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Preface

While the areas of information management and management science are full
of algorithmic challenges, the proliferation of data has called for the design of
efficient and effective algorithms and data structures for their management and
processing.

The International Conference on Algorithmic Aspects in Information and
Management (AAIM) is intended for original algorithmic research on immediate
applications and/or fundamental problems pertinent to information manage-
ment and management science to be broadly construed. The conference aims at
bringing together researchers in computer science, operations research, applied
mathematics, economics, and related disciplines.

This volume contains papers presented at AAIM 2010: the 6th International
Conference on Algorithmic Aspects in Information and Management, which was
held during July 19-21, 2010, in Weihai, China. We received a total of 50 sub-
missions. Each submission was reviewed by three members of the Program Com-
mittee or their deputies on the quality, originality, soundness, and significance
of its contribution. The committee decided to accept 31 papers. The program
also included two invited keynote talks.

The success of the conference resulted from the input of many people. We
would like first of all to thank all the members of the Program Committee for
their expert evaluation of the submissions. The local organizers in the School of
Computer Science and Technology, Shandong University, did an extraordinary
job, for which we are very grateful. We thank the National Natural Science
Foundation of China, Montana State University (USA), University of Warwick
(UK), and Shandong University (China) for their sponsorship.

July 2010 Bo Chen
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Comparison of Two Algorithms for Computing
Page Importance

Yuting Liu1 and Zhi-Ming Ma2

1 Beijing Jiaotong University,
School of Science, Beijing, China, 100044

ytliu@bjtu.edu.cn
2 Academy of Mathematics and Systems Science,

CAS, Beijing, China, 100190
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Abstract. In this paper we discuss the relation and the difference
between two algorithms BrowseRank and PageRank. We analyze their
stationary distributions by the ergodic theory of Markov processes. We
compare in detail the link graph used in PageRank and the user browsing
graph used in BrowseRank. Along with the comparison, the importance
of the metadata contained in the user browsing graph is explored.

Keywords: PageRank, BrowseRank, Continuous-time Makrov process,
Stationary distribution, Ergodic theorem, link graph, user browsing graph.

1 Introduction

Page importance is a critical factor for web search. Currently, the link analysis
algorithms are successfully used to calculate the page importance from the hyper-
link graph of the Web. Link analysis algorithms take the link from one webpage
to another as an endorsement of the linking page, and assume that the more
links point to a page, the more likely the page being pointed is important. Well
known link analysis algorithms include PageRank [1,10], HITS [6], TrustRank
[5], and many others. In this paper we take PageRank as a typical example of
link analysis. PageRank is usually modeled as a discrete-time Markov process
on the web link graph [7]. Actually the process simulates a random walk of a
surfer on the Web along hyperlinks. Although PageRank has many advantages,
recently people have realized that it has also certain limitations as a model for
representing page importance. For example, the link graph, which PageRank re-
lies on, is not a very reliable data source, because hyperlinks on the Web can be
easily added or deleted by web content creators. It is clear that those purposely
created hyperlinks (e.g. created by link farms[4]) are not suitable for calculating
page importance.

To tackle the limitations ofPageRank, recently anew algorithmcalledBrowseR-
ank has been proposed ([8,9]). The new algorithmcollects the user behavior data in
web surfing and builds a user browsing graph, which contains both user transition
information and user staying time information. A continuous-time Markovprocess

B. Chen (Ed.): AAIM 2010, LNCS 6124, pp. 1–11, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 Y. Liu and Z.-M. Ma

is employed in BrowseRank to model the browsingbehavior of a web surfer, and the
stationary distribution of the process is regarded as the page importance scores.
The experimental results conducted in [8,9] testified that BrowseRank has better
performance than PageRank in finding top websites and filtering spam websites.

In this paper we shall further analyze and compare the two algorithms PageR-
ank and BrowseRank. In the next section we briefly review the probabilistic
meaning of PageRank and explain it by ergodic theorem of Markov chains. We
then give a description of BrowseRank in Section 3, which include a descrip-
tion of the model by time-continuous Markov process, and a further analysis
of BrowseRank algorithm with ergodic theory. A detail comparison between
BrowseRank and PageRank is given in Section 4. In Subsection 4.1 we explain
that a significant difference between the two algorithms is that they rely on
different data bases and take different attitudes in evaluating the importance
of web pages. In short, PageRank is ”voted” by web content creators , while
BrowseRank is ”voted” by users of Web pages. In Subsection 4.2 we make a
comparison of the two stationary distributions. We show that if we ignore the
difference between the link graph and the user browsing graph, then BrowseR-
ank could be regarded as a generalization of PageRank. However, the difference
between the user browsing graph and the link graph should not be ignored. We
then present a detail comparison between the link graph and the user brows-
ing graph in Subsection 4.3. Along with the comparison, the importance of the
metedata contained in the user browsing graph is explored.

2 Probabilistic View of PageRank Algorithm

PageRank is one of the most famous link analysis algorithms. It was proposed by
Brin and Page in 1998 [1,10], and has been successfully used by Google search
engine. The basic assumptions of PageRank algorithm are: (1) the hyperlink
from one page to another page is considered as an endorsement to the in-linked
one; (2) if many important pages link to a page on the link graph, then the
page is also likely to be important. The algorithm employs a power method to
calculate the nonnegative eigenvector of the PageRank matrix, accordingly the
eigenvector is interpreted as the PageRank values of webpages.

The probabilistic meaning of PageRank has been explained by Langville and
Meyer in [7]. They modeled the surfing on the Web as a random walk on the
link graph, and found that the nonnegative eigenvector of PageRank matrix is
nothing but the stationary distribution (up to a constant) of the random walk.
For the purpose of our further discussion and comparison, in what follows we
briefly review the probabilistic meaning of PageRank and explain it by ergodic
theorem of Markov chains.

We regard the hyperlink structure of webpages on a network as a directed
graph G̃ = (Ṽ , E). A vertex i ∈ Ṽ of the graph represents a webpage, and a
directed edge

−→
ij ∈ E represents a hyperlink from page i to page j. Suppose that

|Ṽ | = N . Let B = (Bij)N×N be the adjacent matrix of G̃ and bi be the sum of
the ith row of B, i.e. bi =

∑N
j=1 Bij . Let D be the diagonal matrix with diagonal
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entry bi (if bi = 0, then we set bi = N , and change all entries of the ith row of
B to 1). Now, we construct a stochastic matrix P̄ = D−1B.

When a surfer browses on the Web, he may choose the next page by randomly
clicking one of the hyperlinks in the current page with a large probability α (in
practice it is often set α = 0.85), which means that with probability α, the surfer
may randomly walk on G̃ with transition probability P̄ ; while with a probability
of (1−α), the surfer may also open a new page from the Web, the new page might
be selected randomly according to his personal preference ϕ, which means that he
walks randomly on G̃ with transition probability eT ϕ, where e is a row vector of
all ones, and ϕ is an N -dimensional probability vector (in practice it is often set
ϕ = 1

N e for simplicity), which is called the personalized vector. Combining the
above two random walks, a transition matrix describing the browsing behavior
of a random surfer may be formulated as

P = αP̄ + (1 − α)eT ϕ. (1)

Let {Yn}n≥0 be a discrete-time Markov chain with transition matrix P. Then
the evaluation of the Markov chain at time n represents the webpage that the
random surfer is browsing on his n-th surfing. Since P is an irreducible stochastic
matrix with a finite state space, hence it admits a unique stationary distribution,
denoted by π = (πi)i=1,...,N . π is then called the PageRank, which is indeed the
unique positive (left) eigenvector of P satisfying

π = πP, πeT = 1, (2)

and can be calculated iteratively. Furthermore, by the ergodic theorem (cf. e.g.
[11]) we have:

πi = lim
n→∞

1
n

n−1∑
k=0

p
(k)
ii =

( ∞∑
n=1

nfii(n)
)−1 =

1
μii

, (3)

where πi is the ith entry of π, p
(k)
ii is the iith entry of the k-step transition matrix

P k, fii(n) is the probability that the random surfer starts from the page i and
returns for the first time back to the page i exactly at the n-step, and μii is the
so called mean re-visiting time (or mean re-visiting steps). Therefore, the right
hand side of Equation (3) is equal to the mean frequency of visiting webpage
i. Thus the more often a webpage is visited, the higher value of its PageRank
will be. This reveals that PageRank defined as the stationary distribution of the
Markov chain is a very suitable measure for page importance.

3 Probabilistic View of BrowseRank Algorithm

As mentioned at the beginning of this paper, to overcome some limitations
of PageRank, recently a new algorithm called BrowseRank has been proposed
([8,9]). We now give a detail description of the algorithm BrowseRank.
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3.1 Continuous Time Markov Process Model

In the algorithm of BrowseRank, the browsing behavior of a random surfer is
modeled as a continuous-time Markov process {Xt, t ≥ 0}, which is called the
user browsing process in [8,9]. By the algorithm one should collects the user
behavior data in web surfing and builds a user browsing graph. The process
takes its value in the state space V consisting of all the webpages in the user
browsing graph. Thus the user browsing process X contains both user transition
information and user staying time information. The evaluation of Xt at time t
represents the webpage that the random surfer is browsing at the time point t,
here t may take value in the set IR+ of all the nonnegative real numbers. The
following two basic assumptions are imposed in [8,9].

Firstly, the time and the page that a surfer will visit in the next step depends
only on the current situation, and is independent of his browsing history. This
assumption is also a basic assumption in PageRank. It is so called the one-step
Markov property, that is, ∀ t1 ≤ · · · ≤ tn ≤ tn+1 ∈ IR+, and ∀ i1, . . . , in+1 ∈ V ,

P (Xtn+1 = in+1|Xt1 = i1, . . . , Xtn = in) = P (Xtn+1 = in+1|Xtn = in). (4)

Secondly, the process {Xt, t ≥ 0} is time-homogeneous, that is, the transition
probability of the process depends only on the time difference, and is independent
of the current time point. More precisely, ∀ i, j ∈ V, s ≥ 0, t ≥ 0,

P (Xs+t = j|Xs = i) = P (Xt = j|X0 = i) � pij(t). (5)

With the above assumptions, the user browsing process {Xt, t ≥ 0} is a continuous-
time time-homogeneous Markov process. Denote by P (t) its transition probability
matrix in time slot t, that is, P (t) = (pij(t))i,j∈V (cf. Equation (5)). Let τk be the
kth jumping time of the process X , i.e., τ0 = 0 and τk = inf{t : t > τk−1, Xt �=
Xτk−1}, k ≥ 1. Then {τk}k≥0 forms a sequence of stopping times. By the property
of time-homogeneous Markov processes (cf. e.g. [13]), for any k ≥ 1 we have

P (τk+1 − τk > t, Xτk+1 = j|Xk = i) = P (τ1 > t, Xτ1 = j|X0 = i)
= P (Xτ1 = j|X0 = i) × P (τ1 > t|X0 = i)
= p̃ij × P (τ1 > t|X0 = i), (6)

where p̃ij � P (Xτ1 = j|X0 = i) represents the probability that the random
surfer jumps from page i to page j, which is independent of the staying time of
the process X .

Write P̃ = (p̃ij)i,j∈V and define Zn = Xτn for n ≥ 0, then {Zn, n ≥ 0} is a
discrete-time Markov chain with state space V and transition probability matrix
P̃ . Z is called the embedded Markov chain of the process X [12]. It was shown in
[8,9] that the embedded Markov chain {Zn, n ≥ 0} is irreducible and aperiodic,
which implies that the continuous-time process {Xt, t ≥ 0} is also irreducible
and aperiodic, and hence X admits a unique stationary distribution, denoted by
π = (πi)i∈V , which is independent of t. BrowseRank is then defined in [8,9] as
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the stationary distribution π of X . By the definition, π is the unique nonnegative
vector satisfying

π = πP (t), πeT = 1. (7)

We shall see that πi stands for the ratio of the time that the surfer spends
on the page i over the time he spends on all the pages when time interval t
goes to infinity (cf. Equation (9) below). Hence, π is a suitable measure of page
importance.

3.2 Analyze BrowseRank with Ergodic Theory

Let {Xt, t ≥ 0} be the user browsing process described as above. Suppose that
a user starts from a page i ∈ V and randomly surfs on webpages according to
the process {Xt, t ≥ 0}. Let Ti be the staying time of the random surfer on page
i. That is, Ti stands for the first jumping time τ1 of X given the condition that
X0 = i. Let Tii be the length of the time period that the random surfer walks
a circle from page i to page i, that is, the time period that the random surfer
starts from page i and returns for the first time back to page i. We denote the
expectation of Ti as μi, and the expectation of Tii as μii.

The following results can be found e.g. in [2,14]. For the convenience of the
reader we provide a proof here.

Theorem 1. Let {Xt, t ≥ 0} be a time homogeneous Markov process. Suppose
that X is irreducible and aperiodic, and π = (πi)i∈V is its stationary distribution.
Then with the above notations we have:

(1) πi = μi

μii
, a.s..

(2) Suppose π̂ = (π̂i)i∈V is the stationary distribution of the embedded Markov
chain {Zn, n ≥ 0} of X, then we have

πi =
π̂iμi∑

j∈V π̂jμj
. (8)

Proof. By the definition of stationary distribution, we have

πi = lim
t→∞P (Xt = i|X0 = j),

where j is an arbitrary page of V . Without loss of generality, we may take
X0 = i. By this way we can regard the process {Xt, t ≥ 0} as a renewal process
which starts from page i and returns to page i when the next renewal occurs.
The lengths of time period between two successive renewals form a family of i.i.d
random variables with the same distribution as Tii. Let Nt denotes the number
of renewals occurred before time t. By a property of renewal processes (cf. e.g.
Theorem 3-3-2 in [2]), we have

lim
t→∞

Nt

t
=

1
μii

a.s. ,
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Moreover, by the ergodic theorem of continuous-time Markov processes we know
that

πi = lim
t→∞

The time spent on page i in interval [0,t]
t

, a.s. . (9)

Let Ti(k) be the staying time of the kth visit on page i. Then Ti(k), k ≥ 1, form
a family of i.i.d random variables with the same distribution as Ti. Consequently
by the strong law of large numbers,

πi = lim
t→∞

The time spent on page i in interval [0,t]
t

= lim
t→∞

∑Nt

k=1 Ti(k)
t

= lim
t→∞

Nt

t

∑Nt

k=1 Ti(k)
Nt

=
μi

μii
, a.s. .

So we get assertion (1).
We now prove assertion (2). Let Ni(m) be the number of times visiting page

i in past m transitions. Based on the fact that the embedded Markov chain
{Zn, n ≥ 0} is ergodic, by the ergodic theorem we have

lim
m→∞

Ni(m)
m

= π̂i a.s. . (10)

By the strong law of large number, the definition of μi, and Equation (10), we
have

lim
m→∞

1
m

Ni(m)∑
k=1

Ti(k) = lim
m→∞

Ni(m)
m

1
Ni(m)

Ni(m)∑
k=1

Ti(k) = π̂iμi a.s. . (11)

Combining Equation (9) and Equation (11), we get

πi = lim
t→∞

The time spent on page i in interval [0,t]
t

= lim
m→∞

∑Ni(m)
k=1 Ti(k)

τm

= lim
m→∞

∑Ni(m)
k=1 Ti(k)∑

j∈V

∑Nj(m)
k=1 Tj(k)

= lim
m→∞

1
m

∑Ni(m)
k=1 Ti(k)∑

j∈V
1
m

∑Nj(m)
k=1 Tj(k)

=
π̂iμi∑

j∈V π̂jμj
a.s. .

So we get assertion (2).
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From Theorem 1 we can draw the following conclusions.

(i) By assertion (1), we know that the evaluation of the stationary distribution
at page i is determined by the fraction μi

μii
, where the numerator μi is the

mean staying time on page i, while the denominator μii stands for the
mean re-visit time on page i. This means that, the more important a page
is, the longer time the user would like to stay on it, and hence the higher
evaluation of the stationary distribution at this page will be. Also the more
important a page is, the shorter the mean re-visit time on this page will be,
the more often this page will be visited, and hence the higher evaluation of
the stationary distribution at this page will be. Therefore, the stationary
distribution of the user browsing process is a suitable measure of page
importance.

(ii) Assertion (2) provides us feasible algorithms to calculate BrowseRank π.
Indeed, μi is the mean staying time which can be estimated from a large
number of observation data extracted from users’ browsing log data. The
stationary distribution π̃i of the discrete-time embedded Markov chain can
be computed similar to PageRank by Power Method[3]. Based on assertion
(2), an efficient and feasible flow chart of BrowseRank algorithm has been
devised in [8,9].

4 Comparison between BrowseRank and PageRank

In this section we make further analysis and comparison of the two algorithms
BrowseRank and PageRank.

4.1 Different Data Bases and Different Votes

We note first that a significant difference between BrowseRank and PageRank
is that they make use of different data bases and take different attitudes in
evaluating the importance of web pages.

PageRank algorithm relies solely on the data of the link graph of the Web.
It interprets a link from page i to page j as a vote by page i for page j, and
analyzes the page that casts the vote. Votes cast by pages that are themselves
”important” weigh more heavily and help to make other pages ”important”. In
other words, the importance of pages is evaluated by the votes of web content
creators who create or delete hyperlinks.

BrowseRank algorithm collects the user behavior data in web surfing and
builds a user browsing graph, which contains both user transition information
and user staying time information. In this way, the importance of pages relies
on the browsing behavior of a large number of users, it is evaluated by hundreds
of millions of users’ implicit votes.

4.2 Comparison of Stationary Distributions

BrowseRank algorithm employs a continuous-time Markov process {Xt, t ≥ 0}
to model the browsing behavior of a web surfer, and the BrowseRank is defined
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as the stationary distribution of the browsing process X . To make comparison,
in this subsection we denote the stationary distribution of X as πB = (πB

i )i∈V .
By (8) we know that

πB
i =

π̂iμi∑
j∈V π̂jμj

. (12)

Thus the BrowseRank value of a page i is proportional to the product of two
factors π̂i and μi, where π̂i is the stationary distribution of the embedded Markov
chain Z on the page i, and μi is the mean staying time of the surfer on the page
i. On the other hand, PageRank is modeled as a discrete-time Markov process
{Yn}n≥0 on the web link graph, and PageRank value is defined as the stationary
distribution π of Y (cf. (2)).

If we assume that the staying times on the pages are all the same (this is
indeed implicitly assumed in PageRank algorithm), say, P (Tj = 1) = 1 for all
j ∈ V, then (12) will be reduced to πB

i = π̂i. In this case the BrowseRank
algorithm would be reduced to the PageRank algorithm. Assume further that
the user browsing graph was the same as the link graph, then πB would be equal
to π. In other words, if we ignore the difference between the user browsing graph
and the link graph, then BrowseRank could be regarded as a generalization of
PageRank.

However, we emphasize that the difference between the user browsing graph
and the link graph should not be ignored. See the discussion in the next subsection.

4.3 User Browsing Graph vs. Link Graph

We start with a brief description of the user browsing graph. For more details
the reader is refered to [8,9].

The user browsing graph is a weighted graph with vertices containing meta-
data and edges containing weights. We denote it as G = 〈V, W, C, R, Z, γ〉,
where V = {vi}, with size |V | = M , is the state space consisting of all the
webpages browsed by users during a long period of observation; an element
wij in W = {wij |i, j ∈ V } represents the number of transitions from page
i to page j conducted by users during the period; C = {ci|i ∈ V } collects
the numbers of visiting times on each page observed during the period; The
entry ri in R = {ri|i ∈ V } is the number of resettings1 occurred at page i;
Z = {Zi|Zi = {z1

i , z2
i , . . . , zmi

i }, i ∈ V }, each Zi collects all the observed staying
times on page i; and γ = {γi|i ∈ V }, γi stands for the resetting probability on
page i.

Below we list some major differences and relations between the user browsing
graph (UBG for short) employed by BrowseRank and the link graph employed
by PageRank:

1. From the above description we know that UBG is a multi-graph. Note that
the vertex set of UBG is a subset of that of the link graph, and the edge set

1 If user dose not click any hyperlinks on some page, but choose a new page to start
another round of browsing, we say it occurs a resetting at such page.
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of UBG is also a subset of that of the link graph. Hence if we condense UBG
into a simple graph, i.e. ignore the metadata of each vertex and ignore the
weight of each edge, then UBG is a subgraph of the link graph. However,
those vertices of link graph which are not contained in UBG are exactly low
qualified and negligible pages. Because those pages have never been visited
by any user in the long period of observation. Similarly, those edges in the
link graph which are not contained in UBG are exactly low qualified and
negligible hyperlinks. Because those links have never been clicked by any user
in the long period of observation. But UBG can not be simply described as
a subgraph of the link graph. The metadata and weights contained in UBG
play important roles in BrowseRank algorithm and influence efficiently the
evaluation of the importance of webpages.

2. Being a multi-graph, each edge in UBG has a weight wij ∈ W which records
the number of transitions from one page to another page. Being a simple
graph, the weights of edges in the link graph are assumed implicitly all equal
to one. In BrowseRank algorithm, the weights W = {wij |i, j ∈ V } of edges
together with the resetting probabilities γ = {γi|i ∈ V } of pages influence
efficiently the transition probabilities of the embedded Markov chain. Ignore
the detail techniques, in BrowseRank algorithm[8] the transition probability
from page i to page j is computed by the formula

p̃ij =
αwij∑
k∈V wik

+ (1 − α)γj , (13)

when
∑

k∈V wik > 0, where α stands for the probability that the user surfs on
Web along hyperlinks. In other words, when the user surfs along hyperlinks,
the probability that he jumps from page i to page j is proportional to the
weight wij ; when the user wants to start another round of browsing, with
probability γj he will choose page j. Comparing with PageRank algorithm
based on the link graph, the transition probability from page i to page j is
in practice computed by the formula

p̄ij =
α

out degree of page i
I[i→j] + (1 − α)

1
N

, (14)

when out degree of page i is not zero, where I[i→j] = 1 if there is a hyperlink
from page i to page j and I[i→j] = 0 otherwise. That is, when the user surfs
along hyperlinks, he will randomly (i.e. with equal probability) click a link;
when he wants to start another round of browsing, he will also randomly
choose a page.

3. In PageRank algorithm some authors suggested to employ personalized prob-
ability vector ϕ in place of the uniform probability in the Equation (14). In
practice there is no algorithm to compute ϕ. In BrowseRank the resetting
probability γ employed in the Equation (13) plays exactly the role of a per-
sonalized probability. But γ is estimated from the real users’ behaviors data
by a feasible algorithm.

4. As we have mentioned in the last subsection, all the staying times in PageR-
ank algorithm are implicitly assumed to be equal to one. While in BrowseRank
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algorithm, the observed staying times Z contained in UBG are essential in es-
timating the probability distribution of the continuous-time Markov process.
They are also used to estimate the mean staying time of pages, which compose
a factor of the stationary distribution of X (cf. Equation (8)).

5. Other metadata contained in UBG are also very useful in BrowseRank al-
gorithm. For example, the number of visiting times C = {ci|i ∈ V } and
the number of resettings R = {ri|i ∈ V } are used to improve the transition
probability p̃ij from page i to page j by the formula:

p̃ij = α
wij + ri γj

ci
+ (1 − α) γj . (15)

Theoretically, the improved formula (15) is better than the formula (13),
because (15) contains more information. Indeed, the experimental results in
[9] have shown that the algorithm besed on (15) outperforms the algorithm
based on (13).
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Abstract. We consider a perfectly competitive situation consisting of
an electricity market (2nd stage) preceded by investment in generating
plant capacity (1st stage). The second stage environment is uncertain
at the time of investment, hence the first stage also involves trading in
financial instruments, eg, hedges against high generation costs due to
rising fuel costs.

The classical Invisible Hand says that if generators and consumers act
in their own best interests, the result will be to minimize the net cost
(or max net welfare) of the system. This holds true in the stochastic risk
neutral case, when a probability distribution of future events is known
and used by all generators to evaluate their investment strategies (via
two stage stochastic programming with recourse).

Motivated by energy developments in the European Union, our inter-
est is the case when electricity generators are risk averse, and the cost of
future production is assessed via coherent risk measures instead of expec-
tations. This results in a new kind of stochastic equilibrium framework
in which (risk neutral) probability distributions are endogenous can only
be found at equilibrium.

Our main result is that if there are enough financial products to cover
every future situation, ie, the financial market is complete, then the In-
visible Hand remains in force: system equilibrium is equivalent to system
optimization in risk averse investment equilibria. Some practical impli-
cations will be discussed.
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Abstract. Given a graph G = (V, E) with a cost on each edge in E
and a prize at each vertex in V , and a target set V ′ ⊆ V , the Prize Col-
lecting Steiner Tree (PCST) problem is to find a tree T interconnecting
vertices in V ′ that has minimum total costs on edges and maximum to-
tal prizes at vertices in T . This problem is NP-hard in general, and it is
polynomial-time solvable when graphs G are restricted to 2-trees. In this
paper, we study how to deal with PCST problem with uncertain costs
and prizes. We assume that edge e could be included in T by paying cost
xe ∈ [c−e , c+

e ] while taking risk c+e −xe

c+e −c−e
of losing e, and vertex v could be

awarded prize pv ∈ [p−
v , p+

v ] while taking risk yv−p−
v

p+
v −p−

v
of losing the prize.

We establish two risk models for the PCST problem, one minimizing the
maximum risk over edges and vertices in T and the other minimizing the
sum of risks. Both models are subject to upper bounds on the budget
for constructing a tree. We propose two polynomial-time algorithms for
these problems on 2-trees, respectively. Our study shows that the risk
models have advantages over the tradional robust optimization model,
which yields NP-hard problems even if the original optimization prob-
lems are polynomial-time solvable.

Keywords: Prize collecting Steiner tree, interval data, 2-trees.

1 Introduction

The Prize Collecting Steiner Tree (PCST) problem has been extensively studied
in the areas of computer science and operation research due to its wide range of
applications [2,9,10]. A typical application occurs when a natural gas provider
wants to build a most profitable transportation system to send natural gas from
a station to some customers on scattered locations, where each link (segment
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of pipleline) is associated with a cost which is incurred if the link is installed,
and each location is associated with a profit which is obtained if the location is
connected to the station by links installed. Moreover, the transportation system
is required to contain some specified customers. One of the most important
special cases of PCST problem is the Steiner Minimum Tree (SMT) problem [7]
where the profits associated with all locations are zero.

Since the SMT problem is NP-complete in general [8], so is the PCST problem,
and the latter admits a 2-approximation polynomial-time algorithm [5]. When
restricted to 2-trees, Wald and Colbourn [12] proved that the SMT problem is
polynomial-time solvable; In this paper, we will extend their algorithm to the
PCST problem for this special class of graphs.

In contrast to the above deterministic setting, it is often necessary to take
uncertainty into account in the real application of algorithms for PCST and
SMT problems. For example, in the above application, the gas provider may not
be able to know exactly how much cost he/she needs to pay for installing a link
and how much profit he/she can obtain from connecting a location. Instead, the
provider may manage to estimate the highest and lowest costs or profits he/she
needs to pay or can obtain. In such a situation, the gas provider could get a more
reliable link if he/she would like to pay more, and the possibility for he/she to
obtain a small profit is higher than that to obtain a large profit.

Robust optimization is one of most frequently used approaches to dealing
with problems under nondeterministic setting. However, many robust optimiza-
tion problems (such as the robust shortest path [13] and robust spanning tree
problems [1]) are NP-hard even though their deterministic counterparts are
polynomial-time solvable. Recently, Chen et. al. [4] and Hu [6] proposed two
novel models for network optimization with interval data on network links un-
der which the corresponding problems are polynomial-time solvable, preserving
the polynomial-time solvability of the original optimization problems with de-
terministic data. In this paper, we will extend their approaches to the PCST
problem in 2-trees by considering not only uncertain costs on edges but also
uncertain profits at vertices.

The reminder of the paper is organized as follows: In Section 2, we present
a linear-time algorithm for the PCST problem on 2-trees. In Section 3, we first
establish min-max and min-sum risk models for the PCST problem, respec-
tively, and then propose two polynomial-time algorithms for the PCST problem
on 2-trees under these two models. In Section 4, we conclude the paper with
discussions on the obtained results and future work.

2 Efficient Algorithm for PCST Problem on 2-Trees

In the PCST problem, we are given a undirected graph G = (V, E) with vertex-
set V of size n and edge-set E of size m, where each vertex v ∈ V is assigned a
nonnegative prize pv ∈ R+, and each edge e ∈ E is assigned a nonnegative cost
ce ∈ R+. Conventionally, a target set V ′ ⊆ V , which is also called a terminal
set, is given. The goal of the PCST problem is to find a tree T in G such that
V ′ ⊆ V (T ) and its value
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ν(T, c, p) ≡
∑

e∈E(T )

ce −
∑

v∈V (T )

pv (1)

is minimum among all trees in G spanning V ′. Such a tree is called an optimal
PCST in G and denoted by Topt(G, c, p). We assume that G is connected, as
otherwise we can consider the connected component of G that contains V ′.

For easy discussion, we remove target set V ′ from the input of the PCST
problem. In fact, we could force all vertices in V ′ to be included in Topt(G, c, p)
by assigning each of them a sufficiently large prize. The following lemma gives
the details. Its proof, along with the proofs of all other lemmas and theorems, is
ommited due to space limitation.

Lemma 1. Given G = (V, E), c ∈ RE
+, p ∈ RV

+, M =
∑

e∈E ce +
∑

v∈V pv + 100
and target set V ′ ⊆ V , let p′ ∈ RV

+ with p′v = M for every v ∈ V ′, p′v = pv

for every v ∈ V \ V ′. Let Topt denote an optimal PCST Topt(G, c, p′), then
V ′ ⊆ V (Topt), and ν(Topt, c, p) ≤ ν(T, c, p) for any tree T in G with V (T ) ⊇ V ′.

The graph class of 2-trees can be defined recursively as follows: A triangle (i.e.,
a complete graph of three vertices) is a 2-tree; given a 2-tree T with an edge uv
in T , adding a new vertex z adjacent with both u and v yields a 2-tree.

Wald and Colbourn [12] gave an O(n)-time algorithm for finding a SMT in
a given 2-tree of n vertices with target set. Their algorithm is a dynamic pro-
gramming method that finds a Steiner tree on 2-tree by repeatedly eliminating
vertices of degree 2 until the remaining graph is a single edge. During this vertex
elimination procedure, they record information associated with triangle {u, v, z},
where vertex v has degree 2 in the current 2-tree, on the ordered pairs (u, z) and
(z, u) corresponding to the edge uz in G, when considering and deleting v.

In the following we will describe how to extend the above method for the SMT
problem to the PCST problem on 2-trees. Assume that G = (V, E) is a 2-tree.
As target set is not presented (explicitly) in our PCST problem, our task can
be accomplished by introducing five measures, instead of six as in [12] for the
SMT problem on 2-tree. For each ordered pair (u, v) that corresponds to edge
uv ∈ E, we introduce five measures st(u, v), dt(u, v), un(u, v), nv(u, v), nn(u, v)
to record the values computed so far for the subgraph S of G which has been
reduced onto edge uv.

st(u, v) is the min value of a tree T in S with u, v ∈ V (T );
dt(u, v) is the min value of two disjoint trees T1, T2 in S with u ∈ V (T1),

v ∈ V (T2);
un(u, v) is the min value of a tree T in S with u ∈ V (T ) but v /∈ V (T );
nv(u, v) is the min value of a tree T in S with v ∈ V (T ) but u /∈ V (T );
nn(u, v) is the min value of a tree T in S with u, v /∈ V (T ).

In the above, the value of two disjoint trees T1 and T2 is defined as

ν(T1, c, p) + ν(T2, c, p) ≡
( ∑

e∈E(T1)

ce −
∑

v∈V (T1)

pv

)
+
( ∑

e∈E(T2)

ce −
∑

v∈V (T2)

pv

)
.

Using the five measures, we design a dynamic programming Alg Pcst, whose
pseudo-code is omitted, for solving the PCST problem on 2-tree.
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Theorem 1. Algorithm Alg Pcst outputs the optimal value ν∗ of the PCST
problem on 2-trees of n vertices in O(n) time.

3 Algorithms for PCST Problem with Interval Data

In this section, we consider the PCST problem on 2-trees with interval data.
Given a undirected graph G = (V, E), each edge e ∈ E is associated with a
cost interval [c−e , c+

e ], and each vertex v ∈ V is associated with a prize interval
[p−v , p+

v ]. These intervals indicate possible ranges of construction cost of edge e

and prize of vertex v, respectively. We define the risk at edge e as r(xe) ≡ c+
e −xe

c+
e −c−e

when charging cost xe ∈ [c−e , c+
e ], and the risk at vertex v as r(yv) ≡ yv−p−

v

p+
v −p−

v
when

collecting prize yv ∈ [p−v , p+
v ]. For ease of description, we make the notational

convention that 0
0 = 0. With these definitions, risks r(xe) and r(yv) both range

from 0 to 1. In particular, r(xe) = 0 when xe = c+
e (r(yv) = 0 when yv = p−v ),

meaning no risk occurs if the payment is high enough (the expected prize is low
enough). On the other hand, r(xe) = 1 when xe = c−e (r(yv) = 1 when yv = p+

v ),
meaning a full risk is doomed at the lowest payment (the highest prize). Let B
be a given budget bound on constructing a PCST and T the set of trees in G.
We define the value of tree T with charged payment x and collected prize y as

ν(T, x, y) ≡
∑

e∈E(T )

xe −
∑

v∈V (T )

yv. (2)

In the following two subsections, we will study two risk models that adopt dis-
tinct objective functions, respectively.

3.1 PCST Problem under Min-Max Risk Model

In this subsection, we first formulate the PCST problem under min-max risk
model denoted by MMR PCST, and present the property of its optimal solutions,
and then present a polynomial-time algorithm MMR PCST on 2-trees.

The goal of the MMR PCST problem is to find a tree T along with payment x
and prize y such that the maximum risk at edges and vertices in T is minimized
and the value ν(T, x, y) is less than or equal to the given budget B. This problem
can be formulated as follows:

(MMR PCST) min
T∈T ,ν(T,x,y)≤B

max
e∈E(T ),v∈V (T )

{ c+
e − xe

c+
e − c−e

,
yv − p−v
p+

v − p−v

}
s.t.

{
xe ∈ [c−e , c+

e ], ∀ e ∈ E;
yv ∈ [p−v , p+

v ], ∀ v ∈ V.

The following lemma shows that the optimal solution (T ∗, x∗, y∗) to the above
problem possesses an evenness property, which will play an important role in
our algorithm design. We reserve symbol r∗ for the value of the optimal solution
to the MMR PCST problem, i.e.

r∗ ≡ rm(T ∗, x∗, y∗) ≡ max
e∈E(T∗),v∈V (T∗)

{ c+
e − x∗

e

c+
e − c−e

,
y∗

v − p−v
p+

v − p−v

}
.
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Lemma 2. For every edge e and vertex v in T ∗, it holds that
c+

e −x∗
e

c+
e −c−e

= y∗
v−p−

v

p+
v −p−

v
= r∗.

To present our analysis for determining the optimal value r∗ in an easy way, we
need to introduce more notations. For any r ∈ [0, 1], let xr

e = c+
e − r(c+

e − c−e ),
yr

v = p−v + r(p+
v − p−v ) for every edge e ∈ E and every vertex v ∈ V . In addition,

let T r ∈ T be an optimal PCST Topt(G, xr, yr), i.e.

ν(T r, xr, yr) = min
T∈T

ν(T, xr, yr). (3)

From the above lemma we have ν(T r∗
, xr∗

, yr∗
) = ν(T ∗, x∗, y∗).

Lemma 3. Suppose B is a given bound on the budget for constructing PCSTs.
If ν(T r, xr , yr) > B, then r < r∗; otherwise r ≥ r∗.

From the definitions of xr, yr, T r it is easy to see that if ν(T 0, x0, y0) ≤ B, then
(T 0, x0, y0) is an optimal solution to the MMR PCST problem. Hence we assume
ν(T 0, x0, y0) > B. By Lemma 3, we know r∗ > 0 implies ν(T ∗, x∗, y∗) = B, as
otherwise we could increase x∗

e for every edge e ∈ E(T ∗) and decrease y∗
v a little

bit for every vertex v ∈ V (T ∗) and get a smaller r∗. Furthermore, by virtue
of Lemmas 2 and 3, we can apply Megiddo’s parametric search method [11] to
determine r∗ in polynomial time.

In the following pseudo-code, r∗ is always kept being contained in [rl, ru].
We will narrow the interval [rl, ru] by comparing value ν(T r, xr, yr) with bound
B. By Lemma 3, we set rl = r if ν(T r, xr, yr) > B and set ru = r otherwise.
Algorithm Alg Pcst is used as a searching tool for computing ν(T r, xr, yr).
In the end, we are able to locate a unique r∗ ∈ [rl, ru] by solving the equation
ν(T r, xr, yr) = B.

Algorithm for MMR PCST on 2-tree (Alg Mmr)

Input 2-tree G = (V, E) with c− ∈ RE
+, c+ ∈ RE

+, p− ∈ RV
+ , p+ ∈ RV

+ , B ∈ R+
Output optimal value r∗ of the MMR PCST problem
1. F ← G, D ← ∅ , rl ← 0, ru ← 1
2. for uv ∈ E do begin
3. str(u, v) = str(v, u) ← cr

uv − pr
u − pr

v, dtr(u, v) = dtr(v, u) ← −pr
u − pr

v;
4. unr(u, v) = nur(v, u) ← −pr

u, nvr(u, v) = vnr(v, u) ← −pr
v;

5. nnr(u, v) = nnr(v, u) ← 0
6. end-for
7. D ← {degree-2 vertices in G}
8. while D �= ∅ do begin
9. Take vertex v ∈ D and edges uv, vz ∈ E(F )

10. mr
1(u, z) ← min

{
str(u, z) + unr(u, v) + nzr(v, z) + pr

u + pr
z,

str(u, z) + str(u, v) + dtr(v, z) + pr
u + pr

v + pr
z ,

str(u, z) + dtr(u, v) + str(v, z) + pr
u + pr

v + pr
z ,

dtr(u, z) + str(u, v) + str(v, z) + pr
u + pr

v + pr
z

}
11. mr

2(u, z) ← min
{
dtr(u, z) + unr(u, v) + nzr(v, z) + pr

u + pr
z,

dtr(u, z) + str(u, v) + dtr(v, z) + pr
u + pr

v + pr
z,

dtr(u, z) + dtr(u, v) + str(v, z) + pr
u + pr

v + pr
z

}
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12. mr
3(u,z)←min{unr(u,z)+unr(u,v)+pr

u, unr(u,z)+str(u,v)+vnr(v,z)+pr
u+pr

v}
13. mr

4(u,z)←min{nzr(u,z)+nzr(v,z)+pr
z, nzr(u,z)+nvr(u,v)+str(v,z)+pr

v+pr
z}

14. mr
5(u, z)←min{nnr(u, z), nnr(u, v), nnr(v, z), nvr(u, v)+vnr(v, z)+pr

v}
15. for i = 1 : 5 do begin
16. Call Prc Ud with m(r)=mr

i (u, z), r∈ [rl, ru] to update [rl, ru]
17. end-for
18. str(u, z) = str(z, u) ← mr

1(u, z), dtr(u, z) = dtr(z, u) ← mr
2(u, z);

19. unr(u, z)=nur(z, u) ← mr
3(u, z), nzr(u, z)=znr(z, u) ← mr

4(u, z);
20. nnr(u, z) = nnr(z, u) ← mr

5(u, z).
21. F ← F\{v, uv, vz}, D ← {degree-2 vertices in F}
22. end-while
23. νr←min

{
str(u, z), unr(u, z), nzr(u, z), nnr(u, z)

}
, where r∈[rl, ru],E(F)={uz}

24. Find r∗ ∈ [rl, ru] s.t. νr∗
= B

25. Output r∗

Procedure Update (Prc Ud) called by Alg Mmr

Input interval [rl, ru], function m(r) with r ∈ [rl, ru], and input of Alg Mmr

Output updated interval [rl, ru]
1. Find the non-differentiable points r1 ≤ r2 ≤ rj of m(r), where j ≤ 3
2. for i = 1 : j do begin
3. Call Alg Pcst to find optimal value ν(T ri , xri , yri)
4. if ν(T ri , xri , yri)>B then rl← ri else ru← ri and go to Step 6
5. end-for
6. Return [rl, ru]

Theorem 2. Algorithm Alg Mmr outputs the optimal value ν∗ of the
MMR PCST problem on 2-trees of n vertices in O(n2) time.

3.2 PCST Problem under Min-Sum Risk Model

In this subsection, we first formulate the PCST problem under min-sum risk
model denoted by MSR PCST, and give a nice property of the optimal solutions,
then we present a polynomial-time algorithm for MSR PCST on 2-trees.

The goal of the MSR PCST problem is to find a tree T along with payment
x and prize y such that the sum of risks at edges and vertices in T is minimized
and the value ν(T, x, y) is less than or equal to the given budget B. This problem
can be formulated as follows:

(MSR PCST) min
T∈T ,ν(T,x,y)≤B

( ∑
e∈E(T )

c+
e − xe

c+
e − c−e

+
∑

v∈V (T )

yv − p−v
p+

v − p−v

)

s.t.
{

xe ∈ [c−e , c+
e ], ∀ e ∈ E;

yv ∈ [p−v , p+
v ], ∀ v ∈ V.

The following lemma exhibits a structural property of optimal solutions to the
MSR PCST problem, which plays an important role in our algorithm design.
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Lemma 4. There exists an optimal solution (T ∗, x∗, y∗) to the MSR PCST
problem that includes an edge f ∈ E(T ∗) and a vertex u ∈ V (T ∗) such that
xf ∈ [c−f , c+

f ], yu ∈ [p−u , p+
u ] and xe ∈ {c−e , c+

e } for every edge e ∈ E(T ∗) \ {f},
yv ∈ {p−v , p+

v } for every vertex v ∈ V (T ∗) \ {u}.
To find an optimal solution specified in the above lemma, we will transform in
the following three steps the original given graph G = (V, E) with c−, c+ ∈ RE

+

and p−, p+ ∈ RV
+ to a new graph G̃ = (Ṽ , Ẽ) with c, w ∈ RẼ

+ and p, q ∈ RṼ
+ .

Algorithm for Graph Transformation (Alg Gt)

Step 1 Construct graph Ḡ = (V̄ , Ē) with c̄, w̄ ∈ RĒ
+ as follows: Set V̄ ≡ V

and Ē ≡ {e, e : e ∈ E} in way that every edge e ∈ E corresponds to
two edges e, e ∈ Ē both having the same ends as e. For every e ∈ E, set
c̄e ≡ c−e , c̄e ≡ c+

e ; w̄e ≡ 1, w̄e ≡ 0 if c−e �= c+
e and set w̄e = w̄e ≡ 0 otherwise.

Step 2 Construct graph Ĝ ≡ (V̂ , Ê) with ĉ, ŵ ∈ RÊ
+ and p̂−, p̂+ ∈ RV̂

+ as follows:
Set V̂ ≡ V̄ ∪ {ve : e ∈ E} and Ê ≡ {e ∈ Ē : e ∈ E} ∪ {e1 ≡ veu, e2 ≡ vev :
u, v ∈ V̄ , uv = e ∈ Ē}. For every e ∈ E, set ĉe1= ĉe2≡ 1

2 c̄e, ŵe1= ŵe2≡ 1
2 w̄e,

p̂+
ve

= p̂−ve
≡ 0. For every v ∈ V = V̄ , set p̂−v ≡ p−v , p̂+

v ≡ p+
v .

Step 3 Construct graph G̃ = (Ṽ , Ẽ) with c, w ∈ RẼ
+ and p, q ∈ RṼ

+ as follows:
Set Ṽ ≡ {v1, v2 : v ∈ V̂ } and Ẽ ≡ {u1v1, u1v2, u2v1, u2v2 : uv ∈ Ê}. For
every uv ∈ Ê and i, j ∈ {1, 2}, set cuivj≡ c̄uv, wuivj ≡ w̄uv. For every v ∈ V̂ ,
set pv1 ≡ p̂+

v , pv2 ≡ p̂−v ; set qv1 ≡ 1, qv2 ≡ 0 if p̂−v �= p̂+
v and qv1 = qv2 ≡ 0

otherwise.

Note that there is a 1-1 correspondence between the set of pairs (T̂ , ŷ), where

T̂ is a tree in Ĝ and ŷ ∈ R
V (T̂ )
+ with ŷv ∈ {p+

v , p−v } for every v ∈ V (T̂ ), and set
T̃ ≡ {

T̃ : T̃ is a tree in G̃ and
∣∣E(T̃ )

⋂{u1v1, u1v2, u2v1, u2v2}
∣∣ ≤ 1, ∀ uv ∈ Ē

}
.

The bijection is as follows: pair1(T̃ ) ≡ (T̂ , ŷ) if and only if tree(T̂ , ŷ) ≡ T̃ , which
satisfies the following for every uv ∈ Ē:

(1) u1v1 ∈ E(T̃ ) if and only if uv ∈ E(T̂ ) and ŷu = p̂+
u , ŷv = p̂+

v ;
(2) u1v2 ∈ E(T̃ ) if and only if uv ∈ E(T̂ ) and ŷu = p̂+

u , ŷv = p̂−v ;
(3) u2v1 ∈ E(T̃ ) if and only if uv ∈ E(T̂ ) and ŷu = p̂−u , ŷv = p̂+

v ;
(4) u2v2 ∈ E(T̃ ) if and only if uv ∈ E(T̂ ) and ŷu = p̂−u , ŷv = p̂−v .

Lemma 5. If tree(T̂ , ŷ) = T̃ , then ν(T̃ , c, p) = ν(T̂ , ĉ, ŷ).

In addition, there is a 1-1 correspondence between the pairs (T̄ , y), where T̄ is
a tree in G and y ∈ R

V (T̄ )
+ with yv ∈ {p+

v , p−v } for every v ∈ V (T̄ ), and the
pairs (T̂ , ŷ), where T̂ ∈ T̂ ≡ {

T̂ ′ : T̂ ′ is a tree in Ĝ, E(T̂ ′) ∩ {e1, e2, e} = {e} or

{e1, e2} or ∅, ∀ e ∈ E
}

and ŷ ∈ R
V (T̂ )
+ with ŷv ∈ {p̂+

v , p̂−v } for every v ∈ V (T̂ ).
The bijection is as follows: add(T̄ , y) ≡ (T̂ , ŷ) if and only if con(T̂ , ŷ) ≡ (T̄ , y),
which satisfies the following for every e = uv ∈ E:

(1) e ∈ E(T̄ ) if and only if e ∈ E(T̂ ) and ŷu = yu, ŷv = yv;
(2) e ∈ E(T̄ ) if and only if {e1, e2} ⊆ E(T̂ ) and ŷu = yu, ŷv = yv, ŷve = 0.
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Lemma 6. If add(T̄ , y) = (T̂ , ŷ), then ν(T̂ , ĉ, ŷ) = ν(T̄ , c̄, y).

Moreover, there is a 1-1 correspondence between the pairs (T̄ , y), where T̄ is a
tree in Ḡ and y ∈ R+V (T̄ ) with yv ∈ {p+

v , p−v } for every v ∈ V (T̄ ), and the
triples (T, x, y), where T is a tree in G and x ∈ R

E(T )
+ with xe ∈ {c+

e , c−e } for
every e ∈ E(T ). The bijection is as follows: triple(T̄ , y) ≡ (T, x, y) if and only if
pair2(T, x, y) ≡ (T̄ , y), which satisfies V (T̄ ) = V (T ) and the following for every
e ∈ E:

(1) e ∈ E(T̄ ) if and only if e ∈ E(T ) and xe = c−e ;
(2) e ∈ E(T̄ ) if and only if e ∈ E(T ) and xe = c+

e .

Lemma 7. If triple(T̄ , y) = (T, x, y), then ν(T, x, y) = ν(T̄ , c̄, y).

From Lemmas 5-7, we can establish a 1-1 correspondence between trees T̃ ∈ T̃

and triples (T, x, y) such that T is a tree in G, x ∈ R
E(T )
+ , xe ∈ {c+

e , c−e } for
every edge e ∈ E(T ) and y ∈ R

V (T )
+ , yv ∈ {p+

v , p−v } for every vertex v ∈ V (T ).
The following theorem summarizes the correspondence.

Theorem 3. Let tree (T, x, y) ≡ tree( add( pair2(T, x, y))) = T̃ , or equiva-
lently triple (T̃ ) ≡ triple( con( pair1(T̃ )))=(T, x, y), then ν(T, x, y)=ν(T̃ , c, p)

and
∑

e∈E(T )
c+
e − xe

c+
e − c−e

+
∑

v∈V (T )
yv − p−v
p+

v − p−v
=
∑

e∈E(T̃ ) we +
∑

v∈V (T̃ ) qv.

To present our algorithm for solving the MSR PCST problem on the 2-tree
G = (V, E), we need to consider how to deal with the Weight Constrained
PCST problem, denoted by WC PCST. This problem can be formulated as fol-
lows: Given (G̃, c, p, w, q, ζ) with c, w ∈ R

E(G̃)
+ and p, q ∈ R

V (G̃)
+ being vectors

defined in the construction of G̃ by Alg Gt, and ζ being an upper bound, let
W (T, w, q) ≡ ∑

e∈E(T ) we +
∑

v∈V (T ) qv, where T ∈ T̃ . The goal is to find an

optimal solution (a tree in T̃ ) to the following problem

(WC PCST) min
T∈T̃ ,W (T,w,q)≤ζ

( ∑
e∈E(T )

ce −
∑

v∈V (T )

pv

)
.

we now describe how to extend the dynamic programming algorithm for the
constrained SMT problem on 2-tree [3] to algorithm Alg Wc for the WC PCST
problem on 2-tree. First, we introduce more notations which work in a similar
way to those introduced in Section 2. With each ordered pair (u, v) corresponding
to an edge uv of Ĝ, we associate (13ζ +13) measures which summarize the value
incurred so far in the subgraph S which has been reduced onto the edge uv. For
each ξ = 0, 1, 2, . . . , ζ, we define:

1. stij(u, v, ξ) is the min value of trees T in S with W (T, w, q) ≤ ξ
and ui, vj ∈ V (T ), for i, j ∈ {1, 2}.

2. dtij(u, v, ξ) is the min value of two disjoint trees T1 and T2 in S with
W (T1, w, q) + W (T2, w, q) ≤ ξ and ui ∈ V (T1) while vj ∈ V (T2), for i, j ∈
{1, 2}.
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3. uni(u, v, ξ) is the min value of trees T in S with W (T, w, q) ≤ ξ and ui ∈
V (T ) while v1, v2 /∈ V (T ), for i = 1, 2.

4. nvi(u, v, ξ) is the min value of trees T in S with W (T, w, q) ≤ ξ
and vi ∈ V (T ) while u1, u2 /∈ V (T ), for i = 1, 2.

5. nn(u, v, ξ) is the min value of trees T in S with W (T, w, q) ≤ ξ
and ui, vj /∈ V (T ), for i, j ∈ {1, 2}.

Algorithm for WC PCST Problem on 2-trees (Alg Wc)

Initially, set L= 2n
(∑

e∈E c+
e +
∑

v∈V p+
v

)
and for (u, v, ξ) and for (u, v, ξ) with

uv ∈ E(G), set
stij(u, v, ξ)← cuv− pui− pvj , if wuv+ qui+ qvj≤ ξ, L otherwise, i, j=1, 2;
dtij(u, v, ξ)← −pui− pvj , if qui+ qvj≤ ξ; L otherwise, i, j = 1, 2;
uni(u, v, ξ)← −pui , if qui ≤ ξ; L otherwise, i = 1, 2;
nvi(u, v, ξ)← −pvi , if qvi ≤ ξ; L otherwise, i = 1, 2; nn(u, v, ξ)← 0.

Then, update the measures when a degree-2 vertex in Ĝ (corresponding to two
degree-4 vertices in G̃) is deleted. Suppose that at some stage there is a triangle
of three vertices u, v, z with v of degree 2 in the current graph S. We use cur-
rent measures for (u, v) and (v, z) (which have been computed) to compute the
measures associated with (u, z, ξ) in the graph S for all i, j ∈ {1, 2} using the
following recurrences:
stij(u, z, ξ)← min

{
stij(u, z, ξ1)+uni(u, v, ξ2)+nzj(v, z, ξ3)+pui +pzj ,

stij(u, z, ξ3h+1)+stih(u, v, ξ3h+2)+dthj(v, z, ξ3h+3)+pui+pvh
+pzj ,

stij(u, z, ξ3h+7)+dtih(u, v, ξ3h+8)+sthj(v, z, ξ3h+9)+pui+pvh
+pzj ,

dtij(u, z, ξ3h+13)+stih(u, v, ξ3h+14)+sthj(v, z, ξ3h+15)+pui+pvh
+pzj ,

h = 1, 2 |∑3k
h=3k−2 ξh = ξ, 1 ≤ k ≤ 7; ξ1, ξ2, . . . , ξ21 ≥ 0

}
dtij(u, z, ξ)← min

{
dtij(u, z, ξ1)+uni(u, v, ξ2)+nzj(v, z, ξ3)+pui +pzj ,

dtij(u, z, ξ3h+1)+stih(u, v, ξ3h+2)+dthj(v, z, ξ3h+3)+pui+pvh
+pzj ,

dtij(u, z, ξ3h+7)+dtih(u, v, ξ3h+8)+st1j(v, z, ξ3h+9)+pui+pvh
+pzj ,

h = 1, 2 |∑3k
h=3k−2 ξh = ξ, 1 ≤ k ≤ 5; ξ1, ξ2, . . . , ξ15 ≥ 0

}
uni(u, z, ξ)← min

{
uni(u, z, ξ1)+uni(u, v, ξ2)+pui ,

uni(u, z, ξ3h)+stih(u, v, ξ3h+1)+vnh(v, z, ξ3h+2)+pui+pvh
, h=1, 2

| ξ1+ξ2 = ξ3+ξ4+ξ5 = ξ6+ξ7+ξ8 = ξ, ξ1, ξ2, . . . , ξ8 ≥ 0
}
.

nzi(u, z, ξ)← min
{
nzi(u, z, ξ1)+nzi(u, v, ξ2)+pzi ,

nzi(u, z, ξ3h)+nvh(u, v, ξ3h+1)+sthi(v, z, ξ3h+2)+pvh
+pzi, h=1, 2

| ξ1+ξ2 = ξ3+ξ4+ξ5 = ξ6+ξ7+ξ8 = ξ, ξ1, ξ2, . . . , ξ8 ≥ 0
}
.

nn(u, z, ξ)←min{min{nvh(u, v, ξ2h−1)+vnh(v, z, ξ2h)+pvh, h=1, 2 | ξ2h−1, ξ2h≥0,
ξ2h−1+ξ2h=ξ, h = 1, 2}, nn(u, z, ξ), nn(u, v, ξ), nn(v, z, ξ)}.

In the end, Ĝ is reduced to a single edge uv (corresponding to four edges u1v1,
u1v2, u2v1, u2v2 in G̃). Take the minimum, denoted as νζ , among nine measures
stij(u, v, ζ), uni(u, v, ζ), nvi(u, v, ζ), nn(u, v, ζ), i, j ∈ {1, 2}. Output νζ and an
optimal solution T̃ζ (which is a tree in G̃ constructed by back tracing).

Theorem 4. Algorithm Alg Wc outputs the an optimal solution T̃ζ and opti-
mum value νζ of the WC PCST problem on 2-trees of n vertices in O(n3) time.



22 E. Álvarez-Miranda et al.

Now we are ready to present our algorithm for the MSR PCST problem on 2-
trees. In the following pseudo-code, (T, x, y) denotes a solution to the MSR PCST
problem for which there exist an edge f ∈ E(T ) and a vertex u ∈ V (T ) such that
xf ∈ [c−f , c+

f ], yu ∈ [p−u , p+
u ] and xe ∈ {c−e , c+

e } for every edge e ∈ E(T ) \ {f},
yv ∈ {P−

v , p+
v } for every vertex v ∈ V (T ) \ {u}. In order to find such a solution,

we first find for every v ∈ V and every e ∈ E a solution (T, x, y) with mini-
mum risk sum such that v ∈ V (T ), e ∈ E(T ) and xg ∈ {c−g , c+

g } for every edge
g ∈ E(T ) \ {e}, yz ∈ {p−z , p+

z } for every vertex z ∈ V (T ) \ {v}.
Algorithm for MSR PCST on 2-tree (Alg Msr)

Input 2-tree G = (V, E) with c− ∈ RE
+, c+ ∈ RE

+, p− ∈ RV
+, p+ ∈ RV

+ , B ∈ R+

and M̃ = 2
∑

e∈E c+
e + 2

∑
v∈V p+

v + 100
Output an optimal solution (T ∗, x∗, y∗) satisfying Lemma 4

1. Call Alg Gt to construct G̃=(Ṽ , Ẽ), w∈{0, 1}Ẽ , q∈{0, 1}Ṽ , c∈RẼ
+, p∈RṼ

+
2. T ∗ ← ∅, α ← 0, β ← 2n − 1
3. Call Alg Wc to find opt value ν2n−1 for WC PCST on (G̃, c, p, w, q, 2n−1)
4. if ν2n−1>B then stop (No feasible solution!)
5. Call Alg Wc to find the optimum value ν0 for WC PCST on (G̃, c, p, w, q, 0)
6. if ν0 ≤ B then output triple (T̃0), where T̃0 ∈ T̃ , ν(T̃0, c, p) = ν0, and stop
7. while β − α > 1 do begin
8. γ ← �(β + α)/2�
9. Call Alg Wc to find opt value νγ for WC PCST on (G̃, c, p, w, q, γ)

10. if νγ ≤ B then β ← γ else α ← γ
11. end-while
12. for every v ∈ V do begin
13. k− ← p−v , k+ ← p+

v , p−v ← M̃ , p+
v ← M̃

14. for every e = ab ∈ E do begin
15. p+

a ← p+
a + M̃ , p−a ←p−a + M̃ , p+

b ←p+
b + M̃ , p−b ←p−b + M̃ ,

t− ← c−e , t+ ← c+
e , c−e ←0, c+

e ←0
16. Call Alg Gt to construct G̃ = (Ṽ , Ẽ), c, w ∈ RẼ

+, p, q ∈ RṼ
+

17. for i = 1 : 2 do begin
18. Call Alg Wc to find an optimal solution (tree) T̃β−i for WC PCST

on (G̃, c, p, w, q, β−i), where the tree in triple (T̃β−i) contains v, e
19. end-for
20. p+

a←p+
a−M̃ , p−a←p−a−M̃ , p+

b ←p+
b −M̃ , p−b ←p−b −M̃ , c−e ←t−, c+

e ←t+

21. for i = 1 : 2 do begin
22. if ν(T̃β−i, c, p) − ce + pv + t− − k+ ≤ B
23. then find the optimal solution (x0

e, y
0
v) to the following LP :

min t+−xe

t+−t− + yv−k−

k+−k−

s.t.

⎧⎨⎩xe − yv ≤ B − ν(T̃β−i, c, p) + ce − pv

t− ≤ xe ≤ t+

k− ≤ yv ≤ k+

24. (T, x, y) ← triple(T̃β−i); xe ← x0
e, yv ← y0

v
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25. T ∗← T ∗ ∪ {(T, x, y)}
26. end-for
27. end-for
28. p−v ← k−, p+

v ← k+

29. end-for
30. Take (T ∗, x∗, y∗) ∈ T ∗ with minimum ν(T ∗, x∗, y∗)
31. Output (T ∗, x∗, y∗)

Note that in Step 22, we have

ν(T̃β−i, c, p) − ce + pv =
∑

g∈E(T̃β−i)

cg −
∑

z∈V (T̃β−i)

pz − ce + pv.

Furthermore, in Step 23, we do not need to solve the LP , because at least one
of (c+

e , y∗
v), (c−e , y∗

v), (x∗
e , p

+
v ), (x∗

e , p
−
v ) is an optimal solution to the LP . Suppose

that (x0
e, y

0
v) is an optimal solution to LP with x0

e ∈ (c−e , c+
e ), y0

v ∈ (p−v , p+
v ).

Then x0
e − y0

v = B − ν(T̃β−i, c, p) + ce − pv. In case of c+
e − c−e ≥ p+

v − p−v , set
δ ≡ min{x0

e − c−e , y0
v − p−v }; then (x0

e − δ, y0
v − δ) = (c−e , y0

v − δ) or (x0
e − δ, p−v )

is an optimal solution to the LP . Similarly, if c+
e − c−e ≤ p+

v − p−v , with λ ≡
min{c+

e − x0
e, p

+
v − y0

v} we have (c+
e , y0

v + λ) or (x0
e + λ, p+

v ) optimal. So we can
solve the LP in O(1) time by checking their feasibility and choosing the optimal
one.

Theorem 5. Algorithm Alg Msr outputs an optimal solution to the MSR PCST
problem on 2-trees of n vertices in O(n5) time.

4 Discussion

In this paper, we have established two models for the prize collecting Steiner
tree problem in networks with interval data and proposed two polynomial-time
algorithms for the corresponding problems on 2-trees, respectively. In fact, the
obtained results could be extended to any partial 2-tree (also called series parallel
graph), which is a spanning subgraph of a 2-tree. The polynomial-time solvabil-
ity of our risk models exhibits the essential difference from the existing robust
model [1,13], which yields NP -hard problems even if the original problems (with
deterministic data) are polynomial-time solvable. Moreover, in real world, net-
work designers may have their own preferences of money to risk depending on
varying trade-offs between them. Our models and algorithms are very flexible in
the sense that with different budget levels, they are usually able to produce a
couple of candidates for selection by network designers, who are willing to take
some risk to save some amount of budget (say, for future use) at their most
preferred trade-off between money and risk.

It is not hard to come up with such an example that these two models could
yield distinct solutions far away from each other. So further study is desirable to
investigate the difference between these two models in real applications through
numerical experiments.
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Abstract. This paper considers a generalization of the capacitated span-
ning tree, in which some of the nodes have capacity K, and the others have
capacity k < K. We prove that the problem can be approximated within
a constant factor, and present better approximations when k is 1 or 2.

1 Introduction

Let G = (V, E) be an undirected graph with nonnegative edge weights l(e) e ∈ E
satisfying the triangle inequality. Let 1 ≤ k ≤ K be given integer capacities.
Assume that V = {r} ∪ VK ∪ Vk, where r is a root node, and VK and Vk are the
sets of nodes having capacity K and k, respectively. In the (K, k) capacitated

spanning tree problem we want to compute a minimum weight tree rooted
at r such that for each v ∈ V \{r} the number of nodes in the subtree rooted at
v is no bigger than its capacity.

We are motivated by the following: Nodes of the graph correspond to sensors
collecting data that must be transported to a given base-station, the root of the
tree. Each sensor forwards all of its data to another (single) node, thus forming a
tree representing established data paths. Each node v is also responsible to keep
an archive (backup, or data repository) for all of the data at all nodes in the
subtree rooted at it (in case the link goes down to a child). The node’s capacity
represents a storage capacity, saying, e.g., how many nodes’ worth of data can
be stored at node v. So, we must build trees that obey this capacity constraint.
Given costs of the edges, the goal is to build short (”cheap”) trees.

The (K, k) capacitated spanning tree problem is NP-hard as it is a
generalization of the Capacitated Minimum Spanning Tree Problem where
K = k (see [12]).
Our results are as follows:

– For k = 1:
• For K = 2 we present a way to find the optimal solution.

� Partially supported by NSF CCF-0729019.

B. Chen (Ed.): AAIM 2010, LNCS 6124, pp. 25–34, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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• We present a K − 1 simple approximation algorithm, this algorithm is
suitable for small values of K.

• We also present a 6-approximation algorithm which is suitable for all
values of K.

– For k = 2 we present a 10-approximation algorithm, suitable for all values
of K.

– We present a 21-approximation algorithm suitable for all values of (K, k).
– We consider a generalization of the problem where each node v ∈ V has

its capacity kv, we present an (2 + α)-approximation algorithm for α which
bounds the ratio between the maximal and minimal node capacities.

The Capacitated Minimum Spanning Tree Problem has been studied ex-
tensively in the Operations Research literature. It arises in practice in the design
of local area telecommunication networks. See [5] for a survey. Various general-
izations have also been considered, such as [3] who consider different types of
edges, with costs depending on the edge type chosen.

Papadimitriou [12] proved that the capacitated spanning tree problem is NP-
hard even with k = 3. In [1] Altinkemer and Gavish proposed a 3-approximation
algorithm. Gavish, Li and Simchi-Levi gave in [6] worst case examples for the 3-
approximation algorithm showing that the bound is tight. Gavish in [4] presented
the directed version of the problem and gave a new linear integer programming
formulation of the problem. This formulation led to a new Lagrangean relax-
ation procedure. This relaxation was used for deriving tight lower bounds on the
optimal solution and heuristics for obtaining approximate solutions.

The most closely related model to ours seems to be the one considered by
Gouveia and Lopes [7]. In their model, the children of the root are called first-
level nodes and they are assigned capacities of, say K, while all the other second
level nodes have smaller capacities, say k < K. The main difference between
their model and our (K, k) model is that in our case the capacities are attached
to the nodes as part of the input, whereas in their model the capacity of a node
depends on its position in the solution. Gouveia and Lopes present heuristics
and valid inequalities for their model supported by computational results.

Jothi and Raghavachari,[8], study the capacitated minimum spanning net-

work problem, which asks for a minimum cost spanning network such that the
removal of r and its incident edges breaks the network into 2-edge-connected com-
ponents, each with bounded capacity. They show that this problem is NP-hard,
and present a 4-approximation algorithm for graphs satisfying triangle inequality.

Jothi and Raghavachari in [9] study the capacitated minimum Steiner

tree problem, looking for a minimum Steiner tree rooted at a specific node,
in which the sum of the vertex weights in every subtree is bounded.

Könemann and Ravi present in [10] bicriteria approximation algorithms for
the degree-bounded minimum cost spanning tree, a problem relevant to
the one studied here, since bounding the out-degree of a node may imply bounds
on the subtree descending from this node.

Morsy and Nagamochi study in [11] the Capacitated multicast tree

routing problem. In this problem we search for a partition {Z1, Z2, . . . , Zl} of
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a given terminal set and a set of subtrees T1, T2, . . . , Tl such that Zi consists of
at most k terminals and each Ti spans Zi∪{s} (where s is the given source). The
objective is to minimize the sum of lengths of the trees T1, T2, . . . , Tl. They also
propose a (3

2 + 4
3ρ) approximation, where ρ is the best achievable approximation

ratio for the Steiner tree problem.
Deo and Kumar in [2] suggest an iterative refinement technique to compute

good suboptimal solutions in a reasonable time even for large instance of prob-
lems. They discuss how this technique may be effectively used for the capacitated
minimum spanning tree problem.

2 The (K, 1) Problem

In this case the nodes of Vk must be leaves of the tree.

2.1 The (2, 1) Problem

An optimal solution can be obtained through a matching algorithm. We match
pairs of nodes such that the root can be matched many times but any other node
can be matched only once. Matching node v to the root costs l(v, r). Matching
non-root nodes u and v costs l(u, v) + min{l(r, u), l(r, v)}, for u, v ∈ V2 and
l(u, v) + l(r, u) if u ∈ V2 and v ∈ V1.

2.2 The (K, 1) Problem with Small K

When K ≤ 6 the following simple idea gives a better approximation bound than
the general one we present in the next subsection.

Remark 1. It follows easily from the triangle inequality that a star (where all the
nodes are directly connected to the root) is a K-approximation.

Lemma 1. The matching solution described for the case K = 2 is a (K − 1)-
approximation.

2.3 The (K, 1) Problem with General K

We present now an approximation algorithm for the general (K, 1) problem.

Algorithm (K, 1) Tree

1. Compute a minimum weight matching M from the nodes of Vk to VK ∪ {r}
such that each node in VK may be assigned at most K − 1 nodes, and all
the remaining nodes are assigned to r. The matching cost is the weight of
the connecting edges in G. M defines a set of stars in the graph, each star
is rooted at one of the nodes in VK ∪ {r}, and the leaves of this star are the
nodes from Vk matched to the root of the star (see Figure 1 top left).
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2. For every star rooted at a node from VK with at least K
2 nodes, [By Step 1

the number of nodes in this star is at most K.] connect this star to r using
the shortest possible edge (see Figure 1 top right). [Later (in Step 5) we will
change this connection to be a feasible connection, as the nodes from Vk

must be leaves of the tree.]
3. Compute an MST, Ts, on r and the nodes from VK that were not connected

to r in Step 2 (see Figure 1 middle left). [The optimal solution contains a
tree T on VK ∪ {r}. T is a steiner tree on V (Ts), hence l(Ts) ≤ 2l(T ).]
Figure 1 middle right shows Ts∪M , which includes all the connections made
so far.

r

21

3 4 5 6

r

21

3 4 5 6

r

21

3 4 5 6

r

21

3 4 5 6

r

21

3 4 5 6

r

21

3 4 5 6

Fig. 1. The different steps in Algorithm (K, 1) Tree with K = 7, k = 1
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4. Scan Ts from bottom to top and for every node v ∈ VK we make the following
changes (to guarantee that the subtree rooted at v has at most K nodes):
– Denote by y1, . . . , ym ∈ VK and u1, . . . , ul ∈ Vk the sons of v, and denote

the subtree rooted at yi by Ti. [Since the tree is scanned from bottom
to top |V (Ti)| ≤ K.]

– While
∑m

i=1 |V (Ti)| ≥ K
2 let p satisfy K

2 ≤∑p
i=1 |V (Ti)| ≤ K, disconnect

Ti, (i ∈ {1, . . . , p}) from Ts, add the edges {(yq, yq+1)|1 ≤ q ≤ p−1}, and
connect this new tree to r using the shortest possible edge. Renumber
the nodes yp+1, . . . , ym to y1, . . . , ym−p and set m = m − p.
[ After the change the number of descendants of v going through VK

nodes is smaller than K
2 , and the number of sons of v from Vk is smaller

than K
2 , giving that overall v has less than K descendants. ]

– If the subtree rooted at v (including v) contains at least K
2 nodes, dis-

connect this subtree from Ts, and connect to the root using the shortest
possible edge.

(See Figure 1 bottom left)
5. In all cases of connecting a subtree to r by the end edge (r, u) where u ∈ Vk,

change this connection to connect the subtree to r using the parent of u.
Note that the parent of u is always included in the subtree and is always a
node in VK . (See Figure 1 bottom right.)

Theorem 2. Denote by apx the solution returned by Algorithm (K, 1) Tree, and
let opt be the optimal value, then: l(apx) ≤ 6opt.

3 The (K, 2) Problem

Theorem 3. Assume k = 2 and denote by apx the solution returned by Algo-
rithm (K, 1) Tree, and let opt be the value of an optimal solution. Then apx ≤
10opt.

4 The (K, k) Problem

We now turn to the (K, k) capacitated spanning tree problem, and con-
sider first a näıve algorithm for the problem: Solve (optimally or approximately)
two separate problems. One on {r}∪VK and the second on {r}∪Vk. Then hang
the two separate trees on r. This clearly yields a feasible solution.

The following simple example shows that the value of this solution can be as
much as K−1

k + 1 times the optimal value (even if both separate problems are
solved optimally). In this example we assume that K−1

k is integer. The graph
has a single node of capacity K, and K − 1 nodes of capacity k, all at distance 0
from each other, and distance 1 from the root. The first tree is a single edge of
length 1, and the second tree includes K−1

k unit length edges from the root.Thus
yielding a solution of cost K−1

k +1 while an optimal solution has all nodes in Vk

hanging off the single node in VK , and thus is of cost 1.
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In this section we show how to obtain a constant factor approximation algo-
rithm for the (K, k) problem. We first show that any feasible solution F can be
transformed into another feasible solution F ′ with restricted structure, without
increasing the weight “too much”.

4.1 Ordered Tree

Definition 4. In an ordered tree the capacities of nodes in every path starting
at the root are nonincreasing.

Lemma 5. Consider a (K, k) capacitated spanning tree problem, Let opt be the
length of an optimal solution. There is a feasible ordered tree with length no
greater than 3opt.

Remark 2. There is an instance of the (K, k) capacitated spanning tree problem
such that l(To) = 3l(T ) where To is a minimal length feasible ordered tree and
T is an optimal solution.

4.2 The Approximation Algorithm

In our algorithm we use the algorithm for the minimum capacitated tree problem
described in [1]. This algorithm computes a 3 approximation solution where each
subtree is a path.

We offer the following algorithm:
Algorithm (K, k) Tree

1. Compute a minimum spanning tree in the graph induced by r ∪ VK , call it
T1. An example of T1 is shown in Figure 2 top-left.

2. Contract the nodes r ∪ VK into a single node R, and find an approximate
capacitated spanning tree on R ∪ Vk with capacities k, using the method of
[1]. Call this tree T2. Note that in T2, each subtree of nodes of Vk hanging
on R is a path of length exactly k, except for possibly one shorter path. An
example of T2 is shown in Figure 2 top-right.

3. “Uncontract” the node R in T2, obtaining a forest in which each connected
component is a rooted-spider, a node in r ∪ VK with paths of nodes from
Vk, all of length k except possibly for one shorter path. Let F2 denote the
forest created from T2 edges after the ’uncontraction’ . Consider Figure 2
middle-left for an example of F2, where the bold nodes denote r ∪ VK .

4. Define a matching problem on a complete bipartite graph B = (S1, S2, S1 ×
S2): In the first side, S1, of our bipartite graph B, we have a node for each
“leg” (path) of a spider. Each node in S1 should be matched exactly once. In
the second side of B we have nodes S2 = r ∪ VK , nodes of VK have capacity
�K/k� − 1 (meaning that each can be matched at most that many times)
and r has unbounded capacity. The cost of matching a node in S1 to node
in S2 is the length of the edge from a node in the spider leg closest to the
destination node.
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Fig. 2. The different steps in Algorithm (K, k) Tree with K = 18 and k = 4

5. Solve the matching problem and change F2 in the following way: Each spider
leg will be attached to the node in r∪VK it is assigned to it in the matching
problem. The attachment is done by connecting the node in the path closest
to the node (i.e., the edge which defines the cost used in the matching).
Denote the new forest as F ′

2. The forest F ′
2 is illustrated in Figure 2 middle-

right.
6. Consider T1 ∪ F ′

2 (this graph can be shown in Figure 2 bottom-left). For
every v ∈ VK with legs P1, . . . , Pl ∈ Vk and

∑l
i=1 |V (Pi)| ≥ K

2 −1, disconnect
v∪{P1, . . . , Pl} from T1∪F ′

2. [By the way the algorithm works
∑l

i=1 |V (Pi)| ≤
K − 1.] Connect this subtree to r using the shortest possible edge. This step
is applied to the subtree rooted at v2 in the bottom figures of Figure 2.

7. The tree T1 was disconnected in the previous step, reconnect it using only
edges between nodes in VK ∪{r}\{nodes that were disconnected in previous
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step }. Denote the new tree induced on VK as T3. The graph after applying
this change to v1 is shown in Figure 2 bottom-right.

8. Finally, to turn this into a feasible solution for all nodes of VK , we follow
Steps 4,5 of Algorithm (K, 1) Tree in Section 2.3.

Theorem 6. Denote by opt the value of an optimal solution, and apx the solu-
tion returned by Algorithm (K, k) Tree, then l(apx) ≤ 21opt.

Proof: By construction, l(T1) ≤ 2opt and l(T2) ≤ 3opt, l(T3) ≤ 2l(T1) ≤
4opt. Next, we bound the length of the edges in the matching. Consider another
bipartite graph B′ = (S1, S

′
2, E), with the same nodes on the first side as B,

namely S1, and nodes on the second side S′
2 each corresponding to maximal

subtrees induced by Vk in opt′ where opt′ is the best feasible ordered tree. By
Lemma 5 opt′ ≤ 3opt. There is an edge in this bipartite graph between a node
in S1 and a node in S′

2 if the two sets of nodes (the leg and the subtree) have
at least one node in common (B′ is their intersection graph). We now show that
B′ has a matching in which all nodes of S1 are matched, using Hall’s Theorem.
Recall that all legs of apx are of length exactly k, except possibly for one shorter
leg, whereas all the subtrees from opt′ have length at most k.

In our graph B′ = (S1, S
′
2, E), we want to show that Hall’s condition holds,

and therefore there is a matching saturating all nodes of S1. Let X ⊆ S1. X rep-
resents |X | disjoint paths each of length k except possibly one shorter, therefore
it represents more than k(|X |−1) nodes of Vk. Call this set Vk(X), and so we have
|Vk(X)| > k(|X | − 1). Similarly, N(X) also represents disjoint subtrees of nodes
in Vk, each subtree contains at most k nodes. Call this set Vk(N(X)). There-
fore |Vk(N(X))| ≤ k|N(X)|. By construction Vk(X) ⊆ Vk(N(X)) and therefore
k(|X | − 1) < |Vk(X)| ≤ |Vk(N(X))| ≤ k|N(X)|, resulting in |X | − 1 < |N(X)|,
or equivalently |X | ≤ |N(X)| as required by Hall’s Theorem.

Observe that our graph G can be thought of as a subgraph of the graph for
which the algorithm finds a matching, simply merge subtrees (nodes of S′

2) that
are attached to the same node in r∪VK to obtain S2. Thus, the matching in graph
G is a feasible solution to the matching found by our approximation algorithm,
and our algorithm picked the best such matching. Thus the connections in the
last step of our algorithm have total length l(conn) which is at most opt′.

When disconnecting subtrees from the tree and connecting them directly to
r we add three kinds of edges:

– Connecting brothers (adding edges (yi, yi+1) to the tree). The sum of lengths
of these edges can be bounded by the length of T3.

– We add edges connecting trees with at least K
2 nodes to r. As in the proof

of Theorem 2 we can bound the length of the edges with 2opt.
– In the last step we change some of the connecting edges from (r, u), u ∈ Vk

to (r, Au), u ∈ Vk, where Au is the closest ancestor of u which is in VK . By
the triangle inequality l(r, Au) ≤ l(r, u) + l(u, Au), where (u, Au) is a part
of leg added to the tree in the matching. Thus, this step adds at most the
length of all the edges from nodes in Vk to their ancestors in VK , with total
length at most l(conn).



The (K, k)-Capacitated Spanning Tree Problem 33

Summing all this, l(apx) consists of:

– l(T1) ≤ 2opt, l(T2) ≤ 3opt, l(T3) ≤ 4opt.
– l(conn) ≤ opt′ ≤ 3opt.
– The edges added connecting brothers with length ≤ l(T3) ≤ 4opt.
– Edges connecting subtrees to r with length ≤ 2opt.
– Changing the connecting edges to ancestors from VK with maximal length

l(conn) ≤ 3opt.

Altogether, l(apx) ≤ 21opt.

5 Concluding Remarks: General Capacities

A natural extension of our model allows more than two capacity types. In the
extreme case, each node v may have a different capacity, kv. We leave this gener-
alized problem for future research, and observe that a straightforward extension
of the näıve algorithm of Section 4 is possible, as follows: Let kM be the maximal
capacity bound and km the minimal capacity bound, and let α = kM

km
. W.l.o.g.,

assume that |V |
km

is an integer, otherwise add an appropriate number of nodes
with zero distance from r without affecting the solution.

The algorithm: Compute an MST, T . Double its edges to create an Eulerian
cycle. By shortcutting the cycle form a Hamiltonian cycle in the standard way.
Partition the cycle into subpaths, each containing km nodes. Connect each sub-
path to r using the shortest possible edge. (This is actually the approximation
algorithm suggested in [1] for kM = km.)

Theorem 7. Denote by opt the value of the optimal solution and by apx the
approximation solution, then l(apx) ≤ (2 + α)opt.
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Abstract. This paper considers the economic lot-sizing problem with
multi-supplier in which the retailer may replenish his inventory from sev-
eral suppliers. Each supplier is characterized by one of two types of order
cost structures: incremental quantity discount cost structure and multi-
ple set-ups cost structure. The problem is challenging due to the mix of
different cost structures. By analyzing the optimal properties, we reduce
the searching range of the optimal solutions and develop several optimal
algorithms to solve all cases of this multi-supplier problem.

Keywords: Economic lot-sizing; optimal algorithm; dynamic program-
ming.

1 Introduction

The classical Economic Lot-Sizing (ELS) problem was first introduced in [1] and
it has been widely extended during recent years. The extended ELS problem
becomes the focus of extensive studies and continues to receive considerable at-
tention. Many versions of the ELS problem build on different cost structures.
For example, the ELS problems with both all-unit quantity discount and incre-
mental quantity discount cost structures were proposed and solved by dynamic
programming(DP) algorithms in [2] with complexity O(T 3) and O(T 2), respec-
tively. T is the length of the planning horizon. See also [3] for additional ob-
servations. Zhang et al.[4] presented the general model with multi-break point
all-unit quantity discount cost structure, and designed a polynomial time DP
algorithm. Indeed there are some other theoretical results for the ELS problem
with other cost structures and assumptions (see[5],[6],[7],[8],[9] for example).

However, most of the literature discussed above assumes that products can be
ordered from only one supplier. Sometimes this is not a valid assumption in real
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life. In order to replenish inventory with economical cost, the retailer usually
faces not a single supplier but many suppliers. He should determine from which
supplier and how many units to order in each period. Thus the ELS problem
with multiple suppliers has more wider domain of applications.

In this paper, the ELS problem with multiple suppliers is called multi-supplier
ELS problem. To the best of our knowledge, there are few results about the
multi-supplier ELS problem. The first result about the multi-supplier problem
we are aware of is the one proposed in [10]. Their ELS problem with multi-mode
replenishment is equivalent to a multi-supplier ELS problem. They analyzed
two structural properties for the N(N > 2) suppliers problem, and presented
a DP algorithm without a detail description for its calculation. Instead, they
focused on a two-supplier problem. For the two-supplier problem, they discussed
three special cases according to two types of cost structures (fixed set-up cost
structure and multiple set-ups cost structure) and designed a polynomial time
algorithm for each case. The ELS problem with multiple products and multiple
suppliers was considered in [11]. In the model, the purchase cost and holding
cost are stationary in each period, and they are simple linear functions about
purchase and holding quantities. These linear cost functions help to prove two
properties: there is no period where an order is made and inventory is carried
into the period for each product, and no product is ordered from two (or more)
suppliers in the same period. Based on the properties, enumerative and heuristic
algorithms were given to solve the problem. However, the two properties are not
true for piecewise linear cost functions, such as multiple set-ups cost function.

In this paper, we propose a multi-supplier ELS problem in which each sup-
plier is characterized by different order cost structures including the incremental
quantity discount cost structure and the multiple set-ups cost structure. In this
problem, the purchase cost and holding cost vary from period to period, and
are more general cost structures. This multi-supplier ELS problem can be di-
vided into three cases according to the different combinations of the order cost
structures. They are: (1) each supplier has an incremental quantity discount cost
structure; (2) each supplier has a multiple set-ups cost structure; (3) some sup-
pliers have incremental quantity discount cost structures, others have multiple
set-ups cost structures. Since only two optimality properties are given for the
case (2) in [10], this paper will continue discussing this case and give an optimal
algorithm to solve it. We develop two polynomial time algorithms for the case
(1) and a special case of case (3), two optimal algorithms for case (2) and case
(3). Some previous literature results are the special cases of this multi-supplier
ELS problem, such as [1], [10], [12], and so on.

2 Notations and Formulations

The multi-supplier ELS problem proposed in this paper consists of N suppliers
and one retailer, N ≥ 2. Each supplier is characterized by a different order
cost structure. The retailer is the decision maker. He must determine: 1)from
which supplier to order; 2)how many units to order and 3)when to order so as
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to minimize his total cost within a finite time planning horizon. Let T be the
length of the planning horizon, and N be the total number of the suppliers. For
each t = 1, . . . , T and n = 1, . . . , N , we define the following notations.

• dt = the demand in period t.
• xnt = the order quantity from supplier-n in period t.

• xt = the total order quantity in period t. It is easy to know that xt =
N∑

n=1
xnt.

• cnt = the unit order cost from supplier-n in period t.
• It = the inventory level of the retailer at the end of period t. Without loss of

generality, assume the initial and the final inventory during the planning horizon
are zero. That is, I0 = 0, IT = 0.

• ht = the unit inventory holding cost in period t.
• S1 = the set of the suppliers who offer an incremental quantity discount

cost structure.
• S2 = the set of the suppliers who offer a multiple set-ups cost structure.
• Knt = the fixed set-up cost when order from suppler-n in period t.
• Ant = the fixed set-up cost per standard container when order from supplier-

n in period t, n ∈ S2. Ant = 0 if n ∈ S1.
• Wn = the standard container capacity when order from supplier-n, n ∈ S2.

Wn = 0 if n ∈ S1.
• rnt = the discount rate given by supplier-n in period t, n ∈ S1. rnt = 0 if

n ∈ S2. If the order quantity in period t is greater than the critical value Qn

(Qn is a positive integer and is determined by supplier-n), the discounted unit
order cost is implemented to the excess quantity xnt − Qn.

• �a� = the smallest integer that is greater than or equal to a.
• �a� = the largest integer that is less than or equal to a.
• δ(a) = 1 if and only if a > 0; otherwise, δ(a) = 0.
• Cnt(xnt) = the cost of ordering xnt units from supplier-n in period t. When

n ∈ S1, Cnt(xnt) belongs to an incremental quantity discount cost structure,

Cnt(xnt) =
{

Kntδ(xnt) + cntxnt, xnt ≤ Qn

Knt + cntQn + cnt(1 − rnt)(xnt − Qn), xnt > Qn
. (1)

When n ∈ S2, Cnt(xnt) belongs to a multiple set-ups cost structure,

Cnt(xnt) = Kntδ(xnt) + Ant�xnt

Wn
� + cntxnt. (2)

With above notations, this multi-supplier ELS problem can be formulated as

min
T∑

t=1

[ N∑
n=1

Cnt(xnt) + htIt

]
s.t. It−1 + xt − dt = It, t = 1, . . . , T

xt =
∑N

n=1 xnt, t = 1, . . . , T

I0 = 0, IT = 0
It ≥ 0, xnt ≥ 0
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This paper will discuss three cases of the multi-supplier ELS problem:
(1) each supplier offers an incremental quantity discount cost structure, P1

problem for short;
(2) each supplier offers a multiple set-ups cost structure, P2 problem for short;
(3) some supplier offer incremental quantity discount cost structures, others

offer multiple set-ups cost structures, P3 problem for short.
For convenience, we use the traditional definitions of most ELS problems.

Period t is called an order period if xt > 0. If It = 0, period t is a regeneration
point. xnt is called a Full-Truck Load(FTL) shipment if xnt = lWn for some
positive integer l, n ∈ S2, otherwise, it is a Less-than-Truck Load(LTL)
shipment. xt > 0 is called a full order if

∑
n∈S1

xnt = 0, and xnt is zero or an

FTL shipment for all suppliers n ∈ S2; otherwise, it is called a partial order.
For 1 ≤ i ≤ j ≤ T , let

h(i, j) =
j∑

l=i

hl, d(i, j) =
j∑

l=i

dl, H(i, j) =
j∑

k=i+1

h(i, k − 1)dk.

If i > j, we define d(i, j) = 0, h(i, j) = 0 and H(i, j) = 0. By this definition,
we can calculate d(i, j), h(i, j) and H(i, j) in O(T 2) time for all i and j with
1 ≤ i ≤ j ≤ T .

In practical situation, the more frequently an item is ordered or dispatched,
the more favorable its relevant cost is. Considering this situation, we assume
that for each n ∈ S1 ∪ S2, Knt, Ant, cnt and ht are non-increasing functions on
t, and rnt is a non-decreasing function on t. In other words, for 1 ≤ t ≤ T − 1,
we have Knt ≥ Kn,t+1, Ant ≥ An,t+1, cnt ≥ cn,t+1, ht ≥ ht+1 and rnt ≤ rn,t+1.

Let F (j) denote the minimum total cost of satisfying the demand from period
1 to period j and C(i, j) denote the minimum cost of satisfying the demand from
period i to period j, where i − 1 and j are two consecutive regeneration points
with 1 ≤ i ≤ j ≤ T . Set F (0) = 0, the multi-supplier ELS problem can be solved
by the following DP algorithm

F (j) = min
1≤i≤j

{F (i − 1) + C(i, j)}, 1 ≤ i ≤ j ≤ T (3)

Obviously, the objective function of P1 problem is F (T ). If the value of C(i, j)
for all 1 ≤ i ≤ j ≤ T is known, the value of F (T ) can be computed in no
more than O(T 2) time via the formula (3). Hence the remaining task is how to
compute the value of C(i, j) in an efficient time.

3 Optimality Properties and Algorithm for P1 Problem

In this section, the first case of the multi-supplier ELS problem in which each
supplier offers an incremental quantity discount cost structure is discussed, that
is, S1 = {1, . . . , N} and S2 = ∅ hold in this section. To simplify the proof,
we first analyze the optimality properties of P1 problem with two-supplier. The
optimality property of P1 problem with N (N > 2) suppliers can be proved via
the induction on the number of suppliers.
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Lemma 1. There exists an optimal solution for the two-supplier P1 problem
such that if period t is an order period then the retailer orders products only
from one supplier.

Proof. Suppose that there is an optimal solution for P1 problem such that 0 <
x1t < xt and 0 < x2t < xt. Order x2t units in period t from supplier-1 instead of
from supplier-2 if the unit order cost from supplier-1 is less than the one from
supplier-2. Otherwise, order x1t units from supplier-2 instead of from supplier-1.
After this perturbation, we can obtain a solution with non-increasing total cost.

Using above Lemma, Theorem 1 can be proven by induction on the number of
suppliers.

Theorem 1. There exists an optimal solution for P1 problem such that if period
t is an order period then the retailer orders products only from one supplier.

Theorem 2. There exists an optimal solution for P1 problem such that It−1xt =
0, t = 1, . . . , T .

Proof. Suppose that there is an optimal solution for P1 problem such that xt > 0
and It−1 > 0. Since It−1 > 0, there exists an order before period t. Let s be
latest order before period t. Then we have Ik ≥ It−1 > 0 for all s ≤ k ≤ t − 1.
Using Theorem 1, we assume that xs = xms, xt = xnt, m, n ∈ S1.

The proof can be completed via discussing four subcases: (1) xnt > Qn and
xms > Qm; (2) 0 < xnt ≤ Qn and xms > Qm; (3) xnt > Qn and 0 < xms ≤ Qm;
(4) 0 < xnt ≤ Qn and 0 < xms ≤ Qm. The discussion of these cases is similar,
so we only discuss the first case in detail.

In case (1), if cms(1 − rms) − cnt(1 − rnt) + h(s, t − 1) ≥ 0, we decrease
the value xms by Δ with Δ = min{It−1, xms} and increase xnt by the same
amount. After the perturbation, we obtain a new solution with either xms = 0
or It−1 = 0. The total cost of this new solution is either reduced by at least
[cms(1 − rms) − cnt(1 − rnt) + h(s, t − 1)]Δ ≥ 0, or not changed. Otherwise, we
cancel the order from supplier n in period t and increase the value xms by xnt

units. The total cost of the new solution is reduced by Knt + cntrntQn +[cnt(1−
rnt) − cms(1 − rms) − h(s, t − 1)]xnt > 0 after this perturbation.

For the other three cases, we can decrease the value xms by min{It−1, xms}
and increase xnt by the same amount if cms(1−rms)−cnt+h(s, t−1) ≥ 0 in case
(2), or cms−cnt(1−rnt)+h(s, t−1) ≥ 0 in case (3), or cms−cnt +h(s, t−1) ≥ 0
in case (4). Otherwise, we let xnt = 0 and increase the value xms by xnt units.
The total cost of the new solution is not increased after the perturbations and
we finish the proof.

