


Lecture Notes in Computer Science 6125
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Agostino Dovier Enrico Pontelli (Eds.)

A 25-Year Perspective
on Logic Programming

Achievements of the Italian Association
for Logic Programming, GULP

13



Volume Editors

Agostino Dovier
Università di Udine
Dip. di Matematica e Informatica
Via delle Scienze 206, 33100 Udine, Italy
E-mail: dovier@dimi.uniud.it

Enrico Pontelli
New Mexico State University
Department of Computer Science
P.O. Box 30001, MSC CS, Las Cruces, NM 88003, USA
E-mail: epontell@cs.nmsu.edu

Library of Congress Control Number: 2010929758

CR Subject Classification (1998): D.1.6, F.4.1, F.3, F.4, I.2.3, I.2

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-642-14308-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-14308-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180



Foreword

This book celebrates the 25th anniversary of GULP—the Italian Association for
Logic Programming. Authored by Italian researchers at the leading edge of their
fields, it presents an up-to-date survey of a broad collection of topics in logic
programming, making it a useful reference for both researchers and students.

During its 25-year existence, GULP has organised a wide range of national
and international activities, including both conferences and summer schools. It
has been especially active in supporting and encouraging young researchers, by
providing scholarships for GULP events and awarding distinguished disserta-
tions.

We in the international logic programming community look upon GULP with
a combination of envy, admiration and gratitude. We are pleased to attend its
conferences and summer schools, where we can learn about scientific advances,
catch up with old friends and meet young students. It is an honour for me to
acknowledge our appreciation to GULP for its outstanding contributions to our
field and to express our best wishes for its continuing prosperity in the future.

March 2010 Robert Kowalski
Imperial College London



Preface

On June 18, 1985, a group of pioneering researchers, including representatives
from industry, national research labs, and academia, attended the constituent
assembly of the Group of researchers and Users of Logic Programming (GULP)
association. That was the starting point of a long adventure in science, that
we are still experiencing 25 years later.1 This volume celebrates this important
event.

What about the editors of this volume? On that date, one of us was complet-
ing his secondary school studies, the other his mandatory military service. But
only one year later, the two of us met in the introductory class of the computer
science program at the University of Udine, and that was the beginning of a logic
programming experience that spans the majority of our careers in academia.

With excitement, humbleness, and profound honor, and after a formal nom-
ination as editors from the GULP assembly (during the CILC’08 meeting), we
embarked upon the mission of developing this volume. The purpose of this ef-
fort is to celebrate an important milestone in the world of logic programming,
the 25th anniversary of GULP. GULP is the oldest formal logic programming
association (the international Association for Logic Programming, for example,
was established in 1986), and, over the last 25 years, GULP has promoted re-
search activities whose results and directions are at the core of the whole logic
programming world.

Summarizing 25 years of research on logic programming in a single volume is a
daunting and perhaps impossible task. We were forced to make difficult decisions
in selecting the topical areas of logic programming to be analyzed in the various
chapters; this task was particularly complex, due to the diversity of the research
initiatives in logic programming that have developed over the years in Italy. In
the end, we decided to concentrate on those areas that, historically, have been
at the core of logic programming research in Italy; we wish to apologize to those
researchers whose areas have been excluded from this volume.

Each chapter of this volume has been co-authored by several researchers.
In particular, we have attempted to create a balance between historical de-
velopments and current state of the art by pairing, in each chapter, younger
researchers with more established leaders in the field (but we will not explicitly
identify who is who...). The response from the logic programming community to
our invitations to author chapters was overwhelmingly positive; 35 researchers
enthusiastically accepted to participate in this initiative. The effort resulted in
14 chapters, each providing a fresh and useful overview of a different area of logic
programming. Thanks to the hard work of the authors, each chapter represents

1 As a remark, Italy was the reigning football world champion in 1985, as they are
today.



VIII Preface

a great analysis of a specific research field, providing both historical perspectives
as well as a precise discussion of the current state of the art. The authors also
provide an interesting view of how the contributions of Italian researchers have
shaped the field of logic programming over the years.

This volume represents the logical continuation of the volume edited by Maria
I. Sessa in 1995, celebrating the 10th anniversary of GULP. While several of the
chapters address analogous topics (i.e., theoretical foundations, program trans-
formations, non-monotonic reasoning, constraint logic programming, concurrent
logic programming, program verification), other chapters have either been re-
placed, due to the lack of intense research (e.g., metalogic programming) or
expanded into more detailed chapters, to reflect the changes in directions within
the field. For instance, the stable models chapter has evolved into the more
mature answer set programming chapter, and the chapter on applications to
software engineering has evolved into a wider scope applications chapter. We
added other new chapters that represent very active fields, like databases and
web, agents and multi-agent systems, two chapters on extensions of logic pro-
gramming (functional logic programming and higher order programming), and
a seminal paper on research in automated theorem proving.

The organization of this volume follows a structure that highlights what
we perceived to be the historical dependencies among the various areas. These
dependencies are summarized in the graph in Fig.1.

1.
GULP

Historical
Perspectives

2.

Theoretical

Foundations

3.
Automated
Theorem
Proving

13.
Functional

Logic
Programming

7.
Static Analysis

and
Verification

6.

Program

Transformation

5.
Non

Monotonic
Reasoning

4.
Constraint

Logic
Programming

12.
Higher
Order

Extensions

11.
Concurrent
Constraint

Programming

8.
Answer

Set
Programming

9.
Databases

and
Web

10.
Agents

Multiagents
Systems

14.
Applications

of Logic
Programming

Fig. 1. The GULP tree and book structure

The volume opens with an historical perspective of the first 25 years of the
association, written by the current GULP president, Gianfranco Rossi. Gian-
franco has witnessed the evolution of GULP since its inception, and he reports a



Preface IX

detailed history of the GULP association in his chapter. He also provides a per-
sonal view of the directions to be followed by GULP to avoid past mistakes and
expand the success of logic programming in Italy, especially in terms of impact
on the industrial world.

The roots of logic programming research in Italy can be traced back to the
research efforts in the areas of automated theorem proving and theoretical com-
puter science (e.g., programming languages semantics). Indeed, looking back at
the areas of the various contributions reported in the first volumes of the proceed-
ings of GULP, one can note how semantical foundations and theorem proving
are at the backbone of many of the reported contributions. The editors decided
to open the research overview of this volume with two chapters dedicated to
these two foundational areas. These are identified at the top of the graph and
reported in Chaps. 2 and 3.

A reason for the great initial success of logic programming was undoubtedly
the elegance of its semantics. The set of ground atoms that can be inferred from
a program P , using SLD resolution (operational semantics), can be proved to
be equivalent to the minimum Herbrand model of P (logical semantics) and, in
turn, equivalent to the least fixpoint of a continuous operator dependent on P
(declarative semantics). Chapter 2, developed by Annalisa Bossi and Chiara Meo,
gives an overview of the original roots of research in the theoretical foundations
of logic programming. Work in this area was spearheaded by the group of Giorgio
Levi (first president of GULP) and his colleagues in Pisa and Torino, and was
instrumental in placing Italian logic programming research on the international
map.

The clear ties of logic programming, since its inception, with mathematical
logic and theorem proving, have provided ample opportunities for research in
automated theorem, laying the foundations to the growth of logic programming.
In particular, the completeness proof of SLD resolution as an inference method
for first-order theories given as sets of definite clauses, and the Turing com-
pleteness of this fragment of first-order logic, are probably the two fundamental
contributions of automated reasoning that allowed Kowalski to write the seminal
contribution Predicate Logic as Programming Language. Chapter 3, developed
by Andrea Formisano and Eugenio G. Omodeo revisits the original work in the
area of theorem proving, highlighting the ties to logic programming.

A combination of the studies in theorem proving (based on theory-based
resolution), and on a generalization of the semantics of logic programming (to
the case of non-Herbrand domains) offers the foundations on which the area of
constraint logic programming developed. Constraint logic programming enabled
the first step towards enhancing the declarative nature of logic programming,
often lost in the use of Prolog, and at the same time gaining a level of efficiency
required by industrial-strength applications. The combination of declarativeness
of logic programming and of efficiency of solvers in suitable theories allows one
to solve efficiently real-life problems without the need of writing low-level code.
A nice survey of this area is presented in Chap. 4, developed by Marco Gavanelli
and Francesca Rossi.



X Preface

The field of constraint logic programming, thanks also to the intense work
conducted in the context of the Fifth Generation Computer Systems project, has
evolved to create a revolutionary paradigm that combines logic programming,
constraint programming, and concurrency; the challenging issues of concurrent
constraint programming are reviewed in Chap. 11, written by Maurizio Gab-
brielli, Catuscia Palamidessi, and Frank Valencia.

The original developments on the semantics of logic programming quickly
moved towards the investigation of variants of the logic programming paradigm
where the traditional elegant properties of logic programming semantics (e.g.,
uniqueness of the least Herbrand model) fail. This is particularly true in the case
of extensions of logic programming developed to handle non-monotonicity, which
are vital to the task of knowledge representation and commonsense reasoning.
This volume dedicates two related chapters to the investigation of these aspects.
The first is Chap. 5, by Laura Giordano and Francesca Toni, which explores the
role of logic programming in the area of non-monotonic reasoning and knowledge
representation. While techniques for non-monotonic reasoning moved originally
in different directions, in recent years the field has witnessed a convergence
of effort towards the use of stable model semantics proposed by Gelfond and
Lifschitz. The embedding of stable model semantics in a concrete programming
paradigm, originated from the concurrent work of Marek, Truszczyński, and
Niemelä, led to what is now known as answer set programming. The field is
now at the core of logic programming, thanks also to the development of highly
competitive solvers. This area is surveyed in Chap. 8, by Piero Bonatti, Francesco
Calimeri, Nicola Leone, and Francesco Ricca.

The field of logic-based intelligent agents also traces back its foundations
to the area of logic programming and non-monotonic reasoning; this field has
matured over the years and Italian research in this domain has gained reputation
within the larger umbrella of the international artificial intelligence community.
Chapter 10, by Matteo Baldoni, Andrea Omicini, Cristina Baroglio, Viviana
Mascardi, and Paolo Torroni, provides an exciting review of work on logic-based
methodologies for intelligent agents and multi-agent systems.

The foundations of non-monotonic reasoning have also been deeply tied with
two other areas that have witnessed intense research with the support of GULP—
databases and intelligent agents. The field of databases has been present at
GULP since its beginning; work in the area of deductive databases has offered
significant contributions not only to the database community, but also to the
development of the foundations of modern logic programming (e.g., the work on
DATALOG¬ contributed to answer set programming). Chapter 9, by Francesca
Lisi and Sergio Greco, provides an overview of logic programming work in the
area of databases and the web.

The work on semantics of logic programming has traditionally provided the
foundations for enhancing the understanding of programs; this is essential in
order to develop techniques for program transformation, to gain efficiency, and
program verification, to guarantee correctness. These two aspects are analyzed
in Chap. 6, by Alberto Pettorossi, Maurizio Proietti, and Valerio Senni—which



Preface XI

covers the area of program transformations—and Chap. 7, by Giogio Delzanno,
Roberto Giacobazzi, and Francesco Ranzato—which provides an overview of
research in the areas of static analysis, abstract interpretation, and program
verification.

From an automated reasoning point of view, traditional logic programming
is just one particular instance of automated deduction with a given first-order
language (with definite clauses) and with a particular proof engine (SLD resolu-
tion). One can enlarge this schema in several directions, for instance working on
the proof structure (e.g., uniform proofs) or admitting higher-order predicates.
This area is surveyed in Chap. 12, by Alberto Momigliano and Mario Ornaghi.

The overall area of declarative approaches to programming includes several
other paradigms beyond logic programming. In particular, functional program-
ming provides a number of features that are absent in logic programming and
that are convenient in many programming tasks. The area of functional logic pro-
gramming investigates attempts to combine logic programming and functional
programming within a single paradigm, which provides the benefits of both logic
programming (e.g., search, non-determinism) and functional programming (e.g.,
higher order constructs). The role of Italian research in functional logic program-
ming has been predominant since its inception, and it is summarized in Chap.
13, by Maria Alpuente, Demis Ballis, and Moreno Falaschi.

Last but not least, Chap. 14, by Alessandro Dal Palù and Paolo Torroni,
reviews in detail the main applications of logic programming developed in Italy
and/or by Italian researchers in the last 25 years. This chapter represents an
ideal closure to this volume—there is wide agreement that the continued suc-
cess of the field of logic programming vitally depends on investigating the use of
logic programming technology to solve concrete real-world problems. The chap-
ter nicely illustrates successful work done and potential directions for future
developments.

In closing this introduction, the editors would like to take the opportunity
to extend their heartfelt thanks to a number of people who made this effort
possible:
• The authors of the chapters, who have tirelessly worked on creating compre-

hensive overviews of research directions that have developed over 25 years of
logic programming (most of them also acted as reviewers of other chapters):

Maria Alpuente Matteo Baldoni Demis Ballis
Cristina Baroglio Piero Bonatti Annalisa Bossi
Francesco Calimeri Alessandro Dal Palù Giogio Delzanno
Moreno Falaschi Andrea Formisano Maurizio Gabbrielli
Marco Gavanelli Roberto Giacobazzi Laura Giordano
Sergio Greco Nicola Leone Francesca Lisi
Viviana Mascardi Chiara Meo Alberto Momigliano
Andrea Omicini Eugenio G. Omodeo Mario Ornaghi
Catuscia Palamidessi Alberto Pettorossi Maurizio Proietti



XII Preface

Francesco Ranzato Francesco Ricca Francesca Rossi
Gianfranco Rossi Valerio Senni Francesca Toni
Paolo Torroni Frank Valencia

• The additional reviewers who provided insightful comments on the various
chapters under very strict time constraints:

Sergio Antoy Nicoletta Cocco
Sandro Etalle Camillo Fiorentini
Roberta Gori Evelina Lamma
Michela Milano Alessandra Mileo
Angelo Montanari Carla Piazza
Germán Vidal Alicia Villanueva Garćıa

• The Italian logic programming community and GULP, who have created in
Italy a nurturing environment for countless young researchers to embrace and
appreciate the beauty of logic programming. Personally, the editors would
not have been coordinating this volume without the friendship and advice
of Gianfranco Rossi and Eugenio Omodeo, who originally introduced us to
logic programming.

• Bob Kowalski for his foreword and for what has done and is still doing for
the logic programming community.

Finally, we would like to send a “thank you” to all those we love in this and
other worlds.

March 2010 Agostino Dovier
Enrico Pontelli



Table of Contents

Twenty-Five Years of Logic Programming in Italy

Chapter 1: Logic Programming in Italy: A Historical Perspective . . . . . . . 1
Gianfranco Rossi

Chapter 2: Theoretical Foundations and Semantics of Logic
Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Annalisa Bossi and Maria Chiara Meo

Chapter 3: Theory-Specific Automated Reasoning . . . . . . . . . . . . . . . . . . . . 37
Andrea Formisano and Eugenio G. Omodeo

Chapter 4: Constraint Logic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Marco Gavanelli and Francesca Rossi

Chapter 5: Knowledge Representation and Non-monotonic Reasoning . . . 87
Laura Giordano and Francesca Toni

Chapter 6: The Transformational Approach to Program Development . . . 112
Alberto Pettorossi, Maurizio Proietti, and Valerio Senni

Chapter 7: Static Analysis, Abstract Interpretation and Verification in
(Constraint Logic) Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Giorgio Delzanno, Roberto Giacobazzi, and Francesco Ranzato

Chapter 8: Answer Set Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Piero Bonatti, Francesco Calimeri, Nicola Leone, and
Francesco Ricca

Chapter 9: Logic Programming Languages for Databases and the
Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Sergio Greco and Francesca A. Lisi

Chapter 10: Agents, Multi-Agent Systems and Declarative
Programming: What, When, Where, Why, Who, How? . . . . . . . . . . . . . . . 204

Matteo Baldoni, Cristina Baroglio, Viviana Mascardi,
Andrea Omicini, and Paolo Torroni

Chapter 11: Concurrent and Reactive Constraint Programming . . . . . . . . 231
Maurizio Gabbrielli, Catuscia Palamidessi, and Frank D. Valencia

Chapter 12: Proof-Theoretic and Higher-Order Extensions of Logic
Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

Alberto Momigliano and Mario Ornaghi



XIV Table of Contents

Chapter 13: Transformation and Debugging of Functional Logic
Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

Maria Alpuente, Demis Ballis, and Moreno Falaschi

Chapter 14: 25 Years of Applications of Logic Programming in Italy . . . . 300
Alessandro Dal Palù and Paolo Torroni

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329



Logic Programming in Italy:

A Historical Perspective

Gianfranco Rossi

Dipartimento di Matematica, Università di Parma
gianfranco.rossi@unipr.it

Abstract. The history of Logic Programming in Italy is largely that of
GULP, the Italian Association of Users and Researchers in Logic Pro-
gramming. This paper provides a historical perspective on the birth and
development of GULP in the last 25 years. The paper is mainly con-
cerned with what has been done in Italy, but it also points out the
many relationships and synergies that emerged—and still exist—in the
field of Logic Programming, between Italy and other countries all over
the world. I identify three main periods in the history of GULP, which
closely correspond to different seasons in the history of Logic Program-
ming in general, and I try to characterize them in terms of activities the
GULP supported and of the achievements obtained by its members.

1 Introduction

The history of Logic Programming (LP) in Italy is largely that of GULP, the
Italian Group of Users and researchers in LP.

GULP was founded 25 years ago (1985) as a non-profit organization. It was
the first national LP association to be established in the world. Since its very
beginning, GULP has been constantly committed to keep the interest in LP and
related themes alive by promoting various initiatives both in research and in
education. Its main role—in my opinion—has been to provide an opportunity
for young researchers to be introduced into an active and challenging research
area in a very informal and friendly way.

LP in Italy, and its representative association GULP, have gone through sev-
eral phases in the last 25 years. For the sake of the presentation, I will group
these phases in three main periods:

– The Early Years, approximately 1984—1993
– The APPIA-GULP-PRODE Years, approximately 1994—2003
– The CILC Years, approximately 2004—2010.

It turns out that these periods closely correspond to different seasons in the
history of LP in general.

This paper shows how the original activities of GULP has evolved in the last
25 years, mainly with reference to what has been done in Italy but with a wider,
world-wide perspective in mind. To this end, I will try to point out relationships

A. Dovier, E. Pontelli (Eds.): 25 Years of Logic Programming, LNCS 6125, pp. 1–14, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 G. Rossi

and synergies that have been established between Italian researchers in LP and
the rest of the world. Needless to say, I will try to highlight not only positive but
also negative aspects in the history of LP in general and particularly in Italy.

I will conclude by stressing that LP in Italy is still alive and there are many
people who still believe in it, although it seems necessary to radically change the
way of presenting LP and the LP community to the outside world.

2 The Early Years (ca. 1984—1993)

The idea of creating an association of Prolog users took place during a work-
shop organized by Luigi Marcolungo and other colleagues from the University of
Padua in November 1984. The constituent assembly of GULP was held in Pisa
on June 18th, 1985 (see Appendix A.4 for the first executive committee). This
is the official starting date, that is widely accepted as the starting point for the
history of LP in Italy.

Actually, various Italian researchers were interested in LP well before this
date. In particular, as long ago as 1974, Enrico Pagello and some young col-
leagues from Milan and Padua installed a Prolog interpreter on their computers
at Politecnico of Milan and at the University of Padua, using it for their appli-
cations in robotics (see also the paper by Dal Palù and Torroni in this volume).
On the more theoretical side, various researchers from Pisa were already inves-
tigating Prolog programming in the seventies (e.g., [1]).

In the first year, GULP had more than 160 members. The interest in LP,
from both the academic and the industrial sides, was constantly growing in Italy
and around the world. Since 1986, GULP started to organize an annual national
conference on LP (see Appendix A.1). These conferences represented—and still
represent—the main occasion for all people (researchers, users, and developers)
dealing with LP in Italy to meet and to exchange ideas and experiences.

Main topics of interests in LP in Italy in those years were:

– Transformation of logic programs (including partial evaluation)
– Metalogic programming
– Semantics of logic programs
– Non-monotonic reasoning
– Constraint Logic Programming
– Concurrent Logic Programming
– Program modularity and object-oriented in Prolog.

Italian contributions on all such topics were at the highest international level, as
testified by the many contributions presented at LP international conferences and
workshops between the 80s and the early 90s. Many connections with researchers
all over the world were established in that period. To cite only a few of them, in
strict alphabetic order: Maria Alpuente, Krzysztof Apt, Michael Codish,
PhilippeCodognet, FrankdeBoer,GeorgGottlob,Manuel Hermenegildo,PatHill,
Antonis Kakas, Bob Kowalski, Michael Maher, Germán Vidal, Carlo Zaniolo. All
of them, and, of course, many others that I did not mention, had (and, in many
cases, still have) strict collaborations with Italian researchers in LP.



Logic Programming in Italy: A Historical Perspective 3

A detailed report of the huge amount of work put forward in those years can
be found in the book on ten years of Logic Programming in Italy, edited by
Maria Sessa [8]. Developments on these and other topics are also discussed in
more details in other companion papers in this volume.

Many universities and many centers of the National Research Council (CNR)
were involved in these first years of LP in Italy. Among them, the University
of Bologna, Calabria, Genoa, Padua, Pisa, Rome, Turin, and Udine and CNR
centers of Genoa, Pisa, and Rome were the most active. The Pisa group, however,
spurred by the restless efforts of Giorgio Levi, surely was the leading group in
LP in Italy in those years.

Significant interests in LP came also from industries. Major Italian compa-
nies such as CSELT, DATAMONT, Digital, ELSAG, Enidata, and Olivetti were
involved at some extent in research and development of LP. Also smaller com-
panies, such as DS-Logics, ICON, and Systems and Management, widely used
LP to develop concrete applications, in different fields. But also many other
companies were interested in LP, even if not as a main tool. Looking at the
list of participants at the constituent assembly of GULP in 1985, we can easily
realize that almost half of the participants came from industries (see Appendix
A.4). The interest of Italian companies in LP is also well testified by the many
contributions presented at the first GULP conferences.

In the meantime, the LP paradigm was spreading around the world. These
were the fabled heydays of LP with over 300 attendants at ICLP conferences.
This was also the era of the Fifth Generation Computer Systems (FGCS) project,
which launched the idea of (concurrent) logic programming as the key program-
ming language of next generation computer systems. The project was launched
in April 1982 with the opening of ICOT. The second FGCS conference held in
Japan in 1984 was a very big event. The multi-billion yen budget of the FCGS
project was carrying the LP field out of its narrow boundaries of the early days
(see [4]).

Competing projects were set up in the U.S.A. and in Europe, such as the Eu-
ropean Strategic Program of Research in Information Technology (ESPRIT). In
1984 ECRC (European Computer Industry Research Centre) was also founded in
Munich, on the initiative of three major European manufacturers: Bull (France),
ICL (UK), and Siemens (Germany). (Constraint) Logic Programming was one
of the main research topics of ECRC since its foundations [5].

In Italy, a number of national projects, mostly founded by the Ministry of
Education and by CNR, were devoted to LP and LP-related topics. Among
them:

– “Languages and architectures for functional and logic programming”, 1984–
1987

– “Software Architectures for Intelligent Systems”, 1985–1987
– “Automatic reasoning techniques in Intelligent Systems”, 1987–1989
– “Intelligent Systems”, 1990–1992
– “New Programming Languages”, sub-project of the CNR project “Sistemi

Informatici e Calcolo Parallelo”, 1989—1994.



