


Lecture Notes in Computer Science 6204
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Bernd Fischer Benoît M. Dawant
Cristian Lorenz (Eds.)

Biomedical Image
Registration

4th International Workshop, WBIR 2010
Lübeck, Germany, July 11-13, 2010
Proceedings

13



Volume Editors

Bernd Fischer
University of Lübeck
Institute of Mathematics and Image Computing
23560 Lübeck, Germany
E-mail: bernd.fischer@mic.uni-luebeck.de

Benoît M. Dawant
Vanderbilt University
Department of Electrical Engineering and Computer Science
Nashville, TN 37240-1662, USA
E-mail: benoit.dawant@vanderbilt.edu

Cristian Lorenz
Philips Research Europe - Hamburg
Sector Medical Imaging Systems
22335 Hamburg, Germany
E-mail: cristian.lorenz@Philips.com

Library of Congress Control Number: 2010930227

CR Subject Classification (1998): I.4, I.5, H.3, I.3.5, J.3

LNCS Sublibrary: SL 6 – Image Processing, Computer Vision, Pattern Recognition,
and Graphics

ISSN 0302-9743
ISBN-10 3-642-14365-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-14365-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180



Preface

Welcome to the proceedings of the 4th Workshop on Biomedical Image Reg-
istration (WBIR). Previous WBIRs took place in Bled, Slovenia (1999), at the
University of Pennsylvania, USA (2003) and in Utrecht, The Netherlands (2006).
This year, WBIR was hosted by the Institute Mathematics and Image Process-
ing and the Fraunhofer Project Group on Image Registration and it was held
in Lübeck, Germany. It provided the opportunity to bring together researchers
from all over the world to discuss some of the most recent advances in image
registration and its applications.

We had an excellent collection of papers that were reviewed by at least three
reviewers each from a 35-member Program Committee assembled from a world-
wide community of registration experts. This year 17 papers were accepted for
oral presentation, while another 7 papers were accepted as poster papers. We
believe all of the conference papers were of excellent quality.

Registration is a fundamental task in image processing used to match two or
more pictures taken, for example, at different times, from different sensors, or
from different viewpoints. Establishing the correspondence of structures within
medical images is fundamental to diagnosis, treatment planning, and surgical
guidance. The conference papers address state-of-the-art techniques for provid-
ing reliable and efficient registration techniques, thereby imposing relationships
between specific application areas and appropriate registration schemes.

We are grateful to all those who contributed to the success of WBIR 2010.
In particular, we would like to thank the organization staff and members of the
Program Committee for their work. We also thank Philips Medical Systems for
kind and generous financial support. For those who did not attend, we hope this
publication provides a good view into the research presented at the conference,
and we look forward to meeting you at the next WBIR workshop.

July 2010 Bernd Fischer
Benoit Dawant
Cristian Lorenz
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Methods Part I

Unifying Characterization of Deformable Registration Methods Based
on the Inherent Parametrization: An Attempt at an Alternative
Analysis Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Darko Zikic, Ali Kamen, and Nassir Navab

Reliability-Driven, Spatially-Adaptive Regularization for Deformable
Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Lisa Tang, Ghassan Hamarneh, and Rafeef Abugharbieh

Large Deformation Diffeomorphic Registration Using Fine and Coarse
Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Laurent Risser, François-Xavier Vialard, Maria Murgasova,
Darryl Holm, and Daniel Rueckert

Log-Domain Diffeomorphic Registration of Diffusion Tensor Images . . . . 198
Andrew Sweet and Xavier Pennec

Model Based Registration

Nonrigid Registration and Template Matching for Coronary Motion
Modeling from 4D CTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

Dong Ping Zhang, Laurent Risser, Ola Friman, Coert Metz,
Lisan Neefjes, Nico Mollet, Wiro Niessen, and Daniel Rueckert



Table of Contents XI

Cardiac Respiratory Motion Modelling by Simultaneous Registration
and Modelling from Dynamic MRI Images . . . . . . . . . . . . . . . . . . . . . . . . . . 222

A.P. King, C. Buerger, and T. Schaeffter

Model-Based Registration for Motion Compensation during EP
Ablation Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Alexander Brost, Rui Liao, Joachim Hornegger, and Norbert Strobel

Methods II

Spatial Information Encoded Mutual Information for Nonrigid
Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

Xiahai Zhuang, David J. Hawkes, and Sebastien Ourselin

Normalized Measures of Mutual Information with General Definitions
of Entropy for Multimodal Image Registration . . . . . . . . . . . . . . . . . . . . . . . 258

Nathan D. Cahill

Nonlinear Elasticity Registration and Sobolev Gradients . . . . . . . . . . . . . . 269
Tungyou Lin, Ivo Dinov, Arthur Toga, and Luminita Vese

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281



Unifying Vascular Information in

Intensity-Based Nonrigid Lung CT Registration

Kunlin Cao1, Kai Ding2, Gary E. Christensen1, Madhavan L. Raghavan2,
Ryan E. Amelon2, and Joseph M. Reinhardt2,∗

1 Department of Electrical and Computer Engineering
2 Department of Biomedical Engineering
The University of Iowa, Iowa City, 52242

Abstract. Image registration plays an important role within pulmonary
image analysis. Accurate registration is critical to post-analysis of lung
mechanical properties. To improve registration accuracy, we utilize the
rich information of vessel locations and shapes, and introduce a new sim-
ilarity criterion, sum of squared vesselness measure difference (SSVMD).
This metric is added to three existing intensity-based similarity criteria
for nonrigid lung CT image registration to show its ability in improving
matching accuracy. The registration accuracy is assessed by landmark
error calculation and distance map visualization on vascular tree. The
average landmark errors are reduced by over 20% and are within 0.7 mm
after adding SSVMD constraint to three existing intensity-based simi-
larity metrics. Visual inspection shows matching accuracy improvements
in the lung regions near the thoracic cage and near the diaphragm. Ex-
periments also show this vesselness constraint makes the Jacobian map
of transformations physiologically more plausible and reliable.

1 Introduction

The respiratory system provides gas exchange during breathing cycles. Many
pulmonary diseases can alter the material properties and mechanics of lung
tissue. Therefore, understanding the ventilation patterns of lung parenchyma
is important for disease detecting, tracking and radiotherapy planning.

Imaging allows non-invasive study of lung behaviors and image registration
can be used to match images acquired at different inflation levels to examine
the mechanical properties of lung parenchyma and pulmonary functions [1,2,3].
Coselmon et al. [4] used mutual information based registration to model defor-
mation of lung CT images between exhale and inhale breathing states. Chris-
tensen et al. [5] used the sum of squared intensity difference (SSD) consistent
linear elastic image registration to match images across cine-CT sequences, and
estimate rates of local tissue expansion and contraction. Gorbunova et al. [6]
developed a weight preserving image registration method for monitoring disease
progression. Yin et al. [7] proposed a new similarity cost preserving the lung

* Joseph M. Reinhardt is a shareholder in VIDA Diagnostics, Inc.

B. Fischer, B. Dawant, and C. Lorenz (Eds.): WBIR 2010, LNCS 6204, pp. 1–12, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 K. Cao et al.

tissue volume, and compared the new cost function driven registration method
with SSD driven registration in the estimation of regional lung function.

All these methods utilize their own assumption about the underlying process
of lungs during gas exchange. However, as an important part of the respiratory
system, the pulmonary blood vessels have not attracted enough attention in lung
image registration problem. During the respiration cycles, blood vessels keep
their tree structures and tube-like shapes. The location and shape information
of vessels can be used to help guide the registration process.

In this paper, we describe a similarity criterion utilizing the information of
vessel locations and shapes in the registration process. This metric is added
to three existing intensity-based similarity metrics and comparison experiments
show that this criterion helps improve the registration accuracy. Higher matching
accuracy makes the post-analysis of regional tissue mechanical properties more
plausible and reliable.

2 Methods

2.1 Data Acquisition

Pairs of volumetric CT data sets from three normal human subjects scanned at
supine orientation on a Siemens Sensation 64 multi-detector CT scanner are used
in the study. For subject 1, data sets were acquired at functional residual capacity
(FRC) with 26.3% of the vital capacity (VC) and total lung capacity (TLC) with
95.7% of the VC. For subject 2, data sets were acquired at FRC with 21.8% of
the VC and TLC with 95.6% of the VC. For subject 3, data sets were acquired
at FRC with 11.0% of the VC and TLC with 68.9% of the VC. Volumetric data
were acquired at a section spacing of 0.5 mm and a reconstruction matrix of 512
× 512. In-plane pixel spatial resolution is 0.6 mm × 0.6 mm.

The parenchyma regions in the FRC and TLC data sets were segmented using
the method described in [8]. An expert selected more than 100 landmark pairs
for each subject. The landmarks in FRC image were selected as the bifurcations
of the airway and vascular trees. A semi-automatic system [9] was used to guide
the observer to find the corresponding landmarks in the TLC image.

2.2 Image Registration and Transformation Parameterization

Image registration is used to find an optimal spatial transform that maps points
from the template image I1 to the corresponding points in the target image
I2. Let x = (x1, x2, x3)T define a voxel coordinate in the image domain. The
transformation h is a (3 × 1) vector-valued function defined on the voxel lattice
of target image and h(x) gives its corresponding location in template image.

The B-spline based parameterization is chosen to represent the transforma-
tion. Let φi = [φx(xi), φy(xi), φz(xi)]T be the coefficients of the i-th control
point xi on the spline lattice G along each direction. The transformation is repre-
sented as h(x) = x+

∑
i∈G φiβ

(3)(x−xi), where β(3)(x) = β(3)(x)β(3)(y)β(3)(z)



Unifying Vascular Information 3

is a separable convolution kernel. β(3)(x) is the uniform cubic B-spline basis
function.

2.3 Matching Similarity Criteria

Many criteria have been suggested as the metrics for aligning two images. In this
paper, three intensity-based metrics and a vesselness similarity metric are used
to register a pair of lung CT images at different inflation levels.

Sum of Squared Difference (SSD). A simple and common metric is the
sum of squared difference (SSD), which measures the intensity difference at cor-
responding points between two images. Mathematically, it is defined by

CSSD =
∫
Ω

[I2(x) − I1(h(x))]2 dx, (1)

where I1 and I2 are the template and target image intensity functions, respec-
tively. Ω denotes the lung region of target image. However, the underlying as-
sumption of SSD is that the image intensity at corresponding points between
two images should be similar. Considering the change in CT intensity as air in-
spired and expired during the respiratory cycle, a histogram matching procedure
is used before SSD registration to modify the histogram of template image so
that it is similar to that of target image.

Mutual Information (MI). As mentioned above, CT intensity is a measure of
tissue density and therefore changes as the tissue density changes during inflation
and deflation. The registration problem under this circumstance is similar to the
multi-modality image registration, where mutual information (MI) is well suited
and widely used as the similarity metric. In the image registration field, mutual
information expresses the amount of information that one image contains about
the other one. Analogous to the Kullback-Leibler measure, the negative mutual
information cost of two images is defined as [10,11]

CMI = −
∑

i

∑
j

p(i, j) log
p(i, j)

pI1◦h(i)pI2(j)
.. (2)

where p(i, j) is the joint intensity distribution of transformed template image
I1 ◦ h and target image I2; pI1◦h(i) and pI2(j) are their marginal distributions,
respectively. The histogram bins of I1 ◦ h and I2 are indexed by i and j. The
experiments in this paper use 50× 50 histogram bins to estimate joint distribu-
tion. Misregistration results in a decrease in the mutual information, and thus,
increases the similarity cost CMI.

Sum of Squared Tissue Volume Difference (SSTVD). A recently devel-
oped similarity metric, the sum of squared tissue volume difference (SSTVD) [7],
accounts for the variation of intensity in the lung CT images during respiration.
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This similarity criterion minimizes the local difference of tissue volume inside
the lungs scanned at different pressure levels. Assume the Hounsfield units (HU)
of CT lung images are primarily contributed by tissue and air. Then, the tissue
volume in a voxel at position x can be estimated as V (x) = v(x) HU(x)−HUair

HUtissue−HUair

where v(x) is the volume of voxel x. It is assumed that HUair = −1000 and
HUtissue = 55. The intensity similarity metric SSTVD is defined as [7]

CSSTVD =
∫
Ω

[V2(x) − V1(h(x))]2 dx

=
∫
Ω

[
v2(x)

I2(x) + 1000
1055

− v1(h(x))
I1(h(x)) + 1000

1055

]2

dx (3)

The Jacobian of a transformation J(h) estimates the local volume changes re-
sulted from mapping an image through the deformation. Thus, the tissue volumes
in image I1 and I2 are related by v1(h(x)) = v2(x) · J(h(x)).

Sum of Squared Vesselness Measure Difference (SSVMD). Feature in-
formation extracted from the intensity image is important to help guide the
image registration process. During the respiration cycle, blood vessels keep their
tubular shapes and tree structures. Therefore, the spatial and shape informa-
tion of blood vessels can be utilized to help improve the registration accuracy.
Blood vessels have larger HU values than that of parenchymal tissues. This in-
tensity contrast is low at small vessels and thus gives almost no contribution to
intensity-based similarity metrics. A better way to use the information of vessel
locations is computing the vesselness measure (VM) from intensity images, and
then registering similar vesselness patterns in two images.

The vesselness measure is based on the analysis of eigenvalues of the Hessian
matrix of image intensity. The eigenvalues, ordered by magnitude |λ1| ≤ |λ2| ≤
|λ3|, can be used to indicate the shape of underlying object. In 3D lung CT
images, isotropic structures such as parenchymal tissues are associated with
three similar non-zero positive eigenvalues while tubular structures such as blood
vessels are associated with one negligible eigenvalue and two similar non-zero
negative eigenvalues [12]. The vesselness measure is computed from the Frangi’s
vesselness function [12]

F (λ) =

{
(1 − e−

R2
A

2α2 ) · e
−R2

B
2β2 · (1 − e

− S2

2γ2 ) if λ2 < 0 and λ3 < 0
0 otherwise

(4)

with RA = |λ2|
|λ3| , RB = |λ1|√

|λ2λ3|
, S =

√
λ2

1 + λ2
2 + λ2

3, and α, β, γ control the

sensitivity of the vesselness measure. The experiments in this paper use α = 0.5,
β = 0.5, and γ = 5.

The vesselness image is rescaled to [0, 1] and can be considered as a probability-
like estimate of vesselness features. Larger vesselness value indicates the underly-
ing object is more likely to be a vessel structure, as shown in Figure 1. The sum
of squared vesselness measure difference (SSVMD) is designed to match similar
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(a) (b)

Fig. 1. The vesselness images calculated from lung CT grayscale images. (a) A trans-
verse slice of FRC data. (b) The vesselness measure of slice in (a). Vesselness measure
is computed in multiscale analysis and rescaled to [0, 1].

vesselness patterns in two images. Given F1 and F2 as the vesselness measures
of images I1 and I2, respectively, this cost function is formed as

CSSVMD =
∫
Ω

[F2(x) − F1(h(x))]2 . (5)

For each pair of data sets, registrations using six similarity cost functions are
performed for comparison. They are three basic registration methods driven by:
(i) CSSD, (ii) CMI, (iii) CSSTVD; and three registration methods with SSVMD
build in and thus driven by: (iv) CSSD + CSSVMD, (v) CMI + CSSVMD, (vi)
CSSTVD + CSSVMD. In this paper, the weights of CSSVMD to costs (iv)-(vi) are
selected by trial to give the best improvement on landmark matching accuracy
for one subject, and are applied on experiments for all three subjects.

2.4 Multi-resolution Scheme and Estimation

A spatial multiresolution procedure from coarse to fine is used in the registra-
tion in order to improve speed, accuracy and robustness. The basic idea is that
registration is first performed at a coarse scale and the transformation estimated
at the coarse scale is used to initialize registration at the next finer scale. This
process is repeated until it reaches the finest scale. The multiresolution strategy
used in the experiments proceeds from low to high image resolution starting at
one-eighth the spatial resolution and increases by a factor of two until the full
resolution is reached. Meanwhile, a hierarchy of B-spline grid spaces from large
to small is used. The finest B-spline grid space used in the experiments is 8 mm.
The images and grid space are refined alternatively.

The similarity cost is optimized using a limited-memory, quasi-Newton mini-
mization method with bounds (L-BFGS-B) [13] algorithm and a sufficient con-
dition is used in the optimization to constrain the B-splines coefficients so that
the transformation maintains the topology of two images [14].
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3 Experiments and Results

3.1 Landmark Matching Accuracy

For each subject, the six registration methods described in Section 2 were used
to register the parenchyma region imaged at TLC to FRC. Landmarks such
as branch points of the airway and vascular tree were utilized to evaluate reg-
istration accuracy. 100-150 landmark pairs were chosen for each subject. Fig-
ure 2(a) shows an example of landmark distribution on a FRC data from one
subject.

The landmark error for a landmark on one image measures the Euclidean
distance from its estimated position to real position on the second image. Table 1
shows the mean and standard deviation of landmark errors through all three
subjects after using different registration methods. Figure 2(b) shows the box-
plot of landmark errors.

(a) (b)

Fig. 2. (a) Distribution of landmark (green points) on one FRC data. (b) Box-plot of
landmark errors through three subjects after using six registration methods. Results
from SSD method and MI method contain outliers beyond the error range in (b).

Table 1. Landmark errors (mm) through three subjects after using different regis-
tration methods. The original average landmark error (after rigid registration) was
25.25 ± 12.67 mm with a maximum landmark error of 61.87 mm.

SSD MI SSTVD
Avg. Max Avg. Max Avg. Max

Without SSVMD 0.74 ± 1.09 15.66 1.05 ± 2.49 25.49 0.83 ± 0.93 7.99

With SSVMD 0.59 ± 0.37 2.52 0.58 ± 0.36 2.19 0.65 ± 0.42 2.95
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3.2 Vessel Matching Accuracy

The registration accuracy on the vessel tree was evaluated by vessel matching
distance, which is calculated as the distance between a point on FRC vessel tree
and its closet point on warped TLC vessel tree. Figure 3 shows the distance
map on FRC vessel tree from one subject after using six different registration
methods. Large errors between the deformed source and target vessel trees were
reduced after adding the SSVMD constraint.

3.3 Jacobian Comparison

Both landmark error and vessel matching distance evaluate the registration accu-
racy at vessel locations. Good matching accuracy on vessels does not guarantee
that the parenchymal tissues are correctly aligned. In order to reveal the lung
tissue deformation pattern, the Jacobian of the transformation field derived by
image registration was used to estimate the local tissue deformation [2]. Using
a Lagrangian reference frame, local tissue expansion corresponds to a Jacobian
greater than one and local tissue contraction corresponds to a Jacobian less than
one. Figure 4 shows the Jacobian maps resulted from six registration methods.

3.4 Correlation between Lung Expansion and Xe-CT Estimates of
Specific Ventilation

Previous studies have shown that the degree of regional lung expansion is directly
related to specific ventilation (sV) [2]. In order to evaluate how SSVMD affects
the resulting deformation field and estimates of regional lung tissue deformation,
we compared lung expansion measured by the Jacobian with Xe-CT estimates
of sV on lung CT data sets from one sheep.

The adult sheep was anesthetized using intravenous pentobarbital and me-
chanically ventilated during the experiment. CT scans were acquired with the
sheep in the supine orientation and with a static protocol at 10 cm (P10) and
25 cm (P25) H2O airway pressure. For Xe-CT studies, twelve contiguous ax-
ial locations and approximately 40 breaths were selected from the whole lung
volumetric scan performed near end-expiration. Both types of images were ac-
quired at a reconstruction matrix of 512 × 512. The sV was computed using the
Pulmonary Analysis Software Suite 11.0 (PASS) [15]. To compare the Jacobian
values with the sV, the static scan P10 was registered to the Xe-CT scan using
rigid affine registration. The Xe-CT data was subdivided into 30 slabs along the
y (ventral–dorsal) direction. The average Jacobian within each slab was com-
pared to the corresponding average sV measurement in the Xe-CT images. The
Jacobian and sV measurements are shown on a transverse slice in Figure 5. Ta-
ble 2 shows the correlation coefficient r value between sV and Jacobian derived
from six registration methods.
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Fig. 3. Vessel matching distance (mm) on target vessel tree resulted from six registra-
tion methods: (a) SSD, (b) SSD + SSVMD, (c) MI, (d) MI + SSVMD, (e) SSTVD,
and (f) SSTVD + SSVMD. Arrows denote regions of large discrepancies between the
deformed source and target vessel trees. Note that the errors in these regions were
reduced after adding the SSVMD constraint to the registration algorithms.
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Fig. 4. The color-coded Jacobian maps of a sagittal slice resulted from six registration
methods: (a) SSD, (b) SSD + SSVMD, (c) MI, (d) MI + SSVMD, (e) SSTVD, and (f)
SSTVD + SSVMD. Blue and purple regions have larger lung deformation, while red
and orange regions are deforming less. The arrow points to a region where Jacobian
pattern is suspected to be incorrect.

Table 2. Correlation coefficient r between sV and Jacobian derived from six registra-
tion methods

SSD MI SSTVD

Without SSVMD 0.72 0.60 0.92

With SSVMD 0.88 0.87 0.91
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(a) (b)

Fig. 5. Color-coded maps overlaid on a transverse slice from the sheep lung data show-
ing (a) specific ventilation (1/min) and (b) the Jacobian of transformation between
P10 and P25. Blue and purple regions show higher ventilation in (a) and larger defor-
mation in (b), while red and orange regions show lower ventilation in (a) and smaller
deformation in (b).

4 Discussion

Table 1 and Figure 2(b) show that adding the SSVMD cost function reduced
the mean landmark errors of the three basic registration methods. Landmarks
with large errors, shown as outliers in the box-plot, are aligned much better
when SSVMD is used. Vessel matching distance maps in Figure 3 reflect the fact
that SSVMD constraint helps improve matching accuracy over all three basic
methods on small vessels, around lung boundaries and in the region near di-
aphragm. The reason for this is that blood vessels in those regions are usually
small and have low intensity contrast, and thus they contribute little to conven-
tional intensity similarity criteria. The vesselness measurement enhances blood
vessel information and strengthens contribution of small vessels to registration
process when using the SSVMD similarity metric.

Although SSD method (after histogram matching) has smaller mean land-
mark error than SSTVD method, its accuracy in the inferior region of the lung
is not as good as that of SSTVD method. The reason may be that SSTVD cost
function contains a local Jacobian factor which can constrain incorrect displace-
ment and capture large deformation in the region near diaphragm with higher
accuracy. However, after adding SSVMD on the three basic methods, the vessels
are generally aligned better and the resulting vessel matching distance maps
(Figure 3 right column) look similar.

The top row in Figure 4 shows that the Jacobian maps generated by the three
registration methods without SSVMD have a similar ventral to dorsal gradient
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as expected since the subjects were imaged in the supine orientation. However,
the local tissue deformation patterns derived from these methods are different
even in the methods pair SSD and SSTVD which have similar landmark errors
as shown in Table 1. This is consistent with the findings that while the inter-
method variability on the landmark error is small there may be discriminating
difference in the Jacobian maps [16]. The Jacobian from MI method is strikingly
different in the region pointed by an arrow, which may be due to the differences
in convergence speed among registration methods. The Jacobian maps from SSD
and SSTVD methods show more local structure in the dorsal region, but they
are of different patterns, especially in the region around lung boundaries. The
bottom row in Figure 4 shows that adding the SSVMD constraint produces Ja-
cobian images that are very similar across the three registration methods and
reveal more detailed deformation patterns especially near vessel locations. Gen-
erally, vessels have smaller volume changes comparing with parenchymal tissues
during breathing cycles. The three Jacobian maps produced using registration
methods with SSVMD are very similar which may imply that the derived local
deformation patterns are more reliable.

Regional lung expansion should correlate with regional ventilation measured
by Xe-CT estimates of sV. As shown in Figure 5, both sV and Jacobian maps
show a similar ventral to dorsal gradient. High specific ventilation should cor-
respond with large tissue expansion. Table 2 shows that SSVMD improves the
correlation results for both SSD and MI methods. For SSTVD, there is little
change in the correlation. This may result from the accurate regional model of
the intensity change in SSTVD method, and it is difficult to achieve additional
improvement. These results suggest that SSVMD helps generate more physio-
logically meaningful transformations.

5 Conclusion

We have described a vesselness preserving constraint that can be used to improve
the registration of similar vesselness patterns in two lung CT images. Results were
presented to show that adding the SSVMD constraint to existing similarity met-
rics such as SSD, MI, and SSTVD reduces landmark error and improves vascular
tree overlap. The purpose of adding this metric in registration process is that it can
help correct themismatches of small vessels and their surrounding lung tissues.The
SSVMD constraint was shown to produce a more detailed expansion pattern for
local tissue, especially near vessel locations. In addition, adding the SSVMD con-
straint was shown to improve the correlation between Jacobian and specific venti-
lation after registration. This demonstrates that using the SSVMD constraint not
only helps match vessel structures, but it also helps align corresponding parenchy-
mal tissues providing a more reliable pattern of local lung tissue deformation.
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Abstract. A novel method for the deformable image registration of
follow-up breast magnetic resonance (MR) images is proposed, aimed
at an automatic synchronization of temporal images. To compensate po-
tentially large breast deformations and differences among device coordi-
nates, an initial linear alignment of each individual breast, a combination
of both transformations using thin-plate splines, as well as a subsequent
linear-elastic registration are performed in sequence. Complementary to
algorithmic details, an overview of modality-specific factors influencing
follow-up registration accuracy is given. The proposed method was eva-
luated on 20 clinical datasets annotated with landmarks by an expert ra-
diologist. Despite large variations among the MR images, accuracy of the
method was sufficient to allow spatial synchronization, with remaining
target registration errors of < 32%. Concluding, potential enhancements
to further increase robustness and accuracy are discussed.

1 Introduction

For breast magnetic resonance imaging, comparative examination of currently
and previously acquired images provides valuable diagnostic information. Sub-
sequent follow-up imaging and reading take place several months after the pre-
ceding acquisition. The temporal interval is chosen patient-specifically. Corre-
sponding consecutive image pairs are also referred to as current-prior images.

Contrary to conventional x-ray mammography (MG), the role of diagnostic
software supporting follow-up imaging for breast MRI is less established. Follow-
up MR images have complemented MG for long-term classifications of lesions
over several years time or to detect potential recurrent diseases [1]. Rather than
long-term, short-term follow-up imaging is more frequently applied to assess
interventional or medicamentous treatment of lesions by chemotherapy [2,3].
Furthermore, it was shown that additional retrospective follow-up examinations
allow the detection of contralateral breast cancers and might even lead to changes
in treatment planning and management for early-cancer patients [4]. Moreover,
a review of different follow-up schedules has been published recently [5].

The value of follow-up investigations for diagnostics stems from its temporal
range: observation of regions of the breast over a longer period of time allows the

B. Fischer, B. Dawant, and C. Lorenz (Eds.): WBIR 2010, LNCS 6204, pp. 13–24, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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radiologist to track pathological and morphological changes in the breast tissue.
In particular, such an analysis facilitates the detection of malignant cancers
originally graded as “probably benign”. Visual appearance of these cancers often
varies significantly over time, so that growth patterns and lesion-typical signs are
perceived. These visual cues might then lead to a different rating of the lesion.

In addition, follow-up investigations support the radiologist when some uncer-
tainty with respect to grading remains. Frequently, lesions which are difficult to
grade are classified as belonging to BI-RADS category 3, rated as “unclear” or
as “probably benign” [6]. For a final assessment of the lesion, a biopsy must be
performed. Consequently, the number and expense of evitable biopsies could be
reduced by the examination of current-prior images. Routinely and repeatedly
conducted follow-up diagnostics are therefore required [7,6].

Registration of follow-up images is complicated by numerous unpredictable
factors determined both by breast physiology as well as image acquisition. These
issues must be considered in addition to geometric changes of the breast tissue.
Table 1 shows the main issues to be regarded. Accordingly, the visual appearance
of current and prior images is subject to substantial change.

In particular, tissue deformation, different patient placement and changes of
the field-of-view make the reading tedious for the radiologist. Even coarse align-
ment of such images will therefore offer important support. Spatially-synchro-
nized, simultaneous viewing of current and prior images allows the clinician to
quickly establish correspondence between time points and to correlate lesions.

Registration of follow-up MRI is a novel field of research. To our knowledge,
only two other contributions have been published before, focused on the quantifi-
cation of neoadjuvant chemotherapy. Chittineni et al. performed an automatic
delineation of the air-breast boundary and chestwall, followed by non-rigid reg-
istration [8]. Recently, Li et al. proposed a registration algorithm for short-term
follow-up therapy monitoring based on the adaptive bases algorithm [9].

In the following sections, we propose a method that performs an automatic
preprocessing and registration of long-term follow-up breast MR images in order
to synchronize them. Contrary to [8], no additional segmentation is required.
The method extends a previously published registration technique by adding an
intermediate thin-plate spline interpolation to ensure consistency of the deforma-
tion [10]. We evaluated the method on 20 clinical breast datasets and quantita-
tively assessed its accuracy using expert-annotated landmark locations. Finally,
current limitations and future enhancements of the method are discussed.

2 Methods

Application of current-prior registration is a sequential procedure that addresses
issues listed in Table 1. In particular, dislocation of the current breast image with
respect to the MR device coordinates of the prior image must be compensated.
This is achieved by two independent linear image registration tasks, after the
breasts have been preprocessed. Remaining local tissue variations are then cor-
rected using non-linear registration to establish further spatial correspondence.
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2.1 Preprocessing

Initially, each image is divided into two images containing disjunct halves of
the breast using an automatic cropping method. The motivation behind this is
to perform two separate linear registrations constrained to each breast in order
to compensate deformations more effectively. Particularly, different compression
applied to each individual breast cannot be modeled by a single affine-linear
transformation, since the breast-individual change in pose is frequently dissim-
ilar. The computation of two unconnected transformations is therefore better
suited to provide a good initialization for the subsequent linear-elastic image
registration. The latter in turn is able to compensate only small non-linear de-
formations, and therefore requires a preceding alignment.

Consequently, each breast is registered separately after a division of the im-
ages. The breasts are separated using a dedicated breast MRI cropping method,
which is more accurate in dividing the images than simply splitting along the im-
age centerline [11]. As the reference image R for the registration, the follow-up
image was selected, whereas the original prior image was taken as the tem-
plate image T to be registered onto the follow-up image. For dynamic contrast-
enhanced (DCE) sequences, the first, unenhanced images were selected.

2.2 Linear Image Registration

The affine-linear transformation is restricted to a similarity transform with
seven degrees of freedom, modeling rotation and translation, as well as isotropic
scaling. Therefore, applied transformations retain most of the original breast
geometry while allowing deviations from the original size. On the other hand,
relative orientation and pose must be modified liberally in order to model dif-
ferent device coordinate systems and independent deformations of each breast.

Assuming that the distribution of glandular, adipose and fibrotic breast tissue
remains approximately consistent, intensities of the current and prior images
will be closely related. Predominantly, images will be subject to low-frequency
intensity changes induced by the breast coil setup. Therefore, it is assumed that
the expected intensity change roughly approximates a linear function, and the
normalized cross-correlation coefficient

encc(R,T) = 1 − (cov(R,T))2

σ2(R)σ2(T)
∈ [0, 1] (1)

can be used to measure image dissimilarity [12]. The coefficient is subtracted from
unity to assume highest similarity for encc → 0. Minimization of equation (1)
is achieved by numerical optimization using an iterative Levenberg-Marquardt
optimization scheme until convergence is reached [13]. Appropriate iteration step
widths are estimated using Armijo’s line search strategy [14]. Convergence is
declared when suitable stopping criteria are met [15].

Subsequently, deformation fields are computed for each affine-linear registra-
tion. To avoid undefined regions of the deformation, the individual fields are
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Fig. 1. Concatenation of the linear deformation fields. Overlap regions (striped) are
neglected (left), and regular grid points are sampled in valid regions (middle). After
back-transformation, the two point sets are interpolated using a thin-plate spline trans-
formation, the resulting deformation completely covers the template image (right).

combined to one joint field. However, this combination requires dedicated hand-
ling, since the deformation fields are derived from disjunct transformations. Con-
sequently, concatenation by averaging or addition of the two fields will result in
a joint field that does not necessarily cover the entire image (see Fig. 1, left).
Transformation of the template image with such a deformation will distort the
image, because some image regions are not transformed.

Therefore, a thin-plate spline (TPS) interpolation is used to combine both
deformation fields and retain a maximum of the original deformations [16]. Al-
though specific poly-affine methods exist [17], the TPS method is employed due
to its simplicity and inherent treatment of affine-linear transformations. First,
corresponding points before and after linear registration are computed. For this
purpose, both breasts and their linear transformations are considered indepen-
dently to identify point pairs for each transformation. A sparse set of n and m
regular grid points {pleft

i ,pright
j } ∈ R

3, i = {1 . . . n}, j = {1 . . .m} are defined in
regions for which the corresponding deformation field is known, for the left and
right breast, respectively. Given the computed homogenous 4×4 matrices Mleft

and Mright for each linear transformation, the points (in homogenous notation)
are back-projected by left-multiplying the inverse transformations so that

∀i : qleft
i = (Mleft)−1pleft

i and ∀j : qright
j = (Mright)−1pright

j (2)

yield the transformed points. Concatenation of the transformed and untrans-
formed point lists creates the two point lists P = {pleft} ∪ {pright} and Q =
{qleft} ∪ {qright} with identical sizes s = n + m. The deformation field is then
interpolated using the thin-plate functional

u(x) =
4∑

ν=1

aνφν(x) +
s∑

μ=1

wμU(|x − pμ|2) (3)

with the 3-D radial basis functions U(r) = − 1
8π r, r ∈ R, monomials φν ∈ R

and p ∈ P [18]. Solving for the linear coefficients aν and non-linear coefficients
wμ in equation (3) using the point set Q is achieved by solving an appropriate
equation system, using the conjugate gradient method [18]. Subsequently, the
dense deformation field can be computed by directly evaluating the functional (3)
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at each image coordinate. After interpolation, the resulting joint field contains
both the affine-linear deformations as well as intermediate non-linear transitions.
The joint field is applied to the original template image and the deformed image
is passed as input to the subsequent non-linear deformation.

2.3 Linear-Elastic Image Registration

After application of the joint linear transformations, both breasts are roughly
aligned. Remaining dissimilarities of image regions are primarily caused by local
tissue deformations. For this reason, a linear-elastic transformation model is
employed for the non-linear registration [12]. The transformation model enforces
the regularization of computed deformations in each iteration similar to the
demon’s algorithm [19,20].

For the non-linear registration, a reference image R and a template image T
with n voxels each are given. For each voxel position xi ∈ R

3, i = 0, . . . , n− 1, a
local non-linear deformation u(xi) = (ux, uy, uz)T , u : R

3 −→ R
3 is computed.

The local deformation u(xi) compensates tissue deformation and is defined by
a corresponding displacement field u. The local error measure

e =
1
2n

n−1∑
i=0

elocal(xi,xi + u(xi)) (4)

depends on the spatial image coordinates xi, the transformed coordinates xi +
u(xi), as well as the reference and template images. Instead of defining a measure
of similarity, we thus consider the equivalent minimization of a local error elocal.

For the linear-elastic registration, an intensity-based similarity measure was
selected. The sum of squared differences (SSD) measure is defined as

essd(xi,xi + u(xi)) = [R(xi) − T(xi + u(xi))]
2
. (5)

Although the measure assumes a constant intensity relation, it was successfully
employed in the current-prior registration: Assuming that motion correction has
been previously performed, it is sufficient to register only the unenhanced base
images. Remaining images are already in the identical coordinate space of the
base image. As no local high-frequency temporal enhancement is apparent for
these current-prior base image pairs, intensity-based registration is applicable.
This does not hold for the global affine-linear registration which considers the en-
tire image. In addition, unlike contrast-enhanced MRI, rapid brightness changes
of lesions do not occur. Registration is achieved by minimization of equation (4)
using a gradient descent method and explicit Euler integration [20].

To ensure consistency of the computed deformation field, explicit a poste-
riori regularization is employed in each iteration [19,20]. For the registration of
breast tissue, regularization with the linear elastic potential defines an appropri-
ate elastic model. An iterative solution was derived by Gramkow [21], employing
convolution of the deformation with a linear filter in analogy to the demon’s al-
gorithm [19]. For this purpose, a complex-valued 7× 7× 7 filter-response kernel
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Fig. 2. The computational processing pipeline for the proposed method (dashed lines
illustrate processing of deformation fields, solid lines image processing)

is generated from the linear-elastic potential [21]. Lamé parameters were set to
μ = 500, λ = 0.1. Convolution of the updated deformation field with the ker-
nel enforces explicit linear-elastic regularization. The deformation is updated by
composing it with the update force field, identical to the compositive demon’s al-
gorithm [22]. After the linear-elastic registration has been performed, computed
deformations for both linear and non-linear registration need to be composed
in order to jointly apply them to the input image. The composed deformation
is generated by addition of both deformation fields. Finally, the resulting trans-
formed template image and the composed deformation are stored. The complete
image processing scheme is illustrated in Fig. 2.

Synchronization of cursor positions requires that for a selected voxel position
v ∈ R

3 in one image a corresponding position v̂ ∈ R
3 is computed in the

other image. This mapping is defined by the deformation field computed in the
previous steps. Given the joint displacement u(v) at voxel v, we simply compute
v̂ = v+u(v) as the corresponding position and reposition the cursor accordingly.

2.4 Evaluation

Accuracy of the method was evaluated on clinical datasets, using visual inspec-
tion as well as landmark-based measurement of the target registration error [23].
An expert breast radiologist annotated corresponding landmarks in both current
and prior images. For this annotation task, a dedicated application had been de-
veloped. While the assessment of landmarks alone provides only limited insight
into the accuracy of a non-linear image registration, the combination with visual
inspection of the registered images allows an overall evaluation. For the visual
inspection, reference and template images were inspected as checkerboard-like
views. A standalone, synchronized viewing application was evaluated by radiolo-
gist experts. Additionally, the deformation fields were displayed as discrete grid
overlays, in order to reveal implausible deformations and misregistrations.
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Fig. 3. Checkerboard-like overlays of exemplary current-prior images before (left) and
after (right) registration with the proposed method. Images courtesy of U. Bick, Charité
Berlin.

3 Results

The proposed method was evaluated on 20 pairs of clinical T1-weighted MR
images acquired from 17 patients using standard DCE protocols and double
breast coils. The images were acquired on four different MR scanning systems
(Siemens Magnetom and Symphony Vision, Avanto, Sonata) with varying reso-
lutions (256×128×64 to 5602×120 voxels) and voxel sizes (1.252×2.844mm to
0.6252×2mm). Biopsy images were removed from the test set prior to processing.

Initially, visual inspection of the current-prior images before and after regis-
tration was conducted. The images were displayed to breast radiologists as
checkerboard-like overlays. Figure 3 shows three exemplary registration results.
After registration, the alignment of internal breast structures and tissue bound-
aries has improved significantly. Complementarily, the annotated landmarks were
transformed with respect to the deformation fields computed by the image reg-
istration. In particular, for a given set of reference landmarks, the corresponding
transformed reference landmarks were determined. This mapping effectively po-
sitions the reference landmarks in the template space. Since a non-symmetric
image registration method was applied, the mapping is generally not bijective.
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Table 2. Resulting distances (in mm) between landmarks after registration, including
minimum (underlined) and maximum (bold) values

Datasets (1-10) B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

Mean 7.28 5.88 8.98 12.56 5.41 13.74 6.06 14.02 10.31 16.07
Std.dev. 2.14 0.68 4.23 4.87 1.47 7.53 2.62 6.07 11.09 4.91

Minimum 4.72 4.86 3.6 7.39 3.38 7.02 3.44 7.37 1.35 9.16
Maximum 9.96 6.86 13.94 19.01 6.86 24.25 9.64 22.04 25.94 20.13

Datasets (11-20) B11 B12 B13 B14 B15 B16 B17 B18 B19 B20

Mean 19.2 12.08 10.36 15.32 16.1 15.35 5.53 24.61 11.37 3.17

Std.dev. 3.21 2.24 4.09 0.32 7.26 7.36 0.72 16.5 7.21 1.55

Minimum 15.4 9.02 5.4 14.91 7.84 9.1 4.52 1.43 5.72 1.44
Maximum 23.25 14.33 15.42 15.69 25.51 25.69 6.14 38.27 21.54 5.2

Euclidean distance measurements were then taken between the mapped refer-
ence landmarks and the template landmarks in the template coordinate system.
Results of these measurements for the SSD-driven linear-elastic regularizer are
shown in Table 2.

For each dataset pair, the average, minimum and maximum distance as well
as the standard deviation were computed. Subsequently, average values for all
datasets were derived. Overall, the mean distance between landmarks was 11.67±
5.36mm, including all datasets. The minimum average distance was 3.17mm,
while the maximum average distance was 24.64mm. The minimum overall dis-
tance was 1.35mm, the maximum overall distance 38.27mm. Standard deviations
for these values were at 3.91mm and 8.63mm, respectively. Table 3 summarizes
the overall distance statistics.

In addition, the relative improvement of landmark distances was estimated by
comparison of the original distances with the distances after registration. The
resulting values in mm and percentages are shown in Table 4. After registration,
the mean overall distance was reduced to 31.73% of the original average distance.
Standard deviation for the mean values was reduced to 13.36% of its original
value. The average minimum and maximum distances were reduced to 27.53%
and 35.47% of those for the unregistered images.

Table 3. Average distances (in mm) over all measurements after registration with the
proposed method

Post-registration measurements

Distance (mm) Mean Std.dev. Minimum Maximum

Mean overall 11.67 4.81 6.53 17.49
Std.dev. overall 5.36 3.97 3.91 8.63
Minimum overall 3.17 0.32 1.35 5.2
Maximum overall 24.64 16.5 15.39 38.27
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Table 4. Original average distances (in mm) over all measurements prior to registra-
tion, and relative percentages of the remaining distances after registration

Pre-registration measurements

Distance (mm) Mean Std.dev. Minimum Maximum

Mean overall 36.77 11.27 23.08 49.3
Std.dev. overall 40.13 18.91 17.43 58.56
Minimum overall 9.56 0.93 4.95 11.73
Maximum overall 159.63 69.72 70.49 240.69

Percentage (%) Relative remaining distances

Mean overall 31.74 42.69 27.53 35.47
Std.dev. overall 13.36 21.0 22.43 14.73
Minimum overall 33.15 34.28 27.21 44.33
Maximum overall 15.43 23.66 21.84 15.9

4 Discussion

Considering the quantitative and qualitative evaluation, the proposed method ef-
fectively reduced the average distance between landmarks to under a third of the
original distance. Given the obviously large dislocations and deformations, this
reduction greatly improves the spatial correlation. Variation in distance among
the set of landmarks was reduced to 13.36% of the original standard deviation,
on average. In addition to the reduced minimum and maximum distances, the
narrowed range of standard deviations indicates that the registration performed
well for the given datasets.

The average distance after registration was 11.67mm, compared to 36.77mm
before processing. Considering the voxel size of 1.252 × 2mm for most of the
datasets, the achieved improvement already allows to establish synchronization
of current and prior datasets. Moreover, the visual inspection of results confirmed
that the method aligned images in some cases very accurately.

The method performed worse on datasets containing large changes in breast
tissue and geometry, such as post-interventional images. For these datasets, the
linear-elastic small-deformation assumption is violated, resulting in imprecise
registration results of both the linear and non-linear registrations. Notably, the
linear registration often already failed to determine a plausible pre-registration.
While the linear-elastic regularization is adequate for small deformations of the
breast, its usage for follow-up registration must be supplemented by methods
providing custom transformation models to reduce larger variations. Alterna-
tively, diffeomorphic hyper-elastic registration methods must be implemented.

Currently, the non-symmetric mapping of the non-linear registration limits
the applicability of the method in that two independent registration tasks need
to be performed to allow bidirectional synchronization. A symmetric registration
with ensured invertible mapping is currently being developed for this task.

Accuracy of the target registration error measurements depends on the place-
ment of landmark points at feature positions in the images. This annotation is
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highly subjective and therefore landmark positions might not be exact, causing
larger distance values. Following future evaluations will therefore also consider
the fiducial registration error by comparing annotations of multiple experts [23].

5 Conclusion

A novel image registration method for the synchronization of breast MRI follow-
up images has been proposed, along with an overview of registration-relevant
issues. The method was qualitatively and quantitatively evaluated on 20 clinical
datasets showing significant variation in breast geometry and image appearance.
Accuracy of the registration method in terms of landmark-distances was in the
range of 11.67± 4.81mm, corresponding to a decrease of the initial distances to
only 31.74%. Variation was furthermore reduced to 13.36% of the original value.
Consequently, the accuracy is sufficient to synchronize follow-up images and
support the radiologist during reading. The computationally intensive registra-
tion tasks can be precomputed efficiently. At present, the main limitation of the
method is the usage of an unspecific linear-elastic image registration method,
whose capture range is insufficient for very large deformations of the breast.
Therefore, current work aims at improving the method with the integration
of prior initialization of the deformation to improve robustness and precision.
In addition, the method will be extended to be fully symmetric to ensure an
inverse-consistent mapping of the non-linear transformation.

Acknowledgements

Parts of this work have been funded as part of the HAMAM project by the
European Union’s 7th Framework Programme, ICT-2007.5.3, grant no. 224538.

References

1. Kuhl, C., Mielcareck, P., Klaschik, S., Leutner, C., Wardelmann, E., Gieseke, J.,
Schild, H.: Dynamic Breast MR Imaging: Are Signal Intensity Time Course Data
Useful for Differential Diagnosis of Enhancing Lesions? Radiology 211(1), 101–110
(1999)

2. Kuhl, C., Schrading, S., Leutner, C., Morakkabati-Spitz, N., Wardelmann, E., Fim-
mers, R., Kuhn, W., Schild, H.: Mammography, breast ultrasound, and magnetic
resonance imaging for surveillance of women at high familial risk for breast cancer.
Journal of Clinical Oncology 23(33), 8469–8476 (2005)

3. Viehweg, P., Rotter, K., Laniado, M., Lampe, D., Buchmann, J., Kölbl, H.,
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Abstract. This work presents a complete processing-chain for a 3D-
reconstruction of Basal Cell Carcinoma (BCC). BCC is the most common
malignant skin cancer with a high risk of local recurrence after insuffi-
cient treatment. Therefore, we have focused on the development of an
automated image-processing chain for 3D-reconstruction of BCC using
large histological serial sections. We introduce a novel kind of image-
processing chain (core component: non-linear image registration) which
is optimised for the diffuse nature of BCC.

For full-automatic delineation of the tumour within the tissue we ap-
ply a fuzzy c-means segmentation method, which does not calculate a
hard segmentation decision but class membership probabilities. This fea-
ture moves the binary decision tumorous vs. non-tumorous to the end of
the processing chain, and it ensures smooth gradients which are needed
for a consistent registration.

We used a multi-grid form of the nonlinear registration effectively sup-
pressing registration runs into local minima (possibly caused by diffuse
nature of the tumour). To register the stack of images this method is
applied in a new way to reduce a global drift of the image stack while
registration.

Our method was successfully applied in a proof-of-principle study for
automated tissue volume reconstruction followed by a quantitative tu-
mour growth analysis.

Keywords: Non-linear Image Registration, Image Segmentation, 3D-
Reconstruction.

1 Introduction

Basal Cell Carcinoma (BCC) is the most common skin cancer worldwide in
Caucasian populations [1]. It is a slow-growing epithelial malignant skin cancer,
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� Springer-Verlag Berlin Heidelberg 2010
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which tends to infiltrate the surrounding tissues and it is strongly associated
with exposure to UV-irradiation [2]. The most common localisation (80 %) for
BCC is the head and neck [3]. Lesions located in the mid-face or ear (so called
H-zone) have a high risk of local recurrence after treatment [4]. BCC exists in
different subtypes and a deeper understanding of the spatial shape is important
when analysing patterns of invasion.

For other types of cancer, 3D-reconstruction methods have already been es-
tablished successfully in the past [5,6]. For the 3D-reconstruction of BCCs up
to now only basic attempts were made to explore spatial features of tumour
growth [7,8]. The scattered structure of the BCC requires a new registration
strategy for the sequence of image registration steps. In this paper we introduce
a novel registration strategy for image slice stacks appropriate for diffuse cancer
structures and present a proof-of-principle study for a new automated image
processing chain for 3D-reconstruction as well as for the certain directional and
angular morphometric growth analyses of BCC.

2 Methods

2.1 Image Acquisition

Excised tissue blocks were routinely fixed and embedded in paraffin. To obtain
the maximum information on the tumour, the volumes of interest (VOI) of the
specimens were consecutively sliced in vertical direction with a thickness of 6 µm.

For routine, haematoxylin-eosin (H&E) staining of all slides were subjected
to automated staining using a linear stainer (Microm, Germany). Histological
examination following finalisation of the processing by automated covering using
standard glass cover slips was performed by an independent investigator who
checked whether or not the lesions were completely excised.

Whole histological specimens with verified tumour tissue were subjected for
scanning with an automated system for digital pathology (MIRAX MIDI, Carl
Zeiss, Germany). For the reconstruction a downscaled version of colour-images
was used, each with a resolution of 1000× 400 pixels and a nominal pixel size of
15 µm × 15 µm.

Not all images are appropriate for the reconstruction due to heavy folds in the
slices which sometimes appear in the process of slicing and staining. The images
of these slices were not used and finally filled with their neighbouring slice.

2.2 Preprocessing

The first step of the processing chain is a rigid registration. It roughly co-registers
consecutive image pairs by applying a combination of translation, rotation and
scaling. For a reference image R(x) and a deformable template image T (x)
this registration step tries to find the optimal parameters of a transformation
u(x) : Ω → Ω with x = (x1, x2)� ∈ Ω ⊂ R

2. In the case of a rigid registration
the transformation is given by
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u(x) = Ax + br with A =
(

sr 0
0 sr

) (
cosαr − sinαr

sin αr cosαr

)
(1)

and the optimal parameters are found when a certain distance measure D be-
tween the images R(x) and T (u(x)) is minimised, which is here the sum of
squared differences between the images

D(u) =
1
2

∫
Ω

[T (x− u(x)) − R(x)]2 dx. (2)

Throughout this work we tried to be consistent with the notation-style of Mod-
ersitzki [9]. This first rigid registration step is fundamental to the success of
the second non-linear registration which follows after the segmentation. This is
caused by the fact that it is more likely that the following non-linear registration
succeeds when the images are already near the solution and the registration has
to compensate for small local differences only.

The effect of the rigid registration can be observed in fig. 1(a). The top image
shows an unregistered set of slides, whereas the bottom image clearly documents
that after registration the slides fit quite well onto another.

All images are now filtered through a total variation (TV) filter suggested by
Chan et al. [10] to reduce noise in images while preserving structure edges. This
step is necessary since the segmentation preferably needs images of smooth tissue
areas with clear edges to succeed. Other edge preserving denoising operators like
median filters or non-linear diffusion filters preserve the edges not so well (median
filter) or need more parameter (non-linear diffusion filter). The only parameter
the TV filter requires is the estimated standard deviation of the noise whereas
this feature is easy to be estimated from background parts of a typical image.

2.3 Tumour Segmentation

The smoothed images are the basis for the fuzzy c-means segmentation [11,12].
The reasons for choosing the fuzzy c-means algorithm are threefold: This algo-
rithm does not make a sharp decision which area in the image belongs to which
class in the segmentation result but rather provides a probability of the member-
ship. This is crucial since the H&E-staining produces violet images with different
saturations for tumorous and non-tumorous parts. These parts sometimes over-
lap in colour-space and at this stage of the reconstruction a sharp decision for a
pixel which is given by other segmentation methods is not adequate. Therefore,
segmentations like c-means or mean shift cannot be used.

The second reason is that the colour saturation of the slices changes due to
instabilities in the staining procedure. Therefore, an overall (3D) segmentation
of the colour space is not possible, because the same colour can correspond
to different tissue types in different slices due to different slice thickness and
exposure time to the staining chemicals. The fuzzy c-means segmentation does
solve this problem by an adaptation of already calculated segmentation-class-
distributions and therefore provides constantly good tissue segmentation results
throughout the whole image stack.
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(a) (b) (c)

Fig. 1. (a) Shape of an unregistered (top) and the rigid registered (bottom) image-
stack. (b) The flowchart shows the main steps of the tumour segmentation. To demon-
strate the edge-preserving behaviour of the Total Variation Filter we took extreme filter
parameters for this example. Those are not necessary in the real process chain. (c) The
automatic extraction of the epidermis is possible with the grown background-mask of
the segmentation. This mask is grown by the size of the epidermis and is then used to
mask out the regions in the segmentation result.

The third reason for the choice of the fuzzy c-means method is that segmenta-
tion results are approximated memberships of the pixels to colour classes. Since
these membership probabilities are represented as grey-levels and not as binary-
values they provide smooth gradients which are important for the non-linear
image registration.

As mentioned before, the used fuzzy c-means method is able adapt a given set
of colour-centres as starting point for a new image and calculate a segmentation
on this basis. Therefore, in the segmentation-process of the complete image stack
we had to verify only one segmentation-result and for the rest of the images it
was not necessary to adjust any parameters.

In fig. 1(b) the main steps of the image processing chain are depicted, in
particular both the smoothing and segmentation step. The small layer of the
epidermis and the adjacent tumour tissue are too close together in colour-space
and are not separable by the segmentation. However, it was possible to extract
this layer automatically by taking the mask of the background of each slide and
enlarge it by the size of the epidermis. This step which is depicted in fig. 1(c)
completes the extraction of the tumour.

2.4 Reconstruction

At this point it is necessary to re-align local differences in tumorous parts of con-
secutive slides. During preparation, inevitable deformations occur, which need to
get compensated. For this purpose a non-linear registration step was applied which
was working on intensity images resulting from a combination of the approximate



3D-Reconstruction of Basal Cell Carcinoma 29

class membership for the cancer class obtained from the fuzzy c-means segmenta-
tion and a low-level intensity image of the slide itself. Primarily we are interested
in a mapping of the tumour regions, but to get a consistent result, the usage of
the slide intensity in regions without tumour is essential.

As already mentioned in the segmentation section the registration of the ap-
proximate class membership from the segmentation procedure provides smoother
gradients which means less local gradients for the non-linear registration proce-
dure than one would obtain by hard segmented images.

The non-linear registration after the rigid registration step is necessary since
this method can stretch and bend parts of the image to bring the tumour tissue
of adjacent slides onto another. The method of choice at this point bases on the
optical flow and was firstly mentioned by Amit [13] and Modersitzki [9] and later
extensively used by others [5,14].

In the process of registration the required displacement field u(x) : Ω → Ω is
found by minimising a joint registration criterion

min
u

(D(u) + αS(u)) (3)

consisting of the already mentioned distance measure

D(u) =
1
2

∫
Ω

[T (x− u(x)) − R(x)]2 dx (4)

and smoothing term

S(u) =
1
2

2∑
i=1

∫
Ω

(Δui)2dx. (5)

Using the calculus of variations, the solution for equation (3) will require to
solve a system of 4th order partial differential equations. Different approaches
are possible but in this work we used the multi-grid implementation which is
described in more detail in [5].

Likewise, we registered the whole set of images so that every slide is co-
registered onto its predecessor. Usually the image-stack is processed in a single
run and one (forward) direction. This procedure excels the chosen direction over
the opposite one, which is adequate for relatively solid structures and tissue
types. The diffuse nature of the BCC and the fact that the skin is not completely
surrounded by stabilising tissue require a more symmetrical alignment of the
slices which is in this work ensured by not processing the images of the stack in
one registration run. Instead, we registered at first each image pair-wise with its
neighbour starting at the first image and processing in forward direction through
the stack breaking up the registration before it converges. Thereafter we proceed
backwards through the image stack with the same approach and repeated the
whole procedure three times.

2.5 Visualisation

After this last step the reconstruction chain is finished and the result is a 3D-
tumour-density field which is the basis for further morphological analysis and



30 P. Scheibe et al.

3D-visualisation. In the case of this work we calculated an iso-surface of the
largest connected component of the tumour. For that purpose a 3D total vari-
ation filter on the tumour density was used in order to smooth the data for
visualisation.

After that, a volume labelling algorithm was utilised to mark connected parts
with an ID and calculate their volume. With position and volume of all objects
we could verify that the biggest component was the main tumour-object (see
fig. 3).

2.6 Quantification

To characterise the tumour we want to determine the dependency of the distance
distribution with respect to different angles and radii in spherical and cylindrical
coordinates, respectively. For both approaches we have chosen the point of origin
to be the centre of masses of the tumour projected onto the topmost horizontal
plane of the bounding-box (the xy-plane in our coordinate system). This centre
is depicted in figure 2(a) as point of intersection of the radii and in figure 2(c)
as centre of the concentric circles. It can be obtained by

m = Pxy

(
1
N

N∑
i=1

xi

)
, (6)

where xi are all positions of tumour in the data set and Pxy is the projection
onto the xy-plane.

In this work the primary focus is put on the invasion of BCC in the surround-
ing tissue whereas the lateral propagation direction is not in the main focus.
Therefore, we are in the first rank rather interested in the dependency on the
polar angle as depicted in figure 2(a). With

tsp(x) =

(
arctan

(√
x2

1 + x2
2

x3

)
,

√
x2

1 + x2
2 + x2

3

)�
(7)

we can transform all positions xi of tumour in the data set by calculating

ri = tsp(m − xi). (8)

This list is now quantised into different angular intervals. Note that the angles in
this list are all in the main interval [0, π/2] since (i) in the hemisphere above the
centre m (a region outside the skin) there is no tumour and (ii) corresponding
radii left and right of m in figure 2(a) represent the same polar angles.

All collected radii of an angular interval can be treated as realisation of a
Γ -distributed random variable, since the Γ -distribution is the only distribution
going along with the power of the random variable. The probability density
function of a gamma distribution is given by

fΓ (r; k, Θ) = rk−1 Θ−k exp(−r/Θ)
Γ (k)

where Γ (k) =
∫ ∞

0

tk−1 exp(−t)dt (9)
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Fig. 2. While (a) is a sectional view of a virtual cutting plane orthogonal to the skin
surface, where the lines indicate different polar angles, (c) shows a plane parallel to
the skin with different radii. The different angles and radii are used in the density
plots (b) and (d) of probability distributions obtained by the quantification methods.
The origin of the coordinate system is in both cases the reference point m. The yellow
lines denote the P (X ≤ 0.95) border. (b) is a plot of the angular distribution where
angles are transformed back to Cartesian coordinates and (d) is a plot of the depth
distribution.

with the parameters (k, Θ). In order to estimate values for these parameters
we used an iterative maximum likelihood estimation (MLE) scheme [15]. The
parameters found by the MLE algorithm are the basis for distribution analysis
as is detailed in the following section.

Going beyond the angular analysis, more information can be extracted using a
method reflecting the depth distribution of BCC. We step in after the calculation
of the reference point m (eq. 6), but now we are interested in the probability
of the tumour depth at a given distance from m. Therefore we use cylindrical
coordinates and analyse the depth distribution of different range intervals as
basically depicted in figure 2(c).

In this approach all positions xi of tumour are transformed by

ri = tcy(m − xi) where tcy(x) =
(√

x2
1 + x2

2 , x3

)
(10)
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which are the first and the last component of cylindrical coordinates. The rest
of the approach is similar to the first method besides the fact that the estimated
tumour depth distribution is normal distributed.

3 Results

The present data-set is based on a serial section of a complete BCC which
consists of 193 slices. From this data-set 43 slices had to be excluded due to folds
or artifacts. The specimen has a volume of 80 mm3 and contains a segmented
tumour of about 2.6 mm3.

The 3D-iso-surface plot depicts the tumour component (fig. 2.6). To enhance
illustration it was artificially enlarged and embedded behind the surface of the
tissue specimen. Since we only have visualised the largest component, we had to
verify that all small segments previously masked out were indeed false positives,
i.e., 3D-coordinates of them were taken, thereafter the dermatologist classified
all segments to be false positive.

Fig. 3. An iso-surface plot of the reconstructed BCC (red) embedded behind the surface
of the tissue specimen (green)
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As already mentioned, epidermis and tumour are not well separable in H&E-
stained slices using the applied staining-based segmentation method. Another
source for false-positive segmentation are hair follicles. While the epidermis can
be identified by its closeness to the tissue boundary and therefore can be masked
out by the above mentioned steps, hair follicles are identifiable due to their
characteristics in the final reconstruction.

A hair follicle is an epidermal sheath that surrounds the hair. Sebaceous glands
are usually attached to the side of a follicle. Their oily secretion enters the follicle
and follows it to the surface. The hair grows from the bulb, swollen lower end
of the follicle. The bulb is invested with blood vessels and nerves. Due to these
typical histological characteristics they can easily be identified and extracted
from the volume.

Generally speaking, a new method for the non-linear registration of a stack
of slice images applying several runs with alternating directions in the stack
has been introduced. The new method has shown to work well even under the
presence of diffuse cancer structures as appearing in BCC.

4 Discussion

This work has successfully given a proof-of-principle for an image processing
chain for a 3D-reconstruction of BCC. The starting point was an H&E stained
large serial histological section from paraffin embedded specimen.

Unlike established microscopic imaging techniques such as confocal laser scan-
ning microscopy (CLSM), or the “bread leaf” sectioning technique as applied in
histopathological routine, in Moh’s micro-graphic surgery [4] used by Braun [7],
our new approach relying on histological serial sections allows for (i) a complete
tissue volume reconstruction, (ii) visualisation of the whole tumour including
surrounding tissue and (iii) quantification of statistical properties.

