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Abstract. The paper provides an overview of an approach to the semantics of
(constraint) logic programs, whose aim is providing suitable theoretical bases for
modeling observable properties of logic programs in a compositional way. The
approach is based on the idea of choosing (either equivalence classes or abstrac-
tions of) sets of clauses as semantic domain and provides an uniform framework
for defining different compositional semantics for logic programs, parametrically
with respect to a given notion of observability. Since some observable properties
have a natural definition which is dependent on the selection rule, the framework
has been adapted to cope also with a suitable class of rules, which includes the
leftmost selection rule. This provides a formal description of most of the observ-
able properties of Prolog derivations and can therefore be viewed as reference
semantics for Prolog transformation and analysis systems.

1 Introduction

The paper provides an overview of an approach of the semantics of (constraint) logic
programming which push forward the s-semantic approach [26] developed about twenty
years ago. The aim of such an approach was that of providing a suitable base for pro-
gram analysis by means of a semantics which really captures the operational semantics
of logic programs and thus permits to model properties which can be observed in an
SLD-tree (observables). For instance, in [26] two programs are equivalent if for any
goal G they return the same (up to renaming) computed answers. That doesn’t hold for
the least Herbrand model semantics, namely, there exist programs which have the same
least Herbrand model, yet compute different answer substitutions. Several ad-hoc se-
mantics modeling various observables have been defined. These include correct answer
substitutions, computed answer substitutions, partial answers [25], OR-compositional
correct answers [9,8], call patterns [33], proof trees and resultants [30].

In addition there are several semantics specifically designed for static program anal-
ysis, which can handle various observables such as types and groundness dependencies.
The idea of this approach is to define a framework which collects all the informations
on SLD-derivations (for example in terms of resultants) and that permits to define deno-
tations modeling various observables (thus inheriting basic constructions and results).
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The relevant information for specific applications can be extracted from such a collect-
ing semantics by suitable abstractions.

The paper is organized as follows. In the next section we recall the basic notions and
introduce the terminology used in the paper. In Section 3 we describe the observables
and their associated equivalence relations considered in the paper. Sections 4 and 5
describe a first general semantics schema and its principal instances. In Section 6 we
discuss how the previous results can be specialized for a suitable class of selection rules.
In Section 7 we introduce a framework for constraint logic programs. Finally, in Section
8 we describe a framework for bottom-up abstract interpretation.

2 Preliminaries

2.1 Logic Programming

The reader is assumed to be familiar with the terminology of and the main results on
the semantics of logic programs [43,1]. We briefly recall here few basic notions.

Throughout the paper we assume programs and goals defined on a first order lan-
guage given by a signature consisting of a finite set F of data constructors, a finite
set Π of predicate symbols, a denumerable set V of variable symbols. T denotes the
set of terms built on F and V . Variable-free terms are called ground. If E is any syn-
tactic object, Var(E) and Pred(E) denote the set of (free) variables and of predicates
occurring in E, respectively. A substitution is a mapping ϑ : V → T such that the
set dom(ϑ) = {X | ϑ(X) �= X} (domain of ϑ) is finite; ε is the empty substitution:
dom(ε) = ∅. If ϑ is a substitution and E is a syntactic expression, we denote by ϑ|E
the restriction of ϑ to the variables in Var(E).

The composition ϑσ of the substitutions ϑ and σ is defined as the functional com-
position. A substitution ϑ is idempotent if ϑϑ = ϑ. A renaming is a (nonidempotent)
substitution ρ for which there exists the inverse ρ−1 such that ρρ−1 = ρ−1ρ =ε. The
result of the application of the substitution ϑ to a term t is an instance of t denoted by
tϑ. We define t � t′ (t is more general than t′) iff there exists ϑ such that tϑ = t′. A sub-
stitution ϑ is a grounding for t if tϑ is ground and Ground(t) denotes the set of ground
instances of t. The relation � is a preorder and ≈ denotes the associated equivalence
relation (variance). A substitution θ is a unifier of terms t1 and t2 if t1θ = t2θ (where
= denotes syntactic equality). If two terms are unifiable then they have an idempotent
most general unifier which is unique up to renaming. Therefore mgu(t1, t2) denotes any
such an idempotent most general unifier of t1 and t2. All the above definitions can be
extended to other syntactic objects in the obvious way.

We restrict our attention to idempotent substitutions, unless differently stated.
An atom A is an object of the form p(t1, . . . , tn), where p ∈ Π and t1, . . . tn ∈ T .

A (definite) clause is a formula of the form H :−A1, . . . , An with n ≥ 0, where H
(the head) and A1, . . . , An (the body) are atoms. : − and , denote logic implication
and conjunction respectively, and all variables are universally quantified. If the body is
empty the clause is a unit clause. A (positive) program is a finite set of definite clauses
and a (positive) goal is a conjunction of atoms A1, . . . , Am. The empty goal is denoted
by �. A and C denote the sets of atoms and of clauses, respectively, while ℘(S) denotes
the powerset of a set S.
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In the following t,X denote tuples of terms and of distinct variables respectively,
while B denotes a (possibly empty) conjunction of atoms.

The ordinal powers of a generic monotonic operator f on a complete lattice (D,≤)
with bottom ⊥ are defined as usual, namely f ↑ 0 =⊥, f ↑ (α + 1) = f(f ↑ α), for α
successor ordinal and f ↑ α = lub({f ↑ β | β ≤ α}) if α is a limit ordinal.

The Herbrand base BP of a program P is the set of all ground atoms whose pred-
icate symbols are in Pred(P ). An Herbrand interpretation I for a program P is any
subset of the Herbrand base BP . An Herbrand model for a program P is any Herbrand
interpretation M which satisfies all the clauses of P . The intersection M(P ) of all the
Herbrand models of a (positive) program P is a model (least Herbrand model).

Definite clauses have a natural computational reading based on the resolution pro-
cedure. The specific resolution strategy called SLD can be described as follows. Let
G = A1, . . . , Am be a goal and c = H : −B be a (definite) clause. G′ is derived from
G and c by using ϑ iff there exists an atom Aj , 1 ≤ j ≤ m such that ϑ = mgu(Aj , H)
and G′ = (A1, . . . , Aj−1,B, Aj+1, . . . , Am). Given a goal G and a program P , an
SLD-derivation (or simply a derivation) of P ∪ G (of G in P ) consists of a (possibly
infinite) sequence of goals G0,G1,G2, . . . called resolvents, together with a sequence
c1, c2, . . . of variants of clauses in P which are renamed apart (i.e. such that ci does
not share any variable with G0, c1, . . . , ci−1) and a sequence ϑ1, ϑ2, . . . of idempotent
mgu’s such that G = G0 and, for i ≥ 1, each Gi is derived from Gi−1 and ci by using
ϑi. An SLD-refutation of P ∪ G is a finite SLD-derivation of P ∪ G which has the
empty clause � as the last goal in the derivation.

