
Logic Programming Languages for

Databases and the Web

Sergio Greco1 and Francesca A. Lisi2

1 Dipartimento di Elettronica, Informatica e Sistemistica, Università della Calabria
Via P. Bucci, 41C - Arcavacata di Rende (CS), Italy

greco@deis.unical.it
2 Dipartimento di Informatica, Università degli Studi di Bari “Aldo Moro”

Via E. Orabona, 4 - 70125 Bari, Italy
lisi@di.uniba.it

Abstract. This chapter contains a reference selection of Italian contri-
butions in the intersection of Logic Programming (LP) with databases
and the (Semantic) Web. More precisely, we will survey the main contri-
butions on deductive databases such as the coupling of Prolog systems
and database systems, evaluation and optimization techniques, Datalog
extensions for expressing nondeterministic and aggregate queries, and
active rules and their relation to deductive rules. Also we will illustrate
solutions employing LP for querying the Web, manipulating Web pages,
representing knowledge in the Semantic Web and learning Semantic Web
ontologies and rules.

1 Introduction

Deductive databases started more than 30 years ago and this area has been
characterized by intensive research for the past years. It stemmed from earlier
work on logic and databases [37,39] that was reviewed in an excellent paper by
Gallaire et al. [38]. Deductive databases extend the power of relational systems
in several ways [96] by allowing:

– the capability to express, by means of logical rules, recursive queries and
efficient algorithms for their evaluation against stored data;

– support for the use of nonmonotonic features such as negation;
– the expansion of the underlying data domain to include structured objects;
– extensions beyond first-order logic for the declarative specification of database

operations as updates;
– the development of optimization methods that guarantee the translation of

the declarative specifications into efficient access plans and their termination
when executed.

Although deductive databases have not found widespread adoptions outside
academia, some of their concepts are used in many fields where databases and in-
formation systems are used. Over the years the research in different areas where
logic-based languages are used for modeling information system features and

A. Dovier, E. Pontelli (Eds.): 25 Years of Logic Programming, LNCS 6125, pp. 183–203, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

184 S. Greco and F.A. Lisi

managing large datasets has benefited of the results of deductive databases (e.g.
integration of advanced features in SQL standards, nonmonotonic reasoning,
artificial intelligence and others).

The World Wide Web (WWW, or simply Web) is nowadays the most famous
information system. Its success is witnessed by its enormous size and rate of
growth. However, the success itself has given raise to a status of the WWW
where more sophisticated techniques are urgently needed to properly handle
such information overload. Recent years have seen a tremendous interest for
Web technologies that can employ some form of logical reasoning. In particu-
lar, the ambitious plan for an evolution of the WWW, the so-called Semantic
Web [10], has shown that it is of primary importance to find an appropriate
interaction between the Web infrastructure, and solutions coming from the LP
research area. Interest in the (Semantic) Web application context is testified by
initiatives such as the ALPSWS series of international workshops on Applica-
tions of Logic Programming to the (Semantic) Web and Web Services1 started
in 2006 and traditionally co-located with the International Conference on Logic
Programming, and the recent special issue of the TPLP journal [72].

We point out that several topics considered in this chapter have also been
investigated in the areas of Non-Monotonic Reasoning (NMR) and Answer Set
Programming (ASP) and, for more information, we refer readers to [46,12]. The
connection between the areas of deductive databases and (Semantic) Web is
strong as the Web can be modeled as a (huge) database and the research in both
fields is mainly devoted to extend Datalog to have enough expressivity and ensure
efficiency in querying and managing relational databases and the (Semantic) Web
[15]. This chapter contains a reference selection of Italian contributions in the
intersection of LP with databases (section 2) and the (Semantic) Web (section 3).

2 Deductive Databases and Logic Programming

In this section we will discuss some of the research aspects in deductive databases
with a particular attention to some fields which have been of particular inter-
est for the Italian deductive database community. In the next subsection we
will present some basic definitions on Datalog [22,98]. Next, we will discuss the
coupling of Prolog systems and database systems (subsection 2.2), and evalua-
tion and optimization techniques (subsection 2.3). Subsequently, we will present
some Datalog extensions regarding the possibility to express nondeterministic
and aggregate queries (subsections 2.4 and 2.5). Finally, we will discuss active
rules and their relation to deductive rules (subsection 2.6).

2.1 Datalog

A Datalog program is a logic program without function symbols. The restric-
tion imposed by Datalog allows to have finite models which can be efficiently
computed by means of a standard bottom-up evaluation. Extensions allowing
1 http://www.kr.tuwien.ac.at/events/alpsws2008/

Logic Programming Languages for Databases and the Web 185

complex, finite objects have also been considered, but for the sake of simplicity,
we restrict ourselves to only consider simple terms.

The semantics of a positive (i.e., negation-free) program P is given by the
minimum model that coincides with the least fixpoint T∞

P (∅) of the immedi-
ate transformation TP [68]. The semantics of a logic program with negation is
given by the stable model semantics [42,90]. Stable models are said to be to-
tal (2-valued) if atoms can be either true or false, with the standard order
false < true, or partial (3-valued) if the truth value of atoms can be true, false
or undefined, with the order false < undefined < true. On the set of partial
stable models it is possible to define an order relation so that they define a
semi-lattice [90]. Minimal and stable model semantics have also been extended
for programs with disjunctive heads [84]. It is worth observing that although
different alternative semantics have been proposed so far (e.g. well-founded se-
mantics, deterministic models, minimal founded semantics [41,93,49,35]), total
stable model semantics has been widely accepted by the nonmonotonic reasoning
community and for stratified programs these semantics coincide. In particular,
general programs with negation may have 0, one or several stable models, pos-
itive (i.e., negation-free) standard programs have unique (total) stable models,
corresponding to the minimum model, and stratified programs (i.e. programs
where recursion does not “pass” through negated atoms) have a unique (total)
stable model which is called perfect model.

Generally, the logic language Datalog is denoted by Datalog¬, whereas re-
strictions allowing only stratified negation or positive rules only are denoted,
respectively, by Datalog¬s and Datalog; the extension allowing disjunctive
heads is denoted by Datalog¬∨ [27]. Predicates are usually partitioned into
extensional (or EDB) and intensional (or IDB) predicates. EDB predicates are
associated with facts denoting the input databases2, whereas IDB predicates
are associated with rules denoting a set of (possibly recursive) views. The input
database will be denoted by D, the program will be denoted by P and it is
assumed that |P | � |D| (the size of D is much greater than the size of P). It is
also assumed that the rules of our programs are safe [98], i.e. variables appearing
in the head or in negated literals in the body of rules are range restricted, i.e.,
they take values from the database.

The unique stable model of a stratified program P , applied to a database
D, can be computed in polynomial time in the size of D (i.e., the number of
symbols in D). For general programs we have that i) the existence of a stable
model is not guaranteed, ii) finding a stable model is NP-hard, and iii) deciding
whether a program admits some stable model is NP-complete. For programs
with disjunctive heads the complexity is even higher (in the general case, in
the second level of the polynomial hierarchy). The notion of data complexity
is defined naturally by viewing the program P as a function computed on the
database (which is thus viewed as the input variable). Another important notion
is that of genericity which means that the database is unchanged if all constants
are consistently renamed [3].