CLSM, however, cannot provide a sufficient penetration depth of several mil-
limetres. The “bread leaf” sectioning obviously takes far too less (non-adjacent!)
sections for registration-based reconstructions. Moh’s surgery relies on cryosec-
tions and uses horizontal sectioning, hence the method, besides the flat-bed
scanning and manual tumour delineation as done by Braun [7], will not provide
sufficient preparation quality as can be obtained using paraffin embedding and
vertical sectioning, the latter preserving the epidermis.

Instead, our approach utilises virtual microscopy for image capture as well as
state-of-the-art image processing methods for the successive image series regis-
tration in order to re-establish a 3D histological data-set. We therefore applied
a sophisticated non-linear image registration algorithm (optical flow method) in
order to ensure that unavoidable distortions as occur during manual sectioning
and further slice preparation (staining-induced partial shrinking) can be com-
pensated within the image data.

Even though captured virtual microscopy images typically come along with
raw pixel sizes below 1 µm2, since our intention was to segment and reconstruct
tissue volumes, during the pre-processing we had to downscale the images in
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order to avoid sub-cellular resolution. Moreover, the application of the edge-
preserving TV filter to compensate for staining inhomogeneities is another im-
portant pre-processing step with respect to a reliable tissue segmentation.

Further, the staining-based automatic tumour segmentation (fuzzy c-means
method), even though ending up with a few false-positives as e.g. hair follicles, is
essential to treat data-sets consisting of hundreds of images per series. To replace
the remaining minimum of manual interaction to sort out respective false positive
regions would require knowledge-based approaches to get eliminated in future,
but this was not the focus of this work.

However, since segmentation quality is crucial for our method, in preliminary
work we have evaluated the reliability of tumour segmentation in H&E stained
single sections of 10 randomly selected BCCs of different sub-types. After careful
inspection of the results by the dermatologist it turned out that the segmenta-
tion is appropriate to detect all tumorous parts. The sources of false positive
segmented tissue remained restricted to parts of epidermis, sebaceous gland,
and hair follicles.

Concerning the treatment of images with damaged slices (folds, fissures) which
occasionally occur during the preparation process, we avoided to do some inter-
polation as was proposed in [16] and instead have done an image replacement
from neighbouring sections to fill such gaps. To us, interpolation appears not
appropriate within a reference-free consecutive image registration framework.

The present proof-of-principle study demonstrates the first feasible approach
to elucidate the 3D tumour growth of a complete BCC in microscopic resolu-
tion. The volume data obtained by the presented method is considered highly
appropriate for further phenotypical investigations in order to morphometrically
describe tumour growth.

One such detail of interest is e.g. how an objective description of the spatial
tumour distribution can be obtained. For this purpose it is possible to determine
the dependence of the distance distribution with respect to different polar angles
in spherical coordinates. Through such a characterisation distances from the
centre of the BCC can be calculated which have a certain probability that none
of the tumorous tissue infiltrates into deeper regions of the skin.

For this approach we chose the origin m of the spherical coordinate system
to be the centre of masses of the tumour projected onto the topmost horizontal
plane of the bounding-box. This choice is motivated by the idea that it is possi-
ble for the surgeon to identify this centre on the skin. After the transformation
in spherical coordinates the data-set is quantised into different angular intervals.
Note that these angles are all in the main interval [0, π/2] since (i) on the hemi-
sphere above m there is no tumour and (ii) corresponding radii left and right of
m represent the same polar angles, since the azimuth dependence is not taken
into account.

The next step is to treat all collected radii of an angular interval as realisation of
a Γ -distributed random variable, since the Γ -distribution is the only distribution
going along with the power of the random variable. In order to estimate values
for these parameters we used an iterative maximum likelihood estimation (MLE)
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scheme [15]. The parameters found by the MLE algorithm are the base for distri-
bution visualisation given in fig. 2(b). Since the dependence on the azimuth was
not taken into account, the visualisation is symmetric to the centre. The colour
ranges from black to white and denotes the probability interval [0, 0.03]. The yel-
low line is the P95 border which states 95% of the tumour is below this radius.

With methods like the presented one, another future application is the valida-
tion of new non-invasive high-resolution skin imaging techniques. Nevertheless,
the next steps following this work are to process several samples of each BCC-
subtype to capture important statistical properties. In general, for detailed ob-
jective insights into shape, structure and growth patterns further investigations
in quantification techniques for BCC are required.

Obituary

The authors are very grateful for having had the opportunity to work with
Dr. rer. nat. Jens-Peer Kuska, whose ideas and contributions have incomparably
influenced our research activities for many years. On July 1st, 2009, he has
passed away at the age of just 45.
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Abstract. The registration of 3D vasculature to 2D projections is the
key for providing advanced systems for image-based navigation and guid-
ance. In areas with non-rigid patient motion, however, it is very difficult
to accurately perform the registration if only one 2D view is available.

We propose a method for deformable registration of a 3D vascu-
lar model extracted from an angiographic scan to a single 2D Digi-
tally Subtracted Angiogram (DSA). Different to existing approaches,
our method does not require a segmentation of 2D vasculature. In con-
sequence, our method can be used without manual interaction during
medical treatment.

Formulated as an energy minimization problem, our approach com-
bines a novel data term with the length regularization proposed in [1]
which removes the ill-posedness of this monocular scenario. Besides at-
tracting projected 3D centerline points to locations with high vessel
probability the proposed data term ensures an injective projection of
the centerline points.

Due to our novel image-based data term, we achieve a considerable
gain in performance compared to feature-based approaches.

Accuracy, robustness to outliers, as well as performance issues are
analyzed through tests on synthetic and real data within a controlled
environment.

1 Introduction

Image-based guidance on angiographic images has become a standard technique
in modern hospitals. Needles, catheters, guide wires, or other instruments are
injected into the patient vessel system and their progression is usually monitored
by 2D angiography and fluoroscopy. Most procedures are carried out with a
mono-plane device, which produces 2D images from one view only. Efforts have
been made to bring 3D angiographic scans into the 2D guidance process in order
to constantly provide spatial details on vasculature [2,3].

One of the main obstacles to be overcome here is an accurate 2D-3D regis-
tration of vessel images. Only then, a correct fusion of the available information
can create a benefit in terms of depth perception or augmentation. Especially in
abdominal or cardiac procedures, vessels are subject to non-rigid motion, which
has to be considered by the registration process.

B. Fischer, B. Dawant, and C. Lorenz (Eds.): WBIR 2010, LNCS 6204, pp. 37–47, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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While rigid 2D-3D vessel registration has been addressed extensively in the
literature [4,5,6,7], deformable registration is mostly tackled only if multi-plane
X-ray devices are available [8,9,10]. For a single view scenario, a method has
been proposed recently, which aligns centerline features of 3D vasculature by
minimizing the Euclidean distance of projected centerline points to their near-
est 2D pendants [1]. The data term alone cannot solve for displacements in
projection direction. By adding a length preservation together with a smoothing
regularization term this issue is met and the registration is driven to the accurate
solution.

This approach successfully recovers a non-rigid transformation from only one
view, but requires an extraction of centerline features in 3D and in 2D. Due
to a uniform contrast propagation, the 3D extraction can be carried out with
quite simple processing methods; 2D angiograms, however, include regions with
inhomogeneous contrast distribution and vessel overlays, which may lead to er-
roneous results when creating a vascular model. Moreover, such extraction tech-
niques often require a certain amount of user interaction, which is undesired
during medical procedures.

We address this issue by proposing a method which registers a 3D vascular
model to a vessel image, e.g. a DSA, without any prior geometric extraction step
in 2D. To this end, we define a circular region around each projected centerline
point in which intensities of the 2D image are accumulated. The region is for-
malized using a level set function, which inherently penalizes solutions where
multiple regions project onto the same part of the image. The accumulated in-
tensities, together with a length preservation in 3D, define an energy, whose
optimization attracts projected centerline points towards 2D vessel centers. In
order to keep our computed transformations smooth we regularize the updates
of a gradient descent scheme using approximating thin-plate splines [11,12].

Tests on synthetic examples and a comparison with the feature-based ap-
proach from [1] show the high accuracy as well as the improved runtime of our
approach. Additional to the synthetic data, we conduct an experiment with pa-
tient data, where two 3D data sets are available, one preoperative Computed
Tomography Angiogram (CTA) and an intraoperative 3D reconstruction.

2 Method

Our method optimizes an energy, which is defined on a vascular model extracted
from a 3D angiographic scan, a 2D image where noise is reduced and tubular
structures are enhanced, and a projection function, which relates each 3D point
to a corresponding 2D point in the image plane.

In order to create the vascular model consisting of centerline points and their
associated radii, a region growing algorithm is applied to the 3D data. Due to
uniform contrast propagation, this basic method yields a good segmentation
result, which is used to compute centerline points (via a topological thinning
algorithm) and associated radii (via a Euclidean distance transformation), see
Fig. 1.
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Fig. 1. From left to right: 3D input volume showing liver arteries and spine; 3D vascular
model, where centerline points and radii are extracted from the input volume; 2D DSA
of the same patient; 2D DSA with enhanced tubular structures

For noise reduction and vessel enhancement of the 2D DSA we use a filter
which enhances tubular structures in a multi-scale approach [13]. This is accom-
plished by a pixel-wise comparison of the gradient vector and the eigenvector
of the Hessian associated to the larger eigenvalue at a distance equal to the ex-
pected radius of the vessel. The more parallel the two vectors, the higher the
response of the filter, compare Fig. 1.

The projection parameters are assumed to be given by the device. This is
achieved either by machine-based geometric calibration [2], or by a rigid regis-
tration step [6], which is carried out prior to the deformable registration.

2.1 Energy Formulation

Let {Xi} be the set of n centerline points in 3D. Each centerline point Xi has
an associated vessel radius Ri. We denote our vascular model with the tuples
{(Xi, Ri)}. For each Xi we define a displacement vector ϕi and a displaced
location Yi = Xi + ϕi. The vector including all entries of the displacement
vectors ϕi is denoted by ϕ.

Now we want to find the displacement ϕ′ minimizing the following energy:

ϕ′ = arg min
ϕ

EE + αEI , (1)

where EE defines the external energy, and EI represents the internal (regulariz-
ing) energy. The weighting parameter α controls the impact of the regularization.

External Energy. Let p : R
3 → R

2 be a perspective projection function. We
denote projected centerline points by xi = p(Xi) and their projected radii by
ri = ||p(Xi) − p(Xi + RiV)||, where V is a 3D unit vector parallel to the image
plane in device coordinates1.

We want to encourage each 3D centerline point Xi to project onto the center
of a 2D vessel. As centerline points correspond to high values in the enhanced
1 The device coordinate system has its origin in the center of projection, spans the

x-y-plane parallel to the image plane and the z-axis points towards the image plane.
If p is described by a projection matrix P = K[R|t] ∈ R

3×4, world coordinates are
transformed to device coordinates by applying rotation R and translation t.
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Fig. 2. illustration of the selection term of Eq. (7)

2D image If : Ω ⊆ R
2 → R (Fig. 1) the following data term seems to be a

reasonable choice:

ÊE(ϕ) = −
n∑

i=1

∫
Di

If (x) dx, (2)

where Di = D(p(Xi +ϕi), ri) denotes the disk with radius ri centered at the ith
projected centerline point. In order to obtain a formulation where the integration
domain is independent of ϕi and ri we rewrite ÊE in terms of level set functions:

ÊE(ϕ) = −
n∑

i=1

∫
Ω

If (x) · H(φi(x)) dx, (3)

where
φi(x) = ri − ‖x − p(Xi + ϕi)‖ (4)

is a level set function whose zero level set is the boundary of the disk Di and

H(x) =

{
0, x ≤ 0,

1, x > 0,
(5)

denotes the Heaviside function. Unfortunately ÊE does not prevent all centerline
points from being projected onto the same point in 2D, because the area of the
projected disks

∑
i

∫
Ω

H(φi) is always constant regardless of the position of the
projected points p(Xi + ϕi). Consequently an overlap of the disks Di is not
penalized by ÊE . In order to resolve this issue we define the level set function

Φ(x, ϕ) = 0.5 −
n∑

i=1

H(φi(x)). (6)

Now the area
∫

Ω 1 − H(Φ) defined by Φ shrinks when the projected disks Di

overlap as depicted in Fig. 2. Thus an improved data term is given by

EE(ϕ) = −
∫

Ω

If (x) · (1 − H(Φ(x, ϕ))) dx. (7)
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Internal Energy. Similar to [1] we add a length preservation term to induce
transformations in projection direction. To each centerline point Xi we define a
squared distance to left and right centerline neighbors, denoted by d(Xi,Xi±1).
EI is then given by the relative change in length after deformation

EI =
1
n

n∑
i=1

[
d(Xi,Xi±1) − d(Yi,Yi±1)

d(Xi,Xi±1)

]2

, (8)

where Yi = Xi+ϕ as defined above. To impose transformation smoothness, there
are two approaches that can be followed in general. Either a penalizing term is
added to the internal energy, or a regularizing operator is directly applied to
the updates that are computed in the optimization procedure [12]. We choose
the second approach, and realize it by computing an approximating thin-plate
spline (TPS) from the displacement updates in each iteration. The displacements
are then smoothed by recalculating their values from the TPS. By choosing the
TPS basis function U(r) = −|r| we minimize the second derivatives of the 3D
displacement field [14].

2.2 Optimization

We employ two different gradient-based optimization methods. One is a steepest
descent approach, the second is a BFGS optimization [15], which usually yields
faster convergence.

The first derivative of EE with respect to parameters ϕk is given by

∂EE

∂ϕk
= −

∫
Ω

If (x)δ(Φ(x, ϕ))δ(rk − ||x − p(Yk)||) (x − p(Yk))�

||x − p(Yk)|| J(Yk) dx, (9)

where J(Yk) ∈ R
2×3 is the Jacobian of the projection function p evaluated at

Yk, and δ is the Dirac delta-function.
The first derivative of EI with respect to parameters ϕk is given by

∂EI

∂ϕk
= − 8

n
[κ−

k (Yk − Yk−1) + κ+
k (Yk − Yk+1)], (10)

where κ±
k = (d(Xk,Xk±1) − d(Yi,Yk±1))/d(Xi,Xk±1) [1].

The gradients of external and internal energy are normalized such that the
gradient of ϕj , which has the highest magnitude is normalized to one:

∂

∂ϕk
EE/ max

j=1...n
|| ∂

∂ϕj
EE || , and

∂

∂ϕk
EI/ max

j=1...n
|| ∂

∂ϕj
EI ||. (11)

With this, we ensure normalization throughout different units (EE is computed
on image intensities in 2D space, EI is computed in 3D space), which makes a
combination of the two energy terms more tractable. Given the partial deriva-
tives, our registration algorithm can be summarized in Algorithm 1.
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Algorithm 1 Monocular Deformable 2D-3D Registration
INPUT: Given a vascular model {(Xi, Ri)}, i = 1, . . . , n, an enhanced image I, and a
projection function p
OUTPUT: A transformation ϕ

1: ϕ0 = 0
2: repeat
3: compute gradients ∇E = ∇EE + α∇EI using Eqs. (9), (10), and (11)
4: compute update Δϕ using gradient direction
5: compute TPS warp W given {Xi},{Xi + Δϕi}, i = 1, . . . , n and a smoothing

parameter λ
6: smooth displacement update using warp: Δϕ̃ = W(Xi) − Xi

7: ϕt+1 = ϕt + Δϕ̃
8: until convergence

2.3 Implementation

In our implementation we use smeared-out versions of Heaviside and Dirac delta-
function as described in [16], i.e.

H(x) =

⎧⎪⎨⎪⎩
0, x < −ε,
1
2 + x

2ε + 1
2π sin

(
πx
ε

)
, −ε ≥ x ≥ ε,

1, ε < x,

(12)

and

δ(x) =

{
1
2ε + 1

2ε cos
(

πx
ε

)
, |x| ≤ ε,

0, |x| > ε.
(13)

In Eqs. (12) and (13) ε is set to 1.5 [16]. We follow the description of the
BFGS optimization procedure from [15]. For increasing the capture range of
our algorithm we use an image pyramid, which is traversed during optimiza-
tion. For each pyramid level we update the projection matrix by multiplying
D = diag(0.5, 0.5, 1) ∈ R

3×3 from the left. Instead of evaluating the gradient
at every pixel in the image domain, we use a narrow band technique, whose
boundaries are given by the radii around each projected centerline point.

3 Evaluation

We evaluate our algorithm through tests on synthetic and real data. Artificial
data is created such that contains a deformation component in projection direc-
tion. We analyze two error measures. The first is the mean Euclidean distance to
a ground truth vascular model in 3D. The second error is the deviation from an-
gles defined between vectors to neighboring points in the vascular model. Again,
the deviation from the ground truth values is computed. Finally, we compare
our method to the feature-based approach [1] in terms of accuracy and runtime.
Runtime is evaluated on an Intel Core2Duo 2.6GHz machine. We were kindly
provided with data and code by the authors of [1].
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Fig. 3. Two synthetic data sets, denoted S2 and S3 in table 1. The white spheres
represent the input vascular model, the gray spheres show the deformed input model
(the ground truth) from which the projection image has been generated. The lower
right sub-images visualize the enhanced projection images, where dark gray disks are
drawn at all projected centerline points at the beginning of the registration.

In all our experiments the input 2D image is enhanced as described in Sec.
2. This fully automatic filter takes approximately 3 sec on an image of size
1024 × 1024 pixels. The parameter α, which controls the length preservation
term, is set between 0.5 and 2.0, the smoothing parameter λ (see Algorithm 1)
is set to 10.0. We use 5 pyramid levels in all our experiments with a downsampling
factor of 2.

3.1 Tests on Synthetic Data

Synthetic test data is created from an artificial vascular model, which is deformed
in a length-preserving manner. Moreover, the deformation is chosen such that
its major part occurs orthogonal to the image plane, see Fig. 3.

From this deformed model we compute a 2D projection using projection pa-
rameters from a calibrated C-arm device. The projected vascular model {(xi, ri)}
is used to compute an artificial DSA image in the following way. We first use a
background image, which contains noise and collimator masks similar to a real
DSA. Then, we draw disks at each xi with radius ri. Intensities of disk pixels
xd are assigned proportional to the radius ri:

I(xd) = c − 1
2ri

, (14)

where c is an intensity constant, which represents the maximal value a contrasted
vessel should have. This way we assure higher intensities at thin vessels and lower
intensities at thicker vessels, which stems from the observation that X-rays get
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Fig. 4. A synthetic DSA created from the vasculature of an intraoperative CBR. The
background image has been generated from two X-ray projections of the same patient.
The right image shows the DSA after tubular structure enhancement. Note that, due
to the background image, artifacts remain, which are similar to the ones in real DSA
images.

more attenuated the more contrast agent they traverse, i.e. the thicker the vessel
structure. Thereafter the intensities are smoothed using an averaging filter and
Gaussian noise (with a standard deviation of 5% of the intensity range) is added.

We test three synthetic vascular models with increasing complexity and defor-
mation, see Fig. 3. We compute Euclidean errors, angle errors, and runtime for
our technique and for the feature-based approach. Input for the feature-based
approach are the 2 vascular models {(Xi, Ri)}, {(xi, ri)}, and the projection
function p. Table 1 illustrates errors with relative improvement compared to the
initial situation as well as algorithm runtime in seconds.

3.2 Tests on Real Data

For the experiment similar to a clinical scenario we use two 3D data sets, a CTA,
which has been acquired before an abdominal intervention, and a 3D CBR, which
has been acquired with a C-arm during the intervention while a catheter was
inserted. Both data sets visualize liver arteries of the same patient, which are
extracted as described above to create two vascular models, {(XCTA

i , RCTA
i )}

and {(XCBR
i , RCBR

i )}. In a first step the two models are rigidly registered using
a closed-form least-squares method [17] on manually assigned bifurcation cor-
respondences. Then, more correspondences are manually assigned to compute
a reference deformation via an interpolating TPS. The vascular model, which
is extracted from the CBR, is projected using a calibrated projection matrix
from the intraoperative C-arm. The projection matrix is chosen in anteroposte-
rior position, which is a typical pose for the acquisition of DSA images during
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Table 1. The first 6 rows show results on synthetic, the 2 lower rows on real data sets.
Data with ’M2I’ suffix show values for the proposed method, data with ’M2M’ suffix
show comparison values of the feature-based approach [1]. The second column shows
the number of centerline points included in the 3D vascular model. The remaining
rows show values for Euclidean and Angle error together with a relative improvement
compared to the initial error as well as runtime (Intel Core2Duo 2.6GHz) results.

Data |{Xi}| Euclidean error [mm] Angle error [rad] Runtime [sec]

S1-M2I 22 0.24 (77.7%) 0.04 (75.6%) 0.39

S1-M2M 22 0.31 (72.1%) 0.02 (85.5%) 2.67

S2-M2I 23 0.43 (68.0%) 0.07 (78.4%) 0.43

S2-M2M 23 0.40 (70.8%) 0.04 (88.7%) 3.27

S3-M2I 59 1.04 (26.7%) 0.34 ( 2.5%) 4.01

S3-M2M 59 0.86 (39.3%) 0.32 ( 6.7%) 17.90

R1-M2I 318 9.13 (16.3%) 0.22 (-0.2%) 184.1

R1-M2M 318 11.67 (-6.9%) 0.23 (-4.1%) 679.3

abdominal procedures. A synthetic DSA image is created from the projected
vascular model as described above. Here, we obtain the background image by
subtracting two high-dose X-ray images of the same patient, see Fig. 4. Again,
tests were conducted using the proposed method and using the feature-based
approach whose results are summarized in table 1.

Our experiments show that the new algorithm can cope with different defor-
mations and has an accuracy similar to the feature-based approach. Moreover,
when applied to the real data set, we improve the error by 16.3%, whereas the
feature-based approach yields results worse than the initial situation. Please note
that our algorithm decreases the runtime by a factor between 3 and 6 compared
to the feature-based algorithm.

4 Conclusion

In this paper we propose a new method for deformable 2D-3D registration of
vascular structures in a one-view scenario. Due to the combination of our novel
image-based external energy term and a length preservation in 3D we create
a well-posed problem, which can be solved via gradient descent optimization.
Different to existing methods for 2D-3D non-rigid vascular registration, we define
our energy on the image intensities, which both decreases runtime and increases
ease of use. At the same time, we preserve accuracy as well as capture range due
to a pyramidal implementation.

It should be noted that some approximative assumptions are made in our
method. First, 3D centerlines are not projectively invariant, i.e. if registered, 3D
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centerlines do not necessarily project onto centerlines extracted in 2D. Only if
the center of the 3D vessel intersects with the principal ray2, projected and 2D
centerline would overlap. The same applies to the projection of radii as mentioned
in Sec. 2.1: in general, the perspective projection of a ball is a conic, only in the
aforementioned special case it becomes a disk. These two issues, however, are
marginal since angiographic devices have a focal length, which is much larger
than the extents of a volumetric data set. In such scenarios, the error which is
introduced can be neglected. Finally, we leave the projected radius ri constant
throughout the optimization. When a centerline point is displaced the projection
of its associated radius will also change, which consequently changes the size of
the disks Di, see Eq. (2). We also neglect this issue using the same argument as
above.

Encouraged by the promising results we intend to run more extensive tests on
real data, not only on abdominal but also on heart anatomy, where deformation
is increased due to immanent heart beat.
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Abstract. We introduce a method for volumetric cardiac motion anal-
ysis using variational optical flow computation involving the prior with
the fractional order differentiations. The order of the differentiation of
the prior controls the continuity class of the solution. Fractional differ-
entiations is a typical tool for edge detection of images. As a sequel of
image analysis by fractional differentiation, we apply the theory of frac-
tional differentiation to a temporal image sequence analysis. Using the
fractional order differentiations, we can estimate the orders of local con-
tinuities of optical flow vectors. Therefore, we can obtain the optical flow
vector with the optimal continuity at each point.

1 Introduction

As an application of the computer vision technique to clinical biomechanical
motion analysis from volumetric image sequences, we deal with spatial optical
flow computation for the beating heart. In recent years, it is possible to mea-
sure a series of volumetric cardiac images dynamically using MRI, Cine X-ray
CT, and Ultrasonic imaging and so on. The most important physical natures of
the cardiac optical flow computation are that the motion of the beating heart
is spatial dynamics and the heart wall is deformable [1,7]. For registration of
temporal volumetric cardiac images, optical flow is a fundamental feature to
express temporal deformation. Therefore, accurate computation of optical flow
field and segmentation of optical flow fields are essential tasks for pre-processing
to temporal registration of cardiac image sequence.

The prior terms of variational optical flow and variationl image registration
control local continuity orders of small displacements in images of a spatiotempo-
ral image sequence and deformation for images from an atlas image. In this paper,
we introduce an estimation method for the optimal continuity order of local small
displacements of image sequence. The continuity order of local displacement is
computed using variational optical flow computation with the prior which in-
volves the fractional order differentiation [2,3,4,5] of the displacement field. We
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apply local continuity estimation to volumetric cardiac optical flow computa-
tion. The prior term with the first-order derivatives is a common regularizer in
optical-flow computation [8]. The prior term with the second-order derivatives, of
which the origin in mechanics goes back to Kirchhoff [10] on the elastic theory, is
a common regularizer in boundary extraction for tracking of the object-boundary
and warping [11] in computational anatomy. From the viewpoint of the order
of derivatives in the regularizers for the optical-flow computation, the Horn-
Schunck [9] and the deformable-model [6] constraints require that the solution
is a continuous twice differentiable function and a continuous four-time differen-
tiable function, respectively. The order of the differentiations in the prior controls
the continuity class of the solution. Therefore, by selecting an appropriate order
of the differentiation in the prior of variational optical flow computation, we can
estimate motion boundary and classify the continuity order of the motion field.

Total variational (TV) regularization is a successful method of optical flow com-
putation of an image sequence with discontinuity of the gray values and motion
field. TV regularization uses the total variation of optical flow field as the prior,
although the classical Horn-Schunck method [9] uses the L2 norm of the gradient
of flow field. TV regularization optical flow computation [22] derives a nonlinear
elliptic partial differential equation as the Euler-Lagrange equation of the energy
functional of the problem. The generalization of the order of differentiation in
a Horn-Schunck-type prior is another modification of the original Horn-Schunck
regularization, since this generalization yields a linear Euler-Lagrange equation
[4,5]. There are two types of generalization of the differentiations in priors; the
first one deals with higher-order differentiations, and the second one deals with
fractional order differentiations. We focus on the second type of generalization,
that is, we deal with the variational optical flow computation with a prior term
involves a fractional order differentiation of optical flow vectors.

Recently, fractional partial differential equations have been widely used in var-
ious areas of science and engineering, because fractional differential equations
describe diffusion and wave propagation in inhomogeneous media and fractal
structures [18,20]. As a sequel, we propose variational optical flow computation
involving the prior with fractional order differentiations on optical flow vec-
tors. A definition of fractional differentiation is based on the Fourier transform
of differential operations, which is easily implemented using the first Fourier
transform and the filter theory [2]. We solve the spatially fractional partial dif-
ferential equation using the Fourier transform method to compute fractional
derivatives. Since fractional differentiations1 are linear operations, the fractional
order regularization for optical flow computation [22] derives a linear fractional
order elliptic partial differential equation as the Euler-Lagrange equation of the

1 The definitions of fractional derivative are

dα

dxα
f(x) =

1

Γ (n − α)

dn

dxn

∫ t

0

(t − τ )n−α−1f(τ )dτ.

Therefore, the relations d1/2

dx1/2 x = 1√
2π

x1/2 and d1/2

dx1/2
1√
2π

x1/2 = 1 are satisfied.



50 K. Kashu et al.

energy functional. Therefore, we can numerically solve the problem using the
same strategy that is used to solve the Horn-Schunck method.

2 Fractional Optical Variational Problem

2.1 Fractional Order Differentiations

Using the Fourier transform pair

F (ξ) =
1

(2π)3/2

∫
R3

f(x)e−i(x�ξ)dx, (1)

f(x) =
1

(2π)3/2

∫
R3

F (ξ)ei(x�ξ)dξ, (2)

for x = (x, y, z)� and ξ = (ξ, η, ζ)�, we define the operations Λ

Λf(x) =
1

(2π)3/2

∫
R3/2

|ξ|F (ξ)ei(x�ξ)dξ. (3)

We have the equality ∫
R3

|∇f |2dx =
∫
R3

|Λf |2dx, (4)

since ∫
R3

|f |2dx =
∫
R3

|F |2dξdξ. (5)

2.2 Variationl Image Analysis

For the positive integer n ≥ 1, setting the operator Dn to be

Dn+1f =

⎛⎝∂xDnf
∂yDnf
∂zD

nf

⎞⎠ , Df = ∇f =

⎛⎝∂xf
∂yf
∂zf

⎞⎠ , (6)

we define the operation

|T αf |2 =
{ |Dαf |2, if α is an integer,
|Λαf |2, otherwise. (7)

As a generalization of the Horn-Schucnk method [9] such that

H(u) =
∫
R3

{
(∇f�u + ∂tf)2 + κ(|∇u|2 + |∇v|2 + |∇w|2)} dx, (8)

we deal with the variational energy functional

Jα(u) =
∫
R3

{D(f, u)2 + κ(|T αu|2 + |T αv|2 + |T αw|2)}dx, (9)
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where κ ≥ 0 and α = n + ε where 0 < ε < 1 and n is a non-negative integer for
u = (x, y, z)�. Since Λ = Λ∗, the Euler-Lagrange equation and the associated
diffusion equation of eq. (9) are

Λ2αu +
1
κ

D(f, u)∇uD(f, u) = 0, (10)

∂τu = (−Λ2α)u − 1
κ

D(f, u)∇uD(f, u), (11)

where ∇u is the gradient with respect to u and ∂τ is the partial derivative with
respect to τ . For variational optical flow computation and variational image
registration, the first term of eq. (9) is

D(f, u) = ∇f�u + ft = fxu + fyv + fzw + ft (12)

for a spatiotemporal image sequence f(x, t) and

D(f, u) = g(x) − f(x + u) (13)

for a pair of given functions g and f , respectively. Equation (10) coincides with
the Euler-Lagrange equation of the Horn-Schunck method and the deformable-
model method for α = 1 and α = 2, respectively, if the function D(f, u) in
the first term of eq. (9) is given by eq. (12). Furthermore, for variational image
registration, we have

Λ2αu − 1
κ

(g(x) − f(x + u))∇f(x + u) = 0. (14)

Therefore, if α = 1 and α = 2, the prior term of eq. (9) is that of diffusion
registration and curvature registration, respectively [15].

2.3 Selection of Order of Prior

The solution involving the lth-order prior is

u(x, y, z) =

⎛⎝ u
v
w

⎞⎠ =

⎛⎜⎝
∑l−1

i,j,k=0 aijkxiyjzk∑l−1
i,j,k=0 bijkxiyjzk∑l−1
i,j,k=0 cijkxiyjzk

⎞⎟⎠ (15)

for nonnegative integers k, that is, the solution is locally a (k − 1)th-order poly-
nomial of x and y. This property implies that the priors involving the first- and
second-order differentiations derive a piecewise linear and affine optical flow,
respectively.

Let u(x, y, t; α) be the optical flow vector computed for fixed α. For each point
x, we select

u∗(x, y, t; α∗) = arg min
α

F (u; α, κ), α∗(x, y, t) = arg min F (u; α, κ) (16)
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where
F (u; α, κ) = D(f, u)2 + κ(|T αu|2 + |T αv|2 + |T αw|2) (17)

for a predetermined positive parameter κ as the solution vector of point x.
Equation (16) estimates the local continuity order of the optical flow vector,
that is, point x with the optical flow vector u(x, y, t; α) is the class (α − 1)
function of x. We call α∗ = α(x, t), which establishes the minimum of eq. (16),
the α-map [21] of the optical flow field (α-map in abbreviation.).

Using α-map, we construct a two-path algorithm such that

1. Let α0 and α1 be a pair of constants such that α0 < α1. Compute optical
flow for each α for α0 ≤ α ≤ α1 and construct α-map α∗(x).

2. Compute displacement field u∗∗(x) for point x as the solution of the equation

∂τu = −Λ2α∗(x)u − 1
κ

D(f, u)∇uD(f, u). (18)

3 Numerical Examples

3.1 Discretization of Equation

From eq. (11), we have semi-explicit discretizations such that

u
(l+1)
kmn − u

(l)
kmn

Δτ
= (−Λ2α)u(l)

kmn − 1
κ

D(f, u
(l+1)
kmn )∇uD(f, u

(l+1)
kmn ), (19)

u
(l+1)
kmn − u

(l)
kmn

Δτ
= (−Λ2α)u(l+1)

kmn − 1
κ

D(f, u
(l)
kmn)∇uD(f, u

(l)
kmn). (20)

3.2 Numerical Computation

We evaluate numerical performances of the fractional order derivative in the
prior for volumetric cardiac optical flow computation. Equation (19) derives the
iteration form [14]

(I +
Δτ

κ
Skmn)u(l+1)

kmn = u
(l)
kmn + Δτ (−Λ2α)u(l)

kmn − Δτ

κ
ckmn, l ≥ 0 (21)

for the numerical computation of α optical flow, where

Skmn = (∇f)kmn(∇f)�kmn, ckmn = (∂tf)kmn(∇f)kmn. (22)

The numerical Fourier transform achieves the operation (−Λ2αu)(l)kmn [2]. To use
the FFT (the Fast Fourier Transform) with the Neumann condition ∂u

∂n = 0, the
function f(x, y, z) defined in 0 ≤ x, y,≤ L is expanded by using the relations

f(L+x, L+y, L+ z) = f(L−x, L−y, L− z), f(x, y, z) = (x+2mL, y +2nL, z +2nL)
(23)
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for integers k, m, and n. Setting the discrete differentiations to be

Dxf(x, y, z) =
1
h

f(x +
1
2
h, y, z)− f(x − 1

2
h, y, z),

Dyf(x, y, z) =
1
h

f(x, y +
1
2
h, z)− f(x, y − 1

2
h, z), (24)

Dzf(x, y, z) =
1
h

f(x, y, z +
1
2
h) − f(x, y, z − 1

2
h)

for unit sampling step h, the Fourier transform of Δf(x, y, z) is

FT {Δf(x, y)} = − 4
h2

(
sin2 h

2
ξ + 4 sin2 h

2
η + +4 sin2 h

2
η

)
F (ξ, η, ζ), (25)

where FTf expresses the Fourier transform of f , since

FT {Dxf(x, y, z)} =
2
h

i sin
h

2
ξF (ξ, η, ζ),

FT {Dyf(x, y, z)} =
2
h

i sin
h

2
ηF (ξ, η, ζ), (26)

FT {Dzf(x, y, z)} =
2
h

i sin
h

2
ζF (ξ, η, ζ).

Therefore, we obtain the relation

(−Δ)αfijr = IDFT

{(
4 sin2 h

2
k + 4 sin2 h

2
m + 4 sin2 h

2
n

)α}
Fkmn (27)

for discrete images fij and its discrete Fourier transform Fmn, where IDFT
expresses the inverse discrete Fourier transform.

3.3 Numerical Results

Figure 1 shows three-dimensional slices on the coronal, transverse, and sagittal
planes. From left to right, Fig. 1 shows the three views of the original images,
the flow fields computed by the Horn-Schunck method, and the flow fields com-
puted by the deformable model. The three-dimensional flow field vector of each
point is projected onto the plane, and the projected two-dimensional flow vec-
tor is expressed in the Middlebury Color Chart expression of vector field, which
expresses directions and lengths of two dimensional vectors.

Since the Horn-Schunck and deformable model methods yield the piecewise
constant flow field and piecewise affine flow field, respectively, the computational
results by the former and latter methods are an over-smoothed field and the field
shaped on the curved boundary, respectively.

Figure 2 shows α-map α∗(x), the optical flow field u∗(x, α∗) which minimizes
F (u, α; κ), and the solution of the two-path algorithm u∗∗ from left to right.
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Fig. 1. Three-dimensional optical flow fields. From left to right images flow fields com-
puted by the Horn-Schunck method, the deformable-model method, on the coronal,
transverse, and sagittal planes.

Fig. 2. Boundary surfaces on coronal, transverse, and sagittal planes. From left to
right, color chart expression of optical flow field, norm of optical flow field, and the
boundary surface line of the image. The boundary surface φ(x, y, z) = 0 is extracted by
a 3D version of Krueger’s method [24]. φ(x, y, 0) = 0, φ(x, 0, z) = 0, and φ(0, y, z) = 0
are illustrated.

Comparing with the boundary curves on planes,2 our method clearly extracts
the motion boundary. The result u∗∗ is computed using the iteration

(I +
Δτ

κ
Skmn)u(l+1)

kmn = u
(l)
kmn + Δτ (−Λ2αkmn)u(l)

kmn − Δτ

κ
ckmn, l ≥ 0, (28)

where αmn is estimated as

αkmn = min arg{(∇f�u + ∂tf)2 + κ(|T αu|2 + |T αv|2 + |T αw|2)} (29)

2 Setting fG to be the convolution of the Gaussian with an appropriate variance and
f , the segment boundary is the collection of points which satisfy ∇f�

G HG∇fG = 0
where HG is the Hessian of f . For the boundary surface φ(x, y, z) = 0, the boundary
curves on the coronal, transverse, and sagittal planes are φ(x, y, 0) = 0, φ(x, 0, z) = 0,
and φ(0, y, z) = 0, respectively.
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(a) Color
chart

(b) α = 1.0 (c) α = 1.1 (d) α = 1.2

(e) Ground truth (f) α = 1.5 (g) α = 1.8 (h) α = 2.0

Fig. 3. Computational results for λ = max |f |. Results for α =
1.0, 1.1, 1.2, 1.5, 1.8, and2.0.

in the first step of the algorithm. These results show that the solution of the two-
path algorithm detects the motion discontinuity caused on the motion boundary
using the operation Λα∗(x).

Since we have no ground truth for the heart image sequence, we show the
performance evaluation of the boundary detection using a two-dimensional image
sequence with the ground truth.

Figure 3 shows the effect of the fractional order derivatives in the prior of the
Horn-Schunck method. For 1 ≤ α ≤ 2, the method clearly detects the motion
boundary.

Figures 4(d) and (h) are the results obtained by our method using the α-
maps in Figs. 4(b) and (f). Setting uT to be the ground truth fields, αtrue is
computed as

αtrue = min arg{(∇f�uT + ∂tf)2 + κ(|T αu|2 + |T αv|2 + |T αw|2)}. (30)

Figures 4(b) and (f) show that the values of α-map on the motion boundaries
are large, since for the description of motion fields on the motion boundaries, we
are required to use higher order terms of eq. (15).

For the two-pass method, the results of the Horn-Schunck method are used
as the initial estimation of the iteration algorithm. Figures 4(d) and (h) show
that the boundaries of the sphere and blocks on the images are sharply ex-
tracted, since on the boundary, both the gray value of the image and the optical
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(a) Ground
Truth

(b) Horn-
Schunck

(c) α-map, κ =
1.0

(d) Tow-pass
result

(e) Ground
Truth

(f) Horn-
Schunck

(g) α-map, κ =
1.0

(h) Tow-pass re-
sult

Fig. 4. Results: Rotating sphere and New marbled block. From left to right, motion
field, α-map, the results of Horn-Schunck method, and results of the two-pass method.
For the two-pass method, the results of the Horn-Schunck method are used as the
initial estimation of the iteration algorithm.

flow process discontinuity in the gray-value topography and motion field, respec-
tively. For both examples, the motion discontinuity on the segment boundaries
is extracted by the fractional order optical flow.

3.4 Discussion

Setting {xk = (xk, yk, zk)�}n
k=1 and {tk}n

k=1 to be sets of sample points and
sample values, respectively, the minimization of

J(f) =
n∑

k=1

(f(xk) − tk)2 + κ

∫
Ω

|Λαf |2dx (31)

where Ω is the define domain of the function f(x), is a generalization [25] of
the variational then-plate spline approximation. Here, the order α controls the
continuity orders of the reconstructed function f(x). We applied this property
for the computation of volumetric cardiac optical flow field [6,7,1,25].

The result in Fig. 3 shows the flow fields which minimize

D(u) =
∫
R2

(∇f�u + ft)2dxdy + κE2(u)

E2(u) =
∫ ∫

R2
(|D2u|2 + |D2v|2 + |D2w|)dxdy, (32)
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where
D2f = (fxx, fxy, fxz, fxy, fyy, fyz, fzx, fzy, fzz)�. (33)

From the results in Figs 4 and 3, we observe the following properties on the
boundary motion.

Observation 1. If the motion of points in the neighborhood of the boundary is
locally stationary, for instance, the motion is pure translation in a region, the
projection of the ridge boundary moves elastically on the image. Therefore, the
prior (regularizer) E2(u) of eq. (32) is suitable to detect the moving boundary.

Observation 2. If the motion of points in the neighborhood of the boundary
on the image is nonstationary because of motion delay in the neighborhood, for
instance, the delay in the global translation caused by local rotation, the projec-
tion of the ridge boundary moves viscoelastically on the image. Motion delay is
expressed as a phase delay of the propagation of motion front. Therefore, the
prior (regularizer)

V (u) =
∫ ∫

R3
(|Λn+εu|2 + |Λn+εv|2 + |Λn+εw|2)dxdy (34)

for 0 < ε < 1 is suitable to detect moving boundary.

For α = n+ ε such that 0 < ε < 1, the fractional order Laplacian is decomposed
into the harmonic operation (−Δ) and fractional Laplacian Λ2ε = (−Δ)ε. This
decomposition can be read that Λ2αf is achieved by applying the harmonic
operation (−Δ)n to g = (−Δ)εf , which is achieved by convolution between
the function f and the Riesz potential [23]. Numerical filtering of the operation
(−Δ)ε derived in eq.(27) possesses a smoothing effect to the optical flow field u(l)

in each step of iteration. Therefore, our numerical scheme generates a smoothed
optical flow before applying the harmonic operation. This presmoothing property
of the numerical scheme yields a better performance for α = n + ε such that
0 < ε < 1.

Our method estimates the continuity order of the optical flow field. Further-
more, as shown in the results, our method also extracts a higher order opti-
cal flow if the gray-value distribution of an image is discontinuous. The results
mathematically provide a method to estimate the local continuity order of the
optical flow field, and theoretically shows that for motion boundary extraction
and tracking, the prior with higher order differentiation is preferable. For the
tracking of the image of an elastic boundary of a ridged object in space, the order
of the differentiation is two. If the optimal order of the points is between 1 and
2, the points are viscoelastically moving [16,17] on an image. The results lead to
the conclusion that using the local continuity order, it is possible to extract the
motion boundary and separate moving segments from the background.

4 Concluding Remarks

The order of differentiation in the prior decides the continuity order of the op-
tical flow field. Therefore, our results show that orders between one and two
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are preferable to detect discontinuity optical flow vectors, which appear on the
motion boundary. Although TV regularization [12,13] accurately and stably com-
putes an optical flow field and extracts moving segments from the background,
the operation is nonlinear. The results leads to the conclusion that using the lo-
cal continuity order, it is possible to extract the motion boundary and separate
moving segments from the background.
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diagnosis and therapy: Frontiers of medical image sciences” funded by Grant-in-
Aid for Scientific Research on Innovative Areas, MEXT, Japan, Grants-in-Aid
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Research Fellowship for Young Scientist founded by Japan Society of the Pro-
motion of Sciences, and Research Associate Program of Chiba University. Y.
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tion of Science, The heart image sequence is provided from Robarts Research
Institute at the University of Western Ontario through Prof. John Barron.

References
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Abstract. Images fromhigh-resolution scanning ophthalmic instruments
are significantly distorted due to eye movement. Accurate image registra-
tion is required to successfully image subjects who are unable to fixate due
to retinal conditions. Moreover, all scanning ophthalmic imaging modali-
ties using adaptive optics will benefit from image registration, even in sub-
jects with good fixation and anaesthetized animals. Transformation
functions used to map two images could in principle be very complex. Here,
we show that when the scanning in ophthalmic instruments is sufficiently
fast with respect to the speed of involuntary eye movement, these map-
ping functions become the addition of a linear term and a single variable
function. Then, based on experimental data on eye movement amplitude
and speed of the fixating eye, minimum sampling frequencies for these in-
struments are discussed. Finally, a simple method for estimating the image
transformation functions by taking advantage of the finite bandwidth of
the motion signals is presented.

1 Introduction

The development of ophthalmic adaptive optics (AO) in recent years has led
to a new generation of high-resolution retinal imaging instruments [1–11]. The
unprecedented resolution of these instruments allows for in vivo non-invasive
imaging of retinal cell mosaics [1, 9, 10, 12]. Within this family of instruments,
scanning devices such as the AO optical coherence tomograph (AO-OCT) [3–8]
and the AO scanning laser ophthalmoscope (AOSLO) [7, 9–11] produce images
with better signal-to-noise ratio (SNR), lateral resolution and axial sectioning
than flood-illuminated cameras [1, 2]. On the other hand, scanning instruments
are susceptible to image distortion due to eye movement. The distortion scales
with the magnification of the instrument, which is an order of magnitude greater
in AO ophthalmic instruments than in commercial clinical devices.

When using high magnification to view the retina in vivo, light safety stan-
dards [13] severely restrict the number of photons that can be delivered within
a certain period of time. For example, when visualizing lipofuscin in retinal pig-
ment epithelial cells using single-photon fluorescence [10, 12] at safe light levels,
over 99% of the recorded image pixels had no signal. The resulting images, dom-
inated by photon noise, do not contain enough information for registration. This

B. Fischer, B. Dawant, and C. Lorenz (Eds.): WBIR 2010, LNCS 6204, pp. 60–71, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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led to the development of a dual-imaging method, in which a second imaging
channel simultaneously recorded a reflectance signal with much higher SNR. The
motion in the image was then estimated as a rigid translation using the normal-
ized cross-correlation (NCC) in the reflectance image series, and compensated
for in the matching fluorescence image series. This method produced fluores-
cence images in which sub-cellular structures could be identified after averaging
> 1000 frames. The image registration using rigid translations was successful
with anaesthetized animals and some human subjects. However, this method
does not produce acceptable images in subjects that are unable to fixate. More
importantly, the light safety limits are based on data from healthy subjects, and
very little is known about how the damage thresholds change with eye disease, in
particular, from the photochemical point of view. Therefore, in order to reduce
the subjects’ exposure to light and increase SNR, more advanced registration
methods such as the one discussed here are required.

The next section presents the requirements for adequate sampling in scanning
ophthalmic instruments. This is followed by the introduction of a mathemati-
cal model used for fitting the retinal motion transformation functions based on
physical arguments. Section 4 details how the parameters of the model can be
estimated from the image pairs, and illustrates the improvement that can be
obtained from this registration with real data.

2 Eye Movements and Sampling Frequency

When subjects are being imaged in a high-magnification scanning ophthalmic
instruments they suppress all voluntary eye movement by fixating onto a target.
Fixation, however, does not suppress involuntary eye movements like tremor,
drift and micro-saccades [15–19]. These eye movements have amplitudes compa-
rable to or greater than the Rayleigh criterion for lateral resolution [20]. In a
human eye with an 8 mm pupil diameter and a wavelength (λ) in the 0.5–1.0 μm
range, the resolution limit is 16–31 arcsec. Tremor is a fast jerky random move-
ment with amplitudes of 10–20 arcsec at frequencies of up to 200 Hz [15–17, 21].
According to the Whittaker-Nyquist-Shannon theorem, in order to reproduce
tremor faithfully, the sampling rate should be at least 400 Hz. Drift is a con-
tinuous motion in a random direction, with speeds that could vary from 5–20
arcmin/s in normal subjects [18, 21], to 200 arcmin/s in subjects with diseased

Table 1. Temporal frequencies required to adequately sample retinal motion in scan-
ning ophthalmic instruments due to involuntary movement in the fixating human eye

Eye movement Minimum sampling frequency (Hz)

Drift (normal subjects, λ = 0.5μm) 150
Tremor 400
Drift (diseased retina, λ = 0.5μm) 1500
Micro-saccade 5000



62 A. Dubra and Z. Harvey

retinas [19]. According to the resolution criterion for λ = 0.5μm adequate sam-
pling requires a minimum frequency of 150 Hz for normal subjects and 1.5 kHz
for subjects with poor fixation. Microsaccades are short fast eye movements that
compensate for the gaze drift, with amplitudes between 1 and 20 arcmin [21] and
speeds in the order of 10 deg/s. Adequately sampling this type of eye movement
would require sampling frequencies greater than 5 kHz. Note that the sampling
frequencies mentioned above, and summarized in table (1), assume the absence
of noise in the sampling process.

3 Transformation Function Model

The registration of 2D images requires transformation functions that map the
coordinates (x, y) in a given (current) frame onto the corresponding coordinates
(X, Y ) in another (reference) frame. These mapping functions should be part of
a mathematical model that adequately describes the imaging process,

X = fx(x, y; p1, . . . , pn),
Y = fy(x, y; q1, . . . , qn), (1)

with the model parameters pj and qj estimated using a number of control points
(xi, yi), (Xi, Yi) with i = 1, . . . , N .

In scanning ophthalmic instruments, the image distortion due to eye move-
ment is minimized by scanning the retina as fast as both the technology and
light safety limits allow [13]. Fast scanners (y-axis) currently used for creating
2D rectangular images are either rotating polygon mirrors or resonant galvano-
metric optical scanners. On the other hand, the slow scanner (x-axis) is usually
a non-resonant galvanometric optical scanner. The image line capture rate along
the x-axis is currently in the order of 8–16 kHz. For resonant scanners the line
capture occurs in the semi-cycle of the mirror oscillation, usually referred to as
the forward scanning. Thus, the line acquisition time is around 20–40 μs. Ac-
cording to the eye movement data from the previous section, retinal features
would displace about 0.01 μm due to tremor, 0.004 − 0.04 μm due to drift and
0.12 μm due to microsaccades during the recording of a single image line. Given
that these values are an order of magnitude smaller than the resolution limit,
it is reasonable to assume that the retinal motion can be neglected within each
image line. If, in addition, it is assumed that involuntary eye rotations can be
neglected, then the form of the transformation functions simplifies to

X = x + εx(x), (2)
Y = y + εy(x). (3)

Note that the linear terms have unit amplitude because the scanning speed does
not change across frames. The functions εx and εy represent eye motion along
the corresponding axes, and describe the compression and shear observed in the
retinal images, respectively.
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The eye is a mechanical system with inertia and therefore, the functions εx

and εy can be modeled as having finite bandwidths, with an associated maximum
frequency fmax. If the sampling frequency achieved with every image line in a
scanning system is greater than 2fmax, then εx and εy can be described as a
sum of cosines with increasing frequencies. The amplitude of those cosines can
be calculated using the discrete cosine transform II (DCT), retaining only the
coefficients associated to the frequencies fi ≤ fmax,

X = x + p0 +
√

2
N/2∑
k=1

pk cos
[

π

N
k

(
x +

1
2

)]
, (4)

Y = y + q0 +
√

2
N/2∑
k=1

qk cos
[

π

N
k

(
y +

1
2

)]
. (5)

The use of the DCT implies that the N control points are equally spaced along
the x-axis in the current frame.

4 Transformation Function Estimation

The parameters of the transformation functions in Eqs. (4) and (5) are estimated
following a similar approach to that followed by Stevenson and Roorda [14]. A
frame with minimal distortion is manually selected as the reference, while the
other frame (current) is divided into strips, each of them with only a few lines
along the direction of the fast scanner (y-axis). The actual number of lines on
each strip must be manually selected, based on the SNR and the structure present
on each data set. Then, the NCC between each strip and the reference frame is
calculated, and its maximum within a certain region of interest (ROI) located.
The dimensions and location of the of the ROI is determined by the maximum
eye motion considered acceptable. The position of the maximum within the
NCC matrix corresponds to the x- and y-shifts of the strip with respect to the
reference frame. The definition of the NCC between the reference frame (R) and
the current strip (S) used in this work is,

CR,S(m, n) =

∑
i,j R(i, j) S(m + i, n + j)√∑

i,j R(i, j)2
∑

p,q S(p, q)2
, (6)

where the sums are performed over pixels in the overlap area between the ref-
erence frame and the strip. The actual calculations are performed by taking
advantage of the correlation theorem in the Fourier domain, a fast implementa-
tion of the discrete Fourier transform (DFT), and with adequate zero-padding
to avoid periodization artifacts. The NCC definition in terms of the DFT can
be written as

CR,S =
IDFT

[
DFT [Rp]

∗ DFT [Sp]
]√

IDFT
[
DFT [PR]∗ DFT

[
S2

p

]]
IDFT

[
DFT

[
R2

p

]∗ DFT [PS ]
] , (7)
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Fig. 1. Fitted εx model (blue line) of a sample set of current frame strip shifts (red
crosses) using only the first N/2 coefficients returned by the DCT. The shaded area
indicates the acceptable region, based on a shift uncertainty of 1 pixel. Note that
although the fit might appear poor with respect to the data points, it is consistent
with the uncertainty limits. In this example, each image strip consisted of two lines.

where IDFT denotes inverse DFT, ∗ indicates complex conjugate and Rp and
Sp are the zero-padded reference frame and strip, respectively. PR and PS are
zero-padded templates of the reference frame and strip, with unit value over the
corresponding pixels. It is worth noting that the use of the NCC does not require
any prior knowledge of the structures being imaged, and it uses all information in
the image, as opposed to other algorithms with lower computational complexity
[22]. In addition, the normalization used here makes the shift estimation robust to
overall intensity fluctuations, which are very common in ophthalmic instruments,
due to subject misalignment, tear film break up, etc. The NCC was implemented
using the correlation theorem (Eq. 7) and the graphic processing units of CUDA-
enabled graphics cards (Nvidia Corporation, Santa Clara, California, USA). The
DFT was calculated using the CuFFT function. Figure 2 shows a plot of the
performance of the NCC implemented using the CuFFT using single- and double-
precision, against a double-precision Matlab implementation of Eq. 7 using the
FFTW package (http://www.fftw.org/). Given current frame rates in ophthalmic
instruments, the achieved performance allows real-time image registration, that
produces motion signals that can be fed back to the scanning mirrors, to stabilize
the imaging raster in the selected retinal location. There are two sources of error
inherent to the shift estimation method. First, the use of the NCC on images
with a finite number of pixels, which leads to a quantization of the shift values.
This error can be reduced to an arbitrary level of accuracy by increasing the
pixel density through interpolation, provided that computing power and memory
requirements are not a limitation. The second source of uncertainty in the shift
estimation comes from distortion within each strip. This error can be reduced
by decreasing the number of lines in each strip, provided the information left
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Fig. 2. Evaluation of the NCC implementation using CuFFT (CUDA) running on a
GeForce GTX 285 graphics card from Nvidia for different (square) frame sizes. For
reference, the performance of the FFTW in Matlab running on an Intel Xeon CPU
E5430 using Microsoft Windows XP is provided.

st
rip
x-

po
si

tio
n 

+ 
sh

ift
 (p

ix
)

strip x-position (pix)
0 5 10 15 20 25

0

5

10

15

20

25

A C
B D

Fig. 3. Transformation model (blue line) corresponding to the εx from figure (1). The
black dashed line shows the linear term of Eq. (4) that would correspond to the model
in the absence of eye movement. The portion of the current frame corresponding to the
decreasing part of the curve (shaded area) is not considered for the image registration.

within the strip is sufficient to correctly estimate the shifts. Once the x- and
y-shifts of the (N) strips are estimated, they are used to fit the models in Eqs.
(4) and (5). Note that the curve calculated using only N/2 cosine terms will in
most cases not pass through all the control points (see figure 1). If the sample
density of the strip and reference frame are not increased when calculating the
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a b

c d
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Fig. 4. Photoreceptor layer of a subject with poor fixation: (a) reference frame with
minimal distortion, (c) a frame affected by eye motion and (e) the same frame after
registration with the strip-based method. The images in panels (b), (d) and (f) show
the regions indicated with the dashed squares in (a), (c), and (e) respectively.
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a b

c d

Fig. 5. Images that result from registering the sequence of 50 images that include those
of Fig. 4 using: (a) the rigid registration and (b) the method proposed in this work. The
latter method used 16 pixel-wide strips in a sequence of images of 708×688 pixels. The
panels (b) and (d) show the regions indicated with the dashed squares in (a) and (c),
respectively. Note the increased contrast and resolution achieved with the strip-based
registration method, and the noise reduction with respect to figure 4.

NCC, then the minimum uncertainty is due to shift quantization into integer
values (±0.5 pixels). As mentioned before, another source of error is the image
distortion within the strip. The effect of this source of error is difficult to quantify,
as it varies with the structure being imaged, the amplitude, and speed of eye
movement. A metric of distortion within a strip is the NCC value associated with
the estimated shifts. These NCC values can be compared against a threshold in
order to accept or discard strips.

Once the transformation functions are estimated from the strip shifts, the
resulting curve from the x-shift has to be split into strictly monotonic intervals.
When the curve is not strictly increasing, the same retinal patch is imaged
multiple times in a single current frame. For example, according to the curve in
Fig. (3), the section of the current frame corresponding to the intervals AB, BC
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a

b

Fig. 6. Output image showing the photoreceptor mosaic of a healthy human subject
with stable fixation, after registering a sequence of 500 images acquired using a re-
flectance AOSLO using: (a) rigid registration and (b) the method proposed in this
work. Note the contrast and resolution increase achieved with the strip-based method.
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and CD would all show the same retinal patch. The BC segment indicates retinal
movement in the direction of the slow scanner. In practice, the corresponding
portion of the image would be inverted and too distorted to be useful. There is
no need to verify that the y-transformation function is monotonic because of the
high speed of the fast scanner with respect to eye motion.

Finally, each monotonic interval in the x-transformation function and the
corresponding interval in the y-transformation function are used to calculate the
values of the registered image over the grid of pixels of the reference frame, using
a bilinear interpolation. In this way, the reference and the registered images can
be summed to produce images with higher SNR.

Figures 4, 5 and 6 illustrate how the proposed strip-based method works and
how it performs with respect to a simple rigid translation. Figures 4, and 5 show
the retina of a human subject suffering from blue cone monochromacy, a condi-
tion that results in very poor visual acuity and fixation. The panels in figure 4
are single frames taken from a sequence of 50 frames, while those in figure 5 cor-
respond to the averaged registered sequence. For comparison, registered images
from a subject with no eye conditions and good fixation are provided in Fig. 6.

5 Summary and Discussion

We have shown that when the scanning in ophthalmic instruments is sufficiently
fast with respect to the speed of involuntary eye movement, the mapping func-
tions become the addition of a linear term and a single variable function. Then,
based on experimental data on eye movement amplitude and speed in the fixating
eye, minimum sampling frequencies for these instruments were discussed. Assum-
ing finite bandwidth of the involuntary eye motion, a method for estimating the
transformation functions was presented. The proposed registration method can
be used to improve the signal-to-noise ratio (SNR) of high-resolution reflectance,
single-photon fluorescence and phase images from the live retina. Currently, the
only part of the registration process that requires significant user input is the
selection of the reference frame, which is also necessary for rigid registration or
any other registration method. Finally, two examples illustrating the dramatic
image quality improvement provided by the proposed method with respect to
rigid translation were presented.
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Abstract. This paper is focused on multimodal and multidimensional
image data registration: the three-dimensional retinal optical coherence
tomographic (OCT) data and two-dimensional color images of fundus.
The registration of these two modalities is not common in retinal im-
age processing, but it might help to remove the moving artifacts in OCT
and correct the true positions of acquired OCT scans on retina. The pro-
posed framework consists of three steps: global dataset pre-registration,
preprocessing and OCT to fundus image registration. Two alternating
registration criteria are used in the main step due to changing spatial im-
age properties. Three-parametric spatial transformation (shift and scale)
for each OCT scan and exhaustive search is used in this preliminarily
work. The achieved results are presented on several examples.

1 Introduction

The optical coherence tomography (OCT) has found many applications in medical
and biological sciences, mainly in clinical ophthalmology. On of the most impor-
tant application is an early glaucoma diagnosis either based on the examination
of the retinal nerve fibre layer from cross-sectional scans [1] or based on the op-
tic disc cup and rim segmentation [2]. Another clinical application for glaucoma
diagnosis uses autofluorescent images produced also by OCT devices, e.g. [3].

Nowadays devices work in the spectral domain, which enables faster acquisi-
tion of particular cross-sectional tomographic images (B-scans) of retinal struc-
tures [4]. The data set from one measurement is therefore three dimensional
(3D). Although the data acquisition is fast, eye movement, including fast mi-
crosaccades, can cause misalignments of neighboring B-scans [5]. The advanced
eye-tracking technology can help to minimize these artifacts but misalignments
can still occur and can disturb the process of data processing and analysis.

Furthermore, the eye-tracker aligns these B-scans with respect to the image
obtained by scanning laser (SL) method, which can also suffer from motion ar-
tifacts, because of the scanning acquisition. These drawbacks lead to idea to use
the retinal images, acquired by digital fundus camera, for misalignments correc-
tion. The main advantage of digital fundus cameras is that, they acquire retinal
image at once, without scanning. These cameras are also cheap and became
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a standard examination tool in ophthalmology clinics. The registration of this
two different modalities open a new possibilities of image fusion/visualization
and qualitative and quantitative comparison of these two modalities. Example
of retinal image registration and fusion is for example in [6].

This paper describes part of our ongoing research dealing with registration,
visualization and analysis of OCT image sets and 2D fundus photographes. In
this preliminary study we are mainly studying the appropriate criteria for reg-
istration on several test image set. The results are summarized in the following
sections.

