear Equations
Ludmila Dymova

Solving Systems of Interval Linear Equations with Use of Modified
Interval Division Procedure 0 ..
Ludmila Dymova, Mariusz Pilarek, and Roman Wyrzykowski

Remarks on Algorithms Implemented in Some C++ Libraries for
Floating-Point Conversions and Interval Arithmetic
Malgorzata A. Jankowska

An Interval Method for Seeking the Nash Equilibria of Non-Cooperative

Barttomiej Jacek Kubica and Adam Wozniak

From Gauging Accuracy of Quantity Estimates to Gauging Accuracy
and Resolution of Measuring Physical Fields...............
Viadik Kreinovich and Irina Perfilieva

A New Method for Normalization of Interval Weights.................
Pavel Sevastjanov, Pavel Bartosiewicz, and Kamil Tkacz

A Global Optimization Method for Solving Parametric Linear Systems
Whose Input Data Are Rational Functions of Interval Parameters
ITwona Skalna

Direct Method for Solving Parametric Interval Linear Systems with
Non-affine Dependencies,
ITwona Skalna

Workshop on Complex Collective Systems

Evaluating Lava Flow Hazard at Mount Etna (Italy) by a Cellular
Automata Based Methodology i
Maria Vittoria Avolio, Donato D’Ambrosio, Valeria Lupiano,
Rocco Rongo, and William Spataro

Application of CoSMoS Parallel Design Patterns to a Pedestrian
SIMULAtION . ..o
Sarah Clayton, Neil Urquhard, and Jon Kerridge

Artificial Intelligence of Virtual People in CA FF Pedestrian Dynamics
Model .. .o
Ekaterina Kirik, Tat’yana Yurgel’yan, and Dmitriy Krouglov

Towards the Calibration of Pedestrian Stream Models
Wolfram Klein, Gerta Kdéster, and Andreas Meister

XVIII Table of Contents — Part 11

Two Concurrent Algorithms of Discrete Potential Field Construction ... 529
Konrad Kutakowski and Jarostaw Was

Frustration and Collectivity in Spatial Networks 539
Anna Manka-Krason and Krzysztof Kutakowski

Weakness Analysis of a Key Stream Generator Based on Cellular
Automata o 547
Frédéric Pinel and Pascal Bouvry

Fuzzy Cellular Model for On-line Traffic Simulation 553
Barttomiej Placzek

Modeling Stop-and-Go Waves in Pedestrian Dynamics 561
Andrea Portz and Armin Seyfried

FPGA Realization of a Cellular Automata Based Epidemic Processor... 569
Pavlos Progias, Emmanouela Vardaki, and Georgios Ch. Sirakoulis

Empirical Results for Pedestrian Dynamics at Bottlenecks............. 575
Armin Seyfried and Andreas Schadschneider

Properties of Safe Cellular Automata-Based S-Boxes.................. 585
Miroslaw Szaban and Franciszek Seredynski

Author Index e 593

Table of Contents — Part 1

Parallel /Distributed Architectures and Mobile
Computing

Evaluating Performance of New Quad-Core Intel®Xeon®>5500 Family
Processors for HPC
Pawel Gepner, David L. Fraser, and Michal F. Kowalik

Interval Wavelength Assignmentin All-Optical Star Networks
Robert Janczewski, Anna Matafiejska, and Michal Malafiejski

Graphs Partitioning: An Optimal MIMD Queueless Routing for
BPC-Permutations on Hypercubes
Jean-Pierre Jung and Ibrahima Sakho

Probabilistic Packet Relaying in Wireless Mobile Ad Hoc Networks
Marcin Seredynski, Tomasz Ignac, and Pascal Bouvry

Numerical Algorithms and Parallel Numerics

On the Performance of a New Parallel Algorithm for Large-Scale
Simulations of Nonlinear Partial Differential Equations
Juan A. Acebrdn, Angel Rodriguez-Rozas, and Renato Spigler

Partial Data Replication as a Strategy for Parallel Computing of the
Multilevel Discrete Wavelet Transform
Liesner Acevedo, Victor M. Garcia, Antonio M. Vidal, and
Pedro Alonso

Dynamic Load Balancing for Adaptive Parallel Flow Problems.........
Stanistaw Gepner, Jerzy Majewski, and Jacek Rokicki

A Balancing Domain Decomposition Method for a Discretization of a
Plate Problem on Nonmatching Grids
Leszek Marcinkowski

Application Specific Processors for the Autoregressive Signal

ANalysis ..o
Anatolij Sergiyenko, Oleg Maslennikow, Piotr Ratuszniak,
Natalia Maslennikowa, and Adam Tomas

A Parallel Non-square Tiled Algorithm for Solving a Kind of BVP for
Second-Order ODEs
Przemystaw Stpiczynski

XX Table of Contents — Part 1

Graph Grammar Based Petri Nets Model of Concurrency for
Self-adaptive hp-Finite Element Method with Rectangular Elements
Arkadiusz Szymczak and Maciej Paszyriski

Numerical Solution of the Time and Rigidity Dependent Three

Dimensional Second Order Partial Differential Equation...............

Anna Wawrzynczak and Michael V. Alania

Hardware Implementation of the Exponent Based Computational Core
for an Exchange-Correlation Potential Matrix Generation
Maciej Wielgosz, Ernest Jamro, and Kazimierz Wiatr

Parallel Implementation of Conjugate Gradient Method on Graphics

Processors

Marcin Wozniak, Tomasz Olas, and Roman Wyrzykowski

Iterative Solution of Linear and Nonlinear Boundary Problems Using
PIE S .
Eugeniusz Zieniuk and Agnieszka Boltuc

Paralel and Distributed Non-numerical Algorithms

Implementing a Parallel Simulated Annealing Algorithm
Zbigniew J. Czech, Wojciech Mikanik, and Rafal Skinderowicz

Parallel Computing Scheme for Graph Grammar-Based Syntactic
Pattern Recognition i
Mariusz Flasiriski, Janusz Jurek, and Szymon Mysliriski

Extended Cascaded Star Schema for Distributed Spatial Data
Warehouseo
Marcin Gorawski

Parallel Longest Increasing Subsequences in Scalable Time and
MEMOTY .. oottt
Peter Krusche and Alexander Tiskin

A Scalable Parallel Union-Find Algorithm for Distributed Memory
COMPULETS « . ottt e e e e
Fredrik Manne and Md. Mostofa Ali Patwary

Tools and Environments for
Parallel/Distributed /Grid Computing

Extracting Both Affine and Non-linear Synchronization-Free Slices in
Program Loops
Wiodzimierz Bielecki and Marek Palkowsk:

95

Table of Contents — Part I

A Flexible Checkpoint/Restart Model in Distributed Systems..........
Mohamed-Slim Bouguerra, Thierry Gautier, Denis Trystram, and
Jean-Marc Vincent

A Formal Approach to Replica Consistency in Directory Service
Jerzy Brzezinski, Cezary Sobaniec, and Dariusz Wawrzyniak

Software Security in the Model for Service Oriented Architecture

Quality . ..o
Grzegorz Kolaczek and Adam Wasilewski

Automatic Program Parallelization for Multicore Processors
Jan Kwiatkowski and Radoslaw Iwaszyn

Request Distribution in Hybrid Processing Environments
Jan Kwiatkowski, Mariusz Fras, Marcin Pawlik, and
Dariusz Konieczny

Vine Toolkit - Grid-Enabled Portal Solution for Community Driven
Computing Workflows with Meta-Scheduling Capabilities
Dawid Szejnfeld, Piotr Domagalski, Piotr Dziubecki,
Piotr Kopta, Michal Krysinski, Tomasz Kuczynski,
Krzysztof Kurowski, Bogdan Ludwiczak, Jaroslaw Nabrzyski,
Tomasz Piontek, Dominik Tarnawczyk, Krzysztof Witkowski, and
Malgorzata Wolniewicz

Applications of Parallel/Distributed Computing

GEM - A Platform for Advanced Mathematical Geosimulations........
Radim Blaheta, Ondrej Jakl, Roman Kohut, and Jiri Stary

Accelerating the MilkyWay@Home Volunteer Computing Project with
GPUS o
Travis Desell, Anthony Waters, Malik Magdon-Ismail,
Boleslaw K. Szymanski, Carlos A. Varela, Matthew Newby,
Heidi Newberg, Andreas Przystawik, and David Anderson

Vascular Network Modeling - Improved Parallel Implementation on
Computing Clustert
Krzysztof Jurczuk, Marek Kretowski, and Johanne Bézy- Wendling

Parallel Adaptive Finite Element Package with Dynamic Load
Balancing for 3D Thermo-Mechanical Problems
Tomasz Olas, Robert Lesniak, Roman Wyrzykowski, and
Pawel Gepner

Parallel Implementation of Multidimensional Scaling Algorithm Based
on Particle Dynamics i
Piotr Pawliczek and Witold Dzwinel

XXII Table of Contents — Part 1

Particle Model of Tumor Growth and Its Parallel Implementation 322
Rafal Weisto and Witold Dzwinel

Applied Mathematics and Neural Networks

Modular Neuro-Fuzzy Systems Based on Generalized Parametric
Triangular NOTIIS . .. oo vttt e 332
Marcin Korytkowski and Rafat Scherer

Application of Stacked Methods to Part-of-Speech Tagging of Polish.... 340
Marcin Kuta, Wojciech Wdjcik, Michat Wrzeszcz, and
Jacek Kitowski

Computationally Efficient Nonlinear Predictive Control Based on
State-Space Neural Models i 350
Maciej Lawryriczuk

Relational Type-2 Interval Fuzzy Systems 360
Rafat Scherer and Janusz T. Starczewski

Properties of Polynomial Bases Used in a Line-Surface Intersection
Algorithm. 369
Gun Srijuntongsiri and Stephen A. Vavasis

Minisymposium on GPU Computing

A GPU Approach to the Simulation of Spatio-temporal Dynamics in
Ultrasonic Resonators i 379
Pedro Alonso—Jordd, Isabel Pérez—Arjona, and
Victor J. Sdnchez—Morcillo

Reduction to Condensed Forms for Symmetric Eigenvalue Problems on
Multi-core Architectures 387
Paolo Bientinesi, Francisco D. Igual, Daniel Kressner, and
Enrique S. Quintana-Orti

On Parallelizing the MRRR Algorithm for Data-Parallel
COPIOCESSOTS .« v\ vttt e et e e e e e e e e e e e e e 396
Christian Lessig and Paolo Bientinesi

Fast In-Place Sorting with CUDA Based on Bitonic Sort 403
Hagen Peters, Ole Schulz-Hildebrandt, and Norbert Luttenberger

Finite Element Numerical Integration on GPUs 411
Przemystaw Plaszewski, Pawet Maciol, and Krzysztof Banas

Modeling and Optimizing the Power Performance of Large Matrices
Multiplication on Multi-core and GPU Platform with CUDA 421
Da Qi Ren and Reiji Suda

Table of Contents — Part I XXIII

Stream Processing on GPUs Using Distributed Multimedia
Middlewaret 429
Michael Repplinger and Philipp Slusallek

Simulations of the Electrical Activity in the Heart with Graphic

Processing Unitso i 439
Bernardo M. Rocha, Fernando O. Campos, Gernot Plank,
Rodrigo W. dos Santos, Manfred Liebmann, and Gundolf Haase

Parallel Minimax Tree Searching on GPU 449
Kamil Rocki and Reiji Suda

A Fast GPU Implementation for Solving Sparse Ill-Posed Linear
Equation Systems 457
Florian Stock and Andreas Koch

The Second Minisymposium on Cell/B.E.
Technologies

Monte Carlo Simulations of Spin Glass Systems on the Cell Broadband

Engine 467
Francesco Belletti, Marco Guidetti, Andrea Maiorano,
Filippo Mantovani, Sebastiano Fabio Schifano, and
Raffaele Tripiccione

Montgomery Multiplication on the Cell 477
Joppe W. Bos and Marcelo E. Kaihara

An Exploration of CUDA and CBEA for Einstein@Home 486
Jens Breitbart and Gaurav Khanna

Introducing the Semi-stencil Algorithm 496
Radil de la Cruz, Mauricio Araya-Polo, and José Maria Cela

Astronomical Period Searching on the Cell Broadband Engine 507
Maciej Cytowski, Maciej Remiszewski, and Igor Soszyriski

Finite Element Numerical Integration on PowerXCell Processors 517
Filip Kruzel and Krzysztof Banas

The Implementation of Regional Atmospheric Model Numerical
Algorithms for CBEA-Based Clusters.......... 525
Dmitry Mikushin and Victor Stepanenko

Adaptation of Double-Precision Matrix Multiplication to the Cell
Broadband Engine Architecture........... i 535
Krzysztof Rojek and Lukasz Szustak

XXIV Table of Contents — Part 1

Optimization of FDTD Computations in a Streaming Model
Architecture.
Adam Smyk and Marek Tudruj

Workshop on Memory Issues on Multi- and
Manycore Platforms

An Orthogonal Matching Pursuit Algorithm for Image Denoising on
the Cell Broadband Engine......... i ...
Dominik Bartuschat, Markus Stirmer, and Harald Kdstler

A Blocking Strategy on Multicore Architectures for Dynamically
Adaptive PDE Solvers
Wolfgang Eckhardt and Tobias Weinzierl

Affinity-On-Next-Touch: An Extension to the Linux Kernel for NUMA
Architectures . ..ot
Stefan Lankes, Boris Bierbaum, and Thomas Bemmerl

Multi-CMP Module System Based on a Look-Ahead Configured Global
Network . ..o
Eryk Laskowski, Lukasz Masko, and Marek Tudruj

Empirical Analysis of Parallelism Overheads on CMPs................
Ami Marowka

An Implementation of Parallel 3-D FFT with 2-D Decomposition on a
Massively Parallel Cluster of Multi-Core Processors
Daisuke Takahashi

Introducing a Performance Model for Bandwidth-Limited Loop
Kernels . ..o
Jan Treibig and Georg Hager

Author Index

Fully Polynomial Time Approximation Schemes
for Scheduling Divisible Loads

Joanna Berlinska

Faculty of Mathematics and Computer Science,
Adam Mickiewicz University,
Umultowska 87, 61-614 Poznari, Poland

joanna.berlinska®amu.edu.pl

Abstract. In this paper we study divisible loads scheduling in hetero-
geneous systems with high bandwidth. Divisible loads represent com-
putations which can be arbitrarily divided into parts and performed
independently in parallel. We propose fully polynomial time approxima-
tion schemes for two optimization problems. The first problem consists
in finding the maximum load which can be processed in a given time. It
turns out that this problem can be reduced to minimization of a half-
product. The second problem is computing the minimum time required
to process load of a given size. The FPTAS solving this problem uses a
dual approximation algorithm approach.

Keywords: scheduling, divisible loads, FPTAS.

1 Introduction

The divisible load model originated in the late 1980s [17] as a tool for modeling
processing of big volumes of data. It represents parallel computations which can
be divided into pieces of arbitrary sizes. In other words, the grains of parallelism
are negligibly small. It is assumed that there are no precedence constraints in
the computations, so that the pieces of data can be processed independently
in parallel. Divisible load model can be applied to problems such as: search
for patterns in text or database files [9], processing measurement data [7/17],
image and video processing [T2IT3[T5]. Surveys of divisible load theory and its
applications can be found e.g. in [BIT4].

The problem of scheduling a divisible application consists in selecting the
processors taking part in the computations, choosing the sequence of communi-
cations with the processors and the sizes of sent pieces of data. The aim is to
process load of data of a given size in the shortest possible time. Alternatively,
a dual goal may be to process the largest possible load in a given period of
time.

Scheduling divisible loads with no communication startup times was studied
in [4J63]. In each of these publications it was proved that if there are no com-
munication startup costs, then the load should be sent to the processors in the
order of nonincreasing bandwidth. However, the computational complexity of the

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 1 2010.
© Springer-Verlag Berlin Heidelberg 2010

2 J. Berlinska

general problem remained open. In [I0] it was proved that scheduling divisible
loads in a system with limited memory buffers and with non-zero communication
startup times is NP-hard. More complexity results, e.g. for systems with release
times and with processor deadlines, were shown in [§]. Finally, the NP-hardness
of divisible loads scheduling was proved in [16].

In this paper we study scheduling divisible loads in heterogeneous systems
with communication startup costs and without memory limits. We assume that
all working processors have infinite bandwidth, i.e. sending any amount of data
to a given processor requires constant time. As [16] proved that our schedul-
ing problem is NP-hard even in systems with infinite bandwidth, we propose
fully polynomial time approximation schemes for solving the analyzed
problems.

The rest of this paper is organized as follows. In Section [2] the analyzed prob-
lems are formulated. Sections Bl and H] describe the algorithms designed to solve
the problems. The last section is dedicated to conclusions.

2 Problem Formulation

In this paper we assume that each processor comprises a CPU, memory and a
hardware network interface. The CPU and network interface can work in parallel
so that simultaneous communication and computation is possible. We assume
star interconnection. A set of working processors {Pi, ..., P, } is connected to
a central server Py called originator. Initially, some amount W of load to be
processed is located on the originator. We assume that the originator performs
no computations. In the opposite case, the computing capability of the origi-
nator can be represented as an additional processor. In a general model each
working processor P;, 1 < i < m, is described by its computing rate A;, commu-
nication rate C; and communication startup time S;. In this paper we assume
that each processor has infinite bandwidth, i.e. C; = 0 for 1 < ¢ < m. Thus,
the time needed to transfer o units of load from Py to P; is S;, and the time
required to process this load on worker P; is a4;. We assume that A; and 5;
are nonnegative integers, while W and schedule length are nonnegative rational
numbers. We will use the notation Sp,q; = maxi<i<m Si, Smin = MiNi<i<m S;,
Apmar = Maxi<i<m A; and Ay = ming<i<m, A;.

Let us note that as the bandwidth is infinite and there are no memory limita-
tions, sending more than one piece of data to a processor will not cause starting
any computations earlier. Therefore, without loss of generality, we can analyze
single-round schedules only.

We study two optimization problems, which can be formulated in the following
way (we use the terminology of [16]).

Problem 1. (DLS{C; = 0}-OptW)

Given a rational time T > 0, m workers, their parameters A; and S; for 1 <
i < m, find the greatest rational number Wopr(T), such that it is possible to
process load of size Wopr(T') within time T

FPTAS for Scheduling Divisible Loads 3

Problem 2. (DLS{C; = 0}-OptT)

Given a rational workload size W > 0, m workers, their parameters A; and .S;
for 1 < i < m, find the smallest rational number Top7r(W) > 0, such that it is
possible to compute the whole load within time T pr (V).

Let us note that if we analyze the problem DLS{C; = 0}-OptW and S; > T for
some processor P;, then this processor can process no load in time 7. Thus we
assume that S; < T for 1 <4 < m in the instances of DLS{C; = 0}-OptW.

Moreover, if A; = 0 for some processor P;, then any amount of load can
be processed using only processor P; in time S;. If we analyze the problem
DLS{C; = 0}-OptW, we can process infinite load during time 7" in this case,
as we assumed that S; < T for all i. Alternatively, if the studied problem is
DLS{C; = 0}-OptT, the optimum time needed to process load of size W using
processor P; is S;. Let T” be the minimum time needed to process load of size
W using only processors from the set P’ = {P; : S; < S;}. Then the minimum
time needed to process W units of load using processors from the whole set
{P1,..., Py} can be computed as Topr(W) = min(S;,T"). Therefore, without
loss of generality we also assume that A; > 0 for 1 <4 < m in the instances of
both problems formulated above.

Both problems DLS{C; = 0}-OptW and DLS{C; = 0}-OptT were formulated
and studied in [I6]. They were shown to be NP-hard and pseudo-polynomial dy-
namic programming algorithms solving them were proposed. Since pseudopoly-
nomial algorithms are in fact exponential, it can be more useful to create fully
polynomial time approximation schemes for these problems.

3 FPTAS for the Problem DLS{C; = 0}-OptW

The key observation needed to construct an FPTAS solving the problem
DLS{C; = 0}-OptW is the following proposition proved in [16].

Proposition 1. For a given time limit T and set P’ C {Py,..., Py} of workers
taking part in the computation the mazimum load is processed if workers are
ordered according to nondecreasing values of S;A; for P; € P'.

Proposition [l can be proved by the interchange argument: ordering the pro-
cessors in P’ according to nondecreasing S; A; does not reduce the amount of
processed load.

It follows from Proposition [] that it is enough to choose the optimal subset
of processors taking part in computations to calculate the maximum load which
can be processed in a given time 7. Namely, let us sort the processors in the
order of nondecreasing S;A;. Let us define a binary vector @ = (z1,...,Tm)
in the following way: x; = 1 if processor P; receives some load to process and
x; = 0 in the opposite case. The maximum amount of load that can be processed
in time T using processors indicated by the vector x is equal to

£ -EETS o

i=1 =1 j=1 J

4 J. Berlinska

The first sum in () is equal to the load which could be processed if there were
no communication delays and the second sum corresponds to the load which is
lost because of communication delays (cf. [SIL6]).

From now on, we will always assume that processors Pi,..., P, are sorted
according to nondecreasing S;A;. Our aim is to maximize the size W of load
processed in a given period of time T as a function of a binary vector & =
(x1,...,2m). Instead of maximizing W (x), we can minimize the value of —W ().
Using the fact that z; are binary and 2? = z;, we can write

W(ac) = —zm:T‘Sil'i—F Z SZAll‘z.TJ (2)

i=1 1<i<j<m J

A half-product [2] is a function of the form

f(w) = f(mlv szl'z + Z qiTjTiTy. (3)

1<i<j<m

Hence, —W () is a half-product, with p; = Ch g =8, = Al

Badics and Boros proposed an FPTAS for minimizing half- products in [2].
They assumed that parameters p;, g;, 7; are nonnegative integers for 1 < ¢ < m.
In our case all parameters are nonnegative, but p; = T;‘;S’ ‘and r; = j are not
integer. However, the assumption about integrality of p; and r; is used neither
for proving the correctness of the Badics and Boros algorithm, nor for estimating
its running time. Therefore, we can use the algorithm from [2] to minimize the

function —W (x). The algorithm receives parameters p;, g;, r; and a positive

approximation precision € < 1. It returns a binary vector € = (x5, ...,z%)).
k
For 1 <k <m,let gp(x) = —>,_ pixi + 1<i<j<k BiTjTiT; and Qx(x) =

Zle giz;. The algorithm can be formulated as follows (cf. [2]):

MINIMIZE-HALF-PRODUCT((p1, -,) (@1s- -+ @m)s (P13 7m), €)
STEP 0: Let 6 > 0 be defined by the equation (14 0)™ =1+¢,
let Q = 2211 qi,
let N = [2mlogQ"
let k=0 and Xy = {()}.
STEP 1: Let k=k+1, X, =0,t=0,s=0,
L= {(ylv sy Yk—1, 0)7 (ylv sy Yk—1, 1)|(y17 BERE) ykfl) € kal}
STEP 2: while s < N do
select z = (z1,...,2x) € L for which
t<Qu(z) <(1+9)°
and for which g (z) is the smallest among all such z.
Let X, =X, U{z},t=(1+0)% s=s+1.
STEP 3: if £ < m goto STEP 1, else goto STEP 4.
STEP 4: Select ° € X, with the smallest g,,(x€), return z=.

FPTAS for Scheduling Divisible Loads 5

It was proved in [2] that
f(a®) < f(x%) + el f(2")], (4)

where x* is a vector minimizing f, and the running time of algorithm
MINIMIZE-HALF-PRODUCT is O(m?log(}_1", g:)/¢) [2].

Now we propose an algorithm for the problem DLS{C; = 0}-OptW. The
pseudocode of the algorithm is presented below.

FPTAS-OPT-W (T,¢)
for i =1to m do
_ T-S;

bi = A;

g =S

T, = 1‘%1
x*=MINIMIZE-HALF-PRODUCT((p1,---,2m), (G1s---qm), (r1, -, 7m),€)

725 S

e : A
return xppras(T,e) = ¢, Wppras(T,e) = Z:il TX - Z:il Z;n:z : fxi

Proposition 2. The algorithm FPTAS-OPT-W is a fully polynomial time ap-
proximation scheme for the problem DLS{C; = 0}-OptW.

Proof. As xppras(T,e) is the result of MINIMIZE-HALF-PRODUCT algo-
rithm for the function —W (&), we obtain from ()

— Wrpras(T,e) < —Wopr(T) + eWopr(T). (5)

Consequently,

Wrepras(T,e) > Wopr(T)(1 —¢). (6)
Moreover, the order of the running time of FPTAS-OPT-W is equal to the
running time of MINIMIZE-HALF-PRODUCT, and is equal to at most
O(m?log(3"1", Si)/e) = O(m2(logm + log Spmaz)/). Hence, the algorithm
FPTAS-OPT-W is a fully polynomial time approximation scheme for the prob-
lem DLS{C; = 0}-OptW. |

4 FPTAS for the Problem DLS{C; = 0}-OptT

In order to create an FPTAS for the problem DLS{C; = 0}-OptT we will use
the approach of a dual approximation algorithm proposed in [II]. In a dual
approximation algorithm the goal is to find a superoptimal infeasible solution of
some optimization problem. The performance of the algorithm is measured by
the degree of infeasibility allowed.

We will create a dual approximation algorithm for the problem DLS{C; = 0}-
OptW. Such an algorithm should accept a given period of time T and accuracy &,
and deliver a schedule processing load of size at least Wopr(7T') in time not longer
than T'(1 + ¢). Let us assume that ¢ < 1 and analyze the following algorithm.

DUAL-OPT-W(T,)
call FPTAS-OPT-W(T, /2)
return tpyar(T,e)=xrpras(T,c/2), Wpuar(T,e) =(14+e)Wrpras(T,e/2)

6 J. Berlinska

In order to prove that the proposed algorithm is a valid dual approximation
algorithm for the problem DLS{C; = 0}-OptW, we will use the following fact.

Proposition 3. If it is possible to process load of size W in time T using the
subset of processors indicated by a binary vector € = (1, ..., Ty), then it is also
possible to process load of size W(1+¢) in time at most T(1+¢), using the same
subset of processors.

Proof. Let us denote by W' the maximum size of load which can be processed
in time T'(1 4 €) using the processors indicated by the vector . From (II) we

obtain
; Ui T(].-I-E)ZL’Z UL :czijZ
i=1 i=1 j=i
and
U TZL’Z‘ UL xeJSZ
W= (8)
i=1 " i=1 j=i J
Therefore,
’ UL l'lijZ
W =1+e)W+ed > > W(l+e). (9)

O

Note that if T' = Topr(W), then by Proposition Bl we have that load of size
W (14 ¢) can be processed in time not longer than Topr(W)(1 + ¢). Hence, we
can formulate a corollary:

Corollary 1. For any numbers W > 0 and € > 0 we have
Torr(W(1+¢)) < Topr(W)(1+¢).

We will say that an algorithm is a fully polynomial time dual approximation
algorithm for a given problem if it is a dual approximation algorithm for this
problem with approximation precision € and its running time is polynomial in
both the problem size and 1/¢.

Proposition 4. The algorithm DUAL-OPT-W is a fully polynomial time dual
approzimation algorithm for the problem DLS{C; = 0}-OptW .

Proof. As Wpuar(T,e) = (1+e)Wrpras(T,e/2), we get from (@)
Wpuar(T,e) > (1 +e)Wopr(T)(1 —¢/2) > Wopr(T), (10)

because ¢ < 1. Thus, the obtained solution is superoptimal. The time needed
to process the load Wpyar(T,¢e) is at most T'(1 + €) by Proposition 3] as it is
possible to process load of size Wgpras(T,e/2) in time T

The running time of the algorithm DUAL-OPT-W is determined by the
call of FPTAS-OPT-W(T,e/2), whence it is equal to at most O(m?(logm +
108 Smax)/2)- 0

FPTAS for Scheduling Divisible Loads 7

We will now construct a fully polynomial time approximation scheme for the
problem DLS{C; = 0}-OptT using the above dual approximation algorithm for
DLS{C; = 0}-OptW in the binary search process.

FPTAS-OPT-T(W,¢)
upper = Smaz + W Amaz
lower =0
LoBo = W Apin/m
while (upper — lower) > E(gl_f)) LoBo
T, = (upper + lower) /2
call DUAL-OPT-W(T), ¢)
if WDUAL(prg) <W(l+e¢)
then lower =T,
else upper =1,
call FPTAS-OPT-W (upper, /2)
return € = xppras(upper,e/2), T = upper

Proposition 5. The algorithm FPTAS-OPT-T is a fully polynomial time ap-
proximation scheme for the problem DLS{C; = 0}-OptT.

Proof. Let us start with the observation that at the beginning of the algorithm
upper and lower are trivial upper and lower bounds for Topr(W). LoBo is also
a lower bound on Topr (W) and is positive, since we assumed that A; > 0 for
1<1<m.

First we will analyze the variable upper in order to prove that the algorithm
always returns a feasible solution. At the beginning of the algorithm upper =
Smaz + W Amaz. If this value is not changed during the binary search, then
the algorithm FPTAS-OPT-W is called for parameters T = upper = Sz +
W A,nae and approximation precision /2 at the end of executing FPTAS-OPT-
T algorithm. The obtained schedule will allow for processing load of size at least
W, as it is enough to choose any nonempty subset of the workers to process W
units of load in time T = Sy00 + WA nae-

Now let us assume that the value of upper is changed at least once to T},. This
happens only if Wpyar(Tp,e) > W (1 + ¢). Therefore, as

Wpuar(T,e) = (1+¢e)Wppras(T,e/2), (11)
we have
Wepras(upper,e/2) = Wpyar (upper,e)/(1+¢) > W (12)

at any time during the execution of the algorithm. Hence, the solution obtained
by the algorithm FPTAS-OPT-T is always feasible.
Now let us estimate the quality of the obtained solution. We will show that

) (13)

€

lower < Topr(W)(1 + 9_ ¢

8 J. Berlinska

throughout the execution of the program. Since initially lower = 0, this condition
is true before beginning the binary search. The variable lower is updated to T},
only when Wpyar(Tp,e) < W(1l+¢). It follows from (II)) that

(14 e)Wrpras(lower,e/2) < W(1 +¢). (14)

Furthermore, from (@) we get

(1+e)Wopr(lower)(1 —e/2) < W(1 +¢), (15)
Wopr (lower) < W/(1 —¢/2) (16)

and finally
Wopr(lower) < W (1 4+ 5 i 5). (17)

Thus, it is impossible to process load W (1 + ,°_) in time lower. Hence,

€

lower < Topr(W(1 + 9_ e

))- (18)

By Corollary [l we have

e £
<
Topr(W(+, "~) <Topr(W)(1+,

); (19)

which proves that (I3) is true during the execution of the binary search procedure.
The binary search is finished when upper < lower+ <(1=9) 1, Bo. Since LoBo <

(2—¢)
Topr(W), by (I3) we get

€ e(l—e
wper < Torr(W)(1+, =)+ 55~ Torr(v) (20)
and consequently
upper < Topr(W)(1 + €). (21)

Thus FPTAS-OPT-T delivers an e-approximation of the optimal solution of the
problem.

The number of iterations in the binary search is at most equal to O(log
((Smaz + W Amaz)/(‘5((21__:)) W Apin/m))) == O(log Smaz +10g Apmaz +1log(1/e)+
logm + max(log W,log(1/W))). The execution time of each iteration is O(m?
(log m +10g Spnaz)/€) due to calling the algorithm DUAL-OPT-W. Thus the run-
ning time of the whole algorithm FPTAS-OPT-T is at most O((log Synaz+10g Amaz
+ log(1/¢) + log m + max(log W, log(1/W)))m?(log m + 10g Smax)/€)- O

5 Conclusions

In this paper we studied scheduling divisible loads in a heterogeneous star sys-
tem with high bandwidth. We formulated two optimization scheduling problems,
DLS{C; = 0}-OptW and DLS{C; = 0}-OptT'. The first problem was computing

FPTAS for Scheduling Divisible Loads 9

the maximum load that can be processed in a given period of time, and the sec-
ond problem was calculating the minimum time needed to process load of a given
size. We proposed fully polynomial time approximation schemes for both of these
problems and a dual approximation algorithm for DLS{C; = 0}-OptW. Future
research may include constructing fully polynomial time approximation schemes
for scheduling divisible loads in systems with finite bandwidth characterizing the
working processors.

References

10.

11.

12.

13.

14.

. Agrawal, R., Jagadish, H.V.: Partitioning Techniques for Large-Grained Paral-

lelism. IEEE Transactions on Computers 37(12), 1627-1634 (1988)

. Badics, T., Boros, E.: Minimization of Half-products. Mathematics of Operations

Research 23(3), 649660 (1988)

. Beaumont, O., Casanova, H., Legrand, A., Robert, Y., Yang, Y.: Scheduling Divis-

ible Loads on Star and Tree Networks: Results and Open Problems. IEEE Trans-
actions on Parallel and Distributed Systems 16(3), 207-218 (2005)

. Bharadwaj, V., Ghose, D., Mani, V.: Optimal Sequencing and Arrangement in

Single-Level Tree Networks with Communication Delays. IEEE Transactions on
Parallel and Distributed Systems 5(9), 968-976 (1994)

. Bharadwaj, V., Ghose, D., Mani, V., Robertazzi, T.G.: Scheduling Divisible Loads

in Parallel and Distributed Systems. IEEE Computer Society Press, Los Alamitos
(1996)

. Blazewicz, J., Drozdowski, M.: Distributed Processing of Divisible Jobs with Com-

munication Startup Costs. Discrete Applied Mathematics 76, 21-41 (1997)

. Cheng, Y.-C., Robertazzi, T.G.: Distributed computation with communication de-

lay. IEEE Transactions on Aerospace and Electronic Systems 24, 700-712 (1988)

. Drozdowski, M., Lawenda, M.: The combinatorics in divisible load scheduling.

Foundations of Computing and Decision Sciences 30(4), 297-308 (2005),
http://www.cs.put.poznan.pl/mdrozdowski/txt/divBB2.pdf

. Drozdowski, M., Wolniewicz, P.: Experiments with scheduling divisible tasks in

clusters of workstations. In: Bode, A., Ludwig, T., Karl, W.C., Wismiiller, R.
(eds.) Euro-Par 2000. LNCS, vol. 1900, pp. 311-319. Springer, Heidelberg (2000)
Drozdowski, M., Wolniewicz, P.: Optimum divisible load scheduling on heteroge-
neous stars with limited memory. European Journal of Operational Research 172,
545-559 (2006)

Hochbaum, D., Shmoys, D.: Using dual approximation algorithms for scheduling
problems: theoretical and practical results. Journal of the ACM 34(1), 144-162
(1987)

Li, X., Bharadwaj, V., Ko, C.C.: Distributed image processing on a network of
workstations. International Journal of Computers and Applications 25(2), 1-10
(2003)

Lim, T., Robertazzi, T.G.: Efficient parallel video processing through concurrent
communication on a multi-port star network. In: Proceedings of the 40th Confer-
ence on Information Sciences and Systems, Princeton, NJ, pp. 458-463 (2006)
Robertazzi, T.G.: Ten reasons to use divisible load theory. IEEE Computer 36,
63-68 (2003)

http://www.cs.put.poznan.pl/mdrozdowski/txt/divBB2.pdf

10

15.

16.

17.

J. Berlinska

van der Raadt, K., Yang, Y., Casanova, H.: Practical divisible load scheduling on
grid platforms with APST-DV. In: Proceedings of the 19th IPDPS 2005, p. 29b
(2005)

Yang, Y., Casanova, H., Drozdowski, M., Lawenda, M., Legrand, A.: On the com-
plexity of Multi-Round Divisible Load Scheduling. INRIA Rhoéne-Alpes, Research
Report 6096 (2007)

Yu, D., Robertazzi, T.G.: Divisible load scheduling for grid computing. In: Proceed-
ings of the TASTED International Conference on Parallel and Distributed Com-
puting and Systems, PDCS 2003 (2003)

Semi-online Preemptive Scheduling:
Study of Special Cases

Tomé&s Ebenlendr

Institute of Mathematics, AS CR, Zitna 25, CZ-11567 Praha 1, Czech Republic
ebik@math.cas.cz

Abstract. We use the duality of linear programing to obtain exact for-
mulas of competitive ratio for the semi-online preemptive scheduling on
three and four machines. We use the linear programs from [3]. Namely we
consider the online scheduling and the semi-online scheduling with known
sum of processing times. We solve the linear programs symbolically by
examining all basic solution candidates. All solutions are obtained by a
computer but all are verifiable by hand.

1 Introduction

We study the scheduling on uniformly related machines. Every machine has its
speed s, i.e., processing a job with processing time p in a machine with speed
s takes p/s time. Preemption is allowed: each job may be divided into several
pieces, these pieces can be assigned to different machines in disjoint time slots.
The objective is to minimize the makespan, i.e., the length of a schedule. In
the online problem, jobs arrive one-by-one and we need to assign each incoming
job without any knowledge of the jobs that arrive later. When a job arrives, its
assignment at all times must be given and we are not allowed to change this
assignment later. In other words, the online nature of the problem is given by
the ordering of the input sequence and it is not related to possible preemptions
and the time in the schedule.

The online algorithms are evaluated by their competitive ratio, that is the
worst-case ratio between the makespan of the output schedule of the algorithm
and the optimal (offline) makespan. I.e., the r-competitive algorithm produces
at most r times longer schedule than the best possible schedule for every input
sequence. Semi-online problems are derived from the original online problem by
providing some partial information in advance. In this paper we focus on the
knowledge of the total processing time. The competitive ratio of studied prob-
lems is given by several linear programs, their dimension depends on number of
machines quadratically. We deploy a method how to solve small parametrized
linear programs. We obtain exact competitive ratios for small numbers of ma-
chines (up to 4) for various semi-online scheduling problems this way.

This method is based on duality of linear programing, which says that it
suffices to examine all possible basic solutions. From a geometrical point of view,
we take all intersections of dimension zero of hyperplanes defined by the linear

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 11 2010.
© Springer-Verlag Berlin Heidelberg 2010

12 T. Ebenlendr

conditions, and then we test if such an intersection is a feasible and optimal
solution. Note that the feasibility and the optimality of such a solution also
depends on the actual values of the parameters, so the result typically splits into
several cases. Searching through all such intersections would be tedious work as
it requires solving a system of linear equations and then examining the feasibility
of the result. Most of this work can be automated nowadays as there is various
algebraic software available.

2 Definitions of the Problem and Previous Results

We have m machines with speeds s; > s9 > -+ > s, > 0. We use a shorthand
for the total speed of all machines: S = s; + s3 + -+ 4+ s;,,. We use special

: : _ S—s1 _ satszttsm . Ll 3 1143
notation for th‘e ratioa = 7S = PP also, as it occurs in resulting
formulas. The input sequence contains n jobs with processing times p1, pa, ..., Dn-

Note that n is unknown to the online algorithm. Again, we use a shorthand
P =p;+p2+ -+ p, for the total processing time. The optimal makespan can
be computed simply as a maximum of m numbers [5]:

Crtlax = max {prlnax/sh ceey (prlnax +- +p$afx1)/(51 +oe +5m71)7P/S}) (1)

where p*** is j-th maximal job in the input sequence.

We view every semi-online problem as a restriction of set of possible input
sequences of the online problem. Then we define a general semi-online input
restriction to be simply a set ¥ of allowed input sequences. We call an input
sequence a partial input if it is a prefix of some input sequence; the set of all par-
tial inputs is denoted pref(¥). Thus the partial inputs are exactly the sequences
that the algorithm can see at some point. We restrict the definition of C} .

only to W-valid sequences of jobs as in [3], i.e., C5Y [T] = C* . [T] for T € ¥.
Then we extend it to the partial inputs in a natural way, i.e., denoting the least
achievable makespan over all valid continuations of such a partial input:

CxYT) = inf{C:, [T | T € ¥ & T is a prefix of J}. (2)

max

This simplifies to the similar formula as in ({I) for our restrictions. That is crucial,
because then we are able to define C;% as the minimum value satisfying several
linear inequalities. (We consider the speeds as fixed parameters, because they are
given at the start of the algorithm, while the processing times are the variables
as the algorithm does not know them in advance.)

We measure how bad are (semi-)online algorithms compared to optimal so-
lution by the competitive ratio. We say that an algorithm is r-competitive if it
manages to generate valid schedule with at most r times greater makespan than
the makespan of the optimal (offline) schedule. For randomized algorithms we
use expectation of the makespan over the random bits of the algorithm for each
input sequence.

The exact analysis of scheduling on two machines was given in [4[1l6] for
various semi-online problems, and in many more cases for non-preemptive

Semi-online Preemptive Scheduling: Study of Special Cases 13

scheduling. The paper [3] provides the framework to construct the algorithm
with best possible competitive ratio for arbitrary number of machines and gives
linear programs computing the optimal competitive ratio for several semi-online
problems. We solve these linear programs for the cases of up to four machines.
Below we list the restrictions studied in our paper.

Online scheduling. Here ¥ contains all sequences. In [2] is designed an optimal
online algorithm for all speed vectors, but the competitive ratio is given implicitly
by the linear program, which is solved there up to three machines. Here we
analyze the competitive ratio of four machines.

Known sum of processing times,) p; = P. For a given value P, ¥ contains
all sequences with P = P. The algorithm from [2] is extended in [3] to all
semi-online problems studied in this paper. There is also noted that the overall
ratio is surprisingly the same as in the general online case, but for m = 2,
l-approximation exists. We analyze the cases of m = 3, 4.

Other restrictions will be studied in full version of the paper.

The lower bound, as well as matching algorithm can be found in [3]. We
consider only nice restrictions, and for these is there proved that the best possible
competitive ratio (even for randomized algorithms) can be computed as ¥ (s) =
sup 7 7 (s, J), where:

(s, J) = 251 P/ 3 j—1 Snt1—5 - Ol Tl 3)

where Sy, 41 = Smi2 = -+ =0, J is a prefix of ¥-valid input sequence, J}; is a
sequence containing first j jobs of the input sequence J and n = |J|. The lower
bound uses the argument of the total processing time available to (semi-)online
algorithm processing n jobs: after the time rC’maX[J[j] only n — j machines can
be used as the algorithm is r-competitive semi-online, thus it has all jobs from
Jjj finished, and there are only n — j jobs in J \ Jj;j.

Following simplifications hold for the restrictions studied in this paper: It suf-
fices to consider only 7 where jobs are sorted from the smallest to the largest.
Also if n > m, it suffices to consider sequences with first n — m jobs tiny where
only their total processing time is interesting. Then it is easy to construct lin-
ear conditions exactly bounding C [Jj—m+ .J, Cr¥ [Jim)], and construct
a linear program with the objective function 7 (s, j) where the job sizes and
the optimal makespans are variables. These programs are already constructed
in [3].

3 Online Scheduling

The linear program in variables qi,...,q, and O,...,O,,, follows, each in-
equality labeled with corresponding dual variable (z7). The value of the optimal
solution is the competitive ratio of the problem for m machines. This program
is already solved for m < 3 in [2].

14 T. Ebenlendr

maximize r=q + -+ qn
subject to 1= 1510,, + 5201 + -+ + $m01 (Znorm)
QA gr < (514 + 5m) O (zr) L<k<m
: (4)
g+ tan < (s1+ -+ Sk—j+1)Ok (zik) 2<j<k<m
4 < gj+1 (2<j) 2<j<m-—-1
0<q, 0< ¢ (20,1), (202)

So we have the linear program and we solve it for all speed combinations of four
machines (m = 4).

The list of the cases follows. We list not only the resulting competitive ratio
and the validity domain of the case, (i.e., the conditions that define this domain),
but also the sizes of the jobs in the input sequence proving the lower bound and
also the dual coefficients proving that no better bound can be obtained from
@). Note that the algorithm from [2] matches exactly this lower bound, i.e., if it
fails to achieve some competitive ratio, then it is due to the bound (@]). (Recall

the definition o = ngl)
Case I Ratio: r = S/D, D = s1+ asy+a?s3 +a’sy
Conditions: Jobs: U.b. coefficients:
(A+: II) so > asi q1 = a2(5751)/D z1 = z2,2 = s4/D
(B+: IV) sa4s3 > (a+a?)s1 gqa = a?s1/D z2 = (s3—(1—a)s4)/D
Nonbasic dual vars: q3 = as1/D z3 = (s2—(1—a)(ss+asa))/D
20,1,20,2,2<,2,2<,3, qs = s1/D 24 = (s1—(1—a)(sa+ass+a?sy))/D
22,3,22,4,23,4 z3,3 = (s3+ass)/D
24,4 = (s2tasz+a®ss)/D

We use a shorthand D for the common denominator of all formulas in our case
description. Conditions state for which values of parameters is this case optimal.
The label (A+: II) of a condition should be read: The Case I is adjacent to the
Case II, where the opposite condition (A-): so < asy holds. Jobs give the main
input sequence for lower bound. Note that the adversary may stop the sequence
after any number of jobs. (In the general semi-online case the adversary may need
to submit some more jobs, so that the input will be in ¥, while maintaining C};% .
But this is not needed in online scheduling.) The nonbasic dual variables are
labels of inequalities, which we allow to be not tight, i.e., all other inequalities
are turned into equations. The upper bound coefficients are values of nonzero
dual variables. These give the matching upper bound on the competitive ratio,
which is obtained by summing up the corresponding inequalities multiplied by
these coefficients. Note that all nonbasic dual variables have coefficients of zero
value (and thus are not listed), because of the dual complementary slackness of
linear programing.

Now we show how to check the correctness of Case I. The correctness of all
other cases and all other restrictions in this paper can be checked in the same
way. First we check the value of the objective function (using s; = (1 — «)S):

G+ @p+eatag = a®S/D+a(l—a)S/D+(1—-a)S/D = S/D = r

Semi-online Preemptive Scheduling: Study of Special Cases 15

Then we compute the values of the optima variables Oq,...,04. We know that
basic inequalities are satisfied by equality:

(21)

01 = ql/S = a3/D
0, (zéz) q2/81 _ a2/D _ (91 4 qz)/S (zz)
O3 Gas) q@3/s1= a/D = (g1 + g2 + Q3)/S 03

04 (@4)(]4/812 1/D = (¢ +Q2+QS+CI4)/S = 04-

The equal signs are labeled by labels of used equalities. Similarly the inequality
signs are labeled by labels of sufficient conditions in following text.

We can also easily verify that the equation (zporm) holds. We check the re-
maining (i.e., nonbasic) inequalities:

(2'2 3) Q2+Q3 = (Ot—FOé)Sl/D <A (81—|—82)/D (81+82)03
(224) 2+ g3+ q = 1+ a+a?)s;/D <P (s1+ 55+ 53)/D = (51 + 52+ 53)O4
(23,4) q3+qs=(1+a)s1/D <4 (81 +82)/D = (s1+52)Oy4 .

We get (20,1), (20,2), (2<,2) and (z< 3) trivially from oo <1 and S > s1. Thus we
know that our solution is feasible when A+ and B+ holds, so all algorithms are
at least r-competitive for such sets of speeds. The sequence that proves this is
for example: p1 = -+ =ps = q1/4,p5 = q2,P6 = G3,P7 = Q-

Now we check the optimality of our solution. We check that all upper bound
coeflicients are nonnegative with the exception of z,orm:

zoD = (s3—s4)+asy > 0

23D = (s2 — 83) +as3 — s4) +a’sy > 0
24DS = 518 — 51(s2 + asz +a?sy) > 0
The coefficient zporm is allowed to be negative, as (zporm) is an equation. So
we have all inequality coefficients nonnegative, thus we add up the inequalities
multiplied by their respective coefficients, and we use the resulting inequality:

g1+ g2 + g3 + g4 = q1(z1+22+23+24)+q2(22,2+22+23+24)+q3(23,3+23+24)+qa (24,4 +24)

< 01521 4+ O2(Sz2 + s1222) + O3(Sz3 + 51233) + O4(Sz4 + s124,4)

= (0184 + 0983 + 0389 + O481)S/D + (0184 + 0983 + 0389 + 0481 — 1)Znorm
_$/D.

This proves the optimality of our solution, i.e., there is no better solution and
the algorithm from [2] is r-competitive.
Now we continue the list of the cases:

Case II Ratio: r = S?/D, D = Zle Z?:i $;8; + a(ss + s4)s4 — 83

Conditions: Jobs: U.b. coefficients:

(A-: 1) s2 < asy q1 = (s3+54)(S—s1)/D 21 = z2,3 = s45/D

(C+: III) sa2+s3 > a(s1+s2) g2 = (s3+sa)s1/D zo = 23,4 = $3S/D
Nonbasic dual vars: q3 = s25/D z3 = (s2S—(s1+s2)s4)/D
20,1,20,2,2<,2,2<,35 qs = s1S/D z4 = (s1(s1+54)—s253

(
=22,2,22,4,%3,3 —(1—a)(sa+sa)sa)/D
(

24,4 = s2S+ (53+S4)S4)/D

16 T. Ebenlendr

Case III Ratio: r = S%/D Case IV Ratio: r = S/D
D = Y, Yo sis D = s1+asy+a’s3+ 53/
Conditions: (A-: IV) s2 < asy Conditions: (A+: III) s2 > asy
(C-: II) so+s3 < as1+s2) (B-: 1) s2+s3 < (0‘+0‘2)51

20,1,20,2,2<,2,%2<,3
. 20,1,20,2,2<,2,%2<,3, : . ,1,20,2,2<,2,2<,3;
Nonbasic dual vars: = = Nonbasic dual vars:

22,2,22,3,23,3 22,2,%2,3,%23,4
Jobs: U.b. coefficients: Jobs: U.b. coefficients:
@1 = $45/D 2z = 294 = 545/D q1 = s4/D 21 = 22,4 = 54/D
g2 = $35/D 2y = 23,4 = 535/D g2 = (a(S—s1)—s4)/D z2 = z33=s3/D
q3 = $25/D 23 = z44 = s25/D g3 = as1/D z3 = (s2—(1—a)s3)/D

as =18/D ,, _ (813—24: ’il sis)/D 1= s1/D z4 = (s1—54(S—s4)/8
i=2 =1 —(1-a)(s2+s3e))/D
z4,4 = (s2+asz)/D
We should also check that all listed cases cover whole space of the valid parame-
ters (the speeds of the machines). This is easy, as A splits the space to the cases
I[+IV and the cases IT+III. Then, I and IV are separated by B and fully cover
the halfspace A+. Similarly II and III are separated by C and fully cover A-.

4 Known Sum of Processing Times,) p; = P

Here we are given a value P and ¥ contains all J with P = P. Here we have
to solve n — 1 linear programs for each n < m, and take the maximum of their
solutions. The linear program for arbitrary n follows. Note that the shorthand
S sums all speeds of the machines, i.e., including s,+1,- .-, Sm-

maximize r=¢q;+qg+ -+ qy

subject to 1 = 510, + 52051+ - + 5,01 (Znorm)
@+t g < SOk (2k) I<k<n-1 (5)
G+ tar < (514 A+ sej41) Ok () 1<j<k<n
Tk =< Qk+1 (2<k) 1<k<n-1
0<a (20)

We omit the inequality (z,) as it is implied by (z1). (The implication follows
trivially from S = s1 + -+ 85 + Spg1 + - + Sim-)

The linear program is trivial for n = 1, and we conclude that for m = 2 the
approximation ratio is equal to 1, i.e., there is an optimal algorithm.

m = 3. For m = 3, it remains to solve the linear program for n = 2. The ratio
splits to two cases:

Case I Ratio: r = (s; + s2)S/D Case II Ratio: r = si(s1 + s2)/D

D = s9(s1 +82) + 515 D = s?+ 53
Conditions: (A+: II) s1(s1+s2) > s25 Conditions: (A-: I) s1(s1+s2) < 525
Nonbasic dual vars: zo,z<,1,21,1 Nonbasic dual vars: 20,2< 1,21
Jobs: U.b. coefficients: Jobs: U.b. coefficients:
q1 = s25/D z1 = s2(s1+s2)/D q1 = s1s2/D z1,2 = s15/D

q2 = 515/D z1,2 = 515/D @2 =353/D 211 =222 = sa(s1+s2)/D

Semi-online Preemptive Scheduling: Study of Special Cases 17

m = 4. Here we solve the linear program for n = 3. Note, that the competitive
ratio is the maximum of results of linear programs for all n < m.

Case I Ratio: r = (s1+s2+3)S/D, D = (s2+ s3)(s1 + 2+ s3) + 515

Conditions: Jobs: U.b. coefficients:

(A+: ILIII) (s1+s2)(s1+s2+s3) > (s2+s3)S q1 = g2 = (s2+s3)S/(2D) 22 = sa(s1+s2+s3)/D
Nonbasic dual vars: qs = s15/D z1,3 = s15/D
20,2<,2,%1,1,%1,2,22,2,%22,3 z1 = s3(s1+s2+s3)/D

Case IT Ratio: ©r = (s1 + s2)(s1 + s2 + s3)S/D
D = (52 + s2(s1 + 82+ 53))S + s3(s1 + 52)(s1 + 82 + 83)

Conditions: (implicit: F+) U.b. coefficients: Jobs:

(A-: I) (s1+s2)(s1+s2+s3) < (s2+s3)S 21 = s3(s1+s2)(s1+s2+s3)/D q1 = s3(s1+s2)S/D
(B+: III) s183 > 85 21,2 = 233 = sa2(s1+s2+s3)S/D g2 = s2(s1+s2)S/D
(C+: IV,V) si1(sl4sa+s3) > s38 z1,3 = S%S/D g3 = si1(s1+s2)S/D

Nonbasic dual vars: zo,z<,1,2<,2,22,21,1,22,2

Case IIT Ratio: r = (s1 + s2)(s1 + s2 + s3)S/D
D = (8% + s2(s1+ 852+ 53))S + s3(s1 + 82)(81 + 52 + 83)

Conditions: (A-: I) (s14s2)(s1+s2+s3) < (s2+s3)S Nonbasic dual vars:
(B-: 1II) s183 < s% 20,2<,1,2<,2,22,21,1,22,3
(D+: VII) s1(s1+s2)(sl4+s2+s3) > sa(s2+s3)S U.b. coefficients:
Jobs: q1 = s2(s2+s3)S/D z1 = s3(s1+s2)(s1+s2+s3)/D
q2 = s1(s2+s3)S/D 21,2 = 23,3 = s2(s1+s2+s3)S/D
q3 = s1(s1+s2)S/D 21,3 = s38/D

Case IV Ratio: r = (s; + $2)29/D

D = (8% +s150+52)(S — 51) + (51 + 82) (5152 + 5153 + 5283)
Conditions: (C-: II)) s1(s1+s2+s3) < s38 Nonbasic dual vars:
(implicit: A-,B+) (E-: V)) 55 < s3(s1+52)% 20,2<,1,2<,2,22,21,3,22,2
(F+: VD)) s1(s3+s1s2+53) > 535 U.b. coefficients:
Jobs: q1 = s1(s14+s2)%/D z1 = (s3(s1482)2—=5s3)/D
g2 = s2(s1+s2)(S—s1)/D z11 = 22,3 = 5;5/D
q3 = s1(s1+s2)(S—s1)/D z1,2 = 23,3 = sa2(s1+s2)S/D

Case V Ratio: r = s1(s1+ s2)(s1 + s2 + s3)/D
D = s1(s1+ s2)(s1 + 82+ s3) — (51 — 83) (57 — 5283)

2

Conditions: (B+: VII) s183 > s5 Nonbasic dual vars:
(implicit: A-) (C-: II) s1(s1+s2+s3) < s385 20,2<,1,2<,2,21,22,%2,2
(E4: IV, VI) 52 > s3(s1+s2)? U.b. coefficients:
Jobs: q1 = s3s1(s1+s2)/D z1,1 = 22,3 = s3(s1+s2)(s1+s2+53)/D
q2 = s251(s1+s2)/D z1,2 = 23,3 = s1s2(s1+s2+s3)/D
a3 = s7(s1+s2)/D z1,3 = (s]—(s14s2)%s3)/D

18 T. Ebenlendr

Case VI Ratio: r = s1(s? + 8153+ 53)/D, D = s3+ s3(s1 + s3)

Conditions: (implicit: A-,C-) Jobs: U.b. coefficients:

(B+: VII) Ss183 > sg q1 = slsg/D z1,1 = 53(5?+3152+s§)/D

(E-: V) 53 < s3(s1+s2)? g2 = 82s2/D z12 = s1(s1+s2—s3(s1+52))/D
(F-: VI) s1(s2+s182+52) < 28 g3 = s3/D 200 = (s3(s51482)%2—53)/D
Nonbasic dual vars: Z2,3 = 51(5%75253)/D
20,2<,1+,%<,2,%1,%2,21,3 23,3 = s2(s182+s153+s253)/D

Case VII Ratio: r = s1(s1+ s2)(s1 + s2 + s3)/D
D = s2(s1 + s2) + sa(s1 + 83)(s2 + 83)

Conditions: (B-: V,VI) s183 < s3 Nonbasic dual vars:
(implicit: A-) (D-: IIT) s1(s1+s2)(sl4+sa+s3) < sa(s2+s3)S 20,2<,1,2<,2,21,22,22,3
U.b. coefficients: 21,1 = z2,2 = s3(s1+s2)(s1+s2+s3)/D Jobs:
21,2 = s1(s2—s3)(s1+s2+s3)/D q1 = s152(s2+s3)/D
z1,3 = sl(s?—st:;)/D q2 = s?(52+33)/D
z3,3 = s1(s1+s3)(s1+s2+s3)/D qs = S?(Sl—‘rSQ)/D

5 Techniques for Solving the Parametrized LPs

The solutions above were obtained by search through a large number of possibil-
ities (10%). This is impossible to do manually and thus we developed a method
how to filter out most of the invalid possibilities by a computer. Remaining num-
ber of possible solutions is small enough to be solved by a man. Mathematical
software Maple 9.5 was used, but any modern algebraical software should do the
task. The description of the method follows.

We use the notation {maxcTx | Ax < b} for the primal linear program,
and {miny”b | yTA = T,y > 0} for the corresponding dual linear program.
W.lo.g., the number of the primal variables (the dimension of x) is smaller than
or equal to the number of the dual variables (the dimension of y).

We use the duality of the linear programing [7], i.e., if there is an optimal
solution to the primal program, then there is a pair of the primal and the dual
basic solutions which are optimal. Then we use the dual complementary slack-
ness: the primal inequalities not satisfied by equality imply zero values of the
corresponding dual variables. We also use the fact it suffices to examine the
vertices of the polytope. We know that the result is bounded, because there is
universal upper bound on competitive ratio and the input sequence with at least
one nonzero job gives a positive lower bound. Thus we take the set of the dual
variables and we generate all subsets of cardinality equal to the dimension of
the linear program (which is the number of the primal variables for all linear
programs that we examine). We get all points of intersections of the conditions
this way. We call them the solution candidates. Then we have to find the points
that are feasible and optimal for some valid values of input parameters. From the
duality slackness conditions, there is one to one mapping between the solution
candidates of primal program and the solution candidates of the dual one.

