
Answer Set Programming

Piero Bonatti1, Francesco Calimeri2, Nicola Leone2, and Francesco Ricca2

1 Dept. of Phisical Sciences - Sec. Informatics, University of Naples “Federico II”,
I-80126 Napoli, Italy

bonatti@na.infn.it
2 Dept. of Mathematics, University of Calabria, I-87036 Rende (CS), Italy

{calimeri,leone,ricca}@mat.unical.it

Abstract. Answer Set Programming (ASP), referred to also as Disjunctive Logic
Programming under the stable model semantics (DLP), is a powerful formalism
for Knowledge Representation and Reasoning. ASP has been the subject of in-
tensive research studies, and, also thanks to the availability of some efficient ASP
systems, has recently gained quite some popularity and is applied also in rele-
vant industrial projects. The Italian logic programming community has been very
active in this area, some ASP results achieved in Italy are widely recognized as
milestones on the road to the current state of the art. After a formal definition of
ASP, this chapter surveys the main contribution given by the Italian community
to the ASP field in the last 25 years.

1 Introduction

Answer Set Programming (ASP), [1–5] referred to also as Disjunctive Logic Program-
ming under the stable model semantics (DLP),1 is a powerful formalism for Knowledge
Representation and Reasoning.2 Bloomed from the work of Gelfond, Lifschitz [2, 3]
and Minker [6–9] in the 1980ies, it has enjoyed a continuously increasing interest within
the scientific community. One of the main reasons for the success of ASP is the high
expressive power of its language: ASP programs, indeed, allow us to express, in a pre-
cise mathematical sense, every property of finite structures over a function-free first-
order structure that is decidable in nondeterministic polynomial time with an oracle in
NP [10, 11] (i.e., ASP captures the complexity class ΣP

2 = NPNP). Thus, ASP allows
us to encode also programs which cannot be translated to SAT in polynomial time. Im-
portantly, ASP is fully declarative (the ordering of literals and rules is immaterial), and
the ASP encoding of a large variety of problems is very concise, simple, and elegant
[1, 12–15].

Example 1. To see an elegant ASP encoding, consider 3-Colorability, a well-known
NP-complete problem. Given a graph, the problem is to decide whether there exists an

1 Stable models are also named answer sets.
2 A lot of work has been done by the Italian research community both in the broader field

of knowledge representation and non-monotonic reasoning, and in the related field of logic
languages for databases. We refer the reader to Chapter 4 and Chapter 9, respectively, for a
detailed description of the italian contributions in these specific fields which are closely related
and partially overlapping with the ASP contributions.

A. Dovier, E. Pontelli (Eds.): 25 Years of Logic Programming, LNCS 6125, pp. 159–182, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

160 P. Bonatti et al.

assignment of one out of three colors (say, red, green, or blue) to each node such that
adjacent nodes always have different colors. Suppose that the graph is represented by a
set of facts F using a unary predicate node(X) and a binary predicate arc(X, Y). Then,
the following ASP program (in combination with F) computes all 3-Colorings (as stable
models) of that graph.

r1 : color(X, red) ∨ color(X, green) ∨ color(X, blue) :- node(X).
r2 : :- color(X1, C), color(X2, C), arc(X1, X2).

Rule r1 expresses that each node must either be colored red, green, or blue;3 due to
minimality of the stable models, a node cannot be assigned more than one color. The
subsequent integrity constraint checks that no pair of adjacent nodes (connected by an
arc) is assigned the same color.

Thus, there is a one-to-one correspondence between the solutions of the 3-Coloring
problem and the answer sets of F ∪ {r1, r2}. The graph is 3-colorable if and only if
F ∪ {r1, r2} has some answer set. �

Unfortunately, the high expressiveness of ASP comes at the price of a high computa-
tional cost in the worst case, which makes the implementation of efficient systems a
difficult task. Nevertheless, starting from the second half of the 1990ies, and even more
in the latest years, a number of efficient ASP systems have been released [16–25], that
encouraged a number of applications in many real-world and industrial contexts [26–
33, 40]. These applications have confirmed the viability of the ASP exploitation for
advanced knowledge-based tasks, and stimulated further research in this field.

The Italian research community produced, in the latest 25 years, a significant con-
tribution in the area, addressing the whole spectrum of issues cited above; this con-
tribution ranged from theoretical results and characterizations [34–39] to practical
applications [26–33, 40–45], stepping through language extensions [16, 42, 46–68],
evaluation algorithms and optimization techniques [69–78]. Several of the achieved re-
sults are widely recognized as milestones on the road to the current state of the art; this
is, for instance, the case of the DLV project [16], that produced one of the world leading
ASP systems. The Italian community is currently very active on ASP, it contributes in
pushing forward the state of the art, as witnessed by the most recent results like, e.g.,
the ASP extension to deal with infinite domains which is at the frontier of the ASP
research [59, 61, 62, 64, 65, 68].

The rest of the Chapter is structured as follows: in Section 2, ASP is formally intro-
duced, syntax and semantics of the language are presented; Section 3 focuses on ASP
properties and its theoretical characterizations; Section 4 surveys linguistic extensions;
Section 5 reports on ASP with infinite domains; Section 6 first introduces the general
architecture of ASP systems, and then surveys algorithms and optimization techniques;
Section 7 first describes DLV and number of other ASP-based systems, and then re-
ports on real-world ASP applications; eventually, Section 8 collects a number of further
contributions of the Italian ASP community.

3 Variable names start with an upper case letter and constants start with a lower case letter.

Answer Set Programming 161

2 The ASP Language

In what follows, we provide a formal definition of the syntax and semantics of Answer
Set Programming in the spirit of [3].

2.1 Syntax

Following a convention dating back to Prolog, strings starting with uppercase letters
denote logical variables, while strings starting with lower case letters denote constants.
A term is either a variable or a constant. 4 An atom is an expression p(t1, . . .,tn), where
p is a predicate of arity n and t1,. . . ,tn are terms. A literal l is either an atom p (positive
literal) or its negation not p (negative literal). A set L of literals is said to be consistent
if, for every positive literal l ∈ L, its complementary literal not l is not contained in L.

A disjunctive rule (rule, for short) r is a construct:

a1 ∨ · · · ∨ an :- b1, · · · , bk, not bk+1, · · · , not bm. (1)

where a1, · · · , an, b1, · · · , bm are atoms and n ≥ 0, m ≥ k ≥ 0. The disjunction a1 ∨
· · · ∨ an is called the head of r, while the conjunction b1, ..., bk, not bk+1, ..., not bm

is referred to as the body of r. A rule without head literals (i.e. n = 0) is usually referred
to as an integrity constraint. A rule having precisely one head literal (i.e. n = 1) is called
a normal rule. If the body is empty (i.e. k = m = 0), it is called a fact, and in this case
the “ :- ” sign is usually omitted. If r is a rule of form (1), then H(r) = {a1, . . ., an} is
the set of literals in the head and B(r) = B+(r)∪B−(r) is the set of the body literals,
where B+(r) (the positive body) is {b1,. . . , bk} and B−(r) (the negative body) is {bk+1,
. . . , bm}. An ASP program (also called Disjunctive Logic Program or DLP program)
P is a finite set of rules. A not-free program P (i.e., such that ∀r ∈ P, B−(r) = ∅) is
called positive, and a v-free program P (i.e., such that ∀r ∈ P, |H(r)| ≤ 1) is called
normal logic program.

In ASP, rules are usually required to be safe; the motivation comes from the field of
databases, and for a detailed discussion we refer to [79]. A rule r is safe if each variable
in r also appears in at least one positive literal in the body of r. An ASP program is safe
if each of its rules is safe, and in the following we will only consider safe programs. A
term (an atom, a rule, a program, etc.) is called ground, if no variable appears in it; a
ground program is also called propositional.

2.2 Semantics

We next describe the semantics of ASP programs, which is based on the answer set
semantics originally defined in [3]. However, different to [3] only consistent answer
sets are considered, as it is now standard practice. In ASP the availability of some pre-
interpreted predicates is assumed, such as =, <, >. However, it would also be possible
to define them explicitly as facts, so they are not treated in a special way.

4 Note that, as common in ASP, function symbols are not considered unless explicitly specified
(see Section 5).

162 P. Bonatti et al.

Herbrand Universe and Herbrand Base. For any program P , the Herbrand universe,
denoted by UP , is the set of all constants occurring in P . If no constant occurs in P ,
UP consists of one arbitrary constant. The Herbrand Base BP is the set of all ground
atoms constructible from predicate symbols appearing in P and constants in UP .

Ground Instantiation. For any rule r, Ground(r) denotes the set of rules obtained
by replacing each variable in r by constants in UP in all possible ways. For any pro-
gram P , its ground instantiation is the set grnd(P) =

⋃
r∈P Ground(r). Note that for

propositional programs, P = grnd(P) holds.

Answer Sets. For every program P , its answer sets are defined by using its ground in-
stantiation grnd(P) in two steps: first the answer sets of positive disjunctive programs
are defined, then the answer sets of general programs are defined by a reduction to pos-
itive disjunctive programs and a stability condition. An interpretation I for a program
P is a set of ground atoms I ⊆ BP . Let P be a positive program. An interpretation
X ⊆ BP is called closed under P if, for every r ∈ grnd(P), H(r) ∩X �= ∅ whenever
B(r) ⊆ X . An interpretation which is closed under P is also called model of P . An
interpretation X ⊆ BP is an answer set for a positive program P , if it is minimal (under
set inclusion) among all interpretations that are closed under P .