2 Image Data

The image data were acquired by two different imaging devices: OCT device
(Spectralis OCT, Heidelberg Engineering) and digital color fundus camera
(Canon CR-1). One color image taken by this color camera is shown in Fig.1a
and images from the same eye taken by OCT are shown in Fig. 1b,c. The SL
image is a gray scale image taken by laser scanning technique. (Fig. 1b). One
typical B-scan image (cross-sectional image) acquired through the retinal tissue
across the optic disc is in Fig. 1c, where several retinal layers can be recognized.

3 Registration Method

The main aim of this preliminary study is to find an appropriate framework for
fundus image and B-scan image registration. This registration task consists of
three main steps:

1. Global pre-registration: global correction of rotation and selection of region
of interest.

2. OCT and fundus data preprocessing.
3. B-scan to fundus image registration.

3.1 Global Pre-registration

A FFT-based technique of phase correlation is a method for image registration,
which can cover several spatial transformations - shift, rotation and scaling. This
method is based on the Fourier shift theorem. Let f1(x, y) and f2(x, y) be two
functions, which differs only by displacement x0 and y0, i.e. [7]

f2(x, y) = f1(x − x0, y − y0). (1)

The corresponding Fourier transforms are, in this case, related as

F2(u, v) = F1(u, v)e−j(ux0+vy0). (2)

Then, the normalized cross power spectrum is given by

F2(u, v)F1(u, v)∗

|F2(u, v)F1(u, v)∗| = e−j(ux0+vy0). (3)
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a)

b)

c)

Fig. 1. a) Image from the fundus camera; b) Scanning laser image from OCT; c) One
B-scan from OCT
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Taking the inverse Fourier transform of right hand side term leads to Dirac
function δ(x−x0, y−y0) at coordinates (x0, y0) defining the spatial shift [8]. This
approach can be also extended to spatial rotation, which leads to the Fourier-
Mellin transform. According to Fourier transform properties, the image rotation
and shift:

f2(x, y) = f1(x cos θ0 + y sin θ0 − x0,−x sin θ0 + y cos θ0 − y0) (4)

is related in the spectral Fourier domain as:

F2(u, v) = e−j(ux0+vy0)F1(u cos θ0 + v sin θ0,−u sin θ0 + v cos θ0). (5)

Therefore, the magnitude spectra are the same, but one of these is rotated replica
of the other. The rotation can be recovered by representing the spectra in polar
coordinates, where rotation becomes shift, which can be easily estimated by
phase correlation (3).

It is also possible to estimate the scale of two images. If f1(x, y) is a scaled
replica of f2(x, y) with the scale factor s (the same factor for horizontal and
vertical directions). The Fourier spectra are related as:

F2(u, v) =
1
|s2|F1(u/s, v/s). (6)

This formula can be utilized by converting axes to logarithmic scale. More details
are given for example in [7].

Several practical steps should be considered for implementation. First, the Dis-
crete version of Fourier transform (DFT) has to be used and 2D window function
(e.g. Hanning or Hamming window) has to be applied before taking these trans-
forms, due to periodicity of DFT. Second, when dealing with the retinal images,
the circle defining the field of view (see Fig.1a) must be eliminated by smoothing
kernel. Third, we can roughly match the resolution of fundus and OCT data using
a priori determined scaling factor obtained from resolution of both devices. The
fundus image was decimated with factor 2 in both axis in our case.

The result obtained by this phase correlation approach for registration of Fig.
1a and Fig. 1b is shown in Fig. 2. This pre-registration step must be applied in
order to compensate rotation of the SL image with respect to the fundus image
and to define the region of interest (ROI).

The next section describes the preprocessing of OCT scans and color fundus
images.

3.2 Preprocessing

The preprocessing is a crucial step because of multimodality and 3D-to-2D
matching. The flowchart of preprocessing is shown in Fig. 3. The RGB color
fundus image is converted into grayscale image as a mean of the green and blue
channel, because light reflections from the corresponding wavelengths carry in-
formation about the main retinal structures (blood-vessels, macula, optic disc
and retinal nerve fibres) [9]. Red channel is ignored. The preprocessing of this
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Fig. 2. Result of global pre-registration using phase correlation. The SL image was
translated, rotated and scaled to match the color fundus image.

Fig. 3. Flowchart of preprocessing method

fundus image ends with correction of the non-uniform illumination and con-
trast enhancement. The method is based on a simple additive-multiplication
illumination model [10]. To estimate this nonuniform illumination function an
averaging large kernel is used for filtering. The mask size is 51×51 pixels, which is



Registration of 3D Retinal OCT Data and 2D Fundus Images 77

large enough with respect to the maximum blood-vessel diameter (about 20 pix-
els). From this filtered fundus image, the normalized correction coefficients are
computed:

rij =
max faver

ij

faver
ij

, (7)

where faver
ij is the spatially averaged fundus image. These coefficients are used

for image correction as:

f corr
ij = (fij − faver

ij )rij + c, (8)

where c is a constant to make the mean value of corrected image approximately
equal to 128 and fij is the measured image. To eliminate to border effect, the
intensity values in this image are cropped into range 0 and 255.

a)

b)

Fig. 4. a) One B-scan with automatically determined region containing the RPE
(dashed lines) and the row with the highest contrast (black line) located approximately
between the dashed lines. b) The reconstructed 2D blood-vessel image.
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The 3D OCT data are also preprocessed starting with conversion to 2D using
only one row from each B-scan. It can be seen from Fig. 1c, that blood vessels
create shadows. This influences the pixel values below the blood vessels, mainly
in the retinal pigment epithelium (RPE). The RPE is the brightest layer in the
deeper retinal layers and can be relatively easily identified computing the B-scan
profile through the columns [11]. The automatically determined RPE position
including fixed predefined row range is presented in Fig. 4a by the dashed lines.
The black line in this figure depicts the row with the highest contrast (blood-
vessel row). This row selection is performed for each B-scan in measured set to
reconstruct a new 2D image (blood-vessel image, see Fig.4b).

3.3 Registration Algorithm

The registration starts with one manually determined corresponding point in
the fundus image and blood-vessel image. These corresponding positions can
slightly differ, because they are used as a rough starting estimation for whole
registration, which will be refined. Usually the center of the optic disc has been
marked, but other starting points can be used (e.g. blood-vessels bifurcations
or crossings). This step determines the correspondence between Ith row from
the blood-vessel image (OCTI) and J th row from fundus image. Thereafter the
iterative registration runs in the following steps, starting with i = I, j = J :

1. Select ith row from the blood-vessel image, OCTi.
2. Select range of rows Rj in the scanning direction from jth row (see Fig. 5).
3. Search for the optimal parameters of the spatial transformation

maxαi{ C ( Rj , Tαi
(OCTi) ) }, (9)

where C is the criterium and Tαi
is spatial transformation with vector of

parameters αi.
4. Set j = Joptimal, where Joptimal is an optimal row computed from optimiza-

tion results.
5. Increase/decrease i, according to the scanning direction.

These steps are performed for each row from blood-vessel image. The selection
of criterion C and spatial transformation Tα is discussed below.

Fig. 5. Illustration of the registration process. See registration steps in Section 3.3.
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Spatial Transformation. Three parameters are optimized during registration
for each row from the blood-vessel image in the fundus image: its translations in
x, y axis and its scaling in x axis (for horizontal scanning). Although the image
scales were roughly matched during preprocessing, precise scaling will be found
for each row separately.

Criterion. Several criteria were tested with respect to the multimodality and
image properties. It can be seen that the blood-vessels are darker than back-
ground in both images (preprocessed fundus image and blood-vessel image),
which leads to correlation criterion r :

r =
∑N

i=1(xi − x)(yi − y)√∑N
i=1(xi − x)2

∑N
i=1(yi − y)2

(10)

for two overlapping rows xi, yi with length N and corresponding means x, y. This
has been successfully tested on the main part of the image. Nevertheless, the
optic disc is darker than the background in the blood-vessel image and brighter
in fundus image and therefore negative correlation must be considered. But we
have found that this negative value gives false position of the correlation maxima.
Therefore, mutual information has been also studied to cope with this problem.
We have used the normalized version, defined via marginal and joint (Shannon)
entropies H(x), H(y) and H(x, y), respectively [12]:

MI = 2 − 2
H(x, y)

H(x) + H(y)
. (11)

It has been observed that the results were comparable or worse in comparison to
correlation metric up to B-scans crossing the optic disc. Therefore an alternating

Fig. 6. Left: The lines depict the positions of B-scans within the fundus image. Right:
The detail image showing the numbers of B-scans and their spatial variations.
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a)

b)

Fig. 7. The positions of the blood-vessels segmented in blood-vessel image are depicted
in fundus image as gray dots: a) before registration, b) after registration
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criteria approach has been proposed: if the correlation coefficient was positive,
the corresponding optimal transformation parameters αi has been used; if the
the correlation was negative, we switched to mutual information criterion. This
approach gives satisfactory results (see Section 4) than using only single criterion.

Searching Strategy. In this testing phase, the method has been implemented
without optimization to ensure, that global maximum will be always found.
This leads to exhaustive computation in 3D parametric space, but it can be
easily parallelize when searching for the optimal position of B-scan within the
fundus image. Matlab parallel computing toolbox was used for implementation.

4 Results and Discussion

The proposed approach was tested and results were evaluated on semi-subjective
level. The positions of registered B-scans were visualized in the fundus image to
analyze the correct location. This is shown in Fig. 6. It can be seen, that the
scanning across the rows is not uniform and the shifts of B-scans beginning
are also different for each B-scan. This probably implies small uncorrected eye
movements during scanning.

The registration was also evaluated on less subjective visualization method.
The dark areas (blood-vessels and optic disc) were roughly segmented in the
blood-vessel image and these positions were visualized in the fundus image before
and after registration. The visualization before registration was performed using
manually selected corresponding points. The result for one data set is shown in
Fig. 7. Improvement along all blood-vessels can be seen, particularly below optic
disc.

5 Conclusion

We proposed new approach for registration of fundus and OCT images with pos-
sibility of easy parallelization. Due to several simplifications in this preliminary
study, the framework will be extended in future to be more robust. These extend-
ing steps will include rotation correction and modification of the B-scan spatial
transformation to cover possible rotation separately. Another issue is the use
an optimization approach to speed up the computation. The last step will cover
automatization of registration process by detection of one or more corresponding
points via segmentation of optic disc and blood-vessels.
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Abstract. Voxel-based analysis, either whole-brain or tract-specific, is
a widely used approach for localizing white matter (WM) differences
across populations using diffusion tensor imaging (DTI). A prerequisite
to this approach is to spatially normalize all the subjects to a common
template. The accuracy of spatial normalization can be improved by us-
ing a population-specific template that is, morphologically, most similar
to the subjects in the population of interest. Here, we report the devel-
opment of a population-specific DTI template for the elderly using the
publicly available IXI brain database. The template captures the aver-
age shape and diffusion properties of the aging population and contains
segmentations of major WM fasciculi parcellated via fiber tractography.
Furthermore, the segmentations are modeled using surface-based rep-
resentation to support the tract-specific analysis recently proposed by
Yushkevich et al. The utility of the template is demonstrated in an ex-
amination of WM changes in Amyotrophic Lateral Sclerosis.

1 Introduction

Diffusion tensor imaging (DTI) depicts in vivo the intricate architecture of white
matter (WM) [1] and has become an indispensable tool for studying WM both
in normal populations and in populations with brain disorders. To localize WM
differences across populations using DTI, both whole-brain and tract-specific
analyses are commonly used [2,3]. A prerequisite to such analyses is spatial nor-
malization which establishes anatomical correspondence among all the subjects
in a study, by registering them to some template.

To spatially normalize DTI data, a DTI template is required to leverage re-
cent advances in tensor-based image registration algorithms shown to improve
the quality of spatial alignment [4]. Mori et al. has recently developed such
a template, known as the ICBM-DTI-81 template [5], which defines the same
stereotactic space as the widely used ICBM-152 anatomical template and con-
tains manually-delineated WM regions. The ICBM-DTI-81 template is destined
to become an important neuroimaging resource. However, because it is built with
healthy controls between 18 and 59 years old, this template does not capture
significant morphological changes in brain anatomy for the elderly population
(65 years or older). As a result, its application to the aging population may
adversely affect the quality of spatial normalization.
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In this paper, we report the construction of a population-specific DTI tem-
plate appropriate for the aging population which, to the best of our knowledge,
does not yet exist. To accomodate large morphological variation in anatomy of
this population, the template was constructed using a high-dimensional tensor-
based image registration method rather than the affine registration method used
for creating the ICBM-DTI-81 template. The template construction algorithm
also captures simultaneously the average shape and diffusion properties of the
population. In addition, a large set of major WM tracts were parcellated using
fiber tractography and modeled with the skeleton surface representation to sup-
port the tract specific analysis recently developed by Yushkevich et al. [3]. We
demonstrated the utility of the template in a study of WM changes in Amy-
otrophic Lateral Sclerosis (ALS), a devastating, usually fatal, disease of motor
neuron degeneration.

The rest of the paper is organized as follows: Sec. 2 gives the imaging and
demographic details of the dataset used for building the template, describes
the method of template construction, WM tract parcellation and modeling, and
discusses the application of the template in ALS. Sec. 3 illustrates the resulting
template and the associated skeleton surface models and reports the results from
the ALS study. Finally, the paper is summarized in Sec. 4.

2 Materials and Methods

2.1 Subjects and Data Acquisition

The subjects used to construct the proposed aging template are extracted from
the IXI brain database (http://www.ixi.org.uk) developed jointly by Imperial
College of Science Technology & Medicine and University College London. The
IXI database consists of brain MR images from 550 normal subjects between the
age of 20 and 80 years that are freely available for downloads. The inclusion cri-
teria for this template construction are 1) subjects are of age 65 years or older; 2)
DT-MR images are available and of sufficient quality (i.e., no significant motion
or suscepitibility-induced artifacts). A total of 51 subjects, currently determined
to meet the selection criteria, have been included in the current paper. The ad-
ditional qualified subjects will be added in the future. The demographics of the
included subjects are age 65-83, mean age and standard deviation 70.4±4.0; 21
males and 30 females. DT-MR data was collected at two sites (Guy’s Hospital
and Hammersmith Hospital, London, UK) with two different scanners (Philips
1.5 T and 3.0 T) with a single-shot echo-planar diffusion-weighted sequence with
15 non-collinear gradient directions @ b = 1000 s/mm2 with a SENSE factor
of 2. The imaging matrix was 128 x 128 with a field of view 224 x 224 mm2,
resulting in in-plane resolution of 1.75 x 1.75 mm2. The slice thicknesses are 2.35
mm and 2.0 mm for the two sites, respectively.

2.2 Construction of the Population-Averaged DTI Template

The population-averaged DTI template was constructed using the DT-MR im-
ages of all the chosen subjects. We chose the template construction algorithm
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described in [4] because the algorithm has been tailored for handling DT-MR
images. Briefly, the initial average image is computed as a log-Euclidean mean [6]
of the input DT-MR images. The average is then iteratively refined by repeating
the following procedure: register the subject images to the current average, then
compute a refined average for the next iteration as the mean of the normal-
ized images. This procedure is repeated until the average image converges. The
resulting template is unbiased towards any single subject and captures the aver-
age diffusion properties of the population at each voxel with a diffusion tensor.
Subsequently, the template is ”shape-corrected” to ensure that it also represents
the average shape of the population, using the strategy proposed by Guimond
et al. [7]. This is achieved by first computing an average of the deformation
fields that warp each subject into alignment with the template, then warping
the template with the inverse of the average deformation field.

In contrast to the ICBM-DTI-81 template that was constructed via affine
registration of scalar images derived from diffusion data, the registration algo-
rithm [8] used in the current template construction captures high-dimensional
spatial deformations and matches DT-MR images directly. By computing image
similarity on the basis of full tensor images, rather than scalar features, the al-
gorithm incorporates local fiber orientations as features to drive the alignment
of individual WM tracts. When measuring similarity between tensor images, it
is essential to take into account the fact that when a transformation is applied
to a tensor field, the orientation of the tensors is changed [9]. A unique property
of this registration algorithm is the ability to model the effect of deformation
on tensor orientation as an analytic function of the Jacobian matrix of the de-
formation field. By using full tensor information in the similarity metric, the
method aligns WM regions better than scalar-based registration methods, as
demonstrated in a task-driven evaluation study [4].

2.3 White Matter Parcellation of the DTI Template

We followed the approach described in [3] and parcellated the DTI template into
individual WM tracts using an established protocol by Wakana et al. [10], which
is based on fiber tracking. The validity of tracking in a population-averaged DTI
template has recently been demonstrated by Lawes et al. [11] in a comparison
to classic postmortem dissection. We delineated six major tracts that includes:
corpus callosum (CC), corticospinal tracts (CST), inferior fronto-occipital tracts
(IFO), inferior longitudinal tracts (ILF), superior longitudinal tracts (SLF), and
uncinates (UNC). A common property of these tracts is that all have a major
portion that is sheet-like and can be modeled using the surface-based represen-
tation as described in Sec. 2.4. White matter tracts that are more appropriately
represented by tubular models, such as the tapetum of the CC, the cingulum,
the fornix and the optic tract were not segmented. Fasciculi in the cerebellum
and brain stem were not considered either. These tubular structures will be in-
cluded in the future. Only the arcuate portion of the SLF, which can be tracked
consistently, was segmented. Binary 3D segmentations of individual tracts were
generated by labeling voxels in the DTI template through which at least one fiber
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passed. The binary segmentations were further edited using ITK-SNAP [12] to
remove extraneous connections.

2.4 Surface-Based Geometric Modeling of WM Tracts

Geometrical modeling of the WM tracts was achieved with the algorithm pro-
posed by Yushkevich et al. [3], which involves fitting deformable medial mod-
els (cm-reps) to the binary segmentations derived in Sec. 2.3. The cm-reps are
models that describe the skeleton and the boundary of a geometrical object as
parametric digital surfaces with predefined topology. The models describe the
geometrical relationship between the skeleton and the boundary, such that, dur-
ing fitting, deformations applied to the model’s skeleton can be propagated to
the model’s boundary.

A key feature of medial models is their ability to parametrize the entire interior
of the model using a shape-based coordinate system. This is due to the fact that
in medial geometry every point on the skeleton surface is associated with a sphere
that is tangent to the boundary surface at a pair of points (which may coincide
at edges of the skeleton). The line segments connecting the sphere’s center to
the points of tangency are called ”spokes” and are orthogonal to the boundary.
Furthermore, no two spokes intersect inside the model. This allows us to define
a coordinate system for interior of the object based entirely on the shape of
the object, where two of the coordinate values parametrize the skeleton surface
and the third gives the position of a point on the spokes. As shown in [3], in
the context of modeling sheet-like WM tracts, this coordinate system affords us
the ability to reduce the dimensionality of the problem by projecting data onto
the skeleton along the arguably “less interesting” thickness dimension. From
the point of view of statistical analysis, this may result in improved sensitivity
without much loss in spatial specificity.

2.5 Application to Identify WM Changes in ALS

To demonstrate the utility of the proposed DTI template with surface-based
WM modeling, we employed the template to identify WM changes in ALS. The
structure-specific statistical mapping described in [3] was used for our analysis,
which takes advantage of the surface-based WM models developed as part of our
template. Because of the existing hypothesis that ALS strongly affects the motor
pathway, only the left and right CSTs were included in the analysis. Briefly, for
each subject, its DT-MR image was first registered to the DTI template using the
algorithm [8] and warped into the template space. The fitted cm-rep models of
the CSTs parcellated in the template were then used to sample the diffusion data
in the shape-based coordinate systems established by these models. Specifically,
for each location on the skeleton surfaces of the CSTs, the average fractional
anisotropy (FA) along its two associated spokes was computed, resulting in an
average FA map associated with the skeleton surfaces. After repeating this pro-
cess for each subject, the original volumetric dataset was dimensionality reduced
into a surface dataset. Permutation-based non-parametric suprathreshold cluster
analysis was then applied to identify WM differences between the two groups
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and the statistics on both CSTs were pooled. The cluster-defining threshold was
set at uncorrected p-value = 0.01 and the clusters with FWE-corrected p-value
< 0.05 were deemed significant.

The dataset that we chose to analyze were from an earlier ALS study that
we have studied [omitted]. It consists of 8 healthy controls and 8 ALS patients.
The DT-MR data for these subjects were collected using a 12-direction diffusion
imaging protocol on a 3 T Siemens scanner without parallel imaging. In our
previous study, we applied the same analysis as here but using a population-
specific template built from the subject data alone. We leveraged this earlier
result and compared it to the current finding to provide a qualitative assessment
of the feasibility of using our proposed template for datasets acquired on different
scanners and with different sequences.

3 Results

The population-averaged DTI template is shown in Fig. 1 in terms of its fiber ori-
entation map. Compared to the ICBM-DTI-81 template [5], which is constructed
using affine registration, our template has considerably sharper edge features as
well as much richer details in the cortical regions. Furthermore, the additional
shape-correction step allows our template to capture the average shape of the
WM anatomy in the aging population. In particular, observe the distinct asym-
metry in the size and shape of the left and right SLFs, with the left SLF (image
right) being significantly larger than the right. This is consistent with the known
observation that the SLF is larger in the left hemisphere, likely a result of lan-
guage lateralization [13].

The surface-based geometric modeling of WM tracts is illustrated with Fig. 2
using the left CST as an example. The cm-rep model of the left CST is shown in
Panel (c), which consists of a smooth surface patch represented as a triangular
mesh and the associated radius function map, which encodes the radius of the
sphere at each vertex of the mesh. The boundary surface computed from this
model is shown in Panel (d), which is very similar to the binary segmentation
of the tract shown in Panel (b), the fitting target. The high-quality of fitting
was confirmed quantitatively. Except for the ILF, the Dice overlaps between the
binary segmentations and the fitted cm-rep models range from 90% to 95%. The
Dice overlap for the ILF is slightly less, around 85%. This is consistent with the
results reported in [3], which observed that the poorer fitting of the ILFs is due
to the branching near the posterior end of ILF.

The skeleton surfaces of the cm-rep models fitted to all the parcellated tracts
are shown in Fig. 3. For the tracts that exist bilaterally, their left and right
copies were individually fitted to their corresponding cm-rep models. Hence,
the resulting skeleton surfaces reflect the underlying asymmetry in antomy. The
asymmetry in the SLFs observed above is evident here as well. Another apparent
asymmetry is in the ILFs. However, we believe that this is a result of the intrinsic
ambiguity in separating the posterior portion of the ILFs and the IFOs rather
than true anatomical ambiguity.
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Image left corresponding to physical right

Fig. 1. Axial slices of the fiber orientation map of the constructed DTI template.
The fiber orientations are visualized with the standard RGB encoding: red for left-
right, green for anterior-posterior and blue for inferior-superior. The two pairs of white
arrows highlight the visually distinct asymmetry in the left and right SLFs.

(d)(c)(a) (b)

Fig. 2. The surface-based geometric modeling of the left CST. Panel (a): The results
from fiber tractography. Panel (b): The binary segmentation computed from the fiber
tracking results. Panel (c): The skeleton surface of the cm-rep model fitted to the binary
segmenation overlaid with the corresponding radius function. Panel (d): The boundary
surface corresponding to the fitted cm-rep model.

The result of applying the surface-based tract models to identify WM changes
in ALS is shown in Fig. 4. Under the stringent significance level described in
Sec. 2.5, we found three significant clusters of reduced FA in ALS compared
to healthy controls. This finding is highly consistent with that of our previous
analysis of this dataset using the same analysis [omitted]. The previous analysis
reported two significant clusters, one on each CST, in the similar location as the
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Fig. 3. The skeleton surfaces of the cm-rep models fitted to all the tracts. The skeleton
surface of CC is colored in red. The surfaces of left and right CSTs, IFOs, ILFs, SLFs
and UNCs are colored in blue, yellow, green and cyan, respectively. The brain mask is
also shown as a translucent mesh for anatomical guidance. From left to right are the
views of the skeleton surfaces from left (physical right), right (physical left), and top.

Fig. 4. The significant clusters of reduced FA in ALS compared to healthy controls
(in red) overlaid on the skeleton surfaces of the CSTs. From left to right are the right
and left CSTs.

ones identified here. The cluster on the right CST covers the combined area of
the two clusters on the right CST found here.

4 Discussion

In this paper, we described the construction of a population-specific DTI tem-
plate for the aging population. The template will enable standard whole-brain
analyses, such as the popular TBSS method [2], to leverage advanced tensor-
based spatial normalization techniques. Equipped with the parcellation of a large
set of major WM tracts and their corresponding skeleton surface models, it will
also support the recent development in tract-specific analysis by Yushkevich et
al. [3]. We demonstrated qualitatively the feasibility of using the template for an-
alyzing data acquired with different scanners or diffusion protocols, which should
encourage its adoption as a useful public resource for the broad neuroimaging
community studying aging and aging-related diseases.



90 H. Zhang et al.

Acknowledgment. The authors gratefully acknowledge support of this work by
the NIH via grants AG027785 (PY), DA022807 (JG), EB006266 (JG), EB009321
(JG), NS061111 (PY), and NS065347 (JG).

References

1. Pierpaoli, C., Jezzard, P., Basser, P.J., Barnett, A., Chiro, G.D.: Diffusion tensor
MR imaging of the human brain. Radiology 201 (1996)

2. Smith, S.M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T.E.,
Mackay, C.E., Watkins, K.E., Ciccarelli, O., Cader, M.Z., Matthews, P.M., Behrens,
T.E.J.: Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion
data. NeuroImage 31 (2006)

3. Yushkevich, P.A., Zhang, H., Simon, T.J., Gee, J.C.: Structure-specific statistical
mapping of white matter tracts. NeuroImage 41, 448–461 (2008)

4. Zhang, H., Avants, B.B., Yushkevich, P.A., Woo, J.H., Wang, S., McCluskey, L.F.,
Elman, L.B., Melhem, E.R., Gee, J.C.: High-dimensional spatial normalization
of diffusion tensor images improves the detection of white matter differences in
amyotrophic lateral sclerosis. TMI 26, 1585–1597 (2007)

5. Mori, S., Oishi, K., Jiang, H., Jiang, L., Li, X., Akhter, K., Hua, K., Faria, A.V.,
Mahmood, A., Woods, R., Toga, A.W., Pike, G.B., Neto, P.R., Evans, A., Zhang,
J., Huang, H., Miller, M.I., van Zijl, P., Mazziotta, J.: Stereotaxic white matter
atlas based on diffusion tensor imaging in an icbm template. NeuroImage 40, 570–
582 (2008)

6. Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Log-Euclidean metrics for fast and
simple calculus on diffusion tensors. MRM 56, 411–421 (2006)

7. Guimond, A., Meunier, J., Thirion, J.P.: Average brain models: a convergence
study. CVIU 77, 192–210 (2000)

8. Zhang, H., Yushkevich, P.A., Alexander, D.C., Gee, J.C.: Deformable registration
of diffusion tensor MR images with explicit orientation optimization. MIA 10 (2006)

9. Alexander, D.C., Pierpaoli, C., Basser, P.J., Gee, J.C.: Spatial transformations of
diffusion tensor magnetic resonance images. TMI 20 (2001)

10. Wakana, S., Jiang, H., Nagae-Poetscher, L.M., van Zijl, P.C., Mori, S.: Fiber tract-
based atlas of human white matter anatomy. Radiology 230 (2004)

11. Lawes, I.N., Barrick, T.R., Murugam, V., Spierings, N., Evans, D.R., Song, M.,
Clark, C.A.: Atlas-based segmentation of white matter tracts of the human brain
using diffusion tensor tractography and comparison with classical dissection. Neu-
roImage 39 (2008)

12. Yushkevich, P.A., Piven, J., Hazlett, H.C., Smith, R.G., Ho, S., Gee, J.C., Gerig, G.:
User-guided 3D active contour segmentation of anatomical structures: significantly
improved efficiency and reliability. NeuroImage 31, 1116–1128 (2006)

13. Lazar, M., Field, A.S., Lee, J., Alexander, A.L.: Lateral asymmetry of superior
longitudinal fasciculus: a white matter tractography study. In: ISMRM (2004)



Anatomical Landmark Based Registration of

Contrast Enhanced T1-Weighted MR Images

Ali Demir1, Gozde Unal1,�, and Kutlay Karaman2

1 Sabanci University, Istanbul, Turkey
ademir@sabanciuniv.edu, gozdeunal@sabanciuniv.edu

2 Anadolu Medical Center, Kocaeli, Turkey

Abstract. In many problems involving multiple image analysis, an im-
age registration step is required. One such problem appears in brain
tumor imaging, where baseline and follow-up image volumes from a tu-
mor patient are often to-be compared. Nature of the registration for a
change detection problem in brain tumor growth analysis is usually rigid
or affine. Contrast enhanced T1-weighted MR images are widely used in
clinical practice for monitoring brain tumors. Over this modality, con-
tours of the active tumor cells and whole tumor borders and margins
are visually enhanced. In this study, a new technique to register serial
contrast enhanced T1 weighted MR images is presented. The proposed
fully-automated method is based on five anatomical landmarks: eye balls,
nose, confluence of sagittal sinus, and apex of superior sagittal sinus. Af-
ter extraction of anatomical landmarks from fixed and moving volumes,
an affine transformation is estimated by minimizing the sum of squared
distances between the landmark coordinates. Final result is refined with
a surface registration, which is based on head masks confined to the sur-
face of the scalp, as well as to a plane constructed from three of the
extracted features. The overall registration is not intensity based, and it
depends only on the invariant structures. Validation studies using both
synthetically transformed MRI data, and real MRI scans, which included
several markers over the head of the patient were performed. In addition,
comparison studies against manual landmarks marked by a radiologist,
as well as against the results obtained from a typical mutual information
based method were carried out to demonstrate the effectiveness of the
proposed method.

1 Introduction

Image registration refers to the problem of finding a geometric transformation,
which is optimal in a certain sense, between two or more corresponding images.
Nature of the correspondence problem describes the type of necessary geometric
transformation [1]. Registration is a major problem in many medical imaging
applications such as image guided neurosurgery, surgical planning, radiotherapy
planning, patient population analysis, and monitoring tumor growth.
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In this study we focused on the registration of serial Magnetic Resonance (MR)
images intended for the change detection problem in tumor monitoring [5,6].
General methods and strategies for image registration are reviewed in [2,3,4].
Registration problem for change detection in brain can be classified as a rigid
body motion of invariant brain structures. Therefore, the most challenging part
of the change detection is to overlay invariant structures accurately. Ettinger et
al. used intracranial cavity (ICC) as an invariant structure to register serial im-
ages. Their strategy involves computation of dense point correspondences based
on segmented ICC [7]. Anatomical landmark localization on Talairach space is
also a popular approach for registration [13,15,14]. Chui et al. extracted the
outer cortical surface and major sulcal ribbons to register brain MR images [8].
Geometrical features such as curves, lines, curvatures, corners, and so on, are
also used extensively in image registration problems. Davatzikos et al. uses the
curves and boundaries in regions to preregister the volumes for elastic registra-
tion [9,10]. Geometric landmarks make the registration procedure automatic and
robust [11,12,16]. On the other hand, intensity similarity based methods are also
widely utilized in most of the registration problems [17,18,19]. Duffau et al. [5]
in their review, reported that the image intensity is not a reliable measure in
the presence of growing tumors, which introduce additional challenges for regis-
tration algorithms. Therefore, detection of invariant landmarks in serial images
is expected to perform better than an intensity similarity based optimization
approach.

Registration is inherently an ill-posed problem, therefore usually no unique
solution is available. Often, constraints are introduced, particularly for a de-
formable registration problem, constraints on a deformation field can be defined.
On the other hand, depending on the domain and application of the problem,
specific intensity similarity measures or different feature-based approaches are
proposed [1]. In this paper, for the clinical problem of brain tumor monitor-
ing, where anatomical features can be extracted from the contrast enhanced
T1-weighted MRI (contrast T1-MRI), we present a new method where strong
anatomical features drive the registration without depending on intensity simi-
larity measures, which can become problematic in presence of significant tumor
change over time [5]. Another advantage of this approach is that it is invariant
due to an intra-patient registration scenario, i.e. the same anatomical landmarks
can be found in the follow-up images. Following a first anatomic landmark based
registration, an extracted surface, which is constrained by the available anatomi-
cal landmarks obtained in the first phase of the method, drives the second phase
of the registration. This is a surface registration step that propagates the solu-
tion towards matching of the important features over a consistent part of the
scalp for a better and extensive fit over the head surface for a refinement of
the final affine transformation. Apart from its use in tumor follow-up studies,
the proposed rigid/affine registration method can be used as a pre-processing
before generic deformable registration applications, which require an initial rigid
alignment phase.
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The organization of the paper is as follows. In Section 2, the specific anatom-
ical landmarks used in our algorithm and their extraction is described. The
proposed registration method based on anatomical landmarks is presented in
Section 3. The results are demonstrated in Section 4 with consistency tests and
validation studies, followed by conclusion and discussion in Section 5.

2 Extraction of Anatomical Landmarks

The first step of the proposed registrationalgorithm involves extraction of anatom-
ical brain landmarks on given contrast T1-MRI volumes. Thus, a patient-specific
coordinate system, which can be invariably found on all human brain images, is ob-
tained based on five selected anatomical landmarks: nasal bone tip, center of two
eyeballs, confluence of sinus, and apex of superior sagittal sinus. The landmark
selection process, i.e. determining brain landmarks that can be reliably observed
and computationally extracted, was carried out jointly with the radiologists in the
team.

2.1 Nasal Bone from Nose

The anatomic landmark extraction step starts with detection of a binary head
mask. It is obtained on dilated canny edge map through region growing seeded
from the outside at the grid boundaries. This connects the boundary components
and complement of this result is eroded with the same size of dilation mask,
forming the head mask. Anterior tip point of each axial slice is the nearest point
of mask to the top most row of the slice. It is detected with a linear search in
rows starting from the top most row. Another geometric definition derived from
head mask is the symmetry line estimate which is defined as the line passing
through the anterior tip point and center of mass (1st order image moments) of
the slice. Noting that this is not necessarily symmetry line of brain, it will be
defined after the nose tip points are located. Figure 1-a depicts four geometric

-a -b

Fig. 1. a)Geometric features (Symmetry line, p1, p2, p3,d1, and d2, and the angle β)
used to find the nose tip points. b)Detected nose landmark.
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Fig. 2. Sample slices with nose tip points detected: (a) Bottom nose slice, (b) Middle
nose slice, c) Top nose slice

features utilized in finding the nasal bone anatomic feature: p1, the point with
the maximum distance to the symmetry line, p2, the most anterior point of eye
balls, and d1 and d2 are minimum distances from p1 and p2, to the symmetry
line. The ratio of d2/d1 := c is found to be almost biometric constant with a
mean and variance 0.42±0.01, which was measured over 20 MRI scans. Using
this constant, for each slice we find p1 and d1, then estimate the point p2, where
d2 = cd1. We also define the angle β between lines of p2 to anterior tip point (p3)
and p2 to the corresponding point on symmetry line. Tip points of the slices with
high values of tanβ are marked as nose tip points. Figure 2 depicts a few sample
slices with nose tip points marked. Finally, a single nose landmark is marked at
the center of selected nose tip points, which is located at the end point of nasal
bone (see Figure 1-b).

2.2 Eye Balls

An eye ball is segmented using a sphere model, which is initiated at a seed point
based on the nose feature. Two seed coordinates for the left and right eye balls
are first estimated on the top most slice of the nose, e.g. see Figure 2-c, then
given d1, the maximum distance to symmetry axis, d2 is calculated using the
ratio c (Section 2.1). Using an anatomical fact that an eyeball is roughly 10 mm
in radius, the seed is initialized 10 mm away from p2 towards the symmetry

-a -b

Fig. 3. (a) A slice from the obtained 3D binary eyeball masks; (b) T1-MRI slice marked
with estimated seed points on eyeballs
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axis to ensure that the seed point falls in the eye ball region. Initialized sphere
parameters, the center and the radius, are evolved until convergence with ordi-
nary differential equations derived to maximize the difference between the mean
intensity statistics inside and outside the sphere within a band around its sur-
face. A sample slice from 3D eye mask and estimated eyeball seeds are shown in
Figure 3.

2.3 Confluence of Sinus

Confluence of sinus is the conjunction point of the superior sagittal sinus, straight
sinus, and occipital sinus. A distinguishing feature of the confluence of sinus is
that it is located where the superior sagittal sinus bifurcates as depicted in
Figure 5-a.

Confluence of sinus (CoS) detection starts by locating a seed point on the
superior sagittal sinus. As depicted in Figure 4, the seed point is selected on
the axial slice which is 30 mm above the center of eyeballs. It is searched on the
symmetry axis, and below the center of mass of the slice within a finite width,
with respect to a maximum brightness criterion.

-a -b

Fig. 4. Seed point search region over a T1-MRI slice for sinus map extraction

After the seed is initialized over the sagittal sinus (Figure 4-b marked with a
+), mean μ and standard deviation σ values over a small window are calculated,
and a 3D region growing is performed with an initial downward motion and a
growing criterion of pixel intensities greater than μ − σ. The result of segmen-
tation by region growing produces a sinus map, as visualized in Figure 5 with a
height map overlay.

Next, the segmented sinus map is analyzed using region moments of axial
slices. In this study, we defined the confluence of sinus at the slice, which has
the maximum variance in the left-right direction. This is performed using a
covariance matrix formed by second order central moments of the sinus map over
each slice: [μ20, μ11; μ11, μ02]. This matrix is then decomposed into its eigenvector
and diagonal eigenvalue matrices using singular value decomposition. The ratio
between the two eigenvalues is used to select the slice of CoS and successfully
discriminates the desired slice (Z coordinate). Axial (X and Y) coordinate of
CoS is calculated using the average center of mass of the sinus map over five
upper slices. Figures 5-b and 5-c depict a detected CoS landmark shown with
an axis bar widget.
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-a -b -c

Fig. 5. (a) Cerebral venous system (figure adapted from Osborn A. Diagnostic neu-
roradiology. St. Louis: Mosby, 1994.) (b,c)Sinus map and CoS are shown from two
different viewpoints with a height map overlaid over the surface.

2.4 Apex of Superior Sagittal Sinus

For an even sampling of landmarks over the brain, a final anatomical landmark
is selected at the apex of the superior sagittal sinus. Similar to extraction of CoS,
superior sagittal sinus (SSS) surface is delineated by region growing constrained
by an initial upward motion. A sample SSS extracted from a contrast T1-MRI
volume is shown in Figure 7. We define a plane constructed from the three
anatomical landmarks: CoS, and the two eye ball centroids, as in Figure 6.
This plane is called CoS-Eyeballs plane, and the point on superior sagittal sinus
having a maximum distance to this plane is marked. For robustness, the center
of a cloud of points with distances greater than 98% of the maximum distance
is defined as the apex of superior sagittal sinus (Figure 7).

-a -b

Fig. 6. CoS-Eyeballs planes from two different viewpoints

-a -b

Fig. 7. Apex of Superior Sagittal Sinus is marked with axis bar widget
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Fig. 8. All five extracted anatomical landmarks visualized together

Finally, all five anatomical extracted landmarks are visualized in Figure 8
from two different viewpoints for a sample patient contrast T1-MRI scan.

3 Registration Method

3.1 Anatomic Landmark-Based Registration

In the specific problem of registering serial MR images, a fixed reference volume,
which is usually the baseline MRI scan, is to be rigidly aligned with a moving
volume, which is a follow-up MRI scan. For a landmark based approach, a 3D
affine transformation (T = A 3×3, t 3×1) is estimated by minimizing the sum of
squared distances between the extracted anatomic landmark coordinates of the
fixed volume and the moving volume. A ∈ GL(3), the general linear group, i.e.
A is an invertible 3×3 matrix. Coordinates are all in world coordinates and the
centroid of the landmarks is chosen as the reference point for each MR volume.
Translation component t of T is directly obtained from the difference of the cen-
troids of the five landmarks that belong to the fixed and the moving volumes.
Let Xf = [xf , yf , zf ]T be a fixed landmark coordinate, Xm = [xm, ym, zm]T

be its corresponding moving landmark coordinate, and A is the affine transfor-
mation between the two. Then, A can be obtained as the solution of the least
squares estimation problem: A = arg min

∑n=5
i=1 ||X i

f − AX i
m||2. After taking

the derivative with respect to the unknown A , equating to zero, and re-arranging
the terms yields:
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The parameter vector a = [a11, a12, a13, a21, a22, a23, a31, a32, a33]T of the matrix
A is calculated as a = N −1b . Final affine solution is projected to an orthogonal
matrix space using a polar decomposition: A = Q S , where Q is the closest
possible orthogonal matrix to A in the sense of Frobenius norm, and S is
a positive-definite symmetric matrix. The factor Q can be calculated using a
singular value decomposition of A = U K V T , where Q = U V T [22].

3.2 Refining Surface Registration

The result of landmark based registration is further refined for an improved exten-
sive fit of the head/scalp surface of the moving image to that of the fixed image.
The binary head masks of fixed and moving volumes confined by the CoS-Eyeballs
plane (Figure 6), defined in Section 2.4, are represented as the zero-level sets of two
signed distance functions Φf and Φm, respectively. The sum of squared differences
between the two signed distance functions:

E(g) =
∫

Ω

[Φf (X ) − Φm(g(X ))]2dX (4)

where Ω is the domain of the image volume, is minimized to estimate a rigid
transform g(X ) = R X + t . The 3D rotation R , and 3D translation t param-
eters: gi, i = 1, ..., 6, are obtained as the steady-state solution of the ordinary
differential equations:

∂gi

∂t
=
∫

Ω

[Φf (X ) − Φm(g(X ))] < ∇Φm(gX ),
∂g(X )

∂gi
> dX (5)

where < ·, · > denotes the Euclidean inner product in R3, and ∇ denotes a
gradient operator. We utilized the exponential coordinate representation for the
3D rotation (e.g. see [23]). The initial conditions were set to translation and
rotation matrix obtained from section 3.1.

4 Results

The experiments were carried out over 9 follow-up MRI scans obtained from our
clinical partner hospital (anonymized for blind review). The study was approved
by the IRB of the hospital for an ongoing research project. The proposed method
is validated in various ways: over synthetically transformed MRI scans, real
MRI baseline and follow-up scans, a manually expert marked data set, and
a data set with non-invasive fiducial landmarks attached to a patient’s head.
Contrast enhanced T1-weighted MRI volumes with 1mm slice thickness and
axial resolution of 0.5mm are acquired from a Siemens 1.5 Tesla MR system. The
proposed registration method is fully implemented in C++ environment, using
Qt and VTK libraries for visualization. The parameters of the algorithm are fixed
over all experiments as follows: The threshold of tanβ is 0.40 in Section 2.1, the
width of CoS seed search bounding box is 25mm, and the window size for region
growing parameter calculation is 7 × 7 in Section 2.3.
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4.1 Consistency Tests

Consistency testing method proposed by Jenkinsen et al. [21] provides a quanti-
tative synthetic validation procedure for our method. In this test, new images are
created using several pre-determined transformations with rotation and transla-
tion. All transformed images are then registered to the reference image. If the
method is consistent, prescribed and calculated transformations should be the
same. Performance of the proposed method is tested with a consistency dataset
containing 8 contrast enhanced T1-MR and their artificially transformed MR
volumes with a known transformation matrix constructed by 5 degrees of rota-
tion about Z axis, 5 degrees of rotation about Y axis, and translated by [2,4,-2]
mm in this case. Registration is carried out using anatomical landmarks de-
scribed in Section 3.1, and followed by a surface based refinement procedure
described in Section 3.2. In an ideal case, prescribed and calculated transforma-
tion matrices should be identical. In this study we report the Frobenius norm
‖S ‖ =

√
trace(S T ∗ S ), where S is the difference of the prescribed and cal-

culated rotation part of transformation matrices. The error in translation is
interpreted as distance in milimeters.

The proposed method is compared to one of the widely adopted standard
rigid registration methods based on maximization of a global mutual information
criterion (MI) [17]. Observed rotation and translation errors are interpreted as
mean ± standard deviation as shown in Table 1. Both methods have similar error
results for rotation (less variance with the proposed method), and the proposed
method is more consistent in terms of the translation. Furthermore, the proposed
method takes typically 5-10 minutes of processing time on a personal computer
with 3.16 GHz processor, whereas the MI method takes typically 30 minutes of
processing time for our datasets. Therefore, the landmark-based method is more
efficient in terms of computation times.

Table 1. Transformation error measures of consistency dataset

Mutual Information Anatomical Landmark Based
Based with Surface Refinement

Rotation Error 0.015 ± 0.014 0.019 ± 0.008
Translation Error (mm) 1.53 ± 0.56 0.53 ± 0.20

4.2 Validation Studies on T1-MRI

Validation Studies on a Dataset with Fiducial Landmarks. For a vali-
dation study on a real MRI data, fish oil tablets are used as fiducial landmarks
and 6 tablets are positioned with an unbiased sampling over the surface of the
head of a patient. Two contrast enhanced T1-MRI scans are performed: the first
scan in a regular patient position, and the second scan performed after the patient
head is gently tilted about the axial axis. For both scans, fiducial landmarks are
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segmented and a rigid transformation matrix is calculated using the method men-
tioned in Section 3.1. These parameters are used as the ”ground truth” transfor-
mation parameters in this experiment. Fiducial landmarks are then removed from
both of the volumes, and anatomical landmarks are automatically extracted, and
registration is performed as described in Section 3. The two fiducially marked vol-
umes are also aligned using the mutual information based registration algorithm.
Differences between the estimated transformation parameters and the ”ground
truth” parameters are reported in Table 2. The parameters estimated by the pro-
posed registration method were closer to the ”ground truth” parameters than
those of the mutual information based method for the fiducially marked volumes.

Table 2. Transformation error measures for fiducial landmark data. Rotation error is
reported in the sense of Frobenius norm between the two rotation matrices.

Registration Method Rotation Error Translation Error (mm)

Landmark based 0.013 0.54
Landmark based with surface refinement 0.016 0.45

Mutual Information based 0.496 8.18

Studies on Follow-up contrast T1-MRI. In order to show the effect of
the surface registration step (Section 3.2) in our algorithm, an intensity based
measure, which is the sum of squared intensity differences (SSID) is utilized:

SSID =
∫

Ω

[I(X f ) − I ′(T (X m))]2 dΩ (6)

where I is the fixed intensity image and I ′ is the registered intensity image.
Follow-up MRI scans from 8 patients were registered to their baseline scans
and the mean SSID results are presented in Table 3. It can be observed that
adding the surface refinement process after landmark-based registration reduces
the intensity match error in the registration of follow-up scans to their baseline
scans, and in general improves the registration performance.

Table 3. SSID error measures over registration of T1-MRI baseline and follow-up
datasets

Registration Method Error

Landmark based 2.34E+07
Landmark based with surface refinement 2.05E+07

Validation Studies with manual expert guided registration. For com-
parison of our automatic landmark extraction to an expert’s manual landmark
extraction, one radiologist in our team manually marked 6 landmarks, which are
not necessarily the computationally extracted landmarks (since for instance it is
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Table 4. SSID error measure in comparison tests with expert guided manual landmarks

Registration Method Error

Landmark based 2.12246E+07
Landmark based with surface refinement 2.29632E+07

Expert guided manual landmark based 2.34145E+07

not possible to visually mark the 3D centroid of eyeballs), in two baseline and
corresponding follow-up contrast T1-MRI volumes. Registration is performed
using these expert guided manual anatomical landmarks, and also using the
proposed method (both with and without surface refinement step). SSID mea-
sures are given in Table 4, and as can be observed the expert guided registration
produced larger errors after registration. This indicates that the consistency of
manual landmark localization is lower when compared to our automatic land-
mark extraction algorithm.

Qualitative Results. We show sample image registration results for qualita-
tive evaluation of the proposed method. Figure 9 shows image slices from two
different patients having tumors appearing in various locations of the brain. The
follow-up scan, which was performed several months later, was aligned with the

-a -b

-c

Fig. 9. Qualitative evaluation of a sample case with 3 months follow-up volume reg-
istration results: a)Baseline slice, b)Registered Follow-up slice, c)Checker board view
with baseline image slices (green patches) and registered follow-up slices (red patches).
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baseline scan using the proposed rigid registration method. As can be observed in
the checker board view, the proposed method successfully registered the two con-
trast T1-MRI volumes, which are routinely used in monitoring tumor progress
and response to therapy. In both cases, after treatment, the tumors regressed
significantly, with reduced margins as observed in the follow-ups.

5 Conclusions and Discussions

We presented a new rigid registration method which is based on original anatom-
ical features extracted from brain contrast-MRI scans, and a landmark-based
registration refined with a surface-based registration for an improved alignment
of the brain surfaces. One main application is the registration of follow-up MRI
volumes in brain tumor patients, where the image intensity characteristics will
vary due to tumor growth and possible different contrast characteristics depend-
ing on the scan acquisition time of the contrast enhanced MRI scans. The pre-
sented landmark-based registration method, is relatively more robust against
such changes, as it is not directly based on an intensity-based optimization
procedure, and is only prone to errors at the anatomic landmark extraction
stage. Various validation studies demonstrated the performance of the proposed
method to be as accurate as the state-of-the-art (e.g. mutual information based
registration), and more efficient in terms of computation times of the algorithm,
and it successfully registers contrast enhanced T1-MRI volumes. Future direc-
tions of our work includes improvement of the robustness of feature extraction,
implementation of the algorithm in a multi-resolution framework, and use of the
proposed method in quantification of tumor change in serial MRI sequences.
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Abstract. Elastic deformation models are frequently used when solv-
ing non-rigid registration problems that are associated with neurosurgi-
cal image guidance, however, establishing precise values for the material
parameters of brain tissue remains challenging. In this work we include
elastography in the registration process by formulating these parameters
as unknown random variables with associated priors that may be broad
or sharp, depending on the situation.

A Bayesian registration model is introduced where the deformation
probability is formulated by way of Boltzmann’s equation and the linear
elastic deformation and similarity energies. The full joint posterior on de-
formation and elastic random variables is characterized with a Markov
Chain Monte Carlo method and can provide useful information beyond
the usual “point estimates”; e.g. deformation uncertainty. Hard deforma-
tion constraints are easily accommodated in this framework which allows
us to constrain the deformation of the brain to the intra-cranial space.

We describe preliminary experiments with synthetic 3D brain images
for which ground truth is known for the elastic and deformation param-
eters. We compare a model with separate elastic parameters for three
compartments (white matter, gray matter, and CSF), to a single com-
partment model, and show convergence, improved deformation estimates
for the three compartment model and that plausible posteriors on the
elastic parameters are obtained from the elastography process.

1 Introduction

Many surgical procedures induce tissue deformations such that image informa-
tion acquired before surgery might not match the anatomy seen during surgery.
In this paper we focus on deformations occurring during neurosurgery, however,
the applicability of the framework we present is not restricted to the neurosur-
gical case. Opening of the dura leads to a gravitational shift of the brain tissue
mainly due to the disappearance of pressure forces at the brain and ventricular
boundaries[1]. This shift is commonly called brain-shift and has been reported
to be ranging up to 24mm[2]. The “brain” consists of four main compartments,
or tissue materials; skull (SK), gray matter (GM), white matter (WM) and
cerebrospinal fluid (CSF). These compartments will deform differently during
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surgery because different tissues have different material properties. In particu-
lar, we may see a partial collapse of the ventricular areas due to CSF leakage[3].
A substantial uncertainty is involved in determining exact values for the material
properties of brain tissue, and consequently the reported estimates of material
parameters are quite divergent[4]. In addition, medication, radiation, or other
factors related to the surgical procedure may significantly change the material
parameters.

Many non-physical models have been proposed to recover tissue deformation,
e.g. B-splines[5] and the Demons method[6]. However, these methods are not di-
rectly connected to the actual physical behavior of the tissue and do not explicitly
model any material parameters. The most successful intra-operative registration
methods use biomechanical models[7,8] which accommodates specifying separate
elastic parameter values for different tissue types, but because the literature re-
ports divergent values for the material parameters, most authors avoid the issue
of varying tissue parameters and use fixed uniform material parameters for the
whole registered anatomy. In [9], Ou et. al. introduced an interesting approach
to elastography using a biomechanical model to estimate tissue parameters from
two images that are deformed versions of each other. A disadvantage to their
method is that the initial boundary conditions, i.e. the movement of boundary
nodes in the biomechanical model, are not estimated in the method but needs
to be specified.

In contrast to [9], we propose to integrate an elastography process in a Bayesian
registration framework and thereby estimate both the boundary conditions as well
as the elastic parameters simultaneously. A Markov Chain Monte Carlo sampling
technique is applied to characterize the posterior distributions over deformation
and elastic parameters. The sampling approach also effectively facilitates adding
hard deformation constraints, for instance to constrain the deformation to the
intra-cranial space.

2 Elastic Image Registration

Let f(x) and m(x), x ∈ Ω be a pre- and intra-operative image of the brain
respectively. They are defined over the d-dimensional image region Ω ⊂ R

d.
We assume there exists a segmentation of f into disjoint anatomical regions
Ω = ∪l∈{CSF,GM,WM}Ωl, and require a segmentation of the skull region ΩSK.

We assume there exists a displacement field u(x), x ∈ Ω such that m(u(x)+
x) is similar to f . We measure the similarity between two images using an energy
(similarity) function Es(u; f ,m). Many types of similarity measures have been
proposed in the literature. Any choice of similarity measure would be applicable
in the proposed framework. However, in this work we restrict ourselves to the
popular sum of squared differences

Es(u; f ,m) =
∫

Ω

(f(x) − m(u(x) + x))2dx . (1)

It is common to restrict the deformations to model some physical meaningful
process. Perhaps the most common model used in intra-subject registration is
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to model brain tissue as a linear elastic material. This mechanism, which may
be viewed as a regularizer, is defined in terms of an energy function

Er(u; μ, λ) =
∫

Ω

μ(x)
4

d∑
j,k=1

(∂xj uk + ∂xk
uj)2 +

λ(x)
2

(div u(x))2dx , (2)

where μ, λ ∈ R
+ are the Lamé parameters. A subscript on x and u denotes a

specific component of the 3D vector. Notice that we model the elastic parameters
as functions of x. In a traditional energy minimization registration method[10],
we generally solve: argmin

u
E(u; f ,m, μ, λ) = Es(u; f ,m) + αEr(u; λ, μ), where

α is a weighting parameter.

2.1 Linear Elastic Finite Element Model

The Finite Element (FE) method is a powerful and versatile computational
framework that is frequently used in the context of linear elastic problems over
non-uniform domains. It provides a fast way of computing both Er and Es.
FE-calculations are performed on a mesh that covers the region of interest.
In this work we used a non-uniform tetrahedral mesh where the tetrahedral
elements coarsely conform to the tissue boundaries delineated by Ω (GM, WM
and CSF). The number of nodes and elements in the mesh is denoted Ne and
Nn respectively.

In a FE setting we often work with the strain energy instead of the elastic
potential in Eq. (2) (we refer to [11] for a detailed description of linear elastic
FE-methods):

Er =
1
2

∫
Ω

εT σdx . (3)

Let the displacement vector be u = [u, v, w]T , the strain vector is then defined
as:

ε =
[
∂u

∂x
,
∂v

∂y
,
∂w

∂z
,
∂u

∂y
+

∂v

∂x
,
∂u

∂z
+

∂w

∂x
,
∂v

∂z
+

∂w

∂y

]T

. (4)

We can rewrite this as ε = Bu where:

B =

⎡⎢⎣
∂
∂x 0 0 ∂

∂y
∂
∂z 0

0 ∂
∂y 0 ∂

∂x 0 ∂
∂z

0 0 ∂
∂z 0 ∂

∂x
∂
∂y

⎤⎥⎦
T

.

The stress vector σ is related to the strain vector through Hooke’s law, σ = Cε,
where C is the material matrix. For an isotropic material this matrix is defined
by the two Lamé material constants λ and μ:

C =

⎡⎢⎢⎢⎢⎢⎢⎣
λ + 2μ λ λ 0 0 0

λ λ + 2μ λ 0 0 0
λ λ λ + 2μ 0 0 0
0 0 0 μ 0 0
0 0 0 0 μ 0
0 0 0 0 0 μ

⎤⎥⎥⎥⎥⎥⎥⎦ . (5)
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Using these relations, adding work done by internal forces, f , and minimizing
with regards to u, we end up with a linear matrix equation for each element:

Keue = VeBT
e CeBeue = fe , (6)

where Ke is called the element stiffness matrix and Ve is the volume of the
element. By assembling the contributions for each element into a square global
stiffness matrix, K, of size dNn, we get a large sparse linear system:

Ku = f . (7)

The linear system is under-determined – the solution can be seen as a mesh
floating freely in space. Consequently, the positions of at least three nodes need
to be specified to constrain the computations appropriately.

For a given deformation u, the elastic energy in Eq. (3) can be computed
efficiently using the FE-model. To compute the integral in Eq. (1), we use a 4-
point Gaussian quadrature[11] and sum up the contributions from each element.

3 A Bayesian Framework for Elastic Image Registration

Our framework is based on a generative Bayesian probability model where the
node deformations as well as the elastic material parameters can vary over the
image domain.

3.1 Generative Model

We assume that the intra-operative image m, the deformation u, and the elastic
parameters μ and λ are random variables generated by the hierarchical model
in Fig. 1. Notice that the pre-operative image, f , is a model parameter. This
leads to the following joint probability model:

p(m,u, λ, μ) = p(m|u)p(u|λ, μ)p(λ)p(μ) . (8)

According to the theorem of conditional probability we can write the posterior
as

p(u, λ, μ|m) =
p(m,u, λ, μ)

p(m)
=

p(m|u)p(u|λ, μ)p(λ)p(μ)
p(m)

. (9)

Since we are mainly interested in characterizing the deformation, the Lamé pa-
rameters can be seen as nuisance parameters and marginalized out:

p(u|m) =
∫

Ω

∫
Ω

p(m|u)p(u|λ, μ)p(λ)p(μ)
p(m)

dλdμ . (10)

We use the Boltzmann distribution to define the likelihood, often called the
similarity term

p(m|u) =
1
Zs

exp
(
−Es(u;m, f)

Ts

)
, (11)
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where Zs is a normalizing constant and Ts is the temperature parameter for the
distribution. The Boltzmann distribution is similarly used to model the prior on
the transformation which acts as a regularizer

p(u|λ, μ) =
1
Zr

exp
(
−Er(u; λ, μ)

Tr

)
. (12)

The Lamé parameters, λ and μ, should be non-negative to be compatible with
human tissue. There are many suitable priors that can be used to model the elas-
tic parameters depending on the prior information that is available. We model
the elastic parameter priors, p(λ) and p(μ), by Beta distributions scaled to the
region [r1, r2] and assume that the parameters are independent: p(μ; Aμ, Bμ, r1,
r2) =

∏
μi∈μ Beta(μi; Aμ, Bμ, r1, r2). The prior on λ is defined similarly. We

have flexibility in modeling the prior – we can use separate priors for different
brain compartments, or alternatively use a global prior.

Fig. 1. A generative model of the registration problem. The deformation random vari-
able, u, depends on the elastic random variables, μ and λ. The deformation governs
the image, m, we will observe given the image f . Aλ, Aμ, Bλ and Bμ are parameters
controlling the prior (beta) distributions for the elastic random variables. The two pa-
rameters, Ts and Tr, control the temperature of the likelihood distribution and the
prior distribution on the deformation respectively. The plate parameter, N , is estab-
lished by the resolution we sample the elastic parameters at. It can be uniform over
the image domain, per tissue compartment or per element in the FE-model.

3.2 MCMC-Optimization

We wish to characterize the posterior in Eq. (10), given images f and m. Un-
fortunately, it is not possible to analytically compute the posterior nor feasible
to draw samples directly from it. A common approach to generate samples from
complicated posteriors is by way of the Metropolis-Hastings (MH) algorithm[12].
In our setting we will draw samples from p(u, λ, μ|m) and “discard” the values
for λ and μ to characterize Eq. (10). However, notice that the “discarded” values
can be used for characterizing the marginal posterior distributions for the elas-
tic parameters. While deterministic optimization procedures generally requires
the Euler-Lagrange equations, MCMC-optimization stochastically optimizes the
posterior distribution purely based on the probability distributions defined in the
previous section and thereby eliminates the need for computing any gradients of
the energy equations. Algorithm 1 provides an overview of the method.
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Metropolis-Hastings. In the MH-algorithm, candidate samples are drawn
from a proposal distribution q(θ∗|θn), with θ = (u, λ, μ), from which it should
be easy to draw samples. For a particular step n of the algorithm, where the
current state is θn, we draw a sample θ∗ from q(θ∗|θn) and accept it with
probability

A(θ∗, θn) = min
(

1,
p(θ∗|m)q(θn|θ∗)
p(θn|m)q(θ∗|θn)

)
. (13)

If the sample is accepted, θn+1 = θ∗, otherwise θn+1 = θn. Notice that the
evaluation of the acceptance criterion does not require knowledge of the normal-
izing constants Zs, Zr and p(m). For symmetric proposal distributions, such as
the Normal distribution, the MH algorithm reduces to the standard Metropolis
criterion where the ratio of the proposal distributions equals one.

Proposal Distributions. We model the proposal distribution with three Nor-
mal jumping kernels [12] and assume that the parameters are independent:

θ∗ ∼ q(θ∗|θn) = Nu(u∗|un, σu)Nλ(λ∗|λn, σλ)Nμ(μ∗|μn, σμ) . (14)

By using a rejection sampler, we restrict the elastic parameters to μ, λ ∈ R
+

and the node positions from moving into the skull region (p + u) /∈ ΩSK, where
p are the initial nodal positions. Because the proposal samplers are Normal
distributions, the proposal ratio q(θn|θ∗)/q(θ∗|θn) equals one.