2 For each tuple t belonging to a relation r of the input database there is a fact r(t).

186 S. Greco and F.A. Lisi

A query Q is a pair 〈g, P 〉 where P is a program and g is a predicate symbol
in P denoting the output relation; The answer of Q on D, denoted by Q(D),
is the set of relations on g denoted as Ag = {M(g)|M is a stable model of
P ∪ D}. Two queries Q1 and Q2 are equivalent (Q1 ≡ Q2) if for each database
D the answers of Q1 and Q2 on D are the same. The query is called determin-
istic or non-deterministic according to whether the mapping is single-valued or
multi-valued.

Since it is assumed to deal with large databases, only tractable (i.e. polyno-
mial time) queries are considered. Therefore, in the rest of this chapter we only
consider stratified queries and tractable extensions. For queries using unstrati-
fied negation and/or disjunctive heads we address the reader to “nonmonotonic
formalisms” which are discussed in [46,12].

2.2 Coupling Relational Databases with LP Systems

Integrating LP and relational databases has been recognized to be very promising
since both LP and relational databases are related by their common ancestry of
mathematical logic [38]. The combination of advanced query processing facilities,
typical of expert systems, and efficient access techniques of relational database
systems has been very promising. In particular, Prolog systems would greatly
benefit from both the ability to store large amounts of information in secondary
memory and the optimization techniques built into database systems.

The coupling of a Prolog front-end with a database back-end has been a
very promising vehicle for developing database and knowledge-based applica-
tions and has received a lot of attention in the field’s early years. In practice,
systems linking Prolog and a relational database system simply tack on a soft-
ware interface between a pre-existing Prolog implementation and a pre-existing
relational database system. In other words, the two systems are loosely coupled.
The interface allows Prolog to query the database when needed, either via the
automatic translation of Prolog goals into SQL or else by directly embedding
SQL statements into the Prolog code.

In designing the interface between a relational database and a Prolog inter-
preter, persistence and efficiency were the major concerns. Persistence is obtained
by the capability of storing not only data but rules in the database as well. Thus,
after a session is over and a new session starts, the user does not need to re-
assert the knowledge asserted in the past. Considering efficiency, the objective
of minimizing the interaction between the two systems is achieved by means of
an optimizing translation mechanism.

A method for loading into the memory-resident database of Prolog facts per-
manently stored in secondary storage was proposed in [23,22]. The rationale of
the method is to save queries accessing the database by never repeating the
same query. This is carried out by storing in the main memory, in a compact
and efficient way, information about the past interaction with the database. An
underlying assumption of this approach is the availability of large core memories
on the machine running Prolog [47].

Logic Programming Languages for Databases and the Web 187

2.3 Query Evaluation and Optimization

In the computation of a query Q over a database D, two main approaches have
been proposed in the literature: the top-down computation (used by Prolog) and
the bottom-up computation (used by deductive database languages). The latter
is based on the fixpoint operator TP and on “database implementations” such
as the naive algorithm which transforms rules into relational algebra expressions
which are evaluated repeatedly until a fixpoint is reached; the semi-naive algo-
rithm improves the naive algorithm avoiding to re-evaluate relational expressions
on the same sets of facts [98]. With the top-down approach, only rules and atoms
relevant to the query are considered, but termination and duplicated computa-
tion are problematic issues. The bottom-up strategy always terminates instead,
but it may compute irrelevant atoms. Therefore, optimization techniques com-
bining top-down and bottom-up strategies have been proposed to try to compute
only atoms which may be “relevant” for the query in a bottom-up fashion. The
key idea here consists of rewriting the rules with respect to the query in order to
answer it without actually referring to irrelevant facts. The well-known magic-
set technique is based on rewriting the rules in P (for a given query Q = 〈g, P 〉)
into a set Pα such that, let Q = 〈g, Pα〉, Q and Qα are query-equivalent, i.e.
the sets of g-facts computed by Q and Qα are the same [9,97]. General rewriting
techniques can be applied to all queries, but their efficiency is limited, while
specialized techniques can be very efficient, but have limited applicability. An
interesting class of queries is the one known as chain queries, i.e. queries where
bindings are propagated from arguments in the head to arguments in the tail
of the rules, in a chain-like fashion. For these queries, which are rather frequent
in practice, insisting on general optimization methods is not convenient, while
specialized methods for subclasses thereof have been proposed, but do not fully
exploit bindings. The counting method specialized for bound chain queries was
proposed to further improve the efficiency of queries [91,53]. However, although
proposed in the context of general queries, it preserves the original efficiency
only for a subset of chain queries whose recursive rules are linear. The so-called
pushdown method, exploiting the relationship between chain queries, context-
free languages and pushdown automata, was later proposed [51,52]. It rewrites
queries into a form that is more suitable for the bottom-up evaluation, i.e. trans-
lates a chain query into a factorized left-linear program implementing the push-
down automaton recognizing the language associated with the query. A nice
property here is that it reduces to the counting method in all the cases where
the latter method behaves efficiently and introduces a unified framework for the
treatment of special cases, such as the factorization of right-, left-, mixed-linear
programs, as well as the linearization of non-linear programs [97].

2.4 Choice and Non-determinism in Datalog

Stable model semantics introduces a sort of non-determinism in the sense that
programs may have more than one “intended” model [42]. Non-determinism

188 S. Greco and F.A. Lisi

offers a solution to overcome the limitations in expressive power of deterministic
languages [4,5]. For instance, non-determinism can be used to capture the class
of polynomial-time queries on unordered domains [5,50]. The problem with sta-
ble model semantics is that the expressive power can blow up without control,
so that polynomial time resolution is no longer guaranteed. Thus, it is possible
that polynomial time queries are computed in exponential time, that is, it is pos-
sible to get exponential time resolution. In order to guarantee polynomial time
computability and the existence of stable models, nondeterministic constructs
and semantics have been proposed.

Given a query Q = 〈g, P 〉 and a database D, the answer to Q on D is a
relation defined as follows:

1. under non-deterministic semantics: M(g), for some stable model M for P∪D
and ∅ if no stable model exists;

2. under possibility semantics with ground query goal: M(g), if there exists a
stable model M such that M(g) �= ∅ and ∅ otherwise — thus, the answer to
a query can be either “true” or “false”;

3. under certainty semantics:
⋂

Mi(g) for all stable models Mi.

Moreover, the mappings defined by queries are multi-valued under non-
deterministic semantics and single-valued under possible and certain semantics,
i.e., possible and certain semantics are deterministic. In practice, to answer a
query under non-deterministic semantics it is sufficient to find any relation in
Q(D); this corresponds to determining any stable model. As discussed above,
full negation under stable model semantics cannot be used in practical database
languages because the complexity is not guaranteed to be polynomial also for
queries expressing polynomial problems.

A controlled usage of stable model semantics has been proposed in [44,50,92],
where the choice construct, first introduced in [60], has been given a stable model
semantics. The choice construct is used to enforce functional constraints in rules.
Thus, an atom of the form, choice((X), (Y)), where X and Y denote vectors of
variables, in a rule r denotes that any consequence derived from r must respect
the functional dependency X → Y .

A fixpoint algorithm for Datalog programs with choice constructs (called
Choice Fixpoint Procedure) has been proposed in [44,45], where it has also been
shown that the time complexity of computing, nondeterministically, a stable
model, and consequently a nondeterministic answer, is polynomial. This proce-
dure has been extended to programs with stratified negation in [50] where it has
also been shown that given a database D and a stratified program with choice
P , the problem of deciding if there exists a stable model M (non-deterministic
semantics) for P ∪D is polynomial time. In the same paper it has been demon-
strated that the class of nondeterministic polynomial problems is captured by
Datalog with stratified negation and choice. Therefore, choice is a powerful don’t-
care form of non-determinism which allows one to express some problems for
which domain ordering is needed but is not available [5,43].