4 G. Rossi

In particular, the last project involved, besides many universities, also a number
of CNR research centers and Italian industries, such as DS-Logics, ICON, Ital-
data, and led to the development of some interesting applications using the LP
paradigm. The main results of the project are summarized in [3].

Italian researchers were involved also in international projects focusing on LP.
In particular, the ESPRIT project ALPES (P973) “Advanced Logic Program-
ming Environments” started in June 1986 (actually preceded by a preliminary
phase started in 1984). The objective of the project was to build the prototype
of a high-level programming environment for logic programming and the Prolog
language in particular. The consortium was formed of six partners, among which
the Italian Software company Enidata, and five sub-contractors, including the
Universities of Rome and Bologna, and an Institute of CNR in Rome.

An important event for the LP community in Europe, and in particular in
Italy, was the launch, at the end of the 80s, of the ESPRIT Basic Research
Action Compulog (3012) “Computational Logic”, followed in years 1992—1995
by the Project Compulog 2 (6810). Furthermore, as a complement to the activity
of the Compulog Project, in 1990 Bob Kowalski launched the idea of a Network
of Excellence in the field of computational logic. Compulog Net officially started
on April 15th, 1991. Luigia Carlucci Aiello, from the University of Rome, was
appointed network coordinator and Consorzio Roma Ricerche began to take
care of the coordination and administration of Compulog Net. The scientific
objective of Compulog Net was to lay the foundations for an integrated software
development environment for building knowledge-rich applications by extending
the logic programming paradigm.

Each node in the network represented an institute, research laboratory or
company active in the area of computational logic. The number of nodes in the
network was initially 17 but after a few years the network consisted of more than
80 nodes.

The network had its First General Meeting in Rome in May 1991, jointly with
a workshop of the Compulog I Project. In August 1994, the Italian nodes of the
network were:

– IRST (“Istituto per la Ricerca Scientifica e Tecnologia”), Trento
– Università di Bologna
– Università di Genova
– Università di Milano
– Università di Padova
– Università di Pisa
– Università di Roma La Sapienza
– Università di Roma Tor Vergata
– Università di Torino.

In particular, the University of Pisa was the coordinating node of one of the
five main research areas initially chosen for the network, namely Programming
Languages. The first and second Compulog Net area meeting on Programming
Languages were held in Pisa in April 1992 and May 1993, respectively.



Logic Programming in Italy: A Historical Perspective 5

A personal memory to conclude this section. At the beginning of the 90s, I
met Eugenio Omodeo in Udine. From the synergy of his expertise in computable
set theory and my skills in LP, and with the invaluable insight of two young (at
that time :-) ) students of the University of Udine–namely, Agostino Dovier and
Enrico Pontelli–we concretized our idea of Logic Programming with Sets, which
has been the leitmotiv of my research activity in the last fifteen years and one
of the many research topics connected with LP.

3 The APPIA-GULP-PRODE Years (ca. 1994—2003)

The beginning of the 90s represents the period of maximum glory of LP in the
world.

Besides the already well-established International Conference on LP (ICLP)
and International Symposium on LP (ILPS), along with their joint editions
(JICSLP), a number of new international conferences and workshops started
in that period. Among them:

– PLILP - Int. Symposium on Programming Language Implementation and
LP

– WELP - Int. Workshop on Extensions of Logic Programming
– PAP - Int. Conf. on the Practical Application of Prolog
– LOPSTR - Int. Workshop on Logic-based Program Synthesis and Transfor-

mation
– META - Workshop on Meta-Programming in Logic
– LP & NMR - Int. Workshop on LP and Non-Monotonic Reasoning
– LPAR - Int. Conf. on LP and Automated Reasoning
– CCL - Int. Conf. on Constraints in Computational Logic
– ILP - Int. Workshop on Inductive LP.

Moreover, various international schools were specifically devoted to LP, or they
mentioned LP as a central topic of interest. In September 1992, Compulog Net
supported a summer school on LP in Zurich (Switzerland), organized by Gerard
Comyn (ECRC) and Norbert E. Fuchs (University of Zurich). The ESSLLI Sum-
mer School in Logic Language and Information was organized each year since
1989. Also, more general schools, such as the Int. School for Computer Science
Researchers, organized each year by Alfredo Ferro (Università di Catania) and
other colleagues on the island of Lipari (Italy) under the auspices of the Euro-
pean Association for Computer Science Logic (EACSL), saw a growing number
of lectures devoted to LP.

Attention to applications and to the industrial transfer was very high in those
years. In 1993 “Prolog 1000”, a catalogue of Prolog applications edited by Chris
D. S. Moss at Imperial College, contained about 500 entries. A first summary of
the catalogue appeared in ALP Newsletter Vol. 6/2, February 1993, pages 3—7.
Conferences such as “Prolog for Industry” and “INAP - Symp. and Exibition on
Industrial Applications of Prolog”, served to provide industrial attendees with
examples of applications of LP in several industrial areas.



6 G. Rossi

1994 is also the year of ICLP for the first time in Italy. The main LP Con-
ference was organized by Maurizio Martelli in the magnificent surroundings of
Genoa (Santa Margherita Ligure) in June 1994. In those years other important
LP related events took place in Italy. Among them:

– WELP’92 - 3rd Int. Workshop on Extensions of Logic Programming, Bologna,
1992, organized by Evelina Lamma and Paola Mello

– ALP’92 - 3rd Int. Conf. on Algebraic and LP, Pisa, 1992, organized by Gior-
gio Levi and Helene Kirchner

– WSA’93 - 3rd Int. Workshop on Static Analysis, Padova, 1993, organized by
Gilberto Filè.

The number of members (full, students, honorary) of the Association for Logic
Programming (ALP) in June 1994 was quite high: 488. Many of them were also
organized in local associations affiliated to ALP. In 1994 the affiliated societies
were:

– AFCET (France) with 105 members
– ALP-UK (United Kingdom) with 131 members
– GLP (Austria, Germany, Switzerland) with 93 members
– GULP (Italy) with 113 members.

Furthermore, other related associations and special interest groups in Europe
were more and more involved in LP. Many of their members had strong col-
laborations with members of GULP. Thus in 1993 the GULP executive com-
mittee decided to organize the next annual conference jointly with the Spanish
conference on Declarative Programming PRODE (“Programación Declarativa”).
The first joint conference on Declarative Programming GULP-PRODE’94 was
held in Peñiscola (Spain) in 1994. Two years later, the conference was enlarged
to another very active community in Europe, that of the Portuguese Associa-
tion for Artificial Intelligence APPIA (“Associao Portuguesa para a Inteligência
Artificial”) founded in 1984 in Portugal. From 1996 to 2003, for eight years,
the three communities met together at least once a year, alternatively in Italy,
Portugal and Spain. A complete list of the GULP-PRODE and APPIA-GULP-
PRODE Conferences is reported in Appendix A.1.

In the meantime, Compulog Net was fully operational. The interest in the
network activity soon attracted new leading centers in addition to the initial
ones: the number of nodes in the network quickly grew to over 80 units, involving
several hundred members from more than 20 countries. In addition to Luigia
Carlucci Aiello, the executive council of Compulog Net now included other two
Italian representatives, Giorgio Levi and Paola Mello from the Universities of
Pisa and Bologna, respectively.

On the other side of the Atlantic Ocean, at the end of 1996 the idea of Com-
pulog Americas took shape, an organization of logic programming researchers in
North America (but hoping to involve researchers from both North and South
Americas as well). It was explicitly modelled after Compulog Europe from which
it drew much of its inspiration. The activities of Compulog Americas were orga-
nized within several sub-areas, each with an area-coordinator. The initial chief
coordinators of Compulog Americas were Gopal Gupta and I.V. Ramakrishnan.



Logic Programming in Italy: A Historical Perspective 7

Despite the growing number of initiatives concerning LP and the availability
of more and more efficient implementations of Prolog, however, the interest for
LP by the industrial world was progressively but inexorably decreasing. Prolog-
based applications hardly were able to become real products.

This negative trend is particularly evident in Italy. Looking at the list of
participants to the ICLP Conference in Genoa in 1994 it is evident that the
industrial participation is almost absent. The same is true for GULP conferences:
since the second half of the 90s, participants came only from universities and
public research centers. More generally, participation of people from industries
to the activities of GULP completely disappeared in those years. One at a time,
industries were abandoning investments in LP.

The reasons for such a disappointing result were partly connected to the
specific Italian weakness in advanced industrial research in those years (and,
unfortunately, also nowadays), but they were surely connected with also more
general world wide issues.

One reason for this is the general disappointment resulting from the perceived
failure of the Japanese FGCS Project. It is widely accepted that the FGCS
Project did not meet the expected success, though the discussion on this topic
lasted long (see [4] for an account on results and possible developments of the
Project). Since in the mind of many people LP was synonymous with the FGCS
Project, LP was (and, unfortunately, often still is) perceived by many people as
an experiment that was tried in the 80s and that did not work.

As a direct consequence, during the 90s, most industries stopped funding LP
based research projects, and the research momentum developed by the FGCS
Project disappeared.

Another phenomenon that occurred in that period is the birth, or simply
the strengthening, of new associations and groups in neighboring areas, such
as constraint programming, inductive logic programming, deductive databases,
static analysis, knowledge representation. This caused a progressive migration
of many researchers born and raised in the area of LP to these related areas, in
which they still continued to use their background in LP but without considering
themselves part of the LP community.

In Italy this is particularly true for the neighboring associations of Artificial
Intelligence AI*IA (“Associazione Italiana per l’Intelligenza Artificiale”) and the
European Association for Theoretical Computer Science (EATCS). Many former
GULP members moved to these associations and definitively abandoned GULP.

As a tangible result of this declining interest in LP, in particular in Italy, from
the 60 papers presented at the GULP-PRODE Conference in Peñiscola in 1994
(with almost half by Italian authors) we arrived to only 20 papers presented at
the APPIA-GULP-PRODE Conference in Madrid in 2002 (with only 7 Italian
authors).

There are several articles and discussions about lights and shadows of LP
in the literature and on the Web (see, e.g., [7] for Kowalski’s personal opinion
on why “LP has not made the impact in Computing that many of us once
expected”). An analysis of the possible reasons for the lack of success of the LP



8 G. Rossi

paradigm and the subsequent loss of interest in it, especially from industries, is
out of the scope of this paper. What I want to stress here is that this negative
trend that characterized the history of LP in the world since the beginning of the
90s, characterized the history of LP in Italy and of its representative association
GULP, as well.

Despite the widespread feeling of something not working in the right way,
several efforts have been put forward in the second half of the 90s, both in the
field of LP training and in research projects connected with LP.

From 1996 to 2002 GULP organized four very successful summer schools on
LP in Sardinia and Calabria (see Appendix A.2). Italian researchers in LP still
continued to propose national projects dealing, more or less explicitly, with LP.
Among them:

– CNR special project “Logic Programming Languages” (coordinator M. Mar-
telli), 1996–1997

– CNR coordinated project on “Logic Programming: program analysis and
transformation tools, software engineering techniques, extensions with con-
straints, concurrency and objects” (coordinator M. Martelli), 1997–1998

– GNIM (“Gruppo Nazionale per l’Informatica Matematica”) project “New
computation paradigms: languages and models” (coordinator E. Omodeo),
1999–2000.

To the end of the 90s, however, the age of projects focusing on LP came at the
end. The involvement of LP was rather on the inside of more general projects,
where LP could play an important but, anyway, accessory role. One of them, to
which I personally participated, is the M.U.R.S.T. Co-financed project “Auto-
matic ProgramCertification by Abstract Interpretation”, coordinated by Roberto
Giacobazzi (1999—2001).

All these projects, however, involved only people from universities and CNR
centers. At the end of the 90s, Italian industries had completely stopped to invest
in LP research and development projects.

On the international side, an important achievement for the LP community
was the opening of the new ACM journal “Transactions on Computational Logic
(TOCL)”, founded by K. Apt in 2000. Actually, as explicitly stated in the journal
aims, TOCL is devoted to the research concerned with all the uses of logic in
computer science; LP is one of the areas. This widening of horizons, from LP to
the more general area of Computational Logic (CL), is a trend that characterizes
the history of LP in Italy, as well as in the rest of the world, from the half of the
90s to nowadays.

A further example of this enlarged view of LP is the foundation of the Network
of Excellence in Computational Logic CologNet. The network started in January
2002 and officially terminated in June 2005. It was an European-funded Network
of Excellence which was intended to continue the role played by the Compulog
Net network (ended in 2001). It published also an on-line newsletter which is
still available at http://newsletter.colognet.org/.

Various Italian research centers participated in the network. In particular
Francesca Rossi at the University of Padua coordinated the Constraint Logic

http://newsletter.colognet.org/


Logic Programming in Italy: A Historical Perspective 9

Programming site, while Enrico Franconi at the University of Bozen coordinated
CologNet nodes working in Logic and Natural Logic Processing.

With the scientific sponsorship of CologNet and of many other European
associations, since 2004 the University of Bozen offered (and still is offering)
the European Masters Program in Computational Logic (EMCL). EMCL is an
international distributed Master of Science course, in cooperation with Technis-
che Universität Dresden, (Germany), Universidade Nova de Lisboa (Portugal),
Technische Universität Wien (Austria), and Universidad Politécnica de Madrid
(Spain).

4 The CILC Years (ca. 2004—2010)

As mentioned above, at the end of the 90s many LP researchers realized that
it was absolutely necessary to widen their horizons, thinking LP not only per
se but mainly as a key tool to understand problems and to support solutions in
relation to other disciplines. Reporting on his period as the president of the ALP,
Krzysztof Apt wrote in the ALP Newsletter issue of February 2001 “My main
objective was to make logic programming more known outside of our own circle
and to ‘connect’ it better with other areas of computer science. Fortunately, as
it turned out, several of my colleagues independently shared this objective, as
well . . . ”.

In an attempt to meet this requirement, the GULP executive committee, in
a meeting held in Venice in December 2003, decided to reorganize its annual
conference. The conference changed its name to “Convegno Italiano di Logica
Computazionale” (CILC), i.e., Italian Congress of Computational Logic, to open
it to a larger audience. Moreover, in order to attract young people, the costs of
participation were drastically cut down. Thus, the GULP annual conference
moved towards a lighter organization and (unfortunately) we had to return to
a national dimension, interrupting our collaboration with APPIA and PRODE.
The list of CILC conferences held from 2004 to nowadays is shown in Appendix
A.1.

In the meantime, new topics of interest for the LP community emerged, most
of which were on the boundary with related disciplines, such as Artificial Intel-
ligence and Deductive Databases. Among them I can mention:

– Multi-Agents systems
– Semantic Web
– Answer Set Programming
– Knowledge discovery and learning
– Static analysis
– Model checking
– Knowledge representation and automated reasoning
– Computational biology.

All of them were included in the topics of interest of CILC. This was in ac-
cordance with the new philosophy of GULP to enlarge its scope as much as
possible.



10 G. Rossi

Most of these topics represented, and still represent, important research areas
within the Italian LP community. Consequently, several chapters of this book
are devoted precisely to them.

Since the beginning of the CILC age, the LP community in Italy has been
quite stable. During these years, the GULP association maintained a steady size
of about 60 members, most of which were PhD students and young researchers.
Members were spread over the whole country and abroad (about 30 universities
and research centers are involved at present). The number of people attending
the annual conference has been constantly more than 50, while the number of
submitted papers has varied from 25 to 30. Unfortunately, also the presence
of industries to all activities supported by GULP in the last years has been
constantly very low (actually, almost nothing).

More or less the same situation occurred within the international LP com-
munity. A precise account of the past activities and what is going on in the LP
community can be found in the ALP Newsletter, the official newsletter of ALP
since 1987. The Newsletter is available on-line since May 2001. Sandro Etalle
and, later, Enrico Pontelli have been the editors of the new electronic version
of the Newsletter (by the way, Sandro and Enrico are two of the many Italian
researchers in LP that approached LP within the GULP community and that
now are living and working abroad). From May 2006, the Newsletter contains,
among others, a very interesting column dedicated to presenting personal his-
torical perspectives on the field of LP.

The main LP conference, ICLP, has been regularly held each year, many times
co-located with other related conferences. In December 2008, in particular, it was
held in Udine (Italy), organized by Agostino Dovier. In addition to ICLP, other
conferences continued to be tightly connected with LP, such as the conferences
on “Principles and Practice of Declarative Programming” (PPDP), “Practical
Aspects of Declarative Languages” (PADL), and “Logic Programming and Non-
Monotonic Reasoning” (LPNMR). Many LP contributions, however, have moved
in those years to related conferences in classical neighboring areas such as Ar-
tificial Intelligence, Deductive Databases and Theoretical Computer Science, as
well as in emerging new areas such as Semantic Web and Multi-Agent Systems.

Like in Italy, moreover, it is undeniable that attention to LP from industries
was inexorably decreasing everywhere. These are also the years to reflect upon
the problems (technical, social, . . . ?) that was afflicting the LP community.
The article by Tom Schrijvers “A Wake-Up Call for the Logic Programming
Community”, in the ALP Newsletter vol. 20 n. 3/4, is symptomatic to this
respect. There was (and still there is) even the need to clarify the very notion
of LP, as pointed out in the worried letter by Bob Kowalski entitled “Logic
Programming in Wikipedia - A Call for Help”, in the ALP Newsletter vol. 20
n. 1. The question is far from being closed as the recent article by Carl Hewitt
[6] and the lively discussion that followed its publication (see, e.g., http://
lambda-the-ultimate.org/node/2803) clearly demonstrate.

In the last years, a big effort has been devoted by the LP community all over
the world to teaching LP and, more generally, to form young researchers with

http://lambda-the-ultimate.org/node/2803
http://lambda-the-ultimate.org/node/2803


Logic Programming in Italy: A Historical Perspective 11

a correct LP background. Among the many initiatives that moved along these
lines we can mention the international summer schools in “Constraint and LP”
and in “LP and Computation Logic” that were held in Dallas, Texas (2004) and
in Las Cruces, New Mexico (2008), following the highly successful 1st summer
school in (C)LP held in Las Cruces, in 1999. The schools were especially directed
to Ph.D. students who were just about to start research, post-doctoral students
interested in entering a new area of research, and young researchers.

On the Italian side, an important initiative of GULP were the two editions
of the Best Italian PhD Dissertation Award in Computational Logic that have
been assigned in 2006 and in 2009 (see http://www-lia.deis.unibo.it/gulp/
Burocrazia/PhD-awards.html). Fifteen high quality thesis dealing with com-
putational logic were submitted in the last edition of the award.

As teaching is concerned, an important fact that deserves to be noticed is the
high number of courses dealing with LP in Italian universities. From a survey
conducted by GULP in 2006 by sending a questionnaire by email to the mailing
list of the association, it turned out that over 50 courses (or part of courses) in 20
universities were teaching LP, involving about 1500 students every year. Apart
from a relatively small number of dedicated courses, LP was usually taught
as part of more “classical” courses, such as courses on Artificial Intelligence,
Knowledge representation and reasoning, Programming languages, Theoretical
Computer Science, Logics.

Hence, despite of the little consideration that LP is receiving as a tool for real
world applications, its educational value does not seem questioned.

5 The Future

The training of students and the interaction with other disciplines should be two
major objectives of the LP community for the near future.

The community should emphasize, in every conceivable way, the role that
LP has played, and still can play, in providing methods and tools to support
ideas in related areas. As an example of the feasibility of this cross-fertilization,
a forthcoming special issue of the Theory and Practice of Logic Programming
journal, edited by Letizia Tanca and Giorgio Orsi, will be devoted to “Logic
Programming in Databases: From Datalog to Semantic Web Rules”. As a matter
of fact, many people who were once logic programming researchers have moved
into other areas of computer science and made major impacts.

In my experience, the LP ideas (and Prolog, in particular) played a fundamen-
tal role to open my mind and to stimulate me to face a large number of different
topics. Knowledge representation, unification, search strategies, declarative pro-
gramming, constraints, are all subjects that I met and appreciated through and
thanks to LP.

I have been teaching a course on non-conventional programming languages
for several years and I find Prolog an irreplaceable tool to prove to students
that programming can be faced in a quite different way from what they are
accustomed to. I do not think that Prolog should replace C++ or Java, but I

http://www-lia.deis.unibo.it/gulp/Burocrazia/PhD-awards.html
http://www-lia.deis.unibo.it/gulp/Burocrazia/PhD-awards.html


12 G. Rossi

think that it can be a unique vehicle to better understand programming, as well
as many other problems and related disciplines.

The forthcoming years of LP in Italy will be probably (and hopefully) char-
acterized by as many as possible efforts:

– to develop activities to improve LP teaching and training;
– to promote the participation of young researchers to these activities (e.g.,

through summer schools, incentives for students’ participation to conferences,
etc.);

– to improve the collaboration with other associations of researchers and prac-
titioners in related areas;

– to improve visibility of our association outside of the LP community (e.g.,
through awards and workshops on specific topics of interest).

The opportunity to celebrate the 50 years of LP in Italy greatly depends on the
success of these efforts!

References

1. Aiello, L., Attardi, G., Prini, G.: Towards a More Declarative Programming Style.
In: Neuhold, E.J. (ed.) Formal Descriptions of Programming Concepts, pp. 121–137.
North-Holland, Amsterdam (1978)

2. Apt, K.R., Marek, V.W., Truszczynski, M., Warren, D.S. (eds.): The Logic Program-
ming Paradigm: A 25-Year Perspective, pp. 53–71. Springer, Heidelberg (1999)

3. Filè, G. (ed.): Ambienti per linguaggi di nuova concezione. Franco Angeli, Milano
(1995)

4. Fuchi, K., Kowalski, R., Furukawa, K., Ueda, K., Kahn, K., Chikayama, T., Tick,
E.: Launching the new era. Commun. ACM 36(3), 49–100 (1993)

5. Gallaire, H.: ECRC: a joint industrial research centre. Future Generation Computer
Systems 3(4), 279–283 (1987)

6. Hewitt, C.: Middle History of Logic Programming Resolution, Planner, Prolog and
the Japanese Fifth Generation Project (2009), http://arxiv.org/abs/0904.3036

7. Kowalski, R.: Logic Programming and the Real World. ALP Newsletter 14(1), 9–11
(2001)

8. Sessa, M.I. (ed.): 1985-1995: Ten years of Logic Programming in Italy. Palladio,
Salerno (I) (1995)

A Appendices

A.1 List of Conferences Organized by GULP

1. GULP (1986), Genova (Italy)
2. GULP (1987), Torino (Italy)
3. GULP (1988), Roma (Italy)
4. GULP (1989), Bologna (Italy)
5. GULP (1990), Padova (Italy)
6. GULP (1991), Pisa (Italy)

http://arxiv.org/abs/0904.3036


Logic Programming in Italy: A Historical Perspective 13

7. GULP (1992), Tremezzo (Italy)
8. GULP (1993), Gizzeria (Italy)

9. I GULP-PRODE (1994), Peñiscola (Spain)
10. II GULP-PRODE (1995), Vietri (Italy)
11. III APPIA-GULP-PRODE (1996), San Sebastian (Spain)
12. IV APPIA-GULP-PRODE (1997), Grado (Italy)
13. V APPIA-GULP-PRODE (1998), La Coruña (Spain)
14. VI APPIA-GULP-PRODE (1999), L’Aquila (Italy)
15. VII APPIA-GULP-PRODE (2000), La Habana (Cuba)
16. VIII APPIA-GULP-PRODE (2001), Évora (Portugal)
17. IX APPIA-GULP-PRODE (2002), Madrid (Spain)
18. X APPIA-GULP-PRODE (2003), Reggio Calabria (Italy)

19. I CILC (2004), Parma (Italy)
20. II CILC (2005), Roma (Italy)
21. III CILC (2006), Bari (Italy)
22. IV CILC (2007), Messina (Italy)
23. V CILC (2008), Perugia (Italy)
24. VI CILC (2009), Ferrara (Italy)
25. VII CILC (2010), Rende (Italy)

A.2 List of Doctoral Schools Organized by GULP

1. 1988 Advanced School on Foundations of Logic Programming, Alghero,
Sardinia (organizers: Roberto Barbuti and Maurizio Martelli)

2. 1990 Advanced School on Foundations of Logic Programming, Alghero,
Sardinia (organizers: Paolo Mancarella and Giuseppe Sardu)

3. 1996 Int’l Summer School on Advances in Logic Programming, Alghero,
Sardinia (organizers: Nicoletta Cocco and Gianfranco Rossi)

4. 1998 Int’l Summer School on Logic Programming Perspectives in Hot Re-
search Areas, Maratea, Basilicata (organizers: Patrizia Asirelli and Piero
Bonatti)

5. 2000 First Int’l Summer School in Computational Logic ISCL 2000, Maratea,
Basilicata (organizers: Sandro Etalle and Maurizio Gabbrielli)

6. 2002Second Int’l SummerSchool inComputational Logic ISCL2002,Maratea,
Basilicata (organizers: Roberto Bagnara and Patricia Hill)

A.3 Past Presidents of GULP

– Giorgio Levi, Univ. di Pisa
– Roberto Barbuti, Univ. di Pisa
– Maurizio Martelli, Univ. di Genova
– Maurizio Gabbrielli, Univ. di Bologna
– Gianfranco Rossi, Univ. di Parma



14 G. Rossi

A.4 The Formal Beginning

The constituent assembly of GULP was held in Pisa on June 18th, 1985. Here
is the list of companies, universities and public research centers participating to
the constituent assembly.