Basing on the above theorems, we develop a polynomial time algorithm to cal-
culate all C(i, j). From Theorem 1, we know that the order cost in period t
is minn∈S1 Cnt(xt). By Theorem 2, there exists only one order period between
the two consecutive regeneration points i − 1 and j. This means that the order
quantity in order period i is exactly d(i, j). Thus for each pair of i and j with
1 ≤ i ≤ j ≤ T , the value of C(i, j) can be computed by
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C(i, j) = min
n∈S1

Cni

(
d(i, j)

)
+ H(i, j), 1 ≤ i ≤ j ≤ T (4)

Obviously, the computational complexity of the formula (4) is no more than
O(NT 2) for all 1 ≤ i ≤ j ≤ T . So the total computational complexity of the DP
algorithm for the P1 problem is O(NT 2).

4 Optimality Properties and Algorithm for P2 Problem

In this subsection, each supplier offers a multiple set-ups cost structure, that is,
S2 = {1, . . . , N}, S1 = ∅. We propose two optimality properties and design an
optimal algorithm to solve it.

Theorem 3. [10] There exists an optimal solution for P2 problem such that
there is at most one partial order during two consecutive regeneration points
i − 1 through j.

Theorem 4. There exists an optimal solution for P2 problem such that if xt is
a partial order, then only one shipment is an LTL shipment in period t.

Proof. Suppose the statement of this theorem is not true. That is, there exists
an optimal solution of P2 problem such that xmt and xnt are two LTL shipments
in period t, m, n ∈ S2. Without loss of generality, we suppose cmt ≥ cnt. We
extract min{xmt, �xnt

Wn
�Wn −xnt} units from xmt, and add them to xnt, then we

can obtain a new solution with equal or more lower total cost.

Corollary 1. There exists an optimal solution for P2 problem such that if xnt

is an LTL shipment then cnt = max
k∈S2

ckt.

Suppose cn0t = maxn∈S2 cnt, that is, xn0t is a potential LTL shipment in order
period t. Let xnt = mnWn, mn = 0, 1, . . . , � xt

Wn
� for all n ∈ S2 \ {n0}. Then, for

i ≤ t ≤ j we have

xt =
∑

n∈S2\{n0}
mnWn + xn0t.

Recall that i − 1 and j are two consecutive regeneration points, we have

d(i, j) = xi + · · · + xj .

The value of C(i, j) is the minimal total cost to satisfying demand d(i, j) among
all combinations of xnt, n ∈ S2, t = i, . . . , j. That is, we can calculate the
value of C(i, j) in O(T (�d(1,T )

W∗ � + 1)NT−1) time for each pair of i and j, where
W ∗ = min

n∈S2
Wn. After computing all value of C(i, j), we can solve P2 problem

by the formula (3) in O(T 2). So the total computational complexity of solving
P2 problem is O

(
T 3(�d(1,T )

W∗ �+ 1)NT−1 + T 2
)
. Obviously, it is not a polynomial

time algorithm but an optimal one.
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5 Optimality Properties and Algorithms for P3 Problem

In this section we propose some optimality properties for P3 problem, in which
some suppliers offer incremental quantity discount cost structures, others of-
fer multiple set-ups cost structures. That is, S1 �= ∅, S2 �= ∅ and S1 ∪ S2 =
{1, . . . , N}. After that we give an optimal algorithm for P3 problem whose run-
ning time is non-polynomial. Then we show that there exists an polynomial time
algorithm for a special case of the P3 problem, we denoted it by SP3 problem in
this section.

Theorem 5. There exists an optimal solution for P3 problem such that if t is
an order period then only one of the following two situations will happen:
(1) There is at most one n1 with xn1t > 0 in set S1, and xnt is zero or an FTL
shipment for all n ∈ S2.
(2) xnt = 0 for all n ∈ S1, and there is at most one n2 such that xn2t is an LTL
shipment in set S2.

Proof. Suppose that the statement is not true, that is, there exists an optimal
solution for P3 problem with xn1t > 0 and xn2t �= lWn2 . According to Theorem 1,
we know xn1t = xt. According to Theorem 4, we know that xnt is zero or an FTL
shipment for all n ∈ S2 \ {n2}. Let c′n1t be the unit purchase cost, c′n1t = cn1t

when xn1t ≤ Qn1 , c′n1t = cn1t(1 − rn1t) when xn1t > Qn1 . If cn2t ≥ c′n1t, we
increase the value xn1t and decrease xn2t by xn2t units. After that, we can
obtain a new solution with xn1t > 0, xn2t = 0 and non-increasing total cost. If
cn2t < c′n1t, we increase xn2t and decrease xn1t by min{xn1t, �xn2t

Wn2
�Wn2 − xn2t}

units. After that, we can obtain a new solution in which xn1t = 0 or xn2t is an
FTL shipment. The total cost of the new solution is much lower.

Theorem 6. There exists an optimal solution for P3 problem such that there is
at most one n1 ∈ S1 with xn1s > 0 or at most one n2 ∈ S2 with an LTL shipment
xn2t between two consecutive regeneration points i − 1 and j, i ≤ s, t ≤ j.

Proof. When s = t, the Theorem reduces to Theorem 5. So we only prove the
case where s �= t. Without loss of generality, let s < t. Suppose that this Theorem
is not true, that is, there exists an optimal solution for P3 problem such that
xn1s > 0 and xn2t is an LTL shipment, n1 ∈ S1, n2 ∈ S2, i ≤ s < t ≤ j.
If cn2t − c′n1s − h(s, t − 1) ≤ 0, decrease the value xn1s and increase xn2t by
min{xn1s, �xn2t

Wn2
�Wn2−xn2t}, we can obtain a new solution with a non-increasing

total cost, in which xn1s = 0 or xn2t is an FTL shipment. Otherwise, decrease
the value xn2t and increase xn1s by xn2t, we can obtain a new solution with a
lower total cost, in which xn1s > 0 and xn2t = 0.

It is easy to verify that Theorem 3 and Theorem 4 are true for P3 problem.
Recall that periods i− 1 and j are two consecutive regeneration points, we have

d(i, j) = x1i + · · · + xNi + · · · + x1j + · · · + xNj (5)
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According to Theorem 6, at most one period could be the potential partial
order between two consecutive regeneration points i − 1 and j. Let period t is
the potential partial order, t = i, . . . , j. For each such period t between two
consecutive regeneration points i − 1 and j, either there is at most one n1 ∈ S1
with xn1t > 0, xnu = 0 for all n ∈ S1 \{n1}, and xnu is zero or an FTL shipment
for all n ∈ S2, u = i, . . . , j, or there is at most one n2 ∈ S2 with an LTL
shipment xn2t, xnu = 0 for all n ∈ S1, and xnu is zero or an FTL shipment for
all n ∈ S2 \ {n2}, u = i, . . . , j. So the number of purchase policies between two
consecutive regeneration points i − 1 and j is not more than O

(
T |S1|(�d(i,j)

W∗ �+
1)|S2|T + T |S2|(�d(i,j)

W∗ � + 1)|S2|T−1
)
, where W ∗ = min

n∈S2
Wn. In other words, it

takes at most O
(
T |S1|(�d(i,j)

W∗ � + 1)|S2|T + T |S2|(�d(i,j)
W∗ � + 1)|S2|T−1

)
time to

calculate C(i, j) for each pair of i and j. So the total complexity to calculate
C(i, j) for all i and j is at most O

(
T 3|S1|�d(1,T )

W∗ �|S2|T + T 3|S2|�d(1,T )
W∗ �|S2|T−1

)
.

After that, we can use formula (3) to find the optimal value of P3 problem in
O(T 2) time. Obviously, it is a non-polynomial time algorithm.

Fortunately, the P3 problem have more optimality properties when |S2| = 1.
These optimality properties help to explore a polynomial time algorithm. Let SP3
problem denote this special case of P3 problem. In other words, in SP3 problem
only one supplier has a multiple set-ups cost structure, the rest of N−1 suppliers
have incremental quantity discount cost structures. Without loss of generality,
assume that supplier 1 has a multiple set-ups cost structure in the SP3 problem.
For this SP3 problem, we obtain several optimality properties in addition.

Theorem 7. There exists an optimal solution for SP3 problem such that x1t ∈
{0, xt, � xt

W1
�W1} for any t = 1, . . . , T .

Proof. Suppose that there exists an optimal solution for SP3 problem such that
0 < x1t < xt and x1t �= � xt

W1
�W1. According to Theorem 6, if x1t is an FTL

shipment, there exists at most one n0 ∈ S1 with xn0t > 0, and xnt = 0 for all
n ∈ S1 \ {n0}. If x1t is an FTL shipment, and there is no n ∈ S1 with xnt > 0,
then we have xnt = 0 for all n ∈ S1. If x1t is an LTL shipment, we have xnt = 0
for all n ∈ S1. The above two cases mean that x1t = xt, which contradicts the
fact 0 < x1t < xt.

Now we assume that x1t is an FTL shipment but x1t �= � xt

W1
�W1, and there is

only one n0 ∈ S1 with xn0t > 0. Without loss of generality, we let n0 = 2 ∈ S1,
that is, x2t > 0. Since x1t is an FTL shipment and x1t �= � xt

W1
�W1, Let x1t = lW1,

then we have l �= � xt

W1
�, and x2t ≥ W1. If A1t

W1
+c1t ≥ c′2t (c′2t = c2t when x2t ≤ Q2,

c′2t = c2t(1− r2t) when x2t > Q2), we cancel the order from supplier 1 in period
t, and increase x2t by x1t units, then we get a new solution with a non-increasing
cost. Otherwise, let Δ = �x2t

W1
�W1, increase x1t by Δ units and decrease x2t by

the same amount. After this perturbation, the total cost is reduced.

Theorem 8. There exists an optimal solution for SP3 problem such that for
any t = 1, . . . , T ,

(1) x1t > 0 only if It−1 < min{dt, W1};
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(2) For some supplier n with n ∈ S1, xnt > 0 only if It−1 < min{dt, W1} or
dt − W1 < It−1 < dt.

Proof. Since [10] provided the same property for their model, and the proof of
result (1) in this theorem can be completed using the similar approach, so we
only prove the proposition (2).

Following Theorem 1, the retailer orders products only from one supplier in set
S2 in period t. Here we suppose that there exists an optimal solution such that
xnt > 0 and min{dt, W1} ≤ It−1 ≤ dt −W1, n ∈ S1, which means that dt ≥ W1.
Furthermore, we have W1 ≤ It−1 ≤ dt − W1. This means that there exists an
order period before period t. Let s be the latest order period before period t. Then
we have xs = x1s ≥ Is ≥ · · · ≥ It−1. By proposition (1) of this theorem, x1t = 0
holds if It−1 > W1, that is, xnt = xt ≥ W1 since It−1 ≤ dt − W1 and It ≥ 0. If
c′ntW1 ≥ A1s + W1c1s + h(s, t− 1)W1, we increase x1s by W1 units and decrease
xnt by the same amount. c′nt = cnt when xnt ≤ Qn, c′nt = cnt(1 − rnt) when
xnt > Qn. The total cost will not increase after this perturbation. Otherwise,
we increase xnt by � It−1

W1
�W1 units and decrease x1s by the same amount. After

this perturbation, the new solution has a lower cost which is a contradiction.

The above properties for SP3 problem also hold for the two-supplier problem
in which supplier 1 has a multiple set-ups and supplier 2 has a fixed set-up
cost structure studied in [10], since the fixed set-up cost is a special case of
incremental quantity discount cost with Qn = +∞. In other words, [10] be-
comes a special case of our problem. Using their optimality properties, they
develop a polynomial time algorithm with complexity O(T 4) based on the dy-
namic programming-based shortest-path-network approach to solve their prob-
lem. With the Theorems 3, 7 and 8, it is easy to show that SP3 problem can be
solved by their algorithm, except the calculation formula of order cost. Here we
use the following formula to calculate the order cost.

Ct(xt) = min
{
C1t(xt), min

n∈S1
Cnt(xt),

C1t(� xt

W1
�W1) + min

n∈S1
Cnt(xt − � xt

W1
�W1)

}
. (6)

So there exists a polynomial algorithm with running time O(T 4 + NT ) for SP3
problem.

6 Numerical Example

In this section, we illustrate the optimal algorithm for P3 problem with an ex-
ample. The algorithm is written in the runtime environment MATLAB 7.0, and
is achieved and executed on an Lenovo personal computer with a 2.16 GHz Intel
Core 2 processor and 1 GB RAM. The running time of the algorithm is 39.15
seconds. The planning horizon of the considered example contains 4 periods,
that is, T = 4. There are 3 suppliers in this example, that is, N = 3. Supplier 1
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Table 1. The value of parameters

Parameter Value Parameter Value

T 4 K1 (21,17,10,8)
N 3 K2 (20,16,12,7)
S1 {1} K3 (19,19,9,9)
S2 {2,3} A1 (0,0,0,0)
Q (20,0,0) A2 (45,45,45,45)
d (14,9,28,13) A3 (30,30,30,30)
h (3,3,3,2) c1 (3,3,3,3)
W (0,20,15) c2 (2,2,2,2)
r1 (0.2,0.3,0.3,0.4) c3 (2,2,2,2)

Table 2. The results of C(i, j)

i \j 1 2 3 4

1 63.0000 115.2000 276.6000 344.6000
2 0 44.0000 171.2000 237.5000
3 0 0 86.8000 153.1000
4 0 0 0 47.0000

Table 3. The results of F (j)

j 1 2 3 4

F (j) 63.0000 107.000 193.8000 240.8000

Table 4. The value of i correspond with F (j)

F (j) F (1) F (2) F (3) F (4)

i 1 2 3 4

is in set S1, suppliers 2 and 3 are in set S2, that is, S1 = {1}, S2 = {2, 3}. The
other parameters are expressed by vectors (see Table 1).

The computation results of C(i, j) and F (j) are in Table 2, Table 3 and
Table 4. From the computation results, we know that the optimal value of P3
problem is F (4) = F (3) + C(4, 4) = 240.8, F (3) = F (2) + C(3, 3) = 193.8,
F (2) = F (1) + C(2, 2) = 107, F (1) = C(1, 1) = 63. The optimal solution of P3
problem is x11 = 14, x12 = 9, x13 = 28, x14 = 13, xnt = 0 for all n = 2, 3,
t = 1, 2, 3, 4.
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7 Conclusion

This paper extends the classical economic lot-sizing problem to the multi-supplier
ELS problem. Each supplier has one of the two types of order cost structures:
incremental quantity discount cost structure and multiple set-ups cost structure.
We analyzed all possible cases for the multi-supplier ELS problem. After propos-
ing corresponding optimal properties for each case, we find that there exists a
polynomial time algorithm for P1 problem, in which each supplier offers an in-
cremental quantity discount cost structure. It is difficult to find a polynomial
time optimal algorithm for P2 problem and P3 problem. The optimal algorithm
for P2 and P3 problems given in this paper can find an optimal solution in a
short time for a small size of the problem. However, there exists a polynomial
time algorithm for SP3 problem, which is a special case of P3 problem with
|S2| = 1. More future research includes multi-echelon economic lot-sizing prob-
lem with multi-delivery modes problem and economic lot-sizing problem with
multi-supplier multi-item and multiple cost structures.
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Abstract. The availability of large graphs that represent huge road net-
works has led to a vast amount of experimental research that has been
custom-tailored for road networks. There are two primary reasons to
investigate graph-generators that construct synthetic graphs similar to
real-world road-networks: The wish to theoretically explain noticeable
experimental results on these networks and to overcome the commer-
cial nature of most datasets that limits scientific use. This is the first
work that experimentally evaluates the practical applicability of such
generators. To this end we propose a new generator and review the only
existing one (which until now has not been tested experimentally). Both
generators are examined concerning structural properties and algorith-
mic behavior. Although both generators prove to be reasonably good
models, our new generator outperforms the existing one with respect to
both structural properties and algorithmic behavior.

1 Introduction

During the last two decades, advances in information processing led to the avail-
ability of large graphs, that accurately represent the road networks of whole
continents in full detail. Today, these networks are omnipresent in applications
like route planning software, geographical information systems or logistics plan-
ning. While there is a vast amount of research on algorithms that work on (and
often are custom-tailored for) road networks, the natural structure of these net-
works is still not fully understood.

Aims. In this work we aim to synthetically generate graphs that replicate real-
world road networks. The motivation of doing so is manifold: Firstly, the existing
data is often commercial and availability for research is only restricted. In those
situations, graph generators are a good and established way to obtain test-data
for research purposes. Additionally, it seems likely that datasets that represent
the road-network of the entire world will be available in a few years. It will be
shown later that the size of the road-network has a crucial (non trivial, non-
linear) influence on the performance of algorithms on it. Using graph generators
that are able to generate graphs of appropriate size and structure one can then
do algorithmic research on such networks.

Secondly, we want to improve the understanding of the structure within road-
networks. This may support a theoretical analysis of algorithms that have been
� Partially supported by the DFG (project WAG54/16-1).

B. Chen (Ed.): AAIM 2010, LNCS 6124, pp. 46–57, 2010.
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custom-tailored for road-networks. A well known example is the development of
route-planning techniques during the last decade that yield impressive runtimes
by exploiting a special ‘hierarchy’ in road networks [5]. Many of these algorithms
have recently been analyzed in [2]. There, the intuition of hierarchy has been
formalized using the notion of ‘highway dimension’ and a generator for road
networks. In [2] no evidence is given that this generator is a good model for road
networks. We check that in this work.

Further, there is not only one ‘road network’. Hence, we want to compare
graphs originating from different sources with each other. This helps practi-
tioners to assess the value of a given experimental work for their specific data
and problem. Finally, as generators usually involve some tuning parameters,
experimentalists can use them to generate interesting instances and steer the
properties these instances have. This can help to understand custom-tailored
algorithms better.

Related Work. There is a huge amount of work on point-to-point route-
planning techniques. These are mostly custom-tailored for road networks. An
overview can be found in [5]. In [2] a graph generator for road-networks is pro-
posed.

The work [7] studies properties of real-world road-networks. Firstly, road net-
works are characterized as a special class of geometric graphs. This characteriza-
tion is evaluated on the Tiger/Line road networks. It could be a starting point for
a possible graph generator, but too many degrees of freedom are left open to use
it directly. Furthermore, road networks are analyzed concerning planarity: The
typical number of crossings (of the embedding given by the GPS-coordinates) of
an n-vertex road-network is reported to be Θ(

√
n).

Contribution. This is the first work that experimentally generates synthetic
road networks and tests their practical applicability. In Chapter 2 we survey
existing networks that are (partly) available to the scientific community. Chap-
ter 3 introduces a new generator for road networks and describes the generator
given in [2]. In order to assess the quality of these custom-tailored generators,
we also describe two standard graph generators, namely those for Unit-Disk and
Grid-graphs.

Chapter 4 evaluates the generators and compares their output with real-world
networks. There, structural properties and algorithmic behavior are taken into
account. As structural properties we consider connectedness, directedness, degree
distribution, density and distance distribution. We found out that the custom-
tailored generators are a good model for the real-world data. The generator
of Abraham et al. [2] performs also well, with the exception that it produces
graphs that are too dense and incorporate nodes of too high degree. For testing
the algorithmic behavior we focus on point-to-point shortest path computation
as this area uses techniques that have been highly custom-tailored for road-
networks. One unexpected outcome is that the real-world graphs significantly
differ in their algorithmic behavior. Further, the standard-generators approxi-
mate road-networks only to a limited extend (which is not surprising). Finally,
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the custom-tailored generators seem to be reasonably good approximations for
the real-world instances.

2 Real-World Road-Networks

Graphs that represent road networks are typically constructed from digital maps.
Digital mapping is expensive and mostly done by companies like Google, Teleat-
las and NAVTEQ. Hence, this data is hard or expensive to obtain. We are aware
of only three sources for real-world road-networks that are (almost) free for sci-
entific use.

The dataset PTV is commercial and property of the company PTV-AG
(http://www.ptv.de/). It is based on data of the Company NavTeq and not
fully free, but has been provided to participants of the 9th Dimacs Implemen-
tation Challenge [6]. We use slightly updated data from the year 2006. The
U.S. Census Bureau publishes the Tiger/Line datasets TIGER (http://www.
census.gov/geo/www/tiger/). We use the version available at the 9th Dimacs
Implementation Challenge (http://www.dis.uniroma1.it/~challenge9/).
OpenStreetMap (http://www.openstreetmap.org/) is a collaborative project
that uses GPS-data gathered by volunteers to assemble a digital map of the
whole world. We use Europe-data of December 2009 and remove all items that
do not correspond to roads (more details can be found in the appendix). See
Table 1, page 52 for basic information on these three datasets, nomination is as
follows: Density denotes the number of edges divided by the number of nodes,
directedness denotes the number of edges (u, v) for which there either is no edge
(v, u) or for which (v, u) has a different length than (u, v) divided by the total
number of edges. In the experimental evaluation we always use Euclidean dis-
tances as edge weights. This results in better comparability and is well justified
as changing to other metrics like travel time has only low impact on the consid-
ered algorithms [3]. Edges are always counted as directed, i.e. edges (u, v) and
(v, u) both contribute to the overall number of edges.

3 Graph Generators

Voronoi-Based Generator. Our generator is based on the following assump-
tions about road networks which are well motivated from real-world road net-
works: (1) Road networks are typically built so as to interlink a given set of
resources, such as, for instance, natural resources or industrial agglomerations of
some sort. (2) Road networks exhibit a hierarchical, nested structure: The top
level of this hierarchy is defined by the highways, which form a grid-like pattern.
Each cells of this grid-like network is subdivided by a network of smaller roads,
which again exhibits a grid-like structure. (3) Shortest paths in road networks
do not typically exhibit a large dilation with respect to the Euclidean distance:
Although dilation may be very large in the presence of long and thin obstacles,
such as rivers and lakes, it is rather low for the larger part of the network. We
further assume that in the presence of two or more sites of resources it is best

http://www.ptv.de/
http://www.census.gov/geo/www/tiger/
http://www.census.gov/geo/www/tiger/
http://www.dis.uniroma1.it/~challenge9/
http://www.openstreetmap.org/
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to build roads along the bisectors of these sites, since any two sites incident to
a road can access this road at the same cost.

Our generator is a generic framework which works in two phases: At first, we
generate a random graph based on recursively defined Voronoi diagrams in the
Euclidean plane. In the second phase we then compute a sparser subgraph since
the graph computed in the first phase is rather dense as compared to real-world
networks.

A Voronoi diagram of a set of points P is a subdivision of the plane into convex
Voronoi regions vreg(p) for all p ∈ P . The Voronoi region vreg(p) contains all
points whose distance to p is smaller than their distance to any other point
q ∈ P \ {p}. The union of all points which are equally far from at least two
points form a plane graph, which we call the Voronoi graph G(P ). The vertices
of this graph are exactly the set of points which are equally far from at least
three points in P . Each face f of this graph corresponds to the Voronoi region of
some point p. By P (f) we denote the simple polygon which forms the boundary
of f . The Voronoi diagram for a set of n points can be computed in O(n log n)
points by a simple sweep line algorithm [9]. In our implementation, we used the
CGAL library in order to compute the Voronoi diagram of a set of points [1].

The first phase of our generator is a re-
cursive procedure whose core is a routine
called Subdivide-Polygon(P, n,D,R).
The pseudo-code for this routine is listed
in Algorithm 1. Invoked on a simple poly-
gon P this routine computes a Voronoi di-
agram inside P from a set of points which
are chosen as follows: First, we choose a
set of n uniformly distributed points in P ,
which we call center sites. For each of the
center sites x we choose a density param-
eter α according to the distribution D as
well as a radius r according to the dis-
tribution R. As distributions we used the
uniform distribution with density func-
tion Unif [a,b](x) = 1

b−a for all x ∈ [a, b]
with a < b ∈ � as well as the expo-
nential distribution with density function
Expλ(x) = λe−λx for all x ∈ �+

0 . Then we
choose �rα� points in the disc centered at

Algorithm 1. Subdivide-

Polygon

Input: P, n,D,R
1 C ← ∅;
2 for i = 1 to n do
3 x ← choose uniform point

inside P ;
4 α ← random value chosen

according to D;
5 r ← random value chosen

according to R;
6 m ← �rα�;
7 C ← C ∪ {x};
8 for j = 1 to m do
9 p ← choose random

point in R(x, r);
10 C ← C ∪ {p};
11 compute Voronoi diagram

of C in P ;

x with radius r by choosing radial coordinates uniformly at random. Thus, we
create a set of points as agglomerations around uniformly distributed centers.

In our implementation we choose points inside the bounding box of P uni-
formly at random by rejecting points not in P until we have found the desired
number of points.

The pseudo-code of the first phase is listed in Algorithm 2. The input con-
sists of an initial polygon P , a number � of levels for the recursion and for each
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recursion level 1 ≤ i ≤ � a fraction γi

of cells to be subdivided along with dis-
tributions Ci, Ri and Di. We then pro-
ceed as follows: First, we choose a set of
Voronoi regions to subdivide among the re-
gions which were produced in the previous
iteration of the algorithm. Let S be the set
of Voronoi regions which were produced in
the previous iteration, then we subdivide
the γi|S| smallest regions in the current
iteration of the algorithm. Hence, the dis-
tribution of points will be concentrated in
areas with many points. Therefore, we sim-
ulate the fact that sites with many resources
will attract even more resources.

For each Voronoi region R which has
been chosen to be subdivided, we first
choose an associated number of centers n

Algorithm 2. Voronoi-
Roadnetwork
Input: �, γi, Ci,Ri,Di, 1 ≤

i ≤ �
1 �0 ← 1;
2 S ← P ;
3 for i = 1 to � do
4 m ← γi−1|S|;
5 S ← smallest m faces in S;
6 S′ ← ∅;
7 for f ∈ S do
8 n ← choose according

to distribution Ci;
9 S′ ← S′∪

Subdivide-Polygon

(P (f), n,Di,Ri);
10 S ← S′

according to the distribution Ci. Then we call Subdivide-Polygon on input R,
n and the distributions corresponding to the current level in the recursion.

In the second phase we greedily compute a sparse graph spanner of the graph
computed in phase one. Given a graph G a graph spanner H of G with stretch t is
a subgraph of G such that for each pair of vertices u, v in G we have distH(u, v) ≤
t · distG(u, v). We would like H to contain as few edges as possible. Determining
if a graph G contains a t spanner with at most m edges is NP-hard [8].

In order to compute a sparse graph spanner greedily, we iterate over the edges
sorted by non-increasing length and add only those edges to the graph whose
absence would imply a large dilation in the graph constructed so far. Note that
the order in which we consider the edges differs from the greedy algorithm for
graph spanners discussed, e.g., in [4]. Let H be the graph we have obtained after
considering m edges. Then we insert the (m + 1)-st edge {u, v} if and only if
distH(u, v) is larger than t · len(u, v). We assume len(u, v) to be infinity if u and
v are not in the same component. Hence, at each step H is a t-spanner for all
pairs of vertices which are connected in H . At the end we will obtain a connected
graph, and therefore, a t-spanner for G.

In order to determine distH(u, v), we use Dijkstra’s algorithm for computing
shortest paths, which can be pruned whenever we have searched the complete
graph-theoretic ball of radius t · len(u, v). Since we consider the edges in sorted
order with non-increasing length, we will heuristically consider only few edges,
as long edges are considered at the beginning, when the graph is still very sparse.
Since the larger part of the edges in the graph is short compared to the diameter,
the running time for this algorithm is not too large. In order to speed up com-
putation for the cases in which u and v are not connected, we use a union-find
data structure to keep track of the components of H .
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The Generator of Abraham et al. This approach is due to [2] and is based
on an arbitrary underlying metric space (M, d) with diameter D. In this work
M will always be a rectangle in the Euclidean plane with d(u, v) being the
Euclidean distance between points u and v. Further, the generator requires a
random generator rand() for points in M . No distribution is given in [2], we will
report the distributions used in this work later in this section.

Algorithm 3. Generator of Abraham et al. [2]
input : number of vertices n
output: Graph (V, E)

1 initialize V = C0, . . . , Clog D, E to be ∅ ;
2 for t = 1 to n do
3 vt ← rand() ;
4 V ← V ∪ {vt} ;
5 for i = log D to 1 do
6 if d(vt) > 2i for each w ∈ Ci then
7 Ci ← Ci ∪ {vt} ;
8 for w ∈ Ci do
9 if d(vt, w) ≤ k · 2i then E ← E ∪ {vt, w}

10 w ← closest point of vt in Ci+1 ;
11 if vt �= w then E ← E ∪ {vt, w}
12 set edge weights such that len(u, v) = d(u, v)1−δ for δ = 1/8

The generator starts with the empty graph (V, E) = (∅, ∅) and iteratively
adds new vertices to V . Their location in M is distributed according to rand().
A 2i-cover is a set Ci of vertices such that for u, v ∈ Ci, d(u, v) ≥ 2i and such
that for each u ∈ V there is a v ∈ Ci with d(u, v) ≤ 2i. During the process of
adding vertices, the generator maintains for each i with 1 ≤ i ≤ log D, a 2i-cover
Ci: After a vertex vt has been added, the lowest index i is computed such that
there is a w ∈ Ci with d(vt, w) ≤ 2i. Then vt is added to all Cj with 0 ≤ j < i.
If no such i exists, vt is added to all sets Cj . Then, given a tuning-parameter k,
for each Ci � vt and each w ∈ Ci an edge (w, vt) is added if d(w, vt) ≤ k · 2i.
Further, for each Ci � vt with i < log D such that vt �∈ Ci+1, an edge from vt to
its nearest neighbor in Ci+1 is added. Finally, edge lengths are fixed such that
len(u, v) = d(u, v)1−δ for δ = 1/8. Pseudocode of the generator can be found
in Algorithm 3. Throughout the rest of the paper, we fill the remaining tuning
parameters as follows. We choose the number of levels to be 25 and therefore
set D := 225. The aspect ratio of the rectangle representing M is 0.75. The
parameter k =

√
2 (deviating from the original description where k = 6). We

tried two point sources rand(). Firstly, we sampled points uniformly at random
(which will not be used later on). Secondly, we used an improved point source
that mimics city-like structures: We use a 2-phase approach. In the preparation
phase we iteratively compute special points within M called city centers. This
is done as follows. A new city center c is chosen uniformly at random within
M . We assign a value rc to c which is chosen from an exponential distribution
with parameter λ = 1/(0.05 · s) where s is the length of the longer border of M .
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We then assign a population pc to c which is r1.1
c . The preparation-phase stops,

when the overall population exceeds the number of requested nodes n.
Afterwards, a new point x is generated on request as follows: Firstly, a center c

with positive population pc is chosen uniformly at random. We then set pc := pc−
1. The location of x is determined in polar-coordinates with center c by choosing
an angle uniformly at random and by choosing the distance from a normal
distribution with mean 0 and standard deviation rc. Whenever we sampled points
not lying in M these get rejected.

Unit Disk. Given a number of nodes n, a unit disk graph is generated by
randomly assigning each of the n nodes to a point in the unit square of the
Euclidean plain. There is an edge (u, v) in case the Euclidean distance between
u and v is below a given radius r. We adjusted r such that the resulting graph
has approximately 7n edges. We use the Euclidean distances as edge weights.

Grid. These graphs are based on two-dimensional square grids. The nodes of
the graph correspond to the crossings in the grid. There is an edge between
two nodes if these are neighbors on the grid. Edge weights are randomly chosen
integer values between 1 and 1000.

4 Experimental Evaluation

In this section we experimentally assess the proposed generators. To that end we
generated the datasets VOR (originating from the generator our Voronoi-based
generator) and ABR (originating from the Abraham et al. generator). More
information on the generation-process can be found in the appendix.

Graph Properties. We now have a look at some basic structural properties
of the networks. We first observe that all real-world graphs are undirected or
almost undirected and have an almost equal density of 2.05 to 2.4 (Table 1). By
construction the synthetic graphs are undirected, the density of VOR is similar
to the real-world graphs, the density of ABR is slightly too high. Further, all
three real-world networks consist of one huge and many tiny strongly connected
components. The OSM-data deviates in the size of the biggest strongly connected
component. An explanation for this is the unfinished state of the underlying

Table 1. Overview of origin, size, density and directedness of the available real-world
data and the generated datasets

dataset origin represents #nodes #edges density dir’ness

TIGER U.S administration USA 24,412,259 58,596,814 2.40 .0 %
PTV commercial data Europe 31,127,235 69,200,809 2.22 4.9 %
OSM collaborative project Europe 48,767,450 99,755,206 2.05 3.5 %
ABR Abraham et al synthetic 15,000,000 43,573,536 2.90 .0 %
VOR Voronoi generator synthetic 42,183,476 93,242,474 2.21 .0 %
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map and we expect the deviation to decrease with increasing level-of detail in
the OSM-data in the future (Table 2). By construction the synthetic graphs are
strongly connected.

The distribution of the node-degrees is very similar for PTV and TIGER

but again deviates significantly for OSM. All three graphs have in common that
almost no nodes of degree of at least 5 exists. The difference in the number of
degree-2 nodes can be explained by a higher level of detail of the OSM-data (Ta-
ble 3). The distribution of
VOR is quite similar to
OSM while ABR signif-
icantly deviates from all
other distributions: 7% of
the nodes have degree 6 or
higher, the maximum de-
gree is 58.

Table 2. Relative sizes (measured in number of nodes)
of the k biggest SCCs

k total #
dataset 1 2 5 20 100 of SCCs

OSM .80 .91 .94 .96 .97 541264
PTV .97 .97 .97 .97 .97 924561
TIGER .98 .98 .99 .99 .99 89796

Figure 1 shows the dis-
tribution of the distances
between pairs of nodes in
the networks. The distri-
butions are hard to in-
terpret but can be used
as a fuzzy fingerprint for
the structure within the
graphs (for instance to sep-
arate them from different
graph classes like small-

Table 3. Degree distribution of the datasets: Relative
frequency according to degree

degree
dataset 0 1 2 3 4 5 ≥6

OSM .001 .097 .773 .114 .015 0 0
PTV .030 .247 .245 .429 .049 .001 0
TIGER 0 .205 .301 .386 .106 .001 0
ABR 0 .324 .254 .160 .093 .056 .077
VOR 0 .100 .601 .292 .005 .002 0

world graphs). We observe that OSM and PTV have a quite similar distribution,
differing from the TIGER-data. A possible explanation for that could be the
geographical origin of the data. Both OSM and PTV map the European road-
network while TIGER maps the U.S. road-network. The VOR-dataset is a good
approximation for the TIGER-data, the ABR-dataset is a good approximation
for OSM and PTV.

For the sake of completeness, we also report the distribution of the according
edge weights (Figure 1). Note that the edge-weight distribution has only small
impact on the considered algorithms [3]. For better comparability, we always
applied Euclidean distances instead of the original weights.

Algorithmic Behavior. In this section we compare the algorithmic behav-
ior of both real-world and synthetically generated graphs. For this purpose we
analyze the speedups which can be achieved using speedup techniques for point-
to-point shortest path queries, such as Bidirectional Dijkstra’s algorithm, ALT
(16 landmarks computed by max-cover strategy), Arc-Flags (128 Voronoi-cells),
Reach-Based Routing (ε = 0.5, δ = 16) as well as Contraction Hierarchies (CH,
original code), as compared to standard Dijkstra’s algorithm. See [5] for more
information. These techniques have specifically been designed for the task of
heuristically speeding up Dijkstra’s algorithm on real-world road networks and,
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Fig. 1. Left: Distance-distribution sampled by considering 1000 source nodes and, for
each source node, 1000 target nodes. Unconnected pairs have been removed, values
have been normalized. Right: Edge-weight distributions. Outliers have been removed,
values have been normalized. Graphs are from top: OSM, PTV, TIGER, ABR, VOR.

thus, we will use their performance as an indicator for the similarity of the
networks.

As a benchmark set we analyze the data from the real-world instances PTV,
TIGER and OSM as well as the synthetically generated graphs VOR and ABR.
Since the speedup of the various techniques is non-trivially correlated with the
size of the graph, we sampled random snapshots with sizes ranging from 1,000
up to 512,000 from our benchmark set in order to be able to capture the under-
lying correlation. Sampling has been performed exploiting the given geometrical
layout and extracting square-sized subgraphs around random points. Thereby,
the diameter has been adapted, such that the resulting graph has the desired
size. In order to assess the quality of the synthetic data, we also included data
from generators that are not custom-tailored for road-networks: Grid-graphs and
unit-disk-graphs (a description of the generators is given at the end of the previ-
ous section). The respective data-sets are named GRID and UD. The measured
speedups are summarized in Table 4.

The speedups we measured using a bidirectional Dijkstra search range between
1.1 and 1.8 and are concentrated around 1.5 for all graph sizes. There does not
seem to be any significant trend in this data and, hence, we omit a detailed
analysis of this speedup technique. Our results can be summarized as follows:
Real-world graphs significantly differ in their algorithmic behavior: Although
OSM and TIGER behave similarly with respect to the speedup techniques
ALT, Arc-Flags and CH, the two speedup techniques differ by almost a factor
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Table 4. Speedups of the tested Point-To-Point Shortest Path Algorithms

technique #nodes OSM TIGER PTV VOR ABR UD GRID

ALT 2000 1.9 3.9 5.1 4.9 9.3 5.9 8.1
ALT 32000 5.5 9.6 10.7 11.3 16.4 12.3 12.6
ALT 128000 10.8 10.8 18.2 13.8 31.4 21.7 22.2
ALT 256000 15.3 13.4 26.9 16 35.8 26.1 25.6
ALT 512000 16 17.7 30.6 21.6 37.3 28.8 24.2
Arc-Flags 2000 4.4 14.5 20.7 20.5 48.6 29.1 35.7
Arc-Flags 32000 21.8 55.9 68.5 89.7 131.5 44.1 32.7
Arc-Flags 128000 48.7 65.7 142.2 111.7 219.9 64.4 52.3
Arc-Flags 256000 69.5 76.2 219.9 143.2 245.6 74 72
CH 2000 24.3 16.5 20.7 13.9 13.7 9 7.5
CH 32000 100.4 80.5 102.5 114.9 42.2 38.3 29.1
CH 128000 229 209.2 390.2 346.4 184.6 134.2 74.5
CH 256000 435.2 357.3 626.1 684.7 327.8 195.7 128.2
CH 512000 459.5 497.9 831.4 1565.5 474.2 271.8 175.6
Reach 2000 3.9 3.3 3.8 3.3 4.2 1.8 1.2
Reach 32000 10.1 7.5 9.1 9.9 5.9 2.9 2.1
Reach 128000 28.2 15.7 24.2 22.3 10.1 4.2 2.9
Reach 256000 37.8 22.8 31.8 32.9 10 4.4 4
Reach 512000 34.3 16.3 27.1 49.2 10.7 5 4.7

of two with respect to Reach. Even worse, the PTV-dataset achieves speedups
almost twice as large as OSM and TIGER with ALT and CH, and it shows a
totally different trend concerning its behavior with Arc-Flags.

GRID and UD approximate streetgraphs only to a limited extent: Both
GRID and UD behave similarly for all speedup techniques we considered. Al-
though both graphs seem to be rather good approximations for PTV with re-
spect to ALT and for both OSM and TIGER with respect to Arc-Flags, they
seem to be rather bad estimates for CH and Reach. This may be explained by the
lack of hierarchy inherent to both generators and the fact that both techniques
are based on hierarchical decompositions of the underlying graphs.

ABR and VOR are reasonably good approximations: Contrary to GRID

and UD, ABR and VOR seem to capture both the magnitude and the trend
exhibited by real-world instances quite well. The speedups measured for ABR

are slightly too large for ALT and Arc-Flags and they are slightly too small for
Reach. For CH, on the other hand, they are very close to the speedups measured
for OSM and TIGER. Except for CH, the speedups measured for Voronoi are
well in between the speedups measured for the real-world instances. For CH, the
speedups are very close to the speedups for PTV which are larger than those
for OSM and TIGER by roughly a factor of two.

Note that parameters of the synthetic data have not been finetuned for ap-
proximating the given results. Since there is considerable amount of deviation
in the behavior of the real-world data we consider doing so to be over-fitting.
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Fig. 2. Speedups observed for different techniques: ALT, Arc-Flags, Contraction Hier-
archies and Reach (from left to right)

Summary. Figure 2 shows a summary of the speedups measured for the differ-
ent techniques. GRID and UD perform poorly for Arc-Flags, CH and Reach,
since either the median is far too small as in the case of CH and Reach or
the interquartile range is far too small as in the cases of Arc-Flags. Although
both may be considered good estimates for the PTV-data with respect to ALT,
VOR seems to be the better choice. A similar, albeit slightly better behavior
can be observed for ABR: Although it captures the interquartile range rather
well for all techniques, except Reach, the medians do not fit too well. VOR,
on the other hand, seems to be the best fit with respect to both median and
interquartile range. Although the median is slightly too large for Arc-Flags and
the interquartile range is too large for CH it seems to capture the behavior of
the real-world data with respect to the speedup techniques best.
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A Additional Technical Information

Extraction of the OSM-Dataset. To distill the OSM-dataset, we used the
Europe-data available at http://download.geofabrik.de/osm/ of December
2009. The graph includes all elements for which the highway-tag equals one
of the following values: residential, motorway link, trunk, trunk link primary,
primary link, secondary, secondary link, tertiary, unclassified, road, residential,
living street, service, services.
Generation of the Synthetic Data. The graph VOR is a 4-level graph com-
puted using the following parameters: Level 1 has 1700 centers, density of 0.2 The
Voronoi streetgraph was computed using the parameters listed in Table 5. In the
second phase we greedily computed a 4-spanner subgraph.

The first phase of the algorithm took 122 minutes and consumed up to 19 GB
of space; the second phase of the algorithm took 28 minutes consumed up to 21
GB of space. The ABR

streetgraph has 15 mio.
nodes and more than 43
mio. edges. It was gen-
erated within 63 min-
utes and consumed up
to 8.39 GB of disk space.

Table 5. Parameters of the Voronoi streetgraph

Level i # of centers Ci density Di radius Ri fraction γi

1 1700 .2 Exp.01 .95
2 Unif[2,40] .5 Exp.1 .9
3 Unif[2,70] .9 Exp2 .7
4 Unif[4,40] .0 0 0

Fig. 3. PTV graph Fig. 4. ABR graph Fig. 5. VOR graph

http://download.geofabrik.de/osm/
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Abstract. The problem of computing a Nash equilibrium in a normal
form 2-player game (or bimatrix games) is PPAD-complete in general,
while it can be efficiently solved in a special subclass which we call regu-
lar bimatrix games. The current best approximation algorithm, proposed
in [19], achieves a guarantee of 0.3393. In this paper we design a polyno-
mial time algorithm for computing exact and approximate Nash equilib-
ria for bimatrix games. The novelty of this contribution is twofold. For
regular bimatrix games, it allows to compute equilibria whose payoffs op-
timize any objective function and meet any set of constraints which can
be expressed through linear programming, while, in the general case,
it computes α-approximate Nash equilibria, where α is the maximum
difference between any two payoffs in the same strategy of any player.
Hence, our algorithm improves the best know approximation guarantee
for the bimatrices in which α < 0.3393.

1 Introduction

The complexity of computing Nash equilibria in normal form games has been for
ages one of the most interesting and challenging problems lying at the boundary
of P and NP. The Lemke-Howson algorithm [14] for the 2-player case, introduced
in 1964, was shown to require an exponential running time in the worst case only
40 years later by Savani and von Stengel [18]. After that, a fast escalation of
results appeared showing the PPAD-completeness of the problem of computing
Nash equilibria in any n-player game. In particular, Daskalakis, Goldberg and
Papadimitriou [8] proved it for any n ≥ 4, Daskalakis and Papadimitriou [11]
settled the 3-player case and finally Chen and Deng [4] solved the remaining
2-player case.

Under the widely believed conjecture that P ⊂ PPAD, next challenge is to un-
derstand the hardness of computing approximate Nash equilibria in normal form

� This research was partially supported by the grant NRF-RF2009-08 “Algorithmic
aspects of coalitional games”.

B. Chen (Ed.): AAIM 2010, LNCS 6124, pp. 58–69, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Computing Exact and Approximate Nash Equilibria in 2-Player Games 59

games and to detect subcases for which exact Nash equilibria can be computed
in polynomial time. To the best of our knowledge, all the research up to date has
only focused on the 2-player case, the so called bimatrix games. In such a setting,
a result achieved by Abbot, Kane and Valiant [1], implies that computing Nash
equilibria remains PPAD-complete even when restricting to win-lose bimatrix
games, that is, the case in which all the entries in the bimatrix are either zero
or one.

It is well-know that computing Nash equilibria can be done in polynomial time
by exploiting linear programming in the zero-sum case, that is, when the sum
of any pair of entries in the bimatrix is equal to zero. By exploiting reduction
among games which preserves the set of Nash equilibria, it is possible to use such
an algorithm to compute Nash equilibria also in the more general case of regular
bimatrix games (see Sections 2 and 3 for more details). We stress that in this
case, however, there is no way to ask such an algorithm for the computation of a
particular Nash equilibrium when the game possesses several ones (see Example 1
in the appendix). Recently, two tractable cases were discovered for the class of
win-lose bimatrix games. In particular, Codenotti, Leoncini and Resta [7] gave
an algorithm for computing a Nash equilibrium when the number of winning
positions per strategy of each of the players is at most two, while Addario-Berry,
Oliver and Vetta [2] solved the case in which the graph representation of the
game is planar.

As to approximation, we say that a pair of mixed strategies is an ε-approximate
Nash equilibrium, where ε > 0, if for each player all strategies have expected pay-
off that is at most ε more than the expected payoff of the given strategy. The
first approximation algorithms for bimatrix games has been given by Lipton,
Markakis and Mehta [15] who showed that an ε-approximation can be found in
time O(n

log n

ε2 ) by examining all supports of size log n
ε2 . It is quite easy to obtain

a 0.75-approximate Nash equilibrium and a slightly improved result has been
achieved by Kontogiannis, Panagopoulou and Spirakis [13]. Almost contempora-
neously, Daskalakis, Mehta and Papadimitriou [9] gave a very simple algorithm
computing a 0.5-approximate Nash equilibrium with support size at most two.
On the negative side, Chen, Deng and Teng [5] showed that, for any ε > 0,
computing a 1

nε+1 -approximate Nash equilibrium is PPAD-complete. Hence no
FPTAS exists for this problem unless P=PPAD. Hardness of approximation
carries over also to win-lose games as Chen, Teng and Valiant [6] showed that
correctly computing a logarithmic number of bits of the equilibrium strategies
is as hard as the general problem. Furthermore, Feder, Nazerzadeh and Saberi
[12] claimed no algorithm examining only strategies with support of size smaller
than about log n can achieve an approximation guarantee better than 0.5 even
for zero-sum games. Because of this result, in order to break the 0.5 barrier,
approximate equilibria with large support size need to be computed.

The first breakthrough was given by Daskalakis, Mehta and Papadimitriou
[10] who contributed an algorithm based on linear programming achieving an
approximation guarantee of 3−√

5
2 + ε ≈ .38 + ε in time nO(1/ε2). Despite its

theoretical importance, we note that, in order to slightly improve on the 0.5
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approximation, we need to run such an algorithm with ε ≤ 0.1 thus obtaining
a prohibitive, although polynomial, running time. Recently, again two different
algorithms have been proposed contemporaneously. Bosse, Byrka and Markakis
[3] derived a 0.36392-approximation at the cost of solving a linear program,
while the best known approximation guarantee of 0.3393 has been achieved by
Tsaknakis and Spirakis [19] by exploiting a more involved use of LP formulations.
Different tests performed by Tsaknakis, Spirakis and Kanoulas [20] seem to show
that the “real” approximation guarantee of this last algorithm is very close to
zero.

Our Contribution. We propose an LP formulation for the problem of computing
Nash equilibria in bimatrix games whose number of variables and constraints
is linear in the dimensions of the bimatrix. We demonstrate that any feasible
solution to this formulation is always a Nash equilibrium in the case of regular
bimatrix games. The novelty of this approach is in the fact that our technique
allows to compute equilibria whose payoffs optimize any objective function and
meet any set of constraints which can be expressed through linear programming
(i.e., maximizing the minimum payoff per player, minimizing the maximum pay-
off per player, minimizing or maximizing the sum of the players’ payoffs, mini-
mizing or maximizing the payoff of one player when the one of the other player
is constrained to be greater or smaller than a given threshold, deciding whether
there exists a Nash equilibrium whose payoffs fall in certain ranges, etc.), while
the previous known algorithm for this case can only output a generic equilib-
rium. Our formulation can also be used to compute approximate Nash equilibria
in general bimatrix games. We show that the approximation guarantee of this
algorithm is upper bounded by the maximum difference between any two payoffs
in the same strategy for any player. This means that for all bimatrices in which
such a value is smaller than 0.3393, our algorithm achieves the best provable
worst-case guarantee.

2 Definitions and Notation

A 2-player game in normal form, also called a bimatrix game, is modeled as a
pair of n × n payoff matrices (R, C), one for the first player (the row player)
and the other for the second one (the column player). Clearly, the assumption
that both players have n available strategies is without loss of generality since it
is always possible to add dummy strategies (i.e., always giving to both players
the lowest possible payoff) to the ones possessed by the player having the lowest
number of strategies.

The pure strategies available for the row player are rows, while those for
the column player are columns. If the row player plays pure strategy i and the
column player plays pure strategy j, the row player receives a payoff equal to Rij ,
while the column player gets Cij . A mixed strategy for player i is a probability
distribution over the set of her strategies. When dealing with mixed strategies
the payoff of each player is computed in expectation, that is, if the row and the
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column player play respectively mixed strategies x and y, then the row player
receives a payoff equal to xT Ry, while the column player gets xT Cy. The support
of a mixed strategy x is the set of pure strategies played with positive probability
in x. Clearly, pure strategies are mixed strategies whose support has cardinality
one.

Let us define Δn = {x ∈ IRn : xi > 0 ∀i ∈ [n] and
∑n

i=1 xi = 1} as the set of
all mixed strategies which can be defined over a set of n pure strategies.

Definition 1 (Nash Equilibrium). A pair of mixed strategies (x∗, y∗) ∈
Δn × Δn is a Nash equilibrium if no player can improve her payoff by devi-
ating unilaterally to another mixed strategy, that is, x∗T Ry∗ ≥ xT Ry∗, ∀x ∈ Δn

and x∗T Cy∗ ≥ x∗T Cy, ∀y ∈ Δn.

Definition 2 (Approximate Nash Equilibrium). For any ε > 0, a pair of
mixed strategies (x∗, y∗) ∈ Δn ×Δn is an ε-approximate Nash equilibrium if no
player can improve her payoff of more than an additive factor of ε by deviating
unilaterally to another mixed strategy, that is, x∗T Ry∗ + ε ≥ xT Ry∗, ∀x ∈ Δn

and x∗T Cy∗ + ε ≥ x∗T Cy, ∀y ∈ Δn.

We consider the following special classes of bimatrix games.

Definition 3 (Zero-Sum Games). A bimatrix game (R, C) is a zero-sum
game if Rij + Cij = 0 for any i, j ∈ [n], that is, (R, C) can be rewritten as
(R,−R).

Definition 4 (Regular Bimatrix Games). A bimatrix game (R, C) is regular
if one of the following two conditions holds:

• Rij + Cij = bi for any i, j ∈ [n] (row regularity);
• Rij + Cij = aj for any i, j ∈ [n] (column regularity).

Definition 5 (Smoothed Bimatrix Games). A bimatrix game (R, C) is α-
smoothed if α ≥ maxi,j,j′∈[n]{Rij − Rij′} and α ≥ maxi,i′,j∈[n]{Cij − Ci′j}.

3 Preliminaries

Reductions among bimatrix games. For each a, b ∈ IR+, consider the bi-
matrix games G = (R, C) and G′ = (aR, bC). For each Nash equilibrium (x∗, y∗)
for G we have x∗T (aR)y∗ = ax∗T Ry∗ ≥ axT Ry∗ = xT (aR)y∗, ∀x ∈ Δn

and x∗T (bC)y∗ = bx∗T Cy∗ ≥ bx∗T Cy = x∗T (bC)y, ∀y ∈ Δn. Similarly, we
obtain that for each ε-approximate Nash equilibrium (x∗, y∗) for G it holds
x∗T (aR)y∗ + aε ≥ xT (aR)y∗, ∀x ∈ Δn and x∗T (bC)y∗ + bε ≥ x∗T (bC)y,
∀y ∈ Δn. Hence, G and G′ have the same set of Nash equilibria; moreover, any
ε-approximate Nash equilibrium for G is an �ε-approximate Nash equilibrium for
G′, with � = max{a, b}, and vice versa.

Now let A and B be two n × n matrices such that aij = aj and bij = bi for
all i, j ∈ [n]. Consider the game G′′ = (A+R, B +C); for each Nash equilibrium
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(x∗, y∗) for G, by exploiting xT Ay =
∑n

j=1 ajyj and xT By =
∑n

i=1 bixi for
any x, y ∈ Δn, we have x∗T (A + R)y∗ =

∑n
j=1 ajy

∗
j + x∗T Ry∗ ≥ xT Ay∗ +

xT Ry∗ = xT (A + R)y∗, ∀x ∈ Δn and x∗T (B + C)y∗ =
∑n

i=1 bix
∗
i + x∗T Cy∗ ≥

x∗T By + x∗T Cy = x∗T (B + C)y, ∀y ∈ Δn. Similarly, for each ε-approximate
Nash equilibrium (x∗, y∗) for G it holds x∗T (A + R)y∗ + ε ≥ xT (A + R)y∗,
∀x ∈ Δn and x∗T (B + C)y∗ + ε ≥ x∗T (B + C)y, ∀y ∈ Δn. Hence G and G′′ have
the same set of Nash equilibria and the same set of approximate Nash equilibria.

Because of these results, when studying the complexity of computing Nash
equilibria and approximate Nash equilibria in bimatrix games we can restrict
our attention to the case in which all the elements of R and C belong to [0; 1].

A polytime algorithm for zero-sum games. Consider a zero-sum bimatrix
game (R,−R) and let us examine the problem under the column player’s view-
point. Since anything the row player wins is lost by the column player, the latter
wants to play a strategy y such that the row player cannot get too much, no
matter what she does. More formally, the column player wants a mixed strategy
y ∈ Δn and a value ω such that

∑
j∈[n] Rijyj ≤ ω, ∀i ∈ [n]. This means that the

column player should solve the linear program

min ω

s.t.
∑
j∈[n]

Rijyj ≤ ω ∀i ∈ [n],∑
j∈[n]

yj = 1,

yj ≥ 0 ∀j ∈ [n].

Furthermore, from the row player’s viewpoint, the goal is to solve the linear
program

min ψ

s.t. −
∑
i∈[n]

Rijxi ≤ ψ ∀j ∈ [n],∑
i∈[n]

xi = 1,

xi ≥ 0 ∀i ∈ [n].

By the Duality Theorem and the Min-max Theorem, any pair (x∗, ω∗) and
(y∗, ψ∗) of optimal solutions to these two linear programs must obey ω∗ = ψ∗,
hence (x∗, y∗) is a Nash equilibrium for the zero-sum game (R,−R). This analysis
gives us a polynomial time algorithm for computing a generic Nash equilibrium
in zero-sum bimatrix games; moreover, it also implies that all Nash equilibria
yield the same payoffs for both players.

Extension to regular bimatrix games. When given a row (resp. column)
regular bimatrix game (R, C) let us define the matrix B (resp. A) in such a
way that bij = −bi (resp. aij = −aj) for all i, j ∈ [n]. By the definition of
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row (resp. column) regular bimatrix games, it is easy to see that (R, B + C)
(resp. (A + R, C)) is a zero-sum game. Because of this and the fact that the
pair of games (R, C) and (R, B + C) (resp. (A + R, C)) have the same set of
Nash equilibria, it is possible to compute in polynomial time a generic Nash
equilibrium for regular bimatrix games.

4 Our LP Formulation

We first formulate the problem of computing a Nash equilibrium in bimatrix
games by using quadratic programming. Let us call 2-Nash the problem of com-
puting a Nash equilibrium in bimatrix games.

A quadratic formulation for 2-Nash. An important combinatorial character-
ization of improving defections states that for any tuple of mixed strategies, if one
of the players possesses an improving defection, then there always exists a best
response which is also a pure strategy for the defecting player. This claim easily
follows by linearity of expectation. Thus, if we denote with ei ∈ Δn the vector
with a 1 in its i-th coordinate and 0 elsewhere, we obtain that (x∗, y∗) is a Nash
equilibrium if and only if ∀i ∈ [n], x∗T Ry∗ ≥ eT

i Ry∗ and x∗T Cy∗ ≥ x∗T Cei,
(see, for instance, [9]).

Thanks to this characterization, it is possible to formulate 2-Nash as a
quadratic program with 2n variables and 4n+2 constraints as shown in Figure 1.

NLP : min 1
s.t.

∑
i∈[n]

∑
j∈[n]

Rijxiyj ≥
∑
j∈[n]

Rijyj ∀i ∈ [n],∑
i∈[n]

∑
j∈[n]

Cijxiyj ≥
∑
i∈[n]

Cijxi ∀j ∈ [n],∑
i∈[n]

xi = 1,∑
j∈[n]

yj = 1,

xi ≥ 0 ∀i ∈ [n],
yj ≥ 0 ∀j ∈ [n].

Fig. 1. A quadratic formulation for 2-Nash

It is quite easy to see that NLP is an exact, although non-linear, formulation
of 2-Nash. In fact, the last four constraints assure that the pair of vectors (x, y)
constitutes a pair of mixed strategies, while the first two constraints coincide
with the characterization of Nash equilibria given above.

The linear relaxation. We now propose a linear relaxation of NLP having
n2 + 2n variables and n2 + 6n + 2 constraints as shown in Figure 2.
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LR : min 1
s.t.

∑
i∈[n]

∑
j∈[n]

Rijzij ≥
∑
j∈[n]

Rijyj , ∀i ∈ [n]∑
i∈[n]

∑
j∈[n]

Cijzij ≥
∑
i∈[n]

Cijxi, ∀j ∈ [n]∑
j∈[n]

zij = xi ∀i ∈ [n],∑
i∈[n]

zij = yj ∀j ∈ [n],∑
i∈[n]

xi = 1,∑
j∈[n]

yj = 1,

xi ≥ 0 ∀i ∈ [n],
yj ≥ 0 ∀j ∈ [n],
zij ≥ 0 ∀i, j ∈ [n].

Fig. 2. The linear relaxation for 2-Nash

As it can be easily noted, in LR we use the variables zij to approximate
the values xiyj occurring in NLP. The third and fourth constrains, together
with zij ≥ 0, guarantee that zij ≤ min{xi, yj}. In fact xi, yj ∈ [0; 1] implies
xiyj ≤ min{xi, yj}. It is not difficult to see that any Nash equilibrium is a
feasible solution of LR, hence LR is a relaxation of NLP. Since zij only provides
an approximation of xiyj , we have that the payoffs yielded by each pair of
mixed strategies (x, y) corresponding to feasible solutions of LR may be over or
underestimated. Let us denote with feas(LR) the set of feasible solutions of a
certain linear relaxation LR, we show in the following that underestimation can
never occur.

Lemma 1. For any s = (x, y, z) ∈ feas(LR) it holds
∑

i∈[n]
∑

j∈[n] Rij(zij −
xiyj) ≥ 0 and

∑
i∈[n]

∑
j∈[n] Cij(zij − xiyj) ≥ 0.

Proof. Let k = argmaxi∈[n]{
∑

j∈[n] Rijyj} be a pure best response for the row
player to the column player’s mixed strategy y. Because of the first constraint
of LR we have ∑

i∈[n]

∑
j∈[n]

Rijzij ≥
∑
j∈[n]

Rkjyj .

Moreover, we also have∑
i∈[n]

∑
j∈[n]

Rijxiyj ≤
∑
i∈[n]

xi

∑
j∈[n]

Rkjyj =
∑
j∈[n]

Rkjyj .

Combining these two inequalities we obtain∑
i∈[n]

∑
j∈[n]

Rijzij ≥
∑
i∈[n]

∑
j∈[n]

Rijxiyj .
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A completely symmetric argument shows that
∑

i∈[n]
∑

j∈[n] Cijzij ≥∑
i∈[n]

∑
j∈[n] Cijxiyj . ��

For any s = (x, y, z) ∈ feas(LR) define

ε(s) = max{
∑
i∈[n]

∑
j∈[n]

Rij(zij − xiyj),
∑
i∈[n]

∑
j∈[n]

Cij(zij − xiyj)}.

Lemma 2. For any s = (x, y, z) ∈ feas(LR) we have that the pair of mixed
strategies (x, y) is an ε(s)-approximate Nash equilibrium.

Proof. For any k ∈ [n] we have that∑
i∈[n]

∑
j∈[n]

Rijxiyj + ε(s) ≥
∑
i∈[n]

∑
j∈[n]

Rijzij ≥
∑
j∈[n]

Rkjyj .

Analogously, for any k ∈ [n] we have that∑
i∈[n]

∑
j∈[n]

Cijxiyj + ε(s) ≥
∑
i∈[n]

∑
j∈[n]

Cijzij ≥
∑
i∈[n]

Cikxi.

Hence, (x, y) is an ε(s)-approximate Nash equilibrium. ��
Clearly, if ε(s) = 0, the pair of mixed strategies (x, y) induced by s is a Nash
equilibrium. We now show one of the two results of the paper, that is the fact
that our formulation can be used to compute any Nash equilibria for regular
bimatrix games satisfying certain desiderata.

Theorem 1. Any feasible solution of LR is a Nash equilibrium when (R, C) is
a regular bimatrix game.

Proof. For any s = (x, y, z) ∈ feas(LR), we show that ε(s) = 0 when (R, C)
is a row regular bimatrix game. The proof for column regular games can be
obtained by switching the role of rows and columns in what follows. Assume
that ε(s) > 0, otherwise, by Lemma 2, (x, y) is a Nash equilibrium. Consider
a row i such that

∑
j∈[n] Rijzij − ∑

j∈[n] Rijxiyj = δi(s) > 0, that is, such
that the payoff of the row player is overestimated in s. By the row regularity of
(R, C) we obtain that

∑
j∈[n] Cijzij −

∑
j∈[n] Cijxiyj =

∑
j∈[n](bi − Rij)(zij −

xiyj) = bi

∑
j∈[n](zij − xiyj) −

∑
j∈[n] Rij(zij − xiyj) = bi(

∑
j∈[n] zij − xi) −∑

j∈[n] Rij(zij − xiyj) = −δi(s). Hence, for each row on which the payoff of the
row player is overestimated in s by a quantity δ, we have that the column player
gets an underestimation equal to δ. Because of the fact that none of the two
players can have an underestimated payoff in s, it follows that ε(s) = 0, that is,
(x, y) is a Nash equilibrium. ��
As a consequence of the above theorem, we have that any Nash equilibrium
satisfying any desiderata and optimizing any objective function involving the
players’ payoffs (modelled through the variables zij) which can be expressed by
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linear programming can be computed in polynomial time by using our relaxation
LR. Notice that a similar result cannot be obtained by using the algorithm for
computing a Nash equilibrium in zero-sum games since in this case all Nash
equilibria are equivalent, in the sense that they all yield the same payoffs, that
is, when transforming a regular bimatrix game into a zero-sum game we maintain
the same set of equilibria but lose information on their payoffs. For the sake of
clarity and completeness, we illustrate this discussion in the following example.

Example 1. Consider the column regular bimatrix game defined by the following
bimatrix. ⎛⎜⎜⎝

2, 1 1,−1 0, 0 0, 0
4,−1 −1, 1 0, 0 0, 0
3, 0 0, 0 1,−1 −1, 1
3, 0 0, 0 −1, 1 1,−1

⎞⎟⎟⎠
It possesses four Nash equilibria:

1. (1
2 , 1

2 , 0, 0) and (1
2 , 1

2 , 0, 0) yielding the pair of payoffs (3
2 , 0),

2. (1
2 , 1

2 , 0, 0) and (0, 0, 1
2 , 1

2 ) yielding the pair of payoffs (0, 0),
3. (0, 0, 1

2 , 1
2 ) and (1

2 , 1
2 , 0, 0) yielding the pair of payoffs (3

2 , 0),
4. (0, 0, 1

2 , 1
2 ) and (0, 0, 1

2 , 1
2 ) yielding the pair of payoffs (0, 0).

If, for instance, we are interested in computing a Nash equilibrium maximizing
the sum of the players’ payoffs, by adding the suitable objective function to our
formulation LR we will obtain equilibrium number 1 or equilibrium number 3.
Analogously, if we want to minimize the players’ payoffs we are able to compute
one between equilibrium number 2 and equilibrium number 4.

By using the technique of reducing a regular game to a zero-sum game, by
subtracting 3 from the first entry of the first column, we obtain the zero-sum
game defined by the following bimatrix.⎛⎜⎜⎝

−1, 1 1,−1 0, 0 0, 0
1,−1 −1, 1 0, 0 0, 0
0, 0 0, 0 1,−1 −1, 1
0, 0 0, 0 −1, 1 1,−1

⎞⎟⎟⎠
Its set of Nash equilibria remains the same, but all of them now yield the pair of
payoffs (0, 0). Hence, by using the techniques known so far in the literature, we
are unable to choose a particular equilibrium among the various ones (eventually)
possessed by a regular bimatix games. This illustrates the novelty and usefulness
of our contribution in the computation of exact equilibria in bimatrix games.

As a consequence of Lemma 2, we have that the approximation guarantee
provided by LR in general bimatrix games can be equal to maxs∈feas(LR) ε(s)
in the worst-case. We now show the second of our results, stating that our
algorithm computes an α-approximation Nash equilibrium for any α-smoothed
bimatrix game.
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Theorem 2. If (R, C) is α-smoothed then any s ∈ feas(LR) is an α-
approximate Nash equilibrium.

Proof. For any i ∈ [n] define Ri = minj∈[n]{Rij} and Ri = maxj∈[n]{Rij}, while
for any j ∈ [n] define Cj = mini∈[n]{Cij} and Cj = maxi∈[n]{Cij}.

It is quite easy to see that∑
i∈[n]

∑
j∈[n]

Rijzij ≥
∑
i∈[n]

xi · Ri

and ∑
i∈[n]

∑
j∈[n]

Rijxiyj ≤
∑
i∈[n]

xi · Ri.

Analogously,
∑

i∈[n]
∑

j∈[n] Cijzij ≥∑
j∈[n] yj · Cj and

∑
i∈[n]

∑
j∈[n] Cijxiyj ≤∑

j∈[n] yj · Cj .

The claim follows from the definitions of ε(s) and α-smoothness. ��
Thus, for α-smoothed bimatrix games with α < 0.3393, our technique allows to
compute approximate Nash equilibria with the currently best provable worst-
case guarantee. For the sake of completeness, we show in the following theorem
that good approximations cannot be achieved in the general case, by providing
a win-lose game (which is clearly a 1-smoothed bimatrix game) for which our
algorithm might return a 1-approximate Nash equilibrium.

Theorem 3. There exists a bimatrix game such that maxs∈feas(LR) ε(s) = (1−
3
n + 2

n2 ).

Proof. The instance giving the result is the following.⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1, 0 0, 1 1, 0 1, 0 . . . . . . 1, 0 1, 0
1, 0 0, 1

1, 0 0, 1
1, 0

...
0, 1
1, 0 0, 1

0, 1 1, 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
In every cell (i, j) of the bimatrix, the payoffs (Rij , Cij) are shown. We assume
a payoff of (0, 0) for the empty cells. Let us consider the solution s = (x, y, z) of
LR, defined as follows:

• xi = yi = 1
n for any 1 ≤ i ≤ n,

• zij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
n − 1

n2 if i = j,

1
n2 if j = (i + 1) mod n,

0 otherwise.
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We show that s ∈ feas(LR) for any n > 2. In fact,

n∑
i=1

n∑
j=1

Rijzij = n

(
1
n
− 1

n2

)
= 1 − 1

n

while

n∑
j=1

Rijyj =
{

1 − 1
n if i = 1,

1
n if 2 ≤ i ≤ n.

Moreover
n∑

i=1

n∑
j=1

Cijzij = n
1
n2 =

1
n

,

while
n∑

i=1

Cijxi =
1
n

for any 1 ≤ j ≤ n.

The expected payoff of the row player in (x, y) is
∑n

i=1
∑n

j=1 Rijxiyj = 2(n −
1) 1

n2 = 2( 1
n − 1

n2 ). Since, for any n > 2, deviating to strategy x1 = 1 gives the
row player an expected payoff equal to (n − 1) 1

n = 1 − 1
n , we have that (x, y) is

a (1 − 3
n + 2

n2 )-approximate Nash equilibrium. ��
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Abstract. We study the relation between the non-tradable shares reform and the 
refinancing preferences. From the viewpoints of change in market and policy 
environments led by the reform, we find that right issues dominate before the 
reform, however, public offerings (including private placement) dominate after 
reform, which could be attributed to more money encirclement induced by the 
shift of the public offering mechanism from in discount to in premium after re-
form and no requirements for large shareholders’ participation commitments in 
public offerings. 

Keywords: non-tradable shares reform; refinancing preferences; refinancing. 

1   Introduction 

In China stock market, the listed companies could refinance, i.e., further raise the 
capital after IPO (Initial Public Offering), mainly via convertible bonds and Seasoned 
Equity Offerings (SEOs) which includes public offerings, private placement and right 
issues. As a fundamental institutional reform in China stock market, where refinanc-
ing preferences would go after the non-tradable shares reform has straightforwardly 
attracted much attention from the academics and policy makers.   

The extant literatures about refinancing preferences mainly focus on following 
three dimensions: equity refinancing preference, operating performances of exiting 
refinancing ways, and market reaction to refinancing announcements.  

In the first dimension, Zhang (2005) [1] point out that, different from other mature 
markets, the financing order of "internal financing priority, followed by debt  
financing, then equity financing" is significant in China stock market. Equity refi-
nancing of listed companies in China share a great scale. Zhang (2005) also uses 
methods of theoretic analysis and statistical analysis to verify the equity refinancing 
prejudice of China’s listed companies. Specifically, he constructs a model on the 
equity refinancing and the model shows that there exists wealth transfer of tradable 
shareholders to non-tradable shareholders during rights issue and seasoned equity 
offering in China, therefore the non-tradable shareholders can acquire riskless high 
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abnormal returns quickly (the book value per share increases); in addition, the  
managers can obtain positive utility through rights issue and seasoned equity offer-
ing. Therefore, the controllers have prejudice on the equity refinancing since the 
firms are usually controlled by the managers or the non-tradable shareholders; and 
they issue convertible bonds when there have good investment opportunities;  
furthermore the statistical results on the samples in 2001 find that the firms have 
prejudice on the equity refinancing, and it is uncorrelated with the market condition. 
Wu and Ruan (2004) [2] empirically researches the preference of equity financing of 
China’s listed companies and conclude that there is no distinctive evidence between 
industry location, competition structure and financing behavior, but have positive 
correlation between share concentration ratio, the structure of split shares and financ-
ing behavior. At the meantime, from the viewpoint of cost and return of financing, 
their test results show that under the special market environment in China, not only 
the cost of equity financing is much lower than debt financing, but also the equity 
financing makes hugu return for non-circulating shareholders. The huge return made 
by the structure if split share is the key factor of financing behavior of China’s listed 
companies. 

In the second dimension, Du and Wang (2006) [3] investigates the changes and 
causes of operating performance of China's firms conducting rights issues. They 
documented that, rights issuers experience a sharp, statically significant decrease in 
post-offering operating performance; from the pre-offering years to the post-offering 
year 2, the operating performance of issuing firms is higher than that of the non-issuer 
matched by industry, asset size, and operating performance, however, in the year 3 
following the offering, the operating performance of issuing firms is lower than that 
of the non- issuer. In the years after the offering, the median issuer's operating  
performance rapidly deteriorates relative to the non - issuer. Consistent with the im-
plication of the free cash flow hypothesis, the decline in post-offering operating  
performance is greater for issuing firms that have higher pre-offering free cash flow, 
and issuing firms with high ownership concentration that invest more in new assets 
perform better than issuing firms with low ownership concentration that do less. 
Among rights equity issuers, firms with more growth opportunities have larger post-
offering performance declines. Finally, firm size appears to have negative impact on 
the post-offering performance for issuers. Li et al. (2008) [4] selects 495 refinancing 
firms from 1999 to 2004 to examine the performance evaluation of listed companies 
in China. From demonstration analysis, they find that performance of refinancing 
company decreased obviously in the first six years after refinancing, and there are 
huge differences on performance in different years; the methods of refinancing greatly 
affects performance: convertible bond is the best, public offerings is following and 
right issues is the last; after refinancing, capital debt ration increased and performance 
decreased; the total capital scale of listed company is not related to the performance. 
Deng (2007) [5] compares the characteristics of equity refinancing, reviewed the 
history of the development process in various refinancing ways, and analyzes the 
motivations and the refinancing of listed companies and its impact on the capital mar-
ket. He (2007) [6] investigates the market performance to the public offerings and  
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right issues, and finds that the market performance are very low both during and after 
the non-tradable shares reform, thus the ownership structure is not the root cause of 
low performance. 

In the third dimension, the latest literatures are mostly concerned about the market 
reaction to the innovative ways to refinance. As one of the most important innovative 
ways to refinance, private placement is launched soon by the academic attention.  
Liu et al. (2003) [7] empirically study the market reaction to seasoned equity  
offerings (SEO) and the underlying reasons in Chinese share market. They find that 
SEOs caused significant negative abnormal returns on announcement days, but the 
abnormal returns cannot be explained by offering size, financial leverage or earning 
prospect, as was expected by classical financial theories. They put forward a duality 
ownership structure theory of Chinese listed companies and point out that under this 
structure, non-liquid equity owners can make use of their controlling power to “make 
money” by issuing new “liquid power” and thus cause negative stock price effect . At 
the same time, they analyze some deficiency in samples and methodology of previous 
works. 

From above, we could easily see that few of the extant researches have put the re-
financing preferences into the big picture of the institutional background of China 
stock market. Actually, it is well-known that the non-tradable-share is the unique 
characteristics of China stock market. Before the reform, non-tradable shares in China 
stock market occupy almost 2/3 of the total issued shares and mainly consist of state-
owned and legal person shares. The original rationale for those non-tradable shares 
was to keep the property of the state-owned enterprises. It has been generally ac-
cepted among the Chinese investors that it is just this institutional defect that has 
contributed many anomalies which would not emerge in western mature markets and 
lowered down the entire development of China stock market. To improve the health 
of the China financial system, the government finally made the decision to clear this 
huge overhang. On April 29, 2005, with the guidelines of the Circular on Issues relat-
ing to Pilot Reform of Listed Companies’ Non-Tradable Shares by China Securities 
Regulatory Commission (CSRC), the Pilot Reform of non-tradable shares initialized, 
which stipulates that non-tradable shareholders have to bargain with tradable share-
holders for compensation for gaining liquidity. By the end of the year of 2009, almost 
all of the listed companies of China stock market have successfully accomplished the 
reform. But what has the reform really brought to the refinancing preferences has not 
yet been deeply addressed.  

Hence, taking the realities of China stock market into account, from the viewpoints 
of change in environments of the market and policy and in behaviors of the firms and 
investors led by the reform, we study how the reform would affect refinancing prefer-
ences, thus contribute to the literatures both on non-tradable shares reform and refi-
nancing preferences areas. 

The remainder of the paper is organized as follows. Section 2 shows the dynamics 
of refinancing preferences during 2001-2009. Section 3 compares the refinancing 
preferences before and after the non-tradable reform, and Section 4 concludes. 
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2   Dynamics of Refinancing Preferences during 2001-2009 

Table 1 and 2 summarize the refinancing announcements (count 1 for one firm with 
one announcement date) and projects (count 1 for one firm with one project) during 
year of 2001-2009 respectively.  

Table 1. Number of refinancing announcements in three refinancing preferences categories 

Year CB PO RI Total 
2001 NA 22 96 118 

2002 5 28 20 53 

2003 15 15 23 53 

2004 11 11 22 44 

2005 NA 4 1 5 

2006 7 54 28 63 

2007 14 158 7 179 

2008 15 122 8 145 

2009 NA 30 NA 30 

Note: NA denotes Not Available; CB denotes Convertible Bond; PO denotes 
public offerings; RI denotes Right Issues.  

Table 2. Number of refinancing projects in three refinancing preferences categories 

Year CB PO RI Total 
2001 NA 183 652 835 

2002 39 164 115 318 

2003 60 109 103 272 

2004 52 55 77 184 

2005 NA 12 1 13 

2006 38 166 8 212 

2007 48 450 36 534 

2008 52 372 28 452 

2009 NA 80 NA 80 

Fig.1 and 2 better exhibits the dynamics of refinancing announcements and pro-
jects in three refinancing preferences during year of 2001 to 2009 demonstrated in 
Table 1 and 2.  
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Fig. 1. Dynamics of refinancing announcements in three refinancing preferences. It denotes 
Convertible Bond, Public Offerings, and Right Issues from the left to the right. 

 

Fig. 2. Dynamics of refinancing projects in three refinancing preferences. It denotes Converti-
ble Bond, Public Offerings, and Right Issues from the left to the right. 
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It can be seen from Table 1 and 2, Fig.1 and 2 that, before 2006 (almost right be-
fore the time that the reform was initialized), public offerings and right issues were 
dominant, and their refinancing announcements and projects were almost equal. 
However, after 2006 (almost right after the time that the reform was initialized), pub-
lic offerings dominate others. In addition, except Not Available in 2001, 2005 and 
2009, there were no significant differences in between the years for convertible bond.   

We notice that the dynamics of the refinancing preferences nearly match the proc-
ess of the non-tradable reform. It is straightforward to ask what role the reform plays 
in the dynamics? Thus, we divide the sample from Jan.2, 2001 to Jun. 4, 2009 into 
two sub-samples of before and after the reform for further analysis. Taking the time 
heterogeneity of each firm’s reform into account, we define the criteria for determina-
tion of before and after reform as follows: “after reform” if the announcement dates 
are after resumption date of the reform; “before reform” otherwise. 

3   Comparison of Refinancing Preferences before and after the 
Non-tradable Reform 

From Table 3 and 4, we find that the right issues dominate before the reform while the 
public offerings dominate after the reform. There are no significant changes in con-
vertible bond. 

We therefore formally explain the pattern above from the viewpoints of change in 
market and policy environments led by the reform to explore the relation between the 
non-tradable shares reform and the refinancing preferences. Before the reform, right 
issues and public offerings are in very strict examination for approval by China Secu-
rities Regulatory Commission (CSRC). However, the May 8, 2006 version of “The 
Issuance of Securities by Listed Companies” was a latest specification of important  
 
 

Table 3. Number of refinancing announcements in three refinancing preferences categories 
before and after the reform 

Categories CB PO RI Total 

Whole sample 67 444 179 690 

Before reform 31 98 162 291 

After reform 36 346 17 399 
 

Table 4. Number of refinancing projects in three refinancing preferences categories before and 
after the reform 

Categories CB PO RI Total 
Whole sample 289 1591 1020 2900 

Before reform 151 545 948 1644 

After reform 138 1046 72 1256 
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documents for refinancing, intentionally according to the fundamental change on the 
market mechanism brought by the reform. The general provisions for listed compa-
nies’ securities issuance include: sound organization, good running, persistent profit 
capacities (such as be profitable in the last three fiscal years), good financial condi-
tion, and no false financial and accounting records within last 30 months, raising 
funds not exceeding the amount of project requirements, establishing special funds 
storage system. In particular, for preparation by three traditional refinancing ways of 
public offerings, right issues, convertible bonds, some additional and specific condi-
tions are also required.  

From the May 8, 2006 version of “The Issuance of Securities by Listed Compa-
nies”, we can see that the financial situation requirements for right issues of listed 
companies were reduced: firstly, abolish the "the weighted average annual rate of 6% 
return on net assets within last three years" restrictions and only require "be profitable 
in last three fiscal years"; secondly, require controlling shareholders make the public 
commitment for the number of shares in right issues in order to provide a decision-
making reference for other outside minority investors; thirdly, place a "way of the 
Securities Act of consignment issue," and cited failure of the system, that is, "at the 
consignment deadline, if amount of shares to be allotted by the original shareholders 
have not reached 70%, relevant issuer shall issue price plus interest rate on bank de-
posits for the same return to shareholders who has been subscribed. ", which changed 
the underwriting by the underwriters in the past with "strong sell" status, giving inves-
tors the right to vote really thus helping refinancing regulation by market means to 
reflect market demand and promote companies create a more rational idea towards 
right issues. 

After the reform, "the Issuance of Securities by Listed Companies" additionally re-
quire "issue price shall be not less than the average price within 20 days before the 
prospectus announcement shares or average price on the previous trading day", which 
shows the transition of the pricing mechanism of public offerings from discounts to 
the premium. Premium public offerings not only help listed companies make raise 
more funds to support their development needs, but also help to protect the interests 
of existing shareholders of tradable shares and boost investor confidence, and to the 
investors who are promising with the refinancing projects and the company's future 
prospects. Under premium public offerings, if the investors are pessimistic towards 
the refinancing projects and the company's future prospects, the issuances will fail. 
Thus, the major shareholders and the underwriters will have to carefully consider the 
introduction of public offerings, which to some extent form a restraint mechanism of 
the market for the large shareholders and help to inhibit the large shareholders’ mo-
tives of "money-enclosure". 

In addition to raising more funds brought by premium public offerings, no large 
shareholders’ commitments are required to participate in the public offerings is also 
one of the reasons for preferences in public offerings. Either from changes in the trend 
by year (as show in Table 1 and 2, also Fig.1 and 2) or the summary statistics before 
and after the reform (as show in Table 3 and 4 ), the public offerings has become the 
preferred way of refinancing. In addition, the private placement also contributes the 
dominate positions of public offerings. The private placement is an innovation of 
refinancing after the reform. Compared with the public offerings, the private place-
ment lowers the requirements for issuance. Meanwhile, due to the introduction of 
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strategic investors and other actions to achieve strategic intent, private placement has 
been very popular after the reform. 

4   Conclusions 

We study the relation between the non-tradable shares reform and the refinancing 
preferences. From the viewpoints of change in market and policy environments led by 
the reform, by taking the realities of China stock market into account we find that 
right issues dominate before the reform, however, public offerings (including private 
placement) dominate after reform, which could be attributed to more money encir-
clement induced by the shift of the public offering mechanism from in discount to in 
premium after reform and no requirements for large shareholders’ participation com-
mitments in public offerings. 
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Abstract. We present a polynomial-time approximation algorithm for
legally coloring as many edges of a given simple graph as possible using
two colors. It achieves an approximation ratio of roughly 0.842 and runs
in O(n3m) time, where n (respectively, m) is the number of vertices (re-
spectively, edges) in the input graph. The previously best ratio achieved
by a polynomial-time approximation algorithm was 5

6
≈ 0.833.

Keywords: Approximation algorithms, graph algorithms, edge color-
ing, NP-hardness.

1 Introduction

Given a graph G and a natural number t, the maximum edge t-coloring problem
(called Max Edge t-Coloring for short) is to find a maximum-sized set F of
edges in G such that F can be partitioned into at most t matchings of G. Mo-
tivated by call admittance issues in satellite based telecommunication networks,
Feige et al. [3] introduced the problem and proved its APX-hardness. They also
observed that Max Edge t-Coloring is a special case of the well-known max-
imum coverage problem (see [6]). Since the maximum coverage problem can be
approximated by a greedy algorithm within a ratio of 1 − (1 − 1

t )
t [6], so can

Max Edge t-Coloring. In particular, the greedy algorithm achieves an ap-
proximation ratio of 3

4 for Max Edge 2-Coloring, which is the special case of
Max Edge t-Coloring where the input number t is fixed to 2. Feige et al. [3]
has improved the trivial ratio 3

4 = 0.75 to 10
13 ≈ 0.769 by an LP approach.

The APX-hardness proof for Max Edge t-Coloring given by Feige et al. [3]
indeed shows that the problem remains APX-hard even if we restrict the input
graph to a simple graph and fix the input integer t to 2. We call this restriction
(special case) of the problem Max Simple Edge 2-Coloring. Feige et al. [3]
also pointed out that for Max Simple Edge 2-Coloring, an approximation
ratio of 4

5 can be achieved by the following simple algorithm: Given a simple
graph G, first compute a maximum-sized subgraph H of G such that the degree
of each vertex in H is at most 2 and there is no 3-cycle in H , and then remove
one arbitrary edge from each odd cycle of H . This simple algorithm has been
improved in [1,2,9]. The previously best ratio (namely, 5

6 ) was given in [9]. In this

B. Chen (Ed.): AAIM 2010, LNCS 6124, pp. 78–89, 2010.
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paper, we improve on both the algorithm in [1] and the algorithm in [9] to obtain
a new approximation algorithm that achieves a ratio of roughly 0.842. Roughly
speaking, our algorithm is based on local improvement, dynamic programming,
and recursion. Its analysis is based on an intriguing charging scheme and certain
structural properties of caterpillar graphs and starlike graphs (see Section 3 for
definitions).

Kosowski et al. [10] also considered Max Simple Edge 2-Coloring. They
presented an approximation algorithm that achieves a ratio of 28Δ−12

35Δ−21 , where Δ
is the maximum degree of a vertex in the input simple graph. This ratio can be
arbitrarily close to the trivial ratio 4

5 because Δ can be very large. In particular,
this ratio is worse than our new ratio 0.842 when Δ ≥ 4. Moreover, when Δ = 3,
our algorithm indeed achieves a ratio of 6

7 , which is equal to the ratio 28Δ−12
35Δ−21

achieved by Kosowski et al.’s algorithm [10]. Note that Max Simple Edge 2-
Coloring becomes trivial when Δ ≤ 2. Therefore, no matter what Δ is, our
algorithm is better than or as good as all known approximation algorithms for
Max Simple Edge 2-Coloring.

Kosowski et al. [10] showed that approximation algorithms for Max Simple

Edge 2-Coloring can be used to obtain approximation algorithms for cer-
tain packing problems and fault-tolerant guarding problems. Combining their
reductions and our improved approximation algorithm for Max Simple Edge

2-Coloring, we can obtain improved approximation algorithms for their pack-
ing problems and fault-tolerant guarding problems immediately.

2 Basic Definitions

Throughout the remainder of this paper, a graph means a simple undirected
graph (i.e., it has neither parallel edges nor self-loops).

Let G be a graph. We denote the vertex set of G by V (G), and denote the
edge set of G by E(G). The degree of a vertex v in G, denoted by dG(v), is the
number of vertices adjacent to v in G. A vertex v of G with dG(v) = 0 is called
an isolated vertex. For a subset U of V (G), let G[U ] denote the graph (U, EU )
where EU consists of all edges {u, v} of G with u ∈ U and v ∈ U . We call G[U ]
the subgraph of G induced by U . For a subset U of V (G), we use G−U to denote
G[V (G) − U ]. G is a star if G is connected, G has at least three vertices, and
there is a vertex u (called the center of G) such that every edge of G is incident
to u. Each vertex of a star other than the center is called a satellite of the star.

A cycle in G is a connected subgraph of G in which each vertex is of degree 2.
A path in G is a connected subgraph of G in which exactly two vertices are of
degree 1 and the others are of degree 2. Each vertex of degree 1 in a path P is
called an endpoint of P , while each vertex of degree 2 in P is called an inner
vertex of P . An edge {u, v} of a path P is called an inner edge of P if both u and
v are inner vertices of P . The length of a cycle or path C is the number of edges
in C. A cycle of odd (respectively, even) length is called an odd (respectively,
even) cycle.

A path-cycle cover of G is a subgraph H of G such that V (H) = V (G) and
dH(v) ≤ 2 for every v ∈ V (H). Note that each connected component of a
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path-cycle cover of G is a single vertex, path, or cycle. A path-cycle cover C of G
is triangle-free if C does not contain a cycle of length 3. A path-cycle cover C of
G is maximum-sized if the number of edges in C is maximized over all path-cycle
covers of G.

G is edge-2-colorable if each connected component of G is an isolated vertex,
a path, or an even cycle. Note that Max Simple Edge 2-Coloring is the
problem of finding a maximum-sized edge-2-colorable subgraph in a given graph.

3 Two Crucial Lemmas and the Outline of Our Algorithm

We say that a graph K = (VK , EK ∪ FK) is a caterpillar graph if it satisfies the
following conditions:

– The graph (VK , EK) has h+1 connected components C0, . . . , Ch with h ≥ 0.
– C0 is a path while C1 through Ch are odd cycles of length at least 5.
– FK is a matching consisting of h edges {u1, v1}, . . . , {uh, vh}.
– For each i ∈ {1, . . . , h}, ui is an inner vertex of path C0 while vi is a vertex

of Ci.

We call the edges of FK the leg edges of K, call path C0 the spine path of K,
and call cycles C1 through Ch the foot cycles of K.

We say that a graph K = (VK , EK ∪ FK) is a starlike graph if it satisfies the
following conditions:

– The graph (VK , EK) has h+1 connected components C0, . . . , Ch with h ≥ 2.
– C0 is a cycle of length at least 4 while C1 through Ch are odd cycles of length

at least 5.
– FK is a matching consisting of h edges {u1, v1}, . . . , {uh, vh}.
– For each i ∈ {1, . . . , h}, ui is a vertex of C0 while vi is a vertex of Ci.

We call the edges of FK the bridge edges of K, call C0 the central cycle of K,
and call C1 through Ch the satellite cycles of K.

Let r be the root of the quadratic equation 23r2−55r+30 = 0 that is smaller
than 1. Note that r = 0.84176 . . . ≈ 0.842. The reason why we choose r in this
way will become clear later in the proof of Lemma 7.

Lemma 1. Suppose that K is a caterpillar graph such that each foot cycle of
K is charged a penalty of 6 − 7r. Let p(K) be the total penalties charged to
the foot cycles of K. Then, K has an edge-2-colorable subgraph K ′ such that
|E(K ′)| − p(K) ≥ r|EK |, where EK is the set of edges on the spine path or the
foot cycles of K.

Lemma 2. Suppose that K is a starlike graph such that each satellite cycle of
K is charged a penalty of 6 − 7r. Let p(K) be the total penalties charged to the
satellite cycles of K. Then, K has an edge-2-colorable subgraph K ′ such that
|E(K ′)| − p(K) ≥ r|EK |, where EK is the set of edges on the central or satellite
cycles of K.
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Based on Lemmas 1 and 2, we will design our algorithm roughly as follows: Given
an input graph G, we will first construct a suitable maximum-sized triangle-free
path-cycle cover C of G and compute a suitable set F of edges such that the
endpoints of each edge in F fall into different connected components of C and
each odd cycle of C has at least one vertex that is an endpoint of an edge in
F . Note that C has at least as many edges as a maximum-sized edge-2-colorable
subgraph of G. The edges in F will play the following role: we will break each
odd cycle C in C by removing one edge of C incident to an edge of F and then
this edge of F can possibly be added to C so that C becomes an edge-2-colorable
subgraph of G. Unfortunately, not every edge of F can be added to C and we have
to discard some edges from F , leaving some odd cycles of C F -free (i.e., having
no vertex incident to an edge of F ). Clearly, breaking an F -free odd cycle C of
short length (namely, 5) by removing one edge from C results in a significant
loss of edges from C. We charge the loss to the non-F -free odd cycles (unevenly)
as penalties. Fortunately, adding the edges of F to C will yield a graph whose
connected components are caterpillar graphs, starlike graphs, or certain other
kinds of graphs with good properties. Now, Lemmas 1 and 2 help us show that
our algorithm achieves a ratio of r.

4 The Algorithm

Throughout this section, fix a graph G and a maximum-sized edge-2-colorable
subgraph B (for “best”) of G. Let n (respectively, m) be the number of vertices
(respectively, edges) in G. Our algorithm starts by performing the following four
steps:

1. If |V (G)| ≤ 2, then output G itself and halt.
2. Compute a maximum-sized triangle-free path-cycle cover C of

G. (Comment: This step can be done in O(n2m) time [5].)
3. While there is an edge {u, v} ∈ E(G)−E(C) such that dC(u) ≤

1 and v is a vertex of some cycle C of C, modify C by deleting
one (arbitrary) edge of C incident to v and adding edge {u, v}.

4. Construct a graph G1 = (V (G), E1), where E1 is the set of
all edges {u, v} ∈ E(G) − E(C) such that u and v appear in
different connected components of C and at least one of u and
v appears on an odd cycle of C.