Example 2. The positive program P1 = {a ∨ b ∨ c.} has the answer sets {a}, {b}, and
{c}; they are minimal and correspond to the multiple ways of satisfying the disjunction.
Its extension P2 = P1 ∪ { :- a.} has the answer sets {b} and {c}: comparing P2 with
P1, the additional constraint is not satisfied by interpretation {a}. Moreover, the positive
program P3 = P2 ∪ {b :- c. , c :- b.} has the single answer set {b, c}. It is easy to see
that, P4 = P3 ∪ { :- c} has no answer set. �

The reduct or Gelfond-Lifschitz transform [2, 3] of a ground program P w.r.t. a set
X ⊆ BP is the positive ground program PX , obtained from P by: (i) deleting all
rules r ∈ P for which B−(r) ∩ X �= ∅ holds; (ii) deleting the negative body from
the remaining rules. An answer set of a program P is a set X ⊆BP such that X is an
answer set of grnd(P)X .

Example 3. For the negative ground program P5 = {a :- not b.}, A = {a} is the only
answer set, as PA

5 = {a.}. For example for B = {b}, PB
5 = ∅, and so B is not an

answer set. �

3 Properties and Theoretical Characterizations

The Italian research community provided relevant contributions to the study of ASP
and its theoretical characterizations. In this respect, a relevant bunch of results has been
achieved by the work in [34], which has given the theoretical foundation for realiza-
tion of the ASP system DLV system [16]. There, the authors provide: a declarative
characterization of answer sets in terms of unfounded sets; a generalization of the well-
founded (WP) operator to disjunctive logic programs; a fixpoint semantics for function-
free programs; an algorithm for answer set computation; an in-depth analysis of the
main computational problems related to the concepts. In the this Section, we briefly
discuss these contributions.

Answer Set Programming 163

The definition of unfounded sets for disjunctive logic programs was given as an ex-
tension of the analogous concept defined for (disjunction-free) logic programs [80]. As
for normal logic programs, unfounded sets single out the atoms that are (definitely)
not derivable from a given program w.r.t. a fixed interpretation; thus, according to the
closed-world assumption [81], they single out atoms that can be stated to be false. In
a disjunctive logic program P , the union of unfounded sets for P may not be an un-
founded set for P ; thus, the existence of the greatest unfounded set (i.e., an unfounded
set that contains all other unfounded sets) is not guaranteed as in the case of normal
programs. The authors proved that for unfounded-free interpretations (i.e., interpreta-
tions that do not contain any unfounded atom), the union of different unfounded sets is
guaranteed to be an unfounded set even in the disjunctive case; the greatest unfounded
set of P w.r.t. I , denoted GUSP(I), is the union of all unfounded sets.

Several interesting relationships between answer sets and unfounded sets were also
discovered, which led to a simple, yet elegant, characterization of answer sets in terms
of unfounded sets: the answer sets of a disjunctive program P coincide with the
unfounded-free models of P , and a model of P is an answer set iff the set of false
atoms coincides with the greatest unfounded set.

The authors of [34] defined also a suitable extension of the well-founded operator
WP of Van Gelder et al. [80] to the disjunctive case; this allowed to achieve another
important result: the definition of a fixpoint semantics for disjunctive answer sets in
terms of WP . The set of answer sets of P coincides with the (total) fixpoints of WP .
By exploiting the theoretical results, the authors designed an algorithm for the compu-
tation of the answer set semantics of disjunctive programs. The key idea is that, since
answer sets are total interpretations, computing their entire negative portion is superflu-
ous; rather, it is sufficient to restrict the computation to those negative literals that are
necessary to derive the positive part. To this end, the notion of possibly-true literals is
introduced, which plays a crucial role in the computation. The algorithm is based on
a controlled search in the space of the interpretations, implemented by a backtracking
technique; and the stability of a generated model (answer set candidate) is tested by
checking whether it is unfounded-free. This is done by means of a function that runs
in polynomial time on head-cycle-free (HCF) programs [82, 83]. In the general case,
the algorithm for the computation of answer sets runs in polynomial space and single
exponential time.

4 Language Extensions

The standard language of ASP has been extended in several ways in order to improve
its expressiveness. The Italian community provided contributions regarding two of the
most relevant extensions of ASP: Optimization Constructs and Aggregates.

4.1 Optimization Constructs

The basic ASP language can be used to solve complex search problems, but it does
not natively provide constructs for specifying optimization problems (i.e. problems
where some goal function must be minimized or maximized). In the basic language,

164 P. Bonatti et al.

constraints represent a condition that must be satisfied; for this reason, they are also
called strong constraints. Contrary to strong constraints, weak constraints, introduced
in [16, 46], allow one to express desiderata, that is, conditions that should be satisfied;
their semantics involves minimizing the number of violations, thus allowing to easily
encode optimization problems. From a syntactic point of view, a weak constraint is like
a strong one, where the implication symbol :- is replaced by :∼ . The informal mean-
ing of a weak constraint :∼ B. is “try to falsify B,” or “B should preferably be false.”.
Additionally, a weight and a priority level for the weak constraint may be specified af-
ter the constraint enclosed in brackets (by means of positive integers or variables). If
not specified, the default value for weight and priority level is 1. The answer sets are
considered which minimize the sum of weights of the violated (unsatisfied) weak con-
straints in the highest priority level and, among them, those which minimize the sum of
weights of the violated weak constraints in the next lower level, and so on.

4.2 Aggregates

There are some simple properties, often arising in real-world applications, which can-
not be encoded in a simple and natural manner using ASP [47–50, 84–86]. Especially
properties that require the use of arithmetic operators on a set of elements satisfying
some conditions (like sum, count, or maximum) require rather cumbersome encodings
(often requiring an “external” ordering relation over terms) if one is confined to classic
ASP. Similar observations have also been made in related domains, which led to the def-
inition of aggregate functions. Especially in database systems this concept is at present
both theoretically and practically fully integrated. When ASP systems started to be used
in real applications, the need for aggregates become apparent also here. Hence, ASP has
been extended with special atoms handling aggregate functions [47–50, 87, 88]. Intu-
itively, an aggregate function can be thought of as a (possibly partial) function mapping
multisets of constants to a constant. The most common aggregate functions compute
the number of terms, the sum of non-negative integers, and minimum/maximum term
in a set. Aggregates are especially useful when real-world problems have to be dealt
with.

4.3 Other Extensions

In order to meet requirements of different application domains, ASP was extended in
other directions; thus, there is a number of interesting languages having the roots on
ASP.

For instance, ASP was exploited for defining and implementing the action language
(i.e., a language conceived for dealing with actions and change) K [51], while, in [52] a
framework for abduction with penalization was proposed and implemented as a front-
end for the ASP system DLV. Other ASP extensions were conceived to deal with On-
tologies (i.e. abstract models of a complex domain). In particular, in [42] an ASP-based
language for ontology specification and reasoning was proposed, which extends ASP
in order to deal with complex real-world entities, like classes, objects, compound ob-
jects, axioms, and taxonomies. In [53] an extension of ASP, called HEX-Programs,
which supports higher-order atoms as well as external atoms was proposed. External

Answer Set Programming 165

atoms allows one to embed external sources of computation in a logic program. Thus,
HEX-programs are useful for various tasks, including meta-reasoning, data type ma-
nipulations, and reasoning on top of Description Logics (DL) [89] ontologies. Tem-
plate predicates were introduced in [54]; they are special intensional predicates defined
by means of generic reusable subprograms, which were conceived for easing coding
and improving readability and compactness of programs, and allowing more effective
code reusability. An extension of ASP by the introduction of the notion of resource
is proposed in [55]. The resulting framework, named RASP, declaratively supports
quantitative reasoning on consumption and production of resources. Various forms of
preferences, policies, and cost-based criteria can be used to model the processes that
produce/consume resources [56].

In [57] standard ASP was enriched by introducing consistency-restoring rules (cr-
rules) and preferences, leading to the CR-Prolog language. Basically, in this language,
besides standard ASP rules one may specify CR-rules, that are expressions of the form:
r:a1 ∨ . . .∨ an :-+body (n ≥ 1). The intuitive meaning of CR-rule r is: if body is
true then one of a1, . . . , an is “possibly” believed to be true. Importantly, the name
of CR-prolog rules can be directly exploited to specify preferences among them. In
particular, if the fact prefer(r1, r2) is added to a CR-program, then rule r1 is preferred
over rule r2. This allows one to encode partial orderings among preferred answer sets
by explicitly writing preferences among CR-rules.

In [58] Normal Form Nested (NFN) programs, a non-propositional language similar
to Nested Logic Programming (NLP) [90] was proposed. NFN programs often allows
for more concise ASP representations by permitting a richer syntax in rule heads and
bodies. It is worth noting that, NFN programs do allow for variables, whereas NLP are
propositional. Since with the presence of variables domain independence is no longer
guaranteed, the class of safe NFN programs was defined. Moreover, it was shown that
for NFN programs which are also NLPs, the new semantics coincides with the one
of [90]; while keeping the standard meaning of answer sets on ASP programs with
variables. Finally, an algorithm which translates NFN programs into ASP programs
was provided.

In [91] the concept of ordered disjunctions was extended to cardinality constraints.
This paved the way to the definition of a policy description language that allows to
express preferences among sets of objects and to handle advanced policy description
specifications. The work followed some proposals aiming at introducing preferences in
policy description languages [92–94].