– CSELT, Torino
– SIPE Optimization, Roma
– Selenia, Roma
– CGD, Roma
– S&M, Pisa
– Digital, Milano
– Olivetti, Ivrea
– ELSAG, Genova
– LIST, Pisa
– INTECS, Pisa

– Univ. di Genova
– Univ. di Padova
– Univ. di Pisa
– Univ. di Salerno
– Univ. di Torino
– Univ. di Trento

– CNUCE, CNR - Pisa
– IEI, CNR - Pisa
– IMA, CNR - Genova
– ILC, CNR - Pisa
– Scuola Superiore G.Reiss Romoli, L’Aquila
– IDG, CNR - Firenze

The formal date of birth of the association was February 4th, 1986, in Pisa.
Members of the first executive committee were:

– Giorgio Levi, Dip. Informatica, Univ. di Pisa (president)
– Giuliana Dettori, IMA, CNR, Genova (secretary)
– Luigi Marcolungo, ISI, Univ. di Padova (vice-president)
– Giovanni Adorni, DIST, Univ. di Genova
– Giovanna Ballaben, Selenia, Roma
– Pietro Jalamoff, Scuola superiore Reiss Romoli, L’Aquila
– Leonardo Roncarolo, ELSAG, Genova
– Gianfranco Rossi, Dip. di Informatica, Univ. di Torino
– Umberto Rugani, INTECS, Pisa
– Genoveffa Tortora, Dip. di Informatica e Applicazioni, Univ. di Salerno



Theoretical Foundations and Semantics
of Logic Programming

Annalisa Bossi1 and Maria Chiara Meo2

1 Dipartimento di Informatica, Università Ca’ Foscari di Venezia, Italy
bossi@dsi.unive.it

2 Dipartimento di Scienze, Università di Chieti-Pescara
Viale Pindaro 42, 65127 Pescara, Italy

cmeo@unich.it

Abstract. The paper provides an overview of an approach to the semantics of
(constraint) logic programs, whose aim is providing suitable theoretical bases for
modeling observable properties of logic programs in a compositional way. The
approach is based on the idea of choosing (either equivalence classes or abstrac-
tions of) sets of clauses as semantic domain and provides an uniform framework
for defining different compositional semantics for logic programs, parametrically
with respect to a given notion of observability. Since some observable properties
have a natural definition which is dependent on the selection rule, the framework
has been adapted to cope also with a suitable class of rules, which includes the
leftmost selection rule. This provides a formal description of most of the observ-
able properties of Prolog derivations and can therefore be viewed as reference
semantics for Prolog transformation and analysis systems.

1 Introduction

The paper provides an overview of an approach of the semantics of (constraint) logic
programming which push forward the s-semantic approach [26] developed about twenty
years ago. The aim of such an approach was that of providing a suitable base for pro-
gram analysis by means of a semantics which really captures the operational semantics
of logic programs and thus permits to model properties which can be observed in an
SLD-tree (observables). For instance, in [26] two programs are equivalent if for any
goal G they return the same (up to renaming) computed answers. That doesn’t hold for
the least Herbrand model semantics, namely, there exist programs which have the same
least Herbrand model, yet compute different answer substitutions. Several ad-hoc se-
mantics modeling various observables have been defined. These include correct answer
substitutions, computed answer substitutions, partial answers [25], OR-compositional
correct answers [9,8], call patterns [33], proof trees and resultants [30].

In addition there are several semantics specifically designed for static program anal-
ysis, which can handle various observables such as types and groundness dependencies.
The idea of this approach is to define a framework which collects all the informations
on SLD-derivations (for example in terms of resultants) and that permits to define deno-
tations modeling various observables (thus inheriting basic constructions and results).

A. Dovier, E. Pontelli (Eds.): 25 Years of Logic Programming, LNCS 6125, pp. 15–36, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



16 A. Bossi and M.C. Meo

The relevant information for specific applications can be extracted from such a collect-
ing semantics by suitable abstractions.

The paper is organized as follows. In the next section we recall the basic notions and
introduce the terminology used in the paper. In Section 3 we describe the observables
and their associated equivalence relations considered in the paper. Sections 4 and 5
describe a first general semantics schema and its principal instances. In Section 6 we
discuss how the previous results can be specialized for a suitable class of selection rules.
In Section 7 we introduce a framework for constraint logic programs. Finally, in Section
8 we describe a framework for bottom-up abstract interpretation.

2 Preliminaries

2.1 Logic Programming

The reader is assumed to be familiar with the terminology of and the main results on
the semantics of logic programs [43,1]. We briefly recall here few basic notions.

Throughout the paper we assume programs and goals defined on a first order lan-
guage given by a signature consisting of a finite set F of data constructors, a finite
set Π of predicate symbols, a denumerable set V of variable symbols. T denotes the
set of terms built on F and V . Variable-free terms are called ground. If E is any syn-
tactic object, Var(E) and Pred(E) denote the set of (free) variables and of predicates
occurring in E, respectively. A substitution is a mapping ϑ : V → T such that the
set dom(ϑ) = {X | ϑ(X) �= X} (domain of ϑ) is finite; ε is the empty substitution:
dom(ε) = ∅. If ϑ is a substitution and E is a syntactic expression, we denote by ϑ|E
the restriction of ϑ to the variables in Var(E).

The composition ϑσ of the substitutions ϑ and σ is defined as the functional com-
position. A substitution ϑ is idempotent if ϑϑ = ϑ. A renaming is a (nonidempotent)
substitution ρ for which there exists the inverse ρ−1 such that ρρ−1 = ρ−1ρ =ε. The
result of the application of the substitution ϑ to a term t is an instance of t denoted by
tϑ. We define t � t′ (t is more general than t′) iff there exists ϑ such that tϑ = t′. A sub-
stitution ϑ is a grounding for t if tϑ is ground and Ground(t) denotes the set of ground
instances of t. The relation � is a preorder and ≈ denotes the associated equivalence
relation (variance). A substitution θ is a unifier of terms t1 and t2 if t1θ = t2θ (where
= denotes syntactic equality). If two terms are unifiable then they have an idempotent
most general unifier which is unique up to renaming. Therefore mgu(t1, t2) denotes any
such an idempotent most general unifier of t1 and t2. All the above definitions can be
extended to other syntactic objects in the obvious way.

We restrict our attention to idempotent substitutions, unless differently stated.
An atom A is an object of the form p(t1, . . . , tn), where p ∈ Π and t1, . . . tn ∈ T .

A (definite) clause is a formula of the form H :−A1, . . . , An with n ≥ 0, where H
(the head) and A1, . . . , An (the body) are atoms. : − and , denote logic implication
and conjunction respectively, and all variables are universally quantified. If the body is
empty the clause is a unit clause. A (positive) program is a finite set of definite clauses
and a (positive) goal is a conjunction of atoms A1, . . . , Am. The empty goal is denoted
by �. A and C denote the sets of atoms and of clauses, respectively, while ℘(S) denotes
the powerset of a set S.



Theoretical Foundations and Semantics of Logic Programming 17

In the following t,X denote tuples of terms and of distinct variables respectively,
while B denotes a (possibly empty) conjunction of atoms.

The ordinal powers of a generic monotonic operator f on a complete lattice (D,≤)
with bottom ⊥ are defined as usual, namely f ↑ 0 =⊥, f ↑ (α + 1) = f(f ↑ α), for α
successor ordinal and f ↑ α = lub({f ↑ β | β ≤ α}) if α is a limit ordinal.

The Herbrand base BP of a program P is the set of all ground atoms whose pred-
icate symbols are in Pred(P ). An Herbrand interpretation I for a program P is any
subset of the Herbrand base BP . An Herbrand model for a program P is any Herbrand
interpretation M which satisfies all the clauses of P . The intersection M(P ) of all the
Herbrand models of a (positive) program P is a model (least Herbrand model).

Definite clauses have a natural computational reading based on the resolution pro-
cedure. The specific resolution strategy called SLD can be described as follows. Let
G = A1, . . . , Am be a goal and c = H : −B be a (definite) clause. G′ is derived from
G and c by using ϑ iff there exists an atom Aj , 1 ≤ j ≤ m such that ϑ = mgu(Aj , H)
and G′ = (A1, . . . , Aj−1,B, Aj+1, . . . , Am). Given a goal G and a program P , an
SLD-derivation (or simply a derivation) of P ∪ G (of G in P ) consists of a (possibly
infinite) sequence of goals G0,G1,G2, . . . called resolvents, together with a sequence
c1, c2, . . . of variants of clauses in P which are renamed apart (i.e. such that ci does
not share any variable with G0, c1, . . . , ci−1) and a sequence ϑ1, ϑ2, . . . of idempotent
mgu’s such that G = G0 and, for i ≥ 1, each Gi is derived from Gi−1 and ci by using
ϑi. An SLD-refutation of P ∪ G is a finite SLD-derivation of P ∪ G which has the
empty clause � as the last goal in the derivation.

Following [1], a selection rule R is a function which when applied to a “history”
containing all the clauses and the mgu’s used in the derivation G0,G1, . . . ,Gi, returns
an atom in Gi (the selected atom in Gi). Given a selection rule R, an SLD-derivation
is called via R if all the selections of atoms in the resolvents are performed according
to R.

In the following G ϑ�P,R
∗ B denotes a finite SLD-derivation of P ∪G via selection

rule R, which has length ≥ 0, where ϑ is the composition of the mgu’s introduced and
B is the last resolvent in the derivation. If R is omitted, we mean that any selection rule
can be used (and the definition is independent from the selection rule). Moreover, when
the length of the derivation is 0, we assume that ϑ = ε and B = G.

The computed answer substitution of a refutation G ϑ�P
∗ � is the substitution ob-

tained by the restriction of ϑ to the variables occurring in G. G ϑ→P � will denote
explicitly the refutation of G in P with computed answer substitution ϑ.

2.2 Galois Insertions and Abstract Interpretation

Abstract interpretation [19,20] is a theory developed to reason about the abstraction
relation between two different semantics. The theory requires the two semantics to be
defined on domains which are complete lattices. (C,�) (the concrete domain) is the
domain of the concrete semantics, while (A,≤) (the abstract domain) is the domain of
the abstract semantics. The partial order relations reflect an approximation relation. The
two domains are related by a pair of functions α (abstraction) and γ (concretization),
which form a Galois insertion.



18 A. Bossi and M.C. Meo

(Galois insertion). Let (C,�) be the concrete domain and (A,≤) be the ab-
stract domain. A Galois insertion (α, γ) : (C,�) → (A,≤) is a pair of maps
α : C → A and γ : A → C such that α and γ are monotonic, for each x ∈ C,
x � γ(α(x)) and for each y ∈ A, α(γ(y)) = y.

Given a concrete semantics and a Galois insertion between the concrete and the ab-
stract domain, we want to define an abstract semantics. The concrete semantics is the
least fixpoint of a semantic function F : C → C. The abstract semantic function
F̃ : A → A is correct if for all x ∈ C, F (x) � γ(F̃ (α(x))). F can be defined
as composition of “primitive” operators. Let f : Cn → C be one such an operator
and assume that f̃ is its abstract counterpart. Then f̃ is (locally) correct w.r.t. f if for
all x1, ..., xn ∈ C, f(x1, ..., xn) � γ(f̃(α(x1), . . . , α(xn))). The local correctness
of all the primitive operators implies the global correctness. According to the theory,
for each operator f , there exists an optimal (most precise) locally correct abstract op-
erator f̃ defined as f̃(y1, . . . , yn) = α(f(γ(y1), . . . , γ(yn))). However the composi-
tion of optimal operators is not necessarily optimal. The abstract operator f̃ is precise
if f̃(α(x1), . . . , α(xn)) = α(f(x1, . . . , xn)). The above definitions are naturally ex-
tended to “’primitive” semantic operators from ℘(C) to C.

3 Observables and Composition Operators

The concrete operational semantics of (logic) programs can be specified by means of a
set of inference rules which specify how derivations are made and by defining which are
the “observables” we are interested in. In pure logic programming, we can be interested
in different observable properties such as successful derivations, finite failures, (partial)
computed answer substitutions, etc. Therefore a program can have different concrete
operational semantics depending on which properties are observed.

A given choice of the observable x induces an “observational” equivalence on pro-
grams. Namely P ≈x Q iff P and Q are observationally indistinguishable according
to x. When also composition of programs is taken into account, for a given observable
property we can obtain different equivalences depending on which kind of program
composition we consider. Given an observable x and a syntactic program composition
operator ◦, the induced equivalence ≈(x,◦) is defined as follows. P ≈(x,◦) Q iff for any
program R, P ◦ R and Q ◦ R are observationally indistinguishable according to x (i.e.
P and Q are observationally indistinguishable under any possible context allowed by
the composition operator). A semantics S is correct wrt (x, ◦), if S(P ) = S(Q) implies
P ≈(x,◦) Q, for each logic programs P and Q. S(P ) is fully abstract wrt (x, ◦) when
also the converse of the previous implication holds.

A semantic S is compositional wrt the program composition operator ◦, if the se-
mantics of the composition of programs P and Q can be obtained from the semantics
of P and the semantics of Q, i.e. if for a suitable composition operator f , S(P ◦ Q) =
f(S(P ),S(Q)).

If S is correct wrt x and is compositional wrt ◦, then S is also correct wrt (x, ◦).
If we are concerned with the input/output behavior of programs we should just ob-

serve computed answers. However some semantic based techniques (such as program



Theoretical Foundations and Semantics of Logic Programming 19

analysis, debugging and transformation), require to observe and take into account other
features of the derivation, which make visible internal computation details. In principle,
one could be interested in the complete information about the SLD-derivation, namely
the sequences of goals, most general unifiers and variants of clauses. The resultants,
introduced in [44] in the framework of partial evaluation, are a compact representa-
tion of the relation between the initial goal G and the current 〈goal, substitution〉 pair
in a SLD-derivation of G, where the substitution is the (restriction to Var(G) of the)
composition of the mgu’s computed in the SLD-derivation from G to the current goal.

Definition 1. Let P be a program and let R be a selection rule. Gϑ :−B ∈ C is
an R-computed resultant for G in P iff there exists a SLD-derivation via R such that

G ϑ�P,R
∗ B. Moreover Φ is a computed resultant of G in P if there exists a selection

rule R such that Φ is an R-computed resultant for G in P .

In the following, given the (R-)computed resultant Gϑ :−B for the goal G, we will say
that ϑ|G is the substitution associated to the resolvent B.

Resultants are a logical representation, which is quite convenient to study transfor-
mation techniques of logic programs such as partial evaluation and Fold/Unfold [41,52].
In fact, since these transformations are based on unfolding, i.e. on the application of
some SLD-derivation steps to the program clauses, their intermediate and final results
and also their basic properties can be naturally expressed in terms of resultants. For
example, in addition to the above mentioned use, resultants have been used in [4] to
study loop checking mechanisms and in [24] to prove the correctness of a modular
Unfold/Fold transformation system.

The resultants are the basic observables to introduce a semantic scheme in Section
4 which collects informations on SLD-derivations. We will then derive as instances of
the scheme other semantics which model (in some cases compositionally) more abstract
observables, formally defined in Definition 2. These observables are:

partial answers. (denoted by pa), which are the substitutions associated to a resolvent
in any SLD-derivation, and correct partial answers (denoted by cpa), which are
the substitutions associated to a resolvent in any SLD-refutation. The knowledge
about partial answers is important for program analysis [11], to characterize the
semantics of concurrent languages [25] and to characterize universal termination,
which in turn is useful for the semantics of PROLOG [2,5]

call patterns. (denoted by pt), which are the atoms (procedure calls) selected in any
SLD-derivation, and correct call patterns (denoted by cpt), which are the atoms
(procedure calls) selected in any SLD-refutation. Call patterns make it possible to
derive properties of procedure calls, which are clearly relevant to program opti-
mization and play an important role in most program analysis frameworks based
on abstract interpretation (see [22] for a broad overview).

computed answers. (denoted by ca), which are the substitutions associated to the last
resolvent (�) in an SLD-refutation, and

successful derivations. (denoted by s), where we just observe successful termination.

In the following sections we will show, as instances of the general scheme, a semantics
(in some cases compositional) for each one of the previous observables. Each seman-
tics Fx is obtained by setting a parameter in the scheme in Section 4, according to



20 A. Bossi and M.C. Meo

the corresponding observational equivalence ≈x. Moreover each Fx is correct wrt the
corresponding ≈x. In several cases also full abstraction is obtained.

We formally define now the observational equivalences that we will consider.
Computed answers and successful derivations are known to be independent from the

selection rule. This property is based on the switching lemma [1] and on the fact that
these observables are obtained from successful derivations, where all the atoms have
been evaluated. This is not the case for partial answers and call patterns which therefore
depend on the selection rule. We first consider only notions which are independent from
the selection rule. Therefore, in the case partial answers and call patterns, we introduce
the independence in the definition by considering any selection rule.

Definition 2. Let P be a program, R be a selection rule and let G be a goal such that
there exists a derivation G

γ�P,R
∗ B.

1. ϑ is a R-partial answer for G in P iff ϑ = γ|G,
2. ϑ is a correct R-partial answer for G in P iff ϑ = γ|G and B has a refutation in

P ,
3. A is a R-call pattern for G in P iff A is the atom selected by R in B,
4. A is a correct R-call pattern for G in P iff A is the atom selected by R in B and

B has a refutation in P .

Moreover ϑ is a (correct) partial answer for G in P iff there exists a selection rule R
such that ϑ is a (correct) R-partial answer for G in P . Analogously for (correct) call
patterns.

Note that computed answers are a special case of (correct) partial answers.
The only notion of program composition (the OR-composition) we will consider in

the following is a generalization of program union ∪Ω defined in [8]. First an Ω-open
program P is a (positive) program in which the predicate symbols belonging to the set
Ω are considered partially defined in P . P can be composed with another program Q
which may further specify the predicates in Ω. Such a composition is denoted by ∪Ω

and P ∪Ω Q is defined only if the predicate symbols occurring in both P and Q are
contained in Ω. When Ω contains all the predicate symbols of P and Q we get the
standard ∪-composition, while if Ω = ∅ the composition is allowed only on programs
which do not share predicate symbols.

The combination of the above defined six observables with the composition operator
gives six observational equivalences. We list below their definitions.

Definition 3. Let P and Q be Ω-open programs, G be a goal and let W denote a
program such that P ′ = P ∪Ω W and Q′ = Q ∪Ω W are defined. Assume that x ∈
{s, ca, pa, cpa, pt, cpt}. Then P ≈(Ω,x) Q iff ix holds for any G and for any W , where
the conditions ix are defined as follows

is: G has a refutation in P ′ iff G has a refutation in Q′,
ica: G has the same set of computed answers in P ′ and in Q′,
ipa (icpa): G has the same set of (correct) partial answers in P ′ and in Q′,
ipt (icpt): G has the same set of (correct) call patterns in P ′ and in Q′.

The case Ω = ∅ is equivalent to considering no composition at all and therefore in order
to simplify the notation we will denote ≈(∅,x) by ≈x.



Theoretical Foundations and Semantics of Logic Programming 21

4 A General Semantic Scheme

The scheme which has been proposed in [30,31] is a generalization of the open se-
mantics introduced in [9,8] to obtain compositionality wrt program union. The standard
semantics based on atoms is not compositional wrt union of programs. Consider for
instance the programs P = {q(a), p(X) : −r(X)}, Q = {q(a)} and R = {r(a)}. The
least Herbrand model semantics M(P ) identifies P and Q, since M(P ) = M(Q) =
{q(a)}. However M(P ∪ R) �= M(Q ∪ R). In order to obtain the semantics of the
union P ∪R from those of the components, the semantics of P should contain also the
information given by the clause p(X) : −r(X). For this reason, the open semantics
was then defined on domains containing equivalence classes of sets of clauses (called
π-interpretations).

If we abstract from the specific equivalences in [9,8], the open semantics can be
viewed as a semantic framework for correctly modeling ≈(◦,x) equivalences. Similarly
to what happens for least Herbrand model semantics [23] the semantics built on π-inter-
pretations is a mathematical object which is defined in model-theoretic terms and which
can be computed both by a top-down and a bottom-up construction. The link between
the top-down and the bottom-up constructions is given by an unfolding operator [42],
denoted by Γ .

In the following a π-interpretation is a ∼-equivalence class [I] where I ⊆ C. I is
the set of all the π-interpretations and we define ι(I) = a where a is the renamed apart
version of any element in I ∈ I. All the definitions which use elements from I are
parametric wrt an equivalence ∼. However, in the remaining of this section, we omit
the ∼ index in order to simplify the notation.

The general semantics scheme in [31,30] is defined in terms of π-interpretations and
hence parametrically wrt ∼. We give two equivalent characterizations. The top-down
one has a definition in the style of an operational semantics, while the bottom-up one is
based on the fixpoint of a general immediate consequences operator. Let us first define
the top-down semantics O(P ).

Definition 4 (Operational Semantic Scheme). Let P be a program. O(P ) = [{Φ ∈
C | Φ is a resultant for a goal of the form p(X) in P}] ∈ I.

Note that O(P ) is a π-interpretation and it is the (equivalence class of the) set of all the
resultants obtained from goals of the form p(X) in P for any possible selection rule.
In [7] the resultants are extended by collecting also sequences of clause identifiers in
order to obtain the maximum amount of information on computations so to observe all
the internal details of SLD-derivations. Moreover, by modifying O(P ), it is possible
to obtain semantics compositional w.r.t. other composition operators, as for example
inheritance mechanisms [6].