Now we stick to one arbitrary fixed subset Y of the dual variables and we
describe how the computer helps us to examine the solution pair induced by this

Semi-online Preemptive Scheduling: Study of Special Cases 19

subset. Let Y be a square matrix with y;; = 1 if i € Y and y; ; = 0 otherwise.
Now we have the primal candidate solution satisfying system of equations Y Ax =
Y'b and the candidate dual solution satisfying y’A =c” & y' (I —Y) = 0. Le.,
we set a primal inequality to equality if it corresponds to some selected dual
variable. We set the not selected dual variables to zero and we change the dual
inequalities to equations. We solve these two sets of linear equations using Maple,
and then we examine this solution pair.

At first we try to filter out the infeasible solution pairs. So how is our domain of
feasibility defined? The primal solution is feasible when all inequalities (namely
the inequalities corresponding to the not selected dual variables) are satisfied.
The dual solution is feasible when all variables are nonnegative.

It may happen that either the primal or the dual candidate solution does not
exist, i.e., the system of equations has no solution. But we already know that
optimal competitive ratio is bounded, which contradicts feasibility of such a so-
lution pair, we eliminate it. The positive lower bound also contradicts feasibility
of the solution pair, which has zero value of the resulting competitive ratio.

Now we examine the domain of feasibility of both primal and dual candidate
solutions. We developed a heuristic that uses the inequalities between the pa-
rameters (i.e., the speeds of the machines, the inequalities are s; > s;41 and
s; > 0) and determines the validity of the given inequality. The outcome of this
heuristic is one of the three cases: (i) surely always valid, (ii) surely always in-
valid or (iii) there may be values of parameters for which is the inequality valid
and another values for which is the inequality invalid. Note that inequality that
is always valid or always invalid may be so complex that our heuristic evalu-
ates it as the third case. Our heuristic also uses the factorization of polynomials
to eliminate factors that are always positive or always negative. This decreases
the polynomial degree of the inequality. So our heuristic may return a simpler
inequality that is equivalent to the original one in the third case.

The feasibility domain is given as a set of inequalities. We use our heuristic
on them. If we find an inequality that is always invalid (i.e., for all valid values
of parameters), we eliminate such a solution pair for infeasibility. If we do not
eliminate the pair, we eliminate the inequalities that are surely always valid, and
we replace the inequalities with the simpler versions, if our heuristic finds some.
We try to further eliminate the solution pair for infeasibility, or to simplify the
inequalities defining the feasible region.

Now we are done with single inequalities. So we consider pairs of inequalities.
We already have the set of inequalities reduced only to inequalities that may
be invalid for some values of parameters. A pair of such inequalities may be
in contradiction, then the solution pair is infeasible. Or one inequality may be
implied by another one, then we reduce the set of inequalities defining the feasible
region. To test the contradiction or the implication, we simply try to add or
subtract the conditions, one of them possibly multiplied by a factor from some
small predefined set of factors. We test the result using our heuristic again.

After all these computations are done, there remain several solution pairs that
have to be eliminated by hand. There may be a condition too complex for our

20 T. Ebenlendr

heuristic, or there may be three or more conditions in contradiction. Also, our set
of factors for testing contradiction may not contain the factor needed to prove
the contradiction of the two conditions. Number of these solution pairs vary, but
in general there were fewer such solution pairs than the valid ones. The tools
that we developed for the automated part are also useful here.

At last, sometimes there are more solution pairs with the same competitive
ratio. Domains of feasibility of such pairs may overlap, and sometimes they do.
But in all the examined cases there was one or several non overlapping solution
pairs, that covered the whole domain of such a formula for the competitive ratio,
while the remaining pairs were superfluous. We finish our inspection of solutions
by finding which cases are neighbor by which inequality, thus it can be easily
verified (even without using the computer), that the feasibility domains cover
the set of all valid values of parameters (the speeds of machines).

Conclusions. We solve the special cases of m = 3and m = 4 for the online schedul-
ing and for semi-online scheduling with known sum of processing times. The online
scheduling on four machines was more demanding on the computer, as there was
(152) = 792 basic solution candidates, all but six were found infeasible automatically
by computer. Four of the remaining six give the four cases of the optimal competitive
ratio. On the other hand, the semi-online scheduling with known sum of processing
times for prefixes of three jobs (the hardest case when solving four machines), has
only (150) = 252 basic solution candidates, all but 20 were found infeasible, and the
remaining 20 cases had to be processed manually. Only seven of them are relevant
for the optimal competitive ratio. Solving these cases exactly is now possible only
using our method (or a similar one), because of the amount of mathematical (alge-
braic) operations that must be done to go through all the cases. Our method can
be further improved, but this will not improve our results dramatically, because of
the exponential case explosion. This work also shows that the complexity of exact
formulas of competitive ratio grows dramatically with the number of machines.

References

1. Du, D.: Optimal preemptive semi-online scheduling on two uniform processors. In-
form. Process. Lett. 92(5), 219-223 (2004)

2. Ebenlendr, T., Jawor, W., Sgall, J.: Preemptive online scheduling: Optimal algo-
rithms for all speeds. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168,
pp. 327-339. Springer, Heidelberg (2006)

3. Ebenlendr, T., Sgall, J.: Semi-Online Preemptive Scheduling: Online Algorithm for
All Variants. In: Proc. 26st Symp. on Theoretical Aspects of Comput. Sci. (STACS),
Dagstuhl Seminar Proceedings, vol. 9001, pp. 346-360, IBFI (2009)

4. Epstein, L., Favrholdt, L.M.: Optimal preemptive semi-online scheduling to mini-
mize makespan on two related machines. Oper. Res. Lett. 30, 269-275 (2002)

5. Horwath, E., Lam, E.C., Sethi, R.: A level algorithm for preemptive scheduling. J.
ACM 24, 32-43 (1977)

6. Jiang, Y., He, Y.: Optimal semi-online algorithms for preemptive scheduling problems
with inexact partial information. Theoret. Comput. Sci. 44(7-8), 571-590 (2007)

7. Vazirani, V.V.: Approximation algorithms. In: LP duality, ch. 12. Springer, Heidel-
berg (2001)

Fast Multi-objective Reschulding of Grid Jobs
by Heuristics and Evolution

Wilfried Jakob, Alexander Quinte, Karl-Uwe Stucky, and Wolfgang Siifl

Karlsruhe Institute of Technology (KIT), Institute for Applied Computer Science,
P.O. Box 3640, 76021 Karlsruhe, Germany
{wilfried. jakob,alexander.quinte,uwe.stucky,wolfgang.suess}@kit.edu

Abstract. Scheduling of jobs to a computational grid is a permanent
process due to the dynamic nature of the grid and the frequent arrival of
new jobs. Thus, a permanent rescheduling of already planned and new
jobs must be performed. This paper will continue and extend previous
work, which focused on the tuning of our Global Optimising Resource
Broker and Allocator GORBA in a static planning environment. A for-
mal definition of the scheduling problem and a classification will be given.
New heuristics for rescheduling exploiting the “old plan” will be intro-
duced and it will be investigated how they contribute to the overall
planning process. Furthermore, the maximal possible load, which can be
handled within the given time frame of three minutes, will be examined
for a grid of growing size of up to 6000 grid jobs and 600 resources.

1 Introduction

A computational grid can be regarded a virtualised and distributed computing
centre [I]. Users describe their application jobs, consisting of one or more basic
grid jobs, by workflows, each of which may be regarded a directed acyclic graph
defining precedence rules between the grid jobs. The users state which resources
like software, data storage, or computing power are needed to fulfil their grid
jobs. Resources may need other ones. A software tool, for instance, may require
a certain operating system and appropriate computer hardware to run on. This
leads to the concept of co-allocation of resources. Furthermore, users will give due
dates, cost budgets and may express a preference for cheap or fast execution [2].
For planning, execution times of the grid jobs are needed. In case of entirely new
jobs, this can be done by estimations or by the use of prediction systems only.
Otherwise, values coming from experience can be used. The grid middleware is
expected to support this by providing runtimes and adding them to the workflow
for further usage. According to the policy of their owners, resources are offered
at different costs depending on e.g. day time or day of the week and their usage
may be restricted to certain times. In addition, heterogeneous resources usually
differ in performance as well as cost-performance ratios.

To fulfil the different needs of resource users and providers, the following
four objectives are considered: completion time and costs of each application
job measured as fulfilment of user-given limits and averaged, and to meet the

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 21 2010.
© Springer-Verlag Berlin Heidelberg 2010

22 ‘W. Jakob et al.

demands of resource providers, the total makespan of all application jobs and
the ratio of resource utilisation. Some of these criteria like costs and time are
obviously conflicting.

As grid jobs are assumed to require computing time in the magnitude of
several minutes at the minimum, a certain but limited time frame for planning
is available. A time limit of three minutes was regarded reasonable for planning.
All grid jobs, which will be started within this time slot according to the old
schedule, are regarded fized jobs and will not become subject of rescheduling.

In section 2 a formal definition of the problem, a classification, and a com-
parison with other scheduling tasks will be given. Section 3 will describe the
used algorithms, especially the new heuristics, and give a summary of the work
carried out so far. The results of the experiments for assessing the effect of the
new rescheduling heuristics will be presented in section 4, which will also report
about first investigations regarding the maximum possible load for a grid, the
size of which is growing proportionally to the amount of grid jobs.

2 Problem Definition and Classification

A notation common to the scheduling literature [3l4] is used to facilitate com-
parisons with other scheduling problems. Given are a set M of resources, a set
J of application jobs, and a set O of grid jobs. The n grid jobs of application
job J; are denoted O;1, ..., O;y,. The following functions are given:

— a precedence function p: O x O — {TRUE, FALSE} for the grid jobs

— an assignment function g : O — P(P(M)) from grid jobs to resource sets.
P(M) is the power set of M. p;; is the set of all possible combinations of
resources from M, which together are able to perform the grid job O;;

— a function ¢ : O x P(M) — R, which gives for every grid job O;; the time
needed for the processing on a resource set R;; € pu;;

— a cost function, ¢ : R x P(M) — R, which gives for every time z € R the
costs per time unit of the given resource set

Optimisation is done by choosing suitable start times s(O;;) € R and resource
allocations R;; € t3;. A valid solution must meet the following two restrictions:

1. All grid jobs are planned and resources are allocated exclusively:
YV Oi; : 3 5(0i5) € R,Ry; € pij : VM; € Ryj -
M; is in[s(O;j); s(Oi5) + t(0sj5, Rij)] exclusively allocated by O;;.
2. Precedence relations are adhered to:
Vi, j#k:p(0i5,0i) = s(Oi) > 5(0i5) + t(0y5, Rij)

A violation of the two following soft constraints is treated by penalty functions
in such a way that the amount of time and cost overruns is considered as well
as the number of application jobs affected.

Fast Multi-objective Reschulding of Grid Jobs by Heuristics and Evolution 23

1. All application jobs J; have a cost limit ¢;, which must be observed:

i 5(0ij) + t(0ij,Rij5)
Vi:cizz / c(z, Rij) dz
i=1 5(0ij5)

2. All application jobs J; have due dates d;, which must be adhered to:
Vi:d; > 8(Opm) + t(Oim, Rin) where Oy, is the last grid job of J;

The fitness calculation is based on the above-mentioned four objectives and an
auxiliary objective described in [2]. Lower and upper estimations for costs and
processing times are calculated in the first planning stage of GORBA described
in the next section. Except for the utilisation rate the relative value rv; of every
criterion ¢ is calculated based on its actual value v; 4. relative to these limits:
rv; = Vi,act — Vi;min
Vi,max — Vi,min

This makes the single values rv; independent of the task on hand and results in
a percentage-like range. These values are weighted and summed up, which yields
the raw fitness. To avoid unwanted compensation effects the criteria are sorted
singly or in groups according to priorities. The criteria of the highest priority
always contribute to the sum, while the others are added if all criteria of the next
higher priority fulfil a given threshold value. Weights and priorities are based on
experience and aimed at a fair compromise between users and resource providers.
The tuning of the suggested adjustment is left to the system administrator. If
the two soft constraints are violated, the raw fitness is lowered to the end fitness
by a multiplication by the corresponding penalty function, each of which delivers
a factor between 0 and 1. Otherwise, end fitness and raw fitness are identical.

Generalising, this task contains the job shop scheduling problem as a special
case. The extensions are co-allocation of heterogeneous and alternative resources
of different performances and time-dependent availability and costs, earliest start
times and due dates, parallel execution of grid jobs, and more than one objective.
As our task includes the job shop problem, it is NP-complete. For this reason
and because of the three minutes runtime limit, approximated solutions can be
expected only.

A comparable problem could not be found in literature, see e.g. [3] and [4] for
a comprehensive presentation of scheduling problems. This corresponds to the
results of the literature review found in [5]. There, it is concluded that only few
publications deal with multiple objectives in scheduling and, if so, they mostly
deal with single machine problems. Within the grid domain some papers dealing
with multi-criteria recently were published. In [6] it is reported that most of them
deal with two criteria, like e.g. [7], and that in most cases only one criterion
is really optimised, while the other serves as a constraint, see e.g. [8/9]. The
approach from [J] uses matrix-like chromosomes, which is probably the reason
why they can handle about 30 jobs within one hour only. Kurowski et al. [10]

24 ‘W. Jakob et al.

use a modified version of the weighted sum for a real multi-criteria optimisation,
but do not handle workflows. Summarising, we did not find a report about a
comparable amount of resources and grid job organised in workflows subject to
a global multi-criteria optimisation. Of course, a lot of publications focus on
partial aspects of this problem. For instance, the well-known Giffler-Thompson
algorithm [T1JT2] was extended to the given problem, but surprisingly produced
inferior results than our heuristics [2] described below.

3 Algorithms of GORBA and First Results

GORBA [2I13] uses advanced reservations and is based on Globus toolkit 4 at
present. It executes a two-stage planning process. In the first stage the data
of new application jobs are checked for plausibility and a set of heuristics is
applied that immediately delivers first estimations of costs and completion times.
These results are also used to seed the start population of the subsequent run
of the Evolutionary Algorithm (EA) GLEAM (Global Learning Evolutionary
Algorithm and Method) [14].

Firstly, the old heuristics used for the tuning of GORBA reported in [2/13]
are described, followed by the new ones for rescheduling. Firstly, a sequence of
grid jobs is produced by one of the following three heuristic precedence rules:

1. Shortest due time: jobs of the application job with the shortest due time first

2. Shortest grid job working time: grid jobs with the shortest working time first

3. Shortest working time of application job: grid jobs of the application job with
the shortest working time first

In the next step resources are allocated to the grid jobs using one of the following
three resource allocation strategies (RAS):

RAS-1: Use the fastest of the earliest available resources for all grid jobs

RAS-2: Use the cheapest of the earliest available resources for all grid jobs

RAS-3: Use RAS-1 or RAS-2 for all grid jobs of an application job according
to its time/cost preference

As every RAS is applied to each grid job sequence, nine schedules are generated.
The new heuristics use the grid job sequence of the old plan for grid jobs, which are
subject to rescheduling, i.e. all grid jobs which have not already been started or will
be started within the next three minutes. The new grid jobs are sorted according
to one of the three heuristic rules already mentioned and added to the sequence of
old jobs, yielding three different sequences. Resources are allocated using the three
RAS and again, nine more schedules are generated, but this time based on the old
plan. The best of these eighteen schedules is the result of the first planning stage,
while all are used to seed the subsequent EA run of the second stage.

The EA GLEAM already contains some genetic operators designed for com-
binatorial problems. They are summarised here only, due to the lack of space,
and the intereste reader is referred to [14]. A chromosome consists of a sequence
of segments, containing a sequence of genes, each of which represents a grid job.

Fast Multi-objective Reschulding of Grid Jobs by Heuristics and Evolution 25

The gene sequence determines the scheduling sequence described later. Apart
from the standard mutation, which changes the sequence of genes by simply
shifting one of them, GLEAM contains the movement of gene segments and the
inversion of their internal order. As segment boundaries can be changed by some
mutations, the segments form an evolvable meta structure over the chromosomes.
Segment boundaries are also used for the standard 1- and n-point crossover op-
erators, which include a genetic repair that ensures that every offspring does not
lack genes in the end. The evolvable segmentation and its associated operators
among others distinguish GLEAM from most standard EAs. Besides the grid
job genes, each chromosome contains a special additional gene for the selection
of the RAS. A schedule is constructed from the grid job genes in the sequence
of their position within the chromosome as follows:

Step 1: The earliest start time of a grid job is either the earliest start time of
its application job or the latest end time of its predecessors, if any.

Step 2: According to the RAS selected by the RAS gene, a list of alternatives
is produced for every primary resource.

Step 3: Beginning with the first resources of the lists, the duration of the job is
calculated and it is searched for a free time slot for the primary re-
source and its depending ones, beginning at the earliest start time of
step 1. If no suitable slot is found, the resources at the next position of
the lists are used.

Step 4: The resources found are allocated to the grid job.

In a first development phase of GORBA the incorporated algorithms were tested
and tuned using four different benchmark scenarios for planning an empty grid.
They reflect all combinations of small/large resource alternatives (sR, IR) and
small/large grid job dependencies (sD, 1D) and, together with four different loads,
yielded a total of 16 benchmarks [I5]. We use synthetic benchmarks because it
is easier to ensure and steer dissimilarities. This investigation is based on the
results reported in [2T3]: Beside the described coding we use phenotypic repair of
possible violations of precedence rules of the grid jobs and as additional crossover
operator the well-known OX operator reported by Davis [10].

4 Experimental Results for Fast Rescheduling

There are various reasons for rescheduling, of which the introduction of new
application jobs is the most likely one. Others are job cancellations or termi-
nations, new resources, resource breakdowns, or changes in the availability or
prices of resources. The experiments are based on the most likely scenario of
new application jobs and shall answer the following three questions:

1. Does rescheduling benefit from the old plan? If so, to which fraction of

finished and new grid jobs?

How effective are the old and new heuristics and the subsequent EA run?

3. Up to which amount of grid jobs and resources does the EA improve the
best heuristically generated schedule?

[\

26 ‘W. Jakob et al.

As the two benchmark scenarios based on large degrees of dependencies have
turned out to be harder than those using small degrees [2I13], they are used here
for the experiments. They are denoted sRID and [RID (small or large Resource
alternatives / large Dependencies). As pointed out in [2] and [13], their time and
cost limits were set so tightly that the heuristics could not solve them without
violating these soft constraints. One criterion of the usefulness of the EA run
was to find fitting schedules, which was achieved in most, but not all cases. In
addition to this criterion, the end fitness values obtained were also compared for
the new investigations.

For the experiments reported here, the only EA parameter tuned was the
population size varying from 90 to 900 for the runs investigating the first two
questions. For the last question, smaller populations also had to be used, as will
be described later on. For every benchmark setting and population size, 50 runs
were done and the results were averaged. Confidence intervals and t-tests were
used to check the significance of differences at a confidence range of 99%.

For the first two questions, the two basic benchmark scenarios were used for
the first planning, with 10 resources and application jobs consisting of 100 and
200 grid jobs, respectively. Eight rescheduling events were compared, which take
place when 10 or 20% of the grid jobs are finished and new application jobs with
10, 20, 30, or 50% grid jobs (relating to the original schedule size) are added.
This results in 32 benchmark settings. We concentrated on small amounts of
already processed grid jobs, because this is more likely in practice and gives a
chance for the old schedule to be useful. Otherwise, the situation is coming closer
to the already investigated “new planning” situation.

Fig. 1 compares the results for all 32 benchmark settings. It must be mentioned
that a certain variation in the resulting normalised fitness values is not relevant,

| sRID, 100 jobs, 10% fin. jobs || sRID, 100 jobs, 20% fin. jobs || sRID, 200 jobs, 10% fin. jobs | sRID, 200 jobs, 20% fin. jobs
80 80 4 B0 9

a0
| 60 60 1 60 |-
401 40 a0 L -
0 4 o 0
10 20 30 50 1 20 3 s | 1 20 3 S0 220 3 s |
51D 100 jobs, 10% fin. jobs IRID, 100 jobs, 20% fin. jobs | IRID, 200 jobs, 10% fin.jobs || _IRID, 200 jobs, 20% in. jobs

60 1 - | 80

40 1 a0

|20 20 1

o

Fig. 1. Comparison of the fitness shares obtained from the basic heuristics (dark grey),
rescheduling heuristics (light grey) and GLEAM (white) for all 32 rescheduling settings.
X-axis: fraction of new grid jobs in percent relative to the original schedule size, y-axis:
normalised end fitness. Abbreviations: lv: limit violations (mostly 1 to 3 application
jobs violating the due date), for sRID and [RID see previous page.

Fast Multi-objective Reschulding of Grid Jobs by Heuristics and Evolution 27

Table 1. Comparison of the contributions of all rescheduling heuristics for different
fractions of finished and new grid jobs. The best values of each column are marked
dark grey, while values which reach 90% of the best at the minimum are marked light
grey. Abbreviations: SWT: shortest work time, RAS: see section 3.

Finished grid jobs: 10% 20% Ave-
New grid jobs: 10% 20% 30% 50% 10% 20% 30% 50% rage
shortest due time & RAS-3 0.90 0.96 0.88 0.92 0.86 0.83 0.89 0.92 0.90
shortest due time & RAS-2 0.70 0.44 0.73 0.80 0.64 0.59 0.75 0.61 0.66
shortest due time & RAS-1 0.48 0.44 0.54 045 059 0.22 0.53 0.45 0.46
SWT of grid job & RAS-3 0.97 0.86 0.81 0.69 0.94 0.78 0.81 0.62 0.81
SWT of grid job & RAS-2 0.74 0.42 0.63 0.53 0.66 0.50 0.68 0.39 0.57
SWT of grid job & RAS-1 047 0.41 0.46 0.28 0.57 0.24 0.54 0.26 0.40
SWT of appl. job & RAS-3 0.90 0.88 0.82 0.70 0.86 0.83 0.77 0.70 0.81
SWT of appl. job & RAS-2 0.70 0.41 0.70 0.56 0.64 0.51 0.57 0.46 0.57
SWT of appl. job & RAS-1 0.48 0.44 0.57 0.31 0.59 0.24 0.49 043 0.44

as the benchmarks are generated with some stochastic variations. Values between
50 and 70 may be considered good results. All GLEAM runs improve the fitness
significantly. Even for the smallest improvement of benchmark [RID, 100 grid
jobs, 10% fin. jobs, the best heuristic fitness is clearly below the confidence
interval of the EA result. The most important outcome is that for 10% new grid
jobs, all eight scenarios perform well. The contribution of the heuristics is clearly
situation-dependent and if they yield poor results, GLEAM compensates this in
most cases. In other words, if the heuristics can solve the problem well, there
is smaller room left for an improvement at all. Another nice result is that this
compensation is also done to a certain extent for more new grid jobs, even if
the schedules cannot be made free of limit violations. It can be expected that
more new grid jobs will lower the contribution of the replanning heuristics and,
in fact, this is confirmed by Fig. 1 for the instance of 50% new grid jobs. The
case of [RID, 200, and 10% finished grid jobs is somewhat exceptional, as the
replanning heuristics do not work well even in the case of few new jobs.

Table 1 illustrates the contribution of each rescheduling heuristic. For each
of the 32 benchmark settings, the fitness of each heuristic is calculated relative
to the best heuristic result for this setting. The four values for both grid job
amounts for sRID and [RID are averaged and shown in the table. The right
column again averages the values for the different finished and new grid job
fractions. The old heuristics based on short working times in the lower part of
the table show the same poor behaviour as for planning an empty grid [2], but
when taken as a basis for the new rescheduling heuristics, they contribute quite
well. According to the table, RAS-3 performs best, but the raw material not
shown here has thirteen cases, in which the two other RAS are the best ones.
Thus, it is meaningful to use them all.

To investigate the third question, the rescheduling scenario with 10% finished
and 10% new grid jobs is used with proportionally growing numbers for grid jobs
and resources for the two basic benchmarks sRID and [RID. The comparison is

28 ‘W. Jakob et al.

100 1y

r 140
90 H
+ 120
80 H
— 4 + 100 £
z N o
& c
@ 60 1 @
E + 80 uE.}
@ 50 H 3
S a0 H T80 EE'L
S E
® 30 Ha0 <
20 H
+ 20
10 4
0+ -0

200 300 400 500 600 700 800 900 100012001400 16002400 320040006000 grid jobs
20 30 40 50 60 70 B8O 90 100 120 120 160 240 320 400 600 resources

Fig. 2. Success rate and EA improvement compared to the best heuristic at increasing
load for both basic benchmark scenarios and 10% finished and new grid jobs

based on the fitness improvement obtained by the EA compared to the best
heuristic result and on the success rate, which is the ratio between violation-free
and total runs per benchmark setting. Fig. 2 shows the results. As expected,
success rate and EA improvement decrease with growing load. The relatively
large variations of the EA improvement can be explained by the varying abil-
ity of the heuristics to produce schedules with more or less limit violations. As
limit violations are penalised severely, a small difference already can produce a
relatively large fitness alteration. No violations at all leave little room for im-
provements like in the two cases here marked by a white triangle or rectangle.
The sRID benchmark is harder to get violation-free, as shown by Fig. 2. This
cannot be achieved in case of more than 500 grid jobs and 50 resources. If more
resource alternatives are available, as it is the case for the [RID benchmark,
schedules free of limit violations can be achieved more easily and, in fact, this
can be observed for up to 800 grid jobs and 80 resources. For greater loads up
to 1600 grid jobs and 160 resources, there still is a chance of the schedules being
free of violations. Starting from this load, the improvement rate is decreasing
constantly. It may therefore be concluded that even for large loads like 6000
grid jobs and 600 resources, the EA delivers improvements below the level of
schedules observing the limits completely. In other words, the amount of ap-
plication jobs keeping the budgets is still increased compared to the heuristic
results.

The more grid jobs must be planned, the less evaluations can be processed
within the three minutes time frame. Fig. 3 shows that this amount decreases
continuously with growing load. The more resource alternatives are available,
the more must be checked by the RAS, which lasts longer and explains the lower
numbers for the IRID case. In the long run, the evaluations possible decrease to
such an extent that the population size must be reduced to 20 or 30 to obtain
two dozens of generations at least in the end. It is obvious that with such small

Fast Multi-objective Reschulding of Grid Jobs by Heuristics and Evolution 29

1000

A -4~ sRID 50 4

MR — |
o . B w—
N N P —

0 . : : . -

\ \ 1600 2400 3200 4000 6000
300 \\ 1‘.\ 160 240 320 400 600
200

100 \\%:3_____1_____‘

grid jobs: 200 300 400 500 600 700 800 900 1000 1200 1400 1600
resources: 20 30 40 50 60 70 80 90 100 120 140 160

evaluations (thousand)

Fig. 3. Evaluations possible within the three minutes time frame at increasing load.
For a better visibility, the diagram for 2400 and more grid jobs is shown separately.

numbers, only poor results can be expected and it is encouraging that even with
the largest load there still is a small improvement. Hence, a faster implementation
of the evaluation software will enlarge the possible load or deliver better results
for the loads investigated.

5 Conclusion and Future Work

It was shown that the problem of scheduling grid jobs to resources based on
realistic assumptions and taking the demands of resource users and providers
into account is a much more complex task than just job shop scheduling. The
task on hand enlarges the classical problem by alternative and heterogeneous
resources, co-allocation, and last, but not least by multi-objective optimisation.
The latter makes it hard to define a local searcher, as it is hard to decide whether
a small local change of e.g. a job sequence is an improvement or not without
setting up the complete allocation matrix. Consequently, we have not yet found
a useful local searcher up to now. The investigated problems are rescheduling
problems, which are the common case in grid resource management. Reschedul-
ing is necessary, if new jobs arrive, planned ones are cancelled, resources break
down or new ones are introduced, to mention only the more likely events. For
this purpose, new heuristics that exploit the information contained in the “old
plan” were introduced. It was shown that the solution for the common case of
smaller changes, i.e. in the range of up to 20% finished and new grid jobs, could
be improved significantly. The processible work load was also investigated for
10% finished and new grid jobs at an increasing number of jobs and resources.
It was found that for loads of up to 6000 grid jobs and 600 resources, it was still
possible to gain an improvement by the EA run within the given time frame of
three minutes runtime.

30

‘W. Jakob et al.

References

=W

10.

11.

12.
13.

14.

15.

16.

. Foster, I., Kesselman, C.: The Anatomy of the Grid: Enabling Scalable Virtual

Organisations. Int. J. of Supercomputer Applications 15(3), 200-222 (2001)

. Jakob, W., Quinte, A., Stucky, K.-U., Siff, W.: Fast Multi-objective Scheduling

of Jobs to Constrained Resources Using a Hybrid Evolutionary Algorithm. In:
Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008.
LNCS, vol. 5199, pp. 1031-1040. Springer, Heidelberg (2008)

. Brucker, P.: Scheduling Algorithms. Springer, Heidelberg (2004)
. Brucker, P.: Complex Scheduling. Springer, Heidelberg (2006)
. Setamaa-Karkkainen, A., Miettinen, K., Vuori, J.: Best Compromise Solution for

a New Multiobjective Scheduling Problem. Comp. & OR 33(8), 2353-2368 (2006)

. Wieczorek, M., Hoheisel, A., Prodan, R.: Taxonomy of the Multi-criteria Grid

Workflow Scheduling Problem. In: Talia, D., et al. (eds.) Grid Middleware and
Services - Challenges and Solutions, pp. 237-264. Springer, New York (2008)

. Dutot, P.F., Eyraud, L., Mouni, G., Trystram, D.: Bi-criteria Algorithm for

Scheduling Jobs on Cluster Platforms. In: Symp. on Par. Alg. and Arch., pp. 125—
132 (2004)

. Tsiakkouri, E., Sakellariou, S., Dikaiakos, M.D.: Scheduling Workflows with Budget

Constraints. In: Gorlatch, S., Danelutto, M. (eds.) Conf. Proc. CoreGRID Work-
shop Integrated Research in Grid Computing, pp. 347-357 (2005)

. Yu, J., Buyya, R.: A Budget Constrained Scheduling of Workflow Applications on

Utility Grids using Genetic Algorithms. In: Conf. Proc. HPDC 2006. IEEE CS
Press, Los Alamitos (2006)

Kurowski, K., Nabrzyski, J., Oleksiak, A., Weglarz, J.: Scheduling Jobs on the Grid
- Multicriteria Approach. In: Computational Methods in Science and Technology,
vol. 12(2), pp. 123-138. Scientific Publishers OWN, Poland (2006)

Giffler, B., Thompson, G.L.: Algorithms for Solving Production Scheduling Prob-
lems. Operations Research 8, 487-503 (1960)

Neumann, K., Morlock, M.: Operations Research. Carl Hanser, Mnchen (2002)
Jakob, W., Quinte, A., Sif}; W., Stucky, K.-U.: Tackling the Grid Job Planning
and Resource Allocation Problem Using a Hybrid Evolutionary Algorithm. In:
Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2007.
LNCS, vol. 4967, pp. 589-599. Springer, Heidelberg (2008)

Blume, C., Jakob, W.: GLEAM — An Evolutionary Algorithm for Planning and
Control Based on Evolution Strategy. In: Canti-Paz, E. (ed.) GECCO 2002,
vol. LBP, pp. 31-38 (2002)

SiB, W., Quinte, A., Jakob, W., Stucky, K.-U.: Construction of Benchmarks for
Comparison of Grid Resource Planning Algorithms. In: Filipe, J., et al. (eds.) Conf.
Proc. ICSOFT 2007, vol. PL, pp. 80-87 (2007)

Davis, L. (ed.): Handbook of Genetic Algorithms. V.N. Reinhold, New York (1991)

Comparison of Program Task Scheduling
Algorithms for Dynamic SMP Clusters
with Communication on the Fly

Lukasz Masko', Marek Tudruj'?,
Gregory Mounie®, and Denis Trystram?®
! Institute of Computer Science of the Polish Academy of Sciences

ul. Ordona 21, 01-237 Warsaw, Poland
2 Polish-Japanese Institute of Information Technology
ul. Koszykowa 86, 02-008 Warsaw, Poland
3 Laboratoire Informatique et Distribution — IMAG
51 rue J. Kuntzman, 38330 Montbonot St. Martin, France
{masko,tudruj}@ipipan.waw.pl, {mounie,trystram}@imag.fr

Abstract. The paper presents comparison of the two scheduling algo-
rithms developed for program structurization for execution in dynamic
SMP clusters implemented in Systems on Chip (SoC) technology. SoC
modules are built of a set of processors, memory modules and a multi—
bus interconnection network. A set of such SoCs is interconnected by
a global communication network. Inter—processor communication inside
SoC modules uses a novel technique of data transfers on the fly. The algo-
rithms present two different scheduling approaches. The first uses ETF—
based genetically supported list scheduling heuristics to map nodes of a
program to processors. The second is a clustering—based algorithm using
Moldable Tasks (MT) to structure the graph. Both algorithms structure
computations and local data transfers to introduce processor switching
and data transfers on the fly. The algorithms were tested using a set of
automatically generated parameterized program graphs. The results were
compared to results obtained using a classic ETF-based list scheduling
without data transmissions on the fly.

1 Introduction

The paper presents research results on scheduling for a new type of clustered
SMP system [8]. This system is built of shared memory multiprocessor (SMP)
modules implemented in a System on Chip (SoC) technology [4] connected via
a global network. Each SoC module consists of a set of processors and shared
memory modules, interconnected via a multi-bus local network. Processors are
connected to a number of local memory busses and may be dynamically switched
between them in runtime to form processor clusters. The local interconnection
network provides data reads on the fly, which reduces the number of reads of the
same data from shared memory to processor data caches for many processors
connected to the same local memory module.

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part I, LNCS 6068, pp. 31 2010.
© Springer-Verlag Berlin Heidelberg 2010

32 t.. Masko et al.

Program scheduling for parallel systems in a general case is an NP—complete
problem. In the assumed architecture, apart from standard scheduling problems
such as mapping of nodes to processors and data transfers to communication
resources, one must also consider multi-level communication methods (trans-
ferring data in processor data caches between nodes, standard and on the fly
data transfers via local memory buses and communication through a global in-
terconnection network) and constraints on processor data caches. The paper
presents experimental results with scheduling parameterized program graphs in
the described architecture using two algorithms specially designed for such sys-
tem. First of them is a 2-phase algorithm, based on list mapping. Its first phase
considers mapping of tasks to processors located in different SoC modules and
uses a genetic algorithm supported by a list scheduling with a modified ETF
heuristics. The second phase transforms and schedules computations and com-
munications to use processor switching and read on the fly facilities inside SoC
modules. The second studied algorithm implements a clustering approach based
on the notion of Moldable Tasks (MT), which are parallel tasks that contain
some parallelism and may be executed on a different number of processors [3].
The program graph is first converted int MT—graph by dividing it into subgraphs
of a special form, constituting MTs. Each MT is then scheduled for a range of
numbers of processors, depending on the size of the SoC module in the target
system. This scheduling includes introduction of reads on the fly and processor
switchings to the MT graph. Finally, each task is alloted a number of processors
and the whole MT graph is scheduled in the target system.

The paper cosists of 3 parts: first, the assumed system architecture is out-
lined. Then the scheduling algorithms are described. Finally, the experiments
and comparison of the results obtained using the presented algorithms and a
standard list scheduling algorithm with the ETF heuristics are presented.

2 Dynamic SMP Clusters Based on SoC Technology

Fig. Ih presents the general structure of the proposed system. Its basic elements
are processors P and memory modules M. Fig.[Ib presents the general structure
of a sub-system that uses a local data exchange network to connect processors
with memory modules. It includes a number of processors, a set of instruction
memory modules, a set of data memory modules, a set of separate data and
instruction caches and a set of local cluster networks to which processors (i.e.
their data caches) can be connected. Each processor is equipped with many
data cache modules, which provide multi-ported access to/from memory mod-
ules. Therefore, a processor can belong to many clusters at a time. This feature
strongly improves data communication efficiency. All memory modules are also
connected to the external peer to peer Global Network. Such structure can be
implemented as a VLSI SoC module. A number of such modules can be con-
nected via a global network such as memory bus or a crossbar switch. Special
inter-processor synchronization hardware has to be included in the system to
enable parallel execution of many synchronization operations for the program.

Comparison of Program Task Scheduling Algorithms 33

?L Local
. network [5—
(NoC)

oo

— Local bus

-

J—— LEDa‘ Data cache Dal! Do cache Dair—pl L
To global network
Local 1 T—T o |
H network [H— |Pr005550r 1 | |Processor 2| voe II’rocessor N|

(NoC) L I I
Instruction cache]

(102d-03-102d)
SHOMIDU [BGO[D)

?L Local
. network H—{5
(NoC)

I
Instruction cache| Instruction cache oo
Instruction Instruction e Instruction
b) memo; memo: memo;

Fig. 1. General system structure a) and architecture of a single SoC module b)

To control communication in clusters: data pre-fetch, write, read on the fly and
processor switching between clusters can be used. Reads on the fly are similar to
cache injection. They consist in reading data on the fly from a memory module
bus whose address lines are snooped by a special address snooping unit. Read on
the fly requests are stored in the address snooping tables. Exact synchronization
of a process that writes with reading ones is necessary. Requests such as memory
write or read requests and synchronized on the fly read requests are serviced
in processors by Communication Request Controllers (CRCs). Each memory
module has an arbiter, which co-ordinates memory requests issued by CRCs.
Processor switching between clusters consists in connecting a processor to a new
cluster (i.e. its local network). A processor switched to a cluster can bring in its
cache data, which are useful for the cluster. Other processors in this cluster can
read data on the fly, when the switched processor writes then to the memory.

Tasks in programs are built in such way, that they do not require data cache
reloading during their execution. All data have to be pre-fetched to processor
data cache before a task begins. Current task results are sent to the cluster
memory module only after task completes. This program execution paradigm,
called cache—controlled macro data—flow principle, completely prevents data
cache thrashing. The single assignment rule is used to avoid cache consistency
problem in a case, when data produced by a task are to be modified by other
parallel tasks.

More details on the architecture of the system can be found in [g].

3 Scheduling Algorithms

Program graph scheduling for the presented architecture deals with the following
problems:

— Mapping of computing nodes of a program graph to processors in the exec-
utive system. It also includes mapping of processors to SoC modules.

34 t.. Masko et al.

— Mapping of data transfers to busses and memory modules in the system.
Some of data transfers may already have these factors determined (if the
communicating processors are mapped to different SoC modules, the read
operation must use the global bus). For local data transfers this may include
addition of processor switching between local busses to adjust connection
configuration to local program needs.

— Analysis of local communication and its transformation to data transfers on
the fly, wherever it is profitable.

— Analysis of processor data caches and transformation of a graph to such
form, which obeys this constraint.

Optimization of data communication between data caches and memory modules
has strong influence on the execution time of the scheduled programs. The pro-
posed program transformations can be applied in a various order, giving various
algorithms of a different quality. Also, for each of the above aspects, a different
internal strategy may be used. The paper discusses two different approaches to
program scheduling described in two consecutive sections of the paper.

3.1 2—Phase List—Based Scheduling Algorithm

The first presented algorithm takes advantage of a list scheduling method, adapt-
ing it to a situation, where a set of available processors is divided into subsets
and communication between two processors may vary, depending on their place-
ment [9]. The proposed algorithm consists of the two steps.

Distribution of program nodes between processors. At the beginning, all
the computation nodes of the initial program graph must be distributed among
all the processors in the system. In this step a standard macro dataflow notation
of the program is used, in which program graph nodes correspond to computa-
tions and edges correspond to communications. The mapping is performed using
a list scheduling algorithm with an ETF heuristics modified in such a way, that
it respects the division of a set of all processors in the system to SoC modules.
Processors are interconnected via a full network, in which the links between pro-
cessors from the same SoC module are fast (local communication), while links
between different SoCs are slow (global communication). Therefore, the global
communications are penalized — their execution time is multiplied by the factor
equal to the parameter global_penalty. The higher the value of this parameter,
the more likely the nodes would be mapped to the processors in the same SoC
module, even if it means their sequential execution. In this way, it is possible to
optimally map communication—isolated subgraphs of the program graph, which
should not be asigned to processors from different SoC modules.

A mapping routine is provided with the mapping vector V = (as,...,apmn),
0 < a; < M, where N is the number of processors in a SoC module and M is the
number of SoC modules in the system. For each i, values in such a vector mean
that a logical processor i is mapped to a SoC module a;. The mapping is valid
iff the the size of a SoC module is equal to N. To find the best mapping, the

Comparison of Program Task Scheduling Algorithms 35

optimal mapping vector V must be provided. This vector depends on a scheduled
graph and its calculation requires theknowledge about the mapping algorithm.
Therefore, in a general case, all the possible vectors should be examined to find
the best one. For a given number M of SoC modules and N processors in a
module, the number of all the possible mapping vectors equals]S/[A,/[]é\fl; This
number grows rapidly as the number of SoC modules or processors per module
increases. Therefore the heuristic search algorithm must be used. To determine
the best mapping vector, we use a genetic algorithm. Each chromosome defines
one mapping vector (corresponds to one processor distribution scheme). It is
a sequence of M N integers (ay ...apyn), where a; denotes the SoC module to
which processor i is mapped. According to such placement, for every pair of
processors ¢ and j, if a; # a; all communication between these processors is done
through the global interconnection network. If a; = a;, then communications
between these processors use local communication networks, which implies, that
in the future they can be executed using data transfers on the fly.

For each chromosome, the scheduled program graph is mapped to proces-
sors using a list scheduling algorithm with ETF heuristics adopted to obey
the constraints derived from the mapping chromosome. The value of a fitness
function F'it for a chromosome C' depends on the execution time of nodes
in so scheduled program graph and is determined by the following formula:

Fit(C) = const — E”Efl‘:;lnd(v), where G is the graph scheduled according to the
mapping given by a chromosome C, F is the set of nodes in G, which have no
successors, end(v) is the completion time of the node v and const is a constant,
such that Fit(C) > 0 for every possible C. The presented fitness function pro-
motes such chromosomes (from the ones which give the same graph execution
time), which are partially correct. It means, that some parts of the graph are
mapped optimally, while others may be not. The crossover and mutation opera-
tors consist in remapping random processors from one SoC module to another.
If it is necessary, a chromosome is fixed by redistribution of processors from the
SoC modules, which are too big, among other SoC modules according to the
Best Fit rule to preserve as many processors as possible in the same module.

Structuring a mapped program graph. The main goal of the second phase
is communication structuring. It aims at transforming local data transfers to
reads on the fly. It includes conversion of kinds of nodes (standard reads to read
on the fly), adding extra nodes to the graph (barriers, processor switchings). This
process is iterative and based on local subgraphs corresponding to a communi-
cation schemes such as broadcasts, reductions or a butterflys (many—to-many
communication), called basic structures [5]. Such transformations introduce syn-
chronization, which is necessary for proper execution of data reads on the fly.
Barriers impose delays in program execution or may lead to deadlocks. There-
fore, in some cases it is necessary to exclude some nodes from a transformation.
The nodes from the graph G are chosen according to times determined during
simulated execution.

Finally, the graph is tuned to include the last constraint — the size of the
processor data caches. The nodes are examined in the order determined by a

36 t.. Masko et al.

simulated execution of the graph. The algorithm calculates the data cache occu-
pancy for each processor. If in any time point the required cache size exceeds the
available cache capacity, the conflict is resolved so as to preserve the cache—driven
macro dataflow program execution principle. Program graph transformations are
automatically introduced which introduce additional steering edges, writes from
processor data caches to a shared memory and reloading of this data back to
processor data caches, when it is required.

3.2 MT-Based Scheduling Algorithm

The second discussed algorithm [6] works in three phases. First, the clustering
is used to divide a graph to subgraphs, constituting Moldable Tasks. Then, each
subgraph is analyzed separately. It is scheduled for a number of processors, using
a list scheduling principles similar to the scheduling in the first algorithm. Then,
for each MT, a number of processors is alloted and all the MTs are asssigned to
processors in a target system.

A program graph is divided into subgraphs (G’) of a limited size, which con-
stitute Moldable Tasks created according to the following rules:

— For each node v € G, if G’ contains any direct predecessor u of v, it contains
all direct predecessors of v.

— For each node v € G/, if G’ contains any direct successor v of u, it contains
all direct successors of wu.

— For each pair of nodes u,v € G, if there exists a path between u and v in
the graph, all the nodes on this path belong to G'.

The division is performed using clustering with a criterion based on a critical
path CP (i.e. the heaviest path) of the graph. In every step, one edge from the
current CP graph is selected. Then, the algorithm tries to merge the two MTs,
which are connected with the selected edge. The merge operation includes graph
closure operation, that follows the rules described above. If the newly created
graph is not too big, it is accepted, otherwise it is rejected. The procedure
continues until there are no unexamined edges (when all the edges on the CP
are examined, also others are taken into account).

Each MT subgraph is then structured for a number of processors, from 1 to
the number of processors in the SoC module. The structuring is performed in a
similar way to the one in the previous algorithm (the nodes are mapped to the
processors using a standard list scheduling, then communication and processors
caches utilization is examined). Each execution time is remembered.

In the final step, each MT is alloted a number of processors, on which it will
be executed and the tasks are assigned to processors in a target system. This
process starts with a set of free MTs, i.e. the ones that have no predecessors in
the MT—graph. They are communication—-independent which means, that they
may be executed in any order. For this set, each combination of possible allot-
ment (assignment of the number of processors to a task) is examined and for
each such allotment they are scheduled in a target system. Execution time of

Comparison of Program Task Scheduling Algorithms 37

each task depends on the number of alloted processors and is equal to the time
determined in the previous step. The best allotment is chosen. After these tasks
are examined, their successors constitute a set of tasks without uncompleted
predecessors. Therefore the processors may be alloted to them in the same way
as to their predecessors. This process is iterated, until there are no unvisited
tasks. As a result, the program graph is structured and scheduled.

4 Experimental Results

As a testbed, a set of automatically generated semi-regular program graphs was
used. The graphs consisted of 4 communication-intensive subgraphs executed
in parallel. Each subgraph contained 7 layers of nodes, 3 to 4 nodes (randomly
chosen) in each layer, so they had width equal to 16. The communication inside
a subgraph took place only between consecutive layers. Additional rare random
communication between the subgraphs can was introduced (examined 0 and 25
such communication edges per graph). The whole randomly generated exemplary
graph is presented in Fig.[2l The communication—intensive elementary subgraphs
are denoted by ovals. The bold edges represent additional inter—subgraph com-
munication. Such graphs represent a higher level of difficulty then majority of
graphs for real algorithms (usually regular).

All the computing nodes had the same weights (equal to 100). In the exper-
iments we have assumed the following variable parameters: the input degree of
graph nodes (two variants: 1-2; 3—4), the weight of communication edges (data
volume: 25, 50, 100), the number of SoC modules and processors in the system
(1 to 4 SoC modules, up to 16 processors in total). The system contained twice
as many shared memory modules and local busses as the number of processors.
The size of processor data cache depended on the scheduled program graph and
was the same for each tested hardware configuration. For a given graph, the pro-
cessor data cache volume was set to twice the maximal data size required by any
of graph nodes. A set of graphs generated using these rules was automatically
scheduled using the implementation of the presented algorithms. We have also
examined a variant of these algorithms, when reads on the fly were not intro-

Fig. 2. A structure of an exemplary program graph

38 t.. Masko et al.

14,00

12,00 A e
10,00 /\/ —
m ETF
A /'_\ . 2F
v MT

N
v
T T T T]
1x4 1x8 2x4 1x16 2x8 4x4

Fig. 3. Comparison of speedups obtained using the standard ETF scheduling, 2-phase
with reads on the fly and MT-based with reads on the fly algorithms

duced to the program graph, to check the influence of reads on the fly on the
execution time of graphs. The last scheduling algorithm (for comparison) was a
classical list scheduling with the ETF heuristics, without application of reads on
the fly, but with processor switching (due to mapping of transmissions to mem-
ory busses in a multi-bus SoC network). All the experiments were performed
using a cycle—acurate software simulator written in C++.

There were 6 parallel configurations tested: 1 SoC module with 4 processors
(1x4), 1 SoC module with 8 processors (1x8), 2 SoC modules with 4 processors
each (2x4), 1 SoC modules with 16 processors (1x16), 2 SoC modules with 8
processors each (2x8) and 4 SoC modules with 4 processors in each (4x4). We
have also evaluated the execution time of each graph on a single processor. Se-
quential execution obeyed the same constraints as the parallel one, including
limited processor data cache size. For each configuration, the communication—
to—computation speed ratio was set to 4. It meant that execution of a com-
munication node with a given weight lasted 4 times longer then execution of a
computation node with the same weight. The size of processor data cache for
each simulated graph was set to twice the the largest requirement of a node
in a graph (which is enough to execute a single thread without unnecessary
data reloads and with some additional space for data transfers in processor data
cache) and was the same for each hardware configuration, including sequential
execution.

Fig.[Blpresents the speedups obtained using a standard ETF-based list schedul-
ing algorithm (ETF) compared to results obtained with presented algorithms.
The 2-phase scheduling algorithm (2F) gives a bit worse results than the MT-
based algorithm (MT). It is caused by the different approach to scheduling of by
both algorithms. Like each list scheduling, the 2-phase algorithm prefers map-
ping parallel nodes to separate processors (if the communication doesn’t disturb)
rather than placing them on the same processor. If the width of the graph ex-
ceeds the number of available processors, nodes from different (potentially not
related) parts of the graph are mixed on the same processor, reducing usage
of data transfers through processor’s data cache. MT-based scheduling algo-

Comparison of Program Task Scheduling Algorithms 39

rithm allows placing of parallel nodes on the same processor, but such nodes
are selected from the same subgraphs of the scheduled graph. It increases the
probability, that more data can be transferred via processor’s data cache, im-
proving execution time.

For configurations with 4 and 8 processors, the results obtained with a clas-
sic ETF-based algorithm were similar to the results of the 2—phase algorithm
and both give worse results then the MT-based algorithm. This is due to the
fact, that the serialization, which is necessary in this case, strongly decreases
the posibility of using reads on the fly. The superlinear speedups obtained for
graphs scheduled with the MT-based algorithm are caused by better utilization
of processor data caches, which is not disturbed by threads belonging to different,
not related parts of the graph. In configurations with the number of processors
equal to the width of a graph, we may observe, that both proposed algorithms
outperform the standard ETF-based scheduling. The results obtained with the
MT and 2-phase algorithms were even 2.4 (1.9) times better. The decrease of
performance in the case of 16 processors divided to 2 and 4 SoC modules (2x8,
4x4), regardless the algorithm, is caused by the global communication implied
by the system structure composed of many SoC modules.

The graphs presented in Fig. @] show the influence of reads on the fly on
speedups obtained by both presented algorithms. When the number of processors
is small, each computing unit must execute nodes from more than 1 parallel
thread. This increases requirements on the size of processor data caches and
forces the processor to send some data to shared memory before read on the
fly transmission can take place. It makes such transmissions hardly possible or
not optimal, therefore their presence has small influence on program execution
time. Reads on the fly have a very impressive influence on execution speedups,
when the executive system is equipped with the number of processors equal
to the width of a scheduled graph (16 processors). In this case, each processor
executes the nodes only from one thread, therefore the requirements on the size
of processor data caches are weaker. In such situation there is no harmfull data
cache reloading. Therefore data transmissions on the fly are much more effective

14,00 14,00
12,00 12,00 AR —
10,00 [T, 10,00

= 8,00 /L\;//.‘.\'
6,00 el 6,00
4,00 A 4,00

8,00

Y
2,00 \ \ \ \ | 2,00 \ \ \ \ \
x4 1x8 2x4 1x16 2x8 4x4 x4 1x8 2x4 1x16 2x8 4x4
m 2F no ¢ 2F with m MTno e MT with
OTF OTF OTF OTF
a) b)

Fig. 4. Influence of reads on the fly (OTF) on speedups obtained using 2-phase (a)
and MT-based (b) algorithms

40 t.. Masko et al.

in this case. The speedups due to reads on the fly reached 50% for 2-phase
algorithm in a 1x16 configuration and over 43% for MT-based algorithm in 2x8
configuration. When the system is built of more than 1 SoC module (2x8, 4x4),
the results obtained by our algorithms without reads on the fly are still better
than the speedups for standard ETF-based list scheduling algorithm.

5 Conclusions

The paper describes two new algorithms for scheduling parallel programs for SoC
dynamic SMP clusters with communication on the fly. The first uses list schedul-
ing for mapping nodes to processors. Then it analyzes and transforms commu-
nication between processors, obeying processor cache size constraint. The sec-
ond algorithm uses clustering to divide a graph to subgraphs (Moldable Tasks).
Then, each subgraph is analyzed separately. It is scheduled for a number of pro-
cessors, using a list scheduling similar to the scheduling in the first algorithm.
Then, for each MT, a number of processors is alloted. Finally, all the MTs are
asssigned to processors in a target system. The two algorithms are based on dif-
ferent assumptions, therefore they produce solutions of a different quality. The
experimental results show, that they produce good results. They outperform a
classic list scheduling algorithm with ETF heuristics, even when no reads on the
fly are used. The results prove, that the algorithms are able to utilize all the
features of the presented architecture, including reads on the fly and processor
switching.

References

1. Hwang, J.-J., Chow, Y.-C., Anger, F.D., Lee, C.-Y.: Scheduling precedence graphs
in systems with interprocessor communication times. STAM Journal on Comput-
ing 18(2) (1989)

2. Leung, J.Y.-T., Anderson, J.H.: Handbook of scheduling. In: Algorithms, Models
and Performance Analysis. Chapman and Hall, Boca Raton (2004)

3. Lepere, R., Trystram, D., Woeginger, G.J.: Approximation algorithms for scheduling
malleable tasks under precedence constraints. In: 9th Annual European Symposium
on Algorithms, LNCS. Springer, Heidelberg (2001)

4. Benini, L., De Micheli, G.: Networks on Chips: A New SoC Paradigm. IEEE Com-
puting, 70-78 (Janyary 2002)

5. Masko, L..: Atomic operations for task scheduling for systems based on communica-
tion on—the—fly between SMP clusters. In: 2nd International Symposium on Parallel
and Distributed Computing, ISPDC 2003, Ljubljana, Slovenia. IEEE CS Press, Los
Alamitos (2003)

6. Masko, L., Dutot, P—F., Mounié, G., Trystram, D., Tudruj, M.: Scheduling Mold-
able Tasks for Dynamic SMP Clusters in SoC Technology. In: Wyrzykowski, R.,
Dongarra, J., Meyer, N., Wasniewski, J. (eds.) PPAM 2005. LNCS, vol. 3911, pp.
879-887. Springer, Heidelberg (2006)

Comparison of Program Task Scheduling Algorithms 41

7. Tchernykh, A.) et al.: Two Level Job—Scheduling Strategies for a Computational
Grid. In: Wyrzykowski, R., Dongarra, J., Meyer, N., Wasniewski, J. (eds.) PPAM
2005. LNCS, vol. 3911, pp. 774-781. Springer, Heidelberg (2006)

8. Tudruj, M., Masgko, f..: Parallel Matrix Multiplication Based on Dynamic SMP
Clusters in SoC Technology. In: Thulasiraman, P., He, X., Xu, T.L., Denko, M.K.,
Thulasiram, R.K., Yang, L.T., et al. (eds.) ISPA Workshops 2007. LNCS, vol. 4743,
pp. 375-385. Springer, Heidelberg (2007)

9. Masko, L., Tudruj, M.: Task Scheduling for SoC-Based Dynamic SMP Clusters with
Communication on the Fly. In: Proceedings of the ISPDC 2008 Conference, Krakow,
Poland. IEEE CS Press, Los Alamitos (2008)

Study on GEO Metaheuristic for Solving
Multiprocessor Scheduling Problem

Piotr Switalski! and Franciszek Seredynski?-3

! University of Podlasie, Computer Science Department,
3 Maja 54, 08-110 Siedlce, Poland
peter@ii.ap.siedlce.pl
2 Polish-Japanese Institute of Information Technology,
Koszykowa 86, 02-008 Warsaw, Poland
3 Institute of Computer Science, Polish Academy of Sciences,
Ordona 21, 01-237 Warsaw, Poland

sered@ipipan.waw.pl

Abstract. We propose a solution of the multiprocessor scheduling prob-
lem based on applying a relatively new metaheuristic called Generalized
Extremal Optimization (GEO). GEO is inspired by a simple coevolution-
ary model known as Bak-Sneppen model. The model describes an ecosys-
tem consisting of IV species. Evolution in this model is driven by a process
in which the weakest species in the ecosystem, together with its nearest
neighbors is always forced to mutate. This process shows characteristic
of a phenomenon called a punctuated equilibrium which is observed in
evolutionary biology. We interpret the multiprocessor scheduling prob-
lem in terms of the Bak-Sneppen model and apply the GEO algorithm to
solve the problem. We compare GEO algorithm with well-known Simu-
lated Annealing (SA) algorithm. Both algorithms have some similarities
which are considered in this paper. Experimental results show that GEO
despite of its simplicity outperforms SA algorithm in all range of the
scheduling instances.

1 Introduction

Presently there exist many optimization problems in science and engineering
[12] which are difficult to solve. These problems are often NP-complete prob-
lems [6], for which no efficient solutions have been found. NP-complete problems
can be only solved approximately by existing techniques like randomization,
parametrization or using heuristics (metaheuristics). Most methods based on
local search algorithms applied to solve such complex problems, characterized
often by multiple local optima, converge usually to local minima [5].

A more general approach is to use a global search algorithm. In this case, we
can find a global optimum, but it requires a higher cost, e.g., computational time
for solving optimization problems. One of the classes of the global optimization
algorithms particularly worth considering are nature-inspired algorithms based
on natural phenomena. These algorithms are based on observation of natural

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 42 2010.
© Springer-Verlag Berlin Heidelberg 2010

Study on GEO Metaheuristic for Solving Multiprocessor Scheduling Problem 43

processes which are frequently self-optimized. The most commonly used algo-
rithms of this class are Genetic Algorithms (GA) [7], Simulated Annealing [9],
Particle Swarm Optimization algorithm [§], and Artificial Immune Systems [4].
Many of them have been recently applied to solve different variants of schedul-
ing problem in the context of multiprocessor systems, cluster systems or grid
computing (see, e.g., [15], 17, 2, 1§]).

The multiprocessor task scheduling problem considered in the paper is one of
NP-complete problems. The problem is a key factor for a parallel multiprocessor
system to gain better performance. The objective of scheduling is usually to
minimize the completion time of a parallel application consisted of a number of
tasks executed in a parallel system [10]. In this problem the parallel application
is represented by a Directed Acyclic Graph (DAG). Tasks of the application must
be allocated into a multiprocessor system and a schedule of their execution in the
system minimizing the completion time should be found. An optimal solution
of the problem is difficult to find because of NP-hard nature of the problem.
As mentioned above, different metaheuristics have been applied to solve the
problem, however, the performance of these algorithms is still an open research
problem and is the subject of current intensive study.

