
The Transformational Approach to
Program Development

Alberto Pettorossi1, Maurizio Proietti2, and Valerio Senni1

1 DISP, University of Rome Tor Vergata, Via del Politecnico 1, I-00133 Rome, Italy
{pettorossi,senni}@disp.uniroma2.it

2 IASI-CNR, Viale Manzoni 30, I-00185 Rome, Italy
proietti@iasi.cnr.it

Abstract. We present an overview of the program transformation techniques
which have been proposed over the past twenty-five years in the context of logic
programming. We consider the approach based on rules and strategies. First, we
present the transformation rules and we address the issue of their correctness.
Then, we present the transformation strategies and, through some examples, we
illustrate their use for improving program efficiency via the elimination of un-
necessary variables, the reduction of nondeterminism, and the use of program
specialization. We also describe the use of the transformation methodology for
the synthesis of logic programs from first-order specifications. Finally, we illus-
trate some transformational techniques for verifying first-order properties of logic
programs and their application to model checking for finite and infinite state con-
current systems.

1 Introduction

When deriving programs from specifications there are, among others, two main ob-
jectives to achieve: (i) program correctness, and (ii) program efficiency. Unfortunately,
these two objectives are often in contrast with each other. Efficient programs may be
rather intricate and their correctness proofs may be quite complex and long.

In order to overcome this difficulty, one can use the so called program transformation
methodology by which starting from the given formal specifications, one derives effi-
cient programs by applying a sequence of transformation rules, each of which preserves
correctness. The transformation methodology is particularly appealing when programs
are written in a declarative language such as a functional language or a logic language.
In those cases, in fact, (i) the formal specifications are formulas which can easily be
translated into an initial program which is, thus, correct by construction, and (ii) the
transformation rules can be viewed as correctness preserving deduction rules in a suit-
able logic.

In order to get final programs which are more efficient than the initial ones, we need
to apply the transformation rules according to suitable transformation strategies. This
particular approach to program transformation, called the rules + strategies approach,
has been first advocated in the seminal paper by Burstall and Darlington [17] in the case
of functional programs. Then, as we will indicate at the beginning of the next section, it

A. Dovier, E. Pontelli (Eds.): 25 Years of Logic Programming, LNCS 6125, pp. 112–135, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

The Transformational Approach to Program Development 113

has been adapted to logic programs [31,64], constraint logic programs [22,40], and the
so-called functional-logic languages [1].

The program transformation methodology can also be used for performing program
synthesis (see, for instance, [41] and also [5] for a recent survey). In that case the ini-
tial program is the declarative specification of a problem and the derived, transformed
program is the encoding of an efficient algorithm for solving that problem.

In recent years program transformation has also been used as a technique for pro-
gram verification. It has been shown that via program transformation, one can prove
properties of programs [47] and also perform model checking for finite or infinite state
systems [25].

In this paper we will focus our attention on the use of the program transformation
methodology for the development of logic programs and we will mainly refer to the con-
tributions coming from that area. In Section 2 we will present the most popular trans-
formation rules, such as unfolding and folding, and we will mention some correctness
results for those rules in various logic languages. In Section 3 we will describe some of
the strategies that can be used to guide the application of the transformation rules for
improving program efficiency. In Sections 4 and 5 we will present some transforma-
tional methods for program synthesis and program verification. Finally, in Section 6 we
will discuss some future research directions in program transformation.

2 Transformation Rules

Various sets of program transformation rules have been proposed in the literature for
several declarative programming languages. In their landmark paper [64] Tamaki and
Sato considered definite logic programs and presented a set of transformation rules,
including definition, unfolding, folding, goal replacement, and clause deletion. Under
suitable restrictions, these rules are correct w.r.t. the least Herbrand model seman-
tics [64]. Indeed, if from program P0 we derive program Pn by several applications
of the transformation rules, then under certain conditions the least Herbrand model is
preserved, that is, M(P0) = M(Pn), where by M(P) we denote the least Herbrand
model of the program P . In the subsequent years, Tamaki and Sato’s approach has been
extended in several directions as we now indicate.

(1) Transformation rules for other logic-based programming languages, besides definite
logic programs, have been considered. For instance, various rules have been presented
for transforming: (i) general logic programs with negation [58], (ii) constraint logic
programs [22,26,40], (iii) concurrent constraint logic programs [23,24], (iv) constraint
handling rules [62], and functional-logic programs [1].

(2) The correctness of the transformation rules w.r.t. various semantics of logic lan-
guages has been proved. In particular, it has been shown that, under suitable condi-
tions, the unfolding and folding transformation rules preserve: (i) the set of answer
substitutions computed by SLD-resolution [6], (ii) the sequence of answer substitutions
computed according to the Prolog operational semantics [49], (iii) termination proper-
ties such as finite failure [58] and left-termination [11], universal termination [7], and
acyclicity [12], (iv) various semantics of general logic programs, such as the Clark com-
pletion [30], the perfect models of stratified programs [40,58], the stable models [57],

114 A. Pettorossi, M. Proietti, and V. Senni

the well-founded models [59], and Kunen’s and Fitting’s three-valued models [10]. Sys-
tematic approaches for proving the correctness of the transformation rules based on the
notions of semantic kernel and argumentation semantics, have been proposed in [4] and
[65], respectively.

(3) The set of transformation rules has been extended either by adding extra rules such
as negative unfolding and negative folding [26,60], and simultaneous replacement [10],
or by relaxing the conditions under which we can apply the usual rules [48,53].

Now we present a set of transformation rules for locally stratified programs [40,45,60].
We will use these rules in the program transformations described in Sections 3, 4, and 5.

Given a locally stratified program P , throughout the paper by M(P) we denote
the perfect model of P [2], which is equal to the least Herbrand model in the case of
definite logic programs. Given any conjunction C of one or more literals, by vars(C)
we denote the set of variables occurring in C. A similar notation will also be used for
sets of conjunctions of literals. When applying the transformation rules we will feel
free to rewrite clauses by: (i) renaming their variables, and (ii) rearranging the order
and removing repeated occurrences of literals occurring in their bodies.

The transformation rules are used to construct a sequence P0, . . . , Pn of programs,
called a transformation sequence. The construction of that sequence is done as fol-
lows. Suppose that we have constructed the transformation sequence P0, . . . , Pk, for
0≤ k ≤ n−1. Then the next program Pk+1 in the transformation sequence is derived
from program Pk by the application of a transformation rule among the following rules
R1–R9.

Rule R1 is the definition introduction rule which is applied for introducing a new
predicate definition by one or more clauses.

R1. Definition Introduction. Let us consider m (≥1) clauses of the form:

δ1 : newp(X1, . . . , Xh)← B1, . . . , δm : newp(X1, . . . , Xh)← Bm

where: (i) newp is a predicate symbol not occurring in {P0, . . . , Pk}, (ii) X1, . . . , Xh

are distinct variables occurring in {B1, . . . , Bm}, (iii) every predicate symbol occur-
ring in {B1, . . . , Bm} also occurs in P0. The set {δ1, . . . , δm} of clauses is called the
definition of newp.

By definition introduction from program Pk we derive the program Pk+1 = Pk ∪
{δ1, . . . , δm}. For k≥ 0, Defsk denotes the set of clauses introduced by the definition
rule during the transformation sequence P0, . . . , Pk. In particular, Defs0 ={}.

The unfolding rule consists in: (i) replacing an atom A occurring in the body of a
clause by a suitable instance of the disjunction of the bodies of the clauses whose heads
unify with A, and (ii) applying suitable boolean laws for deriving clauses. There are
two unfolding rules: (1) the positive unfolding, and (2) the negative unfolding, corre-
sponding to the case where A occurs positively or negatively, respectively, in the body
of the clause to be unfolded.

R2. Positive Unfolding. Let γ : H ← GL ∧ A ∧ GR be a clause in program Pk and
let P ′

k be a variant of Pk without variables in common with γ. Let

γ1 : K1 ← B1, . . . , γm : Km ← Bm (m ≥ 0)

be all clauses of P ′
k such that, for i = 1, . . . , m, A is unifiable with Ki, with most

general unifier ϑi.

The Transformational Approach to Program Development 115

By unfolding γ w.r.t. A we derive the clauses η1, . . . , ηm, where for i = 1, . . . , m,
ηi is (H ← GL ∧Bi ∧GR)ϑi. From Pk we derive the program Pk+1 = (Pk − {γ})∪
{η1, . . . , ηm}.

The existential variables of a clause γ are the variables occurring in the body of γ
and not in its head.

R3. Negative Unfolding. Let γ : H ← GL ∧¬A∧GR be a clause in program Pk and
let P ′

k be a variant of Pk without variables in common with γ. Let

γ1 : K1 ← B1, . . . , γm : Km ← Bm (m ≥ 0)

be all clauses of program P ′
k such that A is unifiable with K1, . . . , Km, with most

general unifiers ϑ1, . . . , ϑm, respectively. Assume that:

1. A = K1ϑ1 = · · · = Kmϑm, that is, for i = 1, . . . , m, A is an instance of Ki,
2. for i = 1, . . . , m, γi has no existential variables, and
3. from GL ∧¬(B1ϑ1 ∨ . . .∨Bmϑm)∧GR we get a logically equivalent disjunction

Q1 ∨ . . . ∨ Qr of goals, with r ≥ 0, by first pushing ¬ inside and then pushing ∨
outside.