Logic Programming Languages for Databases and the Web 189

2.5 Aggregates in Datalog

Early research on deductive databases strived to support a declarative high-
level formulation of problem solution without surrendering the performance ob-
tainable by careful programming in an imperative language. In this respect, an
interesting challenge is posed by optimization problems, such as finding the min-
imum spanning tree in a graph or the knapsack problem, that are encountered
in several applications.

Datalog, enriched with extrema (least/most) and choice constructs, can ex-
press and efficiently solve optimization problems requiring a greedy search strat-
egy [40,54]. Moreover, many optimization problems can be solved efficiently using
a dynamic programming technique that is based on the division of the problem
into subproblems: the original problem is divided into simpler subproblems that
are solved separately; their solutions are then used to solve the original prob-
lem. Therefore, Datalog extensions allowing to express classical problems whose
efficient solutions are based on greedy and dynamic programming methods have
been proposed as well [48].

These extensions are based on the definition of built-in aggregate predicates
which enhance Datalog representational capabilities, making it possible to nat-
urally express many well-known algorithms that have wide applicability. The
extension of Datalog with classical aggregates (least, most, count and sum) has
been investigated by considering two main aspects: the definition of suitable
semantics for programs with aggregates and the efficiency of the evaluation.

The main novelty of the proposed approach is that only stratified aggregation
and a semantics allowing to define linear orders on the input domain are consid-
ered. Moreover, the paper also considers in some cases unstratified negation to
guarantee efficiency and termination. Another important novelty is that the pa-
per introduces a new aggregate, called summation, which combined with least
and most permits us to express and efficiently compute optimization problems
such as dynamic programming and integer programming problems. More specif-
ically, the global class of integer programming problems can be easily expressed
in the proposed framework and extended programs can be efficiently computed
by using a dynamic programming evaluation technique.

The possibility of transforming queries with least and most predicates into
equivalent queries that can be computed more efficiently has been investigated
in [36]. Recently there have been further proposals to extend the well-founded
and stable model semantics with unstratified aggregates [16,80,95]. Moreover, as
pointed out in [77], unstratified aggregates are not necessary if ordered domains
and arithmetics are available.

2.6 Deductive and Active Databases

The field of active databases is based on logics and combines techniques from
databases, expert systems and artificial intelligence. The main peculiarity of
this technology is the support for automatic ‘triggering’ of rules in response to
events. Automatic triggering of rules can be useful in different areas such as

190 S. Greco and F.A. Lisi

integrity constraint maintenance, update of materialized views, knowledge bases
and expert systems [100].

Active rules follow the so called Event-Condition-Action (ECA) paradigm;
rules autonomously react to events occurring on the data, by evaluating a data
dependent condition and executing a reaction whenever the condition is true.
Active rules consist of three parts: Event (which causes the rule to be triggered),
Condition (which is checked when the rule is triggered) and Action (which is
executed when the rule is triggered and the condition is true). Thus, according
to the semantics of a single active rule, the rule reacts to a given event, tests a
condition, and performs a given action.

Understanding the behavior of active rules, especially in the case of rules which
interact with one another, is very difficult, and often the actions performed are
not the expected ones. The semantics of active rules are usually given in terms of
execution models, specifying how and when rules will be applied, but execution
models are not completely satisfactory since their behavior is not always clear
and could result in nonterminating computations. Most commercial active rule
systems operate at a relatively low-level of abstraction and are heavily influenced
by implementation-dependent procedural features. A further problem of active
databases is that, as shown in [81], most of the operational semantics proposed
in the literature have very high complexity and expressivity (PSPACE or even
higher complexity).

Different solutions using deductive database semantics to provide a clear se-
mantics to active rules have been proposed. Here we recall the solution proposed
in [61,11,33] where declarative semantics are associated to active rules, and in
[101,75], where active rules are modeled by means of deductive rules with an
attribute denoting the state of the computation. The advantage of associating
a declarative semantics to active rules is that confluence and termination are
guaranteed and complexity is much lower.

In some sense, active and deductive rules can be seen as opposite ends of a
spectrum of database rule languages [99]. Deductive rules provide a high-level
powerful framework for specifying intensional relations. In contrast, active rules
are more low-level and often need explicit control on rule execution. The problem
of providing a homogeneous framework for integrating, in a database environ-
ment, active rules, which allow the specification of actions to be executed when-
ever certain events take place, and deductive rules, which allow the specification
of deductions in a logic programming style has been investigated in [79,61].

Since active rules are often used to make databases consistent, active integrity
constraints (AICs), an extension of integrity constraints for consistent database
maintenance [21], have been recently proposed [17]. An active integrity constraint
is a special constraint whose body contains a conjunction of literals which must
be false and whose head contains a disjunction of update actions representing
actions (insertions and deletions of tuples) to be performed if the constraint is
not satisfied (that is its body is true). The AICs work in a domino-like manner as
the satisfaction of one AIC may trigger the violation and therefore the activation
of another one. The advantage of AICs is that they have declarative semantics

Logic Programming Languages for Databases and the Web 191

(i.e. they can be rewritten into logic rules), lower complexity than active rules
and can be used to compute consistent answers, even if the source database is
inconsistent [18]. An alternative semantics for AICs is proposed in [19], whereas
its relationships to Revision Programming is investigated in [20].

3 From Databases to the (Semantic) Web

The Web has caused a revolution in how we represent, retrieve, and process
information. Its growth has given us a universally accessible database but in
the form of a largely unorganized collection of documents. This is changing,
thanks to the simultaneous emergence of new ways of representing data: from
within the Web community, the eXtensible Markup Language (XML)3; and from
within the database community, semistructured data. The convergence of these
two approaches has rendered them nearly identical, thus promoting a concerted
effort to develop effective techniques for retrieving and processing both kinds of
data [2]. In spite of the success of XML as data interchange format, it has turned
out very soon that XML has severe limits in conveying data semantics.

The Semantic Web is an evolving extension of the Web in which the seman-
tics of information and services on the Web is defined, making it possible for the
Web to understand and satisfy the requests of people and machines to use the
Web content [10]. It derives from W3C (World Wide Web Consortium) director
Sir Tim Berners-Lee’s vision of the Web as a universal medium for data, infor-
mation, and knowledge exchange. At its core, the Semantic Web comprises a
set of design principles, collaborative working groups, and a variety of enabling
technologies. Some elements of the Semantic Web are expressed as prospective
future possibilities that are yet to be implemented or realized. The Semantic Web
architecture is a stack of layers, on top of XML, each of which equipped with
one or more mark-up languages, notably the Resource Description Framework
(RDF)4, the RDF Schema (RDFS)5 and the Web Ontology Language (OWL)6

all of which are intended to provide a formal description of concepts, terms, and
relationships within a given knowledge domain. The use of formal specifications,
also called ontologies, fairly overcomes the aforementioned limits of XML.

In this section, we will survey solutions employing LP for querying the Web
(subsection 3.1), for manipulating Web pages (subsection 3.2), for representing
knowledge in the Semantic Web (subsection 3.3) and for learning Semantic Web
ontologies and rules (subsection 3.4).