In this paper, we propose a relatively new metaheuristic called GEO [I4] to
solve the scheduling problem. Results of the experimental study show that the
algorithm is very efficient in solving the problem and provides better results than
SA, either for deterministic or random instances of the scheduling problem.

The paper is organized as follows. In the next section, we describe the multi-
processor scheduling problem. Section 3 presents the concept of GEO algorithm
and its application for the scheduling problem. In Section 4 we present SA-
based scheduling algorithm. Next, in Section 5 we show experimental results and
compare GEO with SA algorithm. The last section contains conclusions.

2 Multiprocessor Scheduling

The multiprocessor scheduling problem is defined as follows (see, e.g.,[I13]). A
multiprocessor system is represented by an undirected unweighted graph G5 =
(Vs, Es), called a system graph. Vj is the set of N, nodes of the system graph rep-
resenting processors with their local memories of a parallel computer of MIMD
architecture. F is the set of edges representing bidirectional channels between
processors and defines a topology of the multiprocessor system. Fig. [Th shows
an example of a system graph representing a multiprocessor system consisting of
two-processors Py and P;. It is assumed that all processors have the same com-
putational power and communication via links does not consume any processor
time.

A parallel program is represented by a weighted directed acyclic graph G, =
(Vp, Ep), called a precedence task graph or a program graph. V), is the set of N,
nodes of the graph representing elementary tasks, which are indivisible compu-
tational units. There exists a precedence constraint relation between the tasks k
and [in the precedence task graph if the output produced by task k has to be

44 P. Switalski and F. Seredynski

Fig. 1. Examples of the program and the system graphs: the graph of two-processor
system in FULL2 architecture (a), an example of a program graph (b)

communicated to the task [. A program graph has two attributes: weights b, and
weights ag;. Weights by, of the nodes describe the processing time (computational
cost) needed to execute a given task on any processor of a given multiproces-
sor system. E, is the set of edges of the precedence task graph describing the
communication pattern between the tasks. Weights ay; of the edges describe
communication time (communication cost) between pairs of tasks k and ! when
they are located in the neighboring processors. If the tasks k and [are located in
the same processor, then the communication delay between them will be equal
to 0. In the other case, the communication cost is proportional to the shortest
distance between the processors ¢ and j and it is equal to ag; * hops;j, where
hops;; is a number of direct links of the shortest path in G between nodes
(processors) i and j. Fig. [[b shows an example of the program graph consisting
of four tasks with their order numbers from 0 to 3. All communication costs of
the program graph are equal to 1 (see marked edges). Computational costs of
tasks (marked on their left side) are 1, 2, 4, and 2, respectively. The purpose of
scheduling is to distribute the tasks among the processors in such a way that
the precedence constraints are preserved, and the response time 7' is minimized.

3 The Generalized Extremal Optimization Algorithm

3.1 Bak-Sneppen Model and Its Representation in Scheduling
Problem

The idea of this algorithm is based on the Bak-Sneppen model [I]. Evolution in
this model is driven by a process in which the weakest species in the population,
together with its nearest neighbors, is always forced to mutate. The dynamics of
this extremal process show characteristics of Self-Organized Criticality (SOC),
such as punctuated equilibrium, that are also observed in natural ecosystems.
Punctuated equilibrium is a theory known in evolutionary biology. It states that
in evolution there are periods of stability punctuated by a change in an envi-
ronment that forces relatively rapid adaptation by generating avalanches, large
catastrophic events that effect the entire system. The probability distribution of
these avalanches is described by a power law in the form

pi=ki", (1)

Study on GEO Metaheuristic for Solving Multiprocessor Scheduling Problem 45

tau—> 0 - random walk
tau—> infinity - deterministic search

ki- position of i-th bit in the ranking tasks
F(%1,%2) T task3 task2 task1 taskO
[1lof1]1]ofoJof1]o]1]1]o]o]1] L1loft]1]ofofof1]of1]1]o]
X1 ¢ Xz a binary :presentation ¢
of processor number
|e‘ Iezlea | €. | eslea | er | esles Iewlenleizlenleul Ie1 Iez I € I €. I €5 I € I er I €s I € Iemleﬂle!zl
Bak-Sneppen model (a) Bak-Sneppen model (b)

Fig. 2. Population of species in the Bak-Sneppen model and its correspondence in the
GEO algorithm (a). Representation of the program graph and the system graph in
Bak-Sneppen model (b).

where p; is a probability of mutation of the i-th bit (species), k is a position
of the i-th bit (species) in the ranking, 7 is a positive parameter. If 7 — 0,
the algorithm performs a random search, while if 7 — oo, then the algorithm
provides deterministic searching. Bak and Sneppen developed a simplified model
of an ecosystem in which N species are placed side by side on a line. Fig.
shows the population of species in the Bak-Sneppen model and the idea of GEO
algorithm [I4]. In the GEO approach, a population of species is a string of
bits that encodes the design variables of the optimization problem, and each
bit corresponds to one species. In Fig. @l a two variable function F(x1,x2) is
optimized. Each variable is coded using seven bits, and the whole string - a
potential solution of the problem consists of 14 bits (upper part of Fig. 2la)).
Each bit of the string is considered as the species (lower part of Fig. 2(a)) of the
Bak-Sneppen model. The number of bits per variable depends on the type of
the problem. The population of the GEO algorithm to solve the multiprocessor
scheduling problem contains a one n-bits string:

n = N, xlogaNs, (2)

where:

N, - a number of tasks in a program graph, N, - a number of processors.
Fig.2b) (upper part) presents an example of the GEO string for the task graph
scheduled into the multiprocessor system consisting of 8 processors. Groups of
bits of the string represent processors to which corresponding tasks were allo-
cated. One can see that, for example, the task 0 is allocated to processor 6, and
task 3 to processor 5. The whole string consists of n = 4 x log28 = 12 bits. Fig.
2(b) (lower part) shows a relation between coding used in the GEO to solve the
scheduling problem and Bak-Sneppen model.

46 P. Switalski and F. Seredynski

3.2 The GEO Algorithm

In this algorithm each bit (species) is forced to mutate with a probability pro-
portional to its fitness. The fitness is a value associated with a given combination
of bits of the GEO string, related to a problem presented in this study. Change
of a single bit of the string results in changing its fitness and indicates the level
of adaptability of each bit in the string. The fitness can increase or decrease
if a bit is mutated (flipped). After performing a single changing of the string
bits and calculating corresponding values of fitness function we can create the
sorted ranking of bits by its fitness. From this moment on, the probability of
mutation p; of each i-th bit placed in the ranking can be calculated by Equation
[described above. According to [I4] the GEO algorithm can be described as
follows:

1. Initialize randomly a binary string of length L that encodes N design vari-
ables of bit length equal to L/N.

2. For the current configuration C' of bits, calculate the objective function value
V and set Cpesr = C and Vipest = V.

3. For each bit ¢ do the following,

(a) flip the bit (from 0 to 1, or from 1 to 0) and calculate the objective
function value V; of the string configuration C},

(b) set the bit fitness F; as (V; — R), where R is a constant. It serves only as
a reference number and can assume any value. The bit fitness indicates
the relative gain (or loss) that one has in mutating the bit.

(¢) return the bit to its original value.

4. Rank the N bits according to their fitness values, from k& = 1 for the least
adapted bit to & = N for the best adapted. In a minimization problem
higher values of F; will have higher ranking, and vice versa for maximization
problems. If two or more bits have the same fitness, rank them in random
order, but follow the general ranking rule.

5. Choose with an equal probability a bit ¢ to mutate according to the probabil-
ity distribution p; = k~7, where 7 is an adjustable parameter. This process
called a generation is continued until some bit is mutated.

6. Set C =C; and V =V,.

7. I F; < Fpest (F; > Fpest, for a maximization problem) then set Fpesr = F;
and Cpest = C;.

8. Repeat steps 3 to 7 until a given stopping criterion is reached.

9. Return Chesr and Fpeg:-

4 The Simulated Annealing Algorithm

SA algorithm developed by Kirkpatrick [9] has been applied to solve a wide
range of NP-hard optimization problems. Its basic idea comes from physics. In
the SA method, each point S of the search space is analogous to a state of some
physical system, and the function C(S) to be minimized is analogous to the
internal energy of the system in that state. The goal is to bring the system, from

Study on GEO Metaheuristic for Solving Multiprocessor Scheduling Problem 47

an arbitrary initial state, to a state with the minimum possible energy. At each
step of the simulation, a new state S’ of the system is generated from the current
state S by giving a controlled acceptance/rejection rule with probability pga:

n_ 1, forC(S") < C(S)
psa(S = 5') = {exp(_AE/k * TEMP) in the other case, ®)

where E is the energy, T'EM P is the temperature, and k is Boltzmann’s constant.
AEFE is described as C'(S”) — C(S). This rule was proposed by Metropolis et al.
and called Metropolis Transition [I1]. We repeat each step with a slow decrease
of temperature until the stop criterion is satisfied. Algorithm can be described
by a pseudocode presented in Fig. Bl On the beginning we generate randomly
an initial state S (solution of the problem) and estimate an initial temperature
TrnrT. At the next step we generate a new state S’ from state S. If objective
function C'(S") is less than C'(S) then we accept a new solution S’. In the other
case a new solution is accepted only with probability Ps4. We repeat this step in
N iterations. After that the temperature T EM P is decreased by a small value.
The simplest and most common temperature decrement rule is:

TEMP;., = cx« TEMP;, (4)

where c is a cooling constant close to, but smaller than 1. The algorithm stops
when some specified stopping criterion is met e.g., when no improvement has
been found for some number of moves.

GEO algorithm has some similarities to this algorithm. In GEO fitness of
each bit F; is determined by loss or gain when bit ¢ is changed. In SA the loss
or gain determines AFE. In the next step of these algorithms a new solution is
accepted with specified probability depends on actual temperature TEM P and
AE (SA algorithm), 7 parameter and actual position of the bit k in the rank
(GEO algorithm). In the SA algorithm the solution is also represented by a one
string of bits, thus we use consistently the same coding of solution used by GEO.

start with an initial state S
set TEMP:=T_INIT (initial temperature)
set i:=0
repeat {
set i:=i+l
for j:=1 to N (predetermined constant) do {
choose a neighbour state S’ from S
set DELTA:=C(S’)-C(S)
if (DELTA<O) or (random(0,1) < exp(-DELTA/TEMP))
set S:=8’
}
TEMP:=c*TEMP (temperature reduction)
} until TEMP<LOW or END_TEST

Fig. 3. Pseudocode of the Simulated Annealing algorithm

48 P. Switalski and F. Seredynski
5 Experimental Results

A number of experiments with deterministic program graphs known in the lit-
erature and random program graphs (see, e.g., [13]) have been conducted. The
results were compared with those obtained with use of SA.

The probability p; has significant influence on the convergence of GEO al-
gorithm. A value of this probability depends intimately on the position of a
mutated bit in the rank and the parameter 7. This parameter controls a range
of potential bits to be mutated. Our previous work (see, [16]) was oriented on
defining the right value of 7. For small program graphs (less than 100 tasks)
only for 7 = 1.25 the algorithm provides an optimal solution. For a big program
graphs (more than 100 tasks) as the optimal value of 7 we assumed 1.75.

In the original form of the GEO algorithm only one bit is mutated in each
generation. For small problems, where the string is short the mutation should be
sufficient. Along with growing size of the population of bits, a mutation of one
bit per generation can be not efficient. In [16] we can observed that for a bigger
population (more than 200 species) mutation not a single bit, but mutation of
three bits gives optimal results.

Calculation of the fitness function 7" is the main source of the time complex-
ity of the considered algorithms. The complexity of an algorithm expressed by
a number of the fitness function calculations depends not only on a number
of tasks, but also on its topology and a relation between communication and
computational costs in a given program graph. We assumed an equal number of
evaluations of the fitness function for both algorithms. A number of evaluations
is in range Ng € {10000..500000}. We repeated each experiment 20 times.

In GEO, we used the following parameters in the experiments: 7 € {1.25..1.75},
a number of mutated bits N, € {1..3}. For SA, we set a number of iterations
N € {50..150}, initial temperature Tryrr € {30..100}, cooling constraint ¢ =
0.98—0.99. At first, we conducted an experiment with use a two processor system
(system graph: FULL2, random program graph: g100 10). In Fig. @ we show
a typical run of GEO algorithm (a) and SA algorithm (b). One can see that

Random program graph g100_10; two processors in FULL2 Random program graph g100_10; two processors in FULL2

280

280

=
V_best ——

260

240 i

response time T
response time T

180

(a) (b)

Fig. 4. Typical run of GEO (a) and SA (b) algorithm for the program graph g100 10
and the system graph FULL2. The experiment was conducted with equal number of
NEg = 500000 evaluations of fitness function.

Study on GEO Metaheuristic for Solving Multiprocessor Scheduling Problem 49

SA indicates that the temperature T EM P has significant impact on obtained
results. On the first phase of the algorithm temperature is high, so the best result
is highly diversified (for Ng < 100000). After reduces the temperature TEM P
the best result found by the algorithm is steadying. In the opposite to SA, GEO
algorithm is finding the solution consistently and constantly. Simultaneously
GEO obtains considerably better result than SA.

After that, we conduct regular experiments with use more than two processor
system graphs (N = 4 and Ng = 8 processors). In this variant we are faced with
the major problem - the length of population grows rapidly with a number of
processors m. If we consider the program graph consisting of 406 tasks (400 5)
in the four processor system, the size of the population is equal to 406 * 2 =
812 (2 bits for coding of the four processors in a binary form). Table [presents
results for the 4 and 8 processor systems. We analyzed difficult examples of
program graphs: one deterministic graph gauss!8 and wide range of random
graphs. As the first graph we used gaussi8. For this experiment we assumed
Ng = 10000. Because of small graph for GEO we set 7 = 1.25 and N, = 1.
The optimal response time 7" for four and eight processors is 44. GEO found the
optimal solution. SA was noticeably worse. Afterwards we used random graphs
(925, g100, g200 and g400). For these graphs we assumed Ng = 500000. These
graphs are the most difficult instances of the problem for both algorithms. The
experiments are summed up in Tab. Bl We conducted series of the experiments
to find an optimal number NN, of bits to mutate and 7 parameter. Table [l shows
optimal parameters: 7 and N, found for GEO algorithm for each the program

Table 1. The results of the algorithms: GEO and SA for random program graphs in
the scheduling problem for Ns = 4 and Ns; = 8 processors. The best response time T’
and the average of T (in rounded brackets) values on the base of 20 times. The best
known results are in bold.

Ns =4 Ns =8

Program GEO SA GEO SA
graph

7(Nb) T(Tavg) T(Tavg) 7(Nb) T(Tavg) T(Tavg)
gauss18 1.25 (1) 44(45) 49(51) 1.25 (1) 44(47) 51(58)
g25 1 1.75 (1) 305(312) 334(342) 1.75 (2) 289(291) 304(309)
g25 5 1.75 (1) 96(97) 100(106) 1.75 (1) 96(102) 110(117)
92510 1.75 (1) 62(67) 95(103) 1.75 (2) 62(71) 112(119)
g100 1 1.75 (1) 775(787) 878(895) 1.75 (1) 582(591) 685(698)
g100 5 1.75 (3) 367(375) 415(426) 1.75 (3) 375(382) 412(413)
g100 10 1.75 (3) 170(174) 206(209) 1.75 (3) 184(192) 208(209)
9200 1 1.75 (1) 1543(1549) 1732(1755) 1.75 (3) 1059(1073) 1275(1293)
g200 5 1.75 (3) 451(457) 499(504) 1.75 (3) 422(426) 451(456)
9200 10 1.75 (3) 476(481) 506(510) 1.75 (3) 469(474) 486(488)
g400 1 1.75 (2) 3276(3286) 3605(3627) 1.75 (3) 2015(2035) 2398(2445)
g400 5 1.75 (3) 916(925) 1003(1008) 1.75 (3) 810(820) 869(877)
9400 10 1.75 (3) 506(508) 535(536) 1.75 (3) 481(486) 500(502)

50 P. Switalski and F. Seredynski

graph and the system graph. Program graphs (¢g25 1, g100 1, 200 1 and g400 1)
required small changes, so the parameter N, has value 1 or 2. Only for more
complicated cases the value of this parameter is equal to 3. For other examples
of these graphs N, must be increased to 3. 7 parameter has persistent value 1.75.
Only for small graph gauss18 this parameter is set to 1.25.

As we can notice, GEO can find appreciably better outcomes than SA. The dif-
ferences are especially visible for graphs g 100, g200 and g400. Explanation of these
results are consequence of behavior GEO and SA algorithms. GEO finding the so-
lution by calculating fitness function for each bit from population and accepting
population for which mutation of bit gave the best result. In SA we calculate fit-
ness function only once for a current state S in a given iteration of the algorithm.
In the next state S’ there is a solution which no guarantees that will be better.
In each step of GEO algorithm we can affirm that next solution will be better.
Both algorithms measure lose or gain of the solution, but SA does it for following
states which are generated randomly or by change a bit the previous state. In SA
only Metropolis Transition control the converge of the algorithm. On the other
side this method do not let to stop algorithm in local minimum. GEO finding a so-
lution more consequently by precisely valuation of the bits of the population and
choosing the most suitable population in the current step of the algorithm.

6 Conclusions

In this paper we have proposed a relatively new metaheuristic called GEO to solve
the multiprocessor scheduling problem. It is based on the Bak-Sneppen model
describing dynamics of ecosystems as the set of extremal processes known as Self-
Organized Criticality. Applying the GEO algorithm to the task scheduling problem
has confirmed that this algorithm is useful for scheduling problem. Simplicity of the
GEOQO algorithm is one of its advantages. The performance of the algorithm depends
in fact only on two parameters: the value 7 and the number of mutated bits. These
values were established experimentally for the scheduling problem.

We compared the results obtained by GEO with ones obtained by SA. In
experiments deterministic and random program graphs were used. The results of
the experiments show advantages of GEO over these well known metaheuristics.
For simple program graphs all algorithms found optimal solutions, but even
in this case GEO shows better average performance. SA seems to be similar
for GEO. However, this algorithm cannot find satisfactory solutions for more
complex program graphs due to mentioned disadvantages of SA.

References

[1] Bak, P., Sneppen, K.: Punctuated equilibrium and criticality in a simple model
of evolution. Phys. Rev. Lett. 71, 4083-4086 (1993)

[2] Beham, A., Winkler, S., Wagner, S., Affenzeller, M.: Distributed, Heterogeneous
Resource Management Using Artificial Immune Systems. In: Proc. of the 22nd
IEEE International Parallel & Distributed Processing Symposiumm, NIDISC
Workshop (2008)

Study on GEO Metaheuristic for Solving Multiprocessor Scheduling Problem 51

3]
[4]

[5]
[6]
[7]
8]
[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Bollobas, B.: Random Graphs, pp. 34-42. Academic Press, New York (1985)
Dasgupta, D.: Artificial Immune Systems and Their Applications. Springer, Berlin
(1999)

Eldred, M.S.: Optimization Strategies for Complex Engineering Applications. San-
dia Technical Report SAND98-0340 (1998)

Garey, M.P., Johnson, D.S.: Computers and intractability - a guide to NP-
completeness. W.H. Freeman and Company, San Francisco (1979)

Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley, Reading (1989)

Kennedy, J.: Swarm Intelligence. In: Zomaya, A.Y. (ed.) Handbook of Nature-
Inspired and Innovative Computing, pp. 187-219. Springer, Heidelberg (2006)
Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simulated Annealing,
vol. 220(4598), pp. 671-680. ACM, New York (1983)

Kwok, Y., Ahmad, I.: Static Scheduling Algorithms for Allocating Directed Task
Graphs to Multiprocessors. ACM Computing Surveys 31(4), 406-471 (1999)
Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.:
Equation of State Calculations by Fast Computing Machines. Journal of Chemical
Physics 21(6), 1087-1092 (1953)

Pardalos, P.M., Romeijn, H.E.: Handbook of Global Optimization, vol. 2.
Springer, Heidelberg (2002)

Seredynski, F., Zomaya, A.Y.: Sequential and Parallel Cellular Automata-Based
Scheduling Algorithms. IEEE Trans. on Parallel Distributed Systems 13(10),
1009-1023 (2002)

Sousa, F.L., Ramos, F.M., Galski, R.L., Muraoka, I.: Generalized Extremal Op-
timization: A New Meta-heuristic Inspired by a Model of Natural Evolution. In:
Recent Developments in Biologically Inspired Computing, pp. 41-60 (2004)
Swiecicka, A., Seredynski, F., Zomaya, A.Y.: Multiprocessor Scheduling and
Rescheduling with use of Cellular Automata and Artificial Immune System Sup-
port. IEEE Trans. on Parallel Distributed Systems 17(3), 253-262 (2006)
Switalski, P., Seredynski, F.: Generalized Extremal Optimization for Solving Mul-
tiprocessor Task Scheduling Problem. In: Li, X., Kirley, M., Zhang, M., Green, D.,
Ciesielski, V., Abbass, H.A., Michalewicz, Z., Hendtlass, T., Deb, K., Tan, K.C.,
Branke, J., Shi, Y. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 161-169. Springer,
Heidelberg (2008)

Wilson, L.A.: Distributed, Heterogeneous Resource Management Using Artificial
Immune Systems. In: Proc. of the 22nd IEEE International Parallel & Distributed
Processing Symposium, NIDISC Workshop (2008)

Xhafa, F., Alba, E., Dorronsoro, B.: Efficient Batch Job Scheduling in Grids using
Cellular Memetic Algorithms. In: Proc. of the 22nd IEEE International Parallel
& Distributed Processing Symposium, NIDISC Workshop (2007)

Online Scheduling of Parallel Jobs on
Hypercubes: Maximizing the Throughput

Ondiej Zajicek!, Jiii Sgall?, and Tom4s Ebenlendr!

! Institute of Mathematics, AS CR, Zitns 25, CZ-11567 Praha 1, Czech Republic
2 Dept. of Applied Mathematics, Faculty of Mathematics and Physics, Charles
University, Malostranské nameésti 25, CZ-11800 Praha 1, Czech Republic

Abstract. We study the online problem of scheduling unit-time parallel
jobs on hypercubes. A parallel job has to be scheduled between its release
time and deadline on a subcube of processors. The objective is to max-
imize the number of early jobs. We provide a 1.6-competitive algorithm
for the problem and prove that no deterministic algorithm is better than
1.4-competitive.

1 Introduction

We consider scheduling of parallel jobs on hypercubes with the objective to
maximize the number of jobs completed before their deadline. We focus on the
case where all processing times are equal to 1. In this case, each job is specified
by an integral release time and deadline, and the number of processors it needs,
which is required to be a power of two, to respect the hypercube topology.

In the online setting, the jobs arrive over time: Each job arrives at its release
time; at this time its complete specification is released. At each time step we
need to choose a subset of available jobs that are scheduled. Available jobs are
those that are already released, not yet scheduled, and with a deadline strictly
larger than the current time. The total number of processors required by the
chosen jobs needs to be at most the size of the hypercube.

The hypercube topology restricts the actual assignment of parallel jobs: The
processors are organized as a hypercube and each job has to be scheduled on
a subcube of the hypercube. However, since we consider only jobs with unit
processing times, this restriction is equivalent to the constraint that job sizes as
well as the total number of processors are powers of two. Once the total processor
requirement is at most the number of processors, we can always assign the chosen
jobs to subcubes in a greedy manner from the largest job to the smallest one.

Our results. We present a 1.6-competitive algorithm for this problem. In two
special cases we show that the algorithm is 1.5-competitive. The first special case
excludes jobs that require the whole hypercube. The second special case is that of
tall/small jobs, where each job may require either the whole hypercube or a single
processor. We show that the analysis of this algorithm is tight. Our algorithm is
memoryless, i.e., its action at each time depends only on the currently available
jobs.

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 52 2010.
© Springer-Verlag Berlin Heidelberg 2010

Online Scheduling of Parallel Jobs on Hypercubes 53

We prove that no deterministic algorithm is better than 1.4-competitive. This
is true even on a machine with two processors, which is a subcase of the tall/small
special case.

Related results. If we restrict ourselves to sequential jobs (i.e., jobs requiring a
single processor), the problem is trivial. The natural algorithm always schedules
the jobs with the smallest deadlines (among the available jobs). A standard
exchange argument shows that this is an optimal schedule. Once parallel jobs are
introduced, this no longer works. We need to find a rule to choose, for example,
between urgent parallel jobs and sequential jobs with large deadlines.

A simple approach to similar problems is the greedy algorithm. This works
even if we allow both parallel jobs and weights. In each time step, we schedule
a set of jobs with maximal total weight from the available jobs. A standard
charging argument shows that this algorithm is 2-competitive. For each job in
the optimal schedule, charge its weight to the timeslot in the online schedule
where it is scheduled; if it is not scheduled, charge it to the same timeslot. To
each timeslot in the online schedule, we charge at most twice the total weight
of the jobs scheduled by the online algorithm: First, we may charge each job
to itself. Second, we charge the jobs scheduled by the optimum at the same
time, but not scheduled by the online algorithm; these jobs are available, thus
their total weight is at most the weight of the jobs scheduled greedily. Summing
over all the timeslots, 2-competitiveness follows. Improving the competitive ratio
below 2 for this general problem is a challenging open problem.

The complexity of the offline problem is not known. Typically, parallel schedul-
ing problems are NP-hard because they include some partitioning problem. Ei-
ther partitioning the processors among the jobs, or partitioning the jobs into
groups with the same total processing time. The hypercube constraint and the
restriction to unit processing times make these packing problems trivial.

Nevertheless, polynomial algorithms are known only for a couple of special
cases. One can maximize the number of completed jobs if all the release times
are equal, see [3]. This was generalized to the case of nested intervals given by
the release times and the deadlines, see [4].

For general release times and deadlines, the only positive result exists for the
tall/small case studied in [I], see also [2] for an alternative proof; however, this
gives only an algorithm for testing if all jobs can be completed. The throughput
maximization is open even for the case of two processors, which is a special case
of the tall/small case.

Preliminaries. The problem has a parameter m giving the number of machines.
An instance of the problem consists of a set of n jobs. Each job J has an integral
release time r;, an integral deadline d; and a size s; (the number of requested
processors). The numbers m and s; are powers of two. As all times are integers
and jobs’ processing times are equal to one, instead of time we can consider
timeslots (aligned unit-time intervals) and every job requests one timeslot.

We say that job J is feasible at timeslot T if r; < T and T' < d;. We say
that job J is available at timeslot T' if it is feasible and not scheduled yet. We
say that job J is urgent at timeslot 7" if d;j =T + 1. A schedule assigns to each

54 O. Zajicek, J. Sgall, and T. Ebenlendr

processed job J find a timeslot T" such that J is feasible at T', and s processors,
so that no processor is assigned to two jobs at the same time. The objective is
to find a schedule maximizing the number of processed jobs.

In the online variant of the problem, at the timeslot T', we get a knowledge
of all jobs J with r; = T and we have to decide which jobs start to process at
timeslot T

We consider a variant of the generalized problem where all jobs have unit
processing time (py = 1) and their release times and deadlines are integers. We
also restrict the size s of jobs and the number of processors m to be a power
of two. As mentioned in the introduction, this is equivalent to the requirement
that each job is scheduled on a subcube of the hypercube with m processors.

We fix an ordering < on jobs that is a strict linear ordering based on the order-
ing of deadlines, in a case of equal deadlines it is defined arbitrarily. For example,
we take an ordering defined by formula J; < J; < d; < d;V(d; =d; Ni < j). We
suppose, w.l.o.g., that any algorithm chooses the <-minimal job from available
jobs of the same size when it needs to choose one job of that size.

We use ALG to denote the analyzed algorithm and OPT to denote an optimal
offline algorithm. Jobs of size m are called maz-jobs, smaller jobs are called non-
maz jobs. Jobs of size 2¢ are called i-jobs (where i is some number).

2 Algorithm

We want an algorithm that chooses from possible schedules according to these
four rules, in the order of importance, because such rules lead to invariants used
in the proof of the competitive ratio:

1. Prefer more smaller jobs over one bigger job.

2. Prefer an urgent job over a non-urgent job.

3. Prefer a bigger job over a smaller job.

4. Prefer <-minimal jobs among the jobs of the same size.

It is easy to convert these rules to a memoryless algorithm that (for each timeslot)
examines a set of currently available jobs and chooses its maximal schedulable
subset (a set such that the sum of the sizes of its members is less than or equal to
m) satisfying these rules (e.g., if there is a non-urgent job in the chosen subset,
then there is no urgent job of the same or smaller size outside of the chosen
subset). The chosen subset will be scheduled in that timeslot.

Lemma 1. The competitive ratio of the algorithm is at least 1.6.

Proof. We construct an instance on four machines. (For more machines, it can
be easily scaled up.) One 1-job X with deadline 3 and one 2-job A with deadline
5 are released at time 1. The algorithm chooses job A at time 1 (by rule 3).
Consequently, two 1-jobs Y and Z with deadline 3 and four O-jobs B, C, D, E
with deadline 4 are released at time 2 and the algorithm chooses four 0-jobs (by
rule 1) and loses all three 1-jobs (X, Y, Z). OPT schedules all jobs: three 1-jobs
in the first two timeslots, four 0-jobs in timeslot 3 and the remaining 2-job in
timeslot 4. The proof is summed up in Figure [a

Online Scheduling of Parallel Jobs on Hypercubes 55

CA]
BDE
ALG BICDE
OPT BICD(E

Fig. 1. The proof of the lower bound in a general case

ABQED
L X] XY
ALG ALG |AECD
OPT OPT ABQD

Fig. 2. The proof of the lower bound in the restricted cases

Lemma 2. The competitive ratio of the algorithm is at least 1.5 in the tall/small
case and in the non-max case.

Proof. We construct two instances on four machines. Some urgent larger jobs
and more non-urgent smaller jobs are released at time 1. The algorithm chooses
more non-urgent smaller jobs and loses the urgent larger jobs. Details of sizes
and counts of jobs are summed up in Figure 2 the left-hand side is for the tall-
small case and the right-hand side is for the non-max case. The proof can be
easily scaled up for more machines. a

3 Competitive Ratio

We prove the upper bound for the competitive ratio of ALG using a charging
scheme. When we consider jobs in ALG and OPT schedules as two sets of ver-
tices, then the charging scheme is a set of rules for a specification of weighted
edges between these two sets to create a bipartite graph. This graph obeys some
constraints: For each job in OPT schedule the sum of the weights of incident
edges is exactly 1 and for each job in ALG schedule the sum of weights of inci-
dent edges is at most 1.6 (or 1.5 in the restricted cases). These constraints (and
the fact that this scheme specifies such a matching for OPT and ALG schedules
of every instance) imply that the competitive ratio of the algorithm is at most
1.6 (or 1.5 in the restricted cases).

We introduce some terminology. When there is an edge between two jobs
with weight = we write that the job in OPT schedule sends z and the job in
ALG schedule receives x. The charging scheme uses mainly two kinds of edges:
diagonal edges and vertical edges. A diagonal edge is an edge from a job in OPT

56 O. Zajicek, J. Sgall, and T. Ebenlendr

schedule to the same job in ALG schedule in a different timeslot. A vertical edge
is an edge from a job in OPT schedule to any job in ALG schedule in the same
timeslot. A job not scheduled by ALG (but possibly scheduled by OPT) is called
an unscheduled job. A job scheduled by OPT and not scheduled by ALG during
that or earlier timeslots (but possibly scheduled later) is called a free job because
it is available for ALG at the timeslot in which it is scheduled by OPT.

We use a job in two slightly different meanings. First, there is a particular
job from an instance of a problem. Second, the job is scheduled by a particular
schedule to some machines and some timeslot. The position occupied by some
job in the particular schedule is also called the job. Specifically, we use ALG-job
for the position of a job in ALG schedule and OPT-job for the position of a job
in OPT schedule. Obviously, the charging edges do not connect jobs in the first
sense, but ALG-jobs and OPT-jobs.

If there is a max-job in ALG schedule and in the same timeslot there is only
one non-max free job in OPT schedule, then we call this non-max free job a
red job. Other free jobs are called white jobs, non-free jobs (scheduled first by
ALG and later by OPT) are called black jobs. In the first part of proof we define
charging for white and black jobs, in the second part for red jobs.

The charging scheme is specified as follows: Each black job charges one diago-
nal edge (forwards to the same job in ALG schedule) and each white job charges
one vertical edge (upwards to an unspecified job in the same timeslot). We will
specify exact rules for a distribution of vertical edges to ALG-jobs later.

Matching of i-jobs at timeslot T is a process that finds a maximal matching
between a set of i-jobs in ALG schedule of timeslot 7" and a set of white i-jobs
in OPT schedule of timeslot T'. If there is a job scheduled at timeslot T by
both ALG and OPT, then it is matched with itself, remaining jobs are matched
arbitrary with one restriction: any red jobs J in ALG schedule are matched at
the end, only when no other jobs remain. Some i-jobs may be left unmatched in
ALG or OPT schedule, but not in both schedules.

Lemma 3. If an ALG-job A (scheduled at some timeslot T') is matched with
OPT-job B, then A receives nothing diagonally (from OPT-job A).

Proof. Suppose ALG-job A receives diagonally from (black) OPT-job A. Jobs
A and B have to be different jobs, because OPT-job B is white. Because B is
a white job, it follows that ALG did not schedule B before or at timeslot 7'
Because A is black, OPT scheduled A after timeslot T'. Thus both A and B were
available to both ALG and OPT at timeslot 7', but ALG scheduled A and didn’t
schedule B and OPT scheduled B and didn’t schedule A. This is a contradiction
because A and B are jobs of the same size and both algorithms choose the <-
minimal jobs from available jobs of the same size. O

Lemma 4. For every timeslot it is possible to find a distribution of weight of
all incoming vertical edges between ALG-jobs of the timeslot such that every job
in ALG schedule can be categorized to at least one of these classes:

— Class C (common): The job receives at most 1/2 vertically.
— Class M (matched): The job receives 1 vertically from the matched job.

Online Scheduling of Parallel Jobs on Hypercubes 57

— Class U (urgent): The job is urgent and receives at most 1 vertically.

— Class S (special): The job is scheduled at a timeslot that is full of jobs of the
same size in ALG schedule. Furthermore, it is a non-mazx job and at most
one job per timeslot can be the class S job. The job receives 1 vertically from
the matched job and 1/2 wvertically from another job.

Proof. The proof is done independently for each timeslot. We show that for each
white job in OPT schedule we find the same job or two other jobs in ALG
schedule (in the same timeslot). Let T be any fixed timeslot. We use ALGr (and
OPT7r) schedule for ALG (and OPT) schedule restricted to timeslot 7.

If there is no job in ALG7 schedule, then all jobs in OPTr schedule have to
be black, because any white OPTp job could also be scheduled by ALG at T'. So
suppose there are some jobs in ALGp schedule and the biggest job among them
is an i-job. Jobs smaller than 2¢ will be called small jobs. It is easy to see that
there is no more than one small white job in OPTr schedule—otherwise ALG
should schedule two (or more) small jobs instead of the i-job. We distinguish
two cases: one small white job and no small white job.

Case 1: There is exactly one small white job J in OPTp schedule. First we
match i-jobs in 7. We split the timeslot in ALGr schedule to slots of size 2¢. In
each slot there is either one i-job or more small jobs (there is neither an empty
slot nor a slot with one small job, otherwise the free space in that slot is large
enough that ALG should schedule the job J in it). Now we assign those slots
to OPTp white jobs. The idea is that each OPTp white i-job gets one slot and
larger white jobs get proportionally more slots. Slots with matched i-jobs are
assigned to matched OPT7 white i-jobs. If there are remaining OPTp white
i-jobs, they get slots with more small jobs. If we disregard job J then the rest is
correct: matched ALGy i-jobs are class M jobs, smaller jobs (assigned together
to one job) are class C as well as remaining i-jobs assigned together to larger
jobs. Unused ALGr jobs may be class C as they receive nothing vertically. Now
we find the assignment for job J. There are two cases:

Case 1.1: There is at least one slot with more small jobs. Then we assign it in
the first place to job J (and those small jobs are class C) and the lemma holds.

Case 1.2: There are only i-jobs in ALG7 schedule (and one i-job called job K is
assigned to job J). We have three cases distinguished by the structure of OPTyp
schedule.

Case 1.2.1: There is at least one white i-job (job L) in OPTr schedule. Then
job L is matched with some ALGr i-job (job L'). Job L’ receives 1 vertically
from job L; hence, it can receive additional 1/2 from job J and become a class
S job. Additional constraints for a class S job also hold: L’ is a non-max job,
as otherwise ALG should have scheduled the two white jobs J and L by rule 1.
There is only one class S job, because there is only one J job. Job K receives
remaining 1/2 from job J, is a class C job and the lemma holds.

Case 1.2.2: There is no white i-job in OPTp schedule but there are some larger
white jobs. Then there are two unused slots in ALGp schedule, because the sum

58 O. Zajicek, J. Sgall, and T. Ebenlendr

of sizes of larger OPT7 jobs is a multiple of 2i*! and the number of ALGp
i-jobs assigned to them is even. Therefore, there are at least two ALGr i-jobs
available, they receive 1/2 from job J and are class C.

Case 1.2.3: Job J is the only white job in OPTp schedule. If there are more than
one ALGr i-job then two of them receive 1/2 and are class C. If there is only
one job M, then M has to be max-job, because there is no empty slot (ALGr is
full of i-jobs). This case cannot appear, as job J, which is not a max-job because
it is a small job, would be a red job and not a white job.

Case 2: There is no small white job in OPT7 schedule. Let j-jobs be the smallest
white OPTr jobs, obviously j > 7. First we match j-jobs (which does nothing
if j > 4). We split timeslot 7' in ALG7 schedule to slots of size 27. No such slot
is empty (otherwise, ALG should schedule some white j-jobs scheduled by OPT
at T'). At most one slot is not full (because job sizes are powers of two we can
always pack jobs from two half-empty slots to make one slot empty or full). Now
we assign the slots to OPTp white jobs as we did in the first case. If we have
only slots with either one j-job or with more smaller jobs then it is the same
argument as in first case (even easier because there is no job J). But the one
non-full slot can contain only one job (job N), which is smaller than j-job. In
that case job N has to be urgent: otherwise, ALG should schedule some white
j-job instead of job N, by rule 3. Therefore, job N is a class U job and the slot
with job N may be used much like a slot with two jobs. Even in this case the
lemma holds. O

Lemma 5. Let I(J) (for any non-black job J) be a time interval starting by the
timeslot when the time when job J was scheduled by OPT and ending by the last
timeslot when J was available for ALG (it was scheduled by ALG or it was just
before the deadline for unscheduled job J). Then I(J) for all red jobs J do not
overlap.

Proof. Suppose two such intervals overlap. Let T be the first timeslot in their
intersection. In timeslot 7" both jobs are available for ALG, ALG should schedule
both jobs together (as they are non-max) but it scheduled one max-job instead.

]

Lemma 6. Let T be a timeslot when some unscheduled red job J is urgent. Then
either there is an ALG job receiving at most 1 in timeslot T', or there are at least
four ALG jobs in timeslot T.

Proof. We split timeslot T to slots of the same size as job J. In each slot there is
either one urgent job (or part of that job) or more than one job because if there
is an empty slot or a slot with a non-urgent job then ALG should schedule job
J in that slot instead. Because J is a non-max job there are at least two slots.
We choose two slots such that at least one of them does not contain a class S
job (or its part), which is possible, because any class S job is a non-max job.

Case 1: Both slots contain more jobs. Then there are at least four jobs and the
lemma holds.

Online Scheduling of Parallel Jobs on Hypercubes 59

Case 2: One slot contains more jobs and the other slot contains an urgent job
K. Then job K is not a class S job: otherwise all ALG jobs would have the same
size and all the slots would have to be full. If job K is class C, P or U then it
receives at most 1 vertically and nothing diagonally (because K is urgent) and
the lemma holds.

Case 3: Both slots contains one urgent job. At least one of the slots does not
contain class S job; hence, it contains a class C, P or U job, which receieves at
most 1 and the lemma holds as in case 2. O

Lemma 7. Let OPT job J be a scheduled red job. Then ALG job J is not a
class S job.

Proof. Suppose that ALG job J is scheduled at timeslot 7" and is a class S i-
job. In that case timeslot 7" of ALG schedule is filled by i-jobs and there is one
smaller job in OPT schedule at timeslot 7', as these are the assumptions of case
1.2.1 in Lemma [l that are needed to classify a job as a class S job. Therefore, for
matching used for classification of jobs there are more i-jobs in ALG schedule
than in OPT schedule and by the definition of matching in that case job J as
only red job remains unmatched and thus cannot be classified as class S job.
Contradiction. O

Theorem 1. The competitive ratio of ALG is at most 1.6 in a general case and
at most 1.5 in the tall/small case and in the non-maz case.

Proof. We described the charging scheme for black and white OPT jobs earlier.
To complete the proof it remains to describe the charging scheme for red OPT
jobs and to show that each ALG job receives at most 1.6 (or 1.5). According to
Lemma [M] it is possible to distribute vertical edges between ALG jobs in such
a way that ALG jobs can be divided to four classes C, P, U and S. Class C
jobs receive at most 1/2 vertically (by definition) and at most 1 diagonally (as
every job). Class M jobs receive at most 1 vertically (by definition) and nothing
diagonally (by Lemma[3). Class U jobs receive at most 1 vertically (by definition)
and nothing diagonally because they are urgent and therefore they cannot be
scheduled later by OPT. Class S jobs receive at most 1.5 vertically and nothing
diagonally (by Lemma B]). Therefore, if there is no red job, then each ALG job
receives at most 1.5.

Now we describe charging scheme for red jobs. For each red (OPT) job J,
there are two cases whether job J is scheduled or not by ALG. There is also a
max-job in ALG schedule (from the definition of red jobs) called job K. In the
first case, job J is scheduled, and it sends 1/2 vertically to ALG job K, the only
ALG job in that timeslot and 1/2 to itself in ALG schedule (ALG job J). In the
second case, job J is unscheduled, and it sends 0.6 vertically to ALG job K and
0.4 to the timeslot T" when job J is urgent. According to Lemma [G] either there
is a ALG job in timeslot T receiving at most 1 from white and black jobs which
then receives 0.4 from job J, or there are some four jobs scheduled at timeslot
T and they receive 0.1.

60 O. Zajicek, J. Sgall, and T. Ebenlendr

We showed that without red jobs the theorem holds. Now we show that even
if we add charging of red jobs, then the upper bounds hold. Because of Lemma[5]
the charging from different red jobs does not mix and we can deal with each red
job independently. In the first case of the definition of charging, job K received
nothing vertically from white jobs (as there is no such job in the same timeslot)
and at most 1 diagonally (as every job). Therefore we can add 1/2 from the red
job. ALG job J is not class S job according to Lemmal[7l Therefore, it receives at
most 1 vertically from white jobs (because it is in class C, P or U) and nothing
diagonally (because OPT job J is red and not black) and we can add 1/2 from
the red job. In the second case, the argument for job K is the same as in the first
case, but we add 0.6 and therefore it receives at most 1.6 and we can add 0.1 to
each of some four jobs because without charging from red jobs they receive at
most 1.5, with that they receive at most 1.6. Therefore, we shown that if there
are no unscheduled red jobs, each ALG job receives at most 1.5, otherwise it
receives at most 1.6 and that proves the first part of the theorem.

In the first restricted case (no max-jobs) it is obvious that there are no red
jobs and therefore 1.5 is the upper bound for the competitive ratio. In the second
restricted case (tall/small jobs) suppose that there is an unscheduled red i-job J,
which is urgent at timeslot 7. Because there are no smaller jobs, ALG schedule
of timeslot T" must be full of urgent i-jobs. As the algorithm does not specify
any preferences for choosing urgent jobs of the same size, ALG might choose job
J instead of one of these i-jobs (and similarly for other unscheduled red jobs).
As both jobs are urgent, such choice would not affect the remaining schedule.
In that case there would be no unscheduled red jobs and therefore upper bound
1.5 holds. But even if ALG did not choose job J then there is the same number
of jobs scheduled by ALG and therefore upper bound 1.5 holds. That proves the
second part of the theorem. a

4 Lower Bound

Theorem 2. The competitive ratio of every deterministic algorithm for online
scheduling of parallel jobs on hypercubes is at least 1.4.

Proof. We fix a deterministic algorithm. We consider an instance on two ma-
chines; it can be easily scaled up for more machines. The instance and the proof
are summed up in Figure Bl

We start with two jobs A (r4a =1,da =3, s4=1) and B (rg =1, dg = 4,
sp = 2). If the algorithm schedules job B in the first timeslot, then we extend
the instance with an urgent job K (rxg = 2, dx = 3, sk = 2) and finish. The
algorithm might schedule job A or job K, but loses the other job and it is
1.5-competitive (as OPT schedules all jobs). This is the first case in Figure [l

Otherwise, the algorithm schedules job A in the first timeslot and OPT sched-
ules job B. We extend the instance with an urgent job C (r¢ = 2, d¢ = 3,
sc = 1). If the algorithm schedules job B in the second timeslot, then it loses
job A and it is 1.5-competitive (as OPT schedules all jobs). This is the second
case in Figure 3

Online Scheduling of Parallel Jobs on Hypercubes 61

ALG ALG
OPT OPT

(D]

EH ALG |[Al EH ALG|[A
> oPT|[B]|AQ|[(D]|EME orT|[B]/AMd GH

Fig. 3. The instance for the lower bound and the four cases in the proof

Otherwise, the algorithm schedules job C in the second timeslot and OPT
schedules jobs A and C. We extend the instance with an urgent job D (rp = 3,
dp = 4, sp = 2) and two smaller jobs F and F (rg = rp = 3, dg = dp = 5,
sgp = sp = 1), If the algorithm schedules jobs E and F' for the third timeslot,
then it loses jobs B and D and it is 1.5-competitive (as OPT schedules all jobs).
This is the third case in Figure B

Otherwise, the algorithm schedules job B or D in the third timeslot and OPT
schedules jobs F and F. We extend the instance with two urgent jobs G and H
(r =rg =4,de =dyg =5, s¢ = sg = 1), The algorithm schedules two jobs
and loses the other two jobs from jobs E, F', G, H and it is 1.4-competitive,
as OPT schedules all these four jobs during last two timeslots, but loses job D.
This is the fourth case in Figure [Bl a

Acknowledgements. This research was partially supported by Institute for
Theoretical Computer Science, Prague (project 1M0545 of MSMT CR) and grant
TAA100190902 of GA AV CR. Zajicek and Ebenlendr are also partially supported
by Institutional Research Plan No. AV0Z10190503.

References

1. Baptiste, P., Schieber, B.: A note on scheduling tall/small multiprocessor tasks with
unit processing time to minimize maximum tardiness. J. Sched. 6, 395-404 (2003)

2. Diirr, C., Hurand, M.: Finding total unimodularity in optimization problems solved
by linear programs. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168,
pp. 315-326. Springer, Heidelberg (2006)

3. Ye, D., Zhang, G.: Maximizing the throughput of parallel jobs on hypercubes. In-
form. Process. Lett. 102, 259-263 (2007)

4. Zajicek, O.: A note on scheduling parallel unit jobs on hypercubes. Int. J. on Found.
Comput. Sci. 20(2), 341-349 (2009)

Verification of Causality Requirements in Java
Memory Model Is Undecidable

Matko Botinéan!, Paola Glavan?, and Davor Runje?
! Department of Mathematics, University of Zagreb
matko.botincan@math.hr
2 Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb
{pglavan,davor.runje}@fsb.hr

Abstract. The purpose of the Java memory model is to formalize the be-
havior of the shared memory in multithreaded Java programs. The subtlest
points of its formalization are causality requirements that serve to provide
safety and security guarantees for incorrectly synchronized Java programs.
In this paper, we consider the problem of verifying whether an execution
of a multithreaded Java program satisfies these causality requirements and
show that this problem is undecidable.

Keywords: Java memory model, multithreading, verification.

1 Introduction

The Java language specification [I] and recent work on formalization of the
Java memory model (JMM) [23] attempt to give a precise specification of the
behavior of the shared memory for multithreaded Java programs. The JMM
has been designed having two goals in mind. The first one is to provide safety
guarantees to programmers by:

— ensuring sequentially consistent behavior of correctly synchronized (data
race free) programs, and

— promising that even for programs that are incorrectly synchronized with
respect to JMM semantics (i.e., programs with data races) the values should
not appear out of thin air.

The second one aims to guarantee compiler writers that common compiler op-
timization techniques are allowed as long as they do not violate these safety
guarantees.

The original specification of the JMM was shown to have serious flaws, e.g.,
Theorem 1 in [2J3] does not hold, infinite executions conflict with omega ordering
of default initialization actions in the definition of the JMM, it is unclear how
to handle dynamic allocation in this setting, etc. Although subsequent work on
JMM [4J56] managed to fix some of these problems, all variations of the JMM

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 62 2010.
© Springer-Verlag Berlin Heidelberg 2010

Verification of Causality Requirements in JMM Is Undecidable 63

definition contain an inherent deficiency regarding decidability which we address
in this paper.

The subtlest points of the JMM definition are causality requirements that
serve to provide safety guarantees for incorrectly synchronized Java programs.
The problem is that they are specified declaratively, and from this definition
it is not evident how to effectively check them. In [7], authors deal with the
problem of verifying the JMM causality requirements for a finite execution of a
multithreaded Java program containing no synchronization actions, actions on
final fields and external actions. They show that the problem is NP-complete,
however, their result holds only under additional assumption (implicit from the
proof) that all intermediate executions in the justification sequence are finite and
polynomially bounded, which is generally not true for arbitrary multithreaded
Java programs. In this paper, we consider what happens when this additional
assumption is left out and show that the problem of verifying the JMM causality
requirements for a finite execution of an arbitrary multithreaded Java program
is undecidable.

The rest of the paper is structured as follows. The formal definition of the
JMM is given in Section 3. Section 3 contains the main result of this paper. In
Section 4, we give concluding remarks.

2 The Java Memory Model

Let us first introduce the concepts from [32] that are needed for understanding
the definition of the Java Memory Model (JMM).

We consider a multithreaded Java program that spawns a set of threads. The
execution of each thread is represented as a sequence of actions. Formally, an
action is a tuple (t, k,v,u), where ¢ is the thread performing the action; k is the
kind of the action: read, write, volatile read, volatile write, lock, unlock, thread
create, thread join or an external action; v is the variable or monitor involved
in the action; and w is an arbitrary unique identifier of the action (though, for
readability, we do not write u explicitly). Non-volatile read and write actions are
non-synchronization actions, the others are synchronization actions. In the rest
of the text, we do not deal with thread create, thread join and external actions,
however, we use the notion of initialization actions for setting up initial values
of shared variables. o

0

An ezecution is a tuple F = (P, A, RN A T) where

— P is a Java program;

— A is a set of actions;

— 22 is the program order — a partial order over actions in A that is a total
order over all actions preformed by the same thread;

2% is the synchronization order — a total order over all synchronization
actions in A;

! Here we denote binary relations with ——, for some label «. Transitive closure of
relation (i>)Jr is denoted by <., when it is a strict partial order.

64

M. Botin¢an, P. Glavan, and D. Runje

W is the write-seen function — a function assigning a write action W (r) to
each read action r in A;
V is the value-written function — a function assigning a value V' (w) to each
write action w in A;
28 is the synchronizes-with order — the smallest relation over synchroniza-
tion actions in A such that:
e if a; is unlocking and as is locking the same object, and a; == as, then
a1 =5 ag;
e if a; is volatile writing to and as is volatile reading from the same loca-
tion, and a; LN asz, then ay 2o az;.
hgo is the happens-before order — a strict partial order induced by the

hbo
synchronizes-with order and the program order, i.e., <= (ﬂ u X%+,

An execution F is well-formed if it obeys the Java intrathread semantics, i.e., if
it satisfies the following conditions:

(1)

(7)

Each read of a variable z sees a write to x. All reads and writes of
volatile variables are volatile actions.

The synchronization order is at most an omega order, i.e., for each
synchronization action z, the set {y | y <so =} is finite.

Synchronization order is a strict total order consistent with pro-
gram order, i.e., <uo |pom(<.,) S<so-

Lock operations are consistent with mutual exclusion, i.e., for all
lock actions I on monitor m and all threads ¢ (different from the thread of [)
the number of locks of ¢ before [in <, is the same as the number of unlocks
of t before [in <j,.

The execution obeys intra-thread consistency, i.e., for each thread t,
the actions preformed by ¢ in A are executed in the same order that would
be generated if ¢ is run as a single thread in isolation.

The execution obeys synchronization-order consistency, i.e., for ev-
ery volatile read r € A, it is not the case that r <, W(r), and addi-
tionally, there must not exists a write w on the same variable v such that
W(r) <so w <go T

The execution obeys happens-before consistency, i.e., for every read
r € A, it is not the case that r <pp, W(r), and additionally, there must not
exist a write w on the same variable v such that W (r) <ppe w <ppo 7.

A well-formed execution F is JMM-consistent if it satisfies the JMM causality
requirements, i.e., if there exists a committing sequence of sets of actions @) =
CoCcCy CCyC...suchthat A= UZ C;, that get justified through a sequence
of well-formed executions E1, Fa, ... of the program P. The sequences (C;); and
(E;)i, where E; = (P, A;, ﬂ, 2% Wi, Vi, <hbo,), are required to satisfy the
following conditions:

1.
2.

<hbo; |C; =<hbo |C;}
S0; so .
c;, = Cis

Verification of Causality Requirements in JMM Is Undecidable 65

=V Cis
Ci- 1_W ‘Cz 15
e A \CZ 1, () <hb07 1
TGC\CZ 1, ()66’171, (T)GCZ;L

4. V;
5. W
6. Vr
7.

3 Verification of the JMM Causality Requirements

We define the problem of verifying the JMM causality requirements as follows.
The input to the problem is a finite well-formed execution F of a Java program
P. The question we are interested in is whether E satisfies the JMM causality
requirements, i.e., whether E is JMM-consistent.

Let S be an arbitrary sequential program containing no synchronization ac-
tions, no actions on final fields, no external actions, and no references to global
variables. Let P be a multithreaded program with two threads T, and T} de-
scribed as follows:

T,: y=x; T,: if (y==0){s}
x =1;

Assume that both x and y are initially set to O by initialization actions i; and
i2 in an initialization thread I, and they happen before any other action in
the execution. We represent these facts by extending the program order. Let

o S0 sSwo hbo . .
= (P, A, 2% 2% W, V, 2% "< be a finite well-formed execution of P defined

by the followmg components:

- A= {i; = (I,vurite,z),is = (I,write,y), a1 = (T,,read, x),
ag = (Ty,write,y), by = (Tp,read, y),bs = (T, write,x)};

- ﬂ): {(ala a2)a (b17 b2)a (ilv Z.2)7 (ila al)a (i27a1)7 (ilv bl)a (i2’ bl)}’

RN

- W= {(a1,b2), (b1, a2) };

V= {gl,O),(12,0),(a2,1),(bz,1>};
P (i1, a1), (izy a1), (i1, by), (i, b), (ar, az), (b1, bo),

(i1,a2), (i2, az2), (i1, b2), (i2, b2) }.
Then the following lemmas hold.

Lemma 1. If S terminates, i.e., if S run as a singlethreaded program has a
finite execution, then E is JMM-consistent.

Proof. Assume that S terminates. Then the following sequence of actions (C;);
and executions (E;); satisfy the JMM causality requirements for E:

Ey: - Cr={i1,i2};
- Wi = {(a1,i1), (b1,i2) };
- = {(ilvo)’ (i270)’ (a2’ 0)7 (b27 1)};

(note that by indeed can be executed “after” by since S terminates);

66 M. Botin¢an, P. Glavan, and D. Runje

Ey: - Co=CLU{b2};

- Wy = {(a1,i1), (b1,i2) };

- Vo= {(ilvo)’ (i270)’ (a2’ 0)7 (b27 1)};
Es: - C3=CyU{ar};

- W3 = {(a1,b2), (b1,i2)};

- V3= {(ilvo)’ (i270)’ (a2’ 0)7 (b27 1)};
By - Cy=C5U{az};

- Wy = {(a1,b2), (b1,i2)};

-Vy= {(ilvo)’ (i270)’ (a2’ 1)7 (b27 1)};
Es: - Cs=CyU{b};
W5 = {(a1,b2), (b1, a2)};
- V5= {(i1,0), (iQ&O)a (a27 1)7 (b2’ 1)}5

Lemma 2. If E is JMM-consistent then S terminates.

Proof. Assume that E is JMM-consistent and S does not terminate. We claim
that then the action by cannot be committed through any sequence of actions
(C:)i, and thus cannot take place in the final execution F, implying that F is
not JMM-consistent. Namely, since C; contains only initializations actions, it
cannot contain by. Assume that by is not contained in some C;_1. This means
that in the execution F;, the read of y in T} (the action b1) can only see either
the initial write of 0 to y (the action i3) or the write of 0 to y performed by T,
through the action as. Since in both cases the condition of the if-statement is
satisfied, statements of the program S get executed infinitely, thus not allowing
by to get executed. Therefore, by cannot be committed in C; either.

Since determining whether a sequential program S terminates is undecidable,
from Lemma [I] and Lemma 2l we conclude the following:

Theorem 1. Verification of the JMM causality requirements is undecidable.

4 Conclusions

In this paper, we considered the problem of verifying whether a finite execution
of an arbitrary multithreaded Java program satisfies the causality requirements
stemming from the Java memory model. It has been shown that this problem is
undecidable.

We see this result as an important weakness of the JMM specification since
it shows that one cannot have a dedicated verification algorithm in the general
case. One can, however, employ the JMM definition in order to develop a simple
model checker that solves the problem for some specific cases (“small” with
respect to the number of program instructions, threads, and especially number
of data races, see [§]).

The sequential consistency memory model has also been shown to be unde-
cidable [9]. This result, however, did not make a definite verdict on the practical
aspect of the sequential consistency memory model verification [10]. Taking into
account Java practitioners needs, we could also expect verifiable fragments of
the JMM to appear in the future.

Verification of Causality Requirements in JMM Is Undecidable 67

References

10.

. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification, 3rd

edn. Addison-Wesley, Reading (2005)

. Manson, J., Pugh, W., Adve, S.V.: The Java memory model (expanded version).