By unfolding γ w.r.t. ¬A we derive the clauses η1, . . . , ηr, where for i = 1, . . . , r, ηi is
H ← Qi. From Pk we derive the new program Pk+1 = (Pk − {γ}) ∪ {η1, . . . , ηr}.

The folding rule consists in replacing instances of the bodies of the clauses which are
the definition of a predicate by the corresponding head. As for unfolding, we have both
the positive folding rule and the negative folding rule, depending on whether folding is
applied to positive or negative occurrences of (conjunctions of) literals. Note that by the
positive folding rule we may replace m (≥1) clauses by one clause only.

R4. Positive Folding. Let γ1, . . . , γm, with m≥1, be clauses in Pk and let Defs′k be a
variant of Defsk without variables in common with γ1, . . . , γm. Let the definition of a
predicate in Defs′k consist of the m clauses

δ1 : K ← B1, . . . , δm : K ← Bm

where, for i = 1, . . . , m, Bi is a non-empty conjunction of literals. Suppose that there
exists a substitution ϑ such that, for i = 1, . . . , m, clause γi is of the form H ←
GL ∧ Biϑ ∧ GR and, for every variable X ∈ vars(Bi) − vars(K), the following
conditions hold: (i) Xϑ is a variable not occurring in {H, GL, GR}, and (ii) Xϑ does
not occur in the term Y ϑ, for any variable Y occurring in Bi and different from X .
By folding γ1, . . . , γm using δ1, . . . , δm we derive the clause η: H ← GL ∧Kϑ∧GR.
From Pk we derive the program Pk+1 = (Pk − {γ1, . . . , γm}) ∪ {η}.
R5. Negative Folding. Let γ be a clause in Pk and let Defs′k be a variant of Defsk

without variables in common with γ. Suppose that there exists a predicate in Defs′k
whose definition consists of a single clause δ : K ← A, where A is an atom. Suppose
also that there exists a substitution ϑ such that clause γ is of the form: H ← GL ∧
¬Aϑ ∧GR and vars(K) = vars(A).
By folding γ using δ we derive the clause η: H ← GL ∧ ¬Kϑ ∧ GR. From Pk we
derive the program Pk+1 = (Pk−{γ}) ∪ {η}.

The following clause deletion rule allows us to remove from Pk a redundant clause γ,
that is, a clause γ such that M(Pk) = M(Pk−{γ}). Since the problem of testing
whether or not M(Pk) = M(Pk−{γ}) is undecidable, we will consider some sufficient

116 A. Pettorossi, M. Proietti, and V. Senni

conditions based on decidable properties. These sufficient conditions are based on the
notions of subsumed clause, clause with false body, and useless clause, which we now
define.

A clause γ is subsumed by a clause of the form H ← G1 if γ is of the form (H ←
G1 ∧G2)ϑ for some substitution ϑ and conjunction of literals G2. A clause has a false
body if it is of the form H ← G1 ∧A ∧ ¬A ∧G2.

The set of useless predicates in a program P is the maximal set U of predicates
occurring in P such that a predicate p is in U iff every clause γ with head predicated p
is of the form p(. . .) ← G1 ∧ q(. . .) ∧ G2 for some q in U . A clause in a program P
is useless if the predicate of its head is useless in P . For example, in the following
program:

p(X)← q(X) ∧ ¬r(X)
q(X)← p(X)
r(a)←

p and q are useless predicates, while r is not useless.

R6. Clause Deletion. Let γ be a clause in Pk. By clause deletion we derive the program
Pk+1 = Pk − {γ} if one of the following three cases occurs:

R6s. γ is subsumed by a clause in Pk − {γ};
R6f. γ has a false body;

R6u. γ is useless in Pk.

The following goal replacement rule allows us to replace a conjunction of literals oc-
curring in the body of a clause by an equivalent conjunction of literals.

R7. Goal Replacement. Let γ: H ← G1 ∧Q ∧G2 be a clause in Pk. Suppose that for
some conjunction R of literals we have:

M(P0) |= ∀X1 . . . ∀Xu (∃Y1 . . .∃Yv Q↔ ∃Z1 . . . ∃Zw R)

where: (i) {X1, . . . , Xu} = vars({H, G1, G2}), (ii) {Y1, . . . , Yv} = vars(Q)−
{X1, . . . , Xu}, and (iii) {Z1, . . . , Zw} = vars(R)− {X1, . . . , Xu}.

Then by goal replacement from γ we derive the clause η: H ← G1 ∧R ∧G2. From
Pk we derive the new program Pk+1 = (Pk − {γ}) ∪ {η}.

The following equality introduction rule R8i allows us to substitute a variable for a
term occurring in a clause, by adding an equality in the body of the clause. The equality
elimination rule R8e can be viewed as the inverse of rule R8i.

R8. Equality Introduction and Elimination. Let γ be a clause of the form (H ←
Body){X/t}, such that the variable X does not occur in t and let δ be the clause:
H ←X = t ∧ Body .
R8i. By equality introduction we derive clause δ from clause γ. If γ occurs in Pk then
we derive the new program Pk+1 = (Pk − {γ}) ∪ {δ}.
R8e. By equality elimination we derive clause γ from clause δ. If δ occurs in Pk then
we derive the new program Pk+1 = (Pk − {δ}) ∪ {γ}.

The clause splitting rule allows us to reason by cases according to the truth value of
a given atom.

The Transformational Approach to Program Development 117

R9. Clause Splitting. Let γ : H ← G be a clause in Pk and A be an atom. Then from
clause γ we derive the two clauses γ1: H ← A ∧ G and γ2: H ← ¬A ∧ G. From Pk

we derive the new program Pk+1 = (Pk − {γ}) ∪ {γ1, γ2}.
We say that a transformation sequence P0, . . . , Pn is correct (w.r.t. the perfect model

semantics), if P0 ∪Defsn and Pn are locally stratified and M(P0 ∪Defsn) = M(Pn).
Note that, since we can introduce new predicate symbols by using rule R1, it may be
the case that for a correct transformation sequence we have M(P0) �= M(Pn).

Transformation sequences constructed by an unrestricted use of the transformation
rules may not be correct. Consider, for instance, the program:

P0: p← q q ←
The perfect model of P0 is M(P0)={p, q} and M(P0) |= p↔ q. Thus, we may apply
the goal replacement rule R7 and replace q by p in p← q. We derive the new program:

P1: p← p q ←
The transformation sequence P0, P1 is not correct, because M(P1) = {q} and, thus,
M(P0) �=M(P1). Indeed, P0 succeeds for the goal p, while P1 does not terminate for
the goal p.

One can show that the correctness of a transformation sequence is guaranteed if
termination is preserved, that is, if the initial program terminates then also the final
program terminates. Now we will state a sufficient condition for the correctness of
the transformation rules R1–R9 based on the notion of left termination [3]. An LDNF
derivation is an SLDNF derivation constructed by using the leftmost selection rule [3].

Definition 1. A program P is called left terminating if all LDNF derivations of P start-
ing from a ground goal, are finite.

The following Theorem 1 which follows from results presented in [3,9], states that
if we consider a transformation sequence of locally stratified, non-floundering [3,39]
programs, then the preservation of left termination guarantees the preservation of the
perfect model.

Theorem 1 (Correctness of the Transformation Rules). Let P0, . . . , Pn be a trans-
formation sequence such that, for k = 0, . . . , n, program Pk is locally stratified, non-
floundering, and left terminating. Then M(P0 ∪Defsn)=M(Pn).

In Theorem 1 we referred to the notion of left termination. However, weaker notions of
termination may be considered and in [36], for instance, there is a correctness result for
definite programs based on existential termination.

Theorem 1 is theoretically relevant because it relates the correctness of a transforma-
tion sequence and the preservation of left termination. However, this result is of limited
use in practice for two reasons: (1) left termination is an undecidable property (as well
as the properties of being locally stratified and non-floundering), and (2) left termination
(or other notions of termination) may be too restrictive, especially in the cases where
logic programs are used as specifications.

In Section 5 we will show some examples of transformation of nonterminating pro-
grams in the context of program verification and model checking. Correctness results

118 A. Pettorossi, M. Proietti, and V. Senni

w.r.t. the perfect model semantics which do not make explicit use of termination prop-
erties can be found in [26,40,52,58,60]. For lack of space we do not report those results
here.

3 Transformation Strategies

In order to construct a transformation sequence P0, . . . , Pn such that the final program
Pn is more efficient than the initial program P0, we need to apply suitable procedures,
called transformation strategies.

In this section we will describe some of the strategies which have been proposed in
the literature. In particular, we will present: (i) a strategy for eliminating unnecessary
variables [50], (ii) a strategy for reducing nondeterminism [26], and (iii) a strategy for
performing program specialization [46].