The semantics O(P ) can be obtained also by a fixpoint construction. The suitable
immediate consequences operator can be defined in terms of an unfolding operator. To
this aim, first it is necessary organize the set of π-interpretations in a lattice (I,�) based
on a suitable partial order relation �. Second, an immediate consequences operator TP

is defined and proved monotonic and continuous on (I,�). This allows us to define the
fixpoint semantics F(P ) for P as F(P ) = TP ↑ ω, which is proved equivalent to the
operational semantics.



22 A. Bossi and M.C. Meo

We require ∼ to be a congruence wrt infinite unions, i.e. if, for all n ∈ N , In, Jn ⊆ C
and In ∼ Jn, then

⋃
n∈N In ∼

⋃
n∈N Jn. Since ∼ is a congruence wrt infinite unions,

given X ⊆ I we can define
⊔

X = [
⋃

I∈X ι(I)] and for I, J ∈ I, I � J if and only if
I � J = J . The relation � is an ordering on I and (I,�) is a complete lattice (with �
as lub and [∅] as the bottom element).

Let us introduce the basic syntactic operator Γ which will be used to construct the
general immediate consequence operator T . Given a program P and a set of clauses
I , ΓP (I) generates all the clauses obtained by “partially” unfolding P wrt I , i.e. it
generates also those clauses obtained by rewriting a (possibly empty) subset of the
atoms in the bodies of clauses in P .

In the following IdΩ be the set of clauses {p(X) :−p(X) | p ∈ Ω}.

ΓP (I) = {(A :−D1, . . . ,Dn)ϑ | ∃ a clause A :−B1, . . . , Bn ∈ P,
∃ n renamed apart clauses in I ∪ IdΠ :
H1 :−D1, . . . , Hn :−Dn,
∃ϑ = mgu((B1, . . . , Bn), (H1, . . . , Hn))}.

Now, in order to define the fixpoint semantics we require that ∼ is a congruence wrt
the Γ operator, i.e. if I ∼ J , then for any program P , ΓP (I) ∼ ΓP (J). This restriction
will guarantee the correctness of the definition of the general fixpoint semantics. TP is
defined simply as the semantic counterpart of the syntactic operator ΓP .

Definition 5. Let P be a program. Then TP : I → I is the function

TP (I) = [ΓP (ι(I))].

TP (I) is well defined, i.e. its definition is independent from the element chosen in the
equivalence class I , because Γ is a congruence wrt ∼. Moreover TP is continuous on
(I,�) and TP ↑ ω is the least fixpoint of TP .

Definition 6 (Fixpoint Semantic Scheme). Let P be a program.

F(P ) = TP ↑ ω ∈ I.

Because of the previously mentioned ability of ΓP (and therefore of TP ) to produce
also the result of partial unfoldings, F(P ) gives a bottom-up description of partial
derivations, i.e. it contains also the intermediate results of non-terminated (and pos-
sibly non-terminating) computations. Indeed, no matter which specific ∼ equivalence
is used, the equality of the top-down and the bottom-up constructions holds [30]. This
general result simplifies the treatment in specific cases since it is usually easier proving
the congruence requirements on ∼ rather than proving the stated equality.

Lemma 1 (Equivalence). Let P be a program, ∼ be an equivalence on ℘(C) which is
a congruence wrt infinite unions and wrt the Γ operator. Then F(P ) = O(P ).

By instantiating ∼ to a specific equivalence ∼(◦,x), which depends on the composition
operator (◦) and the observable (x), we can obtain suitable TP operators and (equivalent
operational and fixpoint) semantics for the corresponding ≈(◦,x) equivalences.

When considering as ∼ the identity on ℘(C) we obtain a kind of “collecting seman-
tics” which correctly models resultants. The semantics modeling resultants is clearly



Theoretical Foundations and Semantics of Logic Programming 23

correct wrt the equivalence induced by any notion of observability considered in the pre-
vious section. However, we are interested in defining, for specific observables, coarser
∼ equivalences in order to obtain a more (possibly fully) abstract semantics, while pre-
serving the correctness.

In the following we will then introduce a suitable ∼-equivalence to obtain a correct
(in some cases fully abstract) semantics for any ≈-equivalence considered in the pre-
vious section. The instances of the generic constructions I, T , O and F , obtained by
using a specific ∼i-equivalence, will be denoted by Ii, T i, Oi and Fi, respectively.
When the subscripts are omitted we mean that ∼ is the identity on ℘(C).

5 Getting Instances from the General Schema

5.1 Computed Answers Substitutions and Successful Derivations

In this section we consider first the composition of programs which do not share predi-
cates (i.e. Ω = ∅). As previously discussed, this is the same as the case of no composition
at all. Here the observables we are concerned with are computed answer substitutions
and successful derivations. The induced equivalences on programs have been previously
denoted by ≈ca and ≈s. We first show that suitable definitions of ∼ca and ∼s allow us
to obtain the s-semantics [26] and the least Herbrand model as instances of the scheme.
Then we consider the relation of these semantics to ≈ca and ≈s. Since here we are not
concerned with compositions, it is sufficient to extract from each set of clauses I only
the information given by the unit clauses contained in I . Two sets of clauses can then be
considered equivalent if they contain the same unit clauses (up to variance). Moreover,
in the case of successful derivations, we only need the information given by the ground
instances of the clauses. We define then ∼ca and ∼s as follows.

Definition 7. Let I, J ⊆ C. I ∼ca J iff I ∩ A = J ∩ A. Moreover I ∼s J iff
Ground(I ∩ A) = Ground(J ∩ A).

∼ca and ∼s are congruences wrt infinite unions and wrt the Γ operator and therefore,
we obtain automatically from the scheme for any program P , Ica, T ca, Oca and Fca,
(analogously for ∼s).

Let us first consider the instances of the general definitions obtained by using ∼ca.
For any I ∈ Ica, the set of unit clauses (modulo variance) of any element ι(I) can be
considered the canonical representative of the equivalence class I . T ca

P defined in terms
of canonical representatives is essentially the immediate consequence operator T s−sem

P

originally defined in [26]. The s-semantics is the least fixpoint T s−sem
P ↑ ω of such

an operator. As an obvious consequence, the s-semantics as originally defined is the
canonical representative of Fca(P ) [31].
The strong completeness theorem in [26] shows that the s-semantics is fully abstract
wrt ≈ca. The mentioned correspondence with Fca implies that Fca(P ) is fully abstract
wrt ≈ca [31]. The same result was obtained in [35] using a proof theoretic approach.

Lemma 2. Let P and Q be programs. Then P ≈ca Q iff Fca(P ) = FcaQ).

Analogously, in the case of ∼s, the canonical representative ιs(J) of J ∈ Is can be
obtained by taking the ground instances of the unit clauses in ι(J). T s

P defined in terms



24 A. Bossi and M.C. Meo

of canonical representatives is essentially the standard immediate consequence operator
TP [23]. Also in this case, the two formulations are equivalent and the least fixpoint of
TP (the least Herbrand model M(P )) is the canonical representative of Fs(P ) [31].
The mentioned correspondence between M(P ) and Fs(P ) implies that the latter se-
mantics is fully abstract wrt ≈s. More precisely the following holds [31].

Lemma 3. Let P and Q be programs defined on a signature Σ which contains infinitely
many constant symbols. Then P ≈s Q iff Fs(P ) = Fs(Q).

5.2 Compositional Equivalences

We consider now equivalences obtained by considering∪Ω as composition operator. We
first focus on computed answers as observable to obtain from the scheme the semantics
which is correct wrt ≈(Ω,ca). Finally we take into account successful derivations: by
using an equivalence ∼(Ω,s) based on weak subsumption equivalence [45], we obtain
the semantics F(Ω,s)(P ) which is fully abstract wrt ≈(Ω,s).

A semantics correct wrt≈(Ω,ca). We show now the instance of the schemeF(Ω,ca)(P ),
which is compositional wrt ∪Ω and correctly models computed answers, i.e. it is correct
wrt ≈(Ω,ca). A semantics with these features was already defined in [8] by using sets of
clauses as interpretations. [31,30] show how such a semantics can be obtained from the
general scheme.

We first define a syntactic equivalence � on (sets of) clauses which is correct wrt
≈(Ω,ca) (for any Ω) and hence can be used to define π-interpretations for the compo-
sitional case when considering computed answers. A distinction can be made among
the atoms in the body of a clause, by identifying those relevant atoms which can share
variables with the head in a derivation, and those which cannot. Clearly, only the atoms
of the first type can contribute to the answer computed in a derivation. The others can
only be tested for their successful derivation, but their derivation cannot give any use-
ful binding for the computed answer, since such an answer is always restricted to the
variables in the goal. Hence the following.

Definition 8. An atom B in the body of a clause c is called relevant if either it shares
variables with the head of c or, inductively, it shares variables with another atom B′ in
the body of c which is relevant. The multiset of relevant atoms in c is denoted by Rel(c).

In the following Set(M) denotes the set of the elements which appear in the multiset
(or sequence) M . Moreover, when applied to multisets, ⊆ denotes multiset inclusion.

Note that, in the following definitions relevant atoms in clause bodies are considered
as multisets rather than sets. This is because in general a relevant atom in the body B of
a clause cannot be deleted (even if a copy of the atom appear in B) without changing the
operational meaning of the clause in terms of computed answers. Recall that a clause
c1 = H1 :−A subsumes a clause c2 = H2 :−B if there exists a substitution ϑ such that
H1ϑ = H2 and Set(A)ϑ ⊆ Set(B). Now, let c1 and c2 be two clauses which do not
share variables and whose heads are H1 and H2, respectively. We say that c1 ≤c c2 iff
c1 subsumes c2 and there exists a renaming ρ such that H1ρ = H2, Rel(c2)ρ ⊆ Rel(c1)
and Set(Rel(c2)ρ) = Set(Rel(c1)).



Theoretical Foundations and Semantics of Logic Programming 25

The equivalence � is then defined as the symmetric closure of the Smith preordering
induced on sets of clauses by ≤c. It can be proved (see [31,30]) that � equivalent sets
of clauses can be interchanged in any context while preserving the computed answer
substitutions semantics. In fact, given I, J ⊆ C, if I � J then the two sets of clauses
are indistinguishable by ≈(Π,ca). We can then use � to define the equivalence ≈(Ω,ca).
Moreover, since ∪Ω allows us to compose programs which share predicate symbols in
Ω only, we only need the information given by clauses in CΩ , where CΩ denotes the
set of clauses H :−A such that Pred(A) ⊆ Ω.

Definition 9. Let I, J ⊆ C. We define I � J iff for any c ∈ I there exists c′ ∈ J such
that c′ ≤c c and vice versa. Moreover I ∼(Ω,ca) J iff I ∩ CΩ � J ∩ CΩ .

It can be shown that ∼(Ω,ca) is finer than (and hence correct wrt) ≈(Ω,ca). ∼(Ω,ca) is
a congruence wrt infinite unions and wrt the Γ operator and therefore, we obtain auto-
matically from the scheme for any program P , I(Ω,ca), T (Ω,ca), O(Ω,ca) and F(Ω,ca)

by using ∼(Ω,ca) as ∼.
Essentially the same results have been given in [9,8] by using the identity on ℘(C)

as ∼(Ω,ca) equivalence.

Lemma 4. Let P and Q be programs. If F(Ω,ca)(P ) = F(Ω,ca)Q then P ≈(Ω,ca) Q.

The converse of the previous statement does not hold, i.e. the semantics F(Ω,ca)(P ) is
not fully abstract wrt ≈(Ω,ca). The difficulty here is related to the use of clauses in the
semantic domain (the full abstraction result in [34] was obtained using a domain not
containing clauses).

A semantics correct and fully abstract wrt ≈(Ω,s). Now we consider the usual pro-
gram composition ∪Ω but we will focus on successful derivations as observable. We
will obtain from the general scheme a semantics F(Ω,s)(P ) is fully abstract wrt ≈(Ω,s).

According to the general construction, we have only to define a suitable equivalence
∼(Ω,s) on clauses. First, note that the clause c is a tautology iff the body of c contains a
copy of the head. Given I, J ∈ C, we say that I and J are subsumption equivalent iff for
any c ∈ I there exists c′ ∈ J such that c′ subsumes c and vice versa. I and J are weakly
subsumption equivalent iff I\Taut(I) is subsumption equivalent to J\Taut(J), where
Taut(I) denotes the set of tautologies in I . Since here we are concerned only with
successful derivations, ∼(Ω,s) can simply be defined in terms of weak subsumption
equivalence. Indeed, if c1 subsumes c2 then each successful derivation of a goal G
can be performed by using c1 instead of c2. Moreover, if G has a successful derivation
which uses the tautology c, G has also a derivation which does not use c. In other words,
tautological clauses can be deleted. These remarks can be formalized as follows.

Definition 10. Let I, J ⊆ C. I ∼(Ω,s) J iff I ∩ CΩ is weakly subsumption equivalent
to J ∩ CΩ .

∼(Ω,s) is a congruence wrt infinite unions and wrt the Γ operator and therefore, we
obtain automatically from the scheme for any program P , F(Ω,s) by using ∼(Ω,s) as ∼.
We have the following result.

Lemma 5. Let P, Q be (finite) programs. P ≈(Ω,s) Q iff F(Ω,s)(P ) = F(Ω,s)(Q).



26 A. Bossi and M.C. Meo

Note that the previous result holds also for infinite programs which contain only finitely
many function symbols. It does not hold for generic infinite programs (for a counterex-
ample consider the programs P and Ground(P )).

5.3 A Semantics for Partial Answers and Call Patterns

A fixpoint semantics for partial answers has been defined in [25]. [31,30] extend such
a characterization by obtaining, from the general scheme, a fully abstract semantics for
partial answers and a correct semantics for correct partial answers. Semantics for call
patterns is also given.

We give just the intuition on how these semantics are obtained. More details can
be found in the cited literature. For the sake of simplicity, we consider only the case
Ω = ∅. The compositional case can be obtained by using techniques similar to those
used in the above section.

From the clauses in F(P ) it is possible to extract the information needed to model
partial answers and call patterns for any goal G. For example, since each clause H :−B

in F(P ) corresponds to a derivation p(X)
β�P,R

∗ B (where H = p(X)β) ϑ is a
partial answer for the goal p(X) if there exists a clause H :−B in F(P ) such that
γ = mgu(p(X), H) and ϑ = γ|p(X). Moreover ϑ is a correct partial answer for p(X)
if there exists also a conjunction C containing atoms from F(P ) such that B and C
unify. This example can be extended to the general case in a obvious way.

Note that, when considering partial answers, we only need the information in the
heads of the clauses in F(P ), while for correct partial answers clearly we have to con-
sider also bodies. In fact bodies contain the information needed to check if the partial
derivation is part of a refutation. First of all, given J ⊆ C, we define Heads(J) =
{H ∈ A | H :−B ∈ J} and therefore, according to the previous considerations the
equivalences ∼pa and ∼cpa are defined as follows.

Definition 11. Let I, J ⊆ C. I ∼pa J iff Heads(I ∪ IdΠ) = Heads(J ∪ IdΠ).
Moreover I ∼cpa J iff I ∼(Π,ca) J .

∼pa and ∼cpa are congruences wrt infinite unions and wrt the Γ operator and therefore,
the semantics for partial answers and correct partial answers can be automatically ob-
tained as usual from the general scheme for any program P , by using ∼pa and ∼cpa as
∼, respectively. Moreover Fpa(P ) is fully abstract wrt ≈pa.

Lemma 6. Let P, Q be programs. Then P ≈pa Q iff Fpa(P ) = Fpa(Q).

For Fcpa(P ) we have only the following correctness result. The problems for obtain-
ing full abstraction here are the same as those mentioned for compositional computed
answers.

Lemma 7. Let P, Q be programs. If Fcpa(P ) = Fcpa(Q) then P ≈cpa Q.

The information needed to model call patterns can be obtained from the clauses in
F(P ) as well. For example, if H :−B1, . . . , Bn ∈ F(P ) and ϑ = mgu(A, H) then Biϑ
is a call pattern for the goal A. Since we are not considering a specific selection rule, we



Theoretical Foundations and Semantics of Logic Programming 27

only need the information on the relation between the head and the various atoms in
the body. In other words, the clause H :−B1, . . . , Bn is equivalent to the set of clauses
{H :−B1, . . . , H :−Bn}. Therefore the following.

Definition 12. Let c = H :−B1, . . . , Bn ∈ C. Krom(c) = {H :−B1, . . . , H :−Bn}.

The Krom operator, which transforms (equivalence classes of) clauses into sets of bi-
nary clauses, is extended in the obvious way to subsets of C.

Definition 13. Let I, J ⊆ C. I ∼pt J iff Krom(I) = Krom(J).

∼pt is a congruence wrt infinite unions and the operator Γ , therefore we have the usual
definition of the semantics as instance of the scheme.

Definition 14. (Call patterns semantics) Let P be a program. The semantics Fpt(P )
for call pattern is defined as the instance of F(P ) obtained by using ∼pt.

From the previous observations, we have the correctness results for the call pattern
semantics.

Lemma 8. Let P, Q be programs. If Fpt(P ) = Fpt(Q) then P ≈pt Q.

6 Introducing the Selection Rule

[32] shows how all the previous results can be specialized for a suitable class of selec-
tion rules. We discuss the idea of the specialization and give as an example the definition
of the R-partial answer semantics. For the sake of simplicity, we consider only the case
Ω = ∅. The compositional case can be obtained by using techniques similar to those
used in the Section 5.2.

First we focus on R-computed resultants, i.e. on those resultants which describe
derivations which use the selection rule R. This provides a sort of collecting semantics
which describes most of the observable properties of R-derivations. As in Section 4 a
π-interpretation is a ∼-equivalence class [I] where I ⊆ C. I is the set of all the π-
interpretations and we define ι(I) = a where a is the renamed apart version of any
element in I ∈ I. All the definitions which use elements from I are parametric wrt an
equivalence ∼. However, in the remaining of this section, we omit the ∼ index in order
to simplify the notation.

Definition 15 (Operational Semantic Scheme). Let P be a program.OR(P ) = [{Φ ∈
C | Φ is a R-computed resultant for a goal of the form p(X) in P}] ∈ I.

The problems arise with the fixpoint definition. If we consider a generic selection rule,
we cannot obtain a fixpoint (bottom-up) semantics equivalent to the operational one
[32]. Therefore, in order to be able to reconstruct exactly the derivation from the bottom,
[32] introduces the local rules, as specified by the following definition.

Definition 16 (Local rule). Let φ be a given bijection on the set of integer numbers. A
selection rule R is local, if it satisfies the following conditions:

1. if G = A1, . . . , An is the initial goal, then the atom selected by R in G is the atom
As, such that φ(s) < φ(i) for any i ∈ [1, n], i �= s,



28 A. Bossi and M.C. Meo

2. if G is a generic resolvent, assume that A1, . . . , An is the sequence of atoms in
G introduced by the last derivation step. Then, as before, the atom selected is As,
such that φ(s) < φ(i) for any i ∈ [1, n], i �= s.

Rules which select one of the most recently introduced atoms were called local in [40]
and were studied since they produce SLD-trees with a simple structure, suitable for
efficient searching techniques. Clearly the rules that we consider are also local in the
sense of [40]. Note also that the PROLOG leftmost rule is local by defining φ as follows:
φ(i) = i.

It is possible to define a fixpoint semantics for R-computed resultants, where R is
a local rule. Moreover, since the leftmost selection rule is a local rule, this semantics
can therefore be viewed as a reference semantics for Prolog transformation and analy-
sis systems, by setting R equal to the leftmost selection rule. Suitable abstractions of
this semantics allow the characterization of observables useful for specific applications.
We will consider explicitly the abstraction which gives a (fully abstract) semantics for
partial answers.

The intuition behind the definition of the bottom-up semantics is the following. Ac-
cording to the previous definition, if Aj is the atom selected by a local rule R in the
resolvent A1, . . . , An, then all the atoms derived from Aj are fully evaluated before the
selection of the atoms Ai, i �= j. Moreover a function φ is used to establish an ordering
on the atoms of the query and of the clauses used in the derivation.

The ordering φ can then be used locally on the bodies of clauses in P , to establish
how to rewrite the bodies (by using clauses in I in ΓP,R(I), see Definition 17). Namely,
when considering a clause H :−B1, . . . , Bn ∈ P in the definition of ΓP,R(I), we take
any partition K, J of the indexes {1, . . . , n} such that φ(k) < φ(j) for any k ∈ K and
j ∈ J . This means that any atom Bk, with k ∈ K , is fully evaluated before any Bj

with j ∈ J , in any derivation which uses the clause H :−B1, . . . , Bn. Accordingly, the
Bk’s are unified with atoms in I . Moreover we consider an atom Bs such that s ∈ J
and the value of φ(s) is the minimum among the φ(j)’s for j ∈ J . This means that Bs

is the first atom selected after the evaluation of the Bk’s has been completed. Since the
evaluation of (the atoms derived by) Bs can also be not completed, Bs is unified with
the head of a generic clause in I .

In order to simplify the notation, given a query G = A1, . . . , An and a set of in-
dexes K = {k1, . . . , km} ⊆ {1, . . . , n}, in the following we denote by GK the query
Ak1 , . . . , Akm and by G−K the query obtained from G by deleting Ak for any k ∈ K .

Definition 17. Let P be a program, R be a local selection rule and let I be a set of
clauses.

ΓP,R(I) = {(A :−D)ϑ | ∃A :−B ∈ P with B = B1, . . . , Bn,
∃K ⊆ {1, . . . , n}, J = {1, . . . , n} \ K,
∃s ∈ J, such that for any k ∈ K and for any j ∈ J
φ(k) < φ(s) ≤ φ(j)
∃ a sequence H of atoms in I and
∃ a clause H ′ :−B′ in I ∪ IdΠ such that
ϑ = mgu((BK , Bs), (H, H ′)) and
D is obtained from B−K by replacing Bs with B′}.



Theoretical Foundations and Semantics of Logic Programming 29

All the results shown in Section 4 hold also for this specialized version of the immediate
consequence operator. In particular if ∼ is a congruence wrt infinite unions and the Γ
operator, then TP,R = [ΓP,R(ι(I))] (the semantic counterpart of the syntactic operator
ΓP,R) is well defined. Moreover TP,R is continuous on (I,�) and FR(P ) = TP,R ↑ ω
(the least fixpoint of TP,R) is equal to the operational semantics OR(P ).

Now, we show as it is possible to model the R-partial answer semantics. For all the
other observables it is possible to follows a similar construction.

Definition 18. Let P and Q be programs. P ≈pa,R Q iff for any goal G, G has the
same set of R-partial answers in P and in Q.

From FR(P ) it is possible to extract the R-partial answers as follows. Analogously
to the case of partial answers (without considering the selection rule) in Section 5.3,

since each clause H :−B in FR(P ) corresponds to a derivation p(X)
β�P,R

∗ B (where
H = p(X)β) in order to model R-partial answer we only need keep the heads of the
resultants and therefore, in the definition of ∼pa,R, we can abstract from the bodies.
However, we need to distinguish among partial answers those which are also computed
answers, i.e. we need to distinguish between heads of non unit clauses and heads of
unit clauses in FR(P ). Consider for example the goal q(X), r(Y ) and assume that R is
the leftmost selection rule. If X = a is a computed answer for q(X) in the program P
(i.e. if FR(P ) contains the unit clause q(a)) and Y = b is a leftmost partial answer for
r(Y ) in P , then {X = a, Y = b} is a leftmost partial answer for q(X), r(Y ) in P . This
in general is not the case if X = a is a leftmost partial answer (and not a computed
answer) for q(X) (i.e. if FR(P ) contains a non unit clause q(a) :−B′ and does not
contain a unit clause q(a)).