ACM Transactions on Programming Languages and Systems (submitted)

. Manson, J., Pugh, W., Adve, S.V.: The Java memory model. In: Proceedings of

the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL 2005), pp. 378-391. ACM Press, New York (2005)

. Cenciarelli, P., Knapp, A., Sibilio, E.: The Java memory model: Operationally,

denotationally, axiomatically. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421,
pp. 331-346. Springer, Heidelberg (2007)

. Aspinall, D., Sevcik, J.: Formalising Java’s data-race-free guarantee. In: Schnei-

der, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 22-37. Springer,
Heidelberg (2007)

. Aspinall, D.; Sevcik, J.: Java memory model examples: Good, bad and ugly. In:

Proceedings of the 1st International Workshop on Verification and Analysis of
Multi-threaded Java-like Programs, VAMP 2007 (2007)

. Polyakov, S., Schuster, A.: Verification of the Java causality requirements. In: Ur,

S., Bin, E., Wolfsthal, Y. (eds.) HVC 2005. LNCS, vol. 3875, pp. 224-246. Springer,
Heidelberg (2006)

. Manson, J.: The Java memory model. PhD thesis, University of Maryland, College

Park (2004)

. Alur, R., McMillan, K.L., Peled, D.: Model-checking of correctness conditions for

concurrent objects. Inf. Comput. 160(1-2), 167188 (2000)

Sezgin, A., Gopalakrishnan, G.: On the decidability of shared memory consistency
verification. In: Proceedings of the 3rd ACM & IEEE International Conference on
Formal Methods and Models for Co-Design (MEMOCODE 2005), pp. 199-208.
IEEE, Los Alamitos (2005)

A Team Object for CoArray Fortran

Robert W. Numrich

Minnesota Supercomputing Institute
University of Minnesota, Minneapolis, MN

Abstract. This paper outlines the features of a team object for CoArray
Fortran to support multi-disciplinary applications. It combines object-
oriented design, supported in Fortran 2003, with the parallel coarray
model, supported in Fortran 2008. It extends the coarray model by
adding state to a coarray object. The compiler and run-time environment
use this state to dereference co-indices relative to the team that created
the object. Methods are associated with a team object for synchroniza-
tion, memory allocation and collective operations across the team.

1 Introduction and Motivation

Fortran is now a true object-oriented language as defined by the Fortran 2003
standard [3]. The next standard, currently called Fortran 2008, will likely include
the parallel coarray extension as a standard feature [4J5l6]. Although earlier
versions of the coarray model included a primitive idea of teams, that is, a
subset of images that work together on a particular problem, the team concept
was considered insufficiently well defined and was deferred from the Fortran 2008
standard until a later revision. Since the team concept is open for discussion,
this paper proposes a new way to think about teams within the coarray model.
It is only a proposal, and there should be no assumption that it will or will
not become part of the standard language. Mellor-Crummey and co-workers [2]
have recently proposed an alternative approach for defining teams. The overlap
between the two proposals is large, but they are not identical.

The motivation for this proposal is to design teams in such a way that two
stand-alone codes, written in the coarray model, can be coupled together with
only small changes to the original codes. In other words, the components in a
coupled code look pretty much the same as they did as stand-alone codes. The
design is to some extent similar to a communicator as defined by the Message-
Passing Interface (MPI) [II7]. The two ideas are not identical. The team object is
designed to fit the coarray model with as few new features added to the existing
model as possible.

The main problem that needs to be solved is related to memory allocation of
coarrays and dereferencing of codimensions. In the current coarray model [5], an
allocatable coarray,

real, allocatable :: x[:,:] (1)

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 682010.
© Springer-Verlag Berlin Heidelberg 2010

A Team Object for CoArray Fortran 69

with multiple codimensions is allocated across all images,
allocate(x[p,*]) (2)
The co-indices [q,r] representing a coarray on a remote image,
y = x[q,r] (3)

are dereferenced relative to all the images based on the codimensions in the
allocate statement. Making teams useful requires allocation to occur across
just members of a team and dereferencing of co-indices to occur relative to the
members of the team. Similarly, synchronization should be allowed across a team
rather than across all images and collective operations among team members
alone need to be defined. The team object defined in this paper is one way to
extend the coarray model to provide these features.

2 Class AbstractTeam

A team object is an extension of an AbstractTeam object defined, for example,
in a module named ClassAbstractTeam,

module ClassAbstractTeam
Type,public,abstract :: AbstractTeam

contains

procedure (myTeam) ,public,pass(this) ,deferred :: isMyTeam
procedure(getSize) ,public,pass(this) ,deferred :: getTeamSize
procedure(getIndex) ,public,pass(this) ,deferred :: getTeamIndex
procedure(getList) ,public,pass(this),deferred :: getTeamList
procedure(alloc) ,public,pass(this),deferred :: allocate
procedure(dealloc) ,public,pass(this),deferred :: deallocate
procedure(sync) ,public,pass(this) ,deferred 1 sync
procedure (sum) ,public,pass(this) ,deferred :: sum
procedure (max) ,public,pass(this) ,deferred 1 max
procedure(min) ,public,pass(this) ,deferred :: min
procedure(run) ,public,pass(this) ,deferred :: run

end Type AbstractTeam

abstract interface
logical function isMyTeam(this)

import :: AbstractTeam
Class(AbstractTeam) ,intent(in) :: this

end interface
end module ClassAbstractTeam

(4)
The reader unfamiliar with Fortran 2003 should consult a reference book to
decipher this code sample [3].

A concrete class that extends this abstract class must provide the deferred
procedures that match specified interfaces such as the one shown for the function

70 R.W. Numrich

isMyTeam(). This function returns a logical true if the image that invokes the
function is in the team and logical false if it is not in the team. The function
getTeamIndex () returns the invoking image’s index relative to the team, and
the function getTeamSize () returns the number of images in the team. The
function getTeamList () returns a list of images in the team. The interfaces for
these functions are omitted for lack of space.

Some of the deferred procedures listed for the abstract class imply a change in
the coarray model. Each team, for example, defines its own memory allocation,
deallocation and synchronization procedures. In the current model, allocation of
a coarray is a collective operation across all images. In the team model, allocation
takes place only across members of the team. The compiler, then, for each coar-
ray, must keep track of its team context, and it must dereference codimensions
relative to the team. Synchronization takes place only among team members,
and collective operations, such as sum, max, min, take place only among team
members.

The programmer assigns work to each team by providing a run procedure
specific to the team perhaps something like example ([I{)) shown in section [4
This procedure might, for example, be a wrapper around an ocean model for one
team and a wrapper around an atmosphere model for another team. Inside one
of these wrappers, the programmer allocates coarrays and uses synchronization
procedures, as if it were a stand-alone code written in the coarray model, but
uses the procedures associated with the particular team that invoked the run
procedure.

Each concrete team supplies a constructor, as a function with the same name
as the team class, that returns a team object of that type. For example, for a
team of type AllTeam that includes all the images, the code sample,

Type (AllTeam) :: all
real,allocatable :: x[:]
real :: s
all = AllTeam()
call all¥sync()
call all%allocate(x[*])
s=all¥sum(x[*]) (5)

creates a team named all and uses the alllsync, alljallocate and all’sum
procedures associated with that team. This class essentially represents the ex-
isting coarray model. All images must invoke the constructor A11Team, so they
all know they belong to the team, and the procedures all¥sync, all%allocate,
all%sum and so forth are collective procedures across all images.

The programmer creates other kinds of teams by invoking a team constructor
specific to each team class. These team classes can be created by the program-
mer, as extensions of the abstract team class or through inheritance from other
concrete classes, and the programmer must provide a constructor for the class
along with all the other deferred procedures. The programmer may, of course,
add other procedures and data components specific to a particular class.

A Team Object for CoArray Fortran 71

For a coarray allocated by a team, the compiler must dereference codimensions
relative to the team. Keeping track of team information can be done, for example,
by adding a pointer to the team in the allocated object’s dope vector. This extra
layer of indirection may degrade performance, and it is important to define a
team in such a way to reduce this overhead. For example, a simple team might
be one that includes a contiguous subset of images.

Type (ContiguousTeam) :: air, ocean
p=num images ()
air = ContiguousTeam(1,p/2)
ocean = ContiguousTeam(p/2+1,p)
if (air%isMyTeam()) then
call air%run()
elseif (ocean’,isMyTeam()) then
call oceanrun()
end if (6)
The constructor for a contiguous team accepts two arguments specifying the
beginning and end of the image numbers contained in the team. The compiler
then uses a simple offset to dereference codimensions.

3 Collectives

Within a team, the programmer may want to form a subteam to compute, for
example, a global reduction across a particular codimension. A CoDimTeanm class
might provide this capability. Its constructor might accept three arguments spec-
ifying the row relative to the codimension of a specific coarray, a stride between
images in the team, and the number of images in the row.

Type(CoDimTeam) :: rowTeam
real :: x[q,*]
real :: s
rowTeam=CoDimTeam(p,q,r)
s = rowTeamlsum(x) (7)

Each object of class team must provide a set of collective procedures. These
procedures should be written to optimize communication based on the known
relationships among members of the team.

4 Communication among Teams

Data exchange among different teams can take place through buffers created
across all images and passed to various subteams. Within each subteam, co-
indices for this buffer are dereferenced relative to the all the images because
it was allocated across all images. Two different teams can read data from or
write data to this buffer using coarray syntax. The programmer is responsible
for keeping track of how image numbers for each team are related.

72 R.W. Numrich

Type(AllTeam) :: all
Type(ContiguousTeam) :: air,ocean
real,allocatable :: buffer(:)[:]
call alllallocate(buffer(n) [*])
if (air%isMyTeam) call air’run(buffer)
if (ocean’isMyTeam) call oceanjrun(buffer) (8)

The programmer is responsible for maintaining memory consistency using
proper synchronization procedures. A team may synchronize with itself or with
another team using overloaded versions of the synchronization procedure, for
example, as shown in the code sample,

if(air%isMyTeam()) then
call air¥%sync()
call airYsync(ocean)
elseif (oceanlisMyTeam()) then
call ocean%sync()
call oceanysync(air)
endif (9)

Synchronization between pairs of teams, of course, must happen in pairs and the
programmer must guard against deadlocks.

As an example of two teams interacting with each other, consider the run
procedure provided by the programmer for the ocean team.

subroutine run(ocean,air,buffer)

Type(ContiguousTeam) ,intent (in) :: air,ocean
real,intent(inout) :: buffer(1:) [*]
integer :: airImage

airImage = air’,getTeamList (1)

call oceanysync(air)

airBoundayConditions(:) = buffer(:) [airImage]
== some ocean work------

call oceanysync(air)

airBoundayConditions(:) = buffer(:) [airImage]

=== some more ocean WOrk------
end subroutine run (10)

The atmosphere team writes boundary conditions needed by the ocean team
into the coarray buffer on the first image in its team. The ocean team does
the same with boundary conditions needed by the atmosphere into the buffer
on its first image. The programmer obtains the global image index for the first
member of the air team using the function airygetTeamList (1) and uses it as
a co-index to point to the buffer containing the boundary conditions supplied by
the atmosphere team. Since the buffer coarray was allocated by team all, the
compiler dereferences co-indices relative to all images.

A Team Object for CoArray Fortran 73

5 Remarks

This proposal adds something new to the coarray model. Codimensions have
always been interpreted locally, within the scope of each procedure, with the
hidden assumption that the compiler interprets a co-index relative to all images
fixed at run-time. In this new proposal, each coarray carries with it a team state.
The compiler still interprets codimensions locally but within the context of the
team that allocated the coarray. A team object contains information, for each
concrete instantiation, that the compiler uses to interpret codimensions and to
dereference co-indices.

This extra overhead may lead to a degradation in performance. If the images
in a team are some random collection, with no obvious rule that relates one to
another, the compiler may need to generate run-time code to compute an image
number from a co-index. But simple teams, like contiguous teams or codimension
teams, can be defined in such a way that the compiler can use a simple formula
to dereference co-indices. Nonetheless, within this new model, the programmer,
by extending the abstract team, may define a team based on a general graph
that defines a complicated relationship among the members of the team. The
programmer must be willing, then, to accept the extra overhead.

This proposal remains within the SPMD model assumed by the coarray model.
A team is a subset of the fixed number of images set at run-time. It resembles an
MPI intra-communicator within an MPI group. But the model could be extended
to add a new dynamic feature to the model where the run() procedure might
become, say, a spawn() procedure that launches a new set of images for each
team. This feature would resemble an MPI inter-communicator between different
MPI groups. Adding this dynamic feature to the coarray model would involve
extensive run-time support in addition to compiler support.

References

1. Gropp, W., Huss-Lederman, S., Lumsdaine, A., Lusk, E., Nitzberg, B., Saphir, W.,
Snir, M.: MPI: The Complete Reference. The MPI-2 Extensions, vol. 2. MIT Press,
Cambridge (1998)

2. Mellor-Crummey, J., Adhianto, L., Scherer III, W.: A New Vision for Coarray
Fortran. In: Proceedings PGAS 2009, October 5-8. George Washington University
(2009)

3. Metcalf, M., Reid, J., Cohen, M.: Fortran 95/2003 Explained. Oxford University
Press, Oxford (2004)

4. Numrich, R.W., Reid, J.K.: Co-arrays in the next Fortran standard. ACM Fortran
Forum (2005)

5. Reid, J.: Coarrays in the next Fortran Standard. ISO/IEC JTC1/SC22/WG5 N1787
(2009)

6. Reid, J., Numrich, R.W.: Co-arrays in the next Fortran Standard. Scientific Pro-
gramming 15(1), 9-26 (2007)

7. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI: The Complete
Reference, 2nd edn., vol. 1. MIT Press, Cambridge (1998)

On the Definition of Service Abstractions for
Parallel Computing

Hervé Paulino

Departamento de Informética, Universidade Nova de Lisboa, Portugal
herve@di.fct.unl.pt

Abstract. The availability of real parallelism in multi-core based archi-
tectures has resurrected the interest in concurrent computing in general,
and parallel computing in particular. New languages and libraries have
been recently proposed to increase productivity in the context of these
architectures. In this paper we present a novel approach that resorts to
the service abstraction for annotating parallelism.

1 Introduction and Motivation

Multi-core CPU architectures are ushering a new era in computer design and
organization. Recent years have seen parallelism become the driver for CPU
performance increase, making multi-core CPUs the de-facto standard in modern
CPU design. In fact, IBM researchers envision high-bandwidth interconnected
nodes composed of several multi-core processors with non-uniform memory hi-
erarchies as the emerging processor organization paradigm [IJ.

The widespread infrastructural support for real parallelism has resurrected the
interest in concurrent computing as a whole and in parallel computing in partic-
ular. MPI [2] and OpenMP [3] have been, until now, the community standards
for, respectively, the message-passing and shared-memory paradigms. However,
both have generally accepted limitations. The MPI programming model is error-
prone, forces per-processor implementation of the algorithms [4] and does not
have implementations that support the deploying of applications in heteroge-
neous environments. OpenMP features a higher degree of abstraction, usually
only requiring minor modifications on the sequential algorithms, but the global
shared-memory model limitation is inadequate for these new architectures.

This state-of-the-art has motivated the definition of new programming ab-
stractions and runtime systems to address the development and consequent de-
ployment of applications in these new generation of architectures. DARPA’s
(Defense Advanced Research Projects Agency) HPCS (High Productivity Com-
puting Systems) program funded research to tackle these issues, giving birth to
the X10 [1], the Chapel [4], and the Fortress [5] programming languages. Intel
is also researching on the increase of productivity in multi-core architectures,
proposing the Ct [6], and Intel Threading Building Blocks (TBB) [7] libraries.

This paper introduces initial research on a novel approach based on services for
the programming of parallel applications. Services are nowadays an established

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 74 2010.
© Springer-Verlag Berlin Heidelberg 2010

On the Definition of Service Abstractions for Parallel Computing 75

programming abstraction in the development of loosely-coupled distributed ap-
plications. It is our purpose to apply its modularity and intuitiveness to parallel
computing and, with that, provide a good framework for the design of non-
sequential code.

We intend to decouple functionality from resource awareness and provide a
two-level application construction scheme. On a first level functionalities are
aggregated into services that are implemented and accessed as if they where a
single entity in a global addressing space. The actual number of service instances
and their mapping into the processor pool is defined at a second level.

The remainder of the paper is structured as follows: section 2 presents our
service-based model; section 3, its relation to the current state-of-the-art; and,
finally, section 4, draws some conclusions and guidelines for future work.

2 A Service-Based Approach to Parallel Computing

We begin this section by giving a more comprehensive explanation of what is
a service in our model. A service is an abstraction that gathers (normally) re-
lated functionalities and provides them to the client as an interface. All the
services required by an application must be defined within, and compiled with
the remainder of the application. We are not in the presence of a distributed com-
puting model. There is no loose-coupling, no need for registering and searching
for service providers, nor for interoperability at this level.

A program is a collection of services plus a main section, that bootstraps the
execution. Although it is not explicit in the definition of a service, the later may
have several execution flows running in distinct computing elements, such as
distinct CPUs or computers. The number of execution flows and their mapping
in the execution environment is only defined at deployment-time.

Figure [l illustrates the deployment of an application in a given architecture.
On the top left corner we have the application, which defines and uses services
S1, S2, and S3. Below, we have its mapping in the execution environment. This
information defines the number of instances of each service and how these map
in the processor pool of the target architecture. The syntax is declarative and
allows for statements of the following three forms:

n of S // Launch n instances of service S

n of S in a // Launch each of the n instances of S in a architecture of type a
n of S groupby a // Group the n instances of S in nodes of type a

where n denotes the number of instances, S the service identifier and a the target
architecture, for instance, dual, quad and node (for multiprocessor nodes).

Both the application and the mapping are fed to the application launcher that
has the responsibility of ensuring the matching between the later and the target
architecture. In figure [I] this architecture is composed of a set of single, dual
and quad-core machines. Note that the main section will execute in the machine
where the application is launched.

Next, we present our service-based programming model for the writing of
parallel applications.

76 H. Paulino

service S3 {...}

‘ Single
| Core

Application
3 of S1 groupby dual launcher —>
4 of S2 groupby quad

1 of 83

Fig. 1. Launching an application

2.1 The Programming Model

The model is orthogonal to the common general-purpose sequential and concur-
rent programming languages. Thus, it does not define a Turing-complete model,
but rather a set of primitives to annotate parallelism in applications. Through-
out this subsection we will use the C programming language to illustrate our
concepts. We are not defining a concrete syntax but rather making an exercise
to present the abstractions of the model.

Defining and Using Services: Consider the next three mathematical func-
tions: square-root (textsfsqrt), power (pow), and the Fibonacci function (fib)
written in the C language.

double sqrt (double d) { ... }
double pow(double b, long e) { }
long fib(long n) { ... }

Our objective is to have simple and intuitive abstractions, and with that increase
productivity. The syntax for the aggregation of these functions in a service can
be as simple as:
service Math
double sqrt (double d) { ... }

double pow(double base, long exp) { ... }
long fib(long n) {

For the sake of modularity a service may define local operations for internal
use only. In Java this can be easily achieved with the notion of private method.
In other languages, such as C, a special keyword (local) may be required. An
example that adds logging capability to the Math service follows:

service Math {

Iocelllll:
void log(char message[]) { ... }

Service operation invocation: The invocation of service operations is synchronous,
meaning that the execution flow of the caller blocks until the result is available.
The syntax is borrowed from method selection in object-oriented languages, as
illustrated in the recursive implementation of the fib operation below.

long fib(long n) { return n < 2 ? 1 : Math.fib(n—1) + Math.fib(n—2); }

On the Definition of Service Abstractions for Parallel Computing 7

Concurrent invocations: In order to have full concurrency, both in the server
as in the client, we define a syntax for concurrent service operation invocation.
Both the left and right-hand sides of an attribution become sequences. The
left-hand side must hold the variables target of the operations’ results, whilst
the right-hand side must hold the actual invocations. The mapping is given by
the order of the elements in the sequences. Note that synchronous nature of the
operations is kept, the execution flow only proceeds to the next instruction when
all the results have been received. With this new feature we can provide a new
implementation of the fib operation where its invocations are done concurrently.

long fib(long n) {
if (n < 2) return 1;
long x, vy;
x, y = Math.fib(n—1), Math.fib(n—2);
return x+vy;

}

This particular implementation raises a question: are the recursive invocations
of fib performed locally (by the current instance) or remotely (by some other
instance, if such instance exists)? Since invocations are synchronous, the local
processor will become idle after performing the calls, and can thus be used to
perform other computations. In this context, a natural choice would be to execute
at least one of the operations locally.

We provide this control in a simple way, the qualification of the operation with
the service’s identifier denotes a remote execution, while the non-qualification
denotes local execution. Thus, to execute fib(n-1) locally we only need to change
the statement to: x, y = fib(n-1), Math.fib(n-2).

Asynchronous invocations: Asynchronous invocations of service operations is also
featured in the model. The async keyword allows the definition of an handler
(a local function in C) that is triggered when the result arrives, and has the
purpose of handling such result.

An handler may be parameterized, being that the last parameter must stand
for the incoming result. As we be clear in the two examples below, this parameter
is transparent to the handler setting. The examples focus on the asynchronous
invocation of the Math.fib operation. The first simply prints the received result,
while the second assigns it to a variable passed by reference.

void printRes(int res) {

async Math.fib(n) : printRes (); printf ("%d", res); }

int x; void assignRes(int xvar, int res) {
async Math.fib(n) : assignRes(&x); xvar = res; }

The invocation also requires a dedicated syntax: S.addArray(a#[10]) stands for
sending the first 10 elements of array a, which can have a far superior length.

Sharing data among service instances: The Math example we introduced
in the beginning of this subsection is an example of a stateless service. However,
stateful services can also be implemented by defining a set of variables global to

78 H. Paulino

Shared data

QOO
OOOO-O

Fig. 2. (a) State sharing, (b) Shared parameters and returning shared data

aterred|data

=1 @Q%G}@

| | St1aterred
OOOO-O

Fig. 3. (a) State scattering, (b) Scattered parameters and returning scattered data

the service. For instance, an operation may allow for the uploading of data to a
service for its posterior manipulation by invoking one or more operations.

As stated before, although it is not explicit in the language, a service may be
executed by multiple flows of execution. As illustrated in figure[2 (a), these may
share part of the service’s state. In fact, each service instance holds a local copy
of the shared data. This allows read operations to be local, while writes require
inter-instance communication and synchronization.

The sharing of data can also be done at parameter level, which means that
a value passed to the operation must be sent to all instances processing that
invocation (figure[2 (b)). As is also illustrated in the figure, the return of a shared
variable must be performed by only one the instances, to avoid the reception of
multiple copies.

The next example illustrates a case where all instances of service DataMining
share variable data and hold a private copy of variable max. In turn, operation
process manipulates a shared array (input) received as argument. Shared variables
must be qualified with the shared keyword.

service DataMining {
char data[] : shared;
int max = 1024;
void upload(char d[length]) { data = d; }
void process(char input[length] : shared) { ... }

}

Data parallelism: In order to achieve data parallelism and improve perfor-
mance, non-scalar values can be scattered among the instances of a service. As
with shared values, this can be applied to both state (figure[3] (a)) or parameter
variables (figure B (b)). In the later case, each instance receives only a subset
of the entire value. The return of a scattered value requires the collection and
integration of all its subsets.

On the Definition of Service Abstractions for Parallel Computing 79

An classic and intuitive example of data parallelism is the matrix multiplica-
tion problem. Each element of the result matrix is computed from one row of
the first matrix (M1) and one column of the second (M2). Thus, we can parti-
tion both matrices in such way that each instance only receives only a subset of
the rows of M1 and of the columns of M2. In our model, scattered arrays must
qualify the dimension to scatter with the scattered keyword, as is coded in the
following matrix multiplication implementation:

char [][] mul(char ml[nRows : scattered][nCRs], // scattered by rows
char m2[nCRs][nColumns : scattered]) { // scattered by columns
char sxm = calloc (nRows*nColumns, sizeof(int));

for (int i=0; i < nRows; i++)
for (int j=0; j < nColumns; j++)
for (int k=0; k < nCRs; k++) m[i][]j] += ml[i][k]*m2[k][]];
}

return m;

}

nRows, ncolumns and nCRs denote the length of the respective arrays dimensions.
Note that later appears twice in the function’s signature, which requires a static
analysis to ensure value unification.

Data partitioning is, however, not always as linear as in the matrix multipli-
cation example. Consider the problem of checking if one string is a substring
of another. A linear partition will not cover the case where the string to match
crosses the boundaries of the partition.

To provide a modular framework that can coupe with problem-specific par-
titions, we introduce the concept of distribution that can also be found in the
Fortress language [B]. A distribution is the set of ranges of the target array to
be supplied to a given service instance. To ease the implementation of these dis-
tributions, we defined a set-based syntax that allows for operations over ranges.

A distribution is always parameterized by the index of the instance to which
the range is to sent, the number of instances target of the distribution, and the
length of the array to be scattered. Other parameters can be added, as in the
next example that implements a distribution for the substring search example.
The added parameter denotes the length of the substring to find.

dist myDist(int subStringlen, int instance, int nlnstances, int arrayLen) {
int len = arraylen/ninstances + subStringlLen — 1;
return [instancexlen, min(instancexlen+len, arraylLen —1)];

}

int findSubStr(char str[sLen] : myDist(sLen), char subStr[ssLen]) { ... }

Scattered but locally shared variables: The mapping of services into processors
that share a memory hierarchy may sometimes profit from the sharing of the
scattered data within the node (figure H). Only the services grouped by the
groupby annotation in the mapping stage can make use of this feature.

Merge (or reduce) data: When multiple service instances are computing an
operation in parallel it is often necessary to merge, or reduce, the multiple re-
ceived results to compute the final one. Our approach is to associate a merging
function to the variable holding to result to return. The next example merges

80 H. Paulino

Scaterred data

shared shared -

OO

Fig. 4. Scattered but locally shared variables

the existing copy of a local array (x) with a new incoming result, computing, for
each cell, the maximum of the values of that same cell in both arrays. Naturally
some of the most used merging operations can be provided in a library.
service SomeService {
int[] someOperation() {
int x[] : mergewith f;
return x;
local:

void f(int new[len]) {
while(——len) if (new[len] > x[len]) x[len] = new[len];
}}

Process synchronization: As in many other languages, a keyword (atomic)
is defined to delimit atomic blocks. Its unbound use (atomic {...}) ensures ex-
clusive access to all the shared variables in the block, as if a lock upon all is
performed before entering the block. Deadlock-free algorithms must be imple-
mented. Its binding to a variable of type sync ensures that the delimited sequence
of operations executes atomically, even if it does not access shared variables. An
example follows:

sync s;
atomic s { printf ("Hello”); printf (" world!\n"); }

Memory barriers are implicitly placed whenever an access is made to a shared
variable. We are yet to define if explicit barriers are to be included.

3 Related Work

The objective of our work is closely related to DARPA’s HPCS funded languages
and Intel’s multi-core related research. Due to space restrictions we chose to
focus solely on the first set, since the second relates only to shared-memory
models. IBM’s X10 [I] is language specially designed for NUCC architectures.
As Cray’s Chapel [4], it partitions the global addressing space into localities,
enabling affinities between processes and processors. An approach quite far from
our service abstractions. Even further is Sun’s Fortress [0] that provides a syntax
close to mathematical notation. Computation is parallel by nature, thus, instead
of providing constructs for parallel loops (as X10 and Chapel) it provides means
to serialize them. Distribution imposes parallel structures on generators, the
abstractions that define how data-structures map into the target architecture.
All three languages support the asynchronous spawning of tasks, much like in
Cilk [8] and pSystem [9] and array sub-languages to handle array specifics, such as

On the Definition of Service Abstractions for Parallel Computing 81

sparse matrices. Synchronization is achieved through the usual atomic code blocks.
Although the use of localities and array sub-languages provide a higher degree of
flexibility and abstraction, we think that the programming model is still too close
to what is done in Cilk [8], pSystem [9], or UPC [10]. Fortress’ idea of parallelism
by default seems to be a good path to follow. Nonetheless, regarding distributed
memory, we feel that the service approach is more intuitive and modular.

4 Conclusions and Future Work

The main objective of this paper is to expose our approach to the problem of
increasing productivity in architectures with real parallelism. It is our opinion
that the use of an established and intuitive abstraction, such is the service,
provides a good framework for designing of non-sequential code.

The model here proposed is still at an early development stage. Work in
progress focuses a formal definition and prototype implementations. A formal
framework will allow us to obtain correctness properties, such as the lack of
deadlocks, while prototype implementations will allow us to attest the behavior
of the model in large scale applications, both performance and code maintenance.
Currently implementations in Java and C are planed.

References

1. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von
Praun, C., Sarkar, V.. X10: an object-oriented approach to non-uniform cluster
computing. SIGPLAN Not. 40(10), 519-538 (2005)

2. Message Passing Forum: MPI: A Message-Passing Interface Standard. Technical
Report UT-CS-94-230, University of Tennessee, Knoxville, TN, USA (May 1994)

3. OpenMP Architecture Review Board: OpenMP Application Program Interface v
3.0 (May 2008)

4. Callahan, D., Chamberlain, B.L., Zima, H.P.: The cascade high productivity lan-
guage. In: Ninth International Workshop on High-Level Parallel Programming
Models and Supportive Environments (HIPS 2004), pp. 52-60 (2004)

5. Allen, E., Chase, D., Hallett, J., Luchangco, V., Maessen, J.W., Ryu, S.: Jr., G.L.S.,
Tobin-Hochstadt, S.: The Fortress Language Specification. Technical report, Sun
Microsystems, Inc. (2007)

6. Gholoum, A., Sprangle, E., Fang, J., Wu, G., Zhou, X.: Ct: A Flexible Parallel
Programming Model for Tera-scale Architectures. Intel Whitepaper (October 2007)

7. Reinders, J.: Intel Threading Building Blocks. O’Reilly & Associates, Inc., Se-
bastopol (2007)

8. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,
Y.: Cilk: An Efficient Multithreaded Runtime System. In: Proceedings of the Fifth
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP), pp. 207-216 (July 1995)

9. Silva, F., Paulino, H., Lopes, L.: di pSystem: A Parallel Programming System
for Distributed Memory Architectures. In: Proceedings of the 6th European
PVM/MPI Users’ Group Conference, pp. 525-532. Springer, Heidelberg (1999)

10. El-Ghazawi, T., Smith, L.: UPC: uUnified Parallel C. In: SC 2006: Proceedings of
the 2006 ACM/IEEE Conference on Supercomputing, p. 27. ACM Press, New York
(2006)

Performance Debugging of Parallel Compression
on Multicore Machines

Janusz Borkowski

Polish-Japanese Institute of Information Technology,
86 Koszykowa Str., 02-008 Warsaw, Poland
janb@pjwstk.edu.pl
Infobright, www.infobright.com

Abstract. The power of contemporary processors is based more and
more on multicore architectures. This kind of power is accessible only
to parallel applications, which are able to provide work for each core.
Creating a scalable parallel/multithreaded application efficiently using
available cores is a difficult task, especially if I/O performance must be
considered as well. We consider a multithreaded database loader with a
compressing function. The performance of the loader is examined from
a number of perspectives. Because compression is a computationally in-
tensive task, parallel execution can potentially provide a big advantage
in this case. A list of performance related areas we encountered is pre-
sented and discussed. We identify and verify tools allowing us to deal
with specific performance areas. We find out, that only an orchestrated
employment of several tools can bring the desired effect. The discussion
provides a general procedure one can follow when improving the perfor-
mance of multithreaded programs. Key performance areas specific to the
database loader are pointed out. A special interest is directed towards
performance variations observed when many parallel threads are active
on a multicore CPU. A significant slowdown of computations is observed
if many threads are computing simultaneously. The slowdown is related
mainly to memory access and cache behavior and it is much larger for
Core2 Quad system than a dual Xeon machine.

1 Introduction

The increase of processor power has been traditionally bound to the increase of
clocking frequencies. However, new CPU architectures achieve their high pro-
cessing capacity differently. A single modern CPU contains a few computing
cores [II2]. The cores can work in parallel, thus delivering higher performance
at a lower cost, than a single core working at a very high clock rate. Facing this
trend, scientists and engineers have adopted multicore CPUs in newly designed
computing clusters and servers e.g. [3]. The efficiency of multicore processors has
become a separate direction of research, aimed at performance evaluation and
finding better architectural solutions [4]. This research has been concentrated
mainly around High Performance Computing applications. On the other hand,

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 82 2010.
© Springer-Verlag Berlin Heidelberg 2010

Performance Debugging of Parallel Compression on Multicore Machines 83

multicore processors were originally designed to deliver more processing power at
a lower cost and with lower electric power consumption to business enterprises.

In the world of business applications, databases play a leading role. Standard
databases can benefit from multicore CPUs by allowing for more concurrent
clients, distributing clients’ queries among available cores (inter-query paral-
lelism), e.g. MySQL, High-end database systems can execute a single query in
parallel (intra-query parallelism). In both cases, the possible gain due to the
usage of multicore CPUs should be investigated in separation from HPC ap-
plication, due to different program characteristics. While HPC programs are
computationally intensive, database engines deal with accessing large amounts
of data — they tend to be more I/O intensive. In-memory databases are an excep-
tion here, but we will concentrate on main stream disk-based databases. While it
is relatively easy to take advantage of a multicore CPU by assigning a separate
core for each database client, more can be gained if a client (a single query)
can use all available processing power. An interesting proposal for employing
multicore processors in databases is presented in [5]. The authors claim, that
as the number of cores per CPU grows, soon a system will not be able to use
all the cores efficiently because of memory access bottleneck. Therefore some of
the cores should only prefetch data to cache for the convenience of other cores.
Our results shown later in this paper let us agree only partially with this idea.
The impact of cache performance in database systems becomes more important
as servers use more and more memory and are equipped with CPUs coupled
with large caches. In [6] the performance of database systems on multicore chips
is analyzed in respect to parameters of CPU cache. While this work presents
an excellent overview of cache-related problems and provides important sugges-
tions, it deals with database engines executing standard database workload. We
concentrate on the load process, which is separated from the normal database
operation and has different characteristics. Data warehouses can be defined ca-
sually as databases storing very large amounts of data to be analyzed. The data
is loaded into a data warehouse and is not (or rarely) modified later. Some of
the specific features of a data warehouse are as follows:

1. Stored data sets can be very large (many TB)

2. Data are accessed mainly for reading

3. The data is loaded usually periodically, e.g. once a day
4. The data load process should be quick

The last point is important, because it is often necessary to load many GB of
data in a few hours e.g. during a night break. Therefore the load speed is an
important factor in data warehouse product market. Quickly growing processing
capacity of processors made it possible to shift part of the strain from disk to
CPUs in data warehouse processing. Data compression makes data smaller, so
disk usage becomes less intensive, but a CPU must compress data during load.
This tradeoff can pay off. Therefore some database systems start using data
compression techniques nowadays [718].

In this paper we describe a data loader — a program which reads source data
files and stores compressed data in database tables. The loader is a part of the

84 J. Borkowski

Infobright database [9]. The need for data load speed has driven us to develop
a multithreaded version of the loader. Because the application is partially irreg-
ular and the inter-thread dependencies are sophisticated, we could not employ
standard parallel programming frameworks like Open-MP. We used pthreads
instead. The performance of the obtained solution and methods of investigat-
ing it are the main topics of the paper. The next section describes performance
problems, which can be encountered in a multithreaded parallel application with
heavy I/O. Suitable performance monitoring tools are introduced there. Section
3 explains the functionality of the loader and presents performance problems we
found in it. Performance profiling results are shown and the roots of the problems
are explained. Conclusions are communicated in the last section.

2 Different Tools for Different Performance Problems

The performance of an I/O intensive multithreaded application, like our data
loader, is much more difficult to investigate than the case of a simple compu-
tational process. A number of factors can be collectively responsible for perfor-
mance deficiencies.

1. Computationally intensive code can slow down the overall progress. The code
can use an ineflicient algorithm or can be implemented inefficiently.

2. Stalls caused by disk access can exist. The program can wait for data read
from disk and it can wait until data are written to the disk.

3. The parallelization method can be not efficient. If not enough work is extracted
for parallel threads, then the hardware capabilities are not fully utilized.

4. The coordination between threads can cause a thread to wait one for another,
thus serializing computations.

5. Access to shared data guarded by mutexes can create bottlenecks.

6. Thread interaction can have a negative impact on the performance. Memory
and disk bandwidth can be exceeded if threads use them simultaneously. A
thread can remove from the cache data used by another thread.

7. Memory allocations done by all running threads can cause swapping. Swap-
ping slows done program execution by orders of magnitude.

Unfortunately, there is no single tool which can take all the performance factors
into account. It is necessary to use specific tools for specific problems separately.

Program execution profiling is a common method for finding hot-spots within
the program code. There two kinds of profiling: a) sampling b) tracing. Sampling
checks periodically the location of the execution point. A good tool is OProfile
[10]. It can do sampling with a low overhead using normal program binaries,
giving statistics derived from CPU hardware counters, e.g. about the percentage
of time spent in various methods. Unfortunately no stalls caused by I/O or
mutexes are taken into account. Also the coordination between threads and
parallelization method are not made visible.

Valgrind simulates program execution and it can give very detailed informa-
tion about time spent in each function, but it does not simulate multithreaded
programs properly for performance considerations [II]. Therefore we will not
consider it any more.

Performance Debugging of Parallel Compression on Multicore Machines 85

Specialized tools can be used to instrument the code to measure the actual
time spend in given functions. Such tools exist for profiling standard libraries e.g.
for MPI. We have developed our own simple tracing code, called FET (Function
Execution Times). The code, inserted into key methods, measured the time a
method was active — its stack frame existed. The time measured in this way in-
cluded all kind of stalls, which could elongate the actual method execution time.

It turned out to be difficult to find tools accurately measuring I/O waiting
time. To get an estimate of it we used system monitor available in Gnome desk-
top and vmstat system command. We applied a comparative approach as well,
checking the difference between the elapsed loading times once when the data
had to be read physically from the disk and next when the data was already
present in the system disk cache memory.

To our knowledge, the best existing tool, specifically targeted towards thread
performance monitoring, is Intel Thread Profiler (do not confuse it with Thread
Checker or Sun Studio Thread Analyzer, which are specialized in detecting
race and deadlock conditions). It is a commercial tool measuring and display-
ing graphically different aspects of threaded program execution. Unfortunately,
this tool was not available for us and additionally this tool is officially available
for Windows only, while our software runs mainly on Linux. We were aware of
another problem also. Our loader creates a lot of short living threads, making
it difficult to monitor them in a sensible way using such a tool. We would get
a rather incomprehensible for reading picture with thousands of life-lines. Sun
Studio contains also some useful profiling tools, however we couldn’t find there
the functionality offered by Intel Thread Profiler for C/C++ programs.

Lacking the commercial tools, we developed simple in-house solutions. We
measured the thread life time using our FET code mentioned above, taking a
summarized time across threads doing the same kind of job (see explanation
in the next section). This way we got a good insight into the complexity of
particular jobs. To check the time spent on waiting for a particular mutex, we
created another simple lock-wait profiling tool. This tool was based on a few spe-
cial #define preprocessor commands along with LINE and FILE
predefined macros. The macros wrapped pthread calls with a sequence of time
measuring instructions and a call to a global recording object. As a result we got
summarized time spend in each code line containing a pthread function. Calls
to pthread mutex lock() were of the greatest interest to us.

Additionally, we measured the execution time of the program modifying the
number of parallel threads. Serial execution provided us with timings of all “jobs”
present in the program, which were to be distributed between threads in a par-
allel execution. The timings could tell us how much work could be dispatched
to parallel threads and how much remained serialized.

3 The Case — Compression of Loaded Data
Infobright database uses a patented compression algorithm to obtain high data

compression ratio, usually cited as 10:1, although some users claim to achieve
ratio more than 30:1. All data is compressed. In result, several TB of source

86 J. Borkowski

data can be stored on a standard hard disk. Because the compression is a very
important feature for Infobright and because Infobright targets databases (data
warehouses) several TB big, Infobright data loader must deal with data com-
pression very efficiently to provide high load speeds.

Infobright is a columnar database (see [I2] for further references). The data
loading process divides the source data into rows and each row into fields. Data
items belonging to a particular column across the rows are assembled together
to form a so called data pack. A data pack contains up to 64K values from a
single column. To retrieve a single row from a table, constituent fields must be
extracted from data packs from each column. E.g. row 100000th is assembled by
taking 34464th item from the second data pack from each column. Of course,
for the efficiency only columns used in a query are retrieved.

While loading, there is one data pack opened per each column. When a data
pack gets full, it is compressed (each data pack is separately compressed) and
stored on disk. A fresh data pack is created to accommodate subsequently loaded
data items. For example, a source file containing 129000 rows, each row consisting
of 3 fields will be loaded into (129000 / 65536 + 1) * 3 data packs.

The multithreaded version of the loader uses the main thread to read the
source data, divide them into rows and columns, parse values and assemble
them into data packs. For each data pack a thread is created and its task is
to compress and save the data pack on disk. This solution worked quite well,
however in some cases we observed that on a 4-way machine only 2-3 cores were
efficiently used during the load process. We will come back to it later in the
next section. For our experiments we decided to use a standard data set — the
“part” table from the TPC-H test suite [I3]. Because the load process performs
uniformly as it progresses, for our convenience we took a relatively small sample
of 3 200 000 rows.

3.1 Various Performance Related Areas

At first we confirmed, using OProfile-produced code execution profile
(CPU_CLK_ UNHALTED events), that thread creation and destruction, al-
though performed fairly frequently (1 thread per 64K values), does not impose
any significant overhead on Linux 2.6 running on an Intel x64 CPU — much less
than 1 percent. Therefore we dropped an idea of introducing a thread pool.
The same execution profile showed that most of the computation time is
spent in compression and initial parsing of the source data. It was no surprise
as compression is known to be computationally intensive and the source files
were in a text format (the most frequent case for Infobright users) requiring
quite intensive processing. In Table [[lwe can see some details. The table shows
for how many percent of the total CPU time a given function is responsible.
The 3 first rows and the 5th row refer to compression related functions. Other
rows refer to functions responsible for text parsing. We can calculate that the
compression amounts to around 65% of the total computational effort (not to
be confused with computation/elapsed time). Therefore one can expect that
(by Amdahl’s low, taking parsing as a sequential code) through delegating the

Performance Debugging of Parallel Compression on Multicore Machines 87

compression to parallel threads, it should be possible to obtain a 2.8 speedup for
this case (“part” table). However, the practically observed speedup (elapsed time
of serial vs multithreaded loading) for the test data reached 2.1 only. We needed
to investigate why the loader could not reach the theoretical speedup limit. It
was also important to learn how the speedup depends on the characteristics of
load data sets and how the parallelization method can be improved.

The vmstat command has shown significant disk activity and CPU wait time
during load. There was a possibility, that loading cannot proceed faster because
of I/0 bottleneck. Instead of careful analysis of vmstat output, we compared
the load time when all the data had to be fetched from disk with the case when
the whole source file had been preloaded into the Linux system disk cache. A
command echo 3 > /proc/sys/vm/drop_caches has been used to clear the
system disk cache. On the other hand, the source file has been small enough to
fit completely in the disk cache after being read initially from the disk. Reading
from disk turned out to be responsible for 24% slow down. At first we considered
it as a very important factor. However, the measurements were taken on a usual
PC with a single SAS drive 7200 rpm. In a server system this number should be
smaller. On a dual Xeon server box equipped with an Adaptec RAID controller
for the database storage and a Linux software RAID-0 for the source files, the
slow down dropped to 4% only. Therefore disk access has been eliminated from
the list of main factors limiting the speed of the load process. Moreover, the
observable speedup in the case when source data had been preloaded was still
around 2 only.

The loader uses a number of data shared between threads. It was crucial to
learn if waiting for exclusive access to these shared data was causing significant
delays. The output of our simple lock-wait profiling tool revealed that it was not
the case. This finding, supported by application-level monitoring of the number
of existing threads, has proved that the observed idling of some CPU cores was
caused by an insufficient number of threads rather than thread waiting. The
TPC-H “part” table has a few numeric columns and only 2 longer text (VAR-
CHAR) ones. A compressing and saving thread is started for each assembled
data pack for each column. By using our FET tool, we recorded the thread life
times summarized separately for each column and we captured also the execution

Table 1. Counted CPU_CLK UNHALTED events for sequential loading of “part”
table

Samples % Symbol name

1384194 36.0123 IncWGraph::EncodeRec(unsigned
537732 13.9901 IncWGraph::Traverse(IncWGraph::Node*&,
469181 12.2066 FTree::GetEncoded Value(RCBString)
251769 6.5502 DataParserForText::GetRowSize(char*,

111539 2.9019 IncWGraph::Node::Duplicate(IncWGraph::Node*,
92712 2.4121 RSIndex CMap::PutValue(RCBString&,
84231 2.1914 DataParserForText::ProcessEscChar(int)
78127 2.0326 DataParserForText::PrepareNulls()

88 J. Borkowski

times of compression procedures summarized for each column. We noticed, that
the compression amounts for almost the whole thread lifetime. Text compres-
sion (columns 1 and 8 in the “part” table, see TabldZ) turned out to be orders
of magnitude slower than numeric compression (other columns).

Comparing the compression time of a numeric column to the time spent on
parsing and assembling data packs (FET and OProfile results), we concluded,
that the time necessary to assemble a numeric data pack is not larger than
the time necessary to compress and save it. Therefore, a single compressing
thread is able to process data packs at the rate they are assembled. In other
words, sequential parsing turned out to be a bottleneck in the case of numeric
data, for which compression is quick. Here, two solutions could be proposed: a)
optimization of the parsing procedure and b) reengineering of the loader logic,
so that more work is shifted to parallel threads. We found both possibilities to
be feasible; however their further discussion is out of the scope of this paper.

3.2 Cache Behavior

In out tests we used a machine with an Intel Core2 Quad (4 cores) 2.4GHz CPU
equipped with 4MB of L2 cache. It should be possible to potentially achieve
load speedup up to 4 on this processor and the maximal speedup 2.8 calculated
for the considered case should be obtainable easily. As we stated above, only
speedup around 2 was observed. To explain it, we studied the profiling results in
more detail. The FET results for loading with one compression thread and with
many parallel compression threads are presented in Table[2l The same procedure
(compression) was taking up to 3 times more CPU time when many threads
were working in parallel. This result seemed puzzling, because the compression
procedure does not use any synchronization primitives, it does not access files
and not all CPU cores were fully used. The computations were just going slower
when many threads were active, even if the threads did not need to compete for
CPU access.

The OProfile tool uses hardware performance counters available on modern
CPUs to get a desired application performance profile. We decided make a num-

Table 2. CPU time used by column compression for single vs many parallel threads
compressing simultaneously on Intel Core2 Quad

Column name Time 1 thread Time many threads

P_PARTKEY 0.11 0.16
P_NAME 16.92 26.92
P_MFGR 0.12 0.38

P_BRAND 0.12 0.17
P_TYPE 0.12 0.14
P_SIZE 0.12 0.19
P_CONTAINER 0.12 0.19
P_RETAILPRICE 0.10 0.20

P COMMENT 5.50 9.12

Performance Debugging of Parallel Compression on Multicore Machines 89

Table 3. Counted L2 cache line misses (MEM _LOAD RETIRED events)

Symbol name #misses 1 thread #misses many threads
IncWGraph::EncodeRec 5891 6822
IncWGraph:: Traverse 2364 2698
DataParserForText::PrepareObjsSizes 527 574

ber of different profiles to get an answer why the compression performance was
decreasing if more concurrent computational threads were active. The first guess
was that cache L2 misses were much more frequent in multithreaded case, as the
threads were competing for cache lines. The compression code caused most of
the L2 misses and indeed, there was less L2 misses if only 1 compression thread
was active, see Table[3l The shown numbers correspond to the number of cache
misses which occurred during the load. However the difference between using one
and many threads — around 17% - could not be entirely responsible for the ob-
served computation slow down. Further profiling covered data cache L1 misses,
here very small differences were discovered between single and multithreaded ex-
ecution. Similarly DTLB (Data Translation Lookaside Buffer) misses presented
only insignificant differences.

Table @ top, reveals that multithreaded compression generated on average
1.66 times more memory transactions, than compression performed by a single
thread. The large absolute number of memory accesses must have had a signifi-
cant influence on the observed computational performance. It remained unclear
why multithreaded compression needed to access the memory more often to
compress the same amount of data. The answer came when we returned to L2
monitoring, but this time we observed how cache lines were removed from the
cache. Lines are evicted to make room for currently needed data. If an evicted
line had been modified, it must be written back to the main memory. On average
1.72 times more evictions happened for multithreaded compression, see Table [,
bottom. Apparently most of the evicted L2 lines were “dirty”, triggering the

Table 4. Counted number of completed memory transactions (BUS TRAN MEM
events, top) and number of L2 cache line evictions (L2 LINES OUT events, bottom)

Symbol name Samples 1 thread Samples many threads
IncWGraph::EncodeRec 36854 58855
IncWGraph:: Traverse 14069 23398
DataParserForText::PrepareNulls() 4876 7200
FTree::Add 2474 5697

Symbol name Samples 1 thread Samples many threads
IncWGraph::EncodeRec 30305 47519
IncWGraph::Traverse 11346 19238
DataParserForText::PrepareNulls() 4772 6015

FTree::Add 1896 4952

90 J. Borkowski

Table 5. Comparison of CPU time used by column compression using single vs using
many parallel compressing threads on Intel 2x Xeon 3.2GHz with 2-way HyperThread-
ing and on Core2 Quad

Column name Time 1 Time many Time 1 Time many
thread Xeon threads Xeon thread Core2 threads Core2
P _PARTKEY 0.22 0.72 0.11 0.16
P_NAME 32.40 37.90 16.92 26.92
P MFGR 0.21 0.27 0.12 0.38
P _BRAND 0.23 0.32 0.12 0.17
P_TYPE 0.23 0.33 0.12 0.14
P _SIZE 0.23 0.26 0.12 0.19
P_CONTAINER 0.22 0.28 0.12 0.19
P_RETAILPRICE 0.28 0.33 0.10 0.20
P COMMENT 12.43 16.29 5.50 9.12
SUM 46.45 56.70 23.23 37.47
Slowdown 1.22 1.61

reported memory accesses. While proper cache usage proofs to be important
for multithreaded computations, the software prefetching proposed in [5] cannot
help in this case. The prefetching can work only for cases when one can predict
what data will be needed in the near future, while compression accesses large
memory structures randomly. Also, prefetching data needed by one thread could
flush from the cache data used by another compressing thread.

All the results presented so far were taken on a Core2 Quad machine. For a
comparison we employed a server equipped with 2 Xeon 3.2 GHz CPUs. The
Xeons had HyperThreading extensions, making the whole the system to present
itself as a 4-way machine, with 2MB of cache per CPU. Unfortunately, Intel
Xeon/P4 performance counters are much different than in the case of Core2.
Therefore we turned towards FET measurements. We noticed that in the case
of Xeons multithreaded compression degraded the computational capacity of
the CPU much less than in the case of Core2, see Table Bl On Xeons a single
compression took on average 1.22 times more time if it was executed in parallel
with other compressions, while on Core2 Quad this average slowdown reached
1.61. We think, that Xeons performance was more stable for two reasons: a)
Xeons were slower in absolute terms (see the timings in TableB] single-threaded
compression took 46.45 seconds on the Xeon and only 23.23 seconds on Core2),
so memory stalls were less expensive in terms of the amount of computations
which could be done in a time of a stall, b) the differences in CPU architectures,
especially cache, may play a role here.

4 Conclusions

Multithreaded programming is the clue to the power of modern multicore mi-
croprocessors. Unfortunately, the efficiency of a multithreaded program can be
lost due to many factors. A parallel data loader performing data compression

Performance Debugging of Parallel Compression on Multicore Machines 91

is an example of an application potentially facing I/O problems in addition to
performance problems common in multithreading, like serialization on mutexes.
We presented a rather complete list of issues influencing the loader performance,
along with a set of tools necessary to deal with those issues. We found that
proper performance debugging requires a fair number of experiments and com-
pels a programmer to employ various methods and tools in an orchestrated way.
We managed to identify two main factors limiting the performance of the mul-
tithreaded data compression: a) serial parsing too slow in comparison to the
compression of numerical data and b) a degradation of the CPU computational
performance due to much increased memory access rate caused by the compe-
tition for the cache. We noticed that the degradation is much more visible on
Core2 Quad than on a Xeon system. We plan to investigate more the architec-
tural differences leading to the observed performance variations, including also
AMD processors. We will also verify the loader performance for other data sets,
especially for data with more text columns. This way we will limit the influ-
ence of the serial parsing and allow for more speedup, possible exposing more
interesting differences between various CPUs.

References

1. AMD, http://multicore.amd.com/us-en/AMD-multi-core/
multi-core-advantage.aspx

2. Intel, http://www.intel.com/technology/architecture/downloads/
quad-core-06.pdf

3. Gepner, P., Fraser, D.L., Kowalik, M.F.: Performance evolution and power bene-
fits of cluster system utilizing quad-core and dual-core intel xeon processors. In:
Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2007.
LNCS, vol. 4967, pp. 20-28. Springer, Heidelberg (2008)

4. Tao, J., Kunze, M., Karl, W.: Evaluating the cache architecture of multicore pro-
cessors. In: Proc. of the 16th Euromicro Conference on Parallel, Distributed and
Network-Based Processing, PDP 2008, pp. 12-19. IEEE, Los Alamitos (2008)

5. Papadopoulos, K., Stavrou, K., Trancoso, P.: HelperCoreDB: Exploiting multicore
technology for databases. In: 16th International Conference on Parallel Architec-
ture and Compilation Techniques PaCT 2007 (2007)

6. Hardavellas, N., Pandis, I., Johnson, R., Mancheril, N.G., Ailamaki, A., Falsafi, B.:
Database servers on chip multiprocessors: Limitations and opportunities. In: Pro-
ceedings of the Biennial Conference on Innovative Data Systems Research (2007),
http://www.cidrdb.org/

7. Poess, M., Potapov, D.: Compression in oracle. In: VLDB 2003, pp. 937-947 (2003)

8. Holloway, L., Raman, V., Swart, G., DeWitt, D.J.: How to barter bits for chronons:
Compression and bandwidth trade offs for database scans. In: SIGMOD Conference
2007, pp. 937-947 (2007)

9. Infobright: http://www.infobright.org, www.infobright.com

10. OProfile - a system profiler for linux, http://oprofile.sourceforge.net

11. Valgrind, http://valgrind.org/

12. Slezak, D., Wroblewski, J., Eastwood, V., Synak, P.: Brighthouse: An analytic data
warehouse for ad-hoc queries. In: Proceedings of the VLDB Endowment, vol. 1(2),
pp. 1337-1345 (2008)

13. Transaction Processing Performance Council: http://www.tpc.org/tpch/

http://multicore.amd.com/us-en/AMD-multi-core/multi-core-advantage.aspx
http://multicore.amd.com/us-en/AMD-multi-core/multi-core-advantage.aspx
http://www.intel.com/technology/architecture/downloads/quad-core-06.pdf
http://www.intel.com/technology/architecture/downloads/quad-core-06.pdf
http://www.cidrdb.org/
http://www.infobright.org
www.infobright.com
http://oprofile.sourceforge.net
http://valgrind.org/
http://www.tpc.org/tpch/

Energy Considerations
for Divisible Load Processing

Maciej Drozdowski*

Institute of Computing Science, Poznari University of Technology,
Piotrowo 2, 60-965 Poznan, Poland
Maciej.Drozdowski@cs.put.poznan.pl

Abstract. In this paper we analyze energy usage in divisible load pro-
cessing. Divisible load theory (DLT) applies to computations which can
be divided into parts of arbitrary sizes, and the parts can be indepen-
dently processed in parallel. The shortest schedule for divisible load pro-
cessing is determined by the speed of computation and communication.
Energy usage for such a time-optimum schedule is analyzed in this pa-
per. We propose a simple model of energy consumption. Two states of
the computing system are taken into account: an active state and an idle
state with reduced energy consumption. Energy consumption is exam-
ined as a function of system parameters. We point out possible ways of
energy conservation. It is demonstrated that energy can be saved by use
of parallel processing.

Keywords: Energy-efficient computing, performance evaluation, divisi-
ble loads.

1 Introduction

Divisible load theory (DLT) is a new parallel processing paradigm applicable in
computations which can be divided into parts of arbitrary sizes and processed
independently on remote computers. In other words, the DLT assumptions are
relevant to computations with fine granularity and negligible data dependen-
cies. Processing big volumes of data is an example of divisible computation.
Consider searching for patterns in medical screening photographs. The set of
photographs can be partitioned with granularity of one picture. If the number of
pictures is big, then the resolution of partitioning the whole dataset is fine. The
photographs can be analyzed independently of each other. Other examples of di-
visible computations include processing measurement data (e.g. SETIQhome),
image and video processing, linear algebra, search for combinatorial objects (e.g.
distributed.net). Divisible load theory originated in the late 1980s [II3] as a way
to strike a compromise between the communication delays and the gains from
faster parallel processing. Surveys of DLT, and its practical applicability can be
found in [21417].

* Partially supported by grant N N519 1889 33 of Polish Ministry of Science and
Higher Education.

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 92 2010.
© Springer-Verlag Berlin Heidelberg 2010

Energy Considerations for Divisible Load Processing 93

Energy consumption of contemporary data centers, and supercomputing facil-
ities is becoming a limiting factor to their growth [6]. Buying power is becoming
more and more expensive. For example, the average power usage of the first
5 supercomputers from the current (June 2009) top500 list [9] is over 3.2MW.
At the current prices in Poland (=0.3PLN/kWh) this would cost ~23.3k PLN
daily, and ~8.5M PLN annually (resp. 5.5k, ~2M EUR). Thus, careful and eco-
nomic use of energy is an indispensable element of the future high performance
computing.

The cost of divisible load processing in general has been analyzed in [5S].
The cost considered in [BI8] could be monetary as well as energy. In both pub-
lications two problems were analyzed: to find the minimum cost schedule for
a given schedule length, or to find minimum schedule length for a given cost
limit. Both papers took into account the cost of computation only. In [8] the
sequence of activating heterogeneous computers minimizing the cost was pro-
posed, but computation startup costs were ignored. In [5] it was shown that the
above problems are computationally hard (strictly NP-hard) when the startup
time is non-negligible. Yet, for a given sequence of communications between the
processors and the load distributor the problem can be solved by reduction to
linear programming. In this paper we assume that performance is the primary
criterion. Therefore, the shortest schedules are used. Energy consumption is ex-
amined for such time-optimum schedules. Moreover, we concentrate on a more
energy-specific representation of the costs of load processing. It is assumed that
both the communication and the computations use energy. The costs of com-
putation initiation (startup costs) are taken into account. Similarly to [I1] we
assume that computing system can be in two states: idle and active. In the idle
state power usage is reduced.

The rest of this paper is organized as follows. In the next section we formulate
the mathematic model of divisible load processing both with respect to the
timing and to the energy cost. In section [results of performance evaluation are
presented. In section @l we provide conclusions and discuss lessons learned.

2 Problem Formulation

In this section we outline construction of the optimum length schedule, as well as
its energy consumption. Words computer, processor will be used interchangeably.
A processor consists of a CPU, memory, and network interface. The CPU and the
network hardware can work in parallel such that simultaneous communication
and computation is possible. The topology of the processor interconnection is a
star (a.k.a. single level tree). In the center of the star resides a processor Py called
originator (also called master, server) which distributes the load to the remaining
processors P, ..., P, (called slaves, workers). The star topology may represent
a computer cluster in a local area network or a set of computers interconnected
in the grid infrastructure. The computing environment is homogeneous.