Several other strategies for transforming logic programs have been proposed. For
instance, (i) the strategy for deriving tail recursive programs [20], (ii) the strategy for
compiling control [13], and (iii) the strategy for changing data representations and, in
particular, for replacing ordinary lists by difference-lists [68].

3.1 Eliminating Unnecessary Variables

Logic programs written in a declarative style often make use of existential variables
(see Section 2) and multiple variables, that is, variables with multiple occurrences in
the body of a clause. Existential variables and multiple variables are collectively called
unnecessary variables. In the practice of logic programming, multiple occurrences of
existential variables are often used for storing intermediate results, while multiple oc-
currences of non-existential variables are often used for defining predicates which per-
form multiple traversals of the input data structure.

The strategy presented in [50] has the objective of eliminating unnecessary variables,
thereby avoiding both the construction of intermediate results and the multiple traversal
of data structures. This strategy is related to the deforestation [67] and the tupling [43]
strategies, which were introduced for the case of functional programs, and it is also
related to conjunctive partial deduction [19] which is a technique for eliminating un-
necessary variables that follows the partial deduction [37] approach, instead of the rules
+ strategies approach.

Now we show an example of application of the strategy for eliminating unnecessary
variables.

Example 1 (Two Players Impartial Game). Consider two players sitting at a table. On
the table there is a heap of matches. The two players play alternate moves and each
move consists in taking away either one (move 1) or two matches (move 2) from the
table. A player wins if after the opponent’s move, he finds no matches on the table.
Let us introduce the predicate win(N, M) which holds iff either N =0 or there are N
matches on the table and the player who has to move, wins by making move M .

Given a natural number N , the following program Game computes a move M , if it
exists, such that win(N, M) holds.

The Transformational Approach to Program Development 119

1. win(N, M)← nat(N) ∧move(M) ∧ w(N, M) 5. nat(0)←
2. w(0, M)← 6. nat(s(N))← nat(N)
3. w(s(N), 1)← ¬w(N, 1) ∧ ¬w(N, 2) 7. move(1)←
4. w(s(s(N)), 2)← ¬w(N, 1) ∧ ¬w(N, 2) 8. move(2)←

The variable M occurs twice in the body of clause 1. Likewise, the variable N occurs
twice in the body of clauses 1, 3, and 4. In particular, the multiple occurrences of N
in clauses 3 and 4 leads to a computation with O(2n) time complexity for any query
win(n, M), where n is a natural number and M is a variable. We want to improve
the efficiency of the above program Game by eliminating the multiple occurrences of
variables. The strategy which allows us to do so consists in the iteration of the following
two phases (see [50] for details).

Unfold phase: We apply the unfolding rule one or more times starting from clause 1,
thereby deriving a set U of clauses;

Define-Fold phase: For each clause γ in U with multiple occurrences of variables in its
body, we introduce a suitable new clause δ by rule R1, and we fold γ using δ so that the
derived clause η has no multiple occurrences of variables in its body.

For each new clause introduced during the Define-Fold phase, we perform one more
iteration of the Unfold and Define-Fold phases. We store in a set, called Defs, all clauses
introduced during every Define-Fold phase and we introduce a new clause δ only if we
cannot apply the folding rule by using a clause already belonging to the set Defs.

Let us see this strategy for eliminating the multiple occurrences of variables in action
in our example.

First Iteration

Unfold. We apply the positive unfolding rule to clause 1 w.r.t. the leftmost atom in its
body and we derive the following two clauses:

9. win(0, M)← move(M) ∧w(0, M)
10. win(s(N), M)← nat(N) ∧move(M) ∧w(s(N), M)

By several applications of the positive unfolding rule, from clauses 9 and 10 we derive:

11. win(0, M)← move(M)
12. win(s(N), 1)← nat(N) ∧ ¬w(N, 1) ∧ ¬w(N, 2)
13. win(s(N), 2)← nat(N) ∧ w(s(N), 2)

Define-Fold. We eliminate the multiple occurrences of the variable N from the bodies
of clauses 12 and 13 by applying the definition introduction rule R1 and the positive
folding rule R4 as follows. By rule R1 we introduce the following two clauses:

14. new1(N)← nat(N) ∧ ¬w(N, 1) ∧ ¬w(N, 2)
15. new2(N)← nat(N) ∧ w(s(N), 2)
and by folding clauses 12 and 13 using clauses 14 and 15, respectively, we derive:

16. win(s(N), 1)← new1(N)
17. win(s(N), 2)← new2(N)

without multiple occurrences of variables in their bodies. However, in the bodies of
clauses 14 and 15 there are multiple occurrences of variables and, in order to eliminate

120 A. Pettorossi, M. Proietti, and V. Senni

them, we have to perform one more iteration of the Unfold and Define-Fold phases
starting from those two clauses.

Second Iteration

Unfold. By unfolding clause 14 w.r.t. the leftmost atom in its body, we derive:

18. new1(0)← ¬w(0, 1) ∧ ¬w(0, 2)
19. new1(s(N))← nat(N) ∧ ¬w(s(N), 1) ∧ ¬w(s(N), 2)

By negative unfolding, clause 18 is deleted because w(0, 1) (and also w(0, 2)) holds
(see clause 2). From clause 19, by negative unfolding w.r.t. ¬w(s(N), 1), we derive:

20. new1(s(N))← nat(N) ∧w(N, 1) ∧ ¬w(s(N), 2)
21. new1(s(N))← nat(N) ∧w(N, 2) ∧ ¬w(s(N), 2)

Define-Fold. By applying rule R1, we introduce the following two clauses:

22. new3(N)← nat(N) ∧ w(N, 1) ∧ ¬w(s(N), 2)
23. new4(N)← nat(N) ∧ w(N, 2) ∧ ¬w(s(N), 2)

By folding clauses 20 and 21 using clauses 22 and 23, respectively, we derive:

24. new1(s(N))← new3(N)
25. new1(s(N))← new4(N)

without multiple occurrences of variables in their bodies. Since in the clauses 22 and
23 introduced by rule R1, there are multiple occurrences of variables, we continue the
execution of the strategy starting from these two clauses as we have done above starting
from clauses 14 and 15. After some more iterations of the Unfold and Define-Fold
phases we derive the following final program GameF without multiple occurrences of
variables.

11. win(0, N)← move(N) 26. new2(s(N))← new1(N)
16. win(s(N), 1)← new1(N) 27. new3(0)←
17. win(s(N), 2)← new2(N) 28. new4(0)←
24. new1(s(N))← new3(N) 29. new4(s(N))← new5(N)
25. new1(s(N))← new4(N) 30. new5(s(N))← new1(N)

It can be verified that for the program derivation we have now completed, the local
stratification, non-floundering, and left termination conditions of Theorem 1 are all sat-
isfied. In particular, the final program GameL is a left terminating, definite program
(and, hence, locally stratified and non-floundering). Thus, M(Game)=M(GameL).

Program GameL runs in nondeterministic O(n) time for any query of the form
win(n, M). In the next section we will present the transformation from programGameL

into a program running in deterministic O(n) time.

3.2 Reducing Nondeterminism

In this section we will present the Determinization strategy [26] which can be applied
for improving the efficiency of logic programs by reducing the nondeterminism of their
computations. We will see this strategy in action by applying it to the program GameL

we have derived at the end of the previous section.

The Transformational Approach to Program Development 121

Example 2 (Two Players Impartial Game, Continued). The program GameL is nonde-
terministic because, for any given query win(n, M), where n is a ground term denoting
a natural number, SLD-resolution may generate a call which is unifiable with the head
of more than one program clause. For instance, if n>0, the initial call win(n, M) uni-
fies with the heads of both clause 16 and clause 17. In other terms, these two clauses
are not mutually exclusive with respect to calls of the form win(n, M), where n is a
ground term.

Non-mutually exclusive clauses can be avoided by transforming program GameL as
follows. By the equality introduction rule R8i, from clauses 16 and 17 we derive:

31. win(s(N), M)←M =1 ∧ new1(N)
32. win(s(N), M)←M =2 ∧ new2(N)

By applying the definition introduction rule, we introduce the following two clauses:

33. new6(N, M)←M =1 ∧ new1(N)
34. new6(N, M)←M =2 ∧ new2(N)

By folding clauses 31 and 32 using clauses 33 and 34 we derive:

35. win(s(N), M)← new6(N, M)

The predicate win is defined by the two clauses 11 and 35 which are mutually exclusive
w.r.t. calls of the form win(n, M). Indeed, for any given ground term n, there is at most
one clause in {11, 35} whose head is unifiable with win(n, M).

Now we are left with the problem of transforming the two clauses 33 and 34 in-
troduced by rule R1, into a set of mutually exclusive clauses (w.r.t. calls of the form
new6(n, M), where n is a ground term). The Determinization strategy proceeds simi-
larly to the strategy for eliminating unnecessary variables presented in Section 3.1, by it-
erating an Unfold phase followed by a Define-Fold phase. During the Define-Fold phase
we derive mutually exclusive clauses by introducing new predicates possibly defined by
more than one clause (while in the strategy for eliminating unnecessary variables each
new predicate is defined by precisely one clause).