Following [1], a selection rule R is a function which when applied to a “history”
containing all the clauses and the mgu’s used in the derivation G0,G1, . . . ,Gi, returns
an atom in Gi (the selected atom in Gi). Given a selection rule R, an SLD-derivation
is called via R if all the selections of atoms in the resolvents are performed according
to R.

In the following G ϑ�P,R
∗ B denotes a finite SLD-derivation of P ∪G via selection

rule R, which has length ≥ 0, where ϑ is the composition of the mgu’s introduced and
B is the last resolvent in the derivation. If R is omitted, we mean that any selection rule
can be used (and the definition is independent from the selection rule). Moreover, when
the length of the derivation is 0, we assume that ϑ = ε and B = G.

The computed answer substitution of a refutation G ϑ�P
∗ � is the substitution ob-

tained by the restriction of ϑ to the variables occurring in G. G ϑ→P � will denote
explicitly the refutation of G in P with computed answer substitution ϑ.

2.2 Galois Insertions and Abstract Interpretation

Abstract interpretation [19,20] is a theory developed to reason about the abstraction
relation between two different semantics. The theory requires the two semantics to be
defined on domains which are complete lattices. (C,�) (the concrete domain) is the
domain of the concrete semantics, while (A,≤) (the abstract domain) is the domain of
the abstract semantics. The partial order relations reflect an approximation relation. The
two domains are related by a pair of functions α (abstraction) and γ (concretization),
which form a Galois insertion.
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(Galois insertion). Let (C,�) be the concrete domain and (A,≤) be the ab-
stract domain. A Galois insertion (α, γ) : (C,�) → (A,≤) is a pair of maps
α : C → A and γ : A → C such that α and γ are monotonic, for each x ∈ C,
x � γ(α(x)) and for each y ∈ A, α(γ(y)) = y.

Given a concrete semantics and a Galois insertion between the concrete and the ab-
stract domain, we want to define an abstract semantics. The concrete semantics is the
least fixpoint of a semantic function F : C → C. The abstract semantic function
F̃ : A → A is correct if for all x ∈ C, F (x) � γ(F̃ (α(x))). F can be defined
as composition of “primitive” operators. Let f : Cn → C be one such an operator
and assume that f̃ is its abstract counterpart. Then f̃ is (locally) correct w.r.t. f if for
all x1, ..., xn ∈ C, f(x1, ..., xn) � γ(f̃(α(x1), . . . , α(xn))). The local correctness
of all the primitive operators implies the global correctness. According to the theory,
for each operator f , there exists an optimal (most precise) locally correct abstract op-
erator f̃ defined as f̃(y1, . . . , yn) = α(f(γ(y1), . . . , γ(yn))). However the composi-
tion of optimal operators is not necessarily optimal. The abstract operator f̃ is precise
if f̃(α(x1), . . . , α(xn)) = α(f(x1, . . . , xn)). The above definitions are naturally ex-
tended to “’primitive” semantic operators from ℘(C) to C.

3 Observables and Composition Operators

The concrete operational semantics of (logic) programs can be specified by means of a
set of inference rules which specify how derivations are made and by defining which are
the “observables” we are interested in. In pure logic programming, we can be interested
in different observable properties such as successful derivations, finite failures, (partial)
computed answer substitutions, etc. Therefore a program can have different concrete
operational semantics depending on which properties are observed.

A given choice of the observable x induces an “observational” equivalence on pro-
grams. Namely P ≈x Q iff P and Q are observationally indistinguishable according
to x. When also composition of programs is taken into account, for a given observable
property we can obtain different equivalences depending on which kind of program
composition we consider. Given an observable x and a syntactic program composition
operator ◦, the induced equivalence ≈(x,◦) is defined as follows. P ≈(x,◦) Q iff for any
program R, P ◦ R and Q ◦ R are observationally indistinguishable according to x (i.e.
P and Q are observationally indistinguishable under any possible context allowed by
the composition operator). A semantics S is correct wrt (x, ◦), if S(P ) = S(Q) implies
P ≈(x,◦) Q, for each logic programs P and Q. S(P ) is fully abstract wrt (x, ◦) when
also the converse of the previous implication holds.

A semantic S is compositional wrt the program composition operator ◦, if the se-
mantics of the composition of programs P and Q can be obtained from the semantics
of P and the semantics of Q, i.e. if for a suitable composition operator f , S(P ◦ Q) =
f(S(P ),S(Q)).

If S is correct wrt x and is compositional wrt ◦, then S is also correct wrt (x, ◦).
If we are concerned with the input/output behavior of programs we should just ob-

serve computed answers. However some semantic based techniques (such as program
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analysis, debugging and transformation), require to observe and take into account other
features of the derivation, which make visible internal computation details. In principle,
one could be interested in the complete information about the SLD-derivation, namely
the sequences of goals, most general unifiers and variants of clauses. The resultants,
introduced in [44] in the framework of partial evaluation, are a compact representa-
tion of the relation between the initial goal G and the current 〈goal, substitution〉 pair
in a SLD-derivation of G, where the substitution is the (restriction to Var(G) of the)
composition of the mgu’s computed in the SLD-derivation from G to the current goal.

Definition 1. Let P be a program and let R be a selection rule. Gϑ :−B ∈ C is
an R-computed resultant for G in P iff there exists a SLD-derivation via R such that

G ϑ�P,R
∗ B. Moreover Φ is a computed resultant of G in P if there exists a selection

rule R such that Φ is an R-computed resultant for G in P .

In the following, given the (R-)computed resultant Gϑ :−B for the goal G, we will say
that ϑ|G is the substitution associated to the resolvent B.

Resultants are a logical representation, which is quite convenient to study transfor-
mation techniques of logic programs such as partial evaluation and Fold/Unfold [41,52].
In fact, since these transformations are based on unfolding, i.e. on the application of
some SLD-derivation steps to the program clauses, their intermediate and final results
and also their basic properties can be naturally expressed in terms of resultants. For
example, in addition to the above mentioned use, resultants have been used in [4] to
study loop checking mechanisms and in [24] to prove the correctness of a modular
Unfold/Fold transformation system.

The resultants are the basic observables to introduce a semantic scheme in Section
4 which collects informations on SLD-derivations. We will then derive as instances of
the scheme other semantics which model (in some cases compositionally) more abstract
observables, formally defined in Definition 2. These observables are:

partial answers. (denoted by pa), which are the substitutions associated to a resolvent
in any SLD-derivation, and correct partial answers (denoted by cpa), which are
the substitutions associated to a resolvent in any SLD-refutation. The knowledge
about partial answers is important for program analysis [11], to characterize the
semantics of concurrent languages [25] and to characterize universal termination,
which in turn is useful for the semantics of PROLOG [2,5]

call patterns. (denoted by pt), which are the atoms (procedure calls) selected in any
SLD-derivation, and correct call patterns (denoted by cpt), which are the atoms
(procedure calls) selected in any SLD-refutation. Call patterns make it possible to
derive properties of procedure calls, which are clearly relevant to program opti-
mization and play an important role in most program analysis frameworks based
on abstract interpretation (see [22] for a broad overview).

computed answers. (denoted by ca), which are the substitutions associated to the last
resolvent (�) in an SLD-refutation, and

successful derivations. (denoted by s), where we just observe successful termination.