Timing Model. Tt is assumed that initially volume V of load resides on the orig-
inator. The load is sent from the originator to processors Pi,..., P, in pieces

94 M. Drozdowski

of sizes aq,...,qm. To receive a piece of load a processor has to be activated
first. The activation process may include transition of the computer hardware
and software from the idle to the running state, loading the divisible applica-
tion runtime environment (such as virtual machines and libraries), starting the
application, allocating memory and bringing the application to the state of ac-
tive waiting for the message with the piece of load. The time of activation is
denoted S, and referred to as computation startup time. Sending «a; units of
load to processor P; takes time o;C. Computations for this amount of load take
time «; A. It is assumed that the time of returning the results to the originator
is very short and can be neglected. It is a common assumption in DLT made
for the sake of simplicity in mathematical modeling [2J4/7]. We distinguish two
cases depending on the participation in the computations of the originator. If
the originator is dedicated solely to distributing work then it receives no load
(FiglTh). Otherwise, originator takes part in the computation and processes load
ag > 0 (Figlh).

Pols\oqc [S| aC [S] axC .S ocmCm}

P|S ‘ ouC ‘ oA computation ‘
e | : | |
communication ‘ ‘ |

a) Pl ‘ S ‘ o,C ‘ b0y computation ‘

Pl+1 ‘ S ‘ o1C ‘ oA icomputation ‘

B Wﬂ time ‘ S‘ OL’”C’"‘ G - ‘

RLL el [adive LT idle

ALl [i acive | | |

by Biidle | | adtive | | \

P idle ||] active |

P idle [] | active |

Fig. 1. Initiator is not computing. a) Communication and computation schedule. b)
Power usage schedule.

The optimum schedule length is obtained by selecting sizes of load chunks
aq,...,0m, and og if applicable. It has been shown in [2] that if the result
returning time can be neglected, then for the minimum schedule length all pro-
cessors must stop computations simultaneously.

Assume that the originator is not computing. The above observation leads to
the system of linear equations, from which chunk sizes are derived (cf. Figllh):

Aoy =S+ (C+ Aoy for i=1,....m—1 (1)

Energy Considerations for Divisible Load Processing 95

ai=V (2)
i=1
Let us denote as o0 = S/A, and p =1+ C/A. Then,

Qj =0+ poiy1 =
=0+ p(0+ paisre) = 0+ po + pPaiie = ...
=o+po+...+opm 4 p =
_o(l=pm)

— m—1 - 3
|, T (3)

for i =1,...m. From (@) and (B]) we obtain

i=1 P
o L—p™ (1= p™)
= — . 4
1—p<m 1—p>+ I=p @)
Consequently,
1-— 1—p)—1 4
o, = V(L—p) o(ml—p)—1+p") 5)

1L—pm (L=pm)(1—=p)

Note that in the above equation we have subtraction, and «,,, may become neg-
ative if o and m are sufficiently big. All such combinations of V,m,C, S, A that
am < 0 are rejected as infeasible. In practice «,, < 0 means that the load V is
too small to employ all m processors for the current communication parameters
C,S and processing rate A. If the programmer still decided to use this num-
ber or more processors, then schedule length would grow instead of decreasing.
Consequently, efficiency of the schedule would also unnecessarily decrease.
When the originator is not computing schedule length is

T(m) =8+ (C+ A)ai, (6)

where ay is calculated from (B]) and (&]).

If the originator is computing (Fig[Zh) then partitioning of the load can be
derived in the same way as in the previous case, however, equations (Il and (2))
start from ¢ = 0. Equation @) is valid for ¢ = 0, ..., m. Analogously to), (@)
we obtain

V(1—p) a(ml—p)—p+p™th)

O it T (L= priy(i—p) "

Schedule length is
T(m) = S + Aag, (®)

where ayg is calculated from () and (3)).

96 M. Drozdowski

5 S| ouC oo S| oC [S| 0iC [..JS] oGl
0 ‘S : ! ! oA ! computation ‘
P : ‘S‘ oyC ‘ : poagd 3 computation ‘
a) P, 3 ‘S‘ OLI-C‘ 3 oA %computation ‘
Pz+i M aﬂ-lc ‘ (XH—IA icomputation ‘
B time oA
AT [T e T]
P [T adive ‘ | |
b A ide [T aie —
Paiidle] | active |
F, m3 idle ‘ ‘ | active 7‘

Fig. 2. Initiator is computing. a) Communication and computation. b) Power usage.

Energy Use Model. Now let us analyze the energy usage. Both the network and
the processors may be either active or idle. It is assumed that active processors
consume power Po, and the active network equipment consumes power Py. In
the idle state power consumption is k times smaller, i.e. Po/k, and Py /k, for
processors and for the network, respectively. To simplify mathematical formulae
we divide the energy usage into two parts: the idle state energy, and the energy
beyond the idle state consumed when processors and the network are running.
During the whole schedule of length T'(m), the originator, m idle processors and
the idle network consume energy

Er=T(m)((m+1)Pc + Pn)/k. 9)

The network is in the running state at the beginning of the schedule while
distributing the load (cf. Figllb, and Fig2b). Suppose the originator is not
computing. Processor activation and the load distribution time is > ;" (S +
Ca;) = mS + CV. The energy consumed above the network idle state is

ERN:PNk;k 1(mS+CV) (10)
The originator is active during the whole load distribution time mS + CV/,
which results in energy consumption P kgl (mS 4 CV). The remaining proces-
sors switch from the idle state to the running state when they are activated.
Thus, processor P; is active for S + «;(C + A) units of time, consuming en-
ergy Po kgl (S 4+ a;(C + A)) above the idle state. The total computation energy
consumption beyond the idle state is

Energy Considerations for Divisible Load Processing 97

k—1 -
Epc=Fc' | <ms+cv+2<s+(o+mai)>
=1

k—1

= Po 1 (2mS + (2C + A)V). (11)

Suppose the originator is computing. The time of communications is Z;il(S +

Ca;) = mS+ C(V — ap). The energy consumed by the network beyond the idle
state is 1

ERN = PN k (mS + C(V — Olo)). (12)

The processors together consume beyond the idle state

k-1 -
ERC :PC k (S-'-AO[O—"Z(S—F(C—FA)OQ)) =
i=1

:Pck;1((m+1)S+VA+(V—a0)C). (13)

The total energy consumed in the computation is

E = Er+ Egy + Erc. (14)

3 Performance Evaluation

In this section we analyze the amount of energy F necessary to achieve certain
schedule length T'(m).

Before presenting the details of the simulations let us examine a general rela-
tionship between the system and application parameters A, C, S, Py, Po,V, the
number of used processors m, processing time 7'(m), and energy F. As mentioned
in the previous section the number of processors m that can be exploited depends
on A,C,S,V. A general tendency in divisible load processing is that with grow-
ing C, S the number of usable processors decreases because communication delays
increase and preclude effective use of many processors. On the other hand, with
growing A, V' the number of usable processors increases because relative contri-
bution of communication delays to the schedule length decreases [2/47]. Since the
reduction in processing time T'(m) comes from applying more processors, and the
number of usable processors is limited, also the reductions in T'(m) are limited.
Increasing C, S results in narrower range of processor numbers m where T'(m) is
reduced. Conversely, increasing A, V' widens the range of T'(m) reductions. Note
that in the following charts T'(m) will be shown on the horizontal axis. Now let
us examine energy as determined by equations (@) - (I3]). Intuitively, it can be ex-
pected that shorter schedules engage more processors, and hence, should be more
costly in energy. Indeed, in all the above equations energy consumption grows with
the processor number m. Beyond m, energy consumption depends on constants
V,A,C,S, Pc, Py, k. Optimizing them for minimum power usage is beyond the
scope of this paper. Let us now proceed to the results of the simulations. In the

98 M. Drozdowski
. - - 4.5E5
E = orl}g!namr 18 computm.g % E —m— originator is computing
2.8E+15]"| —e— originator not computing / m=1 m=4 —— originator not computing
/ 4.0E5
26E+1
/ 35E5
) =4
24E+15-
/ / 3.0E5
| "] \
22E+1
= 2.5E!
\ 0
=100 m=
2.0E+15*L'=_?—M T(m) 505 T(m)
E7 1E8 1E9 E10 1E11 1E12 1E131E14 E2 1E3 1E:
a) b)

Fig. 3. Energy E vs. schedule length T(m) for A = 1,C =
50, Po = 200,k = 3. a) V = 1E13, b) V = 1E3.

1E-6,S = 1E2,Py =

following figures we present dependence of the total energy used as defined in (4]
versus schedule length defined in equations (@), or (&]).

In Figl3] energy consumption vs. processing time is shown. Values of the pa-
rameters used in Figl3l can be interpreted as follows. Processing one unit of load
takes 1s (A = 1), transferring it from the originator to the remote processor takes
1us (C = 1E-6), computation startup time is 100s, the network equipment uses
only 50W of power in the active state (Py = 50), a computing processor uses
200W of power (Pc = 200), in the idle state power usage is three times smaller
(k = 3). Let us remind that T'(m) is not a real independent variable, because
both T'(m) and E change as a result of using more processors m. Surprisingly, £
as a function of T'(m) has a minimum. With increasing processor number execu-
tion time is decreasing, as could be expected, but initially also the energy used is
decreasing. This behavior of E dependence on T'(m) can be explained by several
phenomena. Let us assume that the originator is not computing. Note that in
@ the idle state energy depends on T'(m). With growing processor number m,
execution time T'(m) decreases. Therefore, F initially decreases with decreasing
T'(m). Most of this reduction can be attributed to shorter network and initiator
idle state. The relative difference between the highest and the lowest energy con-
sumption in the above experiments ranged from 30% to 40% (originator is not
computing). The extent of energy savings may be surprising, considering their
source. However, it is a result of long computation time when the communica-
tion system remains idle. On the other end of the diagram FE is not growing to
the infinity because increasing m leads to a,, < 0 in equation (Bl) which means
that it is impossible to activate all the processors with the given V. As noted in
the previous section we reject such cases as infeasible. A wide plateau of energy
usage in FigBh results from approximately equal effect of decreasing T'(m) in
@) and increasing component m.S in (I0), ([[Il). With decreasing problem size
V' the interval of T'(m) with nearly flat energy usage narrows until disappear-
ing completely for V' = 1E3, as shown in Figl3b. The above observations apply
also if the originator is computing, though this case is more energy efficient.

Energy Considerations for Divisible Load Processing 99

65E1 E 45E+1T
—><Py=1E3| __
6OE1 —e-Py=SE2 =T
5.5E1 ﬁéﬁ[szlEz o 40E+1T 11;;% /
-=-Py=5El =
5.0E1 _ [k=10
—+Fy=1El 35E+11 ! i
45E1 f \ /
40E1
30E+11
35E1 /4 / ﬂ / /
S0E1 // 25E+11
25E1 x Z
T(m m
20ETES 1E6 1E7 1E8 1|6 2FNE 1E6 1 1E8 1E9
a) b)

Fig. 4. Energy E vs. T(m) a) for changing Py at k = 3 b) for changing k at Py = 50,
and A =1,C = 1E-6, S = 1E2,Pc = 200, k = 3. Originator is not computing.

Consequently, energy savings are smaller. We further discuss the difference be-
tween the situation when the originator is computing, or not computing, at the
end of this section.

In Figlh energy consumption vs. processing time is shown for various values
of the network power usage Py when originator is not computing. The bigger
Py is, the bigger the initial decrease of E with decreasing T'(m). On the other
hand, when m is big, and T'(m) is near its minimum, Fr¢ is dominating in E,
and all the functions end overlapping.

In Fig[b energy consumption vs. processing time is shown for various values
of the active to idle power usage ratio k. For instance, k& = 1 represents the
situation when power usage in idle state is no different than in the running
state. This means that the whole energy consumption is described in equation
[@). As it can be seen the biggest reduction in energy consumption takes place
just for k£ = 1 which confirms that the energy savings result from shortening of
the idle state. On the other hand, for £ > 1 the energy savings are shallower in
Figlb, but the total energy consumption is smaller than for k¥ = 1. Let us note
that one should not be confused that k = 1 is better than k > 1 because deeper
energy reductions are not the same as smaller overall energy use.

When the originator is computing the dependencies of E on T'(m) for changing
Py, k are very similar. Therefore we do not present them here.

Let us now return to the difference between the cases when originator is and
is not computing. By subtracting (I2)) from (I0) we obtain the difference in the
energy used by the network: CagPy(k — 1)/k. Analogously, from (III) and (I3)
the difference in the energy used by the running processors is ((m —1)S+C(V +
ag))Pc(k — 1)/k. The total difference in energy use is

L ((m=1)S+ OV + ag)). (15)

AE:PnglCao-i-Pc

Startup times mS cannot dominate in the processing time because otherwise
distributed processing would be counterproductive. Hence, (m—1)SPc(k—1)/k

100 M. Drozdowski

does not constitute a big difference. The remaining components are related to CV
and Cag. These gains are especially noticeable if C' is big, e.g. C ~ A. Moreover,
if the originator is computing it is possible to save energy by not sending load
g for remote processing. In this case we have an additional computer which
nearly immediately starts processing the load. The two cases are juxtaposed in
FighBl It confirms that the difference between the two cases is big when C =~ A.
For example, for C' = 0.5 the difference in energy used is in the range of 130%,
while for C = 1E-3 it is not more than 30%.

14612/

—— C=1E-3 initiator is computing *
,,,,, —8- C=1E3initiator isnotcomputing| | |
1.2E12] —%¢—C=0.1 initiator is computing

—A— C=0.1 initiator is not computing
10E121{ —+— C=05initiator iscomputing |-) SS——
—@— C=0.5 initiator is not computing

] e T
[
6.0E1%
A0E M
T(m)
2'0E11‘1 E6 1E9 1E1

Fig.5. Energy E vs. schedule length T'(m) for A = 1,S = 1E2, V = 1E9, Py =
50, Pc = 200, k = 3 and changing C'

Let us observe that Figlhl also demonstrates influence of communication rate
C on potential energy savings. As it can be seen, for small C' energy consump-
tion initially decreases with increasing m, and hence decreasing processing time
T'(m). The plateau of nearly flat energy consumption spans three orders of mag-
nitude in T'(m). On the other hand, for big C' energy consumption decreases only
marginally, and then quickly grows with m (while T'(m) is nearly constant). It
can be concluded that small C' is essential for allowing reduction in energy con-
sumption. It means that bandwidth must be high. This condition coincides with
the requirements for effective communication in parallel applications.

4 Conclusions

In this paper we analyzed energy use in distributed processing of divisible loads.
The energy consumed has been presented as a function of the execution time.
Surprisingly, it appeared that this function has a minimum, and with decreasing
processing time energy used is also decreasing. Hence, we have demonstrated that
it is possible to save energy by parallel processing. We compared two ways of
processing divisible loads: with and without computations on the load originator.

Energy Considerations for Divisible Load Processing 101

It turns out that using the originator is more energy-efficient. Yet, the differences
are apparent only if communication medium is slow.

Our analysis reveals that the savings come from shorter idle state of the
communication subsystem. The network idle time is specific to divisible load
processing. Similar idle intervals exist in other parallel processing models, e.g.,
bulk-synchronous processing [I0]. Hence, also in other types of parallel appli-
cations reduction in network energy consumption should be possible. On the
other hand, parallel applications which are communication intensive would have
no such network idle time. Consequently, this kind of energy saving would not
materialize. The analysis conducted in this paper points to a new way of econ-
omizing on energy which is often overlooked. Namely, communication network
consumes energy, and also here considerable resources can be saved. Possibly,
further savings may be achieved by grouping communications, and switching off
the network when it is idle.

References

1. Agrawal, R., Jagadish, H.V.: Partitioning Techniques for Large-Grained Paral-
lelism. IEEE Transactions on Computers 37, 1627-1634 (1988)

2. Bharadwaj, V., Ghose, D., Mani, V., Robertazzi, T.: Scheduling divisible loads
in parallel and distributed systems. IEEE Computer Society Press, Los Alamitos
(1996)

3. Cheng, Y.-C., Robertazzi, T.G.: Distributed computation with communication de-
lay. Transactions on Aerospace and Electronic Systems 24, 700-712 (1988)

4. Drozdowski, M.: Scheduling for Parallel Processing. Springer, London (2009)

5. Drozdowski, M., Lawenda, M.: The combinatorics of divisible load scheduling.
Foundations of Computing and Decision Sciences 30, 297-308 (2005)

6. Katz, R.H.: Tech titans building boom. IEEE Spectrum 46(INT), 36-49 (2009),
http://www.spectrum.ieee.org/feb09/7327

7. Robertazzi, T.: Ten reasons to use divisible load theory. IEEE Computer 36, 63—68
(2003)

8. Sohn, J., Robertazzi, T.G., Luryi, S.: Optimizing computing costs using divisible
load analysis. IEEE Transactions on Parallel and Distributed Systems 9, 225-234
(1998)

9. TOP500 List (June 2009), http://top500.0rg/list/2009/06/100

10. Valiant, L.: A bridging model for parallel computation. Communications of the
ACM 33, 103-111 (1990)

11. Woo, D.H., Lee, H.-H.S.: Extending Amdahl’s law for energy-efficient computing
in the many-core era. IEEE Computer 41, 24-31 (2008)

http://www.spectrum.ieee.org/feb09/7327
http://top500.org/list/2009/06/100

Deskilling HPL

Using an Evolutionary Algorithm to Automate Cluster
Benchmarking

Dominic Dunlop, Sébastien Varrette, and Pascal Bouvry

CSC research unit, University of Luxembourg, Luxembourg
Firstname.LastnameQuni.lu

Abstract. The High-Performance Linpack (HPL) benchmark is the ac-
cepted standard for measuring the capacity of the world’s most powerful
computers, which are ranked twice yearly in the Top 500 List. Since
just a small deficit in performance can cost a computer several places, it
is important to tune the benchmark to obtain the best possible result.
However, the adjustment of HPL’s seventeen configuration parameters
to obtain maximum performance is a time-consuming task that must
be performed by hand. In a previous paper, we provided a preliminary
study that proposed the tuning of HPL parameters by means of an Evo-
lutionary Algorithm. The approach was validated on a small cluster. In
this article, we extend this initial work by describing ACBEA, a fully-
automatic benchmark tuning tool that performs both the configuration
and installation of HPL followed by an automatic search for optimized
parameters that will lead to the best benchmark results. Experiments
have been conducted to validate this tool on several clusters, exploiting
in particular the Grid’5000 infrastructure.

1 Introduction

Statistics concerning high-performance computers are of major interest to manu-
facturers, users, and potential users. The Top500 project [2] operates at a world-
wide level as a reference contest to evaluate the 500 most powerful computer
systems. The list is updated twice a year and the computers are ranked by their
performance on the long-established High-Performance LINPACK (HPL) [I7]
benchmark, despite the existence of newer alternative benchmarks [7]. HPL is
a software package that solves a (random) dense linear system using double-
precision (64 bit) floating-point arithmetic on distributed-memory computers.
Seventeen configuration parameters should be tuned and adapted to the com-
puting platform to obtain maximum performance. Even though some guidelines
exist to guide the search of the parameter space (firstly from the authors of HPL
themselves, and secondly in articles that discuss HPL tuning such as [B/19]), this
is generally a tedious task that is performed by hand. In a previous paper [6], we
showed how an evolutionary algorithm (EA) may be exploited to determine the

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 102 2010.
© Springer-Verlag Berlin Heidelberg 2010

Deskilling HPL 103

best possible parameters in a nearly automatic way, in order to maximize the
results of the benchmark. The approach was validated on a small cluster hosted
at the University of Luxembourg.

In this article, we describe the extension of this approach into a framework
called ACBEA (Automatic Cluster Benchmark with Evolutionary Algorithm),
which provides a fully-automatic benchmark tuning tool based on an EA that
explores the parameter space with many small benchmark runs, delivering pa-
rameter combinations that are likely to produce outstanding results in larger
runs. The approach may be used iteratively if necessary, progressively reducing
the proportion of the parameter space explored.

2 Context and Problem Statement

HPL [I7] solves a dense N by N system of linear equations A x z = b (divided
into blocks of size P x Q) by Gaussian elimination with partial pivoting. As well
as N, P and @, fourteen further parameters control HPL’s execution, and any
system administrator who has tried to evaluate the computing power of a cluster
with HPL can testify to the difficulty of manually tuning these parameters to
maximize the benchmark result. The problem is due to the size of the search
space and the fact that a single run can take more than half a day.

That this tuning is of crucial impor-
300 ‘ ‘ ‘ ‘ tance is illustrated by figure [Il which
250 |] shows how many systems in the Novem-
ber 2009 Top 500 list[2] would lose one
place or more if their HPL result were
slightly lower.

200 |

150

Number of systems moving down

100] Our previous work [6] promoted the
50 |] idea that HPL can be seen as an
. ‘ ‘ ‘ ‘ objective function for an Evolutionary

0 02 04 05 08 1 Algorithm (EA) in such a way that it

Percentage decrease in HPL result .y .
faciliates and automates the tuning

Fig. 1. Impact of HPL result reduction on process. EA refers to a class of problem-
the Top500 rank solving techniques based on the Dar-

winian theory of evolution. A possible

and acceptable solution i.e. a member
of the population is called an individual. Each iteration (or generation) of an
EA involves a set of genetic operators randomly applied to the individuals to-
gether with a competitive selection that weeds out poor individuals through the
evaluation of a fitness value that indicates their quality as a solution to the prob-
lem. More details on EAs may be found in [I0]. The EA in [6] is configured as
follows. An individual corresponds to a set of eligible parameters for HPL. Its fit-
ness value is the benchmark result when running HPL on the cluster with those
parameters. Our initial study delegated the details of the evolutionary compu-
tation to ACOVEA, a framework initially designed to investigate the optimum
combination of command-line flags for a compiler (ACOVEA stands for Analysis

104 D. Dunlop, S. Varrette, and P. Bouvry

of Compiler Options via Evolutionary Algorithm). Using an adapter to match
HPL to the ACOVEA interface when benchmarking a small cluster, spectacular
results were obtained with little effort compared to classical hand-tuning.

This paper extends our initial proposal in two directions. Firstly, the details
of the evaluation process to find the most suitable library are set out (see §3.1J).
Secondly, we describe an all-in-one framework called ACBEA (see §3.2)) for bench-
marking the computing power of a cluster through HPL. This tool is designed
to download, build and launch HPL in such a way that the process of parame-
ter tuning is handled internally and sequentially, starting from a small problem
size and moving to the largest possible. Hopefully, this last configuration will
produce the best benchmark result for the computing platform. ACBEA makes
use of an EA to automate nearly all tedious processes such that the interaction
of the user is limited to an initial setup, some manual tuning for the last step
of the evaluation and finally the collection of the ultimate result (see §33)). As
before, our approach is based on the assumption that individuals that produce
good results in small, short benchmarks are likely to produce good results in
larger, longer tests. This hypothesis follows from practical observations and is
discussed in §

3 Acbea Software Components

The software harness used in [6] was assembled quickly using scripting tools.
As such, it was difficult to run and to maintain, and suffered from a number
of inefficiencies. For example, the evaluation of each set of HPL parameters
required a batch job to be submitted to start a new instance of HPL on the
cluster’s compute nodes. Thus each evaluation incurred both batch submission
and HPL start-up overhead. For the follow-up work documented here, a more
flexible, efficient and maintainable package was developed from the ground up.
The package was designed with several constraints in mind. First of all, to have a
maximal portability: the software package should build and run in as many UNIX-
like environments as possible, and be able to utilize a choice of components for
the following elements:

— C and C++ compilation systems. GCC and HP’s aC++ were used in devel-
opment, but other products such as Intel’s icc can also be used.

— Batch job submission system. Development has been carried out exclusively
with OAR [4], but hooks are provided to allow alternative schedulers.

— BLAS (Basic Linear Algebra Subroutines) library implementation. We use
ATLAS [21] as a default, but alternative implementations can be used.

— Message Passing Interface. OpenMPI [8] was used in most tests, but alter-
natives are supported.

We also want to ensure minimal prerequisites, liberal licence terms, and finally
no modification to HPL source code.

Deskilling HPL 105

3.1 Choice of Evolutionary Algorithm Library

Thirteen evolutionary algorithm library packages, all written either in C or C++,
were evaluated against five criteria:

1.

Portability. The packages were built in four environments: FreeBSD, HP /UX
Linux and Mac OS X. Packages that built and passed their own test suites
in all environments were given a higher score. Points were deducted if the
build process was difficult and/or required additional packages.

MPI support. Two points were given to packages that included support for
MPI.

Currency. Packages having a recently-released revision were marked higher
than those that had not been updated for some time. The thinking behind
this was that a recent revision suggested the existence of an active develop-
ment community that would be able to provide support if necessary.
Maturity. The initial release date and the revision history of each package
were examined to judge its maturity. Packages that had been available for
several years and which had been regularly updated were marked higher than
new packages, or old packages that had seen few revisions.

Size. Small packages were marked higher than large. It should be noted that
the large packages support a wide variety of heuristic optimization meth-
ods. However, as it was not the aim of the research described here to test
alternative methods, this was not considered an advantage.

Table 1. EA library evaluation

Good Bundle Port- MPI Curr- Mat-

Package Ver. Date builds size ability support ency urity Size Total
Evocosm[I3] 3.3.1 2008 5 532kB 4 0 5 5 4 18

GAlib[20] 2.4.7 2007 5 368kB 4 0 4 4 4 16

Open BEAGLE[9] 3.0.3 2007 5 4.8MB 4 0 4 5 3 16

PGAPaCk[lS] 1.1 2008 5 548kB 4 2 3 3 4 16

EO[1T] 1.0.1 2008 4 972kB 3 0 5 3 4 15
GAtoolbox[18] n.a. 2007 4 40kB 3 0 4 2 5 14
ParadisEO[3] 1.1 2008 4 20.5MB 3 2 5 3 0 13

The result of the evaluation for the seven highest-scoring packages is shown in

table [l The Evocosm [I3] package scored highest, and so was chosen as a basis
for ACBEA. Evocosm implements a classical evolutionary algorithm as described

in

[10]: individual experiments are described by a genome made up of genes

representing parameter values for the experiment; genomes that produce good
experimental results are more likely to be used in creating the genomes used in
the next generation than those that produce poor results. Each individual in the
next generation is created by choosing two parents, and selecting each gene in
the new individual from one of the parents at randon]l]. Individual genes may

1

This differs from the classical concept of crossover in that no attempt is made to
preserve groups of genes that are adjacent to one another.

106 D. Dunlop, S. Varrette, and P. Bouvry

also mutate to a value that differs from either of the parent genes. Optionally,
an elitist strategy may be used to preserve the best individuals. Additionally,
Evocosm implements an island model i.e. it maintains several populations that
exchange some individuals periodically. Note that this library also underlies the
Acovea [12] framework used in our earlier work.

3.2 Acbea
Head node CIEEES ACBEA consists of a suite of programs
[runacbes J [fecn ﬂ [gg;;z’g:;ﬁﬂ [mpirun ﬂ that work together to automate the bench-
e mark process. The most important of these
It
population . .
N il I is runacbea, which runs on the head node
gt Run submit T~ . .
sl et ~[- of a cluster and submits batch jobs for
avaitf queueiab) Aultest g— .
completion s e the cluster’s compute nodes. The jobs are
Run benchmark I N . .
=t ”‘3"-».[o typically handled by a batch job manager.
chefi status] [T Rt Runacbea’s XML-format configuration
Bl) file describes HPL’s parameters and their
pee]] Comte allowable values. It also contains informa-
results, . 3
tion about the batch job manager and the

implementation of MPI that is to be used.

The program’s operation for a single
population of benchmark evaluations is
shown in figure 2 The sequence of oper-
ations is repeated for each population in a generation, and the overall sequence
is repeated until a specified number of generations has been run. If sufficient
compute nodes are available, the task of fitness assessment for each population
may be shared among several parallel jobs, so speeding evaluation. Each batch
of benchmarks is run using MPI to launch multiple copies of dhpl, a customized
variant of HPL’ s xhpl benchmark program. While xhpl uses a short configura-
tion file to describe a series of related tests, dhpl uses a file of arbitrary length
to define the series of unrelated tests that represents all or part of a population.
Conforming to the constraints presented in §3] the HPL problem solution code is
unchanged. The result output format has been changed as little as possible. On
terminating, runacbea summarizes its findings and produces a number of output
files. The first contains a configuration for a subsequent run with a problem dou-
ble the size on four times the number of cores. As four times the compute power
is being applied to a problem having eight times the complexity, each benchmark
will take almost twice as long as those defined by the original configuration file.
In order that the subsequent run may explore only the more profitable parts of
HPL’s parameter landscape, the parameter values allowed by the new configu-
ration file exclude those which appear only in most poorly-performing 33% of
individuals in the run. (This cut-off level may be changed.) The remaining out-
puts are configuration files for xhpl, representing the parameters that produced
the best-performing individual in the each population of the final generation.
These files may be used to run xhpl benchmarks directly. The decision to host
runacbea on the head node of a cluster may be questioned, as the intention is to

Fig. 2. ACBEA: population evaluation

Deskilling HPL 107

benchmark the compute nodes, while the main task of the head node should be
to run administrative housekeeping functions for the cluster. In fact, runacbea
may itself be viewed a housekeeping program: tests show that it and its child
processes consume perhaps five seconds of processor time over an entire run,
during which the compute nodes may clock up hundreds of hours.

3.3 The Benchmarking Process

The benchmarking process with ACBEA involves the following steps:

1.

4

Gather information about the target cluster: nodes, cores and memory per
node, MPI implementation, batch job manager ...

Use the provided ten-sec-n utility to obtain a value of IV that makes HPL
run for ten seconds on a single core . Let Nyep see be this value.

Edit the runacbea configuration file to create one suitable for testing all the
cores in a small group of nodes n — four has been found to be a reasonable
choice for n. The value of N in this file may be calculated using N4 podes =
Nien see X0.7x F/compute cores. The 0.7 factor compensates for the fact that
no inter-node communication is used during the determination of Niep sec-
Optimize HPL configuration for a benchmark on the small group of nodes. In
this step, runacbea runs an EA on five populations of forty individuals each
for twenty generations. Each individual is evaluated in around ten seconds
so this step may take half a day if a single group of nodes is used. The
evaluations may be done in parallel over several groups to reduce the time
required.

Use the best parameters found in stepdlfor a new optimization run on groups
of nodes four times larger (i.e sixteen if step @ used four), solving problems
of double the size: Ny nodges = 28Ny nodesVi > 2. Repeat this step until
you reach a solution suitable for node groups having a size as near as possible
to (but not exceeding) the number of nodes in the cluster.

Use the best configuration found at the previous step for the final benchmark
evaluation on the full cluster. The problem size for this run can be calculated
from the cluster’s installed memory with the following formula:

Nfuil theoretical ™ 0.8\/Tota1 Memory Size in bytes x Size"f(;‘mble)

The perfect value of IV should be manually adapted from Ny theoreticat DY
monitoring the memory usage on the cluster nodes to avoid swapping. This
is an activity that ACBEA does not currently automate. Each run of this
last step takes one hour on a cluster having up to 500 cores and 1-2 GiB
of memory per core. Note that it is the only step that requires full cluster
reservation.

Choose the best result for publication as the HPL benchmark score.

Scalability

The methodology implemented by ACBEA is based on two assumptions: (1) a
single run of an experiment will produce a result that is representative of the

108 D. Dunlop, S. Varrette, and P. Bouvry

results of multiple runs of the same experiment and (2) HPL parameters that
produce good results in small, short benchmarks are likely also to produce good
results in larger, longer tests. If the first assumption is not true, the fitness values
used by the EA may not be correct, with the result that the next generation does
not reflect the genomes of the truly most fit individuals. This issue is investigated
in §471 If the second assumption is false, there is no point in trying to use
small benchmarks to explore HPL’s parameter space; large, long-running tests
would be the only ones that could yield useful information about full-cluster
benchmarks. §4.2] reports on tests of scalability.

4.1 Individual Benchmark Repeatability

A series of tests was run on fifteen two-core nodes of the Chaos cluster (see table
[2) to investigate the variability in the results obtained from repeated runs of the
same test. As figure [}] demonstrates, variance expressed as a percentage of the
result value drops rapidly at first, but the improvement becomes slower as run
time increases. This suggests that with this configuration, an N chosen to give
a run time of approximately twenty seconds provides a reasonable compromise
between the duration of an ACBEA run (which typically entails 4,000 individual
benchmarks) and the expectation that a single result is representative (better
interconnect than Gigabit Ethernet was found to reduce variability). In further
tests (not reported here), variability reduced (and, of course, execution time
increased) as the number of nodes assigned to the problem was reduced. Conse-
quently, an execution time of ten seconds is sufficient for benchmarks involving
a small number of nodes.

k-clusterl-16.chaos.lu Network last hour
6 u 13H
n
W 10HM
5 \ el
& S 32 cores 16 cores
g 1 °
< 22:08 22:20 22:40
) o In B out
° ~ 1 1
= \\ cpu_gystem
a2 S~ q 40
T~ a0
1 T R
1a
o . > . . - - 32-2] 22:20 22:40
0 10 20 80 40 50 60 0 B k-clusterl-16.chaos.lu last hour (now 0.00)
Execution time (seconds)
Fig. 3. Variance in results of repeated Fig. 4. Effect of a badly-sized test
tests

An alternative way of interpreting the findings is that the problem must not
be too small for the number of cores allocated to solve it. If it is, communications
activity begins to dominate calculation, resulting in performance figures that are
both poor and highly variable. This is illustrated in figure 4 which shows the
system CPU time used by a dual-core cluster node involved in solving the same
problem ten times, first on 32 cores, then on sixteen. In the 32 core case on the

Deskilling HPL 109

left, the percentage of system time is higher, indicating that the problem is badly
sized for the larger number of cores.

4.2 Interdependence between Parameters

Our earlier paper [6] reported an investigation into the effect of N, problem
size, on the optimum value of NB, block size, a parameter found to have a
large effect on performance. The conclusion was that the two were independent,
with the result that small problems could be used to determine an optimum
value of NB that would also be valid for large problems. The work did not
investigate the scalability of other parameter combinations, nor did it check
whether the findings were specific to the Intel platform, or to the Linux libraries
and tools used. Further studies reported here address these issues, and broadly
confirm that the results of small benchmarks may be used as a basis for larger
experiments.

/ BLAS from libhpl 7;‘ 7" BLAS from veclib i
: y 7

Problem sire, N /
T 7
R T — =/ 8000 T ! o

Tk siae, KB Thock sire. NB

Fig. 5. NB versus N on HP Precision Architecture

N wversus NB. In order to check
whether the earlier conclusion was true
in general, similar tests were run on
other platforms and with a variety of
BLAS implementations. Space precludes
reporting these in detail, but they con-
firmed the original findings. Figure
shows representative results obtained
with two different BLAS libraries on — — :

2000 4000 8000 16000
a four-core HP/PA host running Problem size, N
HP/UX.

Fitness (Gflops)

Fig. 6. Relative performance of matrix

P, Q versus N. To divide work among shapes versus N

a number of compute nodes, HPL con-
figures the nodes into a P x) matrix.
The shape of the matrix affects communications patterns and volumes between
particular pairs of nodes. An investigation was carried out into whether a shape
that was optimal for small problems was also optimal for large. Figure [6] shows
a sample of the results. Increasingly large problems are solved while P and Q

110 D. Dunlop, S. Varrette, and P. Bouvry

are varied, keeping their product, and HPL’s other parameters constant. It can
be seen that the ordering of the curves barely changes as N is increased, sug-
gesting that information gained from small problems about matrix shape can
be applied in large problems. Because adjacent curves do cross on occasions,
ACBEA includes new dimensions that are related to the old when creating the
configuration file for a subsequent run.

SWAPPING versus N. Studies were also carried out on several machines into
the scalability of the SWAPPING parameter, which determines when HPL
switches from one data-exchange strategy to another, and which has been ob-
served to have much less effect on benchmark performance than NB or P x Q.
Again, the trials suggested that a SW AP PING value that produces good results
in small benchmarks will also produce good results in large.

5 Cluster Benchmarking

This section is concerned exclusively with the results of the ACBEA package’s
automatic tuning of HPL parameters; while it would be instructive to compare
automatically-produced results with those obtained by other methods such hand-
tuning, or the spreadsheet-assisted procedure proposed in [B], any such study
must be the subject of future work. Table [2] describes the clusters that were
targeted and the results achieved. It has been remarked, for example in [T4/T6],
that HPL is a good tool for “shaking down” compute clusters. This was certainly
found to be the case when ACBEA was built and run on a variety of hosts.
Consequently, we are able to report fewer final results here than might have
been hoped. More complete descriptions of the French systems that participate
Grid’5000 may be found in [IJ.

Table 2. ACBEA target systems

Cluster CPU type/ Total Mem/ Inter- Gflops/
name Location speed (Ghz) cores core connect MPI cores

capricorne Lyon Opteron/2 112 1GiB 1GE, Myri-2000 MPICH 48/32
chaos-b Luxembourg Xeon/3.4 16 4GiB 1GE OpenMPI 55/16
chaos-k Luxembourg Pentium D/3.2 32 2GiB 1GE OpenMPI 98/30
chinquint Lille Xeon/2.8 368 1GiB Myri-10G~ OpenMPI 160/32
genepi Grenoble Xeon/2.5 272 1GiB 1GE MPICH 45/8
granduc Luxembourg Xeon/2 176 2GiB 1GE OpenMPI 671/168
violette ~ Toulouse Opteron/2.2 114 1GiB 1GE OpenMPI 262/96

Chaos-b, Luxembourg. Chaos-b consists of just two eight-core nodes. The
full ACBEA procedure was run, and a benchmark score of 55.05 Gflops was
obtained with IV = 25,600, P = 1, (Q = 16. This is a considerable improve-
ment upon the disappointing 26 Gflops reported for the same cluster in [6].
The reason for this discrepancy is not known, although the current tests used
a better-optimized BLAS library. A study was also made of the repeatability

Deskilling HPL 111

of the ACBEA process: do repeated runs produce similar or identical recom-
mendations for optimum parameters? The results of four trials of the first
optimization phase were in broad agreement. For example, two of the tri-
als gave 72, 96, and 104 as the allowed values for N B in the second phase.
(The others gave just 72 and 96, and 72, 104 and 144 respectively.) Other
parameter choices were also similar or identical across the four runs. This
suggests that the ACBEA process is repeatable — although see the discussion
of problem sizing in {11

Chaos-k, Luxembourg. This sixteen-node cluster of two-core nodes was ex-
tensively benchmarked for [6], attaining 116 Gflops. One of its nodes was
unavailable during the testing reported here. Also, a new and larger Linux
kernel made it impossible to use the N = 84,000 value used in those tests.
Consequently, results are not comparable. After a full run of ACBEA, the five
resulting xhpl configuration files were used to obtain a best result of 98.47
Gflops with N = 80,000, NB = 88, P = 3 and Q = 10. The parameters
were derived from those of the fifth-most-successful individual in the opti-
mization run, suggesting that the “best-of-best” individual does not always
deliver parameters that are optimum in a larger benchmark.

Granduc, Luxembourg. Currently the largest of the University of Luxem-
bourg’s clusters, granduc was able to run the full ACBEA procedure. One
node being off-line, the final benchmarks were run on 21 nodes (168 cores),
giving a best result of 671 Gflops with N = 192,000 (using almost all avail-
able memory), NB =112, P =2 and @ = 84.

Capricorne, Lyon. The Capricorne cluster is used by Grid’5000 for experi-
mental work, and was targeted as a test of ACBEA portability because it
differs in three respects from the Luxembourg clusters: AMD rather than
Intel processors; MPICH instead of OpenMPI; and Myriad high-speed inter-
connect in addition to gigabit Ethernet. Unfortunately, we were unable to
configure MPICH to use the Myriad for data transport, so fell back to using
the slower, higher-latency Ethernet. Poor figures were obtained from an ini-
tial ACBEA run using eight cores on four compute nodes: the best-performing
individual benchmark reached 15.33 Gflops. A second run targeting 32 cores
on sixteen nodes obtained a best result of 44.84 Gflops. Because of these
disappointing figures, a final test utilizing all cores was not run; the reason
for the poor performance was investigated instead. The cause of the problem
was found to be incorrect allocation of processes to nodes by MPICH: some
nodes were over-subscribed, some under-, and some had the correct number
of processes. The reason for this behaviour could not be determined, and the
benchmarking attempt was abandoned.

Chingchint, Lille. A recently-commissioned and powerful system having 368
cores on 46 nodes with ten gigabit Myriad interconnect, chinquint proved
too unreliable to obtain anything approaching a full-system benchmark. It
was possible to run two parallel four-node (32 core) tests for runacbea’s full
twenty generations. The best individual test delivered an impressive bench-
mark result of 160.50 Gflops. This was almost twice the overall average of
83.11 Gflops in the final generation. Such a discrepancy is unusual. Sadly, it

112 D. Dunlop, S. Varrette, and P. Bouvry

was not possible to find sixteen nodes reliable enough to run the next stage
of the test, since it should have been possible to obtain well over a teraflop
from the whole cluster.

Genepi, Grenoble. Like capricorne (see above), genepi has MPICH installed
on its compute nodes. A first run of ACBEA targeting the eight cores and
using eight parallel jobs yielded an average performance of 41.65 Gflops, with
the best individual benchmark achieving 44.78. By confining benchmarks to
single nodes, this configuration made essentially no use of the interconnect.
Sadly, several attempts to run the next stage of the ACBEA process on 32
cores failed to run to completion due to intermittent MPICH problems with
secure login between nodes. The experiment was consequently abandoned.

Violette, Toulouse. It was possible to run the complete ACBEA process on
violette using its installed OpenMPI package. Both stages of optimiza-
tion performed as expected, delivering five xhpl configuration files for final
benchmarking. As the cluster has 114 cores (of which some were unavail-
able) rather than the 64 targeted by the configuration files, the P and @
parameters were adjusted to address 96 cores before final benchmarks were
run using N = 97,600, a value that was found almost to saturate the nodes’
memory. A peak score of 262.3 Gflops was obtained from sixty evaluations
derived from the parameters of the five best-performing individuals in the
second-stage optimization. As expected, the best result was obtained using
the parameters of the “best-of-best” individual. Surprisingly, it used a layout
of P =16, Q = 6, although over-square matrices generally perform poorly.

6 Conclusions and Future Work

This paper has described how an evolutionary algorithm may be used to produce
competitive HPL benchmark results for a computing cluster without the need
for intimate knowledge of the benchmark program, or of the software needed
to support it. The ACBEA package has proved to be portable to a number of
systems, although these have been fairly uniform in operating environment, batch
job management and so on. However, portability alone is not sufficient: the target
system must be sufficiently robust to support both the demanding benchmark
and an evolutionary harness that launches it many thousands of times during
the course of an evaluation. At the current state of development, ACBEA still
requires a fair amount of knowledge on the part of its user. Files must be edited
by hand to set up a starting problem size, and to define the node topology to
be used for the evolutionary process. This done, the user must step through
the lengthy procedure described in §3.3] in order to obtain a benchmark result.
Future work will be focused on increasing ACBEA’s ease of use, and on using
discovery techniques to reduce the amount of information that must be supplied
before a benchmark can be run.

The focus of this paper has been on obtaining results: no attempt has been
made to compare ACBEA’s results with figures that have been independently ob-
tained by hand-tuning or other methods, either in terms of performance attained,

Deskilling HPL 113

or of wall-clock time elapsed. It would be instructive to make such comparisons
in the future. The work reported in 4] suggests that HPL’s other parameters are
largely orthogonal to IV, the problem size, but does not suggest theoretical or
physical reasons as to why this might be the case. Also, all clusters tested to date
have provided a fully-interconnected communications topology, which strongly
favours a BCAST parameter of zero. Consequently, no information has been
obtained as to whether BC' AST is scalable or not. Future work could address
both of these issues.

The authors would like to thank the administrators and support staff of the
Grid’5000 project for their assistance.

References

1. The Grid’5000 Project, http://www.grid5000.fr

2. The Top500 project, http://www.top500.org

3. Cahon, S., Melab, N., Talbi, E.-G.: ParadisEO: A Framework for the Reusable
Design of Parallel and Distributed Metaheuristics. J. of Heuristics 10(4), 357-380
(2004)

4. Capit, N., et al.: A batch scheduler with high level components. In: Cluster com-
puting and Grid 2005, CCGrid 2005 (2005)

5. Microsoft Corporation. Building and Measuring the Performance of Windows HPC
Server 2008-Based Clusters for TOP500 Runs. Technical report (November 2008)

6. Dunlop, D., Varrette, S., Bouvry, P.: On the Use of a Genetic Algorithm in High
Performance Computer Benchmark Tuning. In: IEEE International Symposium on
Performance Evaluation of Computer and Telecommunication Systems (SPECTS
2008), Edinburgh, UK, pp. 105-113 (June 2008)

7. Eigenmann, R., Gaertner, G., Jones, W., Saito, H., Whitney, B.: SPEC hpc2002:
The next high-performance computer benchmark. In: ISHPC, pp. 7-10 (2002)

8. Gabriel, E., et al.: Open MPI: Goals, concept, and design of a next generation
MPI implementation. In: Proceedings of 11th European PVM/MPI Users’ Group
Meeting, Budapest, Hungary, September 2004, pp. 97-104 (2004)

9. Gagné, C., Parizeau, M.: Genericity in evolutionary computation software tools:
Principles and case study. Intl. J. on Artificial Intelligence Tools 15(2), 173-194
(2006)

10. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learn-
ing, January 1989. Addison-Wesley Professional, Reading (1989)

11. Keijzer, M., Merelo, J.J., Romero, G., Schoenauer, M.: Evolving objects: A gen-
eral purpose evolutionary computation library. In: 5th European Conference on
Artificial Evolution, London, UK, pp. 231-244. Springer, Heidelberg (2002)

12. Ladd, S.R.: Acovea: Using Natural Selection to Investigate Software Complexities
(2007), http://www.coyotegulch.com/products/acovea/

13. Ladd, S.R.: Evocosm: A C++ Framework for Evolutionary Computing (2007),
http://www.coyotegulch.com/products/libevocosm/

14. Levesque, J.: Breakthrough Science on a Petaflop XT5. In: Cray XT Workshop
(2009)

15. Levine, D.: Users Guide to the PGAPack Parallel Genetic Algorithm Library
(1996), ftp://info.mcs.anl.gov/pub/tech_reports/reports/ANL9518.ps.Z

16. Minyard, T., et al.: Experiences and Achievements in Deploying Ranger, The First
NSF “Path to Petascale” System. In: TeraGrid 2008 (June 2008)

http://www.grid5000.fr
http://www.top500.org
http://www.coyotegulch.com/products/acovea/
http://www.coyotegulch.com/products/libevocosm/
ftp://info.mcs.anl.gov/pub/tech_reports/reports/ANL9518.ps.Z

114 D. Dunlop, S. Varrette, and P. Bouvry

17. Petitet, A., Whaley, R.C., Dongarra, J., Cleary, A.: HPL — A Portable Imple-
mentation of the High-Performance Linpack Benchmark for Distributed-Memory
Computers (January 2004), www.netlib.org/benchmark/hpl/

18. Sastry, K.: Single and Multiobjective Genetic Algorithm Toolbox in C++ (2007),
http://www.illigal.uiuc.edu/pub/papers/I11iGALs/2007016.pdf

19. Sripathi, V., Krishnan, A.: Analyze and optimize the HPL benchmark on x86-64
cluster. Technical report, North Carolina State University (2008)

20. Wall, M.: GAlib — A C++ Library of Genetic Algorithm Components

21. Whaley, R.C., Petitet, A., Dongarra, J.: Automated empirical optimizations of
software and the ATLAS project. Parallel Computing 27(1-2), 3-35 (2001)

www.netlib.org/benchmark/hpl/
http://www.illigal.uiuc.edu/pub/papers/IlliGALs/2007016.pdf

Monitoring of SLA Parameters within VO for
the SOA Paradigm

Wlodzimierz Funika, Bartosz Kryza, Renata Slota, Jacek Kitowski,
Kornel Skalkowski, Jakub Sendor, and Dariusz Krol

Institute of Computer Science, AGH-UST,
al. Mickiewicza 30, 30-059 Krakow, Poland
{bkryza,funika,rena,kito}@agh.edu.pl

Abstract. Current trends in modern scientific and business I'T infras-
tructures pose certain requirements in the middleware layer in order to
maximize the automation of all life-cycle phases of such infrastructures
including inception, deployment, execution, and dissolution. In case this
infrastructure is composed of resources of different organizations, for in-
stance in form of a Virtual Organization, the management of these re-
sources is especially needed for achieving new quality in business. In this
paper we deal with a specific aspect of the I'T infrastructure management
related to autonomous enforcement of Service Level Agreement between
organizations sharing their resources within a Virtual Organization. The
presented framework utilizes semantic technologies in order to virtual-
ize the heterogeneity of underlying middleware components and to allow
integration of services between these organizations.

1 Introduction

Modern applications of various technologies developed in recent years such as
Grid computing or Service Oriented Architectures currently are being adopted in
more and more areas of computing including not only research institutions and
large corporations, but also more commonly even smaller SME companies. These
technologies are advocated as solutions to the problem of integration of resources
and services between both large parties as well as small entities. The latter,
however, often do not have sufficient funds or know-how in order to transfer their
IT infrastructures to modern technologies and then efficiently manage them - an
effort which still requires very specialized knowledge and experience.

That is why a crucial element in making use of these widespread technologies
is in making the process of participating in such IT based business collaborations
much easier and more affordable for even smaller parties. This can be achieved
by automating as much of the process of managing this infrastructure within the
middleware layer itself and thus limiting the burden imposed on the adminis-
trators and the IT staff of these organizations. For this purpose our recent work
involves the development of a complex solution for automatic Virtual Organiza-
tion management supporting several aspects. These include the reaching of an

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 115 2010.
© Springer-Verlag Berlin Heidelberg 2010

116 W. Funika et al.

agreement between the organizations in the form of a distributed contract ne-
gotiation, automatic configuration, and deployment of the Virtual Organization
on the resources and services of organizations participating in such VO as well
as autonomous enforcement of the contract through monitoring of execution of
the Virtual Organization and proper security configuration.

In this paper we focus on one aspect of the VO management mentioned above
that concerns the monitoring and enforcement SLA parameters for the SOA
paradigm. This research is part of the work on the FiVO[system .

The paper is organized as follows: in Section 2 related work on SLA enforce-
ment tools as well as some existing monitoring tools are presented. In Section 3
the architecture of the FiVO SLA Enforcement Tool is discussed in the context
of Virtual Organization management. Section 4 gives an overview of the Sem-
Mon semantic monitoring tool and, finally, Section 5, describing our approach
to integrate FiVO with the SemMon system, is followed by Conclusions.

2 Related Work

The monitoring of SLA fulfilment for VO requires taking into consideration a
few aspects: heterogenous environment (different monitoring systems installed
in various physical organizations), dynamic changes of SLA requirements, and
mapping of high-level SLA parameters onto low-level resources parameters.
The way these three aspects are considered depends on a chosen approach. A
first approach to the monitoring of SLA fulfilment is presented in [2]. This ap-
proach assumes that everything what is monitored is a Web Service. SLA in this
approach is defined using the Web Service Level Agreement (WSLA) framework.
WSLA is an IBM framework which supports SLA management. High-level SLA
parameters are mapped onto low-level resources parameters which are described
by the Common Information Model (CIM). In [3] there is presented an approach
assuming that the grid environments which follow the Open Grid Services Ar-
chitecture (OGSA) are monitored. The monitoring of SLA fulfilment on grids
and mobile grids are reached by introducing the Execution Management Service
which monitors both the network services and the application services. Another
approach is presented in [4]. In case of this approach only the network services
are monitored. QoS attributes are achieved in this case by implementing spe-
cial services. All the above approaches described are oriented toward monitoring
SLAs in special environments (e.g. grids). A comparison of some existing archi-
tectures oriented towards SLA monitoring presented in [5] shows that there is no
single architecture which could be applied in every case. In case of the approach
presented in this paper we focus on the issue of independence from the low-level
monitoring frameworks, which is a key feature if one wants to use the FiVO
framework in different physical organizations. This approach is needed in case of
the VO management when we deal with a heterogenous environment, consisting
of different low-level monitoring systems used in different physical organizations.

! Framework for Intelligent Virtual Organizations.

Monitoring of SLA Parameters 117

A very important part of every SLA management framework is a monitoring
system, so below we present some of the existing monitoring systems.

The PushToTest TestMaker system [0] is a testing platform, which provides
support for various kinds of tests (functional tests, load tests, stress tests, per-
formance tests, smoke tests and others). It also provides support for enforcing
SLA. All tests are defined in a manually written script file.

Monitoring & Discovery System (MDS) [7] from Globus Toolkit Information
Services allows to discover resources (considered as a part of a virtual organiza-
tion), which are available on the grid and to monitor these resources. It provides
two services which determine the interface of this system: the index service and
the trigger service. The index service provides a query interface which allows to
send queries about monitored parameters. The trigger service allows to configure
special actions based on the monitoring data. The data provided by this system
contain the data on CPU and memory usage, size of queues, etc.A part of the
WS-Diamond (Web-Service Diagnosability, Monitoring and Diagnosis) system
[8] is a monitoring framework for QoS attributes, which enables to detect a fail-
ure situations, and also permits to plan and perform different recovery actions.
This functionality helps to achieve QoS objectives.

Grid-enabled OMIS-Compliant Monitoring System (OCM-G) [9] is oriented
towards support for performance analysis tools, for evaluating parallel and dis-
tributed applications, especially, those using MPI, and for monitoring grid
resources. Java Oriented Monitoring Infrastructure J-OCM [I0] is aimed to mon-
itor and handle the execution of Java distributed applications. Like the OCM-G
system it is also oriented towards support for performance analysis tools.

Since the above systems are oriented towards the monitoring of resource pa-
rameters, they should be treated as low-level monitoring systems. In case of
monitoring for VO we need a system which enables automatic monitoring of
SLA fulfilment, based on a contract content. None of the above systems pro-
vides it. The PushToTest TestMaker system [6] allows to define complex tests,
but it is done manually, by writing a special script, so it cannot be useful in our
case. The other systems mentioned above are typical monitoring systems, which
are not targeted to monitor SLA fulfilment, sometimes they help us to achieve
QoS objectives only (e.g. WS-Diamond).

In case of the monitoring of SLA fulfilment in a heterogenous environment,
comprised of different low-level monitoring systems, we need more sophisticated
functionality which should constitute a bridge between the resources abstrac-
tion and the SLA abstraction, e.g. in form of a medium-level monitoring system,
which is able to map composite SLA metrics into low-level resources parameters.
This system has to provide a kind of semantic-reasoning engine, which allows
to map high-level SLA parameters onto the low-level resource parameters. One
of such systems is the Semantic Monitoring System (SemMon) [I1]. A key fea-
ture of the SemMon system is its independence from a low-level monitoring
system, what means that the SemMon system constitutes an abstraction layer
over heterogeneous low-level monitoring systems. A more detailed description of
the SemMon system appears in Section 4.

118 W. Funika et al.

3 SLA Enforcement in Virtual Organizations

In general, FiVO, as mentioned in Introduction, is a comprehensive and dis-
tributed framework allowing for management of all the aspects of VO life-cycle.
Once an organization deploys its components in its premises, it becomes part of
a Virtual Breeding Environment, i.e. it can become a member of existing and
emerging Virtual Organizations managed by FiVO. In order to support this,
FiVO provides the organizations with several components responsible for the
distributed contract negotiation phase [I2] as well as components providing se-
curity [I] and SLA enforcement in a VO context as defined in the contract. In
particular, in order to support the SLA enforcement aspect of VO, each orga-
nization must deploy the FiVO SLA Enforcement Tool and allow access to its
legacy monitoring infrastructure. After the contract is negotiated for a new VO,
the contract statements specific to each organization will be deployed by proper
FiVO instances in the underlying monitoring systems.

An example VO monitoring environment is shown in Fig. [[l where it is as-
sumed that inside a real-life organization all resources are monitored by a single
high-level monitoring system which gathers information from one or more low-
level monitoring systems. The environment of monitoring systems across differ-
ent real-life organizations in a Virtual Organization is usually heterogeneous.
Different organizations can monitor their resources using different systems and
even inside an organization, multiple types of monitoring tools may be used for
different types of resources. The monitoring of contract fulfilment and SLA en-
forcement procedure forces to build a VO monitoring tool which can cope with
the following requirements:

— interpreting of contract statements specified in the form of OWL ontology,
— automatic configuration of the legacy monitoring tools used in organizations
participating in a new VO,

Virtual Organization

—Organization A
o5 X

‘ e ~ Organization B

| 2 .’ \
Web Service r A
’,.-"’ High-laval = I
\, mormoring ool LLAEnIo«w et Tod . Dota‘base
™~ A |
 ETF sorver !
$LA Entorcernet Tool i '

High-level

monitoring tool MEIanafﬂB/
L Organizaluon c” R /
,’ £ WO
&
— ___Me-.lu-_»em;-u T
\ = T
\ = “ .
. - igh-level 7
BpcheyServer o orogtodd
% 4

Fig. 1. Virtual Organization monitoring environment

Monitoring of SLA Parameters 119

— distributed architecture which does not require that the organizations pro-
vide access to their middleware for external administrators
— ability of triggering corrective actions if contract statements are violated.

In FiVO SLA Enforcement Tool we prepared an architecture design consisting
of several modules which allow FiVO to meet the above requirements (please see
Fig.l- for simplicity, we assume that 3 organizations are sharing one FiVO SLA
Enforcement Tool instance). The values of SLA parameters are analyzed and ex-
tracted by the Ontology Analyzer from a VO contract. Contract statements
are negotiated between real-life organizations and are described using an OWL
ontology. As a result from Ontology Analyzer we acquire a list of the expected
QoS parameter values, retrieved from the SLA part of the contract, for each
resource or service shared by a real-life organization inside the VO. In the next

Contract

SLA
parameters

/ FiVO SLA Enforcement Tool\

Notification
- -b[Service] [Ontology Analyzer J
Monitoring System
Configuration Service

Reaction Service

Metrics Monitoring . . .
[Service J«f —b[Metrics Aggregation Service]

___________ ———
| T ‘
|
| Monitoring | Monitoring ‘L Monitoring
. system ~—— system —-—— system
\ adapter adapter adapter /
v]
High-level High-level High-level
monitoring systei monitoring system monnorlng system
Low-level Low-lovel Low-level Low-level Low level
monitaring monitaring monitoring monitaring manitoring
system system system system system
FTP server Web Service Database server
Mainframe
Organization A Organization B Organization C

Fig. 2. SLA monitoring tool architecture overview

120 W. Funika et al.

step, performed by Monitoring System Configuration Service, QoS param-
eters are grouped by real-life organizations. Sets of metrics and measurements
are prepared for each organization which may use any high-level monitoring
system. The configuration of a specific monitoring system is done by adapters,
used to provide an abstraction layer between an organization-specific system
and FiVO SLA Enforcement Tool. A set of measurements for a single real-life
organization resources is passed to the adapter responsible for configuring the
organization-specific monitoring system to prepare measurements and retrieving
metrics values from it.