Let us now see how the Determinization strategy proceeds in action in our example.
For lack of space, we present the first iteration only.

First Iteration

Unfold. By positive unfolding, from clauses 33 and 34 we derive:

36. new6(s(N), M)←M =1 ∧ new3(N)
37. new6(s(N), M)←M =1 ∧ new4(N)
38. new6(s(N), M)←M =2 ∧ new1(N)

Define-Fold. Clauses 36, 37, and 38 are not mutually exclusive. By the definition intro-
duction rule we introduce the following three clauses:

39. new7(N, M)←M =1 ∧ new3(N)
40. new7(N, M)←M =1 ∧ new4(N)
41. new7(N, M)←M =2 ∧ new1(N)

By folding clauses 36, 37, and 38 using clauses 39, 40, and 41 we derive:

42. new6(s(N), M)← new7(N, M)

122 A. Pettorossi, M. Proietti, and V. Senni

Clause 42 constitutes a set of mutually exclusive clauses for new6 (because it is one
clause only). In order to transform the newly introduced clauses 39, 40, and 41 into
mutually exclusive clauses, we continue the execution of the Determinization strategy
and, after several iterations we derive the following program GameD:

11. win(0, M)← move(M)
35. win(s(N), M)← new6(N, M)
42. new6(s(N), M)← new7(N, M) 45. new8(0, M)←M =2
43. new7(0, M)←M =1 46. new8(s(N), M)← new9(N, M)
44. new7(s(N), M)← new8(N, M) 47. new9(s(N), M)← new7(N, M)

Program GameD is left terminating and all conditions of Theorem 1 are satisfied. Thus,
M(Game)=M(GameD). Moreover, program GameD is a set of mutually exclusive
clauses and computes the winning move, for any natural number n, in O(n) determin-
istic time.

3.3 Program Specialization

Programs are often written in a parametric form so that they can be reused in different
contexts, and when a parametric program is reused, one may want to improve its per-
formance by taking advantage of the new context of use. This improvement can often
be realized by applying a transformation methodology, called program specialization
(see [29,32,37] for introductions).

The most used technique for program specialization is partial evaluation, also called
partial deduction in the case of logic programs, where it has been first proposed by [33]
(see also [14,15,28,38,55,61,63,66] for early work on this subject). Essentially, partial
deduction can be performed by applying the transformation rules R1 (definition in-
troduction), R2 (positive unfolding), R4 (positive folding), and R5 (negative folding)
presented in Section 2 with the following restriction: by rule R1 we can introduce a
new clause of the form newp(X1, . . . , Xh)← A, where A is an atom and X1, . . . , Xh

are the variables occurring in A. This restriction limits also folding, as rules R4 and R5
are applied using clauses introduced by rule R1.

Program specialization techniques which make use of more powerful rules, such as
unrestricted definition introduction (and, hence, unrestricted folding) and goal replace-
ment have been first proposed in [8]. Here we will present an example of application
of the specialization strategy introduced in [46], which extends partial deduction by
also eliminating unnecessary variables and reducing nondeterminism. In our example
we will derive a specialized pattern matcher for a given pattern, starting from a given
parametric pattern matcher. In this example we will use constraint logic programs. As
already mentioned, the extension of the transformation rules to the case of constraint
logic programs has been studied in [22,26,40].

Example 3 (Constrained Matching). We define a matching relation between two strings
of numbers called, respectively, the pattern P and the string S. We say that the pattern
P matches the string S, and we write m(P, S), iff P = [p1, . . . , pn] and in S there is
a substring Q = [q1, . . . , qn] such that for i = 1, . . . , n, pi ≤ qi. (Much more complex
matchers can be considered by allowing a matching relation which can be defined by
any constraint logic program.)

The Transformational Approach to Program Development 123

The following constraint logic program Match can be taken as the specification of
our parametric pattern matcher for the pattern P :

1. m(P, S)←app(B, C, S) ∧ app(A, Q, B) ∧ leq(P, Q)
2. app([],Ys,Ys)←
3. app([X |Xs],Ys, [X |Zs])← app(Xs ,Ys ,Zs)
4. leq([], [])←
5. leq([X |Xs], [Y |Ys])← X≤Y ∧ leq(Xs ,Ys)

Suppose that we want to specialize this pattern matcher to the specific pattern
P = [1,0,2]. The specialization strategy we now apply has the same structure as the
strategies presented in Sections 3.1 and 3.2. The improvements gained through the ap-
plication of the specialization strategy are due to the fact that this strategy: (i) makes
some precalculations which depend on the specific pattern P = [1,0,2], (ii) eliminates
unnecessary variables, and (iii) reduces nondeterminism. As already mentioned, these
improvements are possible because we use more powerful transformation rules with re-
spect to partial deduction (which would only perform the precalculations of Point (i)).

The specialization strategy starts off by introducing the following clause which de-
fines the specialized matching relation msp :

6. msp(S)← m([1,0,2], S)

Now we iterate Unfold and Define-Fold phases. The main difference with the applica-
tions of the strategies presented in Sections 3.1 and 3.2 will be that, in order to get mu-
tually exclusive clauses, before applying the definition introduction rule and the folding
rule, we will apply the clause splitting rule R9 whenever needed.

First Iteration

Unfold. We unfold clause 6 w.r.t. the atom m([1,0,2],S). We derive:

7. msp(S)← app(B, C, S) ∧ app(A, Q, B) ∧ leq([1,0,2], Q)

Define-Fold. In order to fold clause 7, we introduce the following definition:

8. new1(S)← app(B, C, S) ∧ app(A, Q, B) ∧ leq([1,0,2], Q)

Then we fold clause 7 and we derive:

9. msp(S)← new1(S)

Now the strategy continues by transforming the newly introduced clause 8.

Second Iteration

Unfold. We unfold clause 8 w.r.t. the atoms app and leq and we get:

10. new1([X |Xs])← 1≤X ∧ app(Q, C,Xs) ∧ leq([0,2], Q)
11. new1([X |Xs])← app(B, C,Xs) ∧ app(A, Q, B) ∧ leq([1,0,2], Q)

Clause Splitting. In order to derive mutually exclusive clauses, thereby reducing nonde-
terminism, we apply the clause splitting rule to clause 11, by separating the cases when
1 ≤ X and when 1 > X (that is, ¬(1 ≤ X)). We get:

12. new1([X |Xs])←1≤X ∧ app(B, C,Xs) ∧ app(A, Q, B) ∧ leq([1,0,2], Q)
13. new1([X |Xs])←1>X ∧ app(B, C,Xs) ∧ app(A, Q, B) ∧ leq([1,0,2], Q)

124 A. Pettorossi, M. Proietti, and V. Senni

Define-Fold. In order to fold clauses 10 and 12 we introduce the following two clauses
defining the predicate new2:
14. new2(Xs)← app(Q, C,Xs) ∧ leq([0, 2], Q)
15. new2(Xs)← app(B,C,Xs) ∧ app(A,Q,B) ∧ leq([1,0,2],Q)
Then we fold clauses 10 and 12 by using the two clauses 14 and 15 and we also fold
clause 13 by using clause 8. We derive the following clauses:
16. new1([X |Xs])← 1≤X ∧ new2(Xs)
17. new1([X |Xs])← 1>X ∧ new1(Xs)
Note that these two clauses: (i) are specialized w.r.t. the information that the first el-
ement of the pattern is 1, (ii) have no unnecessary variables, and (iii) are mutually
exclusive because of the constraints 1≤X and 1>X .

Now the program transformation strategy continues by transforming clauses 14 and
15, which define predicate new2. After a few more iterations of the Unfold, Clause Split-
ting, and Define-Fold phases, we derive the following specialized program Matchsp :

9. msp(S)← new1(S)
16. new1([X |Xs])← 1≤X ∧ new2(Xs)
17. new1([X |Xs])← 1>X ∧ new1(Xs)
18. new2([X |Xs])← 1≤X ∧ new3(Xs)
19. new2([X |Xs])← 0≤X ∧ 1>X ∧ new4(Xs)
20. new2([X |Xs])← 0>X ∧ new1(Xs)
21. new3([X |Xs])← 2≤X ∧ new5(Xs)
22. new3([X |Xs])← 1≤X ∧ 2>X ∧ new3(Xs)
23. new3([X |Xs])← 0≤X ∧ 1>X ∧ new4(Xs)
24. new3([X |Xs])← 0>X ∧ new1(Xs)
25. new4([X |Xs])← 2≤X ∧ new6(Xs)
26. new4([X |Xs])← 1≤X ∧ 2>X ∧ new2(Xs)
27. new4([X |Xs])← 1>X ∧ new1(Xs)
28. new5([X |Xs])←
29. new6([X |Xs])←
This final program Matchsp has no occurrences of unnecessary variables and is de-
terministic in the sense that at most one clause can be applied during the evaluation
of any ground goal. The efficiency of Matchsp is very high because it behaves like a
deterministic finite automaton (see Figure 1) as the Knuth-Morris-Pratt matcher.