According to the above considerations, the equivalences∼pa,R is defined as follows.

Definition 19. Let I, J ⊆ C. I ∼pa,R J iff Heads(I) = Heads(J) and I∩A = J∩A.

∼pa,R is a congruence wrt infinite unions and wrt the ΓP,R operator and therefore,
we obtain automatically from the scheme Fpa,R by using ∼pa,R as ∼. We have the
following result.

Lemma 9. Let P, Q be programs and let R be a local selection rule. P ≈pa,R Q iff
Fpa,R(P ) = Fpa,R(Q).

7 A Semantic Scheme for Constraint Logic Programs

The Constraint Logic Programming paradigm CLP(X ) (CLP for short) has been pro-
posed by Jaffar and Lassez [38,37] in order to integrate a generic computational mech-
anism based on constraints with the logic programming framework. The benefits of
such an integration are several. From a pragmatic point of view, CLP(X ) allows one to
use a specific constraints domain X and a related constraint solver within the declar-
ative paradigm of logic programming. From the theoretical viewpoint, CLP provides
a unified view of several extensions to pure logic programming (arithmetics, equa-
tional programming, object-oriented features, taxonomies) within a framework which



30 A. Bossi and M.C. Meo

preserves the unique semantic properties of logic programs, in particular the existence
of equivalent operational, model theoretic and fixpoint semantics [38]. Moreover, since
the computation is performed over the specific domain of computation X , CLP(X ) pro-
grams have an equivalent “algebraic” semantics [38] directly defined on the algebraic
structure of X .

[28] introduces a framework for defining various semantics, each corresponding to
a specific observable property of computations, thus applying to the CLP case the
methodology proposed in [7,31]. Analogously to the case of (standard) Logic Pro-
gramming in Section 4, each semantics can be equivalently defined either operationally
(top-down) or declaratively (bottom-up) as the least fixpoint of a suitable operator. The
construction is based on a new notion of interpretation (which is a modified version of
that given in Section 4), on a natural extension of the standard notion of truth and on
the definition of various immediate consequences operators, whose least fixpoints on
the lattice of interpretations are models corresponding to various observable properties.
All the semantics defined in [38] can be reconstructed within the framework proposed
in [28]. The main issue however is the definition of some new semantics and the inves-
tigation of their relation, in terms of correctness and full abstraction, wrt the program
equivalences induced by various observable properties.

Some of the semantics considered in [28] are the generalization to the CLP case of
the non-ground semantics for (positive) logic programs in [26] and of the compositional
semantics in [8]. Indeed, most semantic constructions and results lift directly from logic
programming to CLP. Moving to a non-ground semantics is even more natural in the
case of CLP, since the computation structure may not even include constants so that
there might be no “ground” objects.

In particular, [28] first defines a fully abstract semantics which characterizes com-
puted answer constraints for constraint logic programs and then a semantics which mod-
els answer constraints and which is compositional wrt programs union. Such a semantics
is the natural extension of the previous one obtained by using a semantic domain based
on clauses.

Since the compositional semantics contains the “maximum” amount of information
on computations, it can also be used to model other non-standard observable properties.
Indeed suitable abstractions of this compositional semantics allow us to obtain a correct
(in one case fully abstract) semantics for partial answer constraints and call patterns for
constraint logic programs.

The definitions of the semantics are mainly interesting for their applications. Thus,
the answer constraint semantics can be taken as the basis of a correct notion of pro-
gram equivalence to be preserved by program transformation techniques. Suitable ab-
stract versions of the immediate consequence operators introduced in [28] can be used
for bottom-up abstract interpretation (i.e. fixpoint computation of the abstract model).
More interestingly, the compositional semantics was used in [24] to develop a frame-
work for the modular analysis of CLP programs. This is particularly relevant for prac-
tical applications where modularity can help to reduce the size and the complexity of
the analysis. The semantics for partial answers and call patterns was used for the anal-
ysis of constraint logic programs too. For example, informations on partially computed



Theoretical Foundations and Semantics of Logic Programming 31

constraints can be used to detect “independence” of (sub)goals [21], thus providing the
conditions for optimizations of CLP programs based on AND-parallelism and intelli-
gent backtracking.

8 A Semantic Scheme for Static Program Analysis

Static program analysis aims at determining properties of the behavior of a program
without actually executing it. Static analysis is founded on the theory of abstract inter-
pretation ([18]) for showing the correctness of analysis with respect to a given seman-
tics. Thus, it is essentially a semantic-based technique and different semantic definition
styles lead to different approaches to program analysis. In the field of logic programs
we find two main approaches which correspond to the two main possible constructions
of the semantics: top-down and bottom-up. The main difference between them is related
to goal dependency. In particular, a top-down analysis starts with an abstract goal (see
[10,39]), while the bottom-up approach (see [46,47]) determines an approximation of
the success set which is goal independent. It propagates the information “bottom-up”
as in the computation of the least fixpoint of the immediate consequences operator TP .

Thanks to the equivalence between top-down and bottom-up constructions of the
concrete semantics, by using an approach analogous to that given in Section 4, it is
possible to get a goal independent top-down and bottom-up construction of the abstract
model. This was the leading principle in the development of the framework for bottom-
up abstract interpretation proposed in [3]. An instance of the framework consists in
the specialization of a set of basic abstract operators like abstract unification, abstract
substitution application and abstract union. By means of these abstract operators, [3]
gives a bottom-up definition of an abstract model, i.e. a goal independent approximation
of the concrete denotation. Different instances produce different analysis.

The concrete semantics considered in [3] is the semantics of computed answer substi-
tutions. It is worth noticing that previous attempts [46,47], based on concrete semantics
which do not contain enough information on the program behavior, failed on non-trivial
analysis (like mode analysis). The problem was that they were too abstract to be useful
to capture program properties like variable sharing or ground dependencies.

The ability to determine call patterns was also usually associated to goal dependent
top-down methods. [11,29] showed that the choice of an adequate (concrete) semantics
allows us to determine goal independent information on both partial answer substitu-
tions and call patterns and that this information can be computed both top-down and
bottom-up. This facilitates the analysis of concurrent logic programs (ignoring syn-
chronization) and provides a collecting semantics which characterizes both successes
and call patterns. Many other analysis had been defined based on a “non-ground Tp” se-
mantics like groundness dependency analysis, depth-k analysis, and a “pattern” analysis
to establish most specific generalizations of calls and success sets (see [12]). A simi-
lar methodology has been applied also to CLP programs [36], leading to a framework
where abstraction simply means abstraction of the constraint system.

[14] builds upon the idea in [13] of providing an algebraic characterization of the
observables. [14] extends the approach, by taking two basic semantics: a denotational
semantics and a transition system which define SLD-derivations. In addition, the se-
mantic properties of the observables are expressed as compositionality properties. This



32 A. Bossi and M.C. Meo

leads to a more flexible classification of the observables, where it is possible reason
about properties such as OR-compositionality and existence of abstract transition sys-
tems. Using abstract interpretation techniques to model abstraction allows us to state
very simple conditions on the observables which guarantee the validity of several gen-
eral theorems.

The idea is to define the denotational semantics and the transition system for SLD-
derivations in terms of four semantic operators, directly related to the syntactic structure
of the language. The observables are defined as Galois insertions and it is possible to
characterize various classes of observables in terms of simple properties of the Galois
insertion and of the basic semantic operators.

The reconstruction of an existing semantics or the construction of a new semantics
in the framework requires just a few very simple steps.

1. First of all, we define an observable property domain, namely, a set of properties
of derivations with an ordering relation which can be viewed as an approximation
structure. An observation consists of looking at an SLD-derivation and extracting
some property (abstraction). The formalization of the property o we want to model
is a Galois insertion 〈αo, γo〉 between SLD-derivations and the property domain.

2. Once we have an observable o, we want to systematically derive the abstract se-
mantics. The idea is to define the optimal abstract versions of the various semantic
operators and then check under which conditions (on 〈αo, γo〉) we obtain the op-
timal abstract semantics. This will allow us to identify some interesting classes of
observables and to assign the observable property to the right class of observables.

3. Depending on the class, we automatically obtain the new denotational semantics,
transition system, top-down (Oαo(P )) and bottom-up (Fαo(P )) denotations (sim-
ply replacing the concrete semantic operators by their optimal abstract versions),
together with several interesting theorems (equivalence, compositionality w.r.t. the
various syntactic operators, correctness and minimality of the denotations).

Since it is based on standard operational and denotational semantic definitions, the
framework can be adapted to other programming languages.

Finally [14] considers two classes of observables, complete and approximate. For
every complete or approximate observable, the abstract operational semantics and the
abstract denotational semantics are equivalent. This will allow us to define equivalent
top-down and bottom-up analysis algorithms. The above equivalence property requires
the observable to be condensing. Condensing is a compositionality property which tells
that the abstract semantics of a procedure call can be derived (without losing precision)
from the abstract semantics of the procedure declaration. This property is needed in
abstract diagnosis [17,15,16] where the specification is a post-condition describing a
(goal-independent) property of a set of procedure declarations. It is worth noting that
the observables corresponding to the declarative semantics are condensing and that the
declarative semantics do indeed characterize procedure declarations. Note also that sev-
eral observables used in program analysis (for mode, type and groundness analysis)
are also condensing and that a non-condensing observable can systematically be trans-
formed into a (more concrete) condensing observable, by using domain refinement op-
erators (see, for example, how the condensing domain POS , for groundness analysis



Theoretical Foundations and Semantics of Logic Programming 33

can be derived from the non-condensing domain DEF [50]). The results of the diagno-
sis for approximate observables are also valid for non-condensing domains, which are
sometimes convenient to use in practice for efficiency reasons.

As expected from abstract interpretation theory, the difference between complete
and approximate observables is related to precision. Namely, the abstract semantics co-
incides with the abstraction of the collecting semantics, in the case of complete observ-
ables, while it is just a correct approximation, in the case of approximate observables.
On the other side, approximate observables correspond to noetherian domains. Hence
their abstract semantics is finite, while (in general) it is infinite for complete observ-
ables. The class of complete observables includes the observables (ground instances of)
computed answers and correct answers which allow us to reconstruct the declarative se-
mantics used in declarative debugging, i.e., the least Herbrand model used in [51] and
the least term model (atomic logical consequences or c-semantics) used in [27]. More-
over includes all the observable introduced in Section 3. On the other hand, the class
of approximate observables includes depth(k) [49] and several domains proposed for
type, mode and groundness analysis (for example the domain POS [48] for groundness
analysis).

Note that the AND-compositionality property (i.e., the compositionality with respect
to the conjunction of atoms) of all the semantics defined by this approach, including
their abstract versions, allows us to proceed in a goal independent way since we can
obtain the result for any specific goal G just by executing G in Oα(o)(P ).

9 Conclusions

In the last twenty years, several semantics for logic programs had been developed ac-
cording to an approach which push forward the s-semantics introduced by Moreno
Falaschi, Giorgio Levi, Maurizio Martelli and Catuscia Palamidessi in [26]. The com-
mon aim was that of providing suitable theoretical bases for program analysis of differ-
ent operational behaviors of logic programs. Each semantics captures properties which
can be observed in an SLD-tree and is correct (in some cases fully abstract) wrt an
equivalence relation induced by the considered property. We provided an overview of
these semantics emphasizing their mutual relations and characteristics.

Acknowledgment

First of all we wish to thank Giorgio Levi, the main promoter of the s-semantics ap-
proach and together with him we wish to thank all those who have contributed to the
development of this approach.

References

1. Apt, K.R.: Logic programming. In: Handbook of Theoretical Computer Science, Volume B:
Formal Models and Sematics (B), pp. 493–574 (1990)

2. Barbuti, R., Codish, M., Giacobazzi, R., Maher, M.J.: Oracle semantics for Prolog. Informa-
tion and Computation 122(2), 178–200 (1995)



34 A. Bossi and M.C. Meo

3. Barbuti, R., Giacobazzi, R., Levi, G.: A general framework for semantics-based bottom-up
abstract interpretation of logic programs. ACM Transactions on Programming Languages
and Systems (TOPLAS) 15(1), 133–181 (1993)

4. Bol, R.N., Apt, K.R., Klop, J.W.: An analysis of loop checking mechanisms for logic pro-
grams. Theor. Comput. Sci. 86(1), 35–79 (1991)

5. Bossi, A., Bugliesi, M., Fabris, M.: A new fixpoint semantics for Prolog. In: ICLP 1993:
Proceedings of the Tenth Int’l Conference on Logic Programming, pp. 374–389. MIT Press,
Cambridge (1993)

6. Bossi, A., Bugliesi, M., Gabbrielli, M., Levi, G., Meo, M.C.: Differential logic programming.
In: POPL 1993: Proceedings of the 20th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pp. 359–370 (1993)

7. Bossi, A., Gabbrielli, M., Levi, G., Martelli, M.: The s-semantics approach: theory and ap-
plications. Journal of Logic Programming 19(20), 149–197 (1994)

8. Bossi, A., Gabbrielli, M., Levi, G., Meo, M.C.: A compositional semantics for logic pro-
grams. Theoretical Computer Science 122(1-2), 3–47 (1994)

9. Bossi, A., Menegus, M.: Una semantica composizionale per programmi logici aperti. In:
Sesto convegno sulla programmazione logica, pp. 95–109 (1991)

10. Bruynooghe, M.: A practical framework for the abstract interpretation of logic programs.
Journal of Logic Programming 10(2), 91–124 (1991)

11. Codish, M., Dams, D., Yardeni, E.: Bottom-up abstract interpretation of logic programs.
Theoretical Computer Science 124(1), 93–125 (1994)

12. Codish, M., Søndergaard, H.: Meta-circular abstract interpretation in Prolog, pp. 109–134
(2002)

13. Comini, M., Levi, G.: An algebraic theory of observables. In: SLP, pp. 172–186 (1994)
14. Comini, M., Levi, G., Meo, M.C.: Compositionality in sld-derivations and their abstractions.

In: ILPS, pp. 561–575 (1995)
15. Comini, M., Levi, G., Meo, M.C., Vitiello, G.: Proving properties of logic programs by

abstract diagnosis. In: Dam, M. (ed.) LOMAPS-WS 1996. LNCS, vol. 1192, pp. 22–50.
Springer, Heidelberg (1997)

16. Comini, M., Levi, G., Meo, M.C., Vitiello, G.: Abstract diagnosis. Journal of Logic Program-
ming 39(1-3), 43–93 (1999)

17. Comini, M., Levi, G., Vitiello, G.: Abstract debugging of logic program. In: Fribourg, L.,
Turini, F. (eds.) LOPSTR 1994 and META 1994. LNCS, vol. 883, pp. 440–450. Springer,
Heidelberg (1994)

18. Cousot, P.: Program analysis: the abstract interpretation perspective. ACM Computing Sur-
veys 28(4es), 165 (1996)

19. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: POPL, pp. 238–252 (1977)

20. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: POPL,
pp. 269–282 (1979)

21. Garcı́a de la Banda, M.J., Hermenegildo, M.V., Marriott, K.: Independence in constraint logic
programs. In: ILPS, pp. 130–146 (1993)

22. Debray, S.K.: Formal bases for dataflow analysis of logic programs, pp. 115–182 (1994)
23. Van Emden, M.H., Kowalski, R.A.: The semantics of predicate logic as a programming lan-

guage. Journal of the ACM 23(4), 733–742 (1976)
24. Etalle, S., Gabbrielli, M.: Transformations of clp modules. Theor. Comput. Sci. 166(1&2),

101–146 (1996)
25. Falaschi, M., Levi, G.: Finite failures and partial computations in concurrent logic languages.

Theor. Comput. Sci. 75(1&2), 45–66 (1990)



Theoretical Foundations and Semantics of Logic Programming 35

26. Falaschi, M., Levi, G., Martelli, M., Palamidessi, C.: Declarative Modeling of the Opera-
tional Behaviour of Logic Languages. Theoretical Computer Science 69, 289–318 (1989)

27. Ferrand, G.: Error diagnosis in logic programming, an adaptation of E.Y. Shapiro’s method.
Journal of Logic Programming 4(3), 177–198 (1987)

28. Gabbrielli, M., Dore, G.M., Levi, G.: Observable semantics for constraint logic programs. J.
Log. Comput. 5(2), 133–171 (1995)

29. Gabbrielli, M., Giacobazzi, R.: Goal independency and call patterns in the analysis of logic
programs. In: SAC, pp. 394–399 (1994)

30. Gabbrielli, M., Levi, G., Meo, M.C.: Observational equivalences for logic programs. In: Pro-
ceedings of the Joint Int’l Conference and Symposium on Logic Programming, pp. 131–145
(1992)

31. Gabbrielli, M., Levi, G., Meo, M.C.: Observable behaviors and equivalences of logic pro-
grams. Inf. Comput. 122(1), 1–29 (1995)

32. Gabbrielli, M., Levi, G., Meo, M.C.: Resultants semantics for prolog. J. Log. Comput. 6(4),
491–521 (1996)

33. Gabbrielli, M., Meo, M.C.: Fixpoint semantics for partial computed answer substitutions
and call patterns. In: Kirchner, H., Levi, G. (eds.) ALP 1992. LNCS, vol. 632, pp. 84–99.
Springer, Heidelberg (1992)

34. Gaifman, H., Shapiro, E.: Fully abstract compositional semantics for logic programs. In:
POPL 1989: Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pp. 134–142. ACM Press, New York (1989)

35. Gaifman, H., Shapiro, E.: Proof theory and semantics of logic programs. In: Proceedings
of the Fourth Annual Symposium on Logic in computer science, pp. 50–62. IEEE Press,
Los Alamitos (1989)

36. Giacobazzi, R., Debray, S.K., Levi, G.: A generalized semantics for constraint logic pro-
grams. In: Proceedings of the Int’l Conference on Fifth Generation Computer Systems,
pp. 581–591. ACM Press, New York (1992)

37. Jaffar, J., Lassez, J.-L.: Constraint logic programming. Technical report, Department of Com-
puter Science, Monash University (June 1986)

38. Jaffar, J., Lassez, J.-L.: Constraint logic programming. In: POPL, pp. 111–119 (1987)
39. Janssens, G., Bruynooghe, M.: Deriving descriptions of possible values of program variables

by means of abstract interpretation. Journal of Logic Programming 13(2-3), 205–258 (1992)
40. Kawamura, T., Kanamori, T.: Preservation of stronger equivalence in unfold/fold logic pro-

gram transformation. Theor. Comput. Sci. 75(1&2), 139–156 (1990)
41. Komorowski, H.J.: A specification of an Abstract Prolog Machine and Its Applications to

Partial Evaluation. Phd thesis, Linköping University (1981)
42. Levi, G.: Models, unfolding rules and fixpoint semantics. In: Proc. of the Fifth Int’l Confer-

ence and Symposium on Logic Programming, vol. 2, pp. 1649–1665. MIT Press, Cambridge
(1991)

43. Lloyd, J.W.: Foundations of logic programming. Springer, New York (1984)
44. Lloyd, J.W., Shepherdson, J.C.: Partial evaluation in logic programming. J. Log. Pro-

gram. 11(3&4), 217–242 (1991)
45. Maher, M.J.: Equivalences of logic programs. In: Foundations of Deductive Databases and

Logic Programming, pp. 627–658 (1988)
46. Marriott, K., Søndergaard, H.: Bottom-up abstract interpretation of logic programs. In: Proc.

Fifth Int’l Conf. on Logic Programming, pp. 733–748. MIT Press, Cambridge (1988)
47. Marriott, K., Søndergaard, H.: Semantics-based dataflow analysis of logic programs. In: IFIP

Congress, pp. 601–606. North-Holland, Amsterdam (1989)
48. Marriott, K., Søndergaard, H.: Precise and efficient groundness analysis for logic programs.

LOPLAS 2(1-4), 181–196 (1993)



36 A. Bossi and M.C. Meo

49. Sato, T., Tamaki, H.: Enumeration of success patterns in logic programs. Theor. Comput.
Sci. 34, 227–240 (1984)

50. Scozzari, F.: Logical optimality of groundness analysis. Theor. Comput. Sci. 277(1-2),
149–184 (2002)

51. Shapiro, E.Y.: Algorithmic Program Debugging. MIT Press, Cambridge (1983)
52. Tamaki, H., Sato, T.: Unfold/fold transformation of logic programs. In: ICLP, pp. 127–138

(1984)



Theory-Specific Automated Reasoning

Andrea Formisano1 and Eugenio G. Omodeo2

1 Università di Perugia, Italy
formis@dipmat.unipg.it

2 Università di Trieste, Italy
eomodeo@units.it

Abstract. In designing a large-scale computerized proof system, one is
often confronted with issues of two kinds: issues regarding an underlying
logical calculus, and issues that refer to theories, either specified ax-
iomatically or characterized by indication of either a privileged model or
a family of intended models. Proof services related to the theories most
often take the form of satisfiability decision or semi-decision procedures
(in a sense, polyadic inference rules), while some of the services offered by
the calculus (e.g., the Davis-Putnam propositional satisfiability checker)
provide low-level mechanisms for integrating services of the former kind.
Integration among services can ensure speed-up (i.e., lower number of
steps) in the proofs, but it must always be legitimatized by a conserva-
tiveness result. Interoperability among proof checkers and autonomous
theorem provers is another key point of integration.

In discussing these and related issues, this paper refers to Set Theory
as the unifying background, and to a specific proof-checker based on
a slightly unorthodox formalization of it as an arena for experimentation.

Keywords: proof assistant, decision algorithm, inference mechanism,
Set Theory.

Introduction

Computer-aided verification of formal proofs can be applied extensively in math-
ematics, and one can likewise check for correctness sophisticated algorithms and
computer programs, as well as critical hardware designs. Evidence of this has
been achieved many times through proof assistants such as Mizar, Coq, HOL
light, and Isabelle, to mention only a few [67, 5]. These are leading to the creation
of big repositories of formalized mathematical knowledge.

After the discovery, around the mid 1960s [41], of easily implementable pow-
erful inference methods (the linked conjunct method [40, 85], the resolution
principle [104], and the Knuth-Bendix algorithm [73, 46]), the quest for au-
tomatic strategies that would effectively drive the exploration of the infinite
search space of all proofs towards a specific goal remained, for many years, the
main focus of the research on theorem-proving. Gradually, the expectation that
theorem-provers would rapidly gain enough autonomy to even outperform hu-
man capabilities in many situations, was replaced by the conception that auto-
mated deduction systems must primarily assist, like reliable and fast technicians,

A. Dovier, E. Pontelli (Eds.): 25 Years of Logic Programming, LNCS 6125, pp. 37–63, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



38 A. Formisano and E.G. Omodeo

the working mathematician and computer scientist, either by interacting with
her/him in the construction of detailed proofs, or by proof-checking script files
which we call proof-scenarios, often written by hand and consisting at times of
many thousand lines.

This explains why, in the pages that follow, we will insist more on proof-
checking than on theorem-proving, and, as regards investigation topics relevant
to the present, more on proof-engineering issues than on issues pertaining to
computational logic per se. In particular, it seems to us that integration among
the various systems (both at the level of formal proof language and at the level of
proof-exchange across proof assistants) must be tackled as a crucially important
issue in order that proof technology can be raised above its present limitations.