3.1 LP-Based Query Languages for the Web

The Web can be seen as a vast heterogeneous collection of databases, which
must be queried in order to extract information. In fact, in many ways the Web
is not similar to a database system: it has no uniform structure, no integrity
3 http://www.w3.org/XML/
4 http://www.w3.org/RDF/
5 http://www.w3.org/TR/rdf-schema/
6 http://www.w3.org/2004/OWL/

192 S. Greco and F.A. Lisi

constraints, no support for transaction processing, no management capabilities,
no standard query language, or data model. Perhaps the most popular data
model for the Web is the labelled graph, where nodes represent Web pages (or
internal components of pages) and arcs correspond to links. Labels on the arcs
can be viewed as attribute names for the nodes. The lack of structure in Web
pages has motivated the use of semistructured data techniques, which also fa-
cilitate the exchange of information between heterogeneous sources. Abiteboul
[1] suggests the following features for a semistructured data query language:
standard relational database operations (using an SQL viewpoint), navigational
capabilities in the hypertext/Web style, information retrieval influenced search
using patterns, temporal operations, and the ability to mix data and schema
(type) elements together in queries. Many languages support regular path ex-
pressions over the graph for stating navigational queries along arcs. The inclusion
of wild cards allows arbitrarily deep data and cyclic structures to be searched,
although restrictions must be applied to prevent looping.

Queries can be posed to Web pages with XML or RDF content. XML is a
notation for describing labelled ordered trees with references. Specifying a query
language for XML has been an active area of research, much of it coordinated
by the XML Query Working Group of the W3C. The suggested features for such
a language are almost identical to those for querying semistructured data. It is
hardly surprising that most proposals adopt models which view XML as an edge-
labelled directed graph, and use semistructured data query languages. The main
difference is that the elements in an XML document are sometimes ordered. The
XPath language7 is based on a tree representation of the XML document, and
provides the ability to navigate around the tree, selecting nodes by a variety of
criteria. Conversely, XQuery8 is a query and functional programming language
that is designed to query collections of XML data. XQuery provides the means to
extract and manipulate data from XML documents or any data source that can
be viewed as XML, such as relational databases. Therefore it finally supports the
needed interaction between the Web world and the database world. Ultimately,
collections of XML files will be accessed like databases. XPath 2.0 is in fact a
subset of XQuery 1.0.

RDF is an application of XML aimed at facilitating the interoperability of
meta-data across heterogeneous hosts. With RDF, the most suitable approach
is to focus on the underlying data model. Even though XQuery could be used to
query RDF descriptions in their XML encoded form, a single RDF data model
could not be correctly determined with a single query due to the fact that RDF
allows several XML syntax encodings for the same data model. Conceived to
address this issue, Metalog is a LP language where facts and rules are translated
and stored as RDF statements [73,71]. Facts are treated as RDF triples, while
rule syntax is supported with additional RDFS statements for LP elements such
as head, body, if and variable. A query language for RDF, called SPARQL9,

7 http://www.w3.org/TR/xpath20/
8 http://www.w3.org/TR/xquery/
9 http://www.w3.org/TR/rdf-sparql-query/

Logic Programming Languages for Databases and the Web 193

has been recommended by the RDF Data Access Working Group of the W3C in
2008. Also it has been proved that SPARQL and non-recursive safe Datalog¬

have equivalent expressive power, and hence, by classical results, SPARQL is
equivalent from an expressive point of view to Relational Algebra [6]. A LP-
based rule system for querying persistent RDFS data is suggested in [58] as an
alternative to SPARQL engines.

3.2 LP for Web Computation

The ability to support the execution of logic and constraint programs on parallel
and distributed architectures have prompted LP researchers to consider some
natural generalization of these programming paradigms to suit the needs of some
specific application areas among which the Web.

The concurrent constraint-based LP language W-ACE has explicit support
for the Web computation [83]. Some of its novel ideas include representing Web
pages as LP trees and the use of constraints to manipulate tree components
and the relationship between trees. W-ACE also contains modal operators for
reasoning about groups of pages, and composition operators very similar to those
in LogicWeb [69].

In [82] the author studies the use of distributed logic programming models
to provide a natural concurrent framework for Web programming. A concurrent
logic-based framework (called WEB-KLIC) has already been developed and is
currently publicly distributed as part of the ICOT Free Software Project10. A
relevant component of this part of the project includes the design of constraint
domains for representing HTML and XML documents. Also, a primary goal has
been the improvement of its CGI facilities (i.e., for server-side computation).

3.3 LP for Knowledge Representation in the Semantic Web

The advent of the Semantic Web has given a tremendous impulse on research in
Knowledge Representation (KR) due to the key role played by ontologies in the
Semantic Web architecture. Indeed the design of OWL has been based on KR
formalisms known as Description Logics (DLs) [7], more precisely on the SH
family of the so-called very expressive DLs [56]. DLs are a family of decidable
First Order Logic (FOL) fragments that allow for the specification of knowledge
in terms of classes (concepts), binary relations between classes (roles), and in-
stances (individuals). Complex concepts can be defined from atomic concepts
and roles by means of constructors such as atomic negation (¬), concept con-
junction (
), value restriction (∀), and limited existential restriction (∃) - just
to mention the basic ones. A DL KB can state both is-a relations between con-
cepts (axioms) and instance-of relations between individuals (resp. couples of
individuals) and concepts (resp. roles) (assertions). Concepts and axioms form
the so-called TBox whereas individuals and assertions form the so-called ABox.
An SH KB encompasses also a RBox, i.e. axioms defining hierarchies over roles.
10 http://www.jipdec.or.jp/icot/ARCHIVE/Museum/IFS/

194 S. Greco and F.A. Lisi

The semantics of DLs can be defined through a mapping to FOL. Thus, coher-
ently with the Open World Assumption (OWA) that holds in FOL semantics,
a DL KB represents all its models. The main reasoning task for a DL KB is
the consistency check that is performed by applying decision procedures mostly
based on tableau calculus. Summing up, when a DL-based ontology language
is adopted, an ontology is nothing else than a TBox eventually coupled with
a RBox. If the ontology is populated, it corresponds to a whole DL KB, i.e.
encompassing also an ABox.

The Semantic Web architecture poses several challenges to KR like (i) the
scalability of ontology reasoning, and (ii) the integration of rules and ontologies.
It turns out that LP can help facing these challenges, as explained in the following
subsections, though Italian research has focused more on the latter challenge.

DL reasoning with LP
A second round of standardization at W3C has very recently delivered OWL
211 which now includes several profiles (or fragments) that can be more simply
and/or efficiently implemented than the former OWL proposal. E.g., the OWL
2 RL profile is aimed at applications that require scalable reasoning without sac-
rificing too much expressive power. It is designed to accommodate both OWL
2 applications that can trade the full expressivity of the language for efficiency,
and RDFS applications that need some added expressivity from OWL 2. This is
achieved by defining a syntactic subset of OWL 2 which is amenable to imple-
mentation using rule-based technologies such as LP. The design of OWL 2 RL
has been inspired by Description Logic Programs [55] which are at the intersec-
tion of DLs and Datalog. Yet the influence of LP tradition on the implementation
of DL systems is also testified by, e.g., KAON212 and DLog13.

Contrary to most currently available DL reasoners, KAON2 does not imple-
ment the tableaux calculus [57]. Rather, it implements novel algorithms which
reduce an SHIQ KB to a disjunctive Datalog program. These algorithms allow
applying well-known deductive database techniques, such as magic sets or join-
order optimizations, to DL reasoning, thus making answering queries in KAON2
one or more orders of magnitude faster than in existing systems.