4 Program Synthesis

Program synthesis is a technique for the automatic derivation of programs from their
formal specifications (see, for instance, [41] for the derivation of functional programs
and [16,27,31] for the derivation of logic programs from first-order logic specifications).

In this section we present a transformational approach to program synthesis [26,56].
By following this approach, the synthesis of an efficient logic program from a first order
logic specification can be performed in two steps: first (1) we translate the specifica-
tion into a possibly inefficient logic program by applying the Lloyd-Topor transforma-
tion [39], and then (2) we derive an efficient program by applying the transformation
rules and strategies described in Sections 2 and 3.

The Transformational Approach to Program Development 125

Fig. 1. The finite automaton corresponding to the program Matchsp made out of clauses 9 and
16–29. The initial state is new1 and the final states are new5 and new6.

The transformational program synthesis approach will be presented through the
N -queens example. This example also illustrates that powerful programming tech-
niques such as recursion and backtracking, which are often presented in the literature for
solving the N -queens problem, can indeed be automatically derived by transformation.

Example 4 (N -queens). We are required to place N (≥ 0) queens on an N×N chess
board, so that no two queens attack each other, that is, they do not lie on the same row,
column, or diagonal. By using the fact that no two queens should lie on the same row, we
represent the positions of the N queens on the board as a permutation L = [i1, . . . , iN]
of the list [1, . . . , N] which tells us that the queen on row k is placed on column ik.

A specification of the solution L for the N -queens problem is given by the following
first-order formula:

board(N, L) =def nat(N) ∧ nat−list(L) ∧ length(L, N) ∧
∀X (member(X, L)→ in(X, 1, N)) ∧
∀A∀B ∀K ∀M

((1≤K ∧K≤M ∧ occurs(A, K, L) ∧ occurs(B,M,L))
→ (A �=B ∧A−B �=M−K ∧B−A �=M−K))

where the various predicates that occur in board(N, L), are defined by the following
constraint logic program P :

nat(0)←
nat(N)← N =M +1 ∧M≥0 ∧ nat(M)
nat−list([])←
nat−list([H |T])← nat(H) ∧ nat−list(T)
length([], 0)←
length([H |T], N)← N =M +1 ∧M≥0 ∧ length(T, M)
member(X, [H |T])← X =H
member(X, [H |T])← member(X, T)
in(X, M, N)← X =N ∧M≤N
in(X, M, N)← N =K+1∧M≤K ∧ in(X, M, K)
occurs(X, I, [H |T])← I =1 ∧X =H
occurs(X, J, [H |T])← J =I+1 ∧ I≥1 ∧ occurs(X, I, T)

126 A. Pettorossi, M. Proietti, and V. Senni

In this program P we have that: (i) in(X, M, N) iff M≤X≤N , and (ii) occurs(X, I,
[a1, . . . , an]) iff X =ai and I = i. Now, we would like to synthesize a constraint logic
program R which computes a predicate queens(N, L) such that, for every N and L,
the following property holds:

M(R) |= queens(N, L) iff M(P) |= board(N, L) (α)

where by M(R) and M(P) we denote the perfect model of the programs R and P ,
respectively. By applying the technique presented in [26], we start off from the formula
queens(N, L) ← board(N, L) (where board(N, L) is the first order formula defined
above) and, by applying a variant of the Lloyd-Topor transformation, we derive the
following stratified program F :

queens(N, L)← nat(N)∧ nat−list(L)∧ length(L, N)∧¬aux1(L, N)∧¬aux2(L)
aux1(L, N)← member(X, L) ∧ ¬in(X, 1, N)
aux2(L)← 1≤K ∧K≤M ∧ ¬(A �=B ∧A−B �=M−K ∧B−A �=M−K) ∧

occurs(A, K, L) ∧ occurs(B, M, L)
It can be shown that this variant of the Lloyd-Topor transformation preserves the perfect
model semantics and, thus, we have that, for every N and L:

M(P ∪ F) |= queens(N, L) iff M(P) |= board(N, L).
The derived program P ∪ F is not satisfactory from a computational point of view,
when using LDNF resolution. Indeed, for a query of the form queens(n, L), where n
is a nonnegative integer and L is a variable, program P ∪F works by first generating
a value l for the list L and then testing whether or not length(l, n) ∧ ¬aux1(l, n) ∧
¬aux2(l) holds. This generate-and-test behavior is very inefficient and it may also lead
to nontermination. Thus, the process of program synthesis proceeds by applying the
definition, unfolding, folding, and goal replacement transformation rules, according to
a strategy similar to the ones we have described in Section 3, with the objective of
deriving a more efficient program. We derive the following definite program R:

queens(N, L)← new2(N, L, 0)
new2(N, [], K)← N =K
new2(N, [H |T], K)← N ≥K +1 ∧ new2(N, T, K+1)∧ new3(H, T, N, 0)
new3(A, [], N, M)← in(A, 1, N) ∧ nat(A)
new3(A, [B|T], N, M)← A �=B ∧A−B �=M +1 ∧B−A �=M +1 ∧ nat(B) ∧

new3(A, T, N, M +1)

together with the clauses listed above which define the predicates in and nat .
Since the transformation rules preserve the perfect model semantics, for every N

and L, we have that, M(R) |= queens(N, L) iff M(P ∪ F) |= queens(N, L) and,
thus, Property (α) holds. It can be shown that program R terminates for all queries of
the form queens(n, L). Program R computes a solution for the N -queens problem in a
clever way: each time a new queen is placed on the board, program R tests whether or
not that queen attacks any other queen already placed on the board.

5 Program Verification

Proofs of program properties are often needed during program development for check-
ing the correctness of software components with respect to their specifications. It has

The Transformational Approach to Program Development 127

been shown that the transformation rules introduced in [17,64] can be used for proving
several kinds of program properties, such as equivalences of functions defined by recur-
sive equation programs [34], equivalences of predicates defined by logic programs [44],
first-order properties of predicates defined by constraint logic programs [47], and tem-
poral properties of concurrent systems [25,54].

In this section we see the use of program transformation for proving program prop-
erties specified either by first-order logic formulas or by temporal logic formulas.

5.1 The Unfold/Fold Proof Method

Through a simple example taken from [47], now we illustrate a method, called un-
fold/fold proof method, which uses the program transformation methodology for prov-
ing first-order properties of constraint logic programs. Consider the following constraint
logic program Member which defines the membership relation between an element and
a list of elements:

member(X, [Y |L])← X =Y list([])←
member(X, [Y |L])← member(X, L) list([H |T])← list(T)

Suppose we want to show that every finite list of numbers has an upper bound, that is,
we want to prove the following formula:

∀L (list(L)→ ∃U ∀X (member (X, L)→ X≤U)) (β)
The unfold/fold proof method works in two steps, which are similar to the two steps
of the transformational synthesis approach presented in Section 4. In the first step, the
formula β is transformed into a set of clauses by applying a variant of the Lloyd-Topor
transformation, thereby deriving the following program:

P1: prop ← ¬p
p← list(L) ∧ ¬q(L)
q(L)← list(L) ∧ ¬r(L, U)
r(L, U)←X >U ∧ list(L) ∧member(X, L)

The predicate prop is equivalent to β in the sense that M(Member) |=β iff M(Member
∪P1) |= prop. The correctness of this transformation can be checked by realizing that
M(Member) |= β ↔ ¬∃L(list(L) ∧ ¬(∃U(list(L) ∧¬(∃X (X > U ∧ list(L) ∧
member(X, L))))).

In the second step, we eliminate the existential variables occurring in P1 (see Sec-
tion 2 for a definition) by applying the transformation strategy for eliminating unnec-
essary variables presented in Section 3.1. We derive the following program P2 which
defines the predicate prop:

P2: prop ← ¬p p← p1 p1 ← p1

Now, P2 is a propositional program and has a finite perfect model, which is {prop}.
Since it can be shown that all transformations we have performed preserve the perfect
model, we have that M(Member) |= β iff M(P2) |= prop and, therefore, we have
completed the proof of β because prop belongs to M(P2).

The expert reader will note that the unfold/fold proof method we have now illus-
trated, can be viewed as an extension to constraint logic programs of the quantifier
elimination method, which has well-known applications in the field of automated theo-
rem proving (see [51] for a brief survey).

128 A. Pettorossi, M. Proietti, and V. Senni

5.2 Infinite-State Model Checking

As indicated in [18], the behavior of a concurrent system that evolves over time accord-
ing to a given protocol can be modeled as a state transition system, that is, (i) a set S of
states, (ii) an initial state s0 ∈ S, and (iii) a transition relation t ⊆ S × S. We assume
that the transition relation t is total, that is, for every state s ∈ S there exists at least
one state s′ ∈ S, called a successor state of s, such that t(s, s′) holds. A computation
path starting from a state s1 (not necessarily, the initial state) is an infinite sequence of
states s1 s2 . . . such that, for every i≥1, there is a transition from si to si+1, that is,
t(si, si+1) holds.