SamplingConvergence. A problem in iterative simulations is to assess whether
or not we are generating samples from the target distribution and whether we
have generated enough samples to characterize it properly. A common approach
of monitoring convergence is to compute the scale reduction for each scalar es-
timand using parallel Markov Chains[12]. We use three parallel Markov Chains
and assume the posterior distribution has been adequately characterized when
the scale reduction is less than 1.2 for all estimands.

3.3 Sampling Strategies

Deformation Sampling. We can sample deformations involving from three
to all the nodes in the mesh. Calculation of Eq. (7) provides us with the nodal
deformations for the nodes that are not sampled. In this work we sampled de-
formations for all nodes on the brain boundary, while the deformations for the
inner nodes were found through the FE-calculations.

Deformation Constraints. Restricting the sampler from accepting nodal po-
sitions in ΩSK avoids impossible nodal configurations. At the same time it al-
lows the brain to slide along the skull boundary to find the minimum energy
configuration.
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Elasticity Sampling. We have the option of sampling the elastic parameters
per element, per tissue label or uniformly over the image domain. For the present
experiments we assume that the intra-tissue elastic variation is negligible and
consequently sample the elastic parameters on a per-tissue basis. Hence, we sam-
pled different λ and μ for ΩGM, ΩWM and ΩCSF so that λ = (λCSF, λGM, λWM)
and μ = (μCSF, μGM, μWM).

Because no internal forces are applied in the FE-calculations, f = 0, we can
see from inspecting Eq. (6) that the ratios of the elastic parameters controls the
tissue elasticity while the scale of μ and λ will have no affect on the calculations.
Hence, to avoid drifting of the parameters towards zero, we fix one of the elastic
parameters and sample the rest of them. It is also worth mentioning that since
nodal positions are only sampled for nodes on the boundary of the mesh, it is
the sampling of the elastic parameters that effectively explores the deformation
space for the internal mesh nodes.

Algorithm 1. Bayesian estimation of deformation and elastic parameters.
repeat

Sample u∗ ∼ Nu(un, σu), (p + u∗) ∈ Ω.
Sample λ∗ ∼ Nλ(λ∗|λn, σλ), λ∗ ∈ R

+

Sample μ∗ ∼ Nμ(μ∗|μn, σμ), μ∗ ∈ R
+

Compute the energies in Eqs. (1) and (3)
Compute the MH criteria in Eq. (13).
if Accept then θn+1 = θ∗

else θn+1 = θn

end if
until Convergence

4 Results

4.1 Dataset

Preliminary validation of the framework was performed on a synthetic dataset
where ground truth was established. We acquired an anatomic T1 weighted
MR image together with a label map from the BrainWeb[13] database. A label-
dependent tetrahedral mesh consisting of Ne = 3807 elements and Nn = 801
nodes was generated. We fixed 20 boundary mesh nodes with a deformation of
15 mm in the direction of the center of gravity of the brain and used the sampler
to find the configuration of the remaining boundary nodes that minimized the
elastic energy of the mesh. The literature[4] indicates that the elastic ratio of
brain tissue should be approximately λ/μ ≈ 24. For generation of the dataset
we fixed the elastic parameters to μCSF = 10−6, μGM = 1, μWM = 1, λCSF =
10−6, λGM = 10, λWM = 30. The resulting dataset can be seen in Fig. 2. Even
though CSF is clearly not an elastic material, we model it with small elastic
values compared to GM and WM to approximate the fluid nature of CSF.
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4.2 Experiments

Two separate experiments were carried out. In both experiments we sampled
deformations for the 349 boundary nodes, while the deformations of the internal
nodes were computed by solving Eq. (7). The elastic parameters were sampled in
two different ways. In the first experiment the elastic parameters were uniformly
sampled for all tissue types such that μCSF = μGM = μWM and λCSF = λGM =
λWM. In the second experiment the parameters were sampled independently.
We assumed no prior information on the elastic parameters and therefore used
a uniform prior on them (Aλ = Aμ = Bλ = Bμ = 1, r1 = 0, r2 = ∞), iden-
tical deformation sampling kernels (σu = 0.008) and the same temperatures
(Ts = 0.05, Tr = 10 000) for the two experiments. These parameters resulted
in a MCMC acceptance rate of approximately 25%. We used a thinning factor
of 10 and generated samples until the reduction scale was less than 1.2 for all
estimands. A total of 250 000 samples were generated for each of the three par-
allel samplers, but, after thinning, only 25 000 samples were used to characterize

(a) Pre-operative image (b) Labelmap (c) Tetrahedral mesh

(d) Intra-operative image (e) Divergence map (f) Deformation

Fig. 2. The synthetic dataset. In (c) we show a cut through the mesh we used for
the computations. CSF is colored in red, GM in green and WM in yellow. The poor
correspondence between labels in (b) and (c) is a result of the coarse mesh. In (e)
we show the divergence, which is governed by the λ parameter (see Eq. (2)), of the
deformation field. Notice the bright areas in the divergence map, they are signs of the
collapse of the ventricular areas. Also notice the skull label in (b), the sampler restricts
movements of nodes into this area. Figure (f) shows the x- and y-components of the
ground truth deformation field.
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(a) (b) (c) (d)

Fig. 3. The two images on the left shows the norm of the difference between the ground
truth deformation and the estimated deformation field with varying elastic parameters
(a) and with uniform elastic parameters (b). Comparing the deformation errors, it is
clear that using varying elastic parameters provides a better estimate of the deformation
in the interior of the brain. The collapse of the ventricles (see the divergence map in
Fig. 2(e)) is better accommodated with varying elastic parameters than in the uniform
case (compare the two rightmost images where (c) stems from using varying elastic
parameters while (d) from uniform parameters).

Table 1. This table reports statistics on absolute error between the posterior means of
the boundary node deformations and the ground truth deformations for these nodes.
We also report statistics on the distance between the initial configuration of the nodes
and the ground truth. From this and Tbl. 2 we can draw the conclusion that the
sampler provides comparable estimates of the movements of the nodes on the boundary,
while sampling different elasticity parameters provides us with a better estimate of the
deformation in the interior of the brain. All values are in millimeters.

Median 95th quantile Max

Initial Configuration 2.56 8.24 15.08
Different Elastic Parameters 0.16 0.72 2.43
Uniform Elastic Parameters 0.18 0.83 2.40

the posterior distributions (a total of 75 000 samples). Each parallel sampler
generated 5 samples per second which resulted in a total computation time of
approximately 14 hours. Notice that we used the same sampling framework for
generating the synthetic dataset as we used to estimate the elastic and deforma-
tion parameters. Hence, large discrepancies between the ground truth and the
estimated parameters is not expected.

MCMC methods should use starting points that are crude estimates of the
mode of the posterior distribution[12] that we are interested in. A simpler and
faster registration method, such as the Demons method[6], can be used to find an
initial configuration of the deformation parameters. We used initial deformation
parameters for the boundary nodes that were in between an identity deformation
and the ground truth deformation. In Tbl. 1 we report statistics on the distance
between the initial configuration and the ground truth, as well as the distance
between the estimated posterior means of the node deformations and the ground
truth.
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Table 2. In this table we report the Mean Squared Error (MSE) between the computed
deformation and the ground truth deformation over different tissue types. The upper
row contains results from varying the elastic parameters for each tissue type, while
the results in the lower row stems from using uniform elastic parameters. It is evident
that varying the elastic parameters provides a better estimate of the ground truth. All
values are in millimeters squared.

Ω ΩCSF ΩGM ΩWM

Different Elastic Parameters 0.040 0.049 0.049 0.023
Uniform Elastic Parameters 0.065 0.087 0.067 0.048
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Fig. 4. Marginal posteriors of the elastic ratios for each tissue compartment. The
ground truth values are, λCSF/μCSF = 1, λGM/μGM = 10 and λWM/μWM = 30. It
is evident that the method is able to recover elastic parameters that distinguishes
between different tissue types, but not necessarily capable of recovering the exact un-
derlying values. It is also evident that the elastic ratios are biased towards zero. This
may be explained by the drifting mentioned in Sec. 3.3 and the Boltzmann distribu-
tion of the elastic energy. The lower the temperature is set, the more regularization we
apply to the registration and the more the elastic parameters will tend towards zero.
WM volume is also larger than for GM, hence the ratio for WM tends more towards
zero than for GM.
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Fig. 5. Translations were sampled for each node on the boundary of the mesh. This
figure shows the marginal posterior distributions for each translational component for
one of the boundary nodes. The posterior distribution of nodes moving along the skull-
brain boundary gets the truncated shape we see in (a) and (b).

Figure 3 provides qualitative results from the registrations while Tbl. 2 re-
ports quantitative Mean Squared Error (MSE) results from comparing the final
deformation field with the ground truth deformation. It is evident that sampling
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the elastic parameters per compartment provides better results in the brain in-
terior, while the estimated deformations on the brain boundary (see Tbl. 1) are
comparable. In Fig. 4 we plot posterior distributions of the elastic ratios. The
experiments show that we are able to distinguish between tissue types and that
we recover plausible elastic ratios, however the ratios are biased towards zero.
Figure 5 shows the posterior distribution of one of the boundary nodes. Notice
how the rejection of samples that fall in the skull region have truncated the
posterior distributions for this particular node.

5 Discussion

In this paper we presented a Bayesian framework for simultaneous estimation
of deformation and material parameters. One advantage of our approach is the
characterization of marginal posteriors instead of point estimates for the regis-
tration parameters – not only can we find the most likely configuration of the
deformation field given two images, but from the posterior distribution we can
also quantify deformation uncertainty. Another novelty of the method is the abil-
ity for elastography without first determining the initial boundary conditions.
Prior information on the material parameters is seamlessly included in the frame-
work through the prior distributions on them. The MCMC sampler facilitates
inclusion of hard deformation constraints; for example if a segmentation of the
skull is available, brain movements can be restricted to the intra-cranial space.

Unfortunately, high-dimensional problems solved with MCMC methods re-
quire a large number of samples to adequately characterize the posterior dis-
tribution. Hence, it is a computationally intensive method that might not be
suitable for intra-operative use in the near term. However, the use of parallel
samplers on large computer clusters can reduce the computational time consid-
erably. Because the method is highly computationally intensive, a coarse brain
mesh was applied for the experiments to make it computationally tractable. Fu-
ture work should study the sensitivity of the method to the tissue segmentation
and the coarseness of the mesh. Notice that the need for a tissue segmentation
can be eliminated by sampling the elastic parameters per element instead of per
tissue compartment.

Three main conclusions can be drawn from the preliminary experiments: 1)
elastography is feasible without knowing initial boundary conditions, and plau-
sible marginal posteriors on material parameters are obtained, 2) it is possible
to characterize posterior distributions on deformations and 3) improved regis-
tration results are achieved with finer elastic sampling resolution. Hence, this
registration framework is particularly useful whenever it is difficult to establish
precise values for the elastic parameters.
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R01CA138419 and U41RR019703.
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Abstract. Validation of respiratory motion estimation is indispensable
for a variety of clinical applications. For CT lung registration, current
approaches employ manually defined landmark sets or contours and com-
pute a target registration error (TRE) to quantify registration accuracy.
Preferably, the landmark set is well-dispersed to reflect for lung anatomy
with its varying degrees of stiffness. A recent comparison study, however,
revealed that the TRE is not sufficient for functional lung analysis.

On the basis of a compressible CT phantom functional lung analysis is
addressed. Non-plausible expansion patterns as they occur for CT lung
data are analyzed. Motivated by the relation of Hounsfield value and
local volume change, local stiffness is incorporated into registration such
that an improved functional lung analysis is achieved.

1 Introduction

Respiratory motion estimation is a topic receiving high attention in medical
imaging. For clinical applications such as diagnosis as well as better planning,
delivery, and assessment of therapy for lung diseases, estimation of and compen-
sation for motion is indispensable. Motion compensation requires the non-rigid
registration of CT lung data typically acquired in a dynamic protocol as for
respiratory-gated 4D scans. In each case, the voxel-wise computation of respira-
tory motion at different respiratory states is required.

The accuracy of respiratory motion estimation has direct impact on the suc-
cess of any clinical application mentioned above. While rigid registration is well
suited for validation [1] and has come to a maturity state in clinical applica-
tions, for non-rigid registration there is a discrepancy between its maturity in
the image processing community and its dissemination in clinical workstations
indicating a lack of acceptance.

A necessary criterion for a successful registration is the alignment of visible
image structures, often converted into an inspection of the residuum (i.e., the
subtraction of the aligned data) where mis-aligned image structures show up.
However, the absence of any structure in the residuum image does not guar-
antee a successful non-rigid registration since the residuum is invariant to the
deformation of image regions with homogeneous intensities.

B. Fischer, B. Dawant, and C. Lorenz (Eds.): WBIR 2010, LNCS 6204, pp. 116–127, 2010.
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Validation of non-rigid registration is primarily based on corresponding ana-
tomical features such as landmarks or contours. For lung data the features are
located on lung structures with adequate image contrast such as vessel bifur-
cations or the tumor boundary. After applying the registration result, a target
registration error (TRE) is computed to measure registration accuracy quan-
titatively. However, number and distribution of the features as well as their
meaningfulness for functional lung analysis need to be discussed.

A couple of research groups contributed to landmark validation, either by
increasing the number of correspondences (e.g. [2,3]) or by distributing them
equally throughout the lungs [4]. The latter is reported to provide a more real-
istic accuracy estimation since also low-contrast lung regions near to pleura or
diaphragm are covered where registration accuracy is typically worse [5]. How-
ever, it is worth to point out that landmark correspondences can – unlike for
affine registration – only estimate the accuracy of non-rigid registrations schemes.
Beside the well-disperseness of the landmark set, the number of correspondences
has impact on the estimation error. For illustration, a lung with a volume of 4 l
and a set of 100 defined landmarks is considered. In this example, each cube
with edge length 34 mm contains one landmark on average. Taking into account
the distinctive non-homogeneity of lung parenchyma, it is questionable if such
a sparse setting yields a robust estimation. Even for a set of about 1500 land-
marks [3] the distribution remains sparse with one position per cube of edge
length 14 mm on average.

Functional lung analysis on the basis of 4D-CT was recently addressed [6,7,8]
for the purpose of lung diagnosis or adaptive radiotherapy planning. From a phys-
iological point, the lungs in a healthy state either contract (during exhalation)
or expand (during inhalation). Following [9] the magnitude of contraction or ex-
pansion, thus the lung ventilation, is typically highest near the diaphragm. A si-
multaneous mixture of local expansion and contraction, however, is very unlikely
for normal breathing. This is in conflict with a recent comparison study [5] where
three out of six registration schemes were reported to show individual contraction-
expansion patterns but resulted in similar TREs. Therefore TRE appears to be
not suitable for validation on a functional level. Similar to the residuum, it can
serve as necessary criterion for registration accuracy but not as a sufficient one.

In this work validation of non-rigid registration is investigated on both a land-
mark level and a functional level. On the basis of a compressible CT phantom,
registration of structures similar to lung parenchyma is addressed (Sect. 2). A
variety of registration experiments is carried out to investigate lung registration
validation thoroughly (Sect. 3). In the final part of this work reliable validation
criteria are discussed.

2 Materials and Methods

In CT imaging, the lungs are shown with predominantly low densities comple-
mented by filigree structures of higher density. The low densities can be assigned
to lung parenchyma consisting of alveoli and capillary vessels, the higher den-
sities result from bronchial walls or larger vessels. In fact, due to the partial
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Fig. 1. Composite foam phantom (“axial” view) mounted between two plates in com-
pressed state (left) together with an intensity histogram after CT acquisition (right)

volume effect almost all voxels represent a mixture of both types. During breath-
ing, air can inflate or deflate the lungs, thus leading to a change in volume of
lung parenchyma indicated by a change in local density. Generally the change
is proportional to the fraction of air. A change in volume of a certain structure,
however, requires the structure to be elastic. Thus, elasticity is proportional to
the fraction of air as well. Larger vessels and upper parts of the bronchial tree
(potentially attached with cartilage) are stiffer than smaller structures. A suit-
able CT lung phantom should therefore comprise a range from stiff to elastic
structures. Compared to data from human lungs a phantom is free of artifacts
induced by heart or respiratory motion. In addition, it can be acquired with high
resolution since dose is not an issue.

2.1 Composite Foam Phantom

For this work, a rectangular object made of composite foam is chosen. It is com-
posed of foam pieces with size ranging from about 1 mm to more than 10 mm. A
sensory analysis reveals the single pieces to be of individual elasticity. The com-
posite foam is mounted between two plates of acrylic glass with the upper plate
splitted into two parts. Screws are used to fix the upper plate parts to the lower
plate (see Fig. 1, left, for a picture of the phantom). The phantom is scanned
twice using a Philips Mx8000 IDT (512x512x320 voxels, 0.33x0.33x0.45 mm3

resolution, 168x168x144 mm3 FOV), once in the uncompressed state and once
in a compressed state by tightening the screws from 29 mm plate distance to
23–27 mm resulting in an overall volume reduction by 13.5%. To study different
compressions and to make the following registration task more challenging, the
two parts of the upper plate have been compressed independently (causing a step
in-between) and also the screws of each part are tighten differently (see Fig. 2
for exemplary slices). A histogram analysis (Fig. 1, right) reveals that, as for the
lungs, the density in the compressed state is higher than in the uncompressed
state. Manual segmentation of the phantom in both scans allows for computing
the relative compression relC as the reduction in plate distance divided by the
plate distance in the uncompressed state (computed for each voxel column in
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Fig. 2. Zoomed example slices of CT phantom: mid coronal slice in uncompressed state
(left), mid axial slice in uncompressed (top right) and compressed state (bottom right)

Fig. 3. Relative compression relC of phantom shown as color-coding (left; same view
as in Fig. 2, left) and histogram (right). The left plot nicely demonstrates (a) the dis-
continuity in compression due to the splitted upper plate and (b) varying compression
within each upper plate part due to the screws tightened differently.

coronal direction, see Fig. 3). For validation purposes, a software tool [4] is used
to automatically define 50 landmarks in the uncompressed scan and to semi-
automatically propagate these to the compressed scan. The maximum distance
of a voxel position to the closest landmark position is 26.3 mm. Compared to the
ideal well-dispersed distribution with a theoretically achievable maximum dis-
tance of 17.0 mm, the landmark set can be considered as being well-dispersed.
The distance between corresponding landmarks in the uncompressed scan and
the compressed scan was found to be 3.4±1.5 mm in the mean and 5.9 mm at
maximum.

2.2 Elastic Registration

For convenience, let the uncompressed scan be the reference image R and the
compressed scan the template image T . Both T, R are interpreted as mappings
from Ω ⊂ R

3 to R. The registration scheme aims at finding a deformation vector
field (DVF) u : Ω → R

3 such, that the displaced template image is aligned with
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the reference image. In this work a non-parametric approach [10] is chosen to
minimize simultaneously a similarity measure D and a regularizing term S. Due
to the added regularizing term the registration problem is well-posed. For D the
popular sum of squared differences is chosen while for S an elastic regularizer
based on the Navier-Lamé equation is employed,

D[R,Tu]︷ ︸︸ ︷∫
Ω

(R(x) − Tu(x))2dx+

S[u,E]︷ ︸︸ ︷∫
Ω

E(x)
3∑

i,j=1

(∂xj ui(x) + ∂xiuj(x))2dx
u→ min , (1)

with Tu corresponding to the displaced template image. The elastic regularizer
assumes that the underlying images can be characterized as an elastic and com-
pressible material. Its properties are modeled by the so-called Lamé parameters
which, for the special case of zero Poisson’s ratio, can be translated into a single
parameter: the elastic modulus E describes the amount of deformation given a
constant force, it is thus linked to the material stiffness. As common to regis-
tration problems, E cannot be assigned an absolute value from the literature
since its choice depends on the scale of T, R, on the chosen similarity measure,
as well as on implementation issues. Therefore, in this work E is understood as
E = cE0 with E0 having the unit [Pa]. As indicated in (1), the elastic modulus
E(x) is allowed to vary spatially [11].

3 Results

In this section the experiments and their results are described. For the elastic
registration scheme as described in Sect. 2.2, two images T, R as well as the elastic
modulus E are required. The elasticity can be modeled to be either constant
throughout the image or spatially varying. The registration scheme results in a
deformation vector field u. From the determinant of the Jacobian of u the local
volume change can be computed for each voxel position as V (x) := |∇u(x)| − 1.

3.1 Standard Elastic Registration

Experiment Design: Let R be given as the uncompressed scan and T as the com-
pressed scan, thus for u an overall contraction is expected. The elastic modulus
is chosen to be constant throughout the image domain with values of (a) 62.5E0,
(b) 250E0, and (c) 1000E0, respectively.

Findings: From a computation of the residuum (the subtraction of reference
image and deformed template image) in all three cases the registration is judged
as successful. A closer inspection reveals less remaining residual structures for
smaller values of E demonstrating the impact of regularization on a registration
scheme: a larger choice of E and thus a larger weight on the regularizer privileges
a smooth deformation whereas a smaller weight allows for better adaptation to
local anatomy. Regarding the alignment of the landmark positions, in all three
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Fig. 4. Local volume change V (same coronal slice as in Fig. 2) when choosing constant
values for the elastic modulus: 62.5E0 (left), 250E0 (center), and 1000E0 (right)

Fig. 5. Normalized joint histogram of local volume change V vs. Hounsfield values (HU)
for setting (b), sorted according to relative compression relC. Note that smaller values
of relC correspond to smaller plate distance and thus to higher phantom compression.

settings subvoxel accuracy is achieved. The TRE (mean±std (max) [mm]) is
computed as (a) 0.27±0.14(0.75), (b) 0.28±0.13(0.72), and (c) 0.30±0.13(0.72),
thus slightly better results are achieved for smaller values of E. The local volume
change V , however, reveals expanding regions for (a) and (b) as depicted in
Fig. 4. Recalling that the phantom was exposed to overall contraction, expanding
regions would be physically unrealistic.

For closer inspection the relation of V and the Hounsfield values (HU) is an-
alyzed1 by means of a joint histogram: since a low (high) HU corresponds to
low (high) density equivalent to a large (small) fraction of air, an impact of HU
on V is reasonable. Certainly, this relationship depends on the applied force,
thus on the relative compression relC. Based on relC for every percent interval
with at least 1000 counts (see Fig. 3) a joint histogram of V vs. HU is computed.
Normalization for each HU allows for investigating the suspected V /HU relation-
ship (Fig. 5). To combine the information from the different compression levels,
from each normalized joint histogram a graph is extracted by determing the row
position for which the accumulated column values reaches 0.5. The collection

1 Since u points from the reference image onto the template image, and therefore V
is defined in the domain of the reference image, for the HU the uncompressed state
is taken as reference image.
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E=62.5E0 E=250E0 E=1000E0

Fig. 6. Ensemble plots derived from normalized joint histograms (see text for expla-
nation) for elasticity settings (a), (b), and (c) as in Fig. 4

of graphs shown in an ensemble plot (Fig. 6) now describes the reaction of a
material of a given HU to individually applied forces. A comparison of setting
(b) to the settings (a) and (c) (shown center, left, and right, respectively) under-
lines the impact of the regularizer on the registration result: a small or medium
elastic modulus results in a graph ensemble with larger slope accompanied by
non-plausible positive values of V for voxels with higher intensity. The positive
values are directly linked to the expanding regions visible in Fig. 4. On the con-
trary, a larger value for E yields a graph ensemble with smaller slope which
asymptotically converges to a negative value of V . Here, the deformation field is
protected from non-plausible expansions but, at the same time, non-contracting
regions are forced to contract. In view of a lung CT this effect can cause parts
of bronchial or vessel tree to erroneously contract during exhalation.

Finally, the occurrence of non-plausible expansions is investigated in light of
the TRE. For every landmark position the value of V is computed and plotted
against the TRE in Fig. 7. Since for settings (a) and (b) the majority of landmark
positions shows a TRE between 0.1 mm and 0.35 mm as well as a local expansion
(V > 0), a possible correlation of local expansion and TRE is ruled out. Also, it
is ensured that landmarks are placed both in contracting and expanding regions.
Therefore, the TRE cannot be used to determine the registration accuracy on a
functional level.

3.2 Synthetic Example

The following experiment investigates the paradoxical expansion of image regions
with higher density as observed for settings (a) and (b) in Sect. 3.1.

Experiment Design: Let R, T consist of an identical sphere around the image
center surrounded by a shell of reduced intensity which is spherical in R but
ellipsoidal in T (see Fig. 8, left). This synthetic example is designed to model
the overall contraction of a composite object with a less stiff material in its
shell and a stiff material in its center region. To reflect the properties of the CT
phantom, intensity values are chosen as −700, −900, and −1000 for the center
region, the shell, and the background, respectively. The elastic modulus is set
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Fig. 7. Comparison of TRE with volume change V at landmark position for settings
(a)-(c)

Fig. 8. Axial slices of R (top left) and T (bottom left) for a 3D synthetic phantom. The
center column displays the local volume change V after registration with a constant
elastic modulus (top) and with a spatially variable one (bottom). For both settings,
the right column visualizes the resulting DVFs (zoomed for the center region).

either constantly to E = 100E0 or spatially varying with Ecenter = 10000E0 and
Eshell = Ebackground = 100E0.

Findings: Regarding the transition from center region to shell and from shell
to background, both the constant and the variable setting result in a perfect
registration, thus the residuum is the same for both settings. An inspection of
the local volume change V , however, reveals local expansions within the center
region (Fig. 8, top center). Since the integral of V over the center region is zero,
the correct alignment of the center-shell interface is confirmed. To investigate the
paradox, the DVF is applied to an orthogonal grid and visualized in Fig. 8, top
right (zoomed and overlayed onto center region): even though the center region
in R, T is untouched, deformation within this region occur. The explanation can
be found in the role of the regularizer. At first, deformation in the shell region is
necessary to allow for its contraction. Then, due to the regularizer, continuation
of this deformation (“smooth vectorfield”) into the center region is privileged
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unless the similarity of deformed template and reference image is worsened.
If, however, the center region remains undeformed, the similarity measure was
unchanged but a higher gradient of the DVF at the center-shell interface would
cause increased penalization by the regularizer.

The second setting with a higher elastic modulus in the center region takes
up the balance of similarity measure and regularizer. By increasing the stiffness
of the center region, non-plausible expansion is prohibited (see Fig. 8, bottom
center and bottom right).

3.3 Local Elastic Registration

Based on the experiences with the synthetic example the CT phantom is re-
investigated, now with a spatially varying elastic modulus. Existing work ad-
dressing spatial variability assigns high elastic modulus values to bone structures
to prevent these from implausible deformations [12,13].

Experiment Design: Let R, T denote the uncompressed and the compressed
scan as in the first experiment. Since the elastic modulus is proportional to
the stiffness of a structure and since the density measured by CT is also pro-
portional to a structure’s stiffness, the elastic modulus is chosen as a function of
the local Hounsfield values. Motivated by the very high elastic modulus of a stiff
structure such as a main bronchus (which is assigned a density of approximately

Fig. 9. Top left: local volume change V shown for same coronal slice as in Figs. 2,4; bot-
tom: normalized joint histogram of V vs. Hounsfield values sorted according to relative
compression relC; top right: ensemble plot derived from normalized joint histograms
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1) and the low elastic modulus of a lung compartment containing mainly air, it
is reasonable to model the transfer function as an exponential function of type
t(x) = t0 + cx+1000 mapping the Hounsfield scale to the positive real numbers.
For the choice of base c and offset t0, settings from the first experiment are
considered: a transfer function with t0 = 37E0 and c = 1.02 assigns the elastic
modulus values from setting (b) to the histogram peak for the uncompressed
state and setting (c) to its 90% quantile (see Fig. 1, right).

Findings: From the resulting DVF the residuum, the TRE as well as the local
volume change are computed. While the residuum resembles the residua of set-
tings (b),(c) from the first experiment, the TRE is increased to 0.33±0.14(0.76)
but still within subvoxel accuracy. The local volume change reflects the spatially
varying elastic modulus as visible from Fig. 9: no part of the phantom has been
expanded while, at the same time, contractions up to −0.5 occur. The ensem-
ble plot summarizes the joint histograms and can be directly compared to the
results achieved with constant elastic modulus (see Fig. 6).

4 Discussion

An elastic registration scheme is applied to a compressible CT phantom with the
elastic modulus chosen either constantly (Sect. 3.1) or spatially varying (Sect.3.3)
and to a synthetic phantom with one or two elasticity regions (Sect. 3.2).

Applying a constant elastic modulus E to the entire image region, the registra-
tion result can vary between a homogeneous and a locally adapted deformation,
depending on the value of E. For three different stiffness settings investigated,
however, standard validation criteria such as the residuum or the TRE do not
allow for clear distinction since all settings are registered with subvoxel accuracy.
Computation of the local volume change on the one hand allows for a clear dis-
tinction and on the other hand reveals non-plausible local expansion for certain
settings. The smaller the elastic modulus is, the more distinct the local expan-
sions are. Correlation of local volume change and TRE at all landmark positions
verifies that the TRE fails to detect non-plausible deformations.

From the CT phantom construction it is obvious that, given the compression
of the plates, any region of the phantom must either contract or preserve its vol-
ume. Since, in addition, image regions with low Hounsfield value (HU) and thus
a large fraction of air are more compressible than regions with high HU, the local
volume change V of a certain structure is expected to be inverse proportional
to its HU which is confirmed by a joint histogram of V and HU. The necessity
for all regions to either contract or be volume-preserved (i.e. V ≤ 0), however,
is violated if the elastic modulus is chosen too small (see the ensemble plots
in Fig. 6). There are four ways to circumvent the violation: (1) increase of the
elastic modulus, (2) addition of constraint to the registration scheme such that
V ≤ 0 is forced everywhere, (3) spatially varying choice of the elastic modulus,
(4) incorporate the compression-induced change in density into the similarity
measure [14]. While (1) is demonstrated to fail (Figs. 4,6, right) since an in-
creased elastic modulus forces all image regions to homogeneously contract, and
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(2) is not optimal since it would result in an ensemble plot with the single graphs
just upper clamped to zero, (3) is shown to solve the problem. (4) has the po-
tential to solve the problem by modifying the similarity measure rather than the
regularizer. However, robustness against noise needs to be investigated.

The use of a spatially varying elastic modulus to prevent non-contracting re-
gions from contraction is analyzed for a synthetic phantom. The effect of local
expansions can be traced back to the balance of similarity measure and regular-
izer in case of image regions with homogeneous intensity. Since most non-rigid
registration schemes can be interpreted as a combination of similarity measure
and regularizer (otherwise the registration problem would not be well-posed),
the finding is of general relevance.

For applying a spatially varying elastic modulus to the CT phantom a trans-
fer function is defined to automatically translate the HUs of the reference image
into values for the elastic modulus. The exponential type of the transfer func-
tion can be justified by physics since the elastic modulus relates the amount
of deformation to a given force. So far, the specific choice of the exponential
function is motivated only by the intensity histogram of the underlying image
and previous experiments (Sect. 3.1) and needs for detailed investigation. The
result as shown in Fig. 9, however, demonstrates its applicability. Not only no
part of the CT phantom undergoes non-plausible expansion, but also the volume
change of regions with low density nicely reflects the different compression levels.
The relation of local volume change and CT density can even be extended to an
automatic tool for local estimation of registration accuracy.

A first application to CT lung data acquired in inhale and exhale state showed
a similar relation of local volume change and CT density compared to the CT
phantom. Given the complicated dynamics of lungs, however, further investiga-
tion is needed.

5 Conclusion

Motivated by inconsistent estimations for CT lung registration accuracy using
(a) landmark correspondences as a point-based measure and (b) lung ventila-
tion as a functional measure, a CT phantom with a comparable range of stiffness
properties is chosen for deeper investigation. The CT phantom benefits from the
controlled compression and the absence of any motion artifacts as they are likely
to occur in CT lung data. Registration of the phantom showed that an elastic
registration scheme with global uniform elasticity is unable to align the uncom-
pressed and the compressed state in a way which is both plausible and adapted
to local structures. However, unlike a functional measure, the landmark-based
measure fails to detect non-plausible deformations of image regions with homo-
geneous intensity. The contribution of this work is twofold. First, a framework
is described for registration validation on a functional level. Second, a method
is proposed to automatically choose the elastic modulus based on CT density.
This allows the registration scheme to use spatially varying regularization and
to achieve a physically meaningful deformation with impact on functional lung
analysis.
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Abstract. Longitudinal brain image studies quantify the changes hap-
pening over time. Jacobian maps, which characterize the volume change,
are based on non-rigid registration techniques and do not always ap-
pear to be clinically plausible. In particular, extreme values of volume
change are not expected to be seen. The Free-Form Deformation (FFD)
algorithm suffers from this drawback. Different penalty terms have been
proposed in the past. We present in this paper a regularisation of the
B-Spline displacements using nonlinear elasticity. Our work links a finite
element method with pseudo-forces derived from a similarity measure.
The presented method has been evaluated on longitudinal T1-weighted
MR images of Huntington’s disease subjects and controls. Multiple time
point consistency, the Jacobian map homogeneity and statistical power
for group separation have been used. Our new method performs better
than the classical FFD, while keeping similar registration accuracy.

1 Introduction

When studying brain images using non-rigid registration, the determinant of
the Jacobian provides a measure of local volume change that is often of interest
for quantifying deformations over time or between subjects. However, as each
registration method produces a slightly different transformation (and equally
importantly, via a different deformation mechanism) the Jacobian determinant
maps vary both quantitatively and qualitatively. Moreover, the quality of the
map (judged directly by clinicians, or indirectly via results of tensor-based mor-
phometry) is not necessarily correlated with the quantitative accuracy of the
registration. For example, using different techniques such as the Free-Form De-
formation [1] (FFD), the fluid [2], the diffeomorphic demons algorithm [3] or
symmetric normalization (Syn) [4], different Jacobian determinant maps are ob-
tained even though the warped images all match the reference — see Fig. 1.

In order to generate smooth and plausible transformation with the FFD
method, efforts have been made to impose constraints on the deformations.
Rueckert et al. [1] proposed a penalty term based on the bending energy. Rol-
hfing et al. [5] presented another based on the logarithm of the Jacobian de-
terminant. The Jacobian determinant was also embedded in a regularizer by
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� Springer-Verlag Berlin Heidelberg 2010
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 1. Variation in volume change distribution with different registration algorithms.
A floating image has been registered to a reference image (a) using: fluid (b,h), Syn
(c,i), demons (d,j), free-form deformation (e,k) and the proposed method (f ,l). It can
be appreciated from the difference images (bottom row) that all techniques successfully
recovered the initial differences (f). However the Jacobian determinant maps (top row)
reveal very different patterns of deformation. (log2(det(J)) is shown with colour range
from -0.5 to 0.5).

Sdika [6]. However, simple constraints or penalty terms are either incapable
of modelling large deformations or unable to prevent highly variable (or nega-
tive) Jacobians. Considering that the general aim of the above penalty terms is
to favour physically plausible deformations, a natural alternative is to directly
include a biomechanical regulariser, for example based on equations of contin-
uum mechanics. Linear elastic registration has been used since the 1980s [7,8],
however, linearity breaks down for large deformations, limiting the flexibility of
such methods. Fluid-mechanical regularisation allows large deformation without
discontinuities, but also permits unrealistically severe distortions. This paper ar-
gues in favour of a nonlinear elastic regulariser coupled with a spline model, that
should handle large but realistic deformations while maintaining an anatomically
reasonable Jacobian map.

Yanovsky et al. [9] also investigated nonlinear elasticity. They developed a
variational form which coupled similarity and elasticity functionals, using a linear
strain energy function (Saint Venant-Kirchhoff model), and solved the system
using finite differences. The development and solution of the coupled system was
facilitated by an approximation for the material displacement derivatives.

We present a decoupled regularisation of the FFD algorithm using nonlin-
ear elasticity. Solution of the equations of continuum mechanics is performed
using the finite element method, which requires no approximation of the de-
formation components, and allows for incorporation of elaborate constitutive
models. The deformation model is linked to an appropriate similarity metric by
so-called pseudo-forces derived from the metric’s gradient. The scheme is shown
to produce both accurate and smooth deformation fields. We emphasise that
in employing a continuum mechanics-based model our aim, in this case, is to
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produce physically consistent smooth transformations, not to model the physiol-
ogy of the disease process itself; we do not claim, for example, that deformations
associated with tissue loss are directly analogous to mechanical compressions.

2 Method

2.1 Deformation Model

We consider the floating image volume to be a continuous (but not necessarily
homogeneous) elastic body with initial volume V0. We assume that loading is
entirely in the form of body forces fB. At any point in the body we define the
deformation in terms of the Green-Lagrange strain tensor [10]

E = (FT F− I)/2, (1)

where F := dx/dX is the deformation gradient, I is the second order identity
tensor, and x and X are current and initial material point coordinates, respec-
tively. Standard results from continuum mechanics dictate that deformations
within the image volume must satisfy the equation of virtual work [11]:∫

V0

S δE dV =
∫
V0

fB δu dV, (2)

where δE are strain variations corresponding to virtual displacements δu, and
the left and right hand sides represent internal and external virtual work terms,
respectively; Eqn. (2) is an equilibrium equation. S are second Piola-Kirchhoff
stresses, which are related to the strains through the constitutive model [10]:
S = ∂Ψ/∂E, where Ψ is an appropriate strain energy function. We note that use
of kinematically consistent stress and strain measures means this formulation is
valid even for large deformations. By seeking deformations of the image volume
which satisfy these equilibrium and constitutive constraints we guarantee that a
physically plausible transformation is obtained.

Eqn. (2) may be solved for the deformation field throughout the image volume
using the finite element method (FEM) [11]. For simulation of large deformations
a formulation capable of accommodating geometric nonlinearities must be used.
We employ a total Lagrangian explicit dynamic (TLED) algorithm [12], which
has been shown to be highly efficient for solving nonlinear soft tissue deformation
problems [13,12,14]. The image volume is discretised into a regular hexahedral
mesh, similar to the grid used for B-spline-based methods [1], wherein grid points
constitute finite element nodes. Each node has three displacement degrees of free-
dom, and we employ 8-node hexahedral elements with trilinear interpolation and
reduced integration [11]. Via standard methods [11] this discretisation renders
Eqn. (2) into the following system of differential equations

MÜ + CU̇ + K (U) .U = R, (3)
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where M and C are mass and structural damping matrices, respectively, K(U)
is the system stiffness matrix, which depends on nodal displacements U, and
R are external loads. The over-dot notation denotes time-derivatives. Appro-
priate boundary conditions (nodal displacement constraints) are enforced (see
Sect. 2.3), and loads in the form of pseudo-forces derived from the gradient of
the employed similarity metric (see Sect. 2.2) are applied. Solutions (nodal dis-
placements U) to Eqn. (3) are then computed incrementally in time using the
procedure detailed in [12,14].

Once the nodal displacements have been computed for the current loading,
interpolation is used to obtain a continuous deformation field. In this final step,
rather than the trilinear interpolation functions of the finite elements themselves,
we use a cubic B-spline scheme; the C2 continuity of the deformation T ensures
smoothly varying first derivatives and hence a smooth Jacobian map, detJac =
|∇T|. The elastic model thus constitutes a regulariser for the B-spline model.
Note that the Jacobian in this formula is different from F, as it is based on the
B-spline interpolation model.

2.2 Metric and Optimisation

To evaluate the quality of the registration and optimise the node positions, we
compute the Normalised Mutual Information (NMI) between the reference R and
the deformed floating image F (T). NMI is a voxel intensity-based information-
theoretic similarity measure [15], which quantifies the shared information of the
two images. It is defined as

NMI =
H(R) + H(F (T))

H(R, F (T))
(4)

where H(R) and H(F (T)) are the marginal entropies of images R and F (T),
and H(R, F (T)) denotes their joint entropy. The computation of each (Shannon)
entropy H = −p(e) log(p(e)), is based on the probabilities p(e) of events derived
from a joint histogram H. This histogram indicates the probability of each com-
bination of intensities in images R and F (T). In order to fill the histogram we
used the Parzen Window technique. This technique has been presented as more
accurate than the generalised partial volume method as the joint histogram is
less populated near the optimium [16]. Considering r and f as voxel intensities
respectively in the reference image and the deformed floating image, the joint
histogram H is filled as

H(r, f) =
∑
x∈Ω

β3
r (R(x); r)β3

f (F (T(x)); f) (5)

where R is defined over the Ω domain and β3
r and β3

f are intensity kernels based
on cubic splines.

To drive the displacement of the nodes we computed the gradient of the NMI
at every node position. It is possible to compute such values for every node using
the derivatives of the marginal and joint entropies:
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∂NMI

∂μξ
i,j,k

=

∂H(R)

∂μξ
i,j,k

+ ∂H(F (T))

∂μξ
i,j,k

− NMI × ∂H(R,F (T))

∂μξ
i,j,k

H(R, F (T))
(6)

These entropy derivatives are calculated by taken into account the deformation
model T to fill the derivative of the joint histogram:

∂H(r, f)
∂μi,j,k

=
∑
x∈Ω

β3
r (R(x); r)

∂β3
f(v; f)
∂v

∣∣∣∣∣
v=F (T(x))

∂F (T(x))
∂p

∣∣∣∣
p=Tx

∂T(x)
∂μijk

(7)

This approach provides the mathematical value of the gradient but involves
significant computation redundancy, since every voxel is included in the neigh-
borhood of several control points. Moreover it is memory intensive as each node
requires one joint histogram per degree of freedom. In order to decrease this
redundancy and the memory requirement, we propose a voxel-centric approx-
imation of the node-centric gradient. We first compute the gradient value for
every voxel, then gather the information from all voxels to obtain the nodal
gradient values.

We computed the voxel-centric gradient values using the formulas in equations
6 and 7 where ∂H(r,f)

∂uξ
z

is computed by replacing ∂T(x)
∂μijk

with ∂T(x)

∂uξ
z

where ∂T(x)

∂uξ
z

=
1 if z = x as T(x) = x + u(x).

In order to provide one gradient per node we weighted the gradient of each
voxel such that voxels close to a node had more impact than voxels further away.
However, weighting every voxel in the neighborhood of one node would lead to
extra computation because of redundancy, as before. To avoid this, we applied a
convolution window to the gradient field and so approximated the gradient for
every node. The chosen convolution window was a cubic B-Spline curve which
matched the basis functions in the deformation model in terms of node spacing;
it was equivalent to ∂T(x)

∂μijk
in equation 7.

To optimise the tranformation we normalised the NMI gradients of all nodes
and applied them as external forces in the TLED solver. Each time the solver
was run the floating image was resampled and the metric value re-evaluated. A
conjugate gradient ascent was then performed to find the external forces which
best transformed the floating image in the direction of the gradient. The gradient
was then recomputed and the line ascent re-performed. This loop iterated until
no improvement superior to 0.1% of the similarity measure was produced.

2.3 Framework

We implemented our algorithm for graphics processing unit (GPU) execution
using the CUDA API from NVidia (http://www.nvidia.com). Our framework
can be decomposed into four modules, as presented in figure 2.

Module 1: TLED solver. The first module concerned the TLED solver. As
described by Taylor et al. [14], the solver consisted of precomputation and online
components. Since we deal with regular meshes in this application (and homo-
geneous material properties in the first instance), all finite elements have the

http://www.nvidia.com
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Fig. 2. Framework of the presented algorithm

same properties, which simplifies the computation and considerably decreases
memory requirements; variables for only a single element need be precomputed
and stored. Node positions and element geometries were computed on-the-fly
according to image size and the user-defined node spacing.

The solution time step was estimated from Δtc = Le/c, where Le is the char-
acteristic element length and c is the dilatational wave speed of the material [11].
This formula provides an estimate of the stable time step in explicit dynamic
analyses, assuming linear elasticity. We employed both kinematic and constitu-
tive nonlinearities and consequently used a conservative time step twice smaller
than Δtc.

To avoid any free displacement of the volume, some points must be fixed. For
each registration we generated a brain mask using BET [17] and dilated it. All
nodes outside of the mask were then fixed.

The GPU computation consisted in two kernels. In the first the internal nodal
forces were computed, and in the second the resulting nodal displacements were
computed — see [14] for details.

Module 2: resampling of the floating image. The second module dealt
with the deformation and resampling of the floating image, and also comprised
two kernels. The cubic B-spline interpolation was calculated for every voxel in
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the reference image in the first kernel. Once the deformation field was generated
the floating image was resampled using a second kernel. The latter kernel also
returned the intensity derivatives of the deformed image. These were required
in the next module for the NMI gradient computation. The deformation field
interpolation and the trilinear resampling of the floating image were split into
different functions in order to increase the occupancy, and hence performance, of
the GPU computation. The occupancy is the ratio of active computation threads
on the GPU to the maximum possible.

Module 3: metric and gradient calculation. The third module consisted in
the calculation of the NMI and its gradient. The NMI computation result was
observed to be sensitive to the floating point precision used. Hence, the com-
putation was performed on the CPU using double precision. As a consequence,
after its resampling, the deformed image was transferred to the CPU memory.
During this computation the logarithm of each probability was computed. As
their computation for the NMI gradient would be redundant we stored each in a
second histogram and subsequently transferred this back to the GPU memory.
The NMI gradient was computed in a single kernel on the GPU, after which a
series of other kernels were invoked for convolution window creation and gradient
field smoothing. A last kernel then extracted the gradient value for each node.

Module 4: external force optimisation. The last module was concerned
with the update of the pseudo-forces and their optimisation. The maximal norm
of the gradient was first extracted using a spread and gather approach, then the
pseudo-forces were updated as described in the previous section.

Multi-scale framework. To improve the efficiency of the elastic model we
developed a multi-level mesh approach. This allowed the system to recover gross
deformations more quickly, and also helped in avoiding local minima. Beginning
with a course level mesh (ln) the deformation field was optimised as described.
The next (denser) level mesh (ln+1) was then obtained by subdividing elements
in each dimension. Thus, we required the input forces for ln+1 which would
reproduce the deformation field of ln. These were computed as follows: (1) the
deformed positions of new nodes were obtained by linearly interpolating those of
existing nodes; (2) for this configuration the nodal force contributions from each
element were computed using kernel 1, module 1 (see [14] for details); (3) these
force contributions were summed at each node to give the required ln+1 input
forces. By construction, these inputs exactly balance the elastic forces in the
desired configuration, and were used as the start values in the ln+1 optimisation
scheme.

3 Evaluation

3.1 Data and Methods

The methods are evaluated on serial MR images of 33 patients with early Hunt-
ington’s Disease (HD) and 14 healthy age- and gender-matched control sub-
jects, imaged at baseline and 12-month follow-up; 23 and 9 of the respective
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groups were also scanned after 24 months. Three-dimensional T1-weighted MR
images with 1.5mm coronal slices of in-plane dimension 0.9375 × 0.9375mm
were acquired with a spoiled GRASS sequence at 1.5T. Each follow-up image
was registered to its baseline using an affine algorithm followed by each non-rigid
algorithm. We also registered the 24-month follow-ups to the 12-month scans.
The multi-scale approach used 3 levels, with the finest having 2.5mm isotropic
spacing between nodes. The TLED-solver used a Poisson ratio of 0.1. Our FFD
implementation [18] used a bending energy penalty term with a 10% weight (the
code can be downloaded from http://sourceforge.net/projects/niftyreg).

To derive inter-subject correspondence, we used the group-wise diffeomorphic
registration algorithm DARTEL [19]. The resulting transformations were used to
spatially-normalise the Jacobian maps, and to inverse-normalise semi-automatic
lateral ventricular and intra-cranial segmentations of the DARTEL average back
to the original images. DARTEL uses a very different transformation model
(exponentiation of velocity fields) to those evaluated here, thus helping to avoid
bias.

3.2 Experiments

Validation of non-rigid registration algorithms is a challenging problem [20]. Di-
rect measurement of correspondence errors [21] relies on time-consuming and
error-prone manual identification of corresponding landmarks. Furthermore, un-
ambiguous landmarks may only be found in certain locations, away from
which errors cannot be reliably determined. Using overlap indices of automatic
registration-propagated segmentations and manually performed labellings [20] is
also operator-dependent, and provides no information on the behaviour of the
transformation inside the labelled objects. These two approaches may also be bi-
ased in favour of algorithms driven by landmark-matching or intensity differences
respectively, e.g. feature-based methods may appear more successful in terms of
matching manually identified landmarks if similar points are considered distinc-
tive by both human and computer vision systems; conversely intensity-based
methods could match (MR-visible) boundaries almost perfectly, while misalign-
ing underlying structural homologies that require expert or contextual knowledge
to infer.

Attempts have been made to quantify performance via direct comparison of
estimated displacement fields [22] or Jacobian maps [23] on images related by
simulated and hence known transformations. The key advantages of this are
greater objectivity, and the potential for dense voxel-wise measurement of error.
However, such a method is clearly only as valid as its simulation model. For
physical deformation of breast images [22] a biomechanical FEM model should
provide an excellent gold standard. For phenomenological modelling of brain
atrophy [23] simulation seems well-suited to evaluating regional or global volume
changes, but severely limited for the present application — evaluation of different
regularisation approaches at the scale of individual voxels — since the simulation
model (which only approximates an unknown biological model) cannot help but
bias the evaluation towards similar physical regularisation models. In the hope
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of overcoming these challenges, we present a sophisticated validation strategy
comprising three complementary experiments, described now.

Longitudinal consistency. It is clearly desirable for a registration algorithm to
recover equivalent correspondences whether registering follow-up source images
to their baseline targets or vice versa — the principle of inverse-consistency
[24]. For the specific purpose of comparing regularisation methods, simple (A ←
B)◦(B ← A) consistency is flawed, because increasingly strong regularisation will
tend towards the ‘perfect’ but trivial consistency of the identity. We argue here
that this limitation can be ameliorated by using three time-point longitudinal
imaging to evaluate the discrepancy between the composition of the two 12-
month interval transformations (A ← B) ◦ (B ← C) and the direct 24-month
interval registration A ← C. The hope being that overly influential regularisation
will prevent the 24-month registration from recovering as much deformation as
the two combined 12-month interval transformations, thus restoring merit to the
consistency measure. The discrepancy in mm for each registration algorithm is
summarised by the voxel-wise mean over each subject’s intra-cranial mask.

Realism of ventricular changes. To directly address the clinically-motivated
question of whether the Jacobian images are biological reasonable, the maps of
determinant values are analysed over the segmented lateral ventricle region. We
argue that (a) in the homogeneous cerebrospinal fluid (CSF), an ideal registra-
tion algorithm should recover homogeneous estimates of volume change, yielding
low variance; and (b) in the abscence of gray- or white-matter expansion in ei-
ther HD or healthy aging in adult subjects, we would expect either stable or
expanding ventricles.

Jacobian-based group separation. The first two experiments have been de-
signed to help avoid favouring over-regularised models by including three time-
points, and by considering mean ventricular expansion in addition to Jacobian
variance. However, to further reduce bias towards constrained transformations,
the third experiment is inherently based on quantifying clinically-relevant infor-
mation, in terms of the registration method’s power to discriminate HD from
healthy aging. Unlike the commonest form of dementia, (sporadic) Alzheimer’s
disease, HD status is known from genetic testing, providing a genuine ground
truth for classification. We use a linear soft-margin Support Vector Machine (sim-
ilar to that used in [25]), with a nested cross-validation procedure that leaves out
each subject in turn, performs an inner leave-one-out loop to optimise the SVM’s
C parameter, then classifies the left-out subject, which provides an unbiased esti-
mate of the classification accuracy. The SVM’s kernel consists of the image-based
inner-products of the subjects’ log-transformed determinants, meaning that clas-
sification accuracy should closely reflect the clinical information in these maps.

4 Results and Discussion

Registration performance is summarised in table 3. Mean computation
times were about 40 minutes per registration for the TLED-based method and
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TLED-based reg classical FFD

Follow-up 12 Follow-up 24 Follow-up 12 Follow-up 24
to Baseline to Baseline to Baseline to Baseline

Normalised mutual information 1.2306 1.1908 1.2368 1.1933

Jacobian values range [0.31 1.92] [0.43 1.97] [-1.91 6.93] [-1.61 6.10]

Consistency mean error 0.29 mm 0.80 mm

Classification accuracy (%) 74.5 87.5 63.8 71.9

Fig. 3. Summary of quantitative results for registration performance

approximately 40 seconds for our GPU-based implementation of the FFD. The
NMI is fractionally higher for the FFD algorithm; the differences being statisti-
cally significant when paired over subjects. The FFD algorithm produces widely
varying Jacobian values, while the TLED-based method appears to produce more
realistically smooth deformation gradients. The nonlinear elastic model has sub-
stantially reduced consistency errors compared to the FFD method. Greater con-
sistency at the expense of lower NMI could simply indicate over-regularisation,
however, the ventricular measurements indicate that in addition to featuring
lower variability (Fig. 4), the TLED-based registration measurements actually
show greater mean expansion, and are more biologically plausible in terms of
having far fewer subjects with erroneously contracting ventricles.

The TLED algorithm is more powerful at discriminating HD patients from
controls than the classical FFD. A 95% confidence interval for the increase in the
(paired) accuracies on the 12-month interval is [−2.23 23.1]%, and [−3.59 33.9]%
for the 24-month interval, indicating that the differences are not statistically
significant. However, unlike the changes in NMI, improvements in accuracy of
circa 10% and 15% would be clinically very significant if shown to generalise.
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5 Conclusion

We have presented a novel method for efficient GPU-based non-rigid registration,
regularised by a nonlinear elastic model. The most closely related work is [9] in
which nonlinear elasticity is also used, but with a Jacobian matrix approximation
employed to ease computation. The present approach should also be compared
with Rueckert et al.’s [26] diffeomorphic version of the cubic spline algorithm,
which allows large deformations with strictly positive Jacobian by composing a
large number of smaller displacement fields.

A thorough evaluation of the method has been performed, showing that the
nonlinear elastic regulariser improves the plausibility of the Jacobian maps while
increasing the information they contain for automatic classification of neurode-
generative disease. In return for a slight decrease in NMI, the longitudinal con-
sistency is greatly improved. The speed of the GPU-based nonlinear elastic reg-
istration will facilitate application to larger cohorts of images in the future, it
should also make feasible more sophisticated regularisation models, for example
permitting varying material properties in different brain tissues.
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Abstract. This paper describes the functionality and use of the Non-
rigid Image Registration Evaluation Program (NIREP) that was de-
veloped to make qualitative and quantitative performance comparisons
between one or more image registration algorithms. Registration perfor-
mance is evaluated using common evaluation databases. An evaluation
database consists of groups of registered medical images (e.g., one or
more MRI modalities, CT, etc.) and annotations (e.g., segmentations,
landmarks, contours, etc.) identified by their common image coordinate
system. Prior to analysis with NIREP, each algorithm is used to generate
pair-wise correspondence maps/transformations between image coordi-
nate systems. NIREP has a highly customizable graphical user interface
for displaying images, transformations, segmentations, overlays, differ-
ences between images, and differences between transformations. Eval-
uation statistics built into NIREP are used to compute quantitative
algorithm performance reports that include region of interest overlap,
intensity variance of images mapped to a reference coordinate system,
inverse consistency error and transitivity error.

Keywords: NIREP, evaluation, non-rigid image registration, transfor-
mation, medical imaging.

1 Introduction

Image registration is important for many medical image applications includ-
ing longitudinal evaluations within the same individual, comparison across in-
dividuals, creation of population atlases, computer aided diagnosis, computer
aided treatment, evaluation of outcomes and many others. Unfortunately, evalu-
ating non-rigid image registration algorithm performance is difficult since there
is rarely if ever ground truth correspondence to judge the performance.

The Non-rigid Image Registration Evaluation Project (NIREP) was estab-
lished to develop software tools and provide shared image validation databases
for rigorous testing of non-rigid image registration algorithms. This paper re-
ports on progress developing the Non-rigid Image Registration Evaluation Pro-
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gram (NIREP) for evaluating registration accuracy of nonrigid image registration
algorithms.1

Under the NIREP model, users process data on their own and evaluate the
performance of different nonrigid registration algorithms using evaluation cri-
teria that are built into NIREP. The data can be the user’s own data or data
downloaded from the central database repository on the NIREP website. This
model has the advantage of standardizing the evaluation metrics and distributing
the processing load. It provides researchers with a tool to compare the perfor-
mance of multiple registration algorithms on their own data so they can make
an informed decision regarding the best algorithm for their specific application.
It also provides researchers with a tool to validate their research results.

NIREP uses a diverse set of evaluation metrics to evaluate registration perfor-
mance on well documented evaluation image databases. These tests evaluate the
performance of image registration algorithms with respect to their transforma-
tion properties, agreement with human experts, and other indirect performance
tests.

2 Methods

2.1 Evaluation Database

A critical step in making unbiased comparisons of algorithm performance is to
evaluate registration algorithms on the same population of images. NIREP as-
sumes that the registration algorithms to be analyzed have been used to register
images contained in a common evaluation database. An evaluation database con-
sists of groups of registered images and annotations identified by their common
image coordinate system.

An evaluation database consists of a set of images to be registered and asso-
ciated data for accessing the registration results. An example of an evaluation
database would be a set of N 3D MRI images of the brain and N expertly labeled
segmentations–i.e., one segmentation per 3D image volume. The registration al-
gorithms are used to register the MRI data and the segmentations are used
assess registration performance. The segmentations could be used to assess per-
formance by examining the overlap of a deformed source segmentation with the
segmentation of the target. In this example, each MRI image and its associated
segmentation image constitutes one entry in the evaluation database.

In general, evaluation database entries consist of multiple image modalities
(e.g., one or more MRI modalities collected in register, CT image, etc.) and
many different types of data for assessing registration performance (e.g., expertly
labeled segmentations, landmarks, contours, surfaces, etc.). All the data asso-
ciated with one entry in the evaluation database are indexed by their common
coordinate system. Indexing database entries by coordinate systems provides a

1 In this paper, the acronym NIREP is used to refer to both the evaluation project
and to the evaluation software program. It is our hope that it is clear what NIREP
means from the context that it is used. Sometimes, both meanings are appropriate.
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vocabulary for describing transformations between coordinate systems. For ex-
ample, we say that the transformation hi,j is used to transform a segmentation
from coordinate system i to coordinate system j.

2.2 Evaluation Statistics

Evaluation statistics are criteria that quantify image registration performance
based on particular features of the evaluation data. Examples of evaluation
statistics include image intensity difference, landmark distance error, and overlap
error. NIREP currently implements four evaluation statistics: 1) relative overlap,
2) inverse consistency error, 3) transitivity error, and 4) intensity variance. The
transformations required to compute some of these statistics are performed by
NIREP, using the interpolation scheme designated by the user.

Relative Overlap. Relative overlap (RO) assesses how well two equally likely
segmentations of the same region of interest (ROI) agree or disagree with each
other. For an image pair S and T , relative overlap is defined as

ROi(Si, Ti) =
|Si ∩ Ti|
|Si ∪ Ti| (1)

where |Si ∩ Ti| is the volume of voxels that intersect between the ith region of
interest of images S and T .

Inverse Consistency Error. Inverse consistency error (ICE) evaluates regis-
tration performance based on desired transformation properties [1,2,3,4]. It is
a common assumption in image registration that the correspondence mapping
between two anatomical images is unique–i.e., each point in the source image
S is mapped to its corresponding point in the target image T and vice versa.
However, in practice, the forward mapping from S to T and the reverse mapping
from T to S are not necessarily inverses of each other for most image registra-
tion algorithms. This inconsistency reflects an algorithm’s inability to uniquely
describe the correspondence between two images [5]. Inverse consistency is de-
fined as the mapping of point x in S to a point in T and subsequently being
mapped back to the original point. Then inverse consistency error is defined as
the distance between the original point x and its transformed point x′, which
can be expressed in two different ways as

ICE1j(x) = ‖hji(hij(x)) − x‖2 (2)

or
ICE2j(x) =

∥∥hij(x) − h−1
ji (x)

∥∥2
(3)

where hij is the forward transformation from image S to T , hji the reverse trans-
formation from image T to S, and ‖·‖ the standard Euclidean norm. Note that
the transformations are defined in the Eulerian coordinate system–i.e., defined
with respect to the target frame of reference. Equation 3 gives another interpre-
tation of inverse consistency which is computed using the inverse of the reverse
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transformation. Note that ICE1j(x) and ICE2j(x) show the inverse consis-
tency error with respect to the coordinate system of image T . While inverse
consistency does not measure the accuracy of the transformation, it measures
the consistency of the correspondence defined by forward and reverse transfor-
mations between two coordinate systems [1]. It is important to note that zero
inverse consistency does not imply accuracy of the mapping. For example, an
identity mapping between two images have perfect inverse consistency, but the
correspondence is inaccurate for non-identical images.

Transitivity Error. Transitivity error (TE) evaluates how well the registra-
tion transformation satisfies the transitivity property [2,6]. Similarly to inverse
consistency error, transitivity error is a measure of consistency of the correspon-
dence defined by compositions of transformations. More specifically, transitivity
error measures the distance of point x in image A to its mapped point in B,
which is then subsequently mapped to image C, and finally back to point x′ in
image A. Another interpretation of transitivity is the difference of the composi-
tion of transformation AB with BC to transformation AC. These two definitions
are expressed as follows:

TE2k(x) = ‖hki(hij(hjk(x))) − x‖2 (4)

and
TE2k(x) = ‖(hij(hjk(x)) − hik(x)‖2 (5)

where hij is the transformation from image A to B, hjk the transformation from
image B to C, hki the transformation from image C to A, hik the transformation
from image A to C, and ‖·‖ the standard Euclidean norm. Similar to that of ICE,
TE1k(x) and TE2k(x) show the transitivity error with respect to the coordinate
system of image C.