5 ASP with Infinite Domains

The first ASP languages were based on extensions of Datalog, that is, function-free
logic programs.5 From a syntactic viewpoint, the addition of functions is obtained by
generalizing the notion of term: a term is either a simple term or a functional term. A
simple term (see Section 2) is either a constant or a variable. If t1 . . . tn are terms and
f is a function symbol (functor) of arity n, then: f(t1, . . . , tn) is a functional term. It

5 In this section we use the term function to refer to uninterpreted functions (or constructors) as
in pure logic programming.

166 P. Bonatti et al.

is easy to see that such an extension make UP , BP and grnd(P) possibly infinite, and
enhances the expressiveness of ASP. Indeed, without function symbols, ASP programs
can only reason about finite domains, and have limited data modeling abilities. Such
restrictions were motivated by complexity considerations, as answer set reasoning with
unrestricted first-order normal programs is Π1

1 -complete, and hence highly undecid-
able. However, by introducing suitable alternative syntactic restrictions on the usage of
functions, it is possible to improve the tradeoff between complexity and expressiveness.

In particular, the introduction of function symbols in ASP languages leads to sev-
eral benefits [59]: (i) Data encapsulation support, as function symbols are the main
logic programming construct for data abstraction [95]; (ii) Enhanced problem solv-
ing power, as the class of solvable problems can be extended beyond the second level
of the polynomial hierarchy (that is, the class of problems solvable with Disjunctive
Datalog with negation); (iii) Support for recursive data structures, such as lists, XML
documents, etc. Such data structures are extremely common in modern applications and
functions constitute the most natural way of encoding them; (iv) Simulation and exten-
sion of description logics [96]; in this context, function symbols are needed to encode
existential quantification through skolemization. Such work is of strategic importance
given the important role that description logics play in the semantic web.

The first class of computationally well-behaved ASP programs with function sym-
bols, called finitary programs, is due to the Italian logic programming community. They
were introduced in [60], and soon after were followed by ω-restricted programs [97].
The latter address the challenges of ASP with functions only partially. The answer sets
of ω-restricted programs are all finite, and recursion over recursive data structures is not
allowed—therefore ω-restricted programs address essentially data encapsulation only.
Finitary programs constitute a more ambitious effort, capable of supporting ASP pro-
grams with infinite and infinitely many answer sets, and a large class of recursive pred-
icates, including the standard list- and tree-manipulation programs [59].

Finitary programs are characterized by two restrictions. To simplify the presentation
here we deal only with normal (i.e. disjunction-free) logic programs—see [61, 62] for
an account of disjunctive programs. The first restriction applies to recursion, and is
expressed in terms of the notion of dependency graph of a program P , whose set of
nodes is the Herbrand base BP . The dependency graph contains a directed edge (A, A′)
if and only if there exists a rule r ∈ grnd(P) such that A ∈ H(r) and A′ ∈ B(r). The
edge is labelled positive if A′ ∈ B+(r), and negative if A′ ∈ B−(r). Then we say that
A depends on A′ if there exists a path from A to A′ in the dependency graph.

Now we are ready to formulate the first restriction: a program P is finitely recursive
iff every atom in the Herbrand base of P depends only on finitely many other ground
atoms. Finitely recursive programs enjoy a number of nice theoretical properties proved
in [61]:6

– they enjoy an analog of the compactness property of first-order logic;
– inconsistency checking and skeptical inference are semidecidable;
– the semantics of a finitely recursive program P can be approximated through a

chain of finite programs P1 ⊆ P2 ⊆ · · · ⊆ Pi ⊆ · · · ⊆ grnd(P).

6 Another contribution of the Italian community; best paper award at ICLP 2007.

Answer Set Programming 167

The second restriction is based on odd-cycles, that are cycles in the dependency
graph containing an odd number of negative edges. A normal program is finitary iff it
is finitely recursive and its dependency graph contains only finitely many odd-cycles.

Finitary programs are very expressive; they comprise a number of useful predi-
cates, including the standard list manipulation predicates, QBF metainterpreters, and
programs for reasoning about actions, just to name a few [59]. Moreover, they enjoy
very good computational properties [59, 63]. If the set of atoms occurring in an odd-
cycle is given, then: (a) ground credulous queries and ground skeptical queries are all
decidable; (b) unrestricted ground credulous queries and ground skeptical queries are
semidecidable.

Another Italian contribution in this field is the class of finitely ground programs
[64]. They are characterized by means of an intelligent grounding transformation that
turns any given disjunctive program P with functions into an equivalent ground pro-
gram; P is finitely ground if this transformation yields a finite program. Finitely ground
programs—due to the nature of the intelligent grounding—are well-suited for bottom-
up evaluation, while finitary programs are naturally well-suited for top-down evalua-
tions. As a consequence finitely ground programs are easier to support in systems like
DLV that adopt a bottom-up grounding approach. Finitely ground programs have no
restrictions on odd-cycles (and do not need them to be fed to the reasoner as an input).
On the other hand, they are required to be safe, which rules out a number of interest-
ing programs, such as list- and tree-manipulation programs. Moreover, like ω-restricted
programs, their semantics is always finite, both in terms of the size and the number of
answer sets.

In an interesting recent work [65], however, the duality between the two program
classes is starting to be reconciled, by showing how given a positive finitely recursive
program P and a query Q one can construct—by a magic set transformation—a finitely
ground program P ′ that yields the same answer to Q as P .

The classes of finitary and finitely ground programs, unfortunately, are not decid-
able. This result motivated further works aimed at characterizing decidable classes of
well-behaved programs with function symbols. The fathers of finitely ground programs
introduced finite domain programs, a subclass of finitely ground programs that can be
effectively recognized [64].

This line of research is having an impact on the activity of other groups outside Italy.
In [98], an extension of finite domain programs is proposed. In [96, 99, 100], another
family of effectively recognizable, well-behaved programs is investigated. This is a very
interesting line of investigation, as it covers description logics, and it may eventually
lead to interesting nonmonotonic extensions thereof. Moreover, these works adopt a
different strategy for achieving inference decidability, based on a tree-model property
and on a reasoning method analogous to blocking.

5.1 Calculi and Implementations

Further contributions stemming from the Italian community comprise resolution-based
calculi for skeptical and credulous ASP reasoning with function symbols. Skeptical res-
olution [66] consists of five inference rules: resolution, negation as failure, a structural
rule for removing successful literals, a rule for detecting contradictions, and a split rule

168 P. Bonatti et al.

Input
program OutputModelGeneratorInstantiator

StabilityChecker

Fig. 1. General architecture of an ASP system

for generating new hypotheses and carrying out reasoning by cases. The skeptical reso-
lution calculus is complete for all finitely recursive programs [61]. Recently, a credulous
resolution calculus [67] was theoretically studied and experimentally evaluated on a
few standard problems with encouraging results that deserve further investigations. The
main advantage of resolution calculi is that they need no prior instantiation (ground-
ing) of the input program; instantiation is incremental and on-demand, as in classical
resolution. Support for function symbols is also being introduced in DLV for finitely
ground programs [68]. We expect it to be soon extended to finitary programs by means
of suitable extensions of the magic sets transformation adopted in [65].

5.2 Open Issues

ASP with infinite domains is a lively area which is being further developed by several
research groups across the world. The main ongoing investigations concern:

– extending the known decidable classes of well-behaved ASP programs;
– the systematic derivation of new classes of well-behaved programs with functions

through the composition of modules belonging to known well-behaved classes
[101];

– the development and improvement of reasoning mechanisms for ASP with infinite
domains;

– the relationships between finitary and finitely ground programs.

6 Algorithms and Optimization Techniques

The general architecture of an ASP system, depicted in Figure 1, helps in understanding
the evaluation flow of the typical computation carried out for computing the answer
sets of an ASP program. Upon startup, the input specified by the user is parsed and
transformed into the internal data structures of the system.7

In general, an input program P contains variables, and the first step of a computa-
tion of an ASP system is to eliminate these variables, generating a ground instantiation
grnd(P) of P . This variable-elimination process is called instantiation of the program
(or grounding), and is performed by the Instantiator module (see Figure 1). A naı̈ve
Instantiator would produce the full ground instantiation grnd(P), which is, however,
undesirable from a computational point of view, as in general many useless ground rules

7 The input is usually read from text files, but some systems also interface to relational databases
for retrieving facts stored in relational tables.

Answer Set Programming 169

would be generated. An ASP system, therefore, employs a more sophisticated proce-
dure geared towards keeping the instantiated program as small as possible. A necessary
condition is, of course, that the instantiated program must have the same answer sets as
the original program; however, it should be noted that the Instantiator solves a problem
which is in general EXPTIME-hard, the produced ground program being potentially
of exponential size with respect to the input program. Optimizations in the Instantiator
therefore often have a big impact, as its output is the input for the following modules,
which implement computationally hard algorithms. Moreover, if the input program is
normal and stratified, the Instantiator module is, in some cases, able to directly compute
its answer sets (if they exist).

The subsequent computations, which constitute the non-deterministic part of an ASP
system, are then performed on grnd(P) by both the Model Generator and the Model
Checker. Roughly, the former produces some “candidate” answer set, whose stability
is subsequently verified by the latter. Model generation is the non-deterministic core
of an ASP system, and it is usually implemented as a backtracking search similar to
the Davis-Putnam-Logemann-Loveland (DPLL) procedure [102] for SAT solving. Ba-
sically, starting from the empty (partial) interpretation, the ModelGenerator module
repeatedly assumes truth-values for atoms (branching step), subsequently computing
their deterministic consequences (propagation step). This is done until either an an-
swer set candidate is found or an inconsistency is detected. Candidate answer sets are
then checked by exploiting the Model Checker module; whereas, if an inconsistency
is detected, chosen literals have to be undone (backtracking). For disjunctive programs
model cheking is as hard as the problem solved by the Model Generator, while it is
trivial for non-disjunctive programs. Finally, once an answer set has been found, ASP
systems typically print it in text format, and possibly the Model Generator resumes in
order to look for further solutions.