The properties of the evolution over time, that is, the computation paths, of a concur-
rent system can be specified by using a formula of a temporal logic called Computation
Tree Logic (or CTL, for short [18]). The formulas of CTL are built from a given set
of elementary properties, each of which may or may not hold in a particular state, by
using: (i) the connectives: not and and, (ii) the quantifiers along a computation path:
g (‘for all states on the path’ or ‘globally’), f (‘there exists a state on the path’ or ‘in
the future’), x (‘next time’), and u (‘until’), and (iii) the quantifiers over computation
paths: a (‘for all paths’) and e (‘there exists a path’). Quantified formulas are written in
a compact form and, for instance, we will write ef (F) and ag(F), instead of e(f(F))
and a(g(F)), respectively.

Very efficient algorithms and tools exist for verifying temporal properties of finite
state transition systems, that is, systems where the set S of states is finite [18]. How-
ever, many concurrent systems cannot be modeled by finite state transition systems. The
problem of verifying CTL properties of infinite state transition systems is, unfortunately,
undecidable and, thus, it cannot be tackled by traditional model checking techniques.
For this reason various methods based on automated theorem proving have been pro-
posed for extending model checking so to deal with infinite state systems (see [21] for
a method based on constraint logic programming). Due to the above mentioned unde-
cidability limitation, all these methods are necessarily incomplete.

Now we present a method for verifying temporal properties of (finite or infinite)
state transition systems which is based on transformation techniques for constraint logic
programs [25]. As an example we consider the Bakery protocol [35] and we verify that
it satisfies the mutual exclusion and starvation freedom properties.

Let us consider two agents A and B which want to access a shared resource in
a mutually exclusive way by using the Bakery protocol. The state of the agent A is
represented by a pair 〈A1, A2〉, where A1, called the control state, is an element of the
set {t, w, u} (where t, w, and u stand for think, wait, and use, respectively) and A2,
called the counter, is a natural number. Analogously, the state of agent B is represented
by a pair 〈B1, B2〉. The state of the system consisting of the two agents A and B,
whose states are 〈A1, A2〉 and 〈B1, B2〉, respectively, is represented by the 4-tuple
〈A1, A2, B1, B2〉. The transition relation t of the two agent system from an old state
OldS to a new state NewS , is defined as follows:

t(OldS , NewS)← tA(OldS , NewS)
t(OldS , NewS)← tB(OldS , NewS)
where the transition relation tA for the agent A is given by the following clauses whose
bodies are conjunctions of constraints (see also Figure 2):

The Transformational Approach to Program Development 129

��

�

�
�

�
�

�
�

�
�

� �
�
�

�
�

〈think , A2, B1, B2〉
A2:=B2+1

〈wait , A2, B1, B2〉
A2<B2 ∨ B2=0

〈use, A2, B1, B2〉

A2:=0

Fig. 2. The Bakery protocol: a graphical representation of the transition relation tA for the
agent A. The assignment X := e on the arc from a state s1 to a state s2 tells us that the value of
the variable X in s2 is the value of the expression e in s1. The boolean expression b on the arc
from a state s1 to a state s2 tells us that the transition from s1 to s2 takes place iff b holds.

tA(〈t , A2, B1, B2〉, 〈w , A21, B1, B2〉)← A21=B2+1
tA(〈w , A2, B1, B2〉, 〈u, A2, B1, B2〉)← A2<B2
tA(〈w , A2, B1, B2〉, 〈u, A2, B1, B2〉)← B2=0
tA(〈u, A2, B1, B2〉, 〈t , A21, B1, B2〉)← A21=0

The following similar clauses define the transition relation tB for the agent B:

tB(〈A1, A2, t , B2〉, 〈A1, A2,w , B21〉)← B21=A2+1
tB(〈A1, A2,w , B2〉, 〈A1, A2, u, B2〉)← B2<A2
tB(〈A1, A2,w , B2〉, 〈A1, A2, u, B2〉)← A2=0
tB(〈A1, A2, u, B2〉, 〈A1, A2, t , B21〉)← B21=0

Note that the system has an infinite number of states, because counters may increase in
an unbounded way.

The temporal properties of a transition system are specified by defining a predicate
sat(S, P) which holds if and only if the temporal formula P is true at the state S. For
instance, the following clauses define the predicate sat(S, P) for the cases where P is:
(i) an elementary formula F , (ii) a formula of the form not(F), (iii) a formula of the
form and(F1, F2), and (iv) a formula of the form ef (F):

sat(S, F)← elem(S, F)
sat(S,not(F))← ¬sat(S, F)
sat(X, and(F1, F2))← sat(X, F1) ∧ sat(X, F2)
sat(S, ef (F))← sat(S, F)
sat(S, ef (F))← t(S, T) ∧ sat(T, ef (F))

where elem(S, F) holds iff F is an elementary property which is true at state S. In
particular, for the Bakery protocol we have the following clause:

elem(〈u, A2, u, B2〉, unsafe)←
that is, unsafe holds at a state where both agents A and B are in the control state u , that
is, both agents use the shared resource at the same time. We have that sat(S, ef (F))
holds iff there exists a computation path π starting from state S and there exists a state
S′ on π such that F is true at S′.

The mutual exclusion property holds for the Bakery protocol if there is no computa-
tion path starting from the initial state such that at a state on this path the unsafe property
holds. Thus, the mutual exclusion property holds if sat(〈t , 0, t , 0〉,not(ef (unsafe)))
belongs to the perfect model M(Pmex), where: (i) 〈t , 0, t , 0〉 is the initial state of the

130 A. Pettorossi, M. Proietti, and V. Senni

system and (ii) Pmex is the program consisting of the clauses for the predicates t, tA,
tB , sat, and elem defined above.

In order to show that sat(〈t , 0, t , 0〉,not(ef (unsafe))) ∈M(Pmex), we introduce a
new predicate mex defined by the following clause:

mex ← sat(〈t , 0, t , 0〉,not(ef (unsafe))) (μ)

and we transform the program Pmex ∪ {μ} into a new program Q which contains a
clause of the form mex ← (see [25] for details). This transformation is performed
by applying the definition, unfolding, and folding rules according to a strategy similar
to the specialization strategy presented in Section 3.3, that is, a strategy that derives
specialized clauses for the evaluation of the predicate mex . From the correctness of the
transformation rules we have that mex ∈M(Q) iff mex ∈M(Pmex∪{μ}) and, hence,
sat(〈t , 0, t , 0〉,not(ef (unsafe))) ∈ M(Pmex), that is, the mutual exclusion property
holds.

By applying the same methodology we can also prove the starvation freedom prop-
erty for the Bakery protocol. This property ensures that an agent, say A, which requests
the shared resource, will eventually get it. This property is expressed by the CTL for-
mula: ag(wA → af (uA)), which is equivalent to: not(ef (and(wA,not(af (uA))))).
The clauses defining the elementary properties wA and uA are:

elem(〈w , A2, B1, B2〉,wA)←
elem(〈u, A2, B1, B2〉, uA)←
The clauses defining the predicate sat(S, P) for the case where P is a CTL formula of
the form af (F) are:

sat(X, af (F))← sat(X, F)
sat(X, af (F))← ts(X,Ys) ∧ sat all (Ys , af (F))
sat all([], F)←
sat all([X |Xs], F)← sat(X, F) ∧ sat all (Xs, F)

where ts(X,Ys) holds iff Ys is a list of all the successor states of the state X . For
instance, one of the clauses defining predicate ts in our Bakery example is:

ts(〈t , A2, t , B2〉, [〈w , A21, t , B2〉, 〈t , A2,w , B21〉])← A21=B2+1∧B21=A2+1

which says that the state 〈t , A2, t , B2〉 has two successor states: 〈w , A21, t , B2〉, with
A21=B2+1, and 〈t , A2,w , B21〉, with B21=A2+1.

Let Psf denote the program obtained by adding to Pmex the clauses defining: (i) the
elementary properties wA and uA, (ii) the predicate ts, (iii) the atom sat(X, af (F)),
and (iv) the predicate sat all . In order to verify the starvation freedom property we
introduce the clause:

sf ← sat(〈t , 0, t , 0〉,not(ef (and(wA,not(af (uA)))))) (σ)

and, by applying the definition, unfolding, and folding rules according to the specializa-
tion strategy, we transform the program Psf ∪{σ} into a new program R which contains
a clause of the form sf ←.

Note that the derivations needed for verifying the mutual exclusion and the starvation
freedom properties can be done in a fully automatic way by using the experimental
constraint logic program transformation system MAP [42].

The Transformational Approach to Program Development 131

6 Conclusions and Future Directions

We have presented the program transformation methodology and we have demonstrated
that it is very effective for: (i) the derivation of correct software modules from their for-
mal specifications, and (ii) the proof of properties of programs. Since program transfor-
mation preserves correctness and improves efficiency, it is very useful for constructing
software products which are provably correct and whose time and space performance is
very high.

During the past twenty-five years the research community in Italy has given a very
relevant contribution to the program transformation field and, more in general, to the
field of logic-based program development. The extent of this contribution is witnessed
by the numerous scientific papers, a small fraction of which have been mentioned in
this brief survey.