DLog is a DL ABox reasoner that uses resolution [70]. It performs query-
driven execution whereby the terminological part of the DL KB is converted
into a Prolog program using a specialisation of the PTTP Theorem Proving
approach and the assertional facts are accessed dynamically from a database.
DLog 2 will ensure scalability by specialising well-established LP techniques for
parallel computation and efficiency by using an ad-hoc abstract machine.

Rule Systems combining LP and DLs
Rules are currently in the focus within the Semantic Web architecture, and
consequently interest and activity in this area has grown rapidly over recent
years. They would allow the integration, transformation and derivation of data
11 http://www.w3.org/TR/owl2-overview/
12 http://kaon2.semanticweb.org/
13 http://www.dlog-reasoner.org/

Logic Programming Languages for Databases and the Web 195

from numerous sources in a distributed, scalable, and transparent manner. The
rules landscape features design aspects of rule markup; engineering of engines,
translators, and other tools; standardization efforts, such as the recent Rules In-
terchange Format (RIF)14 activity at W3C; and applications. Rules complement
and extend ontologies on the Semantic Web. They can be used in combination
with ontologies, or as a means to specify ontologies. Rules are also frequently
applied over ontologies, to draw inferences, express constraints, specify poli-
cies, react to events, discover new knowledge, transform data, etc. Rule markup
languages enrich Web ontologies by supporting publishing rules on the Web, ex-
change rules between different systems and tools, share guidelines and policies,
merge and maintain rulebases, and more.

The debate around a RIF is still ongoing. Because of the great variety in
rule languages and rule engine technologies, this format will consist of a core
language to be used along with a set of standard and non-standard extensions.
These extensions need not all be combinable into a single unified language. As
for the expressive power, two directions are followed: monotonic extensions to-
wards full FOL and non-monotonic extensions based on the LP tradition, i.e. on
Clausal Logics (CLs). In particular, the latter will most likely be the so-called
hybrid systems that integrate DLs and (fragments of) CLs. These KR systems
are constituted by two or more subsystems dealing with distinct portions of a
single KB by performing specific reasoning procedures [34]. The motivation for
investigating and developing such systems is to improve on two basic features
of KR formalisms, namely representational adequacy and deductive power, by
preserving the other crucial feature, i.e. decidability. Indeed DLs and CLs are
FOL fragments incomparable as for the expressiveness [13] and the semantics
[85] but combinable at different degrees of integration: tight, loose, full.

The semantic integration is tight when a model of the hybrid KB is defined
as the union of two models, one for the DL part and one for the CL part, which
share the same domain. In particular, combining DLs with CLs in a tight manner
can easily yield to undecidability if the interaction scheme between the DL and
the CL part of a hybrid KB does not fulfill the condition of safeness, i.e. does
not solve the semantic mismatch between DLs and CLs [86]. E.g., the hybrid KR
system Carin is unsafe [63] because the interaction scheme is left unrestricted.
Conversely, AL-log [24] is a safe hybrid KR system that integrates Datalog with
the DL ALC [94]. In particular, variables occurring in the body of rules may be
constrained with ALC concept assertions to be used as “typing constraints”.
This makes rules applicable only to explicitly named objects. As in Carin,
query answering is decided using the constrained SLD-resolution which however
in AL-log is decidable and runs in single non-deterministic exponential time. The
hybrid KR framework of DL+log [87] allows for the weakly-safe integration of
Datalog¬∨ with any DL. The condition of weak safeness allows to overcome
the main representational limits of the approaches based on the DL-safeness
condition, e.g. the possibility of expressing a union of conjunctive queries (UCQ),
by keeping the integration scheme still decidable. Apart from the FOL semantics,

14 http://www.w3.org/2005/rules/

196 S. Greco and F.A. Lisi

DL+log has a NM semantics obtained by extending the stable model semantics.
According to it, DL-predicates are still interpreted under OWA, while Datalog
predicates are interpreted under CWA. The problem statement of satisfiability
for finite DL+log KBs relies on the problem known as the Boolean CQ/UCQ
containment problem in DLs. It is shown that the decidability of reasoning in
DL+log, thus of ground query answering, depends on the decidability of the
Boolean CQ/UCQ containment problem in DL.

The semantic integration is loose when the DL part and the CL part are sep-
arate components connected through a minimal interface for exchanging knowl-
edge. An example of one such kind of coupling is the integration scheme for ASP
and DLs illustrated in [28]. It derives from the previous work of the same authors
on the extension of ASP with higher-order reasoning and external evaluations
[29] which has been implemented into the system DLVHEX15.

The semantic integration is full when there is no separation between vocabu-
laries of the two parts of the hybrid KB. In [76], the authors introduce a so-called
faithful integration scheme of LP with DLs using the logic of Minimal Knowledge
and Negation as Failure (MKNF).

A complete picture of the computational properties of systems combining DL
ontologies and Datalog rules can be found in [88]. An updated survey of the
literature on hybrid DL-CL systems [26] is suggested for further reading.

3.4 LP for Learning Semantic Web Ontologies and Rules

The advent of the Semantic Web has also raised a knowledge acquisition bottle-
neck problem for ontologies and rules. Some promising solutions to this problem
come from that Machine Learning approach known under the name of Inductive
Logic Programming (ILP).

Rooted into LP, the methodological apparatus of ILP inherits the inferen-
tial mechanisms for induction from Concept Learning, the most prominent of
which is generalization [78]. In Concept Learning, thus in ILP, generalization
is traditionally viewed as search through a partially ordered space of inductive
hypotheses [74]. According to this vision, an inductive hypothesis is a clausal
theory and the induction of a single clause requires (i) structuring, (ii) search-
ing and (iii) bounding the space of clauses. In order to achieve (i), a generality
order is imposed on clauses for determining which one, between two clauses, is
more general than the other. Since partial orders are considered, uncompara-
ble pairs of clauses are admitted. Once structured, the space of hypotheses can
be searched (ii) by means of refinement operators. A refinement operator is a
function which computes a set of specializations or generalizations of a clause
according to whether a top-down or a bottom-up search is performed. The two
kinds of refinement operators have been therefore called downward and upward,
respectively. The definition of refinement operators presupposes the investiga-
tion of the properties of the various orderings and is usually coupled with the
specification of a declarative bias for bounding the space of clauses (iii). This

15 http://www.kr.tuwien.ac.at/research/systems/dlvhex/

Logic Programming Languages for Databases and the Web 197

concerns anything which constrains the search for theories, e.g. a language bias
specifies syntactic constraints on the clauses in the search space.

A distinguishing feature of ILP with respect to other forms of Concept Learn-
ing is the use of background knowledge (BK), i.e. prior knowledge of the domain
of interest, during the induction process. Therefore, an ILP algorithm general-
izes from individual instances/observations in the presence of BK, finding valid
hypotheses. Validity depends on the underlying setting. At present, there exist
several settings in ILP that vary according to: (i) the scope of induction (predic-
tion vs description) and (ii) the representation of observations (ground definite
clauses vs ground unit clauses). Prediction aims at inducing hypotheses with
discriminant power as required in tasks such as classification where observations
encompass both positive and negative examples. Description is more suitable
for finding regularities in a data set. This corresponds to learning from positive
examples only. Aspect (ii) affects the notion of coverage, i.e. the condition under
which a hypothesis explains an observation. In learning from entailment, hy-
potheses are clausal theories, observations are ground definite clauses, and a hy-
pothesis covers an observation if the hypothesis logically entails the observation.
In learning from interpretations, hypotheses are clausal theories, observations
are Herbrand interpretations (ground unit clauses) and a hypothesis covers an
observation if the observation is a model for the hypothesis.