Hereafter, C always means that we have finished modifying it in Step 3. We
give several definitions related to the graphs G1 and C. Let S be a subgraph of
G1. S saturates an odd cycle C of C if at least one edge of S is incident to a
vertex of C. The weight of S is the number of odd cycles of C saturated by S. For
convenience, we say that two connected components C1 and C2 of C are adjacent
in G if there is an edge {u1, u2} ∈ E(G) such that u1 ∈ V (C1) and u2 ∈ V (C2).

Lemma 3. We can compute a maximum-weighted path-cycle cover in G1 in
O(nm log n) time.
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Our algorithm then proceeds to performing the following four steps:

5. Compute a maximum-weight path-cycle cover M in G1.
6. While there is an edge e ∈ M such that the weight of M −{e}

is the same as that of M , delete e from M .
7. Construct a graph G2 = (V (G), E(C) ∪ M). (Comment: For

each pair of connected components of C, there is at most one
edge between them in G2 because of Step 6.)

8. Construct a graph G3, where the vertices of G3 one-to-one
correspond to the connected components of C and two vertices
are adjacent in G3 if and only if the corresponding connected
components of C are adjacent in G2.

Fact 1. Suppose that C′ is a connected component of G3. Then, the following
statements hold:

1. C′ is a vertex, an edge, or a star.
2. If C′ is an edge, then at least one endpoint of C′ corresponds to an odd cycle

of C.
3. If C′ is a star, then every satellite of C′ corresponds to an odd cycle of C.

An isolated odd-cycle of G2 is an odd cycle of G2 whose corresponding vertex in
G3 is isolated in G3. Similarly, a leaf odd-cycle of G2 is an odd cycle of G2 whose
corresponding vertex in G3 is of degree 1 in G3. Moreover, a branching odd-cycle
of G2 is an odd cycle of G2 whose corresponding vertex in G3 is of degree 2 or
more in G3.

Lemma 4. Let I be the set of isolated odd-cycles in G2. Then, |E(B)| ≤ |E(C)|−
|I|.
Proof. Let C1, . . . , Ch be the odd cycles of C such that for each i ∈ {1, . . . , h},
B contains no edge {u, v} with |{u, v} ∩ V (Ci)| = 1. Let U1 =

⋃h
i=1 V (Ci) and

U2 = V (G)−U1. For convenience, let C0 = G[U2]. Note that for each e ∈ E(B),
one of the graphs C0, C1, . . . , Ch contains both endpoints of e. So, B can be
partitioned into h+1 disjoint subgraphs B0, . . . , Bh such that Bi is a path-cycle
cover of G[V (Ci)] for every i ∈ {0, . . . , h}. Since C[U2] must be a maximum-sized
path-cycle cover of C0, |E(C[U2])| ≥ |E(B0)|. The crucial point is that for every
i ∈ {1, . . . , h}, |E(Bi)| ≤ |V (Ci)|−1 = |E(Ci)|−1 because |V (Ci)| is odd. Thus,
|E(C)| = |E(C[U2])|+

∑h
i=1 |E(Ci)| ≥ |E(B0)|+

∑h
i=1(|E(Bi)|+1) = |E(B)|+h.

Note that (V (G), E(G1) ∩ E(B)) is a path-cycle cover in G1 of weight k − h,
where k is the number of odd cycles in C. So, k − h ≤ k − |I| because M is
a maximum-weight path-cycle cover in G1 of weight k − |I|. So, by the last
inequality in the last paragraph, |E(B)| ≤ |E(C)| − h ≤ |E(C)| − |I|.
Some definitions are in order (see Figure 1 for an example). A bicycle of G2 is a
connected component of G2 that consists of two odd cycles and an edge between
them. Note that a connected component of G3 is an edge if it corresponds to a
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Fig. 1. An example of G2, where the hollow vertices are free, the bold edges belong to
C, the left connected component is a bicycle, and the middle connected component is
a tricycle

bicycle in G2. A tricycle of G2 is a connected component T of G2 that consists
of one branching odd-cycle C1, two leaf odd-cycles C2 and C3, and two edges
{u1, u2} and {u1, u3} such that u1 ∈ V (C1), u2 ∈ V (C2), and u3 ∈ V (C3). For
convenience, we call C1 the front cycle of tricycle K, call C2 and C3 the back
cycles of tricycle K, and call u1 the front joint of tricycle K.

A cherry of G2 is a subgraph Q of G2 that consists of two leaf odd-cycles C1
and C2 of C, a vertex u ∈ V (G) − (V (C1) ∪ V (C2)), and two edges {u, v1} and
{u, v2} such that v1 ∈ V (C1) and v2 ∈ V (C2). For convenience, we call edges
{u, v1} and {u, v2} the twigs of cherry Q. By the construction of G2, each pair
of cherries are vertex-disjoint. Note that each odd cycle in a cherry of G2 is a
satellite of a star in G3. We classify the cherries of G2 into two types as follows.
A cherry Q of G2 is of type-1 if Q is a subgraph of a tricycle of G2. Note that
the two odd cycles in a type-1 cherry of G2 are the back cycles of a tricycle of
G2. A cherry of G2 is of type-2 if it is not of type-1. Further note that there is
no edge {u, v} in G such that u appears on an isolated odd-cycle of G2 and v
appears on an odd cycle in a cherry of G2.

A lollipop of G2 is a subgraph L of G2 that consists of a leaf odd-cycle C of
G2, a vertex u �∈ V (C), and an edge {u, v} with v ∈ V (C). For convenience, we
call edge {u, v} the stick of lollipop L and call vertex u the end vertex of lollipop
L. A lollipop of G2 is special if it is neither a subgraph of a cherry of G2 nor a
subgraph of a bicycle of G2. A vertex u of G2 is free if no lollipop of G2 has u as
its end vertex. Because of Step 3, each vertex of degree at most 2 in G2 is free.

We next define two types of operations that will be performed on G2. An
operation on G2 is robust if it removes no edge of C, creates no new odd cycle,
and creates no new isolated odd-cycle of G2.

Type 1: Suppose that C is an odd cycle of a cherry Q of G2 and u is a free
vertex of G2 with u �∈ V (C) such that

– some vertex v of C is adjacent to u in G and
– if Q is a type-1 cherry of G2, then u is not an endpoint of a twig of Q.

Then, a type-1 operation on G2 using cherry Q and edge {u, v} modifies G2
by performing the following steps (see Figure 2 for example cases):
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Fig. 2. Three example cases of a type-1 operation, where the dotted lines are edges in
E(G) − E(G2)

(1) If u appears on a leaf odd cycle C′ of G2 such that C′ is not part of a
bicycle of G2 and Q is not a type-1 cherry of G2 with u ∈ V (Q), then
delete the stick of the lollipop containing C′ from G2.

(2) Delete the twig of Q incident to a vertex of C from G2.
(3) Add edge {u, v} to G2.
(Comment: A type-1 operation on G2 is robust and destroys at least one
cherry of G2 without creating a new cherry in G2.)

Type 2: Suppose that Q is a type-2 cherry of G2, B is a bicycle of G2, and
{u, v} is an edge in E(G1) − E(G2) such that u appears on an odd cycle C
of Q and v appears on an odd cycle of B. Then, a type-2 operation on G2
using cherry Q, bicycle B, and edge {u, v} modifies G2 by deleting the twig
of Q incident to a vertex of C and adding edge {u, v}.
(Comment: A type-2 operation on G2 is robust. Moreover, when no type-
1 operation on G2 is possible, a type-2 operation on G2 destroys a type-2
cherry of G2 and creates a new type-1 cherry in G2.)

Now, Step 9 of our algorithm is as follows.

9. While a type-1 or type-2 operation on G2 is possible, perform
the following step:
(a) If a type-1 operation on G2 is possible, perform a type-1

operation on G2; otherwise, perform a type-2 operation
on G2.
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Fact 2. After Step 9, the following statements hold:

1. There is no edge {u, v} in E(G) such that u appears on an odd cycle in a
type-2 cherry of G2 and v appears on another odd cycle in a type-2 cherry
of G2.

2. If {u, v} is an edge of G1 such that u appears on an odd cycle of a type-2
cherry of G2 and no type-2 cherry of G2 contains v, then v is the end vertex
of a special lollipop or the front joint of a tricycle of G2.

Hereafter, G2 always means that we have finished modifying it in Step 9.
Now, the final three steps of our algorithm are as follows:

10. Let U be the set of vertices that appear in type-2 cherries of
G2.

11. If U = ∅, then perform the following steps:
(a) For each connected component K of G2, compute a

maximum-sized edge-2-colorable subgraph of K. (Com-
ment: Because of the simple structure of K, this step can
be done in linear time by a standard dynamic program-
ming.)

(b) Output the union of the edge-2-colorable subgraphs com-
puted in Step 11a, and halt.

12. If U �= ∅, then perform the following steps:
(a) Obtain an edge-2-colorable subgraph R of G − U by re-

cursively calling the algorithm on G − U .
(b) For each type-2 cherry Q of G2, obtain an edge-2-colorable

subgraph of Q by removing one edge from each odd cycle
C of Q that shares an endpoint with a twig of Q.

(c) Let A1 be the union of R and the edge-2-colorable sub-
graphs computed in Step 12b.

(d) For each connected component K of G2, compute a
maximum-sized edge-2-colorable subgraph of K. (Com-
ment: Because of the simple structure of K, this step can
be done in linear time by a standard dynamic program-
ming.)

(e) Let A2 be the union of the edge-2-colorable subgraphs
computed in Step 12d.

(f) If |E(A1)| ≥ |E(A2)|, output A1 and halt; otherwise, out-
put A2 and halt.

Lemma 5. Assume that G2 has no type-2 cherry. Then, the edge-2-colorable
subgraph of G output in Step 11b contains at least r|E(B)| edges.

Proof. Let C2 be the graph obtained from G2 by removing one edge from each
isolated odd-cycle of G2. By Lemma 4, |E(C2) ∩ E(C)| ≥ |E(B)|. Consider an
arbitrary connected component K of C2. To prove the lemma, it suffices to prove
that K has an edge-2-colorable subgraph K ′ with |E(K ′)| ≥ r|E(K) ∩ E(C)|.
We distinguish several cases as follows:
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Case 1: K is a bicycle of C2. To obtain an edge-2-colorable subgraph K ′ of
K, we remove one edge e from each odd cycle of K such that one endpoint of e
is of degree 3 in K. Note that |E(K ′)| = |E(K)| − 2 = |E(K)∩E(C)| − 1. Since
|E(K) ∩ E(C)| ≥ 10, |E(K ′)| ≥ 9

10 |E(K) ∩ E(C)| > r|E(K) ∩ E(C)|.
Case 2: K is a tricycle of C2. To obtain an edge-2-colorable subgraph K ′ of K,

we first remove one edge e from each back odd-cycle of K such that one endpoint
of e is of degree 3 in K, and then remove the two edges of the front odd-cycle
incident to the vertex of degree 4 in K. Note that |E(K ′)| = |E(K)| − 4 =
|E(K) ∩ E(C)| − 2. Since |E(K) ∩ E(C)| ≥ 15, |E(K ′)| ≥ 13

15 |E(K) ∩ E(C)| >
r|E(K) ∩ E(C)|.

Case 3: K is neither a bicycle nor a tricycle of C2. If K contains no odd cycle
of C, then K itself is edge-2-colorable and hence we are done. So, assume that K
contains at least one odd cycle of C. Then, K is also a connected component of
G2. Moreover, the connected component K ′′ of G3 corresponding to K is either
an edge or a star.

Case 3.1: K ′′ is an edge. To obtain an edge-2-colorable subgraph K ′ of K,
we start with K, delete the edge in E(K)−E(C), and delete one edge from the
unique odd cycle of K. Note that |E(K ′)| = |E(K)| − 2 = |E(K) ∩ E(C)| − 1.
Moreover, |E(K)∩E(C)| ≥ 7 because of Step 3 and the robustness of Type-1 or
Type-2 operations. Hence, |E(K ′)| ≥ 6

7 |E(K) ∩ E(C)| > r|E(K) ∩ E(C)|.
Case 3.2: K ′′ is a star. Let C0 be the connected component of C corresponding

to the center of K ′′. Let C1, . . . , Ch be the odd cycles of C corresponding to the
satellites of K ′′. If C0 is a path, then K is a caterpillar graph and we are done
by Lemma 1; otherwise, K is a starlike graph and we are done by Lemma 2.

Corollary 1. If the maximum degree Δ of a vertex in G is at most 3, then the
ratio achieved by the algorithm is at least 6

7 .

Proof. When Δ ≤ 3, G2 has no cherry because of Step 3. Moreover, Lemmas 1,
2, and 5 still hold even when we replace the ratio r by 6

7 .

In order to analyze the approximation ratio achieved by our algorithm when G2
has at least one type-2 cherry after Step 9, we need to define several notations
as follows:

– Let s be the number of special lollipops in G2.
– Let t be the number of tricycles in G2.
– Let c be the number of type-2 cherries in G2.
– Let � be the total number of vertices that appear on odd cycles in the type-2

cherries in G2.

Lemma 6. Let E(B2) be the set of all edges e ∈ E(B) such that at least one
endpoint of e appears in a type-2 cherry of G2. Then, |E(B2)| ≤ � + 2s + 2t.

Proof. E(B2) can be partitioned into the following three subsets:

– E(B2,1) consists of those edges e ∈ E(B) such that at least one endpoint of
e is the vertex of a type-2 cherry of G2 that is a common endpoint of the
two twigs of the cherry.
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– E(B2,2) consists of those edges e ∈ E(B) such that each endpoint of e appears
on an odd cycle of a type-2 cherry of G2.

– E(B2,3) consists of those edges {u, v} ∈ E(B) such that u appears on an odd
cycle of a type-2 cherry of G2 and no type-2 cherry of G2 contains v.

Obviously, |E(B2,1)| ≤ 2c. By Statement 1 in Fact 2, |E(B2,2)| ≤ � − 2c because
for each odd cycle C, B2,2 can contain at most |V (C)| − 1 edges {u, v} with
{u, v} ⊆ V (C). By Statement 2 in Fact 2, |E(B2,3)| ≤ 2s + 2t. So, |E(B2)| ≤
� + 2s + 2t.

Lemma 7. The ratio achieved by the algorithm is at least r.

Proof. By induction on |V (G)|, the number of vertices in the input graph G.
If |V (G)| ≤ 2, then our algorithm outputs a maximum-sized edge-2-colorable
subgraph of G. So, assume that |V (G)| ≥ 3. Then, after our algorithm finishes
executing Step 10, the set U may be empty or not. If U = ∅, then by Lemma 5,
the edge-2-colorable subgraph output by our algorithm has at least r|E(B)| edges
and we are done. So, suppose that U �= ∅.

First consider the case where s + t ≤ 1−r
2r �. In this case, +r|E(B1)|

+2s+2t+|E(B1)| ≥ r,
where B1 is a maximum-sized edge-2-colorable subgraph of G − U . Moreover,
by the inductive hypothesis, |E(A1)| ≥ �+ r|E(B1)|. Furthermore, by Lemma 6,
|E(B)| ≤ � + 2s + 2t + |E(B1)|. So, the lemma holds in this case.

Next consider the case where s + t > 1−r
2r �. Let C2 be the graph obtained

from G2 by removing one edge from each isolated odd-cycle of G2. By Lemma 4,
|E(C2) ∩ E(C)| ≥ |E(B)|. Let C3 be the graph obtained from C2 by removing
one twig from each type-2 cherry. Note that there are exactly c isolated odd-
cycles in C3. Moreover, since the removed twig does not belong to E(C), we have
|E(C3)∩E(C)| ≥ |E(B)|. Consider an arbitrary connected component K of C3. To
prove the lemma, we want to prove that K has an edge-2-colorable subgraph K ′

with |E(K ′)| ≥ r|E(K)∩E(C)|. This goal can be achieved because of Lemma 5,
when K is not an isolated odd-cycle. On the other hand, this goal can not be
achieved when K is an isolated odd-cycle (of length at least 5). Our idea behind
the proof is to charge the deficit in the edge numbers of isolated odd-cycles of
C3 to the other connected components of K because they have surplus in their
edge numbers.

The deficit in the edge number of each isolated odd-cycle of C3 is at most
5r − 4. So, the total deficit in the edge numbers of the isolated odd-cycles of
C3 is at most (5r − 4)c. We charge a penalty of 6 − 7r to each non-isolated
odd-cycle of C3 that is also an odd cycle in a type-2 cherry of G2 or is also the
odd cycle in a special lollipop of G2. We also charge a penalty of 6−7r

3 to each
odd cycle of C3 that is part of a tricycle of G2. Clearly, the total penalties are
(6−7r)c+(6−7r)(s+ t) > (6−7r)c+ (6−7r)(1−r)

2r �. Note that � ≥ 10c. The total
penalties are thus at least (6 − 7r)c + 5(6−7r)(1−r)

r c = 30−59r+28r2

r c ≥ (5r − 4)c,
where the last inequality follows from the equation 23r2 − 55r + 30 = 0. So, the
total penalties are at least as large as the total deficit in the edge numbers of the
isolated odd-cycles of C3. Therefore, to prove the lemma, it suffices to prove that



88 Z.-Z. Chen, S. Konno, and Y. Matsushita

for every connected component K of C3, we can compute an edge-2-colorable
subgraph K ′ of K such that |E(K ′)| − p(K) ≥ r|E(K) ∩ E(C)|, where p(K)
is the total penalties of the odd cycles in K. As in the proof of Lemma 5, we
distinguish several cases as follows:

Case 1: K is a bicycle of C2. In this case, p(K) = 0. Moreover, we can compute
an edge-2-colorable subgraph K ′ of K such that |E(K ′)| ≥ 9

10 |E(K)∩E(C)| (cf.
Case 1 in the proof of Lemma 5). So, |E(K ′)| − p(K) ≥ r|E(K)∩E(C)| because
r ≤ 9

10 .
Case 2: K is a tricycle of C2. In this case, p(K) = 6 − 7r. Moreover, we can

compute an edge-2-colorable subgraph K ′ of K such that |E(K ′)| = |E(K) ∩
E(C)| − 2 (cf. Case 2 in the proof of Lemma 5). So, |E(K ′)| − p(K) ≥ r|E(K)∩
E(C)| because |E(K) ∩ E(C)| ≥ 15 and r ≤ 7

8 .
Case 3: K is neither a bicycle nor a tricycle of C2. We may assume that K

contains at least one odd cycle of C. Then, K is also a connected component of
G2. Moreover, the connected component K ′′ of G3 corresponding to K is either
an edge or a star.

Case 3.1: K ′′ is an edge. In this case, p(K) ≤ 6−7r. Moreover, we can compute
an edge-2-colorable subgraph K ′ of K such that |E(K ′)| = |E(K) ∩ E(C)| − 1
(cf. Case 3.1 in the proof of Lemma 5). So, |E(K ′)| − p(K) ≥ r|E(K) ∩ E(C)|
because |E(K) ∩ E(C)| ≥ 7.

Case 3.2: K ′′ is a star. Let C0 be the connected component of C corresponding
to the center of K ′′. Let C1, . . . , Ch be the odd cycles of C corresponding to the
satellites of K ′′. If C0 is a path, then K is a caterpillar graph and we are done
by Lemma 1; otherwise, K is a starlike graph and we are done by Lemma 2.

Clearly, each step of our algorithm except Step 12a can be implemented in
O(n2m) time. Since the recursion depth of the algorithm is O(n), it runs in
O(n3m) total time. In summary, we have shown the following theorem:

Theorem 3. There is an O(n3m)-time approximation algorithm for Max Sim-

ple Edge 2-Coloring that achieves a ratio of roughly 0.842.

5 An Application

Let G be a graph. An edge cover of G is a set F of edges of G such that each
vertex of G is incident to at least one edge of F . For a natural number k, a
[1,Δ]-factor k-packing of G is a collection of k disjoint edge covers of G. The size
of a [1,Δ]-factor k-packing {F1, . . . , Fk} of G is |F1| + · · · + |Fk|. The problem
of deciding whether a given graph has a [1,Δ]-factor k-packing was considered
in [7,8]. In [10], Kosowski et al. defined the minimum [1,Δ]-factor k-packing
problem (Min-k-FP) as follows: Given a graph G, find a [1,Δ]-factor k-packing
of G of minimum size or decide that G has no [1,Δ]-factor k-packing at all.

According to [10], Min-2-FP is of special interest because it can be used to
solve a fault tolerant variant of the guards problem in grids (which is one of the
art gallery problems [11,12]). Indeed, they proved the NP-hardness of Min-2-FP

and the following lemma:
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Lemma 8. If Max Simple Edge 2-Coloring admits an approximation al-
gorithm A achieving a ratio of α, then Min-2-FP admits an approximation
algorithm B achieving a ratio of 2−α. Moreover, if the time complexity of A is
T (n), then the time complexity of B is O(T (n)).

So, by Theorem 3, we have the following immediately:

Theorem 4. There is an O(n3m)-time approximation algorithm for Min-2-FP

achieving a ratio of roughly 1.158, where n (respectively, m) is the number of
vertices (respectively, edges) in the input graph.

6 Open Problems

One obvious open question is to ask whether one can design a polynomial-time
approximation algorithm for Max Simple Edge 2-Coloring that achieves a
ratio significantly better than 0.842. The APX-hardness of the problem implies
an implicit lower bound of 1 − ε on the ratio achievable by a polynomial-time
approximation algorithm. It seems interesting to prove an explicit lower bound
significantly better than 1 − ε.
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Abstract. Bounded-Degree Vertex Deletion is a fundamental problem
in graph theory that has new applications in computational biology. In
this paper, we address a special case of Bounded-Degree Vertex Deletion,
the Co-Path/Cycle Packing problem, which asks to delete as few ver-
tices as possible such that the graph of the remaining (residual) vertices
is composed of disjoint paths and simple cycles. The problem falls into
the well-known class of ’node-deletion problems with hereditary prop-
erties’, is hence NP-complete and unlikely to admit a polynomial time
approximation algorithm with approximation factor smaller than 2. In
the framework of parameterized complexity, we present a kernelization
algorithm that produces a kernel with at most 37k vertices, improving on
the super-linear kernel of Fellows et al.’s general theorem for Bounded-
Degree Vertex Deletion. Using this kernel, and the method of bounded
search trees, we devise an FPT algorithm that runs in time O∗(3.24k).
On the negative side, we show that the problem is APX-hard and unlikely
to have a kernel smaller than 2k by a reduction from Vertex Cover.

1 Introduction

In computational biology, a fundamental problem is to build up phylogenetic
networks (trees) for various species, some of which are possibly extinct. A basic
problem along this line is to construct ancestral genomes from the genomes of
currently living species. Recently, Chauve and Tannier proposed the use of PQ-
trees, where each leave represents a gene marker, to represent possible ancestral
genomes [3]. This approach raises a natural question: given two PQ-trees over
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the same set of markers, how do we compare their similarity? For example, do
they generate the same sequence?

In [9], the above problem is shown to be NP-complete. A natural extension of
the problem is to delete the minimum number of common markers so that the
two resulting PQ-trees can generate the same sequence. Modeling the markers
in the PQ-trees as a hyper-graph, this is exactly the problem of deleting the
minimum number of markers so that the resulting graph is composed of a set of
paths; and, when circular genomes are allowed (as in [13]), a set of paths and
cycles. We call this the Co-Path/Cycle Packing problem.

This problem belongs to the family of problems concerned with deleting a
minimum number of vertices to obtain a graph belonging to a hereditary class of
graphs (the well-known Vertex Cover problem is another example) [11]. A general
polynomial time 2-approximation algorithm is known for this family of problems
[5], and therefore Co-Path/Cycle Packing can be approximated within a factor
of 2 in polynomial time. By a reduction from Vertex Cover, we show that an α-
approximation algorithm for Co-Path/Cycle Packing yields an α-approximation
algorithm for Vertex Cover. By the recent results of Khot and Regev [10], it
follows that Co-Path/Cycle Packing does not admit a polynomial time approx-
imation algorithm with performance factor 2 − ε, unless the Unique Games
Conjecture fails.

In the parameterized framework, Fellows et al. recently considered the
Bounded-Degree Vertex Deletion (d-BDD) problem, that of deleting the min-
imum number k of vertices (the parameter) so that the resulting graph has
maximum degree d [6]. When d = 0, this is the Vertex Cover problem; 2-BDD is
exactly our Co-Path/Cycle Packing problem. Fellows et al. presented a general-
ized Nemhauser-Trotter Theorem that implies that the d-BDD problem admits
a kernel with a linear number of vertices for d ≤ 1 and that d-BDD admits an
O(k1+ε) kernel for d ≥ 2 [6]. (We comment that in the conference version of
their paper, the claimed linear kernel bound for all d was not correct; the result
described is in the journal version.)

Here we present a 37k kernel for Co-Path/Cycle Packing. This is the first ver-
tex linear kernel 2-BDD problem. Our approach here is similar to that of Fellows
et al. Roughly speaking, using the fact that a path/cycle packing cannot contain
any 3-star, we compute a proper maximal 3-star packing in the input graph and
use them to compute a triple crown decomposition, and subsequently obtain the
linear kernel. Using the 37k vertex kernel, we describe an FPT algorithm that
runs in time O∗(3.24k), based on a bounded search tree approach.

This paper is organized as follows. In Section 2, we give some definitions.
In Section 3, we show the kernelization algorithm and prove the lower bound.
In Section 4, we present the bounded search tree algorithm. In Section 5, we
conclude the paper with several open questions.

2 Preliminaries

We begin this section with some basic definitions and notations of graph theory.
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Given an undirected graph G = (V, E), for a vertex subset S ⊆ V , let G[S] be
the subgraph induced by S and G−S = G[V/S]. Similarly, for an edge set P ⊆ E,
G−P = (V, E−P ). The neighborhood of a vertex v and a vertex set S is denoted
as N(v) = {u ∈ V |{u, v} ∈ E} and N(S) = {u ∈ V − S|v ∈ S, {u, v} ∈ E},
respectively. N [S] = N(S) ∪ S. d(v) = |N(v)| is the degree of a vertex v. The
graph K1,s = ({u, v1, . . . , vs}, {(u, v1), . . . , (u, vs)}) is called an s-star. u is the
center and vi’s are the leaves. An s-star packing is a collection of vertex-disjoint
s-stars. A path/cycle packing for an undirected graph G = (V, E) is a vertex set
whose induced subgraph is composed of disjoint paths and simple cycles. (An
isolated vertex is also considered as a path, of length zero.) For convenience, we
also call the corresponding subgraph path/cycle set. A co- path/cycle packing for
an undirected graph G = (V, E) is a vertex set whose deletion results in a graph
which is a path/cycle set. We now make the following formal definition for the
problem involved in this paper.
Minimum Co-Path/Cycle Packing:
Input: An undirected graph G = (V, E), integer k.
Question: Does there exist a vertex set S ⊆ V of size at most k such that the
induced subgraph G − S is a path/cycle set?

We now present some definitions regarding FPT algorithms. Given a parame-
terized problem instance (I,k), an FPT (Fixed-Parameter Tractable) algorithm
solves the problem in O(f(k)nc) time (often simplified as O∗(f(k))), where f is
a function of k only, n is the input size and c is some fixed constant (i.e., not
depending on k or n). A useful technique in parameterized algorithmics is to
provide polynomial time executable data-reduction rules that lead to a problem
kernel. A data-reduction rule replaces (I,k) by an instance (I ′,k′) in polynomial
time such that: (1) |I ′| ≤ |I|, k′ ≤ k, and (2) (I,k) is a Yes-instance if and only
if (I ′,k′) is a Yes-instance. A set of polynomial-time data-reduction rules for a
problem are applied to an instance of the problem to achieve a reduced instance
termed the kernel. A parameterized problem is FPT if and only if there is a poly-
nomial time algorithm applying data-reduction rules that reduce any instance
of the problem to a kernelized instance of size g(k). More about parameterized
complexity can be found in the monographs [4,7,12].

3 A Linear Kernel

In this section, we describe a polynomial time data-reduction rule and show that
it yields a kernel having at most 37k vertices for the Co-Path/Cycle Packing prob-
lem, improving the super-linear kernel for 2-BDD problem by Fellows et al. [6].

As a common trick in data reduction, we remove vertices of high degree and
remove useless vertices connecting vertices of degree at most two. The corre-
sponding rules are summarized in the following lemmas.

Lemma 1. Let G be a graph such that there exists v ∈ V with d(v) > k+2, then
G has a k-co-path/cycle packing iff G − v has a (k − 1)-co-path/cycle packing.
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Lemma 2. Let G be a graph such that there exists an edge e = (u, v) and
d(u) = d(v) ≤ 2, then G has a minimum co-path/cycle packing that does not
contain u and v.

Proof. W.l.o.g., we only consider the case when u is in some minimum co-
path/cycle packing. Assume that W is a minimum co-path/cycle packing with
u ∈ W , then G − W contains a path ending at v and a path containing x (the
other neighbor of u). We can construct another co-path/cycle packing W ′ from
W by replacing u with x. Symmetrically, we just add e at the end of some path
in G − W . Therefore, W ′ is a minimum co-path/cycle packing. ��
Lemma 3. Let G be a graph such that there exists a path P=〈v1, v2, . . . , vt〉
where t ≥ 3, and d(vi) ≤ 2 for all 1 ≤ i ≤ t. Let Z denote the vertex set in the
middle of the path, i.e., Z = {v2, v3, ..., vt−1}, and let G′ be the graph constructed
by adding a new edge e = (v1, vt) to G−M , then G has a k-co-path/cycle packing
iff G′ has a k-co-path/cycle packing.

Proof. The ‘only if’ part is trivially true, so we will focus on the ‘if’ part. Fol-
lowing Lemma 2, there is a k-co-path/cycle packing W in G′ which does not
contain v1 and vt. So we will not create any vertex with degree more than two
in G − W by inserting the vertices in Z between v1 and vt. ��
Lemma 3 basically implies that we can contract a vertex of degree at most two
to either one of its neighbors, as long as its neighbors also have degrees at most
two. From now on, we assume that an input graph is already preprocessed by
Lemma 3.

We next review a famous structure in parameterized complexity, the crown
decomposition, which was used to obtain a small kernel for Vertex Cover [1,2].

Definition 1. A crown decomposition (H ,C,R) in a graph G = (V, E) is a
partition of V into three sets H , C and R which have the following properties:

(1) H (the head) is a separator in G such that there are no edges between the
vertices in C and the vertices in R.

(2) C = Cu ∪ Cm (the crown) is an independent set in G.
(3) |Cm| = |H |, and there is a perfect matching between Cm and H .

We modify and generalize the crown decomposition to handle our particular
problem. The variation is called triple crown decomposition, where each vertex
in H has three vertices in C matched to it. We elaborate the details as follows.

Definition 2. A triple crown decomposition (H ,C,L,R) in a graph G = (V, E)
is a partition of the vertices in V into four sets H ,C,L and R which have the
following properties:

(1) H (the head) is a separator in G such that there are no edges between the
vertices in C and the vertices in R.

(2) L = N(C)/H (the neighbor), G[L ∪ C] is a path/cycle set, and
|N(l) ∩ (R ∪ C)| ≤ 2 for all l ∈ L.

(3) C = Cu ∪ Cm1 ∪ Cm2 ∪ Cm3 (the crown). |Cmi | = |H |, and there is a
perfect matching between every Cmi and H , for all i ∈ {1, 2, 3}.
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Based on the triple crown decomposition, we describe the critical data reduction
rule in this paper through the following lemma.

Lemma 4. A graph G = (V, E) which admits a triple crown decomposition
(H, C, L, R) has a k-co-path/cycle packing iff G−H has a (k−|H |)-co-path/cycle
packing.

Proof. The ‘if’ part is easy to prove because any co-path/cycle packing of G−H
together with H is certainly a solution for G.

We now prove the other direction. Let G have a co-path/cycle packing of size
k. First, we can see that any co-path/cycle packing for G[H ∪ C] contains at
least |H | vertices. Since (H, C, L, R) is a triple crown decomposition, there are
|H | vertex-disjoint 3-stars in G[H ∪ C], at least one vertex of every star should
be deleted in order to obtain a path/cycle set. Moreover, every vertex belonging
to C∪L has degree at most two and every vertex belonging to C has no neighbor
outside of L in G−H . There is no minimum co-path/cycle packing W for G−H
such that v ∈ W ∩ C, otherwise v connects at most two paths in G − H − W ,
and W − v is hence a smaller co-path/cycle packing. So the size of the minimum
co-path/cycle packing for G is at least |W | + |H |, which means |W | ≤ k − |H |.
Hence the ‘only if’ part holds. ��
Now, our main idea of the kernelization algorithm is to search for triple crown
decomposition in the graph iteratively. When we cannot find that structure at
all, we can conclude that the graph has bounded size. At the beginning, the
algorithm computes a maximal 3-star packing in a greedy fashion. Note that the
maximal 3-star packing thus found is a co-path/cycle packing, i.e., if we delete
all these 3-stars the resulting graph has no vertex of degree greater than two.
Then we refine the maximal 3-star packing such that the following lemma is
satisfied. After that, the algorithm tries to search a triple crown decomposition
with H being a subset of the star centers and C belonging to the path/cycle
set.

We first summarize the method to obtain/refine a proper maximal 3-star
packing in the following lemma.

Lemma 5. Given a graph G = (V, E), we can produce a maximal 3-star packing
W such that every 3-star P ∈ W falls into one of the three cases,

1. if the center u of P has at least 4 neighbors in G − W , then every leaf of P
has at most two neighbors in G−W , all of them are of degree one in G−W .

2. if the center u of P has one to three neighbors in G−W , then any 3-star Q
composed of one leaf v of P and three other vertices in G − W contains all
neighbors of u in G − W .

3. if the center u has no neighbor in G − W , then each leaf of P has at most
two distinct neighbors, for a total of at most 6, in G − W .

Proof. We prove the three cases respectively.
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1. Suppose on the contrary that there exists a leaf x of P which is incident
to some vertex y of degree-2 in G − W . Then we have a 3-star P ′ centered
at y, with x being one of its leaves. Therefore, we can obtain one extra 3-
star besides P ′: just modify P by replacing x with v as a new leaf. (v must
exist due to that u has at least 4 neighbors in G−W .) This contradicts the
optimality of W .

2. Otherwise, we can swap v with some neighbor x of u in G−W , with x /∈ Q.
We thus obtain one more 3-star. Again, this contradicts the optimality of
W .

3. Let the leaves of P be {v1, v2, v3}. Assume on the contrary that there exists a
leaf v1 of P which has more than three neighbors different from the neighbors
of v2 and v3 in G − W . We can replace P with a new 3-star composed of v
and its three neighbors. ��

The algorithm Proper Maximal 3-Star Packing follows directly from Lemma 5.
In the following box, we describe the corresponding algorithm with pseudo-code.

Algorithm Proper Maximal 3-Star Packing
Input: Graph G=(V,E)
Output: A proper maximal 3-star packing W
1 Compute a maximal 3-star packing W greedily.
2 For every P = 〈u, {x, y, z}〉 ∈ W , check the following properties iteratively
until W fulfills Lemma 5

2.1 if there are two or three disjoint 3-stars Q,R (or S)
each contains only one leaf of P ,

then W = W − P + Q + R (+S).
2.2 if there is a 3-star Q which contains only one leaf x and

u has a neighbor v distinct from Q in G − W ,
then replace x with v in P , W = W + Q.

2.2 if there is a 3-star Q which contains only one leaf x, and
y and z have no neighbor in Q,

then W = W − P + Q.

Since the maximum 3-star packing in a graph is bounded by O(n), any vi-
olation of the conditions (1) and (2) leads to a larger 3-star packing and each
3-star can be computed in O(n) time. So we can find such a proper maximal
3-star packing fulfilling Lemma 5 in O(n2) time.

In order to describe the main algorithm concisely, we make use of some nota-
tions for some vertex sets in the graph. Let W be the maximal 3-star packing we
obtain (after running Lemma 5). LW and CW denotes all the leaves and centers in
W respectively. Then, DL

W = N(LW )∩(G−W ), DC
W = (N(CW )−DL

W )∩(G−W ),
F (LW ) = N [DL

W ] ∩ (G − W ), and for every v ∈ CW , F (v) = N [N(v)] ∩ (G −
W − F (LW )). S ⊆ CW , F (S) =

⋃
v∈S F (v).

The next procedure computes a triple crown decomposition, if it exists.
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Algorithm Triple Crown Decomposition
Input: Graph G=(V,E), proper maximal 3-star packing W
Output: Triple crown decomposition (H,C,L,R)
1 X is the case-1 centers in CW , Y = G − W − F (LW ) − F (CW − X).
2 Construct a bipartite graph J = (X, Y, T ),

where T = {(u, v) ∈ E|u ∈ X, v ∈ Y }.
3 Replicate every vertex u ∈ X twice such that u and its two copies have

the same neighbor in J .
Let the new graph be J ′ and let u∗ denote the original vertex in X

for both of u’s copies.
4 Compute the maximum matching M ′ in J ′ and for every edge

e = (u, v) ∈ M ′, construct (u∗, v) ∈ M ⊆ T .
5 Repeat the following two steps with C0 = Y − M until Ci = Ci+1.

5.1 Hi = NJ (Ci);
5.2 Ci+1 = NM (Hi) ∪ Ci;

6 If Hi = X, then we get a triple crown decomposition (H,C, L, R)
where H = Hi, C = Ci, L = NG(C) − H , R = G − H − C − L.

7 Else FX=X − Hi, FY = F (X − Hi), X = X − FX , Y = Y − FY .
8 If Hi 
= φ, goto step 2; else exit.

We have the following lemmas regarding the above algorithm.

Lemma 6. (H ∪C) ∩M is a 3-star packing such that all centers are in H and
all leaves are in C.

Proof. If there exists a vertex v ∈ (H∩M) which has fewer than three neighbors
in (C ∩ M). From the way we get v, there is an M -augmenting path from some
vertex not in M to v. (An M -augmenting path is a path where the edges in
M and edges not in M alternate.) Then M cannot be maximum since both the
start and end edges of the M -augmenting path are not in M . ��
Lemma 7. If v connects a vertex h /∈ H, then v is matched to some vertex not
in H.

Proof. If v is not in M , then v ∈ C and NJ(v) ⊆ H , which contradicts the
condition in the lemma. Therefore v ∈ M . If v is matched to some vertex in H ,
then v ∈ C and h ∈ H , also contradicts the condition in the lemma. ��
Note that every vertex in Y either belongs to C or belongs to N(FX).

Lemma 8. If the procedure does not find a triple crown decomposition, then
|FY | ≤ 9|FX |.
Proof. From Lemma 7, every vertex in FY is either matched to some vertex in
FX or is a neighbor of a matched vertex in FY . Since every vertex in FX has
at most three neighbors in M , G − W is a path/cycle set. Therefore, |FY | ≤
3 · (2 + 1)|FX | = 9|FX |. ��
If the procedure cannot find a triple crown decomposition, which means FX = X ,
we then refer T to the vertices in Y − FY . The next lemma shows properties of
vertices in T .
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Lemma 9. For every u ∈ T , u fulfills the following two properties:

1. u has no neighbor in X.
2. There exists a vertex v ∈ N(u), v is included in FY ∪ F (LW ) ∪ F (CW −X)

and v is connected to another vertex w ∈ N(W ).

Proof. From the procedure, we can see that any vertex in Y = G−W −F (LW )−
F (CW − X) which has some neighbor in X or has some neighbor in N(FX) is
included in FY . Therefore, if u /∈ FY , both of u’s neighbors either belong to
T or belong to N(N(W )). From Lemma 3, there are at most two consecutive
vertices whose degrees are at most two. So at least one of u’s neighbors belongs
to N(N(W )). ��
It is easy to verify that any single vertex or two consecutive vertices in T lie
between vertices in N(N(W )). The following lemma bounds the cardinality of
T .

Lemma 10. |T | ≤ 12|CW |.
Proof. Assume that there are ri 3-stars of case-i where i ∈ {1, 2, 3}, we define
an interval as a maximal path whose endpoints are in N(N(W )) and other
intermediate vertices are not in N(N(W )). The proof of this lemma is based
on computing the number of intervals between the vertices in N(N(W )). From
Lemma 8, there are at most 3r1 distinct vertices in N(FX). From Lemma 5, every
leaf of a case-1 3-star connects at most two vertices in N(W ), both of which are
of degree one in G − W . Also, there are at most 3r2 distinct vertices which are
the neighbors of the centers of case-2 3-stars. We conclude that after deleting
neighbors of its corresponding center, every leaf of a case-2 3-star connects at
most two vertices in N(W ), both of which are of degree one. Besides, there
are at most 6r3 distinct vertices who are neighbors of the leaves of case-3 3-
stars. For any vertex u in N(W ), when we contract the vertices in (N [N(u)])
in G − W to a single vertex, there are at most 6r1 + 6r2 + 6r3 − m/2 intervals
between those resulting vertices, where m is the number of tails (endpoints) of
paths that are not in N(W ). Since there are at most two consecutive vertices
in T lying in each interval and at most one vertex lies in each of the m tails,
|T | ≤ 2 ∗ (6r1 + 6r2 + 6r3 − m/2) + m = 12|CW |. ��
Theorem 1. The Co-Path/Cycle Packing problem has a linear kernel of size
37k.

Proof. First of all, note that V = W ∪ F (LW ) ∪ F (CW − X)∪ FY ∪ T . Assume
that there are ri 3-stars of case-i where i ∈ {1, 2, 3}, from Lemma 5, every case-3
3-star corresponds to at most 18 vertices in F (LW ) ∪ F (CW − X), every case-2
3-star corresponds to at most 21 vertices in F (LW ) ∪ F (CW − X) and every
leaf of case-1 3-star corresponds to at most 12 vertices in F (LW ). Therefore,
|F (LW )∪ F (CW −X)| ≤ (12r1 + 21r2 + 18r3). From Lemma 8, every center of
case-1 3-star corresponds to at most 9 vertices in FY . Then, |FY | ≤ 9r1. Following
Lemma 10, |T | ≤ 12|CW | = 12r1+12r2+12r3. In addition, |W | = 4(r1+r2+r3).
Consequently, |V | = |W |+ |F (LW )∪F (CW −X)|+ |FY |+ |T | ≤ (37r1 +37r2 +
34r3) ≤ 37(r1 + r2 + r3) ≤ 37k, since we have r1 + r2 + r3 ≤ k. ��
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For completeness, we show below that the Co-Path/Cycle Packing problem is
at least as hard as Vertex Cover, in terms of designing both approximation and
FPT algorithms.

Theorem 2. The Co-Path/Cycle Packing problem is APX-hard and cannot
have a linear kernel of size smaller than 2k.

Proof. We prove the theorem by a simple reduction from Vertex Cover, which is
APX-hard. Moreover, there is a famous conjecture that Vertex Cover cannot be
approximated within a factor smaller than 2 [10]; consequently, no kernel smaller
than 2k exists (unless the conjecture is disproved). The detailed reduction is as
follows. Given an instance of Vertex Cover, G = (V, E), we construct an instance
of Co-Path/Cycle Packing G

′
= (V

′
, E

′
). Let V1 and V2 be two vertex set each

has |V | isolated vertices. For each vi ∈ V , add an edge between vi and an
isolated vertices in V1 and V2 respectively, so the set of new edges is defined as
E∗ = {(vi, xi)|vi ∈ V, xi ∈ V1}∪{(vi, yi)|vi ∈ V, yi ∈ V2}. Then, V

′
= V ∪V1∪V2,

E
′
= E ∪E∗. It is easily seen that any Vertex Cover in G is also a co-path/cycle

packing in G
′
, and any co-path/cycle packing corresponds to a Vertex Cover

with at most the same size (since we can replace the vertices in the solution from
V1 ∪ V2 with their neighbors in V ). Then the two instances could have the same
optimal solution. Hence, the Co-Path/Cycle Packing problem cannot achieve a
smaller approximation factor than that for Vertex Cover, and is unlikely to have
a kernel of size smaller than 2k, unless the conjecture by Khot and Regev is
disproved. ��

4 The FPT Algorithm

In this section, we elaborate the FPT algorithm which runs in O∗(3.24k) time.
The key idea of the algorithm is bounded search tree. (For a survey, please
refer to the paper by Fernau and Raible [8].) We implement it by some involved
analysis. The following lemmas are critical while applying the bounded search
tree method.

Lemma 11. Given a graph G = (V, E), if there exists a vertex v with d(v) ≥ 3,
then any minimum co-path/cycle packing for G either contains v or contains all
but at most two of its neighbors.

Lemma 12. Given a graph G = (V, E), if there exists an edge (u, v) with d(u) =
d(v) = 3 and N(u) ∩N(v) = φ, then any minimum co-path/cycle packing for G
either contains one of u and v or contains at least one neighbor of u and one
neighbor of v.

Lemma 13. Given a graph G = (V, E), if there exists three edges (u, v), (u, w)
and (v, w) with d(u) = d(v) = 3 and N({u, v, w}) = {x, y, z}, then any a mini-
mum co-path/cycle packing either contains one of u, v, w or contains all of x, y, z.

The above three lemmas are easy to check, since otherwise there will be some
vertex with degree greater than two left.
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Lemma 14. Given a graph G = (V, E), if there exists an edge (u, v) with d(u) =
d(v) = 3, x ∈ (N(u) ∩ N(v)), and d(x) = 2, then there exists a minimum co-
path/cycle packing which does not contain x.

Proof. When a minimum co-path/cycle packing W contains x, W−x+u remains
a minimum co-path/cycle packing. ��
Lemma 15. Given a graph G = (V, E), if there exists an edge (u, v) with d(u) =
d(v) = 3 and N(u) ∩ N(v) = {x, y}, then there exists a minimum co-path/cycle
packing which does not contain v.

Proof. When a minimum co-path/cycle packing W contains v, W−v+u remains
a minimum co-path/cycle packing. ��
Lemma 16. Given a graph G = (V, E), if there exists a 3-star with the center
being of degree three and every leaf of degree at most two in G, then there is a
minimum co-path/cycle packing for G which only contains one leaf in the star.

Proof. Any minimum co-path/cycle packing should contain at least one vertex
from any 3-star. From Lemma 2 and Lemma 3, the deletion of a leaf results
in the reservation of the other three vertices (in an optimal solution). So we
just prove the existence of a minimum co-path/cycle packing which does not
contain the center. Suppose on the contrary that the center is in a minimum
co-path/cycle packing W , then we can modify W by replacing the center with
any leaf. Obviously, only two paths are connected together in G−W as a result
of the replacement. Hence, the lemma holds. ��
The detailed algorithm based on the above lemmas is presented at the end of
the paper.

Theorem 3. Algorithm CPCP (G, k) solves the Co-Path/Cycle Packing prob-
lem correctly in O∗(3.24k) time.

Proof. Step 1 deals with the boundary cases for the k Co-Path/Cycle Packing
problem: if k < 0, then no co-path/cycle packing of size at most k can be found,
thus the algorithm returns ‘NO’. If k ≥ 0 and G consists of only paths and cycles,
then there is no need to remove any vertex from G, thus φ can be returned safely.

Step 2 considers the case when there is a vertex v of degree greater than 3.
Following Lemma 11, it returns a k co-path/cycle packing correctly.

Step 3 deals with the case when there is an edge (u, v) such that u and v are of
degree-3. From Lemma 12, Step 3.1 returns a k co-path/cycle packing correctly
if it exists. From Lemma 14, Step 3.2.1 returns a k co-path/cycle packing cor-
rectly if it exists. From Lemma 13, Step 3.2.2 returns a k co-path/cycle packing
correctly if it exists. From Lemma 15, Step 3.3 returns a k co-path/cycle packing
correctly if it exists.

After Step 1, we have that k ≥ 0 and G cannot consist of paths and cycles
only, which implies that there is at least a vertex of degree greater than 2. After
Step 2, all the vertices have degree less than or equal to 3 in G. After Step
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3, no two degree-3 vertices are adjacent. It follows that all three neighbors of
any degree-3 vertex v must be of degree less than 2. From Lemma 16, Step 4
returns a k co-path/cycle packing correctly if it exists. After that, every vertex
has degree at most two. This completes the correctness proof of the algorithm.

Now we analyze the running time. As a convention, we take the notation
O∗(g(k)) to refer to O(g(k)nc), where c is a constant independent of k and n.
Step 1 takes time of O(|G|). Let f(k) be the time complexity for the k Co-
Path/Cycle Packing problem. Step 2 has recurrence

f(k) = f(k − 1) +
(

i

2

)
f(k − (i − 2)), where i ≥ 4.

Step 3 has recurrence

f(k) ≤

⎧⎪⎪⎨⎪⎪⎩
2f(k − 1) + 4f(k − 2),
2f(k − 1) + 2f(k − 2),
3f(k − 1) + f(k − 3),
3f(k − 1).

Step 4 has recurrence
f(k) = 3f(k − 1).

We can verify that f(k) ≤ 3.24k, which comes from f(k) = 2f(k−1)+4f(k−2)
at Step 3. Actually, we can show that f(k) ≤ 3k by induction for the recurrence
at Step 2. This concludes the proof. ��

5 Concluding Remarks

In this paper, we present a 37k kernel for the minimum Co-Path/Cycle Packing
problem. With the bounded search technique, we obtain an FPT algorithm which
runs in O∗(3.24k) time. This problem is a special case of the Bounded-Degree
Vertex Deletion (BDD) problem (when d = 2). So our result is the first linear
kernel for BDD when d = 2. Previously, a linear kernel is only known for BDD
when d = 0 (Vertex Cover) or d = 1 [6]. An interesting question is whether
the bounds can be further improved. Another interesting question is to disallow
cycles when some vertices are deleted (in the ancestral genome reconstruction
problem, that means that no circular genome is allowed). In this latter case, we
only have an O(k2) kernel.

Acknowledgments

This research is partially supported by NSF Career Award 084537, NSF grant
DMS-0918034, and by NSF of China under grant 60928006. LW is fully supported
by a grant from the Research Grants Council of the Hong Kong SAR, China
[Project No. CityU 121207].



Linear Kernel for Co-Path/Cycle Packing 101

Algorithm Co-Path/Cycle Packing (CPCP)
Input: a graph G and an integer k
Output: a co-path/cycle packing S for G such that |S| ≤ k, or report ‘NO’
1 if k < 0, return ‘NO’

if G consists of only paths and simple cycles, return φ
2 pick a vertex v of degree greater than 3

2.1 S ← CPCP (G − v, k − 1)
if S is not ‘NO’, return S + v

2.2 for every two neighbors w, z of v, G′ is the graph after removing all
neighbors of v except w, z from G.

S ← CPCP (G′, k − (i − 2)) (i ≥ 4 is the number of neighbors of v).
if S is not ‘NO’, return S+ all neighbors of v other than w, z

3 pick an edge e = (u, v) such that both u and v are of degree 3.
3.1 u and v have no common neighbor. let u1, u2 (v1, v2) be the other

two neighbors of u (v).
3.1.1 S ← CPCP (G − u, k − 1) if S is not ‘NO’, return S + u
3.1.2 S ← CPCP (G − v, k − 1) if S is not ‘NO’, return S + v
3.1.3 S ← CPCP (G − ui − vj , k − 2), for each ui, vj (i, j ∈ {1, 2}),

if S is not ‘NO’, return S + ui − vj

3.2 u and v have only one common neighbor w. let x (y) be the other
neighbors of u (v).

3.2.1. if d(w) = 2
3.2.1.1 S ← CPCP (G − u, k − 1) if S is not ‘NO’, return S + u
3.2.1.2 S ← CPCP (G − v, k − 1) if S is not ‘NO’, return S + v
3.2.1.3 S ← CPCP (G − x − y, k − 2) if S is not ‘NO’,

return S + x + y
3.2.2. if d(w) = 3, let z be the other neighbors of w and z 
= x, z 
= y

3.2.2.1 S ← CPCP (G − u, k − 1) if S is not ‘NO’, return S + u
3.2.2.2 S ← CPCP (G − v, k − 1) if S is not ‘NO’, return S + v
3.2.2.3 S ← CPCP (G − w, k − 1) if S is not ‘NO’, return S + w
3.2.2.4 S ← CPCP (G − x − y − z, k − 3) if S is not ‘NO’,

return S + x + y + z
3.2.3 if d(w) = 3, let z be the other neighbors of w and z ∈ {x, y}

3.2.3.1 if z = x, goto step3 with e = (u, w).
3.2.3.2 if z = y, goto step3 with e = (v, w).

3.3 u and v have two neighbors w1, w2in common, let x (y) be the other
neighbor of w1 (w2)

3.3.1 S ← CPCP (G − u, k − 1) if S is not ‘NO’, return S + u
3.3.2 S ← CPCP (G − w1, k − 1) if S is not ‘NO’, return S + w1

3.3.3 S ← CPCP (G − w2, k − 1) if S is not ‘NO’, return S + w2

4 pick a degree-3 vertex v with neighbors v1, v2, v3, for each vi (i ∈ {1, 2, 3})
S ← CPCP (G − vi, k − 1), if S is not ‘NO’, return S + vi.

5 return ‘NO’
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Abstract. Based on Gamma Vega-Cornish Fish methodology, this paper pro-
pose the algorithm for calculating VaR via adjusting the quantile under the 
given confidence level using the four moments (e.g. mean, variance, skewness 
and kurtosis) of the warrants portfolio return and estimating the variance of 
portfolio by EWMA methodology. Meanwhile, the proposed algorithm consid-
ers the attenuation of the effect of history return on portfolio return of future 
days. Empirical study shows that, comparing with Gamma-Cornish Fish method 
and standard normal method, the VaR calculated by Gamma Vega-Cornish Fish 
can improve the effectiveness of forecasting the portfolio risk by virture of con-
sidering the Gamma risk and the Vega risk of the warrants. The significance 
test is conducted on the calculation results by employing two-tailed test devel-
oped by Kupiec. Test results show that the calculated VaRs of the warrants 
portfolio all pass the significance test under the significance level of 5%. 

Keywords: Warrant VaR, Gamma Risk, Vega Risk, Gamma Vega-Cornish 
Fish, Gamma-Cornish Fish. 

1   Introduction 

With the rapid development of the financial market, financial institutions and business 
face serious financial risk because of financial market showing unprecedented volatil-
ity. Financial risk management has become the necessity of business and financial 
institutions. The quantitative analysis and assessment of risk, namely risk measure-
ment, is the core and foundation of risk management. With the increase of the  
complexity of financial transaction and financial market, the financial theory has 
developed continuously. Risk measurement method has developed from the nominal 
method, sensitivity analysis method and fluctuation method to complex VaR, pressure 
test and extreme value theory. Since G30 suggested that the institution with deriva-
tives should employ VaR model as the specific measure of market risk in the research 
reports of derivatives in July 1997, the conception of VaR model has been accepted 
by market gradually and become the mainstream of risk measurement method in fi-
nancial market. 

Classical VaR calculation method supposes that the returns of portfolio satisfy 
gaussian distribution (normal distribution) wherein the symmetricity of the returns  
of portfolios is hidden. Thus, we can calculate the portfolio’s VaR via the second  
moment (variance) of the distribution of the earnings rate at most. However, since its 
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asymmetry, the distribution of the earnings rate of the portfolio which contains option 
assets is with skewed at least. That is to say, we will need at least third moment of the 
distribution of the earnings rate to obtain the VaR of the portfolio, which is an evident 
difference from standard normality.  

Furthermore, the proportion of Vega risk may be very big in the portfolio including 
options. Especially, it is necessary to consider Vega risk when analyzing the charac-
teristics of the portfolio which includes options and employs Delta spot hedging strat-
egy, straddle type price spread strategy and Strangle type spread strategy etc [1].  

The remainder of this paper is organized as follows. Section 2 introduces the 
Gamma Vega-CF method briefly. Section 3 elaborates the proposed VaR calaulation 
algorithm for the warrants portfolio. Section 4 gives empirical results to illustrate the 
effectiveness and efficiency of the proposed method. Finally, concluding remarks are 
drawn in Section 5.  

2   Gamma Vega-CF Method 

Delta model which employs linear form, simplifies VaR calculation. The weakness of 
Delta model is that it unable to identify non-linear risks. Warrant is nonlinear securi-
ties,which is with convexity risk. Therefore, this paper introduces Gamma model as 
the VaR calculation method to identify the convexity or Gamma risk .  

Gamma normal model is similar to Delta normal model as they both assume that 
the change of market factor is subject to normal distribution. The difference is that 
Gamma normal model uses the value function, which employs second order Taylor 
expansion to describe portfolio, to better capture the nonlinear characteristics of the 
changes of portfolio’s price. Suppose that the standard risk measurement methods can 
fully embody the risk of portfolio. The second-order Taylor expansion for the return 
of portfolio is as follows: 

          ( ) ( )
2

2

2

1

2 stock
stock

P P P P P P
dP dS dS dVol dr dy T t dt

S Vol r y tS

∂ ∂ ∂ ∂ ∂ ∂= + + + + + −
∂ ∂ ∂ ∂ ∂∂

              (1) 

where P  is the value of portfolio and dP  descibes the change of portfolio’s value. S  
is the price of the object’s stock corresponding to the warrant. 

stockVol  is the volitility of 

the stock and r  is the return rate of the object’s stock. y  is the exercise price, T  is the 

duration, and t  is current time. 
Because the option price is not the linear function of the above parameters, its VaR 

can not estimate via linear method merely. Thus, considering both the Gamma risk 
and the Vega risk, the approximate expression of the portfolio return is modified as 
following:  (taking on Equation (1)’s preceding three terms)  

                   ( )21

2
dP dS dS dδ κ σ= + Γ +                                         (2) 

where σ  is the implied volatility. Suppose that the implied volatility takes on log-
normal distribution, we have 

( )21ln ~ 0,t

t

N Volσ
σ
σ

+⎛ ⎞
⎜ ⎟
⎝ ⎠

                                             (3) 

where Volσ  is the standard deviation of implied volatility. 
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For the approximate expression of dP , that is Equation (2), we have 

( )
2

2 2 21 1

2 2 stock

dS
E dP S E S Vol

S

⎡ ⎤⎛ ⎞= Γ = Γ⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

                                 (4) 

           

( )
2 2 2

2 2 4 2 2 3

2
2

1 1
2 ,

2 2

1
2 , 2 ,

2

dS dS d dS dS
V dP S V S V V S Cov

S S S S

dS d dS d
S Cov S Cov

S S

σδ κ σ δ
σ

σ σδκσ κσ
σ σ

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + Γ + + Γ⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞+ + Γ ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

      (5) 

where we suppose that 
2

, 0
dS d

Cov
S

σ
σ

⎡ ⎤⎛ ⎞ =⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

. 

Because Gamma normal model considers the influence of the Gamma risk, it is su-
perior to Delta model in calculating the convexity assets such as options etc. Influ-
enced by the Gamma risk, the distribution of the portfolio return rate including op-
tions often occurs offset instead of obeying normal distribution. Therefore, Morgan JP 
introduced Gamma-Cornish Fish model into his RiskMetrics[2]. 

The fundamental principle of Gamma-CF model is that it can adjust the confidence 
interval parameters to correct the influence of Gamma risk on the skewness of normal 
distribution. Cornish-Fisher expansion formula is based on the statistics principle: any 
distribution (e.g., chi-square distribution) can be considered as the function of other 
distribution (such as normal distribution), which can be expressed by the parameters 
of other distribution[3]. For any distribution, based on the normal distribution, the 
expansion of CF is defined as 

2 2 3 2
3 4 3( ) ( 1) / 6 ( 3 ) / 24 (2 5 ) / 36pF z z z z z zα α α α α αα ρ ρ ρΔ = + − + − − −            (6) 

where ( )pF αΔ  is the distribution function of the portfolio return PΔ , zα  is the quan-

tile of standard normal distribution. 3ρ  and 4ρ  are the cubic and quartic cumulants of 

PΔ , respectively. 3ρ  is the measure of the distribution skewness, 4ρ  is the measure 

of the distribution kurtosis. Thus, VaR  can be estimated by replacing α  with confi-

dence parameter ( )sαα− −  and approximately yeilding quantile under the normal 

distribution. 

3   Algorithm 

3.1   Hypotheses 

In order to give the algorithm, we propose the following hypotheses. 
1) Now hold n  warrants. The price of each warrant is ( ), , , ,i i i i iC S r X T tσ − , 

i = 1,2....,n , where iS  is the price of the object’s stock corresponding to a 

warrant, iσ  is the volatility of an object’s stock, iX  is the strike price of a 

warrant, and iT  is the maturity date of a warrant. 

2) The volume of holding of each warrant is iπ , i = 1,2....,n . 
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3) The day return rate of the object’s stock corresponding to a warrant is ir , 

i = 1,2....,n . The logarithmic return rate of a stock obeys normal distribu-

tion 2( , )stockN Volμ . Then, we have 

( )
1

1 ~ 0,1

t stock tdS S Vol S dw

dw dt

N

μ
η

η

= +
=  . 

Therefore, the value of the holding position is 

 ( ) ( )0
1

, , , , ,
n

i i i i i i
i

P t C C S r X T tπ σ
=

= −∑ .                       (7) 

4) The differential form of the variation of the holding position value is  

( )
2

2 2

1 1

1 1
( ) ( )

2 2

n n
i i i

i i i i i i i i i i i i i i
i i i i i

dS dS d
dP dS dS d S S

S S

σπ δ κ σ π δ κ σ
σ= =

⎛ ⎞
= + Γ + = + Γ +⎜ ⎟

⎝ ⎠
∑ ∑ . (8) 

     The variation value is  

     
( )22 2

1 1

2

1
( ) ( )

2
1

/ , /
2

n n
G

i i i i i i i P i i i i
i i

i i i i i i i i

P
P S r S r R k r f r

P

k S P f S P

π δ

π δ π
= =

ΔΔ = + Γ = = +

= = Γ

∑ ∑ ，  ，
                    (9) 

    where ( )1
i

i iN dδ = , 
( )'

1
i

i

i

i i i i

N d

S T tσ
Γ =

−
, ( )'

1
i

i i i i iS T t N dκ = − ,  

( )
2

' 1
exp( )

22
i

x
N x

π
= − , 

( ) ( )( )2

1

ln / / 2i i i i ii

i i i

S X r T t
d

T t

σ

σ

+ + −
=

−
.  

3.2   Algorithm Description 

Based on the above analysis and hypotheses, we propose the algorithm for calculating 
VaR of warrants portfolio. Our entire algorithm implements following the next steps: 

Step 1）Select the past data quantity t . Let ( )ir t  indicate the t-th day return rate 

of the object’s stock corresponding to warrant i . 0t =  indicate the cur-
rent day return rate. 

Step 2）Select window time 0T , e.g., 100. 

Step 3）Calculate the day return rate of the object’s stock, which is given by 

( ) ( ),
, , , 1

, 1

ln ln lni t
i t i t i t

i t

S
r S S

S
−

− − − −
− −

⎛ ⎞
= = −⎜ ⎟⎜ ⎟

⎝ ⎠
, 1, 2, ,i n= h , 01 t T≤ ≤ .      (10) 

Step 4）Acquire the warrant price historical data ( ), , ,, , , ,i t i t i t i tC S X r T σ  in the 

warrants portfolio. Given , , , ,i t i tS X r T , obtain , ,  1, 2, , ,i t i nσ = h  

01 t T≤ ≤  calculated by dichotomy. 
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Step 5）Calculate the change rate of implied volatility as follows:    

        ,
,

, 1

ln( )i t
i t

i t

rσ σ
σ −

= , 1, 2, ,i n= h , 01 t T≤ ≤ .                                              (11) 

Step 6）Calculate the mean and variance of the change rate of implied volatility. 
       The mean of the change rate of implied volatility is 

    
0

,
20

1

2

T

i i t
i

r
T

σ σμ
=

=
− ∑ , 1, 2, ,i n= h .                                               (12) 

        The variance of the change rate of implied volatility is 

               
0

2
, ,

20

1
( )

2

T

i i t i
i

Vol r
T

σ σ
σ μ

=

= −
− ∑ , 1, 2, ,i n= h .                                          (13) 

Step 7）Calculate the mean, variance, skewness and kurtosis of the portfolio re-
turn rate. 

       The mean of the portfolio return rate is 

0 01 1
2

, , ,
1 1 10 0

1 1
( )

1 1

T T n
G
p t i i t i i t

t t i

R k r f r
T T

μ
− −

− − −
= = =

= = +
− −∑ ∑∑ .               (14) 

       The variance of the portfolio return rate is ( )
0 1

22
,

10

1

1

T
G
p t

t

R
T

σ μ
−

−
=

= −
− ∑ .        (15) 

       The skewness of the portfolio return rate is  

              ( ) ( )
0 1

3 33 3
3 ,

10

1
/ /

1

T
G G G
p p p t

t

E R ER R
T

ρ σ μ σ
−

−
=

= − = −
− ∑ .                            (16) 

       The kurtosis of the portfolio return rate is 

( ) ( )
0 1

4 44 4
4 ,

10

1
/ 3 3 /

1

T
G G G
p p p t

t

E R ER R
T

ρ σ μ σ
−

−
=

= − − = − + −
− ∑ .       (17) 

Step 8）Calculate the quantile cvα of the corresponding change. 

       Based on normal distribution, the expansion of the Cornish-Fisher is  

         2 3 3 2
3 4 3( 1) / 6 ( 3 ) / 24 (2 5 ) / 36cv z z z z z zα α α α α α αρ ρ ρ= + − + − − −                 (18) 

       where cvα  is the quantile of portfolio return rate G
pR  in the confidence level 

α , zα  is the quantile of in the standard normal distribution.         

Step 9）Calculate the risk value of the portfolio value in one future day VaR . 

       The EWMA variance[4][5] is ( ) ( )
0

0

1
22

,
1

1
T

T t G
P p t

t

Rσ λ λ μ
−

−
−

=

= − −∑ .                    (19) 

       Thus, we have ( ) ( )0 , PVaR P t C cvασ μ= + .                                                 (20) 
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4   Empirical Results 

4.1   Data and Empirical Tests  

Considering both the Gamma risks and Vega risks, this paper calculates the VaR 
values of CITIC Guoan warrants to subscribe GAC1, steel vanadium warrants to 
subscribe GFC1, Shenfa warrants to subscribe SFC2, respectively, employing Gamma 
Vega-CF, Gamma-CF and standard normal distribution methods. Furthermore, we 
test the VaR calculation results via posteriori test method. Meanwhile, we calculate 
the risk values of portfolio of GFC1 and SFC2. The basic data for empirical research 
is given in Tabel 1. 

Table 1. Data for VaR calculation and test 

Type Name Code Duration Samples Time 
Period 

Posteriori Test 
Time Period 

Single 
Warrant 

GAC1 031005 730 2007/9/25~ 
2008/05/12 

2007/12/25~ 
2008/05/12 

Single 
Warrant GFC1 031002 730 

2006/12/12~ 
2008/05/12 

2007/04/13~ 
2008/05/12 

Single 
Warrant SFC2 031004 365 

2007/06/29~ 
2008/05/12 

2007/10/29~ 
2008/05/12 

Portfolio 
Warrants GFC1+SFC2 NA NA 

2007/06/29~ 
2008/05/12 

2007/10/29~ 
2008/05/12 

 
Our empirical research calculates the volatility of the object’s stock and the  

return rate distribution characteristics of the warrants portfolio employing the his-
torical data of 80 day. The risk-free rate, confidence level and decay factor are  
set as 0.03, 0.95 and 0.94, respectively. For the warrants portfolio, the configuration 
proportion of  GFC1 and SFC2 is 2:1. Tabel 2 gives the empirical results of calcula-
tion. Note that all the data in the table except “samples number” and “exception” is 
mean. 

Table 2. Empirical results of VaR calculation 

Gamma Vega-Cornish Fish Gamma-Cornish Fish Standard Normal 
Name 

Samples 
number 

Lower 
5% (VaR) 

Upper 
5% 

Excep- 
tion 

Lower  
5%(VaR)

Upper 
5% 

Excep- 
tion 

Lower  
5%(VaR)

Upper 
5% 

Excep- 
tion 

GAC1 89 -5.75% 7.40% 9* -8.02% 8.11% 2* -6.46% 6.62% 10 

GFC1 202 -7.99% 9.49% 11* -8.67% 8.77% 10* -9.05% 10.09% 10* 

SFC2 130 -7.77% 7.33% 10* -9.14% 9.63% 8* -7.09% 6.86% 15 

GFC1+ 
SFC2 

130 -6.08% 6.01% 11* -7.22% 7.68% 8* -5.29% 5.91% 14 
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4.2   Validity Tests  

1) Performance Assessment. Based on the performance assessment method proposed 
by Morgan J.P. in [4], we can see the effect of the risk control intuitively through the 
comparison between the profit and loss of the portfolio and the VaR value of the next 
day via calculation. Fig. 1. (a) to (d) give the concrete results where the vertical axis 
denotes the profit and loss of the portfolio and the horizontal axis denotes the  
observed number. 

 
GAC1 GFC1 

 

 

number Exception ( )
2
0.05,1χ  statistic significant number Exception ( )

2
0.05,1χ  statistic Significant 

89 9 3.841 3.829 Yes 202 11 3.841 0.082 Yes 

(a) VaR values of CITIC Guoan warrants           (b) VaR values of steel vanadium warrants 

SFC2 GFC1+SFC2 

 

 

number Exception ( )
2
0.05,1χ  statistic significant number Exception ( )

2
0.05,1χ  statistic Significant 

130 10 3.841 1.176 Yes 130 11 3.841 2.740 Yes 

(c) VaR values of Shenfa warrants                     (d) VaR values of portfolio of GFC1 and SFC2 

Fig. 1. Comparison of the profit and loss of the portfolio and the VaR values of the next day via 
calculation employing Gamma Vega-CF and Gamma-CF, respectively 

2)Significance Test. Regardless of which method employed to calculate VaR, we must 
compare VaR with the actual situation of the portfolio, which is called a back test. In 
back test, we must find the calculated VaR under the circumstances of the times of the 
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portfolio loss a day surpass a given confidence level of 95%. The situation of VaR 
which the actual loss is more than 95% is called exception. 

For the confidence level of 95%, if the exception days are around 5% of the total 
days, it shows that the model is credible. However, if the exception days far outweigh 
5%, e.g. 10%, we have reason to believe that the VaR estimates much lower. From 
the perspective of the regulation, the capital of the VaR will be too low. On the other 
hand, if the frequency of the exception occurs far less than 5%, e.g. 1%, we have 
reason to believe that the estimated VaR is much higher and the resulted capital is 
much high too.  

The persuasive two-tailed test developed by Kupiec [6] can effectively inspect the 
rationality of the calculated VaR based on the above two conditions. Assume that the 
probability of exception occurs in VaR is p , the time of the exception occurred in  n  

observation days is m . Then the variable 

( ) ( ) ( )2ln 1 2ln 1 / /
n m n m mmp p m n m n

− −⎡ ⎤ ⎡ ⎤− − + −⎣ ⎦ ⎣ ⎦                           (21) 

obeys the chi-square distribution ( 2χ  distribution) with freedom 1. In this paper, we 

investigate the significance test under the circumstances of the exception is 5%, 
( ( )

2
0.05,1 3.841χ = ). 

5   Conclusion 

In this paper, the VaRs of warrant and portfolio calculated by Gamma-CF and 
Gamma Vega-CF method respectively at 5% significant level are all through the ef-
fectiveness test. While the VaRs of warrant and portfolio calculated by the standard 
normal distribution is comparatively small, and only the steel vanadium warrant to 
subscribe GFC1 passes the test.  

Although the VaRs calculated by Gamma-CF and Gamma Vega-CF method all 
pass the significance test, the VaR calculated by Gamma-CF is much bigger com-
pared with that of Gamma Vega-CF method. That is to say, the the VaR calculated by 
Gamma-CF overvalues risk so that the resulted capital is much higher and the capital 
occupied cost is increased.  

We believe that the VaRs of warrant and portfolios calculated by Gamma Vega-CF 
method adequately consider both the Gamma risk and Vega risk of options, which is 
effective for calculating the risk of containing nonlinear captial portfolio.  
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Abstract. In the classical k-vertex cover problem, we wish to find a
minimum weight set of vertices that covers at least k edges. In the incre-
mental version of the k-vertex cover problem, we wish to find a sequence
of vertices, such that if we choose the smallest prefix of vertices in the
sequence that covers at least k edges, this solution is close in value to
that of the optimal k-vertex cover solution. The maximum ratio is called
competitive ratio. Previously the known upper bound of competitive ratio
was 4α, where α is the approximation ratio of the k-vertex cover problem.
And the known lower bound was 1.36 unless P = NP , or 2−ε for any con-
stant ε assuming the Unique Game Conjecture. In this paper we present
some new results for this problem. Firstly we prove that, without any
computational complexity assumption, the lower bound of competitive
ratio of incremental vertex cover problem is φ, where φ =

√
5+1
2

≈ 1.618
is the golden ratio. We then consider the restricted versions where k is
restricted to one of two given values(Named 2-IVC problem) and one of
three given values(Named 3-IVC problem). For 2-IVC problem, we give
an algorithm to prove that the competitive ratio is at most φα. This
incremental algorithm is also optimal for 2-IVC problem if we are per-
mitted to use non-polynomial time. For the 3-IVC problem, we give an
incremental algorithm with ratio factor (1 +

√
2)α.

1 Introduction

The classical VERTEX COVER problem has been widely studied in discrete
optimization, see, e.g.[2,3,5,10,11,17,18]. In the standard weighted version, we are
given an undirected graph G = (V, E) with weights function on the vertices w :
V → (R+∪∞), and are required to find a set C ⊆ V with minimum total weight
such that all edges in E are covered by having at least one endpoint in C. The
problem is NP-hard and was one of the first problems shown to be NP-hard in
Karp’s seminal paper [13]. However, several different approximation algorithms
have been developed for it [11,18]. The best of these achieve a performance ratio

� This work is supported in part by the NSF of China under Grant No.70901012,
the Specialized Research Foundation for the Doctoral Program of Higher Educa-
tion of China, Grant No. 200806141084, and Science Foundation of UESTC for
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of 2. Johan H̊astad has proved in [8] that a performance ratio less than 7
6 is not

possible unless P = NP . This lower bound was improved to 10
√

5−21 ≈ 1.36067
under the same complexity assumption[6]. Recently there is another result, based
on a stronger complexity assumption (Unique Game Conjecture) saying that it
is hard to approximate to within 2 − ε, for any constant ε[14].

Recently several generalizations of the vertex cover problem have been con-
sidered. Bshouty and Burroughs [4] were the first to study the k-vertex cover
problem. They gave a 2-approximation algorithm for this problem. Subsequently,
combinatorial algorithms with the same approximation guarantee were proposed,
see, e.g.[12,1,7,16]. In this generalization we are not required to cover all edges
of the graph, any edges may be left uncovered. More formally, in the k-vertex
cover problem, we wish to find a minimum-weight set of vertices that covers at
least k edges.

In this paper, we consider the incremental version of k-vertex cover problem
where k is not specified in advance, which we call Incremental Vertex Cover
Problem. Instead, authorizations for additional facilities arrive over time. Given
an instance of the k-vertex cover problem, an algorithm produces an incremental
sequence of vertices sets Ŝ = (S1, S2, · · · , Sn) such that (i) S1 ⊆ S2 ⊆ · · · ⊆ Sn ⊆
V ; (ii) for any k = 1, 2, · · · , n, Sk covers at least k edges, that is, any Sk is a
feasible set of k-vertex cover problem; (iii) for any k, cost(Sk) ≤ c · optk, where
optk denotes the corresponding optimum cost of k-vertex cover problem and c
is called competitive ratio.

For this incremental problem, Lin et.al[15] described a competitive algo-
rithm with competitive ratio 4α, where α is the approximation ratio of k-vertex
cover problem. Thus by the known best 2-approximation algorithms, their algo-
rithm presents the competitive ratio with 8 in polynomial time, and 4 in non-
polynomial time. We also note that, the known lower bound is the same as the
lower bound of approximation algorithm for k-vertex cover problem, and thus
for vertex cover problem, that is, it is 10

√
5 − 21 ≈ 1.36067 unless P = NP [6],

or 2 − ε assuming the unique games conjecture[14].
In this paper, we will improve the lower bound of the competitive ratio. Indeed,

we will show that no incremental sequence can have competitive ratio better
than φ, where φ =

√
5+1
2 ≈ 1.618 is the golden ratio, and this lower bound holds

without any computational complexity assumption.
Motivated by the analysis process of lower bound, we then consider the re-

stricted version of above incremental problem where k is restricted to one of
two given values (Named 2-IVC problem). We give a simply competitive algo-
rithm for 2-IVC problem to prove that the competitive ratio is at most φα. This
algorithm for 2-IVC problem is also optimal if we are permitted to use non-
polynomial time by the proof process of the lower bound. An restricted version
where k is restricted to one of three given values (Named 3-IVC problem) is also
studied in this paper. For this problem, we give an incremental algorithm with
ratio factor (1 +

√
2)α.

The rest of this paper is organized as follows. Section 2 gives the improved
lower bound. Section 3 and 4 present the analysis of 2-IVC and 3-IVC problem
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as well as competitive ratio analysis, respectively. The final section, section 5,
concludes the paper and describes future research.

2 Lower Bound Analysis

Theorem 1. The competitive ratio of the incremental vertex cover problem is
at least φ =

√
5+1
2 ≈ 1.618.

Proof. Consider the vertex weighted graph on five nodes shown in Fig. 1. In this
graph, each vertex in A, B, C, D has a weight of x = φ − 1 ≈ 0.618, and vertex
E has a weight of 1. Let us analysis any incremental algorithms.

Firstly, for the first one incremental request, any algorithm must choose one
node in set {A, B, C, D}, otherwise, the weight of the 1-vertex cover subgraph
chosen is 1, which is already off by the factor 1

x = 1
φ−1 =

√
5+1
2 from the optimal

value of x (which is attained by the solution {A} or {B}, or {C}, or {D}). Say,
by symmetry, this step chooses node A. Now for the forth incremental request,
the optimal incremental choose is E, resulting in an incremental solution {A, E}
with weight 1+ x. However, the optimal choice for 4-vertex cover problem is set
{E}, with a weight of 1.Thus, the solution chosen by the incremental algorithm is
again off from the optimal value by a factor of 1+x

1 = φ =
√

5+1
2 . This completes

the proof. ��
Note that the lower bound of φ holds without any restriction on the amount of
time that an algorithm may use to process each request, thus this lower bound
is true for any algorithm, even if we are permitted to use non-polynomial time.

A B

C D

E

Fig. 1. Illustration used for the proof of Theorem 1. Note: vertex E has a weight of 1,
and each vertex A,B, C, D has a weight of x = φ − 1.
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3 Incremental Algorithm for 2-IVC Problem

Motivated by the analysis process of lower bound, in this section, we will consider
the restricted incremental vertex cover problem where k is restricted to one of
two given values (Named 2-IVC problem), that is, for any given 1 ≤ k < l ≤ n,
we need to compute two vertex sets Sk ⊆ Sl with each Si covers at least i edges,
minimizing the competitive ratio

c = max{w(Sk)
optk

,
w(Sl)
optl

}

where w(Si) =
∑

v∈Si
w(v) for i = k, l.

The idea of algorithm and its analysis come from [9]. We now sketch the detail
analysis as following for clarity and completeness, and for our later use.

Incremental Algorithm 1
Step 1. For each i = k, l, using an approximation algorithm of i-vertex cover

problem to produce α-approximation solution sets Fk and Fl.
Step 2. Consider whether w(Fk) ≤ w(Fl). If it is not, then we simplify let

Fk = Fl. Now two new approximation sets Fk,Fl with the conditions that
w(Fk) ≤ w(Fl) is satisfied can be obtained.
This is because, if w(Fl) < w(Fk), then the new set Fk(new) = Fl satisfies
it covers at least l > k edges, and w(Fk(new)) = w(Fl)) < w(Fk) ≤ α · optk.

Step 3. If w(Fl) ≥ φw(Fk), then Sk = Fk, Sl = Fk ∪ Fl.
Step 4. Otherwise, we have w(Fl) < φw(Fk), then Sk = Sl = Fl.

Firstly note that the incremental solution of above algorithm satisfy Sk ⊆ Sl

and for each i = k, l, Si is a feasible solution for the i-vertex cover problem, that
is, Si covers at least i edges. And, the time consumption of above incremental
algorithm is the same as the approximation algorithm of k-vertex cover prob-
lem used in Step 1. Finally we prove the algorithm have a good performance
guarantees.

Theorem 2. The incremental algorithm for 2-IVC problem presents a compet-
itive ratio at most φα, where φ =

√
5+1
2 and α is the known approximation ratio

of the k-vertex cover problem.

Proof. When we have approximation solutions Fk and Fl, we have w(Fk) ≤
αoptk and w(Fl) ≤ αoptl.

Now, if w(Fl) ≥ φw(Fk), we have Sk = Fk, Sl = Fk ∪ Fl, then

w(Sk) = w(Fk) ≤ αoptk

and

w(Sl) = w(Fk ∪ Fl) ≤ w(Fk) + w(Fl) ≤ (
1
φ

+ 1)w(Fl) ≤ (
1
φ

+ 1)αoptl

Thus in this case, the competitive ratio is ( 1
φ + 1)α = φα.
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On the other hand, if w(Fl) < φw(Fk), we have Sk = Sl = Fl, then

w(Sk) = w(Fl) ≤ φw(Fk) ≤ φαoptk

and
w(Sl) = w(Fl) ≤ αoptk

So in this case, the competitive ratio is also φα. ��
Combing the above 2-approximation algorithm and the proof process of Theorem
1, we have

Corollary 1. For the 2-IVC problem, there exist an incremental algorithm with
competitive ratio 2φ ≈ 3.236 in polynomial time, and φ ≈ 1.618 in non-polynomial
time. And this competitive ratio is optimal if we are permitted to use the non-
polynomial time.

4 Incremental Algorithm for 3-IVC Problem

In this section, we consider the 3-restricted incremental vertex cover problem,
where k is restricted to one of three given values, that is, for any given 1 ≤ k <
t < l ≤ n, we need to compute three vertex sets Sk ⊆ St ⊆ Sl with each Si

covers at least i edges, minimizing the competitive ratio

c = max{w(Sk)
optk

,
w(St)
optt

,
w(Sl)
optl

}

where w(Si) =
∑

v∈Si
w(v) for i = k, t, l.

we will give an incremental algorithm with performance guarantee competitive
ratio. Firstly we can easily know the following fact.

Lemma 1. Let optk be the optimal weight of k-vertex cover problem, receptively,
for each k = 1, 2, ..., n. Then we have

opt1 ≤ opt2 ≤ · · · ≤ optn

Proof. This is because for each feasible solution of k-vertex cover problem, k =
2, 3, ..., n, it must also be a feasible solution of (k − 1)-vertex cover problem. ��
Note that by this lemma, for the 3-IVC problem, obtaining c = 3α approximation
is rather easy——firstly generating three α-approximation solutions Fk, Ft, Fl,
and simply let Sk = Fk, St = Fk ∪ Ft, Sl = Fk ∪ Fk ∪ Fl. The challenge in this
section is to improve the approximation below 3α, and indeed we present an
algorithm achieving factor (1 +

√
2)α.

The idea of our algorithm come from the analysis of Algorithm 1. Now for
the obtained three approximation solutions Fk, Ft, Fl, after a similarly done with
Step 2 of Algorithm 1, we can assure that there are three approximation solutions
Fk, Ft, Fl such that w(Fk) ≤ w(Ft) ≤ w(Fl). Now there are two cases to be
considered with a parameter λ, 1 ≤ λ ≤ 2 to be chosen later.
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CASE 1. w(Fl) ≤ λw(Fk)(< λw(Ft)).
For this case, let

Sk = St = Sl = Fl

Now for any i, Si covers at least i edges. And, in this case, we have for i = k, t, l,
w(Si) = w(Fl) ≤ λw(F1) ≤ αλoptk. Thus, the competitive ratio is αλ.

CASE 2. w(Fl) > λw(Fk).
Subcase 2.1. If w(Fl) > λw(Ft). That is, w(Fl) > λw(Ft) > λw(Fk).
Let Sk = Fk, St = Fk ∪Ft, Sl = Fk ∪Ft ∪Fl. For any i, Si also cover at least

i edges. And we have

w(Sk) = w(Fk) ≤ αoptk

w(St) ≤ w(Fk) + w(Ft) ≤ 2αoptt

w(Sl) ≤ w(Fk) + w(Ft) + w(Fl) ≤ (1 +
2
λ

)αoptl

Thus, the competitive ratio is α(1 + 2
λ).

Subcase 2.2. If w(Fl) < λw(Ft). That is, λw(Fk) < w(Fl) < λw(Ft) <
λw(Fl).

Let Sk = Fk, St = Fk ∪ Fl, Sl = Fk ∪ Fl. We have for any i, Si also cover at
least i edges. And

w(Sk) = w(Fk) ≤ αoptk

w(St) ≤ w(Fk) + w(Fl) ≤ (1 + λ)αoptt

w(Sl) ≤ w(Fk) + w(Fl) ≤ 2αoptl

Thus, the competitive ratio is α(1 + λ).
Now let 2

λ = λ, we get the competitive ratio (1 +
√

2)α ≈ 2.414α.
Summarized, we have the following result.

Theorem 3. The above algorithm for 3-IVC problem presents a competitive
ratio at most (1 +

√
2)α, where α is the known approximation ratio of the k-

vertex cover problem.

Corollary 2. For the 3-IVC problem, there exist an incremental algorithm with
competitive ratio 4.828 in polynomial time, and 2.414 in non-polynomial time.

5 Conclusion

This paper presents some results concerning the incremental vertex cover prob-
lem. We have given an improved lower bound of φ =

√
5+1
2 for this problem with-

out any complexity assumption, and then presented an upper bound of φα for the
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restricted version where k is permitted to use only two values, and (1 +
√

2)α for
the the restricted version where k is permitted to use only three values, where α
is the known approximation algorithm for the k-vertex cover problem.

There are still various open problems for future research. For example, the
optimal lower and upper bound of the competitive ratio for these problems are
still open.
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Abstract. This paper presents an iterative, highly parallelizable ap-
proach to find good tours for very large instances of the Euclidian ver-
sion of the well-known Traveling Salesman Problem (TSP). The basic
idea of the approach consists of iteratively transforming the TSP in-
stance to another one with smaller size by contracting pseudo backbone
edges. The iteration is stopped, if the new TSP instance is small enough
for directly applying an exact algorithm or an efficient TSP heuristic.
The pseudo backbone edges of each iteration are computed by a win-
dow based technique in which the TSP instance is tiled in non-disjoint
sub-instances. For each of these sub-instances a good tour is computed,
independently of the other sub-instances. An edge which is contained
in the computed tour of every sub-instance (of the current iteration)
containing this edge is denoted to be a pseudo backbone edge. Paths
of pseudo-backbone edges are contracted to single edges which are fixed
during the subsequent process.

1 Introduction

The Traveling Salesman Problem (TSP) is a well known and intensively studied
problem [1,5,10,17] which plays a very important role in combinatorial optimiza-
tion. It can be simply stated as follows. Given a set of cities and the distances
between each pair of them, find a shortest cycle visiting each city exactly once.
If the distance between two cities does not depend on the direction, the problem
is called symmetric. The size of the problem instance is defined as the number
n of cities. Formally, for a complete, undirected and weighted graph with n ver-
tices, the problem consists of finding a minimal Hamiltonian cycle. In this paper
we consider Euclidean TSP (ETSP) instances whose cities are embedded in the
Euclidean plane1.

Although TSP is easy to understand, it is hard to solve, namely NP-hard. We
distinguish two classes of algorithms for the symmetric TSP, namely heuristics

1 However, the ideas presented in this paper can be easily extended to the case in
which the cities are specified by their latitude and longitude, treating the Earth as
a ball (see [19]).

B. Chen (Ed.): AAIM 2010, LNCS 6124, pp. 119–130, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



120 C. Ernst et al.

and exact algorithms. For the exact algorithms the program package Concorde
[1,20], which combines techniques of linear programming and branch-and-cut,
is the currently leading code. Concorde has exactly solved many benchmark in-
stances, the largest one has size 85,900 [2]. On the other hand, in the field of
symmetric TSP heuristics, Helsgaun’s code [6,7,8,21] (LKH), which is an effec-
tive implementation of the Lin-Kernighan heuristic [11], is one of the best pack-
ages. Especially for the most yet not exactly solved TSP benchmark instances
[14,15,16,18,19] this code found the currently best tours.

An interesting observation [13] is that tours with good quality are likely to
share many edges. Dong et al. [4] exploited this observation by first comput-
ing a number of good tours of a given TSP instance by using several different
heuristical approaches, collecting the edges which are contained in each of these
(not necessarily optimal) tours, computing the maximal paths consisting of only
these edges, and contracting these maximal paths to single edges which are kept
fixed during the following process. By the contraction step, a new TSP instance
with smaller size is created which can be attacked more effectively. For some
TSP benchmark instances of the VLSI Data Set [18] with sizes up to 47, 608,
this approach found better tours than the best ones so far reported.

The idea of fixing edges and reducing chains of fixed edges to single edges is
not new. It has already been presented by Walshaw in his multilevel version of
Helgaun’s LKH [12]. Walshaw’s process of fixing edges however is rather naive
as it only matches vertices with their nearest unmatched neighbours instead of
using more sophisticated edge measures.

An alternative to the approach would be fixing without backbone contraction.
Thus the search space is considerably cut, although the size of the problem is not
reduced. This basic concept of edge fixing was already used by Lin, Kernighan
[11] and is implemented in LKH. The main difference between edge fixing without
backbone contraction and the approaches presented in [4,12] is the reduction of
the size by contracting. This reduction has great influence to the effectiveness
of the approach. The reason is that all the edges incident to an inner vertex of
the contracted paths do not appear in the new instance anymore. Another idea
related to [4] is Cook and Seymour’s tour merging algorithm [3], which merges
a given set of starting tours to get an improved tour.

The bottleneck of the approach presented in [4] when applied to huge TSP
instances is the computation of several good starting tours, i. e., tours of high
quality, by using several different TSP methods. Using different TSP heuristics
during the computation of the starting tours hopefully increases the probabil-
ity that edges contained in each of the starting tours are edges which are also
contained in optimal tours.

This paper focuses on TSP instances with very large sizes. Only a tiny part
of the search space of such a huge TSP instance can be traversed in reasonable
time. To overcome this problem, huge TSP instances are usually partitioned. In
our new approach, which handles ETSP, this partitioning is done by moving a
window frame across the bounding box of the vertices. The amount of the step-
wise shift is chosen as a fraction 1/s of the width (height) of the window frame
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so that all vertices of the TSP instance but those located near the boundary are
contained in exactly s2 windows (see Figure 1(b) where the basic idea is illus-
trated for s = 2); parameter s determines the shift amount of the window frame.
For the vertices of each window a good tour is computed by either an exact
algorithm, e. g., Concorde, or some heuristics, e. g., by Helsgaun’s LKH. If two
vertices u and w which are contained in the same s2 windows are neighbored
in each of the s2 tours constructed, the edge {u, w} is assumed to have high
probability to appear in an optimal tour of the original TSP instance, and we
call it a pseudo backbone edge. As in [4,12], maximal paths of pseudo backbone
edges are computed and contracted to single edges which are fixed during the
following process.