All the aspects of the evaluation of ASP programs have been subject of analysis by
the Italian research community; the obtained results, divided by evaluation task, are
surveyed in the following.

Instantiation. The first contributions in this respect date back to 1999, when some op-
timization techniques, based on a rewriting of the input program, were proposed aiming
at reducing the size of the instantiation generated by the grounder [69]. Since computing
all the possible instantiations of a rule is, basically, analogous to computing all the an-
swers of a conjunctive query joining the extensions of literals of the rule body, in [70]
a new join-ordering technique was proposed, that sensibly improves the instantiation
procedures of ASP systems. Some year later, in [71] a new backjumping technique for
the instantiation of a rule was proposed which allows for reducing both the size of the
generated grounding and the time needed for producing it. All the above mentioned
techniques were incorporated in the grounder of the DLV system, and allowed for rel-
evant improvements of the performance of the system. Notably, to our knowledge, the
technique in [71] has been successfully exploited also by other two grounders, namely
GrinGo [103], and GIDL [104].

In the last years, in order to exploit the power of modern multi-core/multiprocessor
computers, a number of strategies for the parallelization of the instantiation procedure

170 P. Bonatti et al.

have been proposed [72, 73]. In particular, three levels of parallelism can be exploited
during the instantiation process, namely, components, rules and single rule level. The
first two levels were first employed in [72] while the third one was presented in [73].
Also these techniques have been implemented into the DLV grounder, and the result-
ing parallel instantiator proved to be effective on modern multi-core machines when
handling both real-world and classical problem instances [72, 73, 105].

A distributed instantiator working on a Beowulf [106] cluster was presented in [107];
further works appear in [108].

Model Generation. The Italian research community provided relevant contribution re-
garding all the aspects of model generation. About the propagation step, peculiar proper-
ties of ASP programs were exploited in [74, 109], that allow to prune the search space by
combining extension of the well-founded operator for disjunctive programs with a num-
ber of techniques based on disjunctive ASP program properties. The efficiency of the
whole model generation process depends also on two crucial features: a good heuristic
(branching rule) to choose the branching literal (i.e., the criterion determining the literal
to be assumed true at a given stage of the computation); and a smart recovery procedure
for undoing the choices causing inconsistencies. To this end, both look-ahead [75] and
look-back [76, 77] techniques and heuristics specifically conceived for enhancing the
model generation process were proposed and implemented in the state-of-the-art ASP
system DLV [16]. In a lookahead heuristic [75] each possible choice literal is tenta-
tively assumed, its consequences are computed, and some characteristic values on the
result are recorded. The look-ahead heuristics of [75] “layers” several criteria based on
peculiar properties of ASP, and basically drives the search towards “supported” interpre-
tations (since answer sets are supported interpretations (cfr. [34, 110, 111]). In a look-
back heuristics usually choices are made in such a way that the atoms most involved
in conflicts are chosen first. Motivated by heuristics implemented in SAT solvers like
Chaff [112], a family of new look-back heuristics tailored for disjunctive ASP programs
were proposed in [77]. Look-back heuristics are mainly exploited in conjunction with
backjumping, where the set of chosen literals that are relevant for an inconsistency are
detected, and the system goes back in the search until at least one choice that “entail”
the inconsistency is undone. In [76] a reason calculus that allows for determining the
relevance for an inconsistency was proposed; here the information about the choices
(“reasons”) whose truth-values have caused truth-values of other deterministically de-
rived atoms is collected and exploited for backjumping.

Native ASP systems exploit backtracking search algorithms that work directly on the
ground instantiation of the input program, like the ones described above. An alternative
approach to model generation is based on a rewriting into a propositional formula which
is then evaluated by a boolean satisfiability solver for finding answer sets. Giunchiglia
and Maratea, in collaboration with the members of the Texas Action Group at Austin,
led by Prof. Vladimir Lifschitz, designed a SAT-based approach to normal logic pro-
grams [21, 113, 114], which is now considered the reference SAT-based work in ASP.
A comparison among the techniques employed by ASP systems underlying strengths
and weaknesses of each approach was provided in [115, 116].

Techniques for parallel evaluation of ground ASP programs were studied in [117,
118] and, on clusters, in [107, 108]. Furthermore, going beyond the classical methods

Answer Set Programming 171

of computing the answer sets of a logic program, in [119, 120] a method is presented
that does not require a preliminary grounding phase.

Model Checking. is a crucial step of the computation of the answer sets. There are two
main reason for the importance of the model checking step: the exponential number of
possible models (model candidates); and the hardness of stable model checking. Note
that, when disjunction is allowed in the head, deciding whether a given model is a
stable model of a propositional ASP program is co-NPcomplete [11]. In [78] a new
transformation T , which reduces stable model checking to UNSAT, i.e., to deciding
whether a given CNF formula is unsatisfiable, is introduced. Thus, the stability of an
answer set candidate M of a program P can be verified by calling a SAT solver on the
CNF formula obtained by applying T to P . The transformation is very efficient: it runs
in logarithmic space and no new symbol is added. This approach to model checking
was implemented in the ASP system DLV [16] and some experiments confirmed its
efficacy [78].

7 Systems and Applications

Several ASP systems are available nowadays, and a number of practically relevant
real-world applications of ASP have been developed. In the following, we first present
DLV [16], a state-of-the-art ASP systems, which is widely used all over the world and
is actively developed by Italian researchers; then we mention some relevant systems
and application based on ASP.

7.1 The DLV System

The DLV system [16] is widely considered one of the state-of-the-art implementations
of answer set programming. The development of DLV started at the end of 1996, within
a research project funded by the Austrian Science Funds (FWF) and led by Nicola
Leone at the Vienna University of Technology. The first stable release became available
in 1997, and at present, DLV is the subject of an international cooperation between the
University of Calabria and the Vienna University of Technology. After its first release,
the DLV system has been significantly improved over and over in the last years. In par-
ticular, the language of DLV was enriched in several ways and currently supports the
main ASP extensions: disjunction, aggregates, weak-constraints, and function symbols
(see Section 4 and Section 5). Relevant optimization techniques have been incorpo-
rated into the DLV engine, including database techniques for efficient instantiation,
advanced pruning operators, look-ahead and look-back techniques for model genera-
tion, and innovative techniques for answer-set checking (see Section 6). Moreover, in
order to deal with data-intensive applications a database oriented version of DLV, called
DLVDB, was recently proposed [121, 122]. DLVDB is able to evaluate large amount
of data by exploiting an evaluation strategy working mostly onto the database, where
input data reside. DLVDB embodies some query-oriented optimization strategies, like
magic-sets [44], capable of significantly improving query evaluation performances. As
a result, at the time being, DLV is generally recognized to be a state-of-the-art imple-
mentation of disjunctive ASP. Importantly, DLV is widely used by researchers all over

172 P. Bonatti et al.

the world, it is employed in real-world applications (see next Section), and it is com-
petitive from the viewpoint of efficiency with the most advanced systems in the area of
Answer Set Programming [13, 123].

7.2 ASP-Based Products

In this section three industrial products strongly based on ASP, and, in particular, on
DLV are presented, namely: OntoDLV [41, 42], OLEX [30, 31], HıLεX [32, 33].

• OntoDLV [41, 42] is a system for ontologies specification and reasoning. The lan-
guage of OntoDLV is an extension of (disjunctive) ASP with all the main ontology
constructs including classes, inheritance, relations, and axioms. Importantly, OntoDLV
supports a powerful interoperability mechanism with OWL, allowing the user to retrieve
information from external OWL Ontologies and to exploit this data in OntoDLP on-
tologies and queries. OntoDLV facilitates the development of complex applications in a
user-friendly visual environment; it features a rich Application Programming Interface
(API) [124], and it is endowed with a robust persistency-layer for saving information
transparently on a DBMS, and it seamlessly integrates DLV [16].

• OLEX [30, 31] (OntoLog Enterprise Categorizer System) is a corporate classi-
fication system supporting the entire content classification life-cycle, including docu-
ment storage and organization, ontology construction, pre-processing and classification.
OLEX exploits a reasoning-based approach to text classification which synergically
combines: (i) ontologies for the formal representation of the domain knowledge; (ii)
pre-processing technologies for a symbolic representation of texts and (iii) ASP as cat-
egorization rule language. Logic rules, indeed, provides a natural and powerful way to
encode how document contents may relate to ontology concepts.

• HıLεX [32, 33] is an advanced system for ontology-based information extraction
from semi-structured and unstructured documents. HıLεX implements a semantic ap-
proach to the information extraction problem able to deal with different document for-
mats (html, pdf, doc, ...). HıLεX is based on OntoDLP for describing ontologies, and
supports a language that is founded on the concept of ontology descriptor. A “descrip-
tor” looks like a production rule in a formal attribute grammar, where syntactic items
are replaced by ontology elements. Each descriptor allows us to describe: (i) an on-
tology object in order to recognize it in a document; or (ii) how to “generate” a new
object that, in turn, may be added in the original ontology. The obtained specification is
rewritten in ASP and evaluated by means of the DLV system.