ILP has been historically concerned with Concept Learning from examples
and BK within the representation framework of Horn CL and with the aim of
prediction. More recently ILP has considered the problems of learning in different
FOL fragments such as DLs and hybrid DL-CL formalisms. This bunch of ILP
research is relevant to the Semantic Web application domain.

Inducing DL Concept Descriptions
An ILP characterization of the problem has been proposed by [8,62]. Contribu-
tions from the Italian LP community are on the formal treatment of learning
in DLs, e.g.: Supervised learning in ALC [30]; Unsupervised learning (concept
formation) in ALC [32]; Supervised learning in OWL DL [31].

Inducing Hybrid DL-CL Rules
Only three ILP frameworks have been proposed that adopt a hybrid DL-CL
representation for both hypotheses and background knowledge: [89] chooses
Carin-ALN , [64] resorts to AL-log, and [65] builds upon SHIQ+log. They
can be considered as attempts at accommodating ontologies in ILP by having
ontologies as BK. Indeed both proposals extend previous work in ILP, notably
the order of generalized subsumption [14], to hybrid DL-CL KR frameworks [66].

The framework proposed in [89] focuses on discriminant induction and adopts
the ILP setting of learning from interpretations. Hypotheses are represented as
Carin-ALN non-recursive rules with a Horn literal in the head that plays the
role of target concept. The coverage relation adapts the usual one in the ILP
setting of learning from interpretations to the case of hybrid Carin-ALN BK.
Procedures for testing both the coverage relation and the generality relation
are based on the existential entailment algorithm of Carin. In [59], the author

198 S. Greco and F.A. Lisi

studies the learnability of Carin-ALN and provides a pre-processing method
which enables traditional ILP systems to learn Carin-ALN rules.

In [64], hypotheses are represented as AL-log rules. As opposite to [89], this
framework is general, meaning that it is valid whatever the scope of induction
(prediction/description) is. Therefore the literal in the head of hypotheses rep-
resents a concept to be either discriminated from others or characterized. The
generality order for one such hypothesis language can be checked with a decid-
able procedure based on constrained SLD-resolution. Coverage relations for both
ILP settings of learning from interpretations and learning from entailment have
been defined on the basis of query answering in AL-log. As opposite to [89], the
framework has been implemented into an ILP system that supports a variant of
a very popular data mining task - frequent pattern discovery - where rich prior
conceptual knowledge is taken into account during the discovery process in order
to find patterns at multiple levels of description granularity [67].

The ILP framework presented in [65] represents hypotheses as DL+log rules
restricted to the DL SHIQ and positive Datalog. Analogously to [64], it encom-
passes both scopes of induction but, differently from [64], it assumes the ILP
setting of learning from interpretations only. Both the coverage relation and the
generality relation boil down to query answering in DL+log. Refinement oper-
ators are defined to search the hypothesis space either top-down or bottom-up.
Compared to [89] and [64], this framework shows an added value which can
be summarized as follows. First, it relies on a more expressive DL, i.e. SHIQ.
Second, it allows for inducing definitions for new DL concepts, i.e. rules with a
SHIQ literal in the head. Third, it adopts a more expressive integration scheme
of DLs and CLs, i.e. the weakly-safe one.

References

1. Abiteboul, S.: Querying semi-structured data. In: Afrati, F.N., Kolaitis, P.G.
(eds.) ICDT 1997. LNCS, vol. 1186, pp. 1–18. Springer, Heidelberg (1996)

2. Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web: From Relations to
Semistructured Data and XML. Morgan Kaufmann, San Francisco (2000)

3. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

4. Abiteboul, S., Simon, E.: Fundamental Properties of Deterministic and Nondeter-
ministic Extensions of Datalog. Theoretical Compututer Science 78(1), 137–158
(1991)

5. Abiteboul, S., Vianu, V.: Non-Determinism in Logic-Based Languages. Annals of
Mathematics and Artificial Intelligence 3(2-4), 151–186 (1991)

6. Angles, R., Gutierrez, C.: The Expressive Power of SPARQL. In: Sheth, A.P.,
Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K.
(eds.) ISWC 2008. LNCS, vol. 5318, pp. 114–129. Springer, Heidelberg (2008)

7. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation and Applica-
tions, 2nd edn. Cambridge University Press, Cambridge (2007)

8. Badea, L., Nienhuys-Cheng, S.-W.: A Refinement Operator for Description Logics.
In: Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 40–59.
Springer, Heidelberg (2000)

Logic Programming Languages for Databases and the Web 199

9. Beeri, C., Ramakrishnan, R.: On the Power of Magic. Journal of Logic Program-
ming 10(1-4), 255–299 (1991)

10. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American
(May 2001)

11. Bidoit, N., Maabout, S.: A Model Theoretic Approach to Update Rule Programs.
In: Afrati, F.N., Kolaitis, P.G. (eds.) ICDT 1997. LNCS, vol. 1186, pp. 173–187.
Springer, Heidelberg (1996)

12. Bonatti, P., Calimeri, F., Leone, N., Ricca, F.: Answer Set Programming. In:
Dovier, Pontelli [25], ch. 8, vol. 6125, pp. 159–178 (2010)

13. Borgida, A.: On the Relative Expressiveness of Description Logics and Predicate
Logics. Artificial Intelligence 82(1-2), 353–367 (1996)

14. Buntine, W.: Generalized Subsumption and Its Applications to Induction and
Redundancy. Artificial Intelligence 36(2), 149–176 (1988)

15. Cal̀ı, A., Gottlob, G., Lukasiewicz, T.: Tractable Query Answering over Ontologies
with Datalog+/-. In: Description Logics (2009)

16. Calimeri, F., Faber, W., Leone, N., Perri, S.: Declarative and Computational
Properties of Logic Programs with Aggregates. In: IJCAI, pp. 406–411 (2005)

17. Caroprese, L., Greco, S., Sirangelo, C., Zumpano, E.: Declarative Semantics of
Production Rules for Integrity Maintenance. In: Etalle, S., Truszczyński, M. (eds.)
ICLP 2006. LNCS, vol. 4079, pp. 26–40. Springer, Heidelberg (2006)

18. Caroprese, L., Greco, S., Zumpano, E.: Active Integrity Constraints for Database
Consistency Maintenance. IEEE Transactions on Knowledge and Data Engineer-
ing 21(7), 1042–1058 (2009)

19. Caroprese, L., Truszczyński, M.: Declarative Semantics for Active Integrity Con-
straints. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS,
vol. 5366, pp. 269–283. Springer, Heidelberg (2008)

20. Caroprese, L., Truszczyński, M.: Declarative Semantics for Revision Programming
and Connections to Active Integrity Constraints. In: Hölldobler, S., Lutz, C.,
Wansing, H. (eds.) JELIA 2008. LNCS (LNAI), vol. 5293, pp. 100–112. Springer,
Heidelberg (2008)

21. Ceri, S., Fraternali, P., Paraboschi, S., Tanca, L.: Automatic Generation of Pro-
duction Rules for Integrity Maintenance. ACM Transactions on Database Sys-
tems 19(3), 367–422 (1994)

22. Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer,
Heidelberg (1990)

23. Ceri, S., Gottlob, G., Wiederhold, G.: Efficient Database Access from Prolog.
IEEE Transaction on Software Engineering 15(2), 153–164 (1989)

24. Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: AL-log: Integrating Data-
log and Description Logics. J. of Intelligent Information Systems 10(3), 227–252
(1998)

25. Dovier, A., Pontelli, E. (eds.): 25 Years of Logic Programming in Italy. LNCS,
vol. 6125. Springer, Heidelberg (2010)

26. Drabent, W., Eiter, T., Ianni, G.B., Krennwallner, T., Lukasiewicz, T., Maluszyn-
ski, J.: Hybrid Reasoning with Rules and Ontologies. In: REWERSE, pp. 1–49
(2009)

27. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM Transactions on
Database Systems 22(3), 364–418 (1997)

28. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining
answer set programming with description logics for the Semantic Web. Artificial
Intelligence 172(12-13), 1495–1539 (2008)

200 S. Greco and F.A. Lisi

29. Eiter, T., Ianni, G.B., Schindlauer, R., Tompits, H.: A Uniform Integration of
Higher-Order Reasoning and External Evaluations in Answer-Set Programming.
In: IJCAI, pp. 90–96 (2005)

30. Esposito, F., Fanizzi, N., Iannone, L., Palmisano, I., Semeraro, G.: Knowledge-
Intensive Induction of Terminologies from Metadata. In: McIlraith, S.A., Plex-
ousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 441–455.
Springer, Heidelberg (2004)

31. Fanizzi, N., d’Amato, C., Esposito, F.: DL-FOIL Concept Learning in Description
Logics. In: Železný, F., Lavrač, N. (eds.) ILP 2008. LNCS (LNAI), vol. 5194, pp.
107–121. Springer, Heidelberg (2008)

32. Fanizzi, N., Iannone, L., Palmisano, I., Semeraro, G.: Concept Formation in
Expressive Description Logics. In: Boulicaut, J.-F., Esposito, F., Giannotti, F.,
Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 99–110. Springer,
Heidelberg (2004)

33. Flesca, S., Greco, S.: Declarative semantics for active rules. Theory and Practice
of Logic Programming 1(1), 43–69 (2001)

34. Frisch, A.M., Cohn, A.G.: Thoughts and Afterthoughts on the 1988 Workshop on
Principles of Hybrid Reasoning. AI Magazine 11(5), 84–87 (1991)

35. Furfaro, F., Greco, G., Greco, S.: Minimal founded semantics for disjunctive
logic programs and deductive databases. Theory and Practice of Logic Program-
ming 4(1-2), 75–93 (2004)

36. Furfaro, F., Greco, S., Ganguly, S., Zaniolo, C.: Pushing extrema aggregates to
optimize logic queries. Information Systems 27(5), 321–343 (2002)

37. Gallaire, H., Minker, J. (eds.): Logic and Data Bases. Plenum Press, New York
(1978)

38. Gallaire, H., Minker, J., Nicolas, J.M.: Logic and databases: A deductive approach.
ACM Computing Surveys 16(2), 153–185 (1984)

39. Gallaire, H., Nicolas, J.M., Minker, J. (eds.): Advances in Data Base Theory,
vol. 2. Plenum Press, New York (1984)

40. Ganguly, S., Greco, S., Zaniolo, C.: Extrema Predicates in Deductive Databases.
Journal of Computer and Systems Science 51(2), 244–259 (1995)

41. Van Gelder, A., Ross, K.A., Schlipf, J.S.: The Well-Founded Semantics for General
Logic Programs. J. ACM 38(3), 620–650 (1991)

42. Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programming.
In: ICLP/SLP, pp. 1070–1080 (1988)

43. Giannotti, F., Greco, S., Saccà, D., Zaniolo, C.: Programming with Non-
Determinism in Deductive Databases. Annals of Mathematics and Artificial In-
telligence 19(1-2), 97–125 (1997)

44. Giannotti, F., Pedreschi, D., Saccà, D., Zaniolo, C.: Non-Determinism in De-
ductive Databases. In: Delobel, C., Masunaga, Y., Kifer, M. (eds.) DOOD 1991.
LNCS, vol. 566, pp. 129–146. Springer, Heidelberg (1991)

45. Giannotti, F., Pedreschi, D., Zaniolo, C.: Semantics and Expressive Power of
Nondeterministic Constructs in Deductive Databases. Journal of Computer and
Systems Science 62(1), 15–42 (2001)

46. Giordano, L., Toni, F.: Knowledge representation and non-monotonic reasoning.
In: Dovier, Pontelli [25], ch. 5, vol. 6125, pp. 86–110 (2010)

47. Gozzi, F., Lugli, M., Ceri, S.: An overview of PRIMO: a portable interface between
PROLOG and relational databases. Information Systems 15(5), 543–553 (1990)

48. Greco, S.: Dynamic Programming in Datalog with Aggregates. IEEE Transactions
on Knowledge and Data Engineering 11(2), 265–283 (1999)

Logic Programming Languages for Databases and the Web 201

49. Greco, S., Saccà, D.: Complexity and Expressive Power of Deterministic Semantics
for Datalog. Information and Computation 153(1), 81–98 (1999)

50. Greco, S., Saccà, D., Zaniolo, C.: Datalog Queries with Stratified Negation and
Choice: from p to dp. In: Y. Vardi, M., Gottlob, G. (eds.) ICDT 1995. LNCS,
vol. 893, pp. 82–96. Springer, Heidelberg (1995)

51. Greco, S., Saccà, D., Zaniolo, C.: The PushDown Method to Optimize Chain
Logic Programs. In: Fülöp, Z., Gecseg, F. (eds.) ICALP 1995. LNCS, vol. 944,
pp. 523–534. Springer, Heidelberg (1995)

52. Greco, S., Saccà, D., Zaniolo, C.: Grammars and Automata to Optimize Chain
Logic Queries. Int. Journal Foundations of Computer Science 10(3), 349 (1999)

53. Greco, S., Zaniolo, C.: Optimization of Linear Logic Programs Using Counting
Methods. In: Pirotte, A., Delobel, C., Gottlob, G. (eds.) EDBT 1992. LNCS,
vol. 580, pp. 72–87. Springer, Heidelberg (1992)

54. Greco, S., Zaniolo, C.: Greedy algorithms in Datalog. Theory and Practice of
Logic Programming 1(4), 381–407 (2001)

55. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: com-
bining logic programs with description logic. In: WWW, pp. 48–57 (2003)

56. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to
OWL: The Making of a Web Ontology Language. Journal of Web Semantics 1(1),
7–26 (2003)

57. Hustadt, U., Motik, B., Sattler, U.: Deciding expressive description logics in the
framework of resolution. Information and Computation 206(5), 579–601 (2008)

58. Ianni, G.B., Krennwallner, T., Martello, A., Polleres, A.: A Rule System for
Querying Persistent RDFS Data. In: Aroyo, L., Traverso, P., Ciravegna, F.,
Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M.,
Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 857–862. Springer,
Heidelberg (2009)

59. Kietz, J.-U.: Learnability of Description Logic Programs. In: Matwin, S.,
Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, pp. 117–132. Springer,
Heidelberg (2003)

60. Krishnamurthy, R., Naqvi, S.A.: Non-Deterministic Choice in Datalog. In:
JCDKB, pp. 416–424 (1988)

61. Lausen, G., Ludäscher, B., May, W.: On Logical Foundations of Active Databases.
In: Logics for Databases and Information Systems, pp. 389–422 (1998)