Along with the configuration of measurements goes the set-up of the noti-
fication system part. Penalty clauses or declared sets of actions to perform in
the situation when SLA statements are not met can also be described within
the contract. These actions are passed to Reaction Service. We also introduce
two more services that are required in order to provide the monitoring of SLA
parameters during the VO life-cycle:

— Metrics Aggregation Service - which enables storing metrics values his-
tory and provides access to aggregated values (e.g. mean metric value from
one day, one month)

— Metrics Monitoring Service - which fills the gap between the Reaction Ser-
vice and monitoring systems; major role of this service is monitoring metrics
values or aggregates values and triggering actions in the Reaction Service.

High-level monitoring systems are usually capable of doing metrics aggregation
or statistics so the complexity of processing done by these services depends on
the real-life organization monitoring system features. The Reaction Service starts
receiving notifications when the expected SLA parameters values are not met.
This information can be passed further to different information channels (e-mail,
instant messenger, published on RSS/Atom feed) via the Notification Service
or a relevant action can be invoked by RMI or Web Services.

The proposed solution can also handle situations when we collect information
directly from low-level monitoring systems. In this case, communication between
an organization-specific monitoring tool and its adapter is increased. Also the
amount of data stored and processed by the Metrics Aggregation Service is
higher. Therefore using a high-level monitoring tool (e.g. SemMon, which is
capable of aggregating metrics from one or more low-level monitoring systems)
on the real-life organization site is very helpful. SemMon’s ability to hide the
complexity of low-level monitoring tools inside the real-life organization enables
to reduce difficulties connected with creating a custom metrics aggregation and
monitoring service. It should also decrease the amount of time spent on the
development of an adapter compared to the work on low-level monitoring tools.

4 The SemMon System Description

The SemMon? monitoring system [I1] is placed on top of the existing monitoring
stack and provides an additional functionality which is not possible to achieve

2 SemMon stands for Semantic-based Monitoring system.

Monitoring of SLA Parameters 121

otherwise. It aims to map data from the underlying low-level monitoring systems,
intended to provide physical information about the monitored system health onto
high-level information. By saying high-level information we mean performance
metrics that are not provided by the monitoring systems but can be derived
from them, e.g. as a combination. The SemMon can also notify the interested
users about previously defined situations, e.g. when a measurement of a given
metric and resource passed a defined threshold. This functionality may be helpful
when one wants to be informed about the violation of the previously defined
conditions. To do so a knowledgebase that contains semantic information about
available resources and metrics is used. It is described more detailed in the next
subsection.

An important feature of the SemMon system is its capability to cooperate
with any existing low-level monitoring system that exposes its data to the ex-
ternal clients. The cooperation takes place through the commonly used adapter
structural design pattern [I3] and it is used for ’translation’ of all requests from
the internal SemMon format to the format appropriate for the underlying mon-
itoring system, e.g. J-OCM [10], OCM-G [9], etc.

Ontology Subsystem

b
Core Subsystem L

. / Ontalogy storage
el N 4 (Resource description,
. X e V4 Metrics description)
monispring information over ~ ", /
physical monitoring system.
control information . l I

- =

" Monitoring con computerpluster Malrics results databass

computers/nodes
with monitoring agents

Computers with moniforing GUI fool
(GUI Subsystem)

Fig. 3. The SemMon architecture overview

4.1 System Architecture

An overview of SemMon’s architecture is depicted in Fig[Bl The presented sys-
tem along with the monitored objects constitutes a kind of distributed system.
There can be multiple nodes with monitoring agents and multiple nodes with
GUL The heart of the system is also separated into different subsystems (and
components), each of them can be run on a separate machine to provide scal-
ability and reliability. Each subsystem encapsulates some specific functionality
and can be run independently. The main elements of the SemMon monitoring
system are as follows: Core and Ontology subsystems, Monitoring agents, and
Graphical User Interface.

122 W. Funika et al.

The key part of the system are Core and Ontology subsystems that pro-
vide primary system functionality like processing an ontology with Resources
and Metrics, or storing monitoring data. To support knowledge persistency, a
database is required. This functionality is implemented in an ontology subsys-
tem. Another part of this node is the support for a ’physical’ monitoring system.
This subsystem has to provide functionality for registering monitoring agents as
well as processing the monitoring data.

Monitoring agents are just simple sensors that expose resources to the Sem-
Mon system in a well-defined way. All of the agents have to be registered in the
core part of the SemMon. Afterwards the Core can ask about available resources
and capabilities that can be monitored. High-level monitoring data is available
to external clients through an interface exposed by the Core subsystem. An ex-
ample of such external client is GUI which can attach to SemMon using the
Remote Graphical Interface. Similarly, other clients handling high-level infor-
mation, like SLA parameters or their derivatives can use the interface exposed
for using SemMon functionalities.

All of the core system functionality should be accessible via GUI (e.g. browse
a monitored resource, run a metric) in a simple and user friendly way. It has
to be optimally designed for the advanced user as well as for the beginner.
It is achieved on the one hand by exposing the most often performed options
to the foreground and on the other hand by allowing users to provide detailed
configurations options to the available operations. GUI will provide functionality
for collecting some parts of the knowledge base data - like a metric rank. GUI is
also an environment for collaborative work, e.g. users could share metrics ranks
between their instances of GUI.

4.2 Knowledge Usage

SemMon is a semantic-based monitoring system which means that it has some in-
built semantic knowledge about metrics and monitored system resources, which
can be explicitly extended by the users. It enables to perform monitoring at
different levels, from detection of hardware errors to high-level analysis. In this
context, semantic knowledge can greatly contribute to a multi-layer and multi-
source monitoring process giving the end-user an easy and efficient tool for semi-
automatic data analysis and monitoring guidelines. One of the possible benefits
that the user may get from the SemMon is providing suggestions on performing
an additional measurement of a metric semantically-related to the one that is
currently running. By doing so the user may explore the actual problem (e.g.
bottleneck) of the monitored application faster. It is especially helpful when the
user does not have thorough knowledge about the application and the underlying
infrastructure used. Another important aspect of using the ontology knowledge
representation which should be mentioned is the ability of customization to
specific situations. It is easier to provide support for new requirements (and
therefore to add some code to the core about the new classes of resources) than
to rewrite the whole business logic of the monitoring system which is, in most
cases, oriented to some particular type of applications.

Monitoring of SLA Parameters 123

5 SLA Support for VO

SLA contracts play a very important role in case of the FiVO system. During
the negotiation process, sides are agreeing what resources and on what terms
are to be available in the organization. The most important part of SLA from
the monitoring point of view is the one that holds information about the QoS
aspects. The ontological form of an SLA contract may be used to integrate the
systems that are involved in the management of Virtual Organizations. On the
FiVO system side, the knowledge about an agreement can be used to inform
the monitoring system about the monitored resources and metrics which should
be measured. Furthermore it can be used to define the conditions upon which
FiVO system should send a notification about a contract violation. Thus, the
FiVO system can be used as a guard that checks if the Service Level Agree-
ment is fulfilled properly. In addition, it can notify the management tools or the
system administrator about the contract violation. By applying the described
functionality the Virtual Organizations can become more reliable and efficient
in achieving their goals. By using a high-level monitoring system to monitor
particular physical organizations we reach full independence from low-level spe-
cific monitoring systems and improve the scalability and robustness of the FiVO
system. The scalability improvement results from dispatching the process of
mapping composite SLA parameters to low-level resource indicators from the
core of the FiVO system to the SemMon system engine.

6 Conclusions

In this paper we have presented a solution to the issue of monitoring and enforc-
ing agreements between partners in Virtual Organizations. The FiVO framework
for management of Virtual Organizations was presented along with its integra-
tion with the SemMon monitoring system. The proposed solution can improve
the adoption of modern Grid or SOA based infrastructures in various environ-
ments, especially, where the main problem is the lack of sufficient know-how
required to deploy and manage complex middleware. Additionally, the automa-
tion of the management process allows to cut down on the costs of monitoring
of the cooperation of organizations based e.g. on SOA frameworks and thus in-
crease the level of collaboration between organizations based solely on the IT
infrastructures.

Acknowledgments. This research is partly funded by the POIG.01.03.01-00-
008/08 Project ”"IT-SOA” and the AGH grant 11.11.120.777.

References

1. Kryza, B., Dutka, L., Slota, R., Kitowski, J.: Security Focused Dynamic Virtual
Organizations in the Grid based on Contracts. In: Cunningham, P., Cunningham,
M. (eds.) Collaboration and the Knowledge Economy, Issues, Applications, Case
Studies, part II, vol. 5, pp. 1153-1160. IOS Press, Amsterdam (2008)

124

2.

10.

11.

12.

13.

W. Funika et al.

Debusmann, M., Keller, A.: SLA-Driven Management of Distributed Systems Using
the Common Information Model. Integrated Network Management 246, 563-576
(2003)

Litke, A., Konstanteli, K., Andronikou, V., Chatzis, S., Varvarigou, T.: Manag-
ing service level agreement contracts in OGSA-based Grids. Future Generation
Computer Systems 24(4), 245-258 (2008)

. Bouras, C., Campanella, M., Przybylski, M., Sevasti, A.: QoS and SLA aspects

across multiple management domains: the SEQUIN approach. Future Generation
Computer Systems 19(2), 313-326 (2003)

Barbosa, A.C., Sauve, J., Cirne, W., Carelli, M.: Evaluating architectures for in-
dependently auditing service level agreements. Future Generation Computer Sys-
tems 22(7), 721-731 (2006)

PushToTest TestMaker project site: http://wuw.pushtotest.com/products
Globus Toolkit Information Services: Monitoring & Discovery System project page,
http://www.globus.org/toolkit/mds/

WS-Diamond (Web-Service Diagnosability, Monitoring and Diagnosis) project
page, http://wsdiamond.di.unito.it/

Balis, B., et al.: Grid Environment for On-line Application Monitoring and Perfor-
mance Analysis. Scientific Pogrammning 12(4), 239-251 (2004)

Funika, W., Koch, M., Dziok, D., Smetek, M., Wismiiller, R.: Performance Visu-
alization of Web Services Using J-OCM and SCIRun/TAU. In: Yang, L.T., Rana,
O.F., Di Martino, B., Dongarra, J. (eds.) HPCC 2005. LNCS, vol. 3726, pp. 666—
671. Springer, Heidelberg (2005)

Funika, W., Godowski, P., Pegiel, P.: A semantic-oriented platform for performance
monitoring of distributed Java applications. In: Bubak, M., van Albada, G.D.,
Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part III. LNCS, vol. 5103, pp. 233—
242. Springer, Heidelberg (2008)

Zuzek, M., Talik, M., Swierczynski, T., Wisniewski, C., Kryza, B., Dutka, L., Ki-
towski, J.: Formal Model for Contract Negotiation in Knowledge-Based Virtual
Organizations. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.)
ICCS 2008, Part ITI. LNCS, vol. 5103, pp. 409-418. Springer, Heidelberg (2008)
Johnson, R., Gamma, E., Helm, R., Vlissides, J.: Design Patterns. In: Elements of
Reusable Object-Oriented Software Addison-Wesley, Reading (1995)

http://www.pushtotest.com/products
http://www.globus.org/toolkit/mds/
http://wsdiamond.di.unito.it/

A Role-Based Approach to Self-healing in
Autonomous Monitoring Systems

Wlodzimierz Funika and Piotr Pegiel

Institute of Computer Science, AGH,
ul. Mickiewicza 30, 30-059 Krakéw, Poland
Ph.: (+48 12) 617 44 66; Fax:(4+48 12) 633 80 54
funika@agh.edu.pl, barca@up.pl

Abstract. The main intention of this paper is to introduce the propo-
sition of a new role-based approach to self-healing monitoring. This is
preceded by an overview of existing approaches to the monitoring of dis-
tributed systems using self-healing features. Starting with a discussion
of autonomous monitoring systems, we will come to self-healing systems.
These systems should be able to automatically resolve the problems that
occur in a system under monitoring. The paper provides insight into var-
ious aspects of self-healing monitoring systems at the software and hard-
ware level. A detailed description of a new agent-based system, AgeMon,
is covered later on. The system is based on the roles played by different
types of agents. The self-healing features can be achieved by a form of co-
operation of agents, e.g. monitoring agents, rule agents, database agents.
The paper discusses the roles and gives an implementation background.

Keywords: Self-healing, monitoring, adaptive, rule-based systems,
failure detection.

1 Introduction

Nowadays systems are becoming very complex. They are, in fact, very frequently
built with many components which are working on different machines, in a dis-
tributed environment. It is impossible to monitor such systems manually, there
are too many different indicators to check (resource states, network traffic, oper-
ated system, etc.). This was the main reason why distributed monitoring systems
were developed. They help the user in managing a system — usually the user is
enabled to observe all interesting data in the monitoring system presentation
layer. In such systems the user is responsible for interpreting encountered prob-
lems and perform relevant actions.

The next stage in the evolution of monitoring systems is connected with the
concept of autonomous monitoring systems. Such systems do not need user in-
teraction to make a proper decision what should be monitored in a current
situation. Decision making is based on the knowledge gathered from the pre-
ceding monitoring results. The system could also guide the user what should be
done next, i.e. in the context of monitoring.

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 125 010.
© Springer-Verlag Berlin Heidelberg 2010

126 W. Funika and P. Pegiel

To fulfill these requirements for the guidance to the user, the monitoring sys-
tems became more “intelligent”. From this point it was a straight way for coping
with arising failures of different types — simply to enable self-healing, i.e. to pro-
vide a capability that a decision made by the monitoring system should force
the system under monitoring to behave more stable, reliable and predictable.

There can be more than a single aspect of self-healing: the monitoring system
could “heal” the system under monitoring or it could be “healed” by itself. We
can also distinguish between the levels of healing: the system can perform self-
healing in the physical (monitored hardware) layer or the logical (monitored
application/system) one. A brief of the monitoring systems evolution is depicted
in Fig. [

:> Monitoring
System

::> Monitoring
System
<=

Alotof
monitoring data is
presented to
the users

.5. Monitoring sysfem .~'
Monitoring system resolves the pro-
presents ony ’ G‘ blem automatically ’ ﬁ‘
suspected data no user action is A

needed

Past Today ‘ ‘ Today Future ‘ ‘ Today Future ‘

Fig. 1. Evolution of the monitoring systems

In the paper we aim to present an overview of monitoring systems and tech-
niques used in them for self-healing.

The rest of this paper is organised as follows: Section 2 discusses details of self-
healing monitoring systems at different levels. A case study of the existing self-
healing systems, technologies and approaches is provided in Section 3. The next
section introduces requirements for the self-healing monitoring system together
with the idea of a new approach to self-healing and a description of a new system
— AgeMon, followed by Summary.

2 Self-healing Monitoring Systems — Background

Two main aspects of self-healing monitoring systems can be distinguished be-
tween when self-healing systems are concerned. The first aspect is related to the
physical layer of the system (like computers, resources, and network), while the
second aspect regards the logical layer (applications, operating system). Moni-
toring the physical layer is usually more intuitive. We can imagine a situation
when an operating system can make a decision to automatically offline a faulty
resource. This functionality could even be implemented on the system level —
like in the Solaris 10 [IJ.

In the second aspect of self-healing, a needed functionality can be injected
into the monitored system. In this situation, technologies like Aspect Oriented

A Role-Based Approach to Self-healing in Autonomous Monitoring Systems 127

Programming can be used [2/3]. Using AOP techniques we can cross-cut the
business logic of the application to inspect its status. When an incorrect state
is detected the monitoring system can perform a recovery action. There are also
efforts to extend existing monitoring systems to enable self-healing - e.g. the
Nagios system can be used to automate recovery after service failures [4].

We can also consider self-healing from a different point of view: In case of
the first approach mentioned above — the self-healing of the monitored system,
the monitoring system should automatically detect failures in the system under
monitoring and heal it. The second approach is quite interesting as well — the
monitoring system can be able to perform a self-healing action “on itself”— we
can imagine that the system is composed of many autonomous agents which can
make a decision to disable an unstable agent.

A key point is to answer such questions as: How can we maximise availability,
reliability, safety, and maintainability for the monitoring system? How can the
monitoring system detect failures in its infrastructure, prevent from their affect,
and self-heal? Such a system should be distributed, and use a flexible commu-
nication protocol with failure detection. The decentralisation of the monitoring
system can be realised within an agent-based network. Some agents can be spe-
cialised in one of the following categories: monitoring agents, agents responsible
for storing monitoring data to the database, knowledge based failure detection
agents, decision agents, Ul communication agents. Due to specialisation, one of
the election protocols should be considered. Some agents can be replicated like
those responsible for storing the data to the database. In case of problems with
one agent the system should detect a failure and perform an election procedure
to find a new persistent agent.

3 Overview of Existing Self-healing Monitoring
Approaches

In this section we aim to present the existing self-healing monitoring systems and
technologies that can be used to enable self-healing in systems under monitoring.
We will look at Aspect Oriented Programming and the existing solutions that
are based on this technology. Then we will discuss Solaris 10 — it is an example
where self-healing is done on the system level. At the end we will review a real-life
example of self-healing system.

3.1 Application Layer — Aspect Oriented Programming

Aspect Oriented Programming is a programming paradigm which enables sep-
aration of concerns (which increases the modularity of the program). It allows
also cross—cutting - for the place of the program where concerns “cut across”
multiple abstractions in the program. Procedures, functions, modules, classes —
these are the abstractions in the program which are used to group the concerns.
The encapsulation of concept is a good way of programming - but sometimes
it is required that some of the functionalities should “go across” the whole pro-
gram. This is the cross-cutting concern. Currently, the main usage of the AOP

128 W. Funika and P. Pegiel

techniques in the self-healing is to enable system recovery [3l6/8]. The decision
when a recovery should be performed is based on a user’s choice. Therefore these
systems cannot be treated as autonomous.

Glassbox. One of the most mature solutions for monitoring using Aspect Ori-
ented approach is the Glassbox Projectﬂ Glassbor is a Java based monitoring
tool with an extended troubleshooting module. It helps developers in resolving
common problems like failing connections or a slow-running query instantly. It
can be used with most of the Java Application Servers (like JBoss, WebSphere,
WebLogic, Tomcat). Since it contains predefined knowledge it can be used just
after download. The problems are described in a plain English — without any
logs or complicated messages.

From the practical point of view, Glassbox instrumentation could be done at
compile time or at class load time (so Glassbox does not require code recompi-
lation). Fig. 2 depicts the structure of the Glassbox [9].

\

\ Glassbox Java
Troubleshooter Application

[]
- Glassbox Java Virtual
] / Introspector Machine

} }

Fig. 2. Glassbox architecture

There are two main subsystems of the GlassBox: Glassbox Inspector and
Glassbox Troubleshooter. The Inspector is used to monitor the activity of an ap-
plication. Monitoring information is exposed via JMX interface so it can simply
be read from any Java JMX client like JConsole. On the other hand this infor-
mation is passed to the Troubleshooter. This module is responsible for making
analysis and diagnosing problems and reporting them them trough a specialized
client UI.

The Glassbox is a powerful tool which easily enables troubleshooting of run-
ning an application with guidance to the user what action should be taken. It
does not require changes to the application code. It can also be used as a in-
frastructure layer for bigger monitoring systems which extend the functionality
with autonomous decisions — the system will be able to automatically make a
decision without interactions with the user.

! Home page — http://www.glassbox.com/glassbox/Home . html

http://www.glassbox.com/glassbox/Home.html

A Role-Based Approach to Self-healing in Autonomous Monitoring Systems 129

AOP-Monitoring framework. While Glassbox is a good example of the As-
pect Oriented Monitoring — it is simple to use but very helpful, it is however not
an ideal tool — e.g. it is not possible to change the monitoring level at real time.
At the same time there are solutions that aim to resolve this problem, one of
them being A OP-Monitoring framework [2).

AOP-Monitoring framework is based on a simple architecture presented in
Fig.[3 a.

a) b)

Application /7\
Application Server Monitor [\ Monitor
Under Monitoring / Manager L > "‘ > | Manager
\

-~ Proxy

Fig. 3. AOP-Monitoring framework architecture: a) overview, b) sensor details

There are two main parts of the framework: Sensors and Monitor Manager.
Sensors are responsible for collecting data from the system - they are in fact
aspects injected into the code. Sensors can be defined on different monitoring
levels, e.g. when a method or constructor is called, before object initialisation,
before a field is read, etc. Data is purged to the Monitor Manager once a de-
fined threshold is achieved. In Fig. [3 b., there is a detailed presentation of the
sensor architecture. It is a composition of a real sensor (an entity defined using
Aspect] [10] and a Sensor Manager Proxy. The Sensor Manager Proxy is aimed
to communicate with the Monitor Manager.

The Monitor Manager is responsible for collecting all the data from all active
sensors and determine what policy should be applied. The Monitor Manager
allows failure prediction by using data mining or forecasting methods using the
collected sensor data. If the prediction methods need more data from the system
or low level monitoring, the Monitor Manager can activate new sensors and
deactivate others to obtain these data to accurately determine if there will occur
a failure or an error.

The AOP-Monitoring framework is a recent approach to the monitoring with
aspects. It is flexible and uses well known technologies like Aspect]J. Currently
there is no final version of this framework — it is under development, there is a
first version but without data mining or prediction methods.

4 Self-healing Monitoring System

In this section we present requirements for the self-healing monitoring system to-
gether with a case study of the problems that may occur during the prototyping.
At the end we are going to present our solution.

4.1 System Architecture

The monitoring of a distributed system is not a trivial task. The system com-
ponents are usually located on different nodes or machines and communicate

130 W. Funika and P. Pegiel

through network. The most common (and probably the most natural) way of
monitoring such systems is to use an agent-based approach [7]. In this case the
monitoring system usually consists of a set of agents and some other components
like database with monitoring results or a User Interface. The agents are used
to pull monitoring information from the monitored system nodes. In self-healing
approaches such agents pull the information to the Oracle [I7] which is used
for failure detection (described broader in the next subsection). As usually ad-
ditional components are running on separate machines. The problem with this
approach is the fact that a failure of one of these components leads to a failure
in the whole monitoring system (when a component with results is down the
system is not able to store any results). Therefore before enabling self-healing
in a monitored system the monitoring system should be able to heal its internal
problems.

4.2 AgeMon — Self-healing Monitoring System

To enable self-healing in the monitoring system, some additional work should
be done during the system design. Since the system is going to be based on the
agents(it is a reasonable approach in a distributed environment), and all of the
system components should work and behave as agents. This approach simplifies
the design and deployment of the monitoring system. Of course there should be
a kind of specialisation of the agents. In our approach we prefer to use term roles
that can be fulfilled by the agent. The following roles are designed:

— Regular monitoring role — this agent is used to collect the monitoring data
from the monitored system (it is working like a sensor). The data can be gath-
ered from various sources — directly from the application (e.g. by AOP), by
a specific monitoring system (like JMX), from the operating system (native
libraries, statistics files). This agent can also be used to enable self-healing
in the monitored system.

— GUI role — used to present the monitoring results to the user and allows
to manage the monitoring system. The user should be able to observe the
current state of the monitoring and monitored system, manage monitoring
(start, stop), see the results displayed on-line, compare different monitoring
results in one visualisation window.

— Database role — used to store the monitoring information in a persistent
database. The agent should also be able to serve the historical monitoring
information to other agents on demand.

— Rule role — the agent used to transform the monitoring results (e.g. by run-
ning metrics). Dependent on the results of the transformation the agent
should be able to decide on what action should be taken after the transfor-
mation (if any). There can be many different actions, e.g.: run a new metric,
send a predefined event to the monitoring system, send a predefined event to
the monitored system, send a notification to the user.

It is possible that an agent is able to work in more than one role. We can imagine
a situation when the agent that gathers the data, automatically pre-process them
and stores to the embedded database along with sending the results to GUI.

A Role-Based Approach to Self-healing in Autonomous Monitoring Systems 131

Database with
User Interface results
Monitoring System

A Connector Rule engine

Roles layer

Monitoring Layer

Monitoring Agent
Architecture

Messages
Stack

Agent Layer

Common

o
=
=
S

2
<]
c
S

=

Communication Layer Messages to othqrs

agents

Fig. 4. Stack-based monitoring agent

Due to the above concept — one agent should be able to work in different roles
— the architecture of the agent should be based on well defined interfaces that
split implementations into well defined layers. Fig] presents an agent designed
based on this approach.

The main requirements for each layer:

- Communication Layer — this layer is used for communication between agents.
To save network bandwidth it should allow messaging to more than a single
agent at the same time (e.g. when an IP network is considered it should allow
IP-multicast). It should support tunnelling for larger networks, and be as user-
friendly (zero-configuration) as possible. One of the most important requirements
for this layer is to provide automatic discovery of a new agent attached to the
network.

During the prototype implementation we tested multiple libraries and pro-
tocols that can be used as a base in this layer: SLP [1I] (OpenSLP, jSLP),
SSDP [12] (Microsoft UPnP SDK, UPNPLib) and JINI [I3]. We have decided
to use JGroupdi — it is a lightweight, reliable multicast communication toolkit
with discovering of new agents. Of course the implementation is hidden behind
the interfaces, therefore it should be easy to change the implementation.

- Agent layer — implements the agent abstraction. This layer is a helper layer
between the communication layer (where each agent can be distinguished by the
name only) and the monitoring layer. It is responsible for keeping the updated
agent group that belongs to one monitoring group. It also hides the implemen-
tation of remotely executed monitoring tasks.

- Monitoring layer — is responsible for processing monitoring messages passed be-
tween agents. The messages can be divided into two groups: regular monitoring
messages (with results of the monitoring) and control messages. Control mes-
sages contain information about actions made by user/system and inform about

2 http://www. jgroups.org/

132 W. Funika and P. Pegiel

the current state of the system (e.g. present a list of the running monitoring
instances, describe capabilities, start/stop monitoring sessions).

- Roles layer — this layer contains the implementation of each role. Due to the
layer separation, each role can reuse lower layers independently.

In addition, based on the above idea, some other functionalities should be pro-
vided to enable self-healing in the monitoring system. Since the communication
layer is responsible for automatic discovery of new agents and notification if an
agent fails (disconnects from the network) an election algorithm can be started
to find a new agent that can be used for the selected roles.

Let’s consider an example with 4 agents - 2 monitoring agents, 1 transforma-
tion agent, and 1 database agent. When the database agent fails other agents can
start an election to find the agent that can work as a database agent (store the
monitoring results) until the primary database agent is restarted. Distributed
cache is also a nice technology that can be used to enable self-healing. The mon-
itoring configuration (what is monitored by an agent) can be stored in such a
cache and used to restore the monitoring configuration when network failures
are detected. The rule agent can be used to enable self-healing of the monitor-
ing system. It can be used for detecting the failures in the monitored system
as well as in the monitoring system - e.g. we can define a rule that whenever
the database agent is down the system should notify the user with a problem
description.

4.3 Enabling Self-healing in the Monitored System

Enabling self-healing in the monitored system is not a simple task. It can be
considered with different granularity levels [I4J15].The most common solutions
are working with coarse-grained components. A common example is related to
load-balancing. A monitoring system based on the current load factor can make
a decision to run additional nodes that can handle more transactions per second.
More recent self-healing approaches operate at the system’s architectural level
by exploiting architecture reconfiguration strategies. The ability to dynamically
add redundant servers, add or remove components are some examples.
Enabling self-healing on the class or method level usually involves changing
the code of application. One of the example is the PANACEA framework. It is
based on the concept of the self-healing annotations used to decorate the objects
at the development time. Through these annotations the application developer
passes hints to run-time PANACEA healers, which may use them on-demand.
The second option is to use AOP (please refer to Section[B]). It does not require
code changes but it involves good knowledge of the system source code and it can
be mainly used for gathering the data without notifying the monitored system.
As mentioned above each solution has its pros and cons. Monitoring the
system parameters (CPU usage, disk usage, network bandwidth) can be done
without extending the application. On the application level the AOP can be
considered together with exposing additional monitoring information — e.g. with
the JMX technology beans can be used. For handling the healing feedbacks from

A Role-Based Approach to Self-healing in Autonomous Monitoring Systems 133

the monitoring system, event based communication can be used (in case of JMX,
it can be notifications).

4.4 Prototype - AgeMon

A prototype of a new self-healing system, called AgeMorE, using the above
concept is being developed. It is written in Java and as mentioned it uses JGroups
as a communication layer. We have currently implemented the regular monitoring
role and GUI role. The monitoring role is using JMX as a connector to the
monitored system. Each capability that can be monitored is dynamically read
using JMX and converted to the abstract internal description and presented to
the user in a Swing based GUIL. Owing to it, GUI is able to graphically manage
the group of the agents, define and run a new monitoring session and manage
the flow of the monitoring results (agent-to-agent connections).

Currently the database and rule role is under development. The database
role will be based on ’in-memory’ database (like Apache Derby). The rules and
actions can be based on Droold" notation or stored in the ontology [16].

4.5 Summary

In this paper we presented the existing technologies that can be used for enabling
self-healing which goes beyond pure monitoring. Two of them are based on the
Aspect Oriented Programming — by using this technology we can enable self-
healing for the systems on the software level. Moreover, it is possible to enable
self-healing for legacy applications as well. An example of hardware level self-
healing may be Solaris 10 OS.

The second part of the paper focused on the requirements for and our approach
to building a self-healing monitoring system. A brief description of the prototype
of such a system is presented. The prototype is a first stage for implementing the
self-healing monitoring system. We have introduced a concept of roles together
with the description of each role. The stack-based agent was presented.

At the moment in the AgeMon system, the regular monitoring role and the
GUI role is implemented, so there is also some work to be done in further research
— we need to implement other roles like the database role or rule engine to make
the system complete.

Acknowledgements. This research is partially supported by the POIG project
“PL-Grid” and the AGH grant 11.11.120.865.

References

1. Predictive Self-Healing in the Solaris 10 Operating System - A Technical Introduc-
tion (September 2004),
http://www.sun.com/bigadmin/content/selfheal/selfheal_overview.pdf

3 AgeMon stands for Agent-based Monitoring System.
% jboss.org/drools.

http://www.sun.com/bigadmin/content/selfheal/selfheal_overview.pdf

134

2.

10.
11.
12.

13.

14.

15.

16.

17.

W. Funika and P. Pegiel

Alonso, J., Torres, J., Silva, L.M., Griffith, R., Kaiser, G.: Towards Self-adaptable
monitoring framework for self-healing, CoreGRID TR-0150, July 3 (2008),
http://www.coregrid.net/mambo/images/
stories/-TechnicalReports/tr-0150.pdf

Griffith, R., Kaiser, G.: Adding self-healing capabilities to the common language
runtime. Technical report, Columbia University (2005)

. Using Nagios to monitor faults in a self-healing environment, by Mikko A.T. Pervila

(2007),
http://www.cs.helsinki.fi/u/niklande/opetus/SemK07/-paper/pervila.pdf
Amin, M.: Toward self-healing energy infrastructure systems. Computer Applica-
tions in Power 14(1), 20-28 (2001)

Sidiroglou, S., Laadan, O., Keromytis, A.D., Nieh, J.: Using Rescue Points to Nav-
igate Software Recovery (Short Paper). In: Proceedings of the IEEE Symposium
on Security and Privacy (May 2007)

The Intelligent Software Agents Lab — Home Page,
http://www.cs.cmu.edu/~softagents/intro.htm

Baresi, L., Guinea, S., Pasquale, L.: Self-healing BPEL Processes with Dynamo and
the JBoss Rule Engine. In: Int. Workshop on Engineering of Software Services for
Pervasive Environments: in Conjunction with the 6th ESEC/FSE Joint Meeting,
Dubrovnik, Croatia, pp. 11-20 (2007)

. Glassbox — How It Works, http://www.glassbox.com/glassbox/HowItWorks.html

AspectJ — Home page, http://www.eclipse.org/aspectj/

Guttman, E., Perkins, C., Veizades, J., Day, M.: RFC 2608 Service Location Pro-
tocol, Version 2 (June 1999), http://tools.ietf.org/html/rfc2608

Goland, Y.Y., Cai, T., Leach, P., Gu, Y., Albright, S.: Simple Service Discovery
Protocol/1.0. (October 28, 1999),
http://coherence.beebits.net/chrome/site/draft-cai-ssdp-v1-03.txt

Jini Discovery and Join Specification v3. September 4 (2006),
http://www.jini.org/wiki/Jini_Discovery_and_Join_Specification
PANACEA - Towards a Self-healing Development Framework. In: 10th IFIP/IEEE
International Symposium on Integrated Network Management, IM 2007, May 21,
pp. 169-178 (2007), ISBN: 1-4244-0798-2

HP Open View Self-Healing Services: Overview and Technical Introduction, HP
Labs (2006),
http://managementsoftware.hp.com/services/selfhealing_whitepaper.pdf
Funika, W., Godowski, P., Pegiel, P.. A Semantic-Oriented Platform for Perfor-
mance Monitoring of Distributed Java Applications. In: Bubak, M., van Albada,
G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part III. LNCS, vol. 5103, pp.
233-242. Springer, Heidelberg (2008)

Wuttke, J.: An approach to detecting failures automatically. In: Fourth Interna-
tional Workshop on Software Quality Assurance: in Conjunction With the 6th
ESEC/FSE Joint Meeting, Dubrovnik, Croatia, pp. 17-24 (2007)

http://www.coregrid.net/mambo/images/stories/-TechnicalReports/tr-0150.pdf
http://www.coregrid.net/mambo/images/stories/-TechnicalReports/tr-0150.pdf
http://www.cs.helsinki.fi/u/niklande/opetus/SemK07/-paper/pervila.pdf
http://www.cs.cmu.edu/~softagents/intro.htm
http://www.glassbox.com/glassbox/HowItWorks.html
http://www.eclipse.org/aspectj/
http://tools.ietf.org/html/rfc2608
http://coherence.beebits.net/chrome/site/draft-cai-ssdp-v1-03.txt
http://www.jini.org/wiki/Jini_Discovery_and_Join_Specification
http://managementsoftware.hp.com/services/selfhealing_whitepaper.pdf

Parallel Performance Evaluation of MIC(0)
Preconditioning Algorithm for Voxel uFE
Simulation

Ivan Lirkov!, Yavor Vutov!, Marcin Paprzycki?, and Maria Ganzha?

! Institute for Parallel Processing, Bulgarian Academy of Sciences,
Acad. G. Bonchev, Bl. 25A, 1113 Sofia, Bulgaria
ivan@parallel.bas.bg, yavor@parallel.bas.bg

http://parallel.bas.bg/~ivan/, http://parallel.bas.bg/~yavor/
2 Systems Research Institute, Polish Academy of Sciences
ul. Newelska 6, 01-447 Warsaw, Poland
paprzyck@ibspan.waw.pl, maria.ganzha@ibspan.waw.pl
http://www.ibspan.waw.pl/~paprzyck/, http://www.ganzha.euh-e.edu.pl

Abstract. Numerical homogenization is used for up-scaling of a linear
elasticity tensor of strongly heterogeneous micro-structures. Utilized ap-
proach assumes presence of a periodic micro-structure and thus periodic
boundary conditions. Rotated trilinear Rannacher-Turek finite elements
are used for the discretization, while a parallel PCG method is used to
solve arising large-scale systems with sparse, symmetric, positive semidef-
inite matrices. Applied preconditioner is based on modified incomplete
Cholesky factorization MIC(0).

The test problem represents a trabecular bone tissue, and takes
into account only the elastic response of the solid phase. The voxel
micro-structure of the bone is extracted from a high resolution com-
puter tomography image. Numerical tests performed on parallel com-
puters demonstrate the efficiency of the developed algorithm.

Keywords: micro finite element simulation, modeling of human bone
tissue, parallel algorithms, PCG method, preconditioner, MIC(0) factor-
ization, parallel performance.

1 Introduction

Many, seemingly different materials, such as human bone tissue, geocompos-
ites, filtering media in industrial applications have very complex hierarchical
organization spanning multiple length scales and involve complex multi-physical
processes at some of these scales. However, their overall mechanical response and
ability to conduct fluids can be described using multilevel techniques that are
built upon basic conservation principles at the micro or nano levels.

In our work, we consider modeling of human bone tissue which is based on
the recently developed morphology of bones. In general, model used here has a
multilevel structure according to the specific material dimensions (and as such

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 1351144, 2010.
© Springer-Verlag Berlin Heidelberg 2010

http://parallel.bas.bg/~ivan/
http://parallel.bas.bg/~yavor/
http://www.ibspan.waw.pl/~paprzyck/
http://www.ganzha.euh-e.edu.pl

136 1. Lirkov et al.

generalizes to other problems mentioned above). At a length scale of about sev-
eral hundred nanometers, oriented, highly organized collagen molecules, the mi-
nority of the hydroxy-apatite crystals (present in bone tissues) and water, build
up (mineralized) fibrils. At the same length scale, but in the extra-fibrillar space,
the majority of (largely disordered) hydroxy-apatite crystals build up a mineral
foam (polycrystalline), with water filling the inter-crystalline (nano)space. At
a length scale of several micrometers, the fibrils and the extra-fibrillar space
builds up solid bone matrix or ultrastructure. Finally, at a length scale of sev-
eral millimeters, macroscopic bone material (cortical or trabecular bone) com-
prises solid bone matrix and the micro-porous space. This four-level model has
been validated by statistically and physically independent experiments, see e.g.
[IIUT3JT5]. Having in mind that the aforementioned dosages (concentrations, vol-
ume fractions) are dependent on complex biochemical control cycles (defining
the metabolism of the organism), the purely mechanical theory can be linked to
biology, biochemistry, and, on the applied side, to clinical practice.

Many problems in bone modeling result in need to solve large- and very large-
scale linear systems. This, in turn, requires application of parallel computers.
Furthermore, even though recent advances in direct solvers for large-scale sparse
linear systems has to be acknowledged (see, [7I17], for an interesting comparison),
the method of choice for the problem at hand has to be iterative.

In this context, this study concerns development and tuning of solution meth-
ods, algorithms, and software tools for micro finite element (uFE) simulation
of human bones (e.g. [1I2]). Furthermore, the isotropic linear elasticity model
considered here is a brick in the development of a generalized toolkit for uFE
simulation of the bone micro-structure.

A boundary value problem can be discretized in various ways. Among the
most popular are: the finite volume method, the Galerkin finite element method
(FEM), and the mixed FEM. Many engineering problems need very accurate
velocity (flux) determinations in the presence of heterogeneities and large jumps
in the coefficient. This can be achieved through the mixed FEM. However, this
technique usually leads to an algebraic saddle point problem that is more diffi-
cult and more expensive to solve. An important discovery of Arnold and Brezzi
[4] is that the Schur system for the Lagrange multipliers can be obtained also
as a discretization by a Galerkin method using nonconforming elements. The
application of rotated trilinear hexahedral FEs is studied in this paper.

The resulting linear system is large, with a sparse, symmetric and positive
definite matrix. This implies use of preconditioned conjugate gradient (PCG)
solvers [5], while choice of preconditioning is crucial for the PCG performance.
It is also known that the PCG method converges for semidefinite matrices in the
orthogonal to the kernel subspace.

The elasticity stiffness matrix has a coupled block structure corresponding to
separable displacement ordering of the unknowns. Until now, the displacement
decomposition (see, [6/10]) remains one of the most robust approaches for precon-
ditioning of such matrices. Here, one of the most popular and the most successful
class of preconditioners is the class of incomplete LU (ILU) factorizations (see,

Parallel Performance Evaluation of MIC(0) Preconditioning Algorithm 137

e.g. [5I12]). However, one potential problem with the ILU preconditioners is that
they exhibit a limited degree of parallelism. To alleviate this problem we have
developed a preconditioning algorithm based on a parallel MIC(0) (Modified
Incomplete Cholesky) elasticity solver [20]. Suitable modification of the MIC(0)
algorithm allows efficient parallelization of the preconditioning.

2 Homogenization Technique

Let £2 be a hexagonal domain representing our reference volume element (RVE)
and u = (u1, ue,us) be the displacements vector in (2. Here, components of the
small strain tensor are:

1 <8ui(x) N 8Uj(X)> (1)

We assume that Hooke’s law holds:

g11 C1111 €1122 €1133 €1123 €1113 C1112 €11
022 C2211 €2222 €2233 €2223 €2213 €2212 €22
033 | _ | €3311 €3322 €3333 €3323 €3313 €3312 €33) (2)
023 C2311 €2322 €2333 C2323 C2313 C2312 2¢e03
013 C1311 C1322 €1333 C1323 C1313 C1312 2e13
g12 C1211 C1222 €1233 C1223 C1213 C1212 2e12

Here, tensor c is called the stiffness tensor, while o is the stress tensor.

The symmetric 6 x 6 matrix C is called the stiffness matrix. For an isotropic
material C' has only two independent degrees of freedom. For materials contain-
ing three orthogonal planes of symmetry, matrix C' has nine independent degrees
of freedom: three Young’s moduli Fy, Fs, E3, three Poisson’s ratios vy9, 93, V31
and three shear moduli p12, po3, t31-

r 1 — 19332 V12 + 31023 V31 + V21032 7
By E, E,
vig + 113132 1 —v31113 V32 + U312
Ey By By
V13 + V123 Vo3 + Vi3le1 1 — vyaveg
C == 5 E3 E3 E3) (3)
H23
H31
H12
L 5

where

0 =1 — viol91 — Vi3V31 — Vgl — 2v12123V31,

V12 V21 Va3 V32 V31 Vi3

E, By’ E, Es’ E;s By

138 1. Lirkov et al.

Our goal was to obtain homogenized material properties of the trabecular bone
tissue. In other words, to find the stiffness tensor of a homogeneous material, with
the same macro-level properties as our RVE. In the proposed approach, we follow
the numerical up-scaling method from [I4] (see also [9]). The homogenization
scheme requires finding functions &€ = (ERLERL €M) K, 1 = 1,2, 3, satisfying the
following problem in a week formulation:

aé‘kl 9 ;
/Q (Ciqu() 8%) 62 df? = / Ciji (T df? (4)

for an arbitrary 2-periodic variational function ¢ € H'(§2). After computing
the characteristic displacements £€*!, from) we can compute the homogenized
elasticity tensor ¢ using the following formula:

8551 df?
zgkl |()\ Cijht (T) — Cijpq (@)awq . (5)

Due to symmetry of the stiffness tensor ¢, we have the relation £€¥ = £'* and it is

enough to solve only six problems (@) to obtain the homogenized stiffness tensor.

Rotated trilinear (Rannacher-Turek) finite elements [I8] are used for the nu-
merical solution of (). This choice is motivated by the additional stability of the
nonconforming finite element discretization in the case of strongly heterogeneous
materials [4]. Construction of a robust non-conforming finite element method is
generally based on application of mixed formulation leading to a saddle-point
system. By the choice of non continuous finite elements for the dual (pressure)
variable, it can be eliminated at the (macro)element level. As a result we obtain
a symmetric positive (semi-)definite finite element system in primal (displace-
ments) variables. We utilize this approach, which is referred as the reduced and
selective integration (RSI).

3 Parallel Displacement Decomposition MIC(0)
Preconditioning

A preconditioning algorithm was developed using a parallel MIC(0) elasticity
solver [20], based on a parallel MIC(0) solver for the scalar elliptic problem [3].
The preconditioner uses the isotropic variant of the displacement decomposition
(DD) [6/10]. We write the DD auxiliary matrix in the form

A
Mpp = A (6)
A

where A is the stiffness matrix corresponding to the bilinear form

Ou v
a(u, o) = / (Z o, 8x1> (7)

Parallel Performance Evaluation of MIC(0) Preconditioning Algorithm 139

and u and v are {2-periodic functions. Such approach is motivated by the second
Korn’s inequality, which holds for the RSI finite element discretization under
consideration. This means that the estimate for the relative condition number
of the preconditioned system

5 (MphK) =0 ((1-20)7")

holds uniformly with respect to the mesh size parameter, while K is the stiffness
matrix. Our preconditioner is obtained by the MIC(0) factorization of blocks

in (@).

Remark 1. To satisfy conditions for the stable MIC(0) factorization in the case
of a semi-definite matrix, we are using the perturbed version of the MIC(0)
algorithm, where the incomplete factorization is applied to the matrix A= A+D.
The diagonal perturbation D = D(f) = dmg(d1, o dN) is defined as follows:

g = Jeau it ai = 2w

T 51/2aii if a;; < 2w;
where 0 < ¢ < 1is a properly chosen parameter, and w; =3, , —a;.
The idea of the proposed parallel algorithm is to apply the MIC(0) factoriza-
tion on an auxiliary matrix B, which approximates A. This matrix B has a
special block structure, which facilitates implementation of a scalable parallel
solver. Following the standard FEM assembling procedure we write A in the
form A =) eCw, RZAQRE, where A, is the element stiffness matrix, while R,
stands for the restriction mapping of the global vector of unknowns to the lo-
cal one corresponding to the current element e. Let us consider the following
approximation B, of A.:

a11 @12 A13 A14 A15 Q16 bi1 a12 a13 a4 a1s aie
a21 G22 A23 A24 25 426 a21 bag @23 azy aos aze
A, = a31 a3z a33 a34 a35 (36 B, — asrazz b3z 0 0 O
(41 Q42 Q43 Q44 Q45 046 ag1ag2 0 by O O
as1 as2 a53 As4 A55 56 astas2 0 0 bss O
ag1 62 A3 A64 A65 66 agr agz2 0 0 0 bgg

Local numbering applied here follows the pairs of the opposite nodes of the
reference element. Here, diagonal entries of B, are modified to hold the row-sum
criteria (for more details see [3]). Assembling the locally defined matrices B. we
obtain the global matrix B =3 . RIB.R.. The condition number estimate
k(B~tA) < 3 holds uniformly with respect to the mesh parameter and to possible
coefficient jumps (for the related analysis see discussion presented in [3]). After
this modification we obtain matrix B with its diagonal blocks (corresponding to
horizontal cross sections) being diagonal matrices. The solution of linear systems
with the preconditioner can be performed in parallel. It is important to note that
the use of periodic boundary conditions does not change diagonal blocks of the

140 1. Lirkov et al.

Fig. 1. Structure of the solid phase: (a) 32 x 32 x 32 voxels, (b) 64 x 64 x 64 voxels,
(c) 128 x 128 x 128 voxels

stiffness matrix A, and thus the same parallel algorithm can be applied also here.
The obtained preconditioner has the form.

Mprrc0)(B)
Mppumrc) = Marrc(o)(B)
Marrc(o)(B)

4 Experimental Results

Our test specimen is part of a trabecular bone tissue obtained from a high reso-
lution computer tomography [8]. The trabecular bone tissue has a strongly het-
erogeneous micro-structure composed of solid and fluid phases and thus matches
very well with the proposed approach. To obtain a periodic RVE the bone tissue
specimen is mirrored three times, see Fig. [l The voxel size is 37 pm.

In this paper we focus on the parallel performance of the proposed numerical
up-scaling technique. Experiments to study the homogenized properties of the
RVE with dimensions n X n X n voxels were performed, where n = 32,64, 128.
The Young moduli £* = 14.7 GPa for the solid phase, and Ef = 1.323 GPa for
the fluid phase were used. The same Poisson ratio v* = vf = 0.325 was used for
both phases. The iteration stopping criterion was |[v7||3r—1/|[r°]|a7-1 < 1073,
where r/ stands for the residual at the j-th iteration step of the preconditioned
conjugate gradient method.

To solve the above described problems, a portable parallel FEM code was de-
signed and implemented in C++4, while the parallelization has been facilitated
using the MPI library [I9)21]. The parallel code has been tested on cluster com-
puter system located in the Oklahoma Supercomputing Center (OSCER) and
the IBM Blue Gene/P machine at the Bulgarian Supercomputing Center. In
our experiments, times have been collected using the MPI provided timer and

Parallel Performance Evaluation of MIC(0) Preconditioning Algorithm 141

Table 1. Experimental results on Sooner

n Problem size
32 2 359 296

p Time Speed-up Efficiency
1 631.05

2 355.73 1.77 0.887
4 243.61 2.59 0.648
8 217.92 290 0.362
6 133.24 4.74 0.296
2
1
2
4
8
6

—_

3 87.86 7.18 0.224
6317.35

3362.10 1.88 0.939

2270.16 2.78 0.696

1921.95 3.29 0411

16 1154.40 5.47 0.342

32 774.10 8.16 0.255

64 588.81 10.73 0.168
128 150 994 944 1 82468.90

2 44902.69 1.84 0918

4 28065.57 2.94 0.735

8 23621.77 3.49 0.436

16 12146.39 6.79 0.424

32 7212.52 11.43 0.357

64 4881.75 16.89 0.264

128 3761.78 21.92 0.171

64 18 874 368

we report the best results from multiple runs. We report the elapsed time 7},
in seconds on p processors, the parallel speed-up S, = T3 /T, and the parallel
efficiency E, = S,/p. The obtained up-scaled properties can be found in [16].

Table [[] summarizes results collected on Sooner. It is a Dell Pentium4 Xeon
E5405 (“Harpertown”) quad core Linux cluster located in the Oklahoma Super-
computing Center (see http://www.oscer.ou.edu/resources.php). It has 486
Dell PowerEdge 1950 III nodes and two quad core processors per node. Each
processor runs at 2 GHz. Processors within each node share 16 GB of memory,
while nodes are interconnected with a high-speed InfiniBand network. We have
used Intel C++ compiler and compiled the code with the following options: “-O3
-march=core2 -mtune=core2”.

As expected, the parallel efficiency improves with the size of the discrete
problems. The efficiency on 16 processors increases from 30% for the smallest
problems to 42% for the largest problems in this set of experiments. Also, the
execution times decrease with increasing number of processors which shows that
the communications in our parallel algorithm are mainly local.

Table 2 shows execution times on IBM Blue Gene/P machine at the Bulgarian
Supercomputing Center (see http://www.scc.acad.bg/). It consists of 2048
compute nodes with quad core PowerPC 450 processors (running at 850 MHz).
Each node has 2 GB of RAM. For the point-to-point communications a 3.4 Gb
3D mesh network is used. Reduction operations are performed on a 6.8 Gb tree

http://www.oscer.ou.edu/resources.php
http://www.scc.acad.bg/

142 1. Lirkov et al.

Table 2. Experimental results on IBM Blue Gene/P

n Problem size Time Speed-up Efficiency
32 2359 296 3442.29
1782.88 1.93 0.965

954.90 3.61 0.901
532.29 6.47 0.808
1 322.62 10.67 0.667
32 205.40 16.76 0.524
64 18 874 368 1 34166.01
2 17358.17 1.97 0.984
4 8975.65 3.81 0.952
8 4763.87 7.17 0.896
16 2633.40 12.97 0.811
32 1589.88 2149 0.672
64 1003.19 34.06 0.532
128 150 994 944 8 55413.21

S 00 > N =T

16 29132.86 0.951
32 15967.65 0.868
64 9773.76 0.709
128 6131.38 0.565

network. We have used IBM XL C++ compiler and compiled the code with the
following options: “-O5 -gstrict -qarch=450d -qtune=450".

The memory available on a single node of Blue Gene/P is not sufficient to run
experiments for the largest problem and we report execution times starting from
eight processors located within different nodes. Therefore, for the largest prob-
lem, we report parallel efficiency related to results collected on eight processors.
Execution times on Blue Gene/P are substantially larger than that on Sooner,

Execution time

time

Blue Gene/P n=128 =-=Q--
Sooner n=128

10 | Blue Gene/P n=64 --[}-
Sooner n=64

Blue Gene/P n=32 ====

Sooner n=32 +)))))

2 4 8 16 32 64 128
number of processors

Fig. 2. Execution times for the test problems

Parallel Performance Evaluation of MIC(0) Preconditioning Algorithm 143

but parallel efficiency obtained on the supercomputer is better. For instance,
the execution on 64 processors on Sooner is only twice faster than on the Blue
Gene/P, in comparison with five times faster performance on single processor.

To summarize, in Fig. 2l computing times on both parallel systems are shown.
The somehow slower performance on Sooner using 8 processors is clearly visible.
It can be stipulated that this effect is a result of limitations of memory sub-
systems and their hierarchical organization. One of them might be the limited
bandwidth of the main memory bus. This causes processors to “starve” for data,
thus, decreasing the overall performance. Note that L2 cache memory is shared
among each pair of cores within the processors of Sooner. This boosts perfor-
mance of programs utilizing only a single core within such pair. Conversely, this
leads to somewhat decreased performance when all cores are used.

5 Conclusions and Future Work

We have studied the parallel performance of the recently developed numerical
homogenization technique utilizing parallel MIC(0) factorization [I6]. The per-
formance was evaluated on two different parallel architectures. Satisfying parallel
efficiency is obtained on the IBM Blue Gene/P. The efficiency on Sooner quickly
deteriorates with the increase of the number of the processors. Despite of the
worse efficiency, the faster CPUs on Sooner lead to shorter runtime, on the same
number of processors. The network latency is crucial for the parallel performance
of the algorithm. To hide some of the network latency, the computations were
overlapped with the communications wherever possible. We plan to investigate
the possibility to hide further the latency, solving simultaneously more than one
of the six independent problems ().

Acknowledgments

Computer time grants from the Oklahoma Supercomputing Center (OSCER)
and the Bulgarian Supercomputing Center (BGSC) are kindly acknowledged.
This research was partially supported by grant DO02-147/2008 from the Bul-
garian NSF. Work presented here is a part of the Poland-Bulgaria collaborative
grant “Parallel and distributed computing practices”.

References

1. Arbenz, P., Flaig, C.: On smoothing surfaces in voxel based finite element analysis
of trabecular bone. In: Lirkov, I., Margenov, S., Wasniewski, J. (eds.) LSSC 2007.
LNCS, vol. 4818, pp. 69-77. Springer, Heidelberg (2008)

2. Arbenz, P., Van Lenthe, G.H., Mennel, U., Muller, R., Sala, M.: A scalable multi-
level preconditioner for matrix-free p-finite element analysis of human bone struc-
tures. Internat. J. Numer. Methods Engrg. 73(7), 927-947 (2008)

3. Arbenz, P., Margenov, S., Vutov, Y.: Parallel MIC(0) preconditioning of 3D el-
liptic problems discretized by Rannacher-Turek finite elements. Computers and
Mathematics with Applications 55(10), 2197-2211 (2008)

144

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

1. Lirkov et al.

Arnold, D.N., Brezzi, F.: Mixed and nonconforming finite element methods: Im-
plementation, postprocessing and error estimates. RAIRO, Model. Math. Anal.
Numer. 19, 7-32 (1985)

. Axelsson, O.: Iterative solution methods. Cambridge Univ. Press, Cambridge

(1994)

. Axelsson, O., Gustafsson, I.: Iterative methods for the solution of the Navier equa-

tions of elasticity. Comp. Meth. Appl. Mech. Eng. 15, 241-258 (1978)

. Béngtsson, E., Lund, B.: A comparison between two solution techniques to solve

the equations of glacially induced deformation of an elastic earth. Internat. J.
Numer. Methods Engrg. 75, 479-502 (2008)

. Beller, G., Burkhart, M., Felsenberg, D., Gowin, W., Hege, H.-C., Koller, B., Pro-

haska, S., Saparin, P.I., Thomsen, J.S.: Vertebral body data set esa29-99-13,
http://bone3d.zib.de/data/2005/ESA29-99-13/

. Bensoussan, A., Lions, J.L., Papanicolaou, G.: Asymptotic analysis for periodic

structures. Elsevier, Amsterdam (1978)

Blaheta, R.: Displacement decomposition—incomplete factorization preconditioning
techniques for linear elasticity problems. Num. Lin. Alg. Appl. 1(2), 107-128 (1994)
Fritsch, A., Dormieux, L., Hellmich, C., Sanahuja, J.: Micromechanics of crystal
interfaces in polycrystalline solid phases of porous media: fundamentals and ap-
plication to strength of hydroxyapatite biomaterials. J. Materials Science 42(21),
8824-8837 (2007)

Golub, G.H., Van Loan, C.F.: Matrix computations, 2nd edn. Johns Hopkins Univ.
Press, Baltimore (1989)

Hellmich, C., Kober, C.: Micromechanics-supported conversion of computer tomog-
raphy (CT) images into anisotropic and inhomogeneous FE models of organs: the
case of a human mandible. Proceedings in Applied Mathematics and Mechanics 6,
71-74 (2006)

Hoppe, R.H.W., Petrova, S.I.: Optimal shape design in biomimetics based on ho-
mogenization and adaptivity. Math. Comput. Simul. 65(3), 257-272 (2004)
Kober, C., Erdmann, B., Hellmich, C., Sader, R., Zeilhofer, H.-F.: Consideration
of anisotropic elasticity minimizes volumetric rather than shear deformation in
human mandible. Comput. Meth. Biomech. Biomedic. Engin. 9(2), 91-101 (2006)
Margenov, S., Vutov, Y.: Parallel MIC(0) preconditioning for numerical upscaling
of anisotropic linear elastic materials. In: Lirkov, I., Margenov, S., Wasniewski, J.
(eds.) LSSC 2009. LNCS, vol. 5910, pp. 805-812. Springer, Heidelberg (2010)
Neytcheva, M., Bangtsson, E.: Preconditioning of nonsymmetric saddle point sys-
tems as arising in modelling of visco-elastic problems. ETNA 29, 193-211 (2008)
Rannacher, R., Turek, S.: Simple nonconforming quadrilateral Stokes element. Nu-
mer. Methods for Partial Differential Equations 8(2), 97-112 (1992)

Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI: the complete
reference. Scientific and engineering computation series. The MIT Press, Cam-
bridge (1997) (second printing)

Vutov, Y.: Parallel DD-MIC(0) preconditioning of nonconforming rotated trilinear
FEM elasticity systems. In: Lirkov, I., Margenov, S., Waéniewski, J. (eds.) LSSC
2007. LNCS, vol. 4818, pp. 745-752. Springer, Heidelberg (2008)

Walker, D., Dongarra, J.: MPI: a standard Message Passing Interface. Supercom-
puter 63, 56-68 (1996)

http://bone3d.zib.de/data/2005/ESA29-99-L3/

Parallel HAVEGE

Alin Suciu', Tudor Carean', Andre Seznec?, and Kinga Marton!

! Technical University of Cluj-Napoca, Cluj-Napoca, Romania
{alin.suciu,tudor.carean,kinga.marton}@cs.utcluj.ro
2 TRISA/INRIA, Rennes, France
andre.seznec@irisa.fr

Abstract. The HAVEGE algorithm [I] [2] generates unpredictable ran-
dom numbers by gathering entropy from internal processor states that
are inheritably volatile and impossible to tamper with in a controlled
fashion by any application running on the target system. The method
used to gather the entropy implies that its main loop will almost monop-
olize the CPU; the output depends on the operating system and other
running applications, as well as some internal mechanisms that stir the
processor states to generate an enormous amount of entropy. The algo-
rithm was designed with the idea of single-core CPUs in mind, and no
parallelization; however the recent market explosion of multi-core CPUs
and the lack of results in increasing the CPU frequency justifies the need
to research a multithreaded parallel version of HAVEGE, capable of run-
ning the same algorithm loop on each core independently and transpar-
ently combine the results in one single output bitstream. This paper will
demonstrate how such a parallelization is possible and benchmark the
output speed of its implementation.