In the following sections we will show, as instances of the general scheme, a semantics
(in some cases compositional) for each one of the previous observables. Each seman-
tics Fx is obtained by setting a parameter in the scheme in Section 4, according to
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the corresponding observational equivalence ≈x. Moreover each Fx is correct wrt the
corresponding ≈x. In several cases also full abstraction is obtained.

We formally define now the observational equivalences that we will consider.
Computed answers and successful derivations are known to be independent from the

selection rule. This property is based on the switching lemma [1] and on the fact that
these observables are obtained from successful derivations, where all the atoms have
been evaluated. This is not the case for partial answers and call patterns which therefore
depend on the selection rule. We first consider only notions which are independent from
the selection rule. Therefore, in the case partial answers and call patterns, we introduce
the independence in the definition by considering any selection rule.

Definition 2. Let P be a program, R be a selection rule and let G be a goal such that
there exists a derivation G

γ�P,R
∗ B.

1. ϑ is a R-partial answer for G in P iff ϑ = γ|G,
2. ϑ is a correct R-partial answer for G in P iff ϑ = γ|G and B has a refutation in

P ,
3. A is a R-call pattern for G in P iff A is the atom selected by R in B,
4. A is a correct R-call pattern for G in P iff A is the atom selected by R in B and

B has a refutation in P .

Moreover ϑ is a (correct) partial answer for G in P iff there exists a selection rule R
such that ϑ is a (correct) R-partial answer for G in P . Analogously for (correct) call
patterns.

Note that computed answers are a special case of (correct) partial answers.
The only notion of program composition (the OR-composition) we will consider in

the following is a generalization of program union ∪Ω defined in [8]. First an Ω-open
program P is a (positive) program in which the predicate symbols belonging to the set
Ω are considered partially defined in P . P can be composed with another program Q
which may further specify the predicates in Ω. Such a composition is denoted by ∪Ω

and P ∪Ω Q is defined only if the predicate symbols occurring in both P and Q are
contained in Ω. When Ω contains all the predicate symbols of P and Q we get the
standard ∪-composition, while if Ω = ∅ the composition is allowed only on programs
which do not share predicate symbols.

The combination of the above defined six observables with the composition operator
gives six observational equivalences. We list below their definitions.

Definition 3. Let P and Q be Ω-open programs, G be a goal and let W denote a
program such that P ′ = P ∪Ω W and Q′ = Q ∪Ω W are defined. Assume that x ∈
{s, ca, pa, cpa, pt, cpt}. Then P ≈(Ω,x) Q iff ix holds for any G and for any W , where
the conditions ix are defined as follows

is: G has a refutation in P ′ iff G has a refutation in Q′,
ica: G has the same set of computed answers in P ′ and in Q′,
ipa (icpa): G has the same set of (correct) partial answers in P ′ and in Q′,
ipt (icpt): G has the same set of (correct) call patterns in P ′ and in Q′.

The case Ω = ∅ is equivalent to considering no composition at all and therefore in order
to simplify the notation we will denote ≈(∅,x) by ≈x.
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4 A General Semantic Scheme

The scheme which has been proposed in [30,31] is a generalization of the open se-
mantics introduced in [9,8] to obtain compositionality wrt program union. The standard
semantics based on atoms is not compositional wrt union of programs. Consider for
instance the programs P = {q(a), p(X) : −r(X)}, Q = {q(a)} and R = {r(a)}. The
least Herbrand model semantics M(P ) identifies P and Q, since M(P ) = M(Q) =
{q(a)}. However M(P ∪ R) �= M(Q ∪ R). In order to obtain the semantics of the
union P ∪R from those of the components, the semantics of P should contain also the
information given by the clause p(X) : −r(X). For this reason, the open semantics
was then defined on domains containing equivalence classes of sets of clauses (called
π-interpretations).

If we abstract from the specific equivalences in [9,8], the open semantics can be
viewed as a semantic framework for correctly modeling ≈(◦,x) equivalences. Similarly
to what happens for least Herbrand model semantics [23] the semantics built on π-inter-
pretations is a mathematical object which is defined in model-theoretic terms and which
can be computed both by a top-down and a bottom-up construction. The link between
the top-down and the bottom-up constructions is given by an unfolding operator [42],
denoted by Γ .

In the following a π-interpretation is a ∼-equivalence class [I] where I ⊆ C. I is
the set of all the π-interpretations and we define ι(I) = a where a is the renamed apart
version of any element in I ∈ I. All the definitions which use elements from I are
parametric wrt an equivalence ∼. However, in the remaining of this section, we omit
the ∼ index in order to simplify the notation.

The general semantics scheme in [31,30] is defined in terms of π-interpretations and
hence parametrically wrt ∼. We give two equivalent characterizations. The top-down
one has a definition in the style of an operational semantics, while the bottom-up one is
based on the fixpoint of a general immediate consequences operator. Let us first define
the top-down semantics O(P ).

Definition 4 (Operational Semantic Scheme). Let P be a program. O(P ) = [{Φ ∈
C | Φ is a resultant for a goal of the form p(X) in P}] ∈ I.

Note that O(P ) is a π-interpretation and it is the (equivalence class of the) set of all the
resultants obtained from goals of the form p(X) in P for any possible selection rule.
In [7] the resultants are extended by collecting also sequences of clause identifiers in
order to obtain the maximum amount of information on computations so to observe all
the internal details of SLD-derivations. Moreover, by modifying O(P ), it is possible
to obtain semantics compositional w.r.t. other composition operators, as for example
inheritance mechanisms [6].

The semantics O(P ) can be obtained also by a fixpoint construction. The suitable
immediate consequences operator can be defined in terms of an unfolding operator. To
this aim, first it is necessary organize the set of π-interpretations in a lattice (I,�) based
on a suitable partial order relation �. Second, an immediate consequences operator TP

is defined and proved monotonic and continuous on (I,�). This allows us to define the
fixpoint semantics F(P ) for P as F(P ) = TP ↑ ω, which is proved equivalent to the
operational semantics.
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We require ∼ to be a congruence wrt infinite unions, i.e. if, for all n ∈ N , In, Jn ⊆ C
and In ∼ Jn, then

⋃
n∈N In ∼

⋃
n∈N Jn. Since ∼ is a congruence wrt infinite unions,

given X ⊆ I we can define
⊔

X = [
⋃

I∈X ι(I)] and for I, J ∈ I, I � J if and only if
I � J = J . The relation � is an ordering on I and (I,�) is a complete lattice (with �
as lub and [∅] as the bottom element).