The contribution of the Italian research community has also been carried out through
the participation in several national and international research projects which included
as an important topic the transformation methodology of logic programs. In particu-
lar, we would like to mention the following projects: (i) ESPRIT Alpes (1984–89),
(ii) Compulog I and Compulog II (1989–95), (iii) the INTAS Project ‘Efficient Sym-
bolic Computing’ (1994-98), (iv) the Network of Excellence on Computational Logic,
(v) the Humal Capital and Mobility Project ‘Logic Program Synthesis and Transfor-
mation’ (1993–96), (vi) the Italian ‘Progetto Finalizzato Informatica II’ (1989–93),
(vii) the ANATRA Project ‘Strumenti per l’analisi e la trasformazione dei programmi’
(1994–95), (viii) ‘Programmazione Logica: Strumenti per analisi e trasformazione di
programmi, Tecniche di ingegneria del software, Estensioni con vincoli, concorrenza
ed oggetti’ (1995–96), (ix) Progetto Speciale ‘Verifica, analisi e trasformazione di pro-
grammi logici’ (1998–99), and (x) ‘Tecniche formali per la specifica, l’analisi, la ver-
ifica, la sintesi e la trasformazione di sistemi software’ (1998–2000). These projects
were supported by the European Union, the Italian Ministry of Education, University,
and Research (MIUR), and the Italian National Research Council (CNR).

All these projects gave to the research community in Italy invaluable opportunities
to cooperate with other scientific groups in Europe, to strengthen their theoretical back-
ground on logic programming and to produce powerful systems and tools for logic
program development, logic program analysis, knowledge representation and manipu-
lation using logic. Research teams in Bologna, Padua, Pisa, Rome, and Venice, among
others, grew considerably strong through those projects and their expertise and compe-
tence spread all over the international community and since then, their high reputation
has been widely recognized.

Finally, the Italian research community has also given a very relevant contribution to
the organization and the scientific success of the various meetings dedicated to the dis-
semination of research in logic program transformation, such as the series of Workshops
and Symposia on Logic-Based Program Synthesis and Transformation (LOPSTR), held
annually since 1991, and on Partial Evaluation and Semantics-Based Program Manipu-
lation (PEPM).

Now, looking at the directions for future research, we would like to point out that,
in order to make program transformation even more effective, we need to increase the
level of automation of the transformation strategies for program improvement, program

132 A. Pettorossi, M. Proietti, and V. Senni

synthesis, and program verification. Furthermore, these strategies should be incorpo-
rated into powerful tools for program development.

Another important direction for future research is the exploration of new areas of
application of the transformation methodology. In this paper we have described the use
of program transformation for verifying temporal properties of infinite state concurrent
systems. Similar techniques could also be devised for verifying other kinds of prop-
erties and other classes of systems, such as security properties of distributed systems,
safety properties of hybrid systems, and protocol conformance of multiagent systems.
A more challenging issue is the fully automatic synthesis of software systems which
are guaranteed to satisfy some given properties specified by the designer.

Acknowledgements

We would like to thank the members of GULP, the Italian Association for Logic Pro-
gramming, who throughout all these years have been for us of great scientific support
and encouragement. Their cooperation and friendship are very much appreciated.

Many thanks also to Agostino Dovier and Enrico Pontelli, editors of this book, for
their invitation to present the contributions of the program transformation methodology
in the field of logic programming.

References

1. Alpuente, M., Falaschi, M., Moreno, G., Vidal, G.: A transformation system for lazy func-
tional logic programs. In: Middeldorp, A., Sato, T. (eds.) FLOPS 1999. LNCS, vol. 1722,
pp. 147–162. Springer, Heidelberg (1999)

2. Apt, K.R., Bol, R.N.: Logic programming and negation: A survey. Journal of Logic Program-
ming 19, 20, 9–71 (1994)

3. Apt, K.R., Pedreschi, D.: Reasoning about termination of pure logic programs. Information
and Computation 106, 109–157 (1993)

4. Aravindan, C., Dung, P.M.: On the correctness of unfold/fold transformation of normal and
extended logic programs. Journal of Logic Programming 24(3), 201–217 (1995)

5. Basin, D., Deville, Y., Flener, P., Hamfelt, A., Fischer Nilsson, J.: Synthesis of programs in
computational logic. In: Bruynooghe, M., Lau, K.-K. (eds.) Program Development in Com-
putational Logic. LNCS, vol. 3049, pp. 30–65. Springer, Heidelberg (2004)

6. Bossi, A., Cocco, N.: Basic transformation operations which preserve computed answer sub-
stitutions of logic programs. Journal of Logic Programming 16(1&2), 47–87 (1993)

7. Bossi, A., Cocco, N.: Preserving universal termination through unfold/fold. In: Rodrı́guez-
Artalejo, M., Levi, G. (eds.) ALP 1994. LNCS, vol. 850, pp. 269–286. Springer, Heidelberg
(1994)

8. Bossi, A., Cocco, N., Dulli, S.: A method for specializing logic programs. ACM Transactions
on Programming Languages and Systems 12(2), 253–302 (1990)

9. Bossi, A., Cocco, N., Etalle, S.: Transforming normal programs by replacement. In:
Pettorossi, A. (ed.) META 1992. LNCS, vol. 649, pp. 265–279. Springer, Heidelberg (1992)

10. Bossi, A., Cocco, N., Etalle, S.: Simultaneous replacement in normal programs. Journal of
Logic and Computation 6(1), 79–120 (1996)

11. Bossi, A., Cocco, N., Etalle, S.: Transforming left-terminating programs: The reordering
problem. In: Proietti, M. (ed.) LOPSTR 1995. LNCS, vol. 1048, pp. 33–45. Springer,
Heidelberg (1996)

The Transformational Approach to Program Development 133

12. Bossi, A., Etalle, S.: Transforming acyclic programs. ACM Transactions on Programming
Languages and Systems 16(4), 1081–1096 (1994)

13. Bruynooghe, M., De Schreye, D., Krekels, B.: Compiling control. Journal of Logic Pro-
gramming 6, 135–162 (1989)

14. Bugliesi, M., Lamma, E., Mello, P.: Partial evaluation for hierarchies of logic theories. In:
Debray, S., Hermenegildo, M. (eds.) Logic Programming: Proceedings of the 1990 North
American Conference, Austin, Texas, October 1990, pp. 359–376. MIT Press, Cambridge
(1990)

15. Bugliesi, M., Rossi, F.: Partial evaluation in Prolog: Some Improvements about Cut. In: Lusk,
E.L., Overbeek, R.A. (eds.) Logic Programming: Proceedings of the North American Con-
ference 1989, Cleveland, Ohio, October 1989, pp. 645–660. MIT Press, Cambridge (1989)

16. Bundy, A., Smaill, A., Wiggins, G.: The synthesis of logic programs from inductive proofs.
In: Lloyd, J.W. (ed.) Computational Logic, Symposium Proceedings, Brussels, November
1990, pp. 135–149. Springer, Berlin (1990)

17. Burstall, R.M., Darlington, J.: A transformation system for developing recursive programs.
Journal of the ACM 24(1), 44–67 (1977)

18. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)
19. De Schreye, D., Glück, R., Jørgensen, J., Leuschel, M., Martens, B., Sørensen, M.H.: Con-

junctive partial deduction: Foundations, control, algorithms, and experiments. Journal of
Logic Programming 41(2–3), 231–277 (1999)

20. Debray, S.K.: Optimizing almost-tail-recursive Prolog programs. In: Jouannaud, J.-P. (ed.)
FPCA 1985. LNCS, vol. 201, pp. 204–219. Springer, Heidelberg (1985)

21. Delzanno, G., Podelski, A.: Constraint-based deductive model checking. International Jour-
nal on Software Tools for Technology Transfer 3(3), 250–270 (2001)

22. Etalle, S., Gabbrielli, M.: Transformations of CLP modules. Theoretical Computer
Science 166, 101–146 (1996)

23. Etalle, S., Gabbrielli, M., Marchiori, E.: A transformation system for CLP with dynamic
scheduling and CCP. In: PEPM 1997, pp. 137–150. ACM Press, New York (1997)

24. Etalle, S., Gabbrielli, M., Meo, M.C.: Transformations of ccp programs. ACM Transactions
on Programming Languages and Systems 23(3), 304–395 (2001)

25. Fioravanti, F., Pettorossi, A., Proietti, M.: Verifying CTL properties of infinite state systems
by specializing constraint logic programs. In: Proceedings of the ACM Sigplan Workshop on
Verification and Computational Logic VCL 2001, Florence (Italy), Technical Report DSSE-
TR-2001-3, pp. 85–96. University of Southampton, UK (2001)

26. Fioravanti, F., Pettorossi, A., Proietti, M.: Transformation rules for locally stratified con-
straint logic programs. In: Bruynooghe, M., Lau, K.-K. (eds.) Program Development in Com-
putational Logic. LNCS, vol. 3049, pp. 292–340. Springer, Heidelberg (2004)

27. Flener, P., Lau, K.-K., Ornaghi, M., Richardson, J.: An abstract formalization of correct
schemas for program synthesis. Journal of Symbolic Computation 30(1), 93–127 (2000)