62. Lehmann, J., Hitzler, P.: Foundations of Refinement Operators for Description
Logics. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007.
LNCS (LNAI), vol. 4894, pp. 161–174. Springer, Heidelberg (2008)

63. Levy, A.Y., Rousset, M.-C.: Combining Horn rules and description logics in
CARIN. Artificial Intelligence 104, 165–209 (1998)

64. Lisi, F.A.: Building Rules on Top of Ontologies for the Semantic Web with In-
ductive Logic Programming. Theory and Practice of Logic Programming 8(03),
271–300 (2008)

65. Lisi, F.A., Esposito, F.: Foundations of Onto-Relational Learning. In: Železný,
F., Lavrač, N. (eds.) ILP 2008. LNCS (LNAI), vol. 5194, pp. 158–175. Springer,
Heidelberg (2008)

66. Lisi, F.A., Esposito, F.: On Ontologies as Prior Conceptual Knowledge in Induc-
tive Logic Programming. In: Knowledge Discovery Enhanced with Semantic and
Social Information, pp. 3–18. Springer, Heidelberg (2009)

67. Lisi, F.A., Malerba, D.: Inducing Multi-Level Association Rules from Multiple
Relations. Machine Learning 55, 175–210 (2004)

202 S. Greco and F.A. Lisi

68. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg
(1987)

69. Loke, S.W., Davison, A.: LogicWeb: Enhancing the Web with Logic Programming.
Journal of Logic Programming 36(3), 195–240 (1998)

70. Lukácsy, G., Szeredi, P.: Efficient Description Logic Reasoning in Prolog: The
DLog system. Theory and Practice of Logic Programming 9(3), 343–414 (2009)

71. Marchiori, M.: Towards a people’s web: Metalog. In: Web Intelligence,
pp. 320–326. IEEE Computer Society Press, Los Alamitos (2004)

72. Marchiori, M.: Introduction to the Special Issue on Logic Programming and the
Web. Theory and Practice of Logic Programming 8(3), 247–248 (2008)

73. Marchiori, M., Saarela, J.: Query + Metadata + Logic = Metalog. In: W3C
Workshop on Query Languages (1998)

74. Mitchell, T.M.: Generalization as Search. Artificial Intelligence 18, 203–226 (1982)
75. Motakis, I., Zaniolo, C.: Temporal Aggregation in Active Database Rules. In:

SIGMOD Conference, pp. 440–451 (1997)
76. Motik, B., Rosati, R.: A Faithful Integration of Description Logics with Logic

Programming. In: IJCAI, pp. 477–482 (2007)
77. Mumick, I.S., Shmueli, O.: How Expressive is Statified Aggregation? Annals of

Mathematics and Artificial Intelligence 15(3-4), 407–434 (1995)
78. Nienhuys-Cheng, S.-H., de Wolf, R.: Foundations of Inductive Logic Program-

ming. Springer, Heidelberg (1997)
79. Palopoli, L., Torlone, R.: Generalized Production Rules as a Basis for Integrating

Active and Deductive Databases. IEEE Transactions on Knowledge and Data
Engineering 9(6), 848–862 (1997)

80. Pelov, N., Denecker, M., Bruynooghe, M.: Well-founded and stable semantics of
logic programs with aggregates. Theory and Practice of Logic Programming 7(3),
301–353 (2007)

81. Picouet, P., Vianu, V.: Semantics and Expressiveness Issues in Active Databases.
Journal of Computer and Systems Science 57(3), 325–355 (1998)

82. Pontelli, E.: Concurrent Web-Programming in CLP(WEB). In: HICSS (2000)
83. Pontelli, E., Gupta, G.: W-ACE: A Logic Language for Intelligent Internet Pro-

gramming. In: IEEE ICTAI, pp. 2–10 (1997)
84. Przymusinski, T.C.: Semantics of Disjunctive Logic Programs and Deductive

Databases. In: Delobel, C., Masunaga, Y., Kifer, M. (eds.) DOOD 1991. LNCS,
vol. 566, pp. 85–107. Springer, Heidelberg (1991)

85. Rosati, R.: On the decidability and complexity of integrating ontologies and rules.
Journal of Web Semantics 3(1), 61–73 (2005)

86. Rosati, R.: Semantic and Computational Advantages of the Safe Integration of
Ontologies and Rules. In: Fages, F., Soliman, S. (eds.) PPSWR 2005. LNCS,
vol. 3703, pp. 50–64. Springer, Heidelberg (2005)

87. Rosati, R.: DL+log: Tight Integration of Description Logics and Disjunctive Dat-
alog. In: KR, pp. 68–78 (2006)

88. Rosati, R.: On Combining Description Logic Ontologies and Nonrecursive Datalog
Rules. In: Calvanese, D., Lausen, G. (eds.) RR 2008. LNCS, vol. 5341, pp. 13–27.
Springer, Heidelberg (2008)

89. Rouveirol, C., Ventos, V.: Towards Learning in CARIN-ALN . In: Cussens, J.,
Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 191–208. Springer,
Heidelberg (2000)

90. Saccà, D.: The Expressive Powers of Stable Models for Bound and Unbound
DATALOG Queries. Journal of Computer System Sciences 54(3), 441–464 (1997)

Logic Programming Languages for Databases and the Web 203

91. Saccà, D., Zaniolo, C.: The Generalized Counting Method for Recursive Logic
Queries. Theoretical Computer Science 62(1-2), 187–220 (1988)

92. Saccà, D., Zaniolo, C.: Stable Models and Non-Determinism in Logic Programs
with Negation. In: PODS, pp. 205–217 (1990)

93. Saccà, D., Zaniolo, C.: Deterministic and Non-Deterministic Stable Models. Jour-
nal of Logic and Computation 7(5), 555–579 (1997)

94. Schmidt-Schauss, M., Smolka, G.: Attributive Concept Descriptions with Com-
plements. Artificial Intelligence 48(1), 1–26 (1991)

95. Son, T.C., Pontelli, E., Elkabani, I.: An unfolding-based semantics for logic pro-
gramming with aggregates. CoRR, abs/cs/0605038 (2006)

96. Tsur, S.: Deductive Databases in Action. In: PODS, pp. 142–153 (1991)
97. Ullman, J.D.: Principles of Database and Knowledge-Base Systems, vol. II.

Computer Science Press (1989)
98. Ullman, J.D.: Principles of Database and Knowledge-Base Systems, vol. I.

Computer Science Press (1988)
99. Widom, J.: Deductive and Active Databases: Two Paradigms or Ends of a Spec-

trum? In: Rules in Database Systems, pp. 306–315 (1993)
100. Widom, J., Ceri, S. (eds.): Active Database Systems: Triggers and Rules For

Advanced Database Processing. Morgan Kaufmann, San Francisco (1996)
101. Zaniolo, C.: The Nonmonotonic Semantics of Active Rules in Deductive

Databases. In: Bry, F., Ramamohanarao, K. (eds.) DOOD 1997. LNCS, vol. 1341,
pp. 265–282. Springer, Heidelberg (1997)

	Logic Programming Languages for Databases and the Web
	Introduction
	Deductive Databases and Logic Programming
	Datalog
	Coupling Relational Databases with LP Systems
	Query Evaluation and Optimization
	Choice and Non-determinism in Datalog
	Aggregates in Datalog
	Deductive and Active Databases

	From Databases to the (Semantic) Web
	LP-Based Query Languages for the Web
	LP for Web Computation
	LP for Knowledge Representation in the Semantic Web
	LP for Learning Semantic Web Ontologies and Rules

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