7.3 Applications

We briefly illustrate here a a number of real-world applications based on DLV or on
DLV-based products. They can be grouped in two classes: industrial applications of
DLV (developed by the company Exeura s.r.l) and other applications [40].

Industrial Applications. The main commercial applications exploiting DLV are the
following:

• Team Building in the Gioia-Tauro Seaport. A system based on DLV has been de-
veloped to automatically produce an optimal allocation of the available personnel of the

Answer Set Programming 173

international seaport of Gioia Tauro [125]. The system currently employed by the trans-
shipment company ICO BLG can build new teams satisfying a number of constraints or
complete the allocation automatically when the roles of some key employees are fixed
manually.

• E-Tourism. IDUM [26] is an intelligent e-tourism system. IDUM system helps both
employees and customers of a travel agency in finding the best possible travel solution
in a short time. In IDUM an ontology modeling the tourism scenario was developed
by using OntoDLV, and is automatically filled by processing the offers received by
a travel agent with HıLεX. IDUM mimics the behavior of the typical employee of a
travel agency by running a set of specifically devised logic programs that reason on the
information contained in the tourism ontology. The result is a system that combines the
speed of computers with the knowledge of a travel agent.

• Automatic Itinerary Search. In this application, a web portal conceived for better
exploiting the whole transportation system of the Italian region Calabria, including both
public and private companies. The system is very precise; it tells you where and what
time to catch your bus/train, where to get off and transfer, how long your trip will take,
walking directions etc. A set of specifically devises ASP programs are used to build the
required itineraries.

• e-Government. In this field, an application of the OLEX system was developed, in
which legal acts and decrees issued by public authorities are classified. The system was
validated with the help of the employees of the Calabrian Region administration, and it
performed very well by obtaining an f-measure of 92% and a mean precision of 96% in
real-world documents.

• e-Medicine. OLEX was employed for developing a system able to classify auto-
matically case histories and documents containing clinical diagnoses. The system was
commissioned, with the goal of conducting epidemiological analyses, by the ULSS n.8
(which is, a local authority for health services) of the area of Asolo, in the Italian region
Veneto. The system has been deployed and is currently employed by the personnel of
the ULSS of Asolo.

Other Applications. The European Commission funded a project on Information In-
tegration, which produced a sophisticated and efficient data integration system, called
INFOMIX, which uses DLV at its computational core [28]. The powerful mechanisms
for database interoperability, together with magic sets [43, 44] and other database op-
timization techniques, which are implemented in DLV, make DLV very well-suited
for handling information integration tasks. And DLV (in INFOMIX) was succesfully
employed to develop in a real-life integration system for the information system of the
University of Rome “La Sapienza” The DLV system has been experimented also with
an application for Census Data Repair [29], in which errors in census data are identified
and eventually repaired.

DLV has been employed at CERN, the European Laboratory for Particle Physics,
for an advanced deductive database application that involves complex knowledge ma-
nipulation on large-sized databases.

The Polish company Rodan Systems S.A. has exploited DLV in a tool for the detec-
tion of price manipulations and unauthorized use of confidential information, which is
used by the Polish Securities and Exchange Commission.

174 P. Bonatti et al.

In the area of self-healing Web Services, moreover, DLV is exploited for implement-
ing the computation of minimum cardinality diagnoses [45].

In [126] MASEL, A Multi Agent System for E-Learning and Skill Management has
been proposed. In MASEL personalized learning paths are automatically composed by
exploiting suitable ASP programs run on the DLV system. A prototype tool implement-
ing MASEL using JADE (Java Agent DEvelopment Framework) was developed.

In [127] a complete on-line exam taking portal has been described, called EXAM.
The system allows teachers and students to be assisted in the whole process of as-
sessment test building, exam taking, and test correction. The system exploits ASP for
automatically generating assessment tests based on user defined constraints: a teacher
is made able to build up an assessment test template; her preferences are then translated
into a logic specification executable by DLV.

The cooperation between the University of Milan-Bicocca and the University
of Potsdam led to the implementation of intelligent monitoring systems based on
gringo/clasp [22], where the ASP reasoning module is crucial (see, for instance,
[128, 129]).

Italian researchers have exploited ASP capabilities also for diagnosis [130] and e-
ealth [131] applications.

8 Further Contributions

This Section briefly mentions several other contributions to the ASP field due to the
work of Italian researchers.

In [132, 133], an integrated information retrieval agent based on an ASP inference
engine, named GSA2, was presented. The GSA2 approach is general and reusable, and
the result constitutes a good example of real implementation of agents based on logics.

The first purely syntactic characterization of answer sets in the context of logic pro-
gramming was introduced in [35]. In the same work, it was pointed out explicitly that
answer sets are supersets of the well-founded model (wfm) and can thus be in prin-
ciple computed after a simplification w.r.t. the wfm (this property was independently
discovered in [134]). In [36], the authors introduced a graphical representation of ASP
programs, called Extended Dependency Graph (EDG). EDG is defined on a simplified
form of programs called kernel. In [37, 38], kernel programs were exploited for defining
an algorithm for answer set computation, as answer sets can be characterized as admis-
sible colorings of the EDG. Moreover, the kernel normal form and other normal forms
of ASP programs were studied in [39]. In [135], some features that graph representa-
tions of ASP programs should exhibit, especially isomorphism between a program and
the corresponding graph, were identified. It turns out that isomorphism is possible only
if the graph representation formalism is able to distinguish the cycles occurring in the
program, and the different connections among them. Investigating the program structure
is also important for understanding the effects of updates of given program on the exis-
tence, the number and the content of answer sets. In particular, a graph representation
can be useful to understand what happens after asserting lemmas [136] and/or adding
new rules [137]. The work [138] showed that representations like the EDG (or others
that have been proposed in the literature), which are oriented to atoms and rules, can

Answer Set Programming 175

be usefully condensed into more compact representations, called Cycle Graph, which
is oriented to components. In the Cycle Graph, vertices are not atoms or rules, but sig-
nificant subprograms. The Cycle Graph allows the relationship between the syntax of
programs and the existence of answer sets to be investigated, and thus can be the basis
of software engineering methodologies for answer set programming. In [139] incon-
sistency and incompleteness in data integration are handled by introducing an “helper
model” acting as a mediator between the global conceptual data model and the data
sources.

ASP was exploited as a core inference engine for a system for qualitative manage-
ment of probabilistic uncertainty [140–142]. The system supports basic reasoning tasks
by mechanizing various notions of comparative preference notions that represent plau-
sible models of cognitive unconscious humans mental processes.

ASP was integrated with arithmetic and finite domain constraint solvers in [143].
The benefits, besides enhanced expressiveness, comprise reduced memory requirements
because the part of a program involving constraints needs not be instantiated. Conse-
quently, it was possible to extend significantly the size of the problems solved by an
ASP planner for Space Shuttle operations (see also [144]).

The mutual interdependence of ASP-based agents has been investigated [145–148]
at Università Mediterranea of Reggio Calabria. In [145], agreements possibly reached
by a collection of agents are represented. In [146, 147], a community of agents where
individual conclusions rely on others ones is modeled by nested social predicates. This
language is refined in [148] by adding social aggregates and a form of reasoning where
models include also “unfounded” interpretations in case they are mutually supported by
multiple agents. Finally, a form of preferences under uncertainty is modeled under ASP
in [149].

References

1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. CUP
(2003)

2. Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programming. In:
ICLP/SLP 1988, pp. 1070–1080. MIT Press, Cambridge (1988)

3. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive
Databases. NGC 9, 365–385 (1991)

4. Lifschitz, V.: Answer Set Planning. In: ICLP 1999, pp. 23–37 (1999)
5. Marek, V.W., Truszczyński, M.: Stable Models and an Alternative Logic Programming

Paradigm. In: The Logic Programming Paradigm – A 25-Year Perspective, pp. 375–398
(1999)

6. Minker, J. (ed.): Foundations of Deductive Databases and Logic Programming, Washington,
DC (1988)

7. Minker, J., Rajasekar, A.: A Fixpoint Semantics for Disjunctive Logic Programs. JLP 9(1),
45–74 (1990)

8. Lobo, J., Minker, J., Rajasekar, A.: Foundations of Disjunctive Logic Programming. The
MIT Press, Cambridge (1992)

9. Fernández, J.A., Minker, J.: Semantics of Disjunctive Deductive Databases. In: Hull, R.,
Biskup, J. (eds.) ICDT 1992. LNCS, vol. 646, pp. 21–50. Springer, Heidelberg (1992)

10. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM TODS 22(3), 364–418 (1997)

176 P. Bonatti et al.

11. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and Expressive Power of Logic
Programming. ACM Computing Surveys 33(3), 374–425 (2001)

12. Eiter, T., Faber, W., Leone, N., Pfeifer, G.: Declarative Problem-Solving Using the DLV
System. In: Logic-Based Artificial Intelligence, pp. 79–103. Kluwer, Dordrecht (2000)

13. Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., Truszczyński, M.: The
First Answer Set Programming System Competition. In: Baral, C., Brewka, G., Schlipf, J.
(eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 3–17. Springer, Heidelberg (2007)

14. Zhao, Y.: The Second Answer Set Programming Competition homepage (2009x),
http://www.cs.kuleuven.be/˜dtai/ASP-competition

15. Dovier, A., Formisano, A., Pontelli, E.: An Empirical Study Of Constraint Logic Program-
ming And Answer Set Programming Solutions Of Combinatorial Problems. J. Exp. Theor.
Artif. Intell. 21(2), 79–121 (2009)

16. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
System for Knowledge Representation and Reasoning. ACM TOCL 7(3), 499–562 (2006)