Keywords: random number generator, HAVEGE, parallel
implementation.

1 Introduction

The HAVEG (HArdware Volatile Entropy Gathering) algorithm family [I] in-
directly gathers entropy produced by external sources in the internal processor
states using the memory hierarchy and the branch prediction mechanism. The
algorithm uses the hardware clock counter to indirectly extract entropy from the
otherwise invisible hardware states.

The HAVEGE (HArdware Volatile Entropy Gathering and Expansion) gen-
erator [I] [2] combines a HAVEG algorithm of entropy extraction with a pseudo-
random number generator (two concurrent walks on a self modifying table). The
result is both a high bit rate as well as a high security level.

The security of the algorithm relies upon the fact that one can not completely
determine the internal state of the generator because this state is not only com-
posed of memory mapped data but of thousands volatile hardware states that
are inaccessible even to the user running the application.

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 145010.
© Springer-Verlag Berlin Heidelberg 2010

146 A. Suciu et al.

There is no direct way to read these internal states without using special
debugging motherboards and hardware platforms. Any external event such as
an indirect attempt to read these states through software would cause a major
perturbation in themselves.

The algorithm relies on the hardware clock counter to have an idea of how
long it took to execute a particular code sequence. Since instruction execution
(number of CPU cycles) depends on many factors, most of them beyond the
control and observation area of the user or programmer, it is a good candidate
for inserting entropy in a pseudo-random number generator.

The internal workings of the HAVEGE algorithm are detailed in section 2,
followed in section 3 by the description of the parallelization solution that we
implemented and some experimental results in section 4; in section 5 we present
the conclusions.

2 The Internals of the HAVEGE Algorithm

If we consider a short instruction sequence with just a conditional jump and a
memory operation and measure how many clock cycles are needed for its execu-
tion at different times and possibly different conditions (suppose the content of
the variable tested for the jump and/or the memory location accessed changes),
different readings will be obtained each time. This is because a memory access
does not always need the same number of cycles to complete.

Systems try to avoid reading from a high latency memory such as the RAM as
much as possible by using two levels of (faster but much smaller) cache memory.
If the requested information is found in the L1 (level 1) cache the read will be
completed a lot faster than if it were in L2 (level 2) cache, in RAM or in the
worst case scenario in the operating systems swap file (which would require a
slow I/O operation).

In addition modern CPUs execute instructions in a pipeline so a read or
write could be delayed because of other instructions executing at the same time.
A memory access also needs to wait to get control of the bus. Another device
besides the CPU could be keeping the bus busy as well by doing a DMA transfer.
On the top of this, processors have a lot of internal buffers whose states also
influence the execution time in unpredictable ways (at least as seen from the
outside).

A simple memory access introduces a lot of uncertainty regarding execution
time but conditional jumps introduce even more. In order to implement pipelin-
ing, modern CPUs use branch prediction to deal with the uncertainty of the
outcome of the conditional test. A decision needs to be made about which side
of the jump is to be put in the pipeline even before the test is made.

Execution starts for instructions that may or may not need to run. Based
on several factors (that CPU manufacturers dont explain in too much detail) a
prediction is made and execution continues with one of the two branches.

Parallel HAVEGE 147

If the prediction was wrong everything executed will be undone, the pipeline
is emptied, and a jump is made at the right location. If the prediction was right
then the CPU has saved a lot of time.

The number of cycles needed for this is unknown and depends on the state
of the branch prediction table, the content of the pipeline and the result of the
conditional test. One could say that for a test done in a loop the outcome would
be the same but this is not always the case.

If the programmer intentionally aggravates things by using a random number
(possibly even obtained from past loops) for the test, not only the result is always
unknown but it would also confuse the branch predictor that tries to rely on data
locality and past results in the same loop.

Modern processors use more and more complex pipelining techniques, meant
to improve performance in favorable cases such as consecutive instructions that
can be executed independently and out of order, working with different registers
or memory locations, without having to wait for each others result. Many other
optimizations can be done like register renaming for example. In general the
longer the code sequence is the more uncertainty is introduced.

Moreover, interrupts occur at times out of the program’s control and these
alter the state of the cache memories, content of the pipelines and execution flow
in general. Considering a multitasking operating system, other programs, drivers
and kernel code need to be executed as well and will interrupt the HAVEGE
algorithm for unknown periods of time, which may have a big influence on the
internal state of the processor, adding more volatility and therefore entropy to
be gathered.

The instruction set of a PC does not offer any method to directly probe all
the hardware states. In an effort to break the security of the algorithm perhaps
a method could be devised to deduce some of them, but executing additional
instructions alters the state of the hardware making a guess useless. The only
thing that comes even close to monitoring the volatile hardware states are the
debugging platforms (special motherboards) used by processor manufacturers.

To make sure that the generated numbers are as random as possible the
algorithm works on a table that is twice the size of the level 1 cache doing
two self modifying concurrent walks. The fact that the indexes themselves are
random numbers and that the size of the array is twice the size of the level 1
cache gives a 50% probability of a cache miss.

The compiled size of the algorithms loop is also optimized to be as close as
possible to the size of the instruction cache, so that any interrupt issued by the
operating system would start causing cache misses. Nested if statements are used
to exercise the branch prediction mechanism by testing various bits of numbers
in the walk table (these numbers are also random).

Every now and then the algorithm reads the hardware clock counter and writes
a new value in the output table by combining the entropy just gathered from
the clock with values already present in the internal walk table. The iteration
continues until the output table is full with random numbers.

148 A. Suciu et al.

3 Parallelization of HAVEGE

To make the algorithm more secure against somebody trying to guess the next
sequence one could skip certain results (the HAVEGE authors called this feature
step hiding) by not returning from the function once the output buffer is full,
but instead uses this buffer (and overwrites it) to generate a new set of random
numbers.

This could be done several times (several steps), sacrificing speed for security.
While the algorithm with no such step hiding is very fast, generating around 350
MB/s of random data, the version recommended for cryptographic purposes that
skips 32 result sets, generates no more than 11 MB/s. The latter performance
measurement justifies the effort to create a parallel version of this algorithm in
order to crease the output rate (speed) of the generator.

Since the algorithm is designed to take over and monitor the buffers, caches
and branch prediction table of one processor core the only way to both paral-
lelize and to follow the initial idea behind the algorithm is to run a copy of the
algorithm independently on each separate core, each using the dedicated caches
and internal mechanisms of its core.

The implementation was done in Visual C++ with a MFC interface that
allows benchmarking the algorithms output rate with different settings; the user
can decide to store the random numbers on the disk or not.

The original algorithm was not designed with parallelization in mind so the
first step was to restructure the code by transforming the rigid functions and
global variables into a class that can be instantiated into independent random
number generators (objects) that can be used with different settings and don’t
influence each other. The new version can be run in different threads at the same
time and yield the same quality of random data, as long as different cores would
be used for each thread.

In order to obtain a unified generator that outputs data at a rate equal to
the sum of all the instantiated generators, a master thread needs to synchronize
them and gather/use the generated data. Such a master thread needs to tell each
generator when to start producing new numbers and when to stop and to make
sure that a generator waits enough until its output buffer has been consumed
before overwriting it again.

In order to avoid busy waiting and save CPU time the new HAVEGE generator
class exposes a set of WIN32 events that the master thread can use to synchronize
with the workers. The following pseudo-code explains the algorithm:

procedure HavegeGenerator ()
begin
repeat
wait for signal to start generating
run original Havege loop
signal master thread: buffer is full
until (shutdown = true)
end

Parallel HAVEGE 149

procedure MasterThread (nbOfHavegeThreads)
begin
nb0fPieces := fileSize / bufferSize
for i:=1 to nbOfHavegeThreads
begin
listOfGenerators[i] := new HavegeGenerator()
run the generator in a new thread
set the processor affinity mask of the new thread
signal generator to start generating
end
for i:=1 to nbOfPieces
begin
wait for a generator to finish
ind:= index of first generator that finished
consume the buffer of listOfGeneratorsl[ind]
signal listOfGenerators[ind] to continue
end
shutdown threads
end

The resulting program benchmarks the parallelized versions of the two functions
provided by the original HAVEGE (ndrand and cryptondrand), also giving the
user the possibility to change parameters like step hiding. The user has the
option of selecting the number of cores to be used, and the possibility to save
the random data in a file for later use or examination.

Among other statistics the program shows the number of cores available on
the current machine and calculates the CPU optimization settings the program
was compiled with, such as the HAVEGE machine code loop size (that should
be as close as possible to the CPUs instruction cache) and the size of the data
cache the program is targeting (the HAVEGE walk table should be twice the
size of the CPUs data cache).

The application is designed to do two things: gather random data in a file for
further quality testing (the Generate button) as well to benchmark the speed of
the algorithm itself with no disk writing (the Benchmark button).

4 Experimental Results

The experiments were aimed at comparing the efficiency between running a
serial version of the algorithm (actually the parallel version running on a single
core) and a parallel version running on a different number of cores, as well as
determining the usefulness of a parallel version in a real life scenario where the
output needs to be consumed or stored on disk.

Tables 1 and 2 give the results of the tests on a system with 2 Intel Xeon E5405
at 2 GHz CPUs (8 cores total), 4 GB RAM, running Windows 2008 Server (64

150 A. Suciu et al.

Table 1. Generator speed (in MB/s) without disk writing

Threads/Algorithm ndrand cryptondrand Custom 664 Custom 128

1 476 14.77 7.39 3.69
2 915 29.83 14.90 7.43
3 1383 44.74 22.34 11.17
4 1747 59.74 29.86 14.93
5 2243 74.60 37.29 18.63
6 2661 89.67 44.83 22.40
7 3111 104.46 52.21 26.07
8 3203 119.47 59.66 29.82

Table 2. Generator speed (in MB/s) with disk writing

Threads/Algorithm ndrand cryptondrand Custom 664 Custom 128

1 57.42 13.14 6.96 3.59
2 58.72 26.46 13.92 7.20
3 58.95 39.01 21.08 10.77
4 59.02 52.07 28.07 14.44
5 59.56 61.15 34.12 17.96
6 58.94 60.20 41.37 21.59
7 59.33 59.31 47.20 26.08
8 59.61 59.36 55.08 28.84

bit edition). The speed values in the tables below are the average speeds after
generating 100 GB of random data.

Figures 1 and 2 show the results graphically; one can notice the linear increase
in speed as well as the limits imposed by writing to disk.

The tests were run both with and without storing the data on the disk to
measure the sheer power of the algorithm without capping the output rate by
the physical limitations of the hard drive, as well as under more usual conditions
where the data needs to be stored.

Increasing the number of threads results in greater speed until we reach the
upper limit of 8 threads, because the test system had two quad core CPUs. Any
value greater than the number of available cores will give the same performance
at best or a slightly lower one due to more inter-thread communication.

Also increasing the number of threads beyond the number of physically in-
dependent available cores could have a negative impact on the quality of the
random data. Each instance of the algorithm is supposed to work with only one
core and its cache memories.

The output speed difference between using 7 and 8 threads is very small
because running the master thread (the threads that controls the independent
generators and consumes the numbers) on the same core with a generator forces
them to compete for CPU time, resulting in decreased performance.

Parallel HAVEGE 151

140 ~
120 4 —e— Cryptondrand
—&— Custom 64

o 100 4 —&— Custom 128
—_
[11]
= 80
=
2 B0 A
o
0 4n A

20 | a/ﬁ/_,ﬁ/q/ﬂ/a/’&’_’l\

O T T T T T T T 1

1 2 3 4 5] 5] T 2
Number of threads

Fig. 1. Generator speed (in MB/s) without disk writing

—a— Ndrand —— Cryptondrand
—4— Custom 64 —&— Custom 128
70
60 o
@ 50 -
m
= 40 -
D 30 -
2
& 20 4
10 4
0 T T T T T T T 1

1 2 3 4 5 5] 7 3
Number of threads

Fig. 2. Generator speed (in MB/s) with disk writing

When testing without disk writing the output speed increases linearly with the
number of threads used, as expected, and it decreases linearly with the increase
of the step hiding parameter. The ndrand function uses a step hiding value of 1
and the cryptondrand function a value of 32. Additionally two custom functions
were also tested, one with 64 steps and one with 128 steps.

When writing the data on disk, the output speed is capped by the maximum
disk writing speed. As long as the generators can match it, the speed remains
almost constant. The differences in values could be attributed to disk fragmen-
tation and background processes doing other I/O operations. In the cases where
the generator speed is lower than the disk writing speed, the total output speed
is a bit lower than the generator speed.

152 A. Suciu et al.

Table 3. Test results for a« = 0.001

Test number ndrand cryptondrand Quantis
(% tests passed) (% tests passed) (% tests passed)

1 100.00 99.70 99.80
2 99.90 99.80 99.80
3 100.00 99.90 99.90
4 100.00 99.90 99.80
5 99.90 100.00 99.80
7 99.88 99.91 99.92
8 99.60 99.90 99.70
9 100.00 99.90 99.90
11 99.70 99.90 99.90
12 99.90 99.90 99.90
13 99.90 99.90 99.90
14 100.00 99.60 99.90
15 99.83 99.88 99.88
16 99.87 99.92 99.88

Table 4. Test results for o = 0.01

Test number ndrand cryptondrand Quantis
(% tests passed) (% tests passed) (% tests passed)

1 99.80 99.20 99.00
2 99.60 99.00 98.90
3 99.20 99.10 98.60
4 99.40 98.80 98.90
5 99.00 99.40 98.70
7 99.01 98.99 99.02
8 97.90 97.80 97.90
9 99.10 99.00 99.00
11 98.80 98.90 99.00
12 99.00 98.90 98.90
13 99.10 98.80 98.70
14 99.00 97.80 98.70
15 98.85 99.08 99.05
16 98.98 99.23 98.87

The experiment shows that each generator thread cumulates around 0.1 MB/s
overhead, probably due to extra code and time needed to make an I/O call. So
when using 8 threads to generate and store the numbers the output speed will
be around 1 MB/s smaller than the actual generators speed.

When testing the quality of a random number generator, one or more batteries
of statistical tests are usually used [3] [5] [6]; we used the well known NIST
Statistical Test Suite, which contains 16 statistical tests [3] [4], of which two are
no longer in use (tests 6 and 10).

Parallel HAVEGE 153

We compared the results of Parallel HAVEGE’s ndrand and cryptondrand
functions with the results given by a quantum based TRNG, called Quantis [7].
The amount of data collected from each source was 1000 MB, grouped in 1000
consecutive sequences of 1 MB each. Parallel HAVEGE was run with 4 parallel
generators on a quad core machine (Intel Core 2 Quad 6600 CPU with 2 GB of
RAM, running Windows XP).

An important issue here is the choice of a (significance level) which gives
the threshold for deciding whether a sequence passed or failed some statistical
test. Usual values for this parameter are 0.001 and 0.01, so we tested both these
scenarios. For an ideal random number generator, on average, in the first case
one should expect 1 sequence in 1000 to fail (99.90 % tests passed) while in
the second case one should expect 10 sequences in 1000 to fail (99.00 % tests
passed).

The results shown in Table 3 and 4 confirm the fact that Parallel HAVEGE
gives a high quality output, which is comparable to a quantum based TRNG.
Therefore we may conclude that parallelization did not affect in any way the
quality of the original HAVEGE implementation [I].

5 Conclusions

This paper presents a parallel version of the HAVEGE algorithm for generating
unpredictable random numbers based on hardware volatile entropy gathering
and expansion.

The experimental results show that a parallel version of HAVEGE is useful
if a large amount of unpredictable random numbers is needed. The use of any
function that is safer (and therefore slower) than the ndrand function could also
benefit from a speed boost in real life conditions where the numbers need to be
used, and usually the consumption rate is higher than the output rate.

The more steps performed by the custom harvesting function, the more volatile
values are involved in the generation, the more difficult will be for an adversary to
predict the output and therefore the greater the security of the algorithm. How-
ever, in a serial implementation this increase in security comes at a price: as we in-
crease the number of steps, the speed (throughput) of the generator will decrease
proportionally.

A significant advantage of having a parallel implementation of HAVEGE run-
ning on a multicore architecture is the ability to increase the security (number
of steps) while maintaining a constant throughput by increasing the number of
HAVEGE threads up to the number of available cores.

Acknowledgements

This work was supported by the CNMP funded CryptoRand project (ur. 11-
020/2007).

154 A. Suciu et al.

References

1. Seznec, A., Sendrier, N.: HAVEGE: a user-level software heuristic for generating
empirically strong random numbers. ACM Transaction on Modeling and Computer
Simulations 13(4) (2003)

2. Seznec, A., Sendrier, N.: Hardware Volatile Entropy Gathering and Expansion: gen-
erating unpredictable random numbers at user level. In: INRIA Research Report,
RR-4592 (2002)

3. Rukhin, A.] Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson, M.,
Vangel, M., Banks, D., Heckert, A., Dray, J., Vo, S.: A statistical test suite for
random and pseudorandom number generators for cryptographic applications, NIST
Special Publication 800-22 (revised August 2008),
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22b.pdf

4. Kim, S., Umeno, K., Hasegawa, A.: Corrections of the NIST Statistical Test Suite
for Randomness, Cryptology ePrint Archive, Report 2004/018 (2004)

5. L’Ecuyer, P., Simard, R.: TestU01: A C library for empirical testing of random
number generators. ACM Trans. Math. Softw. 33(4), 22 (2007)

6. Knuth, D.E.: The Art of Computer Programming. In: Seminumerical Algorithms,
3rd edn., vol. 2, Addison-Wesley, Reading (1998)

7. IdQuantique, Quantis white paper,
http://www.idquantique.com/products/files/quantis-whitepaper.pdf

http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22b.pdf
http://www.idquantique.com/products/files/quantis-whitepaper.pdf

UNICORE Virtual Organizations System

Krzysztof Benedyczak!, Marcin Lewandowski',
Aleksander Nowinski2, and Piotr Bala!-2

! Faculty of Mathematics and Computer Science
Nicolaus Copernicus University
Chopina 12/18, 87-100 Torun, Poland
2 Interdisciplinary Center for Mathematical
and Computational Modelling
Warsaw University
Pawinskiego 5a, 02-106 Warsaw, Poland

Abstract. In this paper we present a novel Virtual Organizations man-
agement system called UVOS, developed within the Chemomentum
project. It is a complete and production ready solution aiming at simplic-
ity of deployment and management without sacrificing a flexibility and
functionality. The system can be also used as an underlying technology
for more high level solutions. The system was designed mainly for the
UNICORE grid middleware but, as it uses the open SAML protocol and
implements numerous SAML profiles, its adoption for other grid middle-
wares is straightforward. The paper compares the UVOS system to the
other existing and popular solutions: VOMS and Shibboleth used with
GridShib.

1 Introduction

During the last few years significant effort was put into development of the
Virtual Organizations concept. Roughly we can divide it into two categories:
creation of a VO foundation technologies and high level solutions more concerned
about SLA, semi automatic creation of federations etc. Our work clearly belongs
to the first field.

The key difficulty in the realization of the Virtual Organizations idea is a stor-
age, access and management of its members and their corresponding privileges.
The typical solution which is used in classic IT systems is a directory service
keeping identities of system users, grouping them and assigning attributes which
can be used in an authorization process. The directory services (including the
most popular LDAP] services) are difficult to be used in a nowadays grid envi-
ronment because of numerous reasons. Among others it is hard to ensure user’s
data privacy. Directory service authentication is not compatible with the grid
credentials. Therefore dedicated systems were created to support VO manage-
ment in the grid. The most commonly used are: VOMS [I] and GridShib [2].

! LDAP — Lightweight Directory Access Protocol is a de facto standard solution for
authentication and authorization in nowadays operating systems.

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 155 2010.
© Springer-Verlag Berlin Heidelberg 2010

156 K. Benedyczak et al.

VOMS is a complete but simple system. It organizes VO members in a pseudo-
hierarchical groups and allows for assigning roles. The role can be seen as a single
available attribute. VOMS stores grid identities internally (as taken from certifi-
cates) and can issue extended GSI (Grid Security Infrastructure) proxy certifi-
cates with an additional information about user’s roles and group membership,
which is called an attribute certificate.

GridShib is an adaptation of the Shibboleth [3] system for the Globus Toolkit.
Shibboleth is an advanced federation management system build by educational
community. Shibboleth itself does not store user’s data but relies on a 3rd party
software (eg. LDAP). Shibboleth offers a standardized SAML [4] interface and
it is de facto a reference SAML implementation. GridShib is clearly focused on
an authentication and a support of authorization of web browser users.

One of the principal aims of the Chemomentum project [5] was to create or
adopt a VO management solution which will serve the UNICORE grid platform
[6]. Naturally the system should be as interoperable as possible and not limited
to the UNICORE. After the evaluation of VOMS, Shibboleth and other solutions
(like Grid User Management System — GUMS) it turned out that in practice
they have a lot of disadvantages that effectively blocks their adoption in many
grid deployments. In particular, VOMS it is too proxy-certificates oriented and it
is not OGSA [7] enabled. Both those limitations could be eliminated with some
effort. However it was difficult to overcome another VOMS inflexibility: poor
support for arbitrary attributes (the “generic attributes” concept in VOMS was
not fully developed, e.g. the role attribute can be scoped while generic attributes
can not), lack of truly hierarchical groups and a missing support for web envi-
ronments. On the other hand Shibboleth posses a lot of required flexibility but
at enormous cost of complexity. In order to create a simple deployment for a
small-sized grid it is required to configure Shibboleth service provider, LDAP
backend, Signed/Grouper applications for permissions and group management.
Still additional modules are needed to provide grid support. Configuration of the
whole system is inherently complicated and requires a lot of work and expertise.

As we believe that the problem which must be solved by the low level VO
software is not as complicated to sacrifice either flexibility or easy of use we
have designed and created a new solution called UVOS — UNICORE Virtual
Organization System.

1.1 Project Aims

To overcome the problems presented above we have defined a set of concrete
goals for the UVOS system:

— Distributed environment: the single installation must be fully controlled
remotely.

— Openness: The system consumers must be able to communicate with it us-
ing open and well established protocols and data formats. Must not be too
UNICORE centric.

— FEasy of Use: The system needs to be easily installed and managed.

UNICORE Virtual Organizations System 157

— Flexibility: The system should provide tools and features which will make it
useful in both OGSA (SOA) and WWW environments. Different deployment
styles should be supported.

In the next sections we describe our realization of the above fundamental require-
ments. Here we only want to stress that our vision was to create a solution which
will have a lot to offer out-of-the box and still will be an interesting platform for
more high level developments.

2 Architecture

UVOS architecture uses a central UVOS server which acts both as authentication
service and attribute authority. The server is used by two kinds of clients: con-
sumers and management clients. Consumers do not modify the UVOS contents
but query it. Management clients are used either by VO administrators or by other
management software to dynamically modify VO data. What is worth to note here
is that consumers use the standard and open SAML 2.0 protocol only.

The server uses relational database to store internally the whole data. There-
fore UVOS does not depend on any external service like LDAP. Relational
database engine can be easily changed as database access is performed through
the iBATIS library [8]. Typically embedded HSQL [9] database is used so it is
not needed to configure a standalone DBMS.

Network server is based on the embedded Jetty server. The UVOS server (as
the whole system) is written purely in Java so it is highly portable. All opera-
tions of the UVOS server are available via the web services interface. The server
supports multiple configurable authentication mechanisms (HTTP DIGEST Au-
thorization and TLS authentication with client’s certificate) so high flexibility is
achieved. Except of the authentication with X.509 certificate, it is also possible
to provide simple email and password credentials, what is especially useful in
WWW environments. The UVOS server also supports Explicit Trust Delegation
(ETD) [10] which allows for better integration with the UNICORE grid by using
delegated credentials. Using the ETD the UNICORE service can ask for user’s
attributes on this user’s behalf and UVOS server will authorize the caller as in
case of a self query.

The web service interface defines multiple port types, but conceptually we can
divide them into the two parts: a management part which uses a custom protocol
and a query part which implements SAML protocols [4]. The base server func-
tionality is exposed by the SAML Attribute Query Protocol. The SAML name
identifier mapping protocol and SAML authentication request protocol are also
implemented. In all cases the SOAP binding [I1] is used. For the SAML au-
thentication protocol the HTTP POST binding is also implemented. The server
implements the core SAML specification as well as additional profiles to ensure
a greater interoperability level:

— XACML Attribute Profile [12].
— SAML Attribute Query Deployment Profile for X.509 Subjects [13],

158 K. Benedyczak et al.

— SAML Attribute Self-Query Deployment Profile for X.509 Subjects [13],
— OGSA Attribute Exchange Profile Version 1.2 [I4],

Our effort to be compliant to SAML related standards provides a solid foun-
dation for an interoperability of the grid authorization systems. One of the
largest projects in this field is the IVOM (Interoperability and Integration of
VO-Management), a part of the D-Grid initiative. The IVOM aims to develop
services that enable integration of VOMS and Shibboleth-based VO management
systems with the grid middlewares used in Germany, in particular gLite, Globus
Toolkit 4 and UNICORE 5. As it is suggested in [I5], development of SAML
enabled components for the grid middlewares can be seen as the most promising
approach to enabling cooperation of the various authorization systems.

An implementation of the basic features — attribute, identities and group
management — is obvious and won’t be discussed here. However there are some
features unique to the UVOS. The server keeps a whole history of performed
operations and a past VOs state. Thanks to it it is possible to (a) check a whole
content of the UVOS server as was used in any point in the past and (b) get
the list of all events which occurred at the specified time frame. The events
mechanism is also connected with an another UVOS functionality: notifications.
Administrator can define an arbitrary number of notifications to be issued in
a case of any modification operations. Currently only an e-mail notification is
supported but other messaging backends can be added.

Finally, the UVOS web server is truly extensible by means of classic Java web
applications (servlets), which can be simply installed by copying them into a
designated server’s installation directory. Two such web applications extending
server’s functionality are provided as ready to be used modules: one is providing
authentication form for the SAML authentication request protocol, the second
one supports enrollment of new users.

2.1 The Client Side

There are two management clients currently available: the UVOS command line
client (UVOS CLC) and UVOS VO Manager. The command line client can be
used to administer UVOS from the console in an interactive or batch mode. The
UVOS VO Manager is a powerful GUI application based on the Eclipse Rich
Client platform. It is much easier to use then a command line client, offers an
intuitive interface so usually UVOS VO Manager a preferred choice.

Finally there is a number of UVOS consumers available. We present here
consumers created in the Chemomentum project, but note that in principle any
other SAML 2.0 attribute consumer may be used with the UVOS server.

The most important consumer is the UVOS module built into (and distributed
with) UNICORE 6 server. This module is highly configurable and allows for
gathering authorization data and to use selected attributes as a local UNIX
account names. Thanks to the UVOS concept of attribute scopes, it is possible
to keep mappings for multiple sites in a one place.

UNICORE Virtual Organizations System 159

In addition to the UNICORE consumer there are currently available Globus
4.0 and 4.1+ consumers (there are two modules as both versions of the Globus
Toolkit use different internal authorization API) so called Policy Information
Point and PolicyEnforcment Point. They have similar functionality to the UNI-
CORE consumer. There is also a consumer for web applications. It can use the
UVOS to transparently authenticate web browser users. More information on
this topic is presented in the section [l

All basic components which were discussed in this section are presented in

the figure [
uvos uvos
CLC J‘ VO Manager

Management
interface

SAML query

interface
uvos uvos
server client
extension plugin

Grid node p UNICORE
(e.g. UnicorelX) ‘ k'*ﬂ@ Rich client ‘

Fig. 1. Main components of the UVOS system along with their interconnections. In
this figure the standard deployment in UNICORE grid middleware is presented.

3 VO Model

UVOS organizes entities within a hierarchical group structure. Top level groups
of this structure are called virtual organizations, however they are no different
then other groups. Each entity can be a member of arbitrary number of groups.
It may have assigned a set of attributes; an attribute is composed of a name and a
set of values, which can be empty. In addition, a single entity can possess multiple
representations, for example in different formats. These equivalent incarnations
of the same entity are called identities, and are usually invisible for an outside
user.

The group membership is inherited in UVOS. The member of the subgroup
becomes automatically the member of the parent group. This is different then
e.g. in VOMS.

160 K. Benedyczak et al.

Every entity has a unique label and one or more tokens that represent it. The
tokens must be in one of the supported formats, which currently are:

— a full X.509 certificate,
— an X.500 distinguished name,
— an e-mail address with an password used for authentication.

A token along with it’s type is called an identity. The entity typically possesses
one identity, but it can also have more. This reflects the real life situation where
the single user can possess multiple certificates and email accounts. Additional
identity formats may be added to the UVOS system with a intermediate level of
effort. It is worth pointing out that all identities that compose an entity share
the same characteristics (attributes, group membership, permissions, etc.): the
UVOS works using entities internally.

3.1 Attributes

Attributes are composed of a name and a list of values. A name is a URI, and
values are arbitrary strings. The value list can be empty. UVOS allows for three
different ways of attributes assignment:

— using global attributes: an entity can have an attribute assigned globally.
Such an attribute is valid always and in every context,

— using group-assigned attributes: an attribute can be assigned to a group, in
which case all members of this group automatically hold this attribute (no
matter if they were added later or prior to the creation of the group-assigned
attribute). It is worth pointing out that this attribute is valid only in the
scope of this group,

— using group-scoped entity attributes: those attributes are assigned to the
entity, just like global attributes, but have an additional group restriction
and are valid only in in the scope of the group.

The last two methods introduce a ”group-scoped validity “ of attributes, which
requires a further explanation. The requester can ask (using the API provided
by the UVOS service) for the entity’s attribute either globally or valid only in a
specified group. Global query returns global attributes only. A query limited to
a group will return all entity’s global attributes and all group-scoped attributes
valid within the specified group.

For an even greater flexibility UVOS provides group inheritance of the scoped
attributes. The group scoped attribute valid in a subgroup is also valid in its
parent group. To illustrate an application of this feature let’s consider group
/MainV0 and its subgroup /MainV0/Admins. In such scenario all attributes of
the VO administrators who are the members of the later group are also valid for
them in the main VO/group /MainVO0.

UVOS allows for disabling temporary an attribute without deleting it. It is
useful for instance to revoke some privileges for a period of time.

UNICORE Virtual Organizations System 161

3.2 UVOS Authorization

UVOS access is restricted by it’s own authorization stack. No external compo-
nents/services are used to perform authorization. The authorization mechanism
is advanced and probably the most advanced part of the whole UVOS system.
UVOS supports a lot of authorization related features:

— full remote administration

— as a single server may carry multiple VOs it must be possible to assign
management permissions for selected VOs/groups only

— the user should get additional permissions when accessing data about itself
(e.g. to be able to change a password)

The general authorization mechanism used in UVOS is described in detail in its
documentation. As it is quite extensive we have prepared a simple set of rules
(which are used in a default UVOS configuration) that allow for an easy con-
figuration of a secure UVOS access. The fundamental idea is to use a separate,
special attribute that grants UVOS access permissions (and is not used for ex-
ternal purposes) with a fixed authorization policy for all groups. By assigning
this attribute to VO members, the administrators can control privileges. Please
note that this allows for taking the advantage of all types of attribute granting.

4 Deployments

There are several typical deployments in which UVOS can be used.

In the the so called pull mode a service (e.g. UNICORE server) contacts the
UVOS server to obtain the attributes of a user who tries to use it. The attributes
received from the UVOS server can be used for an authorization (e.g. server’s
policy may permit only those users who are in a certain UVOS group or who
possess some attributes). Service may use received attributes to map requester
to a local UNIX account. Pull mode is transparent for the grid users. However
is more difficult for grid administrators to set it up: every grid site must be
correctly configured to use UVOS.

In the push mode user has to contact a UVOS server on her own and get
the list of possessed attributes in a signed assertion. Later this assertion can
be attached to the requests which are sent to the grid services. If the service
trusts the assertion issuer (i.e. the UVOS server which issued it) then it can use
the attributes for authorization. Note that user can ask the UVOS server for a
subset of owned attributes. In such case user can hide part of her/his identity or
alter the execution (e.g. by choosing her role). The pull mode is more scalable
in terms of server administration and easier to set up. However it requires user
interaction and thus is more suitable for advanced grid users. A problem with
expired assertions occurs here.

UVOS can be used to authenticate web browser users. SAML 2.0 authentica-
tion protocol is used to achieve it in a secure way. The UVOS server provides an
implementation of the required SAML protocol. To make whole process operable

162 K. Benedyczak et al.

a web login interface is required. Appropriate module is available in the UVOS
suite and can be installed as an extension of the core UVOS server. The details
of the authentication process can be read in appropriate SAML 2.0 specification
documents [11J12]. Here we only summarize that UVOS uses the SAML 2.0 SSO
authentication profile with the HT'TP POST binding.

Web developers can easily take advantage of the authentication pattern de-
scribed above as software modules supporting it have been created. Currently
the modules for authentication in Tomcat 6 containers are available.

5 UVOS from the Users Perspective

UVOS in the grid environment may be nearly transparent for the users when
the pull mode is used. In this case only initial registration is required (if not
performed manually by the grid administrator). Things get a little bit more
complicated when the push mode or access via web portal is performed.

UVOS provides support for collecting and processing VO registration requests
(called VO applications) from the users interested to join VO. The registration
subsystem is flexible and offers many features. It is organized as follows:

— The VO application form is used to specify overall rules that applications
must obey. It also contains additional information about data presented to
the applying user. Examples of included information are: VO agreement, the
group to which the application is connected etc. The VO application form is
defined by the administrator and the UVOS server stores it. Multiple forms
may be stored simultaneously.

— The VO application form is made accessible via the web interface which
renders it.

— The VO application is issued by the user who files out the form using a web
browser. The application is stored in the UVOS server database.

— The VO form administrator processes and accepts or rejects the application.

The UVOS server provides all necessary facilities to deploy the registration pro-
cess except a WWW rendering of the VO application forms. To enable this
feature a special extension must be installed, which is available in UVOS suite
and installed in a similar manner as extension which supports the SAML au-
thentication.

The VO application forms must be defined using the UVOS command line
client (it is impossible to do this using the UVOS VO Manager). The specification
of the application form is done in XML format. A VO application form can define
its description, agreement, the linked group, identity types which are accepted
by the form and much more.

To process VO applications, the VO administrator can use either UVOS CLC
or UVOS VO Manager. It is suggested to use the latter one as it provides a
full featured interface where all the details of the application can be reviewed
and modified before committing. When the application form is accepted, a new
identity is added to the UVOS database. It becomes a member of the group linked

UNICORE Virtual Organizations System 163

to the application form. Additionally extra attributes (if such were provided)
may be assigned to the new identity.

In push mode deployments it is the user’s responsibility to select and pro-
vide a set of attributes which shall be used for authorization. A plugin for the
UNICORE Rich client was created with the required functionality. It basically
provides two features: simple browsing of all attributes which are defined for the
user and creation of assertions to be used in push mode.

Finally there was created an application (employing Java Web Start technol-
ogy) which allows for requesting an email account (typically users first registers
with their certificate, by using VO registration facilities described above). On
the server side it uses the same infrastructure as is used for the standard VO
applications submitted via WWW form. After acceptance user can log to the
portal without a need to load into a browser a certificate and a corresponding
private key.

6 Conclusions

UVOS is a powerful VO management solution. It provides a low-level infras-
tructure with many advanced and useful features so its adoption is very fruitful
for the grid. This was observed in Chemomentum project testbed grid where
UVOS proved its value. Despite its complexity we managed to keep the sys-
tem easy. For instance demo installation of the UVOS server takes around 5
minutes, and making it production ready requires, in most cases, to change
demo server’s certificate to a correct one. With an integrated support for the
UNICORE middleware, components for the web systems and (currently being
developed) Globus support modules, the UVOS can be seen as a good candidate
for an interoperable and advanced VO founding software. We can stress here
that during many months of testing in the Chemomentum testbed the UVOS
system proved to be very stable. Only few minor bugs/problems were reported,
and all were immediately fixed.

Deployment of UVOS does not mean that performance is scarified. Perfor-
mance evaluation of the UVOS engine (i.e. without taking into account the
network communication) as performed on the average hardware (Intel Core 2
Duo 3.16 GHz) with the embedded database, showed that UVOS can handle
more then 100 operations per second (for all operations except of the removal
of the group with complicated contents which is slightly slower). Most of the
typical read operations are performed at the speed varying from 300 up to 2000
operations per second. Those tests are obviously not very detailed but shows
that UVOS performance will not be a problem even in case of a large number
of users.

While UVOS system is mostly complete, we are still working on improving
it. The main effort currently is targeted at providing an easy to be used Globus
support. Currently all Globus 4 OGSA compatible services can be authorized
with the UVOS server. We plan to perform more interoperability tests with other
SAML solutions. Those tests will involve not only the server but also the client
side.

164 K. Benedyczak et al.

The UVOS releases can be downloaded from the UNICORE project web site
[6]. The UVOS possess its own web site [16] where additional information can
be found. This work was supported by European Commission under IST grant
Chemomentum (No. 033437).

References

1. Alfieri, R., et al.: From gridmap-file to VOMS: managing authorization in a Grid
environment. Future Generation Computer Systems (FGCS) 21(4), 549-558 (2005)

2. Welch, V., Barton, T., Keahey, K., Siebenlist, F.: Attributes, Anonymity, and Ac-

cess: Shibboleth and Globus Integration to Facilitate Grid Collaboration. In: 4th

Annual PKI R&D Workshop (2005),

http://grid.ncsa.uiuc.edu/papers/gridshib-pki05-final.pdf| (2009)

The Shibboleth project (2009), http://shibboleth.internet2.edu

4. Cantor, S., et al. (eds.): Assertions and Protocols for the OASIS Security Assertion
Markup Language (SAML) V2.0, OASIS Standard (March 15, 2005),
http://docs.oasis-open.org/security/saml/v2.0/|(2009)

5. The Chemomentum project (2009), http://www.chemomentum.org

6. The UNICORE project (March 2009), http://www.unicore.org

7. Foster, 1., et al. (eds.): The Open Grid Services Architecture, Version 1.5. Open
Grid Forum (July 24, 2006)

8. The iBATIS project (2009), http://ibatis.apache.org

9. The HSQL DB project (2009), http://hsqldb.org

10. Snelling, D., van den Berge, S., Li, V.: Explicit Trust Delegation: Security for Dy-
namic Grids. Fujitsu Scientific & Technical Journal (FSTJ), Special Issue on Grid
Computing 40(2) (December 2004); Important note: this paper describes the initial
ETD concept which was used in the UNICORE 5. Currently in the UNICORE 6 a
highly extended version of the ETD approach is used, and to our knowledge there
is no publication covering it yet

11. Cantor, S., et al. (eds.): Bindings for the OASIS Security Assertion Markup Lan-
guage (SAML) V2.0, OASIS Standard (March 15, 2005),
http://docs.oasis-open.org/security/saml/v2.0/|(2009)

12. Hughes, J., et al. (eds.): Profiles for the OASIS Security Assertion Markup Lan-
guage (SAML) V2.0, OASIS Standard, March 15 (2005),
http://docs.oasis-open.org/security/saml/v2.0/|(2009)

13. Scavo, T. (ed.): SAML V2.0 Deployment Profiles for X.509 Subjects, OA-
SIS Committee Specification (March 27, 2008), http://docs.oasis-open.org/
security/saml/Post2.0/sstc-saml2-profiles-deploy-x509-cs-01.pdf| (2009)

14. Venturi, V., Scavo, T., Chadwick, D.: OGSA Attribute Exchange Profile Version
1.2. Open Grid Forum (2007)

15. Groeper, R., et al.: A concept for attribute-based authorization on D-Grid re-
sources. Future Generation Comp. Syst. 24(3) (2009)

16. The UVOS project (March 2009), http://uvos.chemomentum. org

w

http://grid.ncsa.uiuc.edu/papers/gridshib-pki05-final.pdf
http://shibboleth.internet2.edu
http://docs.oasis-open.org/security/saml/v2.0/
http://www.chemomentum.org
http://www.unicore.org
http://ibatis.apache.org
http://hsqldb.org
http://docs.oasis-open.org/security/saml/v2.0/
http://docs.oasis-open.org/security/saml/v2.0/
http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml2-profiles-deploy-x509-cs-01.pdf
http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml2-profiles-deploy-x509-cs-01.pdf
http://uvos.chemomentum.org

Application of ADMIRE Data Mining
and Integration Technologies
in Environmental Scenarios

Marek Ciglan!, Ondrej Habala!, Viet Tran', Ladislav Hluchy",
Martin Kremler?, and Martin Gera?

! Institute of Informatics of the Slovak Academy of Sciences, Dubravska cesta 9,
84507 Bratislava, Slovakia
2 Comenius University, Faculty of Mathematics Physics and Informatics, Mlynska
dolina, 84248 Bratislava, Slovakia

Abstract. In this paper we present our work on the engine for integra-
tion of environmental data. We present a suite of selected environmental
scenarios, which are integrated into a novel data mining and integration
environment, being developed in the project ADMIRE . The scenarios
have been chosen for their suitability for data mining by environmen-
tal experts. They deal with meteorological and hydrological problems,
and apply the chosen solutions to pilot areas within Slovakia. The main
challenge is that the environmental data required by scenarios are main-
tained and provided by different organizations and are often in different
formats. We present our approach to the specification and execution of
data integration tasks, which deals with the distributed nature and het-
erogeneity of required data resources.

Keywords: Environmental applications, distributed data management,
data integration, OGSA DAI.

1 Introduction

We present our work in the project ADMIR, where we use advanced data min-
ing and data integration technologies to run an environmental application, which
uses data mining instead of standard physical modeling to perform experiments
and obtain environmental predictions. The paper starts with description of the
project ADMIRE, its vision and goals. Then we describe the history and current
status of the environmental application. The core of the paper then presents our
approach to the integration of data from distributed resources. We have devel-
oped a prototype of data integration engine that allows users to specify data
integration process in form of a workflow of reusable processing elements.

! This work is supported by projects ADMIRE FP7-215024, APVV DO7RP-0006-08,
DMM VMSP-P-0048-09, SEMCO-WS APVV-0391-06, VEGA No. 2/0211/09.

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 165 2010.
© Springer-Verlag Berlin Heidelberg 2010

166 M. Ciglan et al.

1.1 The EU ICT Project ADMIRE

The project ADMIRE (Advanced Data Mining and Integration Research for
Europe [I]) is a 7th FP EU ICT project aims to deliver a consistent and easy-
to-use technology for extracting information and knowledge from distributed
data sources. The project is motivated by the difficulty of extracting meaningful
information by mining combinations of data from multiple heterogeneous and
distributed resources. It will also provide an abstract view of data mining and
integration, which will give users and developers the power to cope with com-
plexity and heterogeneity of services, data and processes. One of main goals of
the project is to develop a language that serves as a canonical representation of
the data integration and mining processes.

1.2 Flood Forecasting Simulation Cascade

The Flood Forecasting Simulation Cascade is a SOA-based environmental ap-
plication, developed within several past FP5 and FP6 projects [2], [3], [4]. The
application’s development started in 1999 in the 5th FP project ANFAS [5]. In
ANFAS, it was mainly one hydraulic model (the FESWMS [@]). It then contin-
ued with a more complex scenario in 5th FP project CrossGrid, turned SOA in
6th FP projects K-Wf Grid and MEDIgRID, and finally extended the domain to
environmental risk management in ADMIRE. The application is now comprised
of a set of environmental scenarios, with the necessary data and code to deploy
and execute them. The scenarios have been chosen and prepared in cooperation
with leading hydro-meteorological experts in Slovakia, working mainly for the
Slovak Hydrometeorological Institute (SHMI), Slovak Water Enterprise (SWE),
and the Institute of Hydrology of the Slovak Academy of Sciences (IH SAS).
We have gathered also other scenarios from other sources, but in the end de-
cided to use the ones presented below, because they promise to be the source
of new information for both the environmental domain community, as well as
for the data mining community in ADMIRE. Together with the scenarios, we
have gathered a substantial amount of historical data. SWE has provided 10
years of historical data containing the discharge, water temperature, and other
parameters of the Vah Cascade of waterworks (15 waterworks installations and
reservoirs in the west of Slovakia). SHMI has provided 9 years of basic meteo-
rological data (precipitation, temperature, wind) computed by a meteorological
model and stored in a set of GRIB (Gridded Binary) files, hydrological data for
one of the scenarios, and also partial historical record from their nation-wide
network of meteorological data. They have also provided several years of stored
weather radar data, necessary for one of the scenarios. The programs used by
the application are in the context of ADMIRE described in Data Mining and
Integration Lanuage (DMIL) [7]. The processes described in DMIL perform data
extraction, transformation, integration, cleaning and checking. Additionally, in
some scenarios we try to predict future values of some hydro-meteorological vari-
ables; if necessary, we use a standard meteorological model to predict weather
data for these cases.

Environmental Scenarios in ADMIRE 167

2 Environmental Scenarios of ADMIRE

In this chapter we present the suite of environmental scenarios, which we use to
test the data mining and integration capabilities of the ADMIRE system. The
scenarios are part of the Flood Forecasting and Simulation Cascade application,
which has been in the meantime expanded beyond the borders of flood predic-
tion into a broader environmental domain. There are four scenarios, which are in
the process of being implemented and deployed in the ADMIRE testbed. These
scenarios have been selected from more than a dozen of candidates provided by
hydro-meteorological, water management, and pedological experts in Slovakia.
The main criterion for their selection was their suitability for data mining ap-
plication. The scenarios are named ORAVA, RADAR, SVP, and O3, and they
are in different stages of completion, with ORAVA being the most mature one,
and O3 only in the beginning stages of its design.

2.1 ORAVA

The scenario named ORAVA has been defined by the Hydrological Service divi-
sion of the Slovak Hydrometeorological Institute, Bratislava, Slovakia. Its goal
is to predict the water discharge wave and temperature propagation below the
Orava reservoir, one of the largest water reservoirs in Slovakia.

The pilot area covered by the scenario (see Figure [I]) lies in the north of
Slovakia, and covers a relatively small area, well suitable for the properties of
testing ADMIRE technology in a scientifically interesting, but not too difficult
setting.

The data, which has been selected for data mining, and which we expect to
influence the scenario’s target variables - the discharge wave propagation, and
temperature propagation in the outflow from the reservoir to river Orava - is
depicted in Table [l

For predictors in this scenario, we have selected rainfall and air temperature,
the discharge volume of the Orava reservoir and the temperature of water in the
Orava reservoir. Our target variables are the water height and water tempera-
ture measured at a hydrological station below the reservoir. As can be seen in
Figure[ll the station directly below the reservoir is n0.5830, followed by 5848 and
5880. If we run the data mining process in time T, we can expect to have at hand
all data from sensors up to this time (first three data lines in Table 1). Future
rainfall and temperature can be obtained by running a standard meteorological
model. Future discharge of the reservoir is given in the manipulation schedule
of the reservoir. The actual data mining targets are the X and Y variables for
times after time T (T being current time).

2.2 RADAR

This experimental scenario tries to predict the movement of moisture in the
air from a series of radar images (see for example). Weather radar measures
the reflective properties of air, which are transformed to potential precipitation
before being used for data mining. An example of already processed radar sample

168 M. Ciglan et al.

Table 1. Depiction of the predictors and variables of the ORAVA scenario

Time Rainfall T'emp air Discharge Tempreservoir Heightstation Tempstation

T-2 Rr—2 Fr—2 Dr-—2 Er—2 Xr—2 Yr —2
T-1 Rr—1 Fr—-1 Dr-1 Er—1 Xr—1 Yr—1
T Rr Fr Dr Er Xr Yr

T+1 Rr+1 Fr+1 Dr+1 Er+1 Xr+1 Yr+1
T4+2 Rr+2 Fr+2 Dr+2 Er+2 Xr+2 Yr+2

O

RN

Fig. 1. The geographical area of the pilot scenario ORAVA

0 10 20 30 Kilometers

(with the reflection already re-computed to millimeters of rainfall accumulated
in an hour) can be seen in Figure

The scenario once again uses both historical precipitation data (measured by
sensors maintained by SHMI) and weather predictions computed by a meteoro-
logical model. Additionally to these, SHMI has provided several years’ worth of
weather radar data (already transformed to potential precipitation).

2.3 SVP

This scenario, which is still in the design phase, is the most complex of all
scenarios expected to be deployed in the context of ADMIRE. It uses the statis-
tical approach to do what the FFSC application did before ADMIRE - predict
floods. The reasons why we decided to perform this experiments are mainly the
complexity of simulation of floods by physical models when taking into account
more of the relevant variables, and the graceful degradation of results of the data

Environmental Scenarios in ADMIRE 169

g, 2.200% 0400 UTC
Zlhdenk BL mapa = Z! CAPPI ke

-20 -10 1] p] a0 a0 [AEZ]

[40 S0 &0 T L
COD T

0,02 0,10 0.3 1.% %.6 24 100 400 [T]
tol 2009 SHHD

Fig. 2. An example of weather radar image with potential precipitation

mining approach when facing incomplete data - in contrast to the physical mod-
eling approach, which usually cannot be even tried without having all the nec-
essary data.

For predicting floods, we have been equipped with 10 years of historical data
from the Vah cascade of waterworks by the Slovak Water Enterprise, 9 years
of meteorological data (precipitation, temperature, wind) computed by the AL-
ADIN model at SHMI, hydrological data from the river Vah, again by SHMI,
and additionally with measured soil capacity for water retention, courtesy of our
partner Institute of Hydrology of the Slovak Academy of Sciences. We base our
efforts on the theory, that the amount of precipitation, which actually reaches
the river basin and contributes to the water level of the river is influenced by
actual precipitation and its short-term history, water retention capacity of the
soil, and to lesser extent by the evapotranspiration effect.

3 Data Integration Engine for Environmental Data

In this section, we discuss the data integration engine designed for the environ-
mental data integration and mining. It is motivated by the scenarios described
in previous section. We first describe requirements that we took into account
and then we present our approach to environmental data integration. In the
discussion, we give examples mainly from Orava scenario; the first scenario im-
plemented using our data integration engine.

In Orava river management scenario, the data from three different sources are
used. The data are owned and maintained by different organizations. To allow the

170 M. Ciglan et al.

data mining operations proposed for this scenario, the data from those different
sources must be integrated first. Furthermore, the data are kept in different
formats. In the case of Orava scenario, two data sets are stored in relational
database (waterworks data, water stations measurements) and one is kept in
binary files (precipitation data are stored in GRIB files - binary file format for
meteorological data). From technical point of view, we must be able to work
with the heterogeneous data stored in distributed, autonomous resources. In our
work, we have considered so far the data in the form of lists of tuples.

In the following, we use the term data resource to denote a service providing
access to data, with a single point of interaction. We use the term processing
resource to denote a service capable of performing operations on the input lists
of tuples. Data resource can have capabilities of a processing resource.

Atomic units used for data access and transformations are called processing
elements (PE). Following types of processing elements are needed:

— Data retrieval PEs - operations able to retrieve the data from different, het-
erogeneous data sources. Data retrieval PEs are executed at data resources.
This class of PEs is also responsible for transforming raw data sets to the
form of tuples.

— Data transfer PE - able to transfer list of tuples between distinct processing
resources.

— Data transformation PE - operations that transform input list of tuples.
These PEs can perform data transformation on per tuple basis, or can be
used to aggregate tuples in the input lists.

— Data integration PEs - given input lists of tuples, data integration operations
combine the tuples from input lists into a coherent form.

An operation has one or more inputs and one or more outputs. Inputs can be
either literals or list of tuples and a outputs are list of tuples. Operations can be
chained to form a data integration workflow - an oriented graph, where nodes
are operations and edges are connection of inputs and outputs of the operations.

The term Application Processing Element (APE) will denote a data integra-
tion workflow that can be executed at a single resource. APE is a composition
of atomic operations that provides functionality required by a data integration
task. For example, in Orava scenario we use the precipitation data from GRIB
files. The GRIB reader processing element extracts the data from GRIB files;
it has two inputs - the first is a list of GRIB files and the second is a list of
indexes in GRIB value arrays. The GRIB reader activity outputs all the values
at input indexes from all the input files. We use an operation that queries the
GRIB metadata database to determinate GRIB files of interest and another op-
eration that transform given geo-coordinates in WGS84 to the indexes consumed
by GRIB reader activity. This small workflow of three operations forms a single
APE that provides precipitation data for given time period and geo-coordinates.
The idea behind APE is to provide data integration blocks that can be executed
at a single processing or data resource and can be reused for in multiple data
integration tasks. Similarly to atomic PE, the inputs of APE can be literals or
list of tuples and outputs are list of tuples.

Environmental Scenarios in ADMIRE 171

Spatial

TEEIaTge

1

T

i

o
Discharga :
1
1
1
1
|
1

Data retrieval | representation | Missingdata | Temporal | Spatal | Data integration
| Transformation 1 handiing |synchranization | synchronization |
| | | | |
! - 1 1 1 1
S i i i i
' Grib gnd == : ! ! !
ot | coordinates H H 1 H
,r 1 1 1 1 1
i i i i i
1 1 1 1 1
e pris ! ! ! ! !
GRIB_file : GRIB_s Wdh"iﬁ! : : : :
dimension | _selector 1 1 1 1 1
! ! ! ! grib_data 1
! ! TSPYMD | ! ! ! [
: : Handler
| : | : P
GRIB !
‘ _reader T T : : :
| oul_coordinates | i i i
1 1 1 1 1
| . ! ! ! | waterworks |
—— - _3 | | | | data | TupleMaorge TupleProject
()] —] 1 e 4. A
— 1 1 1 1 1 L
oAz vRs ! i i i |
—_— T : : : : : Integrated
_— : : : : : ot
ime_peri I I I 1 I
DATA_! ! ! TSPVMD | | | hydrostation_
reservoir _selector | 1 Handler | | | | data
i i i i i
| | | | |
i i i i i
ime_period | Water temperaurs | : | Waler temperaure
statlons | Water level T i i Water lovel
T T r ry
T T | T
i i i i
| | | |
1 1 1 1
i i i i
1 1 1 1
i i i i
| | | |
I I 1 1

Fig. 3. Orava river management scenario - APEs workflow

The goal of our proposed data integration engine is to provide means of exe-
cuting data integration tasks that are composed of multiple APEs and can in-
tegrate the data from distributed, autonomous and possibly heterogeneous data
resources. Our data integration engine is designed to run the data integration
tasks, given the input parameters and the APE workflow specification.

APE workflow specification is composed of four components: definition of
APEs instances, mapping between inputs and outputs of connected APEs, map-
ping between the definition of integration task parameters and the parameter
inputs of APEs in workflow and the definition of the result output.

In alignment with ADMIRE project vision, the APEs are specified in Data
Mining and Integration Language (DMIL) [7] that is being developed within the
project. The goal of DMIL is to be a canonical representation of data integration
process, described in an implementation independent manner. The APE instance
is specified by the DMIL description of the process that should be executed, the
specification of the data/processing resource it should be executed at and APE
instance identifier that is unique within the APE workflow specification. Figure[3]
depicts the APEs workflow of the Orava river management scenario.

In our view, the main advantage of proposed data integration engine is that
user can specify sub-workflows that are executed on a separate data resources
and the engine automatically connects the results of APEs executed on dis-
tributed resources. This helps to deal with the complexity of the distributed
data integration.

172 M. Ciglan et al.

—
@ Java - Eclipse Platioem | 5
Ble Edit Mevigate Search Prowct Bun FeldAssist Window Help |
i B-O0-Q- HBHG MoV B AR A R A B,
3 5QL Resuls 3 Kk D0 3 G- = O)[& vserdssistant| & Workdiow Gragh 51 =0 -
Type query espeession here -/
St e SR [statnaterTemp
 Succesded _' esult Satistics LNl
o Succeeded |PesultSetColumns Charts _
p_hibding_max N
_hleding_rmn Time Series
h_hieding . -
- ol I—fM 1‘,‘\
Status | Resuhl val IIS- - .
vodn.. daty| Dicharge 4‘0- L"\-""'\-'\-.
- ! f
i [c:::: 200 Weterkevel 25 - N (Shationerge)
4 Cove 20 e 1206 19-dec
T o oA JutisnMergeouput,
7 O i
- Histogram
§ s5
10 50
12 40
h‘ 35
5 . Jrv——
15 25
17 20
18 15
1 10
L B
a n
F o
2 350 375 40 435 4% 475 500 55 5% 575 600
u 1 waterTomg)
b s e =
B Oaava J006-12407 010000 G084 58644 58T 1 o
I Cave 20061240 020000 G0LE4 A4 5873 L [\anbEL
B Omve 2006-12402 030000 60LB4 S84 SO3 1 4 [e
2 Onmve 20061202 040000 60184 SBSA4 8O3 1 4. L. O
T Dra 04130 _asenen smen Gess nTs s S
Tetal 430 records thown
o® Displayed 3 of 3 results: 3 succeeded, 0 £ 0 tesminated, O warning, 0 eritical errce ER R oo (ot

Fig. 4. GUI showing results of DIEED - APEs workflow and its results

3.1 Implementation

The prototype of proposed data integration engine for environmental data
(DIEED) is implemented in JAVA programming language. It uses OGSA-DAI
([8], [@]) framework as the platform for exposing data resources in the distributed
testbed and for executing the partial workflows of processing elements; it also
provide us with the data transfer capabilities and streaming of the list of tuples
between remote nodes. The data integration engine takes as inputs the integra-
tion task parameters and APE workflow specification. From the APE workflow
specification, the engine constructs an oriented graph of APEs (defined by the
mapping between inputs and outputs of APEs). For each node of the graph
(containing an APE specified in DMIL) the DIEED performs following actions:

1. Compiles DMIL code - the DMIL specification of the node process is com-
piled to JAVA class that constructs an OGSA-DAI workflow.

2. JAVA class containing OGSA-DAI workflow is compiled by JAVA compiler,
it is instantiated and OGSA-DAI workflow object is created

3. workflow object is submitted to OGSA-DAI service for execution

4. workflow execution on remote server is monitored

The whole APEs workflow is monitored during execution (providing information
on the state of each of APEs); after execution is finished, the results can be
retrieved in form of WebRowSet object.

Environmental Scenarios in ADMIRE 173

DIE was integrated with the toolkit being developed in the project; this allows
the user to submit APEs workflows, visualize the specified workflow and monitor
its execution via graphical user interface based on Eclipse platform. Figure M
depicts the graphical user interface for DIEED.

4 Conclusion

In this paper, we have presented preliminary results of our ongoing work on the
data integration engine for environmental data that is being developed in the
scope of ADMIRE project. We have first described four scenarios dealing with
the integration and mining of environmental data. The main challenge is that
the environmental data required by scenarios are maintained and provided by
different organizations and are often in different formats. Our work concentrated
on providing a platform that would allow integration of data from distributed,
heterogeneous resources. Our results allow users to construct reusable applica-
tion processing elements specified in DMIL [7] (language for data mining and
integration, which is being designed within the project) and the engine executes
them transparently on distributed data resources.