Let us introduce the basic syntactic operator Γ which will be used to construct the
general immediate consequence operator T . Given a program P and a set of clauses
I , ΓP (I) generates all the clauses obtained by “partially” unfolding P wrt I , i.e. it
generates also those clauses obtained by rewriting a (possibly empty) subset of the
atoms in the bodies of clauses in P .

In the following IdΩ be the set of clauses {p(X) :−p(X) | p ∈ Ω}.

ΓP (I) = {(A :−D1, . . . ,Dn)ϑ | ∃ a clause A :−B1, . . . , Bn ∈ P,
∃ n renamed apart clauses in I ∪ IdΠ :
H1 :−D1, . . . , Hn :−Dn,
∃ϑ = mgu((B1, . . . , Bn), (H1, . . . , Hn))}.

Now, in order to define the fixpoint semantics we require that ∼ is a congruence wrt
the Γ operator, i.e. if I ∼ J , then for any program P , ΓP (I) ∼ ΓP (J). This restriction
will guarantee the correctness of the definition of the general fixpoint semantics. TP is
defined simply as the semantic counterpart of the syntactic operator ΓP .

Definition 5. Let P be a program. Then TP : I → I is the function

TP (I) = [ΓP (ι(I))].

TP (I) is well defined, i.e. its definition is independent from the element chosen in the
equivalence class I , because Γ is a congruence wrt ∼. Moreover TP is continuous on
(I,�) and TP ↑ ω is the least fixpoint of TP .

Definition 6 (Fixpoint Semantic Scheme). Let P be a program.

F(P ) = TP ↑ ω ∈ I.

Because of the previously mentioned ability of ΓP (and therefore of TP ) to produce
also the result of partial unfoldings, F(P ) gives a bottom-up description of partial
derivations, i.e. it contains also the intermediate results of non-terminated (and pos-
sibly non-terminating) computations. Indeed, no matter which specific ∼ equivalence
is used, the equality of the top-down and the bottom-up constructions holds [30]. This
general result simplifies the treatment in specific cases since it is usually easier proving
the congruence requirements on ∼ rather than proving the stated equality.

Lemma 1 (Equivalence). Let P be a program, ∼ be an equivalence on ℘(C) which is
a congruence wrt infinite unions and wrt the Γ operator. Then F(P ) = O(P ).

By instantiating ∼ to a specific equivalence ∼(◦,x), which depends on the composition
operator (◦) and the observable (x), we can obtain suitable TP operators and (equivalent
operational and fixpoint) semantics for the corresponding ≈(◦,x) equivalences.

When considering as ∼ the identity on ℘(C) we obtain a kind of “collecting seman-
tics” which correctly models resultants. The semantics modeling resultants is clearly
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correct wrt the equivalence induced by any notion of observability considered in the pre-
vious section. However, we are interested in defining, for specific observables, coarser
∼ equivalences in order to obtain a more (possibly fully) abstract semantics, while pre-
serving the correctness.

In the following we will then introduce a suitable ∼-equivalence to obtain a correct
(in some cases fully abstract) semantics for any ≈-equivalence considered in the pre-
vious section. The instances of the generic constructions I, T , O and F , obtained by
using a specific ∼i-equivalence, will be denoted by Ii, T i, Oi and Fi, respectively.
When the subscripts are omitted we mean that ∼ is the identity on ℘(C).

5 Getting Instances from the General Schema

5.1 Computed Answers Substitutions and Successful Derivations

In this section we consider first the composition of programs which do not share predi-
cates (i.e. Ω = ∅). As previously discussed, this is the same as the case of no composition
at all. Here the observables we are concerned with are computed answer substitutions
and successful derivations. The induced equivalences on programs have been previously
denoted by ≈ca and ≈s. We first show that suitable definitions of ∼ca and ∼s allow us
to obtain the s-semantics [26] and the least Herbrand model as instances of the scheme.
Then we consider the relation of these semantics to ≈ca and ≈s. Since here we are not
concerned with compositions, it is sufficient to extract from each set of clauses I only
the information given by the unit clauses contained in I . Two sets of clauses can then be
considered equivalent if they contain the same unit clauses (up to variance). Moreover,
in the case of successful derivations, we only need the information given by the ground
instances of the clauses. We define then ∼ca and ∼s as follows.

Definition 7. Let I, J ⊆ C. I ∼ca J iff I ∩ A = J ∩ A. Moreover I ∼s J iff
Ground(I ∩ A) = Ground(J ∩ A).

∼ca and ∼s are congruences wrt infinite unions and wrt the Γ operator and therefore,
we obtain automatically from the scheme for any program P , Ica, T ca, Oca and Fca,
(analogously for ∼s).

Let us first consider the instances of the general definitions obtained by using ∼ca.
For any I ∈ Ica, the set of unit clauses (modulo variance) of any element ι(I) can be
considered the canonical representative of the equivalence class I . T ca

P defined in terms
of canonical representatives is essentially the immediate consequence operator T s−sem

P

originally defined in [26]. The s-semantics is the least fixpoint T s−sem
P ↑ ω of such

an operator. As an obvious consequence, the s-semantics as originally defined is the
canonical representative of Fca(P ) [31].
The strong completeness theorem in [26] shows that the s-semantics is fully abstract
wrt ≈ca. The mentioned correspondence with Fca implies that Fca(P ) is fully abstract
wrt ≈ca [31]. The same result was obtained in [35] using a proof theoretic approach.

Lemma 2. Let P and Q be programs. Then P ≈ca Q iff Fca(P ) = FcaQ).

Analogously, in the case of ∼s, the canonical representative ιs(J) of J ∈ Is can be
obtained by taking the ground instances of the unit clauses in ι(J). T s

P defined in terms
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of canonical representatives is essentially the standard immediate consequence operator
TP [23]. Also in this case, the two formulations are equivalent and the least fixpoint of
TP (the least Herbrand model M(P )) is the canonical representative of Fs(P ) [31].
The mentioned correspondence between M(P ) and Fs(P ) implies that the latter se-
mantics is fully abstract wrt ≈s. More precisely the following holds [31].

Lemma 3. Let P and Q be programs defined on a signature Σ which contains infinitely
many constant symbols. Then P ≈s Q iff Fs(P ) = Fs(Q).

5.2 Compositional Equivalences

We consider now equivalences obtained by considering∪Ω as composition operator. We
first focus on computed answers as observable to obtain from the scheme the semantics
which is correct wrt ≈(Ω,ca). Finally we take into account successful derivations: by
using an equivalence ∼(Ω,s) based on weak subsumption equivalence [45], we obtain
the semantics F(Ω,s)(P ) which is fully abstract wrt ≈(Ω,s).