17. Simons, P.: Smodels Homepage (since (1996),
http://www.tcs.hut.fi/Software/smodels/

18. Simons, P., Niemelä, I., Soininen, T.: Extending and Implementing the Stable Model Se-
mantics. AI 138, 181–234 (2002)

19. Zhao, Y.: ASSAT homepage (since 2002), http://assat.cs.ust.hk/
20. Lin, F., Zhao, Y.: ASSAT: Computing Answer Sets of a Logic Program by SAT Solvers. In:

AAAI 2002, Edmonton, Alberta, Canada. AAAI Press / MIT Press (2002)
21. Babovich, Y., Maratea, M.: Cmodels-2: SAT-based Answer Sets Solver Enhanced to Non-

tight Programs (2003),
http://www.cs.utexas.edu/users/tag/cmodels.html

22. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-Driven Answer Set Solving.
In: IJCAI 2007, pp. 386–392 (2007)

23. Janhunen, T., Niemelä, I., Seipel, D., Simons, P., You, J.H.: Unfolding Partiality and Dis-
junctions in Stable Model Semantics. ACM TOCL 7(1), 1–37 (2006)

24. Lierler, Y.: Disjunctive Answer Set Programming via Satisfiability. In: Baral, C., Greco,
G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 447–451.
Springer, Heidelberg (2005)

25. Drescher, C., Gebser, M., Grote, T., Kaufmann, B., König, A., Ostrowski, M., Schaub, T.:
Conflict-Driven Disjunctive Answer Set Solving. In: Proceedings of the Eleventh Interna-
tional Conference on Principles of Knowledge Representation and Reasoning (KR 2008),
Sydney, Australia, pp. 422–432. AAAI Press, Menlo Park (2008)

26. Ielpa, S.M., Iiritano, S., Leone, N., Ricca, F.: An ASP-Based System for e-Tourism. In: Er-
dem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 368–381. Springer,
Heidelberg (2009)

27. Leone, N., Ricca, F., Terracina, G.: An ASP-Based Data Integration System. In: Erdem,
E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 528–534. Springer,
Heidelberg (2009)

28. Leone, N., Gottlob, G., Rosati, R., Eiter, T., Faber, W., Fink, M., Greco, G., Ianni, G., Kałka,
E., Lembo, D., Lenzerini, M., Lio, V., Nowicki, B., Ruzzi, M., Staniszkis, W., Terracina, G.:
The INFOMIX System for Advanced Integration of Incomplete and Inconsistent Data. In:
SIGMOD 2005, Baltimore, Maryland, USA, pp. 915–917. ACM Press, New York (2005)

29. Franconi, E., Palma, A.L., Leone, N., Perri, S.: Census Data Repair: A Challenging Appli-
cation of Disjunctive Logic Programming. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR
2001. LNCS (LNAI), vol. 2250, pp. 561–578. Springer, Heidelberg (2001)

30. Cumbo, C., Iiritano, S., Rullo, P.: OLEX – A Reasoning-Based Text Classifier. In: Alferes,
J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 722–725. Springer,
Heidelberg (2004)

http://www.cs.kuleuven.be/~dtai/ASP-competition
http://www.tcs.hut.fi/Software/smodels/
http://assat.cs.ust.hk/
http://www.cs.utexas.edu/users/tag/cmodels.html

Answer Set Programming 177

31. Rullo, P., Cumbo, C., Policicchio, V.L.: Learning Rules With Negation For Text Catego-
rization. In: ACM Symposium on Applied Computing (SAC 2007), Seoul, Korea, 11-15,
pp. 409–416. ACM, New York (2007)

32. Ruffolo, M., Manna, M.: HiLeX: A System for Semantic Information Extraction from
Web Documents. In: ICEIS. Lecture Notes in Business Information Processing, vol. (3),
pp. 194–209. Springer, Heidelberg (2008)

33. Ruffolo, M., Leone, N., Manna, M., Saccà, D., Zavatto, A.: Exploiting ASP for Semantic
Information Extraction. In: Proceedings ASP 2005 - Answer Set Programming: Advances
in Theory and Implementation, Bath, UK, pp. 248–262 (2005)

34. Leone, N., Rullo, P., Scarcello, F.: Disjunctive Stable Models: Unfounded Sets, Fixpoint
Semantics and Computation. Information and Computation 135(2), 69–112 (1997)

35. Costantini, S.: Contributions to the stable model semantics of logic programs with negation.
Theoretical Computer Science 149 (1995); preliminary version in Proc. of LPNMR93

36. Brignoli, G., Costantini, S., D’Antona, O., Provetti, A.: Characterizing and Computing Sta-
ble Models of Logic Programs: the Non–stratified Case. In: Proc. of the 1999 Conference
on Information Technology, Bhubaneswar, India (1999)

37. Bertoni, A., Grossi, G., Provetti, A., Kreinovich, V., Tari, L.: The Prospect for Answer Set
Computation by a Genetic Model. In: AAAI Spring Symposium ASP 2001, pp. 1–5. AAAI
Press, Menlo Park (2001)

38. Grossi, G., Marchi, M., Pontelli, E., Provetti, A.: Improving the AdjSolver Algorithm for
ASP Kernel Programs. In: ASP 2007, 4th International Workshop on Answer Set Program-
ming at ICLP 2007 (2007)

39. Costantini, S., Provetti, A.: Normal Forms for Answer Sets Programming. J. on TPLP 5(6)
(2005)

40. Grasso, G., Iiritano, S., Leone, N., Ricca, F.: Some DLV Applications for Knowledge
Management. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753,
pp. 591–597. Springer, Heidelberg (2009)

41. Ricca, F., Gallucci, L., Schindlauer, R., Dell’Armi, T., Grasso, G., Leone, N.: OntoDLV: an
ASP-based System for Enterprise Ontologies. Journal of Logic and Computation (2009)

42. Ricca, F., Leone, N.: Disjunctive Logic Programming With Types And Objects: The Dlv+

System. Journal of Applied Logics 5(3), 545–573 (2007)
43. Cumbo, C., Faber, W., Greco, G., Leone, N.: Enhancing the Magic-Set Method for Disjunc-

tive Datalog Programs. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132,
pp. 371–385. Springer, Heidelberg (2004)

44. Faber, W., Greco, G., Leone, N.: Magic Sets and their Application to Data Integration.
JCSS 73(4), 584–609 (2007)

45. Friedrich, G., Ivanchenko, V.: Diagnosis From First Principles For Workflow Executions.
Tech. Rep.,
http://proserver3-iwas.uni-klu.ac.at/download area/
Technical-Reports/technical report 2008 02.pdf

46. Buccafurri, F., Leone, N., Rullo, P.: Enhancing Disjunctive Datalog by Constraints. IEEE
TKDE 12(5), 845–860 (2000)

47. Calimeri, F., Faber, W., Leone, N., Perri, S.: Declarative and Computational Properties of
Logic Programs with Aggregates. In: IJCAI 2005, pp. 406–411 (2005)

48. Dell’Armi, T., Faber, W., Ielpa, G., Leone, N., Pfeifer, G.: Aggregate Functions in Disjunc-
tive Logic Programming: Semantics, Complexity, and Implementation in DLV. In: IJCAI
2003, Acapulco, Mexico, pp. 847–852 (2003)

49. Faber, W., Leone, N.: On the Complexity of Answer Set Programming with Aggregates.
In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483,
pp. 97–109. Springer, Heidelberg (2007)

http://proserver3-iwas.uni-klu.ac.at/download_area/Technical-Reports/technical_report_2008_02.pdf
http://proserver3-iwas.uni-klu.ac.at/download_area/Technical-Reports/technical_report_2008_02.pdf

178 P. Bonatti et al.

50. Faber, W., Leone, N., Pfeifer, G.: Recursive Aggregates in Disjunctive Logic Programs:
Semantics and Complexity. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI),
vol. 3229, pp. 200–212. Springer, Heidelberg (2004)

51. Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: A Logic Programming Approach to
Knowledge-State Planning: Semantics and Complexity. ACM TOCL 5(2), 206–263 (2004)

52. Perri, S., Scarcello, F., Leone, N.: Abductive Logic Programs with Penalization: Semantics,
Complexity and Implementation. TPLP 5(1–2), 123–159 (2005)

53. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A Uniform Integration of Higher-Order
Reasoning and External Evaluations in Answer Set Programming. In: IJCAI 2005, Edin-
burgh, UK, pp. 90–96 (2005)

54. Calimeri, F., Ianni, G., Ielpa, G., Pietramala, A., Santoro, M.C.: A System with Tem-
plate Answer Set Programs. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI),
vol. 3229, pp. 693–697. Springer, Heidelberg (2004)

55. Costantini, S., Formisano, A.: Answer Set Programming with Resources. Journal of Logic
and Computation (to appear, 2009),
www.dipmat.unipg.it/˜formis/papers/report200816.ps.gz
Draft available as Report-16/2008 of Dip. di Matematica e Informatica, Univ. di Perugia

56. Costantini, S., Formisano, A.: Modeling Preferences And Conditional Preferences On Re-
source Consumption And Production In Asp. Journal of of Algorithms in Cognition, Infor-
matics and Logic 64(1), 3–15 (2009)

57. Balduccini, M., Gelfond, M.: Logic Programs with Consistency-Restoring Rules. In: Inter-
national Symposium on Logical Formalization of Commonsense Reasoning. AAAI 2003
Spring Symposium Series (2003)