Intensity Variance. Intensity variance is a measure of similarity between a
population of images based on voxel intensity difference. In image registration
applications driven by voxel intensity features, the ideal registration should re-
sult in zero voxel intensity difference between the registered images. Intensity
variance is a population study based on this characteristic, where the voxel-wise
intensity variance (IV) of a population of M images registered to image j is
computed as:

IVj(x) =
1

M − 1

M∑
i=1

(Ti(hij(x)) − avej(x))2 (6)

where

avej(x) =
1
M

M∑
i=1

Ti(hij(x)) (7)

and Ti is the ith image of the population, and hij(x) is the transformation from
image i to j in a Eulerian coordinate system.
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2.3 Non-rigid Image Registration Evaluation Program (NIREP)

The NIREP image registration evaluation software integrates the evaluation
statistics defined previously. The built-in evaluation statistics allow users to eval-
uate registration performance themselves, without having to make submissions
to external evaluators. This allows users to have immediate access to registration
evaluation results and to use evaluation feedback to tune their algorithms and
improve performance.

Fig. 1. A typical view of NIREP display showing a 2 × 3 grid of widget panels. The
display widgets support various color schemes and transverse, sagittal and coronal
planar views. Cursors of each panel can be locked with cursors of other panels, allowing
point-to-point comparisons of data in multiple panels. The top-left panel shows the
overlay of object maps from the source and the target coordinate systems. The top-
center panel shows the object map of the source overlaid on top of the source image. The
top-right panel shows the overlay of the source image on top of the target image. The
bottom-left panel shows the Jacobian of the forward transformation. The bottom-center
and bottom-right panels show the forward and reverse deformed images, respectively.

The primary user interface of NIREP is a display organized as a rectangu-
lar grid of panels, as illustrated in Figure 1. The dimensions (number of rows,
columns) of the display are user configurable. Each panel can display different
visual or textual information (images, evaluation metrics, etc.) and the contents
of each can be controlled independently or locked together. The NIREP can dis-
play images, difference images, checkerboard and wipe images, several varieties
of overlays, and textual information. Examples of evaluation statistics that pro-
vide both visual and quantitative textual analysis include the relative overlap,
intensity variance, inverse consistency error, and transitivity error statistics.
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Characteristics of multiple panels can be locked together so that they all
change together. This, for instance, allows a user to set up an evaluation or algo-
rithm comparison scenario, displaying desired evaluation/comparison statistics
in visual or textual form. Once such a scenario has been set up, the user can
step through different data sets with the contents of all panels automatically
updated to reflect each new data set.

Fig. 2. A NIREP display showing an object map overlay on top of its corresponding
MRI data. This display panel widget illustrates the typical information displayed in
each panel. The image dimension, voxel size, and voxel intensity at the current cursor
location are shown in the top-left corner. The image zoom, slice number, and slice
location are shown in the bottom-left corner. The widget popup menu allows users
to change widgets, data displayed in the widget, color schemes, the level/window, the
zoom factor, and edit titles. The color bar can be positioned anywhere in the panel.

The NIREP software is divided into three main components: the Data Man-
ager, the Evaluator, and the Display Manager. All of these components are
managed by their respective configuration files, which will be described below.

Display Manager. The Display Manager is responsible for controlling the con-
tent displayed in each panel of the display. Each panel is controlled by a “display
widget” which is tailored to the specific type of content to be displayed in that
panel. The display panel widgets were adapted from the vtkINRIA3D library de-
veloped by INRIA, France (http://www-sop.inria.fr/asclepios/software/
vtkINRIA3D/). A human readable “Display Description” specifies the layout

http://www-sop.inria.fr/asclepios/software/vtkINRIA3D/
http://www-sop.inria.fr/asclepios/software/vtkINRIA3D/
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and content of the display panels. This description specifies the row/column di-
mensions of the display and contains a “Widget List” that specifies the type of
display widget associated with each panel. The Display Description also contains
an “Evaluator List” that describes the specific data that needs to be supplied
to the widgets. This may include base and precomputed data (e.g., transforma-
tions) from the NIREP image database, as well as results computed on-the-fly
by NIREP (e.g., Jacobians). The Display Description is parameterized so that
users can switch multiple Evaluator operations and display panels with a single
variable change. During start-up, the NIREP software reads the initial Display
Description from a file. Fig. 1 shows a typical NIREP display with a 2× 3 panel
configuration.

Fig. 3. The display panel can also display text information as shown above. The two
right text panels are displaying the relative overlap values for each regions of interest,
before and after registration.

Evaluator. The Evaluator is the central processing unit of the NIREP soft-
ware where all requests and data processing are handled. The display widgets
in the Display Manager contact the Evaluator to obtain the necessary data for
their respective display functions. The Evaluator is responsible for obtaining
data needed by display widgets from the Data Manager and computing new
results. The types of data that the Evaluator provides to various display wid-
gets includes images, object maps (annotated segmentation masks), landmarks,
contours, surfaces, text tables, and graphs. The Evaluator is designed such that
any new data operation or evaluation statistic may be added as a module. The
Evaluator uses the Evaluator List, described previously, to determine what data
is needed by display widgets. The advantage of a human-readable Evaluator List
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is that the user can pre-configure desired Evaluator operations by hand before
running the NIREP software. This mechanism allows scripting of a large number
of operations so that the job can be run in batch mode. An example Display
Description is shown in Fig. 4. This description generates the display that vi-
sualizes the inverse consistency error for the DEMONS and SICLE registration
algorithms.

columnSize=2

rowSize=1

Begin WidgetList

W1,1 = view(iceSicle8-14,ICE 8-14 SICLE)

W1,2 = view(iceDemons8-14,ICE 8-14 Demons)

End WidgetList

Begin EvaluatorList

demons8-14 = Transformation(008,014,Demons)

demons14-8 = Transformation(014,008,Demons)

iceDemons8-14 = inverseConsistencyErrorImage(demons8-14,

demons14-8,comp)

sicle8-14 = Transformation(008,014,SICLE_param2)

sicle14-8 = Transformation(014,008,SICLE_param2)

iceSicle8-14 = inverseConsistencyErrorImage(sicle8-14,

sicle14-8,comp)

End EvaluatorList

Fig. 4. Display Description to generate and visualize the inverse consistency error for
the DEMONS and SICLE registration algorithms

Data Manager. The Data Manager manages the loading and storing of data
from/to the specified evaluation and algorithm database(s). The Data Manager
is responsible for intelligently managing memory by removing data from emery
when it is no longer needed by the Evaluator or Display Manager. The Data
Manager handles all images supported by ITK (http://www.itk.org) and the
Analyze 7.5 (Mayo Clinic, Rochester, MN) format. During start-up, the NIREP
software reads an evaluation database resource file, algorithm resource file(s),
and optionally, persistent data (pre-computed evaluation data saved to disk)
resource file, which contain an exhaustive list of data available for evaluation.
The Data Manager provides data to the Evaluator and all data generated by the
Evaluator is managed by the Data Manager. This memory management schema
stores computed results so they do not need to be recomputed if needed in the
future.

3 Results

To demonstrate the NIREP software in evaluating image registration perfor-
mance, an experiment was performed to compare registration results of Thirion

http://www.itk.org
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Demons [7], [8] and SICLE [4], [1], [2], [3] algorithms using the NA0 database.
The NA0 database consists of a population of 16 annotated 3D MRI volumes
corresponding to eight normal adult males and eight females acquired in the
Human Neuroanatomy and Neuroimaging (HNN) Laboratory, The University of
Iowa, and each data was segmented into 32 gray matter regions of interests.

Fig. 5. A display window comparing the registration performances of SICLE and
Demons algorithms on subject 8 and 14 of NA0. The left column shows the absolute
intensity difference of the deformed source with the target image; the center column
shows the Jacobian image of the transformations; and the right column shows the in-
verse consistency error images of the transformations. Note that the color scales on each
of the images are different. The Jacobian for SICLE does not have any zero-crossings
(i.e., singularity in transformation), whereas the Jacobian for Demons has many singu-
larities. The cursor location indicates a Jacobian of -0.432701 for Demons and 1.40771
for SICLE. The transformation generated by Demons produced large ICE values, while
SICLE produced generally low ICE values inside the brain region. The location pointed
by the cursor indicates ICE 8.93467 for Demons, and 0.11022 for SICLE.

Fig. 5 shows a NIREP display window showing the registration results of
SICLE and Demons for the registration of subject 8 to subject 14. The left two
panels show visually that the absolute intensity difference of the deformed source
and the target is smaller for Demons than SICLE. Table 1 shows a portion of
the relative overlap values obtained for each region of interest. These results
show that the Demons algorithm outperformed the SICLE algorithm based on
intensity difference and relative overlap.
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Table 1. A subselection of the relative overlap statistics table shown in Fig. 3. The
Demons outperformed the SICLE algorithm with respect to relative overlap for this
experiment.

Region Name Relative Overlap (SICLE) Relative Overlap (Demons)

Background 0.95 0.96
L occipital 0.36 0.42
R occipital 0.40 0.48
L cingulate 0.41 0.48
R cingulate 0.45 0.53

L insula 0.44 0.61
R insula 0.46 0.60

L temppole 0.45 0.48

However, further evaluation reveals that Demons did not perform as well
as SICLE with respect to other evaluation criteria, such as inverse consistency
error and distortion measured by the Jacobian of the transformation. Taking
advantage of the cursor-lock capability of the NIREP software, it can be seen
side-by-side as in the right column of Fig. 5, that the registration made by
Demons produced a transformation with high inverse consistency error. In con-
trast, SICLE, which enforces inverse consistency during registration, had low
overall inverse consistency error inside the object boundary as expected.

In addition to inverse consistency error, Demons also performed poorly with
the Jacobian of the transformation, with many spots with negative Jacobian
values, indicating singularities in the transformation. On the other hand, the
SICLE transformation did not contain any singularities.

4 Conclusion

The Non-rigid Image Registration Evaluation Program (NIREP) is a special-
ized program that makes it easy and intuitive to manipulate data associated
with image registration. It differs from other medical image visualization tools
in that it can manipulate large amounts of data such as images, deformed im-
ages, deformed comparisons specific to image registration. NIREP provides a
standard set of evaluation criteria and evaluation databases so that meaningful
comparisons between registration algorithms can be made. This standardization
ensures that differences in performance are due solely to the algorithms being
compared and not other confounding issues. NIREP provides the flexibility for
users to create and use their own evaluation databases so that they can inves-
tigate how different registration algorithms perform on their own data for their
own specific task. Moreover, NIREP provides users the ability make comparisons
of their own without being constrained to a predetermined layout. Not only can
users compare between any algorithms of choice, the users can make customiza-
tions to what kind of comparisons are to be made. The use of a human-readable
and user-editable Display Description configuration file for NIREP offers great
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flexibility to users as to how the display panels are arranged, what types of in-
formation are to be displayed, what types of criterion are to be evaluated, what
algorithms are to be compared, etc. Another key feature of NIREP is its ability
to compute data using transformations of various formats, rather than merely
visualizing data. Particularly, NIREP’s ability to concatenate multiple transfor-
mations and compute inverses of transformations allows users to perform tasks
such as computing average shapes based on transformations on the fly.
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Tržaška 25, 1000 Ljubljana, Slovenia

2 Sensum, Computer Vision Systems,
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Abstract. Before an image registration method can be used in the med-
ical theater a rigorous performance assessment of the registration method
must be performed. In this paper, a new image database with a reference-
based standardized evaluation methodology for objective evaluation and
comparison of 3D/2D registration methods has been introduced. CT im-
ages of a female from the Visible Human ProjectR© were used and 15 sub-
volumes each containing one of the vertebrae T3-T12 and L1-L5, and the
pelvis were defined. Three pairs of lateral and anterior-posterior 2D flu-
oroscopic X-ray images were rendered from the CT data. Ray-casting al-
gorithm with an energy conversion function was used to generate realistic
fluoroscopic-like DRR images. Furthermore, outliers similar to medical
intervention tools were also simulated on the 2D images. The assessment
protocol to evaluate four criteria: accuracy, reliability, robustness and al-
gorithm complexity, was defined. The proposed image database with the
standardized evaluation methodology comprising ground truth registra-
tions, displacements from the ground truth and target points is available
upon request from the authors.

1 Introduction

Assessing the performance of a medical system is a complex and tedious task [1].
When performing assessment studies of an image processing component rather
than the whole medical system, the scope and complexity is reduced, although
the general framework of assessment remains the same or is slightly adapted for
the specific study. In scope of medical image processing, a standardized evalua-
tion (assessment) methodology outlines a reference-based assessment study of an
image processing method [2] by defining the image data sets, the corresponding
ground truth and its accuracy, the assessment criteria, the assessment metric,
the assessment objective and finally the assessment protocol [2]. The guidelines
for creating and using such a reference-based evaluation methodology of image
processing methods was proposed by Jannin et al. [2]. By using a standardized
evaluation methodology the performance and limitations of a proposed method
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can be assessed and objectively compared to other methods assessed with the
same methodology.

In this paper, we focus on the assessment of 3D/2D registration of CT and
X-ray images. To the best of our knowledge, only two publicly available 3D/2D
registration evaluation methodologies exist in the literature. Tomaževič et al. [3]1

used a section of cadaveric lumbar spine segment with several millimeters of soft
tissue and acquired computed tomography (CT), magnetic resonance (MR) and
18 X-ray images separated by 20◦ rotation around the axial axis. Similarly, image
data in the standardized evaluation methodology proposed by van de Kraats
et al. [4]2 consists of 2D fluoroscopic X-ray images and 3D CT, MR and 3D
rotational X-ray images of two defrosted segments of a spinal column.

To increase the clinical realism and retain the control over the parameters of
the assessment study, we propose a new image database that is based on CT
images from The Visible Human Project R© 3 [5]. Since this data set does not
provide 2D X-ray images, we generated them from the CT data by calculat-
ing digitally reconstructed radiographs (DRRs) [6]. Such an approach produces
clinically realistic 2D images very similar to the ones acquired during a medical
intervention and circumvents the need for calculating the ground truth registra-
tion, for instance by fiducial markers, as it is directly available from the projec-
tion geometry. In order to further imitate the real clinical scenario, a simulation
of medical intervention tools, that can be present in the imaging field-of-view
during the interventional image acquisition, was also performed. In addition to
the image database with the ground truth, a reference-based evaluation method-
ology based on the evaluation framework proposed by van de Kraats et al. [4]
with the starting positions, target points, metric, and evaluation criteria was
also prepared.

2 Methods and Materials

2.1 3D Image Data Set

The Visible Human data set consists of CT, MR and anatomical cryosection
images of a representative male and female cadaver [5]. In the scope of the present
study, only CT and MR images are of interest. For the present work, the female
CT scan was chosen due to the superior image quality of the fresh cadaver, that
provides a better contrast between muscle and fat tissues in comparison with the
scan of the frozen male cadaver. The chosen CT scan of the thorax, abdomen,
and pelvis regions consists of transverse slices with the inter-slice distance of 1
mm, the intra-slice resolution of 0.9375 × 0.9375 mm2, and a slice pixel size of
512 × 512 . The MR images were also considered, however were not used due
to the large inter-slice distance of the data (4 mm for both male and female
dataset). Further details about the data set can be found in [5].

1 http://lit/tools.php
2 http://www.isi.uu.nl/Research/Databases/GS/
3 http://www.nlm.nih.gov/research/visible/visible human.html
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Fig. 1. Transverse (top) and coronal planes (bottom) of sub-volumes containing ver-
tebra T8, vertebra L3 and pelvis (from left to right)

From the CT image of the thorax, abdomen, and pelvis, 15 sub-volumes each
depicting one of the thoracic vertebrae T3-T12, lumbar vertebrae L1-L5 and
pelvis were determined. The CT resolution of each sub-volume was kept at the
0.9375× 0.9375× 1 mm3 of the original CT image. Furthermore, a world (refer-
ence) coordinate system was set as the coordinate system of the chosen 3D CT
image defined in the upper left corner of the image. Examples of cross-sections
of CT sub-volumes are shown in Fig. 1.

2.2 2D Image Data Set

Since the Visible Human data set does not provide 2D X-ray images and their
geometrical setup, 2D images were generated from the CT image. A rendered 2D
image - a digitally reconstructed radiograph (DRR) - is most commonly recon-
structed from the CT data by ray-casting [6]. Using this approach, the integral
of the attenuation function along each ray passing through the volume for a
given energy spectrum is computed. However, in order to make this approach
practically feasible, several assumption have to be made.

First, the scattered radiation, beam hardening effect and other imaging system
characteristics are usually not modeled when generating DRRs. Thereby, only
the primary energy attenuation is taken into account yielding the intensity Iij

of the DRR image pixel at the point (i, j) as:

Iij =
∫

I0 (E)
(
e
− ∫

Q∈lij
μ(Q,E)dlij

)
dE , (1)

where I0(E) is the source spectrum, μ(Q, E) is the attenuation function at point
Q for various energies E, and dlij is the line integral element corresponding to
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the point (i, j) in the DRR image I. The direction of the line lij is determined
by connecting the point (i, j) on the DRR image to the position of the X-ray
source that is specified by the geometrical setup of the X-ray system. We used a
typical geometrical setup with a source-to-center of the volume distance of 1000
mm and source-to-detector distance of 1550 mm.

Second, since the volume is a digital image, a piecewise approximation to the
line integral of the linear attenuation coefficient is accumulated along the ray.
We use a constant step half the length of the smallest voxel to proceed along
the ray from the entrance to the exit point of the volume. At each of the steps,
the length of the step is multiplied by the voxel linear attenuation coefficient
determined from the CT numbers and accumulated. Trilinear interpolation is
used to take into account the contribution of all the neighboring voxels at the
current step.

Third, the scanner must be properly calibrated in order for the CT numbers to
represent the Hounsfield units (HU) which relate each voxel value to the relative
electron density of the tissue. Thereby, the linear attenuation coefficient of each
voxel can be calculated as:

μx = μw

(
HUx

1000
+ 1
)

, (2)

where μx is the linear attenuation of the sample, HUx the CT number of the
sample in Hounsfield units, and μw is the linear attenuation of water. However,
the value of μw is only valid for the effective proton energy used to acquire the
CT volume, which is not the same as the energy used to obtain a 2D X-ray.
To overcome this problem, we assumed that the attenuation function μ(Q) is
obtained at an effective proton energy of ECT, while an X-ray beam effective en-
ergy is assumed to be EXray. If a functional dependency C(·) is assumed between
μ (ECT) and μ (EXray) (1) can be simplified to:

Iij = I0 e
− ∫

Q∈lij
C(μ(Q,ECT))dlij . (3)

The functional dependency C(·) can be characterized as a linear function within
a limited support of [μl, μh], defined by parameters of the width of the support
w, the center of the support c and the saturation value o, as shown in Fig. 2 [7,8].
These parameters can be determined by dividing the range of CT numbers into
sub-ranges defined by materials of known relative density function and chemical
composition. This allows the creation of look-up tables between the HU values
and linear attenuation coefficients for all energies of interest [8]. Alternatively,
a radiometric calibration can be performed between a sample X-ray image and
the corresponding DRR [7] to derive the required parameters. However, as none
of these approaches could be applied in our case, a heuristic classification of the
background, soft tissues and bone based on the CT number was performed in
order to derive suitable parameters for the energy conversion (cf. Fig. 2).

To generate realistic DRRs three sub-volumes of the thorax, abdomen and
pelvis CT image were created. The sub-volumes contained the thoracic, lumbar,
and pelvis region of the body with all relevant anatomical structures. From each
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Fig. 2. The conversion function C(·) and the illustration of the heuristic classification
approach to determine its parameters (w, c, and o)

Fig. 3. Rendered lateral and anterior-posterior fluoroscopic DRRs of the thoracic (first
and second column), lumbar (third and forth column, top row), and pelvis (third and
forth column, bottom row) region

of the three sub-volumes anterior-posterior (AP) and lateral (LAT) DRRs were
rendered, yielding six 2D kilo-voltage (kV) X-ray fluoroscopy-like images. In an
additional processing step, a suitable region-of-interest without the rendering
artifacts on the edges was determined. For all six DRR images the same image
resolution of 0.4 × 0.4 mm2 was used. Examples of kV fluoroscopic-like images
are given in Fig. 3.

2.3 Interventional Tool Simulation

During a real-life intervention different interventional tools might be present in
the patients body and therefore in the imaging field-of-view while the fluoroscopic
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images are being acquired. Furthermore, in some interventions, e.g. percutaneous
vertebroplasty [9], 2D imaging is used to guide an interventional tool to the tar-
geted anatomy. In such cases, additional foreign structures are present on projec-
tion images which are not present on 3D images acquired before the intervention.
Consequently, due to outliers the 3D/2D registration of such images is even more
challenging and a decrease in the registration performance can be expected.

To imitate the described clinical scenario and assess the robustness of the
registration algorithm to outliers, a simulation of a 13-gauge needle typically
used in percutaneous vertebroplasty procedures [9] was performed. The needle
was analytically simulated in 3D and projected onto the DRRs by adapting (3)
as:

Is
ij = I0 e

− ∫
Q∈lij

C(μ(Q,ECT))dlij−
∫

Q∈lij
μsdlij

= Iij e
− ∫

Q∈lij
μsdlij ,

(4)

where Is
ij is the simulated intensity at point (i, j) and μs is the linear attenuation

coefficient of the simulated interventional tool.
A single stainless steel 13-gauge cannula was simulated for each vertebra of

interest and positioned typical of the intervention in question. The attenuation
coefficient of the needle μs was set to 7.64 cm−1, taken from Foster and Evans [10]
for Type 304 Stainless Steel at effective proton energy of 60 keV. The obtained
AP and LAT DRR images with the simulated needles are shown in Figure 4.

To determine how our DRR images with the superimposed needles compare
to real fluoroscopic images obtained during a vertebroplasty procedure a visual
comparison to published image data was performed [9,11]. First of all, we found
that the real fluoroscopic images themselves taken at various institutions can be
quite different due to different imaging equipment, image acquisition settings,
needle materials, preferences of the interventionalist etc. Considering all the
examined real images and our simulated images we believe that the generated
image data compares reasonable well to real data and is suitable for conducting
pre-clinical evaluation studies of 3D/2D registration methods.

2.4 Evaluation Criteria, Metric and Protocol

To enable the objective evaluation of the 3D/2D registration methods the eval-
uation framework proposed by van de Kraats et al. [4] was utilized, according
to which a 3D/2D registration method is assessed by four evaluation criteria:
accuracy, reliability, robustness and algorithm complexity. Accuracy is measured
by the mean target registration error (mTRE) metric [4,12], which is the mean
of distances between target points transformed by the ground truth and by the
registration obtained with the evaluated method. The target points determine
the region for which the accuracy is evaluated and are therefore directly asso-
ciated with the reason for the registration. Since we focus on the registration
of the vertebrae and the pelvis, positions of 12 anatomical target points on the
vertebrae of interest and 18 anatomical target points on the pelvis were manu-
ally defined on each of the 15 sub-volume CT images. The positions of selected
target points are illustrated in Fig. 5. To assess the accuracy, 400 starting posi-
tions defined by rigidly displacing each sub-volume from the ground truth were
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Fig. 4. Rendered lateral and anterior-posterior fluoroscopic DRRs of the thoracic (first
and second image from the left) and lumbar (third and forth image from the left)
vertebrae with the simulated needles.

Fig. 5. The positions of 12 anatomical target points on lateral (a) and axial (b) illus-
trations of the vertebra, respectively, and the positions of 18 anatomical target points
on an illustration of the pelvis (c). (Source: [13])

generated. The displacements were thus defined by three translations and three
rotations. The translations and rotations were chosen to yield mTRE values of
the starting positions uniformly distributed in an interval from 0 to 20 mm, with
20 starting positions in each of the 1 mm wide subintervals [4]. A registration
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is classified as successful if the mTRE after the registration is smaller than a
pre-specified threshold of 2 mm. The overall registration accuracy is computed
as the root-mean-square mTRE value of all successful registrations.

To assess the reliability of the registration algorithm, the success rate and cap-
ture range are calculated. The success rate is defined as the number of successful
registrations against the number of all registrations, while the capture range is
defined as the distance from the reference position to the first 1 mm subinterval
for which the registration is successful in less than 95 % of all cases [4]. Fur-
thermore, robustness is determined by performing registrations using the DRRs
with the simulated needles and comparing the registration results to the results
obtained using DRRs without the outliers. Besides the accuracy, success rate and
capture range of registrations using 2D images with and without outliers, the
registration times should also be reported to indicate the algorithm complexity.

3 Discussion and Conclusion

A new image database with a standardized evaluation methodology for objective
comparison of 3D/2D registration methods has been introduced. CT image of a
female thorax, abdomen and pelvis from the Visible Human Project R© was used
and sub-volumes with vertebrae T3-T12 and L1-L5, and the pelvis were defined,
while AP and LAT 2D images were rendered from the complete anatomical CT
data of the chosen regions of the body. Ray-casting with an energy conversion
function was used to compensate for the difference between the CT and X-ray
effective proton energies resulting in realistic 2D X-ray fluoroscopy-like images.
Furthermore, outliers similar to medical intervention tools were also simulated on
the 2D images to enable the evaluation of robustness of the registration method.

In comparison to the two existing publicly available standardized evaluation
methodologies [3,4] where cadaver phantoms with little soft tissue were used,
the proposed methodology increases the clinical realism of the data by providing
images with soft tissues and clinical scenario outliers in the 2D images. Fur-
thermore, the rendering and simulation approach enables a better control over
the parameters of the assessment study and the ground truth. Obviously, the
rendered 2D images cannot fully mimic the real fluoroscopic images and as the
2D images are generated directly from the 3D images, the deformations of pre-
dominantly soft tissue anatomical structures between 3D image acquisition and
intervention are not present. Nevertheless, we believe that such a methodology
offers an optimal trade-off between the clinical realism on the one hand and
control of parameters to be studied on the other.

In this paper, we focused on CT and kV fluoroscopic images, and on the
spine and pelvis anatomy. However, the proposed image database could also be
extended to other anatomical structures and imaging modalities like 3D MR
images and/or rendered 2D portal-like images. Unfortunately, due to the poor
quality of the visible human CT and, especially, MRI data in respect to todays
imaging standards, the extension to other modalities would probably require
an a 3D image data set of superior quality. Other extensions to the proposed
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methodology include the application of realistic deformation models to the 3D
images before rendering to account for the anatomical changes that may oc-
cur between 3D image acquisition and intervention. Furthermore, medical tools
typical of other medical interventions could be simulated onto the fluoroscopic
images making the methodology applicable to a broader field of interventions.
Therefore, the proposed image data set can serve as a prototype for building a
database of gold standard data sets for evaluating 3D/2D registration methods
for image guided interventions.

The aim of this paper is to provide objective comparison and unbiased evalu-
ation of new and existing 3D/2D registration methods. Therefore, the proposed
standardized evaluationmethodologywith the imagedata sets, registrationground
truths, displacements from the ground truth, and target points as described in this
paper is available upon request from the authors.
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Abstract. We propose to characterize deformable registration methods
in a unified way, based on their parametrization. In contrast to traditional
classifications, we do not apply this characterization only to standard
“parametric” methods such as B-Spline Free-form deformations, but we
explicitly include elastic and fluid-type “non-parametric” methods, such
as the classic variational approach, and the fluid demons method. To
this end, we consider parametrizations by linear combinations of arbi-
trary basis functions. While for the variational approach we simply uti-
lize piecewise linear bases, for the fluid demons method we provide a new
interpretation by showing that it can be seen as inherently parametrized
by densely located Gaussian basis functions. Furthermore, we show that
the semi-implicit discretization of the variational approach can be seen
as steepest descent, with a displacement parametrized by densely lo-
cated bases, based on Green’s functions corresponding to the regular-
ization. This provides a further connection to the demons approaches.
The proposed characterization is widely applicable and provides a simple
and intuitive way of relating some of the arguably most commonly used
methods to each other.

1 Introduction

Dense, intensity-based estimation of nonlinear motion from images has gained
tremendous popularity in the last 30 years [1,2], resulting in a plethora of meth-
ods. Early reviews of registration methods [3,4], as well as more recent ones
[5,6,7,8,9] include overviews of the work on deformable registration at the re-
spective times of publication. These reviews have a focus on linear methods
and do not treat deformable registration exclusively. An early survey of non-
linear techniques is given in [10], with focus on hierarchical aspects. More re-
cent overviews and classifications of deformable techniques [11,12,13,14] have
in common that they in general distinguish - among other properties - between
“parametric” methods, such as B-Spline Free-form deformations (FFD), and the
so called “non-parametric” methods.1 Here, “parametric” methods are classified
1 In some of these publications, different terms are used for generally same groups:

[9] distinguishes Spline models and Elastic registration (defined as “not to use any
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by a parametrization which leads to a reduction of the number of the degrees of
freedom, compared to “dense” parametrizations featuring a displacement vector
at every voxel. For the “non-parametric” methods, no explicit parametrization is
performed during the modeling of the energy. Hence, during the derivation of the
optimization criterion, the unknown is a continuous function, so that the “non-
parametric” approach is referred to as variational. The term “non-parametric”
is used for (at least) two different groups of methods. For the first group, a
regularization energy term is defined in the model, and then an optimization
of the model is performed [12]. The second “non-parametric” group are the so
called demons approaches, for which (in the original formulation) no explicit
regularization term is defined in the model, and the regularization is performed
by applying a low-pass filter to the displacement. In order to concisely distin-
guish between the two “non-parametric” groups, we will refer to the first group
as variational, and the second one as demons methods.

Our work in this paper is guided by the fact that for any method, a parametriza-
tion must be performed in order to compute an actual solution. However, in most
“non-parametric” cases, this inherent parametrization is not explicitly stated. For
example, for the “non-parametric” cases, the parameters are usually the displace-
ment vectors located at all sampling points (voxels) of the volume. In this work, we
focus on such inherent parametrizations for the variational and the fluid demons
approach. These two methods can be seen as prototypal examples for the wider
classes of elastic-type and fluid-type methods. While for the variational approach
many different basis functions can be used for parametrization, we identify tensor
products of piecewise linear functions as the natural choice, which is effectively
used in many implementations. For the demons approach, we propose a novel in-
terpretation by showing that the fluid demons method can be seen as optimiza-
tion of a given similarity measure, with the displacement parametrized by a linear
combination of densely located Gaussian bases.

We see the contribution of this paper in the focus on the inherent parametriza-
tion as a characterization criterion. This enables the treatment of some of the
arguably most commonly used deformable registration methods in a unified
framework, and allows for an intuitive way of relating the different methods
to each other. In Sec. 2 we present a derivation for the standard parametric
approach which is used as the general framework in the paper, and we in-
troduce the elastic and fluid method groups. Following this, we give a brief
overview of the parametric (Sec. 3), variational (Sec. 4) and the demons methods
(Sec. 5), and show how they can be cast in the parametrization-based framework.
In Sec. 6, we discuss the use of parametrization as a criterion for characterization.

2 General Framework Based on Parametrization

Common to all intensity-based registration methods is the goal to estimate
the transformation ϕ between the domains of the target image IT and the

parametric mapping functions”); [11] uses parametric models and competitive regu-
larization ; [13] differentiates physically based models and basis function expansions.
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source image IS by optimizing an appropriate similarity measure ED. This
results in

ϕ = arg min
ϕ′

ED(IT , IS ◦ ϕ′) , (1)

with d-dimensional I〈S|T 〉 : Ω → IR with Ω ⊆ IRd, and the transformation
ϕ : Ω → Ω, where mostly ϕ ∈ L2 is assumed. The discretization of the images
in Ω is supposed to result in N samples. The deformation ϕ is usually expressed
in terms of the displacement u, as ϕ = Id + u, with the identity operator Id.

Without modification and with ϕ ∈ L2, Eq. (1) does not offer enough con-
straints to solve for ϕ.2 With the similarity measure being modular in most
modern methods, these differ primarily in the strategy to deal with the under-
constraintment of (1). There are basically two approaches to this problem.

The first strategy is by defining an explicit regularization term in the energy
model. This path is taken for variational methods (Sec. 4).

The second way of dealing with the above problem is by restriction of the de-
formations to a lower-dimensional function space. The “parametric” approaches
(Sec. 3) are the classical example for this solution. In practice, an explicit energy
is mostly defined additionally to the restriction of the deformation. This way,
many “parametric” approaches combine the two discussed strategies.

Another way of restricting deformations to lower-dimensional manifolds is by
treating them in Sobolev spaces, which contain only functions with a certain
degree of regularity by construction [15,16,17,18]. In [15,17], it is pointed out
that the fluid demons approach can be seen as minimization of (1) in a Sobolev
space, which corresponds to a manifold containing only diffeomorphisms. The
parametrization of the fluid demons as discussed in this paper can be seen as a
discrete analogon to the use of Sobolev spaces in [15,17].

In our framework, we use the general model, which includes the explicit reg-
ularization energy term ER, that is

E(u) = ED(IT , IS ◦ (Id + u)) + αER(u) . (2)

Here, approaches with no regularization energy are included by setting α=0.
Depending on the problem at hand, different regularization terms such as diffu-
sion, curvature, or linear elasticity can be employed [12]. Since the problem in
(2) is non-linear, it is solved in an iterative manner by computing an update du
to an initial displacement estimate u. In the following we drop the argument u
in the notation for simplicity where it is not necessarily required.

The minimization problem in each iteration is solved by computing the update
du. Most commonly, du is based on the gradient of the energy E with respect
to the displacement, resulting in a gradient descent scheme

du ≡ ∂u

∂t
with

∂u

∂t
≡ −∂E

∂u
, (3)

cf. e.g. [19,12]. For shorter notation, we set ∂E/∂u = ∇E.

2 Note that (1) can be well posed in other spaces such as Sobolev spaces [15].
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In order to solve the non-linear partial differential equation (PDE) in (3),
discretization has to be performed. For time discretization, two common choices
are: 1) the explicit discretization, leading to the update rule

du = −τ
(∇ED + α∇ER

)
, (4)

which results in the standard steepest gradient descent, and 2) the semi-implicit
discretization (cf. e.g. [12,20]), resulting in a linear system(

Id + τα∇ER

)
du = −τ

(∇ED(u) − α∇ER(u)
)

. (5)

The spatial discretization is performed by representing the deformation by pa-
rameters p. As parametrizations, we consider linear combinations of arbitrary
basis functions Bk : Ω → Ω, resulting in

up(x) =
∑

k

pkBk(x) . (6)

The parameters pk∈IRd can be seen as representative displacement vectors. The
set of all pk constitutes the parameter vector p. With the parametrization from
(6), the derivative of (2) with respect to the parameters reads

∇pE =
∂E

∂u

∂u

∂p
. (7)

Please note that due to the linearity of (6), Eq. (7) can be written for each
parameter as a scalar product of ∇E with the corresponding basis function as

(∇pE)k =
〈

Bk ,∇E
〉

, (8)

which can be seen as the projection of the continuous updates onto the space
of parameters. We can use the gradient (7) in (4) or (5) to obtain the evolution
rules for the parameters. For example, for the explicit discretization (4) we get

dp = −τ∇pE . (9)

2.1 Elastic and Fluid Registration Modes

In this work, we treat the variational and the fluid demons methods as rep-
resentatives of two groups of approaches: the elastic-type, and the fluid-type
methods. In this context, the terms elastic and fluid present generalizations of
the original linear elasticity [2] and viscous fluid [21] approaches to more general
regularization terms, compare e.g. [22,23]. This generalization classifies meth-
ods as elastic if the regularization is performed on the displacement field, which
is the case for standard minimization of (2). On the other hand, a methods
is fluid, if the regularization is performed only on the displacement updates
(i.e. velocities) in every iteration. A characteristic of fluid approaches is that the
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regularization energy is not conserved in the iteration process, in contrast to
elastic methods.

Variational and parametric methods as described in Sec. 3 and 4 of this paper
implement the elastic approach. The original form of the demons method [24]
proposes the smoothing of the complete displacement field in every iteration,
which was shown to constitute an elastic-type method [23]. This provides a
connection between the approaches with explicit regularization energy, and the
original demons method. For the demons methods, also combinations of elastic
and fluid approaches have also been discussed [23,25].

Fluid-type approaches comprise the viscous fluid methods [21,22], approaches
employing Sobolev spaces [16,17,15,18], and the fluid-type demons method [22,23].
Equivalence between these methods is established [22,15,17], with different regu-
larization resulting in different flow models. In Sec. 5 we discuss the fluid demons
method from [16] as a representative of this group.

Finally, one can note that elastic-type methods can in general be rendered fluid
by applying the resulting evolution rules to displacement updates du instead of
the displacement u. In this case, the original energy is no longer optimized.

3 Classic Parametric Methods

Classic “parametric” methods can be derived as shown in Sec. 2. In the fol-
lowing we consider two general groups of parametrizations, and discuss briefly
one popular example of each class. The first group employs local basis functions
Bk, each of which is centered at the position ck ∈ Ω. This is exemplified by
B-Spline based Free-form Deformations (Sec. 3.1). This group further includes
the parametrization by radial basis functions (RBF) such as Thin-Plate Splines
(TPS), Wavelets, or parametrizations used by the Finite Element (FE) method.3

The second class features global basis functions, which cannot be assigned a ge-
ometrical center of influence. This group is represented by the parametrization
based on trigonometric functions (Sec. 3.2).

3.1 B-Spline Free-form Deformations (FFD)

The parametrization of deformations by FFDs based on cubic B-Splines is a
common technique for registration of medical images. Early uses are reported in
[27,28,29], and the methods has become very widely used since [30,31,32,33].

The B-Spline basis B is the tensor product of the one-dimensional basis func-
tions b, defined as

b(x) =

⎧⎨⎩
2/3 − (1 − |x̃|/2)x̃2 for 0 < |x̃| < 1

(2 − |x̃|)3/6 for 0 < |x̃| < 1
0 otherwise

, (10)

3 In [26], a link between FE-based methods, which are commonly used for parametriza-
tion of variational methods, and B-Spline FFDs is discussed, providing further mo-
tivation to discuss variational methods in the context of parametrization.
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with x̃ = x/H , where H is the spacing between two control points along the
respective dimension on a regular grid. The actual bases Bk, located at points
ck, are defined as

Bk(x) = B(x − ck) . (11)

A visualization of the one dimensional B-Spline representation is given in Fig. 1a.
More details on B-Splines can be found in [34,35] while [13] gives an overview of
the historical development.

3.2 Trigonometric Functions

Parametrization by trigonometric functions is also a popular choice in many
applications. The general approach is to parametrize the displacement field by
Discrete Fourier Transformation (DFT) [36,37], or Discrete Cosine Transforma-
tion (DCT) [38] basis functions. For space reasons, at this point we only note
that the corresponding basis functions Bk are global and represent a signal of fre-
quency k, and refer the reader to the respective papers for the definitions. Mostly,
only a certain number of low-frequency basis functions is used for parametriza-
tion. This provides an inherent regularization since only smooth functions can
be generated by construction. For an exemplary visualization, please see Fig. 1b.
A further motivation for the use of trigonometric functions is that in some cases,
the trigonometric bases form the eigenfunctions to the linear operator in (5),
which facilitates the solution of the linear system.

4 Variational Methods

The variational approach for deformable registration is very common, cf. e.g.
[39,12]. The actual derivation of the methods is mostly performed in the spirit
of the first part of the derivation in Sec. 2, resulting in evolution rules (4) and (5).

4.1 Variational Methods Parametrized

For numerical realization of variational methods, parametrization of the result-
ing PDE in (3) (i.e. discretization of the displacement) is inevitable. There are
different parametrization approaches in the context of image registration, most
notably the Finite Difference (FD), and the Finite Element (FE) methods. The
discretization of the displacement by FE as a linear combination of a set of cho-
sen basis functions is obviously parametric in the classical sense according to Sec.
3. On the other hand, classical “non-parametric” approaches mostly employ the
FD discretization on a regular grid. In this approach, the differential operators
are discretized by evaluating the underlying data (images and displacement) at
all given sampling points in the image domain, and the parameters are the val-
ues of the displacement field vectors at the sampling points. This discretization
approach can be seen as a parametrization of the displacement by a linear com-
bination of basis functions covering only one sampling point by their support,
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and having the value 1 at the corresponding sampling point position. A natural
choice for such a basis is the tensor product of piecewise linear “hat” basis func-
tions, as these bases are often used for interpolation of the displacement field at
inter-voxel positions in practice. Other possible choices include constant unity
box function (nearest neighbor interpolation), or simply a function equal to one
at the respective control point and zero everywhere.

So, corresponding to (6), we again perform the parametrization with bases
Bk(x) = B(x − ck). Here, the basis B is a tensor product of d one-dimensional
functions b, defined as b(x) = 1+h−1 for x ∈ [−h, 0], b(x) = 1−h−1 for x ∈ (0, h],
and b(x) = 0 elsewhere, with h being the distance between sampling points.

The resulting update rules are equivalent to those in Sec. 2. After discretiza-
tion of (7), the derivative of the displacement with respect to the parameter pk

vanishes everywhere except at the corresponding sampling point ck. This can be
also directly seen from (8), as we have (∇pE)k = 〈Bk ,∇E 〉 = (∇E)k. This is
the case since after discretization it holds that Bk(ck)=1 and Bk =0 everywhere
else. Thus, the equation (7) effectively boils down to (3) in this case.

Please note that such a parametrization is always performed for variational
approaches, but often not explicitly stated. Our goal is not to propose a new
parametrization, but rather to point out its inherent usage, and employ it for
characterization in the hope that it facilitates comparison to other approaches.

Semi-Implicit Version of Variational Methods. An alternative interpreta-
tion for the semi-implicit version of the variational approach from (5), is gained
by observing that (5) can be solved by

du = −τ F ∗ (∇ED(u) − α∇ER(u)
)

= −τ F ∗ ∇E(u) . (12)

Here, F is the Green’s function depending on the choice of regularization and
defined as

(
Id + τα∇ER

)
F (x, s) = δ(x − s), with the Dirac delta δ [22]. For

regularization settings, the Green’s function is F is a low-pass filter. For certain
choices of ER, it equals a Gaussian, while for others, the Gaussian is a good
approximation [22,16]. With Bk(x) = F̃ (x − ck), with F = F̃ ∗ F̃ , the semi-
implicit approach can be seen as a standard steepest gradient descent, with the
displacement parametrized densely based on the appropriate Green’s functions,
cf. Fig. 1d. The detailed derivation of the above follows closely the argument for
fluid demons in Sec. 5.1, as (12) has the same form as (13). This interpretation
provides a further connection between the variational and the demons methods.

5 Fluid Demons

The original demons algorithm was proposed by Thirion [40,24]. This seminal
work contains a number of different heuristic variants, motivated by an analogy
to Maxwell’s Demons. The variant 1, which entailed most interest, consists of
defining forces at all sampling points in the image domain, iteratively adding
them to the already computed deformation, and smoothing the new resulting
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deformation field at the end of each iteration. In contrast to methods in Sec. 3
and 4, no explicit energy model was assumed.

Since the initial publication, a lot of work was dedicated to the interpretation
and extension of the method, and a solid theoretical context has been devel-
oped. A connection between a fluid version of the demons method and the so
called viscous fluid method [21] is discussed in [22]. An interpretation of the
forces as approximation to second order optimization of the SSD similarity was
given in [23]. Furthermore [23] discusses fluid and elastic variants of the demons
algorithm, depending on whether the smoothing is applied to the accumulated
displacement or the displacement updates only. In [16,17], the fluid demons ap-
proach is interpreted as gradient descent on the similarity measure in a Sobolev
space representing diffeomorphisms. Also, in this work, derivatives of different
similarity measures as forces are employed, as discussed in [39]. In [11], a connec-
tion is provided between the minimization of an explicit regularization energy
term, and the elastic version of demons. Recent developments include efficient
diffeomorphic versions of the demons approach [41]. Furthermore, in the recent
years, the compositional update rule has gained popularity as the natural com-
position operator in the space of transformations [16,25,41].

In summary, a fluid version of the demons approach can be stated as minimiza-
tion of (1), in which the regularity of the deformation is ensured by convolution
with a Gaussian Gσ with variance σ. In every iteration, the following update
rule is performed

du = −τ Gσ ∗ ∇ED(u) (13)
ϕ = ϕ ◦ (Id + du) . (14)

It was shown in [22] that the application of the Gaussian in (13) corresponds
to fluid approach for the diffusion regularization term. Different smoothing ker-
nels, corresponding to certain regularization terms such as linear elasticity or
curvature have also been discussed [22,42].

5.1 Parametrized Fluid Demons

Here, we show that the fluid demons approach in (13) can be seen simply
as the optimization of a similarity criterion (1), with a displacement function
parametrized by Gaussians Gβ with a standard deviation of β = σ/2, that is

up(x) =
N∑

k=1

pkGβ(x − ck) . (15)

Following the derivation in (7), the Eq. (8) now corresponds to

(∇pE)k =
〈

Gβ
k ,∇E

〉
, (16)

where we use Bk = Gβ
k with Gβ

k (x) = Gβ(x − ck). Since in this case, the bases
functions are located at every sampling point ck, the resulting gradient can be
written in terms of discrete convolution as
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Fig. 1. 1D illustrations of discussed parameterizations. Parameters (vertical lines) and
corresponding basis functions are given. Please note that for the trigonometric bases
(b), the influence of parameters is not localized in space.

∇pE = Gβ ∗ ∇E , (17)

According to (9), this gives us the evolution dp = −τ Gβ ∗ ∇ED for the param-
eters, and the corresponding displacement is then, according to (15),

udp(x) =
N∑

k=1

dpkGβ(x − ck) = −τ Gσ ∗ ∇ED . (18)

This corresponds to the fluid demons evolution rule (13), and shows that fluid
demons can be interpreted as a gradient descent on (2), with α = 0 and the
displacement parametrized as in (15). For a visualization please see Fig. 1d.

6 Discussion of Parametrization-Based Characterization

With the results from the previous sections, we can provide a characterization
of the discussed methods based on their parametrizations. More specifically, the
characterization criteria are: type of the basis function, location of the basis
function, and support of the basis function. An example of such a characteriza-
tion is given in Tab. 1. It can be seen as a description of the parametrizations



170 D. Zikic, A. Kamen, and N. Navab

Table 1. Exemplary characterization of some common deformable registration meth-
ods, based on parameterization

Method Basis Function Basis Location Basis Support

FFD tensor product B-Splines sparse (regular) extended

Trigonometric DFT, DCT, DST global global

Variational “hat functions” dense local

Variational (semi-impl.) low-pass filter dense extended

Demons Gaussian dense extended

FE-based different options sparse, irregular extended

TPS-based TPS sparse, irregular global

illustrated in Fig. 1. The proposed characterization can be used to gain insight
into the relations between the single methods. We give two examples.

For instance, there is a striking similarity between the parametrizations of
the B-Spline FFD approach (1a) and the demons approach (1d) in Fig. 1. With
the respective choice of standard deviation, the B-Spline and Gaussian bases
have very similar shapes. This observation extends to higher dimensions. So the
major difference between the two approaches seems to be the sparsity of the
basis locations in the FFD parametrization. With dense setting of the control
points for the FFD approach, and the standard deviations for demons adjusted
accordingly, the two methods can be expected to behave in a very similar way.

A further possible relation which can be established by inspecting the para-
metrizations is that the demons method can be seen as an approximation to the
Fourier-based methods employing only a certain number of low-frequency func-
tions. Since the demons method is parametrized by dense Gaussian bases, the
resulting displacement does not contain high-frequency signals by construction.
This corresponds to a Fourier-based parametrization, from which the correspond-
ing high-frequency bases have been excluded.

7 Summary and Conclusion

In this paper, we propose to use the parametrization of deformable registration
methods for their characterization. To this end, we demonstrate that also meth-
ods often described as “non-parametric” feature an inherent parametrization. For
the variational methods, we employ simple “hat functions”, and for the semi-
implicit version, we demonstrate equivalence to steepest descent with a certain
dense parametrization. For the demons approach, the inherent parametrization
yields an interesting new interpretation. The proposed parametrization-based
characterization provides a compact and precise way for comparing and distin-
guishing some of the most popular groups of deformable methods. Thus, it can
be used for a classification of deformable registration methods, and could prove
a useful tool to gain further insight into the single approaches.
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15. Trouvé, A.: Diffeomorphisms groups and pattern matching in image analysis. Int.
Journal of Computer Vision (1998)

16. Chefd’hotel, C., Hermosillo, G., Faugeras, O.: Flows of diffeomorphisms for multi-
modal image registration. In: Int. Symp. on Biomedical Imaging (2002)

17. Chefd’hotel, C.: Geometric Methods in Computer Vision and Image Process-
ing: Contributions and Applications. PhD thesis, L’Ecole Normale Superieure de
Cachan (2005)
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Abstract. We propose a reliability measure that identifies informative
image cues useful for registration, and present a novel, data-driven ap-
proach to spatially adapt regularization to the local image content via use
of the proposed measure. We illustrate the generality of this adaptive reg-
ularization approach within a powerful discrete optimization framework
and present various ways to construct a spatially varying regularization
weight based on the proposed measure. We evaluate our approach within
the registration process using synthetic experiments and demonstrate its
utility in real applications. As our results demonstrate, our approach
yielded higher registration accuracy than non-adaptive approaches and
the proposed reliability measure performed robustly even in the pres-
ences of noise and intensity inhomogenity.

1 Introduction

The goal of deformable image registration is to recover a local transformation,
T , that best aligns two images. Generally, the problem involves minimizing a
weighted sum of two penalty terms [1,2,3,4], e.g.:

T̂ = arg min
T

D(F, T ◦ M) + αR(T ) (1)

where D denotes a data term, which measures how well T aligns two images,
F and M , R denotes a regularization term that ensures T maintains certain
smoothness properties (e.g. being continuous or homeomorhpic), and α is a
weight that balances these two terms.

Literature in medical image registration has generally focused on the devel-
opment of either image metrics [5], regularization models [6,7], or optimization
algorithms [1,3], the three main ingredients of a registration method. In this
paper, we attempt to address all three aspects of the problem, with a particular
focus on adapting the regularization of deformations to local image content.

Commonly known as inhomogeneous deformability [6], deformable registration
incorporating adaptive regularization allows one to obtain smooth deformations
in some parts of an anatomy and highly varying ones in other regions. Inhomo-
geneous deformability is particularly useful when we wish to model the various

B. Fischer, B. Dawant, and C. Lorenz (Eds.): WBIR 2010, LNCS 6204, pp. 173–185, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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types of motions different tissues undergo, so that, for example, soft tissues can
deform elastically while hard bones are restricted to move only rigidly. Most
researchers to date achieve adaptive regularization by incorporating anatomi-
cal models. An example is the variable-elasticity registration algorithm of Da-
vatzikos [7], where anatomical segmentations were used in an elastic registration
algorithm to adjust the amount of regularization according to tissue types. Re-
gions that were labeled as soft tissues (e.g. skin and fat) were regularized less
than regions that were identified as hard tissues or rigid structures (e.g. bone).
Similar works include [8], where Rexilius et al. derived the inhomogeneous elas-
ticity parameters probabilistically using a statistical atlas, and [9], where Kabus
et al. performed elastic registrations and suppressed smoothness constraints at
the interfaces between identified structures via a spatially-dependent weight. In
[10], Pitiot and Guimoid developed a geometrically-driven regularization for a
block-matching algorithm where the regularization of displacement vectors were
localized to regions that were fitted to the geometry of the anatomy.

Several adaptive regularization methods have also been incorporated into reg-
istration frameworks that formulate image matching and regularization as sepa-
rate processes, as opposed to minimizing the combined data and regularization
energies directly. In [11], Stefanescu et al. incorporated an adaptive regulariza-
tion approach into a compositive demons algorithm, which iteratively composed
a correction field and a tentative displacement field. They proposed to regular-
ize the deformation field by smoothing it with a variable Gaussian kernel whose
size depended on a scalar field, which encoded the expected amount of defor-
mation and was estimated from a region-based segmentation of the anatomy.
The authors also proposed to filter the correction field using a measure called
local confidence to estimate local intensity variance. In the template-matching
framework of [12], after each iteration of deformation estimation, Suarez et al.
smoothed the estimated field with a variable Gaussian kernel whose size was
determined by a scalar measure of local structure.

In summary, adaptive regularization as formulated in all of the methods high-
lighted above have some inherent problems. The methods of [6,7,8,9,10] all re-
quired prior information (e.g. manual segmentation), making them impractical,
especially when anatomical models are laborious to prepare, and difficult to de-
fine in cases containing pathologies. On the other hand, the data-driven regular-
ization approaches of [11,12], where regularization depended on image gradients
or local structures, suffered from sensitivity to noise. Unfortunately, the reliabil-
ity and effectiveness of regularization become questionable when regularization
depended on such noise-sensitive functions.

To address these issues, we propose a data-driven, spatially-adaptive regular-
ization approach that is robust to noise and does not require prior information
(e.g. segmentation or knowledge of material properties). As image forces com-
puted in uncertain regions (e.g. suffering from high noise level, or bounded by
weak or missing boundaries) should play a smaller role in estimating the trans-
formation solution, we propose a robust reliability measure that analyzes local
noise levels and image structures from which we derive data-driven, adaptive
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regularization. In our reliability-based regularization, the amount of regulariza-
tion is increased in regions that have high noise level, or decreased otherwise.
Similarly, data-derived forces computed in highly structured and uncorrupted re-
gions should have low regularization because they are derived from reliable and
discriminative information. Fig. 1a provides an illustration of these concepts.
By accounting for local noise levels when measuring image cues, our proposed
reliability measure can better distinguish reliable regions from unreliable, noise-
corrupted regions more robustly than previously proposed measures (Fig. 1b-c).

To the best of our knowledge, this is the first work in the context of regis-
tration that examines reliability of image data as a means to balance the data
and regularization terms in an image-dependent manner. We are also the first
to incorporate spatially varying regularization into two Markov Random Field
(MRF)-based registration frameworks. Formulating deformable registration as
MRF-energy minimization has become a growing trend due to the recent devel-
opments of efficient solvers [13,14,15,16]. With these solvers, volumetric, multi-
resolution registration can be achieved in minutes, a significant speedup over
previous methods [17]. While efficient, the regularization adopted in these frame-
works had always been controlled globally (across the whole image) by a scalar
weight [3,2,1]. Determination of this weight also required empirical experiments,
which were often done through a rather ad-hoc and tedious process. For that
reason, as another part of our major contribution, we will illustrate how our

Fig. 1. (a) An illustrative example of a deformation field obtained from a non-
parametric registration. Displacement vectors computed at the boundary of an object
are shown as arrows. Gray values at each pixel along this boundary indicate the mea-
sured reliability (dark gray indicates high reliability). With our proposed reliability
measure, the outlier vector (one pointing to left) will be regularized more than the
rest, while those that are reliable and located along salient structures (e.g. corners)
will be regularized relatively less, subject to the influence of the data term. (b) and
(c) a measure’s sensitivity to noise, which was defined as the correlation between the
measure computed before and after noise corruption. Each curve shows the effect of
one noise type: Gaussian, speckle, Salt+Pepper, and spatially varying Gaussian (SVG).
Sensitivity of (b) local confidence [11] (magenta) and local structure [12] (black), and
(c) our reliability measure. In (c), two different parameter settings (discussed in Sec.
2.2) were used to evaluate the performance of our measure. Under all noise types,
local confidence and local structure were more sensitive to noise than our proposed
measure.
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reliability-based regularization can be easily incorporated into these frameworks
to improve their accuracies.

In the past, few researchers have proposed the use of measures of certainty or
saliency of image data to improve registration, e.g. [5]. However, these measures
were solely used to improve the fidelity of the data term and not for regulariza-
tion, as we propose in this work. In dealing with noisy images, Paquin et al. [18]
proposed multi-scale decomposition of images to iteratively register the obtained
decomposed components. Their method, however, did not employ adaptive reg-
ularization either. Accordingly, our contributions are: 1) adapting image regu-
larization according to local image information using an image-derived measure,
as opposed to use of prior information; 2) improving registration robustness by
enhancing the fidelity of the data term using this measure; 3) introducing the
novel use of a spatially varying weight to a discrete optimization-based registra-
tion framework; 4) proposing and examining various techniques to encode the
proposed reliability-based regularization; and 5) validating the overall method
with synthetic and real data.

2 Methods

2.1 Deformable Registration via MRF-Minimization

Let F and M be discrete representations of a fixed and moving image, respec-
tively, in a domain Ω ⊂ R

d, where d is the image dimension, i.e. F : Ω → R,
M : Ω → R. Our goal is to recover a displacement field T , T : Ω → R

d, that
maps each pixel location x = (x1, x2, · · · , xd) in M to F by minimizing the en-
ergy in Eq. 1. To formulate deformable registration as an MRF optimization, the
pixel coordinates of M are usually converted to a graph G = (V , E), where vertex
p ∈ V represents a spatial coordinate xp and the set of edges (p, q) ∈ E describe
a 4-neighbourhood system of the image grid of M . Next, the deformation space
(e.g. R

2 in 2D) is discretized into a finite set of translations L of size L, where
each element represents a translation vector ti, i.e. L = {t1, · · · , tL}. We then
seek to label each p with a label in L to obtain T that minimizes:

E(T ) =
∑
p∈V

ψi(p, ti) + α
∑

(p,q)∈E;i,j≤L

ψij(p, q, ti, tj) (2)

where ψi denotes the cost of assigning ti to p, ψij denotes the cost of assigning
ti to p and tj to its neighbour q, and α denotes a global weight between the
two terms. Essentially, ψi and ψij correspond to the data term D and regular-
ization term R in Eq. 1, respectively. This energy can then be minimized via
combinatorial optimization algorithms of [13,14,16].

In this work, we propose the use of spatially adaptive regularization by re-
placing α with a function that is spatially dependent on pairwise neighbours, i.e.
λ(p, q). Thus, if the data term is, for example, based on the absolute difference
(AD) between image intensities and ψij is a distance-based metric, the energy
minimization becomes:
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T̂ = arg min
T

∑
p∈V

1
Imax

|F (p + ti(p)) − M(p)| +
∑

(p,q)∈E

λ(p, q)
4 × 2 dmax

||ti(p) − tj(q)||

(3)
where Imax denotes the maximum intensity difference between F and M , ti(p)
denotes translating xp with the i-th label in L and dmax denotes the maximum
displacement allowed (as set by the user)1.

2.2 Adaptive Regularization via Measure of Image Reliability

As motivated earlier, regularization of T should be adapted according to the
local image content of M . Here, we advocate adaptive regularization based on
local noise levels and image structures. When images are corrupted with spatially
varying noise levels, the amount of regularization should be increased in noise-
corrupted regions so that the local registration of these regions can be better
driven by their more reliable neighbours. Regularization should also be decreased
in regions with high signal-to-noise ratio and meaningful local structures because
their local content have sufficient discriminatory information to provide reliable
motion estimates.

To adaptively regularize T , we propose a reliability measure, R(x), that an-
alyzes two types of cues of an image I: data fidelity and local image structure.
Here, we define the fidelity of a pixel as a function of noise levels and edge
evidence. The local noise levels, N(x), is estimated using the spectral flatness
measure defined in [19]. To estimate local edge strength, G(x), we compute the
image gradient and employ the noise-gating strategy of [19] to dampen strong
responses that might have been provoked by noise, yielding:

Ggated(x) = |∇I(x)|(1 − N(x))αG (4)

where the scalar αG controls the level of noise-gating on the image gradient.
In estimating the local image structures, κ(x), we first smooth I using a

Gaussian kernel of size σ. The local curvature of the smoothed image, denoted
as Iσ, is then computed in scale space as shown in [20]:

κ(x; σ) = (I2
y,σIxx,σ − 2Ix,σIy,σIxy,σ + I2

x,σIyy,σ)(
√

I2
x,σ + I2

y,σ)−1 (5)

where Ix,σ and Iy,σ denote the image derivatives of Iσ along x and y, respec-
tively, and Iyy,σ denote the second-order image derivatives of Iσ along y, etc. We
then use the normalized scale coordinates of [21] to address the scale-selection
problem. Specifically, to compare curvature values across different scales, we
scale-normalize κ(x; σ), yielding κn(x) = maxσ σ3κ(x; σ). Finally, to weaken the
strong responses at non-structural and noisy regions, we also apply noise-gating,
yielding:
1 Since each node of a 4-neighbourhood grid system contributes to ψij four times and

contributes to ψi once, the constant 4 is used to equalize the contribution of ψij and
ψi in the total energy cost. 2dmax is the maximum difference between two assigned
displacement vectors.
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Fig. 2. (a) An image from BrainWeb [23] corrupted with spatially varying Gaussian
white noise, 2% and 5% noise level on left and right side of image, respectively. (b)
Its local confidence measure [11], and (c) our proposed reliability measure, which has
successfully identified important image cues (e.g. local curvatures) despite of noise-
corruption. Conversely, (b) assigned higher emphasis to the local image gradients lo-
cated on the more noise-corrupted, right side of the image.

κgated(x) = κn(x)(1 − N(x))αC (6)

where the scalar αC controls the level of noise-gating on the local curvatures.
With N(x), Ggated(x), and κgated(x) estimated, the reliability measure R at

x is then computed as:

R(x) = Ggated(x)(1−κgated(x)) (7)

where the exponential term is adopted as a cue-gating strategy as proposed
in [22] to suppress gradient information in highly textured regions. R is subse-
quently normalized to a range of [0,1]. Fig. 2c shows the reliability map computed
from an image corrupted with spatially varying noise. Observing Fig. 2c, we note
that despite of data corruption, the change in R is small, indicating that it is
relatively insensitivity to noise. In general, as presented in Fig. 2b-c, R is much
more robust to noise than some of the measures proposed in the literature, e.g.
[11]. Details of how parameters of R were chosen will be discussed in Sec. 2.6.