Our experiments show that (a) actually most of the fixed edges are contained
in an optimal tour, and (b) fixing edges and contracting chains of fixed edges
considerably reduce the size of the original TSP instance. Because of (b), the
width and height of the window frame applied in the next iteration can be
increased so that larger sections of the bounding box will be considered by each
window. The iteration stops, when the window frame is as large as the bounding
box itself. In this case, LKH is directly applied to the remaining TSP instance.
The experimental runs show that tours of high quality of huge TSP instances are
constructed by this approach in acceptable runtime. For instance, for World-TSP
the approach computes a tour of length 7,525,520,531, which is only 0,18% above
a known lower bound, within 45 hours on a standard personal computer, and a
tour of length 7,524,796,079, which is 0,17% above the lower bound, within 13
hours on a parallel computer with 32 processors. Similarly, it finds a tour for
the DIMACS 3,162,278-sized TSP instance [15], whose length is only 0,0465%
larger than the best tour currently known for that TSP instance, within 6 days,
and a tour for the DIMACS 10,000,000-sized TSP instance, whose length is
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Fig. 1. (a) Vertices embedded in the Euclidean plane with V = {1, . . . , 37}. (b) Four
neighbored windows if the width (height) of the window frame is half the width (height)
of the bounding box and parameter s is set to 2. The top left-hand (top middle-hand,
middle left-hand, middle middle-hand) window is marked by slanted (back slanted,
horizontal, vertical) lines. The vertices 5, 6, 7, 8, 11, and 12 are contained in each of
the four windows.
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only 0,0541% larger, within 20 days. Moreover, we observe a high-level trade-off
between tour length and runtime which can be controlled by modifying, e. g.,
parameter s or some other parameters.

The paper is structured as follows. Basic definitions with respect to TSP and
our approach are given in Section 2. The overall algorithm together with a de-
tailed illustration is described in Section 3. The parameters of the algorithm are
listed in Section 4. Section 5 presents the experimental results. Finally, conclu-
sions and suggestions for future work are given in Section 6.

2 Definitions

2.1 Basics

Let V be a set of n vertices embedded in the Euclidean plane (see Figure 1(a))
and let dist(u, w) be the Euclidean distance between the vertices u and w. A
sequence p = (v1, v2, . . . , vq) with {v1, v2, . . . , vq} ⊆ V is called a path of length q.
The costs dist(p) of such a path p is given by the sum of the Euclidean distances
between neighboring vertices, i. e., dist(p) :=

∑q−1
i=1 dist(vi, vi+1). The path is

called simple, if it contains each vertex of V at most once, i. e., vi = vj ⇒ i = j for
1 ≤ i ≤ q and 1 ≤ j ≤ q. It is called complete, if the path is simple and contains
each vertex of V exactly once. It is called closed, if vq = v1 holds. A complete path
p = (v1, v2, . . . , vn) can be extended to the closed path T = (v1, v2, . . . , vn, v1).
Such a closed path of V is called a tour.

2.2 Euclidean Traveling Salesman Problem

ETSP is the problem of finding a tour with minimum costs for a given set V
of vertices embedded in the Euclidean plane. An ETSP instance is constrained
by a set FE ⊆ {{vi, vj}; vi, vj ∈ V and vi �= vj} of fixed edges, if a tour
T = (v1, v2, . . . , vn, v1) has to be computed such that

(1) (∀{u, w} ∈ FE )(∃i ∈ {1, . . . , n}) {vi, v(i mod n)+1} = {u, w}
(2) there is no other tour T ′ which meets (1) such that dist(T ′) < dist(T ).

2.3 Contraction of a Simple Path

The basic step of our approach to compute good tours of very large ETSP
instances is to contract a path to a single edge which is fixed during the sub-
sequent iterative process. More formally, contraction of a simple path p = (vi,
vi+1, . . . , vj−1, vj) transforms a constrained ETSP instance (V,FE ) into a con-
strained ETSP instance (V ′,FE ′) with V ′ = V \ {vi+1, . . . , vj−1} and FE ′ =
(FE ∪ {{vi, vj}}) ∩ (V ′ × V ′). Thus the inner vertices vi+1, . . . , vj−1 of path p
are deleted – only the boundary vertices vi and vj of p remain in the new con-
strained ETSP instance – and the size of the new constrained ETSP becomes
smaller, unless i + 1 = j. (If i + 1 = j, the new instance is less complex than
the current instance in the sense that the edge {vi, vj} is fixed.) Figures 4(b)
and 4(c) illustrate the contraction process before and after the contraction of
the four simple paths (5, 11), (6, 12, 7, 8), (9, 18), and (23, 36, 13).
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Fig. 2. Moving a window frame across the bounding box with WINDOW SCALE= 2 and s =
2. Each window defines a sub-problem for which a good tour is computed, independently
of the neighboring sub-problems.

3 The Overall Algorithm

To solve very large (constrained) ETSP instances, we apply a window based
approach to iteratively find paths to be contracted. In each iteration a window
frame is moved across the bounding box of the vertices. As illustrated in Figure
2, the windows considered are not disjoint. In fact, we move the window by
the fraction 1/s of the width (height) of the window frame so that a vertex
is contained in up to s2 windows. To simplify matters, we shall illustrate our
approach with respect to s = 2, although s > 2 might lead to better tours and
actually does in some cases. The height and the width of the window frame are
determined by dividing height and width of the bounding box by a parameter
WINDOW SCALE – you find more details on this parameter in Section 4 – which is
chosen in such a way that the sub-problems induced by the windows have sizes
which can be efficiently handled by Helsgaun’s LKH [6,7,21] or by the exact
solver Concorde [20]. Since LKH finds optimal solutions frequently for small
instances and the sizes of the windows are rather small, we have not tried to
solve them with Concorde.

The sub-problems should contain a number of vertices greater than a lower
bound MNL (see Section 4) so that a corresponding good tour contains ample
information on the original TSP instance. In the following, we call a TSP instance



124 C. Ernst et al.

Fig. 3. A good tour is computed for each of the non-trivial sub-problems. In this
example, parameter MNL has been set to 3, so that there are no trivial instances.

containing less than MNL vertices a trivial instance. A tour is computed for each
of the non-trivial sub-problems. Figure 3 illustrates this step which is applied in
every iteration.

Now, our approach is based on the assumption, that two vertices u and w
which are contained in the same s2 non-trivial windows and neighboring in each
of the s2 tours constructed have high probability to appear in an optimal tour
for the original ETSP instance 2 – for s = 2, in some sense, the four windows
together reflect the surrounding area of the common vertices with respect to the
four directions. We call such an edge {u, w} pseudo backbone edge. 3

Figures 3 and 4(a) illustrate the notion of pseudo backbone edges. For this
purpose, consider only the four top left-hand windows. Figure 3 shows a tour for
each of these ETSP instances. Each of these four tours contain the edges {5, 11},
{6, 12}, {7, 12}, and {7, 8}. Thus, they are the pseudo backbone edges generated

2 If one of the windows which contain u and w is trivial, the edge {u, w} is not
considered as pseudo-backbone.

3 Note that edges at the boundary of the TSP instance cannot be contained in s2 non-
trivial windows and therefore cannot be pseudo backbone edges. This may cause
a problem if there are a lot of vertices at the boundary because, in this case, the
original TSP instance cannot be reduced to such a degree that the final TSP instance
is small enough to be efficiently solved by LKH. To overcome this problem, we shift
the window frame above the boundary line.
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(a) Pseudo backbone edges
found by the four top left-
hand windows

(b) Pseudo backbone edges
found in the current itera-
tion.

(c) Constrained ETSP af-
ter contraction of the paths
shown in (b).

Fig. 4. Pseudo backbone contraction

by these four tours. The set of all pseudo backbone edges generated by the
tours computed in this iteration (Figure 3) is shown in Figure 4(b). The pseudo
backbone edges can be partitioned into a set of maximal paths. In our running
example the set consists of four paths, namely (5, 11), (6, 12, 7, 8), (23, 36, 13),
and (9, 18). Now, these maximal paths are contracted, as described in Section
2.3 which leads to a new constrained ETSP with smaller or equal size (see Figure
4(c)).

This process is iteratively repeated. The parameter WINDOW SCALE which de-
termines the width and height of the window frame is re-adjusted, i. e., decreased,
in each iteration. The iteration stops if WINDOW SCALE is set to 1, i. e., if the win-
dow frame spans the whole bounding box. In this case, LKH is directly applied
to the current constrained ETSP instance. Finally the fixed edges are recursively
re-substituted which results in a tour of the original ETSP instance.

4 The Algorithm’s Parameters

The main parameters of the algorithm are the following.

1. The scale parameter IWS 4 which determines the width and height of the
window frame applied in the first iteration, namely

widthframe =
⌈

widthbounding box

WINDOW SCALE

⌉
and heightframe =

⌈
heightbounding box

WINDOW SCALE

⌉
with WINDOW SCALE := IWS.

2. D 5 which is the factor relative to the width (height) of the window frame by
which the window frame is shifted, i. e., D= 1/s.

4 IWS is an abbreviation for INITIAL WINDOW SCALE.
5 D is an abbreviation for DISPLACEMENT.
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3. The minimum number MNL 6 of vertices which a window has to contain so
that a tour is computed for that sub-problem. If a window contains less ver-
tices than MNL, no tour of the vertices contained in that window is computed
(and no edge contained in that window becomes a pseudo backbone edge),
as those tours would be suitable to only a limited extent for finding good
pseudo backbone edges.

4. The parameter WGF 7 which is the factor by which the window frame is re-
adjusted after each iteration, i. e.,

WINDOW SCALEnew =
WINDOW SCALEold

WGF
.

Actually, the parameter WGF can be assigned values of the enumeration type
{slow, medium, fast}. The default assignments to the values slow, medium,
and fast are 1.2, 1.3, and 1.4.

5 Experimental Results

We performed the following three types of experiments:

1. We made an analysis in which we determined which of the edges that are
fixed during our approach are actually present in an optimal solution.

2. We investigated the reduction rates reached by our approach.
3. We applied our approach to some huge TSP instances and compared costs

(and running times, if possible) to Helsgaun’s LKH.

Our first experiment deals with the question of how many edges are fixed by
our approach and how many of these fixed edges are contained in at least one
optimal tour. Unfortunately, we couldn’t perform this experiment on huge TSP
instances, but had to use middle-sized TSP instances consisting of “only” some
thousands of vertices as we need to know the optimal solutions of the instances
for being able to compute the number of fixed edges contained in optimal tours.
Actually, as we also do not know all optimal solutions of middle-sized TSP
instances, we counted the number of fixed edges contained in one given optimal
solution, i. e., we computed a lower bound of the number of fixed edges contained
in optimal solutions. Table 1 shows the result of this experiment with respect to
the national TSP instances Greece (9,882 cities), Finland (10,639 cities), Italy
(16,862 cities), Vietnam (22,775 cities), and Sweden (24,978 cities). The table
gives us an impression of how many of the edges which are fixed by our approach
are contained in an optimal tour, namely between 93% and 96%. Remember,
this is only a lower bound; the ratio could be yet much higher. In the instances
of Table 1 the ratio between the number of fixed edges and the size of the
instance which is between 48% and 66% (see the second and third column of

6 MNL is an abbreviation for MIN NODE LIMIT.
7 WGF is an abbreviation for WINDOW GROWTH FACTOR.
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Table 1. How many edges which are fixed are contained in a given optimal solution?
The second column shows the number of cities of the instances, the third column the
number of edges fixed by our approach, and the fourth one the number of fixed edges
which are contained in a given optimal solution. The displacement D had been set to 1/2
during this experiment. The experiment has been performed on a standard personal
computer.

instance size fixed edges thereof optimal fraction runtime

Greece 9 882 4,739 4,436 93,61 % 475 s
Finland 10,639 4,840 4,655 96,18 % 376 s
Italiy 16,862 10,180 9,714 95,42 % 876 s

Vietnam 22,775 11,445 10,820 94,54 % 1,602 s
Sweden 24,978 16,523 15,470 93,63 % 1,502 s

Table 1) is unsatisfactory. Note that this unsatisfactory percentage is due to the
fact that the TSP instances taken in this experiment are relative small and we
set the parameter value MNL to about 1,000 which is a reasonable value for this
parameter when the approach is applied to such middle-sized TSP instances.
However, this yields comparatively many trivial windows so that comparatively
many edges are excluded from becoming a pseudo backbone. Table 2 exemplarily
shows how many cities are typically eliminated during each of the iterations
when the approach is iteratively applied to huge TSP instances. (Note that the
number of eliminated cities is a lower bound for the number of fixed edges.) For
the World-TSP which consists of 1,904,711 cities we obtain a size reduction of
98% from 1,904,711 vertices to 33,687 vertices.

Currently, the best known tour for World-TSP has been found by Keld Hels-
gaun using LKH. The length of this tour is 7,515,877,991 which is at most
0,0487% greater than the length of an optimal tour, as the currently best lower
bound for the tour length of the World-TSP is 7,512,218,268 (see [19]). However,
no overall running time comprising the running time of both, the computation of
good starting tours and the iterative k-opt steps of LKH are reported. Helsgaun
reports that by assigning the right values to the parameters, LKH computes a
tour for the World-TSP in an hour or two 8 which is at most 0,6% greater than
the length of an optimal tour [7]. By using sophisticated parameters, LKH even
finds better tours (up to only 0.12% greater than the length of an optimal tour)
in a couple of days [9].

We applied our iterative approach to the World-TSP instance, too. Using
appropriate parameter values our approach constructs a tour for World-TSP of
length 7,525,520,531 which is at most 0,18% above the lower bound in less than
two days on a standard personal computer and a tour of length 7,530,566,694
which is at most 0,2442% greater than the length of an optimal tour in about
7 hours; it computes a tour with length 7,524,796,079 (gap=0.1674%) in less
than 13 hours on a parallel computer with 32 Intel Xeon 2.4GHz processors.
8 The computation time of 1,500 seconds, Helsgaun states in [7, pages 92-93], does not

include the computation time of the starting tour [9].
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Table 2. How many edges are fixed by our approach when applied to a huge instance?
Information about the reduction rates reached by our approach when applied to the
World-TSP. After 14 iterations, LKH is directly applied to the remaining TSP instance
consisting of 33,687 cities.

Iter- Number of cities eliminated Number of paths contracted Size of the new
ation in this iteration in this iteration TSP instance

1 103,762 20,811 1,800,949
2 228,887 56,007 1,572,062
3 325,034 87,511 1,247,028
4 327,625 100,443 919,403
5 271,871 95,234 647,532
6 194,280 80,672 453,252
7 148,191 62,884 305,061
8 94,678 47,089 210,383
9 70,599 34,432 139,784
10 43,061 24,673 96,723
11 21,082 19,292 75,641
12 18,830 14,574 56,811
13 15,265 11,286 41,546
14 7,859 9,496 33,687

Table 3. Trade-off between runtime and tour length. The table presents the best
experimental results which we obtained by our approach applied to World-TSP. Col-
umn 6 gives the gaps between the lengths of the tours with respect to the lower bound
7,512,218,268 on the minimum tour length.

standard personal computer

D MNL IWS WGF tour length gap [%] runtime

1/3 20,000 40 slow 7,520,207,210 0,1063 % 6 days 21 hours
1/3 10,000 30 slow 7,521,096,881 0,1181 % 5 days 12 hours
1/3 10,000 17 slow 7,522,418,605 0,1357 % 5 days 8 hours
1/2 20,000 18 medium 7,525,520,531 0,1770 % 1 day 21 hours
1/2 20,000 18 medium 7,528,686,717 0,2192 % 1 day 15 hours
1/2 5,000 40 medium 7,529,946,223 0,2359 % 1 day 10 hours
1/2 5,000 100 medium 7,533,272,830 0,2802 % 1 day 10 hours

parallel computer with 32 Intel Xeon 2.4Ghz processors

D MNL IWS WGF tour length gap [%] runtime

1/2 20,000 50 medium 7,524,796,079 0,1674 % 0 day 13 hours
1/2 20,000 15 medium 7,529,172,390 0,2256 % 0 day 11 hours
1/2 10,000 30 fast 7,530,566,694 0,2442 % 0 day 7 hours
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Table 4. Best experimental results of our approach applied to the DIMACS instances
E3M.0 and E10M.0 [15]. Column 8 gives the gap to the current best known tour [15].

standard personal computer

size D MNL IWS WGF tour length gap [%] runtime

E3M.0 3,162,278 1/3 10,000 16 slow 1,267,959,544 0,0465 % 5.71 days
1/3 10,000 20 slow 1,268,034,733 0,0525 % 5.46 days
1/2 20,000 12 slow 1,268,280,730 0,0719 % 4.08 days
1/2 10,000 30 medium 1,268,833,812 0,1156 % 1.62 days

E10M.0 10,000,000 1/3 10,000 30 slow 2,254,395,868 0,0541 % 19.67 days
1/2 10,000 30 medium 2,256,164,398 0,1326 % 4.25 days
1/2 5,000 40 slow 2,260,519,918 0,3259 % 2.62 days

Actually, we exploited one of the central properties of our iterative approach,
namely the property that the approach can be highly parallelized, as the tours
for the windows of an iteration can be computed in parallel.

Table 3 shows our experimental results with respect to World-TSP for both,
runs on a standard personal computer and runs on the above mentioned parallel
machine. Table 4 summarizes the results with respect to two instances of the
DIMACS TSP Challenge which have sizes of 3,162,278 and 1,000,000 vertices,
respectively [15]. Note the general high-level trade-off provided by the approach:

– the smaller the factor D by which the window frame is shifted, the better the
tours and the worse the runtime, although the runtimes remain acceptable;

– the faster the increase of the window frame, the better the runtime and the
worse the tours, although the tour lengths remain very good.

6 Future Work

One problem with the approach presented in this paper arises, if the vertices are
non-uniformly distributed, i. e., if there are both, regions with very high densities
and regionswith very low densities. In order to partition the regions of high density
in such a way that LKH can handle the windows efficiently with respect to both,
tour quality and running time, the parameter IWS should be large. However this
results in many trivial windows located in regions of low density. To overcome this
problem, we reason about recursion which can be applied to windows containing
too much vertices and about non-uniform clustering of dense regions.
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Abstract. We discuss two variations of the moving network Voronoi diagram.
The first one addresses the following problem: given a network with n vertices
and E edges. Suppose there are m sites (cars, postmen, etc) moving along the
network edges and we know their moving trajectories with time information.
Which site is the nearest one to a point p located on network edge at time t′?
We present an algorithm to answer this query in O(log(mW log m)) time with
O(nmW log2 m + n2 log n + nE) time and O(nmW log m + E) space for
preprocessing step, where E is the number of edges of the network graph (the
definition of W is in section 3). The second variation views query point p as a
customer with walking speed v. The question is which site he can catch the first?
We can answer this query in O(m + log(mW log m)) time with same prepro-
cessing time and space as the first case. If the customer is located at some node,
then the query can be answered in O(log(mW log m)) time.

1 Introduction

Voronoi diagram is a fundamental technique in computational geometry and plays im-
portant roles in other fields such as GIS and physics [3]. The major goal of Voronoi
diagram is to answer the nearest-neighbor query efficiently. Much has been written
about variants of the Voronoi diagrams and the algorithms for computing the Voronoi
diagrams in various fields. Many variants of the Voronoi diagrams give different defini-
tions of distance in different fields, without limiting to the Euclidean distance [8].

The network Voronoi diagram [9, 7, 5, 2] divides a network (e.g. road network) into
Voronoi subnetworks. A network Voronoi diagram is a specialization of a Voronoi dia-
gram in which the locations of objects are restricted to the links that connect the nodes
of the network. The distance between objects is defined as the length of the shortest
network distance (e.g. shortest path or shortest time), instead of the Euclidean distance.

For network Voronoi diagram, any node located in a Voronoi region has a shortest
path to its corresponding Voronoi site that is always less than that to any other Voronoi
site. In this way, the entire graph is partitioned into several subdivisions as shown in
figure 1. We can see that the network Voronoi edges intersect with the network edges in
most cases. This means that a network edge may be divided into two parts and placed
into two adjacent Voronoi regions.

To construct the network Voronoi diagram, we have to measure network distance
between nodes and Voronoi sites. Therefore a shortest-path searching algorithm is re-
quired. In [5], Erwig presented a variation of Dijkstra’s algorithm, the parallel Dijkstra

B. Chen (Ed.): AAIM 2010, LNCS 6124, pp. 131–140, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. The network Voronoi diagram. S1, S2 and S3 are Voronoi sites and P1 − P18 are nodes.

algorithm, which can be used to compute the multiple source shortest paths, to construct
the network Voronoi diagram.

There are two types of dynamic network Voronoi diagram. The first one is caused
by the changes of edge weight. In [10], Ramalingam and Reps present an incremental
search method, the Dynamic SWSF-FP algorithm, to handle “multiple heterogeneous
modification” between updates. The input graph is allowed to be reconstructed by an
arbitrary mixture of edge insertions, edge deletions, and edge-length changes. The sec-
ond type of dynamic network Voronoi diagram is caused by moving sites. In paper [4],
Devillers and Golin discuss the moving Voronoi diagram based on Euclidean distance
on two-dimension. They assume that each site is moving along a line with constant
speed. They give two types of the “closest”, namely closest in static case and kinetic
case. In the static case the meaning of “closest” is quite clear. The closest site is the
nearest site as to a query point q. In kinetic case, the closest site is the site a customer
(who starts from q at time t0 with speed v) can reach quickest.

In this paper we study the problem of moving network Voronoi diagram when all
sites S1, S2, ..., Sm move on the edges of network continuously. Every edge of the net-
work is endowed with a positive value which denotes the network length (may not
satisfy the triangle inequality) of edge. We can imagine that the set of Voronoi sites is
the set of public service platform (bus, postman, policeman, etc). We assume that each
site Si (1 ≤ i ≤ m) moves with constant velocity vi and their trajectories with time
information are also know in advance. n nodes are denoted as P1, P2, ..., Pn. Then the
kinetic state of site Si can be described as follows:

Si(t) ∈ edge[Pi0, Pi1], t ∈ [t0, t1]

Si(t) ∈ edge[Pi1, Pi2], t ∈ [t1, t2]

...

Si(t) ∈ edge[Pi(w−1), Piw], t ∈ [tw−1, tw]

where Si(t) is the point where the site Si is located at time t. We use length(Pa, Pb) to
denote the length of edge[Pa, Pb]. We assume that all edges are undirected, so
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length(Pa, Pb) = length(Pb, Pa). When the site Si moves on edge[Pa, Pb] (from Pa

to Pb) during time interval [t1, t2], we have:

length(Si(t), Pa) = length(Pa, Pb)(t − t1)/(t2 − t1)

We use d(Pa, Pb) to denote the shortest network distance between Pa and Pb. If the
length of edge is not satisfied with the triangle inequality, the d(Pa, Pb) may not equal
length(Pa, Pb).

In this paper we want to be able to answer the following two different types of queries
in continuous-time moving network:

1. Static case query StaticNearest(q, t′, v): given a customer at location q (q is on
edge of network), to find the nearest site at time t′. That is, given q, t′, return i such
that

d(q, Si(t′)) ≤ d(q, Sj(t′)), j = 1, . . . , m

2. Kinetic case query KineticNearest(q, t′): The query inputs are q, t′, and v > 0.
They specify a customer located at q at time t′ with walking speed v. The customer
(who can only move on the edges of the network) wants to reach a site as soon as
possible. The problem here is to find the site the customer can reach quickest. Set

tj = min{t ≥ t′ : (tj − t′)v = d(q, Sj(t))}, j = 1, . . . , m

be the first time that the customer can catch site Sj starting from q at time t′. Then
the query return i such that ti = min{t1, t2, ..., tm}.

The structure of the paper is as follows. Section 2 gives some definitions that we need in
the whole paper. We discuss the algorithms for two queries StaticNearest(q, t′, v) and
KineticNearest(q, t′, v) in section 3 and 4 respectively. Finally we give conclusions
in section 5.

2 Preliminaries

In moving network Voronoi, sites move with constant velocity continuously. When a
site moves on the edge during some time interval, for example in figure 2, Si move
from Pa to Pb during time interval [t1, t2], for any other node Pj that is connected (we
assume the graph is a connected graph) with Pa and Pb,

d(Pj , Si(t)) = min{d(Pj , Pa) + length(Pa, Si(t)), d(Pj , Pb) + length(Pb, Si(t))}
where t ∈ [t1, t2]. Each site Si moves on the preestablished path with constant velocity
vi (see figure 3). For a node Pj , the network distance between Pj and Si(t) can be
described by segmented functions as follows:

d(Pj , Si(t)) = min{d(Pj , Pi0) + vi(t − t0), d(Pj , Pi1) + vi(t1 − t)}, t ∈ [t0, t1]

· · ·
d(Pj , Si(t))=min{d(Pj , Pi(w−1))+vi(t−tw−1), d(Pj , Piw)+vi(tw−t)}, t∈ [tw−1, tw]
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Pj

Pa PbSi

Fig. 2. A site Si moves from Pa to Pb

Pj

Si

· · ·
Pi0 Pi1 Pi2 Pi(w−1) Piw

[t0, t1] [t1, t2] [tw−1, tw]

Fig. 3. A site Si moves from Pi0 to Piw

Lemma 1. All segmented functions d(Pj , Si(t)) (1 ≤ i ≤ m, 1 ≤ j ≤ n) can be
computed in O(n2 log n + nE + Y ) time and O(E + Y ) space, where n and E are the
number of nodes and edges of the network respectively, and Y is the total number of
segmented functions for all nodes.

Proof. If we already know the shortest path tree rooted at Pj , then each d(Pj , Si(t))
can be computed in constant time. Each shortest path tree rooted at Pj can be computed
in O(n log n + E) time using Dijkstra’s shortest path algorithm by implementing the
priority queue with a Fibonacci heap. Since we have n nodes, we need O(n2 log n+nE)
time to compute all n shortest path trees. And we need extra Y time to compute all
segmented functions. Therefore the total time is O(n2 log n + nE + Y ). For the space,
we need O(E) space to store the network graph and O(Y ) space to store all segmented
functions. Therefore, the total space is O(E + Y ).

3 Point Location in Static Moving Network

As we described above, for an arbitrary node Pj , the network distance d(Pj , Si(t)) is a
piecewise linear function, and it consists of at most wi positive slope and wi negative
slope line segments, where i = 1, 2, . . . , m. Figure 4 shows an example of the network
distance function diagram of d(Pj , S1(t)), d(Pj , S2(t)), d(Pj , S3(t)). Pj’s nearest site
is S3 during time intervals [t0, t1], [t4, t5], [t6, t7]. During time intervals [t2, t3], [t8, t9],
Pj’s nearest site is S1. Hence we only need to compute the lower envelop of these
piecewise linear functions d(Pj , Si(t)), where i = 1, 2, . . . , m.

We use the divide-and-conquer algorithm to compute the lower envelope of those
segmented functions. To compute the lower envelop h(t) = min1≤i≤m{d(Pj , Si(t))},
we partition {d(Pj , S1(t)), d(Pj , S2(t)), . . . , d(Pj , Sm(t))} into two parts,
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t1 t2 t3 t4 t5 t6 t7 t8 t9t0

d(Pj , S1(t))
d(Pj , S2(t))

d(Pj , S3(t))

Fig. 4. The network distance function diagram of d(Pj , Si(t)), i = 1, 2, 3

{d(Pj , S1(t)), d(Pj , S2(t)), . . . , d(Pj , S�m/2�(t))} and {d(Pj , S�m/2�+1(t)),
d(Pj , S�m/2�+2(t)), . . . , d(Pj , Sm(t))}, then compute min{d(Pj , S1(t)), d(Pj , S2(t)),
. . . , d(Pj , S�m/2�(t))} and min{d(Pj , S�m/2�+1(t)), d(Pj , S�m/2�+2(t)), . . . ,
d(Pj , Sm(t))} recursively and finally merge them together to obtain h(t).

Now we consider merging two distance functions d(Pj , Sk(t)) and d(Pj , Sl(t)) (see
figure 5).

t

d

d(Pj , Sk(t)) d(Pj , Sl(t))

t

d min{d(Pj , Sk(t)), d(Pj , Sl(t))}

Fig. 5. The example of merging two functions: d(Pj , Sk(t))and d(Pj , Sl(t))

Lemma 2. There are at most 2(wk+wl)−1 intersections between functions d(Pj, Sk(t))
and d(Pj , Sl(t)).

Proof. d(Pj , Sk(t)) and d(Pj , Sl(t)) are two continuous and piecewise linear polyg-
onal curves. Suppose the function d(Pj , Sk(t)) is composed of x line segments (1 ≤
x ≤ 2wk) and the time intervals for those line segments are [tbegin, t1], [t1, t2], . . .,
[tx−1, tend]. Similarly suppose the function d(Pj , Sl(t)) is composed of y line seg-
ments (1 ≤ y ≤ 2wl) and the time intervals for those line segments are [tbegin, t′1],
(t′1, t′2], . . ., (t′y−1, t

′
end]. If we mix those two set of intervals, we get x + y − 1 new

intervals. At each new interval, there is at most one intersection between two functions.
Hence the total number of intersections is x + y − 1 ≤ 2(wk + wl) − 1.
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It seems that the lower envelope of d(Pj , Sk(t)) and d(Pj , Sl(t)) has at most 4(wk +
wl)− 2 line segments since there are 2(wk + wl)− 1 intervals and each interval could
have at most two line segments. However, we could prove there are fewer number of
line segments of min{d(Pj , Sk(t)), d(Pj , Sl(t))}.

Lemma 3. The function min{d(Pj , Sk(t)), d(Pj , Sl(t))} is composed of at most
3(wk + wl) line segments.

Proof. The function d(Pj , Sk(t)) is composed of x line segments (1 ≤ x ≤ 2wk).
d(Pj , Sl(t)) is composed of y line segments (1 ≤ y ≤ 2wl). We define a valley as a
convex chain such that if we walk on the convex chain from left to right, we always
make left turn from one line segment to the next line segment (see Figure 6). Thus
d(Pj , Sk(t)) consists of at most x/2 valleys and d(Pj , Sl(t)) consists of at most y/2
valleys. For each valley of d(Pj , Sk(t)), it can cut one line segment of d(Pj , Sl(t)) into
three line segments, of which at most two could be in the lower envelope. It is similar for
valleys of d(Pj , Sl(t)). Therefore, besides the original line segments of two polylines,
x/2 + y/2 valleys could add at most x/2 + y/2 line segments for the lower envelope.
The total number of line segments of the lower envelope is 3

2 (x + y) ≤ 3(wk + wl).

d(Pj , Sk(t))

d(Pj , Sl(t))

valleys

Fig. 6. One line segment of d(Pj , Sk(t)) is cut into 5 line segments by two valleys of
d(Pj , Sl(t)), of which 3 line segments (red) are in the lower envelope of d(Pj , Sk(t)) and
d(Pj , Sl(t)). Notice the number of valleys does not change after merging.

Lemma 4. The lower envelope h(t) = min{d(Pj , S1(t)), d(Pj , S2(t)), . . . ,
d(Pj , Sm(t))} can be computed in O(mW log2 m) time and O(mW log m) space
where W = max{2w1, 2w2, . . . , 2wm} and it consists of O(mW log m) line segments.

Proof. The first step of our algorithm is to compute min{d(Pj , S2a+1(t)), d(Pj ,
S2a+2(t))} where a = 0, . . . , m

2 − 1. According to lemma 3, each function min{d(Pj ,
S2a+1(t)), d(Pj , S2a+2(t))} can be computed in at most 3W time, which is composed
of at most 3W line segments. The second step is to compute min{min{d(Pj , S4a+1(t)),
d(Pj , S4a+2(t))}, min{d(Pj , S4a+3(t)), d(Pj , S4a+4(t))} where a = 0, . . . , m

4 − 1. It
seems each min{min{d(Pj , S4a+1(t)), d(Pj , S4a+2(t))}, min{d(Pj , S4a+3(t)), d(Pj ,
S4a+4(t))} consists of 9W line segments. However, we observe that the number of the
valleys does not change as the number of line segments of lower envelope increases
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after merging (see Figure 6). That means each lower envelope after first step consists
of at most W valleys and 3W line segments. After second step, each lower envelope
consists of at most 2W valleys and 2 × 3W + 2W = 8W line segments. Let N(i)
denote the number of line segments of each lower envelope after ith (1 ≤ i ≤ log m)
step. Then we have:

N(1) = 2 × W + W = (2 + 1)W = 3W

N(2) = 2 × 3W + 2W = (3 + 1)2W = 4 × 2W = 8W

N(3) = 2 × 8W + 4W = (4 + 1)4W = 5 × 4W = 20W

N(4) = 2 × 20W + 8W = (5 + 1)8W = 6 × 8W = 48W

. . .

N(i) = 2N(i − 1) + 2i−1W = (i + 2)2i−1W

. . .

N(log m) = 2N(log m − 1) + 2log m−1W = (log m + 2)2log m−1W

= mW (2 + log m)/2 = O(mW log m)

The computation time for ith step is m
2i N(i) = m

2i (i + 2)2i−1W . The total compu-

tation time is
∑log m

i=1
m
2i (i + 2)2i−1W = O(mW log2 m). The space complexity is

O(mW log m) since we need so much space to store O(mW log m) line segments of
lower envelope. Note that Agarwal and Sharir [1] prove that for mW line segments, the
size of the lower envelope is Θ(mWα(mW )) where α(mW ) is the inverse of Acker-
mann’s function and the lower envelope can be computed in O(mW log(mW )) time.
Our algorithm is better than the algorithm in paper [1] when W is much greater than m.

So far we compute the lower envelope for one node. The envelopes for all n nodes can
be computed in O(nmW log2 m) time. If the query point q is on some node Pj , we can
use binary search for the query time t′ on lower envelope associated with Pj to find the
nearest site in O(log(mW log m)) time. If the query point q is on some edge [Pa, Pb],
we can just perform the same binary search on both lower envelopes associated with Pa

and Pb and then plus the extra length from q to Pa and Pb respectively. The minimum
one of those two values and its corresponding site is the answer to the query. Therefore
we have following theorem:

Theorem 1. For a static query of nearest site in moving network, we can answer it in
log(mW log m) time with O(nmW log2 m+n2 log n+nE) time and O(nmW log m+
E) space for preprocessing step.

Note that the preprocessing time and space includes the time and space to compute
segmented functions that are O(n2 log n + nE + Y ) and O(E + Y ) where Y ≤ mW .
Sometimes, the number of line segments X of lower envelope could be very small.
Here we give an output sensitive algorithm to compute the lower envelope. The general
idea of the algorithm is as follows: first, we find function min1≤k≤m{d(Pj , Sk(t0))},
which means the lowest line segment le at time t0. Suppose le corresponds the site
Se. Then compute the minimum time intersection point of d(Pj , Sk(t)) (1 ≤ k ≤ m
and k �= e) with le and get the next line segment le′ of lower envelope. We compute
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the intersection point from left to right. If the current line segment on d(Pj , Sk(t)) has
no intersection with le then we try the next line segment until there is an intersection
point or d(Pj , Sk(t)) is out of the time interval of le. The line segments of d(Pj , Sk(t))
without intersection with le will not be tested again later since they are above le and can
not be the lower envelop. Let le = le′ and we perform above process repeatedly until the
end of time. The time complexity of this output sensitive algorithm is O(mX + Y ) =
O(mX + mW ) and we need O(X) space to store the lower envelope. Therefore if
X ≤ W , then the preprocessing time and space could be reduced to O(n2 log n +
nE + nWm) and O(E + nmW ) respectively.

4 Point Location in Kinetic Moving Network

We now consider kinetic case queries. Imagine that the moving sites are postmen. There
is a customer at a query point on the road with walking speed v and searching for a
postman that he can reach in minimum time for delivering his package. Both postmen
and the customer can only move on the road.

These types of queries differ from the static case query in the previous section. It is
possible that the customer might reach a postman further away (that is traveling toward
it) quicker than a nearby postman (that is traveling away from it). The answer to the
query depends strongly on v. Note that if we let v approach infinity, then the problem
becomes the static query case.

We first consider the query KineticNearest(Pj, t
′, v), which means the customer

lies on the node Pj at t′, it is clear that customer can reach the point P if d(Pj , P ) =
v(t − t′) at time t. So we add a line d = v(t − t′) over d(Pj , Si(t)), i = 1, 2, . . . , m
(see figure 7). If d = v(t − t′) intersects with d(Px, Si(t)), i = 1, 2, . . . , m at earliest
time t′′, then Sx which corresponds to the line segment intersecting with d = v(t − t′)
at t′′ would be the site the customer can reach first. Actually it equivalents to find the
intersection point of d = v(t− t′) with lower envelope of d(Pj , Si(t)), i = 1, 2, . . . , m
(see figure 8). As we discussed in previous section, for each node Pj , the lower envelope
min{d(Pj, Si(t)), i = 1, 2, . . . , m} can be computed in O(mW log2 m) times, which
consists of O(mW log m) line segments. Then we only need to consider the intersection
between function d = v(t − t′) and function min{d(Pj, Si(t)), i = 1, 2, . . . , m} (see
figure 8).

t

d

d(Pj , S1(t))

d(Pj , S2(t))

d(Pj , S3(t))

d = v0(t− ta)

t′ t′′

Fig. 7. The diagram of function d(Pj , Si(t)), i = 1, 2, 3 and d = v(t − t′)
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t

d

t′′

min{d(Pj , Si(t)), i = 1, 2, 3}

t′

d = v(t− t′)

tstart tend

Fig. 8. The diagram of function min{d(Pj , Si(t)), i = 1, 2, 3} and d = v(t − t′)

If we already compute the function min{d(Pj , Si(t)), i = 1, 2, . . . , m} in prepro-
cessing step, how to get the first intersection with d = v(t − t′). In [6], Leonidas
Guibas gave an algorithm: Given a segment e inside P , preprocess P so that for each
query ray r emanating from some point on e into P , the first intersection of r with
the boundary of P can be calculated in O(log V ) time( V denote the number of vertex
of polygon P ), after given a triangulation of a simple polygon P . Actually the lower
envelope min{d(Pj , Si(t)), i = 1, 2, . . . , m} with two vertical line segments which
correspond to t = tstart and t = tend (see figure 8) and the horizontal line segment of
time axis can be treated as a simple polygon. The line d = v(t − t′) can be treated as
a ray emanating from point (t′, 0) on horizontal line segment along the time axis. Thus
the intersection point can be computed in O(log(mW log m)) time, which means the
KineticNearest(Pj, t

′, v) can be answered in O(log(mW log m)) time.
Above we assume that the customer locates exactly on some node. But the customer

may locate in the middle of some edge. So the query becomes KineticNearest(Ps ∈
edge[Pa, Pb], t′, v). Let length(Ps, Pa) = L1, length(Ps, Pb) = L2, and ta = L1/v,
tb = L2/v. If the customer meets some site on some edge other than edge[Pa, Pb], then
we know that the customer must walk to Pa or Pb first. Therefore the problem becomes
to find than the first intersection between function min{d(Pa, Si(t)), i = 1, 2, . . . , m}
and function d = v(t − t′ − ta) where t ≥ t′ + ta, and the first intersection between
function min{d(Pb, Si(t)), i = 1, 2, . . . , m} and function d = v(t − t′ − tb) where
t ≥ t′ + tb. This is exactly the same as the previous case. If the customer meets some
site on edge [Pa, Pb], then we know they must meet during the site travels through the
edge [Pa, Pb] at first time (note that one site could travel through the same edge many
times). In preprocessing step, we can extract the line segment of min{d(Pa, Si(t)), i =
1, 2, . . . , m} which corresponds to one site traveling through the edge [Pa, Pb] from Pa

to Pb at first time. Then the intersection point between the extracted line segment and the
line segment d = v(t′+ta−t) where (t′ ≤ t ≤ t′+ta) is the meeting time and position
between the customer and that site. Note that there could be no intersection between two
line segments. Since any of m sites could meet the customer on edge [Pa, Pb], we just
compute all intersection points in O(m) time. Similarly we can compute the intersection
point if the customer meet some site when the site travels through the edge [Pa, Pb] from
Pb to Pa at first time. Then we have O(m) intersection points on d = v(t′ + ta − t)
where (t′ ≤ t ≤ t′ + ta), O(m) intersection points on d = v(t′ + tb − t) where
(t′ ≤ t ≤ t′ + tb), one intersection on d = v(t − t′ − ta) where t ≥ t′ + ta, and
the other intersection on d = v(t − t′ − tb) where t ≥ t′ + tb. The minimum time
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of all those O(m) intersection points and corresponding site is the answer to the query
KineticNearest(Ps ∈ edge[Pa, Pb], t′, v). Then we have the following theorem:

Theorem 2. We can answer query KineticNearest(Ps ∈ edge[Pa, Pb], t′, v) in
O(m + log(mW log m)) time with O(nmW log2 m + n2 log n + nE) time and
O(nmW log m + E) space for preprocessing step. If the customer is located at some
node, then the query can be answered in O(log(mW log m)) time.

5 Conclusions

In this paper, we consider two variants of the point location problem in moving net-
work. For the static case query, we can answer it in O(log(mW log m)) time and for
the kinetic case query we can answer it in O(m + log(mW log m)) time. Both need
O(nmW log2 m + n2 log n + nE) time and O(nmW log m + E) space for prepro-
cessing step. If X ≤ W , then the preprocessing time and space could be reduced to
O(n2 log n + nE + nWm) and O(E + nmW ) respectively. For both queries, we as-
sume that the trajectories of m sites are known in advance. In the future work, it will
be interesting to study the online version of this problem: we only know the trajectories
of m sites up to now. How to maintain the Voronoi diagram such that we can answer
the static case query efficiently? Note that we do not have kinetic case query for online
problem since we don’t know the trajectories of m sites in advance.
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Abstract. This paper considers the coordinated production and de-
livery scheduling problem. We have a planning horizon consisting of z
delivery times each with a unique delivery capacity. Suppose we have a
set of jobs each with a committed delivery time, processing time, pro-
duction window, and profit. The company can earn the profit if the job
is produced in its production window and delivered before its commit-
ted delivery time. From the company point of view, we are interested
in picking a subset of jobs to process and deliver so as to maximize the
total profit subject to the delivery capacity constraint. We consider both
the single delivery time case and the multiple delivery times case.

Suppose the given set of jobs are k-disjoint, that is, the jobs can be
partitioned into k lists of jobs such that the jobs in each list have disjoint
production windows. When k is a constant, we developed a PTAS for the
single delivery case. For multiple delivery times case, we also develop a
PTAS when the number of delivery times is a constant as well.

1 Introduction

Under the current competitive manufacturing environment, companies tend to
put more emphasis on the coordination of different stages of a supply chain, i.e.
suppliers, manufacturers, distributors and customers. Among these four stages,
the issue of coordinating production and distribution (delivery) has been widely
discussed.

In the stage of distribution (delivery), the company may own transportation
vehicles which deliver products at periodic or aperiodic times, or the company
may rely on a third party to deliver, which picks up products at regular or irreg-
ular times. The products incurred by different orders may be delivered together
if the destinations are close to each other, e.g. delivery to same countries by
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ships, delivery to same states or cities by flights, or delivery to same areas by
trucks. The delivery capacity may vary at different delivery times and is always
bounded.

In the stage of production, each order may have a non-customer defined pro-
duction window. For example, the company may rely on another company to
complete a sub-process, or may rely on a manufacturer to make the products or
semi-products. With some pre-scheduled jobs, the manufacturer can only pro-
vide partial production line, or in some cases, it provides a production window
for each order where the windows of different orders may overlap. Another ex-
ample of production window is that the company may have to wait for arrivals
of raw materials to start the manufacturing process. If the raw materials are
perishable, the company has to start the manufacturing process immediately.
Given the arrival schedule of raw materials, the company creates a production
window for each order.

In summary, in the production stage, the company has the constraint of pro-
duction window, and in the delivery stage, the company has the constraint of
delivery capacity and promised delivery date. The company has to decide which
orders to accept based on these constraints and the potential profit of each order
in order to maximize the total profit .

This paper addresses the problem faced by the company under the above
scenarios. We consider the commit-to-ship model, i.e. if an order is accepted,
the company guarantees the products be shipped to the customer before the
committed time, we call this time the committed delivery date. We focus on the
single machine production environment. We are interested in selecting a subset
of orders in order to maximize the total profit. When orders are selected, both
production schedule and delivery schedule should be considered simultaneously.
Thus we face a “coordinated scheduling problem”: generate a coordinated sched-
ule, which consists of a production schedule and a delivery schedule subject to
the production window, delivery date, and delivery capacity constraints.
Problem definition. Our problem can be formally defined as follows. We have
a planning horizon consisting of z delivery times, T = {D1, D2, · · · , Dz}. Each
delivery time Dj is associated with a delivery capacity Cj . We have a set of
jobs J = {J1, J2, · · · , Jn}. Each job Ji has a promised delivery time di ∈ T , a
processing time pi, a production window [li, ri], a size ci, and a profit fi which
can be earned if Ji is processed at or before ri, and delivered before or at di.
Without loss of generality, we assume that pi ≤ ri− li and pi ≤ di for all jobs Ji.
We also assume ri ≤ di for all jobs Ji. The problem is to select a subset of jobs
from J = {J1, J2, · · · , Jn}, and generate a feasible coordinated production and
delivery schedule S of these jobs so as to maximize the total profit. A feasible
coordinated schedule S consists of a feasible production schedule and a feasible
delivery schedule. A production schedule is feasible if all the jobs are processed
within their production windows; and a delivery schedule is feasible if all jobs
are delivered before the promised delivery time and the delivery capacities at all
times are satisfied.
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Literature review. In recent two decades, coordinated production and delivery
scheduling problems have received considerable interest. However, most of the
research is done at the strategic and tactical levels (see survey articles [10], [5],
[7], [2], [3] ). At the operational scheduling level, Chen [4] gives a state-of-the-art
survey of the models and results in this area. Based on the delivery mode, he
classified the models into five classes: (1) models with individual and immediate
delivery; (2) models with batch delivery to a single customer by direct shipping
method; (3) models with batch delivery to multiple customers by direct shipping
method; (4) models with batch delivery to multiple customers by routing method
(5) models with fixed delivery departure date. In the first model, jobs have
delivery windows, and thus production windows can be incurred, however, due
to the immediate delivery and no delivery capacity constraints considered, the
problems under this model can be reduced to fixed-interval scheduling problems
without the delivery, which can be solved as a min-cost network flow problem
([9]). For all other models, no production windows have been specially considered
in the survey.

Several papers considered problems with time window constraints and/or
delivery capacity constraints. Amstrong et al. ([1]) considered the integrated
scheduling problem with batch delivery to multiple customers by routing method,
subject to delivery windows constraints. The objective is to choose a subset of
the orders to be delivered such that the total demand of the delivered orders
is maximized. Garcia and Lozano ([6]) considered the production and delivery
scheduling problems in which time windows are defined for the jobs’ starting
times. In their paper, orders must be delivered individually and immediately
after they are manufactured, so delivery capacity is not an issue. In [8], Huo,
Leung and Wang considered the integrated production and delivery scheduling
problem with disjoint time windows where windows are defined for the jobs’
completion times. In their paper, they assume a sufficient number of capacitated
vehicles are available.
New contribution. Compared with existing models, our model is more prac-
tical and thus more complicated. The problem is NP-hard since the problem at
each stage is already NP-hard by itself. So our focus is to develop approximation
algorithms. Suppose a set of jobs are k-disjoint, that is, the jobs can be parti-
tioned into k lists of jobs such that the jobs in each list have disjoint production
windows. When k is constant and there is a single delivery time,we develop the
first PTAS(Polynomial Time Approximation Scheme) for the coordinated pro-
duction and delivery scheduling problem. For multiple delivery times, we also
develop a PTAS when the number of delivery time is a constant as well.

The paper is organized as follows. In Section 2, we present an approximation
scheme for single delivery time. In Section 3, we present an approximation scheme
for multiple delivery times. In Section 4, we draw some conclusions.

2 Single Delivery

In this section, we study the coordinated production and delivery scheduling
problem where the jobs have the same promised delivery time D which is
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associated with a delivery capacity C. In this case, all jobs will be delivered
at same time, thus no delivery schedule is necessary as long as the delivery ca-
pacity constraint is satisfied by the selected jobs and the production schedule of
the selected jobs is feasible. Therefore the problem in this case becomes select-
ing a subset of orders and generate a feasible production schedule subject to the
capacity constraint. Given a constant ε, we develop an algorithm which gener-
ates a feasible production schedule of a subset of jobs subject to the capacity
constraint, whose profit is at least (1− ε) times the optimal. Our algorithm is a
PTAS when the set of jobs J = {J1, J2, · · · , Jn} is k-disjoint and k is a constant.

Our algorithm has four phases:

Phase I: select large jobs;
Phase II: schedule the large jobs selected from Phase I along with some small
jobs selected in this phase;
Phase III: from the schedules generated in Phase II, search for the one with
maximum total profit;
Phase IV: convert the schedule from phase III to a feasible schedule.

2.1 Phase I: Select Large Jobs

In this phase, we select large jobs for production and delivery without generating
the production schedule. Let us define large jobs first. Given a constant parameter
0 < δ < 1 which depends on ε and will be determined later, a job is said to be
large if its size is at least δ times the “available” delivery capacity; otherwise,
it is a small job. By definition, we can see that a job may be “small” at the
beginning and becomes “large” later as the available capacity becomes smaller
due to more jobs are selected.

To select the large jobs, we use brute force. Specifically, we enumerate all
the possible selections of large jobs subject to the available capacity constraint.
We use A to denote the set of all possible selection. The jobs in each selection
Ap ∈ A are selected in � 1

δ � iterations. For each Ap, at the beginning of each
iteration, the current available capacity C̄p is calculated and the set of large jobs
(and so small jobs) from the remaining jobs is identified, and then a subset of
large jobs is selected and added to Ap. If no large jobs is selected and added to
Ap at certain iteration, we mark Ap as “finalized”, which means no more large
jobs will be selected and added to Ap in later iterations.
Phase1-Alg

Let A be the set of all possible selections of large jobs so far; A = {∅}.
For i = 1 to � 1

δ �
Let A′ = ∅
For each selection of large jobs Ap ∈ A

If Ap is marked as “finalized”, add Ap directly to A′

Else
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a. let C̄p be the capacity available for jobs not in Ap, i.e. C̄p =
C −∑Ji∈Ap

ci

b. from the jobs not selected in Ap, find the large jobs with respect
to C̄p

c. generate all possible selections of these large jobs, say X , subject
to the available capacity constraint

d. for each Xj ∈ X
generate a new large job selection Aq = Ap ∪Xj , and add Aq

into A′

if Aq = Ap, mark Aq as “finalized”.
A = A′

return A

Lemma 1. There are at most O(nO(1/δ2)) possible ways to select the large jobs,
where 0 < δ < 1 is a constant.

2.2 Phase II: Schedule Large and Small Jobs

From Phase I, we get a set of large job selections A without scheduling the jobs.
However, for a job selection Ap ∈ A, it is possible no feasible production schedule
exists for jobs in Ap. In this case, we say Ap is an infeasible job selection. In
this phase, our goal is, to identify all feasible large job selections in A; and for
each feasible selection Ap, find a feasible production schedule S that contains the
large jobs in Ap, and some newly added “small” jobs, where the small jobs are
identified at the beginning of the last iteration of Phase1-Alg, and each has a size
less than δC̄p. Furthermore, the profit of S, denoted by Profit(S) =

∑
Ji ∈ S fi,

is close to the maximum among all feasible schedules whose large job selection
is exactly Ap. On the other hand, the generated schedule S in this phase may
violate the capacity constraint. Specifically, let Ĉp be the available capacity for
small jobs, i.e. Ĉp = C −∑i∈Ap

Ci, and let Load(S/Ap) =
∑

Ji∈S\Ap
ci be the

total size of the small jobs in S, it is possible that Ĉp ≤ Load(S/Ap) ≤ (1+δ)Ĉp.
In this case, we say S is a “valid” schedule.

Even though we know that the large job selection in a schedule S is exactly Ap,
we still can not determine how to schedule the jobs in Ap due to the production
window constraint of the jobs and the unknown small jobs in S. We build S
using dynamic programming. We add jobs to the schedule one by one in certain
order. For this, we assume the set of jobs J = {J1, J2, · · · , Jn} is k-disjoint, and
J has been divided into k job lists L1, L2, · · · , Lk such that production windows
of jobs in the same list are disjoint. Let nu be the number of jobs in job list Lu

(1 ≤ u ≤ k). We relabel the jobs in each job list Lu in increasing order of their
production windows’ starting time, and we use Ju,v, 1 ≤ v ≤ nu, to denote the
v-th job in the job list Lu. It is easy to see that in any feasible schedule, one can
always assume the jobs in the same list are scheduled in the order they appear in
the list. So in our dynamic programming, the jobs in each list are considered in
this order. In case the lists L1, L2, · · · , Lk are not given, note that the problem
can be solved greedily.
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For a given large job selection produced from Phase I, Ap ∈ A, if we can find
all schedules whose large job selection is exactly Ap, we can easily find the best
schedule. However, that will be both time and space consuming. To reduce space
and time, we find a subset of schedules to approximate all possible schedules
so that no two jobs in the set are “similar”. Let us formally define “similar”
schedules. Given a schedule S with a large job selection Ap, let Profit(S/Ap) be
the total profit of small jobs in S. For two schedules S1 and S2 that both have the
same set of large jobs Ap, given a constant ω = 1+ δ

2n , we say they are similar, if
Profit(S1/Ap) and Profit(S2/Ap) are both in [ωx, ωx+1), and Load(S1/Ap) and
Load(S2/Ap)) are both in [ωy, ωy+1) for some integer x and y.

In the following, we use T (Ap, n
′
1, · · · , n′

k) to denote a set of valid schedules
such that (a) no two schedules in the set are similar; (b) only the first n′

u jobs
from list Lu (1 ≤ u ≤ k) can be scheduled; (c) and among these n′

u jobs in list
Lu, all the jobs in Ap must be scheduled. For each schedule S, we use Cmax(S) to
represent the last job’s completion time. In T (Ap, n

′
1, · · · , n′

k), from each group
of schedules that are similar to each other, we only keep the schedule with the
smallest Cmax(S) in the group.
Phase2-Alg(Ap, J, C̄p)

– Input: a set of jobs J , which has been divided into k disjoint job lists
L1, L2, · · · , Lk;
Ap: a large job selection obtained from Phase I;
C̄p: the available capacity at the beginning of last iteration in Phase I for
obtaining Ap.

– Let Ĉp = C −∑i∈Ap
Ci, i.e., the available capacity for small jobs

– Initialize T (Ap, 0, · · · , 0) = {∅}.
– Construct T (Ap, n1, · · · , nk) using dynamic programming

To find the set T (Ap, n
′
1, · · · , n′

k), do the following steps

1. For t = 1 to k

(a) consider job Jt,n′
t
, let [lt,n′

t
, rt,n′

t
] be its production window, pt,n′

t
be

its processing time, ct,n′
t

be its size
(b) If Jt,n′

t
∈ Ap

For each schedule S in T (Ap, n
′
1, · · · , n′

t − 1, · · · , n′
k)

if max(Cmax(S), lt,n′
t
) + pt,n′

t
≤ rt,n′

t

get a schedule S′ by adding Jt,n′
t

to S and schedule
it at max(Cmax(S), lt,n′

t
);

add S′ to T (Ap, n
′
1, · · · , n′

k);
(c) Else

For each schedule S in T (Ap, n
′
1, · · · , n′

t − 1, · · · , n′
k)

add S into T (Ap, n
′
1, · · · , n′

k);
if ct,n′

t
< δC̄p(i.e. a small job) and max(Cmax(S), lt,n′

t
)+

pt,n′
t
≤ rt,n′

t
and Load(S ∪ {Jt,n′

t
}/Ap) ≤ (1 + δ)Ĉp)

get a scheduleS′by addingJt,n′
t
toS atmax(Cmax(S), lt,n′

t
);

add S′ into T (Ap, n
′
1, · · · , n′

k);
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2. From each group of schedules in T (Ap, n
′
1, · · · , n′

k) that are similar to
each other, delete all but the schedule S with minimum Cmax(S) in the
group

– return the schedule S from T (Ap, n1, · · · , nk) with maximum profit

One should note that in the algorithm C̄p and Ĉp are not exactly same. Since
Ĉp is available capacity for small jobs, while C̄p is the available capacity at the
beginning of last iteration of Phase1-Alg and some large jobs may be selected at
the last iteration, we have C̄p ≥ Ĉp. In particular, if Ap is marked “finalized” at
the end of algorithm, then we have C̄p = Ĉp.

It is easy to see that if a large job selectionAp∈A is not feasible,T (Ap, n1,· · · ,nk)
must be empty.For any feasible large job selectionAp, we have the following lemma.

Lemma 2. Suppose Ap ∈ A is a feasible large job selection obtained from Phase
I, and let S′ be the feasible schedule that has the maximum profit among all
schedules whose large job selection is exactly Ap. Then Phase2-Alg(Ap, J , C̄p)
returns a schedule S such that: the large job selection in S is Ap; S is valid,and
Profit(S) ≥ (1− δ)Profit(S′).

Lemma 3. For a given Ap, the running time of Phase2-Alg(Ap, J , C) is
O(knk(logω

∑n
i=1 fi) logω C).

2.3 Phase III: Search for the Best Schedule

For each feasible large job selection Ap ∈ A obtained from Phase I, the dynamic
procedure of Phase II outputs a valid schedule whose large job selection is exactly
Ap. In this phase, we find a good schedule to approximate the optimal schedule.
This is done by selecting the schedule S with the maximum total profit among
all the schedules generated in Phase II for all feasible Ap-s.

Lemma 4. Let S be the schedule with the maximum profit among all schedules
generated from Phase II. Then S must be valid and Profit(S) ≥ (1−δ)Profit(S∗),
where S∗ is the optimal schedule. Furthermore, the total running time to obtain
S is O( k

δ2 nO(k+1/δ2)(lg
∑n

i=1 fi)(lg C)).

2.4 Phase IV: Convert to a Feasible Schedule

From Phase III, we get the schedule S with the maximum total profit which is
valid but may not be feasible, i.e. Ĉp ≤ Load(S/Ap) ≤ (1 + δ)Ĉp. To convert S
into a feasible schedule, we have to delete some jobs carefully so that the total
profit will not be affected greatly.
Phase4-Alg(S)

Input: S is the best schedule produced after Phase III, which is valid but
may not be feasible
Let Ap be its corresponding large jobs selection in S.
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Let S′ = S
If Load(S′) > C (i.e. Load(S′/Ap) > Ĉp )

If Ap is marked as “finalized”
Delete a set of small jobs of total size of at most 2δĈp

and with the least possible profit from S′

Else
Delete the large job in Ap with least profit from S′

Return S′

Lemma 5. Let δ be a constant of at most ε
3 . The schedule S′ returned by

Phase4-alg is feasible, and Profit(S′) ≥ (1 − ε)Profit(S∗), where S∗ is an op-
timal schedule.

For any constant ε, by Lemma 5 and 4, we have the following theorem.

Theorem 1. For any coordinated production and delivery scheduling problem with
production window and delivery capacity constraints, if there is only one delivery
time, and the job set is k-disjoint, where k is a constant, there exists a polynomial
time approximation scheme that runs in time O(nO(k+1/ε2)(lg

∑n
i=1 fi)(lg C)).

3 Multiple Delivery

In this section, we study the coordinated production and delivery scheduling
problem with multiple delivery times D1, D2, · · · , Dz which have delivery ca-
pacity of C1, C2, · · · , Cz, respectively. Our goal is to find a feasible coordinated
production and delivery schedule whose total profit is close to optimal. As the
case of the single delivery time, a feasible production schedule is one that satis-
fies the production window constraint. A feasible delivery schedule, however, is
more restricted than the single delivery time: for each selected job, we have to
specify its delivery time which can not be later than its promised delivery date;
and the delivery capacity constraint has to be satisfied for all delivery times.

When z is a constant, we develop a PTAS for this case which is based on the
PTAS for the case of single delivery time. The structure of the two PTASes are
similar, but the details are different. In particular, in Phase I and Phase II, we
have to consider the delivery schedule of the jobs; and in Phase IV, we have to
make sure the capacity is satisfied for all delivery times. Due to space limit, we
will not given details of the algorithm.

Theorem 2. For any coordinated production and multiple delivery scheduling
problem with production window and delivery capacity constraints, when there
are constant number of delivery times z, and the job set is k-disjoint where k is
a constant, there exists a polynomial time approximation scheme. Furthermore,
for any constant ε, the algorithm runs in time

O(nO( z
ε2

+k)(lg
n∑

i=1

fi)
z∏

j=1

(lg Cj)).
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4 Conclusion

In this paper, we study the problem of coordinated scheduling problem with
production window constraint and the delivery capacity constraint. When the
jobs are k-disjoint and k is a constant, we develop a PTAS for the case of single
delivery time. We then extend the PTAS to solve the problem with constant
number of delivery times. One open question is to develop constant approxima-
tion algorithms for the problem.
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Abstract. The inverse 1-median problem is concerned with modifying
the weights of the customers at minimum cost such that a prespecified
supplier becomes the 1-median of modified location problem. We first
present the model of inverse 1-median problem on trees. Then we pro-
pose two algorithms to solve the problem under weighted l∞ norm with
bound constraints on modifications. Based on the approach of the un-
bounded case, we devise a greedy-type algorithm which runs in O(n2)
time, where n is the number of vertices. Based on the property of the
optimal solution, we propose an O(n log n) time algorithm using the bi-
nary search.

Keywords: Inverse 1-median problem; Tree; weighted l∞ norm; Binary
search.

1 Introduction

The inverse location problems have become an important aspect in the field of in-
verse optimization problems in recent years. Different from the classical location
problem, a feasible solution for a location problem is first given in an inverse
location problem. And we aim to modify parameters of the original problem
at minimum total cost within certain modification bounds such that the given
feasible solution becomes optimal with respect to the new parameter values.

The 1-median problem can be stated as follows: let (X, d) be a metric space
with distance function d. Let n vertices v1, v2, . . . , vn (called customers) be given.
Every customer vi has a weight wi. We assume throughout this paper that all
given weights are positive. Find a new point s (the 1-median, called the supplier)
in the space X such that

n∑
i=1

wid(vi, s)

becomes minimum.
The inverse 1-median problem consists in changing the weights of the cus-

tomers of a 1-median location problem at minimum cost such that a prespecified
supplier becomes the 1-median of modified location problem. In this paper, we
� Corresponding author.

B. Chen (Ed.): AAIM 2010, LNCS 6124, pp. 150–160, 2010.
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consider the inverse 1-median problem where customers and supplier correspond
to the vertices of a tree graph T = (V, E) with vertex set V and edge set E,
where the distance function d is given by the lengths of paths in the tree. Each
vertex vi ∈ V has a positive weight wi. Let s∗ not be a 1-median of the tree T
with respect to the given weights w. We aim to find new vertex weights w∗ sat-
isfying the bound constraint 0 ≤ w ≤ w∗ ≤ w such that s∗ becomes a 1-median
with respect to w∗. And the objective function is to minimize the adjustment of
weights ‖w − w∗‖ under some norm.

Cai et al. [8] proved that the inverse 1-center location problem with variable
edge lengths on general unweighted directed graphs is NP-hard, while the un-
derlying center location problem is solvable in polynomial time. Burkard et al.
presented a greedy-type algorithm in O(n log n) time for the inverse 1-median
problem with variable vertex weights if the underlying network is a tree or the
location problem is defined in the plane [6] and an algorithm in O(n2) time on
cycles [7]. Galavii [9] showed that the inverse 1-median problem can actually be
solved in O(n) time on a tree, or on a path with negative weights. Gassner [10]
suggested an O(n log n) time algorithm for the inverse 1-maxian (or negative
weight 1-median) problem on a tree with variable edge lengths. In 2008, Burkard
et al. [5] solved the inverse Fermat-Weber problem with variable vertex weights
in O(n log n) time for unit cost if the prespecified point that should become a
1-median does not coincide with a given point in the plane. Bonab, Burkard
and Alizadeh [4] investigated the inverse 1-median problem with variable coor-
dinates endowed with the rectilinear, the squared Euclidean or the Chebyshev
norm. They showed that this problem is NP-hard if the rectilinear or Chebyshev
norm is used, but it can be solved efficiently in polynomial time if the squared
Euclidean norm is used. Yang and Zhang [14] proposed an O(n2 log n) time
algorithm for the inverse vertex center problem with variable edge lengths on
tree networks where all the modified edge lengths remain positive. Alizadeh and
Burkard [1] investigated the inverse absolute 1-center location problem on trees
with variable edge lengths, and proposed an O(n2r) time exact algorithm where
r is the compressed depth of the underlying tree. Recently, Alizadeh, Burkard
and Pferschy [2] used a set of suitably extended AVL-search trees and developed
a combinatorial algorithm which solves the inverse 1-center location problem
with edge length augmentation in O(n log n) time.

However, the costs incurred by modifying the weights are measured by l1 norm
in all the above inverse 1-median (1-center) problems. Hence, it is necessary to
measure the costs by weighted l∞ norm.

The paper is organized as follows. In Sect. 2, we present the model of inverse
1-median problem on trees. Then we propose two polynomial time algorithms to
solve the problem under weighted l∞ norm in Sect. 3. Conclusions and further
research are given in Sect. 4.

In the following, for a function f defined on a set S, we define f(S) :=∑
s∈S f(s).
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2 The Inverse 1-median Problem on Trees

In this section, we obtain the model of inverse 1-median problem on trees.
We first analyze some properties of the 1-median problem on trees. The 1-

median problem on trees has the interesting property that the solution is com-
pletely independent of the (positive) edge lengths and only depends on the
weights of the vertices [12, 13]. Let W := w(V ) be the sum of all vertex weights
of the tree. Now, let v be an arbitrary vertex of degree k and let v1, v2, . . . , vk be
its immediate neighbors. If we root the tree at v, we get subtrees T1, T2, . . . , Tk

which are rooted at v1, v2, . . . , vk, respectively. A consequence of the considera-
tions of Hua et al. and Goldman is the following optimality criterion.

Lemma 1. (Optimality criterion, [13,12]). A vertex v is a 1-median of the given
tree with respect to w, if and only if the weights of all its subtrees w(Ti) are not
larger than W/2:

max
1≤i≤k

w(Ti) ≤W/2. (2.1)

Now let s0 be a 1-median of the tree T with respect to w. If we root the tree
at the given vertex s∗, we get subtrees T1, T2, . . . , Tk, where k is the degree of
vertex s∗. One of these subtrees contains s0, say T1. Let W ∗ := w∗(V ). Based
on Lemma 1, we can formulate mathematically the inverse 1-median problem on
trees as follows:

min ‖w∗ − w‖ (2.2)
s.t. max

1≤i≤k
w∗(Ti) ≤W ∗/2; (2.3)

w ≤ w∗ ≤ w. (2.4)

Recall that s∗ is not a 1-median with respect to w, then we know that w(T1) >
W/2 and w(Ti) < W/2 for all i = 2, . . . , k [6]. Let Tk+1 := {s∗}, Wk+1 :=
w(s∗), W ∗

k+1 := w∗(s∗), Wi = w(Ti) and W ∗
i = w∗(Ti), i = 1, . . . , k. In order to

make s∗ a 1-median with respect to w∗, we need to reduce the optimality gap
D := W1 −W/2 to 0.

Lemma 2. [6]. Let W ∗
2 ≤ W ∗/2, . . . , W ∗

k ≤ W ∗/2. The vertex s∗ is a 1-median
of the given tree with respect to w∗, if and only if the optimality gap D∗ :=
W ∗

1 −W ∗/2 = 0, that is, W ∗
1 = W ∗/2.

To decrease D by δ/2, we either decrease the weight of a vertex in T1 by δ, or
increase the weight of a vertex in Ti(i = 2, . . . , k + 1) by δ [6]. For any vertex
v, let p(v) and q(v) be increment and decrement of vertex weight, respectively.
Then we have

w∗(v) = w(v) + p(v)− q(v), p(v), q(v) ≥ 0;
p(v) = 0, w(v) − q(v) ≥ w(v), ∀v ∈ T1;
q(v) = 0, w(v) + p(v) ≤ w(v), ∀v ∈ Ti, i = 2, . . . , k + 1.
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Furthermore, the constraint condition (2.3) means that w∗(Ti) ≤ W ∗/2, i =
1, 2, · · · , k. That is,

w(Ti) + p(Ti)− q(Ti) ≤ 1
2
(W + p(T )− q(T )), i = 1, 2, · · · , k.

Furthermore, we have⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−q(T1)− 1

2

k+1∑
j=2

p(Tj) +
1
2
q(T1) ≤ 1

2
W − w(T1);

p(Ti)− 1
2

k+1∑
j=2

p(Tj) +
1
2
q(T1) ≤ 1

2
W − w(Ti), i = 2, . . . , k + 1.

Hence, we can transform the inverse 1-median problem into the following form.

min ‖p− q‖

s.t. q(T1) +
k+1∑
j=2

p(Tj) ≥ 2D; (2.5)

p(Ti)− 1
2

k+1∑
j=2

p(Tj) +
1
2
q(T1) ≤ 1

2
W − w(Ti), i = 2, . . . , k + 1; (2.6)

0 ≤ q(v) ≤ w(v) − w(v), ∀v ∈ T1;
0 ≤ p(v) ≤ w(v)− w(v), ∀v ∈ Ti, i = 2, . . . , k + 1.

On the other hand, based on Lemma 2, we have

W ∗
1 =

1
2
W ∗ =

1
2
(W ∗

1 +
k+1∑
j=2

W ∗
j ).

It follows from W ∗
1 =

∑k+1
j=2 W ∗

j that

W1 − q(T1) =
k+1∑
j=2

(Wj + p(Tj)).

Therefore

q(T1) +
k+1∑
j=2

p(Tj) = W1 −
k+1∑
j=2

Wj = 2(W1 − 1
2

k+1∑
j=1

Wj) = 2(W1 − 1
2
W ) = 2D.

Obviously, the vectors p and q satisfying the above equality also satisfy the
constraint condition (2.5). Furthermore, if we substitute

∑k+1
j=2 p(Tj) = 2D −

q(T1) into the constraint condition (2.6), we get

p(Ti)− 1
2
(2D − q(T1)) +

1
2
q(T1) = p(Ti)−D + q(T1) ≤ 1

2
W − w(Ti),
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which means

W ∗
i = w(Ti) + p(Ti) ≤ D +

1
2
W − q(T1) = w(T1)− q(T1) = W ∗

1 = W ∗/2.

So, there is an optimal solution (p, q) to the inverse 1-median problem, which
also satisfies the problem below.

min ‖p− q‖ (2.7)

s.t. q(T1) +
k+1∑
j=2

p(Tj) = 2D; (2.8)

0 ≤ q(v) ≤ w(v)− w(v), ∀v ∈ T1; (2.9)
0 ≤ p(v) ≤ w(v)− w(v), ∀v ∈ Ti, i = 2, . . . , k + 1. (2.10)

Theorem 3. To solve the inverse 1-median problem (2.2)-(2.4), it is sufficient
to solve the problem (2.7)-(2.10).

3 The Problem under Weighted l∞ Norm

Let c+(v) and c−(v) be the unit costs of v by increasing and decreasing the
vertex weight of v, respectively. In this section, we consider the inverse 1-median
problem on trees under weighted l∞ norm, which can be formulated below.

min max{max
v∈T1

c−(v)q(v), max
v/∈T1

c+(v)p(v)} (3.1)

s.t.
∑
v∈T1

q(v) +
∑
v/∈T1

p(v) = 2D; (3.2)

0 ≤ q(v) ≤ w(v) − w(v), ∀v ∈ T1; (3.3)
0 ≤ p(v) ≤ w(v)− w(v), ∀v /∈ T1. (3.4)

Let {
c(v) := c−(v), u(v) := w(v)− w(v), x(v) := q(v); if v ∈ T1;
c(v) := c+(v), u(v) := w(v)− w(v), x(v) := p(v); if v /∈ T1

(3.5)

Then the problem (3.1)-(3.4) can be simplified to the following form:

min max
v∈V

c(v)x(v) (3.6)

s.t.
∑
v∈V

x(v) = 2D; (3.7)

0 ≤ x(v) ≤ u(v), ∀v ∈ V. (3.8)

Let x∗ be an optimal solution of (3.6)-(3.8). Then the new vertex weights can
be obtained by

w∗(v) :=
{

w(v) − x∗(v), if v ∈ T1;
w(v) + x∗(v), if v /∈ T1.

(3.9)
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3.1 The Problem without Bound Constraints on Modifications

We first consider the unbounded case, that is, the problem (3.6)-(3.7).
To minimize the maximum cost, the costs for all the vertices should be equal.

Let Q be the optimal objective value. Then we have

c(v)x(v) = Q, ∀v ∈ V,

and
x(v) =

Q

c(v)
, ∀v ∈ V. (3.10)

It follows from ∑
v∈V

x(v) =
∑
v∈V

Q

c(v)
= 2D

that
Q =

2D∑
v∈V

1
c(v)

. (3.11)

Furthermore, x given by (3.10) is the only optimal solution of the problem.
Specially, when c−(v) = c+(v) = 1 for all vertices, we have Q = 2D

n . In this
case, an optimal solution can be given by{

x∗(v) = Q, w∗(v) = w(v) −Q, ∀v ∈ T1;
x∗(v) = Q, w∗(v) = w(v) + Q, ∀v /∈ T1.

3.2 The Problem with Bound Constraints on Modifications

In this subsection, we present two algorithms to solve the problem (3.6)-(3.8) in
the bounded case. Based on the approach of the unbounded case, we devise an
O(n2) time algorithm. Based on the property of the optimal solution, we propose
an improved algorithm using the binary search, which runs in O(n log n) time.

An O(n2) Time Algorithm. Notice that Q defined as (3.11) is a lower bound
on the optimal objective value of the bounded case. In the unbounded case, we
only need to distribute such a cost Q to each vertex. However, in the bounded
case, we have to consider the impact on the upper bounds u(v).

To minimize the maximum cost in the bounded case, we distribute the cost
iteratively until the total modifications of weights reach to 2D. In the first iter-
ation, let V + := V , Δ := 2D, x := 0 and

x(v) := min{Q/c(v), u(v)}, u(v) := u(v)− x(v), if v ∈ V +.

Let Δ := Δ− x(V +) and V + := {v ∈ V |u(v) > 0}. If Δ > 0 and V + = ∅, then
x(v) = u(v) = 0, ∀v ∈ V +. In this case, all the upper bounds are met before the
total modifications reach to 2D, and hence the instance is infeasible. If Δ > 0
and V + �= ∅, then update

Q :=
Δ∑

v∈V + 1/c(v)
, (3.12)
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x := x + x, and repeat the above process until Δ = 0, which means that x(v) =
Q/c(v), ∀v ∈ V +. In this case, the total modifications reach to 2D in the most
economical way, and an optimal solution is obtained.

Summarizing the above, we get the algorithm below. It is in fact a greedy
type algorithm.

Algorithm 4. (An O(n2) Time Algorithm.)
Step 1. Compute W := w(V ).
Step 2. Compute the weight of the subtrees rooted at s∗.

If all subtrees have a weight ≤ W/2, then stop: the given weights are
already optimal;

else let T1 denote the subtree with largest weight W1. Set D := W1−W/2.
Calculate c and u by (3.5).

Step 3. Initialize Δ := 2D, x := 0, x := 0, f∞ := 0 and V + := V .
Step 4. While Δ > 0 do

Let u(v) := u(v)− x(v) for v ∈ V +. Let V + := {v ∈ V +|u(v) > 0}.
If V + = ∅, then stop: the problem is infeasible;
else compute Q by (3.12). Update

x(v) := min{Q/c(v), u(v)}, x(v) := x(v) + x(v), for v ∈ V +;
f∞ := f∞ + maxv∈V + x(v)c(v); and Δ := Δ− x(V +).

Step 5. Output the optimal solution x, and the optimal objective value f∞.

To prove the optimality of Algorithm 4, we first present an important property
of the optimal solution in the bounded case. Let f(v) := c(v)u(v) for any vertex
v, where c(v) and u(v) are defined as (3.5).

Theorem 5. Suppose the problem (3.6)-(3.8) is feasible. Let f∞ be the optimal
objective value, VB := {v ∈ V |f(v) < f∞}. Then we have

f∞ =
2D −∑v∈VB

u(v)∑
v/∈VB

1
c(v)

. (3.13)

Furthermore,

x(v) :=
{

u(v), if v ∈ VB
f∞
c(v) , if v /∈ VB

(3.14)

is the only optimal solution of the problem.

Proof. Let f∞ be the optimal objective value of the problem (3.6)-(3.8). Then we
have f∞ = max

v/∈VB

c(v)x(v). Furthermore, f∞
c(v) ≤ u(v) for any v /∈ VB . Therefore,

f∞ is also the optimal objective value of the unbounded problem defined below.

min max
v/∈VB

c(v)x(v) (3.15)

s.t.
∑

v/∈VB

x(v) = 2D − ∑
v∈VB

u(v) (3.16)
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It follows from (3.11) that the value of f∞ is given by (3.13). Moreover, based
on (3.10) we can obtain the only optimal solution x′ of (3.15)-(3.16), where
x′(v) = f∞

c(v) , ∀v /∈ VB.

It is obvious that 0 ≤ x(v) ≤ u(v). Furthermore,∑
v∈V

x(v) =
∑

v∈VB

u(v) +
∑

v/∈VB

f∞
c(v)

=
∑

v∈VB

u(v) + 2D −
∑

v∈VB

u(v) = 2D.

So x defined as (3.14) is a feasible solution whose objective value is f∞, and
hence is the only optimal solution. �
Now we prove the optimality of Algorithm 4. Let xk, xk, uk, V +

k , Qk, fk∞ be the
corresponding values in the k-th iteration. Suppose the While loop in Step 4 of
Algorithm 4 is executed l times.

Theorem 6. If the instance is feasible, then f l
∞ outputted by Algorithm 4 is the

optimal objective value, and xl satisfies the following formula

xl(v) =

{
u(v), if v /∈ V +

l ;
f l
∞

c(v) , if v ∈ V +
l .

(3.17)

and is the optimal solution.

Proof. If the instance is feasible, then the algorithm stops at the l-th iteration.
First, note that in the k-th iteration,

xk(v)c(v) =

{
Qk, if v ∈ V +

k and xk(v) = Qk

c(v) ≤ uk(v);

uk(v)c(v), if v ∈ V +
k and xk(v) = uk(v) < Qk

c(v) .

and hence fk+1
∞ := fk

∞ + maxv∈V +
k

xk(v)c(v) = fk
∞ + Qk. If v ∈ V +

l , then

xl(v) =
Ql + Ql−1 + . . . + Q1

c(v)
=

f l
∞

c(v)
.

If v /∈ V +
l , then there is an index k ∈ {1, 2, . . . , l − 1}, such that v ∈ V +

k \V +
k+1,

and xk(v) := min{Qk/c(v), uk(v)} = uk(v). Then

xl(v) = xk(v) + xk−1(v) + . . . + x1(v)
= uk(v) + xk−1(v) + . . . + x1(v)
= uk−1(v) + xk−2(v) + . . . + x1(v)
= . . . = u1(v) = u(v).

Furthermore, if v /∈ V +
l , f(v) < f l

∞. Hence,

f l
∞ =

2D −∑v/∈V +
l

u(v)∑
v∈V +

l

1
c(v)

. (3.18)
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Therefore, 0 ≤ xl(v) ≤ u(v) for each vertex v, and xl defined as (3.17) is a
feasible solution with objective value f l

∞. If f l
∞ is not the optimal objective

value, but f ′ is. Then we have f ′ < f l∞, and the corresponding solution is

x′(v) :=

{
u(v), if v ∈ V ′;

f ′
c(v) , if v /∈ V ′;

where V ′ := {v ∈ V |f(v) < f ′}. Let V
+
l := V \V +

l . Then V ′ ⊆ V
+
l , and

x′(V ) =
∑
v∈V ′

u(v) +
∑

v∈V
+
l \V ′

f ′

c(v)
+
∑

v/∈V
+
l

f ′

c(v)

≤
∑

v∈V
+
l

u(v) +
∑

v/∈V
+
l

f ′

c(v)
<
∑

v∈V
+
l

u(v) +
∑

v/∈V
+
l

f l
∞

c(v)
= 2D, (3.19)

which means x′ is not a feasible solution. Note that the first inequality “≤” in
(3.19) holds because f ′ ≤ f(v) < f l

∞ for each v ∈ V
+
l \V ′. Thus, we obtain the

conclusion that f l
∞ is the optimal objective value, and xl defined as (3.17) is the

only optimal solution. �
Now we analyze the time complexity of the algorithm. It is obvious that 7|V +

k |
basic operations are needed in the k-th iteration of the While loop. Note that
if the problem is feasible, then the algorithm stops with Δ = 0, which involves
the optimal solution. Therefore, in each iteration before termination, there is at
least one vertex v reaching the upper bound x(v) = u(v), and hence the size
of V +

k is reduced at least one. Hence, in the worst case, the total time is upper
bounded by

1∑
k=n

7k =
7n(n + 1)

2
.

As a conclusion, we have

Theorem 7. Algorithm 4 can solve the inverse 1-median problem on trees under
weighted l∞ norm with bound constraint on modification in O(n2) time.

An O(n log n) Time Algorithm. Sort all the costs f(v) of vertices v ∈ V in a
strictly increasing order, i.e., f(vi1 ) < f(vi2) < · · · < f(viτ ). Obviously, f∞ must
belong to an interval (f(vik

), f(vik+1)] for some index k. Based on Theorem 5, we
propose an algorithm using the binary search to determine the optimal objective
value first, and then give the optimal solution by (3.14).

Algorithm 8. (An O(n log n) Time Algorithm.)
Step 1 and 2. Please see Algorithm 4.
Step 3. Sort all the costs f(v) of vertices v ∈ V in a strictly increasing order,
i.e., f(vi1) < f(vi2) < · · · < f(viτ ). Put a := 1 and b := τ .
Step 4. If u(V ) < 2D, then stop: the instance is infeasible.
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Step 5. If b− a = 1, then stop and output the optimal objective value fa
∞, and

the optimal solution x given by (3.14), where f∞ and VB are replaced with fa
∞

and Va, respectively.
Step 6. Let k := �(a + b)/2� and Vk := {v ∈ V |f(v) ≤ f(vik

)}. If

fk
∞ :=

2D −∑v∈Vk
u(v)∑

v/∈Vk

1
c(v)

≤ f(vik
),

then put b := k, else put a := k. Return to Step 5.

Now we prove the optimality of the algorithm.

Theorem 9. If the instance is feasible, then fa∞ outputted by the algorithm is
the optimal objective value, and the optimal solution is

x(v) :=

{
u(v), if v ∈ Va;
fa
∞

c(v) , if v /∈ Va.
(3.20)

Proof. The proof is omitted here due to limit of space. �

Now we analyze the time complexity of the algorithm. Sorting all the costs f(v)
in Step 3 can be done in O(n log n) operations. The binary search method can
be done in �log n� iterations and O(n) operations are needed in each iteration.
As a conclusion, we have

Theorem 10. Algorithm 8 can solve the inverse 1-median problem on trees un-
der weighted l∞ norm with bound constraint on modification in O(n log n) time.

4 Conclusions and Further Research

In this paper, we first present the model of inverse 1-median problem on trees.
Contrasting to the costs of modifications measured by l1 norm in the correspond-
ing references, we use weighted l∞ norm to measure the costs. We propose two
algorithms to solve the problem with bound constraints on modifications. Based
on the approach of the unbounded case, we devise a greedy type algorithm, which
runs in O(n2) time. Based on the property of the optimal solution, we propose
an improved algorithm using the binary search, which runs in O(n log n) time.

In fact, by running the Matlab programs of these two algorithms with ran-
domly generating lots of instances, the number of iterations of Algorithm 4 is as
small as that of Algorithm 8. Note that if |V +

k | = |V +
k−1|−1 in the k-th iteration,

then there is a great reduction in Δk, while a small reduction in the denomi-
nator of Qk, which means that Qk is much smaller than Qk−1. Hence the time
complexity of Algorithm 4 may also be O(n log n), if an appropriate technique
was used. The other reason, for presenting the O(n2) time algorithm when an
O(n log n) time algorithm is available, is that the greedy type algorithm will be
useful for some further related problems.
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It is interesting that the inverse 1-median problem on trees has only one
optimal solution under weighted l∞ norm, while most inverse combinatorial op-
timization problems under weighted l∞ norm have many optimal solutions. The
reason is that the constraint condition (3.7) is just the equality constraint on
the sum of all modifications of weights.

For further research, we can consider the inverse median problems and inverse
center location problems under weighted Hamming distance, and weighted l∞
norm, respectively.
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Abstract. In this paper we show that the problem of identifying an
edge (i, j) in a graph G such that there exists an optimal vertex cover S
of G containing exactly one of the nodes i and j is NP-hard. Such an edge
is called a weak edge. We then develop a polynomial time approximation
algorithm for the vertex cover problem with performance guarantee 2 −

1
1+σ

, where σ is an upper bound on a measure related to a weak edge of a
graph. Further, we discuss a new relaxation of the vertex cover problem
which is used in our approximation algorithm to obtain smaller values
of σ.

1 Introduction

Let G = (V, E) be an undirected graph on the vertex set V = {1, 2, . . . , n}. A
vertex cover (VC) of G is a subset S of V such that each edge of G has at least
one endpoint in S. The vertex cover problem (VCP) is to compute a vertex cover
of smallest cardinality in G. VCP is well known to be NP-hard on an arbitrary
graph but solvable in polynomial time on a bipartite graph. A vertex cover S is
said to be γ-optimal if |S| ≤ γ|S0| where γ ≥ 1 and S0 is an optimal solution to
the VCP.

It is well known that a 2-optimal vertex cover of a graph can be obtained in poly-
nomial time by taking all the vertices of a maximal (not necessarily maximum)
matching in the graph or by rounding up the LP relaxation solution of an integer
programming formulation [18]. There has been considerable work (see e.g. survey
paper [11]) on the problem over the past 30 years on finding a polynomial-time ap-
proximation algorithm with an improved performance guarantee. The
current best known bound on the performance ratio of a polynomial time approx-
imation algorithm for VCP is 2−Θ( 1√

log n
) [12]. It is also known that computing

a γ-optimal solution in polynomial time for VCP is NP-Hard for any 1 ≤ γ ≤
10
√

5−21 � 1.36 [6]. In fact, no polynomial-time (2−ε)-approximation algorithm
is known for VCP for any constant ε > 0 and existence of such an algorithm is one
of the most outstanding open questions in approximation algorithms for combi-
natorial optimization problems. Under the assumption that the unique game con-
jecture [9,13,14] is true, a polynomial time (2− ε)-approximation algorithm with

B. Chen (Ed.): AAIM 2010, LNCS 6124, pp. 161–169, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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constant ε > 0 is not possible for VCP. For recent works on approximability of
VCP, we refer to [1,4,5,6,7,8,10,12,15,16]. Recently, Asgeirsson and Stein [2,3] re-
ported extensive experimental results using a heuristic algorithm which obtained
no worse than 3

2 -optimal solutions for all the test problems they considered. Also,
Han, Punnen and Ye [8] proposed a (3

2 + ξ)-approximation algorithm for VCP,
where ξ is an error parameter calculated by the algorithm.

A natural linear programming (LP) relaxation of VCP is

(LPR)
min

∑n
i=1 xi

s.t. xi + xj ≥ 1, (i, j) ∈ E,
xi ≥ 0, i = 1, 2, · · · , n.

(1)

It is well known that (e.g. [17]) any optimal basic feasible solution (BFS) x∗ =
(x∗

1, x
∗
2, . . . , x

∗
n) to the problem LPR, satisfies x∗

i ∈ {0, 1
2 , 1}. Let SLP = {i | x∗

i =
1
2 or x∗

i = 1}, then it is easy to see that SLP is a 2-approximate solution to the
VCP on graph G. Nemhauser and Trotter [18] have further proved that there
exists an optimal VC on graph G, which agrees with x∗ in its integer components.

An (i, j) ∈ E is said to be a weak edge if there exists an optimal vertex cover
V 0 of G such that |V 0 ∩ {i, j}| = 1. Likewise, an (i, j) ∈ E is said to be a strong
edge if there exists an optimal vertex cover V 0 of G such that |V 0 ∩ {i, j}| = 2.
An edge (i, j) is uniformly strong if |V 0 ∩ {i, j}| = 2 for any optimal vertex
cover V 0. Note that it is possible for an edge to be both strong and weak. Also
(i, j) is uniformly strong if and only if it is not a weak edge. In this paper,
we show that the problems of identifying a weak edge and identifying a strong
edge are NP-hard. We also present a polynomial time (2− 1

σ+1 )-approximation
algorithm for VCP where σ is an appropriate graph theoretic measure (to be
introduced in Section 3). Thus for all graphs for which σ is bounded above
by a constant, we have a polynomial time (2 − ε)-approximation algorithm for
VCP. We give some examples of graphs satisfying the property that σ = 0.
However, establishing tight bounds on σ, independent of graph structures and/or
characterizing graphs for which σ is a constant remains an open question. VCP
is trivial on a complete graph Kn since any collection of n − 1 nodes serves as
an optimal solution. However, the LPR gives an objective function value of n

2
only on such graphs. We give a stronger relaxation for VCP and a complete
linear programming description of VCP on complete graphs and wheels. This
relaxation can also be used to find a reasonable expected guarantee for σ.

For a graph G, we sometimes use the notation V (G) to represent its vertex
set and E(G) to represent its edge set.

2 Complexity of Weak and Strong Edge Problems

The strong edge problem can be stated as follows: “Given a graph, identify a
strong edge of G or declare that no such edge exists.”

Theorem 1. The strong edge problem on a non-bipartite graph is NP-hard.
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Proof. Since G is not bipartite, then it must contain an odd cycle. For any odd
cycle ω, any vertex cover must contain at least two adjacent nodes of ω and
hence G must contain at least one strong edge. If such an edge (i, j) can be
identified in polynomial time, then after removing the nodes i and j from G and
applying the algorithm on G − {i, j} and repeating the process we eventually
reach a bipartite graph for which an optimal vertex cover V̂ can be identified
in polynomial time. Then V̂ together with the nodes removed so far will form
an optimal vertex cover of G. Thus if the strong edge problem can be solved in
polynomial time, then the VCP can be solved in polynomial time.

It may be noted that the strong edge problem is solvable in polynomial time
on a bipartite graph. The problem of identifying a weak edge is much more
interesting. The weak edge problem can be stated as follows: “Given a graph
G, identify a weak edge of G.” It may be noted that unlike a strong edge, a
weak edge exists for all graphs. We will now show that the weak edge problem
is NP-hard. Before discussing the proof of this claim, we need to introduce some
notations and definitions.

Let x∗ = (x∗
1, x

∗
2, . . . , x

∗
n) be an optimal BFS of LPR, the linear programming

relaxation of the VCP. Let I0 = {i : x∗
i = 0} and I1 = {i : x∗

i = 1}. The
graph Ḡ = G \ {I0 ∪ I1} is called a {0, 1}-reduced graph of G. The process of
computing Ḡ from G is called a {0,1}-reduction.

Lemma 1. [18] If R is a vertex cover of Ḡ then R ∪ I1 is a vertex cover of G.
If R is optimal for Ḡ, then R ∪ I1 is an optimal vertex cover for G. If R is a
γ-optimal vertex cover of Ḡ, then R ∪ I1 is an γ-optimal vertex cover of G for
any γ ≥ 1.

Let e = (i, j) be an edge of G. Define Δij = {k | (i, k) ∈ E(G) and (j, k) ∈
E(G)}, De,i = {s ∈ V (G) | (i, s) ∈ E(G), s �= j, s �∈ Δij}, and De,j = {t ∈
V (G) | (j, t) ∈ E(G), t �= i, t �∈ Δij}. Construct the new graph G(i,j) from G
as follows. From graph G, delete Δij and all the incident edges, connect each
vertex s ∈ De,i to each vertex t ∈ De,j whenever such an edge is not already
present, and delete vertices i and j with all the incident edges. The operation
of constructing G(i,j) from G is called an (i, j)-reduction. When (i, j) is selected
as a weak edge, then the corresponding (i, j)-reduction is called a weak edge
reduction. The weak edge reduction is a modified version of the active edge
reduction operation introduced in [8].