58. Bria, A., Faber, W., Leone, N.: Normal Form Nested Programs. FI (2009) (accepted for
publication)

59. Bonatti, P.A.: Reasoning with Infinite Stable Models. Artif. Intell. 156(1), 75–111 (2004)
60. Bonatti, P.: Reasoning with Infinite Stable Models. In: Proceedings of the Seventeenth In-

ternational Joint Conference on Artificial Intelligence, IJCAI 2001, pp. 603–610 (2001)
61. Baselice, S., Bonatti, P.A., Criscuolo, G.: On Finitely Recursive Programs. TPLP 9(2),

213–238 (2009)
62. Bonatti, P.A.: Reasoning with infinite stable models II: Disjunctive programs. In: Stuckey,

P.J. (ed.) ICLP 2002. LNCS, vol. 2401, pp. 333–346. Springer, Heidelberg (2002)
63. Bonatti, P.A.: Erratum to: Reasoning with infinite stable models [artificial intelligence

156(1) (2004) 75–111]. Artif. Intell. 172(15), 1833–1835 (2008)
64. Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Computable Functions in ASP: Theory and

Implementation. In: [150], pp.407–424
65. Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Magic Sets for the Bottom-Up Evaluation of

Finitely Recursive Programs. In: [151], 71–86
66. Bonatti, P.A.: Resolution for Skeptical Stable Model Semantics. J. Autom. Reasoning 27(4),

391–421 (2001)
67. Bonatti, P.A., Pontelli, E., Son, T.C.: Credulous Resolution for Answer Set Programming.

In: AAAI, pp. 418–423. AAAI Press, Menlo Park (2008)
68. Calimeri, F., Cozza, S., Ianni, G., Leone, N.: An ASP System with Functions, Lists, and

Sets. In: [151], 483–489
69. Faber, W., Leone, N., Mateis, C., Pfeifer, G.: Using Database Optimization Techniques

for Nonmonotonic Reasoning. In: DDLP 1999, Prolog Association of Japan, pp. 135–139
(1999)

70. Leone, N., Perri, S., Scarcello, F.: Improving ASP Instantiators by Join-Ordering Methods.
In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173,
pp. 280–294. Springer, Heidelberg (2001)

www.dipmat.unipg.it/~formis/papers/report200816.ps.gz

Answer Set Programming 179

71. Perri, S., Scarcello, F., Catalano, G., Leone, N.: Enhancing DLV Instantiator by Backjump-
ing Techniques. AMAI 51(2-4), 195–228 (2007)

72. Calimeri, F., Perri, S., Ricca, F.: Experimenting with Parallelism for the Instantiation of
ASP Programs. Journal of Algorithms in Cognition, Informatics and Logics 63(1-3), 34–54
(2008)

73. Vescio, S., Perri, S., Ricca, F.: Efficient Parallel ASP Instantiation via Dynamic Rewriting.
In: Proceedings of the First Workshop on Answer Set Programming and Other Computing
Paradigms (ASPOCP 2008), Udine, Italy (2008)

74. Calimeri, F., Faber, W., Leone, N., Pfeifer, G.: Pruning Operators for Disjunctive Logic
Programming Systems. FI 71(2-3), 183–214 (2006)

75. Faber, W., Leone, N., Pfeifer, G., Ricca, F.: On look-ahead heuristics in disjunctive logic
programming. AMAI 51(2-4), 229–266 (2007)

76. Ricca, F., Faber, W., Leone, N.: A Backjumping Technique for Disjunctive Logic Program-
ming. AI Communications 19(2), 155–172 (2006)

77. Maratea, M., Ricca, F., Faber, W., Leone, N.: Look-Back Techniques and Heuristics in
DLV: Implementation, Evaluation and Comparison to QBF Solvers. Journal of Algorithms
in Cognition, Informatics and Logics 63(1-3), 70–89 (2008)

78. Koch, C., Leone, N., Pfeifer, G.: Enhancing Disjunctive Logic Programming Systems by
SAT Checkers. AI 15(1-2), 177–212 (2003)

79. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading
(1995)

80. Van Gelder, A., Ross, K.A., Schlipf, J.S.: The Well-Founded Semantics for General Logic
Programs. J. ACM 38(3), 620–650 (1991)

81. Reiter, R.: On Closed World Data Bases. In: Logic and Data Bases, pp. 55–76. Plenum
Press, New York (1978)

82. Ben-Eliyahu, R., Dechter, R.: Propositional Semantics for Disjunctive Logic Programs.
AMAI 12, 53–87 (1994)

83. Ben-Eliyahu, R., Palopoli, L.: Reasoning with Minimal Models: Efficient Algorithms and
Applications. In: Proceedings Fourth International Conference on Principles of Knowledge
Representation and Reasoning (KR 1994), pp. 39–50 (1994)

84. Denecker, M., Pelov, N., Bruynooghe, M.: Ultimate Well-Founded and Stable Model Se-
mantics for Logic Programs with Aggregates. In: Codognet, P. (ed.) ICLP 2001. LNCS,
vol. 2237, p. 212. Springer, Heidelberg (2001)

85. Hella, L., Libkin, L., Nurmonen, J., Wong, L.: Logics with Aggregate Operators. J.
ACM 48(4), 880–907 (2001)

86. Pelov, N., Denecker, M., Bruynooghe, M.: Well-founded and Stable Semantics of Logic
Programs with Aggregates. TPLP 7(3), 301–353 (2007)

87. Elkabani, I., Pontelli, E., Son, T.C.: SmodelsA - A System for Computing Answer Sets of
Logic Programs with Aggregates. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.)
LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 427–431. Springer, Heidelberg (2005)

88. Son, T.C., Pontelli, E.: A Constructive Semantic Characterization of Aggregates in ASP.
TPLP 7, 355–375 (2007)

89. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The
Description Logic Handbook: Theory, Implementation, and Applications. CUP (2003)

90. Lifschitz, V., Tang, L.R., Turner, H.: Nested Expressions in Logic Programs. AMAI
25(3-4), 369–389 (1999)

91. Mileo, A., Schaub, T.: Qualitative Constraint Enforcement in Advanced Policy Specifi-
cation. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS (LNAI), vol. 4724, pp. 695–706.
Springer, Heidelberg (2007)

180 P. Bonatti et al.

92. Bertino, E., Mileo, A., Provetti, A.: PDL with Preferences. In: POLICY, pp. 213–222. IEEE
Computer Society, Los Alamitos (2005)

93. Marchi, M., Mileo, A., Provetti, A.: Specification and Execution of Declarative Policies
for Grid Service Selection. In (LJ) Zhang, L.-J., Jeckle, M. (eds.) ECOWS 2004. LNCS,
vol. 3250, pp. 102–115. Springer, Heidelberg (2004)

94. Bertino, E., Mileo, A., Provetti, A.: PDL with Maximum Consistency Monitors. In: Zhong,
N., Raś, Z.W., Tsumoto, S., Suzuki, E. (eds.) ISMIS 2003. LNCS (LNAI), vol. 2871,
pp. 65–74. Springer, Heidelberg (2003)

95. Sterling, L., Shapiro, E.: The Art of Prolog, 2nd edn. MIT Press, Cambridge (1994)
96. Šimkus, M., Eiter, T.: FDNC: Decidable Non-monotonic Disjunctive Logic Programs with

Function Symbols. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI),
vol. 4790, pp. 514–530. Springer, Heidelberg (2007)

97. Syrjänen, T.: Omega-Restricted Logic Programs. In: Eiter, T., Faber, W., Truszczyński, M.
(eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 267–279. Springer, Heidelberg (2001)

98. Lierler, Y., Lifschitz, V.: One More Decidable Class of Finitely Ground Programs. In: [152],
pp. 489–493

99. Eiter, T., Ortiz, M., Šimkus, M.: Reasoning Using Knots. In: Cervesato, I., Veith, H.,
Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 377–390. Springer,
Heidelberg (2008)

100. Simkus, M.: Fusion of Logic Programming and Description Logics. In: [152], pp. 551–552
101. Baselice, S., Bonatti, P.A.: Composing Normal Programs with Function Symbols. In: [150],

pp. 425–439
102. Davis, M., Logemann, G., Loveland, D.: A Machine Program for Theorem Proving. Com-

munications of the ACM 5, 394–397 (1962)
103. Gebser, M., Schaub, T., Thiele, S.: GrinGo: A New Grounder for Answer Set Program-

ming. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483,
pp. 266–271. Springer, Heidelberg (2007)

104. Wittocx, J., Mariën, M., Denecker, M.: GidL: A Grounder for FO+. In: Proceedings of the
Twelfth International Workshop on Non-Monotonic Reasoning, pp. 189–198 (2008)

105. Perri, S., Ricca, F., Sirianni, M.: A Parallel ASP Instantiator Based on DLV. In: DAMP,
pp. 73–82. ACM, New York (2010)

106. Beowulf.org: The Beowulf Cluster Site, http://www.beowulf.org.
107. Balduccini, M., Pontelli, E., Elkhatib, O., Le, H.: Issues in Parallel Execution of Non-

Monotonic Reasoning Systems. Parallel Computing 31(6), 608–647 (2005)
108. Grossi, G., Marchi, M., Pontelli, E., Provetti, A.: Experimental Analysis of Graph-based

Answer Set Computation over Parallel and Distributed Architectures. J. of Logic and Com-
putation 19(4), 697–715 (2009)

109. Faber, W., Leone, N., Pfeifer, G.: Pushing Goal Derivation in DLP Computations. In:
Gelfond, M., Leone, N., Pfeifer, G. (eds.) LPNMR 1999. LNCS (LNAI), vol. 1730,
pp. 177–191. Springer, Heidelberg (1999)