A semantics correct wrt≈(Ω,ca). We show now the instance of the schemeF(Ω,ca)(P ),
which is compositional wrt ∪Ω and correctly models computed answers, i.e. it is correct
wrt ≈(Ω,ca). A semantics with these features was already defined in [8] by using sets of
clauses as interpretations. [31,30] show how such a semantics can be obtained from the
general scheme.

We first define a syntactic equivalence � on (sets of) clauses which is correct wrt
≈(Ω,ca) (for any Ω) and hence can be used to define π-interpretations for the compo-
sitional case when considering computed answers. A distinction can be made among
the atoms in the body of a clause, by identifying those relevant atoms which can share
variables with the head in a derivation, and those which cannot. Clearly, only the atoms
of the first type can contribute to the answer computed in a derivation. The others can
only be tested for their successful derivation, but their derivation cannot give any use-
ful binding for the computed answer, since such an answer is always restricted to the
variables in the goal. Hence the following.

Definition 8. An atom B in the body of a clause c is called relevant if either it shares
variables with the head of c or, inductively, it shares variables with another atom B′ in
the body of c which is relevant. The multiset of relevant atoms in c is denoted by Rel(c).

In the following Set(M) denotes the set of the elements which appear in the multiset
(or sequence) M . Moreover, when applied to multisets, ⊆ denotes multiset inclusion.

Note that, in the following definitions relevant atoms in clause bodies are considered
as multisets rather than sets. This is because in general a relevant atom in the body B of
a clause cannot be deleted (even if a copy of the atom appear in B) without changing the
operational meaning of the clause in terms of computed answers. Recall that a clause
c1 = H1 :−A subsumes a clause c2 = H2 :−B if there exists a substitution ϑ such that
H1ϑ = H2 and Set(A)ϑ ⊆ Set(B). Now, let c1 and c2 be two clauses which do not
share variables and whose heads are H1 and H2, respectively. We say that c1 ≤c c2 iff
c1 subsumes c2 and there exists a renaming ρ such that H1ρ = H2, Rel(c2)ρ ⊆ Rel(c1)
and Set(Rel(c2)ρ) = Set(Rel(c1)).
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The equivalence � is then defined as the symmetric closure of the Smith preordering
induced on sets of clauses by ≤c. It can be proved (see [31,30]) that � equivalent sets
of clauses can be interchanged in any context while preserving the computed answer
substitutions semantics. In fact, given I, J ⊆ C, if I � J then the two sets of clauses
are indistinguishable by ≈(Π,ca). We can then use � to define the equivalence ≈(Ω,ca).
Moreover, since ∪Ω allows us to compose programs which share predicate symbols in
Ω only, we only need the information given by clauses in CΩ , where CΩ denotes the
set of clauses H :−A such that Pred(A) ⊆ Ω.

Definition 9. Let I, J ⊆ C. We define I � J iff for any c ∈ I there exists c′ ∈ J such
that c′ ≤c c and vice versa. Moreover I ∼(Ω,ca) J iff I ∩ CΩ � J ∩ CΩ .

It can be shown that ∼(Ω,ca) is finer than (and hence correct wrt) ≈(Ω,ca). ∼(Ω,ca) is
a congruence wrt infinite unions and wrt the Γ operator and therefore, we obtain auto-
matically from the scheme for any program P , I(Ω,ca), T (Ω,ca), O(Ω,ca) and F(Ω,ca)

by using ∼(Ω,ca) as ∼.
Essentially the same results have been given in [9,8] by using the identity on ℘(C)

as ∼(Ω,ca) equivalence.

Lemma 4. Let P and Q be programs. If F(Ω,ca)(P ) = F(Ω,ca)Q then P ≈(Ω,ca) Q.

The converse of the previous statement does not hold, i.e. the semantics F(Ω,ca)(P ) is
not fully abstract wrt ≈(Ω,ca). The difficulty here is related to the use of clauses in the
semantic domain (the full abstraction result in [34] was obtained using a domain not
containing clauses).

A semantics correct and fully abstract wrt ≈(Ω,s). Now we consider the usual pro-
gram composition ∪Ω but we will focus on successful derivations as observable. We
will obtain from the general scheme a semantics F(Ω,s)(P ) is fully abstract wrt ≈(Ω,s).

According to the general construction, we have only to define a suitable equivalence
∼(Ω,s) on clauses. First, note that the clause c is a tautology iff the body of c contains a
copy of the head. Given I, J ∈ C, we say that I and J are subsumption equivalent iff for
any c ∈ I there exists c′ ∈ J such that c′ subsumes c and vice versa. I and J are weakly
subsumption equivalent iff I\Taut(I) is subsumption equivalent to J\Taut(J), where
Taut(I) denotes the set of tautologies in I . Since here we are concerned only with
successful derivations, ∼(Ω,s) can simply be defined in terms of weak subsumption
equivalence. Indeed, if c1 subsumes c2 then each successful derivation of a goal G
can be performed by using c1 instead of c2. Moreover, if G has a successful derivation
which uses the tautology c, G has also a derivation which does not use c. In other words,
tautological clauses can be deleted. These remarks can be formalized as follows.

Definition 10. Let I, J ⊆ C. I ∼(Ω,s) J iff I ∩ CΩ is weakly subsumption equivalent
to J ∩ CΩ .

∼(Ω,s) is a congruence wrt infinite unions and wrt the Γ operator and therefore, we
obtain automatically from the scheme for any program P , F(Ω,s) by using ∼(Ω,s) as ∼.
We have the following result.

Lemma 5. Let P, Q be (finite) programs. P ≈(Ω,s) Q iff F(Ω,s)(P ) = F(Ω,s)(Q).
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Note that the previous result holds also for infinite programs which contain only finitely
many function symbols. It does not hold for generic infinite programs (for a counterex-
ample consider the programs P and Ground(P )).

5.3 A Semantics for Partial Answers and Call Patterns

A fixpoint semantics for partial answers has been defined in [25]. [31,30] extend such
a characterization by obtaining, from the general scheme, a fully abstract semantics for
partial answers and a correct semantics for correct partial answers. Semantics for call
patterns is also given.

We give just the intuition on how these semantics are obtained. More details can
be found in the cited literature. For the sake of simplicity, we consider only the case
Ω = ∅. The compositional case can be obtained by using techniques similar to those
used in the above section.

From the clauses in F(P ) it is possible to extract the information needed to model
partial answers and call patterns for any goal G. For example, since each clause H :−B

in F(P ) corresponds to a derivation p(X)
β�P,R

∗ B (where H = p(X)β) ϑ is a
partial answer for the goal p(X) if there exists a clause H :−B in F(P ) such that
γ = mgu(p(X), H) and ϑ = γ|p(X). Moreover ϑ is a correct partial answer for p(X)
if there exists also a conjunction C containing atoms from F(P ) such that B and C
unify. This example can be extended to the general case in a obvious way.