Lemma 2. Let e = (i, j) be a weak edge of G, R ⊆ V (G(i,j)) and

R∗ =

{
R ∪Δij ∪ {j}, if De,i ⊆ R;
R ∪Δij ∪ {i}, otherwise,

1. If R is a vertex cover of G(i,j), then R∗ is a vertex cover of G.
2. If R is an optimal vertex cover of G(i,j), then R∗ is an optimal vertex cover

of G.
3. If R is a γ-optimal vertex cover in G(i,j), then R∗ is a γ-optimal vertex cover

in G for any γ ≥ 1.
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Proof. Let R be a vertex cover of G(i,j). If De,i ⊆ R then all arcs in G incident
on i, except possibly (i, j) and (i, k) for k ∈ Δij , are covered by R. Then R∗ =
R ∪Δij ∪ {j} covers all arcs incident on j, including (i, j), (i, k) and (j, k) for
k ∈ Δij , and hence R∗ is a vertex cover in G. If at least one vertex of De,i is
not in R, then all vertices in De,j must be in R by construction of G(i,j). Thus
R∗ = R ∪Δij ∪ {i} must be a vertex cover of G.

Suppose R is an optimal vertex cover of G(i,j). Since (i, j) is a weak edge, there
exists an optimal vertex cover, say V 0, of G containing exactly one of the nodes i
or j. Without loss of generality, let this node be i. For each node k ∈ Δij , (i, j, k)
is a 3-cycle in G and hence k ∈ V 0 for all k ∈ Δij . Let V 1 = V 0 − ({i} ∪Δij),
which is a vertex cover of G(i,j). Then |R| = |V 1| for otherwise if |R| < |V 1| we
have |R∗| < |V 0|, a contradiction. Thus |R∗| = |V 0| establishing optimality of
R∗.

Suppose R is an γ-optimal vertex cover of G(i,j) and let V (i,j) be an optimal
vertex cover in G(i,j). Thus

|R| ≤ γ|V (i,j)| where γ ≥ 1. (2)

Let V 0 be an optimal vertex cover in G. Without loss of generality assume i ∈ V 0

and since (i, j) is weak, j /∈ V 0. Let V 1 = V 0− ({i}∪Δij). Then |V 1| = |V (i,j)|.
Thus from (2), |R| ≤ γ|V 1|. Thus

|R∗| ≤ γ|V 1|+ |Δij |+ 1 ≤ γ(|V 1|+ |Δij |+ 1) ≤ γ|V 0|.

Thus R∗ is γ-optimal in G.

Suppose that an oracle, say WEAK(G, i, j), is available which with input G
outputs two nodes i and j such that (i, j) is a weak edge of G. It may be
noted that WEAK(G, i, j) do not tell us which node amongst i and j is in an
optimal vertex cover. It simply identifies the weak edge (i, j). Using the oracle
WEAK(G, i, j), we develop an algorithm, called weak edge reduction algorithm
or WER-algorithm to compute an optimal vertex cover of G.

The basic idea of the scheme is very simple. We apply {0, 1}-reduction and
weak edge reduction repeatedly until a null graph is reached, in which case the
algorithm goes to a backtracking step. We record the vertices of the weak edge
identified in each weak edge reduction step but do not determine which one to be
included in the output vertex cover. In the backtrack step, taking guidance from
Lemma 2, we choose exactly one of these two vertices to form part of the vertex
cover we construct. In this step, the algorithm computes a vertex cover for G
using all vertices in Δij removed in the weak edge reduction steps, vertices with
value 1 removed in the {0, 1}-reduction steps, and the selected vertices in the
backtrack step from the vertices corresponding to the weak edges recorded during
the weak edge reduction steps. A formal description of the WER-algorithm is
given below.
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The WER-Algorithm
Step 1: {* Initialize *} k = 1, Gk = G.
Step 2: {* Reduction operations *} Δk = ∅, Ik,1 = ∅, ek = (ik, jk) = ∅.

1. {* {0,1}-reduction *} Solve the LP relaxation problem LPR of VCP
on the graph Gk. Let xk = {xk

i : i ∈ V (Gk)} be the resulting
optimal BFS, Ik,0 = {i | xk

i = 0}, Ik,1 = {i | xk
i = 1}, and Ik =

Ik,0 ∪ Ik,1.
If V (Gk) \ Ik = ∅ goto Step 3 else Gk = Gk \ Ik endif

2. {* weak edge reduction *} Call WEAK(Gk, i, j) to identify the weak
edge e = (i, j). Let Gk+1 = G

(i,j)
k , where G

(i,j)
k is the graph obtained

from Gk using the weak edge reduction operation. Compute Δij

for Gk as defined in the weak edge reduction. Let Δk = Δij , ik =
i, jk = j, ek = (ik, jk).
If Gk+1 �= ∅ then k = k + 1 goto beginning of Step 2 endif

Step 3: L=k+1, SL = ∅.
Step 4: {* Backtracking to construct a solution *}

Let SL−1 = SL ∪ IL−1,1,
If (iL−1, jL−1) �= ∅ then SL−1 = SL−1 ∪ΔL−1 ∪R∗, where

R∗ =

{
jL−1, if DeL−1,iL−1 ⊆ SL;
iL−1, otherwise,

and DeL−1,iL−1 = {s : (iL−1, s) ∈ GL−1, s �= jL−1, s �∈ ΔL−1} endif
L = L− 1,
If L �= 1 then goto beginning of step 4 else output S1 and STOP
endif

Using Lemma 1 and Lemma 2, it can be verified that the output S1 of the WER-
algorithm is an optimal vertex cover of G. It is easy to verify that the complexity
of the algorithm is polynomial whenever the complexity of WEAK(G, i, j) is
polynomial. Since VCP is NP-hard we established the following theorem:

Theorem 2. The weak edge problem is NP-hard.

3 An Approximation Algorithm for VCP

Let VCP(i, j) be the restricted vertex cover problem where feasible solutions are
vertex covers of G using exactly one of the vertices from the set {i, j} and looking
for the smallest vertex cover satisfying this property. Note that a feasible solution
to the restricted vertex cover problem is always exists, for instance, V \{i} or
V \{j}. More precisely, VCP(i, j) tries to identify a vertex cover V ∗ of G with
smallest cardinality such that |V ∗ ∩ {i, j}| = 1. Let δ and δ̄(i, j) be the optimal
objective function values of VCP and VCP(i, j) respectively. If (i, j) is indeed a
weak edge of G, then δ = δ̄(i, j). Otherwise,

δ̄(i, j) = δ + σ(i, j), (3)
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where σ(i, j) is a non-negative integer. Further, using arguments similar to the
proof of Lemma 2 it can be shown that

ζij + Δij + 1 = δ̄(i, j) = δ + σ(i, j). (4)

where ζij is the optimal objective function value VCP on G(i,j).
Consider the optimization problem

WEAK-OPT: Minimize σ(i, j)
Subject to (i, j) ∈ E(G)

WEAK-OPT is precisely the weak edge problem in the optimization form and its
optimal objective function value is always zero. However this problem is NP-hard
by Theorem 2. We now show that an upper bound σ on the optimal objective
function value of WEAK-OPT and a solution (i, j) with σ(i, j) ≤ σ can be
used to obtain a (2 − 1

1+σ )-approximation algorithm for VCP. Let ALMOST-
WEAK(G, i, j) be an oracle which with input G computes an approximate so-
lution (i, j) to WEAK-OPT such that σ(i, j) ≤ σ for some σ. Consider the
WER-algorithm with WEAK(G, i, j) replaced by ALMOST-WEAK(G, i, j). We
call this the AWER-algorithm.

Let Gk, k = 1, 2, . . . t be the sequence of graphs generated in Step 2(2) of the
AWER-algorithm and (ik, jk) be the approximate solution to WEAK-OPT on
Gk, k = 1, 2, . . . , t identified by ALMOST-WEAK(Gk, ik, jk).

Theorem 3. The AWER-algorithm identifies a vertex cover S1 such that |S1| ≤
(2 − 1

1+σ )|S∗| where S∗ is an optimal solution to the VCP. Further, the com-
plexity of the the algorithm is O(n(φ(n) + ψ(n))) where n = |V (G)|, φ(n) is the
complexity of LPR and ψ(n) is the complexity of ALMOST-WEAK(G, i, j).

Proof. Without loss of generality, we assume that the LPR solution x1 = (x1
1, x

1
2,

. . . , x1
n) generated when Step 2(1) is executed for the first time satisfies x1

i = 1
2

for all i. If this is not true, then we could replace G by a new graph Ḡ =
G\{I1,1∪I1,0} and by Lemma 1, if S̄ is a γ-optimal solution for VCP on Ḡ then
S̄ ∪ I1,1 is a γ-optimal solution on G for any γ ≥ 1. Thus, under this assumption
we have

n ≤ 2|S∗|. (5)

Let t be the total number of iterations of Step 2 (2). For simplicity of notation,
we denote σk = σ(ik, jk) and δ̄k = δ̄(ik, jk). Note that δk and δ̄k are optimal
objective function values of VCP and VCP(ik, jk), respectively, on the graph
Gk. In view of equations (3) and (4) we have,

δ̄k = δk + σk, k = 1, 2, . . . , t (6)

and
δk+1 + |Δik,jk

|+ |Ik,1|+ 1 = δ̄k, k = 1, 2, . . . , t. (7)

From (6) and (7) we have

δk+1 − δk = σk − |Δik,jk
| − |Ik,1| − 1, k = 1, 2, . . . , t. (8)
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Adding equations in (8) for k = 1, 2, . . . , t and using the fact that δt+1 = |It+1,1|,
we have,

|S1| = |S∗|+
t∑

k=1

σk, (9)

where |S∗| = δ1, and by construction,

|S1| = Σt+1
k=1Ik,1 + Σt

k=1Δk + t. (10)

But,
|V (G)| = Σt+1

k=1Ik + Σt
k=1Δk + 2t. (11)

From (9), (10) and (11), we have

t =
|V (G)| −Σt+1

k=1Ik −Σt
k=1Δk

2
≤ |V (G)| − |S∗| −Σt

k=1(σk − 1)
2

. (12)

From inequalities (5) and (12), we have

t ≤ |S∗| − t(σ̄ − 1)
2

,

where σ̄ = Σt
k=1σk

t . Then we have

t ≤ |S∗|
σ̄ + 1

.

Thus,

|S1|
|S∗| =

|S∗|+ Σt
k=1σk

|S∗| =
|S∗|+ tσ̄

|S∗| ≤ 1 +
σ̄

σ̄ + 1
≤ 1 +

σ

σ + 1
= 2− 1

1 + σ
.

The complexity of the algorithm can easily be verified.

The performance bound established in Theorem 3 is useful only if we can find an
efficient way to implement our black-box oracle ALMOST-WEAK(G, i, j) that
identifies a reasonable (i, j) in each iteration.

Any vertex cover must contain at least s+1 vertices of an odd cycle of length
2s + 1. This motivates the following extended linear programming relaxation
(ELP) of the VCP, studied in [1,8].

(ELP )

min
n∑

i=1

xi

s.t. xi + xj ≥ 1, (i, j) ∈ E,∑
i∈ωk

xi ≥ sk + 1, ωk ∈ Ω,

xi ≥ 0, i = 1, 2, . . . , n,

(13)

where Ω denotes the set of all odd-cycles of G and ωk ∈ Ω contains 2sk + 1
vertices for some integer sk. Note that although there may be an exponential
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number of odd-cycles in G, since the odd cycle inequalities has a polynomial-
time separation scheme, ELP is polynomially solvable. Further, it is possible to
compute an optimal BFS of ELP in polynomial time.

Let x0 be an optimal basic feasible solution of ELP. An edge (r, s) ∈ E is
said to be an active edge with respect to x0 if x0

i + x0
j = 1. There may or may

not exist an active edge corresponding to an optimal BFS of the ELP as shown
in [8]. For any arc (r, s), consider the restricted ELP (RELP(r, s)) as follows:

(RELP (r, s))

min
n∑

i=1

xi

s.t. xi + xj ≥ 1, (i, j) ∈ E\{(r, s)},
xr + xs = 1,∑
i∈ωk

xi ≥ sk + 1, ωk ∈ Ω,

xi ≥ 0, i = 1, 2, . . . , n,

(14)

Let Z(r, s) be the optimal objective function value of RELP(r, s). Choose (p, q) ∈
E(G) such that

Z(p, q) = min{Z(i, j) : (i, j) ∈ E(G)}.
An optimal solution to RELP(p, q) is called a RELP solution. It may be noted
that if an optimal solution x∗ of the ELP contains an active edge, then x∗ is
also an RELP solution. Further Z(p, q) is always a lower bound on the optimal
objective function value of VCP.

The VCP on a complete graph is trivial since any collection of (n− 1) nodes
form an optimal vertex cover. However, for a complete graph, LPR yields an
optimal objective function value of n

2 only and ELP yields an optimal objective
function value of 2n

3 . Interestingly, the optimal objective function value of RELP
on a complete graph is n−1, and the RELP solution is indeed an optimal vertex
cover on a complete graph. In fact, it can be shown that for any (i, j) ∈ E(G),
an optimal BFS of the linear program RELP(i, j) gives an optimal vertex cover
of G whenever G is a complete graph or a wheel.

Extending the notion of an active edge corresponding to an ELP solution [8],
an edge (i, j) ∈ E is said to be an active edge with respect to an RELP solution
x0 if x0

i +x0
j = 1. Unlike ELP, an RELP solution always contains an active edge.

In AWER-algorithm, the output of ALMOST-WEAK(G, i, j) can be selected as
an active edge with respect to RELP solution.

We believe that the value of σ(i, j), i.e. the absolute difference between the
optimal objective function value of VCP and the optimal objective function value
of VCP(i,j), when (i, j) is an active edge corresponding to an RELP solution is
a constant for a large class of graphs. Charactering such graphs is an open
question. Nevertheless, our results provide new insight into the approximability
of the vertex cover problem.
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Abstract. Hunsaker and Savelsbergh have proposed an algorithm for
testing feasibility of a route in the solution to the dial-a-ride problem.
The constraints that are checked are load capacity constraints, time win-
dows, ride time bounds and wait time bounds. The algorithm has linear
running time. By virtue of a simple example, we show in this work that
their algorithm is incorrect. We also prove that by increasing the time
complexity by only a logarithmic factor, a correct algorithm is obtained.

Keywords: dial-a-ride problem, feasibility, algorithm.

1 Introduction

In the Dial-a-Ride Problem (DARP), a set of users specify transportation re-
quests between given origins and destinations. Users may provide a time window
on their desired departure or arrival time, or on both. A fleet of vehicles based
at a common depot is available to operate the routes. Each vehicle can carry
a load bounded by the vehicle load capacity. The time each user spends in the
vehicle is bounded by a threshold, and there is also a bound on the waiting time
at each location. The DARP consists of constructing a set of feasible minimum
cost routes.

A common application of the DARP arises in door-to-door transportation of
the elderly and the disabled [1,2,3,4]. For surveys of models and algorithms for
the DARP, the reader is referred to [5], [6] and [7].

The purpose of this work is to develop a fast algorithm for checking feasibility
of any given route. In a paper published in Operations Research Letters, Hun-
saker and Savelsbergh [8] proposed one such algorithm with linear running time.
Unfortunately, their algorithm is not correct, and does therefore not prove that
feasibility can be verified in linear time.

The remainder of this work is organized as follows: In Sect. 2, we define the
feasibility checking problem in precise terms, and provide the necessary notations
and assumptions. In Sect. 3, we briefly review the algorithm in [8], and give
a small example showing that it may fail to give the correct conclusion. An
� This work was supported by the Norwegian Research Council, Gassco and Statoil
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alternative algorithm together with a correctness proof and running time analysis
are provided in Sect. 4, while Sect. 5 concludes the paper.

2 Problem Definition

A transportation request consists of a pickup and a delivery location, and is
referred to as a package. Assume now that a partial solution to a DARP instance
is suggested. By that we mean that all packages have been assigned to vehicles,
and for each vehicle, a route is suggested. A route is simply an order in which the
locations corresponding to the packages are visited, with the addition of initial
and final locations of the vehicle as head and tail, respectively. The remaining
problem is to check whether the constraints on load capacity, time windows, ride
time and waiting time can be satisfied by this selection of routes.

Since there is no constraint across the set of routes, the problem is decomposed
into a set of feasibility testing problems, each of which corresponds to a unique
route (vehicle). Consequently, we will henceforth consider an arbitrary vehicle
in the fleet, along with the set of packages assigned to the vehicle. That is, our
attention is directed to the single-vehicle variant of DARP, but all our results
apply to the general version of the problem.

We include a dummy package consisting of the initial and final vehicle loca-
tions, and for simplicity, we assume that all parameters and constraints defined
for other packages are also defined for the dummy package. The initial and final
locations are typically identical physical sites, referred to as the depot.

We define the following input data:

• I = set of packages assigned to the vehicle, including the dummy package.
• n = |I| − 1 = number of packages without counting the dummy package.
• (i+, i−) = pickup and delivery location of package i ∈ I.
• J = (0, 1, . . . , 2n + 1) = route = ordered set consisting of all pickup and

delivery locations including the initial (0) and the final (2n + 1) locations.
For notational simplicity, we thus let each location be identified by an integer
corresponding to its position in the route.

• N = 2n + 1.
• J+ ⊆ J = pickup locations including location 0.
• J− ⊆ J = delivery locations including location 2n + 1.
• [ej , �j] = time window of location j ∈ J .
• tj = travel time from location j to location j + 1.
• ai = ai+ = ai− = upper bound on the ride time for package i.
• wj = upper bound on the wait time at location j.
• di = di+ = −di− ≥ 0 = demand, package i (quantity transported from i+ to

i−).
• Q = load capacity of the vehicle.

As decision variables, we let Dj denote the departure time for location j =
0, . . . , N . Following [8], we also define Aj = Dj−1 + tj−1 as the arrival time for
location j = 1, . . . , N , and let A0 = e0.

In this work, we exclude infeasible instances violating any of the following
conditions, all of which can be checked in linear time.
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Assumption 1. For all i ∈ I, i+ < i− and
∑i−−1

j=i+ tj ≤ ai. For all j ∈ J ,
0 ≤ ej ≤ �j, tj ≥ 0, wj ≥ 0, and

∑j
k=0 dk ≤ Q.

By the last inequality, the load capacity constraint is assumed to be satisfied by
the route, and will not be considered further. The problem of checking feasibility
of the route is now reduced to decide whether the following inequalities are
consistent:

ej ≤ Dj ≤ �j, j ∈ J, (1)
Di− −Di+ ≤ ai, i ∈ I, (2)

0 ≤ Dj −Dj−1 − tj−1 ≤ wj , j ∈ J \ {0} . (3)

The focus of this work is to develop an algorithm that solves the above decision
problem, and outputs one feasible assignment to D for input instances where
the inequalities are consistent.

3 The Algorithm of Hunsaker and Savelsbergh

Three passes constitute the algorithm in [8] for testing feasibility of a given route.
First, all arrival and departure times are left-adjusted by taking the precedence
constraints (first inequality of (3)) and the lower time window bounds (first
inequality of (1)) into consideration. In the second pass, the departure times are
right-adjusted in order to satisfy ride time bounds (2). Finally, the third pass
right-adjusts arrival and departure times in order to satisfy precedence relations
violated in the second pass, and checks whether any upper time window bounds
(second inequality of (1)) or ride time bounds hence are violated.

In Algorithm 1, we give a concise description of how the algorithm works
in instances where the bounds on the waiting time are sufficiently large to be
neglected. This simplification is made in order to exclude algorithmic details
irrelevant to the conclusion of our work. It is straightforward to verify that each
pass of Algorithm 1 has linear running time.

3.1 An Instance Where the Algorithm Fails

Let n = 2, and let the packages be denoted (0+, 0−), (1+, 1−), and (2+, 2−).
Consider the route J = (0+, 1+, 2+, 1−, 2−, 0−), where the following data are
defined:

• tj = 1 ∀j �= 0+, 2− (travel times on all legs except those to/from the depot
are 1),

• t0+ = t2− = 0 (travel times on the legs to/from the depot are 0),
• wj = ∞ ∀j ∈ J (bounds on waiting time can be neglected),
• a1 = a2 = 2, a0 = ∞ (maximum ride time is 2 for packages (1+, 1−) and

(2+, 2−)).
• [e0+ , �0+ ]= [e0− , �0− ]= [0, 6], [e1+ , �1+ ]= [0, 6], [e2+ , �2+ ]= [2, 6], [e1− , �1− ] =

[4, 6], [e2− , �2− ] = [6, 6].
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Algorithm 1. Hunsaker&Savelsbergh
First pass:
D0 ← e0

for j ← 1, . . . , N do
Aj ← Dj−1 + tj−1, Dj ← max{Aj , ej}
if Aj > 	j then

Print “Infeasible route”, and stop
Second pass:
for j ← N − 1, . . . , 0 do

i ← the package to which location j belongs
if j = i+ then

if Di− − Di+ > ai then
Di+ ← Di− − ai

if Dj > 	j then
Print “Infeasible route”, and stop

Third pass:
for j ← 1, . . . , N do

i ← the package to which location j belongs
Aj ← Dj−1 + tj−1, Dj ← max{Aj , Dj}
if Dj > 	j then

Print “Infeasible route”, and stop
if j = i− and Di− − Di+ > ai then

(*) Print “Infeasible route”, and stop
Print “Feasible route”

The first pass of the algorithm then assigns the following values to the arrival
and departure times:

• D0+ = 0
• A1+ = 0, D1+ = 0
• A2+ = 1, D2+ = 2
• A1− = 3, D1− = 4
• A2− = 5, D2− = 6
• A0− = 6

After the second pass, we get:

• D0+ = 0
• A1+ = 0, D1+ = 2
• A2+ = 1, D2+ = 4
• A1− = 3, D1− = 4
• A2− = 5, D2− = 6
• A0− = 6

In the third pass, we get:

• D0+ = 0
• A1+ = 0, D1+ = 2
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• A2+ = 3, D2+ = 4
• A1− = 5, D1− = 5

and in the statement labeled (*), it is concluded that the route is infeasible.
However, the schedule

• D0+ = 3
• A1+ = 3, D1+ = 3
• A2+ = 4, D2+ = 4
• A1− = 5, D1− = 5
• A2− = 6, D2− = 6
• A0− = 6

is feasible.
The small example above demonstrates the shortcoming of Algorithm 1 in

instances where the ride times are critical and the packages are interleaved.
That is, the pickup location 2+ is visited between the locations of package 1,
while the delivery location 2− is visited after 1− (1+, 2+, 1−, 2−). Since both ride
time bounds are violated in the first pass, D1+ and D2+ are both increased in
the second pass. In the third pass, the departure times of later visited locations
must be increased as well, since otherwise the precedence constraints would
be violated. However, this also involves D1− , which hence is increased by the
same amount as D1+ , and the ride time bound remains violated. The algorithm
neglects the fact that running the two last passes a second time would increase
the value of D1+ to 3 without delaying the departure from later visited locations.

To tackle interleaved packages adequately, the principle applied in Algorithm
1 requires a loop over the two last passes. Unless the number of iterations of the
loop can be bounded by a constant, which seems unlikely, such a modification
leads to an algorithm with superlinear running time.

In general, Algorithm 1 gives the correct conclusion if the given route is infea-
sible. However, the algorithm does not conclude correctly for all feasible routes,
as it may fail to recognize some of them.

4 An Alternative Algorithm

Define the net ride times between locations j and h (0 ≤ j ≤ h ≤ N) Tjh =∑h−1
r=j tr. For any pickup location j ∈ J+, let j− denote the corresponding deliv-

ery location, and for any delivery location j ∈ J−, let j+ be the corresponding
pickup location.

The idea of our algorithm is to consider first the relaxed version of (1)-(3)
where Dj ≤ �j is removed for all j ∈ J . Below, we demonstrate that (1)-(3)
are consistent if and only if the vector of earliest departure times in the relaxed
problem satisfies the upper time window bounds.

To compute this relaxed solution, we determine for every location j ∈ J
whether its departure can be earlier if the precedence constraint Dj ≥ Dj−1 +
tj−1 is removed. If this is not possible, location j is said to be critical. Lemma
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4 below provides a simple formula for minimization of relaxed departure times
at critical locations. At non-critical locations, the precedence constraints are
binding, and the departure times are simply found by adding travel time to
the departure time of their predecessors. To identify critical locations, Lemma 5
below gives an inductive formula.

In formal terms, let the feasible region of the relaxed problem be defined as

X̄ = {D ∈ IRN+1 : Dj ≥ ej (j ∈ J),
0 ≤ Dj −Dj−1 − tj−1 ≤ wj (j = 1, . . . , N), Di− −Di+ ≤ ai (i ∈ I)},

and let X =
{
D ∈ X̄ : Dj ≤ �j(j ∈ J)

}
denote the set of departure times satis-

fying (1)-(3).

Lemma 1. X̄ �= ∅.
Proof. Choose e.g. D0 = max {ej : j ∈ J} and Dj = Dj−1 + tj−1 ∀j > 0. Then,
Di− −Di+ ≤ ai ∀i ∈ I, and thereby also D ∈ X̄, follow directly from Assump-
tion 1. �
Observation 1. Let a1, a2, b1, b2, c1, c2 be real numbers such that c1 ≤ a1−a2 ≤
c2 and c1 ≤ b1 − b2 ≤ c2. Then c1 ≤ min{a1, b1} −min{a2, b2} ≤ c2.

Proof. The lower bound on a1−a2 and b1−b2 yields min{a1, b1}−min{a2, b2} ≥
min{c1 + a2, c1 + b2}−min{a2, b2} = c1. The second inequality is proved analo-
gously. �
By Lemma 1 and the lower time window bounds, we have that Dmin =(
Dmin

0 , . . . , Dmin
N

)
, where Dmin

j = min
{
Dj : D ∈ X̄

}
, exists.

Lemma 2. Dmin ∈ X̄.

Proof. Let D′ ∈ argmin
{∑

j∈J Dj : D ∈ X̄
}
. To prove that D′

j = Dmin
j ∀j ∈ J ,

observe that D′
j ≥ Dmin

j , and assume D′
k > Dmin

k for some k ∈ J . Since Dmin
k is

a feasible value of Dk, there exists some Dk ∈ X̄ such that Dk
k = Dmin

k . Define
D̂ ∈ IRN+1 by D̂j = min{D′

j, D
k
j } (j ∈ J), which yields

∑
j∈J D̂j <

∑
j∈J D′

j .
Obviously, D̂ ≥ e, and Observation 1 implies that D̂ also satisfies (2)-(3). Hence,
D̂ ∈ X̄ , contradicting the definition of D′. �
Define E ∈ IRN+1 by E0 = Dmin

0 and for all h = 1, . . . , N ,
Eh = min

{
Dh : D ∈ X̄h

}
, where X̄h is defined by the same inequalities as X̄ ,

but with Dh −Dh−1 − th−1 ≥ 0 removed.
That is, Eh is the earliest departure from location h if we eliminate all upper

time window bounds and the precedence constraint between locations h − 1
and h. The set of critical locations is defined as J ′ =

{
j ∈ J : Ej = Dmin

j

}
=

{j1, j2, . . . , jK}, where K = |J ′|. We assume j1 > j2 > · · · > jK = 0, since our
algorithm below computes the critical locations in an order of decreasing indices.
We let EN+1 = eN+1 > Dmin

N and wN+1 > eN+1 −Dmin
N be arbitrarily chosen,

and define j0 = N + 1.
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Note that if Dmin
j > Dmin

j−1+tj−1 then j ∈ J ′, but the converse is not necessarily
true. It follows that

Dmin
j = Dmin

jk
+ Tjkj ∀j ∈ Bk, (4)

where Bk = {jk, jk + 1, . . . , jk−1 − 1}, and knowledge to J ′ and E is thus suffi-
cient for assessing Dmin.

Lemma 3. Let j ∈ Bk. Then the following inequality is satisfied, and it holds
with equality if j = jk:

Ej ≥

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
max

{
ej , D

min
j− − aj , D

min
j+1 − wj+1 − tj

}
, j ∈ J+, j + 1 �∈ Bk,

max
{
ej , D

min
j+1 − wj+1 − tj

}
, j ∈ J−, j + 1 �∈ Bk,

max
{
ej , D

min
j− − aj

}
, j ∈ J+, j + 1 ∈ Bk, j− �∈ Bk,

ej , otherwise.
(5)

Proof. The lower bound on Ej is obvious. In the first two cases, it is also obvious
that it holds with equality for j = jk.

To prove equality for j = jk in the third case, assume that
Ejk

> max
{
ejk

, Dmin
j−k

− ajk

}
. Since jk ∈ J ′, we have that

Dmin ∈ argmin
{
Djk

: D ∈ X̄jk
}

and Ej < Dmin
j for all j ∈ Bk \ {jk}. Starting

from the solution Dmin, we construct a new solution D′ in X̄jk by moving de-
partures from all locations in Bk forward in time as much as any available slack
δ permits. This slack is found by minimizing the slack over all j ∈ Bk:

δ′ = min
{
Dmin

j − Ej : j ∈ Bk \ {jk}
}

,

δ = min
{
Ejk

−max
{
ejk

, Dmin
j−k

− ajk

}
, δ′
}

,

and the new solution becomes

D′
j = Dmin

j − δ, j ∈ Bk,

D′
j = Dmin

j , j ∈ J \Bk .

We then have D′ ∈ X̄jk . By the assumption, δ > 0, leading to the contradiction
that D′

jk
< Dmin

jk
= Ejk

.
The last case is proved by repeating the above arguments with

max
{

ejk
, Dmin

j−k
− ajk

}
replaced by ejk

. �
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To compute Ej for all j ∈ J ′, we define a sequence E0, E1, . . . , EK ∈ IRN+2 of
lower bounds by E0 = e, and for k = 1, . . . , K, j ∈ J :

Ek
j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ek−1
j , j ≥ jk−1,

max
{
ej , E

k−1
jm

+ Tjmj− − aj,

Ek−1
jk−1

− wjk−1 − tj

}
, j = jk−1 − 1 ∈ J+, j− ∈ Bm, m < k,

max
{
ej , E

k−1
jk−1

− wjk−1 − tj

}
, j = jk−1 − 1 ∈ J−,

max
{
ej , E

k−1
jm

+ Tjmj− − aj

}
, jk−1 − 1 > j ∈ J+, j− ∈ Bm, m < k,

ej , otherwise.
(6)

Lemma 4. For all k = 0, 1, . . . , K and all j ∈ J , we have Ej ≥ Ek
j and Ejk

=
Ek

jk
.

Proof. The proof is by induction in k. For k = 0, the result is trivial. Assume
it holds for 0, 1, . . . , k− 1. It follows from the induction hypothesis and (4) that
Ek−1

jk−1
and Ek−1

jm
+ Tjmj− (m < k) equal Dmin

jk−1
and Dmin

j− , respectively. Hence,
for j ≥ jk, the right hand sides of (5) and (6) coincide, and the result follows
from Lemma 3. �
Lemma 5.

jk = maxarg max
{
Ek−1

j + TjN : j = 0, . . . , jk−1 − 1
}

, ∀k = 1, . . . , K. (7)

Proof. Denote the right hand side of (7) by rk, and assume jk < rk. Then
rk �∈ J ′. By utilizing Lemma 4 for j = rk and j = jk, we get Erk

< Dmin
rk

=
Dmin

jk
+ Tjkrk

= Ek
jk

+ TjkN − TrkN ≤ Ek
rk

+ TrkN − TrkN ≤ Erk
, which is a

contradiction.
Assume jk > rk. Then Dmin

jk
≥ Dmin

rk
+ Trkjk

≥ Ek
rk

+ Trkjk
= Ek

rk
+ TrkN −

TjkN > Ek
jk

+ TjkN − TjkN = Ejk
, which contradicts jk ∈ J ′. �

Equation (6) and Lemma 5 give simple formulae for the computation of Dmin
j

and J ′. This is exploited in Algorithm 2. We conclude that the route is feasible if
and only if Dmin

j ≤ �j for all j ∈ J . By the second condition of Assumption 1, we
can disregard the ride time constraint of package i if there is some k = 1, . . . , K
such that i+, i− ∈ Bk.

Proposition 1. Algorithm 2 returns
(
false, Dmin

)
if X = ∅, and(

true, Dmin
)
, otherwise.

Proof. It follows from (4) and Lemmata 3-5 that the computed value of D is
Dmin. Since X =

{
D ∈ X̄ : D ≤ �

}
and D ≥ Dmin ∀D ∈ X̄, it follows from

Lemma 2 that X �= ∅ if and only if Dmin ≤ �, which completes the proof. �
Proposition 2. The time complexity of Algorithm 2 is O (n log n).
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Algorithm 2. FeasibilityCheck
k ← 0
E ← e
jk ← N + 1
feas←true

while jk > 0 do
k ← k + 1
jk ← maxarg max

{
Ek−1

j + TjN : j = 0, . . . , jk−1 − 1
}

for j ← jk, . . . , jk−1 − 1 do
Dj ← Ejk + Tjkj

if Dj > 	j then
feas←false

if j ∈ J− and j+ < jk then
Ej+ ← max{Ej+ , Dj − aj}

Ejk−1 ← max{Ejk−1, Djk − wjk − tjk−1}
return (feas,D)

Proof. In each iteration of the while-loop, let locations j = 0, . . . , jk−1 − 1 be
represented by a heap with primary and secondary keys Ej + TjN and j, re-
spectively. Each location is pushed on the heap prior to execution of the loop.
Location j is removed from the heap when the value of jk is assigned a value no
larger than j. Each location is hence removed exactly once. While in the heap,
the primary key of the location is updated at most twice. Since the while-loop is
executed at most N +1 times, only O(n) retrievals of the location with maximum
key value are required. The total number of heap operations (counting insertions,
retrievals and key updates), each of which has time complexity O (log n), is thus
linear.

The proof is complete by observing that the algorithm needs access to net ride
times between only O(n) pairs of locations, and that each of these is computed
in constant time once TjN is computed for all j ∈ J . �
It is straightforward to verify that when applied to the instance studied in Sect.
3.1, Algorithm 2 identifies the critical locations j1 = 2−, j2 = 2+, j3 = 1+ and
j4 = 0+. The algorithm concludes that the route is feasible, and suggests the
schedule D0+ = 0, D1+ = 3, D2+ = 4, D1− = 5, D2− = 6, and D0− = 6.

5 Conclusions

In this paper, we have studied the problem of verifying feasibility of a suggested
solution to the dial-a-ride problem. We have shown that an algorithm with lin-
ear running time published by Hunsaker and Savelsbergh may give incorrect
answer when the suggested route is feasible. Hence, we have proposed a new
algorithm, and shown that feasibility of a route can be checked in linearithmic
time. Whether feasibility of a solution to the DARP can be verified in linear
time still remains an open question.
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Abstract. To study the genetic variations of a species, one basic oper-
ation is to search for occurrences of patterns in a large number of very
similar genomic sequences. To build an indexing data structure on the
concatenation of all sequences may require a lot of memory. In this pa-
per, we propose a new scheme to index highly similar sequences by taking
advantage of the similarity among the sequences. To store r sequences
with k common segments, our index requires only O(n + N log N) bits
of memory, where n is the total length of the common segments and N
is the total length of the distinct regions in all texts. The total length
of all sequences is rn + N , and any scheme to store these sequences
requires Ω(n + N) bits. Searching for a pattern P of length m takes
O(m+m log N +m log(rk)psc(P )+ occ log n), where psc(P ) is the num-
ber of prefixes of P that appear as a suffix of some common segments
and occ is the number of occurrences of P in all sequences. In practice,
rk ≤ N , and psc(P ) is usually a small constant. We have implemented
our solution1 and evaluated our solution using real DNA sequences. The
experiments show that the memory requirement of our solution is much
less than that required by BWT built on the concatenation of all se-
quences. When compared to the other existing solution (RLCSA), we
use less memory with faster searching time.

1 Introduction

The study of genetic variations of a species often involves mining very similar
genomic sequences. For example, when studying the association of SNPs (single
nucleotide polymorphism) with a certain disease [3,1] in which the differences on
a few characters in the genomes cause the disease, the same regions of individual
genomes from different normal people and patients are extracted and compared.
These different sequences are almost identical except on those SNPs. The length
of each sequence can be from several million to several hundred million, and the
number of copies can be up to a few hundreds.

When studying these similar sequences, a basic operation is to search the
occurrences of different patterns. This seems to be straightforward as one can
consider a given set of similar sequences as a single long sequence and exploit clas-
sical text indexes like suffix trees or even better, compressed indexes like BWT
1 The software is available at http://i.cs.hku.hk/∼sbhuang/SimDNA/

B. Chen (Ed.): AAIM 2010, LNCS 6124, pp. 180–190, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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(Burrows-Wheeler Transform) to perform very fast pattern searching [9, 10].
However, these indexes would demand much more memory than ordinary com-
puters can support. Roughly speaking, a suffix tree requires more than 10 bytes
per nucleotide, and BWT requires 0.5 to 1 byte per nucleotide (other compressed
indexes like CSA [6] and FM-index [4, 5] have slightly higher memory require-
ment). Consider a case involving 250 sequences each of 200 million nucleotides.
To index all these sequences, even BWT would require about 40 Gigabytes, far
exceeding the capacity of a workstation. The problem of these naive solutions
lies on that they do not take advantage of the high similarity of these sequences.
In this paper we propose a new scheme to index highly similar sequences. It
takes advantage of the similarity to obtain a very compact index, while allowing
very efficient searching for any given patterns.

We first consider the following model of similarity of the input sequences. We
assume that the positions in a sequence at which the symbols are different from
other sequences are more or less the same for all sequences. One example is the
SNP locations in a set of genes. Details are given as follows.

Model 1: Consider r sequences T0, T1, . . . , Tr−1, not necessarily of the same
length. Assume that they have k segments C0, C1, . . . , Ck−1 in common. That
is, each Ti is equal to Ri,0C0Ri,1C1 . . . Ck−1Ri,k, where Ri,j (0 ≤ j ≤ k) is a
segment varies according to Ti. Note that some Ri,j can be empty and, for any
i′ �= i, Ri,j and Ri′,j may not have the same length.

Below we use n to denote the total length of all Cj ’s, and use N to denote
the total length of all Ri,j ’s over all Ti’s. Note that the total length of all Ti’s is
exactly rn + N . Since the sequences are highly similar, the length of each Ti is
dominated by n, and N << rn. Furthermore, N is usually larger than rk. The
problem is to design a space-efficient index to store the sequences while allowing
efficient search for any given pattern.

Our contributions: We develop a solution to solve the above problem by ex-
ploiting BWT and the suffix array data structures. Our solution requires O(n +
N log N) bits of memory. To search a pattern P of length m, our solution takes
O(m+m log N +m(log rk)psc(P )+ occ log n) time, where psc(P ) is the number
of prefixes of P that appear as a suffix of some common segments, and occ is the
total number of occurrences of P in all sequences. In practice, psc(P ) is usually
a small constant. It can also be shown that psc(P ) is upper bounded by O(log n)
for random sequences. We implemented our solution. To store 250 versions of a
sequence about 200M long, our solution only requires 2.7G memory. The mem-
ory requirement is only less than 7% of the memory required to store all 250
sequences using BWT. To search a pattern of length 500 in this collection of
sequences, it takes less than 0.5ms, thus our solution is practical.

We also extend our solution to another model of similarity of the input se-
quences. In this model, every pair of sequences have a few positions with different
nucleotides, but such positions vary from sequence to sequence. A typical exam-
ple is a set of genes from closely related species. In this case, we arbitrarily take
a sequence as a reference sequence, and the model is defined as follows.
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Model 2: Consider r sequences T0, T1, . . . , Tr−1, all of the same length n. Each
Ti (i �= 0) differs from T0 in xi positions, where xi << n. For i �= i′, the positions
at which Ti is different from T0 may not be the same as those of Ti′ .

With minor modification, our solution can also be applied to handle Model
2 with similar space and time complexity. [12] provides a solution (referred as
RLCSA) for Model 2. Their core idea is to make use of the run-length encoding
[11] to further compress BWT by considering the maximal segments in BWT in
which all symbols are the same (called runs). The key observation is that if we
concatenate all r sequences as a long sequence T , then construct BWT for T , the
expected value for the number of runs XT in T is bounded by X + O(s log L),
where X is the number of runs of BWT for T0, s is the sum of all xi’s, and L is
the total length of all sequences. Based on this bound, using our notation, their
space complexity is O((n + N log(rn + N)) log[(rn + N)/(n + N log(rn + N))]),
which is slightly worse than our solution. In practice, XT can be small. The
searching time complexities of both our and their solutions depend on a factor
which is related to the input data. We compare the two solutions based on real
experiments in Section 4.

2 Preliminaries

We give a brief review of two indexing data structures, namely, suffix array and
Burrows-Wheeler Transform (BWT) [2]. In the paper, we only consider DNA
sequences which are strings of 4 symbols, {A, C, G, T}, only.

Suffix array: Given a text T [0..n− 1], we define the suffix array of T , denoted
SA[0..n − 1], as follows. SA[i] = j if the suffix T [j..n − 1] is lexicographically
the i-th smallest suffix among all suffixes of T (and we say that the rank of the
suffix T [j..n − 1] is i). In other words, SA stores the starting positions of all
suffixes of T in lexicographical order. For any pattern P , suppose P appears in
T . We define the SA range of P with respect to T as [s, e] such that s and e
are respectively the rank of the lexicographically-smallest and largest suffix of T
that contains P as a prefix.

To find all occurrences of a pattern P in T , we can first compute the SA
range of P (using O(m log n) time [7]), afterwards the occurrences of P can be
retrieved from the suffix array directly one by one in constant time. To store
the suffix array of a text with n characters, we need to store n positions (more
precisely, n log n bits of memory) in addition to the text. Suffix array can also
be defined on a set of strings D0, D1, . . . , Dq−1 as follows. SA[i] = j if the string
Dj is lexicographically the i-th smallest among all given strings. The rank of Dj

is defined to be i. For any pattern P , suppose P appears as a prefix of some Di.
The SA range of P is defined to be [s, e] where s and e are respectively the rank
of the lexicographically-smallest and largest Di that has P as a prefix.

Burrows-Wheeler Transform (BWT): Given a text T [0..n− 1], the BWT
data structure, BWT [0..n−1], is defined as BWT [i] = T [j−1] where j = SA[i]
for SA[i] �= 0, otherwise, set BWT [i] = $, where $ is a special character not
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in the alphabet Σ and assumed to be lexicographically smaller than all other
characters. That is, BWT [i] stores the character immediately before the i-th
smallest suffix. BWT requires only the same amount of memory as for storing
the text. Using BWT and some auxiliary functions, we can compute the SA
range of a given pattern of length m in a backward manner (backward search)
in O(m) time [8, 9].

To retrieve the positions of an SA range, we only store part of the suffix array,
called sampled suffix array. Intuitively, we store one SA value for every α entries
for some constant α. More precisely, we store the SA[i] value for i = kα for
0 ≤ k ≤ ⌈n

α

⌉
, i.e., we store the SA[i] value if the rank of the suffix T [SA[i]..n−1]

is a multiple of α. Retrieving the value for SA[i] where i is not a multiple of α
can be done by searching repeatedly the BWT data structure [8].

3 Our Solution

For Model 1, recall that the input is a set of r DNA sequences T0, T1, . . . , Tr−1,
each Ti can be partitioned into Ri,0C0Ri,1C1 . . . Ck−1Ri,k, where Cj (0 ≤ j ≤
k − 1) is a common segment that all sequences agree, and Ri,j (0 ≤ j ≤ k) is
called an R segment, which may be different for different Ti’s. Let n be the total
length of all common segments and N be the total length of all R segments.

Indexing data structure: Let C = C0$C1$ . . . $Ck−1$, where $ is a new sym-
bol and is lexicographically smaller than all other symbols. We store C as an
array of characters, together with another array StartC of the starting posi-
tions of each Ci in C which can be used to recover the text for any common
segment (see Figure 1 for an example, (b) shows the common segments, C, CR

together with StartC). We construct a BWT index for CR. Given a string P , we
can search the BWT index using PR to determine the SA range of PR, which
captures all the occurrences of PR in CR (that is, all occurrences of P in C).

Each Ti = Ri,0C0Ri,1C1 . . . Ck−1Ri,k. We consider every suffix d of Ti that
starts inside an R segment and refer it as a differentiating suffix. Note that N is
the total number of differentiating suffixes for all Ti’s. We sort the differentiating
suffixes of all Ti’s and construct a suffix array SAR[0..N − 1] such that SAR[i]
stores a reference to i-th lexicographically smallest differentiating suffix.

Before defining what is a reference, we need to show how each Ti and its R seg-
ments are represented. For each Ti, we only store its R segments. The segments
R0,0, . . . , R0,k, R1,0, . . . , R1,k, . . . , Rr−1,0, . . . , Rr−1,k are stored sequentially in a
character array T [0..N − 1]. We assign a segment number to each Ri,j , which
is its order in T . Precisely, the segment number of Ri,j is (k + 1)i + j. For ex-
ample, R0,0 is segment 0, R0,1 segment 1, and R1,0 segment k + 1 (see Figure
1(c) for an example of all R segments). Note that a segment number w can be
used to identify to which Ti this segment belongs, namely, i = �w/(k + 1)�. We
also construct an array StartT [0..r(k + 1) − 1] such that StartT [j] stores the
starting position of segment j in T . We are now ready to define a reference to
a differentiating suffix. It is essentially a pair of integers, (segment number w,
offset o), where T [StartT [w] + o] stores the first character of the differentiating
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Fig. 1. An example for the indexing data structure. (a) shows the input sequences, the
underlined segments are the R segments. (b) shows the common segments and content
of StartC . (c) shows the R segments and content of StartT . (d) shows all differentiating
suffixes in lexicographical order and also SAR, note that each entry in SAR stores the
pair (segment number, offset). (e) shows the example for SARo.

suffix. Given such a reference, we can recover every character of the suffix by
referencing the corresponding segments from T and C. Figure 1(d) shows an
example of all differentiating suffixes in lexicographical order and the contents
of SAR for the same example.

From SAR, we construct a subarray SARo that contains only those entries
with offset zero. In other words, SARo includes the differentiating suffixes start-
ing from the first character of an R segment. To save space, we only need to
store a segment number w in each entry of SARo as the offest is always zero. In
addition, let w correspond to the segment Ri,j , we store a number c-rank that
is the rank of the suffix $CR

j−1$CR
j−2 . . . $CR

0 among all suffixes of CR (if j = 0,
we set c-rank = −1). The latter is useful to determine if a pattern crosses the
boundary between a common segment and an R segment of some Ti. See Figure
1(e) for an example for SARo.

Space complexity: Given r similar sequences T0, T1, . . . , Tr−1, each can be
partitioned into k common segments and (k+1) R segments. For CR, we have a
BWT index and the array StartC of k entries. For T , we have the suffix arrays
SAR and SARo and the array StartT for the starting positions of all R segments.
The whole data structure requires O(n + N log rk + rk(log n + log N)) bits.
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Searching algorithm: Given a pattern P of length m, if it occurs in any of the
text Ti, there are three cases.
(1) P is completely inside a common segment.
(2) P is a prefix of a differentiating suffix of Ti (i.e., P starts in an R region).
(3) P can be partitioned into non-empty substrings P1P2 where P1 is a suffix of
a common segment Cj of Ti and P2 is a prefix of the following differentiating
suffix in Ti.

For Case 1, we search the BWT index of CR for PR. This takes O(m + occ1)
time, where occ1 is the number of Case 1 occurrences of P . For Case 2, we search
SAR for P . This takes O(m log N +occ2) time, where occ2 is the number of Case
2 occurrences of P .

Case 3 is the only non-trivial case, detailed as follows. Consider a particular
partition (P1, P2) of P . First, we search the BWT index of CR for the presence
of (P1$)R. Let LR1 be the resulting SA range. If LR1 is non-empty, P1 appears
as a suffix of some common segment. We then search the suffix array SARo

for P2 and let LR2 be the resulting SA range. For each x in LR2, suppose
SAR[x] = (w, c-rank ). Let i = �w/(k+1)� and t = w mod (k+1). By definition,
P2 has an occurrence in Ti, starting from the first character of Ri,t. Thus, if there
is a corresponding occurrence of P1 at the end of the common segment Ct−1, we
find a valid occurrence of P . We can make use of the c-rank stored in SARo

to perform the above checking in constant time. By definition, the c-rank value
stored in SAR[x] is the rank of the suffix $CR

t−1$CR
t−2 . . . $CR

0 with respect to
all suffixes of CR. Thus, if c-rank in within LR1, P1 must appear as a suffix of
Ct−1. This is summarized in the following lemma.

Lemma 1. Suppose P is partitioned into P1P2 as described above. For any x
in LR2, let SAR[x] = (w, c-rank ). Let i = �w/(k + 1)� and t = w mod (k + 1).
Then, if c-rank ∈ LR1, P has an occurrence in Ti, precisely, the concatenation
of the last |P1| characters of Ct−1 and the first |P2| characters of the differenti-
ating suffix Ri,tCtRi,t+1 . . . Ri,k.

Note that CR, StartC , T , and StartT are required for searching the suffix arrays
SAR and SARo. We put together the above ideas in Algorithm 1, which forms
the basics of the searching algorithm of Case 3. Note that BWT supports back-
ward searching. With the BWT index of CR, we can compute the SA ranges
for P [0], P [0..1]R, P [0..2]R, . . . P [0..m − 1]R incrementally using O(m) time; of
course, we can terminate the search as soon as an empty SA range is found.
Furthermore, from the SA range of P [0..i]R, we can compute the SA range of
(P [0..i]$)R in O(1) time using the auxiliary functions for BWT.

Time complexity: Below we denote psc(P ) to be the number of prefixes of P
which are suffixes of some common segments. In an iteration where (P [0..j]$)R

is found to have a non-empty LR1 (i.e., P [0..j] is a suffix of some common
segment), the corresponding LR2 may contain up to rk candidates and the
verification may take O(rk) time. The overall time required by Case 3 searching
is O(m + psc(P )(m log(rk) + rk) + occ3) time where occ3 is the number of Case
3 occurrences of P .
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Algorithm 1. Case 3 Search(P [0..m− 1])
Require: |P | > 0
Ensure: All Case 3 occurrences of P in T0, . . . , Tr−1

1: for j = 0 to m − 2 do
2: Using BWT of CR, find SA range LR1 of (P [0..j]$)R .
3: if LR1 is non-empty then
4: Find SA range LR2 of P [j + 1..m − 1] using SARo.
5: for each x ∈ LR2 do
6: Let SARo[x] = (w, c-rank ).
7: if c-rank ∈ LR1 then
8: Report the corresponding occurrence of P .
9: end if

10: end for
11: end if
12: end for

The problem of Algorithm 1 is that the time required in each iteration depends
on the size of LR2, yet it is possible that no entries in LR2 could form a valid
occurrence of P . To speed up the checking whether the c-ranks of the entries
captured by LR2 fall in LR1, we construct a 2-dimensional range search index
[13] of the c-ranks stored in SARo. Note that the value of each c-rank is in the
range [1..n]. Then given LR1 and LR2, we can find the existence of any c-ranks
specified by LR2 fall in the range LR1 in O(log n) time, and each occurrence can
be retrieved in O(log n) time. The time complexity of Case 3 becomes O(m +
psc(P )(m log(rk))+occ3 log n) time. The range search index requires O(rk log n)
bits. The overall result is summarized in the following theorem.

Theorem 1. Given r similar sequences T0, T1, . . . , Tr−1, each can be partitioned
into k common segments and (k + 1) R segments. Let n be the total length of
the common segments, and let N be the total length of the R segments. We can
build an indexing data structure using O(n + N log rk + rk(log n + log N)) bits
such that locating the occurrences of a pattern P of length m in the sequences
can be done in O(m + m log N + psc(P )(m log(rk)) + occ log n) time, where occ
is the total number of occurrences of P .

Extension to Model 2: Recall that in Model 2, we are given a set of r DNA
sequences T0, T1, . . . , Tr−1, all with the same length n, each Ti (i �= 0) differs
from T0 in xi positions. Let N =

∑
xi. We describe the version without using

range search index. Modifying it to use range search index is straightforward.
We redefine a differentiating suffix as a suffix in Ti such that this suffix starts

at one of the xi positions. There are N differentiating suffixes. Similar to Model
1, we store T R

0 as an array of characters and construct a BWT index for T R
0 . Note

that we do not have an array similar to StartC . Then, construct a suffix array
SAR for all differentiating suffixes. We can define an R segment as a maximal
region of characters in Ti which differ from the corresponding characters in T0
and label the R segments from 0 to s − 1 where s is the total number of R
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segments. We store T = R0R1 . . . Rs−1 as an array of characters. To recover each
differentiating suffix, we need an array StartT to store the starting position of
each segment in T and also the starting position of this segment in its original
sequence Ti. So, SAR will store a pair of integers (segment number w, offset o)
in order to reference a differentiating suffix.

From SAR, we construct SARo that contains only those entries with offset
zero. We construct an array B′ as follows. Let d = Ti[j..n−1] be a differentiating
suffix of SARo and rank of d in SARo is x. Then, consider T0[0..j − 1] and let
rank of T0[0..j − 1]R with respect to T R

0 be y. Then, we set B′[x] = y.
The searching algorithm is very similar. Given a pattern P , search P in SAR

to locate all occurrences of P which are completely inside a differentiating suffix.
Search PR in T R

0 using BWT to locate all occurrences of P in T0. The additional
checking we need here is for each occurrence of P in T0, we check if it also occurs
in the same position in each of Ti for all i > 0. The last case is to partition P into
P1 = P [0..j] (j < m−2) and P2 = P [j+1..m−1]. Then, search PR

1 using BWT.
Let the SA range returned be LR1. Search P2 using SARo and let the SA range
returned be LR2. For each x in LR2, check if B′[x] ∈ LR1. If yes, an occurrence
of P is found. The space complexity is O(n + N log N + s(log n + log N)) bits
while the time complexity is O(m + m logN + psc′(P )(m log s + s) + occ) where
psc′(P ) is the number of prefix of P that occurs in T0.

4 Evaluation

We first compare the memory consumption of our solution2 based on Model
1 with the following. Concatenate all sequences to a long sequence and apply
BWT directly on the long resulting sequence. We generate the texts as follow.
We use two chromosomes (Chromosome Y of length 25M and Chromosome 1 of
length 217M) and download the positions of SNPs for these chromosomes from
NCBI3. For Chromosome Y, 0.1% positions are SNPs. For Chromosome 1, 0.5%
positions are SNPs. Most of these SNPs are not consecutive, i.e., most of the R
segments are of length 1. The number of R segments (k + 1) are very similar to
the number of SNPs in both cases (23,677 and 980,618 for Chromosome Y and
1 respectively). We construct four test cases. Tests 1 and 2 use Chromosome Y
as Tests 3 and 4 use Chromosome 1. For Tests 1 and 3, we generate 50 texts
while for Tests 2 and 4, we generate 250 texts. For each text, for each position
of SNPs, we randomly generate a nucleotide. For the patterns, we randomly
select them from the texts with length varying from 50 to 500. For each length,
we repeat the experiment 100 times and obtain the average searching time. All
experiments were conducted in a personal computer with 8G memory and a dual
core 2.66GHz CPU.

For the BWT data structure for CR, we use 0.75bytes per character which
store 1/8 sampled SA for all our experiments. Table 1 shows the memory
2 There are a few implementation tricks we used to speed up the searching process.

Details will be given in the full paper.
3 ftp://ftp.ncbi.nih.gov/snp/organisms/human 9606/chr rpts
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consumed by our data structure and the memory required by using BWT to
store all texts. We can see that the amount of memory required by our solution
is about 2-9% of that required by using BWT. In fact, the smaller the amount
of SNPs, the more memory our scheme can save. For the searching performance,
Table 2 shows the searching time for different pattern lengths in both Test 2 and
Test 4. The searching time for Test 1 is similar to Test 2 and that for Test 3
is similar to Test 4. Note that the searching time for Test 2 is longer than that
for Test 4. The reason is because of the higher percentage of SNPs in Test 4.
The common segments are shorter and the searching will stop earlier (refer to
Step 3 of Algorithm 1). But then even for the slower case, searching a pattern
of length 500 can still be done in less than 0.5ms which is reasonably fast. This
shows that our solution is practical.

Table 1. Memory consumption of our solution

Text No. of No. of common Total length Memory
Chromosome length Texts (r) No. of SNPs segments (k) of R segments (N) Ours BWT
(Test 1) Y 25M 50 0.0247M (0.1%) 0.0237M 1.2M 35M 958M
(Test 2) Y 25M 250 0.0247M (0.1%) 0.0237M 5.9M 61M 4.8G
(Test 3) 1 217M 50 1.06M (0.5%) 0.98M 51M 716M 8.3G
(Test 4) 1 217M 250 1.06M (0.5%) 0.98M 253M 2.7G 41.6G

Table 2. Searching performance (in milliseconds) for Test 2 (250 copies of Chromosome
Y (25M)) and Test 4 (250 copies of Chromosome 1 (217M))

Ave. Searching Time (×10−3 seconds)
Pattern length 50 100 150 200 250 300 350 400 450 500

Test 2 0.083 0.127 0.170 0.211 0.252 0.295 0.334 0.372 0.410 0.450
Test 4 0.079 0.115 0.145 0.169 0.192 0.204 0.219 0.231 0.241 0.251

Table 3. Comparison of our solution with RLCSA (RLCSA v.1 requires less memory
with longer searching time; RLCSA v.2 can search faster but requires more memory.
The last column shows the ratio of our average searching time over theirs based on
RLCSA v.2).

No. of Memory Comparison in M Searching Time
Texts Ours (A) RLCSA v.1 (B) (A)/(B) RLCSA v.2 (C) (A)/(C) (Ours/RLCSA v.2)

25 102 113 90.3% 156 65.4% 13.2%
50 152 197 77.2% 277 54.9% 15.7%
75 203 277 73.3% 396 51.3% 17.6%
100 253 362 69.9% 514 49.2% 21.5%
125 304 445 68.3% 623 48.8% 23.2%

We also compare our solution with RLCSA for Model 2. We use simulated
data with text length 25M, mutation rate 1%. We compare their performance
using different number of texts. For the patterns, we follow [12] and use shorter
patterns with length 10 to 50. For each pattern length, we randomly retrieve
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1000 patterns from the texts and take the average searching time. RLCSA has
different settings, to compare memory consumption, we use the option which uses
the smallest amount of memory (with slower searching time). When comparing
the searching time, we use their option which can search faster but use more
memory. The results are shown in Table 3. The results show that we use less
memory and can search faster than RLCSA.

5 Discussion and Conclusions

Recall that the searching time of our solution depends on psc(P ), the number of
prefixes of P that is the suffix of some common segment Ci. If the sequences are
random texts, we can show that psc(P ) is upper bounded by O(log n) as follows.
Let P [0..c∗] be the longest prefix in P such that it is a suffix of some common
segment, say Ci[s− c∗ + 1..s]. It is obvious that psc(P ) = psc(Ci[s− c∗ + 1..s]).
Then, for any P , psc(P ) ≤ maxS′∈Δpsc(S′) where Δ is the set of all suffixes
over all common segments. Let Y = maxS′∈Δpsc(S′). To bound Y , we consider
a generalized suffix tree G for all common segments. For any S′ ∈ Δ, let u be the
node representing S′ in G, psc(S′) ≤ node depth of u which is upper bounded
by O(log n) for random texts [14].

We can further reduce the space complexity of our solution to O(n + N +
rk log(rk)) bits, closer to the lower bound of O(n+N) bits with a slightly increase
in searching time. Details will be shown in the full paper. For the evaluation of
our solution, we also tried different mutation rates, the performance is consistent
with the ones shown in the paper. We are now investigating how to extend the
scheme for approximate pattern matching.
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ual genomes. In: Batzoglou, S. (ed.) RECOMB 2009. LNCS, vol. 5541, pp. 121–137.
Springer, Heidelberg (2009)

13. Nekrich, Y.: Orthogonal range searching in linear and almost-linear space. Com-
putational Geometry: Theory and Applications 42(4), 342–351 (2009)

14. Szpankowski, W.: Probabilistic analysis of generalized suffix trees. In: CPM,
pp. 1–14 (1992)



Online Scheduling on Two Uniform Machines to
Minimize the Makespan with a Periodic

Availability Constraint

Ming Liu1, Chengbin Chu1,2, Yinfeng Xu1, and Lu Wang3

1 School of Management, Xi’an Jiaotong University, Xi’an, Shaanxi Province,
710049, P.R. China
minyivg@gmail.com

2 Laboratoire Génie Industriel, Ecole Centrale Paris, Grande Voie des Vignes, 92295
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Abstract. We consider the problem of online scheduling on 2 uniform
machines where one machine is periodically unavailable. The problem
is online in the sense that when a job presents, we have to assign it
to one of the 2 uniform machines before the next one is seen. Preemp-
tion is not allowed. The objective is to minimize makespan. Assume that
the speed of the periodically unavailable machine is normalized to 1,
while the speed of the other one is s. Given a constant number α > 0,
we also suppose that Tu = αTa, where Tu and Ta are the length of
each unavailable time period and the length of the time interval be-
tween two consecutive unavailable time periods, respectively. In the case
where s ≥ 1, we show a lower bound of the competitive ratio 1 + 1

s
and

prove that LS algorithm is optimal. We also show that for the problem
P2, M1PU |online, Tu = αTa|Cmax, LS algorithm proposed in [7] is opti-
mal with a competitive ratio 2. After that, we give some lower bounds of
competitive ratio in the case 0 < s < 1. At last, we study a special case
P2, M1PU |online, Tu = αTa, non − increasing sequence|Cmax, where
non-increasing sequence means that jobs arrive in a non-increasing order
of their processing times. We show that LS algorithm is optimal with a
competitive ratio 3

2
.

Keyword: Online scheduling; Makespan; Competitive analysis; Uniform
machines; Periodic availability constraint.

1 Introduction

In the class scheduling, one of the basic assumptions made in deterministic
scheduling is that all the useful information of the problem instance was known
in advance. However, in practice, this assumption is usually not possible. On-
line scheduling becomes more and more concerned. In the literature of online
scheduling, two online models have been widely researched [2]. The first one as-
sumes that there are no release dates and that the jobs arrive in a list (one by

B. Chen (Ed.): AAIM 2010, LNCS 6124, pp. 191–198, 2010.
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one or called over list). The online algorithm has to schedule (or assign) the first
job in this list before it sees the next job in the list. The other model assumes
that jobs arrive over time. There exists a release time (or called release date)
with regard to each job. At each time when the machine is idle, the algorithm
decides which one of the available jobs is scheduled, if any. In this paper, we
consider the first model where jobs arrive in a list.

Online algorithm is developed to cope with online (scheduling) problems. For
a certain online scheduling problem, we would like to find the optimal (or called
best possible) algorithm. This algorithm has the best possible performance. In
order to compare the performance of online algorithms, we need a tool to measure
the performance of each algorithm. In the literature, competitive analysis [1] is
such a tool to measure the performance of an online algorithm. Specifically,
for any input job sequence I, let CON (I) denote the makespan of the schedule
produced by the online algorithm AON and COPT (I) denote the makespan of
an optimal schedule. We say that AON is ρ-competitive if

CON (I) ≤ ρCOPT (I) + v

where v is a constant number. We also say that ρ is the competitive ratio of
AON .

If we have some online algorithms and their competitive ratios, do we need to
further design new algorithms which may perform better with respect to their
competitive ratios? In other words, we need a method to judge whether an al-
gorithm is optimal or not. A lower bound (on competitive ratios of all online
algorithms for the problem) serves such a purpose. For an online minimization
problem, a lower bound means that there exists no online algorithm with a com-
petitive ratio smaller than this bound. If an online algorithm’s competitive ratio
achieves this lower bound, this algorithm is called optimal and the corresponding
lower bound is called tight.

For an online problem, a general idea is to first give a lower bound then prove
the competitive ratio of an online algorithm. Then we can justify whether or not
the proposed algorithm is optimal.

In the classical scheduling problem, we assume that machines are available
simultaneously at all times. However, this availability assumption may not be
true in practice [3]. In the real industry settings, machines may be unavailable
because of preventive maintenances, periodical repairs and tool changes.

This paper studies the online version of this problem with 2 uniform machines
with a periodic availability constraint. We are given a sequence of independent
jobs which arrive in a list. We have to assign a job to one of 2 uniform machines
before the next job shows up. When all information is available at one time before
scheduling, the problem is called offline. In the offline settings, Lee [5] investi-
gated some parallel machine scheduling problems where at least one machine is
always available and each of the other machines has at most one unavailable pe-
riod. He gave some results of competitive ratios for different objectives, such as
minimization of total completion time and makespan. Liao et al. [4] considered
a special case of one of the scheduling problems studied in [5]. They partitioned
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the problem into four subproblems, each of which was optimally solved. In the
online settings, Tan et al. [6] considered the online scheduling on two identical
machines with machine availability constraint to minimize makespan. They as-
sumed that the unavailable periods of two machines do not overlap and proposed
an optimal online algorithm with a competitive ratio 5

2 . Xu et al. [7] showed that
for the problem of online scheduling on two identical machines where one ma-
chine is periodically unavailable with the objective of minimizing makespan, the
competitive ratio of LS algorithm is 2.

We use machine-1 to denote the machine which is periodically unavailable
and machine-s to denote the other one. Without loss of generality, the speeds
of machine-1 and machine-s are normalized to 1 and s, respectively. Given a
constant number α > 0, we also suppose that Tu = αTa, where Tu and Ta are
the length of each unavailable time period and the length of the time interval
between two consecutive unavailable time periods, respectively. Our problem can
be denoted by Q2, M1PU |online, Tu = αTa|Cmax, where M1PU denotes that
machine-1 is periodically unavailable.

The remainder of this paper is organized as follows. In section 2, we present
some notations and problem definition. In Section 3, we study the problem in
the condition s ≥ 1. We show a lower bound of 1 + 1

s and prove that LS al-
gorithm has a matching competitive ratio of 1 + 1

s . We also show that for the
problem P2, M1PU |online, Tu = αTa|Cmax, LS algorithm proposed in [7] is
optimal with a competitive ratio 2. In section 4, we give some lower bounds
of competitive ratio in the case 0 < s < 1. In section 5, we study a special
case P2, M1PU |online, Tu = αTa, non− increasing sequence|Cmax where non-
increasing sequence means that jobs arrive in a non-increasing sequence process-
ing time. We prove that LS algorithm is optimal with a competitive ratio 3

2 .

2 Notations and Problem Definition

We first give some notations:

– machine-1: the machine which is periodically unavailable and the speed of
which is 1.

– machine-s: the machine is always available and the speed of which is s.
– pj : the processing time of job Jj .
– Ta: the length of the time interval between two consecutive unavailable time

periods.
– Tu: the length of each unavailable time period.

In this paper, we always assume that machine-1 begins with a available time
period. On machine-1, we suppose Tu = αTa. We are given 2 uniform ma-
chines where machine-1 is periodically unavailable. The speeds of machine-1 and
machine-s are 1 and s, respectively. A sequence of jobs σ = {J1, J2, ..., Jn} which
arrive online have to be scheduled irrevocably on one of the machines at the time
of their arrivals. The new job shows up only after the current job is scheduled.
We use pj to denote the processing time of job Jj . pi is not known until the
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previous job Jj−1 has been scheduled, except job J1. The schedule can be seen
as a partition of job sequence σ into two subsets, denoted by S1 and S2, where S1
and S2 consist of jobs assigned to machine-1 and machine-s, respectively. Let L1
and L2 denote the completion times of the last jobs on machine-1 and machine-s,
respectively. The makespan of the schedule is max{L1, L2}. The online problem
can be written as:

Given σ, find S1 and S2 to minimize max{L1, L2}.
Let CON and COPT denote the makespan of online algorithm and offline

optimal algorithm (for short, offline algorithm), respectively.

3 A Matching Lower and Upper Bound in the Case
Where s ≥ 1

In this section, we first show a lower bound on competitive ratios for the problem.
Then we present an optimal online algorithm: Greedy algorithm.

3.1 A Lower Bound

Theorem 1. In the case where s ≥ 1, for the problem of scheduling 2 uni-
form machines with a periodic availability constraint, no online algorithm exists,
whose competitive ratio is less than 1 + 1

s .

Proof. Assume Ta = 1, so Tu = α. Let ε be a sufficiently small positive number.
We give a job sequence which consists of at most 4 jobs to show that the com-
petitive ratios of all online algorithms cannot be less than 1 + 1

s . We begin with
job J1 with p1 = ε.
Case 1: J1 is assigned to machine-1.
J2 with p2 = 1 arrives. If the online algorithm assigns J2 to machine-1, then
no jobs arrive. The optimal algorithm can schedule J1 and J2 on machine-1
and machine-s, respectively. Therefore, CON ≥ 2 + α, COPT = 1

s and CON

COP T
≥

(2+α)s > 1+ 1
s . Otherwise, namely if the online algorithm assigns J2 to machine-

s, then J3 with p3 = s arrives. Thus, CON ≥ 1+s
s = 1+ 1

s . The optimal algorithm
can assign J1 to machine-s, J2 to machine-1 and J3 to machine-s. Therefore,
COPT = ε+s

s and

CON

COPT
≥ 1 + 1

s
ε+s

s

= 1 +
1
s
, ε → 0.

Case 2: J1 is assigned to machine-s.
J2 with p2 = ε

s arrives. If the online algorithm schedules J2 on machine-s, then
no jobs come in the future. The optimal algorithm can schedule J1 and J2 on
machine-s and machine-1, respectively. Therefore, CON ≥ ε+ ε

s

s = ε
s(1 + 1

s ),
COPT = ε

s and CON

COP T
≥ 1 + 1

s . Otherwise, i.e., if the online algorithm assigns
J2 to machine-1, consider J3 with p3 = 1 and J4 with p4 = s. Then, we have
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CON ≥ ε+1+s
s . In an optimal schedule, J1, J2 and J4 are assigned to machine-s,

while J3 is assigned to machine-1. Therefore, COPT = ε+ ε
s +s

s and

CON

COPT
≥ ε + 1 + s

ε + ε
s + s

= 1 +
1
s
, ε → 0.

Therefore, the theorem holds.

Corollary 1. For the problem of online scheduling on two identical machines
with one machine periodically unavailable, there is no online algorithm with a
competitive ratio less than 2.

3.2 An Optimal Online Algorithm

In this subsection we prove that LS algorithm is optimal with a competitive
ratio 1 + 1

s .
LS algorithm runs as follows:
Assign the job to the machine on which it can be finished as early as possible.
If there is a choice, schedule the job on machine-s.

Theorem 2. In the case where s ≥ 1, for the problem of scheduling 2 uniform
machines with a periodic availability constraint, LS algorithm is optimal with a
competitive ratio 1 + 1

s .

Proof. For any job instance I, let P (I) =
∑

Ji∈I pi denote the total processing
time of all jobs in I. We have CON ≤ P (I)

s and COPT ≥ P (I)
1+s . Therefore,

CON

COPT
≤

P (I)
s

P (I)
1+s

= 1 +
1
s
.

By Theorem 1, we know a lower bound of competitive ratio is 1 + 1
s . Thus, the

theorem follows.

Theorem 3. (Dehua Xu [7]) For P2, M1PU |online, Tu = αTa|Cmax, the com-
petitive ratio of the LS algorithm is 2.

Corollary 2. For the problem P2, M1PU |online, Tu = αTa|Cmax, LS algo-
rithm proposed in [7] is optimal with a competitive ratio 2.

For any instance which contains n jobs, the time complexity of LS algorithm is
O(n) since when a job is available LS algorithm has only one comparison.
An example:
Let s = 2 and then 1 + 1

s = 1.5. Set α = 1 and Ta = Tu = 8. We give a job
sequence {J1, J2, J3, J4, J5, J6} with p1 = 2, p2 = 3, p3 = 4, p4 = 4, p5 = 3, p6 =
8. For this instance, the optimal algorithm can assign J6 to machine-1, and the
others to machine-s. Therefore, COPT = 8. LS algorithm schedules J1, J2, J4, J5,
J6 on machine-s and J3 on machine-1. Thus, CON = 10 and CON

COP T
= 1.25 < 1.5.
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4 A Lower Bound in the Case Where 0 < s < 1

In this section, we show a lower bound lower bound in the case where 0 < s < 1.

Theorem 4. In the case 0 < s < 1, for the problem of scheduling 2 uniform ma-
chines with a periodic availability constraint, no online algorithm exists, whose
competitive ratio is less than: (1) 2 in the case where 1

2 ≤ s < 1; (2) 1
s in the

case where s < 1
2 .

Proof. Assume Ta = 1, so Tu = α. Let ε be a sufficiently small positive number.

(1) 1
2 ≤ s < 1.

We give a job sequence which consists of at most 4 jobs to show that the com-
petitive ratios of all online algorithms cannot be less than 2. We first give job
J1 with p1 = ε.

Case 1: J1 is assigned to machine-1.
J2 with p2 = 1 arrives. If the online algorithm assigns J2 to machine-1, then no
job arrives. We have CON ≥ 2 + α. The optimal algorithm can schedule J1 and
J2 on machine-s and machine-1, respectively. Therefore, COPT = 1 and CON

COP T
≥

2 + α > 2. Otherwise, i.e., if the online algorithm assigns J2 to machine-s, then
J3 with p3 = 1 arrives. Thus, CON ≥ 1+1

s = 2
s . The optimal algorithm can assign

J1 to machine-s, J2 to machine-1 and J3 to machine-s. Therefore,COPT = ε+1
s .

We have

CON

COPT
≥

2
s

ε+1
s

= 2, ε → 0.

Case 2: J1 is assigned to machine-s.

J2 with p2 = ε
s arrives. If the online algorithm schedules J2 on machine-s, then

no job comes in the future. The optimal algorithm can schedule J1 and J2 on
machine-s and machine-1, respectively. Therefore, CON ≥ ε+ ε

s

s = ε
s(1 + 1

s ),
COPT = ε

s and CON

COP T
≥ 1 + 1

s > 2. Otherwise, i.e., the online algorithm assigns
J2 to machine-1, consider J3 with p3 = 1 and J4 with p4 = 1. Then, we have
CON ≥ ε+2

s . In an optimal schedule, J1, J2 and J4 are assigned to machine-s,
while J3 is assigned to machine-1. Therefore, COPT = ε+ ε

s +1
s and

CON

COPT
≥ ε + 2

ε + ε
s + 1

= 2, ε→ 0.

(2) 0 < s < 1
2 .

We give a job sequence which consists at most 2 jobs to show that the competitive
ratios of all online algorithms cannot be less than 1

s . We first give job J1 with
p1 = ε.
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Case 1: J1 is assigned to machine-1.
J2 with p2 = 1 arrives. Therefore, CON ≥ 1

s . The optimal algorithm can schedule
J1 and J2 on machine-s and machine-1, respectively. Thus, we have COPT = 1
and CON

COP T
= 1

s .
Case 2: J1 is assigned to machine-s.
No job comes in the future. We have CON ≥ ε

s . The optimal algorithm schedules
J1 on machine-1. Thus, COPT = ε and CON

COP T
≥ 1

s .
The theorem follows.

5 A Special Case

In this section, we discuss a special case where s = 1 and jobs arrive in a non-
increasing sequence. Non-increasing sequence means that jobs arrive in a non-
increasing sequence (or order) of their processing times. We denote this problem
by P2, M1PU |online, non− increasing sequence|Cmax.

Theorem 5. For the problem P2, M1PU |online, non − increasing sequence|
Cmax, there is no online algorithm with a competitive ratio less than 3

2 .

Proof. s = 1. We also use machine-s to denote the always available machine.
Assume Ta = 1, so Tu = α. Let ε be a sufficiently small positive number. We
give a job sequence which consists of at most 4 jobs to show that the competitive
ratios of all online algorithms cannot be less than 3

2 . We begin with job J1 with
p1 = 1

2 + ε.
Case 1: J1 is assigned to machine-1.
J2 with p2 = 1

2 arrives. If the online algorithm assigns J2 to machine-1, then no
jobs arrive. Note that J2 is scheduled in the next available period on machine-
1. The optimal algorithm can schedule J1 and J2 on machine-1 and machine-
s, respectively. Therefore, CON ≥ 1 + α + 1

2 = 3
2 + α, COPT = 1

2 + ε and
CON

COP T
≥ 3

2 +α
1
2+ε

> 3
2 . Otherwise, i.e., if the online algorithm assigns J2 to machine-

s, then J3 and J4 with p3 = p4 = 1
2 arrives. Thus, CON ≥ 1

2 + 1
2 + 1

2 = 3
2 . The

optimal algorithm can assign J1 and J2 to machine-s, J3 and J4 to machine-1.
Therefore,COPT = 1

2 + ε + 1
2 = 1 + ε and

CON

COPT
≥

3
2

1 + ε
=

3
2
, ε → 0.

Case 2: J1 is assigned to machine-s.
J2 with p2 = 1

2 +ε arrives. If the online algorithm schedules J2 on machine-s, then
no job comes in the future. The optimal algorithm can schedule J1 and J2 on
machine-1 and machine-s, respectively. Therefore, CON ≥ 1 + 2ε, COPT = 1

2 + ε

and CON

COP T
≥ 1+2ε

1
2+ε

= 2 > 3
2 . Otherwise, i.e., the online algorithm assigns J2 to

machine-1. We consider J3 and J4 with p3 = p4 = 1
2 . Then, we have CON ≥

1
2 + ε + 1

2 + 1
2 = 3

2 + ε. In an optimal schedule, J1, J2 are assigned to machine-s,
and J3, J4 are assigned to machine-1. Therefore, COPT = 1

2 + ε + 1
2 + ε = 1 + 2ε

and
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CON

COPT
≥

3
2 + ε

1 + 2ε
=

3
2
, ε → 0.

Therefore, the theorem holds.

In order to prove LS algorithm is optimal, we must restate some results in the
literature.

LPT algorithm (Dehua Xu [7]):
Re-order all the job in non-increasing order of their processing times, i.e., p1 ≥
p2 ≥ ... ≥ pn; for i = 1, ..., n, assign Ji to the machine on which it can be finished
as early as possible.

Theorem 6. (Dehua Xu [7]) For P2, M1PU ||Cmax, the worst-case ratio of the
LPT algorithm is 3

2 .

By Theorem 6, we have the following result.

Corollary 3. For the problem P2, M1PU |online, non− increasing sequence|
Cmax, LS algorithm is optimal with a competitive ratio 3

2 .
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Abstract. Based on a new smoothing function, a smoothing Newton-
type method is proposed for the solution of symmetric cone complemen-
tarity problems (SCCP). The proposed algorithm solves only one linear
system of equations and performs only one line search at each iteration.
Moreover, it does neither have restrictions on its starting point nor need
additional computation which keep the iteration sequence staying in the
given neighborhood. Finally, the global and Q-quadratical convergence
is shown. Numerical results suggest that the method is effective.

Keywords: Symmetric cone; Complementarity; Smoothing Newton
method; Global convergence; Q-quadratical convergence.

The symmetric cone complementarity problem (SCCP) is stated as follows: find-
ing x ∈ J satisfying

x ∈ K, F (x) ∈ K, 〈x, F (x)〉 = 0, (1)

where K = {x2|x ∈ J } is the symmetric cone in J , A = (J , ◦, 〈·, ·〉) is a
Euclidean Jordan algebra (see Section 2 for definition) with J being a finite-
dimensional vector space over the real field R endowed with the inner product
〈·, ·〉 , and ” ◦ ” denoting the Jordan product. Let F : J → J is a continuous
function.

SCCP have wide applications in engineering, management science and other
fields. Furthermore, they provide a unified framework for various complementar-
ity problems, such as Semidefinite Complementarity Problems (SDCP),
Second-order Cone Complementarity Problems (SOCCP), and Nonlinear Com-
plementarity Problems (NCP). So they have attracted more and more attentions
[2,9,14,13,7,5,6] recently. Various methods have been developed to solve them,
such as interior-point algorithm [13], regularized smoothing Newton method [7],
and smoothing Newton algorithm [5, 6]. Among them, the smoothing Newton
methods are sometime superior to the class of interior-point methods since they
do not require strict complementarity of the solution [11].

In this paper, a new smoothing function of the well known minimum function
is given and then a smoothing Newton method for SCCP based on the new
� The project is supported by the NSF of China (NO. 60974082) and the Fundamental
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smoothing function is proposed by modifying and extending the Qi-Sun-Zhou
(QSZ) algorithm in [11]. It is shown that our method has the following good
properties:

(i) The algorithm can start from an arbitrary initial point;
(ii) the method solves only one linear system of equations and performs only

one line search at each iteration;
(iii) if an accumulation point of the iteration sequence satisfies a nonsingu-

larity assumption, the whole iteration sequence converges to the accumulation
point globally and locally quadratically without strict complementarity.

The paper is organized as follows. In the next Section, we list out some defini-
tions and properties of the Euclidean Jordan algebra without proofs, give a new
smoothing function of minimum function. In Section 3 we propose a smoothing
Newton method for SCCP based on the new smoothing function. In Section 4,
we analyze the global convergence and local quadratic convergence properties
of our algorithm . Some preliminary numerical results are reported in Section 5
and some conclusions are given in Section 6.

1 Preliminaries

In this section, we review some preliminaries that will be used throughout this
paper.

1.1 Euclidean Jordan Algebras

We first give a brief description to Euclidean Jordan algebras, which is a basic
tool extensively used in this paper. Our presentation is concise and without
proofs. For more details, see [1].

A Euclidean Jordan algebra is a triple (J , ◦, 〈·, ·〉), where (J , 〈·, ·〉) is a finite
dimensional inner product space over R and (x, y) �→ x ◦ y : J × J → J is a
bilinear mapping satisfying the following conditions:
(i) x ◦ y = y ◦ x for all x, y ∈ J ;
(ii)x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) for all x, y ∈ J ,where x2 = x ◦ x, and
(iii)〈x ◦ y, z〉 = 〈y, x ◦ z〉 for x, y, z ∈ J .

We call x◦y the Jordan product of x and y. In addition, thoughout the paper
we assume that there is an unit element e such that x ◦ e = e ◦ x = x for all
x ∈ J , which is called the identity element in J . Although a Jordan algebra
does not necessarily have an identity element.

The set of squares
K := {x2 : x ∈ J }.

is called a symmetric cone [1]. That is, K is a self-dual closed convex cone with
nonempty interior, and for any two elements x, y ∈ J , there exists an invertible
linear transformation Γ : J → J such that Γ (J ) = (J ) and Γ (x) = y.

An element c ∈ J is called idempotent if c ◦ c = c. Idempotents c and c′ are
orthogonal if and only if c ◦ c′ = 0. An idempotent c is primitive if c cannot
be written as a sum of two idempotents. We denote the maximum possible
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number of primitive orthogonal idempotents by r, which is called the rank of
J . In general, the rank of J is different from the dimension of J . A set of
idempotents {c1, · · · , cr} is called a Jordan frame if they are orthogonal to each
other and c1 + · · · + cr = e. For any element x ∈ J , we have the following
important spectral decomposition theorem.

Theorem 1. [1] Let J be a Euclidean Jordan algebra with rank r. Then for any
x ∈ J , there exist a Jordan frame {c1, c2, · · · , cr} and real numbers λ1(x), λ2(x),
· · · , λr(x), arranged in decreasing order λ1(x) ≥ λ2(x) ≥ · · · ≥ λr(x) such that

x = λ1(x)c1 + λ2(x)c2 + · · ·+ λr(x)cr . (2)

The numbers λ1(x), λ2(x), · · · , λr(x) are called the eigenvalues of x, which are
uniquely determined by x and are continuous functions of x. The trace of x is
defined by

∑r
i=1 λi(x), denoted as tr(x), which is a linear function of x. The

determinant of x is defined by Πr
i=1λi(x), denoted as det(x).

In a Jordan algebra J , for an x ∈ J , we define the corresponding Lyapunov
transformation Lx : J → J by

Lx(y) = x ◦ y.

We say that elements x and y operator commute if Lx and Ly commute,
i.e.LxLy = LyLx. It is well known that x and y operator commute if and only
if x and y have their spectral decompositions with respect to a common Jordan
frame.

Lemma 1. [8] Suppose that c ∈ int K , then the inverse operator L−1
c of linear

mapping Lc exists. Moreover, L−1
c is bounded and continuous on J .

We define the inner product 〈·, ·〉 by 〈x, y〉 := tr(x ◦ y) for any x, y ∈ J . Thus,
we define norm on J by

‖x‖ :=
√
〈x, x〉 =

√
tr(x2) =

√√√√ r∑
i=1

λi(x)2, x ∈ J .

And

[x]+ =
r∑

i=1

[λi]+ci, [x]− =
r∑

i=1

[λi]−ci, and |x| =
r∑

i=1

|λi|ci.

In particular, if x � 0, then λi ≥ 0(i = 1, 2, · · · , r). When x � 0, we define the
(unique) sqrare root of x by

√
x :=

∑r
i=1

√
λici.

1.2 A Smoothing Function

Definition 1. [14] For a nondifferentiable function h : Rn → Rm, we consider
a function hμ : Rn → Rm with a parameter μ > 0 that has the following proper-
ties: (i) hμ is differentiable for any μ > 0, (ii) lim

μ↓0
hμ(x) = h(x) for any x ∈ Rn.

Such a function hμ is called a smoothing function of h.
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In this subsection, we discuss a new smoothing function for SCCP. In [14], it has
been shown that the minimum function φmin : J × J → J defined by

φmin(x, s) = x + s−
√

(x− s)2 (3)

satisfies
φmin(x, s) = 0 ⇔ x ∈ K, s ∈ K, x ◦ s = 0. (4)

It is well-known that φmin is nonsmooth. In the case of K = Rn
+, the symmetric

perturbed technique was originally proposed in [3,4]. By smoothing the symmet-
ric perturbed function of φmin, we now obtain the new vector-valued function
φ : R++ × J × J → J , defined by

φ(μ, x, s) = (cosμ + sinμ)(x + s)−
√

(cosμ− sinμ)2(x− s)2 + 2μ2e. (5)

In the following, we show that the function φ given in (5) is a smoothing function
of φmin.

Theorem 2. (i) φ is globally Lipschitz continuous and strongly semismooth ev-
erywhere. Moreover, φ is continuously differentiable at any (μ, x, s) ∈ R++ ×
J × J with its Jacobian

Dφ(μ, x, s) =

⎛⎝φ′
μ

φ′
x

φ′
s

⎞⎠ =

⎛⎝ (cosμ− sinμ)(x + s) + L−1
ω [cos2μ(x− s)2 − 2μe]

(cosμ + sinμ)I − (cosμ− sinμ)2L−1
ω L(x−s)

(cosμ + sinμ)I + (cosμ− sinμ)2L−1
ω L(x−s)

⎞⎠
(6)

where
ω := ω(μ, x, s) =

√
(cosμ− sinμ)2(x− s)2 + 2μ2e. (7)

(ii) lim
μ↓0

φ(μ, x, s) = φmin(x, s) for any (x, s) ∈ J × J . That is φ(μ, x, s) is a

smoothing function of φmin(x, s).

Proof. By Proposition 3.4 in [12], it is easy to know that φ is globally Lipschitz
continuous, strongly semismooth (for its definition, please refer to [10]) every-
where, and continuously differentiable at any (μ, x, s) ∈ R++ × J ×J . Now we
prove (6). For any (μ, x, s) ∈ R++×J ×J , it is easy to see ω ∈ intK by (7). So
Lω is invertible by Lemma 1. From (7), we know

ω2 = (cosμ− sinμ)2(x− s)2 + 2μ2e.

By finding the derivative on both sides of the above relation, where the chain
rule for differentiation is used, we obtain

Dω(μ, x, s) =

⎛⎝−L−1
ω [cos2μ(x− s)2 − 2μe])

(cosμ− sinμ)2L−1
ω L(x−s)

−(cosμ− sinμ)2L−1
ω L(x−s)

⎞⎠ . (8)

Then, the desired Jacobian formula is obtained.
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Next, we show (ii). By Theorem 1, we denote x+s =
∑r

i=1 αiui and (x−s)2 =∑r
i=1 βivi, then φmin and φ can be expressed as φmin =

∑r
i=1 αiui−

∑r
i=1
√

βivi.
Moreover, there is

φ(μ, x, s) =
r∑

i=1

((cosμ + sinμ)αi)ui −
r∑

i=1

√
(βi(cosμ− sinμ)2 + 2μ2)vi

:=
r∑

i=1

αi(μ)ui −
r∑

i=1

√
βi(μ)vi.

(9)

It is easy to see that lim
μ↓0

αi(μ) = αi and lim
μ↓0

βi(μ) = βi, so φ(μ, x, s) is a

smoothing function of φmin(x, s).

2 Algorithm for SCCP

Our smoothing Newton method aims to reformulate the SCCP as a nonlinear
system of equations

H(μ, x, y) :=

⎛⎝ μ
F (x)− y
φ(μ, x, y)

⎞⎠ = 0, (10)

and then apply Newton’s method to the system. According to (4), we know
(x∗, y∗) is the solution of SCCP if and only if (0, x∗, y∗) is a root of the system
H(z) = 0. So let us talk about some properties of H(z). For any z = (μ, x, y) ∈
R× J × J , let

φ(z) := φ(μ, x, y), φ0(z) := φ(0, x, y)

and
θ(z) = ‖H(z)‖2 = μ2 + ‖F (x)− y‖2 + ‖φ(z)‖2.

Let γ ∈ (0, 1) and denote β : R× J × J → R by

β(zk) := γmin{1, θ(zk)}. (11)

The smoothing Newton method is defined as follows.

Algorithm 1. Step 0. Choose δ, σ ∈ (0, 1). Let z0 := (μ0, x0, y0) ∈ R++×J ×
J be an arbitrary point and z̄ = (μ0, 0, 0). Choose γ ∈ (0, 1) such that γμ0 < 1.
Set k := 0.

Step 1. If H(zk) = 0, stop. Otherwise, let βk := β(zk).
Step 2. Compute Δzk := (Δμk, Δxk, Δyk) ∈ R× J × J by

H(zk) + DH(zk)Δzk = βkz̄. (12)

Step 3. Let lk be the smallest nonnegative integer l such that

θ(zk + δlΔzk) ≤ [1− 2σ(1− γμ0)δl]θ(zk). (13)

Set λk := δlk and zk+1 := zk + λkΔzk.
Step 4. Set k := k + 1 and go to Step 1.
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For analyzing our algorithm, we study some properties of the function H(z)
defined by (10). Moreover, we derive the computable formula for the Jacobian
of the function H(z) and give the condition for the Jacobian to be invertible.
Firstly, we give a lemma which will be used in the following.

Lemma 2. [6] If a∈K, b∈K, and a◦b = αe, where α > 0, then 〈(L−1
b La)(w), w〉

≥ 0 for any w ∈ J , and 〈(L−1
b La)(w), w〉 = 0 implies that w = 0.

Theorem 3. Let z = (μ, x, y) ∈ R × J × J , F is a continuously differentiable
monotone function, and H be defined by (10), then the following results hold.
(i) H(z) is strongly semismooth everywhere in R × J × J and continuously
differentiable at any z = (μ, x, y) ∈ R++ × J × J with its Jacobian

DH(μ, x, y) :=

⎛⎝ 1 0 0
0 DF (x) −I
φ′

μ φ′
x φ′

y

⎞⎠ , (14)

where the expressions of φ′
μ, φ′

x and φ′
y are in (6).

(ii)DH is invertible for any z ∈ R++ × J × J .

Proof. It is obvious that (i) is true by Theorem 2. Now let we prove (ii). Fix any
μ > 0 and let �z := (�μ,�x,�y) ∈ R × J × J be a vector in the null space
of DH(z), it suffices to show that �z = 0. According to (14), we have

�μ = 0,
DF (x)�x −�y = 0,

(cosμ + sinμ)(�x +�y)− L−1
ω [(cosμ− sinμ)2(x− y)(�x−�y)] + φ′

μ�μ = 0.
(15)

By the second equation in (15) and the monotonicity of F , we have

〈�x,�y〉 = 〈x, DF (x)�x〉 ≥ 0. (16)

In addition, by the other two equations in (15), we have

Lω[(cosμ + sinμ)(�x +�y)]− (cosμ− sinμ)2(x − y)(�x−�y) = 0,

which implies

[ω − (cosμ− sinμ)(x − y)](�xcosμ +�ysinμ)
+ [ω + (cosμ− sinμ)(x− y)](�xsinμ +�ycosμ) = 0,

i.e.,

Lω−(cosμ−sinμ)(x−y)(�xcosμ+�ysinμ)+Lω+(cosμ−sinμ)(x−y)(�xsinμ+�ycosμ)=0.