We next present how the proposed reliability measure is used in MRF-based
registration, augmented with adaptive regularization. For this task, we compute
R over F and M to create reliability maps RF and RM , respectively.

2.3 Reliability Encoded as Edge-Weights for Regularization

In the context of MRF-based registration, λ(p, q) is the regularization weight
assigned to two neighbouring pixels p and q. The higher the value of λ(p, q), the
higher the required coherence between the deformations at p and q. To incor-
porate adaptive regularization into such a framework, we propose to determine
λ(p, q) based on RM (xp) and RM (xq). To this end, three encoding schemes have
been conceived for determining λ(p, q) from RM .

1. Continuous scheme (CONT). This scheme enforces minimal regulariza-
tion if both xp and xq have the highest reliability scores, or enforces maximal
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regularization otherwise. It does so by defining the weight function as: λ(p, q) =
exp(−RM (xp)RM (xq)).

2. Clustered scheme (CLUST). This scheme follows the ideas presented in
[24] (for matching of stereo images) where regularization weights are quantized.
It computes λ(p, q) as in CONT but further clusters the set of weights into K
values using K-means. As shown in our experiments, the smaller the size of the
set of all possible edge weights, the faster the convergence of MRF-optimization
due to fewer number of ‘graph reparameterizations’ [16] needed to minimize the
MRF energy.

3. Discrete scheme (DISCR). Based on CLUST, DISC incorporates the use
of intensity cues for adapting λ (referred to as ‘contextual information’ in the
segmentation work of [16]) and assumes that a change in intensity values in-
dicates presence of boundary between different tissues types. It examines the
noise-gated edge strength G(x) given in Sec. 2.2 and assigns λ(p, q) to one of
four discrete values w = {w1, w2, w3, w4}, where w1 < w2 < w3 < w4, as sim-
ilarly done in [16]. Specifically, if both p and q are identified as reliable pixels,
as determined by a threshold τrely, and they both have high edge strengths,
i.e. G(xp) and G(xq) are both greater than a threshold τedge, then we assume
that p and q belong to different tissue types and assign the lowest regulariza-
tion weight possible, i.e. λ(p, q) = w1. If both pixels are reliable, but their edge
strengths are lower than τedge, then we set λ(p, q) = w4, hence assuming that
they belong to same tissue type. However, if one of the two pixels or both pixels
are unreliable, we assign intermediate weights, depending on their noise-gated
local edge strengths: we set λ(p, q) = w3 if their edge strengths are greater than
τedge, or λ(p, q) = w2 otherwise. Finally, to minimize the number of free vari-
ables introduced in this scheme, we parameterize w with the variable μ and set
w = {w1 = μ, w2 = 2μ, w3 = 3μ, w4 = 4μ}.

2.4 Truncation of the Unary Term Based on Reliability (DTrunc)

Since the reliability measure readily reflects the quality of local image content, we
can improve the fidelity of the data term by lowering the influence of the unary
costs of all unreliable pixels via truncation [16]. If the pixel values M(xp) and
F (xp + ti(xp)) are reliable, then the unary cost computed at the corresponding
locations are also reliable. If either of the pixel values is considered unreliable,
then we can enforce higher regularization at p by modifying the corresponding
unary costs of p. In other words, if RM (xp) and RF (ti(xp)+xp) are both above
τrely , then we leave ψi(ti, p) unmodified; otherwise, we assign ψi(ti, p) = η. We
shall denote this truncation strategy as DTrunc.

2.5 Implementation Details

To illustrate the generality of our adaptive regularization approach, we imple-
mented two versions of MRF-based deformable registration with spatially adap-
tive regularization to compute T̂ . The first, denoted as DENSE, follows the
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construction of Tang and Chung in [2] and computes T̂ explicitly as described
in Sec. 2.1. The second, denoted as BSPLINE, employs a B-Spline transform
model to compute T̂ as done in [1,3]. BSPLINE registration minimizes a similar
energy function2 as DENSE, but T̂ is produced from a B-Spline transform grid.
Thus, in 2D, each p represents a control point in a grid of size Cx × Cy , with
grid spacing δ, and we seek to label the set of control points with a label in L
(Sec. 2.1). Displacement at x is then computed using a cubic B-Spline model as
similarly done in [1,3].

Both DENSE and BSPLINE were implemented in MATLAB R2009b (Math-
works Natwick, MA) and employed the FastPD software [14]. We used DENSE
if a registration trial involved dmax ≤ 8 pixels or BSPLINE otherwise, although
the two algorithms may be used sequentially (employ BSPLINE to pre-align
images and refine the alignment using DENSE). To illustrate the robustness of
our proposed regularization method to noise and to intensity inhomogenity, we
derive the data term from the absolute difference image similarity metric (Sec.
3), which normally fails under noise and intensity inhomogenity corruptions.

2.6 Summary of Parameters

The parameters involved in our algorithm are τedge, τrely , μ, K, η, αG, αC ,
dmax, dres, and δ. We emphasize that most of these parameters are only re-
lated to the efficiency of MRF optimization and does not relate to our proposed
regularization approach. For DISCR, based on emperical evaluation, we chose
μ = {0.8, 1.5} and computed τrely as the 25th percentile of R, τedge as the 75th

percentile of G, and η to be the mean of all reliable unary costs. Preliminary
results did not indicate sensitivity to these values, thanks to the robustness of
R. This is demonstrated in 1c which shows that the sensitivity of R to different
noise corruptions is minimal (the blue curves in the figure represent results using
parameters αG = .8 and αC = .4 and those in red represent results using αG = .4
and αC = .1). For CLUST, we set K = 10 or if the clustering algorithm that we
employed did not converge, we rerun the clustering algorithm with K increased
by one. The value of dres was restricted by dmax so that at most 250 labels
were used (L ≤ 250 best balances between optimization time and the optimal
accuracy of T̂ ) and dmax was set to half the diagnonal length of the image.

3 Results

We performed validation of our method with both synthetic deformations and
real clinical data. Our test data comprised of a pair of magnetic resonance imag-
ing (MRI) brain slices from BrainWeb [23], and a set of 18 sagittal brain slices
from the Internet Brain Segmentation Repository (IBSR)3.

2 The data term is modified slightly, rather than computing a similarity metric at
each point, we compute the metric over a 3×3 neighbourhood of each control point.
R(xp) is computed as a distance-weighted sum of R over the neighborhood of xp.

3 http://www.cma.mgh.harvard.edu/ibsr/
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Table 1. Synthetic experiments involving random TPS-warped BrainWeb
images. Shown are registration accuracies obtained by different schemes, under various
types of noise corruption and intensity inhomogenity (IIH). Accuracy is computed as
the average MED obtained over all trials. U denotes best uniform regularization. Bolded
numbers indicate better performance. Note how the proposed data term truncation
strategy improved registration results in 8 out of 12 cases, irrespective of noise type and
level of intensity inhomogenity. In general, results obtained with adaptive regularization
had higher accuracies than those obtained with uniform regularization.

IIH Under random speckle noise Under random Gaussian noise
U U+DTrunc DISCR DISCR+DTrunc U U+DTrunc DISCR DISCR+DTrunc

6% 4.69 3.93 2.85 2.76 4.23 3.81 2.85 2.39
18% 3.49 3.43 2.70 2.96 3.61 3.20 2.55 2.49
30% 4.89 4.99 2.75 2.96 4.64 4.78 3.37 2.60

We first studied the effects of employing DTrunc, the procedure described
in Sec. 2.4. Following the approach of [25], we simulated groundtruth data by
applying random thin-plate-spline (TPS) warps, denoted as TGT , to an image
from BrainWeb, with TGT containing maximum displacement of 5 pixels in each
dimension, yielding 20 sets of F , M and TGT (10 such trials generated for each
BrainWeb image). We then corrupted the images by adding intensity inhomogen-
ity at different levels and added Gaussian or speckle noise (at 5%), as similarly
done in [15,18]. We subsequently performed DENSE registration with and with-
out DTrunc. We discretized the deformation space with dmax = 6, dres ≥ 0.5 in
the x and y dimensions.

Registration accuracy of each registration trial was computed as the mean
Euclidean distance (MED) of every pixel between TGT and T̂ , the one recovered
from registration. For all tests on uniform regularization, we repeated trials with
different values of α in {0.05, 0.1, · · · , 0.95} and the trial with the lowest MED
was selected as the final result. The obtained results are summarized in Table 1,
which indicates that the registration errors obtained with DTrunc are generally
lower than those obtained without DTrunc.

We next compared the registration performance of our proposed reliability-
based regularization using the encoding schemes outlined in Sec. 2.3. We gener-
ated a set of groundtruth data as described before, but the maximum displacement
introduced by the TPS-warps was set to 8 pixels and the generated images were
corrupted with spatially varying Gaussian noise (additive Gaussian noise patterns
of different variances at random locations). We then performed DENSE registra-
tion to register the images with dmax = 10 and dres = 1.2.

Fig. 3a presents a quantitative comparison between our proposed schemes
against uniform regularization. Results demonstrate that the use of the proposed
reliability measure for adaptive regularization using DISCR can reduce MED by
as much as 2.45 pixels. We also examined the accuracy of T̂ by examining the
Euclidean distance between TGT and T̂ on a per-pixel basis as shown in Fig. 4.
Clearly, adaptive regularization (Fig. 4) allowed for much more accurate deforma-
tions than those generated with uniform regularization.As the proposed reliability
measure was able to identify unreliable regions and the amount of regularization
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Fig. 3. Results of registration under different levels of spatially varying noise applied
to BrainWeb images. Plots show the average MED obtained when registration
was incorporated with adaptive regularization. Uniform denotes registration without
reliability-based adaptive regularization; CONT, DISCR, CLUST each denotes one of
our proposed schemes as presented in Sec. 2.3. For DISRC, the number in brackets
are the values of parameter μ. Results involving (a) DENSE to recover TPS warps
(dmax = 8) and (b) BSPLINE to recover B-Spline warps (dmax = 12). The differ-
ences in trend were due to differences in registration schemes, types of warp used, and
discretization levels. Reliability-based regularization encoded with DISCR generally
yielded low MED.

was increased in these regions accordingly, errors at these unreliable regions were
relatively lower than those obtained with uniform regularization.

We next tested BSPLINE registration incorporated with adaptive regulariza-
tion. We applied synthetic B-Spline warps containing maximum displacement of
12 pixels and evaluated results by comparing the known warps with the recov-
ered ones. Results from this experiment are summarized in Fig. 3b, which shows
that reliability-based regularization using DISCR had reduced MED by as much
as 0.90 pixels.

Finally, we performed pairwise registrations on the clinical brain MR images
from the IBSR dataset. Segmentations of these images are also available (each
slice was segmented into 3 structures) so registration validation could be done
with segmentation-based measures (as performed in [26]), which allows us to
examine registration accuracy in relation to the anatomical structures of interest.
In absence of pathologies, more accurate registration will result in better overlap
of corresponding regions.

A total of 153 DENSE registrations (all 18 images with repetitions) were done
per registration scheme, e.g. uniform regularization and reliability-based regular-
ization encoded with CONT, CLUST, and DISCR (we selected μ = 1.5 based on
evaluaton in Fig. 3). For each registration, we applied T̂ to the label field of M ,
using nearest-neighbour interpolation and compared the warped segmentation
to the label field of F . After registration, we computed target overlap (TO) and
distance error (DE) as defined in [26]. The obtained results were as follows, which
are reported in (TO,DE) pairs, with TO expressed in fraction and DE expressed
in pixels: uniform regularization obtained (0.712,7.82), while reliability-based
regularization with CONT obtained (0.758,6.46), CLUST obtained (0.766,6.89);
and DISCR obtained (0.768,7.12).
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Overall, results from synthetic experiments have demonstrated that the use
of reliability-based, adaptive regularization can recover TPS and B-Spline warps
more accurately than those recovered with non-adaptive approaches: up to 2.45
and 0.90 improvement in MED for BSPLINE and DENSE registration, respec-
tively. This is true regardless of the severity of intensity inhomogenity and noise
types, e.g. (spatially varying) Gaussian and speckle. The reliability-based data
term truncation strategy was also shown to improve registration results in gen-
eral (adaptive and uniform regularization). Results from our segmentation-based
evaluation also showed that our proposed method increased TO by 0.056 (> 5%).

Fig. 4. Results obtained from a DENSE registration trial. Sub-figures (a)-(e) show the
Euclidean distance between TGT (x) and T̂ (x), which was obtained using one of the fol-
lowing registration schemes: (a) uniform regularization; reliability-based regularization
encoded with (b) DISCR (μ = 1.0), (c) DISCR (μ = 0.8), and (d) CLUST (K = 10).
Although the input image (f) was corrupted with 5% Gaussian noise, R was capable
of capturing important image cues as shown in (h). An enlarged view of a region in (f)
is shown in (g). Our propsed approach (b-d) gave more accurate results than (a) uni-
form regularization. Incorrect deformation estimation occurred mostly in background
regions where discriminative information was lacking (note the upper left and right
corners of (b-e)). Obtained displacement fields were also smoother than the one ob-
tained in (a) as reflected by the abrupt changes in colour. (e) A result of BSPLINE
registration (R encoded with CONT).

4 Conclusions

We have proposed a data-driven, spatially-adaptive regularization approach for
deformable registration. The amount of regularization enforced on the spatial
transformation was dependent on an image reliability measure that we devel-
oped. As shown in our experiments, the reliability measure can also be used
to improve the fidelity of the data term via reliability-based truncation. Dif-
ferent encoding schemes have been proposed to transform our measure to a
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weight function for use in an MRF-based registration framework. Use of the
DISCR encoding scheme achieved better and more consistant performance over
other schemes. Evaluations of our method based on synthetic and real data have
demonstrated that our regularization approach can greatly improve registration
accuracy of existing MRF-based registration algorithms. Preliminary results on
3D test data already suggest improvement our approach brings, and thus we
intend to conduct a thorough evaluation of our approach on full 3D clinical
datasets. Future work will include multi-resoluton implementation of the pro-
posed method and incorporation of the reliability measure into region-based
image similarity metrics to be applied to a wider class of registration problems.
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Abstract. In this paper we present two fine and coarse approaches for
the efficient registration of 3D medical images using the framework of
Large Deformation Diffeomorphic Metric Mapping (LDDMM). This for-
malism has several important advantages since it allows large, smooth
and invertible deformations and has interesting statistical properties.
We first highlight the influence of the smoothing kernel in the LDDMM
framework. We then show why approaches taking into account several
scales simultaneously should be used for the registration of complex
shapes, such as those treated in medical imaging. We then present our
fine and coarse approaches and apply them to the registration of binary
images as well as the longitudinal estimation of the early brain growth
in preterm MR images.

1 Introduction

Non-rigid image registration has various applications such as motion tracking,
shape comparison, atlas creation or image segmentation. Recent years have seen
the development of new non-rigid registration techniques allowing large diffeo-
morphic deformations. Diffeomorphic deformations are by definition smooth and
invertible, properties that are highly desirable in image registration and that
most of the classical registration techniques have. Importantly, since the pio-
neering work of [12], an increasing number of registration techniques transform
the images using the concept of deformation flow characterized by a velocity vec-
tor field. This makes possible large deformations while preserving diffeomorphic
properties. Note that the velocity fields can be either steady or time-dependent.
Such approaches have led to new problems: First, how to find the optimal de-
formation flow between two shapes and secondly how to regularize spatially the
deformations. Similarly, the issues of the computational complexity and memory
requirements are also important, especially in the context of 3D medical image
registration.
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In the work of [12], the registration was formulated in a Bayesian setting.
Statistical prior distributions of the deformations were modelled using stochas-
tic PDEs controlling the displacement field according to driving forces. Later,
the framework of Large Deformation Diffeomorphic Metric Mapping (LDDMM)
[21, 23, 4, 27, 18], in which the optimal velocity fields are time-dependent and
geodesic, was developed. Finding geodesic flows between two registered shapes
is fundamental in the framework of LDDMM since it ensures that the optimal
flow is the shortest path between the shapes according to a metric regularizing
the deformation. We will discuss later the influence of this metric. The LDDMM
has therefore convenient properties for the statistical comparison of images and
shapes as well as the creation of atlases. A practical implementation of the LD-
DMM for image registration, considered as the reference, has been proposed
in [4]. It solves the registration between two images in an Euler-Lagrange frame-
work using a gradient descent to minimize the registration energy as a function
of the velocity vector field of the deformation flow. Algorithms based on [4] have
been applied to inter-subject local shape comparison or atlas creation. In [6,16],
the approach has been used to measure shape variations between segmented
hearts, in order to highlight the structural remodelling of dyssynchronous fail-
ing heart. In [9,8] the LDDMM has been extended to vector- and tensor-valued
images. Finally a symmetric extension of [4] has been proposed in [5]. However,
despite its interesting statistical properties, the LDDMM approach is particu-
larly time and memory consuming. Similarly, although it were designed to allow
very large deformations, its practical use remains limited to relatively small de-
formations in the literature.

Interestingly, alternatives to the LDDMMs, faster, requiring less memory or
adapted to multi-modal images have been proposed: A symmetric interpretation
of [4] using cross correlation to measure the image similarity between the source
and target images was proposed in [3]. This interpretation was used in [11] to
measure the cortical grey matter thickness in segmented brain images. Another
interpretation [19] allowing multimodal registration for atlas creation estimates
the transformations in a Bayesian framework. Correspondences between the un-
derlying tissue classes are found by using Kullback-Leibler divergence on the
space of posteriors probabilities. More recently, [4] has been formulated as an
optimal control problem in [15] leading to an improvement of the convergence
speed and robustness. Note finally that interesting approaches making use of
the Navier-Stokes equation of fluid dynamics, have been proposed [10]. Such ap-
proaches allow large diffeomorphic deformations but are not designed to provide
geodesic transformations.

Another class of large diffeomorphic registration techniques, using stationary
velocity fields, emerged with [1]. Such parameterizations, have been applied as
an evolution of the LDDMM framework [2, 17] and an extension of the demons
algorithm [25]. Stationary parameterizations are efficient in terms of memory
required and computational time while providing registrations similar to those
obtained using time-dependent velocity fields in most cases. However, the opti-
mal flows found using these techniques are usually not geodesic at convergence
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except for very simple deformations. Statistical comparisons may therefore be
less valid using these techniques than what can be provided by the LDDMM
framework and the estimation of mean shapes out of an atlas is not as straight-
forward as using geodesic deformations. Moreover, the range of possible defor-
mations is theoretically limited compared to time-varying velocity fields.

In an attempt to extend the utility of the LDDMM framework in the context
of 3D medical image registration, we discuss in this paper one of its fundamen-
tal aspects: the choice of the smoothing kernel. Indeed, the kernel is directly
related to the metric of the deformations and therefore controls its spatial reg-
ularization. In practice, small kernels favour deformations that match local de-
tails and large kernels favour deformations that match global structures. Since
3D medical images often contain complex shapes, such as the cortical surface
of the brain, small kernels may provide unsatisfactory deformations. Similarly,
commonly used coarse-to-fine strategies, are inappropriate to register complex
shapes in the LDDMM framework. In addition, statistics on the deformations
depend on the kernel used at the finest scale. Moreover, due to the use of gra-
dient descent during the search for the optimal path, first at large scales and
then at small scales, the algorithm can converge to local minima that would
be unreachable by using only small kernels. Deformation statistics are biased in
that case. In this paper we present two different multiscale extensions of [4]: The
first one consists of the use of kernels that are the sum of Gaussian kernels of
different scales while the second one consists in using a series of such kernels.
Note, that the second extension can be related to the work of J. Glaunes where
time-dependent kernels were used in the context of surface registration [13]. Sim-
ilarly, the idea underlying these extensions is close to the coarse to fine strategy
developed in [14]. Though these natural ideas might not be new in the literature
they deserve a detailed comparison as provided in this paper.

In section 2, we present the method of [4] and discuss the influence of the
kernel. Two multiscale extensions are then presented in section 3 and tested on
synthetic and real images in section 4. Finally, the methodology and tests are
discussed in section 5.

2 3D Image Registration Using LDDMM

2.1 Registration Technique

We give here an overview of the LDDMM approach and the classical algorithm
to find optimal registrations described in [4]. This framework enables the regis-
tration of a source image IS on a target image IT defined on a spatial domain Ω
through a time dependent diffeomorphic transformation of Ω, φt, t ∈ [0, 1]. Such
a transformation is generated by a time dependent velocity field v as follows:

∂tφt = vt(φt), t ∈ [0, 1], (1)

where φ0 = Id. The velocity field vt deforms the image coordinates at time
t and φt is the induced deformation. For notational convenience we introduce
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φt,s
.= φs ◦φ−1

t . The LDDMM framework assumes the velocity field at each time
to be smooth enough so that the flow φt is well defined, as described in [26]. The
registration problem then consists in finding the velocity field vt that minimizes
the energy E(v), defined by:

E(v) =
∫ 1

0

1
2
||vt||2V dt +

1
2
||IS ◦ φ−1

1 − IT ||2L2 . (2)

The similarity measure here is the sum of the squared differences between the
intensities in the target and the deformed image. The time dependent velocity
field v is assumed to lie in L2([0, 1], V ), where V is a Hilbert space of vector
fields, and the norm on V can be any norm which satisfies for any u ∈ V :
‖u‖1,∞ ≤ m‖u‖V , for a positive constant m (we denote by ‖ . ‖1,∞ the sup norm
on the vector field and its first derivative). Importantly, underlying the space
of velocity fields V , there exists a smooth matrix-valued kernel k(., .) which de-
scribes the velocity fields that can be used for the registration. Conveniently, the
space V can be defined from this kernel as the completion of the linear space
spanned by v(x) =

∑n
i=1 k(x, yi)pi, where yi ∈ Ω and pi ∈ R

d (d the spatial di-
mension of Ω) with respect to the norm defined as ‖v‖2

V =
∑n

i,j=1 pT
j k(yj , yi)pi.

Therefore any vector field in V is efficiently approximated by using a finite sum
of elementary vector fields k(., y)p. Interestingly, there exists a wide family of
available kernels. Among various properties, the space of admissible kernels must
be stable under addition and under multiplication by a positive constant. For
critical computational issues, we consider here Gaussian kernels that are trans-
lation invariant (k(x, y) = K(x − y)) and separable:

K(x) = (2π)−d/2|Σ|−1/2 exp
(
−1

2
xT Σ−1x

)
, (3)

where Σ is the covariance matrix. We restrict our study to isotropic covari-
ances, i.e. such that Σ = σIdRd . The key parameter σ then controls the spatial
correlation of the deformations. We discuss this point in Subsection 2.2.

The minimization algorithm is described hereafter. We denote JS
t = IS ◦φt,0,

JT
t = IT ◦φ1,t and |Dφt,1| the Jacobian of φt,1 at time t. We consider an homoge-

neous discretization of the time ti = iΔt, i ∈ {1, · · · , I}. The minimization of the
variational problem of Eq. 2 is performed by using a steepest gradient descent
approach. Practical resolution then involves the iterative use of the gradient of
the functional E, denoted by ∇vEt, in the space L2([0, 1], V ) at time t:

K � ∇vEt = vt − K �
(|Dφv

t,1|∇JS
t (JS

t − JT
t )
)
, (4)

where � denotes the convolution operator. The velocity field is then updated by
computing:

vk+1 = vk − εK � ∇vk
tj

E , (5)

where ε is the step size during the gradient descent step. The optimal time depen-
dent diffeomorphism should be a geodesic path in the group of diffeomorphisms
for which the associated velocity field satisfies the Euler-Lagrange equation:



190 L. Risser et al.

v̂t − K �
(|Dφv̂

t,1|∇JS
t (JS

t − JT
t )
)

= 0, ∀ t ∈ [0, 1] . (6)

In such a case, the optimal path has shooting properties [20] from the velocity
field at time t = 0 that can be used to statistically compare shapes [24]. We
emphasize that these statistics depend critically on the choice of the metric on
V as shown in the next subsection.

2.2 Influence of the Kernels

As discussed briefly in the Introduction, the kernel controls the spatial behaviour
of the deformations. For isotropic Gaussian kernels of standard deviation σ,
the parameter σ is the characteristic length defining the scale at which the
registration is performed. To give a practical interpretation of the influence of σ,
let us focus on the right hand side of Eq. 4, which provides the energy gradient
that is used to update the velocity field at each iteration (Eq. 5). Its second
term |Dφv

t,1|∇JS
t (JS

t − JT
t ) pushes locally the source image IS onto the target

image IT since the direction is defined by the gradient ∇JS
t . This term is then

smoothed by using the filter K so the deformations are more or less correlated
according to the choice of σ. Figures 2 and 3 illustrate the influence of the
kernel on the 2D binary images I1

S , I1
T , I2

S , I2
T of Fig. 1. In Fig. 2, we register the

Fig. 1. 2D binary images to illustrate the influence of the kernel. From left to right:
Source image I1

S, target image I1
T , source image I2

S, target image I2
T

Fig. 2. Deformation of I1
S to I1

T for (from left to right) t = 0, t = 0.25, t = 0.5, t = 0.75,
t = 1.0. Row 1: I1

S to I1
T using a large kernel (σ = 8 pixels). Row 2: I1

S to I1
T using a

small kernel (σ = 2 pixels).
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Fig. 3. Deformation of I2
S to I2

T for (from left to right) t = 0, t = 0.25, t = 0.5, t = 0.75,
t = 1.0. Row 1: I2

S to I2
T using a large kernel (σ = 5 pixels). Row 2: I2

S to I2
T using a

small kernel (σ = 1.5 pixels). Row 3: I2
S to I2

T registration with a small kernel (σ = 1.5
pixels) and initialized by the output of Row 1.

square I1
S on its translated I1

T . In order to obtain a translation-like deformation
using LDDMMs, the standard deviation σ of the gaussian kernel must be of a
size at least similar to the size of the square (σ = 8 pixels here). Using a smaller
kernel (σ = 2 pixel), the square is not considered as a whole object but as a set
of details. Therefore some parts of I1

S are compressed and other are expanded
during the registration. In Fig. 3, the square I2

S is now registered on a rectangle
containing a slot I2

T . As expected, at a large scale (σ = 5 pixels) the square
is registered on the rectangle with a small perturbation while at a small scale
(σ = 1.5 pixels) the registration fully takes into account the slot. Note that,
in the latter case, the registration makes use of invertible large deformations.
We show the corresponding deformation grid at t = 1 in Fig. 5. Even though
the transformation appears non-invertible, a closer inspection shows that the
deformation is actually invertible but with very high values of the Jacobian.
Such behaviour is not desirable. We have registered I2

S on I2
T using the same

small kernel as in row 1 by taking as initial guess the flow of row 2, computed
with a large kernel, instead of a null flow. Theoretically, the initial guess should
have no influence on the final result, so the estimated flows should be the same
in rows 2 and 3. However, even though the final deformations look similar, the
estimated flows are completely different, the one obtained with the coarse to fine
technique obviously not enjoying shooting properties at t = 0. This deformation
is therefore not the global optimum. The convergence to a local minimum is due
here to the use of a gradient descent. Hence, in the context of LDDMM, the size
of the kernels has a strong influence on the scale of the registration. Moreover, the
use of inappropriate kernels or coarse to fine strategies can lead to unrealistic
deformations. To tackle the presented issues in the context of medical image



192 L. Risser et al.

registration, where the registered shapes may contain several scales of interest,
we propose two fine and coarse extensions of [4] in the next section.

3 Multi-kernel LDDMM

3.1 Sum of Gaussian Kernels

An immediate extension of [4] to simultaneously perform the registration at
several scales is to define the kernel K as the sum of several kernels having
different scales. Here, instead of using the kernel of [4] or a simple Gaussian
function, we build K as the sum of N Gaussian kernels as follows:

K(x) =
N∑

n=1

anKσn(x) =
N∑

n=1

an(2π)−3/2|Σn|−1/2 exp
(
−1

2
xT Σ−1

n x

)
, (7)

where Σn and an are respectively the covariance matrix and the weight of the nth

Gaussian function. An important property of reproducing kernel Hilbert spaces
is:

|w|2K1+K2
= inf

{|u|2K1
+ |v|2K2

∣∣w = u + v with u ∈ HK1 and v ∈ HK2

}
. (8)

The optimization is then performed simultaneously at the fine and coarse scales.
Note that an extension of this idea to the space of diffeomorphisms can be
argued according to [7]. Equation (7) then allows one to construct a wide range of
kernels with several scales of interest while preserving all the promising statistical
properties of the LDDMM. Note that the choice of the weights (an)n∈[1,N ] is a
key issue here since it controls the influence of the structures at different scales
for the deformation. For instance, one would want an equivalent influence of
the large and small structures in the registration. This point is discussed in
Subsection 3.3.

3.2 Chain of Gaussian Kernels

Our second extension of [4] consists of using a chain of N deformations between
IS and IT , each having its own kernel. The idea of a time dependent kernel
already appeared in [13] for surface registration where the width of the kernel
was chosen C1 and decreasing in time. We still register IS on IT through a
time dependent diffeomorphic transformation φt, where t ∈ [0, 1], related to the
velocity vector field vt by equation (1). Here, however, we minimize the following
energy as a function of vt, t ∈ [0, 1]:

argmin
v=vt,t∈[0,1]

1
2
‖IS ◦ φ−1

1 − IT ‖2
L2 +

N∑
n=1

∫ n/N

(n−1)/N

1
2
‖vt‖2

Vσn
dt (9)

where ||.||Vσn
, n ∈ {1, · · · , N} represents the norm related to Gaussian ker-

nels Kσn(x) of width σn and weighted by an. As in a coarse-to-fine approach,
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(σn)n∈[1,N ] decreases as n increases, which implies that the sequence of Hilbert
spaces is increasing for the inclusion. Therefore the group of diffeomorphisms
is the same as the one generated by VσN . However, the cost of the transforma-
tion in (9) does not give a Riemannian metric on this group contrary to the
classical framework and it does not even give in general a distance due to this
non-symmetric cost. Despite these drawbacks, the shooting property of the ini-
tial setting is still conserved. Implementation of this scheme differs slightly from
that of [4], as described below. Table 1 presents the resolution algorithm where,
for readability, we recall that the symbol ∀ means “for all”. Note that, in this
algorithm, the gradient descent parameter ε must be small enough to ensure the
invertibility of the deformation.

Table 1. Gradient descent for multi-kernel LDDMM

(1) Initialize the velocity field v(x, ti) = 0, ∀x, ∀i.
(2) While not convergence
(3) Estimate φ(x, ti) and φ−1(x, ti) by forward/backward integration of v, ∀x, ∀i.
(4) For i = 1 : I
(5) Estimate JS

ti
(x) and JT

ti
(x) by using φ and φ−1, ∀x.

(6) Compute M(x) = |Dφ(x, ti)|∇JS
ti

(x)(JS
ti

(x) − JT
ti

(x)), ∀x.
(7) Smoothing: Ms(x, ti) = Kσn(M(.)), ∀x and where n−1

N ≤ iΔt < n
N .

(8) Update: v(x, ti) = v(x, ti) − ε(v(x, ti) − Ms(x, ti)), ∀x, ∀i.

3.3 Weight of the Kernels

The fine and coarse registration techniques presented in Subsections 3.1 and
3.2 depend on a set of parameters an, n ∈ [1, N ] each of them controlling the
weight of the deformations at scale n. The deformations are strongly related
to the velocity field updates iteration after iteration. These updates do not only
depend on the values of an but also on the kernels as well as the registered images.
To set the weights, we then introduce the apparent weights a′

n, n ∈ [1, N ] such
that an = a′

n/g(Kσn , IS , IT ) where g represents the typical amplitude of the
velocity field updates for a given smoothing kernel and two registered images.
We then set g as the norm of the maximum gradient computed (Eq. 4) at the
first iteration of the algorithm, when registering IS on IT using Kσn :

g(Kσn , IS , IT ) = Kσn � (∇IS(IS − IT )) . (10)

In the context of fine and coarse registration, all a′
n should then be similar in

order to have equivalent deformations at each scale considered. If the value of
a′

n is significantly higher than the other apparent weights, the registration will
be almost the same as the registration at the scale n only. This technique has
the advantage of being simple to use and was shown to be efficient both on 2D
synthetic images and 3D CT and MR images. Importantly, for images of the
same type (e.g. MR brain images with the same acquisition protocol) and the
same kernels Kσn , the values of g were observed to be stable. The method can
then be used for an atlas creation by systematically using the same kernels with
same weights.
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4 Results

4.1 Evaluation on Synthetic Images

We evaluate here the behaviour of the two techniques presented in Section 3
in the registration of I2

S on I2
T (cf. Fig. 4). Note that the interpretation of the

deformations of I1
S on I1

T is similar. We use the characteristic scales to σ1 = 5 and
σ2 = 1.5 pixels, the values at which the registration were performed using simple
Gaussian kernels in Subsection 2.2, and equal apparent weights at both scales.
One can observe that the flow obtained using the sum of kernels (Fig. 4, 1st
row) looks similar to the one obtained using small kernels (Fig. 3, 2nd row) for
an almost equivalent overlap between the deformed and target images. The flow
obtained using the chain of kernels (Fig. 4, 2nd row) matches the shape at a large
scale between t = 0 and t = 0.5 and then matches the details between t = 0.5
and t = 1 and the final matching is good even if slightly less accurate than using
a small kernel or the sum of kernels. The comparison of grid deformations at
t = 1 in Fig. 5 is particularly interesting. It shows that the deformations obtained
using the multi-kernel approaches are smoother and visually more natural than
using small kernels. This key property and the good final matching are due to
the simultaneous consideration of two scales that are pertinent to the registered
shape.

Fig. 4. Deformation of I2
S to I2

T for (from left to right) t = 0, t = 0.25, t = 0.5, t = 0.75,
t = 1.0 by using sum (Row 1) and chain (Row 2) of kernels, each having σ1 = 5 and
σ2 = 1.5 pixels

4.2 Evaluation on Brain MR Images

We apply now our techniques to the longitudinal estimation of the early brain
development out of MR brain images. Here we limit our study to the comparison
of two brains of 29.86 and 33.86 weeks of gestational age for the same preterm
infant. The images have a spatial resolution of 0.85mm and bias field correction
has been performed using N3 [22]. Two characteristic lengths are considered
here, a large one (σ1 = 5mm) and a small one (σ2 = 1.5mm) and equal apparent
weights are used for the fine and coarse deformations. As shown in Fig. 6, using a
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Fig. 5. Deformation grids at time t = 1 of the registration of I2
S to I2

T using a small
kernel (left) the chain (center) and the sum (right) of kernels. Each square of the grid
represents a deformed pixel.

Fig. 6. Effect of the kernel on the deformation of a MR brain image. Grid size is one
voxel. From left to right: large kernel (σ1 = 5mm), small kernel σ2 = 1.5mm), chain
of the two kernels, sum of the two kernels.

Fig. 7. Registration using the sum of kernels (σ1 = 5mm, σ2 = 1.5mm). Top-left:
Source image. Top-right: Deformed source image at t = 1. Bottom-left: Target
image and isovalues of the source image showing the surface of a lateral ventricle.
Bottom-right: Target image and isovalues of the deformed source image at t = 1
showing the surface of a lateral ventricle.

small kernel leads to unnatural looking deformations while the deformations look
more plausible when using a large kernel. The matching is however much better
using small kernels instead of large ones. The multi-kernel approaches provide
visually more natural deformations that also match the details. We can observe
that they deform the grid at fine and coarse scales simultaneously. In Fig. 7, we
can first observe that the deformations obtained using the sum of kernels look
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natural and are accurate. In comparison, when using the chain of kernels with
the same number of iterations the matching seems slightly less accurate both
at large and small scales. It appears therefore that the sum of kernels produces
more accurate deformations and higher statistical power.

5 Conclusion

We have presented examples of the use of fine and coarse approaches in the con-
text of LDDMM for the registration of 3D medical images. The approaches we
developed make use of either a time dependent kernel, or a constant kernel de-
fined by the sum of several Gaussians. Our tests have shown that these methods
estimate natural deformations on complex images with diffeomorphic properties.
In particular, using the sum of Gaussian kernels leads to natural-looking, accu-
rate registrations that have a strong statistical power, even on complex images.
Future work will pursue the development of extensions with other similarity
measures and use of a multi-resolution approach. More experiments and appli-
cations will also be carried out on MR cerebral images, as well as on CT cardiac
images.
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Paris 13 (2005)

14. Haber, E., Modersitzki, J.: Cofir: coarse and fine image registration. In: SIAM
Real-Time PDE-Constrained Optimization, pp. 37–49 (2007)

15. Hart, G., Zach, C., Niethammer, M.: An optimal control approach for deformable
registration. In: Computer Vision and Pattern Recognition Workshop, pp. 9–16
(2009)

16. Helm, P., Younes, L., Beg, M., Ennis, D., Leclercq, C., Faris, O., McVeigh, E.,
Kass, D., Miller, M., Winslow, R.: Evidence of structural remodeling in the dyssyn-
chronous failing heart. Circulation Research 98, 125–132 (2006)

17. Hernandez, M., Bossa, M.N., Olmos, S.: Registration of anatomical images using
paths of diffeomorphisms parameterized with stationary vector field flows. Int. J.
Comput. Vision 85(3), 291–306 (2009)

18. Younes, L., Arrate, F., Miller, M.I.: Evolutions equations in computational
anatomy. Neuroimage (November 2008)

19. Lorenzen, P., Prastawa, M., Davis, B., Gerig, G., Bullitt, E., Joshi, S.: Multi-modal
image set registration and atlas formation. Med. Image. Anal. 10(3), 440–451 (2006)
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Abstract. Diffusion tensor imaging provides information about deep
white matter anatomy that structural magnetic resonance images typi-
cally fail to resolve. Non-linear registration of diffusion tensor images, for
which a few methods already exist, allows us to capture the deformations
of these structures that would otherwise go unobserved. Here, we build on
an existing method for diffeomorphic registration of diffusion tensor im-
ages, so that it fully incorporates the useful log-domain parameterization
of diffeomorphisms. Initially, this allows us to easily include a registration
symmetry constraint that is highly desirable for pair-wise registration.
More importantly, the parameterization allows simple and proper calcu-
lation of statistics on the transformations obtained. We show that the
symmetric log-domain method exhibits the most preferable trade-off be-
tween image correspondence and deformation smoothness on real data
and also achieves the best recovery of synthetic warps.

Keywords: Diffusion tensor imaging, computational anatomy, diffeo-
morphic registration, exponential map.

1 Introduction and Motivation

Although linear registration allows proper visual comparison of images and can
also account for subject movement during image acquisition, its major limitation
is that it only accounts for features of global transformations between images,
such as position, orientation and scale. Capturing local anatomical differences,
such as the size or shape of particular brain regions, requires non-linear reg-
istration, which overcomes these limitations by allowing images to transform
differently at each point.

The discipline of computational anatomy aims to use these non-linear trans-
formations to compute deformation statistics of anatomical structures that can
potentially account for biological variability within a population [1]. Therefore,
any method of registration used in this discipline must be able to provide defor-
mations that can easily be used for statistical analysis. One such method makes
use of the diffeomorphic demons registration framework [2], described in Sect. 2,
and can be adapted to directly estimate a vector space parameterization of the
transformation [3], allowing simple statistical calculation.
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In this work, we specifically consider non-linear registration of diffusion tensor
images (DTIs), which represent the diffusion of water in the brain using a second-
order symmetric tensor at each voxel [4]. DTI registration is of particular interest
because it provides unique information about deep white matter structures, the
deformations of which we propose may be more significant than changes observed
from scalar image registration. In a purely mathematical sense, it is also the
case that DTI registration can be considered better determined to estimate a
transformation from one image to another simply because each voxel of a DTI
contains a tensor defined by six unique values, as opposed to the single value of
a scalar image. It is for both these reasons that we propose DTI to be a suitable
choice for the study of computational anatomy.

Although the diffeomorphic demons framework has already been suitably de-
veloped for DTI registration [5], we contribute further developments in Sect. 3
by describing how the previously referenced parameterization, which has already
been used for scalar image registration, is also feasible for DTI registration. This
section continues by explaining how our method can easily incorporate a reg-
istration symmetry constraint, which ensures that the registration process is
independent of the order of input images. This constraint has previously been
shown as a desirable feature in non-linear pair-wise registration [6] and we also
show, in Sect. 5, that it specifically improves the performance of our method as
well. The experiments and results in this section also show that the parameter-
ization alone does not significantly affect the registration process.

2 The Diffeomorphic Demons Framework

Throughout this work, it is assumed that there is a non-parametric spatial trans-
formation s from a moving image, M , to a fixed image, F . The ‘demons’ frame-
work, initially described in [7], provides one approach to find this transformation
and has seen many developments. Its most recent general form [2] works by at-
tempting to iteratively minimize an energy

E(F, M, s, c) = σ−2
i Sim(F, M ◦ c) + σ−2

x Dist(s, c) + σ−2
T Reg(s) (1)

where c is a non-parametric transformation that should achieve point correspon-
dences between the images, σi weights the uncertainty of the images, σx weights
the spatial uncertainty between c and s and σT weights the spatial uncertainty
of s alone. This means that solving (1) is equivalent to finding a small update
transformation u to compose with the current one such that c = s◦u. The intro-
duction of the hidden variable, c, allows the energy to be split into two forms,
each of which can be optimized alternately in the following scheme [8].

1. Correspondence: given the current s, find the c that minimizes

Ec(F, M, s, c) = σ−2
i Sim(F, M ◦ c) + σ−2

x Dist(s, c). (2)

2. Regularization: given the c found from step 1, find the s that minimizes

Es(s, c) = σ−2
x Dist(s, c) + σ−2

T Reg(s). (3)
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The regularization step in the demons framework constrains the smoothness of
s, but it does not guarantee the smoothness, or even existence, of its inverse
transformation. However, for s to be a meaningful transformation in biomedical
image registration it is desirable that finding an s from M to F implies the
existence of a smooth s−1 from F to M . Formally, we require s to be a dif-
feomorphism. Such a constraint can be imposed by exploiting the log-Euclidean
framework for diffeomorphisms [9]. This uses the log map to parameterize the
update transformation as a stationary velocity field u = log(u), which when put
through the exponential map gives a diffeomorphic update u = exp(u).

Although we are free to choose the similarity, distance and regularization
criteria in (1), it is typically the case that Sim(F, M ◦ c) = ||F − M ◦ c||2,
Dist(s, c) = ||s − c||2 = ||u||2 and Reg(s) = ||∇s||2K , where it should be noted
that the regularization criterion makes use of a norm defined in a space K. These
choices have the advantage that (2) has an approximate closed form solution
that can be found independently at each point of a scalar image [2] and that (3)
can be approximately solved by convolution with a Gaussian related to K [8].
Additionally, the number of free parameters in the model is typically reduced
by defining σi = ||F − M ◦ c||.

With all these assumptions, a single iteration of the diffeomorphic demons
algorithm consists of the two following steps

1. u∗ = argmin
u

[
Ediffeo

c (F, M, s,u)
]

= argmin
u

[
σ−2

i ||F − M ◦ (s ◦ exp(u))||2 + σ−2
x || exp(u)||2]

2. s ← Kdiff � exp(Kfluid � u∗)

where � represents convolution, Kfluid = G[0, σ2
fluidI] is used to performed fluid-

like regularization of the update to the transformation and Kdiff = G[0, σ2
diffI] is

used to perform diffusion-like regularization of the updated transformation. We
use G[μ,Σ] to denote a Gaussian distribution with mean μ and covariance Σ.

3 Diffeomorphic Demons Registration of DTIs

3.1 General DTI Registration

While the regularization step in the diffeomorphic demons framework only op-
erates on vector fields, and is therefore independent of the image type, the cor-
respondence step includes a few operations that must be explicitly defined for
tensor images.

First of all, there should be a way to perform arithmetic on tensor images,
so that the sum of squares similarity criterion can continue to be used. This is
achieved by exploiting the log-Euclidean framework for tensors [10], which al-
lows a tensor T (n) at voxel n in image T to be parameterized by a log-tensor
log(T (n)). As log-tensors belong to a vector space, tensor arithmetic is accom-
plished by performing vector arithmetic on the log-tensors and exponentiating
the result. Secondly, we must also define how to correctly warp the DTIs. As
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we work with discrete images, there must be a way to interpolate tensors so
that images can always be compared at the same points. Continuing to use the
log-tensor representation means that interpolation is simply achieved by linear
component-wise vector interpolation, an approach which has exhibits reasonable
performance [10].

However, non-rigid transformations of tensor images also causes the local ori-
entation of the tensors to be lost. The orientation of diffusion tensors is vital,
as it is groups of locally aligned tensors that represent anatomical white mat-
ter structures in the brain. There are two possible reorientation schemes that
attempt to correct for this [11]. The preservation of principal direction (PPD)
approach finds the rotation matrix, R(n), which ensures that the principal axis
of T (n) is the same as it was before the warp was applied. By contrast, the
finite strain (FS) approach finds the R(n) that minimizes the Frobenius dis-
tance to the local transformation Jacobian matrix J(n). In practice, this min-
imization is computed from the polar decomposition of the Jacobian, so that
R(n) = (J(n)J(n)T )−

1
2 J(n). In both cases, the corrected tensor is given by

T ′(n) = R(n)T T (n)R(n) and the log-tensor is corrected in the same way to give
log(T ′(n)) = R(n)T log(T (n))R(n).

Given the advantages of using log-tensors in all these aspects of DTI registra-
tion, we compute these beforehand, use them in the registration, then take their
exponential to produce the final warped image. Therefore, all references to the
fixed and moving images, F and M , hereby refer to the log-tensor images.

3.2 DT-REFinD

The DT-REFinD method [5], hereby denoted as DTR, provides a way of per-
forming diffeomorphic demons registration of tensor images and importantly
incorporates FS reorientation directly into the energy to be minimized

EDTR
c (F, M, s,u) = σ−2

i ||F − RT (M ◦ (s ◦ exp(u)))R||2 + σ−2
x || exp(u)||2 (4)

where R can be thought of as an image of rotation matrices, which specifies
the tensor reorientation at each voxel. The direct incorporation of the reorien-
tation into the optimization has been shown to improve performance compared
to a scheme where orientation is simply corrected after each standard update.
Following the notation of [5], we can express the correspondence energy as

EDTR
c (F, M, s,u) =

∥∥∥∥ϕ1(F, M, s ◦ exp(u))
ϕ2(u)

∥∥∥∥2 =
∥∥ϕc(F, M, s,u)

∥∥2 (5)

whereϕ1(F, M, s◦exp(u)) = σ−1
i [F−RT (M◦(s◦exp(u))))R],ϕ2(u) = σ−1

x exp(u)
and ϕc(F, M, s,u) = [ϕ1(F, M, s ◦ exp(u)), ϕ2(u)]T .

In general, the demons algorithm approximates this energy by the 0th and 1st

order terms of its Taylor expansion with respect to u

EDTR
c (F, M, s,u) ≈

∥∥∥∥[ϕ1(F, M, s ◦ exp(0))
ϕ2(0)

]
+
[
Dϕ1(F, M, s ◦ exp(0))

Dϕ2(0)

]
u
∥∥∥∥2

(6)
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which means that finding u∗ by minimizing (6) is equivalent to solving the least
squares problem ||b−Au||2 where b = [ϕ1; ϕ2] and A = −[Dϕ1 ; Dϕ2 ]. For scalar
image registration, the matrix A has a block diagonal structure which means
that each vector component of u∗ can be individually solved. However, DTR’s
incorporation of FS reorientation into the energy means that A is sparse, but
no longer has a simple block diagonal structure because the optimal displace-
ment of a tensor at one point affects the reorientation, and therefore optimal
displacement, of a tensor at a neighboring point. Accordingly, the current im-
plementation of DTR finds a solution using a least squares conjugate gradients
solver in Gmm++ [12], but is memory and processor intensive due to the large
size of the sparse matrix A.

4 Log-Domain Diffeomorphic Registration of DTIs

4.1 Log-Domain DT-REFinD

On first appearances, the basic diffeomorphic demons framework satisfies the
need for statistical computation because the log map of the final transformation
should be its stationary velocity field representation. However, in practice the
log map acts as a high-pass filter, and exhibits a lack of stability between the
transformation and its stationary velocity field representation [13]. To overcome
this problem an alternative approach [3] extends the demons framework by not
only parameterizing the update field in the ‘log-domain’, but the current trans-
formation as well, so that the update is directly applied to a stationary velocity
field v whose exponential is s. This direct update on the velocity field is achieved
using the Baker-Campbell-Hausdorff function, denoted as Z(.), to approximate
the composition for small updates such that exp(Z(v, εu)) ≈ exp(v) ◦ exp(εu)
[14]. As a result, the two iterative steps of log-domain DTR (LDDTR) are

1. u∗ = argmin
u

[
EDTR

c (F, M, exp(v),u)
]

2. v ← Kdiff � Z(v, Kfluid � u∗)

where it should be noted that EDTR
c is the same as in the original algorithm. In

other words, exactly the same method can be used to find u∗ because the log-
domain approach only affects the representation of the transformation. However,
the consequence of using this representation directly is that the regularization is
defined for the stationary velocity field v which parameterizes the transforma-
tion, rather than the transformation itself. More specifically, the regularization
energy is modified to become Reg(s) = ||∇ log(s)||2K = ||∇v||2K .

4.2 Symmetric Log-Domain DT-REFinD

The diffeomorphic parameterization in the general framework ensures s−1 exists
and is smooth, but the classic demons algorithm only ever finds the forwards
transformation s : M → F . Running the algorithm with the images exchanged
will certainly produce a diffeomorphism t : F → M , but there is no guarantee
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that t = s−1. This registration symmetry, or inverse consistency, can be easily
achieved in the log-domain by performing two unconstrained optimisations of
the current transformation and projecting these onto a new symmetric transfor-
mation [3]. The first is the same as usual and finds an update u∗

forw for s, while
the second finds an update u∗

back for s−1 with the fixed and moving images ex-
changed. As DTR can be performed in the log-domain, the same approach can
be exploited to define the two steps of symmetric LDDTR (SLDDTR)

1. (a) u∗
forw = argmin

u

[
EDTR

c (F, M, s ◦ exp(v),u)
]

(b) u∗
back = argmin

u

[
EDTR

c (M, F, s ◦ exp(−v),u)
]

2. v ← 1
2Kdiff � (Z(v, Kfluid � u∗

forw) − Z(−v, Kfluid � u∗
back))

where it should be noted that R will be different for the steps 1a and 1b and
the second term in step 2 is negated in order to invert the updated inverse
transformation, so that the average of both updated transformations is found
in the forwards direction. Note that projection of the two updated transfor-
mations onto the space of symmetric transformations is simply performed by
averaging because the representative stationary velocity fields belong to a vector
space.

5 A Comparison of DTI Registration in and Out of the
Log-Domain

In order to implement the LDDTR and SLDDTR methods described in Sect. 4.1
and Sect. 4.2 respectively, we have adapted the implementation of symmetric and
non-symmetric log-domain diffeomorphic demons registration of scalar images
[15], so that it uses the implementation of the energy function from [5].

5.1 Validation on Real Data

Diffusion weighted imaging data are provided by the Neuradapt study group and
the authors would like to acknowledge M. Vassallo, C. Lebrun and S. Chanalet
for making these available. Here we consider a sub-group of 7 subjects from this
study. For each subject, a single unweighted (b = 0) was acquired along with 23
gradient weighted (b = 700s/mm2) images with data dimensions of 256×256×2̃6
and spatial dimensions of 0.9375mm×0.9375mm×5.5mm. While the anisotropy
of the spatial dimensions is particularly high, we still believe that the data can
highlight any differences between the registration methods considered.

DTI reconstructions are performed assuming the usual log-Gaussian noise
model and any non-positive tensors, which are physically meaningless, are re-
placed with a local tensor mean [16]. Each subject’s b = 0 image is linearly reg-
istered to that of the 2mm ICBM-DTI-81 template [17] using the affine version
of the robust method described in [18], which is available in [19]. The resultant
affine transformations are applied to their corresponding DTIs, using FS reori-
entation. Finally, the brain extraction toolkit [20] is used to generate a brain
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foreground mask from each b = 0 image, which is applied to the affinely reg-
istered DTI to remove any tensors outside of the brain. Although this tool is
primarily designed for use on T1 images, we find that the masks generated using
the T2 weighted b = 0 images are reasonable after a small erosion.

Every possible unique pair-wise registration is performed between the sub-
jects’ DTIs, giving 42 registrations for the non-symmetric methods and 21 for
SLDDTR. All algorithms are allowed to iterate ten times using σx = 1, which
is enough to ensure reasonable convergence of the solutions. A multi-resolution
scheme is not used because it does not significantly improve the convergence or
performance, possibly due to the initial affine registration. As LDDTR and SLD-
DTR optimize a different regularization energy compared to DTR, we register
over a range of regularizaton parameter values σT = {0.6, 0.8, . . . , 2.0} so that
the final transformations produced by each of the methods can be compared
at a range of harmonic energies (HEs). The HE is defined as the mean square
Frobenius norm of the transformation Jacobian and therefore corresponds to the
irregularity of the transformation.

Figure 1 demonstrates that at low HEs, the mean square error between the
log-tensor images, referred to from here as the log mean square error (LMSE), is
relatively similar for all of the methods. One difference is that LDDTR produces
a higher LMSE than DTR at the same HE. This difference is accentuated at
higher HEs. By contrast, the SLDDTR method achieves a lower LMSE than
DTR at the same HE, although the difference is less clear at higher HEs. These
observations suggest that using the log-domain parameterization directly has a
detrimental effect on performance. Yet the same parameterization also allows
easy incorporation of the symmetric constraint, which seems to be beneficial.

Fig. 1. The mean log-tensor image square error plotted against the mean transforma-
tion harmonic energy for registration of 42 subject pairs using the DTR, LDDTR and
SLDDTR methods

Figure 2 shows an example of a single registration performed using all three
methods with a single reasonable regularization parameter σT = 1.4. The visual
correspondence of the warped DTIs these produce illustrate the similarity in
performance.
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(a) F (b) M

(c) M ◦ sDTR (d) M ◦ sLDDTR (e) M ◦ sSLDDTR

Fig. 2. An example registration from the DTI of one subject (a) to another (b) using
the DTR (c) (LMSE=0.280, HE=0.0623), LDDTR (d) (LMSE=0.199, HE=0.0881) and
SLDDTR (e) (LMSE=0.200, HE=0.0742) methods using σT = 1.4. For (a-e) the image
intensity represents fractional anisotropy and the color represents the principal axis of
the tensor where red=left-right, green=posterior-anterior and blue=inferior-superior.
In all cases, the same mid-axial slice is displayed using MedINRIA [19].

5.2 Performance on Synthetic Warps

In order to quantitatively compare the performance of the methods with a
known ground truth, we create three random diffeomorphisms for each sub-
ject, apply them to the DTI of their respective subject and add noise to the
warped DTIs. A single noisy warped DTI is generated according to the following
scheme.

1. Create a random velocity field vr by sampling a vector for each foreground
voxel in the original DTI from G[0, σ2

r I].
2. Convolve vr with G[0, σ2

s I] to give a smooth random velocity field vs.
3. Exponentiate vs to give a random diffeomorphism ss = exp(vs).
4. Warp the original DTI with ss using FS reorientation.
5. Add noise drawn from G[0, σ2

nI] to the log-tensors in the warped DTI.

For our experiments, we find that using σ2
r = 104, σ2

s = 7.252 and σ2
n = 0.005

produces warps with similar properties to those found from pair-wise registra-
tion of the real data. Specifically, the mean displacement of the random warps is
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3.403mm and their mean harmonic energy is 0.0915. Although the noisy warped
DTIs are not necessarily anatomically believable, as demonstrated by a single ex-
ample in Fig. 3, they do provide an opportunity to validate and explain previous
observations from experiments on real data.

(a) Warp (b) Original DTI (c) Noisy warped
DTI

Fig. 3. An example of a synthetic warp, represented here by its application to a regular
grid image (a) (HE=0.0936), applied to the DTI of one subject (b) to produce a warped
DTI to which noise is added (c) (LMSE=0.271). For the DTIs, the intensity and color
maps are described in Fig. 2. In all cases, the same mid-axial slice is displayed using
MedINRIA [19].

All registration methods are applied from the original image to the noisy
warped images for each subject using the same range of regularization parameter
values as before σT = {0.6, 0.8, . . . , 2.0}. The DTR and LDDTR methods are
also applied from the noisy images to the originals. As a ground truth is present
in this experiment, we additionally consider the distance from the recovered
deformation field to the true one dist(s, strue) = ||s − strue||, as well as the
distance between their Jacobians dist(J(s), J(strue)) = ||J(s) − J(strue)||.

Figure 4 shows that at low HEs, all three methods exhibit very similar LM-
SEs. In accordance with this result, the distances between the transformations
and their Jacobians are also relatively similar. At higher HEs, DTR produces a
slightly lower LMSE than the LDDTR and SLDDTR methods, but this actually
represents an increase in the distance from the true transformation.

The distance from the true transformations appears to be optimal for all
methods at an HE of around 0.07. Here, the LDDTR method exhibits slightly
better recovery of the true transformation than DTR, but this may occur sim-
ply because the synthetic warps really are parameterized by the velocity fields
assumed by LDDTR. Yet the SLDDTR method, which makes the same assump-
tion, recovers the true transformation even better than LDDTR at all HEs, which
illustrates that the symmetric constraint is beneficial for DTI registration in the
same way that has been previously demonstrated for scalar image registration
[3]. Despite this, the Jacobian distances are relatively similar for all methods at
all HEs. This suggests that the advantage of the symmetric constraint comes
from capturing information in the transformation that is not locally linear.
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(a) mean Sim(F, M ◦ s)

(b) mean dist(s, strue) (c) mean dist(J(s), J(strue))

Fig. 4. The mean log-tensor image square error (a), mean distance between the re-
covered and true transformations (b) and mean distance between their Jacobians (c)
plotted against the mean transformation harmonic energy for registration of 42 subject
pairs using the DTR, LDDTR and SLDDTR methods

6 Conclusions and Further Work

In this work, we have demonstrated that the log-domain parameterization of
diffeomorphisms can be fully incorporated into the demons framework for non-
linear registration of DTIs. While directly applying this parameterization with
little regularization may reduce registration performance, this can be counter-
acted by incorporating an inverse consistency constraint into the method. Fur-
thermore, this extra constraint seems to improve performance a little beyond
that of the original method.

Although the immediate contributions of this work are not revolutionary, they
provide the essential foundations for proper statistical analysis of the structural
deformations observable from DTI registration. In fact, the data used in this
study are only a small subset from a larger collection of 180 subjects, pair-wise
registration of which is currently being undertaken. The statistics from these
registrations have the potential to demonstrate major modes of deformation and
could also be reincorporated back into the method for statistical regularization
through non-stationary convolution.
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Other important variations on the DTR method are also possible. For exam-
ple, [5] explains that as the DTR method must solve a large system anyway,
we might as well directly solve the DTR equivalent of (1), thereby reducing the
dependence on the regularization approximations made in the original demons
framework. Additionally, we might also consider other ways of incorporating the
symmetric constraint into the DTR method, such as [21] who find a single update
from a symmetric energy for log-domain registration of scalar images. Although
this means we could avoid solving two systems as in the projection approach,
it means the single system to solve is larger and may be more easily subject to
local minima. Time permitting, all these variations will be investigated prior to
the future work described above, so that all the implications of DTI registration
in the log-domain can be fully understood.
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Abstract. In this paper, we present a method for coronary artery mo-
tion tracking in 4D cardiac CT angiogram data sets. The proposed
method allows the construction of patient-specific 4D coronary motion
model from pre-operative CTA which can be used for guiding totally
endoscopic coronary artery bypass surgery (TECAB). The proposed ap-
proach consists of three steps: Firstly, the coronary arteries are extracted
in the end-diastolic time frame using a minimal cost path approach. To
achieve this, the start and end points of the coronaries are identified in-
teractively and the minimal cost path between the start and end points is
computed using A* graph search algorithm. Secondly, the cardiac motion
is estimated throughout the cardiac cycle by using a non-rigid image reg-
istration technique based on a free-form B-spline transformation model
and maximization of normalized mutual information. Finally, coronary
arteries are tracked automatically through all other phases of the car-
diac cycle. This is estimated by deforming the extracted coronaries at
end-diastole to all other time frames according the motion field acquired
in second step. The estimated coronary centerlines are then refined by
template matching algorithm to improve the accuracy. We compare the
proposed approach with two alternative approaches: The first approach
is based on the minimal cost path extraction of the coronaries with start
and end points manually identified in each time frame while the second
approach is based on propagating the extracted coronaries from the end-
diastolic time frame to other time frames using image-based non-rigid
registration only. Our results show that the proposed approach performs
more robustly than the non-rigid registration based method and that the
resulting motion model is comparable to the motion model constructed
from semi-automatic extractions of the coronaries in all time frames.

Keywords: Nonrigid Deformation, Computer Integrated Surgery, Intra-
modality Registration, Motion Detection and Tracking.

1 Introduction

As one of the leading causes of death worldwide, coronary artery disease occurs
due to the failure of the blood circulation to supply adequate oxygen and nu-
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trition to cardiac tissues. It is typically caused by the excessive accumulation of
atheromatous plaques and fatty deposits within certain regions of the arteries
which restricts the blood flow. To treat this disease, arteries or veins grafted from
the patient’s body are used to bypass the blockages and restore the supply to
the heart muscle. Using image-guided robotic surgical system, totally endoscopic
coronary artery bypass (TECAB) surgery techniques have been developed to al-
low clinicians to perform bypass surgery off-pump with three pin-hole incisions
in the chest cavity through which two robotic arms and one stereo endoscopic
camera are inserted. However, 20-30% conversion rates from TECAB surgery
to the conventional invasive surgical approach [1,2] have been reported due to
the vessel misidentification and mis-localization caused by the restricted field of
view of the stereo endoscopic images.