References

1. ADMIRE. EU FP7 ICT project: Advanced Data Mining and Integration Research
for Europe (ADMIRE), 2008-2011. Grant agreement no. 215024,
http://www.admire-project.eul (accessed November 2009)

2. CROSSGRID. EU FP5 IST RTD project: Development of Grid Environment for
Interactive Applications (2002-05) IST-2001-32243, http://www.eu-crossgrid.org
(accessed April 2009)

3. K-Wf Grid. EU FP6 RTD IST project: Knowledge-based Workflow System for Grid
Applications (2004-2007) FP6-511385, call IST-2002-2.3.2.8,
http://www.kwfgrid.eu (accessed August 2008)

4. MEDIGRID. EU FP6 RTD Sust. Dev. project: Mediterranean Grid of Multi-Risk
Data and Models (2004-2006) GOCE-CT-2003-004044, call FP6-2003-Global-2

5. ANFAS. EU FP5 IST RTD project: datA fusioN for Flood Analysis and decision
Support (2000-2003) IST-1999-11676

6. Finite Element Surface Water Modeling System (FESWMS),
http://smig.usgs.gov/SMIC/model_pages/feswms.html
(accessed November 2009)

7. Atkinson, M., et al.: ADMIRE White Paper: Motivation, Strategy, Overview and
Impact, v0.9 (2009)

8. Antonioletti, M., Atkinson, M.P., Baxter, R., Borley, A., Chue Hong, N.P., Collins,
B., Hardman, N., Hume, A., Knox, A., Jackson, M., Krause, A., Laws, S., Magowan,
J., Paton, N.W., Pearson, D., Sugden, T., Watson, P., Westhead, M.: The Design
and Implementation of Grid Database Services in OGSA-DAI. Concurrency and
Computation: Practice and Experience 17(2-4), 357-376 (2005)

9. Karasavvas, K., Antonioletti, M., Atkinson, M.P., Chue Hong, N.P., Sugden, T.,
Hume, A.C., Jackson, M., Krause, A., Palansuriya, C.: Introduction to OGSA-DAI
Services. In: Herrero, P., S. Pérez, M., Robles, V. (eds.) SAG 2004. LNCS, vol. 3458,
pp. 1-12. Springer, Heidelberg (2005)

http://www.admire-project.eu
http://www.eu-crossgrid.org
http://www.kwfgrid.eu
http://smig.usgs.gov/SMIC/model_pages/feswms.html

Performance Based Matchmaking on Grid

Andrea Clematis!, Angelo Corana?, Daniele D’Agostino', Antonella Galizia',
and Alfonso Quarati®

! IMATI-CNR, via De Marini 6, 16149 Genova, Italy
{dagostino,clematis,galizia,quarati}@ge.imati.cnr.it
2 IEIIT-CNR, via De Marini 6, 16149 Genova, Italy
corana@ieiit.cnr.it

Abstract. Grid Technologies supply users with high computational and
storage resources to execute demanding applications. To this end, Grid
environments must provide query and discovery tools, able to select the
most suitable resource(s) satisfying application requirements. A descrip-
tion of application and resources, grounded on a common and shared
basis, is therefore crucial to favour an effective pairing. A viable crite-
rion to match demand (job) with supply (computational resource) is to
characterize resources by means of their performance evaluated through
benchmarks relevant to the application. We introduce GREEN, a dis-
tributed matchmaker, based on a two-level benchmarking methodology.
GREEN facilitates the submission of jobs to the Grid, through the spec-
ification of both syntactic and performance requirements, independently
of the underlying middleware and thus fostering Grid interoperability.

1 Introduction

One of the primary issues in Grid Computing is the “clever” discovery and se-
lection of resources, so that a user could find quickly the resources he needs.
Unfortunately, Grid middlewares offer basic services for the retrieving of infor-
mation on single resources, and thus they are often inadequate to meet specific
user requirements. A matchmaking component (e.g. broker, matchmaker) is re-
sponsible for carrying out this supply-demand coupling process [I].

We present a methodology to improve the matchmaking process based on in-
formation about performance of computational resources. Our aim is to integrate
the information available via the Grid Information and Monitoring services by
annotating resources with both low-level and application-specific performance
metrics. These semantically relevant aspects of resources could be examined by
a/the broker to filter out the solutions that best fit application requirements. A
widespread method to measure and evaluate the performance of computer plat-
forms is through benchmarking [2]. Application-specific benchmarks are widely
acknowledged tools in the HPC domain, to measure the performance of resources
stressing simultaneously several aspects of the system. Notwithstanding, so far
application benchmarks have not been extensively considered on the Grid, due
to diversified types of applications, architectural complexity, dynamic Grid be-
havior and heavy computational costs [3].

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 172010.
© Springer-Verlag Berlin Heidelberg 2010

Performance Based Matchmaking on Grid 175

On these bases, we developed GREEN (GRid Environment ENabler), a Grid
service addressed both to Grid administrators and users. It assists administrators
in the insertion of benchmark information related to every Physical Organization
(PO) composing the Grid, and provides users with features which a) facilitate
the submission of job execution requests, by specifying both syntactic and per-
formance requirements on resources; b) support the automatic discovery and
selection of the most appropriate resources. The aim of GREEN is the discovery
of the resources that satisfy user requirements and their ordering by performance
ranking. The selection phase is left to a (meta)scheduler, allowing to apply the
preferred scheduling policies to meet specific purposes.

An important design goal of GREEN is interoperability. To this end, a unique
standard language, JSDL [4], is used to express job submission requirements,
and an internal translation to the job submission languages used by the vari-
ous middlewares is performed. Middleware independence is pursued through an
extension of JSDL based on the Glue2.0 schema [5]. Moreover, since we are in-
terested in the execution of parallel applications, we borrowed from SPMD [6]
some extensions to JSDL related to concurrency aspects.

The paper is organized as follow. Section 2 shortly describes related works;
Sect. 3 discusses the main contributions in the job and resource characterization
languages. Section 4 outlines the two-level benchmarking methodology. The de-
scription of design issues of GREEN and an analysis of the extensions operated
to existing languages are reported in Sect. 5. Section 6 gives concluding remarks.

2 Related Works

The implementation of an efficient and automatic mechanism for the effective
discovery of the resource that best suits a user job is one of the major problems
in present Grids. The Globus toolkit does not provide a resource matchmak-
ing/brokering as core service, but the GridWay metascheduler [7] was included
as an optional high-level service since June 2007. GridWay allows users to spec-
ify only a fixed and limited set of resource requirements, most of them related
to queue policies. This choice limits resource ranking, and benchmarks are not
considered at all. On the contrary gLite has a native matchmaking/brokering
service taking into account more requirements and benchmark values, although
they are fixed and the service is based on a semi-centralized approach [§].

A way to improve the efficiency of resource discovery is to drive the search to-
wards resources showing good performance in the execution of jobs with similar
or known behavior. As explained in Sect. 4, the characterization of Grid resources
based on pre-computed benchmarks seems a valid strategy to follow. The impor-
tance of benchmarking computational resources of Grids is largely acknowledged
together with its criticality [9]. Actually, besides the set of interesting parame-
ters to measure (e.g. CPU speed, memory size) different factors have to be taken
into account when considering the execution of a benchmark on Grid. Several
works proposed tools to manage and execute benchmarks on Grid. The Grid
Assessment Probes [10] test and measure performance of basic Grid functions,

176 A. Clematis et al.

such as job submission, file transfers, and Grid Information Services (ISs). The
GridBench tool [11] provides a graphical interface to define, execute and admin-
istrate benchmarks, also considering interconnection performance and resource
workload. The NAS Grid Benchmark (NGB) suite [12] defines a set of compu-
tationally intensive benchmarks representative of scientific, post-processing and
visualization workloads. A brokering mechanism based on benchmarking of Grid
resources is proposed in [I3]. However, the scope of the broker is focused on the
ARC middleware and the NorduGrid and SweGrid production environments,
and it adopts xRSL, an extension of RSL, to submit users jobs.

3 Resource and Job Characterization

To accomplish the matchmaking task, a proper description of resources is re-
quired both on owner and job/user side. To this end, different projects and
research groups have proposed different languages.

On the resource-side, adequate information is required to advertise resource
static (e.g. OS, number of processors) and dynamic (e.g. number of executing
tasks, amount of free memory) properties. Actually, the main efforts in the di-
rection of a standard resource-language come from the GLUE (Grid Laboratory
Uniform Environment) Working Group, which deployed the Glue schema [5]. It
is a conceptual model of Grid entities comprising a set of information specifica-
tions for Grid resources; an implementation through an XML Schema is given
n [T4]. As the schema has evolved, different versions have been used by various
middlewares, leading to the Glue 2.0 specification. It foresees the benchmarking
characterization of resources by specifying the Benchmark t complex type ref-
erencing benchmarks of type defined by BenchmarkType t. Through the latter,
an open and extensible enumeration type, it is possible to specify a benchmark
amongst a list of six values (e.g. specint2000, specfp2000, cint2006). Other values
compatible with the string type and the recommended syntax are allowed.

On the client-side, a job submission request expressed via a Job Submis-
sion Languages (JSL), in addition to stating the application-related attributes
(e.g. name and location of source code, input and output files), should express
syntactic requirements (e.g. number of processors, main memory) and ranking
preferences (if any) to guide and constraint the matching process on resources.

The Job Description Document (JDD) [15], introduced by Globus Alliance
with the Web Services versions of the Globus Toolkit, defines an XML language
closer to the XMLish dialects used in the WSRF family. The main purpose of a
JDD document is to set the parameters for the correct execution of a job. The
selection of the facilities to use has to be performed in advance by interacting
with the WS MDS services of the available resources. In the JDD schema, it is
possible to specify only few requirements, as the minimum amount of memory,
or to set useful information as the expected maximum amount of CPU time. It
is however possible to extend the schema with user-defined elements.

The Data Grid Project proposed the Job Description Language (JDL), af-
terwards adopted by the EGEE project [I6]. A JDL document contains a flat

Performance Based Matchmaking on Grid 177

list of argument-value pairs, specifying two classes of job properties: job specific
attributes and resources-related properties (e.g. Requirements and Ranks) used
to guide the matching process towards the most appropriate resources. These
values can be arbitrary expressions, which use fields published by resources in
the MDS, and are not part of the predefined set of attributes for the JDL, as
their naming and meaning depend on the adopted Information Service schema.
In this way, JDL is independent of the resources information schema adopted.
The Job Submission Description Language (JSDL) developed by the JSDL-
Working Group [4] of the Global Grid Forum, aims to synthesize consolidated
and common features present in other JSLs, obtaining a standard language for
the Grid. JSDL contains a vocabulary and normative XML Schema facilitating
the declaration of job requirements as a set of XML elements. Likewise JDL,
job attributes may be grouped in two classes. The Jobldentification, Applica-
tion and DataStaging elements describe job-related properties. The Resources
element lists some of the main attributes used to constraint the selection of the
feasible resources (e.g. CPUArchitecture, FileSystem, TotalCPUTime). As only
a rather reduced set of these elements is stated by the JSDL schema, an exten-
sion mechanism is foreseen. Examples of JSDL extension able to capture a more
detailed description of the degree of parallelism of jobs are presented in [6I7].

4 A Two-Level Benchmarking Methodology

To describe Grid resources, we propose a two-level methodology aimed to give a
useful enriched description of resources and to facilitate the matchmaking pro-
cess. Our methodology considers two approaches: I) the use of micro-benchmarks
to supply a basic description of resource performance; IT) the deployment of
application-driven benchmarks to get closer insight into the behavior of resources
under more realistic conditions of a class of applications. Through application-
driven benchmarks, it is possible to add an evaluation of the resources on the
basis of the system indicators that are more stressed by an application. Our
present aim is to provide a proper description of Grid resources in isolation, i.e.
without considering complexity aspects of Grid environments. Future develop-
ments of this work would capture some of these aspects.

4.1 Micro-benchmarks

In order to supply a basic resource characterization, mainly based on low-level
performance capacity, we consider the use of traditional micro-benchmarks. To
this aim, a reasonable assumption is that the performance of a machine mainly
depends on CPU, memory and cache, and interconnection performance [I§];
therefore, we individuated a concise number of parameters to evaluate aimed to
provide an easy-to-use description of the various nodes. Table [I] shows resource
properties and related metrics measured by the employed micro-benchmarks.
The micro-benchmarks used in this phase generally return many values. To
obtain results usable in the matchmaking process, we considered for each bench-
mark synthetic parameters or the most significant value. They are used to charac-
terize resources by populating the benchmark description managed by GREEN.

178 A. Clematis et al.

Table 1. Low-level benchmarks and related metrics

Resource capability CPU Memory Memory-Cache Interconnection 1/0
Metric MFLOPS MBps MBps MBps MBps
Benchmark Flops Stream CacheBench Mpptest Bonnie

4.2 Application-Specific Benchmarks

Micro benchmarks are a good solution when the user has little information about
the job he is submitting, and for applications that are not frequently executed.
Indeed, very often the participants to a Virtual Organization have similar aims,
and therefore it is possible to identify a set of the most used applications. In these
cases the most suitable approach is to evaluate system performance through
application-specific benchmarks that approximate at best the real application
workload. These benchmarks represent the second level of our methodology.

As case studies we considered applications of our interest, i.e. image process-
ing, isosurface extraction, and linear algebra. For the first two classes, we choose
a light version code aiming to emphasize precise aspects of the code. For image
processing, we selected a compute intensive elaboration applied to a reference
image of about 1 MB; in this way CPU metrics are mainly stressed. The isosur-
face extraction application provides a more exhaustive performance evaluation
of the system, as it also heavily involves I/O operations. In this case, we consid-
ered the processing of a small 3D data set of 16 MB, producing a result of 67
MB. On the contrary, to represent the class of applications based on linear alge-
bra, we used the well known Linpack benchmark [I9]. The metric considered is
execution time, the results are stored in the internal data structure of GREEN.

5 Benchmark-Driven Matchmaking

A huge gap separates users and resources, and tools that allow the two parts to
better come to an agreement are highly useful. In [20] we presented GREEN, a
Grid service based on a distributed and cooperative approach for Grid resource
discovery. It supplies users with a structured view of resources (single machines,
homogeneous and heterogeneous clusters) at the PO level, and leverages on an
overlay network infrastructure which connects the various POs constituting a
Grid. For each PO, a GREEN instance is deployed to keep updated information
about the state of all PO’s resources, and to exchange them with other GREEN
instances in the discovery phase.

In this work, we describe an advanced version of GREEN able to charac-
terize Grid resources through benchmark evaluations. Acting as a distributed
matchmaker, GREEN manages and compares the enriched view of resources
with user-submitted jobs, with the goal of selecting the most appropriate re-
sources. Operating at intermediate level between applications (e.g. schedulers)
and middleware, GREEN aims to discover the whole set of resources satisfy-
ing user requirements ordered by ranks. The selection of a particular resource

Performance Based Matchmaking on Grid 179

is left to a (meta)scheduler, to which the resources set is forwarded, to apply
the preferred scheduling policies optimizing target functions (e.g. Grid through-
put, QoS). Once the “best” resource is chosen, GREEN will be re-invoked to
carry-out the submission of the job on it, via the Execution Environment (EE).

5.1 Benchmarking Grid Resources

GREEN supplies Grid administrators with the facility of submitting, executing
benchmarks (both micro and application-related) against the resources belonging
to a certain administrative domain (PO), and storing results.

To support the matching mechanism (i.e. the comparison with resources infor-
mation contained in the previously acquired XML) the benchmark-value copies
are directly represented as Glue entities according to the XML reference realiza-
tions of Glue 2.0. By employing the openness of BenchmarkType t (as recalled
in Sect. 3), the set of recognized benchmarks is extensible without any change
to the document schema. An example of a benchmark document related to the
execution of micro-benchmark Flops against the resource identified by the IP
150.145.8.160, resulting in 480 MFlops is:

<Benchmark>
<LocalID>150.145.8.160</LocalID>
<Type>MFlops</Type>
<Value>480</Value>
<BenchLevel>micro</BenchLevel>
</Benchmark>

Through the use of the extension mechanism defined in Glue specification, we
enriched the Benchmark t type by adding the element BenchLevel which specifies
the benchmark level (by accepting two string values micro and application)
according to our two-level methodology.

Once a benchmark is executed and its results collected, an XML fragment,
similar to the one reported above, is created for each resource and inserted in
an XML document (namely Benchmark image), managed by GREEN, which
collects all benchmarks evaluation for the PO.

5.2 Extending JSDL

The counterpart of benchmarking resources is the ability for users submitting a
job to express their preferences about the performance of target machines. As
explained in Sect. 3, both JDD and JSDL do not provide any construct to this
aim. We introduce an element Rank (of complex type Rank Type) devoted to
this task, which embeds a sub-element BenchmarkType t corresponding to the
one contained in our extension of the Glue Schema. In the context of JSDL, the
Value sub-element (see list below) is to be intended as a threshold to be satisfied
by the corresponding Value (related to the benchmark stated by Type) contained
in the Benchmark element of any resource to be selected by the matchmaker.

180 A. Clematis et al.

<?xml version="1.0" encoding="UTF-8"7>
<jsdl:JobDefinition
xmlns:jsdl="http://schemas.ggf.org/jsd1/2005/11/jsd1l"
xmlns:posix="http://schemas.ggf.org/jsdl/2005/11/jsdl-posix"
xmlns:spmd="http://schemas.ogf.org/jsd1l/2007/02/jsdl-spmd"
xmlns:rank="http://saturno.ima.ge.cnr.it/ima/jsd1/2009/01/jsdl-rank">
<jsdl:JobDescription>
<jsdl:Application>
<jsdl:ApplicationName>ParIsoExtrctn</jsdl:ApplicationName>
<spmd:SPMDApplication>
<posix:Executable>parisoextraction</posix:Executable>
<posix:Argument> inputvolume.raw</posix:Argument>
<posix:Argument>200</posix:Argument>
<posix:Qutput>isosurface.raw</posix:0Output>
<spmd : Number0fProcesses>4</spmd:NumberOfProcesses>
<spmd:ProcessesPerHost>2</spmd:ProcessesPerHost>
<spmd:SPMDVariation>http://www.ogf.org/jsd1l/2007/02/
jsdl-spmd/MPICH2<spmd:SPMDVariation/>
</spmd: SPMDApplication>
</jsdl:Application>
<jsdl:Resources>
<jsdl:OperatingSystemType>
<jsdl:0OperatingSystemName>LINUX</jsdl:0OperatingSystemName>
</jsdl:0peratingSystemType>
<rank:Rank>
<rank:Type>IsoSurface_Benchmark</rank:Type>
<rank:Value>300</rank:Value>
<rank:BenchLevel>application</rank:BenchLevel>
</rank:Rank>
</jsdl:Resources>
</jsdl:JobDescription>
</jsdl:JobDefinition>

As we are interested in the execution of parallel applications, we borrowed from
SPMD [6] an extension to JSDL that supports users with a description set of ap-
plications and resources related to concurrency aspects (e.g. number of processes,
processes per host). An example of an extended JSDL document is presented, it
contains the extensions related to parallel requirements, along with our extension
to rank resources on benchmark specification. The document is requesting for
nodes able to execute the application-level “IsoSurface Benchmark” in no more
than 300 time units. Note how the Rank element has been located inside the
Resource one, according to the extension mechanism provided by JSDL schema.

5.3 Distributed Matchmaking Process

Figure [0l shows the main components of a GREEN instance along with some
of their interactions with other middleware services, notably IS and EE, by
considering a Grid composed of three POs. The Job Submission (JS) component
receives requests of jobs submission initiated by users; depending on the activa-
tion mode it behaves just like a messages dispatcher or as a translator of JSL

Performance Based Matchmaking on Grid 181

documents, carrying out their subsequent submission to the EE. The Benchmark
Evaluation (BE) supports administrators in the performance-based characteri-
zation of PO resources. The Resource Discovery (RD) is in charge of feeding
GREEN with the state of Grid resources. RD operates both locally and globally
by carrying out two tasks: 1) to discover the state of the PO resources; 2) to
dispatch requests to other GREEN instances. As to the first task, RD dialogues
with the underlying IS (e.g. MDS, gLite IS) that periodically reports the state
of the PO in the form of an XML file conformed to the Glue version adopted by
the underlying middleware. This document (namely the PO snapshot) is stored,
as it is, and managed by GREEN to answer to external queries issued by various
clients (e.g. other GREEN instances, meta-schedulers). To deal with different un-
derlying middlewares transparently to Grid users and applications, the syntactic
differences among the various versions of Glue are managed by GREEN through
a conversion mapping at matching time. To accomplish the dispatching task,
RD handles the so-called neighbors view. Depending on the number of POs, i.e.
GREEN instances running, their management could consider different strategies,
whose description is beyond the scope of the paper. The Matchmaker performs
the matching among resources in the Grid, and their subsequent ranking, with
the requirements expressed by the users through the application submission doc-
ument. More in detail: a user submits an extended JSDL document through a
Grid portal (1). The document is managed by the Resource Selector component,
which initiates the distributed matchmaking by forwarding it to the JS compo-
nent of a randomly selected GREEN instance (2) (e.g. PO2). JS activates the
Matchmaker (3). This instance of matchmaker, namely the Master Matchmaker

,___5902’,___5\ o \0 3 — _— |
RIDEE)(_GRIDIS)| {(GRIDEE) (_GRIDIS)

~

Matchm.

D
Global
st
JSDL a
ot JSDL
“— ext
13| [[setecton] 2D JsoL
axt

\Resource Selector—Grid Portal

Fig. 1. Example of the matching phase with three GREEN instances

182 A. Clematis et al.

(MM), is responsible to provide the set of candidate resources to the Resource
selector for this specific request. MM through RD forwards the document to
all the other known GREEN instances and contemporaneously checks its local
memory (4-5). All the matchmakers filter their PO snapshot selecting the set of
PO resources satisfying the query. By analyzing the pre-computed Benchmark
image, the satisfying resources with a Value element (for the chosen benchmark)
that fulfils the threshold fixed in the corresponding Rank element of the JSDL
document are extracted. The resources identifiers and their corresponding bench-
mark values are included in a list, called PO list which is returned to MM (6-10).
MM merges these lists with its own PO list, producing a Global List ordered on
the ranking values. The Global list is passed to JS (11) which returns it back
to RS (12). Besides applying the selection policy to determine the resource to
use, the Resource Selector calls the JS of the GREEN responsible of the PO
owning the selected machine (GREEN POls instance in our case), by sending
it the extended JSDL document along with the data identifying the selected
resource (13). JS translates the information regarding the job execution of the
original JSDL document in the format proper of the specific PO middleware,
stating the resource on which the computation takes place. In particular, it will
produce a JDD document for GT4 resources or a JDL document for the glLite
ones. Finally, it activates the Execution Environment in charge of executing the
job represented in the translated document (14).

6 Conclusions

To fill-in the gap separating users and resources, we designed GREEN, a dis-
tributed matchmaker providing Grid users with features to facilitate the submis-
sion of job execution requests containing performance requirements, in order to
support the automatic discovery and selection of the most suitable resource(s).
GREEN relies on a two-level benchmarking methodology: resources are char-
acterized by means of their performance evaluated through the execution of
low-level and application specific benchmarks. According to our methodology,
every resource of a PO is tagged with the results obtained through the two levels
of benchmarks and hence selectable, on performance basis, during the match-
making phase. To ensure a good degree of independence from the underlying
middlewares, GREEN leverages on two standards such as JSDL and Glue, that
have been properly extended to take into account the performance-based de-
scription of resources.

References

1. Bai, X., Yu, H., Ji, Y., Marinescu, D.C.: Resource matching and a matchmak-
ing service for an intelligent grid. International Journal of Computational Intelli-
gence 1(3), 163-171 (2004)

2. Hockney, R.W.: The science of computer benchmarking. In: Software, environ-
ments, tools. STAM, Philadelphia (1996)

ot

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

Performance Based Matchmaking on Grid 183

. Dikaiakos, M.D.: Grid benchmarking: vision, challenges, and current status. Con-

currency and Computation - Practice & Experience 19(1), 89-105 (2007)

. Anjomshoaa, A., Brisard, F., Drescher, M., Fellows, D., Ly, A., McGough, S., Pul-

sipher, D., Savva, A.: Job Submission Description Language (JSDL) Specification
v1.0. Grid Forum Document GFD, 56 (2005)

. Andreozzi, S.: GLUE Specification v. 2.0, rev. 3 (2009)
. Savva, A. (ed.): JSDL SPMD Application Extension, Version 1.0. Grid Forum

Document GFD.115, Open Grid Forum, OGF (2007)

. Huedo, E., Montero, R.S., Llorente, I.M.: A Framework for Adaptive Scheduling

and Execution on Grids. Software - Practice & Experience 34(7), 631-651 (2004)

. gLite 3.1 User Guide, Doc. CERN-LCG-GDEIS-722398 (January 7, 2009),

https://edms.cern.ch/file/722398/1.2/glite-3-UserGuide.html

. Nadeem, F., Prodan, R., Fahringer, T., Tosup, A.: Benchmarking Grid Applica-

tions for Performance and Scalability Predictions. In: CoreGRID Workshop on
Middleware. Springer, Dresden (2007)

Chun, G., Dail, H., Casanova, H., Snavely, A.: Benchmark probes for grid as-
sessment. In: 18th International Parallel and Distributed Processing Symposium
(IPDPS 2004), Santa Fe, New Mexico, USA. IEEE Computer Society, Los Alamitos
(2004)

Tsouloupas, G., Dikaiakos, M.D.: GridBench: A Tool for the Interactive Perfor-
mance Exploration of Grid Infrastructures. Journal of Parallel and Distributed
Computing 67, 1029-1045 (2007)

Frumking, M., Van der Wijngaart, R.F.: NAS Grid Benchmarks: A tool for Grid
space exploration. Cluster Computing 5(3), 315-324 (2002)

Elmroth, E., Tordsson, J.: Grid resource brokering algorithms enabling advance
reservations and resource selection based on performance predictions. Future Gen-
eration Computer Systems 24(6), 585-593 (2008)

GLUE v. 2.0 Reference Realizations to Concrete Data Models (2008)

Job Description Document,
http://www.globus.org/toolkit/docs/4.0/execution/wsgram/schemas/

gram job description.html

Job Description Language, https://edms.cern.ch/file/555796/1/
EGEE-JRA1-TEC-555796-JDL-Attributes-v0-8.pdf

Rodero, 1., Guim, F., Corbal, J., Labarta, J.: How the JSDL can Exploit the
Parallelism? In: Sixth IEEE International Symposium on Cluster Computing and
the Grid (CCGRID 2006), pp. 275-282 (2006)

Tsouloupas, G., Dikaiakos, M.: Characterization of Computational Grid Resources
Using Low-level Benchmarks. In: Proceedings of the 2nd IEEE International Con-
ference on e-Science and Grid Computing. IEEE Computer Society, Los Alamitos
(2006)

Brent, R.: The LINPACK Benchmark on the AP 1000. Frontiers, pp. 128-135,
McLean, VA (1992)

Clematis, A., Corana, A., D’Agostino, D., Gianuzzi, V., Merlo, A., Quarati, A.: A
distributed approach for structured resource discovery on Grid. In: Int. Conference
on Complex, Intelligent and Software Intensive Systems, Barcelona, pp. 117-125.
IEEE Computer Society, Los Alamitos (2008)

https://edms.cern.ch/file/722398/1.2/gLite-3-UserGuide.html
http://www.globus.org/toolkit/docs/4.0/execution/wsgram/schemas/gram_job_description.html
http://www.globus.org/toolkit/docs/4.0/execution/wsgram/schemas/gram_job_description.html
https://edms.cern.ch/file/555796/1/EGEE-JRA1-TEC-555796-JDL-Attributes-v0-8.pdf
https://edms.cern.ch/file/555796/1/EGEE-JRA1-TEC-555796-JDL-Attributes-v0-8.pdf

Replica Management for National Data Storage

Renata Slota!, Darin Nikolow!, Marcin Kuta', Mariusz Kapanowski',
Kornel Skatkowski!, Marek Pogoda?, and Jacek Kitowski'-?

! Institute of Computer Science, AGH-UST, al. Mickiewicza 30,
30-059, Krakéw, Poland
2 Academic Computer Center CYFRONET-AGH, ul. Nawojki 11,
30-950 Krakéw, Poland
{darin,rena,kito}@agh.edu.pl

Abstract. National Data Storage is a distributed data storage system
intended to provide high quality backup, archiving and data access ser-
vices. These services guarantee high level of data protection as well as
high performance of data storing and retrieval by using replication tech-
niques. In this paper some conceptual and implementation details on
creating a Prediction and Load Balancing Subsystem for replica manage-
ment are presented. Preliminary real system test results are also shown.

1 Introduction

National Data Storage (NDS) is a distributed data storage system intended to
provide high quality backup, archiving and data access services [I]. These services
are capable of providing high level of data protection, data availability and data
access performance. In order to guarantee these things replication techniques are
used. Two problems arise with using this approach: selecting physical storage
locations for newly created replicas and choosing the best replica for a given data
transfer. If these problems are properly solved we can count on decreasing the
access time to data. A side effect of using geographically distributed replicated
data sets is also higher network and storage total throughput.

The client access to NDS is provided by Access Nodes (ANs). ANs spread over
the country are located in national computer centers having direct links to the
NDS Pionier backbone network [2]. The general idea is that client requests come
via different ANs and the requested data is served by the most appropriate
Storage Node (SN), selected separately for each request, being the one which
can provide requested data fastest. In this way some natural load balancing is
achieved depending on the client access pattern.

One of the tasks in the NDS project is to build a replica management sub-
system with the high performance of data transfers in mind. This subsystem is
called Prediction and Load Balancing Subsystem (PLBS). This paper presents
some conceptual and implementation details on creating PLBS. Essential part
of this research concerns replication and the development of replication policies,
which should help achieving reasonable level of storage load balancing. These
policies, described further, are based on the storage model mentioned above.
Preliminary test results are also shown.

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 184 2010.
© Springer-Verlag Berlin Heidelberg 2010

Replica Management for National Data Storage 185

The rest of the paper is organized as follows: The next section presents the
state of the art. The third section describes the Hierarchical Storage Management
(HSM) model used in this research and how it is represented in the database
tables. The forth section gives some overview of the replication strategies used
in the system. The test results are presented in the fifth section and the last
section concludes the paper.

2 State of the Art

In [3] five replication strategies for read only data are presented. The strategies
have been tested using three different access patterns. The study assumes tiered
network with a central data source. Similar network model having constant stor-
age nodes locations in the network hierarchy is studied in [4]. Park et al. in [5]
study replication with another network hierarchy with no central storage node,
where the node distance is expressed as link bandwidth. Their technique might
be better in the case when the Internet is used for data transfer.

The mentioned studies assume static hierarchy and do not take into account
the dynamic changes of bandwidth and latency resulting from the load of dis-
tributed system. In [6] an attempt to cope with this problem has been made.
For replica selection they propose a neural net based algorithm predicting the
network transfer time of a replica. Another example of research on replica access
time prediction based on previous data transfers measurements is [7] in which
the Markov chains are used for prediction.

Authors of paper [8] propose 3 heuristic algorithms for selecting the location of
new replica based on network latency parameters and number of client requests
observed in a certain time interval from the past. Fair-Share replication presented
in [9] for choosing new replica location takes into account previous access load of
server as well as availability of storage device represented by their storage load.
In this way better load balancing among the storage servers is achieved.

Tests of the proposed replication strategies in the studies mentioned by now
are conducted by using simulations. Results of real implementation of pro-
posed models and strategies using monitoring of existing storage environment
are shown in [TI0] and in their previous studies. The presented in these papers
replication algorithms embody, besides the data access cost imposed by the net-
work, also the cost caused by storage devices capabilities. In the case when a
distributed storage system uses high bandwidth network it turns out that the
system bottleneck are the storage devices, which bandwidth can be additionally
limited according to their actual access load.

The majority of replica selection algorithms assumes that many users access
the same data sets. In the case of data storage service holding mainly private
user data, users will rather access their own particular files (holding backups or
archives). That is why, essential in this case is access load balancing increasing
the overall system utilization and thus reducing the access cost. In the proposed
solution essential part of the process of existing replica selection and the pro-
cess of new replica location selection is focused on the evaluating of storage

186 R. Slota et al.

system performance and evaluating of server load. The evaluation is based on
the adopted Common Mass Storage System Model (CMSSM) proposed in [I1].

3 PLBS Architecture

Prediction and Load Balancing System (PLBS) is responsible for load balancing
of data access requests among the storage nodes being part of the NDS. PLBS
consists of three subsystems (see Figlll): adopted JMX Infrastructure Monitoring
System (JIMS) [12], database for keeping the values of monitored parameters
and Advanced Monitoring and Prediction Daemon (AMPD).

The JIMS based monitoring system consists of Monitoring Agents (JIMS MA)
installed on every HSM system being part of NDS, JIMS Gateway collecting data
from the agents and storing it to PLBS database. The AMPD is responsible for
proposing the best replica and location according to the chosen replication policy
(see section [H]). One of the requirements for the AMPD is that it must quickly
respond, so the user requesting a storage operation does not experience system
or data unavailability. Monitoring parameters are measured cyclically by back-
ground threads and are stored in the database. In this way the actual parameters
(for a certain time interval) can be quickly retrieved from the database and the
AMPD can return the results.

The HSM monitoring parameters are derived from the CMSSM model pro-
posed in [II]. The model specifies essential parameters of HSM systems which
need to be monitored for later use by system performance prediction algorithms.
Two types of parameters have been defined: static parameters changing their val-
ues rarely and dynamic parameters changing their values frequently. Part of the
model used by the replication policies implemented in PLBS so far is presented
below along with the database description.

\ Monitoring Node |
' PLBS :
! JIMS
! Gateway Database AMPD '
! 73 :
1 \ [
1 1
: ¥ : =
1 JIMS JIMS JIMS !
//'/

JoILMA L JLMA T MA T AN

HsM LH msm U Hsm p—

System System System

Krakow SN Poznan SN Wroclaw SN

Fig. 1. The PLBS architecture

Replica Management for National Data Storage 187

4 The PLBS Database

The goal of the PLBS database is to collect monitored parameters (from the
CMSSM model) of distributed nodes in a single place. The approach to store
current values of monitored parameters in a database has been chosen, because
it allows to completely separate a application logic layer from a monitoring layer.

| static_server_parameters . dynamic_server_parameters |

8
| static_hsm_parameters |"_"3 dynamic_hsm_parameters

dynamic_hsm_parameters_history |

8 .
static_library_parameters lﬂ static_drive_parameters |

| dynamic_drive_parameters |

§
dynamic_library_parameters ° dynamic_pool_parameters |

dynamic_tape_parameters |

Fig. 2. The PLBS database diagram

The PLBS database is realized in the standard relational model and conforms
to the CMSSM model. The structure of the database is derived from the structure
of the monitored systems, which means that the database tables suit to essential
HSM components, such as: libraries, drives, pools, tapes, disk cache, etc. The pa-
rameters, stored in the database, are divided into two groups: static parameters
and dynamic parameters. A simple diagram showing relations between the PLBS
database tables is shown in Fig.[2l The table columns specification is omitted for
simplicity. The dynamic hsm parameters history table stores history of changes
of the dynamic HSM parameters. This table allows the application logic layer to
make decisions based not only on the current values of parameters, but also on
their statistical values over a certain time period.

Table[lpresents summary of the static parameters stored in the PLBS database,
which are used in the replication policies. Updates of these parameters are per-
formed only on user’s demand, for example after a HSM system reconfiguration.
Some of these parameters constitutes average values (like average disk cache trans-
fer rate), which are provided by external measurements.

Table BI presents summary of the dynamic parameters stored in the PLBS
database, which are used in the NDS replication policies. These parameters are
updated periodically. The update interval is set manually in the PLBS configu-
ration files.

188

R. Slota et al.

Table 1. Description of static parameters used in the replication policies

Parameter name

Description

Implementation

The value of this parameter
is estimated as a sum of disk
cache capacities

The value of this parameter is
received from the df UNIX sys-
tems command.

The value of this parameter
is measured by special bench-
marks.

The value of this parameter

TotalCapacity Estimated total capacity of
a storage system installed on
a single server.

TotalDCCapacity Total capacity of a single
HSM system disk cache.

AverageDCReadRate Estimated value of average
disk cache read transfer rate.

AverageDCWriteRate Estimated value of average
disk cache write transfer
rate.

NumberOfLibraries Total number of tape li-

braries connected to a single

server.

is measured by special bench-
marks.

The value of this parameter
is received from configuration
files.

Table 2. Description of dynamic parameters, which are used in the replication policies

Parameter name Description

FreeCapacity Estimated free capacity of a
storage system installed on a
single server.

FreeDCCapacity Free space in a single HSM
system disk cache.

CurrentRate Transfer rate value from the
last measurement.

HSMLoad Number of requests waiting

or being processed by the
HSM system.

5 Replication Policies

Implementation

The value of this parameter is esti-
mated as a sum of free tapes capac-
ity.

The value of this parameter is ob-
tained from the df UNIX systems
command.

The value of this parameter is mea-
sured by periodically.

The value of this parameter is re-
ceived from the dsmq command for
the Tivoli Storage Manager (TSM)
systems and from the fsejob com-
mand for the File System Extender
(FSE) systems.

The selection of SN for a given data access request is done by heuristic methods
taking into account relevant monitoring parameters described in the previous
section. Depending on the user profile an appropriate method (called further
policy) is used. The AMPD component implements 4 replication policies: reading
in shortest time - R ST, reading from the minimally loaded device - R ML,
writing replicas of big files - W BF, writing replicas to the minimally loaded
device - W ML. Each policy selects the location, for which the value Loc, defined

in equations [l is maximized.

Replica Management for National Data Storage 189

The R ST policy is defined by:

RD cT 1
Loc= oy - + aso - + a3

: 1
RD yiow RD 1+ HL’ (1)

where RD — average disk cache read transfer rate, RDp;,, — maximal value of
average disk cache read transfer rate, taken over all locations, CT — current
transfer rate, HL — hsm load, }_,c; 33 @ = 1, a; > 0. The exact meaning of
these values is given in Tables [Il and

Equation () expresses the R ML policy:

ND 1 1

Loc = - + o - ﬁ3.1+CL’

2
NDMaz 1+HL+ ()

where ND — number of drives, ND ;.. — maximal value of number of drives,
taken over all locations, CL — CPU load, Zie{l..fi} Gi=1,5;>0.

Each writing policy determines first whether enough free space is available in
a HSM system. Equation [defines the W BF policy.

FCpc FC WR 1

Loc = ~; - . . . ,
oc =", + ¥2 TC+73 WRMM—F% 1+ HL

TC pe 3)

where FC'pc — free disk cache capacity, TC pc — total disk cache capacity, FC —
free capacity, TC — total capacity, WR — average disk cache write transfer rate,
WRra: — maximal value of average disk cache write transfer rate, taken over
all locations, Zie{luél} v =1, >0.

The policy W ML is defined by equation (]

FC WR 1
Loc =6y, "¢ + 6, +53‘1+HL’

. 4
TCDC WRMax ()

where Zie{l..fi} 6;=1,6; >0.

a, B, v and § are coefficients specifying the impact of the particular monitoring
parameters being used in the above formulas. They need to be tuned for the given
environment. The above policies are chosen according to the client profile making
request and the type of the request. For instance, if the client has defined in the
profile that it needs the data as fast as possible than the R ML policy is chosen.

6 Test Results

Three types of tests has been conducted:

— Monitoring influence tests - showing PLBS impact on the performance of
the monitored HSM systems,

— Response time tests - showing the time of PLBS responds to prediction
queries,

— Load balancing tests - showing data access requests distribution among the
storage nodes in multi user and multi requests data access paradigm.

190 R. Slota et al.

Table 3. Test environment nodes

name location type CPU HSM tape drives HSM cache [GB]

smok Krakow SN 2xXeon 3.3GHz HP FSE 4x LTO 2000

worm Poznan SN 2xXeon 2.8GHz IBM TSM 3x LTO 400
kmd-pilot3 Wroclaw SN 2xXeon 2.8GHz IBM TSM none 8

kmd2 Krakow MN 2xXeon 2.8GHz na na na

SN - Storage Node, MN - Monitoring Node.

The tests have been conducted in the following environment: 4 nodes described
in detail in Table Bl and connected via Pionier network with 1Gb links.
The results are presented in the following subsections.

6.1 Influence Tests

In order for the JIMS to retrieve monitoring data from storage nodes a monitor-
ing agent (JIMS MA) (see Figll)) needs to be present on these nodes. The goal
of these tests is to measure the influence to performance of storage system when
the JIMS MA is running on the same node. These tests were performed on the
smok SN (see TableB]). This HSM system is in production and the measurements
were done during periods of low activity. The smok SN is an HP Proliant DL580
server running File System Extender (FSE) under Linux RHEL5. The main disk
storage of the server resides on HP EVA8000 disk array and is attached via 2 FC
2Gb/s links. Repeated patterns of simulated users activities were generated by

160

) (\ "total reads
g 120 m H m total writes .
s oL i =
x 40 I "‘,‘ R
o L -
0 300 600 900 1200 1500 1800
w 60 T T
) user data rate (read) -
2 40
o \ A L
_— 20 : \ \\' ’\ ,JH,/‘“ - . ’/‘ . \,A, I “ .
=) 0 h -
0 300 600 900 1200 1500 1800
~ 120 ‘ ‘
£ 100 %CPU system —— |
c M %CPU iowait -
.% 80 [+ s ; %CPU idle ------- .
S 60 by L ety L S
E 40 b {] \\ i BN f.f\?‘ \\ H NSNS I{ W\
o) : [o ' /
2 ; b S G o
% g ; ?\/LA/V\AMWW 'L,” \’\M_/\/\MN/\«/\\/J‘\ NN s
0 300 600 900 1200 1500 1800

time [s]

Fig. 3. An example result of monitoring influence test

Replica Management for National Data Storage 191

ftp transfers from other hosts (HSM clients). The JIMS MA performed measure-
ments every 10 minutes. Disk reads and writes generated by the measurements
had little impact (maximum 5%) on overall execution times of data transfers to
and from clients. An example test result is shown in Fig. B

The most influence of JIMS MA activity on users data transfers occurs in
short periods when the agent measures disk write performance used to calculate
AverageDCWriteRate (see Table[D]). The system utilization statistics come from
sar program. The user data rates were taken from network traffic statistics as
there was no other network traffic on the server during the tests.

6.2 Response Tests

Response tests measure the time of processing prediction requests to AMPD.
Table [presents test results for the implemented replication policies. Each value
is taken as an average over 5000 requests. We distinguished two cases: (1) the
client is on the same machine that AMPD, (2) the client is located remotely
to the AMPD component. For each of these two cases the time of processing a
request by AMPD (AMPD columns) and time of processing a request together
with communication overhead (client columns) are provided.

Table 4. Time of serving prediction requests

Response time [ms]

Replication policy local remote
AMPD client AMPD client
Reading in shortest time 2791 31.19 29.46 87.01
Reading from the minimally loaded device 19.42 23.99 21.19 84.60
Writing big files 17.15 21.72 1741 79.33

Writing to the minimally loaded device 14.50 17.75 16.05 77.60

We can see that the response times are acceptable for all policies and they do
not exceed 90 ms for remote clients. The network overhead has great influence
on the final response times - without it the processing time is less than 30 ms.

6.3 Load Balancing Test

Load balancing test shows how the requests get distributed among the storage
nodes. One monitoring node and three storage nodes have taken part in this test
(see Table). A script requesting a new replica location prediction and placing
data in the result location has been executed on one of the ANs. The script
starts new requests until 5 concurrent transfers get present. When a transfer is
over another request is started. 5000 requests have been done in 20 hours.

Figure M provides results of prediction tests for the W BF policy with the
following coefficient values: v, = 0.6, 72 = 0.2, 73 = 0.1 and 4 = 0.1. Each
point represents the fraction of requests for which a particular host has been
selected within the time interval of 1 h.

192 R. Slota et al.

smok —=—

100 1 o

< 80 r 1kmd-pilot3 -
‘@ 60]
3 40 i

=}
§ 20}]
(N ,
0

time [h]

Fig. 4. Replication tests for W BF policy

We can see that the requests are distributed between the nodes according to
their storage processing power - the most powerful host (smok) has served the
majority of requests. Periodic change of the leader occurs because monitoring
data are put into the database in 30 min intervals.

7 Summary and Future Work

In this paper the PLBS subsystem being a part of the NDS system has been pre-
sented. The system makes use of replication techniques to increase availability
and performance of data access. Monitoring parameters, methods for retrieving
them and replication policies have been described. The influence tests showed
that the monitoring did not cause essential storage system performance degrada-
tion. The system response times are within the tens of milliseconds range which
is satisfying. Load balancing test shows that requests get distributed between
the nodes proportionally according to their storage processing power. In the
near future we plan to extend the set of available policies according to client
requirements and to conduct the tests when NDS will be in production.

Acknowledgments

This research is partially supported by the MNiSW grant nr R02055 03 and
AGH-UST grant nr 11.11.120.865. Thanks go to Rafal Mikotajczak for valuable
help with the TSM system and to NDS partners for sharing storage resources.

References

1. National Data Storage project, Polish MNiSW grant nr R02055 03,
https://kmd.pcss.pl

2. Pionier - Polish Optical Internet, http://www.pionier.gov.pl

3. Ranganathan, K., Foster, I.: Identifying Dynamic Replication Strategies for a High-
Performance Data Grid. In: Proc. Int. Workshop on Grid Computing, Denver
(November 2001)

https://kmd.pcss.pl
http://www.pionier.gov.pl

10.

11.

12.

Replica Management for National Data Storage 193

. Lamehamedi, H., Szymarnski, B., Deelman, E.: Data Replication Strategies in Grid

Environments, pp. 378-383. IEEE Computer Science Press, Los Alamitos (2002)

. Park, S., Kim, J., Ko, Y., Yoon, W.: Dynamic Data Grid Replication Strategy

Based on Internet Hierarchy. In: Li, M., Sun, X.-H., Deng, Q.-n., Ni, J. (eds.) GCC
2003. LNCS, vol. 3033, pp. 838-846. Springer, Heidelberg (2004)

. Rahman, R.M., Barker, K., Alhajj, R.: A Predictive Technique for Replica Selection

in Grid Environment. In: 7th IEEE Int. Symp. on Cluster Computing and the Grid.
IEEE Computer Society, Los Alamitos (2007)

. Li, J.: A Replica Selection Approach based on Prediction in Data Grid. In: Proc.

Third Int. Conf. on Semantics, Knowledge and Grid - SKG 2007, Xi’an, Shan Xi,
China, October 29-31, pp. 274-277 (2007)

. Rahman, R.M., Barker, K., Alhajj, R.: Replica placement Strategies in Data Grid.

J. Grid Computing 6, 103-123 (2008)

. Rasool, Q., Li, J., Oreku, G.S., Zhang, S., Yang, D.: A load balancing replica

placement strategy in Data Grid. In: Pichappan, P., Abraham, A. (eds.) Third
IEEE Int. Conf. on Digital Information Management (ICDIM), Proc. IEEE 2008,
London, UK, November 13-16, pp. 751-756 (2008)

Stota, R., Skital, L., Nikolow, D., Kitowski, J.: Algorithms for Automatic Data
Replication in Grid Environment. In: Wyrzykowski, R., Dongarra, J., Meyer, N.,
Wasniewski, J. (eds.) PPAM 2005. LNCS, vol. 3911, pp. 707-714. Springer, Hei-
delberg (2006)

Nikolow, D., Slota, R., Kitowski, J.: Grid Services for HSM Systems Monitoring.
In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM
2007. LNCS, vol. 4967, pp. 321-330. Springer, Heidelberg (2008)

Zieliniski, K., Jarzab, M., Balos, K., Wieczorek, D.: Open Interface for Autonomic
Management of Virtualized Resources in Complex Systems - Construction Method-
ology. FGCS 24(5), 390-401 (2008)

Churn Tolerant Virtual Organization File
System for Grids*

Leif Lindbéck!, Vladimir Vlassov!,
Shahab Mokarizadeh!, and Gabriele Violino?**

! Royal Institute of Technology (KTH), Stockholm, Sweden
2 Net Result AB, Stockholm, Sweden

Abstract. A Grid computing environment allows forming Virtual Or-
ganizations (VOs) to aggregate and share resources. We present a VO
File System (VOFS) which is a VO-aware distributed file system that
allows VO members to share files. VOFS supports access and location
transparency by maintaining a common file namespace, which is decen-
tralized in order to improve robustness. VOF'S includes a P2P system of
file servers, a VO membership service and a policy and role based secu-
rity mechanism. VOFS can be mounted to a local file system in order
to access files using POSIX file API. VOFS can operate in a dynamic
Grid environment (e.g. desktop Grids) since it tolerates unplanned re-
source arrival and departure (churn) while maintaining a single uniform
namespace. It supports transparent disconnected operations that allow
the user to work on files while being disconnected.

Keywords: Grid file system; peer-to-peer; security; namespace.

1 Introduction

A Grid computing environment allows forming Virtual Organizations (VOs).
A VO is a collection of users or institutions that pools their resources into a
single virtual administrative domain. A VO File System (VOFS) aggregates
data objects (files, directories and disk space) exposed by VO members. Fzpose
here means to make a data object accessible via VOFS. One major challenge in
such a file system is namespace management. Uniform and globally unique path
names should be associated with data objects [I]. Uniform here means access
and location transparency of exposed data objects, and the same view of the
file system at all nodes. This requires mapping a logical name of a file in VOFS
namespace to its physical location. The global nature of grids enforces logical
names to be uniform across different administrative domains. In this work we
consider ad-hoc grids and propose a user-level VOFS that allows creating and
maintaining work spaces by exposing and sharing data objects by VO members.
The proposed VOFS has the following features.

* This research is supported by the FP6 Project Grid4All funded by the European
Commission (Contract IST-2006-034567).
** Gabriele Violino was at the Royal Institute of Technology while doing this work.

R. Wyrzykowski et al. (Eds.): PPAM 2009, Part II, LNCS 6068, pp. 194 2010.
© Springer-Verlag Berlin Heidelberg 2010

Churn Tolerant Virtual Organization File System for Grids 195

1. VOFS includes a security mechanism that protects exposed data objects
from unauthorized access, and includes VO membership management, au-
thentication and role-based authorization according to VO policies;

2. VOFS maintains a uniform namespace despite of unplanned resource arrival
and departure (churn);

3. VOFS allows ordinary applications to access the VOFS using a standard
POSIX file API, i.e. the applications do not need to be modified to access
files in the VOFS;

4. VOFS is easy to use for non-experienced users;

5. VOFS can operate under any OS that has WebDAV [2] mount support, e.g.
MS Windows, Linux, Mac OS X.

6. VOFS supports transparent disconnected operations that allow the user to
work on files while being disconnected.

2 Overview

This work builds on our pre-

vious work presented in [3} Requester's Computer Other VOFS Nede
that proposed three ways of o

maintaining the namespace: P ac?éaspsl:ﬁgn\?ng

a centralized name service; Reduester

a distributed directory; and v

a DHT-based name service. Mount Utilty .
In [3] we have presented ¥

VOFS with the centralized Loop-back Adapter |4

name service that has the ma- (Local VOFS Peer)

jor disadvantage to induce a

single point of failure and a
potential performance bottle-

neck. In this paper, we pro-
pose to build VOFS with
a namespace maintained as
a distributed directory where
the namespace information is distributed among peers. In this design every peer
can potentially learn the entire namespace (i.e. location of exposed data ob-
jects) via a gossiping mechanism. The data objects can be exposed to any path
in VOFS. An exposed directory offers disk space which is used by VO members
to create new objects.

Each peer runs a file server that provides and controls access to data objects
exposed from the local node, see Fig.[Il Access to the exposed objects is achieved
by mounting the local VOFS peer to a mount point, e.g. a local path. We use
the WebDAV protocol [2] to access and transfer files between peers. Use of Web-
DAV allows accessing VOFS through any mount utility supporting WebDAV,
e.g davfs2 [4], which offers a POSIX compliant API. Once mounted, access to
VOFS is no different from access to local file system.

Fig. 1. Schematic view of VOFS architecture

196 L. Lindbéack et al.

3 VOFS Namespace and File Tree

VOFS is formed as an ordinary file tree. Exposed objects are given logical names,
which are paths in VOFS. The VOFS namespace is a set of mappings of logical
names to physical locations. A VOFS path may include names of wirtual direc-
tories, which are not hosted by any peer, i.e. they do not exist. Thus, VOFS
consists of exposed real data objects and virtual directories that may contain
virtual directories and real data objects.

Initially, the VOFS tree contains only the root, which is initially virtual. The
VOFS namespace, hence the VOFS tree, is formed explicitly and gradually as a
result of exposing and unexposing data objects. Virtual directories help to main-
tain the namespace. If to assume that all directories in the VOFS tree are real
(i.e. physically exist), then unexposing a real directory may cause partitioning of
the tree as the data objects under the unexposed directory can not be properly
identified. This motivates introducing virtual directories. The unexposed real
directory becomes virtual; and names of all objects under it remain unchanged.

When looking up location of an object given its fully-specified VOFS path, a
longest prefix match is done. The object can be accessed if the exposing peer is
online despite of whether other peers are online or not.

Mappings of logical names to physical locations are the major metadata of
VOFS. The metadata associates exported data objects with paths in the VOFS
namespace. The same metadata are kept at every node in two tables: remote.db,
which stores location information of data objects exposed by other peers; and
local.db that stores location information of objects exposed by this peer. When
a data object is exposed, the exposing peer adds a pair of local file system path
and VOFS path to the local.db table while all other peers adds a pair of VOFS
path and physical host address to their remote.db table. When a data object is
unexposed, this information is removed from all peers. The namespace changes
only when peers perform expose or unexpose operations. Peers communicate
metadata by gossiping as explained below. All peers know the entire namespace,
i.e which data objects are exposed and who exposes them.

3.1 Algorithm for Namespace Updates

To transfer namespace updates between peers we use a gossip algorithm based on
the lazy probabilistic broadcast algorithm described in [5]. When a peer updates
the namespace it sends an update message to all or some of its neighbours. Each
peer that receives an update message forwards it to all or some of its neighbours.
There will be no loops since a peer never sends the same message twice.

The following recovery mechanism is used when messages are lost. Original
sender id and a sequence number are attached to each message. Since there is
FIFO delivery of messages, if a peer receives a message with a sequence number
larger than the previous number plus one, it knows that some messages were
lost. It will then send a require message to a subset of its neighbours, indicating
which message was lost and which peer is requiring it. A peer, which receives the
require message checks if it has the required message. If yes, it sends the required

Churn Tolerant Virtual Organization File System for Grids 197

update message to the requiring peer. If not, it forwards the require message to
its neighbours. Require messages are forwarded only a specified number of times.
Each peer maintains information about transmitted messages on its hard disk.
The gossip algorithm described above is used only for namespace updates. All
other communication, e.g. file transfer, involve only two peers. Due to gossiping,
there is no need to search for data objects since each peer maintains its own view
of the namespace which is almost the same as views of other peers, even though
there might be some inconsistencies between views caused by update latency.

4 VOFS Peers

A user exposing data objects must run a VOFS peer on her computer; while a
user accessing VOFS does not need to run a peer. In the latter case, the user
must know an address of a peer to mount it and to access VOFS. If the user
runs a peer, it can be mounted to become the entry point to VOFS. In this case,
there is no need to keep addresses of well-known mount points. All VOF'S peers
provide (un)expose, join, mount, and cache services, which are described below.
The services can be accessed through the GUI of the VOFS peer.

(Un)Expose. When exposing, the user defines a data object to be exposed
and specifies its VOFS path. The expose service stores the logical-to-physical
name mapping in the local table and initiates the update gossip algorithm. If
the specified path does not exist, virtual directories are introduced to allow
traversing the tree from root to the exposed data object. The root of VOFS is
always /. It can be either virtual or mapped to a real directory. Name collision
occurs when the user tries to assign a name which is already taken. Name collision
is resolved as follows: if the data object to be exposed is a file, its mapping
overrides the mapping of the object previously exposed with the same name; in
case of directories exposed with the same name, their contents are merged.

Join. When a user starts a VOFS peer, the peer joins the P2P VOFS system.
At startup, the peer downloads a list of all VO peers from the VO Membership
Service (VOMS) described in Bl Then the peer connects to some other peers
selected from the list. The chosen peers and the new peer become neighbours.
In the current VOFS prototype, selection of neighbours is random, but it could
be done in a sophisticated way. They also exchange their VOFS views stored in
their local and remote metadata tables described earlier. It is possible for the
user to manually edit a peer’s neighbour list through the GUI of the VOFS peer.

Mount. The user can mount VOFS with any mount utility supporting WebDAV;
therefore we have not developed any mount utility; instead, we use davfs [4] on
Linux and NetDrive [6] on MS Windows. VOFS has not been tested on other
OSs but Mac OS X has WebDAV support built in.

Once the VOFS is mounted, all POSIX file API is supported for manipulating
data objects (provided the mount utility offers a POSIX API). The mount utility
will translate the POSIX calls to WebDAV calls to the VOFS peer.

198 L. Lindbéack et al.

Cache. Each VOFS peer maintains a file cache. Read and write latency over
network is compensated by the caching mechanism, which also allows offline
work. VOFS uses last write wins reconciliation policy (a traditional file system
policy for concurrent writes), which can be replaced by a more sophisticated
reconciliation policy implemented using, for example, Telex [7]. The cached copy
is checked for update (compared to the master copy) when the file is read. When a
file is written the new content is stored in the cache and sent to the exposing peer,
which informs all other peers caching the file about the update. Also directory
listings are cached, but unlike files they have an expiry time.

5 Security

The security infrastructure is based on the XACML authorization model [§].
Its goal is to provide authentication and authorization. When authenticating,
the user’s credentials are checked and the user gets a token, which can be used
to prove her identity in authorization checks. Authorization grants that users
can only access resources to which they have right according to VO policies.
Authorization is policy-based, policies are expressed in XACML.

5.1 Components
The VOFS security infrastructure is built of the following components.

Virtual Organization Membership Service, VOMS keeps a database of
users and roles in the VO. It has a web based management interface for
updating this data. This interface is protected by a PEP. The VOMS is also
responsible for authenticating users.

Policy Enforcement Point, PEP protects a resource (VOFS peer, VOMS,
PAP). Each resource has a local PEP. The PEP sends authorization re-
quests to the PDP and caches the answers. To improve performance the
PDP answers not only to the request sent by the PEP, but to requests with
the same subject and resource with all existing actions.

Policy Decision Point, PDP evaluates requests from PEPs according to the
policies in PR. Policies are cached in memory. Invalidation of the PDP’s
cache also invalidates all PEP’s caches.

Policy Information Point, PIP contacts VOMS to validate the user’s identy
and get the user’s roles. The answer from VOMS is cached.

Policy Administration Point, PAP is a server that makes updates to PR.
The PAP is prote