Therefore, we have

sinμ�x+cosμ�y = −L−1
ω+(cosμ−sinμ)(x−y)Lω−(cosμ−sinμ)(x−y)(�xcosμ+�ysinμ),

(17)
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and

〈L−1
ω+(cosμ−sinμ)(x−y)Lω−(cosμ−sinμ)(x−y)(�xcosμ +�ysinμ),�xcosμ +�ysinμ〉

= −〈�xsinμ +�ycosμ,�xcosμ +�ysinμ〉
= −sinμcosμ(‖�x‖2 + ‖�y‖2)− (sin2μ + cos2μ)〈�x,�y〉 ≤ 0

(18)
where the last inequality comes from (16). By the definition of ω, it easy to know
that ω − (cosμ− sinμ)(x− y) ∈ K, ω + (cosμ− sinμ)(x− y) ∈ K and

[ω − (cosμ− sinμ)(x − y)] ◦ [ω + (cosμ− sinμ)(x − y)] = 4μ2e. (19)

Then we have �xcosμ + �ysinμ = 0 by Lemma 2. This together with (17)
implies that �xsinμ+�ycosμ = 0. Furthermore, the above two equalities imply
that�x = 0 and�y = 0. Thus the null space of H(z) consists of only the origin,
and hence DH(z) is invertible.

Theorem 4. Suppose that F is a continuously differentiable monotone function,
then μk ∈ R++ for all k > 1 and the Algorithm 1 is well-defined.

Proof. Since F is a continuously differentiable monotone function, it follows from
Theorem 3 that DH(zk) is nonsingular for any μk > 0. While, by the equation
(12), we have

μk+1 = (1− λk)μk + λkβkμ0 > 0, (20)

since μ0 > 0, then μk > 0 for all k > 1. Hence Step 2 is well-defined at the k-th
iteration. Now we show that Step 3 is well-defined. For all α ∈ (0, 1], define

h(α) := θ(zk + αΔzk)− θ(zk)− α(θ′(zk))T Δzk. (21)

By the similar analysis of (20), we know μk + αΔμk > 0. Associated with The-
orem 3, we know that H(·) is continuously differentiable around zk, so is θ(zk).
Then it is easy to know

‖h(α)‖ = o(α) (22)

and
θ(zk + αΔzk) = θ(zk) + αθ′(zk)T Δzk + h(α)

= (1− 2α)θ(zk) + 2αH(zk)T βkz̄k + h(α)
≤ (1− 2α)θ(zk) + 2αγμ0θ(zk) + o(α)
= [1− 2α(1− γμ0)]θ(zk) + o(α).

(23)

the first equality comes from (12) and θ′(zk) = 2H(zk)T DH(zk), the first in-
equality followed by the Hölder inequality and the definition of βk. So the in-
equality (23) implies that there exists a constant ᾱ ∈ (0, 1] such that

θ(zk + δlΔzk) ≤ [1− 2σ(1− γμ0)α]θ(zk)

holds for any α ∈ (0, ᾱ]. This demonstrates that Step 3 is well-defined at the
k-th iteration.
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3 Global and Local Convergence

Lemma 3. Suppose that F is a continuously monotone function, and that H is
defined by (3.2). Then H(μ, x, y) is coercive in any (μ, x, y) ∈ R+×J ×J , i.e.,

lim
‖(μ,x,y)‖→∞

‖H(μ, x, y)‖ = +∞.

The proof can be found in [6].

Lemma 4. Suppose that F is a continuously differentiable monotone function
and that {zk} is the iteration sequence generated by Algorithm 1. Then zk ∈ Ω
for any k ≥ 0, where

Ω = {z = (μ, x, y) ∈ R× J × J : μ ≥ β(z)μ0}.

Proof. By the definition of β, we know z0 ∈ Ω. Suppose that zk ∈ Ω, it is
sufficient to prove that zk+1 ∈ Ω. We know that

μk+1 = (1− λk)μk + λβkμ0 ≥ (1 − λk)βkμ0 + λβkμ0 = βkμ0,

the first inequality comes from μk ∈ Ω. In order to prove μk+1 ∈ Ω, it just
need to show that βk ≥ βk+1. By the Step 3, we know θ(zk+1) < θ(zk). Then
βk ≥ βk+1 comes from the definition of βk.

Theorem 5. Suppose that F is a continuously differentiable monotone function
and the solution set of SCCP is nonempty and bounded and z∗ := (μ∗, x∗, y∗) is
an accumulation point of the sequence {zk} generated by Algorithm 1. Then,
(i) z∗ is a solution of H(z) = 0;
(ii) if all V ∈ ∂H(z∗) are nonsingular, then,
(a)λk = 1 for all {zk} sufficiently close to z∗;
(b)the whole sequence {zk} converges to z∗ Q-quadratically if ∇F is Lipschitz
continuous, i.e.

‖zk+1 − z∗‖ = O(‖zk − z∗‖2) and μk+1 = O(μ2
k).

Proof. Using Lemma 4, we can obtain that (i) holds in a similar way as in
Theorem 3.2 of [15]. Using (i) and Theorem 3, we can prove (ii) similarly as in
Theorem 8 of [11]. For brevity, we omit the details here.

4 Numerical Results

In this section, we have conducted some numerical experiments to evaluate the
efficiency of Algorithm 1. All experiments were done at a PC with 3.06GHz CPU
and 0.99G memory. The operating system was Windows XP and the implemen-
tations were done in MATLAB 7.0.1. In our experiments, we test the SOCCP,
specially case of SCCP, of the following form: Finding x ∈ Rn such that

〈F (x), x〉 = 0, x ∈ K, F (x) = Mx + q ∈ K,
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where K is a second order cone, i.e. K = {(x0, x1) ∈ R1 × Rn−1 : x0 ≥ ‖x1‖},
and M ∈ Rn×Rn, q ∈ Rn were generated by the following procedure. Elements
of q were chosen randomly from the interval [-1, 1] and M is a symmetric sparse
metric (the density of M is the nonzero density)whose eigenvalues are chosen
random from the interval [0, 1] so that M is positive semidefinite.

The parameters used in this test were as follows: γ = 0.01min{1, 1/‖H(z0)‖},
η = γμ0, σ = 0.001, δ = 0.9, and the stopping criterion was set as θ(z) ≤ 10−6.
The CPU time is in seconds. The testing problems are generated by using the
method mentioned above. The starting points (μ0, x0, y0) of the algorithm in the
experiments are all chosen randomly.

In the first experiment, we generated 10 test problems with various problem
sizes for each nonzero density 1% and the results were showed in Table 1. In
this Table and the following Table 2, Iteration, cpu are the averages of 10
trials. In the second experiments, we generated 10 test problems with n = 1000
for each nonzero density 0.5%, 5%, 10%, 20%, 50% and 80%, the results were
summarized in Table 2. The above results indicate that Algorithm 1 performs
very well. We also observed similar results for other examples.

Table 1. Numerical results for the affine SOCCP of various problem size (n)

n Iteration cpu(s) n Iteration cpu(s)

100 5.1 0.0438 600 5.9 4.2783
200 5.6 0.2436 800 6.0 8.7530
400 6.0 1.5406 1000 6.0 15.6734

Table 2. Numerical results for the affine SOCCP with different degrees of sparsity
Dens (%).

Dens(%) Iteration cpu(s) Dens(%) Iteration cpu(s)

0.5 6.0 15.6248 20 6.0 15.9154
5 6.0 15.7202 50 6.3 16.6999
10 6.1 15.8798 80 6.0 15.7002

5 Conclusions

In this paper, the symmetric cone complementarity (SCCP) problem was dis-
cussed in detail. We give a smoothing Newton method for SCCP based on a
new smoothing function of the minimum function and prove that the given algo-
rithm is globally and locally Q-quadratically convergent. Since φ′

x in (6) is not
necessarily a diagonal matrix which is true in the case of NCP, we can not have
the nonsingular of DH under the assumption of F being a P0 function. It is yet
unknown whether the assumption on F is been weakened, on which we will keep
an eye in the future.
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Abstract. In this paper, we investigate the problem of scheduling
weighted jobs on a single machine with a maintenance whose starting
time is prior to a given deadline and whose duration is a nondecreas-
ing function of the starting time. We are asked not only to schedule the
jobs but also the maintenance such that the total weighted job comple-
tion time is minimum. The problem is shown to be weakly NP-hard. In
the case that the duration of the maintenance is a concave (and non-
decreasing) function of its starting time, we provide two approximation
algorithms with approximation ratio of 2 and at most 1 +

√
2/2 + ε,

respectively.

Keywords: Approximation algorithms; scheduling with maintenance;
total weighted completion time.

1 Introduction

Scheduling problems with preventive maintenance on machines have received
considerable attention in the last two decades. In such models the machines are
not always available. One is asked to schedule the given jobs by considering
the unavailable period of the machines. There are two parameters to define
a maintenance: its starting time and its duration. Relying on them we have
different problems. The model that both the parameters are fixed in advance has
been extensively studied [2,5,6,7,11,15]. The model assuming that the starting
time for maintenance can be chosen but the duration is fixed was also well studied
[9,12]. We refer interested readers to the survey papers by Schmidt [14] and Ma
et al. [10] for more details.

Very recently a seminal paper by Kubzin and Strusevich [8] dealt with the
more general scenario in which both parameters are variables. More precisely
the starting time of the maintenance is given within a time window and the
duration is a nondecreasing function of the starting time. In other words, the
duration will not be shorter if the maintenance starts later, and we have to ar-
range the maintenance by a given time point. They considered both flow shop

B. Chen (Ed.): AAIM 2010, LNCS 6124, pp. 209–219, 2010.
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and open shop for the two-machine case, in which each machine has a mainte-
nance. The goal is to minimize the makespan. They showed that the open shop
problem is polynomially solvable. By contrast, the flow shop problem is weakly
NP-hard even for the case that the duration of maintenance is a linear function
of the starting time. They further derived an FPTAS (Fully Polynomial Time
Approximation Scheme) and a fast 3/2-approximation algorithm. Mosheiov and
Sidney [13] studied the problem on a single machine with the following objective
functions: makespan, flow time, maximum lateness, total earliness, tardiness and
due-date cost, and number of tardy jobs. All of these problems were shown to be
polynomially solvable. In this paper, motivated by the previous work of Kubzin
and Strusevich [8] and Mosheiov and Sidney [13], we consider the objective min-
imizing the total weighted completion time on a single machine. The problem is
formally presented below.

Problem statement. Given a set J = {J1, J2, · · · , Jn} of jobs, each job Ji

has a processing time pi and a weight wi. There is a maintenance that must be
performed prior to a given deadline sd. If the maintenance starts at time s ≤ sd,
its duration is defined by f(s) which is a nondecreasing function of time s. The
goal is to well arrange the maintenance and schedule the set of jobs such that
the total weighted completion time

∑
i wici is minimized. We extend the 3-field

notation α|β|γ by Graham et al. [4] and denote our problem as 1|V M |∑i wici,
where V M stands for the variable maintenance. Let P =

∑
i pi. Without loss

of generality, we can assume that sd < P , since otherwise our problem becomes
trivial (all jobs can be completed before the maintenance starts). Analogously,
by 1|M |∑i wici we can denote the special case of our problem, in which the
duration of the maintenance is fixed.

Our model has many applications in real-world manufacturing where mainte-
nance includes cleaning, recharging, refilling, or partial replacement of tools or
parts that have been subject to essential wear. Delaying the maintenance may
results in a longer duration. On the other hand, our problem can also be viewed
as a two-agent competitive scheduling problem [1]. We may assume that the jobs
belong to agent A while agent B is responsible for performing the maintenance.
The objective is to minimize the total weighted completion time of agent A sub-
ject to the starting time of agent B performing maintenance prior to a given
deadline, provided that the processing time of the maintenance is a variable.

Related work. The problem minimizing the total weighted completion time
on a single machine with a fixed maintenance period was considered in [5] and
[6]. Kacem [5] presented a 2-approximation algorithm and the bound is tight.
Kellerer et al. [6] gave a (2+ε)-approximation algorithm by employing an FPTAS
for the knapsack problem. For the case that jobs are resumable Wang et al.
[15] designed an approximation algorithm with a tight bound of two. Megow
and Verschae [11] further improved the result by giving a ((1 +

√
5)/2 + ε)-

approximation algorithm. Finally, Kellerer and Strusevich [7] showed that both
of the above two problems admit an FPTAS. Mosheiov and Sarig [12] dealt with
the problem 1|M |∑i wici, in which the duration of the maintenance is fixed
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while the starting time of the maintenance has a deadline. They showed that
a WSPT-based heuristic algorithm may work arbitrarily bad, and presented a
pseudo-polynomial time algorithm via dynamic programming. Interestingly, it
was pointed out in [7] that this problem is actually equivalent to the problem in
[15]. Lee and Chen [9] investigated parallel machine scheduling in which there is
a maintenance on each machine.

Our results. We first point out that our problem is weakly NP-hard by design-
ing a pseudo-polynomial time algorithm for any function f(s) (not necessary to
be nondecreasing). Then we turn to approximation algorithms, assuming that
f(s) is nondecreasing and concave. There are two critical points to be han-
dled. One is to guess a time interval when the maintenance starts in an optimal
schedule, while another is to select those jobs which are scheduled before the
maintenance. To this end we propose a number of candidate schedules, among
which we select the best one. It is proved that the resulting schedule has an
approximation ratio of two. Finally we improve the algorithm by employing an
FPTAS for the scheduling problem with a common deadline and achieve a bet-
ter bound of 1 +

√
2/2 + ε. The remainder of the paper is organized as follows.

In Section 2, we simply state the complexity result via dynamic programming.
Sections 3 and 4 present the two approximation algorithms. Some concluding
remarks are given in Section 5.

2 The Complexity

Kellerer and Strusevich [7] have pointed out that NP-hardness of the problem
1|M |∑i wici. It is clear that our problem 1|V M |∑i wici is NP-hard. In the
following we introduce a pseudo-polynomial time algorithm based on dynamic
programming. Assume all input data of the problem are integers. Recall that
sd < P =

∑
pi. There are at most P possible starting time points for the

maintenance. After we select a time point for the maintenance we only need
to partition the jobs into two subsets S1 and S2. S1 is scheduled before the
maintenance while S2 after the maintenance. It is worthy to note that in an
optimal schedule the jobs before (after) the maintenance must obey a WSPT
(weighted shortest processing time) order. Thus, as we get S1 and S2 the schedule
is clear.

First we sort the jobs in a WSPT order, i.e., w1/p1 ≥ w2/p2 ≥ · · · ≥
wn/pn. Let F (i, v, s) denote the minimum total weighted completion time of
jobs J1, J2, · · · , Ji, where s is the starting time of the maintenance and v is the
total processing time of jobs scheduled before s. Let Ai =

∑i
j=1 pj.

For s = 0, 1, · · · , sd and v ≤ s, let F (0, v, s) = 0. The recursive equation for
i = 1, 2, · · · , n, s = 0, 1, · · · , sd, and v ≤ s, is defined as

F (i, v, s) = min{F (i− 1, v− pi, s) + wiv, F (i− 1, v, s) + wi(s + f(s) + Ai − v)}.

Moreover, we define F (i, v, s) = ∞ if v < 0.
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During the recursion, as a new job is added, it always has the smallest
(weight)/(processing time) ratio. No matter it is assigned to S1 or S2, it is
always the last job in the class. Computing the best schedule becomes much
simpler. It is easy to verify the correctness of the dynamic program. The op-
timal value is determined by minimizing F (n, v, s) over s = 0, 1, · · · , sd; v ≤ s.
The running time of the procedure is bounded by O(ns2

d) (or O(nP 2), which is
pseudo-polynomial. Therefore, we have the following theorem.

Theorem 1. The problem 1|V M |∑
i

wici is weakly NP-hard.

3 A 2-Approximation Algorithm

In this section we propose an approximation algorithm with an approximation
ratio of 2 for problem 1|V M |∑i wici and also show that the bound is tight,
assuming that the function f(s) is nondecreasing and concave. Throughout the
paper we always suppose that the jobs are already sorted in a WSPT order, i.e.,
w1/p1 ≥ w2/p2 ≥ · · · ≥ wn/pn. Furthermore, as in the last section, we use S1
and S2 to denote respectively the set of jobs scheduled before the maintenance
and the set of jobs scheduled after the maintenance, when a schedule is specified.

Before presenting the algorithm we investigate an optimal schedule π∗ and
give two lower bounds. Let s∗ be the starting time of the maintenance in the
schedule π∗, and let Z∗ denote the total weighted completion time of π∗. We
determine i and θ such that

∑i−1
j=1 pj + θpi = s∗, 0 ≤ θ < 1. Then we split Ji

into two jobs J ′
i and J ′′

i , where J ′
i has a weight of θwi and a processing time of

θpi, and J ′′
i has a weight of (1 − θ)wi and a processing time of (1 − θ)pi. We

get a new job set J ′ = {J \ {Ji}} ∪ {J ′
i} ∪ {J ′′

i }. Moreover, we denote by Z1 the
optimal objective value for scheduling J ′. There are two observations:

1. Z1 ≤ Z∗. To see this, we simply replace job Ji by J ′
i and J ′′

i in the schedule
π∗ maintaining the assignment for the other jobs, that results in a feasible
schedule for J ′. Note that the total weighted completion time of J ′

i and J ′′
i is

not larger than the weighted completion time of Ji, while the costs incurred
by the other jobs remain unchanged. Thus the inequality holds.

2. The schedule assigning J1, J2,· · ·, Ji−1, J
′
i before time s∗ and J ′′

i , Ji+1, · · · , Jn

after the maintenance (both in a WSPT order) is an optimal schedule for
J

′
, which is easily proved as in [15]. The total weighted completion time Z1

of this schedule can be easily computed as

Z1 =
i−1∑
j=1

wj(
j∑

k=1

pk) + θwi(
i−1∑
k=1

pk + θpi)

+(1− θ)wi(
i∑

k=1

pk + f(
i−1∑
k=1

pk + θpi)) (1)

+
n∑

j=i+1

wj(
j∑

k=1

pk + f(
i−1∑
k=1

pk + θpi)).
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The first term is the total weighted completion time of jobs J1, J2, · · · , Ji−1,
the second and the third terms are contributions from J ′

i and J ′′
i , and the

fourth term is owing to the jobs Ji+1, · · · , Jn.

Hence, we have the first lower bound for Z∗.

Lemma 1. Z∗ ≥ Z1, where Z1 is determined in (1).

Note that Z1 may not correspond to a feasible schedule for J since the job Ji

is split. Now we slightly modify the schedule without splitting Ji. There are
two possibilities: schedule Ji either right after or right before the maintenance.
Ignore the maintenance deadline and denote the objective values by ZA

1 and ZB
1 ,

respectively. Then,

ZA
1 =

i−1∑
j=1

wj(
j∑

k=1

pk) +
n∑

j=i

wj(
j∑

k=1

pk + f(
i−1∑
k=1

pk))

and

ZB
1 =

i∑
j=1

wj(
j∑

k=1

pk) +
n∑

j=i+1

wj(
j∑

k=1

pk + f(
i∑

k=1

pk)).

Lemma 2. Z∗ ≥ Z1 ≥ 3
4 min{ZA

1 , ZB
1 }

Proof. Since f(s) is concave, we have

f(
i−1∑
k=1

pk + θpi) ≥ θf(
i∑

k=1

pk) + (1 − θ)f(
i−1∑
k=1

pk).

It’s easy to verify that

Z1 − θZB
1 ≥ (1− θ)

i−1∑
j=1

wj(
j∑

k=1

pk) + (1− θ)wi(
i∑

k=1

pk) + (1 − θ)wif(
i−1∑
k=1

pk)

+ (1− θ)
n∑

j=i+1

wj(
j∑

k=1

pk + f(
i−1∑
k=1

pk)) + (θ2 − θ)wipi.

Then
Z1 − θZB

1 ≥ (1− θ)ZA
1 + (θ2 − θ)ZB

1 ,

Z1 ≥ (1 + θ2 − θ)min{ZA
1 , ZB

1 }.
Note that 1 + θ2 − θ ≥ 3/4, since 0 ≤ θ < 1. Thus

Z∗ ≥ Z1 ≥ 3
4

min{ZA
1 , ZB

1 }.
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This lemma shows the better one of the above two schedules for J has an ob-
jective value close to Z1. It is clear that both of the two schedules are feasible
if

i∑
k=1

pk ≤ sd. (2)

In this case the optimal cost can be very well bounded. However, we do not
know how much s∗ is and there is no way to exactly determine the index i. We
can first determine i1 such that

∑i1−1
j=1 pj ≤ sd <

∑i1
j=1 pj . Divide [0, sd] into a

number of disjoint intervals [0, p1], (p1, p1 + p2], · · · , (
∑i1−1

j=1 pj, sd].
Clearly s∗ must fall into one of the above intervals. If s∗ is out of the last

interval (
∑i1−1

j=1 pj , sd], then 1 ≤ i ≤ i1−1, and the inequality (2) holds. We only
need to try the i1−1 intervals and get an upper bound of 4/3 by Lemma 2. In the
following we assume that s∗ ∈ (

∑i1−1
j=1 pj , sd]. Denote by Zi1 the objective value

of the schedule πi1 , in which S1 = {J1, J2 · · · , Ji1−1} (the set of jobs scheduled
before the maintenance) and S2 = {Ji1 , · · · , Jn} (the set of jobs scheduled after
the maintenance), i.e., the maintenance starts immediately after job Ji1−1 is
completed. The following lemma analyzes this case.

Lemma 3. If Zi1 > 2Z∗, then job Ji1 must be scheduled before the maintenance
in any optimal solution.

Proof. Assume that Ji1 is processed after the maintenance in an optimal solu-
tion. By Lemma 1, we have

Zi1 > 2
i1∑

j=1

wj(
j∑

k=1

pk) + 2(θ2 − θ)wi1pi1 + 2(1− θ)wi1f(
i1−1∑
k=1

pk + θpi1)

+ 2
n∑

j=i1+1

wj(
j∑

k=1

pk + f(
i1−1∑
k=1

pk + θpi1)).

Thus

wi1f(
i1−1∑
k=1

pk) >

i1−1∑
j=1

wj(
j∑

k=1

pk) +
n∑

j=i1+1

wj(
j∑

k=1

pk + f(
i1−1∑
k=1

pk)),

2Z∗ >

i1∑
j=1

wj(
j∑

k=1

pk) + wi1f(
i1−1∑
k=1

pk) +
n∑

j=i1+1

wj(
j∑

k=1

pk + f(
i1−1∑
k=1

pk)).

Thus, 2Z∗ > Zi1 , which is an contradiction.

Now we have to consider that some jobs with smaller (weight)/(processing time)
ratio are assigned to S1, and give an improved lower bound for an optimal
schedule π∗. Again, assume that s∗ is the starting time of the maintenance in



Approximation Algorithms 215

π∗. Recall that the jobs are already in a WSPT order. Let J l = {Ji1 , · · · , Jil
}, l =

1, 2, · · · , m, be a set of jobs that must be scheduled before s∗, i.e., J l ⊂ S1, where∑l
k=1 pik

≤ s∗ and wi1/pi1 ≥ wi2/pi2 ≥ · · · ≥ wil
/pil

.
Similarly as the analysis in Lemma 1, we define i and θ as

i−1∑
j=1

pj +
l∑

k=1

pik
+ θpi = s∗, 0 ≤ θ < 1, 1 ≤ i ≤ il − 1.

Again we split job Ji into J ′
i and J ′′

i in the same way as we did above. Let
S1 = {J1, · · · , Ji−1, J

′
i} ∪ J l, and S2 = {J ′′

i , Ji+1, · · · , Jn} \ J l. Then for this
schedule (where Ji is split) we have the total weighted completion time as

Z2 =
i−1∑
j=1

(
j∑

k=1

pk) + θwi(
i−1∑
k=1

pk + θpi) +
l∑

k=1

wik
(
i−1∑
j=1

pj + θpi +
k∑

r=1

pir )

+ (1− θ)wi(
i∑

j=1

pj +
l∑

k=1

pik
+ f(

i−1∑
j=1

pj + θpi +
l∑

k=1

pik
))

+
n∑

j>i,j∈̄Jl

wj(
j∑

k=1,k∈̄Jl

pk +
l∑

k=1

pik
+ f(

i−1∑
k=1

pk + θpi +
l∑

k=1

pik
)).

Lemma 4. If the optimal schedule π∗ assigns the jobs in J l before time s∗, then
Z∗ ≥ Z2.

Proof. Let R1 denote the set of jobs scheduled before maintenance in the optimal
schedule π∗ and R2 = J \ R1. Clearly the order of the jobs in R1 has the
following pattern (Bl, Jil

, Bl−1, Jil−1 , · · · , B1, Ji1 , B0), where Bi, i = 0, 1, · · · , l
denotes a set of jobs or an empty set. Let {Jai , i = 1, 2, · · · , q} be the jobs
in Bi, i = 0, 1 · · · , l − 1. For each job Jai we iteratively increase its weight to
wai +�wai until (wai +�wai)/pai = wil

/pil
. Let J

′
ai

denote the corresponding
job of Jai with a new weight and B

′
i , i = 0, 1, 2, · · · , l−1 denote the corresponding

set of Bi, for i = 0, 1, · · · , l − 1, with new weights.
Let π

′
be the resulting schedule after increasing the job weights. Its objective

value is Z ′. Those jobs with new weights move to the front in R1 according
to a WSPT order. By some simple calculation (details omitted) we have Z∗ ≥
Z ′ −∑i�waicai , where cai denotes the completion time of Jai in π∗.

Let π1 = (J1, · · · , Ji−1, J
′
i , Jil

, · · · , Ji1 , V M, J
′′
i , · · · , Ja1 , · · · , Jaq , · · ·) and π2 =

(J1, · · · , Ji−1, J
′
i , Jil

, · · · , Ji1 , V M, J
′′
i , · · · , J ′

a1
, · · · , J ′

aq
, · · ·) be two schedules,

where V M denotes the (variable) maintenance. The corresponding objective val-
ues are Z(π1) and Z(π2), respectively. With simple calculation we have Z(π1) ≤
Z(π2) −

∑
i�waic

′
ai

, where c
′
ai

denotes the completion time of J
′
ai

in π2. Since
Z(π2) ≤ Z ′, we obtain Z(π1) ≤ Z∗ +

∑
i�waicai

−∑i�waic
′
ai

. Moreover, with
cai ≤ c

′
ai

we get Z(π1) ≤ Z∗, which shows that π1 is an optimal schedule for J ′ and
thus the lemma is proved.
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We define critical jobs that are split in Lemmas 1 and 4. More precisely these
jobs can be recursively defined below.

– Job Ji1 satisfies:
i1−1∑
j=1

pj ≤ sd <
i1∑

j=1
pj .

– For k = 2, . . . , m, job Jik
satisfies:

ik−1∑
j=1

pj ≤ sd −
k−1∑
j=1

pij <
ik∑

j=1
pj .

Here m is 1 if i1 = 1, otherwise it is determined by p1 +
∑m

k=1 pik
> sd and

p1 +
∑m−1

k=1 pik
≤ sd.

Now we are ready to present the first algorithm. In the description we again
use (S1, S2) to define a schedule, meaning that

– Jobs in S1 are scheduled (in a WSPT order) before the maintenance.
– The maintenance starts immediately when the jobs of S1 are completed, i.e.,

it starts at time
∑

Ji∈S1
pi.

– Jobs in S2 are scheduled (in a WSPT order too) immediately after the main-
tenance.

Algorithm H1.

Step 0. Let J0 be a dummy job with processing time of zero. It is always in the
front in a WSPT order.

Step 1. For i = 0, 1, · · · , i1 − 1, construct a number of schedules π0(i), where
S1 = {J0, J1, · · · , Ji} and S2 = {Ji+1, · · · , Jn}.
Step 2. For l = 1, . . . , m − 1, and for i = 0, 1, . . . , il − 1, construct a num-
ber of schedules πil

(i), where S1 = {J0, J1, · · · , Ji, Jil
, Jil−1 , Ji1} and S2 =

{Ji+1, Ji+2, · · · , Jil−1,Jil+1, · · · , Jn)}.
Step 3. Construct a schedule πim(0), where S1 = {J0, Jim , Jim−1 , · · · , Ji1} and
S2 = {J1, J2, · · · , Jim−1, Jim+1, · · · , Jn}.
Step 4. Output the schedule with the minimum total weighted completion time
among all schedules above and denote it by π.

Theorem 2. For a nondecreasing and concave function f(s), Algorithm H1 is
a 2-approximation algorithm with O(n2) time and the bound is tight.

Proof. Again let s∗ be the starting time of the maintenance in the optimal
schedule. To prove this theorem, by Lemma 3 we only need to consider the case
that the job Ji1 is processed before the maintenance in the optimal schedule.

Divide [pi1 ,
∑i2−1

j=1 pj +pi1 ] into subintervals [
∑l−1

j=1 pj +pi1 ,
∑l

j=1 pj +pi1 ], l =
1, 2, · · · , i2−1. Similarly, if s∗ ∈ [

∑l−1
j=1 pj +pi1 ,

∑l
j=1 pj +pi1 ], l = 1, 2, · · · , i2−1,

consider schedules

πi1 (l − 1) = (J1, J2, · · · , Jl−1, Ji1 , V M, Jl, · · · , Jn), l = 1, · · · , i2 − 1,

πi1 (l) = (J1, J2, · · · , Jl, Ji1 , V M, Jl+1, · · · , Jn), l = 1, · · · , i2 − 1.
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From Lemma 2, we have

Z∗ ≥
l−1∑
j=1

wj(
j∑

k=1

pk) + θwl(
l−1∑
j=1

pj + θpl) + wi1 (
l−1∑
k=1

pk + pi1 + θpl)

+ (1− θ)wl(
l∑

k=1

pk + pi1 + f(
l−1∑
k=1

pk + pi1 + θpl))

+
n∑

j>l,j �=i1

wj(
j∑

k=1,k �=i1

pk + f(
1−1∑
k=1

pk + pi1 + θpl) + pi1).

Thus
Z∗ − θZ(πi1(l)) ≥ (1− θ)Z(πi1 (l − 1)) + (θ2 − θ)Z(πi1 (l)),

i.e.,

min{Z(πi1(l)), Z(πi1(l − 1))} ≤ 4
3
Z∗.

If s∗ ∈ (
∑i2−1

j=1 pj + pi1 , sd),

Z(πi1(i2 − 1))

=
i2−1∑
j=1

wj(
j∑

k=1

pk) + wi1 (
i2−1∑
k=1

pk + pi1) + wi2 (f(
i2−1∑
k=1

pk + pi1) +
i2∑

k=1

pk + pi1)

+
∑

j>i1,j �=i1

wj(
j∑

k=1,k �=i1

pk + f(
i2−1∑
k=1

pk + pi1) + pi1).

From Lemma 2 we have

Z∗ ≥
i2−1∑
j=1

wj(
j∑

k=1

pk) + θwi2 (
i2−1∑
k=1

pk + θpi2) + wi1 (
i2−1∑
k=1

pk + θpi2 + pi1)

+ (1− θ)wi2 (f(
i2−1∑
k=1

pk + θpi2 + pi1) +
i2∑

k=1

pk + pi1)

+
n∑

j>i2,j �=i1

wj(
j∑

k=1,k �=i1

pk + f(
i2−1∑
k=1

pk + θpi2 + pi1) + pi1).

Similarly we can claim that Ji2 should be processed before the maintenance in
the optimal schedule if 2Z∗ < Z(πi1(i2 − 1)), i.e., it fails to provide a feasible
schedule with an upper bound better than 2.

Continuing the same argument, Ji1 , Ji2 , · · · , Jim should be processed before
the maintenance in the optimal schedule if it fails to provide a feasible solution
with an upper bound better than 2. Note that either Jim = J1 or p1+

∑m
k=1 pik

>
sd. Both cases yield a contradiction if we restrict that Z(πim(0)) > 2Z∗ and
Ji1 , Ji2 , · · · , Jim are assigned before the maintenance in the optimal schedule.
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The analysis above shows that Algorithm H1 is a 2-approximation algorithm.
It is not hard to see that the algorithm actually needs O(n2) time.

To show the bound is tight, let us consider the following instance. J =
{J1, J2}, where p1 = w, w1 = w − 1, p2 = w − 1, w2 = w − 2, sd = w − 1,
and f(s) = w2 + 2s. The schedule by our algorithm is π = (V M, J1, J2), while
an optimal schedule is π∗ = (J2, V M, J1).

Z(π)
Z∗ =

2w3 − 6w + 2
w3 + 4w2 − 10w + 5

→ 2(w →∞)

4 A Better Approximation Algorithm

In the section, we present a (1 +
√

2/2 + ε)-approximation algorithm. Let i1 be
determined as in the previous section. For a given schedule π let Z(π) be its
objective value.

Algorithm H2

Step 1. Let J0 be a dummy job with processing time of zero. For i = 0, 1, · · · , i1−
1, construct a set of schedules: π0(i) = (J0, J1, · · · , Ji, V M, Ji+1, · · · , Jn).

Step 2. Use the FPTAS in [3] to solve the problem 1|di = sd|
∑

i wiui in which
di = sd denotes the common deadline for all Ji ∈ J . Let S1 = {i ∈ J |ui =
0}, S2 = J \ S1. Construct a schedule π0(i1) = (S1, V M, S2), where the jobs in
S1 and the jobs in S2 follow a WSPT order.

Step 3. Output the schedule π = arg min
π0(i),i=0,1,···,i1

{Z(π0(i))}.

Theorem 3. If f(s) is a nondecreasing and concave function, Algorithm H2 is
a (1 +

√
2/2 + ε)-approximation running in O(n2/ε) time.

The proof is similar as Theorem 2 but still involved. Due to the page limit we
omit the proof and put it to the full version of this paper.

5 Concluding Remarks

In this paper we consider the problem of scheduling a variable machine main-
tenance along with jobs on a single machine to minimize the total weighted
completion time. We show that the problem is weakly NP-hard. We provide two
approximation algorithms, assuming that the duration of the maintenance is a
nondecreasing and concave function of its starting time.

It is not difficult to prove that the problem with an arbitrary duration function
f(s) of the maintenance cannot be approximated within any constant factor
unless P = NP . If f(s) is nondecreasing it admits an FPTAS which is only of
theoretical interests. We will present the results in the full version of this paper.
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Abstract. In this paper, we consider the bounded parallel-batch schedul-
ing problem on unrelated parallel machines. Problems Rm|B|F are
NP-hard for any objective function F . For this reason, we discuss the spe-
cial case with pij = pi for i = 1, 2, · · · , m, j = 1, 2, · · · , n. We give op-
timal algorithms for the general scheduling to minimize total weighted
completion time, makespan and the number of tardy jobs. And we design
pseudo-polynomial time algorithms for the case with rejection penalty to
minimize the makespan and the total weighted completion time plus the
total penalty of the rejected jobs, respectively.

Keywords: Parallel-batch scheduling; Unrelated parallel machines; Re-
jection penalty; Pseudo-polynomial time.

1 Introduction

The parallel-batch scheduling is motivated by burn-in operations in semicon-
ductor manufacturing. Lee et al. [10] provided a background description. Web-
ster and Baker [14] presented an overview of algorithms and complexity results
for scheduling batch processing machines. Brucker et al. [2] gave a thorough
discussion of the scheduling problem of the batch machine under various con-
straints and objective functions. Deng and Zhang [6] proved that the problem
1|rj , B ≥ n|∑wjCj is NP-hard, they further showed that several important spe-
cial cases of the problem can be solved in polynomial time. Li et al. [11] presented
a polynomial time approximation scheme (PTAS) for the problem of minimizing
total weighted completion time on identical parallel unbounded batch machines.
Zhang et al. [15] had some results for the parallel-batch scheduling on identical
parallel machines to minimize makespan and minimize the maximum lateness.
Under the on-line setting, Chen et al. [4], for the single batch machine problem
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to minimize total weighted completion time, provided an on-line algorithm with
10
3 -competitive for the unbounded model and 4+ε-competitive on-line algorithm
for the bounded model.

In classical scheduling literatures, all jobs must be processed and no rejection
is allowed. In the real applications, however, this may not be true. Due to the
limited resources, the scheduler can have the option to reject some jobs. The
machine scheduling problem with rejection was first considered by Bartal et al.
[1]. They studied both the off-line and the on-line versions of scheduling with
rejection on identical parallel machines. The objective is to minimize the sum
of the makespan of the accepted jobs and the total penalty of the rejected jobs.
Subsequently, the scheduling with rejection was extensively studied in the last
decade. Engels et al. [7] considered the single machine scheduling with rejection
to minimize the sum of weighted completion times of scheduled jobs and total
rejection penalty of the rejected jobs. Epstein et al. [8] considered on-line schedul-
ing problem of unit-time jobs with rejection to minimize the total completion
time. Cheng and Sun [5] considered the single-machine scheduling problem with
deteriorating and rejection. Miao and Zhang [13] studied the on-line scheduling
with rejection on identical machines.

Cao and Yang [3] presented a PTAS for the combined model of the above two
scheduling models (parallel-batch and rejection) where jobs arrive dynamically.
The objective is to minimize the sum of the makespan of the accepted jobs and
the total penalty of the rejected ones. Lu et al. [12] also considered the bounded
parallel-batch scheduling problem with rejection on one single batch machine.

We address the bounded parallel-batch scheduling problem on unrelated par-
allel machines. We discuss one special case in this paper. In section 3, we give op-
timal algorithms for minimizing the makespan, total weighted completion time
and the number of tardy jobs. In section 4, we consider the case with rejec-
tion, design pseudo-polynomial time dynamic programming algorithms for the
makespan plus the total penalty of the rejected jobs and the total weighted com-
pletion time plus the total penalty of the rejected jobs. We conclude the paper
in the last section.

2 Model and Notation

The parallel-batch processing machine is a machine that can process up to B
jobs simultaneously as a batch, and the processing time of the batch is given
by the processing time of the longest job in the batch. All jobs contained in the
same batch start and complete at the same time. Once processing of a batch is
initiated, it can not be interrupted and other jobs cannot be introduced into the
batch until processing is completed.

We are given a set J = {J1, · · · , Jn} of n independent jobs and a set M =
{M1, · · · , Mm} of m unrelated parallel machines. Each job Jj (j = 1, · · · , n) is
available for processing from time zero onwards, it has a due date dj by which
it should ideally be completed, a weight wj and a rejection penalty ej > 0, the
processing time of Jj in machine Mi being pij , we consider the special with
pij = pi for i = 1, · · · , m, j = 1, · · · , n in this paper.
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The jobs that are processed together form a batch, which we denote by B, and
the processing time of the batch denoted by p(B) is p(B) = max{pij |Jij ∈ B}.
For convenience, we denote the batch’s weight and completion time by W (B)
and C(B), respectively, where W (B) =

∑
Jj∈B wj . The aim is to schedule

the jobs on the set of m unrelated parallel machines so as to minimize F1 ∈
{∑wjCj , Cmax,

∑
Uj} or minimize F2 ∈ {

∑
Jj∈S wjCj +

∑
Jj∈S ej, Cmax(S) +∑

Jj∈S ej}, where Cj , Cmax = max1≤j≤n{Cj} and S denotes the completion
time of job Jj , the makespan and the set of accepted jobs, respectively. Uj is
0-1 indicator variable that takes the value 1 if Jj is tardy, i.e., Cj > dj , and the
value is 0 if Jj is on time, i.e., Cj ≤ dj . Using the 3−field notation of Graham et
al. [9], we denote our problem as Rm|B, pij = pi|F1 and Rm|B, rej, pij = pi|F2,
where rej denotes the rejection.

3 The Case with General Parallel-Batch Scheduling

In this section, we discuss the problem Rm|B, pij = pi|
∑

wjCj , Rm|B, pij =
pi|Cmax and Rm|B, pij = pi|

∑
Uj .

3.1 Minimizing Total Weighted Completion Times

In this subsection, we design an optimal algorithm for problem Rm|B, pij =
pi|
∑

wjCj .

Algorithm A1
Step 1. Re-index jobs in non-increasing order according to their weights so

that w1 ≥ w2 ≥ · · · ≥ wn.
Step 2. Form batches by placing jobs JjB+1 through J(j+1)B together in the

same batch Bj+1 for j = 0, 1, · · · , [ n
B ], where [ n

B ] denotes the largest integer
smaller than n

B .
Step 3. Re-index machines in non-decreasing order according to the process-

ing time of job so that p1 ≤ p2 ≤ · · · ≤ pm.
Step 4. Assign batch B1 on machine M1, set j = 2.
Step 5. Select machine Mi0 so that

ni0
j pi0 = min1≤i≤m{ni

jpi},

where ni
j (1 ≤ j ≤ [ n

B ]+1, 1 ≤ i ≤ m) denotes the number of batches assigned to
Mi among batches {B1, · · · , Bj}. Assign batch Bj on machine Mi0 , set j = j+1,
repeat Step 5 until j = [ n

B ] + 1.
The time complexity of Algorithm A1 is O(nlogn).

Theorem 1. Algorithm A1 generates an optimal solution to problem Rm|
B, pij = pi|

∑
wjCj.

Proof. Let π be any optimal schedule for problem Rm|B, pij = pi|
∑

wjCj . To
prove this Theorem, we only show that π could be transformed in a schedule π′
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under condition w1 ≥ w2 ≥ · · · ≥ wn which has the following three properties,
and the objective value does not increase.
(i). The indexes of jobs in every batch are consecutive.
(ii). If there exist two jobs Ji and Jj with wi ≥ wj , then the completion time of
Ji must be earlier than or equal to the completion time of Jj , and this conclusion
holds true for two batches Bi and Bj with W (Bi) ≥ W (Bj).
(iii). All batches are full except possible the one which contains job Jn.

To show (i), suppose that there are two batchesBx,By and three jobs Jj , Jj+1, Jj+2
with wj ≥ wj+1 ≥ wj+2 such that Jj , Jj+2 ∈ Bx and Jj+1 ∈ By in schedule π.
We distinguish between two cases:

Case 1: Bx and By are on the same machine, w.l.o.g, let the machine be Mk

(1 ≤ k ≤ m).

From pij = pi for i = 1, 2, · · · , m, j = 1, 2, · · · , n, we know that P (Bx) =
P (By) = pk. We also distinguish between two subcases in this case as follows.

Subcase 1.1: C(Bx) < C(By)
We get a new schedule π′ by swapping job Jj+1 with Jj+2. Let F and F ′

denote the objective value, and f and f ′ denote the total weighted completion
times of the other jobs except Jj , Jj+1, Jj+2 in π and π′, respectively. And since
the completion times of other jobs are unchanged, thus, f = f ′ in this subcase.
Therefore, we have

F = f+wjCj+wj+1Cj+1+wj+2Cj+2 = f+wjC(Bx)+wj+1C(By)+wj+2C(Bx),

F ′=f ′+wjC
′
j+wj+1C

′
j+1+wj+2C

′
j+2 =f ′+wjC(Bx)+wj+1C(Bx)+wj+2C(By),

from which we get F − F ′ = (wj+1 − wj+2)(C(By)− C(Bx)).
Since C(Bx) < C(By) and wj+1 ≥ wj+2, then we have F ≥ F ′.
Subcase 1.2: C(Bx) > C(By)
Similarly, we have F −F ′ = (wj −wj+1)(C(Bx)−C(By)) by swapping job Jj

with Jj+1 in this subcase, since C(Bx) > C(By) and wj ≥ wj+1, then we have
F ≥ F ′.

Case 2: Bx and By are on different machines.

We also distinguish between two subcases in this case.
Subcase 2.1: C(Bx) ≤ C(By)
Similarly, we get a new schedule π′ by swapping job Jj+1 with Jj+2. As

the above mentioned, we know that f = f ′ since pij = pi for i = 1, 2, · · · , m,
j = 1, 2, · · · , n in this subcase. Therefore, we have

F = f + wjC(Bx) + wj+1C(By) + wj+2C(Bx),

F ′ = f ′ + wjC(Bx) + wj+1C(Bx) + wj+2C(By),

from which we get F − F ′ = (wj+1 − wj+2)(C(By)− C(Bx)).
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Since C(Bx) ≤ C(By) and wj+1 ≥ wj+2, then we have F ≥ F ′.
Subcase 2.2: C(Bx) > C(By)
Similarly, we have F −F ′ = (wj −wj+1)(C(Bx)−C(By)) by swapping job Jj

with Jj+1 in this subcase, since C(Bx) > C(By) and wj ≥ wj+1, then we have
F ≥ F ′.

Combining the above two cases, we know that the objective value does not
increase after the swap. Thus, the schedule π′ is still an optimal schedule. A
finite number of repetitions of this procedure yield an optimal schedule of the
required form.

To show (ii), assuming that there exist two jobs Ji and Jj with wi ≥ wj , but
Ci > Cj in schedule π, then we have that there is a similar argument to that in
the previous cases, that is we get F −F ′ = (wi −wj)(Ci −Cj) by swapping job
Ji with Jj whether Ji and Jj are on the same machine or not. Since wi ≥ wj

and Ci > Cj , then we have F ≥ F ′, i.e., the objective value does not increase.
Thus, the schedule π′ is still an optimal schedule. A finite number of repetitions
of this procedure yield an optimal schedule of the required form.

Similarly, if we view the batch Bi as an aggregate job with weight W (Bi) =∑
Jl∈Bi

wl, we could prove the second part of of (ii).
To show (iii), first, we find the batch Bx which contains job J1 in schedule

π, according to (i) and (ii), W.l.o.g, let Bx = {J1, · · · , Jk}. If Bx is not full, i.e.,
|Bx| = k < B. According to (ii) and w1 ≥ w2 ≥ · · · ≥ wk ≥ wk+1 ≥ · · · ≥
wB ≥ · · · ≥ wn, we know that the completion times of Jk+1, Jk+2, · · · , JB must
be late than or equal to C1 = C(Bx), the completion time of job J1. Thus, if
we move the remaining jobs Jk+1, Jk+2, · · · , JB from other batches to Bx to get
a schedule π′, then Bx is full, and this procedure can not increase the objective
value. Now, by applying this argument recursively, we have that all batches are
full except possible the one which contained job Jn.

In a word, from the discussion above, we know that the result of the allocation of
the optimal schedule π′ is consistent with that of AlgorithmA1. Thus, Algorithm
A1 generates an optimal solution to problem Rm|B, pij = pi|

∑
wjCj . �

Assume w1 ≥ w2 ≥ · · · ≥ wn, let H = {J1, J2, · · · , Jj} (1 ≤ j ≤ n) be the subset
of J , we can get the following conclusion.
Theorem 2. The maximum completion time of H is equal to the completion
time of the batch containing job Jj which is the last batch assigned by Algorithm
A1.

Proof. To show this, we will assume otherwise and derive the contradiction. Let
Cmax(H) be the makespan generated by Algorithm A1 and Cj(H) be the com-
pletion time of Jj among H , then the completion of the batch containing job Jj

is also Cj(H). If Cmax(H) �= Cj(H), then there exists i (1 ≤ i < j) such that
Cmax(H) = Ci(H), thus, Cj(H) < Ci(H). Case 1: if job Jj and Ji are in the
same machine, then Ci(H) ≤ Cj(H) according to Algorithm A1 and wi ≥ wj . A
contradiction. Case 2: if job Jj and Ji are in different machines. The completion
time of job Ji will decrease if we move job Ji to the location of Jj , this contra-
dicts Algorithm A1, in which, the completion time of job Ji is minimum. Thus,
Cmax(H) = Cj(H). This completes the proof of Theorem 2. �
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3.2 Minimizing Makespan and the Number of Tardy Jobs

We give optimal algorithms for problem Rm|B, pij = pi|Cmax and Rm|B, pij =
pi|
∑

Uj in this subsecton.

Algorithm A2
Step 1. Give an arbitrary order of jobs.
From Step 2 to Step 5 are identical with those in Algorithm A1.

Theorem 3. Algorithm A2 generates an optimal solution to problem Rm|
B, pij = pi|Cmax.

Algorithm A3
Step 1. Re-index jobs in non-decreasing due dates order so that d1 ≤ d2 ≤ · · · ≤
dn.

From Step 2 to Step 5 are identical with those in Algorithm A1.

Theorem 4. Algorithm A3 generates an optimal solution to problem Rm|
B, pij = pi|

∑
Uj.

The proofs of Theorem 3 and Theorem 4 are similar to the proof of Theorem 1.

4 The Case with Rejection

In this section, we discuss the bounded parallel-batch schedule problem on un-
related parallel machines with rejection. W.l.o.g, we assume that the job pa-
rameters are integral, unless stated otherwise. Each job Jj is either rejected
with a rejection penalty ej having to be paid, or accepted and processed on
one of the m unrelated parallel machines. We design pseudo-polynomial time
dynamic programming algorithms for Rm|B, rej, pij = pi|Cmax(S) +

∑
Jj∈S ej

and Rm|B, rej, pij = pi|
∑

Jj∈S wjCj +
∑

Jj∈S ej, respectively.

4.1 Problem Rm|B, rej, pij = pi|
∑

Jj∈S wjCj +
∑

Jj∈S ej

Lemma 1. There exists an optimal schedule for Rm|B, rej, pij = pi|
∑

Jj∈S

wjCj +
∑

Jj∈S ej in which the accepted jobs are assigned to the unrelated parallel
machines by Algorithm A1.

Assuming that the jobs have been indexed so that w1 ≥ w2 ≥ · · · ≥ wn. To solve
our problem, we set up a dynamic program to find the schedule that minimizes
the objective function when the total rejection penalty of the rejected jobs is
given. Let Fj(k, Cj

max, E) denote the optimal value of the objective function
satisfying the following conditions.
• The jobs in consideration are J1, · · · , Jj.
• The number of accepted jobs is exactly k.
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• The maximum completion time of the accepted jobs is Cj
max.

• The total penalty of the rejected jobs is E.

To get Fj(k, Cj
max, E), we distinguish two cases as follows.

Case 1: Job Jj is rejected.
Since Jj is rejected, then the number of accepted jobs among J1, · · · , Jj

is the same as the number of accepted jobs among J1, · · · , Jj−1. Therefore,
Fj(k, Cj

max, E) = Fj−1(k, Cj−1
max, E − ej) + ej.

Case 2: Job Jj is accepted.
In this case, we distinguish two subcases.
Subcase 2.1: k = hB + 1
In this subcase, job Jj has to start a new batch. We use Algorithm A1 to

get the completion time of Jj , denoted by Cj , which is equal to the makespan
Cj

max of the accepted jobs among J1, · · · , Jj according to Theorem 2. Therefore,
Fj(k, Cj

max, E) = Fj−1(k − 1, Cj−1
max, E) + wjC

j
max.

Subcase 2.2: k �= hB + 1
In this subcase, job Jj can be assigned to the last batch which has existed

and the makespan does not change according to Algorithm A1, and the comple-
tion time of Jj is Cj−1

max according to Theorem 2. Therefore, Fj(k, Cj
max, E) =

Fj−1(k − 1, Cj−1
max, E) + wjC

j−1
max.

Now, combining the above two cases, we have the following dynamic program-
ming algorithm.

Algorithm DPA1
The boundary conditions:

F1(1, p1, 0) = w1p1 and F1(k, C1
max, E) = +∞ for (k, C1

max, E) �= (1, p1, 0).
F1(0, 0, e1) = e1 and F1(k, C1

max, E) = +∞ for (k, C1
max, E) �= (0, 0, e1).

The recursive function:

Fj(k, Cj
max, E) =

⎧⎪⎪⎨⎪⎪⎩
min{Fj−1(k, Cj−1

max, E − ej) + ej ,
Fj−1(k − 1, Cj−1

max, E) + wjC
j
max}} if k = hB + 1

min{Fj−1(k, Cj−1
max, E − ej) + ej ,

Fj−1(k − 1, Cj−1
max, E) + wjC

j−1
max} if k �= hB + 1.

The optimal value is given by

F ∗ = min{Fn(k, Cn
max, E)|0 ≤ k ≤ n, 0 ≤ Cn

max ≤ npm, 0 ≤ E ≤
n∑

j=1

ej}.

Theorem 5. Problem Rm|B, rej, pij = pi|
∑

Jj∈S wjCj+
∑

Jj∈S ej can be solved
in O(mn3pm

∑
ej).

Proof. The correctness of Algorithm DPA1 is guaranteed by the above discus-
sion. Clearly, we have 0 ≤ k ≤ n, 0 ≤ Cn

max ≤ npm and 0 ≤ E ≤ ∑n
j=1 ej .

Thus, the recursive function has at most O(n3pm

∑
ej) states. Each iteration

takes an O(m) time to execute. Hence, the running time of Algorithm DPA1 is
O(mn3pm

∑
ej). �
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4.2 Problem Rm|B, rej, pij = pi|Cmax(S) +
∑

Jj∈S ej

Lemma 2. There exists an optimal schedule for Rm|B, rej, pij = pi|Cmax(S)+∑
Jj∈S ej in which the accepted jobs are assigned to the unrelated machines by

Algorithm A2.

Assuming an arbitrary order {J1, · · · , Jn} of jobs. To solve our problem, we set
up a dynamic program to find the schedule that minimizes the objective function
when the total rejection penalty of the rejected jobs is given. Let Fj(k, E) denote
the optimal value of the objective function satisfying the following conditions.
• The jobs in consideration are J1, · · · , Jj.
• The number of accepted jobs is exactly k.
• The total rejection penalty of the rejected jobs is E.

To get Fj(k, E), we distinguish two cases as follows.

Case 1: Job Jj is rejected.
Since Jj is rejected, then the number of accepted jobs among J1, · · · , Jj is the

same as the number of accepted jobs among J1, · · · , Jj−1. Therefore, Fj(k, E) =
Fj−1(k, E − ej) + ej .

Case 2: Job Jj is accepted.
In this case, we distinguish two subcases.
Subcase 2.1: k = hB + 1
Job Jj has to start a new batch in this subcase. The makespan Cj

max is equal to
the completion time of Jj according to Algorithm A1 and Theorem 2. Therefore,
we have Fj(k, E) = Cj

max + E.
Subcase 2.2: k �= hB + 1
In this subcase, job Jj can be assigned to the last batch which has existed

and the makespan does not change after inserting Jj (Algorithm A1), then we
have Fj(k, E) = Fj−1(k − 1, E).

Now, combining the above two cases, we have the following dynamic program-
ming algorithm.

Algorithm DPA2
The boundary conditions:

F1(1, 0) = p1 and F1(k, E) = +∞ for (k, E) �= (1, 0).
F1(0, e1) = e1 and F1(k, E) = +∞ for (k, E) �= (0, e1).

The recursive function:

Fj(k, E) =
{

min{Fj−1(k, E − ej) + ej , C
j
max + E} if k = hB + 1

min{Fj−1(k, E − ej) + ej , Fj−1(k − 1, E)} if k �= hB + 1.

The optimal value is given by

F ∗ = min{Fn(k, E)|0 ≤ k ≤ n, 0 ≤ E ≤
n∑

j=1

ej}.

Theorem 6. Problem Rm|B, rej, pij = pi|Cmax(S)+
∑

Jj∈S ej can be solved in
O(mn2∑ ej).
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5 Conclusion

In this paper, we considered the bounded parallel-batch scheduling problem on
unrelated parallel machines under pij = pi for i = 1, · · · , m, j = 1, · · · , n. We
gave optimal algorithms for the general scheduling to minimize total weighted
completion time, makespan and the number of tardy jobs, and designed pseudo-
polynomial time algorithms for the case with rejection to minimize the makespan
and the total weighted completion time plus the total penalty of the rejected jobs.
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Summary. We consider the problem of deciding whether a given di-
rected graph can be vertex partitioned into two acyclic subgraphs. Ap-
plications of this problem include testing rationality of collective con-
sumption behavior, a subject in micro-economics. We identify classes
of directed graphs for which the problem is easy and prove that the
existence of a constant factor approximation algorithm is unlikely for
an optimization version which maximizes the number of vertices that
can be colored using two colors while avoiding monochromatic cycles.
We present three exact algorithms, namely an integer-programming al-
gorithm based on cycle identification, a backtracking algorithm, and a
branch-and-check algorithm. We compare these three algorithms both on
real-life instances and on randomly generated graphs. We find that for the
latter set of graphs, every algorithm solves instances of considerable size
within few seconds; however, the CPU time of the integer-programming
algorithm increases with the number of vertices in the graph while that
of the two other procedures does not. For every algorithm, we also study
empirically the transition from a high to a low probability of YES an-
swer as function of a parameter of the problem. For real-life instances,
the integer-programming algorithm fails to solve the largest instance af-
ter one hour while the other two algorithms solve it in about ten minutes.

1 Introduction

Consider the following problem. Given is a finite, directed graph G = (V, A).
The goal is to partition the vertices of G into two subsets such that each subset
induces an acyclic subgraph. We refer to this problem as the acyclic 2-coloring
problem. Notice that the acyclic 2-coloring problem is defined for a directed
graph. The counterpart for undirected graphs is named partition into two forests
and is known to be NP-complete [16]. This problem is neither a special case nor
a generalization of the problem for directed graphs.

In this paper, we describe applications of the acyclic 2-coloring problem and
identify classes of directed graphs for which the problem is easy. For an arbitrary

B. Chen (Ed.): AAIM 2010, LNCS 6124, pp. 229–242, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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directed graph, the problem is NP-complete and we prove that the existence of
a constant factor approximation algorithm is unlikely for an optimization ver-
sion which maximizes the number of vertices that can be colored using two
colors while avoiding monochromatic cycles. We develop and implement three
exact algorithms, namely an integer-programming (IP) algorithm based on cycle
identification (in the rest of this text, we also refer to this algorithm as cycle-
identification algorithm), a backtracking algorithm and a branch-and-check al-
gorithm. We compare them based on their CPU time, both for real-life instances
coming from micro-economics and for randomly generated graphs. We find that
every algorithm solves random graphs of considerable size within few seconds.
The CPU time of the cycle-identification algorithm increases with the number
n of vertices in the graph while the running time of both the backtracking algo-
rithm and the branch-and-check algorithm does not increase. Further, for every
algorithm we study empirically the phase transition of the problem as function
of the number of arcs divided by the number of vertices. When applying the
three algorithms to real-life instances, on the other hand, we find that the cycle-
identification algorithm takes more time than the two other procedures and is
not able to decide the largest instance after one hour, while the backtracking
algorithm solves it in less than five minutes and the branch-and-check algorithm
in about ten minutes.

This paper is organized as follows. In Section 2, we motivate the study of this
problem, present a literature review and examine the complexity of the problem.
The algorithms are described in Section 3, followed by computational results in
Section 4. We conclude in Section 5.

2 Motivation and Notation

In this section, we first explain our motivation for studying this problem and
present a brief literature review. Subsequently, we describe some notation and
definitions that will be used throughout this paper and finally, we study the
complexity of the problem and present some properties.

2.1 Motivation and Literature Review

Our motivation to consider this problem comes from an application in the study
of rationality of consumption behavior, a field in micro-economics. We now
shortly elaborate on this application. Suppose that there is a dataset S con-
sisting of � observations, each observation i being identified by a pair (pi, xi)
of prices and quantities with pi = (pi

1, . . . , p
i
k) and xi = (xi

1, . . . , x
i
k), where k

denotes the number of goods. The dataset S may, for instance, describe the
expenditures of an economic entity, such as a household, over a certain period
of time. Economic theory has developed a number of properties that reflect ra-
tionality of the dataset (see Varian [15] for an overview). As example of such
a property, we mention the Strong Axiom of Revealed Preference (SARP); a
dataset S may or may not satisfy SARP. Clearly, a relevant question is how to
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test whether a given dataset satisfies SARP. It has been shown ( [15]) that this
question can be answered using graph theory. A directed graph G with � vertices
is built by considering each observation i as a vertex. Further, there is an arc
from vertex i to vertex j if and only if pixi ≥ pixj , where pixi is the scalar
product. The dataset S satisfies SARP if and only if G is acyclic.

Recently, testing rationality of observed consumption behavior has been ex-
tended to households consisting of multiple members (see Cherchye et al. [4]).
Deb [8] shows that the problem of testing whether observed data of two-member
household consumption behavior satisfies the so-called Generalized Axiom of Re-
vealed Preferences (GARP) is equivalent to an acyclic 2-coloring problem for a
directed graph G built from the data. The problem of testing whether observed
data of two-member household consumption behavior satisfies the so-called Col-
lective Axiom of Revealed Preferences (CARP) is considered by Cherchye et
al. [5] and by Talla Nobibon et al. [12]. The former paper solves an integer pro-
gramming model, the latter paper describes heuristics that attempt to find a
solution to the acyclic 2-coloring problem for specific directed graphs. Clearly,
the method described in this paper can be used to color graphs arising either
from testing GARP or from testing CARP.

To the best of our knowledge, Deb [8, 7] is the first to explicitly address the
acyclic 2-coloring problem. He proves that the problem is NP-hard, and extends
the results of Chen [3] for undirected graphs by computing an upper bound on
the acyclic chromatic number.

2.2 Notation and Definitions

We denote by G = (V, A) a finite directed graph with |V | = n vertices and
|A| = m arcs. For a vertex p ∈ V , the outdegree of p is the number of arcs
leaving p while the indegree of p is the number of incoming arcs to p. The degree
of p is the sum of its outdegree and its indegree. For ease of exposition, we
will use pq to represent the arc p → q. A sequence of vertices [v0, v1, . . . , vl] is
called a chain of length l if vi−1vi ∈ A or vivi−1 ∈ A for i = 1, . . . , l. G is
connected if between any two vertices there exists a chain in G joining them. A
sequence of vertices [v0, v1, . . . , vl] is called a path from v0 to vl if vi−1vi ∈ A for
i = 1, . . . , l. A vertex-induced subgraph (subsequently called induced subgraph in
this text) is a subset of vertices of G together with all arcs whose endpoints are
both in this subset. A strongly connected component (SCC) of G is a maximal
induced subgraph S = (V (S), A(S)) where for every pair of vertices p, q ∈ V (S),
there is a path from p to q and a path from q to p. A sequence of vertices
[v0, v1, . . . , vl, v0] is called a cycle of length l + 1 in G = (V, A) if vi−1vi ∈ A for
i = 1, . . . , l and vlv0 ∈ A. A graph is acyclic if it contains no cycle; otherwise it
is cyclic. A k-coloring of the vertices of G is a partition V1, V2, . . . , Vk of V ; the
sets Vj (j = 1, . . . , k) are called color classes. Given a k-coloring of G, a cycle
[v0, v1, . . . , vl, v0] in G is monochromatic if there exists i ∈ {1, . . . , k} such that
v0, v1, . . ., vl ∈ Vi. In this paper, we use the notions vertex coloring and vertex
partition of a graph interchangeably.
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Given an integer k, an acyclic k-coloring of G is a k-coloring in which the
subgraph induced by each color class is acyclic. The acyclic chromatic number
a(G) of G is the smallest k for which G has an acyclic k-coloring. The directed
line graph LG of G has V (LG) ≡ A(G) and a vertex (u, v) is adjacent to a
vertex (w, z) if v = w. An arc pq ∈ A is called a single arc if the arc qp /∈ A. We
define the 2-undirected graph G2 = (V, E) associated with G as the undirected
graph obtained from G by deleting all single arcs and transforming a pair of
arcs forming a cycle of length 2 into an edge (undirected arc); more precisely,
{v1, v2} ∈ E if and only if v1v2 ∈ A and v2v1 ∈ A. We define the single directed
graph Gs = (V, As) of G as the subgraph of G containing only single arcs; more
precisely, for a given pair of vertices v1 and v2 in V , v1v2 ∈ As if and only if
v1v2 ∈ A and v2v1 /∈ A. In the rest of this paper, G = (V, A) is a given directed
graph, G2 is its associated 2-undirected graph and Gs its single directed graph.

2.3 Complexity and Properties of the Problem

The acyclic 2-coloring problem is explicitly defined as the following decision
problem.
INSTANCE: A finite directed graph G = (V, A).
QUESTION: Does G have an acyclic 2-coloring?

There are classes of directed graphs for which the acyclic 2-coloring problem
is always a YES instance. This is the case for the class of directed acyclic graphs,
the class of line graphs (see Lemma 1 in [12]) and the class of partial directed
line graphs [2]. For an arbitrary directed graph G, Deb [7] has shown that the
acyclic 2-coloring problem is NP-complete.

Further, if we consider an optimization formulation, Max-A2C, of the acyclic
2-coloring problem which maximizes the number of vertices of G that can be
colored using two colors such that each subgraph induced by a color class is
acyclic, we prove the following non-approximability result in [13].

Theorem 1. There exists an ε > 0 such that Max-A2C cannot be approximated
in polynomial time with ratio nε unless P = NP .

The following properties of the problem are used in the next section to build
exact algorithms.

Proposition 1. If the set V of vertices of a given graph G can be partitioned
into two sets, RED and BLUE, such that G2 is bipartite with all the vertices in
RED on one side and those in BLUE on the other side; and the single directed
graphs induced by RED, Gs(RED), and by BLUE, Gs(BLUE), respectively, are
acyclic then G is a YES instance of the acyclic 2-coloring problem; otherwise G
is a NO instance.

Proposition 2. If G2 is not a bipartite graph then G is a NO instance of the
acyclic 2-coloring problem, while if G2 is a bipartite graph and Gs is an acyclic
graph, then G is a YES instance.
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3 Algorithms

In this section, we describe three exact algorithms for solving the acyclic 2-
coloring problem, namely a cycle-identification algorithm, a backtracking algo-
rithm and a branch-and-check (B&C) algorithm. We also present two dominance
rules used to reduce the size of the initial graph.

3.1 Cycle-Identification Algorithm

This algorithm is based on the following IP formulation of the problem where
we have a binary decision variable xi (i = 1, . . . , n) which equals 1 if vertex i
is colored red and 0 if it is colored blue. We are looking for a coloring xi with
a maximum number of red vertices for which there is no monochromatic cycle.
Notice that any other objective function can be chosen. For each oriented cycle
C in G, there is a pair of constraints 1 ≤ ∑

i∈C xi ≤ |C| − 1, where |C| is the
number of vertices in C. A formal description of the cycle identification algorithm
is given by CycleId(G).

CycleId(G)

1: solve a restricted IP problem containing only a subset of constraints
2: if there exists a feasible solution
3: for each color class, search for a monochromatic cycle
4: if monochromatic cycle found
5: add the corresponding pair of constraints to the restricted IP problem
6: solve the IP problem again and goto 2
7: else return YES
8: else return NO

3.2 Backtracking Algorithm

An “ordinary” backtracking algorithm for solving the acyclic 2-coloring problem
is an adaptation of the well known backtracking algorithm for graph coloring on
undirected graphs. It would work as follows: it successively colors the vertices of
G either red or blue and each time a new vertex is colored, the corresponding
color class is checked to see whether it is acyclic; otherwise the color of the last
vertex is switched and its new color class is then checked. If it is not acyclic, the
algorithm backtracks.

In this paper, we propose a backtracking algorithm based on Proposition 1.
The key difference between our algorithm and an ordinary backtracking al-
gorithm is that the backtracking algorithm described here can anticipate a
NO conclusion earlier without having to color many vertices. A formal de-
scription of the backtracking algorithm is given by BT(RED, BLUE, G) with
RED = ∅ and BLUE = ∅ at the beginning. In the description, the function
bipartite(RED, BLUE, G2) returns YES if G2 is bipartite given that the ver-
tices in RED are on one side and those in BLUE are on the other side; otherwise
it returns NO. Gs(A) denotes the single directed graph induced by a set A.
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BT(RED, BLUE, G)

1: if V = RED ∪ BLUE, then return YES
2: choose a vertex p in V \ {RED ∪ BLUE}
3: RED = RED ∪ {p}
4: if bipartite(RED, BLUE, G2) == YES and Gs(RED) is acyclic then
5: if BT(RED, BLUE, G) == YES then return YES

6: RED = RED \ {p}, BLUE = BLUE ∪ {p}
7: if bipartite(RED, BLUE, G2) == YES and Gs(BLUE) is acyclic then
8: if BT(RED, BLUE, G) == YES then return YES

9: return NO

3.3 Branch-and-Check Algorithm

This B&C algorithm is based on Proposition 2. Like the backtracking algo-
rithm, it is an explicit enumeration algorithm where at each node we check some
conditions and decides whether to proceed or to stop. Unlike the backtracking
algorithm, however, the B&C algorithm is an implicit coloring algorithm which
branches on an arc, and the directed graph obtained at every child node is dif-
ferent from the graph of the parent node.

We now explain how to construct two new graphs from G. Let p, q ∈ V be
two adjacent vertices in Gs such that there is a cycle in Gs containing the arc
pq. Consider the directed graphs Hpq = (V ′′, A′′) and F pq = (V ′, A′) defined as
follows. For Hpq, V ′′ = V and A′′ = A ∪ {qp}. For F pq, V ′ contains V and two
vertices (pq1) and (pq2); that is V ′ = V ∪{(pq1), (pq2)} and A′ is built as follows.
First, every arc in A \ {pq} is an arc in A′. Second, for every single incoming arc
ap into p, add an arc a(pq2) in A′. Third, for every single outgoing arc qa out
of q, add an arc (pq2)a in A′ and finally, add the following arcs: p(pq1), (pq1)p,
q(pq1), (pq1)q, (pq1)(pq2), (pq2)(pq1) ∈ A′. Hpq corresponds to a setting where
p and q receive different colors, whereas F pq represents the setting where p and
q have the same color in any feasible coloring.

Proposition 3. Let p and q be two adjacent vertices contained in a cycle in Gs.
F pq or Hpq is a YES instance of the acyclic 2-coloring problem if and only if G
is a YES instance.

The proof of this result can be found in [13]. A formal description of the B&C
algorithm is given by BnC(G).

BnC(G)

1: determine G2, Gs

2: if G2 not bipartite, then return NO
3: if Gs acyclic, then return YES
4: choose pq on a cycle in Gs

5: determine Hpq, F pq

6: if BnC(Hpq) == YES then return YES
7: else return BnC(F pq)

In [13], we prove the following result about the correctness of the B&C
algorithm.
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Theorem 2. Correctness of the Branch-and-check algorithm
Suppose that the B&C algorithm is run on G. Then, its execution terminates
after a finite number of iterations and the decision corresponds to the decision
for the original graph G.

3.4 Refinements

We present two dominance rules used to reduce the size of the considered graph.
The first rule removes the vertices of G with outdegree or indegree less than
or equal to one. The second rule aims to identify and remove all single arcs
not involved in any cycles in Gs. It proceeds as follows. The vertices of Gs are
partitioned into SCCs and single arcs between two distinct SCCs are deleted.
Notice that if either the first rule or the second rule removes at least one arc or
at least one vertex, then the repeated application of the other rule may further
remove new arcs or vertices.

3.5 Implementation Issues

Bipartiteness test, acyclicness test and strongly connected compo-
nents. An adapted breadth-first-search algorithm [6] is implemented to check
whether a given graph is bipartite while a topological ordering algorithm [1] is
used for testing acyclicness. Tarjan’s algorithm [14] is used to identify the SCCs
of a graph.

Cycle identification algorithm. The restricted IP problem contains only
pairs of constraints coming from cycles of length 2. The IP problems are solved
using CPLEX. Throughout the algorithm, we use the Floyd-Warshall algo-
rithm [6,1] to find (if it exists) a monochromatic cycle with the smallest number
of vertices in the single directed graphs induced by every color class.

Backtracking algorithm

Branching strategy: This involves the selection of a vertex p ∈ V which is neither
in RED nor in BLUE. We investigate two choices: the first one is simply the first
uncolored vertex found while the second choice is an uncolored vertex with the
highest degree; with ties broken arbitrarily.

Propagation rule: Suppose a new vertex p is added to RED (BLUE). Then for
any vertex q which is such that pq and qp exist, if q is not yet in BLUE (RED)
then we add q in BLUE (RED). The procedure is repeated for any new vertex
added to either RED or BLUE.

Node selection: Our goal is to color all the vertices as soon as possible (provided
it is possible). Therefore, we use a depth-first-search strategy.
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Branch-and-check algorithm

Branching strategy: We select a single arc pq which is such that there is a cycle in
Gs containing that arc. Before choosing the arc pq, the graph Gs is first reduced
by deleting all single arcs linking vertices of the same connected component in
G2 with different colors obtained from the bipartiteness test, and a single arc
between vertices of the same connected component in G2 with the same color is
not considered for branching. We investigate two different choices of pq. The first
choice is the first arc pq found that meets the above restriction. The second choice
is an arc pq with p having the highest degree possible, breaking ties arbitrarily.
In both cases, if in addition there is no path in Gs from p to q other than the
arc pq, we define a simplified version of F pq = (V ′, A′) by merging p and q. V ′

contains a vertex (pq) and all vertices in V except p and q such that |V ′| = |V |−1
while A′ is built as follows. First, every arc ab ∈ A with a, b /∈ {p, q} is an arc in
A′. Second, for every single incoming arc ax to x with x ∈ {p, q}, (respectively
every single outgoing arc xa from x), add an arc a(pq) (respectively (pq)a) in A′

while avoiding the repetition of arcs.

Branch-pruning criterion: This branch-pruning criterion considers each con-
nected component of G2 and the coloring of its vertices given by the bipartiteness
test. If there exists a color class in a connected component which is such that
the induced single directed graph is cyclic, then any graph built at a child node
of that node is a NO instance of the problem and that node is pruned.

Node selection: We again use a depth-first-search strategy since we wish to reach
a node with a YES answer as soon as possible (provided it exists).

4 Computational Experiments

All algorithms have been coded in C using Visual Studio C++ 2005; all the
experiments were run on a Dell Optiplex 760 personal computer with Pentium R
processor with 3.16 GHz clock speed and 3.21 GB RAM, equipped with Windows
XP. CPLEX 10.2 was used for solving the IP problems.

4.1 Data

The three algorithms were tested on real-life graphs [5, 12] and on randomly
generated graphs with n vertices, where n = 50, 100, 200, 500 and 1000. Table 1
reports some properties of the real-life instances.

The random graphs are generated using a two-phase procedure. Each graph
is connected and cyclic. To diversify the instances, we vary the density D of the
graph, which is the number of arcs divided by n(n−1). During the first phase, for
every n, 400 graphs are randomly generated with 40 different densities, starting
from a lower bound of 2.5% for n = 50, 1.5% for n = 100, 1% for n = 200
and 0.5% for n = 500 and n = 1 000; and increased with a step of 0.5%. For
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Table 1. Properties of the real-life graphs

Instance 1 2 3 4 5 6 7 8 9 10 11 12
n 22 48 68 95 118 139 226 279 294 410 755 4384
m 53 169 297 513 699 985 1979 2012 2427 3660 10113 124321

density 11.47 7.49 6.52 5.74 5.06 5.14 3.89 2.59 2.82 2.18 1.78 0.65

every n, the lower bound is obtained by taking the first multiple of 0.5 greater
than or equal to the smallest density for which a connected and cyclic graph can
be built. For each value of D, 10 directed graphs with �D × (n2 − n)� arcs are
generated, leading to 400× 5 = 2 000 graphs.

After preliminary computation on the graphs of the first phase, we identify for
every n a critical interval containing densities with at least one YES instance and
at least one NO instance; we then generate additional graphs with the densities
given in Table 2. For every density, 100 graphs are generated, leading to 1 151×
100 = 115100 graphs for the second phase. Both the real-life instances and the ran-
dom graphs can be found at http://www.econ.kuleuven.be/public/NDBAC96/
acyclic−coloring.htm

Table 2. Densities of the graphs generated in the second phase

n
density (D)

from to step total
50 8% 15.75% 0.25% 32

100 3.05% 8.95% 0.05% 119
200 2.01% 3.99% 0.01% 199
500 0.8% 1.498% 0.002% 350

1 000 0.3% 1.2% 0.002% 451

4.2 Computational Results

In this section, we examine different implementations of every algorithm. The
three algorithms are subsequently compared based on their best implementation.
Finally, we study the phase transition [10, 11] of the acyclic 2-coloring problem
as function of the number of arcs divided by n.

Comparison of different implementations of every algorithm. Different
implementations of every algorithm are compared based on their average CPU
time for the set of 50-vertex graphs generated during the first phase; a time limit
of ten minutes is used. For more details, we refer to [13].

Cycle-identification algorithm: We compare four implementations. The first one
is CycleId(G), where if a monochromatic cycle is found for one color class, we
do not search for a monochromatic cycle in the other color class. The second
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implementation is similar to the first one, except that irrespective of finding a
monochromatic cycle in the first color class, we search for a monochromatic cycle
in the second color class. The third (fourth) implementation considers the first
(second) implementation with in addition the use of dominance rules. Based on
the comparison of CPU time, we find that the last implementation is better than
the others, and we use it for the rest of our experiments.

Backtracking algorithm: Four implementations are examined. The first one is the
pseudocode BT(RED, BLUE, G) with in addition the use of the propagation
rule; we branch on the first uncolored vertex found. The second implementation
is similar to the first one, but we choose an uncolored vertex with the highest
degree. The third (fourth) implementation is the first (second) one with the use
of dominance rules. We find that the last implementation outputs better results.

B&C algorithm: We compare six implementations. The first one is the B&C
algorithm as described by the pseudocode BnC(G), with in addition the use of
the branch-pruning criterion and the arc pq selected is the first arc found. The
second implementation is similar to the first one, except that we choose an arc pq
with vertex p having the highest degree possible. The third (fourth) implemen-
tation considers the first (second) implementation with dominance rules applied
at the root node. The fifth (sixth) implementation considers the first (second)
implementation with dominance rules at every node of the branching tree. We
find that the fourth implementation needs less time than the others.

Comparison of the three algorithms. We have compared the three algo-
rithms both on random graphs and on real-life instances [13].

Random graphs: In Figure 1 we plot, for every n, the average CPU time of
every algorithm as function of the number of arcs divided by n. Figure 1(a)
shows the average CPU time for the 50-vertex graphs. The B&C algorithm
(BnC) usually reports a higher CPU time than the other algorithms. However,
the highest average CPU time is less than 1.2 seconds. The cycle-identification
algorithm (CycleId) usually uses, on average, the smallest CPU time. For 100-
vertex graphs (Figure 1(b)), we see that the average CPU time of CycleId is
usually between that of BnC and that of BT, with BT using, in most cases,
the smallest average time. For the large graphs (with more than 100 vertices,
see Figures (c), 1(d) and 1(e)), the average CPU time reported for CycleId
increases with n, while those of BnC and BT are stable, close to each other and
usually below one second.

Real-life instances: Table 3 reports the CPU time of every algorithm when ap-
plied to real-life instances with a time limit of one hour. We see that CycleId
is not able to decide the largest instance within the time limit; and although it
solves the remaining instances, the reported CPU time is usually higher than
that of the other algorithms. As for the other two algorithms, BT reports the
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(a) CPU time 50-vertex graphs (b) CPU time 100-vertex graphs

(c) CPU time 200-vertex graphs (d) CPU time 500-vertex graphs

(e) CPU time 1 000-vertex graphs

Fig. 1. Average CPU time of every algorithm for random graph instances

best CPU time for 6 instances out of 12 while BnC reports the best CPU time
for 9 instances out of 12. For the largest instance, however, BT spends less than
five minutes, compared to about ten minutes for BnC.

Phase transition. We investigate the transition from a high probability to
a low probability of YES answer as function of the following parameter of the
problem: the number of arcs divided by n. Further, for every algorithm, we show
how the average CPU time varies as function of that parameter.
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Table 3. CPU time of every algorithm for real-life instances

Instance 1 2 3 4 5 6 7 8 9 10 11 12
CycleId 0.00 0.00 0.01 0.03 0.06 0.23 1.03 0.27 1.41 1.81 29.75 3930.47∗

BT 0.00 0.00 0.02 0.03 0.06 0.09 0.36 0.28 0.31 0.28 3.45 283.72
BnC 0.00 0.00 0.01 0.02 0.05 0.09 0.59 0.05 0.28 0.11 3.84 612.41

∗ means that the time limit was exceeded without any decision found.

Figure 2 presents the probability of YES answer as well as the CPU time of
every algorithm as function of the parameter. Figure 2(a) shows the probability
of YES answer. The plots in Figure 2(a) are Bézier approximations [9] of the
real plots. This approximation is mainly used to render the plots smoother. For
every n, the plot has three regions. In the first region, with parameter between
0 and 3, almost all the instances have YES answer. The second region between
3 and 8, called critical interval, contains densities for which both YES instances
and NO instances are present. The last region, with parameter greater than 8,
contains graphs for which the probability of YES is almost zero. Overall, we
remark that the threshold value of the parameter for which the probability of
YES answer is equal to 1

2 is almost the same for every n.

(a) Probability of YES answer (b) Average CPU time CycleId

(c) Average CPU time BT (d) Average CPU time BnC

Fig. 2. Probability of YES answer and average CPU time of every algorithm
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The plots in Figures 2(b), 2(c) and 2(d) are obtained using the data that
are used to generate the plots in Figure 1, but here the plots are grouped by
algorithm. Figure 2(b) plots the average CPU time of CycleId for every n. The
plots respect the three regions described above. For the first and the third re-
gion, the CPU time is very close to zero while in the critical interval, we have
a non-negligible CPU time, showing an easy-hard-easy transition. Further, Cy-
cleId has a CPU time which increases with n, which probably occurs simply
because when n increases the IP problem becomes more difficult to solve. Fig-
ure 2(c) plots the average CPU time of BT for every n. The easy-hard-easy
transition is also observed here. However, unlike CycleId, BT spends more time
in deciding 50-vertex and 100-vertex instances in the critical interval than in
deciding instances with more vertices. This decrease in CPU time as n increases
stops beyond n = 200. In Figure 2(d), the plots of the average CPU time of
BnC for every n exhibit characteristics similar to those observed for BT. A
possible explanation for this decrease in CPU time is the following: when n in-
creases, the size (number of edges) of the undirected graph G2 will increase,
making the bipartiteness test used by both BT and BnC more efficient in de-
tecting NO instances. At the same time, both the propagation rule (used by
BT) and the branch-pruning criterion (used by BnC) become stronger, reduc-
ing the number of possible nodes to investigate in order to arrive at a YES
answer.

In general for every n, the highest CPU time is obtained for values of the
parameter around the threshold value. Further, for a value of the parameter in
the critical region, very few instances have CPU time greater than a seconds,
clearly indicating that difficult instances are hard to find. This also leads to high
variability of the CPU time.

5 Summary and Conclusions

This text studies the problem of coloring the vertices of a directed graph using two
colors such that no monochromatic cycle occurs. We were motivated to consider
this problem by an application in the study of rationality of consumption behavior
in households with multiple members. Our work confirms that the problem is NP-
complete and that the existence of a constant factor approximation algorithm is
unlikely for an optimization version which maximizes the number of vertices that
can be colored using two colors while avoiding monochromatic cycles. We present
a integer-programming algorithm based on cycle identification, a backtracking al-
gorithm and a branch-and-check algorithm to solve the problem exactly. We com-
pare them, based on their CPU time, both on real-life instances and on random
graphs. For the latter set, graphs with up to 1000 vertices are solved in few seconds
by every algorithm. We also study the phase transition of the problem. For real-life
instances, the backtracking algorithm and the branch-and-check algorithm solve
all instances, the largest taking about ten minutes.
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Abstract. Finding the closest object for a query in a database is a
classical problem in computer science. For some modern biological appli-
cations, computing the similarity between two objects might be very time
consuming. For example, it takes a long time to compute the edit distance
between two whole chromosomes and the alignment cost of two 3D pro-
tein structures. In this paper, we study the nearest neighbor search prob-
lem in metric space, where the pair-wise distance between two objects in
the database is known and we want to minimize the number of distances
computed on-line between the query and objects in the database in order
to find the closest object. We have designed two randomized approaches
for indexing metric space databases, where objects are purely described
by their distances with each other. Analysis and experiments show that
our approaches only need to compute O(log n) objects in order to find
the closest object, where n is the total number of objects in the database.

1 Introduction

Finding the closest object for a query in a database is a classical problem in com-
puter science. For some modern biological applications, computing the similarity
between two objects might be very time consuming. For example, it takes a long
time to compute the edit distance between two whole chromosomes [1,2] and
the alignment cost of two 3D protein structures [3]. With the rapid development
of biological sequence and structure databases, efficient methods for finding the
closest object to a query in those biological databases are desperately required.

Here we study the nearest neighbor search problem in metric space, where the
pair-wise distance between two objects in the database is known (pre-computed)
and the distance function forms a metric space. That is, for any objects oi, oj

and ok, the distance function satisfies the following conditions:

1. d(oi, oj) ≥ 0, and d(oi, oj) = 0 if and only if oi = oj ;
2. d(oi, oj) = d(oj , oi),
3. d(oi, oj) ≤ d(oi, ok) + d(ok, oj).

B. Chen (Ed.): AAIM 2010, LNCS 6124, pp. 243–252, 2010.
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We want to minimize the number of distances computed on-line between the
query and the objects in the database in order to find the closest object. We
have designed two randomized approaches for indexing metric space databases,
where objects are purely described by their distances from each other.

Lots of work have been done for the nearest neighbor search problem. Some
methods organize the database in the preprocessing phase. The M-tree method
is first introduced in [4]. It splits the data-set into spheres represented by nodes
in the M-tree. Each node can hold a limited number of objects, and is led by a
routing object (pivot). Every pivot maintains a covering radius that is the largest
distance between itself and all the data objects in its covering tree, which is the
subtree rooted at the node led by this pivot. During the M-tree construction
stage, when a new data object arrives, its distances to pivots stored in the root
node are computed and it is inserted into the most suitable node (i.e., led by
the closest pivot from the root node) or the node that minimizes the increase
of the covering radius, and subsequently descended down to a leaf node. If the
size of a node reaches the pre-defined limit, this node is split into two new nodes
with their pivots elected accordingly and inserted into their parent node. In
the query stage, M-tree uses the covering radius to perform triangle inequality
pruning. SA-Tree [5] uses spatial approximation inspired by the Voronoi diagram
to reduce the number of visited subtrees during the query stage.

Non-hierarchical search methods [6,7,8,9,10,11] select in the preprocessing
phase a set of pivots and compute the distance between each pivot and ev-
ery database object; during query processing, all the pivots are used collectively
to prune objects from the k-nn candidate list using the triangle inequality. That
is, any object whose estimated lower bound is larger than the k-th smallest
estimated upper bound is deleted. Approximating and Eliminating Search Algo-
rithm (AESA) was proposed by Vidal [12]. Assume that all the pairwise distances
in the database are known. The algorithm randomly chooses an object in the
database, and computes the distance between the object and the query. If it
is better than the current result, update the current result and the minimum
distance. When a new sample is obtained, the symmetry property is used to
eliminate all the objects that are impossible to be the result, and a lower bound
for each remaining object can be obtained. The object with the smallest lower
bound in the remaining database is selected as the next sample. Other methods
such as Burkhard-Keller Tree, Fixed Queries Trees and Bisector Tree can be
found in [13].

Our analysis and experiments show that our approaches only need to compute
O(log n) objects in order to find the closest object, where n is the number of
objects in the database.

2 Preliminary

In a metric database, the distribution of the objects plays a crucial role in
designing indices. The philosophy of indexing is to put similar objects in one
group or creating a representative for a group of similar objects. For some bad
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distributions, it is impossible to give an indexing so that the query can take less
than O(n) computation of pairwise distance.

A bad example: Let U = {o1, o2, . . . , on} be a database containing n objects.
The distance between any two objects oi and oj is defined as follows:

d(oi, oj) = 1 if i �= j; (1)
d(oi, oj) = 0 if i = j. (2)

In this database, object oi has an equal distance to any other objects in the
database. Let q be the query and o be the object that is 0-distance from q.
Then, for any other object o′ ∈ U − {o}, the distance between q and o′ is 1. To
search o from the database, it does not help much even if we know the distances
between q and a set of objects {oi1 , oi2 , . . . , oik

}, where o �= oij for j = 1, 2, . . . , k.
In this case, we have to compute the distance between q and every object in the
database one by one until the 0-distance object is found.

The above example hints us to design indices based on the distribution of
objects. Here we assume that we have pre-computed the distance between any
pair of objects in the database. For each fixed object o, we sort the objects
according to their distances to the fixed object o. Then each object can serve
as a representative for a set of objects that are within distance r to o for any
given r.

3 The Basic Approach

Let U be the set of all objects in the database. For any objects oi and oj , we
use d(oi, oj) to denote the distance between objects oi and oj . In this section,
we assume that we have pre-computed d(oi, oj) for all pairs of oi and oj . For
each object oi, we sort all the objects in U according to their distance to oi in
a non-decreasing order. For each object oi and a radius r, we define G(oi, r) =
{o|d(o, oi) ≤ r} be the set of objects in U that are within distance r from oi.

Let q be the query and oq be the object in U that is closest to q. Our basic idea
is to randomly and independently select a set of t objects S = {s1, s2, . . . , st}
from U . We then compute the distance d(q, si) for i = 1, 2, . . . , t. Let s∗ be
the object in S with d(q, s∗) ≤ d(q, si) for any si ∈ S. Let rS = d(q, s∗). The
object oq that is the closest to q must be in G(q, rS). However, since we have not
compared q with all the objects in U , G(q, rS) is not known. The key idea here
is to reduce the size of the set of candidate objects that oq is in. First, we know
that oq is in G(s∗, 2rS). Second, for any si ∈ S − {s∗}, oq ∈ G(si, d(q, si) + rS).
Finally, for any si ∈ S − {s∗}, oq is not in G(si, d(q, si) − rS). Therefore, we
define

U(S) = G(s∗, 2rS)
⋂

si∈S

G(si, d(q, si) + rS)−
⋃

si∈S

G(si, d(q, si)− rS). (3)

To demonstrate the advantages of this formula, we use the m-dimensional Eu-
clidean space to illustrate. In the m-dimensional Euclidean space, the volume
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The Outside-In Algorithm
Input the set of objects U in the database and a query q.
Output An object in U that is closest to the query q.
1. S = ∅;
2. randomly and independently select t samples from U and add them into S

and construct U(S);
3. set U = U(S) and repeat Step 2 until the size of U(S) is less than or equal to

t;
4. return the object that is closest to q among S and the remaining objects.

Fig. 1. The Outside-In Algorithm

of a ball with radius 2r is 2m times of the volume of a ball with radius r. As-
sume that the objects are evenly distributed in the space and the number of
objects in G(o, r) is proportional to the volume. Then the number of objects in
G(s∗, 2rS) is 2m times of that in G(q, rS). In other words, the number of objects
in G(s∗, 2rS) would be significantly larger than that in G(q, rS). Obviously, when
the size of S increases, the sizes of both G(s∗, 2rS)

⋂
si∈S G(si, d(q, si)+ rS) and

G(s∗, 2rS)−⋃si∈S G(si, d(q, si)− rS) decrease.
Consider the m-dimensional Euclidean space with points (x1, x2, . . . , xm),

where xi ∈ (−L, L) for i = 1, 2, . . . , m. For each point (x1, x2, . . . , xm) in U ,
xi is a random number in (−L, L). G(s, r) represents a ball with radius r cen-
tering at s. Let S be a set of randomly selected points in the space, q the query
and s∗ the point with d(s∗, q) = rS .

Lemma 1. With high probability,

lim
|S|→∞

G(s∗, 2rS)
⋂

si∈S

G(si, d(q, si) + rS) = G(q, rS).

Consider the 2-dimensional Euclidean space. The circle G(q, rS) for q = (0, 0)
is bounded within a square formed by the four lines x = rS , x = −rS , y = rS

and y = −rS . Thus, if S contains the four line and circle intersection points,
then the size of G(s∗, 2rS)

⋂
si∈S G(si, d(q, si) + rS) is upper bounded by the

size of the square which is c× |G(q, rS)| for some constant c. In m-dimensional
Euclidean space, if S contains the 2m points that form the 2m hyper-planes of an
m-dimensional cube, then G(s∗, 2rS)

⋂
si∈S G(si, d(q, si)+ rS) is upper bounded

by [Γ (1 + m
2 )/(π

4 )
m
2 ]×G(q, rS), where Γ (·) is the well-known Gamma function.