We will first trace a fundamental distinction between issues that regard the
effectiveness of the inferential engine—which must be clever mainly in the dis-
covery of small proofs—, and issues that have to do with the development of
large-scale proof scenarios. We ascribe the former to computational logic (and,
to some extent, to the broader field of artificial intelligence) and the latter to
the relatively new area of proof-engineering, some of whose history we will trace
back to publications of the 1970s.

Then we will contend that a set-oriented proof-language (mainly first-order,
but with a second-order feature primarily aimed at easing proof-reuse) is the
ideal support for a proof-checking system which upholds a style of proof akin
to common, semi-formal mathematical language. We will suggest that a proof-
checker of this nature—based on a broad-gauge theory, rather than on a logical
calculus—offers natural hooks for the integration of proofs achieved with hetero-
geneous proof assistants, including among such “assistants” the implementations
of specialized decision algorithms.

Within this eclectic view of proof assistants, where set theory serves as a sort
of cement, decision algorithms can play various roles. In some cases, especially
when they handle basic fragments of set theory (but this is also the case of a
type-finding method expounded in [87, Sec. 4]), these algorithms can be exploited
very straightforwardly, just as inference rules whose deductive power reflects how
much of the proving effort can be delegated in full to automatic tools. Likewise,
in declarative programming, specialized solvers encompass standard problem-
solving techniques from whose details programmers want to be alleviated. When
decision algorithms are intended this way, namely as basic inference mechanisms
acting behind the scenes, their study still belongs to computational logic.

There is another dimension, in the study of decision algorithms, which poses
its own challenges to the automated reasoning field. How can these methods be
integrated with one another? To what extent their integration can boost the
capabilities of an automated assistant? In which cases it is not viable due to
complexity limitations or because integration would disrupt decidability?

Because of the significant involvement of Italian researchers in the study of de-
cision algorithms from both angles—existence and complexity on the one hand,
implementation and cross-combination on the other—, we devote an ample sec-
tion of this paper to surveying achievements and trends in this area.



Theory-Specific Automated Reasoning 39

1 Proof-Engineering and Automated Reasoning in Logic

Leibniz’s classic bipartition of logic, into a calculus for reasoning and an ideogra-
phy of concepts, still today retains some influence on the organization of the field
of automated deductive reasoning. On the one hand, many contributions to this
field aim at providing mechanical rules (e.g., the resolution principle) for reliable
reasoning, and these are most often rooted in a calculus: typically, in a version of
first-order predicate logic. On the other hand, many contributions tend, through
a cluster of axiomatic theories, to form the framework within which the notions
needed for applications (the notion of real number, say, or the ones basic to
general topology) can be tersely defined.

Two additional areas are essential for the deployment of a technology of formal
proofs: if the challenges in front of us [1] are to be tamed effectively, we need a
heuristic, which means an art of quick proof-discovery; and skills and tools for
proof-engineering.

As for quick proof-discovery, we cannot rely on fully generic means to speed up
explorations of the (usually infinite) search space where proofs are buried. Long
ago Bledsoe warned [13] that automated proof-techniques would be confronted
with limited success unless they embodied specific knowledge of the various
mathematical disciplines. The great majority of heuristic techniques which have
been devised to date enhance proof methods which are directly based on first-
order predicate calculus; however, it would be quite an amazing coincidence
if techniques of this sort proved to be clever at exploiting the peculiarities of
an axiomatic theory without their design having been oriented to the specific
purpose: when they do, it is likely that considerable human effort went into
finding a well-conditioned formulation of the axioms [9]. In particular, as we
view—in agreement with [9]—Set Theory as the main arena where automatic
theorem-provers and automated proof-assistants should be put to work [64, 65],
we must look for ad hoc proof-methods and heuristic search techniques.

Checking, by means of a proof-verifier, any elaborate argument—the expla-
nation, say, of a sophisticated algorithm, or the proof of some profound mathe-
matical theorem—requires that a large number of logical statements be fed into
the system. These statements must formalize a line of reasoning that leads from
bare rudiments of logic and mathematics to the specialized topic of interest—for
instance, graph theory, or mathematical analysis—and then to a target conclu-
sion. Such an enterprise can only be managed effectively if suitable constructs
ensuring “modularity”, which means the possibility to subdivide a long argument
into wieldy chunks, are available. The obvious goal of proof modularization is to
avoid repeating similar steps when the proofs of two theorems are closely anal-
ogous. Modularization must also conceal the details of a proof once they have
been fed into the system and successfully certified. These considerations underlie
some recent research trends in proof-engineering, whose highlight we postpone
to Sec. 2, contenting ourselves for the time being to display in Fig. 1 the typical
structure of a “chunk of mathematical knowledge” which can be invoked repeat-
edly during a proof-development session very much like a procedure during a
program execution.



40 A. Formisano and E.G. Omodeo

Splits(P, S) ↔Def 〈∀ b ∈ P, ∀ b′ ∈ P | (b = b′ ↔ b ∩ b′ �= ∅) & b ⊆ S〉
Theory eq classes(s0, Eq(X, Y))

〈∀ v, w, z | {v, w, z} ⊆ s0 → Eq(v, v) &
(
Eq(v, w)&Eq(z,w) → Eq(v, z)

)〉
⇒ (quotΘ , cl ofΘ) -- quotient-set and canonical embedding

Splits(quotΘ , s0)

〈∀ x |
(
x ∈ s0 → x ∈ cl ofΘ(x)

)
& cl ofΘ(x) ∈ quotΘ ∪ {{s0}}〉

〈∀ x ∈ s0, ∀ y ∈ s0 | Eq(x, y) ↔ cl ofΘ(x) = cl ofΘ(y)〉
End eq classes

Fig. 1. Partitioning of a set into equivalence classes

Modularization alone does not suffice, of course, to answer the host of proof-
engineering problems which arise in the development of very extensive proofs
and in the creation, testing, and maintenance of automated proof-systems. Nev-
ertheless, it contributes in many ways to various aspects of proof-engineering,
ranging from the readability of proofs to soundness-preserving extensibility (see
[43, 44]) of the verifiers.

2 Set Theory as a Background for Discussion

Historically, Set Theory grew out of efforts aimed at providing a single foundation
and a sort of lingua franca for the diverse areas of mathematics; consequently,
when constructions and proofs of classical mathematics are developed in full
within the framework of a theory of sets such as Zermelo-Fraenkel (ZF), they
will resemble the corresponding specifications as found in an ordinary textbook
(were it not for the extra amount of formal detail needed to make them digestible
to a proof verifier). E.g., the set-theoretic jargon can be successfully exploited
to carry out any of the classical constructions of the field of real numbers. To
pick another example, the Stone representation theorem for Boolean algebras is
quite naturally stated and proved in set-theoretic terms.

Specification of algorithms, and algorithm correctness verification, can also
benefit from a set-theoretic language [98], as one can judge from the very exis-
tence of set-based programming languages such as SETL [108] and {log} [55]
(for another proposal, see [114]). To support formal reasoning in the realm
of algorithms, a theory of hereditarily finite sets [117] would suffice, but a
full-fledged set theory such a ZF is even better, as it enables one to treat
in a uniform framework [94] algorithmic issues such as, e.g., the correctness
of the Davis-Putnam-Logemann-Loveland satisfiability test DPLL, and non-
constructive ones such as, e.g., the compactness of propositional logic, proved
via the Zorn lemma.

A proof verifier based on set theory (thought of as a “big theory” [61] by
means of which all reasoning is performed within a single, powerful and highly



Theory-Specific Automated Reasoning 41

expressive language) has been described in [87].1 Decidable fragments of set
theory which we will discuss in Sec. 5 play, in this system, roles comparable to
those of resolution and paramodulation in autonomous theorem provers. In order
to support proof reuse and various ways of extending the inferential armory, this
verifier relies on a version of ZF which offers a second-order construct named
‘Theory’ [93], inspired by the mechanism for parameterized specifications of
the Clear language [16]. As the tiny example in Fig. 1 shows, these theories, like
procedures in a programming language, have lists of formal input parameters
(s0 and Eq( , ), in the example at hand). Each Theory requires its parameters
to meet a set of assumptions. When “applied” to a list of actual parameters
that have been shown to meet the assumptions, a theory will instantiate several
additional “output” symbols (quotΘ and cl ofΘ in our example)2 standing for
sets (e.g. quotΘ ), functions (e.g. cl ofΘ), and predicates, and then supply a list
of claims initially proved explicitly by the user inside the theory itself. These are
theorems generally involving the new symbols.

A convenient format for Theory invocation is the one exemplified here, where
EqVenn(X, Y) ↔Def { t ∈ s : X ∈ t } = { t ∈ s : Y ∈ t }:

APPLY 〈quotΘ : regions〉 eq classes
(

s0 �→ ⋃
s, Eq(X, Y) �→ EqVenn(X, Y)

)⇒
Theorem venn · 1: [Venn’s partition] Splits(regions,

⋃
s).

Acceptance of this single-line proof of Theorem venn · 1 on the part of a proof-
checker presupposes verification of the assumption 〈∀ v, w, z |{v, w, z} ⊆ s0 →
Eq(v, v) & · · · 〉 of the invoked theory, inside which s0 and Eq are replaced by⋃

s and by EqVenn, respectively, where the following definition of the unionset
operator applies: ⋃

S =Def { u : v ∈ S , u ∈ v }.
To see how the Theory construct can be exploited to enhance the inferen-
tial armory, consider the first example in Fig. 2: this theory, which provides a
mechanism constructing a key entity for a refutation, implements an induction
principle, seen here, rather than as a new inference rule, as a tactic for instanti-
ating cleverly an existential variable. The principle under consideration enables
us to prove that some property ϕ(F ) holds for all finite sets F , via an argument
organized as follows: (1) Assume that a counterexample f0 exists, i.e., suppose
that Is finite(f0) & ¬ϕ(f0). (2) By binding f0 and ¬ϕ( ) as actual parameters
to the formal parameters f and P( ) of finite induction, i.e. by invoking

APPLY 〈fΘ : f1〉 finite induction
(

f �→ f0, P(X) �→ ¬ϕ(X)
)

,

1 This system, conceived by Jacob T. Schwartz, is sometimes called Referee (or ‘Ref’
for brevity), and sometimes called ÆtnaNova. An on-line tutorial for it is available at
the URL http://setl.dyndns.org/EtnaNova/login/Ref_user_manual.html, while
the fragments of Ref scenarios occurring in this paper are often drawn from
http://setl.dyndns.org/EtnaNova/login/search_folder/scenario.pdf

2 Such output symbols, whose meanings are specified inside the Theory, carry the Θ
subscript.

http://setl.dyndns.org/EtnaNova/login/Ref_user_manual.html
http://setl.dyndns.org/EtnaNova/login/search_folder/scenario.pdf


42 A. Formisano and E.G. Omodeo

Theory finite induction (f, P(X))
Is finite(f) & P(f)

⇒ (fΘ )

fΘ ⊆ f & P(fΘ) & 〈∀ t ⊆ fΘ | t �=fΘ → ¬ P(t)〉
End finite induction

Theory membership induction (s, P(X))
P(s)

⇒ (sΘ )

sΘ ∈ ult membs({s}) & P(sΘ) & 〈∀ k ∈ sΘ | ¬ P(k)〉
End membership induction

Fig. 2. Two inference mechanisms introduced through Theoryes

get a smallest finite set f1 such that ¬ϕ(f1) holds. (3) Through details that de-
pend on the peculiarities of ϕ(F ), strive to derive a contradiction from the alleged
minimality of f1, so as to get the desired conclusion 〈∀ f | Is finite(f) → ϕ(f)〉.

A proof-strategy analogous to this one can be associated with any well-
founded relation. In the example just seen, this is the inclusion relationship
over the class of finite sets;3 in the other example of Fig. 2 this is the member-
ship relation over all sets, which is well-founded according to von Neumann’s
regularity axiom—a built-in postulate in our set-based verifier (cf. Sec. 4).

While examining the Theory membership induction, we take the opportunity
to illustrate another benefit arising from the axioms of set theory: sometimes,
definitions serve just as a syntactic device enabling one to introduce shorthand
notation, such as e.g.

next(X) =Def X ∪ {X};

but our proof-scenarios can contain recursive definitions justified by the regu-
larity axiom, on which semantics [17] has a much heavier bearing. Examples of
this nature are the definitions

ult membs(X) =Def X ∪
⋃ {

ult membs(y) : y ∈ X
}
,

rk(X) =Def

⋃ {
next

(
rk(y)

)
: y ∈ X

}
,

of which:4

– the former specifies the set of all ultimate members of any given set X ,
namely the set consisting of all those y from which a membership chain
y = y0 ∈ y1 ∈ · · · ∈ yn = X leads to X ;

3 When set-inclusion gets restricted to the natural numbers, the Theory
finite induction specializes into the most familiar arithmetic induction principle.

4 These definitions yield, among others, that ult membs({{{∅}}}) = {∅, {∅}, {{∅}}} =
{0, 1, {1}}, rk({{{∅}}}) = {∅, {∅}, {∅, {∅}}} = {0, 1, 2} = 3, ult membs({0, 2}) =
ult membs({∅, {∅, {∅}}}) = 3 = rk({0, 2}), and ult membs(N \ f) = rk(N \ f) = N if
N designates the natural numbers and f is a finite set.



Theory-Specific Automated Reasoning 43

– the latter specifies the rank of X : intuitively speaking, an ordinal measure
of how deeply the ultimate members of X are nested inside X .

The Theory membership induction tells us that when a set s0 violating some
property ϕ(S) exists, so that ¬ϕ(s0) holds, then a rank-minimal such set s1
exists: more specifically, there is an s1 either coinciding with s0 or appearing
among its ultimate members, which meets the condition ¬ϕ(s1) whereas ϕ(k)
holds for all k ∈ s1. This Theory hints, again, at a strategy for proving claims
of the form 〈∀x | ϕ(x)〉: (1) suppose that an s0 exists such that ¬ϕ(s0) holds;
(2) let s1 be a membership-minimal such set, so that ¬ϕ(s1) & 〈∀ k ∈ s1 | ϕ(k)〉
holds; (3) strive to get a contradiction from the alleged minimality of s1.

It should be clear that when a formal parameter, like P( ) in the two The-
oryes just examined, refers to a general property of sets, one can assign to it
as an actual parameter a first-order formula ϕ with one free variable: our set-
language, in fact, to follow ZF closely, does not provide explicit means to speak
about proper classes (in particular, its individual logical variables can only take
set values).5 Analogously, an output parameter like the cl ofΘ of Fig. 1, as it
stands for a function defined over the universe of all sets, designates a proper class
of ordered pairs. As we are seeing, the Theory construct, which we have intro-
duced mainly motivated by proof-engineering considerations, lifts the expressive-
ness of our formal language well above the usual limitations of ZF: as a matter of
fact, we can indefinitely extend the signature of our (essentially first-order) set-
theoretic language thanks to a second-order Skolemization mechanism implicit
in the functioning of Theoryes. We can, at times, raise considerably the import
of a Theory: see, for example, in Fig. 3, the much enhanced version of the The-
ory of Fig. 1. While implementing the internals of this new Theory, one can
define chΘ(X) to be an ∈-minimal element of {w ∈ ult membs(x0) | Eq(w, X) },
where x0 = { u ∈ c(X) | Eq(u, X) & P(u) }. Thus, even when the Eq-class of X is
not a set (e.g., this class might consist of all ordinals which can be put in one-one
correspondence with one another), chΘ (X) will be an ∈-minimal element of this
class, depending solely on the class and not on X.

An invocation of this theory could be as follows (where EqVenn is as before):

APPLY 〈chΘ : repr〉 circumscribed eq classes
(

Eq(X, Y) �→ EqVenn(X, Y),
P(X) �→ X ∈ {s} ∪

⋃
s, c(X) �→ if X ∈

⋃
s then

⋃
s else {s} fi

)⇒
Theorem venn · 2: [Venn’s representatives]

〈∀ v, w | EqVenn(v, w) ↔ repr(v) = repr(w)〉
〈∀ v, w | EqVenn(v, w) → v /∈ repr(w)〉.

(This invocation presupposes, of course, that all three assumptions of the invoked
theory, suitably instantiated, have been verified.)

A reason why set theory can do well as “glue” for the integration of proof
assistants is that one can shallowly amalgamate into it the semantics of a formal
deductive system: an illustration of this, referring to first-order predicate calculus
5 The reader who finds the set-class distinction unfamiliar to him/her, can skim

through this paragraph superficially.



44 A. Formisano and E.G. Omodeo

Theory circumscribed eq classes(Eq(X, Y), P(X), c(X))

〈∀ v, w, z | Eq(v, v) &
(
Eq(v, w) & Eq(z, w) → Eq(v, z)

)〉
〈∀ v | 〈∃ u | Eq(u, v) & P(u)〉〉
〈∀ v, u | Eq(u, v) & P(u) → u ∈ c(v)〉

⇒ (chΘ) -- choice of an ∈-minimal representative from each Eq-class

〈∀ v | Eq(chΘ(v), v)〉
〈∀ v, w | Eq(v, w) ↔ chΘ (v) = chΘ(w)〉
〈∀ v, w | Eq(v, w) → v /∈ chΘ (w)〉

End circumscribed eq classes

Fig. 3. Enhanced version of the selection of class representatives

will be provided in Sec. 3—analogously one could treat a more sophisticated, e.g.
a strongly typed, logical calculus.

When needed (but more rarely, as this approach is more laborious), one can
tackle interoperability among logical systems at a deeper level: one can proceed
to “arithmetize” a logical system, i.e., to encode in set-theoretic terms both its
syntax and its deductive apparatus. On a very small scale, this is illustrated by
the today standard representation of CNF formulae as sets of sets of literals.
Speaking in general, set theory can be very naturally used to support meta-level
reasoning: this emerges vividly, for example, from the relative ease with which
limitative results such as the celebrated Gödel theorems can be proved within
a theory dealing with aggregates explicitly [96, 80], compared to an arithmetic
of numbers (where the treatment of sets, lists, derivations, etc., sometimes calls
for unwieldy encodings).

3 Interoperability among Reasoners

Besides being useful for the avoidance of repeated proofs in closely analogous
contexts, for information-hiding, and for sound extensions of the logical armory,
the Theory construct gives us a mechanism for gluing together results obtained
with different proof-assistants. To illustrate the point, we choose the mathe-
matical theory of ordered Abelian groups as our example of an outer (or “ex-
ternal”) theory. This can be very naturally stated as a first-order theory (cf.
Fig. 4), but its integration in a scenario developed with our set-based proof-
verifier presupposes various slight changes. For instance, unrestricted quantifiers
must be restricted (i.e., 〈∀x ψ〉 and 〈∃x ψ〉 become 〈∀x | In dom(x) → ψ〉 and
〈∃x | In dom(x) & ψ〉 respectively), to reflect the fact that the primary domain
of discourse remains the universe of all sets, even though one is momentarily
focusing—while reasoning inside the outer theory—on the support domain of an
ordered commutative group. Restricting quantifiers becomes necessary both in
the statements of postulates and in the theorem claims. As another issue, let us
mention the fact that a theorem-prover may offer no special means to separate
axioms from the definitions of symbols which are not indispensable in the sig-
nature of the outer theory (e.g., in the case at hand, a symbol designating the



Theory-Specific Automated Reasoning 45

-- Abelian group axioms

〈∀x, y, z | (x⊕y)⊕z=x⊕(y⊕z)〉 -- associativity

〈∀x | x⊕e=x〉 -- right unit

〈∀x | x⊕�x=e〉 -- right inverse

〈∀x, y | x⊕y=y⊕x〉 -- commutativity
-- ordering axioms (axioms concerning non-negativeness)

〈∀x, y | Nneg(x) & Nneg(y) → Nneg(x⊕y)〉
〈∀x | Nneg(x)∨Nneg(�x)〉
〈∀x | Nneg(x) & Nneg(�x) → x=e〉
-- definitional extensions

〈∀x | Nneg(x) → ‖x‖=x〉 -- definition of the absolute value . . .

〈∀x | ¬Nneg(x) → ‖x‖=�x〉 -- . . . definition of the absolute value

〈∀x, y | x�y ↔ Nneg(y⊕�x)〉 -- definition of comparison

Fig. 4. Outer theory of ordered Abelian groups (postulates and definitional extensions)

absolute value operation); nonetheless, when one interfaces the theory, one wants
to stress the different roles of the assumptions regarding the symbols (postulates
on one side, definitions on the other).

Fig. 5 shows what form a Theory interface with the theory of ordered Abelian
groups may take.6 Observe the suffix to the Theory keyword, indicating a spe-
cific syntax to be adopted in external files (resulting from the interaction between
a user and an external prover). A standardization of the syntaxes adopted by the
different provers seems to be necessary to favor the integration between theo-
rem assistants. In this example, observe that the domain to which the quantified
variables are restricted is treated as a property In dom( ) of sets, even though
most typically it will satisfy the biimplication In dom(X) ↔ X∈theory dom for
a suitable set theory dom. This design choice makes it possible for the user to,
e.g., invoke the Theory orderedGroups, after defining globally

Z� =Def if ∅ ∈ Z then Z \ {∅} else Z ∪ {∅} fi ,

with actual parameters of such generality as

X⊕Y = {z ∈ X | z� /∈ Y } ∪ {z ∈ Y | z� /∈ X} ,
�X = {z� : z ∈ X} ,

In dom(X) ↔ X ∩ �X = ∅ ,
Nneg(X) ↔ X = ∅ ∨ (min{z ∪ {∅} : z ∈ X} ∈ X) ,

where the min operation refers to a fixed well-ordering of the entire universe of
sets. (Without too much effort the support-domain of this group could be so
extended to encompass all sets.)

6 This is a decidable theory—see below. One might hence consider introducing a de-
cider for it as an inference rule, but the usefulness of an ad hoc inference rule is
debatable, since the lemmas appearing in Fig. 5—instantiated to the case of rational
numbers—are already adequate for the construction of the reals.



46 A. Formisano and E.G. Omodeo

Theory outer orderedGroups
(
In dom(x), x⊕y, e,�x, Nneg(x), x�y

)
-- closure laws

〈∀x, y | In dom(x) & In dom(y) → In dom(x⊕y)〉& In dom(e)

〈∀x | In dom(x) → In dom
(�x

)〉
-- axioms proper

〈∀x, y, z | In dom(x) & In dom(y) & In dom(z) → (x⊕y)⊕z=x⊕(y⊕z)〉
...

...
...