The goal of our work is to construct a patient-specific 4D coronary artery
motion model from preoperative cardiac Computed Tomography Angiography
(CTA) sequences. By temporally and spatially aligning this model with intraop-
erative endoscopic views of the patient’s beating heart, this can be used to assist
the surgeon to identify and locate the correct coronaries during the TECAB
procedures [3,4].

The recent advances in using CTA for the diagnosis of coronary artery disease
diagnosis and surgical planning have attracted a wide range of studies. Exten-
sive reviews on coronary artery segmentation are given in Schaap et al. [5] and
Lesage et al. [6]. Although coronary artery segmentation has been well studied,
constructing motion models of coronaries from pre-operative scans to assist the
diagnosis and surgery is a topic which has received less attention.

In previous work, Shechter et al. [7,8] tracked coronary artery motion in a
temporal sequence of biplane X-ray angiography images. In their approach, a 3D
coronary model is reconstructed from extracted 2D centrelines in end-diastolic
angiography images. The deformation throughout the cardiac cycle is then re-
covered by a registration-based motion tracking algorithm. The disadvantage is
that 3D reconstruction of the coronary is required. An alternative approach for
the extraction of the coronaries from cardiac CTA has been proposed by Metz et
al. [9]: Here the coronaries are manually or semi-automatically identified at one
time frame and then tracked throughout the cardiac cycle using non-rigid regis-
tration of the multi-phase cardiac CTA images. The restriction of this approach
is that highly localized motion of the coronaries can not be fully recovered by
the motion tracking of the entire heart.

In this paper, we present a novel approach for coronary motion tracking in
cardiac CTA images which significantly improves the robustness of motion track-
ing and reduces the manual interactions. The proposed approach is based on a
non-rigid registration of the CTA images which provides an initial estimation of
the coronary motion. This estimation is then refined using template fitting algo-
rithm that matches a tubular-like vessel model to the local image region. This
simplifies the 4D motion modelling of coronaries significantly. Only one pair of
the start and end points of each vessel in end-diastolic frame are manually iden-
tified. Once the start and end points have been identified, each coronary branch
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from the end-diastolic phase is extracted as the minimal cost path between both
points. The proposed approach is compared to a nonrigid image registration
based approach similar to the one presented by Metz et al. [9] and to manual
tracking of the coronaries obtained from graph search at each time frame.

2 Method

We start from presenting the techniques used for pre-processing the images. The
main methods are then organized in three parts. Firstly, using Euclidean distance
as the heuristic term, A* graph search is performed at each phase in each dataset
to extract the minimal cost path of coronaries, based on user-supplied start and
end points for each vessel. The extracted results are used as ground truth for
evaluating the coronary motion tracking methods. Secondly, we estimate the
coronary motion using the hierarchy non-rigid registration of the CTA sequence.
Thirdly, the minimal cost coronary paths at end-diastolic phase are transformed
to other time points according to the deformation field. The deformed paths are
resampled equidistantly and the points from each resampled path are used as
initial guesses for vessel template fitting procedure. This enables the tracking
of coronary motion without any further user interaction and also estimates the
coronary radius at each fitting location. We then compare the template based
approach with the non-rigid registration one.

2.1 Image Preprocessing

Before the coronary arteries are extracted their visibility in the cardiac CTA
image sequences is enhanced by performing contrast limited adaptive histogram
equalization [10]. This improves the contrast and enhances the coronary arteries.
Note that this step is carried out for the entire image sequences so that intensities
in all time frames are treated similarly and consistently.

Due to the ECG pulsing windows applied in the acquisition and reduced ra-
diation dose [11], the signal-to-noise ration is varying in the multiple-phase 4D
data sets. To improve the image quality, 4D anisotropic filtering [12] is used to
reduce this noise and preserve the cardiac chamber boundaries and vessel struc-
tures. So after histogram equalization, we perform 4D anisotropic diffusion [12]
to smooth the image sequence while preserving edges and other salient features.
Again, the anisotropic diffusion filtering is performed for the entire 4D image
sequence so that neighbouring time frames influence the diffusion at the current
time frame.

For the template matching algorithm, minimum and maximum thresholds are
used in order to reduce the effect of the presence of inhomogeneous background
(e.g. air and tissue mixed region) or irrelevant neighboring structures (e.g. bone
or metal implant). Multiple thresholds are selected automatically by 4D multi-
level thresholding extended from Otsu’s method [13] for each 4D data set. The
intensities of the background voxels are increased so that they match the av-
erage myocardial intensity level. For the intensities above the upper threshold
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level, they are reduced to average myocardium intensity level too. One pair of
thresholds is used for each 4D sequence.

2.2 Segmentation of Coronary Centerlines Using Graph Search

We first perform a coarse segmentation of the coronary arteries in the CTA
image using a multiscale Hessian-based vessel enhancement filter [14]. The filter
utilizes the 2nd-order derivatives of the image intensity after smoothing (using
a Gaussian kernel) at multiple scales to identify bright tubular-like structures
with various diameters. The six second-order derivatives of the Hessian matrix
at each voxel are computed by convolving the image with second-order Gaussian
derivatives at a pre-selected scale.

Assuming a 3D image function I(x), the Hessian matrix at a given voxel x at
scale σ is denoted as Hσ(x). A vesselness term V (x) is defined as in Frangi et
al. [14] and is based on the eigenvalues and eigenvectors of Hσ(x). The vesselness
response is computed at a range of scales. The maximum response with the
corresponding optimal scale is obtained for each voxel of the image. Once the
vesselness at each voxel is computed, it can be used to define a minimal cost
path between the start and end nodes.

The minimal cost path between the start node S and the end node E is
obtained using the A* graph search algorithm [15] in the end-diastolic CTA
image. The location of the pair of nodes S and E is specified semi-interactively.
A uni-directional graph search algorithm evaluates the smallest cost from node
S to current node x denoted as g(x) and the heuristic cost from current node
to node E denoted as h(x) to determine which voxel to be selected as next path
node. The algorithm finds the optimal path only if the heuristic underestimates
the cost. In our approach, the Euclidean distance from x to E is used to calculate
the heuristic cost term. We assess each candidate node by calculating the cost
f(x) as:

f(x) = g(x′) +
1

V (x) + ε
+ δh(x). (1)

where g(x′) is the score of the previous node. To initialize the cost function,
g(x′) is set to be zero for the start node S. A small positive constant ε is added
in order to avoid singularities. The parameter δ is estimated as the ratio of the
minimum cost of the vessel to the Euclidean distance of the start and end nodes.

By using the heuristic term, the searching space is greatly reduced and the
minimum cost path can be found in real-time. When node E is reached, the
minimum cost path is reconstructed by tracing backwards to node S. The algo-
rithm finds a minimal cost path consisting of an ordered set of discrete locations
(voxels). After extraction of the path we estimate a B-spline representation of
coronary centerlines that smoothly interpolates these voxel locations.

2.3 Non-rigid Image Registration for Estimating Coronary Motion

The motion of coronaries during the cardiac cycle is mainly caused by the
expansion and contraction of the cardiac chambers. We use non-rigid image
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Fig. 1. Illustration of coronary motion tracking using a non-rigid registration approach.
The bottom row shows the extracted coronary centerlines from Ir (in the middle) and
the transformed centerlines for I0 and IN−1 in the left and right. Right coronary artery
is shown in red, left anterior descending artery in green, left circumflex artery in blue.

registration of the cardiac CTA sequence for a first approximation of the coro-
nary motion throughout the cardiac cycle. In our application, we use a non-rigid
image registration algorithm which employs a free-form deformation model based
on cubic B-splines [16]. A series of registration steps is performed to register
each time frame to the reference image at end-diastolic phase. Each registration
proceeds in a multi-resolution fashion, starting with a control point spacing of
40mm and ending with a spacing of 5mm. The deformations derived from coarse
level are used to initialize the finer level of registration. For each frame we use
the registration result from the previous frame as initial estimation as shown in
the middle row of Fig. 1. The non-rigid registration algorithm uses normalised
mutual information as the similarity measure between time frames. A gradient
descent optimization is used to find the optimal transformation. The extracted
coronary arteries in the end-diastolic phase are propagated to the other cardiac
phases by applying the deformations obtained from the finest registration step
as illustrated in the bottom row of Fig. 1.

2.4 Coronary Motion Tracking Using Template Fitting

Combined with the deformation information obtained in Section 2.3, we propose
a method for refining the tracking of the coronaries throughout the cardiac
CTA sequence based on template localization and fitting. A tubular segment
model [17,18] is adopted to map a spatial coordinate x to the intensity range
[0, 1] through a template function M(x; r,x0, v). The template function defines
an ideal vessel segment centered at point x0 running in the direction of v with
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(a) (b)

(c) (d)

Fig. 2. Combination of non-rigid deformation and template matching. (b) shows the
resampled coronary branches extracted at end-disatole as in Section 2.2. (d) shows
the vessel lumen by chaining the fitted templates together at end-diastole. (a) shows
estimation for the coronary at end-systole. (c) is coronary artery lumen obtained by
fitting the templates with corresponding local region in end-systolic CTA image. The
varying radii are represented by different colors as in the legend.

radius r. A vessel profile is defined to model the image intensity variation in the
cross-sectional plane perpendicular to the vessel direction.

First, an equidistant sample of vessel points from each extracted coronary
centerline (Section 2.2) at end-diastolic phase is chosen for refining the coronary
segmentation as shown in Fig. 2 (b). Each point from these samples is used as
the initial center for the template fitting procedure. For each point, the optimal
vessel template together with the corresponding local contrast and local mean
intensity parameters are obtained by solving the weighted least squared problem
using Levenberg-Marquardt algorithm [18] in the end-diastolic time frame. This
provide us a more detailed coronary segmentation with center location, radius,
local contrast and mean intensity parameters for each template. By chaining
these templates together, we obtain the coronary lumen at end-diastole as shown
in Fig. 2 (d).

Given the coronary centrelines extracted in the end-diastolic time frame as
shown in the middle bottom of Fig. 1, we can estimate the coronary center-
line positions for other time frames by using the deformation information ob-
tained in Section 2.3 to transform the end-diastolic extractions. An equidistant
sample of vessel points are chosen from each vessel centerline at each non-end
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Fig. 3. Illustration of template position estimation and fitting. (a) A small region of
CTA image containing right coronary artery. (b) after pre-processing. (c) the esti-
mated right coronary artery position using non-rigid registration. Blue cross shows
the estimated vessel centerlines. (d) The vessel centerlines after template fitting. The
discontinuity of the centerline is due to that only one slice shown in 2D representation.

diastolic phase as the estimated locations of the centers of the vessel templates.
The template fitting algorithm is performed on all these vessel points to provide
an accurate match of the template with the local region. To achieve this, the
template parameters are optimized again using Levenberg-Marquardt optimiza-
tion. After this, the new discrete center points and their corresponding radii for
each vessel is interpolated using B-spline. The coronary lumen is represented
with a tubular mesh. This procedure is repeated in pair-wise order until the
coronary lumen in all time frames is obtained. We then quantitatively measure
the accuracy of these coronary lumen centerlines by assuming the minimal cost
centerlines obtained in Section 2.2 as ground truth. We also compare their dif-
ference from the estimated centerlines using only non-rigid registration method
as in Section 2.3.

To illustrate the procedure, segmented coronary lumen from two phases are
shown in Fig. 2, together with the resampled minimal cost paths which are
used as initialization for template matching. For illustration, in Fig. 3, a right
coronary artery segment is randomly chosen from one image. It shows template
matching improves the accuracy of the estimated centerlines.

3 Results and Evaluation

To assess the performance of the proposed motion tracking strategy we have
performed experiments on eight cardiac CTA sequences. Each CTA sequence
has twenty phases with various image dimensions ranging from 256×256×89 to
512×512×335 voxels. The voxel dimensions varies from 0.4×0.4×0.5 mm3 to
0.7×0.7×1.5 mm3. All datasets have various degrees of artifacts that affect the
segmentation and registration procedure. In particular the fast motion of the
heart in some time frames can lead to blurring or ghosting artifacts e.g. around
the coronary artery. As a result of this, in some cases, the non-rigid registration-
based approach can only compensate for part of the deformation.
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In order to have a gold standard to evaluate the two different motion modeling
approaches, the left anterior descending artery (LAD), left circumflex artery
(LCX) and right coronary artery (RCA) are extracted using the graph search
algorithm (Section 2.2) from eight CTA sequences, P1, P2, P3, P4, P5, P6, P7
and P8. In all eight patients, the start and end points of the vessels have been
identified manually and the results of the minimal cost path extraction have
been judged as correctly falling inside the vessel lumen. The accuracy of these
extractions are restricted by the shortcut effect as shown in [19]. The results are
compared with motion estimates of the LAD, LCX and RCA as obtained using
the non-rigid registration and template matching based approaches.

In order to assess the quality of motion tracking results, the distance between
the semi-automatic extracted minimal cost centerline M and tracked coronary
centerline U of each coronary branch in each time frame is measured. The dis-
tance is defined as,

D (M, U) =
1

NM

∑NM

i=1 ‖mi − l(mi, U)‖2 +
1

NU

∑NU

j=1 ‖uj − l(uj , M))‖2 (2)

where NM and NU are the number of points representing vessel M and vessel
U correspondingly. For each point mi ∈ M, l(mi, U) calculates the closest point
of mi on the automatically extracted vessel U . Similarly, for each point uj ∈
U, l(uj, M) defines the closest point of uj on the vessel M .

The results are shown in Fig. 4. The total displacement of each coronary artery
is computed as the distance between the minimal-cost centerline at end-diastole
phase and the minimal-cost centerline at each other phase and is shown in the first
column (a). The second column (b) shows the tracking error from purely non-rigid
registration based approach. It is measured as the distance between centrelines es-
timated via non-rigid registration and the gold standard for each phase. The third
column (c) shows the tracking error using the registration and template matching
combined approach. It is measured as the distance between centrelines estimated
via the proposed method and the gold standard for each phase.

We compare the accuracy of non-rigid registration based tracking method
with the proposed approach in Table 1. The average motion is calculated as
the average of the total displacements of each coronary artery for each patient.
Mean error 1 shows the average residual motion for the non-rigid registration
based tracking method. Mean error 2 shows the average residual motion for the
non-rigid registration and template-matching based approach.

We also consider that the motion tracking is successful when the distance
between modeled coronary and the minimal-cost path is under 1.4mm which
is twice of the voxel size for most testing data sets. By considering this er-
ror threshold for right coronary artery motion modeling, 92% of vessel tracking
are performed successfully by using our proposed method, comparing with 46%
when using the purely non-rigid registration approach. By choosing 2.8 mm as
threshold, all the right coronary tracking are successful in our method while
the non-rigid registration approach produces 72% success rate. From Fig. 4 and
Table 1, we can conclude that combining the non-rigid registration with the
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Fig. 4. Comparison of coronary motion tracking results. The total coronary displace-
ment (LAD, LCX, RCA) is shown in column (a). The residual coronary displacement
after non-rigid registration is shown in column (b) and after the combined registration
and template-based tracking is shown in column (c). The results show that the pro-
posed tracking method is able to model the coronary motion with acceptable errors
(under 2 voxels) and in most cases it performed better.
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Table 1. Average coronary motion and mean errors of motion tracking

LAD

P1 P2 P3 P4 P5 P6 P7 P8

Average Motion (mm) 2.39 2.40 2.53 2.12 2.06 3.26 3.29 2.43

Mean error 1 (mm) 0.74 0.73 0.90 0.72 0.79 1.23 2.01 1.15

Mean error 2 (mm) 0.97 1.27 1.14 0.90 1.27 1.21 0.81 0.84

LCX

P1 P2 P3 P4 P5 P6 P7 P8

Average Motion (mm) 3.41 3.23 4.42 3.28 3.10 4.31 4.47 3.92

Mean error 1 (mm) 0.92 1.81 1.77 0.90 1.31 1.61 1.89 1.45

Mean error 2 (mm) 0.90 1.19 1.28 0.84 1.12 0.72 1.21 0.89

RCA

P1 P2 P3 P4 P5 P6 P7 P8

Average Motion (mm) 5.53 6.83 5.33 8.14 4.89 6.62 5.44 5.96

Mean error 1 (mm) 2.35 2.62 2.19 2.83 1.90 2.27 3.23 2.68

Mean error 2 (mm) 1.19 1.10 0.95 0.79 1.26 1.29 1.19 0.94

template matching together improve the motion tracking accuracy in most cases,
particularly in the frames when the rapid cardiac motion occurs. The variance
of tracking error is greatly reduced by using the proposed method.

4 Conclusions and Future Work

We have presented a novel approach for patient-specific coronary artery motion
modeling from cardiac CTA sequences which combines the template matching
and non-rigid registration algorithm. The proposed method has been tested on
eight clinical CTA datasets and proved to be more robust than purely non-rigid
registration approach. The limitation of this study is the lack of manual an-
notated coronary centerlines and lumen for the CTA images. By assuming the
semi-automatically extracted minimal-cost paths as ground truth, the accuracy
of the proposed tracking method is potentially under-estimated particularly for
LAD and LCX. For more accurate evaluation, manual annotations are needed.
However, it is very time-consuming and laborious to have all coronaries man-
ually annotated in large CTA image. More importantly, in our application we
focus more on the motion tracking of the coronaries from 4D pre-operative CTA
scans. The vesselness based graph search algorithm provides us reliable and fast
coronary artery extractions to be used as ground truth.

By constructing a 4D motion model of the coronaries from pre-operative car-
diac images and aligning the 4D coronary model with the series of 2D endoscopic
images acquired during the operation, we aim to assist the surgical planning and
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provide image guidance in robotic-assisted totally endoscopic coronary artery
bypass (TECAB) surgery. Through this work, we expect to reduce the conversion
rate from TECAB to conventional invasive procedures.
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Abstract. Motion models have been widely applied as a solution to the
problem of organ motion in both image acquisition and image guided
interventions. The traditional approach to constructing motion models
from dynamic images involves first coregistering the images to produce
estimates of motion parameters, and then modelling the variation of
these parameters as functions of a surrogate value or values. Errors in
this approach can result from inaccuracies in the image registrations and
in the modelling process. In this paper we describe an approach in which
the registrations of all images and the modelling process are performed
simultaneously. Using numerical phantom data and 21 dynamic mag-
netic resonance imaging (MRI) datasets acquired from 7 volunteers and
7 patients, we demonstrate that our new technique results in an average
reduction in motion model errors of 11.5% for the phantom experiments
and 1.8% for the MRI experiments. This approach has the potential to
improve the accuracy of motion estimates for a range of applications.

1 Introduction

Organ motion can cause problems in both image acquisition and image guided
interventions. Motion during image acquisition can result in motion artefacts
in reconstructed images. Motion during image guided interventions can cause
a misalignment between the static preprocedure images used for guidance and
the moving underlying anatomy. For ’repetitive’ motion (i.e. motion due to the
cardiac cycle or respiration) the motion is, at least partly, predictable. Therefore,
motion models have been widely applied as a solution (e.g. [1,2,3]).

Such models are typically formed using 3-D motion estimates derived by coreg-
istering images acquired at different points in the motion cycle (e.g. between
end-expiration and end-inspiration in the breathing cycle). At the same time as
the images are acquired, one or more motion ’surrogate’ values are also mea-
sured. Examples of surrogate values for respiratory motion include navigator
signals acquired during magnetic resonance imaging (MRI) scanning [1,3] and
diaphragm translation estimated from fluoroscopic X-ray images [2,3]. A mo-
tion model is formed that models the variation of the 3-D motion parameters as
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functions of these surrogate values. To apply the model, the surrogate values are
subsequently measured and used as inputs to the model to predict 3-D motion
fields.

Errors in predicting repetitive motion using motion models can result from
inaccuracies in image registrations or from the modelling process itself. Tradi-
tionally, registration and modelling have been seen as separate processes and
performed sequentially with no interaction between the two apart from the re-
sults of the image registrations being used as the input to the modelling process.

In this paper we propose an approach to motion model formation in which
the image registration and the modelling phases are integrated. Our technique
involves registering all images simultaneously and optimising the parameters of
the motion model to maximise the similarity measure over all images. Previ-
ous related work includes [4], in which two 4D computed tomography (4DCT)
datasets were spatiotemporally registered by adjusting the coefficients of a model
formed from one of the datasets so that it matched the other dataset. A 4D-
4D registration approach was also described in [5]. In [6] a motion consistency
constraint was used in registering pairs of cardiac-cycle gated positron emission
tomography (PET) images of the heart. Simultaneous registration of cardiac
MRI images was demonstrated in [7] for the purposes of cardiac cycle motion
estimation. In [8], thoracic respiratory motion was estimated from 4DCT using
a ’trajectory constraint’. The optimal trajectory of each voxel was estimated
over all images in the 4D dataset. We apply a similar concept to that employed
in [7,8] to the problem of respiratory motion modelling of the heart from MRI
data. Our aim is to construct the optimal motion model given a single set of dy-
namic images. We show that motion modelling errors can be reduced as a result
of the integration of registration and modelling. We demonstrate our technique
on respiratory motion models formed from numerical phantom data and dynamic
cardiac MRI data.

2 Method and Materials

2.1 Method

In this section we first describe the traditional ’sequential’ approach to regis-
tration and modelling, and then outline how this approach can be altered to
perform ’simultaneous’ registration and modelling. First, we define some terms:

– Our motion models are formed from a reference image, Iref and N dynamic
images In, n ∈ [1 . . . N ].

– We denote the similarity measure between 2 images as Sim(IA, IB).
– We denote the surrogate values used in forming the model by sn (we assume

one value for each image).
– We define a D-dimensional vector of motion parameters estimated from im-

age n as φn, e.g. D = 6 for rigid motion, D = 9/12 for affine motion, etc.
The dth element of this vector is denoted by φn,d.

– We denote by Tφ the transformation resulting from motion parameters φ.
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– Our motion model is defined by a vector of P model parameters for each
motion parameter d: γd, d ∈ [1 . . . D]. For example, the model parameters
γd could represent polynomial coefficients describing the variation of motion
parameter d as a function of surrogate value.

– F (γd, s) evaluates the model function defined by the P parameters, γd,
and the surrogate value, s. For example, F could evaluate the polynomial
function defined by coefficients γd at input value s.

– We denote by Tγ,s the transformation produced using the motion model
γ and surrogate value s. That is, the transformation resulting from the D
predicted motion parameters, F (γd, s) , d ∈ [. . . D].

Sequential registration and modelling. In the traditional sequential ap-
proach to registration and modelling the first step is to register all dynamic im-
ages to the reference image. For the nth dynamic image, an optimisation scheme
is used to estimate the registration parameters,

φn = argmax
φ

Sim (Tφ (Iref ) , In) (1)

Next, each motion parameter is modelled as a function of the surrogate values
sn. For example, using a least squares approach,

γ̃d = argmin
γd

N∑
n=1

(F (γd, sn) − φn,d)
2
, d ∈ [1 . . .D] (2)

Finally, to apply the model, we predict the D motion parameters based on any
given surrogate value s,

φ̃d = F (γd, s) , d ∈ [1 . . .D]. (3)

where φ̃ is the D-dimensional motion estimate vector. The predicted transfor-
mation for surrogate value s is Tφ̃.

Simultaneous registration and modelling. Using our proposed simulta-
neous registration and modelling approach, we have a single step that performs
registration of all images and motion modelling at the same time. For N dynamic
images, our motion model is estimated as,

γ̃ = argmax
γ

1
N

N∑
n=1

Sim (Tγ,sn (Iref ) , In) (4)

That is, we perform an optimisation to directly estimate all D×P model param-
eters such that they would lead to predicted motion estimates that maximise the
similarity measure over all N dynamic images. All that is required is a starting
estimate for the model parameters and an optimisation scheme to maximise the
term defined in (4). We will describe our approaches to these two issues in the
following section.

The resulting motion model can be applied as before, using Equation (3).
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2.2 Materials

We compare the performance of the traditional sequential and proposed simul-
taneous approaches to registration and modelling using a numerical phantom
and dynamic cardiac MRI data. The phantom data allows us to control noise
levels and the number of dynamic images whilst having knowledge of the gold
standard motion model. The dynamic MRI images provide more realistic data
with which to compare the performance of the two approaches.

Although, in principle, the general approach of simultaneous registration and
modelling is applicable to any type of model or motion description, in this paper
we demonstrate the technique using rigid/affine motion descriptions and poly-
nomial functions for the model. We used rigid motion (6 degrees of freedom)
for the phantom experiments and affine motion (9 degrees of freedom) for the
dynamic MRI experiments. (Most previous work in the literature supports the
view that an affine motion description is sufficient to describe cardiac respira-
tory motion, e.g. [1].) A pth order polynomial is defined by p + 1 coefficients.
In this paper we used first order polynomials so the motion models comprised
12 coefficients in total for the phantom experiments and 18 coefficients for the
dynamic MRI experiments. These represent the number of parameters to be op-
timised in equation (4) for the simultaneous approach. For optimisation, we used
a steepest gradient ascent algorithm for both the sequential and simultaneous
approaches. Currently, we use the model produced by the sequential approach
as the starting estimate for the simultaneous optimisation. The mean squared
difference was used as the similarity measure for both approaches.

Numerical phantom. The reference image for the numerical phantom consists
of a large ellipse containing three smaller ellipses inside it (resolution 150×150×
150). The dynamic images were formed by transforming this reference image by
rigid transformations produced by a known ’gold standard’ motion model using
regularly spaced integer surrogate values. Zero mean Gaussian noise of different
standard deviations was added to the reference and dynamic images. Figure 1
shows sample clean and noisy reference and dynamic images.

Dynamic MRI data. The dynamic MRI data was acquired on a 1.5 Tesla
cylindrical bore MRI scanner (Philips Achieva I/T) using a 3-D TFEPI sequence
(cardiac triggered and gated at late diastole, typically, 100 dynamic images, 20
slices, TR = 10ms, TE = 4.9ms, flip angle = 20o, acquired voxel size 2.7× 3.6×
8.0mm3, acquired matrix size 128 × 77, reconstructed voxel size 2.22 × 2.22 ×
4.0mm3, reconstructed matrix size 144×144, TFE factor 26, EPI factor 13, TFE
acquisition time 267.9ms). This scan acquired a single volume every heartbeat,
with each volume being acquired at an arbitrary respiratory position. A pencil-
beam navigator was applied on the dome of the right hemi-diaphragm in the
superio-inferior direction immediately before and after each dynamic acquisition.
The averages of these lead and trail navigator values were used as the surrogate
values for motion model formation. To form the motion models, one dynamic
image (at end-expiration) was selected as a reference image and four others
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Fig. 1. The numerical phantom. Top row: no noise added. Bottom row: signal-to-noise
ratio = 1.0. The left column shows the reference images and the next 4 columns show the
dynamic images, each transformed from the reference image by rigid transformations
generated by the gold standard motion model. All images show sample sagittal slices
through a 3D volume.

Fig. 2. The dynamic MRI data. Top row: original dynamic MRI images - the left image
is the reference image and the next 4 images are the dynamic images. Bottom row:
artificial MRI images for the 4 dynamics with known gold standard transformations.
All images show sample sagittal slices through a 3D volume.

(evenly spaced between end-expiration and end-inspiration) as dynamic images.
All selected dynamic images were acquired during the inspiration phase. For
registration purposes, an elliptical mask was applied around the four chambers
and major vessels of the heart in the reference image [3].

To order to accurately assess the performances of the sequential and simul-
taneous registration/modelling approaches, it is desirable to have gold standard
motion fields for each dynamic image. To produce these, we first registered each
dynamic MRI image to the reference image using a well-known freeform registra-
tion algorithm [9]. Next, the nonrigid motion field estimated by this algorithm
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was used to warp the reference image to produce new ’artificial’ dynamic MRI
images. These artificial MRI images are realistic but have known gold standard
motion fields. The artificial MRI images were used to construct the motion mod-
els instead of the original MRI images. Figure 2 shows 4 original dynamic MRI
image and the 4 corresponding artificial MRI images.

3 Results

For both the numerical phantom data and the dynamic MRI data we used the
target registration error (TRE) as an error measure. To compute the TRE for a
motion model we first defined a set of target points in the reference image. For
the numerical phantom we defined target points at each alternate voxel inside the
main ellipse (a total of 14802 points). For the dynamic MRI data we defined tar-
get points at each voxel inside the elliptical mask used for registration (typically
a total of 10000-50000 points). Next, we formed motion models from the dynamic
images using both the sequential and simultaneous registration/modelling tech-
niques. For each dynamic image, we computed the root mean square (RMS)
distance between the target points transformed using the gold standard trans-
formation and the same points transformed using the transformation predicted
by the motion model being tested. These RMS values were combined over all
dynamics to produce a single RMS TRE value for the motion model.

3.1 Numerical Phantom

Numerical phantom datasets were produced consisting of 4, 8, 16 and 32 dynamic
images. For each dataset, experiments were performed using 9 different noise
standard deviations ranging from no noise up to a signal-to-noise ratio (SNR)
of 1 (see Figure 1).

Figure 3 shows a summary of the TRE values for the sequential and simultane-
ous registration/modelling approaches for each dataset - the chart shows average
TRE values over all 9 noise levels for each number of dynamic images. The im-
provements in average TRE for the 4, 8, 16 and 32 dynamic datasets were 22.3%,
5.7%, 2.9% and 14.0% respectively. Over all 36 experiments (9 noise levels for
4 different numbers of dynamic images) the TRE figures for the simultaneous
approach showed a clear improvement over those for the sequential approach
(0.88 +/- 0.6mm for the simultaneous approach against 0.99 +/- 0.68mm for
the normal sequential approach, p < 0.05 in a two-tailed paired t-test). This
represented an overall average improvement of 11.5%.

The motion models formed using the two approaches for a sample dataset
are shown in Figure 4. Figure 4a shows the model formed using the sequential
approach, and Figure 4b shows that formed using the simultaneous approach.
The dotted black lines represent the constructed motion models, and the solid
blue lines represent the gold standard motion model. We can see that the model
formed using the simultaneous approach is closer to the gold standard than that
formed using the sequential approach, particularly in the rotational parameters.
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Fig. 3. Summary of target registration errors (TREs) for the numerical phantom ex-
periments. The chart shows the mean TRE for datasets consisting of 4, 8, 16 and 32
dynamic images. The percentage improvements in mean TRE for the simultaneous
registration/modelling approach were 22.3%, 5.7%, 2.9% and 14.0% respectively.

(a) (b)

Fig. 4. Motion models for a sample numerical phantom dataset: (a) constructed us-
ing sequential registration/modelling; (b) constructed using simultaneous registra-
tion/modelling. There are 6 parameter plots in each figure, representing the 6 rigid
body motion parameters: the anterior-posterior (A-P) translation; the superio-inferior
(S-I) translation; the left-right (L-R) translation; and the three rotations about these
axes. The gold standard motion model is shown using the solid blue lines in both fig-
ures. The black dotted lines represent the motion models constructed using the two
approaches. The motion model constructed using the simultaneous approach is closer
to the gold standard than the model constructed using the sequential approach.
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The execution time (on a Dell Precision workstation featuring a 3.4GHz Quad-
Core Intel Xeon processor) for constructing the motion models using the sequen-
tial approach varied between 13 minutes for 4 dynamics with no noise , up to 161
minutes for 32 dynamics with SNR = 1. Using the simultaneous approach, the
execution times varied between 10 minutes and 96 minutes, although it should be
noted that currently we use the sequential approach result as a starting estimate
for the simultaneous approach.

3.2 Dynamic MRI Data

We ran experiments on the artificial dynamic MRI data acquired from 7 vol-
unteers and 7 patients. The volunteers consisted of 1 female and 6 males and
were aged between 20 and 32. Patients A and B were adult, aged 63 and 55,
and were scanned as part of ongoing treatment for atrial fibrillation. Patients
C-G were children, aged between 1 and 16, and were all undergoing treatment
for congenital heart defects. Patients A, B and C were conscious and breathing
freely during scanning. Patients D-G were all under general anaesthetic and had
their breathing controlled by a ventillator. All volunteers underwent two dynamic
MRI scans: one in which they breathed normally, and one in which they were
instructed to breathe deeply. Separate motion models were constructed (using
both sequential and simultaenous approaches) for the normal and deep breath-
ing datasets. We acquired data for different breathing patterns because recent
evidence in the literature has suggested that changes in breathing can lead to
changes in the motion of internal organs [10]. For the patients only one dataset
was acquired during normal breathing.

Table 1 summarises the results for the dynamic MRI datasets. Over all 21
datasets the average improvement for the simultaneous approach over the se-
quential approach was 1.8%. This improvement seems relatively small compared
to the numerical phantom results. We believe that this is because of the larger
voxel size of the dynamic MRI images, relative to the magnitude of the motion.
The typical voxel size was 2.22 × 2.22 × 4.0mm3, compared to typical cardiac
motions of 5-20mm during normal breathing. This introduces some uncertainty
into the motion estimates and this effect may mask some of the improvement
achievable from the simultaneous registration/modelling approach. This expla-
nation is supported by the fact that the improvements were larger on the deep
breathing datasets, in which the motion was larger relative to the voxel size.
Nevetheless there was a clear reduction in errors over the 21 datasets (3.47 +/-
1.92mm for the simultaneous approach against 3.54 +/- 1.97mm for the normal
sequential approach, p < 0.01 in a two-tailed paired t-test).

The execution times for constructing the motion models using the sequential
approach varied between 45 and 103 seconds. For the simultaneous approach the
execution times were between 70 and 230 seconds. These times are faster than
those for the numerical phantom experiments because of the lower resolution of
the dynamic MRI images.
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Table 1. Motion model target registration errors (TREs) for dynamic MRI data ac-
quired from 7 volunteers and 7 patients. The TRE figures were calculated over all 4
dynamic images for each dataset. Motion models were formed using the normal sequen-
tial approach to registration/modelling, and the proposed simultaneous approach. The
right column shows the percentage improvement of the simultaneous approach over the
sequential approach. A positive percentage indicates that the simultaneous approach
had a lower TRE.

Subject
Breathing
pattern

TRE of motion model(mm) % improvement of
simultaneous approachSequential

approach
Simultaneous

approach

Vol. A
Normal 4.73 4.71 +0.4%
Deep 8.74 8.62 +2.2%

Vol. B
Normal 3.06 2.93 +4.3%
Deep 3.26 3.33 -2.0%

Vol. C
Normal 2.44 2.34 +4.0%
Deep 3.92 3.75 +4.4%

Vol. D
Normal 3.27 3.32 -1.4%
Deep 3.8 3.67 +3.3%

Vol. E
Normal 2.08 2.07 +0.2%
Deep 7.87 7.67 +2.5%

Vol. F
Normal 2.68 2.77 -3.1%
Deep 4.52 4.3 +4.7%

Vol. G
Normal 2.59 2.66 -2.8%
Deep 5.45 5.25 +3.7%

Pat. A (adult) Normal 3.78 3.64 +3.8%
Pat. B (adult) Normal 3.91 3.87 +1.0%
Pat. C (child) Normal 1.88 1.84 +2.1%
Pat. D (child) Normal 1.1 1.1 +0.6%
Pat. E (child) Normal 1.01 0.99 +1.8%
Pat. F (child) Normal 2.59 2.54 +2.0%
Pat. G (child) Normal 1.61 1.56 +3.3%

Overall 3.54 +/- 1.97 3.47 +/- 1.92 +1.8%

4 Discussion

We have presented preliminary results for an approach to respiratory motion es-
timation and modelling in which the registrations of all dynamic images and the
modelling process are performed simultaneously. Results on a numerical phantom
and dynamic MRI data have suggested that modelling errors can be reduced us-
ing the proposed approach compared to the normal approach of registering each
dynamic image separately and then subsequently modelling the variation of the
estimated motion parameters. The numerical phantom experiments allowed us to
test constructed motion models against a gold standard motion model. The dy-
namic MRI data was more realistic but had no gold standard motion model, only
gold standard (nonrigid) motion fields for each dynamic image. This means that,
in principle, it is possible to get a motion model error of zero for the numerical
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phantom experiments, whilst this will not be possible in most cases for the MRI
experiments. Further validation and refinement of our technique is required, par-
ticularly with regard to the starting estimates for the model parameters and their
optimisation, but we believe that this approach offers potential benefits to motion
modelling, and has been relatively little explored in the literature.

The advantage of the simultaneous approach over the normal sequential ap-
proach is that it allows the registration to take advantage of prior knowledge of
the ’smoothness’ of the variation of the motion fields as a function of the surro-
gate value(s). The simultaneous registrations are constrained to find only solu-
tions that are consistent with the constraints introduced by the motion model.
This type of approach has previously been applied in image reconstruction. For
example, in [11] free breathing CT data was reconstructed using a smooth mo-
tion constraint. The most similar techniques described in the literature are [7,8].
Our aim in this paper was to use a similar approach to estimate the optimal
cardiac respiratory motion model given a sequence of dynamic images acquired
at different points in the breathing cycle.

We used the mean squared difference as a similarity measure for both the
numerical phantom and dynamic MRI experiments. Although more flexible sim-
ilarity measures exist we believe that it was justified to use the mean squared
difference because all of our registrations were intra-modality. We also used a
relatively simple optimisation strategy (steepest gradient ascent) and motion
model (first-order polynomials). We plan to investigate alternatives to these ini-
tial approaches in the future. For example, in recent years more sophisticated
motion models have been proposed that can capture hysteresis effects [2,3] or the
effects of different breathing patterns [10]. Also, currently we still use the result
of the sequential approach as a starting estimate for the simultaneous approach.
We plan to investigate alternative strategies for producing a starting estimate
for the motion model, such as using a cross-population average breathing model.

The execution times for the sequential and simultaneous approaches are of the
same order of magnitude. For the dynamic MRI experiments, each registration
in the sequential approach involves optimising 9 parameters. This optimisation
must be performed once for each dynamic image. For the simultaneous approach,
using first-order polynomials, there is a single optimisation of 18 parameters (2
for each of the 9 affine motion parameters in the model). This leads to similar
overall execution times. However, the rate at which execution time increases
with respect to the number of model parameters is higher for the simultaneous
approach. Therefore we believe that the technique as we describe it in this paper
may only be feasible for relatively simple motion models, such as rigid or affine
models. If this approach were to be applied to models based on freeform nonrigid
registrations based on a large number of control points the execution time will
become much larger. Clearly many organs exhibit motion that is more complex
than rigid or affine motion descriptions are able to capture. We plan to tackle
this issue by combining our simultaneous registration/modelling approach with
a hierarchical local affine registration algorithm [12], enabling complex nonrigid
motions to be captured by a combination of simpler affine motions.
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The proposed simultaneous registration/modelling approach has potential ap-
plication in a number of areas. For example, motion models have been applied in
image-guided minimally invasive cardiac interventions [2,3] in which improved
accuracy of respiratory motion prediction/correction could increase the utility
of guidance information, therefore improving patient outcome. However, our in-
tended application is thoracic motion-correction in a hybrid PET-MRI scanner.
In this application improved motion predictions could lead to a reduction in mo-
tion artefacts in the resulting PET images, and consequently better resolution
of tumours and other small structures. Overall, we believe that the technique
we have described could offer potential benefits in a range of image acquisition
applications and image guided interventions.
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Abstract. Radio-frequency catheter ablation (RFCA) has become an
accepted treatment option for atrial fibrillation (Afib). RFCA of Afib
involves isolation of the pulmonary veins under X-ray guidance. For eas-
ier navigation, two-dimensional X-ray imaging may take advantage of
overlay images derived from static pre-operative 3-D data set to add
anatomical details which, otherwise, would not be visible under X-ray.
Unfortunately, respiratory and cardiac motion may impair the utility of
static overlay images for catheter navigation. We developed a system for
image-based 2-D motion estimation and compensation as a solution to
this problem. It is based on 2-D catheter tracking facilitated by model-
based registration of an ellipse-shaped model to fluorosocpic images. A
mono-plane or a bi-plane X-ray C-arm system can be used. In the first
step of the method, a 2-D model of the catheter device is computed. Res-
piratory and cardiac motion at the site of ablation is then estimated by
tracking the catheter device in fluoroscopic images. The cost function of
the registration step is based on the average distance of the model to the
segmented circumferential mapping catheter using a distance map. In
our experiments, the circumferential catheter was successfully tracked
in 688 fluoroscopic images with an average 2-D tracking error of 0.59
mm ± 0.25 mm. Our presented method achieves a tracking rate of 10
frames-per-second.

1 Introduction

In the United States about two million people are affected by some form of atrial
fibrillation (AF), making AF the most common sustained heart arrhythmia and
a leading cause of stroke. Radio-frequency catheter ablation (RFCA) has become
an accepted option for treating AF in today’s electrophysiology (EP) labs, espe-
cially, if drug treatment has become ineffective [1,2]. RFCA of the pulmonary veins
(PVs) usually requires fluoroscopic guidance. Unfortunately, X-ray images cannot
distinguish soft tissue well. To address this issue, image integration combining pre-
operative 3-D atrial CT data or MR volumes with the fluoroscopic images has been
developed, commonly known as fluoroscopic overlay image guidance. The advan-
tage of this strategy is the fused display of the actual, real-time fluoroscopic images
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together with the highly detailed soft-tissue images from CT or MRI [3,4,5,6]. In
fact, state-of-the art C-arm systems [7,8], facilitate 3-D tomographic reconstruc-
tion. In other words, the fluoroscopic C-arm device itself can be used to obtain
volumetric data sets, e.g., of the heart [9,10,11,12,13,14]. Since the 3-D data has
been acquired on the same device that is used for 2-D X-ray imaging, initial regis-
tration of the 3-D data set to the 2-D fluoroscopic projection can be accomplished.
The use of data sets from other modalities, e.g., CT, MR or even 3-D ultra-sound
is possible. However, 2-D/3-D registration needs to be performed.

Current fluoroscopic overlay techniques are, however, static, i.e., they do not
follow the heart while it beats and moves through the breathing cycle. To achieve
a dynamic fused visualization, we need to take this motion into account. Unfor-
tunately, there are few discernible features in typical EP fluoroscopic images. A
first approach for 3-D respiratorymotion compensation based on 3-D device track-
ing was proposed by the authors in [15,16], but this approach required continuous
bi-plane fluoroscopy increasing the amount of X-ray dose. In this paper, we de-
scribe a method that requires only mono-plane fluoroscopy and therefore works
in 2-D. To perform motion estimation, we still track the circumferential mapping
catheter, a commonly available EP catheter. Since this device is often used for PV
ablations, there is no need for additional instruments or fiducial markers. In addi-
tion, the mapping catheter is of unique shape, and it is one of the most prominent
structures shown in EP fluoroscopy scenes, representing a good feature for robust
tracking. During pulmonary vein isolation, the circumferential mapping catheter
is typically fixed at the ostium of the PV that is to be ablated. Hence, by tracking
the circumferential mapping catheter, we can obtain a motion estimate right at
the ablation site. Once an estimate of the 2-D motion is available, we can, e.g.,
apply it to the static fluoroscopic overlay image to generate an animated repre-
sentation of it moving in sync with the tracked device.

2 Two-Dimensional Model Generation

The circumferential mapping catheter on the imaging plane is extracted by man-
ual clicking followed by fast marching in the first frame of the fluoroscopy se-
quence, as explained in [17]. This step provides the points pi = (ui, vi)T with
i = 1, . . . , N of the catheter device. The 2-D ellipses are then calculated such
that all ellipse points satisfy the linear equation [18]

au2
i + buivi + cv2

i + dui + evi + f = 0 (1)

with the 2-D coordinates u and v. The points pi of the catheter are combined
in a measurement matrix [19]

M =

⎛⎜⎜⎜⎜⎜⎜⎝

u2
1 u1v1 v2

1 u1 v1 1
...

...
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...
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...
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u2
N uNvN v2

N uN vN 1
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Then Eq. (1) can be rewritten as

M · f = 0 (3)

with the implicit ellipse parameters f = (a, b, c, d, e, f)T . As the points may not
necessarily lie exactly on the ellipse to be fitted, we are looking for the ellipse
parameters f̂ that minimize

f̂ = argmin
f

||Mf ||22 (4)

subject to
b2 − 4ac < 0. (5)

Errors in the points pi used for the measurement matrix M lead to different es-
timated parameters f̂ . Since a fast-marching algorithm is used to extract many
points along the catheter in the fluoroscopic image, user errors due to inaccu-
rate clicking, have rather little impact. Unfortunately, the constraint, ||f ||2 = 1,
commonly used for ellipse fitting [19], does not necesarily guarantee an elliptic
solution. Therefore, the method presented in [18] has been applied. It proposes
to use the constraint b2 − 4ac < 0 to assure an elliptical solution [20,21].

Given the implicit ellipse parameters f̂ = (â, b̂, ĉ, d̂, ê, f̂)T , the explicit param-
eters can be calculated. To this end, we use the following substitution

(â, b̂, ĉ, d̂, ê, f̂)T = (ã, 2b̃, c̃, 2d̃, 2ẽ, f̃)T . (6)

The center of the ellipse qc = (uc, vc)T is calculated by [22,23,24]

uc =
b̃ẽ − c̃d̃

ãc̃ − b̃2
(7)

vc =
b̃d̃ − ãẽ

ãc̃ − b̃2
. (8)

The lengths of the semi-axes, l1 and l2, are then calculated by

l1 =

√√√√ |2(ãc̃f̃ + 2b̃d̃ẽ − ãẽ2 − c̃d̃2 − f̃ b̃2)|
|(ãc̃ − b̃2) · (ã + c̃ +

√
(c̃ − ã)2 + 4b̃2)|

(9)

l2 =

√√√√ |2(ãc̃f̃ + 2b̃d̃ẽ − ãẽ2 − c̃d̃2 − f̃ b̃2)|
|(ãc̃ − b̃2) · (−ã − c̃ +

√
(c̃ − ã)2 + 4b̃2)|

. (10)

The rotation within the 2-D image plane is given as

γ =
1
2

arctan

(
2b̃

c̃ − ã

)
. (11)

The explicit ellipse parameters are summarized in Figure 1. Discrete sample
points qθ of the ellipse can then be obtained by [25]

qθ = qc + l1 · cos θ ·Rγe1 + l2 · sin θ · Rγe2. (12)
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Fig. 1. An ellipse is described by its center, qc, its semi-axes, l1 and l2, and its rotation
in the 2-D plane, γ

 

 

Fitted Ellipse
Manual Segmentation

Fig. 2. Illustration of the model error for the first frame of clinical sequence 10. The
manual segmentation is taken as a gold standard rerference. The resulting model error
is 0.78 mm in this case. The model error is the difference between the manually outlined
catheter and the fitted ellipse.

To this end, the parameter θ ∈ [0, 2π] is used for computing points along the
ellipse, i.e., each θ produces a qθ. The unit vectors of the coordinate system are
called e1 = (1, 0)T and e2 = (0, 1)T . The 2-D rotation matrix is denoted as

Rγ =
(

cos γ − sinγ
sinγ cos γ

)
. (13)

The model may not always fit perfectly. The difference between model and the
actual catheter is called model error. It is obtained by calculating the distance
of the model to a gold standard segmentation in the first frame of a sequence.
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The model error is the difference between the manually outlined catheter and
the fitted ellipse. An illustration of this idea is presented in Figure 2.

3 Catheter Tracking by Registration

3.1 Feature Extraction and Distance Map Calculation

After the catheter model has been generated from the first frame of the fluo-
roscopic sequence, it is tracked throughout the remainder of the sequence. To
speed up the computational efficiency and to minimize the influence of periph-
eral structures that could interfere with catheter tracking, the region of interest
(ROI) for tracking is restricted to 400 × 400 pixels (on the 1024 × 1024 image)
around the center of the tracked mapping catheter in the previous frame. His-
togram equalization is further applied on the ROI to enhance the structure of the

(a) Original Image (b) Cropped Image (c) Equalized Image

(d) Filtered Image (e) Thinned Image (f) Distance Map

Fig. 3. Image processing steps to enhance the elliptical structure of the catheter. This is
needed to obtain a good registration. First, the acquired fluoroscopic image is cropped.
The second step involves histogram equalization to enhance semi-transparent parts of
the catheter. Afterwards, a vessel enhancement filter is applied to improve the structure
of the catheter. It is then binarized using Otsu’s method. As the catheter is usually
wider than the model, a thinning algorithm is also applied. A distance map is computed
next based on the thinned catheter representation. The final distance map provides a
smooth image for model-based registration.
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catheter. Next, a vessel enhancement filter as proposed in [26] is used to improve
line-like structures such as the circumferential mapping catheter. The feature im-
age is then binarized using Otsu’s method [27] to facilitate segmentation of the
mapping catheter. As the model has only a diameter of one pixel, we further
apply a skeletonization algorithm as proposed in [28] to thin the segmentation.
Finally, a distance map is calculated from the binarized image [29]. A distance
map encodes the distance from a point to its closest feature point, that is the
nonzero point representing the extracted mapping catheter in our binarized fea-
ture image. The distance transform offers an important advantage. It provides a
denoised representation of the fluoroscopic image with a pronounced minimum
around the shape of the mapping catheter. The distance map is denoted as IDT,
with IDT(p) returning the distance of pixel position p to the segmented catheter.
The image processing steps are summarized in Figure 3.

3.2 Model-Based Registration

Circumferential catheter model tracking is achieved by performing model-based
registration. The catheter model is translated by t = (Δu, Δv). The offset in u-
direction is called Δu ∈ Z, and the offset in v-direction is referred to as Δv ∈ Z.
The average distance between catheter model and segmentation in the fluoro-
scopic image is then considered as the cost value. It is calculated by using the
distance map introduced above. The optimal translation t̂ is found by optimizing

t̂ = arg min
t

∑
θ

IDT(qθ + t) (14)

with the distance map IDT and θ as explained in the context of Eq. 12 above. The
best parameters are found by nearest neighbor optimization, i.e., the position
of the local optimum on a large scale is used as starting point for the next
optimization on a smaller scale. We start with a 400 × 400 ROI and perform
optimization with a step size of 16 pixels in each direction. Once we reach a local
optimum, we reduce the step size to one pixel in u and v direction on a 16× 16
sub-ROI. Since the shape of mapping catheters may not be exactly elliptical, a
simple elliptical model may not always fit perfectly. Thanks to the properties of
the distance map, we still end up with a good solution in most cases. A nearest
neighbor optimizer is used to iteratively optimize the translational parameters.
The estimated 2-D translation t̂ can be directly applied to the 2-D overlay to
move it in sync with the tracked device.

4 Experimental Evaluation and Results

We evaluated our algorithm by calculating the tracking error for each X-ray im-
age over seven different clinical fluoroscopy sequences that were acquired during
EP procedures on an AXIOM Artis dBA C-arm system (Siemens AG, Forch-
heim, Germany). Although our data was acquired on a bi-plane system, our
motion estimation approach is not restricted to such a system and will work



240 A. Brost et al.

Table 1. Average tracking error for the clinical sequences used. The last row shows an
average over all the 17 sequences. The total number of frames was 688.

No. Mean ± Std. Model Error

1 0.40 mm ± 0.04 mm 0.39 mm

2 0.80 mm ± 0.11 mm 0.67 mm

3 0.63 mm ± 0.13 mm 0.37 mm

4 0.47 mm ± 0.09 mm 0.37 mm

5 0.32 mm ± 0.04 mm 0.29 mm

6 0.63 mm ± 0.15 mm 0.30 mm

7 0.92 mm ± 0.26 mm 0.59 mm

8 0.63 mm ± 0.10 mm 0.56 mm

9 0.48 mm ± 0.05 mm 0.54 mm

10 1.05 mm ± 0.20 mm 0.87 mm

11 0.46 mm ± 0.07 mm 0.42 mm

12 0.77 mm ± 0.22 mm 0.53 mm

13 0.66 mm ± 0.11 mm 0.52 mm

14 0.55 mm ± 0.16 mm 0.35 mm

15 0.60 mm ± 0.12 mm 0.50 mm

16 0.69 mm ± 0.10 mm 0.58 mm

17 0.64 mm ± 0.15 mm 0.51 mm

μ 0.59 mm ± 0.25 mm 0.49 mm
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Fig. 4. Frame-by-frame tracking error in mm for sequence no. 13. The average tracking
error is 0.66 mm ± 0.11 mm. The model error for this sequence is 0.52 mm.
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(a) Frame 5 (b) Frame 10

(c) Frame 15 (d) Frame 20

(e) Frame 25 (f) Frame 30

Fig. 5. Six frames of sequence no. 13. The red ellipse shows the tracked circumferential
mapping catheter. It aligns well with the outer part of the (spiral) mapping catheter.
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on a mono-plane device as well. We focus on a typical setup involving a cir-
cumferential mapping catheter and one ablation catheter only. The presence of
other structures should not decrease the accuracy of our method, because we
use an unique elliptical structure for registration. To evaluate the tracking er-
ror, we calculated the average distance of the forward tracked catheter model to
a manually segmented circumferential mapping catheter. The manual catheter
segmentation was supervised by a cardiologist, and we consider it our reference
result. This distance was averaged over all frames of a particular sequence to
arrive at an overall tracking error for each sequence. We tested our method on
17 clinical data sets. The results are summarized in Table 1. The average of the
mean tracking error over all 17 sequences - 688 frames - was 0.59 mm. Figure 5
shows six frames of sequence 13. Our method currently achieves a frame rate
of 10 frames-per-second using a (single threaded) CPU implementation. This
is sufficiet for clinical applications. In addition to the tracking error, a model
error can be calculated. The model error can be obtained from the first image
of a sequence as no registration was performed in this particular frame. The
model errors ranged between 0.31 mm and 0.78 mm. A detailed frame-by-frame
tracking error for sequence no. 13 is presented in Fig. 4.

5 Discussion and Conclusions

We developed a method for respiratory and cardiac motion estimation for radio-
frequency catheter ablation of atrial fibrillation. A C-Arm X-ray system is used to
image a circumferential (or spiral) mapping catheter. Catheter tracking is based
on a model-based registration framework. We start by estimating a catheter
model from the first frame of a fluoroscopic sequence. This model is then tracked
throughout the remainder of the sequence using model-based registration. The
registration is based on a distance map derived from the fluoroscopic image of
the catheter. Our experiments on clinical EP fluoroscopy sequences show that
the mean 2-D tracking error is 0.59 mm including an average model error of
0.49 mm. Considering that breathing motion in typical EP fluoroscopy images
is in the range of 15 mm and for for deep breathing in some patients up to
40 mm, our method has the potential to significantly improve the accuracy of
fluoroscopy overlay techniques for EP navigation. The proposed method offers
several advantages. First, it is workflow-friendly and does not require fiducial
markers or additional contrast agent to be administered. Second, respiratory and
cardiac motion is estimated directly at the ablation site. Due to the fact that
registration is used, motion estimation and compensation is essentially done
in one step. Third, we estimate the motion online and update it constantly
from fluoroscopy with a frame rate up to 10 frames-per-second. Furthermore,
we do not rely on a predefined motion model from which the real motion may
deviate significantly during the procedure. Fourth, there are no restrictions on
the 3-D data set that can be used as a fluoro overlay. A 3-D data set could
come from MRI, CT or C-arm CT, e.g., syngo DynaCT Cardiac (Siemens AG,
Forchheim, Germany). Unlike a previous approach that involved 3-D tracking
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based on bi-plane imaging [15,16], the proposed method tracks a device in a 2-D
mono-plane fluoroscopic sequence. This method puts fewer restrictions on model
generation and registration, since there is no second view to match against.
As a consequence, it is possible to obtain a better fit of the model in the 2-
D fluoroscopic images, i.e., a lower 2-D tracking error. However, this does not
necessarily imply better 3-D tracking. Nevertheless, since the motion of the LA
can be approximated by a 3-D rigid-body transform [30] and because the LA
offers only limited space to move about, we expect that a 2-D motion estimate
may offer an acceptable approximation. How well 2-D tracking of a device and
a 3-D tracking, however, really relate to each other during EP procedures is
subject of further studies.
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Abstract. We propose a new nonrigid registration method based on
a unified framework of encoding spatial information in entropy mea-
sures. The encoding of spatial information improves nonrigid registration
against the problems caused by intensity distortion where the registra-
tion using traditional mutual information (MI) is challenged. Using this
encoding framework, we derive the new registration method, spatial in-
formation encoded mutual information (SIEMI). SIEMI registration has
a similar computation complexity as the registration using traditional MI
measures, but works significantly better in the nonrigid cases. We val-
idated the registration method using brain MRI and dynamic contrast
enhanced MRI of the liver. The results showed that the proposed method
performed significantly better than the normalized mutual information
registration.

1 Introduction

Mutual information (MI) [1,2,3] is one of the most widely studied techniques
for biomedical image registration in the last fifteen years. The registration using
MI measures, including the normalized forms such as the normalized mutual
information (NMI) [4], has shown good robustness and wide applicability [5,6].
However, several recent works [7,8,9,10] showed that the traditional MI measures
may not be appropriate in many situations for nonrigid registration.

The first common situation happens in registering in vivo medical images,
which have intensity non-uniformity (INU), also referred to as intensity distor-
tion or intensity bias. This INU results in the same tissue in different positions
having different intensity values, and thus some regions of the tissue having dif-
ferent intensity classes. Since patterns of INU fields vary in different images, the
inconsistency of intensity classes of one tissue in two images will lead to large
errors in nonrigid registration. Fig. 1 shows an example of registering two ini-
tially aligned brain MR images, where one contains INU while the other does
not. The nonrigid registration using NMI measure [4] generates a large erroneous
resultant deformation field. Fig. 1 (d) shows a more promising result using the
proposed method which will be described later. This method demonstrates a
much better robustness against the INU field.

B. Fischer, B. Dawant, and C. Lorenz (Eds.): WBIR 2010, LNCS 6204, pp. 246–257, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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(a) (b) (c) (d)

Fig. 1. (a) T1-weighted brain image without intensity non-uniformity (INU) and (b)
the INU field computed from the subtraction of (a) and the image with INU. (c) is the
resultant deformation field of registering (a) to the image with INU using NMI measure
and (d) is the result using the proposed registration method. The color bar indicates
the displacement magnitude in (c) and (d). Brain data downloaded from BrainWeb
(www.bic.mni.mcgill.ca/brainweb/)

Other situations include the nonrigid registration of dynamic contrast en-
hanced MRI [11], perfusion MRI [12], and multi-modality images such as the
CT-MR registration application [9]. It is still challenging to employ traditional
MI measures for the nonrigid registration of these tasks.

To tackle the problems, Studholme et al. and Loeckx et al. proposed to con-
sider the spatial coordinate as an extra channel of information and combine
this information with the MI measure such as the regional mutual information
(RMI) [7] and the conditional mutual information (cMI) [8,9]. The cMI measure
was shown to be equivalent to the derived measure of RMI, referred to as RMI′

in [7], by using a different Parzen window estimation function for the spatial
variable [9,10]. Loeckx et al. further showed that the cMI registration performed
better than the registration using the original RMI similarity form [9].

In this work, we extend the generalized weighting scheme for spatial informa-
tion encoding in the previous work [10] to propose a new registration method.
The weighting scheme is to vary the contribution of pixels to a set of joint
histogram tables which are associated with a spatial variable. The registration
measure, spatial information encoded mutual information (SIEMI), is a vector
consisting of a set of entropy measures computed from these joint histogram
tables.

The rest of the paper is organized as follows: Section 2 presents the SIEMI
method; Section 3 provides the validation experiments, where discussion is also
included; finally, our conclusions are given in Section 4.

2 Method

2.1 Definition of Terms and Notations

Intensity distribution: Intensity distribution describes the appearance and
contrast of organs or tissues presented in a medical image.
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Intensity class: We assume that the imaged intensity values in our registration
images, such as MRI data, are related to the tissue types. Therefore, in an image
scanned from ntis types of tissues, ntis intensity values should be presented.
However, the intensity of one tissue normally has an intensity range in in vivo
scans due to the non-uniformity of tissue property and noise. Also, a number
of different tissues, referred to as a class of tissues, may have their intensity
ranges overlapped. Hence, the intensity distribution is presented as nC classes
of intensity ranges, referred to as intensity classes.

Global intensity class linkage: The intensity class correspondence, reflecting
the true joint intensity distribution of the two images, is normally unknown
before registration due to the misalignment in local regions. By assuming the two
images initially close to a true match and considering the local misalignment as
noise, we can estimate this correspondence using the approximated joint intensity
distribution from the global intensity information of the two images [13]. This
global information, providing important guidance for correcting misaligned local
regions, is referred to as global intensity class linkage.

Spatial variable s and local region Ωs: Spatial variable s is an index of
a set of spatial positions, s = 1 . . . ns. The positions are defined according to
the nonrigid transformation parameters. For example, in fluid registration each
pixel (or voxel) can be defined as a value of spatial variable, while in free-form
deformation (FFD) registration each control point can be defined as a value of
s. It is commonly to define a local region Ωs for s such as the user-defined cubic
regions [7] or the local support volume of the FFD control point [8].

2.2 The Framework of Spatial Information Encoding

Spatial information encoding is achieved by varying the contribution of pixels
to a set of joint histogram tables {Hs}, from which a set of entropy measure
{Ss} are computed, as illustrated in Fig. 2. The contribution is according to the
spatial coordinate of the pixel and value of s.