This upper bound is too big for our purpose. Therefore, in practice, we have to
use a very large number of sample points for high dimension.

In our algorithm, we always try to use formula (3) to reduce the remaining
set of candidate objects. Here rS is the distance between q and the object in S
that is the closest to q. Obviously, U(S) always contains the object oq that is
the closest object to q. The complete algorithm is given in Figure 1.

Note that, in order to make full use of selected samples, in our algorithm,
the sample set S contains all the sample objects selected in all steps. When the
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size of S is getting bigger, more and more objects will be eliminated from U(S).
Obviously, the size of U(S) depends on the distribution of the objects in U .

3.1 The Size of G(q, rS)

In this section, we will set up the relationship between |G(q, rS)| and |S|. Let
F (o, k) be the set of objects in U containing the first |U|

k objects in the sorted
list for o, i.e. |F (o, k)| = |U|

k . In order to get |G(q, rS)| ≤ |F (q, k)| = |U|
k for any

integer k > 0, we estimate how many sample objects in S are required.

Lemma 2. Let B be an integer and |S| = Bk. With probability at least 1 −
e−

B
2 +1, G(q, rS) ≤ |U|

k .

Lemma 2 shows that it is very easy to control the size of G(q, rS). For example,
in order to get |G(q, rS)| ≤ 0.01|U |, with probability at least 1 − 1

|U| , we only
have to set k = 100 and B = 2 ln |U | + 2. The remaining task is to control the
size of U(S) defined in (3).

3.2 Experiments on the Number of Required Samples

In order to estimate the relationships between the number of samples and the
number of objects in the database, we first do some simulations in the m-
dimensional space. We choose to use m-dimensional space due to the following
reasons: (1) it is easy to generate objects in this space, (2) it is very fast to
compute the distance between objects so that we can study high dimensions,
and (3) the performance of the algorithm might be similar if the distribution
function |G(o, r)| for objects in U are similar, though the algorithm is designed
for the case, where computing distance between objects is extremely expensive.

The set of objects in the database U is randomly generated in a cube of the m-
dimensional Euclidean space. The relationships between the number of objects in
U and the total number of samples required in order to get oq for m = 3, 4, . . . , 10
are shown in Figure 2. We also did experiments for m = 11, 12, . . . , 19, the
relationships are very similar with m = 3, 4, . . . , 10.

We can see that with the increase of the number of objects in U , the total
number of samples required increases fast at the beginning and then grows very
slowly after the number of samples reach a certain constant number for each
fixed m. The constant numbers of samples, Cm, for different m are listed in
Table 1.

FromLemma2and the experimental results,we know that for anm-dimensional
Euclidean space, when the number of samples in S reaches a certain constant num-
ber Cm, the size of U(S) for each round is approximately

c× |G(q, rS)| (4)
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m = 3, 4, 5, and 6.
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(b) The number of samples required for
m = 7, 8, 9, and 10.

Fig. 2. The relationship between number of samples and the number of objects in U

Table 1. The constant Cm

m 3 4 5 6 7 8 9 10
Cm 18 29 49 59 89 115 158 240
m 11 12 13 14 15 16 17 18 19
Cm 300 450 640 860 1250 1800 2600 3500 4800

for some constant c. From Lemma 2, we know that at the i-th time that Steps
2-3 are repeated, if we choose a set Si(t) of t = Bk samples and add them into
S, the size of G(q, rS) satisfies

|G(q, rS)| ≤ G(q, rS′ )
k

, (5)

where S′ is the set of all samples selected up to last round and S = S′ ∪ Si(t)
is the set of all samples selected up to the current round. From (4) and (5), we
know that the size of U(S) is upper bounded by

|U(S)| ≤ c× |G(q, rS)| ≤ c

k
|G(q, rS′ )| ≈ |U(S′)|

k
. (6)

Thus, for each round, the number of candidate objects that are the closest to q is
reduced by 1/k times. Therefore, the total number of rounds required is at most
logk |U |. The total number of samples required is at most Cm + logk |U | ×Bk.

Proposition 1. For the m-dimensional Euclidean space, the number of samples
required to find the closest object to q is Cm + logk |U | ×Bk.

Proposition 1 explains why the number of samples required almost remains the
same when the number of objects in U is big enough.

The value of Cm: Table 1 shows that Cm increases very fast when m increases.
When m changes from i to i + 1, the Ci+1 increases by approximately 30%.
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4 The Inside-Out Algorithm

In Figure 1, we use U(S) defined in (3) to keep the candidate objects. U(S)∪ S
always contains the desired object oq. The size of U(S) is reduced from |U | to t in
the process. This is a kind of outside-in algorithm. This algorithm needs lots of
samples for a high dimensional space. In this section, we propose the Inside-Out
approach.

There are two important ideas in this algorithm. First, we randomly select
a sample s from U . Second, we keep two sets Uin and Uout of objects and two
radii r1 and r2. Uout is the set of remaining objects in the database that contains
the candidate objects. r2 = mins∈S d(q, s) be the smallest distance between the
query q and a sample object examined so far. r1 is the lower bound of the
possible distance between q and any object in Uout. (Initially, r1 = 0.) We set
r = r1 + (r2 − r1)/3 as a guess of the smallest distance between q and an object
in Uout. We use r as the radius in (3) to get Uin = Uout ∩s∈S G(s, d(q, s) + r)−
∪s∈SG(s, d(q, s)−r), where S is the set of all samples we have selected. Since the
value of r is smaller, the size of Uin is smaller than that of Uout. After obtaining
Uin, we randomly select samples from Uin one by one. For the currently selected
sample s, there are two cases. Case 1: we find a sample s in Uin such that
d(q, s) < r2. In this case, we update r2 and Uout by setting r2 = d(q, s) and
Uout = Uout ∩s∈S G(s, d(q, s) + r2)−∪s∈SG(s, d(q, s)− r2). Case 2: d(q, s) ≥ r2.
In this case, we reduce the size of Uin by setting Uin = Uin ∩ G(s, d(q, s) +
r) − G(s, d(q, s) − r). At the end, either r2 is updated or Uin becomes empty.
The latter case, r1 is updated as r. The process is repeated until Uout becomes
empty. We then output the sample s in S such that d(q, s) = mins′∈S d(q, s′) as
the closest object to q.

There are two circles with radii r1 and r2, respectively. The main point is
to guess a smaller value of the possible distance between q and the objects and
select samples in the smaller circle in the hope that the sample is closer to q.
The complete algorithm is given in Figure 3.

4.1 Experiments on the Number of Required Samples

In order to estimate the relationships between the number of samples and the
number of objects in the database, we again do some simulations in the m-
dimensional space. We run 300 times the Outside-In algorithm since the perfor-
mance of this algorithm is relatively stable. We run 1000 times the Inside-Out
algorithm. To show the performance of our algorithms, we compare our algo-
rithm with the AESA algorithm. We run 1000 times the AESA algorithm.

The set of objects in the database U is randomly generated in a cube of the
m-dimensional Euclidean space. We test the cases for |U | = 10000, 20000, 30000,
40000, and 50000. The total numbers of samples required in order to obtain oq

for m = 2, 3, . . . , 20 are shown in Table 2. Because of the page limit, we only show
the case for |U | = 50000. The result for |U | = 10000, 20000, 30000, and 40000 are
similar to the case for |U | = 50000. Ave. No. is the average number of samples
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The Inside-Out Algorithm
Input the set of objects U in the database and a query q.
Output An object in U that is closest to the query q.
1. S = ∅; r1 = 0; r2 = ∞; Uout = U ; Uin = U ;
2. randomly select a sample s from Uout, r2 = d(q, s), s∗ = s, and S = S∪{s};
3. r = r1 + (r2 − r1)/3.
4. Uout = Uout ∩s∈S G(s, d(q, s) + r2) −∪s∈SG(s, d(q, s) − r2).
5. Uin = Uout ∩s∈S G(s, d(q, s) + r) −∪s∈SG(s, d(q, s) − r).
6. while Uin 
= ∅ do
7. randomly select a sample s from Uin, compute d(q, s), and S = S∪{s};
8. if d(q, s) ≥ r2 then Uin = Uin ∩ G(s, d(q, s) + r) − G(s, d(q, s) − r);

else r2 = d(q, s), r1 = 0, s∗ = s, goto Step 3.
9. r1 = r.
10. if Uout 
= ∅ then goto Step 3 else return s∗.

Fig. 3. The Inside-Out Algorithm

required to find oq for the Inside-Out algorithm/AESA algorithm. Outside-in is
the average number of samples required to find oq for the outside-in algorithm.

The Inside-Out algorithm and AESA algorithm can find oq after testing some
number of samples (see Ave. First) in Table 2. However, when the first time the
algorithm finds oq, the algorithm does not know that this object oq is the closest
object to q and the algorithm has to test more samples before it can stop. Ave.
First is the average number of samples required to first get oq for the Inside-
Out algorithm/AESA algorithm. We can see that Ave. First is much smaller
than Ave. No. in some cases. Worst First is the biggest number of samples
that the Inside-Out/AESA algorithm first finds oq among the 1000 executions.
Worst No. is the biggest number of samples required for the Inside-Out/AESA
algorithm to stop among the 1000 executions. From Table 2, we can see that for
high dimensions, the Inside-Out algorithm is better than AESA algorithm and
Outside-In algorithm.

5 Reducing the Space

Both proposed methods assume that we know the pairwise distances for all pairs
of objects. Let n be the number of objects in U , then we needs O(n2) space to
store the pairwise distance matrix. When the size of the database is big, the
size of the pairwise distance matrix cannot be completely stored in the memory.
To reduce the required space, we can decompose the set of objects in U into p
groups U1, U2, . . ., Up. For each group Ui, we have a pairwise distance matrix
Di of size O(|Ui|2) to store the pairwise distance between objects in Ui. We
also randomly select a set Sg of O(Cm) sample objects from U and construct a
(global) distance matrix D of size |Sg|× |U | to store the distances between every
object in Sg and every object in U . In this way, the size of the required space
can be dramatically reduced.
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Table 2. Number of samples required for 50000 objects. For the Ave. No., Worst No.,
Ave. First and Worst First, the first number is for the Inside-Out algorithm, and the
second number is for the AESA algorithm.

m Ave. No. Worst No. Ave. First Worst First Outside-in
2 6/4 9/9 6/4 9/9 17
3 7/5 12/12 7/5 11/10 24
4 9/8 18/20 8/6 15/17 35
5 12/10 27/29 10/8 23/19 50
6 15/14 49/43 11/9 36/30 66
7 20/19 63/58 13/11 42/41 88
8 27/26 102/129 16/12 57/39 125
9 39/38 204/192 18/14 70/52 157
10 54/55 383/404 21/16 112/80 233
11 79/81 513/678 25/18 115/108 335
12 123/127 1278/1393 28/21 138/143 449
13 194/202 1800/1869 35/25 240/211 614
14 301/313 1990/2023 39/26 207/162 871
15 443/459 3363/3543 48/31 798/542 1221
16 748/772 6346/6648 57/34 384/462 1800
17 1035/1062 7314/7561 62/36 551/386 2158
18 1513/1541 9126/9279 77/43 979/1715 2837
19 2267/2308 14783/15181 92/45 1247/724 3764
20 3017/3063 15604/15762 113/52 2660/2002 4791

Table 3. Experiment results for 200000 objects divided into 10 groups. Original Ave.
No. is the average number of samples required to get the closest object when the
200, 000 objects are stored in one group. Ave. No. (divided) is the average number of
samples required to get the closest object when the 200, 000 objects are divided into 10
groups. Global samples is the number of samples in Sg for each fixed m (dimension).

m Original Ave. No. Ave. No.(divided) global samples overhead
2 19 24 8 22%
3 28 32 11 15%
4 38 43 16 15%
5 54 62 22 15%
6 72 95 31 32%
7 95 122 43 29%
8 130 169 60 30%
9 178 235 84 32%
10 247 336 118 36%
11 349 488 165 40%
12 494 683 231 38%
13 724 918 324 27%
14 993 1319 454 33%
15 1289 1709 635 33%
16 1769 2446 889 38%
17 2518 3512 1245 39%
18 3453 4590 1742 33%
19 4932 6580 2439 33%
20 6537 8674 3415 33%

Experiments: To test the algorithm, we use m dimensional Euclidean space.
We randomly generate 200, 000 objects (points in m dimensional Euclidean
space) as the database U . We then randomly divide the 200, 000 objects into
10 groups of size 20, 000. The results of Outside-In Algorithm are listed in Ta-
ble 3. We see that the number of samples required is increased by 15%-40% for
different m.
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Abstract. We present a combinatorial primal-dual 7-approximation al-
gorithm for the k-level stochastic facility location problem, the stochas-
tic counterpart of the standard k-level facility location problem. This
approximation ratio is slightly worse than that of the primal-dual 6-
approximation for the standard k-level facility location problem [3] be-
cause of the extra stochastic assumption. This new result complements
the recent non-combinatorial 3-approximation algorithm for the same
problem by Wang et al [21].

Keywords: Facility location; Approximation algorithm; Primal-dual.

1 Introduction

In the k-level facility location problem (k-FLP), each client must be served by an
open path along k level sets of facilities. Approximation algorithms have been
proposed for this problem in the literature, including the non-combinatorial
3-approximation algorithm [1,7] and the combinatorial 3.27-approximation al-
gorithm [2]. For the special case of 2-FLP, a better non-combinatorial 1.77-
approximation algorithm exists [23]. The k-FLP is a natural extension of the
extensively studied facility location problem (FLP) [4,6,8,9,10,12,16]. The latter
problem has been extended in many different ways [5,17,18,19,24,25]. In partic-
ular, the stochastic facility location problem and its variants [11,13,15,20,22] are
relevant to the problem we are interested in.

The focus of this work is on the stochastic k-level facility location problem (k-
SFLP), the stochastic counterpart of the above k-FLP where the demands are
assumed to be stochastic. A non-combinatorial LP rounding 3-approximation
algorithm exists for this problem [21]. Our contribution in this work is to pro-
pose a combinatorial primal-dual 7-approximation algorithm by integrating the
techniques in [3,10,11].

The significance of combinatorial algorithms compared to the LP-based algo-
rithms is well-established in the literature (e.g. [14]) mainly because the former
can be implemented much faster than the latter, and hence more practical in

B. Chen (Ed.): AAIM 2010, LNCS 6124, pp. 253–260, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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solving large-size real-life problems. Moreover, combinatorial algorithms require
the exploiting of the underlying combinatorial structures, shedding more lights
on the special-structure of the investigated problems.

Formally, the k-SFLP can be defined as follows.

Stochastic k-level facility location problem (k-SFLP): Let D be the set
of all clients. Let F =

⋃k
�=1 F � be the set of all facilities, where each F � is

the set of sites where facilities on level � (1 ≤ � ≤ k) are located and the
sets F 1, . . . , F k are pairwise disjoint. We refer p = (i1, . . . , ik) (i� ∈ F �, � =
1, . . . , k) to a path of facilities. The set of all possible paths is denoted by P .
The shipping cost between site i ∈ F and client j ∈ D is equal to cji which
is metric (that is, satisfying the triangle inequality). The cost incurred by
assigning client j to path p = (i1, . . . , ik) is equal to cjp =

∑k
�=1 cji�

.
Assume that there are S scenarios. Facility i has a first-stage opening cost
of f0

i , and recourse cost of fs
i in scenario s ∈ {1, . . . , S}. Each given scenario

s materializes with probability qs. Let the set of active clients in the s-th
scenario be Ds. For any t ∈ {0, 1, . . . , S} and any subset P ′ ⊆ P , let P ′

t

denote the path set P ′ in the t-th scenario and f(P ′
t ) =

∑
i∈ ⋃

p∈P ′
{i|i∈p}

f t
i .

The problem is to open a set of paths P0 in the first stage and a set of paths
Ps in the second stage for the s-th scenario, and then assign client j ∈ D
to precisely one facility at each of the k levels along open paths, so as to

minimize the expected facility cost f(P0) +
S∑

s=1
qsf(Ps) and the expected

connection cost
S∑

s=1
qs

∑
j∈Ds

min
{

min
p∈P0

{cjp}, min
p∈Ps

{cjp}
}

. �

We present the main algorithm and its analysis in sections 2 and 3 respectively,
then followed by some concluding remarks in Section 4.

2 The Primal-Dual Algorithm

We introduce some notations first.

D = {(j, s)|j ∈ Ds, s = 1, · · · , S}, F = {(i, t)|i ∈ F, t = 0, 1, ..., S},
P = {(p, t)|p ∈ P, t = 0, 1, ..., S}, q0 = 1,

cst
jp =

{
cjp if t = 0 or s,
+∞ otherwise. (2.1)

Let xst
jp be equal to 1 if client (j, s) is assigned to path (p, t), and 0 otherwise.

Let yt
i be equal to 1 if facility (i, t) is opened, and 0 otherwise.

Our algorithm will be based on the following integer linear program formula-
tion of k-SFLP [21].
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(IP )

min
∑

(i,t)∈F
qtf

t
i y

t
i +

∑
(p,t)∈P

∑
(j,s)∈D

qsc
st
jpx

st
jp

s.t.
∑

(p,t)∈P
xst

jp ≥ 1, ∀(j, s) ∈ D∑
p:i∈p

xst
jp ≤ yt

i , ∀(j, s) ∈ D, ∀(i, t) ∈ F
xst

jp, yt
i ∈ {0, 1}, ∀(j, s) ∈ D, ∀(p, t) ∈ P , ∀(i, t) ∈ F .

(2.2)

In the above program, the first constraints ensure that client (j, s) is assigned to
at least one path. The second constraints guarantee that no assignment of client
(j, s) to a path using facility (i, t) is possible unless facility (i, t) is open, for any
given client (j, s) and given facility (i, t).

By relaxing the integrality constraints, we get the linear program relaxation
of k-SFLP (note that the constraints xst

jp ≤ 1 and yt
i ≤ 1 are implied by other

constraints, and hence discarded in the relaxation program). The dual linear
program is

zLP := max
∑

(j,s)∈D
αs

j

s.t. αs
j −

∑
i∈p

βst
ji ≤ qsc

st
jp, ∀(j, s) ∈ D, ∀(p, t) ∈ P∑

(j,s)∈D
βst

ji ≤ qtf
t
i , ∀(i, t) ∈ F

αs
j , β

st
ji ≥ 0, ∀(j, s) ∈ D, ∀(i, t) ∈ F .

(2.3)

Intuitively, the first constraint in (2.3) suggests that variables αs
j can be viewed

as a budget that client (j, s) ∈ D is willing to pay for getting connected, partially
for the connection cost and partially for the facility open cost.

Now we are ready to present our algorithm which is a dual ascent method by
generalizing the approaches in [3,10,11].

Algorithm 1. (Primal-dual algorithm)

Phase 0. (Initialization). For every (j, s) ∈ D, initialize αs
j to 0. All facilities

are closed and all clients are unfrozen.
Phase 1. (Construction of a dual feasible solution). We introduce the

notion of time τ starting from 0. We define the following three concepts
before constructing a dual feasible solution.
– A facility (il, t) ∈ F (il ∈ F l) is temporarily open when

∑
(j,s)∈D

βst
jil

=

qtf
t
il
. Denote by Til,t the time when facility (il, t) ∈ F (il ∈ F l) becomes

temporarily open.
– A client (j, s) ∈ D reaches (il, t) ∈ F (il ∈ F l) if for some path p =

(i1, i2, . . . , il) from i1 to il, all facilities (i1, t), (i2, t) . . . , (il−1, t) are open

and αs
j = qsc

st
jp +

l∑
l′=1

βst
jil′

.

– If, in addition, also (il, t) is open, we say that (j, s) leaves (il, t) or, in
case l = k, that (j, s) gets connected.
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We increase the dual variables αs
j for all unfrozen clients (j, s) ∈ D uniformly

at rate qs. When the client (j, s) ∈ D reaches some closed facility (il, t) ∈ F
(il ∈ F l), the dual variable βst

jil
will be increased at the same rate as αs

j .
When (il, t) is open, then freeze all the dual variables βst

jil
, (j, s) ∈ D. Keep

increasing time τ until there is no unfrozen client. The predecessor of (il, t)
will be the facility in the level l − 1 via which (il, t) was for the first time
reached by a client, i.e.,

pred(il, t) := argmini∈F l−1{Ti,t + ctt
iil
}.

The predecessor of a temporarily open (i1, t) (i1 ∈ F 1) will be its closest
client and we define the time Tpred(i1,t) = 0. As time increases, the following
three cases may occur:
– Facility (ik, 0) is temporarily open. In this case, freeze those unfrozen

clients (j, s) ∈ D with βs0
jik

> 0 and connect them to facility (ik, 0), which
is called the connecting witness for (j, s). In addition, denote p(ik, 0) =
(i1, . . . , ik; 0) as the associated central path such that

il = pred(il+1, 0), ∀1 ≤ l ≤ k − 1,

and (j, s)ik
as the predecessor of (i1, 0). We call the neighborhood of

(ik, 0) the set of clients contributing to p(ik, 0), i.e.,

N(ik, 0) = {(j, s) ∈ D | βs0
jil

> 0 for some il ∈ p(ik, 0)}.

– Facility (ik, s) (s = 1, . . . , S) is temporarily open. In this case, freeze
those unfrozen clients (j, s) ∈ D with βss

jik
> 0 and connect them to fa-

cility (ik, s), which is called the connecting witness for (j, s). In addition,
denote p(ik, s) = (i1, . . . , ik; s) as the associated central path such that

il = pred(il+1, s), ∀1 ≤ l ≤ k − 1,

and (j, s)ik
as the predecessor of (i1, s). We call the neighborhood of

(ik, s) the set of clients contributing to p(ik, s), i.e.,

N(ik, s) = {(j, s) ∈ D | βss
jil

> 0 for some il ∈ p(ik, s)}.

– If an unfrozen client (j, s) reaches a temporarily open facility (ik, t), then
freeze (j, s) and connect (j, s) to (ik, t), which is also called the connecting
witness for (j, s).

When all clients are frozen, the first phase terminates. If several events occur
simultaneously, the algorithm executes them in an arbitrary order.

Phase 2. (Construction of integer primal feasible solution). For each
t ∈ {0, 1, . . . , S}, let F̃ kt ⊆ {(i, t) | i ∈ F k} be the set of temporarily open
facilities ordered according to nondecreasing T -value at level k. Facilities
(ik, t) and (i′k, t) ((ik, t), (i′k, t) ∈ F̃ kt) are dependent if there exists some
client (j, s) ∈ D such that (j, s) ∈ N(ik, t) ∩N(i′k, t).
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– Open facility (ik, t) if and only if there is no (i′k, t) such that (i′k, t)
is already open, Ti′

k
,t ≤ Tik,t and (ik, t), (i′k, t) are dependent. Let the

subset F̄ kt ⊆ F̃ kt be the finally open set, and also open the associated
central path p(ik, t), (ik, t) ∈ F̄ kt.

– Assign client (j, s) ∈ D to an open facility (ik, t) ∈ F̄ k by the following
rule. If there is (ik, t) such that (j, s) ∈ N(ik, t), then (j, s) is connected
to (ik, t) along the associated central path p(ik, t). Otherwise, (j, s) is
connected to the closest open facility (ik, s) (or (ik, 0)) along path p(ik, s)
(or p(ik, s)). �

3 Analysis

Firstly, we consider the expected facility cost.

Lemma 2
S∑

t=0

∑
(ik,t)∈F̄ kt

∑
il∈p(ik,t)

qtf
t
il
≤ 2

∑
(j,s)∈D

αs
j .

Proof. The cost of opening facilities along a central path p(ik, t) can be bounded
by

∑
il∈p(ik,t)

f t
il
≤ ∑

(j,s)∈N(ik,t)
αs

j . On the other hand, it follows from Phase 2 of

Algorithm 1 that each (j, s) ∈ D contributes to at most two open facilities in
level k.

Secondly, we consider the connection cost of client (j, s) ∈ D.

Lemma 3. If (j, s) ∈ D is assigned to p(ik, 0) in Phase 2 of Algorithm 1, then
we have cs0

jp(ik) ≤ 5αs
j/qs.

Proof. For any client (j, s) ∈ D, assume that (j, s) is connected to (ik, 0) by the
path p(ik, 0) = (i1, . . . , ik) in Phase 2 of Algorithm 1. Consider the following two
possibilities.

1. Facility (ik, 0) is the connecting witness for client (j, s). In this case, there
exists a path pik,0 such that cs0

jpik
≤ αs

j/qs, and Tik,0 ≤ αs
j/qs. From the

triangle inequality, we have

cs0
jp(ik ,0) = cs0

ji1 +
k−1∑
l=1

c00
ilil+1

≤ cs0
jpik,0

+ 2
k−1∑
l=1

c00
ilil+1

≤ αs
j/qs + 2Tik,0 ≤ 3αs

j/qs.

2. Facility (ik, 0) is not the connecting witness for client (j, s). From Algorithm
1, assume that (i′k, t′) (t′ = 0 or s) is the connecting witness of client (j, s).
Similar to the above case, we have cst′

jp(i′k ,t′) ≤ 3αs
j/qs. According to Phase 1

of Algorithm 1, there exists a path pi′k,t′ such that

cst′
jpi′

k
,t′
≤ αs

j/qs and Ti′
k
,t′ ≤ αs

j/qs.
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If (i′k, t′) ∈ F̄ k, one can show that

cs0
jp(ik ,0) ≤ cst′

jp(i′k ,t′) ≤ 3αs
j/qs.

Otherwise, we have (i′k, t′) /∈ F̄ kt′ and there exists (i′′k, t′) ∈ F̄ kt′ such that

Ti′′
k

,t′ ≤ Ti′
k
,t′ , N(i′k, t′) ∩N(i′′k, t′) �= ∅.

Let (j0, s0) ∈ N(i′k, t′) ∩N(i′′k, t′). From Algorithm 1, there exist two paths
p̃i′k,t′ and p̃i′′k ,t′ satisfying

cs0t′
j0p̃i′

k
,t′
≤ Ti′

k
,t′ , cs0t′

j0p̃i′′
k

,t′
≤ Ti′′

k
,t′ .

So we have that

cs0
jp(ik ,0)≤cst′

jp(i′′k ,t′) ≤ cst′
jp(i′k,t′)+cs0t′

j0p̃i′
k

,t′
+cs0t′

j0p̃i′′
k

,t′
≤3αs

j/qs + 2Ti′k,t′ ≤ 5αs
j/qs.

Summarizing the above two cases, we obtain the desired result.

Similar to Lemma 3, we have

Lemma 4. If (j, s) ∈ D is assigned to p(ik, s) in Phase 2 of Algorithm 1, then
we have css

jp(ik ,s) ≤ 5αs
j/qs.

Finally, we are ready to present the approximation ratio of Algorithm 1.

Theorem 5. Algorithm 1 is a 7-approximation combinatorial algorithm for the
k-SFLP.

Proof. Denote SOL as the solution of Algorithm 1, whose cost consists of facility
cost FSOL and connection cost CSOL which involve qt or qs. It follows from
Lemmas 2, 3, and 4 that the total cost of SOL is at most

cost(SOL) = FSOL + CSOL ≤ 2
∑

(j,s)∈D
αs

j + 5
∑

(j,s)∈D
αs

j = 7
∑

(j,s)∈D
αs

j .

4 Concluding Remarks

Further improvement of the approximation ratio for the k-level stochastic facility
location problem will be interesting, particularly for combinatorial algorithms.
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Abstract. This paper investigates semi-online scheduling problems on
two parallel identical machines under a grade of service (GoS) provision.
We consider two different semi-online versions where the optimal offline
value of the instance is known in advance or the largest processing time of
all jobs is known in advance. Respectively for two semi-online problems,
we develop algorithms with competitive ratios of 3/2 and (

√
5 + 1)/2,

which are shown to be optimal.

Keywords: Scheduling; Semi-online; Grade of service; Two machines;
Competitive ratio.

1 Introduction

In this paper, we investigate semi-online variants of scheduling problem under a
grade of service (GoS) provision. The goal is to minimize the makespan under
the constraint that all requests are satisfied. This problem was first proposed
by Hwang et al. [1]. It is a common practice in any service industry to provide
differentiated services to the customers based on their entitled privileges assigned
according to their promised GoS levels. GoS is certainly a highly qualitative
concept, yet it is often translated into the level of access privilege to service
capacity. Scheduling under a GoS provision has many applications coming from
the service industry, computer systems, hierarchical databases, etc.

A scheduling problem is called online if jobs arrive one by one, and we are
required scheduling jobs irrevocably on machines as soon as they are given,
without any knowledge of the successive jobs. If we have full information of job
sequence before constructing a schedule, the problem is called offline. We call
a problem semi-online if we know some partial information about the jobs in
advance. Algorithms for online (semi-online) problems are called online (semi-
online) algorithms.
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In the study of online and semi-online scheduling, the performance of an
algorithm is often measured by its competitive ratio. For a job sequence J and
an algorithm A, let CA(J ) (or shortly CA) be the makespan produced by A
and let C∗(J ) (or shortly C∗) be the optimal makespan in an offline version
(optimal offline value). Then the competitive ratio of A is the smallest number
c such that for any instance J , CA(J ) ≤ cC∗(J ). An online (semi-online)
scheduling problem has a lower bound ρ if no online (semi-online) algorithm has
a competitive ratio smaller than ρ. An online (semi-online) algorithm A is called
optimal if its competitive ratio matches the lower bound of the problem.

Hwang et al. [1] first studied the (offline) problem of parallel machine schedul-
ing with GoS eligibility. They proposed an approximation algorithm LG-LPT,
and proved that its makespan is not greater than 5/4 times the optimal makespan
for m = 2 and not greater than 2− 1/(m− 1) times the optimal makespan for
m ≥ 3. Glass and Kellerer [2] gave an improved algorithm with a worst-case
ratio at most 3/2 for m machines. The hierarchical model considered in [3] is
exactly identical to our model, they presented an e + 1 for general m machines
(also in [4]).

Online scheduling under GoS eligibility was first studied by Park et al. [5] and
Jiang et al. [6]. For the problem of online scheduling on two machines with GoS
constraint, they independently proposed an optimal algorithm with competitive
ratio of 5/3. Afterwards, Jiang [7] extended the result to the general case that
there are exactly two GoS levels on m machines. He proved that 2 is a lower
bound of online algorithms and proposed an online algorithm with competitive
ratio of (12+4

√
2)/7. The result was improved to 1+ m2−m

m2−mk+k2 ≤ 7/3 by Zhang
et al. [8], where k is the number of machines with high hierarchy.

The semi-online scheduling under GoS eligibility was also first studied by
Park et al. [5]. They considered the semi-online version where the total process-
ing time of all jobs is known in advance, and proposed an optimal algorithm with
competitive ratio 3/2. Recently, Liu et al. [9] studied two semi-online versions
with bounded jobs, i.e. the processing time of each job is bounded by an interval
[a, αa]. For both problems, they showed lower bounds and proposed semi-online
algorithms. Optimal algorithms were given for some situations. In [10], Chassid
and Epstein extended the hierarchial scheduling model to two uniform machines,
online and semi-online problems were studied and optimal algorithms were pro-
posed.

In this paper, we analyze the semi-online scheduling problem on two parallel
identical machines under GoS provision. We consider two different semi-online
versions where the optimal offline value of the instance (denoted by C∗) is known
in advance or the largest processing time of all jobs (denoted by pmax) is known in
advance. C∗ and pmax are often assumed to be known in advance in semi-online
scheduling literature for various reasons as stated in [11,12] and [13], respec-
tively. When we know C∗ in advance, we show an optimal algorithm Gos−Opt
with competitive ratio of 3/2. The competitive ratio is the same as the optimal
algorithm [5] designed for the semi-online problem where the total processing
time of all jobs is known in advance. For the second problem, know pmax in
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advance, we also design an optimal algorithm Gos−Max. The competitive ra-
tio of Gos −Max is (

√
5 + 1)/2. Competitive ratios of both algorithms are all

better than 5/3 of the online version. These results indicate that knowing C∗ is
much more useful than pmax for designing algorithms for semi-online scheduling
problems under GoS provision.

The rest of the paper is organized as follows. In Section 2, we develop formal
notations and definitions of our problems. Sections 3 and 4 propose lower bounds
and optimal algorithms for two semi-online problems respectively. Finally, some
concluding remarks are made in Section 5.

2 Definitions

We are given two parallel identical machines M1, M2 and a set J of n in-
dependent jobs J1, J2, . . . , Jn. We denote each job by Ji = (pi, gi), where pi

is the processing time of Ji and gi ∈ {1, 2} is the GoS level of Ji. gi = 1 if
the job Ji must be processed by the first machine M1, and gi = 2 if it can
be processed by either of the two machines. pi and gi are not known until the
arrival of job Ji. Each job Ji is presented immediately after Ji−1 is scheduled.
Let G1 = {Ji|gi = 1} and G2 = {Ji|gi = 2}, thus J = G1 ∪ G2. The schedule
can be seen as a partition of J into two subsequences, denoted by S1 and S2,
where S1 and S2 consist of jobs assigned to machines M1 and M2, respectively.
Let L1 = t(S1) =

∑
Ji∈S1

pi and L2 = t(S2) =
∑

Ji∈S2

pi denote the loads (or total

processing times) of machines M1 and M2, respectively. Hence, the makespan of
one schedule is max{L1, L2}. The online problem can be written as:

Given J , find S1 and S2 to minimize max{L1, L2}.

With C∗ (or pmax) known in advance, the semi-online variant can be stated as:

Given J and C∗ (or pmax), find S1 and S2 to minimize max{L1, L2}.

To simplify the presentation, the following notations and definitions are required
in the remainder of the paper.

– T k is half of the total processing time of the first k jobs.
– Gk

i is the set of jobs with the GoS level of i, i = 1, 2 immediately after job
Jk is assigned.

– Sk
i is the set of jobs assigned to machine Mi, i = 1, 2 immediately after job

Jk is assigned.
– t(δ) is the total processing time of jobs in any job set δ.
– t(Gk

i ) is the total processing time of jobs in the job set Gk
i , i = 1, 2. It

clearly follows that t(Gn
i ) = t(Gi), i = 1, 2.

– t(Sk
i ) is the total processing time of jobs in the job set Sk

i , i = 1, 2. It
clearly follows that CA = max{L1, L2} = max{t(Sn

1 ), t(Sn
2 )}.

– pmax is the largest processing time of all jobs.
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Let Lk = max{pmax, T k, t(Gk
1)}, then we have a lower bound of optimal

makespan as described as the following lemma.

Lemma 1. The optimal makespan of the problem C∗ ≥ Ln ≥ Lk, 1 ≤ k ≤ n.

Proof. It is clear that the optimal makespan satisfies C∗ ≥ max{pmax, T n}
since T n =

∑
1≤i≤n

pi/2. By the definition of the problem, all the jobs in G1 only

can be processed on the machine M1, which implies that the optimal makespan
C∗ ≥ t(G1) = t(Gn

1 ) according to the definition of t(Gn
1 ). Thus we have C∗ ≥

max{pmax, T n, t(Gn
1 )} = Ln ≥ Lk, 1 ≤ k ≤ n.

3 Known Optimal Value

In this section, we will show an optimal algorithm for the semi-online variant
where the optimal offline value C∗ is known in advance. At first, a lower bound
of competitive ratio will be shown in the following subsection.

3.1 Lower Bound of Competitive Ratio

Theorem 1. Any semi-online algorithm A for the problem has a competitive
ratio of at least 3/2.

Proof. First, we declare that the optimal offline value is 2, i.e. C∗ = 2, and
begin with job J1 = (1, 2). If job J1 is scheduled on the first machine M1, we
generate jobs J2 = (2, 1) and J3 = (1, 2). At this point C∗ = 2, and we have
CA ≥ 3 since job J2 must be scheduled on the first machine, thus CA/C∗ ≥ 3/2.
If job J1 is scheduled on the second machine M2, we generate job J2 = (2, 2).
If job J2 is scheduled on the first machine, we generate job J3 = (1, 1) which
yields CA/C∗ = 3/2. Otherwise, if job J2 is scheduled on the second machine,
we generate job J3 = (1, 2). We have CA ≥ 3 no matter which machine job J3
is scheduled. Thus CA/C∗ ≥ 3/2 while C∗ = 2. �

3.2 Optimal Semi-online Algorithm Gos − Opt

Next we will design an optimal algorithm with competitive ratio of 3/2. Since
we known C∗ in advance, we only need to make that the load of each machine is
not exceeds 3C∗/2. Then, when job Ji with gi = 2 arrives, the algorithm assigns
it to machine M2 as far as t(S2) + pi ≤ 3C∗/2, and otherwise to machine M1.
For the analysis of the competitive ratio of the algorithm, we define Sk−1

1 and
Sk−1

2 to be S1 and S2 that we have immediately before we schedule job Jk.

Algorithm Gos−Opt

1. Let S1 = ∅, S2 = ∅;
2. Receive arriving job Ji = (pi, gi);
3. If gi = 1, let S1 = S1 ∪ Ji. Go to Step 5;
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4. If t(S2) + pi ≤ 3C∗/2, let S2 = S2 ∪ Ji; Else, let S1 = S1 ∪ Ji;
5. If no more jobs arrive, stop and output S1 and S2; Else, let i = i + 1 and go

to Step 2.

Theorem 2. The competitive ratio of the algorithm Gos−Opt for the problem
is at most 3/2.

Proof. We will show that when the algorithm terminates, t(Si) ≤ 3C∗/2, i =
1, 2. Which implies that the competitive ratio of Gos − Opt is at most 3/2.
According to the algorithm we have t(S2) ≤ 3C∗/2. If t(S1) ≤ 3C∗/2, then we
are done.

Assume t(S1) > 3C∗/2, which yields t(S2) < C∗/2. At this point, we have
t(S1) > 3C∗/2 ≥ 3t(G1)/2 since C∗ ≥ t(G1). Obviously, the first machine M1
must process at least one job in G2. Let Jk = (pk, gk) be the first job scheduled
on the first machine with gk = 2. When job Jk arrives, t(Sk−1

2 ) ≤ t(S2) < C∗/2.
Together with pk ≤ C∗, we have

t(Sk−1
2 ) + pk < 3C∗/2.

According to the Step 4 of algorithm Gos − Opt, job Jk must be scheduled
on the second machine M2, which is contradicts to the definition of Jk. Thus
t(S1) ≤ 3C∗/2, and

CGos−Opt = max{t(S1), t(S2)} ≤ 3C∗/2.

The competitive ratio of the algorithm Gos−Opt is at most 3
2 . �

From Theorems 1 and 2, we know that Gos −Opt is the optimal algorithm for
the semi-online variant where the optimal offline value is known in advance. And
its competitive ratio is 3/2.

4 Known Largest Processing Time

In this section, we will show an optimal algorithm for the semi-online variant
where the largest processing time of all jobs pmax is known in advance. The lower
bound of competitive ratio will be shown at first.

4.1 Lower Bound of Competitive Ratio

Theorem 3. Any semi-online algorithm A for the problem has a competitive
ratio of at least (

√
5 + 1)/2.

Proof. Without loss of generality, let pmax = 2. And we begin with job J1 =
(x, 2) for 0 < x < 2, whose exact value we will choose later. If job J1 is scheduled
on the first machine, we generate jobs J2 = (2, 1) and J3 = (2 − x, 2). At this
point C∗ = 2, we have CA ≥ 2 + x since job J2 must be scheduled on the first
machine, thus CA/C∗ ≥ (2+x)/2. If job J1 is scheduled on the second machine,
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we generate job J2 = (2, 2). If job J2 is scheduled on the second machine, we
generate job J3 = (2−x, 1) which yields CA/C∗ = (2+x)/2. Otherwise, if job J2
is scheduled on the first machine, we generate jobs J3 = (2, 1) and J4 = (x, 1).
At this point C∗ = 2+x and CA = 4+x, which yields CA/C∗ ≥ (4+x)/(2+x).

What remains is to find exact value of x so as to make the competitive ratio of
A as large as possible. Based on the above analysis, we have CA/C∗ ≥ min{(2+
x)/2, (4 + x)/(2 + x)} for any x : 0 < x < 2. Let (2 + x)/2 = (4 + x)/(2 + x),
we have x =

√
5− 1. Thus we get CA/C∗ ≥ (

√
5 + 1)/2. �

4.2 Optimal Semi-online Algorithm Gos − Max

In this section, we will design an optimal semi-online algorithm Gos−Max with
competitive ratio of α = (

√
5 + 1)/2. Before describing the algorithm, we give

some notations. At the arrival of each job, T is updated to become a half of the
total processing times of all jobs arrived. Also, t(G1) is updated to be the total
processing time of all arrived jobs with gi = 1. Thus, according to Lemma 1, we
have C∗ ≥ L = max{pmax, T, t(G1)}. Then, when job Ji with gi = 2 arrives,
the algorithm assigns it to machine M2 as far as t(S2) + pi ≤ αL, and otherwise
to machine M1.

For the analysis of the competitive ratio of the algorithm, we define T k, Lk,
Sk

1 and Sk
2 to be T , L, S1 and S2 that we have immediately after we schedule

job Jk. And we set T 0 = L0 = 0.

Algorithm Gos−Max

1. Let S1 = ∅, S2 = ∅, T = 0 and t(G1) = 0;
2. Receive arriving job Ji = (pi, gi). Let T = T + pi

2 ;
3. If gi = 1, let S1 = S1 ∪ Ji and t(G1) = t(G1) + pi. Go to Step 5;
4. Let L = max{pmax, T, t(G1)}. If t(S2)+ pi ≤ αL, let S2 = S2 ∪Ji; Else, let

S1 = S1 ∪ Ji;
5. If no more jobs arrive, stop and output S1 and S2; Else, let i = i + 1 and go

to Step 2.

The proof for the competitive ratio of the proposed semi-online algorithm Gos−
Max is by contradiction. Hence, we suppose that there exists a problem instance
that we call, a counter example, for which the semi-online algorithm yields a
schedule with makespan bigger than 3/2 of the optimal value C∗. Then, the
counter example with the least number of jobs is defined to be the minimal
counter example. For notational ease in the remainder of this paper, we let J =
{J1, J2, · · · , Jn} be the minimal counter example. A lemma about the minimal
counter example will be shown at first.

Lemma 2. For a minimal counter example J = {J1, J2, · · · , Jn}, t(G2) > αL
must hold.

Proof. Suppose t(G2) ≤ αL. For any job Jk = (pk, 2), we have t(Sk−1
2 ) + pk ≤

t(G2) ≤ αL. According to the Step 4 of the semi-online algorithm Gos −Max,
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job Jk should be assigned to machine M2. Thus we get S1 = G1 and S2 = G2.
At this point, we have CA = max{t(Sn

1 ), t(Sn
2 )} = max{t(S1), t(S2)} ≤ αC∗

since t(G2) ≤ αL ≤ αC∗ and t(G1) ≤ C∗ ≤ αC∗. Which is contradicts to the
definition of instance J . �
Theorem 4. The competitive ratio of the algorithm Gos−Max for the problem
is at most α = (

√
5 + 1)/2.

Proof. Suppose that the theorem is false. There must exist a minimal counter
example J = {J1, J2, · · · , Jn}. Then, due to the minimality, the makespan is not
determined until the arrival of job Jn. Therefore, we have

CA = max{t(Sn
1 ), t(Sn

2 )} > αC∗, (1)

but
max{t(Sn−1

1 ), t(Sn−1
2 )} ≤ αC∗. (2)

Next, we distinguish two possible cases according to the GoS level of job Jn.

Case 1 gn = 2.
If Jn is assigned to machine M2, we have t(Sn−1

2 ) + pn ≤ αLn ≤ αC∗ and
t(Sn

1 ) = t(Sn−1
1 ). By inequality (1), it follows that t(Sn−1

1 ) = t(Sn
1 ) > αC∗. This

contradicts inequality (2).
Hence, job Jn must be assigned to machine M1. At this point, we have

t(Sn−1
2 ) + pn > αLn, t(Sn

2 ) = t(Sn−1
2 ) and

T n =
t(J )

2
=

t(Sn−1
1 ) + t(Sn−1

2 ) + pn

2
≤ Ln ≤ C∗.

Hence t(Sn−1
1 ) < (2− α)Ln ≤ (2− α)C∗, together with pn ≤ C∗ we have

t(Sn
1 ) = t(Sn−1

1 ) + pn < (2− α)Ln + pn ≤ (2− α)C∗ + C∗ = (3− α)C∗. (3)

Note that (3−α) ≤ α since α = (
√

5+1)/2, and t(Sn
2 ) = t(Sn−1

2 ) ≤ αC∗ implied
by (2). Thus the two inequalities (1) and (3) contradict each other.

Case 2 gn = 1.
Due to the minimality, we have

CA = max{t(Sn
1 ), t(Sn

2 )} = t(Sn
1 ) = t(S1) > αC∗. (4)

By Lemma 2, we know that there exists at least one job in G2 scheduled on
machine M1. Otherwise, we have CA/C∗ ≤ α and there exists a contradiction.
Hence, we let Jk be the last job with gk = 2 assigned to machine M1. Also let δ
be the job set of jobs assigned to machine M1 after job Jk assigned to machine
M1. Then t(δ) =

∑
gi=1, i>k

pi and t(S1) = t(Sn
1 ) = t(Sk

1 ) + t(δ).

In the rest of the proof, we will show that the minimal counter example
J = {J1, J2, · · · , Jn} with gn = 1 does not exist exactly. And at first we will give
some lemmas about the loads of two machines at the arrival time of job Jk.
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Lemma 3. If job Jk is the last job with gk = 2 assigned to the first machine by
the proposed semi-online algorithm Gos−Max, t(Sk

1 ) > α−1
2−α t(Sk

2 ) must hold.

Proof. According to (4) and lemma 1, we have

t(Sk
1 ) + t(δ) > αC∗ ≥ αt(G1) ≥ αt(δ),

it follows that
t(Sk

1 ) > (α− 1)t(δ), t(δ) <
1

(α− 1)
t(Sk

1 ). (5)

We also have

t(Sk
1 ) + t(δ) > αC∗ ≥ αLn ≥ α

t(Sk
1 ) + t(Sk

2 ) + t(δ)
2

,

which implies that
t(Sk

1 ) + t(δ) >
α

2− α
t(Sk

2 ). (6)

Combining with (5) and (6), we obtain

t(Sk
1 ) >

α− 1
2− α

t(Sk
2 ). �

Lemma 4. If job Jk is the last job with gk = 2 assigned to the first machine by
the proposed semi-online algorithm Gos−Max, t(Sk

2 ) < 4−2α
3α−4pk must hold.

Proof. According to the definition of job Jk, we have t(Sk
2 ) = t(Sk−1

2 ), thus

t(Sk
2 ) + pk = t(Sk−1

2 ) + pk > αLk. (7)

According to the algorithm Gos−Max, the following inequality is hold.

Lk ≥ t(Sk
1 ) + t(Sk

2 )
2

=
t(Sk−1

1 ) + pk + t(Sk
2 )

2
. (8)

By (7), (8) and Lemma 3, we have

t(Sk
2 ) + pk > α

t(Sk
1 ) + t(Sk

2 )
2

>
α

2
(
α− 1
2− α

+ 1)t(Sk
2 ) =

α

2(2− α)
t(Sk

2 )

t(Sk
2 ) <

4− 2α

3α− 4
pk.

�
Lemma 5. If job Jk is the last job with gk = 2 assigned to the first machine by
the proposed semi-online algorithm Gos−Max, t(Sk−1

1 ) < 2−α
3α−4pk must hold.

Proof. According to (7) and (8), we can obtain

t(Sk−1
1 ) <

2− α

α
(pk + t(Sk

2 )). (9)

Combine with (9) and Lemma 4, t(Sk−1
1 ) < 2−α

3α−4pk is hold. �
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Now we are going to proof that there exists contradiction for the minimal counter
example J .

By Lemmas 4 and 5, we have the following inequality since α = (
√

5 + 1)/2.

t(Sk
2 ) + t(Sk−1

1 ) = t(Sk−1
2 ) + t(Sk−1

1 ) <
6− 3α

3α− 4
pk ≤ αpmax. (10)

The equality (10) implying that job Jk is the only job in G2 assigned to machine
M1. Otherwise, suppose there is another job Jb = (pb, 2) ∈ G2 assigned to
machine M1. Note that job Jk is the last job with gk = 2 assigned to machine
M1. Hence job Jb is arrive before job Jk, i.e. b ≤ k − 1, implying that

t(Sb
2) + pb ≤ t(Sk

2 ) + t(Sk−1
1 ) ≤ αpmax ≤ αLb. (11)

Inequality (11) shows that job Jb must be assigned to machine M2 by Step 4
of algorithm Gos−Max, which contradicts the definition of job Jb. Thus there
is only one job in G2 ∩ S1, i.e. G2 ∩ S1 = {Jk}. Namely, S1 = G1 ∪ {Jk} and
t(S1) = t(G1) + pk. Together with inequality (4), we have

t(S1) = t(G1) + pk > αC∗ > αLn. (12)

Note that

Ln ≥ (t(S1) + t(S2))/2 = (t(G1) + pk + t(S2))/2 ≥ (t(G1) + pk + t(Sk
2 ))/2,

together with (12) we obtain t(Sk
2 ) ≤ t(S2) ≤ 2−α

α (t(G1) + pk). We also have
t(G1) < 1

(α−1)pk according to (12) since Ln ≥ t(G1). Thus, we have

t(Sk
2 ) ≤ 2− α

α
(t(G1) + pk) ≤ 2− α

α− 1
pk. (13)

From the definitions of Lk and job Jk, we know that t(Sk
2 )+pk = t(Sk−1

2 )+pk >
αLk ≥ αpmax. At this point, we have

t(Sk
2 ) > (α − 1)pmax. (14)

Combined inequalities (13) and (14), we get pk > (α−1)2

2−α pmax ≥ pmax since
α = (

√
5 + 1)/2. That’s a flat contradiction.

According to the above discussion of two possible cases of the minimal counter
example, we can make sure that there exists no such minimal counter example
exactly. Therefore, the competitive ratio of the algorithm Gos−Max is at most
α = (

√
5 + 1)/2. �

From Theorems 3 and 4, we know that Gos−Max is the optimal algorithm for
the semi-online variant where the largest processing time of all jobs is known in
advance. And its competitive ratio is (

√
5 + 1)/2.
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5 Conclusions

In this paper, we have studied two semi-online scheduling problems on parallel
identical machines under a grade of service provision. We considered two semi-
online versions where we known C∗ or pmax in advance. Optimal algorithms
were proposed for both scheduling problems on two machines. It is left as open
problems to design (optimal) algorithms on m > 2 parallel identical machines.
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Abstract. A weighted sequence is a string in which a set of characters
may appear at each position with respective probabilities of occurrence.
A common task is to identify repetitive motifs in weighted sequences,
with presence probability not less than a given threshold. We consider
the problems of finding varieties of regularities in a weighted sequence.
Based on the algorithms for computing all the repeats of every length
by using an iterative partitioning technique, we also tackle the all-covers
problem and all-seeds problem. Both problems can be solved in O(n2)
time.

1 Introduction

A weighted biological sequence, called for short a weighted sequence, can be
viewed as a compressed version of multiple alignment, in the sense that at each
position, a set of characters appear with respective probability, instead of a fixed
single character occurring in a normal string.

Weighted sequences are apt at summarizing poorly defined short sequences,
e.g. transcription factor binding sites and the profiles of protein families and
complete chromosome sequences [7]. With this model, one can attempt to locate
the biological important motifs, to estimate the binding energy of the proteins,
even to infer the evolutionary homology. It thus exhibits theoretical and practical
significance to design powerful algorithms on weighted sequences.

This paper concentrates on those repetitive motifs, specially regularities, in a
weighted sequence. It has been an effort for a long time to identify special areas
in a biological sequence by their structure. Examples are repetitive genomic
segments such as tandem repeats, long interspersed nuclear sequences and short
interspersed nuclear sequences. The motivation comes from the striking feature
of DNA that vast quantities of repetitive structures occur in the genome.
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The most simple repetitive motifs are repeatedly occurred segments, called
repeats. Formally speaking, a repeat of a string x is a substring that repeatedly
occurs in x. As the extensions to repeats, the most common regularities in strings
have been found to be those that are periodically repetitive. We focus on two
typical regularities, notably the covers and theseeds. A cover is a substring w of
x such that x is structured by concatenations and superpositions of w. A seed
is an extended cover in the sense of a cover of a superstring of x. For instance,
The substring aba is a cover of x = abababa, while bab is a seed of x.

It is of biological interest to locate regularities in biological sequences. As
early as in 1970’s, Ohno proposed that primordial proteins might evolve from
periodic amplifications of oligopeptides [13]. Thus internal repeating segments
in proteins may serve important roles in functional evolution of proteins.

It turns out that locating all the repeats forms a basis for further discerning
covers and seeds from them. Since we have designed efficient algorithms for
computing all the repeats in a weighted sequence [15], we will rely on these
efforts and apply the results about the repeats to the computation of covers and
seeds in the paper.

Large amount of work has been done to locate repeats and regularities in
non-weighted strings [1,5,9,12], but relatively small in weighted sequences. Il-
iopoulos et al. [8] were the first to touch this field, and extract repeats and other
types of repetitive motifs in weighted sequences by constructing weighted suf-
fix tree. They also apply Crochemore’s partitioning technique [4] into weighted
sequences, and presented an O(n2)-time algorithm for finding all tandem re-
peats [10,11]. Another solution [2,3] finds all the repeats as well as covers of
length d in O(n log d) time.

The paper is organized as follows. In the next section we give the necessary
theoretical preliminaries used, and make a simple description of our algorithms
for computing all the repeats of weighted sequences. Based on these outcome,
we tackle the all-covers problem and all-seeds problem respectively in Section 3
and Section 4. Finally in Section 5 we conclude and discuss our research interest.

2 Preliminaries

A biological sequence used throughout the paper is a string either over the
4-character DNA alphabet Σ ={A,C,G,T} of nucleotides or the 20-character al-
phabet of amino acids. Assume that readers have essential knowledge of the basic
concepts of strings, now we extend parts of it to weighted sequences. Formally
speaking:

Definition 1. Let an alphabet be Σ = {σ1, σ2, . . . , σl}. A weighted sequence X
over Σ, denoted by X [1, n] = X [1]X [2] . . .X [n], is a sequence of n sets X [i] for
1 ≤ i ≤ n, such that:

X [i] =
{
(σj , πi(σj))| 1 ≤ j ≤ l, πi(σj) ≥ 0, and

∑l
j=1 πi(σj) = 1

}
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Each X [i] is a set of couples (σj , πi(σj)), where πi(σj) is the non-negative weight
of σj at position i, representing the probability of having character σj at position
i of X.

Let X be a weighted sequence of length n, σ be a character in Σ. We say that σ
occurs at position i of X if and only if πi(σ) > 0, written as σ ∈ X [i]. A nonempty
string f [1, m] (m ∈ [1, n]) occurs at position i of X if and only if position i+j−1
is an occurrence of the character f [j] in X , for all 1 ≤ j ≤ m. Then f is said
to be a factor of X , and i is an occurrence of f in X . The probability of the
presence of f at position i of X is called the weight of f at i, written as πi(f),
which can be obtained by using different weight measures. We exploit the one in
common use, called the cumulative weight, defined as the product of the weight
of the character at every position of f : πi(f) =

∏m
j=1 πi+j−1(f [j]).

Considering a weighted sequence:

X =

⎧⎨⎩ (A, 0.5)
(C, 0.25)
(G, 0.25)

⎫⎬⎭G

{
(A, 0.6)
(C, 0.4)

}⎧⎪⎪⎨⎪⎪⎩
(A, 0.25)
(C, 0.25)
(G, 0.25)
(T, 0.25)

⎫⎪⎪⎬⎪⎪⎭C (1)

the weight of f=CGAT at position 1 of X is: π1(f) = 0.25 × 1 × 0.6 × 0.25 =
0.0375. That is, CGAT occurs at position 1 of X with probability 0.0375.

Repeats are those repeated factors in weighted sequences, however, the fol-
lowing remarks draws a distinction due to the feature of weighted sequences.

Remark 1. The weight of each appearance of a repeat can be highly different.

Remark 2. Observe the above example (1), the factor AGC has two occurrences
at position 1 and 3 in X , can we thereby approve it to be an overlapping re-
peat? Undoubtedly, the two appearances of AGC do have one common area,
i.e. position 3, but simply in structure rather than in symbol. In other words,
position 3 simultaneously “contributes” two different characters to each pres-
ence of AGC respectively, C for the first and A for the second. This is unique
in weighted sequences, which comes from the uncertainty at each position of
weighted sequences.

Definition 2. Let f1[1, m1] and f2[1, m2] be two factors of a weighted sequence
X [1, n]. We say that there exist structural overlaps between f1 and f2 at position
i of X if for some j ∈ [1, min(m1, m2)]:

1. f1[m1 − j + l] ∈ X [i + l − 1] and f2[l] ∈ X [i + l − 1] for all l ∈ [1, j]
2. there exists at least a j such that f1[m1 − j + l] �= f2[l]

Depending on whether structural overlaps are acceptable or not, we reinterpret
the repeats, further the covers and the seeds, in weighted sequences as two types:

Definition 3. A repeat in a weighted sequence is a loose repeat if structural
overlaps are allowed, otherwise a strict repeat. A factor f of a weighted sequence
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X [1, n] is a strict cover of X if concatenations and overlaps of copies of f form a
factor of X of length n, and a loose cover if structural overlaps are permitted as
well. Moreover, f is a strict (resp. loose) seed of X if f is a strict (resp. loose)
cover of a superstring of a factor of X of length n.

As we have mentioned above, we have presented efficient solutions to the all-
repeats problem [15] defined as below:

Problem 1. Given a weighted sequence X [1, n] and a real number k ≥ 1, the
all-loose(strict)-repeats problem seeks in X all the loose (strict) repeats of every
possible length having the probability of appearance at least 1/k.

The algorithm for picking all the loose repeats is based on the following idea of
equivalence relation on positions of the string and the partitioning lemma:

Definition 4. Given a string x[1, n] ∈ Σ∗ and two positions i, j ∈ {1, . . . , n −
p + 1} of x, then (i, j) ∈ Ep iff x[i, i + p− 1] = x[j, j + p− 1], denoted iEpj.

Lemma 1. Let p ∈ {1, 2, . . . , n}, i, j ∈ {1, 2, · · · , n− p}.
(i, j) ∈ Ep iff (i, j) ∈ Ep−1 and (i + p− 1, j + p− 1) ∈ E1

Computing the strict repeats is a bit complicated. The difficulty arises when
adjacent appearances of a repeat in X are overlapping. By introducing the notion
of border check array, we can also solve the all-strict-repeats problem in the same
O(n2) time with the loose counterpart. Readers can refer to [15] for more details
about the algorithms.

3 Computing the Covers

Problem 2. Given a weighted sequence X [1, n] and a real number k ≥ 1, the
all-loose(strict)-covers problem is to find all possible proper loose (strict) covers
of X with presence probability at least 1/k.

The fact that a cover is by all means a repeat of X suggests an immediate
solution to the all-covers problem: first locate all the repeats of X , then check
each if it is a cover. A cover f [1, p ] of X complies with the following two basic
facts:

1. The first occurrence of f in X is always 1, and the last occurrence of f in
X is n− p + 1.

2. Any distance between adjacent occurrences of f should not exceed |f |.
Testing a repeat of length p if it is a cover is at most the cardinality of the
input, and at stage p all the covers of length p are reported in O(n) time.
Combining this function with our algorithms for computing loose repeats and
strict repeats separately, we succeed in identifying all the loose covers and strict
covers, respectively. It is clear that the all-covers problem can be answered in
O(n2) time, the same with the corresponding all-repeats problem.
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4 Computing the Seeds

Problem 3. Given a weighted sequence X [1, n] and a real number k ≥ 1, the
all-loose(strict)-seeds problem is to find all possible proper loose (strict) seeds of
X with presence probability at least 1/k.

Commonly, the first (resp. last) appearance of a seed in X might be incomplete,
shown as the structure of a suffix (resp. prefix) of this seed.

Definition 5. Given a weighted sequence X [1, n], a real factor f [1, p ] is called
a candidate seed of X if there is a factor x′ of X = Hx′T such that f covers x′

and |H |, |T | < p. For maximal such x′, we call H (resp. T ) the head (resp. tail)
of X with respect to f .

Note that both H and T could be weighted or normal strings. In order for a
candidate seed to be a true one, it must suffice to cover a left extension of the
sequence Hf as well as a right extension of the sequence fT . If it does, a seed
of X can be reported.

4.1 The ECT and the RECT

To help locating the seeds, we reinterpret the idea of the Equivalence Class Tree
(ECT) and the Reversed Equivalence Class Tree (RECT) for weighted sequences
that was first introduced for non-weighted strings [6,14].

Let {f1, . . . , fr} be the real factors of length p−1 of X , denote {Cf1 , . . . , Cfr}
to be the Ep−1-classes associated with these factors. The ECT is created as
follows: The root has label 0. There are r nodes of depth p − 1, each of which
is a pair (Cfi , fi)(i ∈ [1, r]). For the convenience of explanation, we label each
node by fi instead of the pair in the ECT. The children of fi are the Ep-classes
partitioned by Cfi according to Lemma 1, corresponding to those real factors of
length p produced by each fi reading one character to the right. The construction
of the ECT proceeds along with the computation of equivalence classes, until at
stage L all the nodes are not repeats of X .

Constructing the RECT is similar, except that the refinement of Ep from
Ep−1 counts on the following corollary of Lemma 1:

Corollary 1. Let p ∈ {1, 2, . . . , n}, i, j ∈ {2, · · · , n− p + 1}. Then:

(i− 1, j − 1) ∈ Ep iff (i, j) ∈ Ep−1 and (i− 1, j − 1) ∈ E1

Let Cf = {i1, i2, . . . , iq} be an Ep−1-class associated with a factor f of X .
This corollary indicates another partitioning technique, which partitions those
positions i1 − 1, i2 − 1, . . . , iq − 1 to generate a set of Ep-classes, corresponding
to those factors extended by each presence of f in X one character to the left.
We add these factors into the RECT as the children of f instead.

For example, Figure 1 shows the ECT and the RECT of the following weighted
sequence, when k = 5.

X = TAT[(A,0.5),(C,0.3),(T,0.2)]AT[(A,0.5),(C,0.5)] A[(C,0.5),(T,0.5)]A
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Fig. 1. A subtree of the ECT of X rooted at A

We label each factor that ends to position n in the ECT, called an end-
aligned factor in the following context. Correspondingly, each factor that starts
at position 1, called a start-aligned factor is marked in the RECT. The following
facts about the ECT and the RECT are easily observed:

Fact 1. In any branch of the ECT, every internal node represents a proper prefix
of the leaf, of decreasing length from bottom to top.

Fact 2. In any path from the leaf to the root of the RECT, each internal node
represents a proper suffix of the leaf in order of decreasing length.

Both the ECT and the RECT are rooted trees built upon the partitioning of
equivalence classes, each of which expresses the relationship between each Ep−1-
class and its corresponding Ep-classes. The declaration that each tree is con-
structed along with the partitioning of equivalence classes implies that the con-
struction takes time no more than the partitioning, that is O(n2) for either the
ECT or the RECT.

4.2 Loose Seeds

The solution to the all-loose-seeds problem is straightforward: first locate all the
loose repeats with probability at least 1/k, then determine the candidate seeds
from them, and check which are true seeds. We simply discuss the latter step.

Consider a Ep-class Cf that corresponds to a loose repeat f [1, p ] with proba-
bility not below 1/k. Denote e1 and et to be the first and the last occurrence of f
in X respectively, then the head |H | = e1−1, the tail |T | = n−et+1−p. During
the construction of Cf , We maintain the maximum difference between adjacent
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occurrences, denoted by max gap. Hence, in order for f to be a candidate loose
seed, its length must suffice to: p ≥ max(e1, �(n− et + 2)/2�, max gap).

There are two steps involved to verify a candidate seed f :

1. Check the tail T to test if f covers a right extension of fT .

If f covers a right extension of fT , we say that f is end covered. This work
can be done depending on the ECT. Trivially, an end-aligned candidate is end
covered since the tail T is an empty string in this case. If f is not marked in the
ECT, we turn to consider its nearest marked ancestor anc(f). By Fact 1, anc(f)
is a prefix of f . The definition of end-aligned factors says that:

– if T includes branching positions: there is a factor f ′ of fT of the same
length n− et + 1 such that anc(f) is a suffix of f ′.

– if T is a normal string: anc(f) is a suffix of fT .

Thus in each case, anc(f) is the longest substring that is both a suffix and a
prefix, i.e. the border of f ′ or fT . Then:

– if |anc(f)| ≥ |T | = n−et+1−p: f ′ or fT is a concatenation or superposition
of f and anc(f). Hence, f is end covered.

– if |anc(f)| < |T |: f cannot cover any right extension of f ′ or fT .

Consider the above example weighted sequence, set k = 5. A candidate seed
ATAA is not marked in the ECT. As CATAA = {2, 5}, et = 5, we can compute
the tail |T | = 2. anc(ATAA) = ATA. Thus we conclude that ATAA is also end
covered since |anc(ATAA)| = 3 > |T |.

To efficiently implement the above tail testing, our algorithm adds two el-
ements into the node pair, then each node in the ECT is redefined as below:

Definition 6. A node f in the ECT is a quadruple: Node(f)=(Cf , f , P-Align,
E-Align), where Cf stands for the equivalence class corresponding to a factor f
of X. P-Align points to the nearest ancestor of f that is marked in the ECT. E-
Align is a boolean value for f , where E-Align is TRUE if f itself is end-aligned,
and FALSE otherwise.

For instance, a node ATAA in the ECT can be denoted to be: Node(ATAA) =
({2, 5}, ATAA, ATA, FALSE). All the values of each node is updated along
with the construction of the ECT, which yields a direct one-step checking for a
candidate loose seed, to be end covered or notas shown in Algorithm 1.

2. Check the head H to test if f covers a left extension of Hf .

This step is symmetric to step (1). If f covers a left extension of Hf , we say
that f is start covered. We utilize the RECT to help checking the head.

Trivially, a start-aligned candidate is start covered since it is equivalent to an
empty head H . If f is not marked in the RECT, we turn to consider its nearest
start-aligned ancestor anc′(f). By Fact 2, anc′(f) is a suffix of f . The definition
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Algorithm 1. Test if a candidate loose seed of length p is end covered
Input: An Ep node: Node(fp)=(Cfp , fp, P-Align, E-Align)
Output: A boolean variable
1: Function Test-Tail-Loose(Node(fp))
2: if p = 0 then
3: fp ← NULL
4: par(fp) ← parent of fp in the ECT
5: if et + p − 1 = n then
6: Node(fp).E-Align ← TRUE
7: if Node(par(fp)).E-Align=TRUE then
8: Node(fp).P-Align← par(fp)
9: else

10: Node(fp).P-Align← Node(par(fp)).P-Align
11: TailTag ← TRUE
12: else
13: Node(fp).E-Align← FALSE
14: if Node(par(fp)).E-Align=TRUE then
15: Node(fp).P-Align← par(fp)
16: else
17: Node(fp).P-Align← Node(par(fp)).P-Align
18: if Node(fp).P-Align=NULL or |Node(fp).P-Align| < n − et − p + 1 then
19: TailTag ← FALSE
20: else
21: TailTag ← TRUE
22: return Tailtag

of start-aligned factors says that anc′(f) occurs at position 1, thus anc′(f) is the
border of either Hf if H is a normal string, or a factor of Hf of length exactly
e1 +p−1 otherwise. If |anc′(f)| ≥ |H | = e1−1, f is verified to be start covered,
otherwise not.

Every node in the RECT is also denoted by a quadruple in our algorithm:
Node(f)=(Cf , f , P-Align, E-Align). The difference is that E-Align is a boolean
symbol identifying if f itself is start-aligned or not, and P-Align points to the
nearest marked ancestor of f in the RECT. Therefore, with a slight modification
to Algorithm 1, we can obtain the function for testing if a candidate loose seed
of length p is start covered, with the same time complexity.

As we mentioned in Section 4.1, both the ECT and the RECT can be con-
structed in O(n2) time. During an refinement of Ep from Ep−1, all the values
of the corresponding node quadruple Node(f) of length p in the ECT and the
RECT are updated in constant time. Then checking f if it is end covered or
start covered simply takes one step by checking the length of the border of f .
Thus it needs O(1) time to test a loose repeat of length p if it is a seed.

As a matter of fact, our algorithm proceeds along with the construction of the
two trees. Once an equivalence class of length p is computed, we immediately
report if it is a seed or not. Therefore, the overall running time of our solution
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to the all-loose-seeds problem is exactly the same with that of all-loose-repeats
problem, i.e. O(n2).

4.3 Strict Seeds

Answering the all-strict-seeds problem is similar, that is, first compute all the
strict repeats with probability at least 1/k, then recognize the strict seeds from
them. The method for determining a candidate strict seed is the same as what
have done for loose counterpart. However, the distinction arises when we test if
a candidate strict seed is end covered.

As we discussed above, if the nearest marked ancestor anc(f) of a candidate
loose strict f in the ECT is longer than the length of the tail, it is definitely
correct that f is end covered. But this argument might not infer a candidate
strict seed f . As anc(f) > |T | implies, fT (if T is a normal string) or f ′ (if T
is a weighted sequence) is a superposition of f and anc(f). Thus the reason we
hesitate is that, the possibility of branching positions to exist in these overlapping
positions might result in structural overlaps between f and anc(f), which is not
allowed for strict seeds.

Our solution to this uncertainty is that for each such overlapping position
that is a branching position, we execute a character comparison between anc(f)
and f . If each comparison comes out a match, f is verified to be end covered.
Otherwise, we climb up to test the next end-aligned ancestor of f in the ECT
following the above process, until we reach the root or the length of the end
aligned ancestor to be touched is less than |T |. The candidate f is rejected if no
eligible ancestor is available.

Back to the example given in Section 4.1, ATAAT is a candidate strict seed
that is not marked in the ECT, as CATAAT = {2, 5}. The tail |T | = n − (et +
p− 1) = 1, anc(ATAAT ) = ATA. There are two overlapping positions between
ATAAT and ATA, specially, the second one is a weighted position. Thus we need
to check if anc(ATAAT )[2] = ATAAT [5]. Clearly it is a match telling us ATAAT
is end covered. However, although anc(ATAAC) = ATA, anc(ATAAC)[2] �=
ATAAC[5], we have to test a shorter border A that also guarantees ATAAC to
be end covered.

We simply modify Algorithm 1 to implement testing the tail for strict seeds.
The only difference between the algorithms for strict seeds and those for loose
ones, is that the former might trace back to more than one marked ancestor,
however, it runs constant times as well. Testing a candidate if it is start covered
is similar performed. Therefore, the all-strict-seeds problem can also be answered
in O(n2) time.

5 Conclusions

The paper investigated a series of problems on the regularities arisen in weighted
sequences, including finding all the covers and seeds, in both loose and strict
sense. As opposed to the loose versions, identifying strict regularities needed



280 H. Zhang, Q. Guo, and C.S. Iliopoulos

more skills when structural overlaps are not permitted. However, we devised
efficient algorithms for all these problem, each of which operates in O(n2) time.

Nevertheless, it still leaves space to improve the time complexity. Thus we are
tempting to save the space and implement these algorithms in a more efficient
way in the future research.
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Abstract. In this paper, we consider the problem of inserting points in a
square grid, which has many background applications, including halftone
in reprographic and image processing. We consider an online version of
this problem, i.e., the points are inserted one at a time. The objective
is to distribute the points as uniformly as possible. Precisely speaking,
after each insertion, the gap ratio should be as small as possible. In this
paper, we give an insertion strategy with a maximal gap ratio no more
than 2

√
2 ≈ 2.828, which is the first result on uniformly inserting point

in a grid. Moreover, we show that no online algorithm can achieve the
maximal gap ratio strictly less than 2.5 for a 3 × 3 grid.

1 Introduction

In this paper, we consider the problem of online inserting points in a square grid
such that the distribution of the inserted points is as uniform as possible. In the
real world, there are many applications needing an uniform distribution of some
values in a given area, e.g., halftone, distribution of chain stores in an area.

Halftone is a very important technique in image processing, which simulates
the actual continuous image by discrete dots so that in the view of human’s eyes,
the simulation is almost identical to the original image. To achieve better perfor-
mances, e.g., higher resolutions, dithering method [3] is often applied in halftone.
One of the most important tasks in dithering is how to generate the dither ma-
trix, on which the quality of the simulation heavily depends. Each element in the
dither matrix represents a threshold value of the grey level between black and
white. For example, consider the dither matrix in Figure 1. An absolutely dark
spot with the grey level of 32 will be able to meet all the threshold values of the
dither matrix, thus, all the 64 elements (pixels) will be black; similarly, a grey
level of 0 will have all white pixels. As for any of the remaining grey level x, only
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those matrix elements (pixels) whose values (thresholds) are equal to or below
x will turn black, e.g., for grey level = 10, only 10 elements (pixels) are black
and these elements have to be distributed uniformly inside the matrix. Since the
uniformity has to be applied to all grey levels, this reduces to our problem which
is online inserting points uniformly in a square grid. Figure 1 gives an example
of a dither matrix in [3] and the simulation based on this matrix. Formally, the
dither matrix is an n × n matrix in which the value of each element is in the
range from 0 to n2−1, and the values up to each i (0 ≤ i ≤ n2−1) are uniformly
distributed.

1 17 5 21 2 18 6 22

25 9 29 13 26 10 30 14

7 23 3 19 8 14 4 20

31 2715 11 32 16 28 12

2 18 6 22 1 17 5 21

26 10 30 14 25 9 29 13

8 24 4 20 7 23 3 19

32 16 28 12 31 15 27 11

B =

(a) dither matrix (b) original graph and its simulation

Fig. 1. A simulation based on a dither matrix

Another motivation is the distribution of chain stores in an area. A famous
chain store has planned to establish its business in a district by establishing
a number of stores at the road junctions in a city with Manhattan-like road
network one at a time. Assuming that the clients are distributed uniformly,
and each client will be served by its nearest store. In order to minimize the
unnecessary competition among its own stores, the established stores at any time
should be distributed as uniformly as possible while the stores once established
cannot be dismantled or relocated.

In this problem, we consider the insertion of the points in an online man-
ner, i.e., the points are inserted one by one, and the algorithm does not know
the number of inserted points in advance. After the insertion of each point, the
uniformity is guaranteed. The uniformity is a measurement of how uniform the
inserted points are distributed. There are several ways to define the uniformity
of a set of points. Some studies define the uniformity by the minimal pairwise
distance [5,7]. In discrepancy theory [4,6], uniformity is defined by the ratio
between the maximal and minimal number of points in a fixed shape within the
area. In this paper, uniformity is defined by the gap ratio, i.e., the ratio between
the maximal gap (the diameter of the largest empty circle) and the minimal gap
(the minimal pairwise distance).

Problem Statement
Let S2 be an m×m unit square grid in the 2-dimensional square R2 such that
the four corners of S2 and R2 are located at the same position. Consider any
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point request sequence with n requests. In the initial state, each of the four
corner grid positions in S2 are assigned a point. Each following request must
be assigned on some grid position in S2, and each grid position can satisfy at
most one request, thus n ≤ (m + 1)2 − 4. Let pi be the grid position used in
satisfying the i-th request, and Si = {p1, ..., pi}

⋃S0 be the configuration in S2

after inserting the i-th point, where S0 consists of the four corner points of S2.
Define the maximal gap at step i to be Gi = maxp∈R2 minq∈Si 2d(p, q), the

minimal gap at step i to be gi = minp,q∈Si,p�=q d(p, q), where d(·, ·) is the Eu-
clidean distance, and define the i-th gap ratio as ri = Gi/gi. The maximum gap
and the minimum gap imply the diameter of the largest empty circle1 and the
minimum pairwise distance, respectively.

The objective of this problem is assigning points into the grid as uniformly as
possible, i.e., minimize the maximal gap ratio (min maxi ri) for each insertion.

For the m × m square grid, let (0, 0) represent its upper-left-most point a.
Each grid point p is represented by (i, j), where i is the difference between
the x-coordinate of a and p, j is the difference between the y-coordinate of a
and p. We say that a square or rectangle is of size i × j if the lengths of two
adjacent edges of the square or rectangle are i and j respectively. Let R be the
circumradius of a triangle UV W , we have |R| = uvw

4Δ , where u, v and w are the
length of edges of the triangle and Δ is the area of the triangle.

Now we give an example to illustrate the maximal gap, the minimal gap, and
the gap ratio. At the initial state, there are only four assigned points at the four
corners a, b, c and d as shown in Fig. 2, the maximal gap G0 =

√
2 ·m while

the minimal gap g0 = m, the gap ratio r0 =
√

2. If the first point p1 is inserted
at the center of the square, the current maximal gap G1 = m while the minimal
gap g1 =

√
2 ·m/2 and the gap ratio r1 =

√
2.

a b

c d

p1

p2

p3

p5

p4

m

m

Fig. 2. An insertion of five points in a grid

Related Works:
Uniformly inserting points in a given area had been studied before. If the points
can be inserted at any position in the given area, Teramoto et al [8] and Asano
et al [2] showed that the greedy algorithm (voronoi insertion) has uniformity 2.

1 Since we only focus on the area R2, the center of the largest empty circle must be
within R2.
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In one dimensional case, if the algorithm knows the number n of the inserted
points, an insertion strategy with maximal gap ratio 2n/2�/(n/2�+1), which is
slightly less than 2, can be achieved. Moreover, they gave a local search heuristic
for uniformly inserting points on two dimensional square. Experimental results
showed that the maximal gap ratio is less than 2 if the number of inserted points
is small. If the points must be inserted at the grid points, Asano [1] gave an in-
sertion strategy with uniformity 2 for one dimensional case.

Our Contributions:
To uniformly insert the points into a square, an intuitive idea is to insert each
point at the center of the largest empty circumcircle of a triangle within the
square. But this idea is not a good strategy when implementing on the square
grid. For example, consider a 6 × 6 square grid as shown in Figure 2. If each
point is inserted at the center of the largest empty circumcircle, the first five
points must be inserted as shown in Figure 2. No matter where the next point
is inserted, the gap ratio will be no less than 3.

In the following part of this paper, we give an insertion strategy for the prob-
lem of inserting points in a square grid with the maximal gap ratio no more
than 2

√
2 ≈ 2.828. For the problem of uniformly inserting points, this is the first

result on inserting points at grid position. Moreover, we show that no online
inserting strategy can hold the maximal gap ratio to strictly less than 2.5 for
3× 3 grids.

2 Inserting Method

Inserting each point at the center of the largest empty circle is a good strategy if
the size of the grid is some power of 2, i.e., m = 2k. In this case, insertion at the
center can always hold the gap ratio to no more than 2. Another observation is
that once a point is inserted, the grid will be somewhat partitioned into regions
which can be handled independently and locally. In the following, we devise our
heuristic based on these observations, to achieve good performance. Instead of
inserting each point at the center of the largest empty circle, we choose a proper
position which partitions the grid into several parts: some of them are square
grids whose sizes are some power of 2; some are square grids with sizes similar
to the above ones; the others are rectangles with sizes between the above two
types of square grids. Assigning the points at such positions can guarantee that
the maximal gap ratio is not large.

Our strategy is carried out phase by phase. The position at which each point is
inserted depends on the current configuration of the grids. At the beginning and
end of each phase, the square grid is partitioned into four disjoint parts: the up-left
part is a combination of small square grids of the same size 2k′ × 2k′

; the down-
right part is a single square grid of size m′ ×m′; the up-right and down-left parts
are combinations of rectangle grids of size 2k′ ×m′, as shown in Figure 3(a).

When starting to insert points in a phase, if the small square grids in the
up-left part are larger than the down-right square, we insert a point into the
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a b

c d

2k
′

2k
′

2k
′

2k
′

m′

m′

(a) before phase i

a b

c d
(b) after phase i

Fig. 3. The configuration of the square grid before and after a phase of insertion

center of each small square grids; otherwise, the down-right part is larger, then
we insert points into the down-right square. According to the following insertion
strategy, we can insert some points such that either the size of the small square
grids in the up-left part is decreased, or the up-left part is enlarged. From the
analysis of the strategy, the gap ratio is bounded by 2

√
2 after each insertion.

The configuration after a phase of insertion from the configuration in Figure 3(a)
is shown in Figure 3(b).

2.1 The First Phase

In the initial state, there are four assigned points located at the four corners of
the square grid. To assign the first point, we must determine the (x, y)-coordinate
for p1. Find the integer k such that 3 · 2k−1 ≤ m < 3 · 2k. Insert the first point
p1 at (2k, 2k).

Case 1: 3 · 2k−1 ≤ m < (2 +
√

2) · 2k−1

In this case, we insert p2 at (2k−1, 2k−1), p3 at (2k, 0), p4 at (0, 2k), and so on
until p12 is assigned as shown in Figure 4.

Let m = (1+x)×2k, we have 1/2 ≤ x <
√

2/2. Now we analyze the gap ratio
after each insertion.

a b

c d

p1

p2

p3

p4 p5

p6

p7

p8 p9 p10

p11

p12

Fig. 4. Case 1 of the first phase

a b

c d

p1

p2

p3 p4

p5

Fig. 5. Case 2 of the first phase
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Lemma 1. In case 1: 3 · 2k−1 ≤ m < (2 +
√

2) · 2k−1, the gap ratio is no more
than 2

√
2 after each insertion according to the strategy.

Proof. After the insertion of p1, the maximal gap is twice the length of the
circumradius of triangle abp1, the minimal gap is the length of p1d. Thus,

G1 =
2(1 + x)2k ×√22k ×√1 + x22k

2(1 + x)2k × 2k
=
√

1 + x22k+1
√

2

g1 = x
√

22k

The gap ratio at this step is
√

1 + 1/x2, which is at most
√

5 since 1/2 ≤ x <√
2/2.

After the insertion of p2, the minimal gap is the length of ap2, which is
√

22k−1.
The maximal gap must appear in the triangle abp2, bp1p2, or bp1d. We shall
consider these three triangles separately.

– Suppose the maximal gap appears in triangle abp2, since x <
√

2/2, the
maximal gap must be (x + y)2k+1, such that (1/2− y)2 + (1/2)2 = (x + y)2.
Thus, y = (1/2−x2)/(2x+1) and x+y = (x2 +x+1/2)/(2x+1). Therefore,
the gap ratio is

√
2(2x2+2x+1)

2x+1 < 2
√

2.
– Suppose the maximal gap appears in triangle bp1p2. Since |bp1| =

√
1 + x22k,

|p1p2| =
√

22k−1, |bp2| =
√

1/4 + (1/2 + x)22k, and Δbp1p2 = (1 + x)22k−2,

the maximal gap is
√

2
√

1+x2
√

1/4+(1/2+x)22k

(1+x) . Therefore, the gap ratio is
2
√

1+x2
√

x2+x+1/2
1+x , this value is strictly less than 2

√
2 since 1/2 ≤ x <

√
2/2.

– Suppose the maximal gap appears in triangle bp1d. Since x <
√

2/2 < 1, the
maximal gap will be 2(1/2 + y)2k, such that (1/2 − y)2 + x2 = (1/2 + y)2.
Thus, we have y = x2/2 and the maximal gap is (x2 + 1)2k. The gap ratio
is
√

2(x2 + 1) < 2
√

2.

After the insertion of p3, the maximal gap remains same as the previous step,
but the minimal gap is decreased to x2k. Similar to above analysis,

– Suppose the maximal gap appears in triangle acp2, the maximal gap must
be (x2 + x + 1/2)/(2x+ 1)2k+1. Therefore, the gap ratio is 2x2+2x+1

2x2+x < 2
√

2
since 1/2 ≤ x <

√
2/2.

– Suppose the maximal gap appears in triangle cp1p2. The maximal gap is√
2
√

1+x2
√

1/4+(1/2+x)22k

(1+x) . Therefore, the gap ratio is
√

2
√

1+x2
√

x2+x+1/2
x(1+x) ; this

value is strictly less than 2
√

2 since 1/2 ≤ x <
√

2/2.
– Suppose the maximal gap appears in triangle cp1d. Since x <

√
2/2 < 1, the

maximal gap is (x2 + 1)2k. The gap ratio is (x2 + 1)/x < 2
√

2.

After the insertion of p4, p5, and p6, the minimal gap is still x2k−1 but the
maximal gap does not increase. Thus, the gap ratio at this step is still no more
than 2

√
2.
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After the insertion of p7, the minimal gap is decreased to 2k−1. The maximal
gap is twice the length of the circumradius of the rectangle bp3p1p5, which is√

x2 + 12k. Thus, the gap ratio is no more than 2
√

x2 + 1 < 2
√

2.
After the insertion of pj (8 ≤ j ≤ 12), the minimal gap remains as 2k−1,

but the maximal gap does not increase. Thus, the gap ratio after each of the
insertions is no more than 2

√
2. �

After this insertion phase, the up-left part is a combination of small square grids
of size 2k−1 × 2k−1, the down-right part is a square grid of size (m − 2k) ×
(m− 2k), the up-right and down-left parts are combinations of rectangles of size
2k−1 × (m− 2k).

Case 2: (2 +
√

2) · 2k−1 ≤ m < (2 + 1/
√

2) · 2k

In this case, insert p2 at (2k, 0), p3 at (0, 2k), p4 at (m, 2k), and p5 at (2k, m),
as shown in Figure 5.

Let m = (1 + x)2k, we have
√

2/2 ≤ x ≤ 1 +
√

2/2. Now we analyze the gap
ratio after each insertion.

Lemma 2. In case 2: (2 +
√

2) · 2k−1 ≤ m < (2 + 1/
√

2) · 2k, the gap ratio is
no more than 2

√
2 after each insertion according to the strategy.

After this phase, the up-left part is a square grid of size 2k × 2k, the down-right
part is a square grid of size (m−2k)× (m−2k), the up-right and down-left parts
are rectangles of size 2k × (m− 2k).

Case 3: (2 + 1/
√

2) · 2k ≤ m < 3 · 2k

In this case, we insert p2 at (2k+1, 2k+1), p3 at (2k, 0), p4 at (0, 2k), and so on
until p12 is assigned as shown in Figure 6.

Let m = (1 + x) × 2k, we have 1 +
√

2/2 ≤ x < 2. Now we analyze the gap
ratio after each insertion.

Lemma 3. In case 3: (2 + 1/
√

2) · 2k ≤ m < 3 · 2k, the gap ratio is no more
than 2

√
2 after each insertion according to the strategy.

a b

c d

p2

p1

p7

p9 p11

p12

p3

p4 p8 p5

p10

p6

Fig. 6. Case 3 of the first phase

a′ b′

c′ d

e

f

g h

i

2k
′

m′

2k
′

m′

a b

c

j

k

Fig. 7. Before inserting points in next
phase
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After this phase, the up-left part is a combination of small square grids of size
2k×2k, the down-right part is a square grid of size (m−2k+1)×(m−2k+1), the up-
right and down-left parts are combinations of rectangles of size 2k× (m− 2k+1).

2.2 The Following Phases

After the first phase, the square grid is partitioned into squares and rectangles.
There are three types of such square or rectangle, i.e., the small square grids in
the up-left part, the square grid in the down-right part, and the rectangles in
the up-right and down-left parts. The only square grid in the down-right part is
adjacent to the other two types of square grid and rectangle.

For clarity, we shall only consider the insertion of points in four of the squares
and rectangles; specifically, the square at the down-right part, the rectangle
immediately to its left, the rectangle above it and the square in the top-left part
that has a common grid-position with it. Consider the configuration shown in
Figure 7, we shall only focus on insertions in the square grid a′b′c′d. In this
configuration, a′, b′, c′, d to i have been assigned a point each; the down-right
part is the square ehid, which is adjacent to a′fge, fb′eh and gec′i. If a point is to
be inserted into a square grid (rectangles, resp.) at a specified position according
to the strategy, then the same action applies to every square grid (rectangles,
resp.) within the part of the grid containing that square grid (rectangles, resp.).
For example, in Figure 7, there are four small square grids in the up-left part,
if the strategy inserts a point in square grid a′fge, then a point is inserted into
each of the four small square grids in square ajke.

Now consider inserting points into the configuration as shown in Figure 7.
In this configuration, points a to i are already assigned. The up-left part is a
square grid of size 2k′ × 2k′

, the down-right part is a square grid of size m′×m′,
the up-right and down-left part are rectangles of size 2k′ ×m′. When inserting
the first point in the down-right square, we use the same strategy as in the first
phase, i.e., find the value k′′ such that 3 · 2k′′−1 ≤ m′ < 3 · 2k′′

, then insert the
point at (2k′

+ 2k′′
, 2k′

+ 2k′′
).

From Case 1 of the first phase, we have m′ = m − 2k, 2k′
= 2k−1, and

3 ·2k−1 ≤ m < (2+
√

2) ·2k−1, thus, 2k′ ≤ m′ ≤ √2 ·2k′
. From case 2 of the first

phase, we have m′ = m−2k, 2k′
= 2k, and (2+

√
2) ·2k−1 ≤ m < (2+1/

√
2) ·2k,

thus,
√

2 · 2k′−1 ≤ m′ ≤ (1 +
√

2/2) · 2k′
. From case 3 of the first phase 1,

we have m′ = m − 2k+1, 2k′
= 2k, and (2 + 1/

√
2) · 2k ≤ m < 3 · 2k, thus,√

2 · 2k′−1 ≤ m′ ≤ 2k′
.

Combine all these cases, we have
√

2 · 2k′−1 ≤ m′ ≤ (1 +
√

2/2) · 2k′
, this

constraint can be relaxed to
√

2 · 2k′−1 ≤ m′ < 2 · 2k′
. (1)

Let m′ = x · 2k′
, we have

√
2/2 ≤ x < 2. Now we show how to insert points in

such configuration.

Case 1:
√

2 · 2k′−1 ≤ m′ < 2k′
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a′ b′

c′ d

e

f

g h

i

p1

p2

p3 p4 p5

p6

p7

Fig. 8. Case 1 of the following phase

a′ b′

c′ d

e

f

g h

i

p1

p2 p3
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Fig. 9. Case 2 of the following phase

In this case, we insert points p1 until p7 in the configuration as shown in
Figure 8.

After the insertion of p1, the minimal gap is decreased to the length of a′p1,
which is

√
22k′−1, the maximal gap is twice the length of the circumradius of the

rectangle b′feh, which is
√

1 + x22k′
. Thus, the gap ratio is at most

√
2(x2 + 1),

which is no more than 2
√

2.
After the insertion of p2, the minimal gap is decreased to 2k′−1, while the

maximal gap is still
√

x2 + 12k′
. Thus, the gap ratio is 2

√
x2 + 1, which is no

more than 2
√

2 since x < 1.
After the insertion of p3 until p7, the minimal gap remains as 2k′−1, and the

maximal gap does not increase. Thus, the gap ratio is still no more than 2
√

2.
When the insertions of this phase complete, m′ remains unchanged but the

size of the square grids in up-left part is decreased to 2k′−1 × 2k′−1. Therefore,
in the next phase, the constraint of m′ is

√
22k′ ≤ m′ < 2k′+1.

Case 2: 2k′ ≤ m′ < (1 +
√

2/4)2k′

In this case, since the down-right square grid is larger, we insert points p1
until p16 in the configuration as shown in Figure 9.

Note that 4 · 2k′−2 ≤ m′ < (2 +
√

2/2)2k′−1, if we regard m′ = m and
2k′−1 = 2k, this constraint is within the range in case 2 of the first phase, i.e.,
(2 +

√
2) · 2k−1 ≤ m < (2 + 1/

√
2) · 2k. Thus, similar to the analysis in case 2 of

the first phase, we conclude that the ratio after each insertion is no more than
2
√

2.
When the insertions complete, m′ is decreased by 2k′−1 and the size of the

square grids in up-left part is decreased to 2k′−1 × 2k′−1, therefore, in the next
phase, the constraint of m′ is 2k′ ≤ m′ < (1 +

√
2/2)2k′

.