28. Gallagher, J.P.: Transforming programs by specialising interpreters. In: Proceedings Seventh
European Conference on Artificial Intelligence, ECAI 1986, pp. 109–122 (1986)

29. Gallagher, J.P.: Tutorial on specialisation of logic programs. In: Proceedings of the 1993
ACM SIGPLAN Symposium on Partial Evaluation and Semantics Based Program Manipu-
lation, PEPM 1993, Copenhagen, Denmark, pp. 88–98. ACM Press, New York (1993)

30. Gardner, P.A., Shepherdson, J.C.: Unfold/fold transformations of logic programs. In:
Lassez, J.-L., Plotkin, G. (eds.) Computational Logic, Essays in Honor of Alan Robinson,
pp. 565–583. MIT, Cambridge (1991)

31. Hogger, C.J.: Derivation of logic programs. Journal of the ACM 28(2), 372–392 (1981)
32. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program Genera-

tion. Prentice-Hall, Englewood Cliffs (1993)

134 A. Pettorossi, M. Proietti, and V. Senni

33. Komorowski, H.J.: Partial evaluation as a means for inferencing data structures in an ap-
plicative language: A theory and implementation in the case of Prolog. In: Ninth ACM
Symposium on Principles of Programming Languages, Albuquerque, New Mexico, USA,
pp. 255–267 (1982)

34. Kott, L.: The McCarthy’s induction principle: ‘oldy’ but ‘goody’. Calcolo 19(1), 59–69
(1982)

35. Lamport, L.: A new solution of Dijkstra’s concurrent programming problem. Communica-
tions of the ACM 17(8), 453–455 (1974)

36. Lau, K.-K., Ornaghi, M., Pettorossi, A., Proietti, M.: Correctness of logic program transfor-
mation based on existential termination. In: Lloyd, J.W. (ed.) Proceedings of the 1995 Inter-
national Logic Programming Symposium (ILPS 1995), pp. 480–494. MIT Press, Cambridge
(1995)

37. Leuschel, M., Bruynooghe, M.: Logic program specialisation through partial deduction: Con-
trol issues. Theory and Practice of Logic Programming 2(4&5), 461–515 (2002)

38. Levi, G., Sardu, G.: Partial evaluation of meta programs in a multiple worlds logic language.
New Generation Computing 6(2&3), 227–248 (1988)

39. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Berlin (1987)
40. Maher, M.J.: A transformation system for deductive database modules with perfect model

semantics. Theoretical Computer Science 110, 377–403 (1993)
41. Manna, Z., Waldinger, R.: A deductive approach to program synthesis. ACM Toplas 2,

90–121 (1980)
42. The MAP transformation system (1995–2010),

http://www.iasi.cnr.it/˜proietti/system.html
43. Pettorossi, A.: A powerful strategy for deriving efficient programs by transformation.

In: ACM Symposium on Lisp and Functional Programming, pp. 273–281. ACM Press,
New York (1984)

44. Pettorossi, A., Proietti, M.: Synthesis and transformation of logic programs using unfold/fold
proofs. Journal of Logic Programming 41(2&3), 197–230 (1999)

45. Pettorossi, A., Proietti, M.: Perfect model checking via unfold/fold transformations. In:
Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M., Lau, K.-
K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 613–628. Springer,
Heidelberg (2000)

46. Pettorossi, A., Proietti, M., Renault, S.: Derivation of efficient logic programs by special-
ization and reduction of nondeterminism. Higher-Order and Symbolic Computation 18(1-2),
121–210 (2005)

47. Pettorossi, A., Proietti, M., Senni, V.: Proving properties of constraint logic programs by
eliminating existential variables. In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS,
vol. 4079, pp. 179–195. Springer, Heidelberg (2006)

48. Pettorossi, A., Proietti, M., Senni, V.: Automatic correctness proofs for logic program trans-
formations. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 364–379.
Springer, Heidelberg (2007)

49. Proietti, M., Pettorossi, A.: Semantics preserving transformation rules for Prolog. In: 1991
ACM SIGPLAN Symposium on Partial Evaluation and Semantics Based Program Manip-
ulation, PEPM 1991, Yale University, New Haven, Connecticut, USA, pp. 274–284. ACM
Press, New York (1991)

50. Proietti, M., Pettorossi, A.: Unfolding-definition-folding, in this order, for avoiding unneces-
sary variables in logic programs. Theoretical Computer Science 142(1), 89–124 (1995)

51. Rabin, M.O.: Decidable theories. In: Barwise, J. (ed.) Handbook of Mathematical Logic,
pp. 595–629. North-Holland, Amsterdam (1977)

http://www.iasi.cnr.it/~proietti/system.html

The Transformational Approach to Program Development 135

52. Roychoudhury, A., Narayan Kumar, K., Ramakrishnan, C.R., Ramakrishnan, I.V.: Beyond
Tamaki-Sato style unfold/fold transformations for normal logic programs. International Jour-
nal on Foundations of Computer Science 13(3), 387–403 (2002)

53. Roychoudhury, A., Narayan Kumar, K., Ramakrishnan, C.R., Ramakrishnan, I.V.: An un-
fold/fold transformation framework for definite logic programs. ACM Transactions on Pro-
gramming Languages and Systems 26, 264–509 (2004)

54. Roychoudhury, A., Narayan Kumar, K., Ramakrishnan, C.R., Ramakrishnan, I.V., Smolka,
S.A.: Verification of parameterized systems using logic program transformations. In:
Schwartzbach, M.I., Graf, S. (eds.) TACAS 2000. LNCS, vol. 1785, pp. 172–187. Springer,
Heidelberg (2000)

55. Safra, S., Shapiro, E.: Meta interpreters for real. In: Kugler, H.J. (ed.) Proceedings Informa-
tion Processing 1986, pp. 271–278. North-Holland, Amsterdam (1986)

56. Sato, T., Tamaki, H.: Transformational logic program synthesis. In: Proceedings of the Inter-
national Conference on Fifth Generation Computer Systems, pp. 195–201. ICOT (1984)

57. Seki, H.: A comparative study of the well-founded and the stable model semantics: Trans-
formation’s viewpoint. In: Proceedings of the Workshop on Logic Programming and Non-
monotonic Logic, pp. 115–123. Cornell University (1990)

58. Seki, H.: Unfold/fold transformation of stratified programs. Theoretical Computer
Science 86, 107–139 (1991)

59. Seki, H.: Unfold/fold transformation of general logic programs for well-founded semantics.
Journal of Logic Programming 16(1&2), 5–23 (1993)

60. Seki, H.: On inductive and coinductive proofs via unfold/fold transformations. In:
De Schreye, D. (ed.) LOPSTR 2009. LNCS, vol. 6037, pp. 82–96. Springer, Heidelberg
(2009)

61. Sterling, L., Beer, R.D.: Incremental flavour-mixing of meta-interpreters for expert system
construction. In: Proceedings of 3rd International Symposium on Logic Programming, Salt
Lake City, Utah, USA, pp. 20–27. IEEE Press, Los Alamitos (1986)

62. Tacchella, P., Gabbrielli, M., Meo, M.C.: Unfolding in CHR. In: Proceedings of the 9th Inter-
national ACM SIGPLAN Conference on Principles and Practice of Declarative Programming
(PPDP 2007), pp. 179–186 (2007)

63. Takeuchi, A., Furukawa, K.: Partial evaluation of Prolog programs and its application to
meta-programming. In: Kugler, H.J. (ed.) Proceedings of Information Processing 1986,
pp. 415–420. North-Holland, Amsterdam (1986)

64. Tamaki, H., Sato, T.: Unfold/fold transformation of logic programs. In: Tärnlund, S.-Å. (ed.)
Proceedings of the Second International Conference on Logic Programming (ICLP 1984),
pp. 127–138. Uppsala University, Uppsala (1984)

65. Toni, F., Kowalski, R.: An argumentation-theoretic approach to logic program transforma-
tion. In: Proietti, M. (ed.) LOPSTR 1995. LNCS, vol. 1048, pp. 61–75. Springer, Heidelberg
(1996)

66. Venken, R.: A Prolog meta-interpretation for partial evaluation and its application to source-
to-source transformation and query optimization. In: O’Shea, T. (ed.) Proceedings of ECAI
1984, pp. 91–100. North-Holland, Amsterdam (1984)

67. Wadler, P.L.: Deforestation: Transforming programs to eliminate trees. Theoretical Computer
Science 73, 231–248 (1990)

68. Zhang, J., Grant, P.W.: An automatic difference-list transformation algorithm for Prolog. In:
Proceedings 1988 European Conference on Artificial Intelligence, ECAI 1988, pp. 320–325.
Pitman (1988)

	The Transformational Approach to Program Development
	Introduction
	Transformation Rules
	Transformation Strategies
	Eliminating Unnecessary Variables
	Reducing Nondeterminism
	Program Specialization

	Program Synthesis
	Program Verification
	Infinite-State Model Checking
	The Unfold/Fold Proof Method

	Conclusions and Future Directions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