〈∀x | In dom(x) → Nneg(x) & Nneg
(�x

) → x=e〉
-- shorthand notation

〈∀x, y | In dom(x) & In dom(y) → x�y ↔ Nneg
(
y⊕�x

)〉
extdfn � ‖X‖Θ =Def if Nneg(X) then X else �X fi

⇒
〈∀x, y | In dom(x) & In dom(y) → �(x⊕�y)=y⊕�x〉

-- cancellation laws
〈∀x, y, z | In dom(x) & In dom(y) & In dom(z) → x⊕y=x⊕z → y=z〉
〈∀x, y, z | In dom(x) & In dom(y) & In dom(z) → x⊕z=y⊕z → x=y〉

-- totality, reflexivity, and three transitivity laws
〈∀x, y | In dom(x) & In dom(y) → (x�y ∨ y�x) & x�x〉
〈∀x, y, z | In dom(x) & In dom(y) & In dom(z) → x�y & y�z → x�z〉
〈∀x, y, z | In dom(x) & In dom(y) & In dom(z) → x�y & x�=y & y�z → x�=z〉
〈∀x, y, z | In dom(x) & In dom(y) & In dom(z) → x�y & y�z & y �=z → x�=z〉

-- two isotony laws
〈∀x, y, z | In dom(x) & In dom(y) & In dom(z) → x�y → x⊕z�y⊕z〉
〈∀x, y, z | In dom(x) & In dom(y) & In dom(z) → x�y & x�=y → x⊕z�=y⊕z〉

-- laws concerning the absolute value
〈∀x | In dom(x) → In dom(‖x‖Θ) & ‖x⊕�x‖Θ=e & x�‖x‖Θ & e�‖x‖Θ〉
〈∀x | In dom(x) → ∥∥‖x‖Θ

∥∥
Θ
=‖x‖Θ &

(‖x‖Θ=e ↔ x=e
)

& ‖�x‖Θ=‖x‖Θ〉
〈∀x, y | In dom(x) & In dom(y) → x⊕y�‖x‖Θ⊕‖y‖Θ & ‖x⊕y‖Θ�‖x‖Θ⊕‖y‖Θ〉
〈∀x, y | In dom(x) & In dom(y) → ¬Nneg(x) → x�‖y‖Θ & x�=‖y‖Θ〉
〈∀x, y, z | In dom(x) & In dom(y) & In dom(z) → ‖x⊕�y‖Θ�z → y�x⊕z〉
〈∀x, y, z | In dom(x) & In dom(y) & In dom(z) → ‖x⊕�z‖Θ�‖x⊕�y‖Θ⊕‖y⊕�z‖Θ〉
〈∀x, y | In dom(x) & In dom(y) → Nneg(y) → x⊕�y�x⊕y〉
〈∀x, y | In dom(x) & In dom(y) → ∥∥‖x‖Θ⊕�‖y‖Θ

∥∥
Θ
�‖x⊕�y‖Θ〉

〈∀x, y | In dom(x) & In dom(y) → ‖x‖Θ⊕�∥∥‖y‖Θ⊕�‖x‖Θ

∥∥
Θ
�‖y‖Θ〉

〈∀x | In dom(x) → ‖x‖Θ=if Nneg(�x) then �x else x fi〉
End orderedGroups

Fig. 5. Interface Theory for ordered Abelian groups (assumptions, various lemmas)

Notice also that in some cases we cannot adopt this policy of restricting the
quantified variables of a theory to a possibly proper class when translating its
axioms into set-theoretic assumptions of a Theory: in fact, one is frequently
confronted with cases when there is an infinite axiom scheme (think, e.g., of the
continuity postulate of elementary geometry [119], or of the induction postulate



Theory-Specific Automated Reasoning 47

of Peano arithmetic) which admits a much more straightforward set-theoretic
translation if one takes the domain of discourse to be a set.

Often, even when a theory is not meant to refer to a proper class, one may
ease reasoning within it by extending its domain of discourse to all sets, so
that any restriction of quantifiers becomes superfluous. An example of this has
been given in [38], where a toggling function representing negation over the set of
propositional literals gets plainly extended to the entire universe of sets; likewise,
proving the correctness of various decidable extensions of multi-level syllogistic
[26] relies on global extensions of functions or relations enjoying particular prop-
erties. It is not entirely clear to us—but we deem it useful to investigate this
point—when the set-theoretic rendering of a first-order theory can dispense with
the restriction of quantifiers.

At present, our set-based verifier implements only a form of loose coupling
with outer provers. Stronger, more dynamic, forms of interaction with outer
proof-assistants should be devised.

4 Bringing Algorithmic Specifications into Play

The legitimacy, in a set-based verifier, of the built-in form of recursion illustrated
by the definitions of ult membs( ) and rk( ) in Sec. 2, rests on the global well-
foundedness of membership (the regularity axiom), statable as

〈∀x | arb(x) ∈ x ∪ {x} & arb(x) ∩ x = ∅〉.

Likewise, as explained in [93], one can resort to a more tortuous recursive defini-
tion to introduce a function whose domain is a set s, whenever a binary relation
has been shown to be well-founded on s. The Theory wellfounded recursive fcn
of Fig. 6, or some specialized variant of it, such as the Theory finite recursive fcn
of the same figure, can be exploited to do this. E.g., one can define summation
over a monoid so as to meet the specification of Fig. 8, inside sigma theory, by
putting ΣΘ(G) =Def Σ

′(G, ∅) after invoking

APPLY 〈recΘ : Σ′〉 finite recursive fcn
(

f(B, X, T) �→ arb(B) ,

g(R, Y, X, T) �→ R ⊕ arb(X)[2], P(R, Y, X, T) �→ Y = X \ {arb(X)}
)
.

(This example involves various notions related to mappings, i.e. functions repre-
sented as sets of pairs; hence we are providing a quick prospect of those notions
in Fig. 7.)

By means of wellfounded recursive fcn one can, occasionally, specify a termi-
nating algorithm of which one wants to show the correctness relative to the
specification of a problem which the algorithm is intended to solve. A substan-
tial exercise of this kind was carried out in [94], to check correctness of the
DPLL algorithm. This approach to algorithm-correctness verification is formally
impeccable but not expedient: not only it calls for technical ingenuity in the
actualization of the recursion parameters, but it often ends in scarcely readable
specifications (as we have just seen with the sigma theory example).



48 A. Formisano and E.G. Omodeo

Theory wellfounded recursive fcn
(
s, Y � X, f(B, X, T), G(A, Y, X, T), P(A, Y, X, T)

)
〈∀t ⊆ s | t �=∅ → 〈∃x ∈ t, ∀y ∈ t | ¬y � x〉〉

-- � is thereby assumed to be irreflexive and well-founded on s
⇒ (recΘ , rkΘ )

〈∀x, t | x ∈ s → recΘ (x, t) =

f
( {

g
(
recΘ(y, t), y, x, t

)
: y ∈ s | y � x & P

(
recΘ(y, t), y, x, t

)}
, x, t

)
〉

〈∀x, t | x ∈ s → rkΘ(x, t)=
⋃ {

next
(
rkΘ (y, t)

)
: y ∈ s | y � x & [y, x] ∈ t

} 〉
End wellfounded recursive fcn

Theory finite recursive fcn
(
f(B, X, T), g(R, Y, X, T), P(R,Y, X, T)

)
⇒ (recΘ)

〈∀x, t | Finite(x) → recΘ(x, t)=

f
( {

g
(
recΘ(y, t), y, x, t

)
: y ⊆ x | y �=x & P

(
recΘ(y, t), y, x, t

)}
, x, t

)
〉

End finite recursive fcn

Fig. 6. Two versatile schemes of recursive definition

[L,R]=
Def

{{
L
}
,
{
{L} , {{R} , R}

}}
-- ordered pair and its projections

P [1]=
Def

arb(arb(P )) P [2]=
Def

(
arb(P\ {arb(P )})\ {arb(P )}

)[1]
domain(F )=

Def

{
p[1] : p ∈ F

}
range(F )=

Def

{
p[2] : p ∈ F

}

F|A=Def

{
p ∈ F, x ∈ A | p =

[
x, p[2]

]}
F �X=

Def
arb

(
F|{X}

)[2]

Is map(F )↔
Def

F = F|domain(F )
Svm(F )↔

Def
F = { [p[1], F �p[1]] | p ∈ F }

F←=
Def

{[
p[2], p[1]

]
: p ∈ F

}
F � B↔

Def
range(F←

|B)

1–1(F )↔
Def

Svm(F ) & Svm(F←)

Fig. 7. Map-related notions

In its current implementation, our set-based proof-checker does not support
any genuine algorithmic specification language; but carrying out a hybridization
between such a language and the proof-specification language available inside
our verifier seems worth the effort: on the one hand, it would enable the user to
annotate her/his algorithms with logical statements; on the other hand, it would
make the inductive arguments underlying many mathematical proofs much more
transparent. Consider, for example, the following proposition [91, Sec. 1]:

Discrimination lemma: Every finite nonnull set F has a set D ⊆
⋃
F of

lower cardinality than its own cardinality |F|, satisfying the equality |F| =
|{ v ∩ D : v ∈ F}|.

As discussed earlier, the Theory finite induction of Fig. 2 provides a mighty
tool for handling the proofs of claims of this nature; however, the essential of
the proof would be much better conveyed by the explicit construction, shown
in Fig. 9, of a D meeting the claim of the discrimination lemma. Let us note in



Theory-Specific Automated Reasoning 49

Theory sigma theory(s,X ⊕ Y, e)

〈∀x ∈ s, y ∈ s | x ⊕ y ∈ s〉& e ∈ s

〈∀x ∈ s, y ∈ s, z ∈ s | (x ⊕ y) ⊕ z=x ⊕ (y ⊕ z)〉
〈∀x ∈ s | x ⊕ e=x〉
〈∀x ∈ s, y ∈ s | x ⊕ y=y ⊕ x〉

⇒ (ΣΘ) -- ΣΘ(f) will be defined for any single-valued mapping f with values in s

ΣΘ(∅)=e

〈∀c | c[2] ∈ s → ΣΘ({c})=c[2]〉
〈∀f | Finite(f) & range(f) ⊆ s → ΣΘ(f) ∈ s〉
〈∀c, f | c ∈ f & Finite(f) & range(f) ⊆ s → ΣΘ(f)=ΣΘ(f\ {c}) ⊕ c[2]〉
〈∀f, t | Finite(f) & Is map(f) & range(f) ⊆ s →

ΣΘ(f)=ΣΘ(f|domain(f) ∩ t
) ⊕ ΣΘ(f|domain(f)\t

)〉

〈∀f, g | Finite(f) & Svm(f) & Svm(g) & domain(f)=domain(g) & range(f) ⊆ s →

ΣΘ(f)=ΣΘ

({[
y, ΣΘ(f|g�{y})

]
: y ∈ range(g)

})
〉

〈∀f, g | Finite(f) & Svm(f) & 1–1(g) & domain(f)=domain(g) & range(f) ⊆ s →

ΣΘ(f)=ΣΘ

(
{[y, f�(g←�y)] : y ∈ range(g)}

)
〉

End sigma theory

Fig. 8. Interface of a Theory of finite summation over an Abelian monoid

procedure discriminant(F);

claim Is finite(F) & F �= ∅;
a := sel(F); -- i.e., draw an element a from F without removing it
if F = {a} then D := ∅;
else -- construct D recursively, as follows

Δ := discriminant(F \ {a});
claim |{v ∈ F \ {a} | v ∩ Δ = a ∩ Δ}| < 2;
D := Δ ∪ {sel((v \ a) ∪ (a \ v)

)
: v ∈ F \ {a} | v ∩ Δ = a ∩ Δ};

end if;
claim D ⊆ ⋃F & |D| < |F| = |{ v ∩ D : v ∈ F}| &(

∀x ∈ D| |{v ∩ (D \ {x}) : v ∈ F}| < |F|
)
;

return D;

end discriminant;

Fig. 9. Algorithmic specification of a proof of the discrimination lemma

passing that this construction is not really executable, in spite of its algorithmic
appearance, when infinite sets occur among the elements of F , as infinite sets
can be of an utterly unmanageable nature.

A big variety of (pseudo-)algorithmic languages can be proposed for the spec-
ification of logically annotated constructions (see, e.g., [74] for a proposal per-
taining to number theory and analysis). In our opinion, a promising start, to go
hand-in-hand with the set-theoretic foundation of our proof-checker, could draw
inspiration from the already cited programming language SETL.



50 A. Formisano and E.G. Omodeo

5 The Role of Decision Algorithms

The history of proof assistants begins with an implementation of the deci-
sion algorithm for the additive Presburger arithmetic [101, 39, 41]. A consid-
erably more versatile approach to theorem-proving gained ground in the 1960s,
when Prawitz first [100], then Davis and Putnam [42], and finally Robinson
with his celebrated resolution principle [104], proposed semidecision methods
exploitable for any finitely axiomatized first-order theory—including, therefore,
even the Gödel-Bernays class theory [123, 102]. The resolution-based approach
to theorem-proving dominated the scene so much and for so long [76]—in spite
of the already cited warning [13]—that, over the years, a host of refinements to
resolution were proposed; resolution also evolved into a machinery underlying
various systems for theory-based reasoning [115, 99, 66], and even into a method
exploitable in order to deal with Church’s typed lambda calculus [2, 3].

Due to the long-lasting popularity of resolution, the research on decision
algorithms—sometimes referring to fragments of mathematical theories (or of
logical calculi [59]), sometimes to theories in their full extent (cf., e.g., [60])—
had only sporadically an impact on the automated deduction field, save for a few
happy exceptions such as the papers by Nelson-Oppen and Shostak [81, 82, 111].
Concerning the works just cited, it should be noted that rather than offering a
specific contribution to the inventory of decidable theories, they address an is-
sue of integration between decision algorithms: in this sense, their significance
and long-term influence [109, 121] can be compared to the ones of DPLL, whose
role as a ubiquitous inference mechanism is much more relevant than its direct
usability as a test for propositional logic.

5.1 Decidable Theories

Progressively, the attention bestowed to decision algorithms by researchers in
the Automated Deduction community has increased significantly: decision algo-
rithms related to different mathematical disciplines, and general inference meth-
ods into which they can be built, have become a main thread of research. In
what follows we select, from among many decidability results, some which are
likely to improve the quality of support provided by proof-assistants. Not all of
these results are recent: actually, only a few have been obtained directly inside
the Automated Deduction field, whereas others have simply migrated into it.7

If implemented in full, the already mentioned decision method for Presburger
arithmetic—as well as a few variants of it relying, like it, on quantifier elimina-
tion techniques—has little practical applicability: as a matter of fact, as shown
by [63], any decision algorithm for this theory suffers from doubly exponential
worst-case complexity. In spite of this general limiting result, lower complexity
can be achieved by restraining consideration to specific fragments of this theory.
A number of possibilities have been explored: for instance, when only formulae
7 Due to space limitations, we will pass under silence many contributions to the general

unification field [113] and on rewriting systems [46], although several of these, e.g.
[57], are likely to be quite relevant for the development of our set-based proof-checker.



Theory-Specific Automated Reasoning 51

devoid of quantifier alternations are treated, the decision problem acquires sin-
gle exponential complexity (actually, it becomes NP-complete [95]). Particular
fragments of Presburger arithmetic are of great interest in the field of auto-
mated verification. This is the case of the fragment named UTVPI, in which
only formulae of the form ax � by + c with a, b ∈ {0, 1,−1} are admitted. In this
case, polynomial algorithms are available. A similar result holds for the easier
collection of Boolean combinations of atoms of the form x � y + c, forming the
so-called difference logic. This fragment of Presburger arithmetic has recently
received greater attention, because of its connection with stable model seman-
tics: [84], among others, shows how decision methods for difference logic can
be the basis for efficient mechanization of answer set semantics and proficient
integration of decision methods into answer set solvers.

The decidability of universal Presburger arithmetic in presence of uninter-
preted function and predicate symbols has been assessed in [110]. This result
represents a first step towards the integration of solvers, as well as [21] that
describes a decision method for unquantified formulae of Presburger arithmetic
extended with sets.

Another stream of research investigated the decision properties of the ele-
mentary geometry and of the algebra of real numbers. The seminal paper [118]
provides decidability results and basic decision techniques for these theories (see
also [119]). A first upper bound on the complexity of the decision problem for real
closed fields is provided by [37], which proposes an approach based on cylindrical
algebraic decomposition. The resulting decision method has doubly exponential
complexity in the number of variables that occur in the input formula; how-
ever, if a fixed number of variables are allowed to appear in the formulae, then
the complexity becomes simply exponential. A refined decision algorithm which
is doubly exponential in the number of quantifier alternations appears in [69]:
this enables efficient implementations of deciders under strong limitations on
quantifier nesting.

Lowering the complexity is possible, as ever, by restraining the collection
of formulae which can be treated. A very interesting, and useful, collection of
formulae of real algebra consists of the purely existentially quantified linear con-
straints. In this case, since the decision problem becomes essentially a linear
programming problem, polynomial methods exist. Notice that, in general, for
purely existentially quantified formulae, the complexity is expected to be at least
exponential [63]. Notwithstanding, polynomial methods for existential formulae
with a fixed number of variables are available [103]. In view of these results,
deciders for various specific collections of formulae have been proficiently built
into various computer algebra systems. The reader is referred to [7, 35] for a
survey of classical results and contributions relevant to the field.

As regards elementary geometry, decidability follows from the decidability of
real closed fields [118]. However, a direct reduction to the quantifier elimination
techniques developed for the theory of real fields does not yield efficient decision
methods. More viable approaches, such as Gröbner bases [15], have been proposed,
and integrated in automated systems. See e.g. [36, 124, 105] for more details.



52 A. Formisano and E.G. Omodeo

Decidability issues for classes of formulae in general topology and real analysis
have been investigated too [18]. For example, [28] describes a decision method
for formulae involving continuous functions. The result is obtained through re-
duction to the decidability problem for two-level syllogistic, which by itself is
NP-complete. Another paper in this context is [19]. In this case the authors
address the decision problem for a fragment of real analysis, consisting of un-
quantified formulae which, in addition to the operators of Tarski’s theory of
reals, involve predicates of comparison, monotonicity, concavity, and convexity
of continuous real functions, over possibly unbounded intervals. The result is
obtained via a reduction to Tarski’s existential theory of reals.

The decidability of many algebraic theories was assessed long ago (for a com-
prehensive survey, endowed with a rich bibliography, see [60]). Among others, we
mention the decidability results for the theories of Abelian groups [116], Boolean
algebras, linearly ordered sets, free groups [72]. These have rarely had a direct
impact on the design of proof-assistants, but in preparation for its embedding
into our set-based inferential framework, the decidability result about ordered
Abelian groups [70], originally referring to the first-order theory in its entirety,
was downsized into a practical decision algorithm [30, Sec. 3] for a fragment of
that theory.

5.2 Computable Set Theory

The discovery and classification of many decidable fragments of Set Theory con-
stitutes a prolific stream of research begun with [107], more directly related to
the conception of set-based proof-verification advocated for in this paper (for a
remote historical antecedent, see [8]). Despite the decision algorithms in this area
often being prohibitively time-consuming, singling them out seemed to be an un-
avoidable labor (cf. [23, 29]) before any sensible proof-search method could be
implemented for Set Theory. It would have been silly [122] to hope that the full
collection of set-theoretic sentences would eventually be brought under the juris-
diction of some mighty decision algorithm; rather, there was hope that the deci-
sion algorithms discovered for diverse fragments of set theory could be integrated
in some broad-spectrum inferential armory which, properly driven by human ex-
perts, would then offer some flexible support for a good deal of proof-verification
work. As we will mention in a short while, this expectation was not deceived.

Sometimes a decidable class of formulae is circumscribed by means of syntac-
tical restrictions placed on the form of its quantificational prefix. This way of
proceeding is parallel to the one adopted in the study of decision problems for
predicate calculus [59], but in the set-theoretic context an underlying weak set-
theory is assumed (in the form of a kernel of proper axioms). Results obtained
in this frame of mind can be found in [10, 11, 12, 14, 47, 48, 51, 89, 88, 90, 91].

A somehow “orthogonal” approach uses of collections of set-constructors cho-
sen from among the usual ∩ , ∪ , \ , { }, P( ),

⋃
, etc., whose intended

meanings are characterized through suitable axioms added to the common weak
kernel set-theory. Valuable decidability results were obtained along this stream
in a long series of papers, [20, 22, 24, 25, 26, 27, 131, 32, 97] to mention a few.



Theory-Specific Automated Reasoning 53

Most of the methods proposed in these papers, while ensuring that certain
collections of formulae (sometimes very challenging) have a decidable satisfi-
ability problem, do not appear to be polished enough to support the design
of efficient decision procedures. The most promising approach, to the aim of
getting effective decision algorithms, involves the synthesis of a tableau-based
procedure. This approach is adopted, for instance, in [34, 33], and revealed, at
least in principle, viable in a wide range of cases. Actually, the implementation
of the most central of all inference primitives of our set-based verifier, called
ELEM, is based on this approach. This rule ELEM, often used implicitly by
other inference primitives, e.g. ‘Suppose not’, ‘Discharge’, ‘Use def’, ‘Assump’,
EQUAL, ALGEBRA, and others [87], embodies an extended form of multi-level
syllogistic [62]. It determines whether a given unquantified set-theoretic formula
involving individual set variables, the set operators ∩ , ∪ , \ , { }, the pair
assembly and decomposition operators [ , ], [1], [2] (cf. Fig. 7), and a global
selection operator arb( ), is satisfiable. By using this decision algorithm, the ver-
ifier can identify many cases in which a conjunction constructed by negating one
statement S of a proof and conjoining a selection of earlier steps is unsatisfiable,
which implies that S follows from the preceding context.

When not all the constructs appearing in a context (e.g. quantifiers and set-
formers) are accessible to multilevel syllogistic, a preprocessing step must precede
its application. This replaces all parts of the current context whose lead operators
are not recognized by the decision algorithm by ‘blobs’, i.e. by new variables
designating either sets (when they occur as terms) or propositions (when they
occur as subformulae). Blobbing, as we call this operation, replaces syntactically
identical (or recognizably equal) parts of a formula by the same variable. It is
also able to treat as equal well-formed parts which only differ by the renaming
of bound variables in quantifiers or set-formers. Blobbing also treats existential
quantifiers as negated universal quantifiers.

5.3 Integration of Decision Algorithms

Once the decidability of a theory—or of fragments of it—has been assessed and
decision procedures have been designed for manageable portions of it, we are
only half the way through. Indeed, it is a common situation that the decision
procedures must be integrated into a pre-existing framework, be it an automatic
theorem-prover or a proof assistant. Such a framework might offer some form
of theory-based resolution—as mentioned above—, or might already incorporate
inferential capabilities, implemented in their turn in terms of other decision
methods. Hence, the new goal to be faced consists in realizing a combination of
inferential capabilities into a single mechanism. The issue is not simply the one
of achieving an acceptable overall complexity: unfortunately, it often happens
that decidability gets disrupted when decidable theories, or fragments thereof,
are put together. Suffice it to recall, as a striking illustration of this state of
affairs, that Presburger arithmetic becomes undecidable when extended with a
single uninterpreted monadic predicate symbol [58].



54 A. Formisano and E.G. Omodeo

Nelson and Oppen’s proposal [81, 82] for combining decidable theories, which
relies of Craig’s interpolation theorem, is the first—perhaps, to date, still the
most significant—effective technique designed to solve this task. When the the-
ories to be combined have a decidable satisfiability problem and they meet a
number of precise requirements (in particular the signatures of their languages
can only share the equality sign), the Nelson–Oppen combination technique pro-
vides a method for deciding the validity of universal formulae in the union of the
underlying languages. The combination method normalizes the given universal
sentence to be proved into a conjunction of formulae, each of which belongs to
one of the component theories. Each component decision procedure is then ex-
ploited as a black box to extract information from the conjunct pertaining to it.
The method exploits the interpolant formulae, as guaranteed by Craig’s theo-
rem, as communication means between pairs of theories. Various refinements of
the method, partially relaxing the requirements about the initial theories, have
been proposed, for instance in [6, 120, 68, 83].

An alternative paradigm for combining decision procedures was proposed by
Shostak in [111]. This method is less general than Nelson–Oppen’s since it pre-
supposes stronger requirements are met by the component theories, in order to
realize a tighter integration between the solvers and to achieve a better over-
all performance. Shostak’s method constitutes the basic ingredient of different
(semi-)automated systems, mainly conceived to support (semi-)automated veri-
fication (PVS, STeP, SVC, to mention a few).