Case 3: (1 +
√

2/4)2k′ ≤ m′ < 3 · 2k′−1

In this case, we insert points p1 until p27 in the configuration as shown in
Figure 10.

If we regard m′ = m and 2k′−1 = 2k, the constraint in this case is within the
range in case 3 of the first phase, i.e., (2+1/

√
2) · 2k ≤ m < 3 · 2k. Thus, similar

to the analysis in case 3 of the first phase, we conclude that the ratio after each
insertion is no more than 2

√
2.
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Fig. 10. Case 3 of the following phase
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Fig. 11. Case 4 of the following phase

When the insertions complete, m′ is decreased by 2k′
and the size of the square

grids in up-left part is decreased to 2k′−1 × 2k′−1, therefore, in next phase, the
constraint of m′ is

√
22k′−1 ≤ m′ < 2k′

.

Case 4: 3 · 2k′−1 ≤ m′ < (1 +
√

2/2) · 2k′

In this case, we insert points p1 until p27 in the configuration as shown in
Figure 11.

If we regard m′ = m and 2k′−1 = 2k, the constraint in this case is within the
range in case 1 of the first phase, i.e., 3 · 2k−1 ≤ m < (2 +

√
2) · 2k−1. Thus,

similar to the analysis in case 1 of the first phase, we conclude that the ratio
after each insertion is no more than 2

√
2.

When the insertions complete, m′ is decreased by 2k′
and the size of the small

square grids is decreased to 2k′−1×2k′−1, therefore, in next phase, the constraint
of m′ is 2k′ ≤ m′ <

√
2 · 2k′

.

Case 5: (1 +
√

2/2) · 2k′ ≤ m′ < 2k′+1

In this case, we insert points p1 until p7 in the configuration as shown in
Figure 12.

If we regard m′ = m and 2k′
= 2k, the constraint in this case is within the

range in case 2 of the first phase, i.e., (2 +
√

2) · 2k−1 ≤ m < (2 + 1/
√

2) · 2k.
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Fig. 12. Case 5 of the following phase
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Fig. 13. In a 3 × 3 grid, the gap ratio is at
least 2.5
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Thus, similar to the analysis in case 2 of the first phase, we conclude that the
ratio after each insertion is no more than 2

√
2.

When the insertions complete, m′ is decreased to m′ − 2k′
while the size of

the square grids in up-left part remains the same as in previous phase, therefore,
in next phase, the constraint of m′ is

√
2 · 2k′−1 ≤ m′ < 2k′

.
Combine all these cases, we conclude that the gap ratio is no more than 2

√
2

after each insertion. When a phase completes, suppose the size of the down-right
square grid is m′ ×m′, the size of the square grids in up-left part is 2k′ × 2k′

,
we have

√
22k′−1 ≤ m′ < 2k′+1, which is consistent with Inequality (1).

Therefore, we have the following conclusion.

Theorem 1. The maximal gap ratio of the above strategy for inserting points
into any square grid is at most 2

√
2 ≈ 2.828.

3 Lower Bound of the Maximal Gap Ratio

In this part, we prove that for 3× 3 grids, the lower bound of the maximal gap
ratio is at least 2.5 for any online inserting method. Consider inserting points
into a 3× 3 grid, as shown in Figure 13.

initial step:
In the initial step, the four corner points are already assigned. The maximal

gap G0 = 3
√

2 and the minimal gap is g0 = 3, thus the gap ratio at this step is√
2.

inserting the first point:
If the first point is inserted at the boundary line of the square, w.l.o.g., at p,

the maximal gap is twice the length of the circumradius of triangle pcd, which is√
130/3, the minimal gap is the length between a and p, which is 1, so the gap

ratio is
√

130/3 ≈ 3.8.
If the first point is inserted at some interior point, w.l.o.g., at p1, the gap ratio

will be lower. In this case, the maximal gap is twice the length of the circumradius
of triangle bdp1, which is

√
10, the minimal gap is the length between a and p1,

which is
√

2, so the gap ratio r1 =
√

5 ≈ 2.236.

inserting the second point:
We may assume the first point is inserted at p1 since the gap ratio is larger if

the first point is assigned at p.
If the second point is not inserted at p2, the maximal gap will be

√
10 too,

since the maximal gap must appear in triangle bdp1 or cdp1, and the minimal
gap will be 1, so the gap ratio r2 =

√
10 ≈ 3.162.

If the second point is inserted at p2, the circumradius of triangle bp1p2 is
5
√

2/6. Consider the point p′ on the edge ab such that |p′b| = 5/4, the length
of p′p1 is also 5/4, and the length between p′ and any other point is larger than
5/4. Since 5/4 > 5

√
2/6, we conclude that the maximal gap is 5/2. The minimal

gap is still
√

2, so the gap ratio r2 = 5/(2
√

2) ≈ 1.768.
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inserting the third and following points:
Similarly, we may assume the second point is assigned at p2, otherwise the

gap ratio will be larger. No matter where we assign the third point, the minimal
gap will be 1, while the maximal gap remains as 5/2 owing to the symmetry of
the assigned points in this square grid. Thus, the gap ratio r3 = 2.5.

For the insertion of the following points, the minimal gap is 1 and the maximal
gap is no larger than 5/2, so the gap ratio ri ≤ 2.5 (i ≥ 3).

Combining all the above cases, we conclude that in handling any insertion
sequence in a 3× 3 square grid, the maximal gap ratio is at least 2.5. Thus, we
have the following conclusion.

Theorem 2. No online inserting method can hold the maximal gap ratio to
strictly less than 2.5.
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Abstract. We present new kernelization results for the s-cycle

transversal problem for s > 3. In particular, we show a 6k2 kernel for
4-cycle transversal and a O(ks−1) kernel for s-cycle transversal

when s > 4. We prove the NP-completeness of s-cycle transversal

on planar graphs and obtain a 74k kernel for 4-cycle transversal on
planar graphs. We also give several kernelization results for a related
problem (≤ s)-cycle transversal.

1 Introduction

Graphs that are free of cycles of a given length s are extensively studied in
extremal graph theory, including cases when s is small [2,10,11], or an odd num-
ber [14], or an even number [21]. When s is small (s ≤ 5), s-cycle-free graphs
and s-cycle-free planar graphs are also studied in other areas. For example, the
chromatic number of 3-cycle-free graphs [22] and 5-cycle-free graphs [23] were
investigated. Cherlin and Komjáth [6] showed that there is no universal count-
able 5-cycle-free graph. The class of 4-cycle-free Taner graphs plays an important
role in designing low-density parity-check (LDPC) codes [15]. As for s-cycle-free
planar graphs, Madhavan [19] gave an approximation algorithm for finding max-
imum independent set on 3-cycle-free planar graphs. Borodin et al. [4] obtained
upper bounds on the game chromatic number of 4-cycle-free planar graphs. Es-
peret et al. [8] gave several positive and negative results on the adapted list
coloring of s-cycle-free planar graphs.

In this paper we study the problem of obtaining a maximum subgraph without
cycles of a given length s by edge deletions. This problem is equivalent to the
following edge transversal problem. We say an edge e covers a cycle C if e is one
of the edges in C.

s-cycle transversal: Given an undirected graph G and an integer k,
is there a set S of at most k edges in G such that every cycle in G of
length s is covered by at least one edge in S? We shall call S a transversal
set.

s-cycle transversal is known to be NP-complete on general graphs [24].
Krivelevich [18] and Kortsarz et al. [17] studied approximation algorithms for s-
cycle transversal. Krivelevich [18] presented a linear programming-based 2-
approximation algorithm for 3-cycle-transversal. Kortsarz et al. [17] showed

B. Chen (Ed.): AAIM 2010, LNCS 6124, pp. 293–303, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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that the approximation ratio 2 is likely the best possible by showing that a
(2 − ε)-approximation algorithm for 3-cycle-transversal implies a (2 − ε)-
approximation algorithm for vertex cover, which might be impossible [16].
Kortsarz et al. [17] also gave a generalized (s − 1)-approximation algorithm for
s-cycle transversal where s is any odd number. A related problem is the
vertex version of s-cycle transversal, where one asks for a minimum vertex
set to cover all cycles of length s. The vertex version of 3-cycle transversal

was studied in the literatures. In particular, Abu-Khzam [1] obtained a quadratic
kernel for this problem by reducing it to 3-Hitting Set. Fernau [9] showed this
problem can be solved in running time O(|V |3 + 2.1788k).

s-cycle transversal has also been studied in the context of parameter-
ized complexity. A parameterized problem is a set of instances of the form (x, k),
where x is the input instance and k is a nonnegative integer called the parameter.
A parameterized problem is said to be fixed parameter tractable if there is an
algorithm that solves the problem in time f(k)|x|O(1), where f is a computable
function solely dependent on k, and |x| is the size of the input instance. When
dealing with NP-hard problems in practice, kernelization is a very useful pre-
processing technique. The idea of kernelization is to design data reduction rules
to reduce the input instance to an equivalent kernel of smaller size. Formally,
the kernelization of a parameterized problem is a reduction to a problem kernel,
that is, to apply a polynomial-time algorithm to transform any input instance
(x, k) to an equivalent reduced instance (x′, k′) such that k′ ≤ k and |x′| ≤ g(k)
for some function g solely dependent on k. It is known that a parameterized
problem is fixed parameter tractable if and only if the problem is kernelizable.
We refer interested readers to [7,12] for more details.

The kernelization of s-cycle-transversal was first studied by Brügmann
et al. [5]. Brügmann et al. [5] designed data reduction rules to obtain a 6k
kernel for 3-cycle-transversal on general graphs. They also proved the NP-
completeness of 3-cycle-transversal on planar graphs and gave a 11k/3 ker-
nel for the problem.

We present new kernelization results for s-cycle transversal when s > 3.
We show that on general graphs 4-cycle transversal admits a 6k2 kernel and
s-cycle transversal where s > 4 admits a O(ks−1) kernel. We generalize the
NP-completeness proof of 3-cycle-transversal on planar graphs [5] to cases
where s ≥ 3. We then use the region-decomposition framework developed in Guo
and Niedermeier [13] to show that 4-cycle transversal admits a 74k kernel
on planar graphs.

We also study a related problem small cycle transversal, referred to as (≤ s)-
cycle transversal, where one asks for a minimum edge set to cover all cycles
of length ≤ s for a given s. Our NP-completeness proof for s-cycle transver-

sal on planar graphs extends naturally to (≤ s)-cycle transversal on pla-
nar graphs. The approximation algorithms for (≤ s)-cycle transversal has
been studied in [17]. In this paper we present a 32k kernel for (≤ 4)-cycle

transversal on planar graphs and a 226k kernel for (≤ 5)-cycle transver-

sal on planar graphs.
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Recently Bodlaender et al. [3] proved that all problems having finite integer
index and satisfying a compactness condition admit linear kernels on planar
graphs. They claim that their results ([3] Theorem 2 and Corollary 2) unify
and generalize all known linear kernels on planar graph problems. However,
their results do not generalize our linear kernel results because both s-cycle

transversal and (≤ s)-cycle transversal are subclasses of the edge-S-

covering problem ([3] Corollary 3) which is not known to have finite integer
index.

Next, we present several necessary definitions and some backgrounds.
We only consider simple and undirected graphs. All paths and cycles consid-

ered in this paper are simple. A path P in a graph G is a sequence of vertices
P = (v0, v1, · · · , vl) such that vi−1 and vi are adjacent for all 1 ≤ i ≤ l. The
length of P is the number of edges in P . A path Q is called a sub-path of P if
Q is a subsequence of P ; or equivalently, we say that P contains Q. A cycle is a
closed path where the first vertex is the same as the last vertex in the sequence.
For example C = (a, b, c, d, a) is a cycle of length 4 containing edges (a, b), (b, c),
(c, d), and (d, a). For a set of edges T , if both cycles C1 and C2 contain T , we
say T is shared by C1 and C2. If C1 and C2 have no other common edges, we
say C1 and C2 are edge-disjoint-sharing T . Let W be a set of cycles in G, we use
E(W ) to represent the set of edges in cycles in W , and G[W ] to represent the
subgraph induced by vertices in cycles in W .

For all the s-cycle transversal problems with various s values discussed
in this paper, we assume the input graph has been preprocessed by removing
all vertices and edges that are not contained in any s-cycle. It is clear that this
preprocessing is correct and can be done in polynomial time.

2 Kernels on General Graphs

First we show that 4-cycle transversal on general graphs admits a 6k2 ker-
nel. Let G = (V, E) be the input graph after the above mentioned preprocessing.
Enumerate all 4-cycles in G and compute in polynomial time a maximal set W
of 4-cycles that share pairwise at most one edge. We call W a witness of G.

Reduction Rule 1: For any edge e in a 4-cycle in W , if e is shared by k other
4-cycles in W , then delete e from G, remove all 4-cycles containing e from W ,
and decrease k by 1.

Lemma 1. Reduction Rule 1 is correct.

Proof. Since W is a maximal set of 4-cycles that share pairwise at most one edge,
the k + 1 4-cycles are pairwise edge-disjoint-sharing e. If G has a transversal set
S of size k, then e must be in S, since otherwise at least k + 1 edges are needed
to cover the k + 1 4-cycles. Thus we can safely delete e and decrease k by 1. �
It is clear that Reduction Rule 1 can be applied in polynomial time. Let G′

be the reduced graph that cannot be further reduced by Reduction Rule 1. Let
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Q := G′ − G[W ]. We show that G′ has at most 6k2 vertices, by bounding the
sizes of both W and Q. Similar approaches have been used in Abu-Khzam [1]
and Moser [20].

Theorem 1. 4-cycle transversal admits a 6k2 problem kernel.

Proof. We show that if G′ has more than 6k2 vertices, then G does not have a
transversal set of size k. First observe that if W contains more than k2 4-cycles,
then G′ does not have a transversal set of size k, since by Reduction Rule 1
any edge in G′ covers at most k 4-cycles in W . This implies that G[W ] has no
more than 4k2 vertices, because otherwise W contains more than k2 4-cycles. In
the rest of the proof, we show that Q has no more than 2k2 vertices. The total
number of vertices in G′ is at most 4k2 + 2k2 = 6k2.

First observe that Q induces an independent set. Suppose that there is an
edge e in Q. e must belong to a 4-cycle C. Since the both end points of e are
not in W , at most two vertices of C are in W , which implies that C shares at
most one edge with any 4-cycle in W . Thus C should be included in W due to
the maximality of W .

Let v be a vertex in Q and let Cv be a 4-cycle containing v. There exists a
4-cycle C ∈W that shares at least two edges with Cv. We call v a Q-neighbor of
C in this case. Note that if v is a Q-neighbor of a 4-cycle C = (a, b, c, d, a) ∈ W ,
then v must be connected to either both a and c, or to both b and d. If C has
more than two Q-neighbors, then at least two of them, denoted by x and y, are
connected to the same vertex pair {a, c} or {b, d}. Without loss of generality,
assume that both x and y are connected to both a and c. Then (x, a, y, c, x) is
a 4-cycle that does not share an edge with 4-cycles in W and thus should be
included in W . This contradicts the that x and y are not in W . Since every 4-
cycle C in W has at most two Q-neighbors, and each vertex in Q is a Q-neighbor
of some 4-cycle in W , the number of vertices in Q is at most 2|W | ≤ 2k2. �
In the following, we present a nontrivial generalization of the above techniques
to achieve a O(ks−1) kernel for s-cycle transversal where s > 4.

Reduction Rule 2.1: Repeatedly apply reduce(G) until the graph cannot be
further reduced. Let G be the reduced graph G and let W be the witness of G.

The algorithm reduce(G) will compute the witness W for G and check re-
peatedly whether there are edges in E(W ) that can be safely deleted. Once it
finds such edges, the algorithm will delete them and start over again. Let H be
the set of all s-cycles in G. H can be enumerated in O(|E|s) time. It is clear
that Reduction Rule 2 can be applied in polynomial time.

Lemma 2. Reduction rule 2.1 is correct.

Proof. We will prove the lemma by an induction on i. In reduce(G) edge dele-
tions occur in the for loop with the loop index i taking values from 0 to s − 4.
For the base case where i = 0, let G and G′ be the graphs before and after the
edge deletion is applied. We will show that G has a transversal set of size k if
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Algorithm reduce(G):

compute the set H of all s-cycles in G
compute from H a maximal set W of s-cycles sharing at most s − 3 edges pairwise
for i = 0 to s − 4

R = ∅
for each cycle C ∈ W

for each edge set T of size s − 3 − i in C
compute the set M ⊆ W of s-cycles that contain T
if (|M | > si(k + 1)i+1)

compute any M ′ ⊆ M of size |M | − si(k + 1)i+1

W = W − M ′; R = R ∪ M ′

if E(R) − E(W ) is not empty
delete the edges in E(R) − E(W ) from G and stop

and only if G′ has a transversal set of size k. One direction is trivial. Suppose G′

has a transversal set S of size k, then S is also a transversal set for G. Suppose
this is not true and there is a s-cycle C in G that is not covered by S, then C
must contain an edge e ∈ E(R)−E(W ). From the way the set R is constructed,
C contains a set T of s− 3 edges where T is shared by C and k other s-cycles in
W . Since W is a maximal set of s-cycles sharing at most s − 3 edges pairwise,
the k + 1 s-cycles sharing T have no other common edges. This implies that one
of the edges in T must be in S, since otherwise k + 1 edges will be needed to
cover the k + 1 s-cycles edge-disjoint-sharing T . This contradicts the fact that
C is not covered by S.

Using similar notations for the inductive steps where 0 < i ≤ s−4, we suppose
that there is an uncovered s-cycle C containing an edge e ∈ E(R) − E(W ),
then C must contain an edge set T of size s − 3 − i which is shared by a set
A of si(k + 1)i+1 many s-cycles in W . By the inductive hypothesis, any edge
superset of T with size s − 3 − (i − 1) can be shared by at most si−1(k + 1)i

s-cycles in W . Therefore for any s-cycle C1 ∈ A, C1 can intersect with at most
s · si−1(k + 1)i = si(k + 1)i s-cycles in A. Since A has si(k + 1)i+1 s-cycles, we
can always find k+1 edge-disjoint s-cycles in A sharing T . This implies that one
of the edges in T must be also in S, contradicting the fact that C is not covered
by S. �

Let Q := G − G[W ]. For a vertex v ∈ Q, we say v is a Q-neighbor of a s-cycle
C ∈ W if v forms a s-cycle with a path of length s − 2 in C. By an argument
similar to that in the proof of Theorem 1, Q is an independent set and every
vertex v ∈ Q has to be a Q-neighbor of some s-cycle in W . Construct an auxiliary
bipartite graph A = {V1, V2, E

′} as follows. For every path of length s− 2 in a
s-cycle in W , create a vertex in V1. For every vertex of Q, create a vertex in V2.
There is an edge between v1 ∈ V1 and v2 ∈ V2, if the vertex corresponding to v1
and the path corresponding to v2 form a s-cycle in G.
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Reduction Rule 2.2: Compute a maximum set of edges M in A such that
every vertex in V1 is incident to at most k + 1 edges in M . Delete all vertices in
Q that corresponds to a vertex in V2 that is not incident to an edge in M .

Reduction Rule 2.2 can be applied in polynomial time, since M can be com-
puted in polynomial time by making k + 1 copies of each vertex in V1 and
computing a maximum matching of the resulting bipartite graph.

Lemma 3. Reduction Rule 2.2 is correct.

Proof. Let G and G′ be the graph before and after Reduction Rule 2.2 is applied.
If there is a transversal set S of size k for G′, then S is also a transversal set for
G. Suppose this is not true and there is an uncovered s-cycle C in G, C must
contain a deleted vertex v2 ∈ Q, and a path P corresponding to a vertex v1 ∈ V1.
By the way A is constructed, P is shared by k + 1 s-cycles edge-disjoint-sharing
P in G′. Therefore one of the edges in P must be also in S, contradicting the
fact that C is not covered. �
Theorem 2. For any s > 4, s-cycle transversal admits a O(ks−1) problem
kernel.

Proof. Based on the algorithm reduce(G), any single edge in s-cycles in W
can cover at most ss−4(k + 1)s−3 s-cycles. If W has more than ss−4(k + 1)s−2

s-cycles, then W cannot be covered by any edge set of size k. Therefore, G[W ]
has no more than ss−3(k + 1)s−2 vertices. By Reduction Rule 2.2, every s-cycle
in W has at most s(k + 1) Q-neighbors in Q, so the number of vertices in Q is
bounded by s(k+1) ·ss−4(k+1)s−2 = ss−3(k+1)s−1. Overall, the total number
of vertices in the reduced graph is O(ks−1). �

3 Linear Kernels on Planar Graphs

s-cycle transversal for any fixed s ≥ 3 is known to be NP-complete on
general graphs [24]. Brügmann et al. [5] showed it is NP-complete on planar
graphs when s = 3. Using a similar technique, we are able to prove the NP-
completeness of s-cycle transversal and (≤ s)-cycle transversal for
any fixed s ≥ 3 on planar graphs. The proofs are omitted due to lack of space.

Theorem 3. s-cycle transversal and (≤ s)-cycle transversal are NP-
complete for any fixed s ≥ 3 on planar graphs of maximum degree seven.

We first present a 74k kernel for 4-cycle transversal on planar graphs. Given
an input graph G, we say that a 4-cycle C in G is dangling if only one edge of
C is shared with other 4-cycles in G.

Reduction Rule 3: (the Dangling Rule) If there is a dangling 4-cycle C in
G, then delete all four edges in C and decrease k by 1.

Lemma 4. Reduction Rule 3 is correct and can be applied in polynomial time.
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Let the reduced graph be G′ = (V, E). To bound the size of G′, we will use
the region-decomposition framework developed by Guo and Niedermeier [13].
Suppose that G′ has a transversal set S of size k. Let V (S) be the set of endpoints
of the edges in S. V (S) have at most 2k vertices. With respect to V (S), 4-cycle

transversal admits the distance property (CV = 1, CE = 1) which is required
to apply the region-decomposition framework. Therefore we can decompose G′

into a set of regions.

Definition 1 ([13]). A region R(u, v) between two distinct vertices u, v ∈ V (S)
is a closed subset of the plane with the following properties:

1. The boundary of R(u, v) is formed by two paths between u and v of length at
most 3. The two paths do not need to be disjoint or simple. A vertex is said
to be inside R(u, v) if it lies either on the boundary or strictly inside R(u, v).

2. All vertices inside R(u, v) have distance at most 1 to at least one of the
vertices u and v. Similarly, all edges whose both endpoints are inside R(u, v)
have distance at most 1 to at least one of the vertices u and v.

3. With the exception of u and v, none of the vertices inside R(u, v) are from
V (S).

An V (S)-region decomposition of G′ is a set R of regions such that no vertex
lie strictly inside more than one region from R. The following Lemma directly
follows from Lemma 1 in [13].

Lemma 5. There is a maximal V (S)-region decomposition R for the graph G
that consists of at most 6k − 6 regions.

Then we show that there are constant number of vertices inside each region in
R.

Lemma 6. Every region R(u, v) in R contains at most 12 vertices which are
not in V (S).

Proof (Proof of Lemma 6). Consider a region R(u, v). We distinguish two cases.
case 1: (u, v) /∈ E, or (u, v) ∈ E but (u, v) /∈ S. There may not be an edge

between u and v. If there is an edge between u and v, then this edge is not in

u

a b

c d

v u

a b

c d

v

e f

(a) (b)

Fig. 1. Two cases in the region decomposition
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S, which means u and v are endpoints of two edges e, e′ ∈ S, separately, where
both e and e′ are outside R(u, v). This implies that no edge from S is inside
R(u, v).

First, there are no degree-one vertices in R(u, v) since they are not involved
in any 4-cycle. Second, there are no edges with both end points strictly inside
R(u, v). Suppose there is such an edge e with both end points strictly inside
R(u, v), e must form a 4-cycle with two other vertices inside R(u, v), thus all the
edges in this 4-cycle must be inside R(u, v). This contradicts the fact that no
edge from S is inside R(u, v). Therefore all vertices strictly inside R(u, v) must
have degree at least two and must connect to boundary vertices. As shown in
Fig 1(a), R(u, v) has at most 6 boundary vertices including u and v. For every
pair of boundary vertices, there can be only one vertex strictly inside R(u, v)
connecting to both of them, otherwise they will form an uncovered 4-cycle strictly
inside R(u, v). Out of the 15 pair of boundary vertices, each of the pairs — {u, b},
{u, d}, {a, v}, {c, v} — cannot share a common neighbor vertex strictly inside
R(u, v) since these will result in uncovered 4-cycles; each of the pairs — {a, b},
{c, d} — cannot share common neighbor vertices since the neighbor vertices will
have distance larger than 1 from u and v; at most one of the pairs — {u, v},
{a, d}, {b, c} — can have a common neighbor due to planarity of the region.
Therefore, there can be at most 5 vertices strictly inside R(u, v), as shown in
Fig 1(a).

case 2: (u, v) ∈ S. The edge (u, v) is either inside R(u, v) or a different region
between u and v. The analysis for case 1 still applies except that there can be
edges with both end points strictly inside R(u, v), such as (e, f) in Fig 1(b) which
is contained in a 4-cycle (u, e, f, v, u). Since G′ is reduced by Reduction Rule 3,
this 4-cycle cannot be dangling, therefore at least one of the edges (e, u), (e, f),
and (f, v) has to be involved in another 4-cycle. First, it is not possible for (e, f)
to be involved in another 4-cycle. If (e, f) forms another 4-cycle (u, f, e, v, u)
with (u, v), then we have an uncovered 4-cycle (u, e, v, f, u) inside R(u, v). If
(e, f) forms another 4-cycle with an edge other than (u, v) in R(u, v), again
this 4-cycle will be uncovered. Without loss of generality, assume that (e, u) is
involved in another 4-cycle. It is not possible for (e, u) to be involved in another
4-cycle that contains (u, v). If there is a 4-cycle (u, e, w, v, u) where w is a vertex
inside R(u, v), then (e, w, v, f, e) will be uncovered in R(u, v). So (e, u) has to
be involved in a 4-cycle that is covered by an edge outside R(u, v). In order to
form such a 4-cycle, e must be connected to a boundary vertex, either a, c, or v
(connecting to b or d will result in uncovered 4-cycles). Based on this observation,
there can be at most three such edges with both end points strictly inside R(u, v)
forming 4-cycles with (u, v), see Fig 1(b). It is easy to verify that one more such
edge will either result in a dangling 4-cycle or an uncovered 4-cycle in R(u, v).
In this case, there are at most 8 vertices strictly inside the region R(u, v).

Therefore, there are at most 8 vertices strictly inside R(u, v) and at most 4
vertices on the boundary of R(u, v). Overall, there are at most 12 vertices in
R(u, v) that are not in V (S). �
Theorem 4. 4-cycle transversal admits a 74k kernel on planar graphs.
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Proof. Let w be a vertex outside any region in R. w has to be involved in some
4-cycle C. Let (u, v) ∈ S be the edge that covers C. Without loss of generality,
assume that w is adjacent to u, i.e., there exists another vertex w′ such that
C = (u, w, w′, v, u). If w′ is also outside any region, then the path (u, w, w′, v)
either forms a new region between u and v or should be included in an existing
region between u and v, contradicting the maximality of R. Therefore w′ must
be a boundary vertex for some region R(u, v) between u and v. Let (u, a, b, v) and
(u, c, d, v) be the boundary paths of R(u, v). w′ cannot be b or d since otherwise
(u, w, w′, a, u) or (u, w, w′, c, u) are uncovered 4-cycles. Therefore w′ has to be
either a or c. This implies that either (a, v) ∈ E or (c, v) ∈ E. Note that in
this case, w is the only vertex outside all regions that is adjacent to boundary
vertices of R(u, v). If there is another such vertex w′′, then this will result in
either uncovered 4-cycles or violation of the planarity of R(u, v).

From the above analysis, a vertex w outside the region R(u, v) will always be
adjacent to either u and one of the boundary vertices adjacent to u, or v and
one of the boundary vertices adjacent to v. If such a vertex w exists, we cannot
have a vertex strictly inside R(u, v) that is adjacent to the same two vertices
since this will result in an uncovered 4-cycle. When we count the total number
of vertices, we only need to count them once. This implies that we don’t need to
count the vertices outside all regions in R in order to bound the total number
of vertices, .

There are at most 2k vertices in V (S). By Lemma 5 and Lemma 6, there are at
most 6k−6 regions and each region has at most 12 vertices not in V (S). Therefore
the total number of vertices in G′ is at most (6k − 6) · 12 + 2k ≤ 74k. �
Finally, we consider the related problem of small cycle transversal. For the lack of
space the details are omitted. We assume the input graph has been preprocessed
such that all edges and vertices which are not involved in any small cycle are
deleted.

First, the Reduction Rule 3 can be easily adapted for the kernelization of
(≤ 4)-cycle transversal by removing both dangling 3-cycles and 4-cycles.

Corollary 1. (≤ 4)-cycle transversal admits a 32k kernel on planar graphs.

Proof. (Sketch) Similar to the proof of Lemma 6, however there is only one
vertex strictly inside a region. There are at most 2k vertices in V (S) and each
region has at most 5 vertices not in V (S). The number of regions is at most 6k-6.
Therefore the total number of vertices in G′ is at most (6k−6) ·5+2k ≤ 32k. �
Using similar techniques and a more involved analysis, we are able to obtain a
226k kernel for (≤ 5)-cycle transversal. We present the reduction rules in
the following. However, the proofs are omitted for the lack of space. We call a
simple path from u to v a chain if the path has length at least 2 and all vertices in
the path except u and v are of degree two. The following reduction rules are used.

Reduction Rule 4.1: (The chain rule) For any two vertices u and v, if there
are two or more chains between u and v, delete all chains except the shortest one.
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Reduction Rule 4.2: (The generalized dangling rule) For an edge (u, v),
if there is a cycle C of length ≤ 5 containing (u, v) such that for any edge e on
C, all cycles of length ≤ 5 containing e must go through both u and v, then
delete (u, v) and decrease k by 1.
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5. Brügmann, D., Komusiewicz, C., Moser, H.: On generating triangle-free graphs.
Electronic Notes in Discrete Mathematics 32, 51–58 (2009)
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Abstract. This paper investigates online scheduling on m identical ma-
chines with splitting intervals, i.e., intervals can be split into pieces arbi-
trarily and processed simultaneously on different machines. The objective
is to maximize the throughput, i.e., the total length of satisfied intervals.
Intervals arrive over time and the knowledge of them becomes known
upon their arrivals. The decision on splitting and assignment for each
interval is made irrecoverably upon its arrival. We first show that any
non-split online algorithms cannot have bounded competitive ratios if
the ratio of longest to shortest interval length is unbounded. Our main
result is giving an online algorithm ES (for Equivalent Split) which has
competitive ratio of 2 and 2m−1

m−1
for m = 2 and m ≥ 3, respectively. We

further present a lower bound of m
m−1

, implying that ES is optimal as
m = 2.

1 Introduction

Interval scheduling problem has a lot of applications such as crew or vehi-
cle scheduling, telecommunication, hotel rental problem, etc (refer to Kolen
et al.[1]), in which requests may show up over time and their information is
known upon their arrivals. To deal with such problems with dynamic requests,
Lipton and Tomkins [2] were the first to introduce online interval scheduling.
Consider one machine and intervals with fixed start and end times arrive over
time. Upon the arrival of each interval, online algorithms must decide whether
or not to irrecoverably schedule it without overlapping, aiming to maximize the
total length of satisfied intervals. They gave an optimal 2-competitive algorithm
for the special case with two lengths. For the general case where intervals may
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be of arbitrary lengths, they gave a randomized algorithm with competitive ra-
tio O((log Δ)1+ε) as well as a lower bound of Ω(log Δ) where Δ is the ratio
between the longest and shortest intervals. Faigle et al. [3] showed that no de-
terministic algorithm has competitive ratio less than Δ, and a greedy algorithm
which schedules an arriving interval if the machine is idle can reach this bound.
They also proved a greedy algorithm to be 2-competitive for the case where the
machine is provided with a buffer to store one interval.

For interval scheduling on m identical machines, Faigle and Nawijn [4], and
independently Carlisle and Lloyd [5] considered the preemptive model with the
objective of minimizing the number of missing intervals. They presented a greedy
deterministic algorithm which always outputs an optimal solution. Thibault and
Laforest [6] investigated a preemptive model with processing time windows and
the objective is to maximize the number of satisfied intervals. For the case where
there are at most β different interval lengths in an input sequence, they gave
a (4 min{β, [log2(Δ)] + 1})-competitive deterministic algorithm. In this paper,
we consider interval scheduling on m identical machines to maximize the total
length of satisfied intervals. We focus on the case where interval may be split into
at most m pieces and processed simultaneously. This case is reasonable in some
manufacturing activities such that a manufacturer may divide a production job
into some parts and process them in several workshops simultaneously.

1.1 Related Work

One quite related area is online weighted interval scheduling to maximize the
total weight of completed intervals. Woeginger [7] introduced a preemptive online
interval scheduling on a single machine with arbitrary interval weight. He showed
that no deterministic algorithms have finite competitive ratios for general case
where there is no relationship between weight and length of interval, and gave a
matching upper and lower bound of 4 for deterministic algorithms for the special
case of uniform length, leaving it open whether randomization can be used to
break this bound. A lot of work followed this open problem. Canetti and Irani [8]
showed that even randomized algorithm cannot have finite competitive ratio for
the general case. Seiden [9] gave a randomized 3.732-competitive algorithm for
the special case where the weight of interval is a continuous convex non-negative
function f of interval length with f(0) = 0. Fung et al. [10] improved the upper
bound to 3.5822 for the case of unit length and gave a lower bound of 4/3. Fung
et al. [11] further improved the upper bound to 2, and a matching lower bound
for a subset of randomized algorithms.

Another important line is job scheduling where each job has a deadline equal
to or larger than the arrival time plus job length. Thus, interval scheduling may
be viewed as a special case of job scheduling with tight deadlines. The offline
job scheduling with splitting jobs on m identical machines has been extensively
studied. See Xing and Zhang [12], Kim and Shim et al. [13], and Shim and Kim
[14]. A splitting job can be split into several pieces arbitrarily and processed
independently on different machines. Xing and Zhang [12] studied the model
to minimize makespan. They proposed two polynomial algorithms for the case
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without setup time, and a heuristic algorithm with worst-case ratio of 7
4− 1

m (m ≥
2) for the case where each job has an independent setup time. Both Kim et al. [13]
and Shim and Kim [14] investigated the problem to minimize the total tardiness.
To the best of our knowledge, there are no results on online case with splitting
jobs.

The rest of this paper is organized as follows. Section 2 gives a formal de-
scription of the problem to be investigated, and some definitions on competitive
ratio. In Section 3 we prove the competitiveness of non-split algorithms which
processes each interval in an integral time duration on one machine. We then
propose ES algorithm and prove its competitiveness in Section 4. Section 5 gives
a lower bound of competitive ratio for deterministic algorithms. Finally, Section
6 concludes this work.

Below are basic notations used in this paper.
m: the number of machines;
Mu: the uth machine, 1 ≤ u ≤ m;
Ji: an interval indexed by i;
r(Ji) or ri: the arrival time of Ji;
p(Ji) or pi: the processing time or length of Ji;
d(Ji) or di: the deadline of Ji, by which Ji must be satisfied. di = ri + pi.

2 Problem Description and Basic Definitions

2.1 Problem Description

The problem of online splitting interval scheduling on m identical machines
is formally described as follows. There are m identical machines denoted by
M1, M2, . . . , Mm, where m is known beforehand. Each interval Ji with length
or processing time pi and deadline di = ri + pi arrives at time ri, upon which
pi and di become known to online algorithms. Ji may or may not be split into
k (2 ≤ k ≤ m) pieces without any cost and be processed simultaneously on
k machines. It is not allowed to assign two or more pieces on one machine.
With the power of splitting, although the irrecoverable decision on splitting
and assignment for interval Ji must be made upon its arrival, the start time of
processing Ji may actually be larger than its arrival time. If all the pieces of Ji are
assigned to different machines within time duration [ri, di], we say the assignment
of Ji as well as the interval itself is feasible. So, Ji has to be rejected if it is not
feasible or at least one piece of Ji cannot meet the deadline di. The objective is
to maximize the total length of satisfied intervals. Let Prof =

∑
Ji∈S pi where

S is the set of satisfied intervals. Applying the concept of Three-Field Notation
(refer to Graham et al. [15]), we denote the model by Pm | online, ri, split, di =
ri + pi | Prof .

2.2 Competitive Ratio

For online problems, to gauge the performance of an online algorithm A , the
competitive ratio analysis (refer to Borodin and El-yaniv [16]) is often used. For
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the case with objective of maximizing the profit, the competitive ratio of A is
defined as

cA = sup
I

|OPT (I)|
|A(I)|

where |A(I)| and |OPT (I)| denote the total profit gained by A and an offline
optimal algorithm OPT from an arbitrary input instance I , respectively. If cA
is infinite, then A is not competitive; if there does exist an instance I such that
|OPT (I)|/|A(I)| = cA, then we say the competitive analysis of A is tight.

For an online scheduling problem, the lower bound of competitive ratio for
online algorithms is defined as

c∗ = inf
A∈π

sup
I

|OPT (I)|
|A(I)|

where π is the set of all online algorithms for the online problem. If cA = c∗,
then algorithm A is optimal in competitiveness.

3 Competitiveness of Non-split Algorithms

Non-split algorithms are defined as a class of algorithms that assign each feasible
interval to a single machine on its arrival. For this class of algorithms, we show
that their competitive ratios are at least m

√
Δ where Δ is the ratio of longest to

shortest interval length.

Theorem 1. In the model Pm|online, ri, split, di = ri + pi|Prof , any non-split
algorithm cannot be better than m

√
Δ-competitive.

Proof. It suffices to present an interval input instance σ to make any non-
split algorithm A behave poorly and be at least m

√
Δ-competitive. Let σ =

(J0, J1, . . . , Jn) where the value of n depends on the behavior of A. Interval Jk

(0 ≤ k ≤ n) with length xk arrives at time kε where ε ∈ (0, 1
m ) and x = m

√
Δ.

First, J0 arrives at time 0. A has two selections as follows.
Case 1. A rejects J0. No more intervals arrive later and σ terminates. A

satisfies no intervals and |A(σ)|=0, while OPT will complete J0 with |OPT (σ)| =
1, implying that A loses.

Case 2. A accepts J0. In this case, intervals Ji for 1 ≤ i < m arrive one by
one until A rejects some Ji. There are two subcases.

Case 2.1. A accepts Ji−1 but rejects Ji. No more intervals arrive later. A
completes {J0, . . . , Ji−1} with total profit |A(σ)|=1 + x+ . . . + xi−1. OPT com-
pletes all the i + 1 (≤ m) intervals with total profit |OPT (σ)|=1 + x + . . . + xi.
|OPT (σ)|/|A(σ)| >x in this subcase.

Case 2.2. A accepts all the first m intervals {J0, . . . , Jm−1}. In this case,
the last interval Jm with length xm arrives at time mε. Since mε < 1, all the
m machines are busy at time mε and then A has to reject Jm, implying that
|A(σ)|=1 + x + . . . + xm−1. OPT will reject the first interval J0 and accept the
rest m intervals, gaining a total profit |OPT (σ)|=x(1 + x + . . . + xm−1). In this
case, |OPT (σ)|/|A(σ)| =x.
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In either case, the ratio of what OPT gains to that of A is at least x = m
√

Δ.
The theorem follows. �
Note that as m = 1, the above lower bound reduces to Δ as proved in Faigle
et al. [3] for the case of single machine. When Δ is unbounded, Theorem 1
implies that any deterministic algorithms cannot be competitive. Moreover, it is
not hard to see that the optimal greedy algorithm with competitive ratio Δ for
single machine scheduling in Faigle et al. [3] is still Δ-competitive for the model
Pm|online, ri, split, di = ri + pi|Prof . We may present m copies of intervals
with unit length at time 0 and m copies of intervals with uniform length Δ at
time 1/2. The greedy algorithm will accept the first m intervals and reject the
last m intervals, implying the ratio of Δ.

4 ES Algorithm and Its Competitive Analysis

4.1 Algorithm Description

We already know from the previous section that if Δ is infinite, non-split algo-
rithms cannot be competitive. Thus we propose an online algorithm ES whose
competitive ratio has no relationship with the value of Δ. ES always splits each
interval into m equivalent pieces and assigns them on the m machines in the
same time duration, that is, all the m pieces are processed within the same time
section on m machines. Thus the status of the m machines, either idle or busy,
is always the same. ES algorithm is formally described in the following.

ES algorithm: When a new interval Ji arrives at time ri, ES accepts or rejects
Ji according to whether Ji is feasible or not. Ties are broken by selecting the
shortest interval arriving at time ri. Assume that the m machines are supposed
to complete the currently assigned tasks at some time t ≥ ri. If t + pi/m ≤ di,
then Ji is feasible and ES accepts the interval. ES splits Ji into m equivalent
pieces each of which is assigned to one of the m machines, and will process Ji

during time period [t, t + pi/m). Otherwise if t + pi/m > di, ES rejects Ji.
ES is simple and easy to operate while it performs well by the power of

splitting intervals. It will not miss a very long interval that arrives when all the
m machines are busy since a long interval has a long deadline as well. However,
ES may actually miss such an interval Ji that arrives when all the machines are
busy and pi together with di is not large enough for ES to satisfy the interval.
That is, ES may be induced to start too many relatively shorter intervals that
arrive earlier than Ji. Hence, ES might not be optimal in competitiveness for
general case.

4.2 Competitive Analysis

We first define the concepts of busy and idle sections. If all the m machines
change their status from idle to busy at time t1 and return idle at time t2(> t1),
then [t1, t2) is called a busy section of ES. And if all the machines become busy
again at time t3 > t2, then [t2, t3) is called an idle section.
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We first consider a special case where m = 2, and have the following theorem.

Theorem 2. In the model P2|online, ri, split, di = ri + pi|Prof , ES is 2-
competitive.

Proof. We prove this theorem by drawing a contradiction for a constructed small-
est counter-sequence. Suppose the theorem is not true. Then there must exist
an interval input sequence σ with the smallest number of intervals that makes
the ratio between the profit of OPT , denoted by |OPT (σ)|, and that of ES,
denoted by |ES(σ)|, strictly larger than 2. That is, |OPT (σ)|/|ES(σ)| > 2. We
call σ the smallest counter-sequence. We prove the theorem below by showing
that such σ does not exist at all.

We observe that for the smallest counter-sequence σ, the processing sequence I
produced by ES includes exactly one busy section. Otherwise suppose I contains
at least two busy section [t1, t2) and [t3, t4), where 0 ≤ t1 < t2 < t3 < t4.
According to construction of ES, no intervals in σ arrive during [t2, t3). Thus
we can divide the intervals in σ into two sets such that one set contains the
intervals arriving during [t1, t2) and the other set contains those arriving during
[t3, t4). At least one of the two sets makes the ratio of the profit of OPT to that
of ES larger than 2. This contradicts that σ includes the smallest number of
intervals. So I contains exactly one busy section, denoted by [t1, t2). Note that
all the intervals in σ arrive during [t1, t2) by construction of ES. Let Jn be the
last interval processed by ES before time t2. Then we have t1 ≤ t2 − pn/2.

For OPT , it is also idle before time t1 while it may keep the machines busy
after time t2. Assume that OPT keeps at least one machine busy until time t′

(≥ t2) while the other machines become idle on or before the time. If t′ − t2 ≤
t2 − t1, then t′ − t1 ≤ 2(t2 − t1), implying |OPT (σ)|/|ES(σ)| ≤ 2 and then
the nonexistence of σ. In the following we prove t′ − t2 ≤ t2 − t1 by drawing
contradiction.

Assume otherwise that t′ − t2 > t2 − t1. Let Jk be the interval completed by
OPT at time t′, implying at least one machine completes Jk at the time. Note
that Jk arrives on or after time t1, i.e., rk = dk − pk ≥ t1. Moreover, since OPT
completes Jk at time t′, dk ≥ t′. So, dk − pk

2 = dk

2 + dk−pk

2 ≥ t′
2 + t1

2 > t2, i.e.
dk > t2 + pk

2 . By ES, it will start Jk at time t2 and satisfy the interval before
time dk, contradicting that ES is idle after time t2. Hence, t′− t2 ≤ t2− t1. The
theorem follows. �
Now we consider the general case with m > 2. Consider an arbitrary interval
input instance Γ . Let I be the corresponding sequence produced by ES. Assume
without loss of generality that ES starts the first interval in I at time 0. By ES,
I consists of a series of alternant busy and idle sections. Assume there are n
busy sections in I, denoted by B = (B1, B2, · · · , Bn) (n ≥ 1). Between every
two consecutive busy sections Bi and Bi+1, there is an idle section Gi, and thus
there are totally n−1 idle sections G = (G1, G2, · · · , Gn−1). Let r(Bi) and d(Bi)
be the start time and end time of each Bi respectively. Then Bi = [r(Bi), d(Bi))
and Gi = [d(Bi), r(Bi+1)).
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Let E = {Ji} be the set of intervals in B which are completed by ES, and
O = {oj} be the set of intervals completed by OPT in Γ . Let O = O/E be the
interval set that contains the intervals satisfied by OPT but not ES. Denote by
|E|, |O| and |O| the total length of intervals in set E, O and O, respectively.
Since E may contain some intervals out of O, |O| ≤ |O| + |E|. If O = φ, then
|O| = |E| or |O|/|E| = 1. So, we assume that O is not empty. For any interval
oj in O, we observe that it arrives in one of the n busy sections.

Lemma 1. For every oj ∈ O, there exists an index i( 1 ≤ i ≤ n ) satisfying
r(Bi) ≤ r(oj) < d(Bi).

Proof. The lemma directly follows by construction of ES. �
By Lemma 1, we divide all the intervals in O into n subsets O = {S1, S2, · · · , Sn}
such that Si = {oj |r(Bi) ≤ r(oj) < d(Bi)} (1 ≤ i ≤ n). Note that some Si may
be empty. For any Si, we have the following lemma.

Lemma 2. For every oj ∈ Si, we have r(Bi) ≤ r(oj) and d(oj) <
md(Bi)−r(oj)

m−1 .

Proof. The first conclusion is straightforward by the definition of Si. For the
second conclusion, assume otherwise that d(oj) ≥ md(Bi)−r(oj)

m−1 , which is equiv-

alent to d(Bi) ≤ d(oj) − d(oj)−r(oj)
m = d(oj) − p(oj)

m . This implies that ES can
satisfy oj within [d(Bi), d(oj)), contradicting that oj ∈ O = O/E. Hence, it is a
contradiction to the assumption. The Lemma follows. �
Let |Si| be the total length of the intervals in Si, i.e. |Si| =

∑
oj∈Si

p(oj), |Bi|
be that of the intervals processed by ES within Bi. By construction of ES, we
have |Bi| = m(d(Bi)− r(Bi)).

|Si| =
∑

oj∈Si

(d(oj)− r(oj))

≤ m

(
max
oj∈Si

d(oj)− min
oj∈Si

r(oj)
)

< m

(
m

m− 1
d(Bi)− r(oj)

m− 1
− r(Bi)

)
≤ m2

m− 1
(d(Bi)− r(Bi))

=
m

m− 1
|Bi|

where the first inequality holds since there are at most m machines being busy
during [minoj∈Si r(oj), maxoj∈Si d(oj)), and both the second and third inequal-
ities are due to Lemma 2. Hence, the ratio between the profit of OPT and that
of ES for Γ can be bounded below.

|O|
|E| ≤

|E|+ |O|
|E| = 1 +

∑n
i=1 |Si|∑n
i=1 |Bi| < 1 +

m

m− 1
=

2m− 1
m− 1

.

Based on the above analysis, we have the following theorem.
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Theorem 3. In the model Pm|online, ri, split, di = ri + pi|Prof , ES has a
competitive ratio of 2m−1

m−1 where m ≥ 3.

In the rest of this section, we present an instance σ = (J0, J1, . . . , Jm) to show
that for the case with m ≥ 3, the competitive analysis of ES is tight. That is,
there exists an instance σ such that |OPT (σ)|

|ES(σ)| = 2m−1
m−1 .

The instance is illustrated in Fig.1(a). Let t3 = 1 and t1 be an arbitrarily
small positive real number. Let t2 = t3−t1−mε

m−1 and t′ = t3
m − ε where ε → 0+.

The first interval J0 with length p0 = t3 arrives at time 0, and the rest m intervals
J1, . . . , Jm with uniform length p1 = t2 − t1 arrive at time t1. It can be verified
that t′ = t2 − p1

m . Since p1 = t2 − t1 = (p0+p1
m − ε) − t1, we have by algebraic

calculation that
p1 =

1
m− 1

p0 − m

m− 1
(ε + t1).

ES starts J0 at time 0 and completes it at time p0
m = t′ + ε > t′ = t2 − p1

m .
Thus ES cannot catch the deadline of any other intervals after completing J0
(See Fig.1(b)), implying that |ES(σ)| = p0. OPT will first start J1, . . . , Jm at
time t1 on the m machines respectively, and then satisfy J0 within [t2, t3) since
t2 + p0/m ≤ t3 due to theorem condition m ≥ 3 (See Fig.1(c)). That is, OPT
complete all the m + 1 intervals with a total profit |OPT (σ)| = p0 + mp1.

|OPT (σ)|
|ES(σ)| =

p0 + mp1

p0
=

p0 + m[ 1
m−1p0 − m

m−1 (ε + t1)]
p0

=
2m− 1
m− 1

− m2(ε + t1)
(m− 1)p0

As (ε+t1)→ 0, |OPT (σ)|
|ES(σ)| → 2m−1

m−1 . So, the competitive analysis of ES in Theorem
3 is tight.

(a) The interval input sequence

J0

J1

t1 t’ t3t2

J2

Jm

0

(b) ES satisfies a single interval J0

J0,m

J1

t1 t’ t2

Jm

0

J0,1

(c) OPT satisfies all the m+1 intervals

J0,m

J1

t1 t’ t2

Jm

0

J0,1

t3

Fig. 1. An illusive instance for tight analysis of ES algorithm

5 A Lower Bound

Theorem 4. In the model Pm|online, ri, split, di = ri + pi|Prof with m ≥ 2,
no deterministic algorithm has a competitive ratio less than m

m−1 .
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Proof. Similar to the proof of Theorem 1, it is sufficient to construct an interval
input instance σ = {J0, J1, . . .} to make any online deterministic algorithm A
behave poorly and be at best m

m−1 -competitive. The number of intervals in σ
depends on the behavior of A. The first interval J0 with length p0 = 1 arrives
at time 0. A may have two selections.

Case1. A rejects J0. No more intervals arrive later. OPT will complete J0
with a profit of p0 while A gains no profit, implying that A loses.

Case2. A accepts J0. At time r1 < 1/m, there come m uniform intervals
with sufficiently large length p1. For J0, A may split the interval into several
pieces and arrange those pieces on some machines respectively. Let Ci(J0) be
the completion time of the piece processed on the ith machine Mi. If some Mi

does not process Ji, set Ci(J0) = 0. Let C0 = maxCi(J0) (1 ≤ i ≤ m). We
observe that C0 ≥ 1/m otherwise J0 cannot be satisfied. Since r1 < 1/m ≤ C0,
A completes at most m − 1 out of the m intervals arriving at time r1. So,
|A(σ)|=p0 +(m− 1)p1 = 1+(m− 1)p1. OPT will reject J0 and complete all the
last m intervals, implying a profit of |OPT (σ)| = mp1. As p1 →∞,

|OPT (σ)|
|A(σ)| ≥ mp1

1 + (m− 1)p1
→ m

m− 1
.

The theorem follows. �
By Theorems 2 and 4, ES is optimal in competitiveness for the case m = 2.

6 Conclusion

This work investigated interval scheduling on m identical machines to maximize
the total length of satisfied intervals. We focused on the case with splitting
intervals. We first showed that non-split algorithms are not competitive if the
ratio of longest to shortest interval length is unbounded. We then proposed
a splitting algorithm which has a competitive ratio related to the number of
machines and is optimal as there are only two identical machines. For the general
case with m ≥ 3 machines, it is left a gap between upper and lower bounds that
needs to be closed in further work.
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Salesman Problem in Multi-criteria Analysis
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Abstract. The paper proposes an extended tabu search algorithm for
the traveling salesman problem (TSP) with fuzzy edge weights. The algo-
rithm considers three important fuzzy ranking criteria including expected
value, optimistic value and pessimistic value, and performs a three-stage
search towards the Pareto front, involving a preferred criterion at each
stage. Simulations demonstrate that our approach can produce a set of
near optimal solutions for fuzzy TSP instances with up to 750 uniformly
randomly generated nodes.

Keywords: Tabu search, traveling salesman problem, fuzzy optimiza-
tion, multi-criteria decision making.

1 Introduction

The traveling salesman problem (TSP) is one of the most well-known combina-
torial optimization problems, and many seemingly different managerial problems
such as vehicle routing, job scheduling, network design, etc., can be modeled as
TSP and its variants [1]. Given a weighted graph G = 〈V, E, w〉 with n nodes,
the problem is to find a Hamiltonian cycle (i.e., a cycle that starts from a node
and passes through every other node exactly once) of minimum weight, which
can be mathematically stated as follows:

min
∑
i,j

wijxij (1)

s.t.
n∑

i=1

xij = 1, j = 1, 2, ..., n (2)

n∑
j=1

xij = 1, i = 1, 2, ..., n (3)

∑
i,j∈S

xij ≤ |S| − 1, 2 ≤ |S| ≤ n− 2, S ⊂ {1, 2, ..., n} (4)

xij ∈ {0, 1}, i, j = 1, 2, ..., n, i �= j (5)

In the classical TSP the edge weight of the graph is considered to be exact.
However, in practice, the weight may represent distance, time, cost, transmission

B. Chen (Ed.): AAIM 2010, LNCS 6124, pp. 314–324, 2010.
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power, etc, which are always referred to as a fuzzy set. Since fuzzy numbers
are represented by possibility distributions, it is difficult to determine clearly
whether one fuzzy number is larger or smaller than the other [2], which improves
the difficulty of problem-solving. For example, given two fuzzy path weights
w1 and w2, the minimum of them does not need to be either w1 or w2. A
straightforward idea is to transform the fuzzy numbers into real numbers, but
there is a variety of measures or ranking methods for fuzzy numbers, and in most
cases, a single measure is insufficient to support comprehensive decision-making.
When multiple criteria are involved, there is no natural notion of a distinct
optimal solution and we have to be content with non-dominated solutions, i.e.,
solutions that are not dominated by any other solution in all objectives.

The paper presents a novel approach to the fuzzy traveling salesman problem
(FTSP) base on tabu search [3,4], a meta-heuristic search that repeatedly moves
from a current solution to the best of neighboring solutions while avoiding being
trapped in local optima by keeping a tabu list of forbidden moves. In this paper
we take into consideration three important fuzzy measures, namely expected
value, optimistic value and pessimistic value, and extend the tabu search method
to generate a set of near optimal solutions with a distinct preference ranking of
the objectives. Our approach has the following advantages:

– It guides the search towards the Pareto-optimal front, giving preference to
the expected objective functions and at the same time providing optimistic
and pessimistic alternatives for the decision maker.

– The algorithm is a simple extension of the basic tabu search algorithm and
thus is simple to implement, but more advanced features of tabu search can
be easily integrated.

– Although dealing with a multi-objective version of a typical NP -hard prob-
lem, the algorithm performs well for reasonably large-size problem instances,
as suggested by the experimental result.

– The proposed metaheuristic is general-purpose and can be applied to a large
variety of other fuzzy optimization problems.

1.1 Related Work

The general TSP is known to be NP -hard and APX-hard and thus requires
effective heuristics and metaheuristics (e.g., genetic algorithm [5,6], simulated
annealing [7], tabu search [8,9]) to obtain good solutions. In their survey con-
ducted in 2008, Basu and Ghosh [10] found that tabu search is possibly the most
widely-used and successful metaheuristic procedure for the TSP and its related
problems in the literature, but most of the research deals only with problem
instances with less than 500 nodes and only three papers address the instances
with more than 1000 nodes (although few complicated extensions of tabu search,
e.g., [11], have been tested on instances with up to 85,900 nodes).

In the early literature, uncertainties have been introduced into TSP with prob-
ability distribution functions and stochastic models [12,13,14], but static formu-
lations only considering expected values of parameters have inherent limitations,
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while dynamic formulations such as Markov Process incurs high computational
costs. In real-world decision analysis, fuzzy numbers are much more convenient
to describe the performance of alternatives and thus more frequently employed
in modeling combinatorial optimization problems.

Fuzzy optimization also appears in literature with multiple criteria, and a
multi-objective Pareto front can be interpreted as the solution for a fuzzy prob-
lem [15]. Therefore, Ulungu and Teghem [16] suggested to use metaheuristics in-
cluding evolutionary algorithms and tabu search to handle multi-objective prob-
lems more effectively than traditional programming methods. During the last
decades, evolutionary algorithms have been a primary focus of multi-objective
TSP approaches [17,18,19,20], but the experimental results reported restrict to
relatively small size problems. On the other hand, most tabu search methods for
multi-objective optimization are based on the combination of objectives, which
cannot identify all points in a trade-off surface of non-convex solution spaces
[21]. The first tabu search approach that evolves a set of solutions in parallel
was developed by Hansen [22], which selects an active objective in each iteration
based on the Tchebycheff metric. Under a similar scheme, Kulturel-Konak et al
[23] employed a multinomial probability mass function to eliminate the require-
ments of weighting and scaling, while Alves and Climaco [24] use an interactive
method that requires the decision-maker to specify the regions of major interest.

2 Basic Tabu Search

In this section we introduce a basic tabu search procedure for the TSP, the
notation of which is given below.

Notation
x current solution
x∗ the best solution seen so far
N(x) neighborhood of solution x
w(x) objective value of solution x
T tabu list
λ tabu tenure
k upper limit of the number of iterations
l upper limit of the number of non-improving iterations

The search starts from an arbitrary Hamiltonian cycle x. A neighborhood to
x is defined as any solution obtained by a pairwise exchange of any two nodes
in x. At each step of the iterative procedure, the move to the best neighboring
solution which is not tabu is chosen. However, if a move results in a solution
better than the current best one, it is allowed even if it is tabu (which is called
as the aspiration criterion). In order to prevent from cycling in a small set of
recently visited solutions, the tabu list keeps the number for which a given pair
of nodes is prohibited from exchange: after a pairwise exchange of node i and j,
the corresponding number T (i, j) is set to λ, while any other T (i′, j′) decreases
one. The search terminates if the number of iterations reaches k, or the solution
is not improved for l iterations. The pseudo-code of the algorithm is as follows.
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ALGORITHM: TS[
input: G = 〈V, E, w〉, λ, k, l

]
[output: x∗]
//Initialization:
let x be an arbitrary feasible solution;
x∗ ← x, k ← 0, l ← 0;
Initialize the tabu list T ;
//Iterative Moves:
while(k < k) do

N ← {y ∈ N(x)|T (x, y) ≤ 0 ∨ w(y) < w(x∗)};
if N = ∅ then break;
x′ ← min(N);
if (w(x′) < w(x∗)) then x∗ ← x′, l ← 0;
else l ← l + 1;
if (l = l) then break;
Update T with (x, x′);
x ← x′, k ← k + 1;

endwhile;
return x∗;

Algorithm 1. The basic tabu search algorithm

3 An Extended Tabu Search for FTSP

3.1 Fuzzy Ranking Methods Used

For fuzzy numbers, there is a variety of measures developed ranging from the
trivial to the complex. Zadeh [25] first proposed the concept of possibility mea-
sure, but it is not self-dual; In [26] Liu and Liu defined a self-dual credibility
measure and refined it in [27]; In recent years the concepts of centroid have been
widely used for developing ranking index (e.g. [28,29,30,31]). Chen and Hwang
[32] classified the ranking methods of fuzzy numbers into four major classes in-
cluding preference relation, fuzzy mean and spread, fuzzy scoring, and linguistic
expression. In this paper, we use the credibility measure from [27] that satisfies
normality, monotonicity, self-duality, and maximality. Let ξ be a fuzzy variable
with membership function μ; then for any set B of real numbers, we have:

Cr{ξ ∈ B} = (sup
x∈B

μ(x) + 1− sup
x∈BC

μ(x))/2 (6)

Thus the expected value, α-optimistic value and α-pessimistic value (α ∈ (0, 1])
of ξ are respectively defined by Equation (7)∼(9):

E(ξ) =
∫ ∞

0
Cr{ξ ≥ r}dr −

∫ 0

−∞
Cr{ξ ≤ r}dr (7)

ξsup(α) = sup{r|Cr{ξ ≥ r} ≥ α} (8)
ξinf(α) = inf{r|Cr{ξ ≤ r} ≥ α} (9)
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For example, let ξ = (l, m, u) be a triangular fuzzy variable, then we have:

E(ξ) = (l + 2m + u)/4 (10)

ξsup(α) =
{

2αm + (1− 2α)u if α ≤ 0.5
(2α− 1)l + (2 − 2α)m else (11)

ξinf(α) =
{

(1− 2α)l + 2αm if α ≤ 0.5
(2− 2α)m + (2α− 1)u else (12)

3.2 Algorithmic Framework

For the problem with fuzzy weights, it is difficult to exactly determine the op-
timum from a set of candidate solutions, and hence a comprehensive approach
should take more than one ranking criteria into consideration. Given a set of
ranking method f1, f2, ...fm, a fuzzy number x is said to be dominated by an-
other number y if fi(y) ≤ fi(x) for all i and fi(y) < fi(x) for at least one i. For an
optimization problem with fuzzy objectives, if a solution’s objective value is not
dominated by that of any other solution, it is called a non-dominated solution.
Thus, the essential goal becomes to find a set of non-dominated solutions.

Our extended tabu search algorithm for FTSP considers three ranking criteria:
expected value, optimistic value and pessimistic value. The algorithm keeps a
set Q of non-dominated solutions seen so far and performs a three-stage search,
each dealing with a different ranking criterion:

Stage 1. Starting from a feasible solution, repeatedly searches the neighborhood
N(x), updates Q with non-dominated solutions, and moves to a solution
with the best expected value in N(x).

Stage 2. Turns to a solution with the best optimistic value seen so far, restarts
the neighborhood search and non-dominated solution updates, moving
to a solution with the best optimistic value in N(x) at each step.

Stage 3. Turns to a solution with the best pessimistic value seen so far, restarts
the neighborhood search and non-dominated solution updates, moving
to a solution with the best pessimistic value in N(x) at each step.

The proposed stage arrangement is for general decision-making, but not manda-
tory. In practice, the most concerned ranking criterion is selected in the first
stage, and the least concerned one in the last stage. For example, for a pessimistic
decision-maker the ranking criteria can be used in the order of pessimistic, ex-
pected, and optimistic value.

For the sake of simplicity, we use E(x) rather than E(w(x)) to denote the
expect value of the objective value of solution x, and so are Oα(x) and Pα(x)
for the optimistic value and pessimistic value at confident level α respectively.
Other notation used is given below, and the extended tabu search procedure is
shown in Algorithm 2.
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Notation
x ≺ y x dominates y
x � y x is dominated by y
x∗

E, x∗
O, x∗

P known best expected, optimistic, pessimistic solutions, resp.
Q set of non-dominated (ND) solutions
NDUpdate(Q,y) remove any x � y from Q, and add y to Q if �x ∈ Q : y′ ≺ y
α confidence level

3.3 Parameter Settings and Data Structure Implementation

The settings of tabu tenure λ, upper limit k of total iterations and upper limit l
of non-improving iterations have great impacts on the algorithm efficiency and
the solution qualities. Obviously, large values of k and l contribute to the solution
qualities but degrade the algorithm efficiency. As previous comparative studies
suggest, tabu tenures varying based on problem instance sizes generally give
better solutions than fixed tabu tenures, and most of them range from n/32 to
3n/2 for TSP with n nodes [10,33]. In our framework, λ is suggested to be about√

n and l to be
√

n/2, whereas k can be selected from the range 10n ∼ 100n
based on the user’s preference.

The data structure implementation for solution set Q also has a great impact
on algorithm performance, especially for large-size problems. The most straight-
forward way is to use a linear list, for which a candidate solution x has to be
tested against each y ∈ Q in the worst case. Habenicht [34] employed the Quad-
tree structure for identifying non-dominated criterion vectors with much fewer
comparisons, and Sun and Steuer [35,36] improved the structure to achieve more
computational and storage savings. Here we implement our algorithm with the
Quad-tree structure in [35], which is mostly suitable for problems with small sets
of criteria and probably large sets of non-dominated solutions.

Thus in each iteration of the search, there are n(n−1)/2 neighboring solutions
to be tested on three criteria, and the run time complexity for non-dominated
solution update is O(3

2n2|Q|). However, previous computational results show
that the average number of pairwise comparisons on Quad tree can be less than
one tenth of linear list.

4 Experimental Results

The presented algorithm ExTS has been test on a set randomly generated sym-
metric FTSP instances, in which the weight are represented as fuzzy triangular
numbers. Three single objective optimization algorithms, namely TS-exp, TS-
opt and TS-pes, which perform basic tabu search for optimal expected value,
optimistic value and pessimistic value respectively based on Algorithm 1, are
used for evaluating the quality of non-dominated solutions. For comparison, we
also implement Hansen’s MOTS algorithm [22], where FTSP is considered as a
three objective optimization problems. The basic parameter values are given in
Table 1.
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ALGORITHM: ExTS[
input: G = 〈V, E, w〉, α, λ, k, l

]
[output: Q]
//Initialization:
let x be an arbitrary feasible solution;
x∗

E ← x, x∗
O ← x, x∗

P ← x;
Q ← ∅, N ← ∅, k ← 0, l ← 0;
Initialize the tabu list T ;
//Stage 1:
while(k < k) do

N ← {y ∈ N(x)|T (x, y) ≤ 0 ∨ (�y′ ∈ Q : y′ ≺ y)};
if N = ∅ then break;
x′ ← minE(N);
if (E(x′) < E(x∗

E)) then x∗
E ← x′;

else if (E(x) ≤ E(x′) then l ← l + 1;
if (l = l) then break;
foreach y ∈ N : NDUpdate(Q, y);
x∗

O ← minO(x∗
O , minO(N)), x∗

P ← minP (x∗
P , minP (N));

Update T with (x, x′);
x ← x′, k ← k + 1;

endwhile;
//Stage 2:
x ← x∗

O, k ← 0, l ← 0;
let T be the tab list with x∗

O;

while(k < k) do
N ← {y ∈ N(x)|T (x, y) ≤ 0 ∨ (�y′ ∈ Q : y′ ≺ y)};
if N = ∅ then break;
x′ ← minO(N);
if (Oα(x′) < Oα(x∗

O)) then x∗
O ← x′;

else if (Oα(x) ≤ Oα(x′) then l ← l + 1;
if (l = l) then break;
foreach y ∈ N : NDUpdate(Q, y);
x∗

P ← minP (x∗
P , minP (N));

Update T with (x, x′);
x ← x′, k ← k + 1;

endwhile;
//Stage 3:

x ← x∗
P , k ← 0, l ← 0;

let T be the tab list with x∗
P ;

while(k < k) do
N ← {y ∈ N(x)|T (x, y) ≤ 0 ∨ (�y′ ∈ Q : y′ ≺ y)};
if N = ∅ then break;

x′ ← minP (N);
if (Pα(x′) < Pα(x∗

P )) then x∗
P ← x′;

else if (Pα(x) ≤ Pα(x′) then l ← l + 1;
if (l = l) then break;
foreach y ∈ N : NDUpdate(Q, y);
Update T with (x, x′);
x ← x′, k ← k + 1;

endwhile;

return Q;

Algorithm 2. The extended tabu search algorithm for FTSP
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In addition to the CPU time, the performance measures of the MOTS and
ExTS algorithms also include:

– |Q|: the number of non-dominated solutions found.
– δE = (Eb − E)/Eb × 100%: where Eb is the best expected value found by

TS-exp and E is that found by MOTS/ExTS.
– δO = (Ob − O)/Ob × 100%: where Ob is the best optimistic value found by

TS-opt and O is that found by MOTS/ExTS.
– δP = (Pb − E)/Pb × 100%: where Pb is the best pessimistic value found by

TS-pes and P is that found by MOTS/ExTS.

The experiments are conducted on a 2.6 GHz AMD Athlon64 X2 Computer. The
summary of computational costs are presented in Table 2, which demonstrates
that, although generating a set of non-dominated FTSP solutions is rather harder
than obtaining a single solution, our extended algorithm can effectively tackle
the FTSP instances with up to 750 nodes. In comparison, MOTS takes much
more CPU time on the same instances and is hard to deal with the instances
with more than 300 nodes.

The comparison of solution qualities between MOTS and ExTS are presented
in Table 3. For both the algorithms, the number of non-dominated solutions
|Q| is about one tenth of the problem size. However, for large size problems |Q|
usually reaches its max size limit, which indicates that the size of the real Pareto
set may be greater than the limit.

Table 1. Parameter values used in the algorithms

Algorithm λ α k l max size of Q

TS-exp/ TS-opt/ TS-pes
√

n 0.8 60n
√

n/2

MOTS/ExTS
√

n 0.8 20n
√

n/2 n/10 (10 if n < 100)

Table 2. The CPU time (in seconds) consumed by the algorithms

n TS-exp TS-opt TS-pes MOTS ExTS

10 0.00 0.00 0.00 0.02 0.01
20 0.01 0.01 0.01 0.03 0.03
50 0.10 0.12 0.10 0.65 0.42
100 0.79 0.76 0.71 7.31 2.53
150 2.26 2.60 2.69 137.30 12.15
300 20.70 20.10 22.45 10108.33 112.32
450 84.23 97.07 96.52 736.42
600 139.87 151.57 145.16 2881.97
750 510.71 547.25 554.68 12392.08
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Table 3. The comparison of solution qualities between MOTS and ExTS

n MOTS ExTS
|Q| δE δO δP |Q| δE δO δP

10 1 0 0 0 1 0 0 0
20 2 0 0 0 2 0 1.37% 0
50 6 1.12% 0.50% 0 5 1.76% 0.50% 2.52%
100 10 3.67% 2.54% 3.10% 10 1.72% -0.07% 2.65%
150 15 3.88% 4.86% -0.85% 9 1.45% -1.50% -2.11%
300 30 2.72% -2.03% 3.79% 26 1.00% -1.50% 0.79%
450 45 45 0.84% -7.82% -5.23%
600 60 60 0.66% -13.83% 0.80%
750 75 75 0.97% -5.09% -20.25%

5 Concluding Remarks

Tabu search has been demonstrated to be a successful optimization method for
a wide range of single-objective optimization problems, but its applications in
fuzzy optimization and multi-criteria analysis has not been deeply studied. The
paper presents an FTSP algorithm that performs a three-stage tabu search,
involving a preferred fuzzy ranking criterion at each stage. Simulations demon-
strate that our approach effectively tackles the FTSP instances with up to 750
randomly generated nodes.

Our algorithm is conceptually simple and can be easily extended by integrat-
ing more tabu search features studied in the literature, e.g., k-opt moves [8], dy-
namic tabu tenures [37], adaptive aspiration levels [38], to improve the algorithm
performance and solution quality. More importantly, the proposed metaheuristic
is general-purpose, which we believe can be applied to a large variety of fuzzy
optimization problems. Future work also includes the parallel implementation of
the extended tabu search.
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Abstract. Given two genomic maps G and H represented by a sequence
of n gene markers, a strip (syntenic block) is a sequence of distinct mark-
ers of length at least two which appear as subsequences in the input maps,
either directly or in reversed and negated form. The problem Maximal
Strip Recovery (MSR) is to find two subsequences G′ and H ′ of G and
H , respectively, such that the total length of disjoint strips in G′ and H ′

is maximized (i.e., conversely, the complement of the problem CMSR is
to minimize the number of markers deleted to have a feasible solution).
Recently, both MSR and its complement are shown to be NP-complete.
A factor-4 approximation is known for the MSR problem and an FPT
algorithm is known for the CMSR problem which runs in O(23.61kn+n2)
time (where k is the minimum number of markers deleted). We show in
this paper that there is a factor-3 asymptotic approximation for CMSR
and there is an FPT algorithm which runs in O(3kn+n2) time for CMSR,
significantly improving the previous bound.

1 Introduction

In comparative genomics, one of the first steps is to decompose two given
genomes into syntenic blocks—segments of chromosomes which are deemed to
be homologous in the two input genomes. In the past, many methods have been
proposed, but they are very vulnerable to ambiguities and errors. In the past
several years, a method was proposed to eliminate noise and ambiguities in ge-
nomic maps, through handling a problem called Maximal Strip Recovery (MSR)
(see below for the formal definition) [5,12]. In [4], a factor-4 polynomial-time
approximation algorithm was proposed for the problem, and several close vari-
ants of the problem were shown to be intractable. In [11], both MSR and its
complement CMSR was shown to be NP-complete, and an O(23.61kn + n2) time
(where k is the minimum number of markers deleted) FPT algorithm was also
proposed for CMSR. Most recently, MSR was shown to be APX-hard [2,8] and
CMSR was also shown to be APX-hard [9].

In this paper, we focus on solving the CMSR problem with both exact and ap-
proximate solutions. We show, with a bounded search tree method, that CMSR
can be solved in O(3kn + n2) time. For the approximation part, we present
the first (asymptotic) approximation algorithm for CMSR, with an asymptotic

B. Chen (Ed.): AAIM 2010, LNCS 6124, pp. 325–333, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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approximation factor of 3. In the following, we formally define the problems and
give a more detailed sketch of the development of the problems.

In comparative genomics, a genomic map is represented by a sequence of
gene markers. A gene marker can appear in several different genomic maps, in
either positive or negative form. A strip (syntenic block) is a sequence of distinct
markers that appears as subsequences in two or more maps, either directly or
in reversed and negated form. Given two genomic maps G and H , the problem
Maximal Strip Recovery (MSR) [5,12] is to find two subsequences G′ and H ′

of G and H , respectively, such that the total length of disjoint strips in G′

and H ′ is maximized. Intuitively, those gene markers not included in G′ and
H ′ are noise and ambiguities. The problem of deleting the minimum number of
noise and ambiguous markers to have a feasible solution (i.e., every remaining
marker must be in some strip) is exactly the complement of MSR, which will be
abbreviated as CMSR.

We give a precise formulation of the generalized problem MSR: Given two
signed permutations (genomic maps) Gi of 〈1, . . . , n〉, 1 ≤ i ≤ 2, find q se-
quences (strips) Sj of length at least two, and find two signed permutations πi

of 〈1, . . . , q〉, such that each sequence G�
i = Sπi(1) . . . Sπi(q) (here S−j denotes the

reversed and negated sequence of Sj) is a subsequence of Gi, and the total length
of the strips Sj is maximized. Note that we can easily generalize the problem to
handle d > 2 input permutations, or to MSR-d, as in [4,11]. In this paper, we
will focus only on the complement of MSR, or the CMSR problem. We refer to
Fig. 1 for an example. In this example, each integer represents a marker.

G1 = 〈1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12〉
G2 = 〈−9,−4,−7,−6, 8, 1, 3, 2,−12,−11,−10,−5〉
S1 = 〈1, 2〉
S2 = 〈6, 7, 9〉
S3 = 〈10, 11, 12〉
π1 = 〈1, 2, 3〉
π2 = 〈−2, 1,−3〉
G�

1 = 〈1, 2, 6, 7, 9, 10, 11, 12〉
G�

2 = 〈−9,−7,−6, 1, 2,−12,−11,−10〉

Fig. 1. An example for the problem MSR and CMSR. MSR has a solution size of eight.
CMSR has a solution size of four: the deleted markers are 3,4,5 and 8.

In 2007, a heuristic based on Maximum Clique (and its complement Maximum
Independent Set) was proposed for the problem MSR [5,12], which does not
guarantee finding the optimal solution. In [4], this heuristic was modified to
achieve a factor-4 approximation for MSR. This was done by converting the
problem to computing the maximal independent set in t-interval graphs, which
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admit a factor-2t approximation [1]. Not surprisingly, recently MSR was shown
to be NP-complete (which implies that CMSR is also NP-complete) [11] and
APX-hard [2,8]. Bulteau et al. also introduced a parameter called gap, which
is the number of non-selected markers between two markers in a valid strip [2].
They showed that δ-gap-MSR is NP-complete for any δ ≥ 1 and APX-hard for
any δ ≥ 2. They also presented a factor-1.8 approximation for δ = 1 and raised
several interesting questions regarding the approximability of the problem for
different values of δ.

For CMSR, an O(23.61kn + n2) time (where k is the minimum number of
markers deleted) FPT algorithm was known [11]. In this paper, we improve this
running time to O(3kn+n2). Before this work, there has been no approximation
result known for CMSR. In this paper, we present the first polynomial-time
approximation algorithm for CMSR, with a factor of 3. Jiang proved recently
that CMSR is APX-hard [9], indicating unlikely a PTAS for CMSR.

This paper is organized as follows. In Section 2, we present a new fixed-
parameter algorithm for CMSR. In Section 3, we present a factor-3 asymptotic
approximation for CMSR. Finally in Section 4, we conclude the paper with a
few open questions.

2 A Bounded Search Tree Algorithm for CMSR

In this section, we consider solving CMSR with an FPT algorithm. Basically,
an FPT algorithm for an optimization problem Π with optimal solution value
k is an algorithm which solves the problem in O(f(k)nc) time, where f is any
function only on k, n is the input size and c is some fixed constant not related to
k. More details on FPT algorithms can be found in the monograph by Downey
and Fellows [6].

We first review the following lemma which was proved (and revised) in [11,7].

Lemma 1. Before any marker is deleted, if xyzw or −w− z− y−x appears in
both G1 and G2 as maximal common substrings (or, if xyzw appears in G1 and
−w− z− y− x appears in G2, and vice versa), then there is an optimal solution
for MSR which has xyzw or −w − z − y − x as a strip.

An example for the above lemma is as follows: G1 = cdaxyzwbef and G2 =
e − w − z − y − xfcdab. xyzw appears in G1, −w − z − y − x appears in G2
(in signed reversal order). So we have one optimal solution G�

1 = cdxyzw and
G�

2 = −w − z − y − xcd. On the other hand, the optimal solution is not unique
as we can select G+

1 = cdabef and G+
2 = efcdab. It should be noted that the

above lemma also holds when a strip is of length greater than four.
Let Σ be the alphabet for the input maps G1 and G2. In [11], the above

lemma was applied to obtain a simple weak kernelization procedure, which is
incomplete [7]. For completeness, we sketch the complete version below. Note
that the weak kernel definition is new. For a problem Π in NP, Π has a kernel
iff it has a weak kernel [7]. (In short, weak kernel refers to the search space where
a solution can be directly or indirectly searched or drawn.)
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Before any marker is deleted, we can identify all maximal common substrings
of length at least one (possibly in negated and reversed form, which will also
be called maximal common substrings for convenience) of G1 and G2. We also
call a length-1 maximal common substring (which is a letter) an isolate. Two
substrings are called neighbors if there is no other string in between them.

Lemma 1 holds for maximal common substrings of length greater than 4. In
fact, similar to that, we can show that a length-3 maximal common substring of
G1 and G2 which has at most 3 isolated neighbors in G1 and G2 can be a strip
in some optimal solution of MSR, etc. The weak kernelization procedure is as
follows.

1. Without deleting any gene marker in G1 and G2, identify a set of maximal
common substrings of length at least four, a set of maximal common sub-
strings of length three which has at most 3 isolated neighbors, and a set
of maximal common substrings of length two which has at most 2 isolated
neighbors, from the two sequences G1 and G2.

2. For each common substring identified, change it to a new letter in Σ1, with
Σ1 ∩Σ = ∅. Let the resulting sequences be G′

1, G
′
2.

The correctness of this procedure follows from the fact that if a maximal common
substring S of length-s in G1 and G2 has t isolated neighbors and t ≤ s, then
S is a strip in some optimal solution of MSR. (If not, then we could delete the
t isolated neighbors of S, making S a strip and hence obtaining a solution at
least as good as the previous one.) This implies that we can focus on a special
kind of solution for CMSR in which the maximum number of isolated letters are
deleted.

Let Σ1 be the set of new letters used in the weak kernelization process, with
Σ1 ∩ Σ = ∅. The two lemmas for obtaining the final result are: (1) There is an
optimal CMSR solution of size k for G1 and G2 if and only if the solution can
be obtained by deleting k markers in Σ from G′

1 and G′
2 respectively. (2) In G′

1
(resp. G′

2), there are at most 5k letters (markers) in Σ [11]. To see a slightly
revised proof of the last lemma (due to the revised weak kernelization procedure),
let ki be number of length-i common substrings deleted in the optimal CMSR
solution. Consequently we have

k = k1 + 2k2 + 3k3.

The size of the weak kernel is the number of letters that can possibly be deleted,
i.e., the number of letters in Σ. Let S be a length-s maximal common substring
to be deleted. If s = 3, then S has at most 4 isolated neighbors and we have 7
associated letters for S. If s = 2, then S has 3 or 4 isolated neighbors; and we
can have 6 associated letters for S (when we have 4 isolated neighbors), 7 or 8
(three isolated neighbors and another neighbor of length-2 or length-3). Now let
us consider the remaining letters which must be all isolates. Let x be a marker
to be deleted, let it appear in G′

1 as · · · axb · · · cd · · · and let it appear in G′
2

as · · · cxd · · · ab · · ·. Clearly, in this example x is associated with {x, a, b, c, d}. In
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other words, for each isolate, we have 5 associated letters. Putting these together,
the number of letters in Σ is

5k1 + 8k2 + 7k3 ≤ 5k1 + 10k2 + 15k3 = 5k.

Let Σ1 be the set of new letters used in the weak kernelization process, with
Σ1∩Σ = ∅. It is easily seen that there is an optimal CMSR solution of size k for
G1 and G2 if and only if the solution can be obtained by deleting k markers in Σ
from G′

1 and G′
2 respectively. Then we can easily find the exact solution or report

that such a solution does not exist by checking
(

5k
k

)
≈ 23.61k possible solutions.

This presents an FPT algorithm for CMSR which runs in O(23.61kn + n2) time
[11].

To improve the running time of this algorithm, we first try to avoid enu-

merating
(

5k
k

)
≈ 23.61k solutions. We need a few new lemmas. In G′

1, G
′
2 we

call any maximal continuous block (or substring) only made of letters in Σ a
pseudo-block.

An example regarding the pseudo-block concept is as follows: G1 = abcde −
f − w − z − y − x and G2 = bcdef − axyzw. After the weak kernelization step,
G′

1 = a bcde − f -w-z-y-x and G′
2 = bcde f − a xyzw . There are two pseudo-

blocks in G′
1: a and −f . There is one pseudo-block in G′

2: f−a. We now proceed
to prove the following lemmas.

Lemma 2. In G′
1 (resp. G′

2), there are at most k pseudo-blocks. If there is a
pseudo-block of length one (i.e., an isolated letter z in Σ), then z must be deleted
to obtain an optimal solution for the original CMSR problem for G1 and G2.

Lemma 3. In any pseudo-block in G′
1, if any 2-substring xy (i.e., two consecu-

tive letters xy in Σ) is retained for an optimal solution then all the markers in
Σ, between x and y, and within the same pseudo-block in G′

2, must be deleted to
obtain an optimal solution for the original CMSR problem for G1 and G2.

Proof. In G′
2, if some marker in Σ between x and y is not deleted, then xy

cannot be a strip in the final solution. A contradiction.
On the other hand, notice that if x and y in G′

2 belong to different pseudo-
blocks, then by a similar argument for Lemma 1, we can simply delete x, y in
both G′

1, G
′
2 to obtain an optimal solution. �

The above lemmas imply a bounded search tree algorithm for CMSR. The idea is
that one can start searching at any 2-substring xy within a pseudo-block. Either
both x, y are deleted, or one of x and y is deleted, or xy is kept (then following
Lemma 3, at least one other marker would be deleted). We have the following
bounded search tree algorithm.

1. Without deleting any gene marker in G1 and G2, identify a set of maximal
common substrings of length at least four, a set of maximal common sub-
strings of length three which has at most 3 isolated neighbors, and a set
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of maximal common substrings of length two which has at most 2 isolated
neighbors, from the two sequences G1 and G2.

2. For each substring identified, change it to a new letter in Σ1, with Σ1∩Σ = ∅.
Let the resulting sequences be G′

1, G
′
2.

3. G”
1 ← G′

1, G
”
2 ← G′

2. Loop over the following steps until exactly k letters in
Σ have been deleted with a valid CMSR solution computed, or report that
no such solution exists.

4. Identify all pseudo-blocks in G”
1, G

”
2. Delete any pseudo-block with size one.

5. Start from the leftmost pseudo-block in G”
1 and let the first two letters of

the pseudo-block be xy. Perform an exhaustive search with 4 possibilities:
(I) only x is deleted, (II) only y is deleted, (III) both x and y are deleted,
and (IV) xy is kept as a strip but all letters in Σ between x and y and
within the same pseudo-block in G”

2 are deleted. Delete correspondingly x,
y, x and y, and the markers between x and y in G”

2 respectively (and also
delete the corresponding markers in G”

1 for case IV) and solve the resulting
sub-problem recursively by repeating Step (4)-(5).

Let f(k) be the size of the search tree. It is easy to see the following recurrence
relation

f(k) =

⎧⎨⎩
0 if k = 0,
1 if k = 1,
≤ 3f(k − 1) + f(k − 2) if k > 1.

Solving this recurrence relation, we have

f(k) =
√

13
13

(
3 +

√
13

2
)k −

√
13

13
(
3 −√13

2
)k,

which implies f(k) ≤
√

13
13 (

√
13+3
2 )k +

√
13

13 (
√

13−3
2 )k =

√
13

13 3.302k + O(1) ≈√
13

13 21.73k.
When a possible solution is obtained (i.e., after up to k markers are deleted),

it takes O(n) time to check whether the solution is valid (i.e., whether each of
the remaining markers is within some strip). Of course, we need to spend O(n2)
time to build the correspondence between the markers in G1 and G2. Hence,
CMSR can be solved in O(21.73kn + n2) time.

It is obvious that the algorithm can be improved: for case (III), when both
x and y need to be deleted, we can delete only one of x and y and delay the
deletion of the other to the next level of search. Hence the main recurrence
becomes f(k) ≤ 3f(k−1) and f(k) ≤ 3k. Consequently, we can slightly improve
the above result to have the following theorem.

Theorem 1. CMSR can be solved in O(3kn + n2) time.

3 An Approximation Algorithm for CMSR

In this section, we consider solving CMSR with an approximation algorithm.
A polynomial time algorithm A for a minimization problem Π with optimal
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solution value O∗ is a factor-α symptotic approximation if for all instances of Π
the solution value returned by A, APP, satisfies APP ≤ α × O∗ + β, where β
is some constant. More details on approximation algorithms can be found in a
standard textbook, e.g., the one by Vazirani [10].

In [4], a factor-4 approximation was proposed for the MSR problem. The
algorithm directly makes use of the approximation algorithm for MWIS in 2-
interval graphs [1]; unfortunately, it does not make use of the property of MSR.
In the following, we present a factor-3 asymptotic approximation for CMSR, by
exploiting its property.

We first assume that a weak kernelization step has been performed, i.e., G′
1, G

′
2

and the resulting (up to) K pseudo-blocks in G′
1 or G′

2 have been obtained. If
K = 0, the instance is easily solvable (as no marker needs to be deleted); so,
without loss of generality, we assume from now on that K �= 0.

We define a special version of the CMSR problem in which one has to delete
the minimum number of markers so that each strip hence obtained is of length
exactly two. We call the resulting minimization problem CMSR2, with optimal
solution value OPT2. Let the optimal solution value for CMSR be OPT. Obvi-
ously, we have OPT ≥ K. We first prove the following lemma.

Lemma 4. OPT2 ≤ 2×OPT + 1.

Proof. In an optimal solution for any CMSR instance, each strip is of length at
least two. So feeding the CMSR instance to CMSR2, i.e., only using length-2
strips, one would delete at most one extra letter for each strip (of odd length).
Assume that in an optimal solution for any CMSR instance we have a total of
L strips of odd length. When running an optimal solution for CMSR2 for this
instance, we have

OPT2 ≤ OPT + L.

It is obvious that L is bounded by the (maximum) number of pseudo-blocks in
G′

1 and G′
2 plus one, i.e., L ≤ K + 1. Therefore, L ≤ K + 1 ≤ OPT + 1. Putting

all together, we have

OPT2 ≤ 2×OPT +1. �
All we need to do from now on is to have a polynomial-time approximation
algorithm for CMSR2. We show below that CMSR2 is exactly a vertex cover
problem on 2-interval graphs.

After the weak kernelization step (i.e., after G′
1, G

′
2 are obtained), we identify

all possible length-2 candidate strips, for letters in Σ, in all the pseudo-blocks
in G′

1 and G′
2. Notice that due to Lemma 1, we do not have to consider any

length-2 candidate strip crossing some letter in Σ1. Any letter not appearing in
any of the length-2 candidate strip will be in the optimal solution for CMSR2,
hence must be deleted. We form a 2-interval graph G for these length-2 candidate
strips: each node corresponds to a length-2 candidate strip, two such strips form
an edge if they are in conflict, i.e., if the corresponding intervals in either G′

1 or
G′

2 have an intersection. For example, G′
1 = · · · acbd · · ·, G′

2 = · · ·abcd · · ·, then
the two candidate strips [a, b], [c, d] form an edge in G.
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Now one can see that this is exactly a vertex cover problem on 2-interval
graphs: we need to delete the minimum number of nodes in G so that there is no
edge (conflict) left. Using the known approximation algorithm by Butman et al.
[3], we can obtain a factor-1.5 approximation for this problem. Let the optimal
vertex cover in G have value OPT1 and let the resulting approximation solution
value be APP1. We have APP1 ≤ 1.5×OPT1. We now proceed to prove the
following theorem.

Theorem 2. There is a factor-3 polynomial time asymptotic approximation for
CMSR.

Proof. Our approximation algorithm is exactly what we have just been de-
scribed. We delete all letters in Σ in G′

1, G
′
2 which are not associated with any

length-2 candidate strip. Let OPT0 be the number of such letters deleted.
We then build the 2-interval graph G and run the approximate vertex cover

algorithm by Butman et al. [3]. Let the optimal vertex cover in G have value
OPT1 and let the resulting approximation solution value be APP1. Following
the result by Butman et al. [3], we have APP1 ≤ 1.5×OPT1.

Now let APP be the solution value of the whole approximation algorithm,
combined with Lemma 4, we have

APP = OPT0 + APP1

≤ OPT0 + 1.5×OPT1

≤ 1.5×OPT2

≤ 3×OPT + 1.5.

Note that OPT2 = OPT0 + OPT1, so OPT0 + 1.5×OPT1 ≤ 1.5×OPT2. Also,
if there is no valid solution found for CMSR2 then it implies that there is no
valid solution for the corresponding CMSR instance. �

4 Concluding Remarks

We summarize the current FPT, hardness and approximation results for MSR
and CMSR in the following table.

Table 1. Summary of the current status on MSR and CMSR

MSR CMSR
FPT ———— O(3kn + n2) — this paper
Approximation factor 4 [4] factor 3 (asymptotic) — this paper
Hardness APX-hard [2,8] APX-hard [9]

It would be interesting to know whether our FPT algorithm for CMSR can
be further improved. The running time of the FPT algorithm we have obtained
in this paper for CMSR, though much faster than its predecessor in [11], is still
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not efficient enough to make them truely useful in practice. To make such an
FPT algorithm practical for MSR datasets, which usually has k between 50 to
150 (with n usually at least 600 or bigger), it must be more efficient. The current
FPT algorithm can probably only handle the cases when k ≤ 30. Even though
whether an exact vertex cover FPT algorithm can be applied to solve CMSR
directly is still unknown, CMSR is inherently a vertex cover problem. So it might
be possible to improve the O(3kn+n2) time bound for CMSR. Moreover, to make
the algorithm applicable some tuning is necessary so that the algorithm works for
the multichoromosal genomes or genomic maps. Another interesting theoretical
question is to decide whether the corresponding asymptotic approximation factor
3 can be further improved.
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