110. Marek, V.W., Subrahmanian, V.: The Relationship between Logic Program Semantics and
Non-Monotonic Reasoning. In: ICLP 1989, pp. 600–617. MIT Press, Cambridge (1989)

111. Baral, C., Gelfond, M.: Logic Programming and Knowledge Representation. JLP (19/20),
73–148 (1994)

112. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an
Efficient SAT Solver. In: DAC 2001, pp. 530–535 (2001)

113. Giunchiglia, E., Lierler, Y., Maratea, M.: Answer Set Programming Based on Propositional
Satisfiability. Journal of Automated Reasoning 36(4), 345–377 (2006)

114. Giunchiglia, E., Lierler, Y., Maratea, M.: A SAT-based Polynomial Space Algorithm for
Answer Set Programming. In: Proceedings of the 10th International Workshop on Non-
Monotonic Reasoning (NMR 2004), pp. 189–196 (2004)

http://www.beowulf.org

Answer Set Programming 181

115. Giunchiglia, E., Maratea, M.: On the relation between answer set and SAT procedures (or,
between CMODELS and SMODELS). In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS,
vol. 3668, pp. 37–51. Springer, Heidelberg (2005)

116. Giunchiglia, E., Leone, N., Maratea, M.: On the Relation among Answer Set Solvers.
AMAI 53(1-4), 169–204 (2008)

117. Pontelli, E., El-Khatib, O.: Exploiting Vertical Parallelism from Answer Set Programs. In:
Proceedings of the 1st Intl. ASP 2001 Workshop on Answer Set
Programming, Towards Efficient and Scalable Knowledge Representation and Reasoning,
Stanford, pp. 174–180 (2001)

118. Le, H.V., Pontelli, E.: Dynamic Scheduling in Parallel Answer Set Programming Solvers.
In: SpringSim (2), SCS/ACM, pp. 367–374 (2007)

119. Dal Palù, A., Dovier, A., Pontelli, E., Rossi, G.: Answer Set Programming with Constraints
Using Lazy Grounding. In: [152], pp. 115–129

120. Dal Palù, A., Dovier, A., Pontelli, E., Rossi, G.: GASP: Answer Set Programming with
Lazy Grounding. FI 96(3), 297–322 (2009)

121. Terracina, G., Leone, N., Lio, V., Panetta, C.: Experimenting with Recursive Queries in
Database and Logic Programming Systems. TPLP 8, 129–165 (2008)

122. Terracina, G., De Francesco, E., Panetta, C., Leone, N.: Enhancing a DLP System for
Advanced Database Applications. In: Calvanese, D., Lausen, G. (eds.) RR 2008. LNCS,
vol. 5341, pp. 119–134. Springer, Heidelberg (2008)

123. Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczyński, M.: The Second Answer
Set Programming Competition. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009.
LNCS, vol. 5753, pp. 637–654. Springer, Heidelberg (2009)

124. Gallucci, L., Ricca, F.: Visual Querying and Application Programming Interface for an
ASP-based Ontology Language. In: Proceedings of the Workshop on Software Engineering
for Answer Set Programming (SEA 2007), pp. 56–70 (2007)

125. Grasso, G., Iiritano, S., Leone, N., Lio, V., Ricca, F., Scalise, F.: An ASP-Based System for
Team-Building in the Gioia-Tauro Seaport. In: Peña, R. (ed.) PADL 2010. LNCS, vol. 5937,
pp. 40–42. Springer, Heidelberg (2010)

126. Garro, A., Palopoli, L., Ricca, F.: Exploiting Agents in E-Learning and Skills Management
Context. AI Communications 19(2), 137–154 (2006)

127. Ianni, G., Ricca, F., Panetta, C.: Specification of Assessment-Test Criteria through ASP
Specification. In: Answer Set Programming: Advances in Theory and Implementation,
Bath, UK, Research Press International, P.O. Box 144, Bristol BS 1YA, pp. 293–302 (2005)

128. Mileo, A., Merico, D., Bisiani, R.: Non-monotonic Reasoning Supporting Wireless Sensor
Networks for Intelligent Monitoring: The SINDI System. In: [151], pp. 585–590

129. Mileo, A., Merico, D., Bisiani, R.: A Logic Programming Approach to Home Monitoring
for Risk Prevention in Assisted Living. In: [150], pp. 145–159

130. Balduccini, M., Gelfond, M.: Diagnostic reasoning with A-Prolog. TPLP 3, 425–461 (2003)
131. Bisiani, R., Merico, D., Mileo, A., Pinardi, S.: A Logical Approach to Home Healthcare

with Intelligent Sensor-Network Support. The Computer Journal (2009); bxn074
132. Ianni, G., Calimeri, F., Lio, V., Galizia, S.: Reasoning about the Semantic Web using An-

swer Set Programming. In: APPIA-GULP-PRODE, pp. 324–336 (2003)
133. Ianni, G., Ricca, F., Calimeri, F., Lio, V., Galizia, S.: An agent system reasoning about the

web and the user. In: WWW (Alternate Track Papers & Posters), pp. 492–493 (2004)
134. Subrahmanian, V., Nau, D., Vago, C.: WFS + Branch and Bound = Stable Models. IEEE

TKDE 7(3), 362–377 (1995)
135. Costantini, S.: Comparing Different Graph Representations of Logic Programs under the

Answer Set Semantics. In: Proc. of the AAAI Spring Symposium Answer Set Program-
ming: Towards Efficient and Scalable Knowledge Representation and Reasoning, CA
(2001)

182 P. Bonatti et al.

136. Costantini, S., Lanzarone, G.A., Magliocco, G.: Asserting Lemmas in the Stable Model
Semantics. In: Logic Programming – Proc. of the 1996 Joint International Conference, USA
(1996)

137. Costantini, S., Intrigila, B., Provetti, A.: Coherence of Updates in Answer Set Program-
ming. In: IJCAI 2003 Workshop on Nonmonotonic Reasoning, Action and Change, NRAC
2003, pp. 66–72 (2003)

138. Costantini, S.: On the Existence of Stable Models of Non-Stratified Logic Programs. J. on
TPLP 6(1-2) (2006)

139. Costantini, S., Formisano, A., Omodeo, E.G.: Mappings Between Domain Models in An-
swer Set Programming. In: Answer Set Programming, Advances in Theory and Implemen-
tation, Proc. of the 2nd Intl. ASP 2003. CEUR Workshop Proc., vol. 78 (2003)

140. Capotorti, A., Formisano, A.: Comparative Uncertainty: Theory and Automation. Mathe-
matical Structures in Computer Science 18(1) (2008)

141. Capotorti, A., Formisano, A., Murador, G.: Qualitative Uncertainty Orderings Revised.
Electronic Notes in Theoretical Computer Science 169, 43–59 (2007)

142. Capotorti, A., Formisano, A.: Management of Uncertainty Orderings Through ASP. In:
Modern Information Processing: From Theory to Applications. Elsevier, Amsterdam (2004)
ISBN: 0-444-52075-9

143. Baselice, S., Bonatti, P.A., Gelfond, M.: Towards an Integration of Answer Set and Con-
straint Solving. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 52–66.
Springer, Heidelberg (2005)

144. Nogueira, M., Balduccini, M., Gelfond, M., Watson, R., Barry, M.: An A-Prolog Decision
Support System for the Space Shuttle. In: Ramakrishnan, I.V. (ed.) PADL 2001. LNCS,
vol. 1990, pp. 169–183. Springer, Heidelberg (2001)

145. Buccafurri, F., Gottlob, G.: Multiagent compromises, joint fixpoints, and stable models. In:
Kakas, A.C., Sadri, F. (eds.) Computational Logic: Logic Programming and Beyond. LNCS
(LNAI), vol. 2407, pp. 561–585. Springer, Heidelberg (2002)

146. Buccafurri, F., Caminiti, G.: A Social Semantics for Multi-agent Systems. In: Baral, C.,
Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662,
pp. 317–329. Springer, Heidelberg (2005)

147. Buccafurri, F., Caminiti, G.: Logic Programming with Social Features. TPLP 8(5–6),
643–690 (2008)

148. Buccafurri, F., Caminiti, G., Laurendi, R.: A Logic Language with Stable Model Semantics
for Social Reasoning. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS,
vol. 5366, pp. 718–723. Springer, Heidelberg (2008)

149. Buccafurri, F., Caminiti, G., Rosaci, D.: Logic Programs with Multiple Chances. In: ECAI,
pp. 347–351 (2006)

150. Garcia de la Banda, M., Pontelli, E. (eds.): ICLP 2008. LNCS, vol. 5366. Springer,
Heidelberg (2008)

151. Erdem, E., Lin, F., Schaub, T. (eds.): LPNMR 2009. LNCS, vol. 5753, pp. 14–18. Springer,
Heidelberg (2009)

152. Hill, P.M., Warren, D.S. (eds.): Logic Programming. LNCS, vol. 5649, pp. 14–17. Springer,
Heidelberg (2009)

	Answer Set Programming
	Introduction
	The ASP Language
	Syntax
	Semantics

	Properties and Theoretical Characterizations
	Language Extensions
	Optimization Constructs
	Aggregates
	Other Extensions

	ASP with Infinite Domains
	Calculi and Implementations
	Open Issues

	Algorithms and Optimization Techniques
	Systems and Applications
	The DLV System
	ASP-Based Products
	Applications

	Further Contributions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