Note that, when considering partial answers, we only need the information in the
heads of the clauses in F(P ), while for correct partial answers clearly we have to con-
sider also bodies. In fact bodies contain the information needed to check if the partial
derivation is part of a refutation. First of all, given J ⊆ C, we define Heads(J) =
{H ∈ A | H :−B ∈ J} and therefore, according to the previous considerations the
equivalences ∼pa and ∼cpa are defined as follows.

Definition 11. Let I, J ⊆ C. I ∼pa J iff Heads(I ∪ IdΠ) = Heads(J ∪ IdΠ).
Moreover I ∼cpa J iff I ∼(Π,ca) J .

∼pa and ∼cpa are congruences wrt infinite unions and wrt the Γ operator and therefore,
the semantics for partial answers and correct partial answers can be automatically ob-
tained as usual from the general scheme for any program P , by using ∼pa and ∼cpa as
∼, respectively. Moreover Fpa(P ) is fully abstract wrt ≈pa.

Lemma 6. Let P, Q be programs. Then P ≈pa Q iff Fpa(P ) = Fpa(Q).

For Fcpa(P ) we have only the following correctness result. The problems for obtain-
ing full abstraction here are the same as those mentioned for compositional computed
answers.

Lemma 7. Let P, Q be programs. If Fcpa(P ) = Fcpa(Q) then P ≈cpa Q.

The information needed to model call patterns can be obtained from the clauses in
F(P ) as well. For example, if H :−B1, . . . , Bn ∈ F(P ) and ϑ = mgu(A, H) then Biϑ
is a call pattern for the goal A. Since we are not considering a specific selection rule, we
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only need the information on the relation between the head and the various atoms in
the body. In other words, the clause H :−B1, . . . , Bn is equivalent to the set of clauses
{H :−B1, . . . , H :−Bn}. Therefore the following.

Definition 12. Let c = H :−B1, . . . , Bn ∈ C. Krom(c) = {H :−B1, . . . , H :−Bn}.

The Krom operator, which transforms (equivalence classes of) clauses into sets of bi-
nary clauses, is extended in the obvious way to subsets of C.

Definition 13. Let I, J ⊆ C. I ∼pt J iff Krom(I) = Krom(J).

∼pt is a congruence wrt infinite unions and the operator Γ , therefore we have the usual
definition of the semantics as instance of the scheme.

Definition 14. (Call patterns semantics) Let P be a program. The semantics Fpt(P )
for call pattern is defined as the instance of F(P ) obtained by using ∼pt.

From the previous observations, we have the correctness results for the call pattern
semantics.

Lemma 8. Let P, Q be programs. If Fpt(P ) = Fpt(Q) then P ≈pt Q.

6 Introducing the Selection Rule

[32] shows how all the previous results can be specialized for a suitable class of selec-
tion rules. We discuss the idea of the specialization and give as an example the definition
of the R-partial answer semantics. For the sake of simplicity, we consider only the case
Ω = ∅. The compositional case can be obtained by using techniques similar to those
used in the Section 5.2.

First we focus on R-computed resultants, i.e. on those resultants which describe
derivations which use the selection rule R. This provides a sort of collecting semantics
which describes most of the observable properties of R-derivations. As in Section 4 a
π-interpretation is a ∼-equivalence class [I] where I ⊆ C. I is the set of all the π-
interpretations and we define ι(I) = a where a is the renamed apart version of any
element in I ∈ I. All the definitions which use elements from I are parametric wrt an
equivalence ∼. However, in the remaining of this section, we omit the ∼ index in order
to simplify the notation.

Definition 15 (Operational Semantic Scheme). Let P be a program.OR(P ) = [{Φ ∈
C | Φ is a R-computed resultant for a goal of the form p(X) in P}] ∈ I.

The problems arise with the fixpoint definition. If we consider a generic selection rule,
we cannot obtain a fixpoint (bottom-up) semantics equivalent to the operational one
[32]. Therefore, in order to be able to reconstruct exactly the derivation from the bottom,
[32] introduces the local rules, as specified by the following definition.

Definition 16 (Local rule). Let φ be a given bijection on the set of integer numbers. A
selection rule R is local, if it satisfies the following conditions:

1. if G = A1, . . . , An is the initial goal, then the atom selected by R in G is the atom
As, such that φ(s) < φ(i) for any i ∈ [1, n], i �= s,
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2. if G is a generic resolvent, assume that A1, . . . , An is the sequence of atoms in
G introduced by the last derivation step. Then, as before, the atom selected is As,
such that φ(s) < φ(i) for any i ∈ [1, n], i �= s.

Rules which select one of the most recently introduced atoms were called local in [40]
and were studied since they produce SLD-trees with a simple structure, suitable for
efficient searching techniques. Clearly the rules that we consider are also local in the
sense of [40]. Note also that the PROLOG leftmost rule is local by defining φ as follows:
φ(i) = i.

It is possible to define a fixpoint semantics for R-computed resultants, where R is
a local rule. Moreover, since the leftmost selection rule is a local rule, this semantics
can therefore be viewed as a reference semantics for Prolog transformation and analy-
sis systems, by setting R equal to the leftmost selection rule. Suitable abstractions of
this semantics allow the characterization of observables useful for specific applications.
We will consider explicitly the abstraction which gives a (fully abstract) semantics for
partial answers.

The intuition behind the definition of the bottom-up semantics is the following. Ac-
cording to the previous definition, if Aj is the atom selected by a local rule R in the
resolvent A1, . . . , An, then all the atoms derived from Aj are fully evaluated before the
selection of the atoms Ai, i �= j. Moreover a function φ is used to establish an ordering
on the atoms of the query and of the clauses used in the derivation.

The ordering φ can then be used locally on the bodies of clauses in P , to establish
how to rewrite the bodies (by using clauses in I in ΓP,R(I), see Definition 17). Namely,
when considering a clause H :−B1, . . . , Bn ∈ P in the definition of ΓP,R(I), we take
any partition K, J of the indexes {1, . . . , n} such that φ(k) < φ(j) for any k ∈ K and
j ∈ J . This means that any atom Bk, with k ∈ K , is fully evaluated before any Bj

with j ∈ J , in any derivation which uses the clause H :−B1, . . . , Bn. Accordingly, the
Bk’s are unified with atoms in I . Moreover we consider an atom Bs such that s ∈ J
and the value of φ(s) is the minimum among the φ(j)’s for j ∈ J . This means that Bs

is the first atom selected after the evaluation of the Bk’s has been completed. Since the
evaluation of (the atoms derived by) Bs can also be not completed, Bs is unified with
the head of a generic clause in I .

In order to simplify the notation, given a query G = A1, . . . , An and a set of in-
dexes K = {k1, . . . , km} ⊆ {1, . . . , n}, in the following we denote by GK the query
Ak1 , . . . , Akm and by G−K the query obtained from G by deleting Ak for any k ∈ K .