Fig. 2. The spatial variable s, associated local region Ωs, transformation parameter
θs, weighting function Ws(x), joint histogram table Hs, and entropy measure Ss. The
spatial information encoded similarity measure is the vector representation of {Ss}.
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Let Ir be the reference image, IT
f be the transformed floating image by trans-

formation T , θs be a parameter of T , and Ωs be the user-defined local region.
Both θs and Ωs are associated with the spatial variable s. To compute Ss, we can
estimate the local histogram using the information solely within the local region
Ωs, referred to as local information. However, the size of the local region Ωs may
be very small compared to the global volume Ω, which potentially leads to two
problems. One is that the estimation of local probability distribution functions
(PDFs) using a small number of sample points may lose the statistical power of
the computed local entropy measure Ss [14,15]. The other is that this estimation
of local PDFs may lose the global intensity class linkage [16,17]. Both of the two
problems will result in reduced registration robustness using the local entropy
measures.

To deal with the limitation of solely using local information, Likar and Pernus
proposed to combine the local estimation with the global estimation [15]:

ps(r, f) = wp
L

+ (1 − w)p
G

, (1)

where pL = 1
N

L

∑
x∈Ωs

ωr(Ir(x))ωf (IT
f (x)) is estimated from Ωs and pG =

1
N

G

∑
x∈Ωs

ωr(Ir(x))ωf (IT
f (x)) is estimated from the complementary volume Ωs,

referred to as the global information; ωr and ωf are Parzen window estimation
functions and N

L
and N

G
are the normalization factors. The weighting is set as

w = N
L

N
L

+N
G

, proportional to the volume size of the local region Ωs [15].
To assess the weights of each sample point x ∈ Ω, Eq. (1) is rewritten:

ps(r, f) =
1
N

∑
x∈Ωs

ω(◦)wN

N
L

+
1
N

∑
x∈Ωs

ω(◦) (1 − w)N
N

G

, (2)

where ω(◦) = ωr(Ir(x))ωf (IT
f (x)) and N = NL + NG . The weighting function is

then given by:

Ws(x) =

{
wN
N

L
, x ∈ Ωs

(1−w)N
N

G
, x ∈ Ωs

. (3)

By using the setting in [15], the weights of all points x ∈ Ω are then the same,
wN
N

L
= (1−w)N

N
G

= 1, resulting in the same value for all computed local measures,
S1 = S2 = · · · = Sns , and no spatial information being encoded in {Ss}.

Therefore, we can use w ∈ [NL/N, 1] to generalize the weighting scheme [10].
The weighting function is illustrated as the red dash-line in Fig. 2. This scheme
has the mechanism of maintaining the global intensity class linkage as well as
differentiating local regions in the computation of {Ss}. However, the disadvan-
tage is that all sample points within the local region Ωs have the same weight,
wN/NL , regardless their different spatial coordinates.

Therefore, we propose to generalize the weighting scheme such that the value
of Ws(x) should be monotonically decreasing with respect to the distance be-
tween x and the coordinate of s. This weighting function is illustrated as the
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blue dash-line in Fig. 2. The spatial variable associated joint histogram table is
then given by:

Hs(r, f) =
∑
x∈Ω

ωr(Ir(x))ωf (IT
f (x))Ws(x) . (4)

Accordingly, the joint PDF is computed as ps(r, f) = 1
Ns

Hs(r, f), where Ns =∑
r,f Hs(r, f) is the normalization factor. Given s = x, the estimated PDF turns

out to be similar to the local PDF in [13].
The derivative of Hs(r, f) with respect to a transformation parameter θt is

given by:
∂Hs(r, f)

∂θt
=
∑

x∈Ωt

∂ωf(IT
f (x))

∂θt
ωr(Ir(x))Ws(x) , (5)

where Ωt is the local support volume of θt. The computation of ∂ωf(IT
f (x))/∂θt

is the same as that in the traditional MI registration [1,2,3]. The computation
complexity of Eq. (5) is O(|Ωt|). Finally, the computation for marginal histogram
tables and PDFs is similar, based on which MI or the normalized measures and
their derivatives are computed.

2.3 Spatial Information Encoded Mutual Information

Similarity measure: The set of entropy measures {Ss} is computed from their
associated PDFs. This computation results in a vector measure composed of {Ss}
between the two registration images, as Fig. 2 shows. We refer to this measure
as the spatial information encoded mutual information (SIEMI):

SIEMI = {S1,S2, · · · ,Ss, · · · ,Sns}T , (6)

To present a scalar value of SIEMI, one scheme is to compute the weighted sum
of {Ss}:

SIEMIsum =
∑

s

p(s)Ss , (7)

where p(s) = Ns/
∑

t(Nt).
Alternatively, since SIEMI is a vector, the squared magnitude of the vector

can be computed as a scalar similarity measure:

SIEMImag =
∑

s

(Ss

)2
. (8)

The entropy measure Ss can be the joint entropy, MI, or the normalized forms
such as NMI [4] and entropy correlation coefficient [2]. Studholme et al. [4]
showed that NMI was robust to the changes in overlap volumes. Therefore, we
use NMI for the implementation of Ss in this work. Noted that the results of
using other MI forms may not be significantly different.
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Driving forces and optimization of SIEMI: Given a nonrigid transforma-
tion parameter θs, the steepest ascent direction of registration using the scalar
SIEMI is given by the derivative of SIEMI in Eq. (7) or Eq. (8) as follows:

F SA(θs) ≡ ∂SIEMI
∂θs

=
∑

t

∂C(St)
∂θs

, where C(St) is (St)2 or p(t)St .
(9)

The computation complexity of Eq. (9) is O(ns · |Ωs|), where ns is the number
of the spatial variable values. However, this computation may be practically too
expensive when ns is large, compared to only O(|Ωs|) in standard MI.

Since SIEMI is a vector of {Ss}, we propose to optimize each Ss with respect
to θs using a direction of local ascent, resembling a greedy strategy:

F LA(θs) ≡ ∂Ss/∂θs . (10)

The computation complexity of Eq. (10) is now significantly reduced to O(|Ωs|),
which compares with O(ns|Ωs|) of Eq. (9). This local ascent optimization as-
sumes that the optimization of each Ss would not deteriorate that of others,
and thus would globally converge. The convergence of local ascent optimization,
along with the comparisons with using global ascent optimization for SIEMIsum,
SIEMImag, and NMI, will be validated in Section 3.1.

2.4 Choices of Ws(x) and Unifying Existing Works

The spatial variable s is defined according to the nonrigid transformation model
used in the registration. In this work, we employ the free-form deformations
(FFDs) [5]. The value of s is defined to the index of the control points of FFD
grids, and Ωs is the local support volume of the control point.

Spatial information encoding is determined by the weighting scheme Ws(x).
By using constant value such that Ws(x) = 1, the computed measure Ss is
identical to traditional entropy measure such as the MI or NMI.

By using the boxcar function, the 0-order B-spline function β0:

Ws(x) =
{

1, if x ∈ Ωs

0, otherwise (11)

the joint PDFs associated with s, ps(r, f), become the regional PDFs and the
corresponding SIEMIsum is then given by:

SIEMIsum|Ws=β0,Ss=MI =
∑

s

p(s)
∑
r,f

ps(r, f) log
ps(r, f)

ps(r)ps(f)
, (12)

which is identical to the derived RMI′ measure proposed in [7].
By using the cubic B-spline function β3 such that:

Ws(x) = β3
Δ1

(x1 − φs1)β3
Δ2

(x2 − φs2)β3
Δ3

(x3 − φs3) , (13)
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the joint PDFs associated with s become the conditional PDFs p(r, f |s), where
x = [x1, x2, x3]T is the sample point’s coordinate, [φs1, φs2, φs3]T is the coordi-
nate of the s corresponded FFD control point, and [Δ1, Δ2, Δ3] are the FFD
spacing in each dimension. SIEMIsum then becomes the cMI in [8,9].

In this study, we use the Gaussian kernel function for Ws(x), in 3D as follows:

Ws(x) = Ae
−
(

(x1−φs1)2

2σ2
1

+
(x2−φs2)2

2σ2
2

+
(x3−φs3)2

2σ2
3

)
, (14)

where A = 1 and [σ1, σ2, σ3] are the standard deviations. In practice, the locality
of the Gaussian function is set to the volume within three times the standard de-
viation. Therefore, Ws(x) using Eq. (14) is similar to the cubic B-spline function
in Eq. (13), given σi = 2

3Δi, where Δi is the FFD spacing in each dimension.
The amount of information used in the computation of Hs in Eq. (4) is related

to the non-zero-value domain of Ws(x). More information corresponds to better
registration robustness, while more locality means higher achievable registration
accuracy. A strategy to combine them is to start the registration using Ws(x)
with a large non-zero-value domain such as the global space and hierarchically
decrease the domain. This hierarchy scheme can be related to the multiresolution
FFD registration [18] such as by setting the none-zero-value domain to the local
support of the corresponding control point [8]. In this study, we set σi = lΔi to
regularize the locality of Ws(x) in the multiresolution FFDs [18]. In this scheme,
the information used in the computation of Hs can be extended to (1.5l)d times
of the local support volume of the control points, where d is the dimension. We
use l ∈ [1, 2] in our experiments, where the smallest FFD spacing is 10 mm and
the minimal number of sample points for the construction of histogram tables
can be easily met [19].

We notice that there are applications which may need much finer spacing FFD
registration. For this situation, we need to define [σ1, σ2, σ3] of Eq. (14) to be
large enough to guarantee enough sample points for the construction of Hs, such
as σi=10mm when lΔi <10mm.

It should be noted that the computation complexity of the optimization using
Eq. (10) is not significantly increased along with the increased value of l. This
is because it is determined by the size of local support volume as Eq. (5) shows.

3 Experiment

3.1 Global Steepest Ascent vs Local Ascent Optimization

Data: This experiment uses 2D brain MR T1 images, downloaded from Brain-
Web to demonstrate the difference of SIEMI registration using the steepest as-
cent optimization, Eq. (9), and the local ascent optimization, Eq. (10). The
steepest ascent optimization was applied to NMI, SIEMI using sum of {Ss},
referred to as SIEMISA

sum, and SIEMI using magnitude of {Ss}, referred to as
SIEMISA

mag. The SIEMI registration using the local ascent optimization is re-
ferred to as SIEMI.
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Table 1. The registration accuracy, given by warping index (WI), of the four schemes.
The table also presents the p-values of the t-test between the registration accuracy of
SIEMI and that of the other three methods, and the ratios of computation time (RCT)
of the other three methods to that of the SIEMI.

NMI SIEMISA
sum SIEMISA

mag SIEMI

WI (0.01 mm) 23 ± 0.9 11 ± 0.6 11 ± 0.5 11 ± 0.7
P-value <0.0001 0.462 0.662 —
RCT 0.60 160 144 1

One of the registration images did not have INU while the other had a 20%
field. The initial transformations, regarded as the ground truth for the regis-
tration accuracy assessment, were combinations of scalings and FFD transfor-
mations [5] with 45 × 54 mm mesh spacing. Six different scaling values were
chosen between [0.95, 1.05] and the FFD transformations moved the central
control points either 15 mm or -15 mm at each direction, together generating 24
initial transformations. The warping index, root mean square (RMS) residual dis-
placement error, of the initial transformation fields ranged between [3.47, 4.63]
(3.90 ± 0.49) mm.

The registration used a series of concatenated isotropic FFDs with two levels
(spacings 20mm and 10mm) [18,20]. The registration firstly employed 100 itera-
tion steps for the 20 mm FFD level, and then 40 steps for the 10 mm FFD level.
The warping index was calculated every 10 iteration steps.

Results: Fig. 3 (left) illustrates the mean warping indexes by the four registra-
tion methods. They are displayed in every 10 iteration steps. The mean accuracy
is also displayed in Table 1 where the evidently small standard deviation values,
all less than 0.01 mm, indicate the consistent performance of each registration
scheme in the test cases. It is evident from Table 1 that NMI registration needed
the least computation time, but it achieved a much worse warping index than
the other three registration schemes.

For the SIEMI registration schemes, the computation of each iteration step in
SIEMI was more than 100 times faster than those of SIEMISA

sum and SIEMISA
mag,

as Table 1 shows. The optimization of SIEMI is shown to converge twice to three
times slower than SIEMISA

sum and SIEMISA
mag (Fig. 3 (left)), but it is still much

faster in overall. Furthermore, there was no statistically significant difference in
terms of registration accuracy between the use of the local ascent optimization
and that of the two global steepest ascent schemes, as the p-value of the two
tailed, paired t-test between SIEMI and SIEMISA

sum was 0.462, and that between
SIEMI and SIEMISA

mag was 0.662.

3.2 Performance to Intensity Non-uniformity

Data: This experiment employs 3D brain MR images to study the performance
of NMI and SIEMI registration in different magnitudes of INU fields. The MR
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Fig. 3. The mean warping index of the 24 cases in every 10 iteration steps (left) and the
mean and median values of the registration errors by SIEMI and NMI in the different
intensity non-uniformity fields (right)
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Fig. 4. The Box-and-Whisker diagrams of 48-case registration errors by SIEMI (left)
and NMI registration (right) in different intensity non-uniformity fields

images were downloaded from the BrainWeb with 3% noise. Eleven levels of
INU fields were generated, from 0% to 20%, using the equation B = a1x

2 +
a2y

2 + a3z
3 + a4xy + a5xz + a6yz + a7x + a8y + a9z, where [x, y, z] is the pixel

coordinate, and {ai} are random values in [−1, 1]. The magnitudes of the fields
were normalized to the percentage of the intensity range of the original image.
Forty-eight deformation fields were generated using the same method employed
in Section 3.1, where the FFD mesh used in this experiment was 3D and with
45×54×45 mm spacing. These initial deformations, warping index ranging from
0.31 mm to 6.27 mm (2.67 ± 1.49 mm), were used to generate 48 registration
cases for each level of the INU fields.

SIEMI and NMI registration used the same transformation model, a series of
concatenated isotropic FFDs with two levels (spacings 20mm and 10mm) [18,20].

Results: Fig. 4 plots the Box-and-Whisker diagrams of the warping index of the
48 registration cases by NMI and SIEMI in each level of INU fields, and Fig. 3
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Fig. 5. One example of the simulated dynamic contrast enhanced MR data in 15 time
points. The first one from the left of the upper row is the image without enhancement.
The images from the second of the upper row to the second row are the dynamic
enhanced data from time point one to fifteen.
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Fig. 6. The registration results, warping indexes, of the four simulated dynamic con-
trast enhancement MRI cases by SIEMI and NMI registration

(right) shows the mean and median numbers of them. The two registration meth-
ods achieved similar warping indexes in most of the cases in 0% INU level, but
NMI had three outlier cases whose errors were larger than 0.5 mm. In the cases
of images with INU, SIEMI registration performed with a fairly consistent mean
warping index with respect to different levels of INU magnitudes, while NMI reg-
istration had radically increased registration errors when the INU became strong.

3.3 Application to Dynamic Contrast Enhanced MRI

Data: This experiment employs four sets of simulated DCE MRI data where
the intensity values during flush-in of the contrast agent varied as a function of
time and positions. Fig. 5 shows an example whose results are plotted in Fig. 6
(c). The DCE MRI data had simulated free-breathing motions which deformed
the images. The four datasets had different magnitudes of motions. The images
from different time points were all registered to a reference image, the MR image
without enhancement, to correct the deformations in the liver. We calculated the
warping index on the liver region.

Results: Fig. 6 plots the registration results. SIEMI performed evidently better
than NMI, particularly between time points 5 to 10 when the contrast agent
started to enter the liver region and changed the intensity values. The results
also show that during the time points 1 to 5 when the contrast agent had not yet
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arrived the liver to change the intensity, NMI achieved similar warping indexes
as SIEMI. From time point 10 to 15, the contrast agent in the liver was in late
enhancement and the intensity distributions were more uniform. Therefore, NMI
started to perform better than in the time points of enhancing. However, the
accuracy was still not as good as that of SIEMI because there was still INU in
the data due to the enhancement.

4 Conclusion

We have presented a new method, spatial information encoded mutual infor-
mation measure (SIEMI), for nonrigid registration. This registration approach
is based on the general spatial information encoding framework. We achieved
the encoding using a weighting scheme to differentiate the contribution of pixels
to the set of entropy measures which are associated with the spatial variable.
The similarity measure of SIEMI is a vector which consists of the set of entropy
measures. To efficiently search the optimum of this measure, we proposed to use
the local ascent optimization scheme. The result showed that the local ascent
was able to converge to similar accuracy and save up to two orders of magnitude
computation time compared to the registration using the global ascent scheme.

SIEMI was particularly proposed to tackle the nonrigid registration problems
caused by the intensity non-uniformity (INU) or enhancement in the images.
We validated the method using brain MR data with different level of INU and
dynamic contrast enhancement MRI of the liver. The results showed that SIEMI
well overcame the problems and performed significantly better than the regis-
tration using normalized mutual information.
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Abstract. Mutual information (MI) was introduced for use in multi-
modal image registration over a decade ago [1,2,3,4]. The MI between
two images is based on their marginal and joint/conditional entropies.
The most common versions of entropy used to compute MI are the Shan-
non and differential entropies; however, many other definitions of entropy
have been proposed as competitors. In this article, we show how to con-
struct normalized versions of MI using any of these definitions of entropy.
The resulting similarity measures are analogous to normalized mutual in-
formation (NMI), entropy correlation coefficient (ECC), and symmetric
uncertainty (SU), which have all been shown to be superior to MI in a
variety of situations. We use publicly available CT, PET, and MR brain
images1 with known ground truth transformations to evaluate the per-
formance of the normalized measures for rigid multimodal registration.
Results show that for a number of different definitions of entropy, the
proposed normalized versions of mutual information provide a statisti-
cally significant improvement in target registration error (TRE) over the
non-normalized versions.

Keywords: Image registration, mutual information, entropy.

1 Introduction

Collignon and Maes [1,2] and Viola and Wells [3,4] introduced the idea that
multimodal images could be aligned by maximizing their mutual information
(MI), which is an information measure that depends on the marginal and joint
entropies of the underlying images. Since that introduction, much research has
gone into understanding, applying, and generalizing this idea in a variety of
ways. Pluim et al. [5] captured a snapshot of the state of the art in 2003, which
showed that much progress had already been attained by that point.
1 The images and data were provided as part of the project: “Retrospective Im-

age Registration Evaluation,” National Institutes of Health, Project Number
8R01EB002124-03, Principal Investigator, J. Michael Fitzpatrick, Vanderbilt Uni-
versity, Nashville, TN, USA.
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This paper focuses on two threads of investigation that emerged in the years
after mutual information was introduced to the medical imaging community.
One thread is the normalization of MI, in the form of Studholme’s normalized
MI (NMI) [6], Maes’ entropy correlation coefficient (ECC) [1], or Melbourne’s
symmetric uncertainty (SU) [7], which have been empirically shown to improve
registration accuracy and robustness to truncation of the images. The other
thread is the use of different generalizations of entropy (Rényi and Tsallis en-
tropies [8], cumulative residual entropy [9,10], and generalized survival exponen-
tial entropy [11]) to form the MI measure; such generalizations have also been
shown to improve registration performance in various situations.

In this paper, we show that normalized versions of MI can be formed when
MI is constructed from any of the definitions of entropy. Furthermore, we illus-
trate experimentally that such normalized versions in general outperform their
unnormalized counterparts for the task of rigid registration of multimodal brain
images. This idea generalizes some results in the literature that extend NMI for
use with Rényi and Tsallis entropies [8] and extend NMI and ECC for use with
cumulative residual entropy [12,13].

The remainder of this paper is organized as follows: section 2 describes various
definitions of entropy, and section 3 provides a general framework for construct-
ing MI from any of these definitions of entropy. Section 4 defines versions of
NMI, ECC, and SU from any of the general definitions of entropy, and section
5 illustrates experimentally how these normalized versions of MI outperform
their unnormalized counterparts. Finally, section 6 draws some conclusions and
presents ideas for future work.

2 Measures of Entropy

In the context of probability theory, entropy describes the amount of uncer-
tainty associated with a random variable. Shannon [14] considered an informa-
tion source having components L1, L2, . . . , Ln with associated probabilities of
occurrence p1, p2, . . . , pn, and he showed that the quantity:

H = −
n∑

i=1

pi log pi (1)

is a measure of the uncertainty in the outcome of a particular event. This measure
is generalized to the case of a continuous random variable X with density p(x)
by the differential entropy:

H(X) = −
∫ ∞

−∞
p(x) ln p(x) dx . (2)

A wide variety of competing measures of entropy have emerged in other contexts;
a number of these measures that can be considered generalizations of Shannon
or differential entropy are shown in Table 1. Rényi [15] presented a family of
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entropies that converge to the differential entropy as α → 1. Tsallis [16] pro-
posed a family of entropies that is useful in describing non-additive systems.
Exponential and generalized exponential entropies were introduced by Camp-
bell [17] and Koski and Persson [18] and used for data compression. The Tsallis
and exponential entropies converge to differential entropy as α → 1; the gener-
alized exponential entropy can be thought of as being related to a generalized
version of the Rényi entropy, both of which converge to differential entropy as
(α, β) → (1, 1).

Another type of entropy, the cumulative residual entropy (CRE), was pre-
sented by Rao et al. [19] and Wang et al. [9] in order to provide a way to
accommodate random variables that do not have a defined density function.
This is done by replacing the density function with the survival function S(x) =
P (|X | > x), and then defining the CRE as:

ε(X) = −
∫ ∞

0

S(x) ln S(x) dx . (3)

All of the generalizations of differential entropy listed in Table 1 can also be
defined in terms of CRE, as shown in Table 2. Zografos and Nadarajah [20]
presented and analyzed generalizations of CRE to Rényi, exponential, and gen-
eralized exponential entropy, and they named the latter two resulting quantities
survival exponential and generalized survival exponential entropies.

Table 1. Differential entropy and generalizations

Symbol Definition

Differential H(X) −
∫ ∞

−∞
p(x) ln p(x) dx

Rényi HR
α (X)

⎧⎪⎪⎨⎪⎪⎩
1

1 − α
ln

∫ ∞

−∞
pα(x) dx, α �= 1

H(X) , α = 1

Tsallis HT
α (X)

⎧⎪⎪⎨⎪⎪⎩
1

1 − α

∫ ∞

−∞
(pα(x) − p(x)) dx, α �= 1

H(X) , α = 1

Exponential HE
α (X) exp

(
HR

α (X)
)

Generalized Rényi HGR
α,β (X)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

β − α
ln

∫∞
−∞ pα(x) dx∫∞
−∞ pβ(x) dx

, α �= β

− ∫∞
−∞ pβ(x) ln p(x) dx∫∞

−∞ pβ(x) dx
, α = β

Generalized Exponential HGE
α,β (X) exp

(
HGR

α,β (X)
)
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Table 2. Cumulative residual entropy (CRE) and generalizations

Symbol Definition

Cumulative Residual ε(X) −
∫ ∞

0

S(x) ln S(x) dx

Rényi εR
α (X)

⎧⎪⎪⎨⎪⎪⎩
1

1 − α
ln

∫ ∞

0

Sα(x) dx, α �= 1

ε(X) , α = 1

Tsallis εT
α(X)

⎧⎪⎪⎨⎪⎪⎩
1

1 − α

∫ ∞

0

(Sα(x) − S(x)) dx, α �= 1

ε(X) , α = 1

Exponential εE
α (X) exp

(
εR

α (X)
)

Generalized Rényi εGR
α,β(X)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

β − α
ln

∫∞
0

Sα(x) dx∫∞
0

Sβ(x) dx
, α �= β

− ∫∞
0

Sβ(x) ln S(x) dx∫∞
0

Sβ(x) dx
, α = β

Generalized Exponential εGE
α,β(X) exp

(
εGR

α,β(X)
)

3 Measures of Mutual Information

Mutual information (MI) was introduced as a similarity measure for multimodal
image registration by Collignon and Maes [1,2] and Viola and Wells [3,4]. MI
can be defined in a number of ways (see Pluim et al. [5] for a comparison of the
various definitions); we focus on two such definitions. The first defines the MI
between two random variables X and Y in terms of their marginal (Shannon)
entropies and their joint entropy H(X, Y ):

MI(X, Y ) = H(X) + H(Y ) − H(X, Y ) . (4)

The second defines MI in terms of the conditional entropy:

MI(X, Y ) = H(X) − E[H(X |Y )] . (5)

Note that this notation for conditional entropy departs from other references;
here, we consider H(X |Y ) to be a random variable that is a function of Y ,
namely,

H(X |Y ) = −
∫ ∞

−∞
p(x|Y ) ln p(x|Y ) dx , (6)

and E[H(X |Y )] to be the expected value of (6).
An analogous quantity to MI that uses CRE is the cross cumulative residual

entropy (CCRE) of Wang et al. [10]:

CCRE(X, Y ) = ε(X) − E[ε(X |Y )] . (7)
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CCRE was also investigated in [21] under the alternate name of cumulative
mutual information (CMI). The conditional CRE ε(X |Y ) is a random variable
that is a function of Y , namely,

ε(X |Y ) = −
∫ ∞

0

S(x|Y ) ln S(x|Y ) dx , (8)

where S(x|Y ) = P (|X | > x|Y ).
One key difference between MI and CCRE is that MI is symmetric whereas

CCRE is not (i.e., MI(X, Y ) = MI(Y, X) but CCRE(X, Y ) �= CCRE(Y, X)).
However, CCRE can be easily symmetrized, yielding the symmetric CCRE:

SCCRE(X, Y ) =
1
2

(
CCRE(X, Y ) + CCRE(Y, X)

)
=

1
2

(
ε(X) + ε(Y ) − E[ε(X |Y )] − E[ε(Y |X)]

)
. (9)

The construction of SCCRE can be used to define a general form of mutual
information for use with any definition of entropy. If we consider H to denote
a placeholder for any of the definitions of entropy listed in Tables 1–2, we can
define a general symmetric version of mutual information by:

H-MI(X, Y ) =
1
2

(
H(X) + H(Y ) − E[H(X |Y )] − E[H(Y |X)]

)
. (10)

Using this general form (10), it is easily seen that H-MI and ε-MI are the specific
forms of MI and SCCRE given in (5) and (9), respectively. Other specific forms
of (10) have been explored in the medical image registration literature. HR

α -MI
and HT

α -MI are similar to Rényi and Tsallis entropy based mutual information
measures investigated by Wachowiak et al. [8], and εE

α -MI and εGE
α,β-MI are sym-

metric versions of the SEE-MI and GSEE-MI measures introduced by Liao and
Chung [11].

4 Normalized Measures of Mutual Information

Studholme et al. [6] argued that any image similarity measure should be invariant
to changes in the overlap region through the course of registration. They showed
that traditional MI does in fact vary with changing overlap, and they proposed
the normalized mutual information (NMI) as an alternative:

NMI(X, Y ) :=
H(X) + H(Y )

H(X, Y )
. (11)

Studholme et al. validated the invariance of NMI to changing overlap for some
simple examples and illustrated how NMI exhibits better behavior than MI on
the rigid registration of MR to CT and MR to PET volumes.
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NMI is closely related to Astola’s entropy correlation coefficient (ECC) [22],
which is given by:

ECC(X, Y ) :=

√
2 − 2H(X, Y )

H(R) + H(Y )
. (12)

Maes et al. [1] and Collignon [2] use the square of Astola’s ECC for multimodal
registration, which is equivalent to the symmetric uncertainty (SU) [7,23]:

SU(X, Y ) := ECC(X, Y )2 = 2 − 2H(X, Y )
H(R) + H(Y )

. (13)

In order to generalize these normalized versions of mutual information, we first
recognize that H(X, Y ) and can be rewritten as:

H(X, Y ) =
1
2

(
H(X) + H(Y ) + E[H(X |Y )] + E[H(Y |X)]

)
. (14)

Now, general forms of NMI, ECC, and SU can be defined analogously to the
general mutual information (10). The resulting forms are shown in Table 3. It is
straightforward to show that the use of differential entropy for H causes H-NMI,
H-ECC, and H-SU to reduce to (11), (12), and (13), respectively.

A few specific examples of normalized MI measures that do not use differential
entropy have been developed for use in medical image registration. Wachowiak
et al. [8] investigated Rényi and Tsallis entropy based normalizations which are
equivalent to HR

α -NMI and HT
α -NMI. Cahill et al. [12,13] showed that SCCRE

exhibits the same overlap sensitivity problem as Studholme established with MI.
Furthermore, they defined normalized versions of CRE-based MI called normal-
ized cross cumulative residual entropy (NCCRE) and cumulative residual entropy
correlation coefficient (CRECC), which are equivalent to ε-NMI and ε-ECC, re-
spectively, and they established that NCCRE and CRECC exhibit the same type
of improvement over SCCRE that NMI and ECC exhibit over MI.

Table 3. Normalized measures of MI with general definitions of entropy

Similarity Measure Definition

H-NMI(X, Y )
2H(X) + 2H(Y )

H(X) + H(X) + E [H(X|Y )] + E [H(Y |X)]

H-ECC(X, Y )

√
1 − E [H(X|Y )] + E [H(Y |X)]

H(X) + H(Y )

H-SU(X, Y ) 1 − E [H(X|Y )] + E [H(Y |X)]

H(X) + H(Y )
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5 Multimodal Rigid Registration Experiment

In order to illustrate the behavior of the various similarity measures on real-
world data, we focus on the rigid registration case, and we use images from
the Retrospective Image Registration Evaluation project. The RIRE project
database contains CT, MR, and PET images for a variety of patients, and has a
sequestered set of ground truth rigid body transformations that were computed
from fiducial markers implanted in the skull. (The fiducial markers were removed
from the images prior to retrospectively evaluating registration algorithms.) Re-
sults of the original RIRE study are provided by West et al.[24].

In this paper, we used the images from nine patient datasets. Each patient
dataset contains MR images from some or all of the following protocols: T1-
weighted, T2-weighted, PD-weighted, and rectified versions of the T1, T2, and
PD-weighted images. Five of the nine datasets contain both CT and PET images
in addition to the MR images. Two of the datasets contain CT but not PET
images, and the remaining two datasets contain PET but not CT images. The CT
images have resolution 0.65×0.65×4.0 mm3, the MR images have approximate
resolution 1.25 × 1.25 × 4.0 mm3, and the PET images has resolution 2.59 ×
2.59 × 8.0 mm3. For ease of computation, we resampled each image to 3.0 ×
3.0 × 3.0 mm3 isotropic resolution.

Examples of some of the RIRE images are shown in Figures 1 and 2. Figure
1 shows axial views of the CT, MR-T1, and PET images from patient 5. Figure
2 illustrates overlayed isosurfaces of the CT (blue) and MR-T1 images from
patient 4, both before (left) and after (right) rigid registration.

For each dataset, we rigidly registered the CT and/or PET image to all of
the MR images. Rigid transformations were parameterized by three Euler angles
and three translation parameters. Initial estimates of the solution were selected
by translating the images to match their computed centroids. To constrain the
parameters, we employed bounds of ±π/6 radians on each Euler angle, and ±1/5
of the width of the corresponding reference image dimension on each translation
component. (We visually verified for each case that after the prealignment step
is performed, the true rigid transformation parameters fall within these bounds.)
For each dissimilarity measure, we carried out a bound-constrained optimization

Fig. 1. Axial slices of CT, MR (T1-weighted) and PET images from the patient 5
dataset
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(a) Before registration (b) After registration

Fig. 2. Isosurfaces of CT (blue) and MR-T1 (red) images of patient 4, before and after
rigid registration

procedure using the active set algorithm employed by the fmincon function of
MATLAB’s Optimization Toolbox. All gradient vectors and Hessian matrices
were estimated numerically via finite differences. The optimization was termi-
nated when the maximum change in magnitude in any parameter was less than
10−4 or after 500 iterations, whichever occured first.

All probability densities (and joint densities) were estimated via histograms
(and joint histograms) that were constructed with 32 (or 32×32) equally spaced
bins. Linear (or bilinear) interpolation was used to accumulate partial weights
in neighboring bins.

Registration is performed using the general versions of MI and ECC based on
the original, Renyi, and Tsallis versions of differential entropy and CRE defined
in Tables 1–2. Values of α are drawn from the set {0.5, 1, 2}.

5.1 Results

The performance of similarity measures on the various registration tasks is mea-
sured via Target Registration Error (TRE). For the RIRE project [24], a number
of anatomically meaningful volumes of interest (VOI) were annotated. TRE is
computed as the average Euclidean distance (in mm) between VOI centroids in
the reference image and their predicted positions after registration.

Table 4 reports the mean, median, and standard deviation of the TRE values
measured across the VOI’s in every patient for various similarity measures.

We employed hypothesis testing to gauge the statistical significance of these
results. Given similarity measures H-MI and H-ECC, the null hypothesis states
that the TRE’s from H-MI and H-ECC arise from the same distribution. The
alternative hypothesis is that the TRE’s from H-MI are ”worse” than the TRE’s
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Table 4. Statistics of TRE (in mm) for CT/MR and PET/MR registration, aggregated
across all patients

CT/MR PET/MR
Registration Registration

Measure
Mean Median Std. Dev. Mean Median Std. Dev.
TRE TRE TRE TRE TRE TRE

H-MI 2.0 1.8 1.0 6.6 3.1 8.3
H-ECC 2.3 2.0 1.3 3.1 2.8 1.6

HR
1/2-MI 2.1 1.8 1.3 3.3 3.2 1.3

HR
1/2-ECC 2.2 1.8 1.1 2.7 2.9 0.9

HR
2 -MI 24.0 27.5 14.9 6.4 3.6 7.6

HR
2 -ECC 13.6 2.9 15.0 4.0 2.8 4.7

HT
1/2-MI 1.8 1.6 0.9 2.7 2.7 0.9

HT
1/2-ECC 1.9 1.6 1.0 2.6 2.5 1.0

HT
2 -MI 5.4 3.4 6.0 6.2 2.9 8.1

HT
2 -ECC 6.2 4.6 6.2 4.4 2.6 5.9

ε-MI 3.2 3.0 1.7 3.6 3.4 2.2
ε-ECC 3.4 3.0 1.9 3.6 3.0 2.5

εR
1/2-MI 4.2 3.7 3.1 4.0 3.7 2.5

εR
1/2-ECC 4.4 4.4 2.1 3.8 3.3 2.3

εR
2 -MI 13.2 11.3 14.9 5.2 3.3 5.0

εR
2 -ECC 7.9 7.3 4.5 5.5 3.4 5.3

εT
1/2-MI 5.9 4.4 4.3 4.1 4.0 1.7

εT
1/2-ECC 3.1 3.0 1.8 3.2 3.3 1.3

εT
2 -MI 14.6 14.4 10.2 14.3 11.6 13.9

εT
2 -ECC 3.6 3.2 2.4 2.5 2.6 0.9

from H-ECC, in the sense that the c.d.f. values are smaller everywhere. Using
the two-sample Kolmogorov-Smirnov test at a level α = 0.05, we found that
the null hypothesis can be rejected in favor of the alternative hypothesis for the
following cases:

– CT/MR Registration: HR
2 , εR

2 , εT
1/2, εT

2

– PET/MR Registration: HR
2 , εT

1/2, εT
2

When the same analysis was done with the roles of H-MI and H-ECC inter-
changed, there were no versions of H for which H-MI exhibited a statistically
significant improvement over H-ECC.

This analysis indicates that in both the CT/MR and PET/MR registration
cases, statistically significant improvements can be made by choosing the ECC
versions of MI over MI itself when HR

2 , εT
1/2, or εT

2 are selected for entropy.
When εR

2 is selected, a statistically significant improvement is made in CT/MR
registration when ECC is used over MI.
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6 Conclusion

In this article, we showed how to construct normalized versions of MI using
a variety of definitions of entropy, including Rényi, Tsallis, exponential, gener-
alized exponential, and cumulative residual entropy. The normalized similarity
measures are analogous to NMI, ECC, and SU, which have previously been
established to outperform MI in a variety of situations. To test the proposed
normalized similarity measures, we used publicly available multimodal brain
imaging data [24] that allowed us to perform CT/MR and PET/MR rigid regis-
tration and compare the results to known ground truth transformations. Results
indicate statistically significant improvements in target registration error for a
variety of the proposed similarity measures.
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Abstract. We propose Mooney-Rivlin (MR) nonlinear elasticity of hy-
perelastic materials and numerical algorithms for image registration in
the presence of landmarks and large deformation. An auxiliary variable
is introduced to remove the nonlinearity in the derivatives of Euler-
Lagrange equations. Comparing the MR elasticity model with the Saint
Venant-Kirchhoff elasticity model (SVK), the results show that the MR
model gives better matching in fewer iterations. To accelerate the slow
convergence due to the lack of smoothness of the L2 gradient, we con-
struct a Sobolev H1 gradient descent method [13] and take advantage
of the smoothing quality of the Sobolev operator (Id −�)−1. The MR
model with Sobolev H1 gradient descent (SGMR) improves both match-
ing criterion and computational time substantially. We further apply
the L2 and Sobolev gradient to landmark registration for multi-modal
mouse brain data, and observe faster convergence and better landmark
matching for the MR model with Sobolev H1 gradient descent.

Keywords: image registration, landmarks, nonlinear elasticity, multi-
modality, L2 and Sobolev gradient, Mooney-Rivlin materials.

1 Introduction

In medical imaging, it is often useful to compare multi-modal images and com-
bine the information for clinical studies of disease and for atlas-based identifi-
cation and segmentation of anatomical structures. This is commonly done using
image registration. To map a template image T : Ω → R to a reference im-
age R : Ω → R, Ω ⊂ R

n, we aim to find a smooth invertible transformation
Φ(x) = x + u(x) from Ω to itself, such that T (Φ(x)) ≈ R(x) a.e. in Ω and
Φ(x) = x on ∂Ω, where u is the unknown displacement field. Since it is equiva-
lent to find Φ or u, we will seek the displacement u for two-dimensional planar
images.

An extensive overview of registration models is given in [11], including para-
metric models such as landmark-based spline registration, and nonparametric
models employing linear diffusion, linear elasticity, biharmonic and fluid regular-
ization. Also, variational methods for regularization of the deformation, by linear
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elasticity or by diffusion tensor, using mutual information and other information-
theoretic approaches, are presented in [4] in a theoretical framework. For models
that deal with larger deformation, we refer to [2] for a well-known large deforma-
tion fluid registration method (not in variational form), and to a variational reg-
istration for large deformations (LDDMM) [1], [10]. The work [23], [24] presents
a log-unbiased large deformation fluid registration. Besides fluid models, nonlin-
ear elasticity regularization is implemented using the finite element method in
[18] and [15]. Non-linear elasticity principles have also been used with the regu-
larized gradient flow in [3]. As for landmark-based registration methods, we refer
to [7], where a consistent landmark and intensity-based registration method is
presented using thin-plate spline regularization (or biharmonic regularization).
Another related reference is [21] where data fidelity, spline regularization and
soft landmark constraints are combined, as in the present work.

In prior work [9], we have proposed the Saint Venant-Kirchhoff (SVK) non-
linear elasticity regularizer for image registration in the presence of landmarks.
The operator splitting method was used for the numerical implementation. In
the present work we improve the previous model in two ways: (i) we propose
to use the Mooney-Rivlin regularization of hyperelastic materials, leading to a
polyconvex functional, instead of the Saint Venant-Kirchhoff functional, which
is not polyconvex [19] (theoretical condition important for existence of minimiz-
ers); (ii) we propose to use the Sobolev H1 gradient descent [13] instead of the
L2 gradient descent, leading to improved results and computational speed.

2 Proposed Model for Planar Image Registration

The proposed energy functional consists of a dissimilarity measure DM , a reg-
ularizer REG, and a landmark penalty term LMP . The general form is given
by: J(u) = DMT,R(u) + αREG(u) + κLMP (u), where u is the unknown dis-
placement vector field, α > 0 and κ ≥ 0 are penalty parameters.

2.1 Intensity Dissimilarity Measure

To minimize the pixel-by-pixel intensity dissimilarity between the reference R
and the transformed template T ◦ Φ, we minimize the L2 distance function
DM(u) = 1

2

∫
Ω
|T (x + u(x))−R(x)|2dx. Its Gâteaux-derivatives are ∂DM(u)

∂up
=

(T (Φ(x))−R(x))Txp (Φ(x)), where Txp denotes the intensity gradient component
in the direction xp, p = 1, 2.

2.2 Landmark Penalty Term

Let xR,k = (xR,k
1 , xR,k

2 ) be the m landmark points extracted from R, and xT,k =
(xT,k

1 , xT,k
2 ) be those from T, k = 1, 2, ..., m. In Eulerian framework, where back-

ward registration is done, the goal is to map xR,k onto xT,k by the transformation
Φ. We enforce the spatial overlap of soft landmarks as optimality constraints in
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the quadratic penalty method; precisely, we minimize the following landmark dis-
tance function: using Φ(x) = x + u(x), LMP (u) = 1

2

∑m
k=1 ‖xT,k − Φ(xR,k)‖2.

Its Gâteaux-derivative is ∂LMP (u)
∂up

=
{

xT,k
p − xR,k

p − up(xR,k), p = 1, 2,
0 if x �= xR,k.

2.3 Non-linear Elasticity Regularization

It is physically motivated to view the shape change of the image after transforma-
tion as the deformation of an elastic material under external force [11]. To allow
large and smooth deformation, we minimize the energy functional consisting of a
nonlinear elasticity regularizer based on the class of energy functions associated
with hyper-elastic materials such as the Saint-Venant-Kirchhoff (SVK) materials
and the Mooney-Rivlin (MR) materials [16].

Saint-Venant-Kirchhoff Elasticity. The SVK elasticity regularizer is
REG(u) =

∫
Ω

W (ε(u))dx, with W (ε) = λ
2 (trace(ε))2 +μtrace(ε2), where ε(u) =

1
2 (∇ut +∇u +∇ut∇u). It has been effective in conjunction with finite element
methods in the field of Engineering for modeling membranes with large defor-
mation and moderate strains [6], as well as in the medical field for the physical
modeling of soft tissues [17]. However, the functional is not polyconvex [19,16]
and thus the weak lower semicontinuity, necessary to establish existence of mini-
mizers, cannot be induced; this theoretical drawback may be the cause of slower
convergence when compared to the MR elasticity which has been proven to be
polyconvex, guarantees existence of minimizers [5,19], and has an additional
penalty term on the determinant of the Jacobian of the transformation, keeping
it above 0.

Mooney-Rivlin Elasticity. The energy function associated with the MR elas-
ticity is given by

∫
Ω W (F)dx, with W (F) = c|F|2 + d|adj(F)|2 + Γ (det(F)),

F(∇u) =
(

∂x1(x1 + u1) ∂x2(x1 + u1)
∂x1(x2 + u2) ∂x2(x2 + u2)

)
, det(F) = (1+u1x1)(1+u2x2)−u1x2u2x1 ,

and Γ satisfies limε→0 Γ (ε) = ∞ [16]. In two dimensions, |F | = |adj(F)| and the
MR model coincides with the Neo-Hookean model: W (F) = η|F|2 + Γ (det(F)).
To encourage that det(F) ∼ 1 for smooth transformation, we further require
limε→1 Γ (ε) = 0. Since − log(·) is convex and satisfies limε→0 − log(ε) = ∞,
we construct the MR elasticity model with the log barrier method [14] for in-
equality constraints det(F) > 0 : Γ (det(F)) = −γ log(det(F)), γ > 0, γ ↓ 0+.
MR elasticity is theoretically more sound being polyconvex; it also enables us
to build a unified minimization model with penalization Γ (det(∇Φ)) during the
minimization process to ensure det(∇Φ) > 0 and det(∇Φ) ≈ 1 (see also [24]).

Gradient Approximation by Auxiliary Variable. To simplify the cumber-
some Euler-Lagrange equations associated with the nonlinear elasticity regular-
izer, we apply, inspired from [12] and as in [9], the operator splitting method
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by introducing an auxiliary variable V =
(

V11 V12

V21 V22

)
to approximate the gra-

dient ∇u =
(

∂x1u1 ∂x2u1

∂x1u2 ∂x2u2

)
. In order to impose the soft constraint V ≈ ∇u,

we apply the quadratic penalty method and we reformulate the regularizer as:∫
Ω

REGβ(V,u)dx =
∫

Ω

[
W (F (V)) + β|V−∇u|2

]
dx =

∫
Ω

[
η((1 + V11)2 + (1 +

V22)2+V 2
12+V 2

21)−γ log((1+V11)(1+V22)−V12V21)+β|V−∇u|2
]
dx, with γ ↓ 0+.

As β → ∞, the quadratic penalty term → 0, thus we expect V → ∇u in
the limit. The Gâteaux derivatives associated with REGβ(V,u) are given by:
∂REGβ(V,u)

∂Vpp
= η[(1 + Vpp) − γ

det(F) (1 + Vqq)] + β (Vpp − ∂up

∂xp
), ∂REGβ(V,u)

∂Vpq
=

η[Vpq + γ
det(F)Vqp] + β (Vpq − ∂up

∂xq
), p, q = 1, 2, p �= q, ∂REGβ(V,u)

∂ur
= β(∂Vr1

∂x1
+

∂Vr2
∂x2

− �ur), r = 1, 2. We notice that thanks to the auxiliary variable V, the
nonlinearity in the derivatives of u has been removed.

2.4 The Combined Variational Formulation

Based on the above, we consider the combined unconstrained minimization

min
u,V

{
J(u,V) = DMT,R(u) + αREGβ(V,u) + κLMP (u)

}
, (1)

and the Gâteaux derivatives in u and V associated with (1), when κ = 0, are

∂VppJ(u,V) =
∫

Ω

β (Vpp − ∂xpup) + α(1 + Vpp) − γ

det(I + V)
(1 + Vqq) dx,

∂VpqJ(u,V) =
∫

Ω

β (Vpq − ∂xqup) + αVpq − γ

det(I + V)
(−Vqp) dx,

∂urJ(u,V) =
∫

Ω

(T (x + u(x)) − R(x))∂xrT + β(∂x1Vr1 + ∂x2Vr2 −�ur) dx,

where p, q, r = 1, 2, p �= q, I is the 2 × 2 matrix with all its entries 1, and
det(I + V) = (1 + V11)(1 + V22) − V12V21. When κ > 0, we add to the last
relation the Gâteaux-derivative from Section 2.2.

2.5 Sobolev H1 Gradient Descent Method

We recall here the notion of Sobolev H1 gradient for functionals, inspired from
Neuberger [13]. Let Ω ⊂ R

2 open, bounded, and connected, with Lipschitz
boundary, u ∈ H1(Ω)2 = {z ∈ (L2(Ω))2 : ∇z ∈ L2(Ω)4} with H1 inner product
〈·, ·〉, and test function v ∈ H1

0(Ω)2, and L : R
2 × R

4 × R
2 → R being C1. To

solve the general minimization problem: minu∈H1(Ω)2 J(u) =
∫

Ω
L(Du(x),x)dx,

Dz =
(

z
∇z

)
, z ∈ H1(Ω)2, we consider a gradient descent method defined by

the iteration u(s+1) − u(s) = −�t∇J(u(s)), with u(0) ∈ (H1(Ω))2. The idea is
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that J would decrease the fastest from z in the descent direction −∇J(z), if
J(z) is well-defined and differentiable around z. For each iterate u(s) to remain
in (H1(Ω))2, the directional derivative of J at u(s) in the direction v, J ′(u(s))v,
must satisfy

J ′(u(s))v = 〈∇SJ(u(s)),v〉H1(Ω)2 . (2)

Neuberger [13] (see also Renka [20]) proved the existence of ∇SJ(z) and ∇SJ(z) =

πP (∇J)(Dz), where π

(
f
g

)
= f for f ∈ L2(Ω)2, g ∈ L2(Ω)4, P is the orthog-

onal projection of L2(Ω)2 × L2(Ω)4 onto
{
Dz =

(
z
∇z

)
: z ∈ H1(Ω)2

}
. To

see how the Sobolev H1 gradient descent is more suitable for our purpose, we
examine the construction of the L2 gradient. With L = L(z,p,x), p = (p1, p2),
pk = ∂xk

z, z = (z1, z2), and x = (x1, x2), we derive the L2 gradient associated
with the L2 inner product as follows:

J ′(u)v =
∫

Ω

∑
k=1,2

∂zk
(L(u,∇u,x))v +

∑
k=1,2

∂pk
(L(u,∇u,x))∂xk

v dx

=
∫

Ω

[
∇z(L(u,∇u,x)) −

∑
k=1,2

∂xk

(
∂pk

(L(u,∇u,x))
)]

v dx

=
∫

Ω

[
∇z(L(u,∇u,x)) −∇x

(
∇p(L(u,∇u,x))

)]
v dx

=
∫

Ω

(
Id (−∇x)

)(∇z(L(u,∇u,x))
∇p(L(u,∇u,x))

)
v dx

= 〈D̃t∇L(Du,x),v〉L2(Ω)2 , where D̃ =
(

Id
−∇x

)
. (3)

Thus the L2 gradient, ∇L2J(u) = D̃t∇L(Du,x) at u(s) must be in H1(Ω)2,
requiring second-order derivatives of u(s) being in L2(Ω). When these strong
smoothness conditions on u and D̃t∇L(Du,x) do not hold, the L2 gradient
descent is theoretically ill-posed and may result in numerical instability. Due
to this drawback of L2 gradient, we want to consider the Sobolev H1 gradi-
ent, ∇SJ(u) = πP (∇J)(Du), for a more sound and efficient model. To con-
struct the Sobolev H1 gradient descent method, we start with the relation be-
tween the L2 and the Sobolev H1 inner product, which is given by 〈a, b〉H1 =
〈a, b〉L2 + 〈∇a,∇b〉L2 = 〈a, b〉L2 − 〈�a, b〉L2 = 〈(Id −�)a, b〉L2 , where Id is the
identity operator, � is the Laplacian operator and the second equality comes
from Green’s formula. Now, let a = (∇SJ)(u) and b = v, a smooth test function
with compact support, we then obtain the following relation:

〈(∇SJ)(u),v〉H1(Ω)2 = 〈((Id −�)∇SJ)(u),v〉L2(Ω)2 . (4)

Combining (2), (3), and (4), we obtain

〈∇L2J(u),v〉L2(Ω)2 = 〈∇SJ(u),v〉H1(Ω)2 = 〈((Id −�)∇SJ)(u),v〉L2(Ω)2 ,
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or, equivalently,

(Id −�)−1〈∇L2J(u),v〉L2(Ω)2 = 〈∇SJ(u),v〉H1(Ω)2 .

2.6 Solving the Euler-Lagrange Equations

First, we solve the Euler-Lagrange equations in V associated with (1) by the L2

gradient descent method:

V (s+1)
pq (x) = V (s)

pq (x) + �t[−∂VpqJ(u,V)(x)], (5)

where p, q = 1, 2, p �= q, s is the iteration index. With the updated V and its
derivatives, we then solve the Euler-Lagrange equations in u = (u1, u2) by the
Sobolev gradient descent method:

u(s+1)
r (x) = u(s)

r (x) + �t(Id −�)−1[−∂urJ(V,u)(x)], r = 1, 2. (6)

To solve equation (6), we let B = (B1, B2) = (−∂u1J,−∂u2J) ∈ L2(Ω)2 and let
W = (W1, W2) ∈ H1(Ω)2 be the unique function which satisfies∫

Ω

W · h + ∇W · ∇h dx =
∫

Ω

B · h dx, ∀h ∈ H1(Ω)2. (7)

To numerically solve (7), we discretize the system

W −�W = B in Ω, ∇W · ν = 0 on ∂Ω, (8)

where ν is the exterior unit normal on ∂Ω. We solve for W by a finite difference
semi-implicit scheme

W(s+1)(i, j) = B(s)(i, j) +
(W(s)(i + 1, j) − 2W(s+1)(i, j) + W(s)(i − 1, j)

(�x)2

+
W(s)(i, j + 1) − 2W(s+1)(i, j) + W(s)(i, j − 1)

(�x)2
)
. (9)

and then use the updated W to advance the displacement field u by

u(s+1)
r (x) = u(s)

r (x) + �tW (s+1)
r , r = 1, 2. (10)

The main steps of the algorithm for the Sobolev H1 gradient MR elasticity
registration model, abbreviated as SGMR, are given in Algorithm 1.

3 Numerical Results and Comparisons

In this section, we compare the SVK L2 gradient descent model [9] with the
proposed MR model (L2 and Sobolev gradient descent variants), on (i) real
human brain MRI data where the template has been artificially deformed from
the reference (the ground truth deformation is known); and on (ii) real mouse
data with landmarks for matching gene expression data to MRI mouse brain
atlas. All images are in two dimensions.
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3.1 Ground Truth Test

We consider the ”ground truth test” without the landmark penalty term (purely
intensity based registration). Tagare et al. in [22] selected a 2D coronal brain
MRI slice as the undistorted image R; R is then artificially distorted by a known
diffeomorphism f : (x1, x2) �→ (y1, y2) to produce T = R ◦ f . The two images
are shown in Fig.1. We perform the registration and calculate the error between
Ψ(x1, x2) = (x1−u1, x2−u2) and f(x1, x2) in Frobenius norm scaled by the image
size to see which model gives the smallest error from the true map f . We calculate
the distance between Ψ and the diffeomorphism f because our registration model
is in the Eulerian framework based on the backward registration T ◦ Φ = R;
that is, our deformation vector field moves from (Φ−1(ỹ1), Φ−1(ỹ2)) ∈ ΩR to
(ỹ1, ỹ2) ∈ ΩT while T is in fact the image under transformation. We also calculate
the inverse of the determinant of the deformation gradient because it corresponds
to the transformation from T to T ◦Φ ∼ R. Table 1 lists the registration results
of the ground truth test by SVK (λ = 6 , μ = 1), MR (α = 500, γ = 0.01),
and SGMR (α = 4, γ = 10), all using Matlab linear interpolation. We observe
that the Sobolev H1 gradient model, SGMR, requires smaller penalty parameter
β, achieves higher fidelity while taking about 95% fewer iterations and about
96% shorter total running time. For SVK and MR models, we observe that
larger penalty parameter β does produce smoother transformation though with
even larger iteration number; however, the smoothing qualities of the operator

Algorithm 1
Input: Reference Image R of size M × N ; Template Image T of size M × N ;
Output: Transformed Template Image T1 of size M × N ;
Initialization: G

(0)
x1 ← (1 : M)′ ∗ ones(1, N), G

(0)
x2 ← ones(M, 1) ∗ (1 : N);

up ← zeros(M, N), p = 1, 2; Vpq ← zeros(M,N), p, q = 1, 2;
∂xrup ← zeros(M, N), r, p = 1, 2; ∂xrVpq ← zeros(M, N), r, p, q = 1, 2;
while max(|u(s+1) − u(s)|) < tol do

V(s+1) ← (5);
for i = 2 to (M − 1), j = 2 to (N − 1) do

∂xrV
(s+1)

pq (i, j) ← V
(s+1)
pq (i+1,j)−V

(s+1)
pq (i−1,j)

2�x
, p, q = 1, 2;

end for
for i = 2 to (M − 1), j = 2 to (N − 1) do

W(s+1) ← (9); u
(s+1)
r ← (10); r = 1, 2;

end for
for i = 2 to (M − 1), j = 2 to (N − 1) do

∂x1up(i, j) ← up(i+1,j)−up(i−1,j)

2�x
, ∂x2up(i, j) ← up(i,j+1)−up(i,j−1)

2�x
, p = 1, 2;

end for
for i = 2 to (M − 1), j = 2 to (N − 1) do

det(∇Φ)(s+1)(i, j) ← (1 + ∂x1u
(s+1)
1 (i, j))(1 + ∂x2u

(s+1)
2 (i, j)) −

∂x2u
(s+1)
1 (i, j)∂x1u

(s+1)
2 (i, j);

end for
G

(s+1)
xp = xp + u

(s+1)
p , p = 1, 2; T1(s+1) ← interpolate(T,G

(s+1)
x1 , G

(s+1)
x2 );

end while
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Fig. 1. Reference R (left), template T (right).

Fig. 2. Transformed template (left) and det(∇Φ)−1 (right) with the deformed grid in
red lines by SGMR

(Id−�)−1 makes it possible to have smooth transformations with substantially
fewer iterations and shorter total running time, and the choice of β affects fidelity
more than the computation time. Fig.2 contains the transformed template T ◦
Φ ∼ R and the inverse of the determinant of the deformation gradient ∇Φ
together with the level lines of Φ by the Sobolev H−1 gradient model. We see that
the transformed template resembles the reference image and this corresponds to
the small error from the ground truth. The level lines of Φ are quite smooth and
the areas divided by the deformed grid are regular enough; this is also consistent
with the fact that the inverse of the determinant of the deformation gradient
∇Φ is well away from zero, thus computing a smooth transformation.

Table 1. Ground truth test results by SVK, MR, and SGMR. Image size is 186 × 197
and the intensity range is (0, 90) for both R and T. Iteration stops when max(|u(s+1)−
u(s)|) < tol. itn is the iteration number and ttltime is the total running time.

dt β
‖Ψ−f‖fro

M∗N
range(det(∇Φ−1)) itn ttltime

SVK 0.1 1,500 0.0032300 (0.38715, 2.0274) 8,035 355 sec.

MR 0.1 1,300 0.0032044 (0.37464, 2.0392) 7,469 309 sec.

SGMR 0.001 500 0.0030889 (0.36242, 2.1392) 289 14 sec.
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3.2 Mouse Gene Expression to MRI Mouse Atlas Registration

Neuroscientists have been categorizing brain cells using molecular biology for
the past 20 years. With the complete genome sequencing of many organisms
and advanced technology in DNA experiments, the full range of gene expression
across the brain has become a useful tool for neuroscientists to understand the
classification and function of neuron types in the brain.

Gene Expression Data. To facilitate gene expression analysis, Stanford Uni-
versity has developed some complementary DNA (cDNA)-deposited glass slides,
called the microarrays, where messenger ribonucleic acid (mRNA) from two
sources, one controlled and one treated, labeled with different fluorescent dyes, is
passed onto for synthesization. The fluorescence signal from each mRNA popula-
tion is then evaluated and used to calculate the expression ratio. The microarrays
are suitable for analysis of up to 10,000 cDNA clones per array and each data
point produced by such a microarray hybridization represents the expression
ratio of the treated expression level over the controlled expression level.

Standard Atlases. Lee et al. [8] constructed a standard atlas space with stereo-
taxic coordinates for the postnatal day 0 mouse brains from atlases generated
by the average of eight co-registered MR image volumes; they have shown that
the generated atlases statistically represent diversity across a population and, as
a result, provide a stable framework for image registration. Image registration is
commonly used in correlating multi-modal data, such as mapping the informa-
tion from the gene expression data to the anatomical structure represented by
the standard atlas.

Mouse Data Landmark Registration. As in [9], we use the standard mouse
brain atlas as a common and unbiased framework and map gene expression
data to the atlas in order to facilitate the integration of anatomic, genetic, and
physiologic observations from multiple subjects in a common space. In the case
of mapping gene expression data to atlas, we want to match anatomically or
geometrically significant features in the template image with those corresponding
ones in the reference image. The images that we test here are of size 200 × 200
pixels with the landmark points marked in red for the reference and in green

Fig. 3. Reference R (left) and template T̃ (right) after histogram equalization, with
landmark points marked in red and green respectively
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for the template. Since the original template image has an interior with very
low contrast, we perform histogram equalization on the template image so that
the intensity histogram of the output image matches a specified histogram such
as the histogram of the reference image. Therefore, the pair of images that we
actually work with are the original reference R and a template T̃ with its intensity
histogram matched with the reference, shown in Fig.3. Although R and T for the
mouse data are of different modalities (MRI atlas and gene expression), it was
shown in [9] with SVK model that the L2 similarity measure can still be used,
and that the mutual information between T and R increases versus iterations.

We apply the intensity and landmark based SVK [9], MR, and SGMR regis-
tration models to the above pair of images and obtain the following convergence
results. The transformed templates by the three models are given in Fig.4.

Fig. 4. Transformed template images by SVK, MR and SGMR from left to right, with
iteration number and total running time denoted underneath

Besides that the MR model is more computationally efficient than the SVK
model, we also observe that the SGMR model renders largest deformation with
respect to shape while requiring smallest iteration number and shortest total
running time among the three models. This is the expected effect of the smooth-
ing quality of the Sobolev H1 gradient on the convergence to minimizers. We do

Fig. 5. Distortion maps in Euler framework by SVK, MR and SGMR from left to right,
with landmark distance denoted underneath
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Fig. 6. Determinant of inverse Jacobian by SVK, MR and SGMR from left to right,
with range of values of determinant denoted underneath

not compute the dissimilarity between the reference and the transformed tem-
plate here, but we calculate the distance between the landmark points in �2 norm
divided by p, the number of landmark points. Fig.5 shows the distortion maps
by the three models plotted in red vectors originating from Φ−1(x1, x2) ∈ R to
(y1, y2) ∈ T̃ with the transformed landmark points xR,k+u(xR,k) marked in blue
moving from xR,k (marked in red) to xT̃ ,k (marked in green). The SGMR model
gives the smallest landmark distance in accordance with the largest deformation.
Despite the large deformation, the deformation gradient remains smooth. Fig.6
shows plots of the determinant of the inverse Jacobian, where the expansion and
shrinkage of areas are indicated by lighter and darker gray levels and all results
use the same gray scale. The grid consists of level lines of Φ.

We see that the SGMR model renders the least contrastive gray-scale color
map and the smallest range of determinant; this indicates it gives the smoothest
deformation.

4 Conclusion

As predicted, possibly due to the theoretical disadvantage for not being poly-
convex, the SVK model requires more iterations to converge while rendering still
larger landmark distance than the MR and SGMR models. With the Sobolev H1

gradient operator applied to the Euler-Lagrange equations in the displacement
vector field u modeled by MR elasticity, we have seen substantial improvement
in fidelity, deformation smoothness, and convergence rate due to the smoothing
quality of (Id −�)−1.
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