Definition 17. Let P be a program, R be a local selection rule and let I be a set of
clauses.

ΓP,R(I) = {(A :−D)ϑ | ∃A :−B ∈ P with B = B1, . . . , Bn,
∃K ⊆ {1, . . . , n}, J = {1, . . . , n} \ K,
∃s ∈ J, such that for any k ∈ K and for any j ∈ J
φ(k) < φ(s) ≤ φ(j)
∃ a sequence H of atoms in I and
∃ a clause H ′ :−B′ in I ∪ IdΠ such that
ϑ = mgu((BK , Bs), (H, H ′)) and
D is obtained from B−K by replacing Bs with B′}.
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All the results shown in Section 4 hold also for this specialized version of the immediate
consequence operator. In particular if ∼ is a congruence wrt infinite unions and the Γ
operator, then TP,R = [ΓP,R(ι(I))] (the semantic counterpart of the syntactic operator
ΓP,R) is well defined. Moreover TP,R is continuous on (I,�) and FR(P ) = TP,R ↑ ω
(the least fixpoint of TP,R) is equal to the operational semantics OR(P ).

Now, we show as it is possible to model the R-partial answer semantics. For all the
other observables it is possible to follows a similar construction.

Definition 18. Let P and Q be programs. P ≈pa,R Q iff for any goal G, G has the
same set of R-partial answers in P and in Q.

From FR(P ) it is possible to extract the R-partial answers as follows. Analogously
to the case of partial answers (without considering the selection rule) in Section 5.3,

since each clause H :−B in FR(P ) corresponds to a derivation p(X)
β�P,R

∗ B (where
H = p(X)β) in order to model R-partial answer we only need keep the heads of the
resultants and therefore, in the definition of ∼pa,R, we can abstract from the bodies.
However, we need to distinguish among partial answers those which are also computed
answers, i.e. we need to distinguish between heads of non unit clauses and heads of
unit clauses in FR(P ). Consider for example the goal q(X), r(Y ) and assume that R is
the leftmost selection rule. If X = a is a computed answer for q(X) in the program P
(i.e. if FR(P ) contains the unit clause q(a)) and Y = b is a leftmost partial answer for
r(Y ) in P , then {X = a, Y = b} is a leftmost partial answer for q(X), r(Y ) in P . This
in general is not the case if X = a is a leftmost partial answer (and not a computed
answer) for q(X) (i.e. if FR(P ) contains a non unit clause q(a) :−B′ and does not
contain a unit clause q(a)).

According to the above considerations, the equivalences∼pa,R is defined as follows.

Definition 19. Let I, J ⊆ C. I ∼pa,R J iff Heads(I) = Heads(J) and I∩A = J∩A.

∼pa,R is a congruence wrt infinite unions and wrt the ΓP,R operator and therefore,
we obtain automatically from the scheme Fpa,R by using ∼pa,R as ∼. We have the
following result.

Lemma 9. Let P, Q be programs and let R be a local selection rule. P ≈pa,R Q iff
Fpa,R(P ) = Fpa,R(Q).

7 A Semantic Scheme for Constraint Logic Programs

The Constraint Logic Programming paradigm CLP(X ) (CLP for short) has been pro-
posed by Jaffar and Lassez [38,37] in order to integrate a generic computational mech-
anism based on constraints with the logic programming framework. The benefits of
such an integration are several. From a pragmatic point of view, CLP(X ) allows one to
use a specific constraints domain X and a related constraint solver within the declar-
ative paradigm of logic programming. From the theoretical viewpoint, CLP provides
a unified view of several extensions to pure logic programming (arithmetics, equa-
tional programming, object-oriented features, taxonomies) within a framework which
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preserves the unique semantic properties of logic programs, in particular the existence
of equivalent operational, model theoretic and fixpoint semantics [38]. Moreover, since
the computation is performed over the specific domain of computation X , CLP(X ) pro-
grams have an equivalent “algebraic” semantics [38] directly defined on the algebraic
structure of X .

[28] introduces a framework for defining various semantics, each corresponding to
a specific observable property of computations, thus applying to the CLP case the
methodology proposed in [7,31]. Analogously to the case of (standard) Logic Pro-
gramming in Section 4, each semantics can be equivalently defined either operationally
(top-down) or declaratively (bottom-up) as the least fixpoint of a suitable operator. The
construction is based on a new notion of interpretation (which is a modified version of
that given in Section 4), on a natural extension of the standard notion of truth and on
the definition of various immediate consequences operators, whose least fixpoints on
the lattice of interpretations are models corresponding to various observable properties.
All the semantics defined in [38] can be reconstructed within the framework proposed
in [28]. The main issue however is the definition of some new semantics and the inves-
tigation of their relation, in terms of correctness and full abstraction, wrt the program
equivalences induced by various observable properties.

Some of the semantics considered in [28] are the generalization to the CLP case of
the non-ground semantics for (positive) logic programs in [26] and of the compositional
semantics in [8]. Indeed, most semantic constructions and results lift directly from logic
programming to CLP. Moving to a non-ground semantics is even more natural in the
case of CLP, since the computation structure may not even include constants so that
there might be no “ground” objects.

In particular, [28] first defines a fully abstract semantics which characterizes com-
puted answer constraints for constraint logic programs and then a semantics which mod-
els answer constraints and which is compositional wrt programs union. Such a semantics
is the natural extension of the previous one obtained by using a semantic domain based
on clauses.

Since the compositional semantics contains the “maximum” amount of information
on computations, it can also be used to model other non-standard observable properties.
Indeed suitable abstractions of this compositional semantics allow us to obtain a correct
(in one case fully abstract) semantics for partial answer constraints and call patterns for
constraint logic programs.

The definitions of the semantics are mainly interesting for their applications. Thus,
the answer constraint semantics can be taken as the basis of a correct notion of pro-
gram equivalence to be preserved by program transformation techniques. Suitable ab-
stract versions of the immediate consequence operators introduced in [28] can be used
for bottom-up abstract interpretation (i.e. fixpoint computation of the abstract model).
More interestingly, the compositional semantics was used in [24] to develop a frame-
work for the modular analysis of CLP programs. This is particularly relevant for prac-
tical applications where modularity can help to reduce the size and the complexity of
the analysis. The semantics for partial answers and call patterns was used for the anal-
ysis of constraint logic programs too. For example, informations on partially computed
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constraints can be used to detect “independence” of (sub)goals [21], thus providing the
conditions for optimizations of CLP programs based on AND-parallelism and intelli-
gent backtracking.

8 A Semantic Scheme for Static Program Analysis

Static program analysis aims at determining properties of the behavior of a program
without actually executing it. Static analysis is founded on the theory of abstract inter-
pretation ([18]) for showing the correctness of analysis with respect to a given seman-
tics. Thus, it is essentially a semantic-based technique and different semantic definition
styles lead to different approaches to program analysis. In the field of logic programs
we find two main approaches which correspond to the two main possible constructions
of the semantics: top-down and bottom-up. The main difference between them is related
to goal dependency. In particular, a top-down analysis starts with an abstract goal (see
[10,39]), while the bottom-up approach (see [46,47]) determines an approximation of
the success set which is goal independent. It propagates the information “bottom-up”
as in the computation of the least fixpoint of the immediate consequences operator TP .

Thanks to the equivalence between top-down and bottom-up constructions of the
concrete semantics, by using an approach analogous to that given in Section 4, it is
possible to get a goal independent top-down and bottom-up construction of the abstract
model. This was the leading principle in the development of the framework for bottom-
up abstract interpretation proposed in [3]. An instance of the framework consists in
the specialization of a set of basic abstract operators like abstract unification, abstract
substitution application and abstract union. By means of these abstract operators, [3]
gives a bottom-up definition of an abstract model, i.e. a goal independent approximation
of the concrete denotation. Different instances produce different analysis.

The concrete semantics considered in [3] is the semantics of computed answer substi-
tutions. It is worth noticing that previous attempts [46,47], based on concrete semantics
which do not contain enough information on the program behavior, failed on non-trivial
analysis (like mode analysis). The problem was that they were too abstract to be useful
to capture program properties like variable sharing or ground dependencies.

The ability to determine call patterns was also usually associated to goal dependent
top-down methods. [11,29] showed that the choice of an adequate (concrete) semantics
allows us to determine goal independent information on both partial answer substitu-
tions and call patterns and that this information can be computed both top-down and
bottom-up. This facilitates the analysis of concurrent logic programs (ignoring syn-
chronization) and provides a collecting semantics which characterizes both successes
and call patterns. Many other analysis had been defined based on a “non-ground Tp” se-
mantics like groundness dependency analysis, depth-k analysis, and a “pattern” analysis
to establish most specific generalizations of calls and success sets (see [12]). A simi-
lar methodology has been applied also to CLP programs [36], leading to a framework
where abstraction simply means abstraction of the constraint system.

[14] builds upon the idea in [13] of providing an algebraic characterization of the
observables. [14] extends the approach, by taking two basic semantics: a denotational
semantics and a transition system which define SLD-derivations. In addition, the se-
mantic properties of the observables are expressed as compositionality properties. This
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leads to a more flexible classification of the observables, where it is possible reason
about properties such as OR-compositionality and existence of abstract transition sys-
tems. Using abstract interpretation techniques to model abstraction allows us to state
very simple conditions on the observables which guarantee the validity of several gen-
eral theorems.

The idea is to define the denotational semantics and the transition system for SLD-
derivations in terms of four semantic operators, directly related to the syntactic structure
of the language. The observables are defined as Galois insertions and it is possible to
characterize various classes of observables in terms of simple properties of the Galois
insertion and of the basic semantic operators.

The reconstruction of an existing semantics or the construction of a new semantics
in the framework requires just a few very simple steps.

1. First of all, we define an observable property domain, namely, a set of properties
of derivations with an ordering relation which can be viewed as an approximation
structure. An observation consists of looking at an SLD-derivation and extracting
some property (abstraction). The formalization of the property o we want to model
is a Galois insertion 〈αo, γo〉 between SLD-derivations and the property domain.

2. Once we have an observable o, we want to systematically derive the abstract se-
mantics. The idea is to define the optimal abstract versions of the various semantic
operators and then check under which conditions (on 〈αo, γo〉) we obtain the op-
timal abstract semantics. This will allow us to identify some interesting classes of
observables and to assign the observable property to the right class of observables.

3. Depending on the class, we automatically obtain the new denotational semantics,
transition system, top-down (Oαo(P )) and bottom-up (Fαo(P )) denotations (sim-
ply replacing the concrete semantic operators by their optimal abstract versions),
together with several interesting theorems (equivalence, compositionality w.r.t. the
various syntactic operators, correctness and minimality of the denotations).

Since it is based on standard operational and denotational semantic definitions, the
framework can be adapted to other programming languages.

Finally [14] considers two classes of observables, complete and approximate. For
every complete or approximate observable, the abstract operational semantics and the
abstract denotational semantics are equivalent. This will allow us to define equivalent
top-down and bottom-up analysis algorithms. The above equivalence property requires
the observable to be condensing. Condensing is a compositionality property which tells
that the abstract semantics of a procedure call can be derived (without losing precision)
from the abstract semantics of the procedure declaration. This property is needed in
abstract diagnosis [17,15,16] where the specification is a post-condition describing a
(goal-independent) property of a set of procedure declarations. It is worth noting that
the observables corresponding to the declarative semantics are condensing and that the
declarative semantics do indeed characterize procedure declarations. Note also that sev-
eral observables used in program analysis (for mode, type and groundness analysis)
are also condensing and that a non-condensing observable can systematically be trans-
formed into a (more concrete) condensing observable, by using domain refinement op-
erators (see, for example, how the condensing domain POS , for groundness analysis
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can be derived from the non-condensing domain DEF [50]). The results of the diagno-
sis for approximate observables are also valid for non-condensing domains, which are
sometimes convenient to use in practice for efficiency reasons.

As expected from abstract interpretation theory, the difference between complete
and approximate observables is related to precision. Namely, the abstract semantics co-
incides with the abstraction of the collecting semantics, in the case of complete observ-
ables, while it is just a correct approximation, in the case of approximate observables.
On the other side, approximate observables correspond to noetherian domains. Hence
their abstract semantics is finite, while (in general) it is infinite for complete observ-
ables. The class of complete observables includes the observables (ground instances of)
computed answers and correct answers which allow us to reconstruct the declarative se-
mantics used in declarative debugging, i.e., the least Herbrand model used in [51] and
the least term model (atomic logical consequences or c-semantics) used in [27]. More-
over includes all the observable introduced in Section 3. On the other hand, the class
of approximate observables includes depth(k) [49] and several domains proposed for
type, mode and groundness analysis (for example the domain POS [48] for groundness
analysis).

Note that the AND-compositionality property (i.e., the compositionality with respect
to the conjunction of atoms) of all the semantics defined by this approach, including
their abstract versions, allows us to proceed in a goal independent way since we can
obtain the result for any specific goal G just by executing G in Oα(o)(P ).

9 Conclusions

In the last twenty years, several semantics for logic programs had been developed ac-
cording to an approach which push forward the s-semantics introduced by Moreno
Falaschi, Giorgio Levi, Maurizio Martelli and Catuscia Palamidessi in [26]. The com-
mon aim was that of providing suitable theoretical bases for program analysis of differ-
ent operational behaviors of logic programs. Each semantics captures properties which
can be observed in an SLD-tree and is correct (in some cases fully abstract) wrt an
equivalence relation induced by the considered property. We provided an overview of
these semantics emphasizing their mutual relations and characteristics.
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