A rather different approach, essentially based on refinements of tableaux-
based decision procedures for non-disjoint theories is taken in [128, 77]. The
proposed method gets exploited to combine decision algorithms for theories of
aggregates (sets, multisets, lists, etc.) with theories about elements, integers,
cardinals, etc. [125, 126, 127, 129, 130]. Despite the apparently limited expressive
power of these theories, they are of practical interest in fields such as automated
hardware verification, software protocol certification, model checking, etc. This
is because the availability of decision methods for combination of weak theories
of integers, bit vectors, arrays, enables the formal verification of hardware and
software components, by directly exploiting (mixed) domain-specific knowledge
on such structured entities.

For an up-to-date reading on many aspects of decision algorithms, we refer
the reader to [75], inside which many useful references to the area can be found.

6 Conclusions

The bibliographic references of this paper include an impressive number of con-
tributions of Italian researchers to the automated deduction field. Many more
could have been cited, but it would have been hard to reconcile fairness to ev-
erybody with unity in the material of this paper. By focusing mainly on those
contributions that have had a direct echo inside the GULP community, we could
identify a few steady research threads which then have formed the backbone of
this paper.



Theory-Specific Automated Reasoning 55

The annual GULP meetings, for many years, and then, more recently, satellite
workshops like the CILC ones, have regularly hosted presentations about satisfi-
ability decision algorithms and to the development of proof-methods specifically
oriented to set theory. Papers on those topics written for GULP-related events
often foreran publications on valuable scientific journals ([32], and [31, 131] and
[47, 48] to mention a few) or contributed to disseminating novel ideas [83], or
have explored alternative uses in Logic Programming of ideas originated else-
where [86, 114, 92, 56].

It must be stressed here a parallel between the theory-oriented developments
of resolution inside the automated deduction field per se and the scheme for
extending Logic Programming into Constraint Logic Programming proposed in
[71]. In particular, T-resolution has migrated from the area of theorem-proving
into Logic Programming, cf. [49, 50].

Conversely, ideas originated inside Logic Programming promise to play a role
also in the design of inference rules for a proof-checker. E.g., set-unification
algorithms [52, 4, 57] could be exploited to boost a behind-the-scenes ‘proof-
by-computation’ paradigm advocated for in [93, p. 229], aimed at enhancing
theorem-proving by means of the ability to perform symbolic computations effi-
ciently in specialized contexts of algebra and analysis.

Since the year 2000, various satisfiability decision algorithms and various
proof-methods for set theory have begun to be put together in a large-scale
proof-verifier. This more technological aim poses new challenges and is creating
new trends, whose flavor this paper has tried to convey. These pages intend to
be a homage of ours to the Italian authors sparsely cited in this paper, and an
encouragement to them and to others in casting the new goals in the terse formal
setting germane to logic: abstract ideas usually offer, in fact, the right frame-
work for practical long-term undertakings; and valuable algorithms can often
be distilled from disappointingly intractable search methods directly stemming
from theoretical investigations.

Acknowledgements

We are indebted to prof. Jacob T. Schwartz for his encouragement in pursu-
ing research on proof-verification. The conception of an extensible set-based
proof verifier owes very much to him, as also does the implementation of
ÆtnaNova/Referee, cf. http://setl.dyndns.org/EtnaNova/login/. Thanks
are also due to our colleagues Domenico Cantone and Marianna Nicolosi
Asmundo of the University of Catania, with whom we are pleasantly carrying
out our project. We are grateful to the anonymous referees for helpful advice
and, to the editors for their precious work.

This research has been partially funded by PRIN 2006 project ‘Large-scale
development of certified mathematical proofs’, by PRIN 2008 project ‘Inno-
vative and multi-disciplinary approaches for constraint and preference reason-
ing’, and by GNCS-INdAM project ‘Tecniche innovative per la programmazione
con vincoli in applicazioni strategiche’. Contacts among participants to the

http://setl.dyndns.org/EtnaNova/login/


56 A. Formisano and E.G. Omodeo

ÆtnaNova/Referee project have been fostered by the Gruppo Nazionale per
il Calcolo Scientifico of the Istituto Nazionale di Alta Matematica ‘Francesco
Severi’.

References

[1] Bundy, A. (ed.): CADE 1994. LNCS (LNAI), vol. 814, pp. 238–251. Springer,
Heidelberg (1994); The QED Manifesto

[2] Andrews, P.B.: Resolution in type theory. The J. of Symbolic Logic 36, 414–432
(1971)

[3] Andrews, P.B., Longini Cohen, E.: Theorem proving in type theory. In: Proc. of
IJCAI 1977, pp. 566–566 (1977)

[4] Arenas-Sánchez, P., Dovier, A.: Minimal set unification. In: Alpuente, M., Sessa,
M.I. (eds.) GULP-PRODE 1995, Marina di Vietri, Italy, September 11-14, pp.
447–458 (1995)

[5] Asperti, A., Geuvers, H., Natarajan, R.: Social processes, program verification,
and all that. Math. Struct. in Comp. Science 19(5), 877–896 (2009)

[6] Baader, F., Tinelli, C.: Combining equational theories sharing non-collapse-free
constructors. In: Kirchner, H., Ringeissen, C. (eds.) FroCos 2000. LNCS (LNAI),
vol. 1794, pp. 260–274. Springer, Heidelberg (2000)

[7] Basu, S., Pollack, R., Roy, M.-F.: Algorithms in real algebraic geometry. Algo-
rithms and computation in mathematics, vol. 10. Springer, Heidelberg (2006)

[8] Behmann, H.: Beiträge zur Algebra der Logik, insbesondere zum Entschei-
dungsproblem. Math. Annalen 86, 163–220 (1922)

[9] Belinfante, J.G.F.: Reasoning about iteration in Gödel’s class theory. In: Baader,
F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 228–242. Springer, Heidelberg
(2003)

[10] Bellè, D., Parlamento, F.: Decidability and completeness for open formulas of
membership theories. Notre Dame J. of Formal Logic 36 (1995)

[11] Bellè, D., Parlamento, F.: The decidability of the ∀∗∃ class and the axiom of
foundation. Notre Dame J. of Formal Logic 42 (2001)

[12] Bellè, D., Parlamento, F.: Truth in V for ∃∗∀∀-sentences is decidable. J. of Sym-
bolic Logic 71 (2006)

[13] Bledsoe, W.W.: Non-resolution theorem proving. Artificial Intelligence 9, 1–35
(1977)

[14] Breban, M., Ferro, A., Omodeo, E.G., Schwartz, J.T.: Decision Procedures for
Elementary Sublanguages of Set Theory II. Formulas involving Restricted Quan-
tifiers, together with Ordinal, Integer, Map, and Domain Notions. Comm. Pure
Appl. Math. 34, 177–195 (1981)

[15] Buchberger, B., Winkler, F.: Gröebner bases and Applications. London Math-
ematical Society Lecture Note Series, vol. 251. Cambridge University Press,
Cambridge (1998)

[16] Burstall, R., Goguen, J.: Putting theories together to make specifications. In:
Reddy, R. (ed.) Proc. 5th International Joint Conference on Artificial Intelli-
gence, Cambridge, MA, pp. 1045–1058 (1977)

[17] Cantone, D., Chiaruttini, C., Nicolosi Asmundo, M., Omodeo, E.G.: Cumulative
hierarchies and computability over universes of sets. Le Matematiche 63, 31–84
(2008)



Theory-Specific Automated Reasoning 57

[18] Cantone, D., Cincotti, G.: Decision algorithms for some fragments of analysis
and related areas. Comm. Pure Appl. Math. 40, 281–300 (1987)

[19] Cantone, D., Cincotti, G., Gallo, G.: Decision algorithms for fragments of real
analysis. I. Continuous functions with strict convexity and concavity predicates.
J. of Symbolic Computation 41(7), 763–789 (2006)

[20] Cantone, D., Cutello, V., Ferro, A.: Decision procedures for elementary sublan-
guages of set theory. XIV. Three languages involving rank related constructs. In:
Gianni, P. (ed.) ISSAC 1988. LNCS, vol. 358, pp. 407–422. Springer, Heidelberg
(1989)

[21] Cantone, D., Cutello, V., Schwartz, J.T.: Decision problems for Tarski’s and
Presburger’s arithmetics extended with sets. In: Schönfeld, W., Börger, E., Kleine
Büning, H., Richter, M.M. (eds.) CSL 1990. LNCS, vol. 533, pp. 95–109. Springer,
Heidelberg (1991)

[22] Cantone, D., Ferro, A.: Some recent decidability results in set theory. Atti degli
incontri di Logica Matematica III, 383–387 (1985)

[23] Cantone, D., Ferro, A., Omodeo, E.G.: Computable set theory, Vol.1. Oxford
Science Publications of International Series of Monographs on Computer Science,
vol. no.6. Clarendon Press (1989)

[24] Cantone, D., Ferro, A., Omodeo, E.G., Policriti, A.: Scomposizione sillogistica
disgiuntiva. In: Mello [78], pp. 199–209

[25] Cantone, D., Ferro, A., Schwartz, J.T.: Decision procedures for elementary sub-
languages of set theory. V. Multilevel syllogistic extended by the general union
operator. J. of Computer and System Sciences 34(1), 1–18 (1987)

[26] Cantone, D., Formisano, A., Omodeo, E.G., Schwartz, J.T.: Various com-
monly occurring decidable extensions of multi-level syllogistic. In: Ranise, S.,
Tinelli, C. (eds.) Pragmatics of Decision Procedures in Automated Reasoning,
PDPAR 2003 (CADE-19), Electronic proceedings, Miami, USA (2003)

[27] Cantone, D., Nicolosi Asmundo, M.: On the satisfiability problem for a 3-level
quantified syllogistic. In: Complexity, Expressibility, and Decidability in Auto-
mated Reasoning – CEDAR 2008, Sydney, Australia, pp. 31–46 (2008)

[28] Cantone, D., Omodeo, E.G.: On the decidability of formulae involving continu-
ous and closed functions. In: Sridharan, N.S. (ed.) Proc. of the 11th International
Joint Conference on Artificial Intelligence, pp. 425–430. Morgan Kaufmann,
San Francisco (1989)

[29] Cantone, D., Omodeo, E.G., Policriti, A.: Set Theory for Computing. From De-
cision Procedures to Declarative Programming with Sets. Monographs in Com-
puter Science. Springer, Heidelberg (2001)

[30] Cantone, D., Omodeo, E.G., Schwartz, J.T., Ursino, P.: Notes from the logbook
of a proof-checker’s project. In: Dershowitz (ed.) [45], pp. 182–207

[31] Cantone, D., Schwartz, J.T., Zarba, C.G.: Decision procedures for fragments of
set theory with monotone and additive functions. In: Rossi, Jayaraman [106],
pp. 1–8

[32] Cantone, D., Ursino, P., Omodeo, E.G.: Formative processes with applications to
the decision problem in set theory: I. Powerset and singleton operators. Inf. Com-
put. 172(2), 165–201 (2002); Appeared as Transitive Venn diagrams with appli-
cations to the decision problem in set theory. In: [79]

[33] Cantone, D., Zarba, C.G.: A new fast tableau-based decision procedure for an
unquantified fragment of set theory. In: Caferra, R., Salzer, G. (eds.) FTP 1998.
LNCS (LNAI), vol. 1761, pp. 126–136. Springer, Heidelberg (2000)



58 A. Formisano and E.G. Omodeo

[34] Cantone, D., Zarba, C.G.: A tableau-based decision procedure for a fragment of
set theory involving a restricted form of quantification. In: Murray, N.V. (ed.)
TABLEAUX 1999. LNCS (LNAI), vol. 1617, pp. 97–112. Springer, Heidelberg
(1999)

[35] Caviness, B.F., Johnson, J.R.: Quantifier elimination and cylindrical alge-
braic decomposition. Texts and Monographs in Computer Science. Springer,
Heidelberg (1998)

[36] Chou, S.C.: Mechanical Geometry Theorem Proving. Reidel Publ. Comp.,
Dordrecht (1988)

[37] Collins, G.E.: Quantifier elimination for real closed fields by cylindric alge-
bra decomposition. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33,
pp. 134–183. Springer, Heidelberg (1975)

[38] D’Agostino, G., Omodeo, E.G., Schwartz, J.T., Tomescu, A.I.: Self-applied proof
verification (Extended abstract). In: Cordón-Franco, A., Fernández-Margarit, A.,
Lara-Martin, F.F. (eds.) JAF, 26èmes Journées sur les Arithmétiques Faibles,
pp. 113–117. Fénix Editora, Sevilla, Spain (2007),
http://www.cs.us.es/glm/jaf26

[39] Davis, M.: A program for Presburger’s algorithm. In: Summary of talks presented
at the Summer Institute for Symbolic Logic, pp. 215–233. Cornell University
(1957); In: [112]

[40] Davis, M.: Eliminating the irrelevant from mechanical proofs. In: Proc. of Sym-
posia in Applied Mathematics, vol. 15, pp. 15–30. AMS (1963); Reprinted in
[112]

[41] Davis, M.: The early history of automated deduction. In: Handbook of Auto-
mated Reasoning, pp. 3–13. Elsevier, Amsterdam (2001)

[42] Davis, M., Putnam, H.: A computing procedure for quantification theory. J. of
the ACM 7(3), 201–215 (1960)

[43] Davis, M., Schwartz, J.T.: Correct-program technology / Extensibility of verifiers
– Two papers on Program Verification with Appendix of Edith Deak. Technical
Report No. NSO-12, Courant Institute of Mathematical Sciences, New York
University (1977)

[44] Davis, M., Schwartz, J.T.: Metatheoretic extensibility for theorem verifiers and
proof-checkers. Computers and Mathematics with Applications 5, 217–230 (1979)

[45] Dershowitz, N. (ed.): International symposium on verification (Theory and Prac-
tice) celebrating Zohar Manna’s 10000002

th birthday. LNCS, vol. 2772. Springer,
Heidelberg (2003)

[46] Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: van Leeuwen, J. (ed.)
Handbook of Theoretical Computer Science. Formal Models and Semantics,
vol. B, pp. 243–320. Elsevier and MIT Press (1990)

[47] Dovier, A., Formisano, A., Omodeo, E.G.: Provable ∃∗∀-sentences about sets
with atoms. In: Rossi, Jayaraman [106], pp. 9–17

[48] Dovier, A., Formisano, A., Omodeo, E.G.: Decidability results for sets with
atoms. ACM Transactions on Computational Logic 7(2), 269–301 (2006)

[49] Dovier, A., Formisano, A., Policriti, A.: On T-logic programming. In: Falaschi,
M., Navarro, M., Policriti, A. (eds.) Joint Conference on Declarative Program-
ming, AGP 1997, Grado, Italy, June 16-19, pp. 457–466 (1997)

[50] Dovier, A., Formisano, A., Policriti, A.: On T-logic programming. In: Proc. of
ILPS 1997, pp. 323–337 (1997); A preliminary version appeared in [49]

[51] Dovier, A., Omodeo, E.G., Policriti, A.: Solvable set/hyperset contexts: II. A
goal-driven unification algorithm for the blended case. Appl. Algebra Eng. Com-
mun. Comput. 9(4), 293–332 (1999)

http://www.cs.us.es/glm/jaf26


Theory-Specific Automated Reasoning 59

[52] Dovier, A., Omodeo, E.G., Pontelli, E., Rossi, G.: {log}: A logic program-
ming language with finite sets. In: Furukawa, K. (ed.) ICLP 1991, pp. 111–124.
MIT Press, Cambridge (1991)

[53] Dovier, A., Omodeo, E.G., Pontelli, E., Rossi, G.: {log}: A logic programming
language with finite sets. In: Asirelli, P. (ed.) Sesto convegno nazionale di pro-
grammazione logica, GULP 1991, Pisa, pp. 241–355 (1991)

[54] Dovier, A., Omodeo, E.G., Pontelli, E., Rossi, G.: Embedding finite sets in a
logic programming language. In: Lamma, E., Mello, P. (eds.) ELP 1992. LNCS
(LNAI), vol. 660, pp. 150–167. Springer, Heidelberg (1993)

[55] Dovier, A., Omodeo, E.G., Pontelli, E., Rossi, G.: A language for programming
in logic with finite sets. J. of Logic Programming 28(1), 1–44 (1996); See also
[52, 54, 53]

[56] Dovier, A., Piazza, C., Rossi, G.: Narrowing the gap between set-constraints and
CLP(SET)-constraints. In: Freire-Nistal, J.L., Falaschi, M., Ferro, M.V. (eds.)
Joint Conference on Declarative Programming, AGP 1998, A Coruña, Spain,
July 20-23, pp. 43–56 (1998)

[57] Dovier, A., Pontelli, E., Rossi, G.: Set unification. Theory and Practice of Logic
Programming 6(6), 645–701 (2006)

[58] Downey, P.J.: Undecidability of Presburger arithmetic with a single monadic
predicate letter. Technical Report 18-72, Harvard University Center for Research
in Computing Technology (1972)

[59] Dreben, B., Goldfarb, W.D.: The Decision Problem. Solvable classes of quantifi-
cational formulas. Addison-Wesley, Reading (1979)

[60] Ershov, Y.L., Lavrov, I.A., Taimanov, A.D., Taitslin, M.A.: Elementary theories.
Russ. Math. Survey 20, 35–106 (1965)

[61] Farmer, W.M., Guttman, J.D., Thayer, F.J.: IMPS: An interactive mathematical
proof system. J. Automated Reasoning 11, 213–248 (1993)

[62] Ferro, A., Omodeo, E.G., Schwartz, J.T.: Decision procedures for some fragments
of set theory. In: Bibel, W., Kowalski, R. (eds.) CADE 1980. LNCS, vol. 87,
pp. 88–96. Springer, Heidelberg (1980)

[63] Fisher, M.J., Rabin, M.O.: Super-exponential complexity of Presburger arith-
metic. In: Complexity and computation, vol. VII, pp. 27–41. SIAM-AMS,
Philadelphia (1974)

[64] Formisano, A., Omodeo, E.G.: An equational re-engineering of set theories. In:
Caferra, R., Salzer, G. (eds.) FTP 1998. LNCS (LNAI), vol. 1761, pp. 175–190.
Springer, Heidelberg (2000)

[65] Formisano, A., Omodeo, E.G., Temperini, M.: Instructing equational set-
reasoning with Otter. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001.
LNCS (LNAI), vol. 2083, pp. 152–167. Springer, Heidelberg (2001)

[66] Formisano, A., Policriti, A.: T -resolution: Refinements and model elimination.
J. Automated Reasoning 22(4), 433–483 (1999)

[67] Geuvers, H.: Proof assistants: History, ideas and future. Sādhanā 34, 3–25 (2009)
[68] Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Decision procedures for exten-

sions of the theory of arrays. Ann. Math. Artif. Intell. 50(3-4), 231–254 (2007)
[69] Grigoriev, D.: Complexity of deciding Tarski algebra. J. of Symbolic Computa-

tion 5(1/2), 65–108 (1988)
[70] Gurevich, Y.: Elementary properties of ordered Abelian groups. Translations of

AMS 46, 165–192 (1965)
[71] Jaffar, J., Maher, M.J.: Constraint logic programming: a survey. J. of Logic

Programming (19/20), 503–581 (1994)



60 A. Formisano and E.G. Omodeo

[72] Kharlampovich, O., Myasnikov, A.: Elementary theory of free non-Abelian
groups. J. of Algebra 302(2), 451–552 (2006)

[73] Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In:
Leech, J. (ed.) Computational Problems in Abstract Algebra, pp. 263–267.
Pergamon Press, Oxford (1970)

[74] Kohlenbach, U.: Applied Proof Theory: Proof Interpretations and their Use in
Mathematics. Springer Monographs in Mathematics. Springer, Heidelberg (2008)

[75] Kroening, D., Strichman, O.: Decision procedures: an algorithmic point of view.
Texts in Theoretical Computer Science. Springer, Heidelberg (2008)

[76] Loveland, D.W.: Automated theorem proving: A quarter century review. In:
Bledsoe, W.W., Loveland, D.W. (eds.) Contemporary Mathematics: Automated
Theorem Proving - After 25 Years, pp. 1–45. AMS (1984)

[77] Manna, Z., Zarba, C.G.: Combining decision procedures. In: Aichernig, B.K.,
Maibaum, T. (eds.) Formal Methods at the Cross Roads: From Panacea to Foun-
dational Support. LNCS, vol. 2757, pp. 381–422. Springer, Heidelberg (2003)

[78] Mello, P. (ed.): Quarto convegno nazionale di programmazione logica. In: GULP
1989, Bologna (1989)

[79] Meo, M.C., Vilares Ferro, M. (eds.): Joint Conference on Declarative Program-
ming, AGP 1999, L’Aquila, Italy, September 6-9. GTE (1999)

[80] Montagna, F., Mancini, A.: A minimal predicative set theory. Notre Dame J. of
Formal Logic 35(2), 186–203 (1994)

[81] Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures.
ACM Transaction on Programming Languages and Systems 1(2), 245–257 (1979)

[82] Nelson, G., Oppen, D.C.: Fast decision procedures based on congruence closure.
J. of the ACM 27(2), 356–364 (1980)

[83] Nicolini, E., Ringeissen, C., Rusinowitch, M.: Satisfiability procedures for com-
bination of theories sharing integer offsets. In: Kowalewski, S., Philippou, A.
(eds.) TACAS-ETAPS 2009. LNCS, vol. 5505, pp. 428–442. Springer,
Heidelberg (2009); Also in CILC 2009: 24-esimo Convegno Italiano di Logica
Computazionale

[84] Niemelä, I.: Stable models and difference logic. Ann. Math. Artif. Intell. 53(1-4),
313–329 (2008)

[85] Omodeo, E.G.: The Linked Conjunct method for automatic deduction and
related search techniques. Computers and Mathematics with Applications 8,
185–203 (1982)

[86] Omodeo, E.G., Bossi, A., Sambin, G.: Tre possibili orientamenti per una pro-
grammazione dichiarativa basata sulla teoria degli insiemi. In: Demo, B. (ed.)
Secondo convegno nazionale di programmazione logica, GULP 1987, Torino,
pp. 265–276 (1987)

[87] Omodeo, E.G., Cantone, D., Policriti, A., Schwartz, J.T.: A computerized Ref-
eree. In: Stock, O., Schaerf, M. (eds.) Reasoning, Action and Interaction in
AI Theories and Systems. LNCS (LNAI), vol. 4155, pp. 117–139. Springer,
Heidelberg (2006)

[88] Omodeo, E.G., Parlamento, F., Policriti, A.: A derived algorithm for evaluating
ε-expressions over abstract sets. J. of Symbolic Computation 15(5-6), 673–704
(1993)

[89] Omodeo, E.G., Parlamento, F., Policriti, A.: Decidability of ∃∗∀-sentences in
membership theories. Mathematical Logic Quarterly (formerly Zeitschrift für
Mathematische Logik und Grundlagen der Mathematik) 42 (1996)



Theory-Specific Automated Reasoning 61

[90] Omodeo, E.G., Policriti, A.: Solvable set/hyperset contexts: I. Some deci-
sion procedures for the pure, finite case. Comm. Pure Appl. Math. 48(9-10),
1123–1155 (1995); Special Issue in honor of J.T. Schwartz

[91] Omodeo, E.G., Policriti, A.: The Bernays-Schönfinkel-Ramsey class for set the-
ory: semidecidability. J. of Symbolic Logic (2010)

[92] Omodeo, E.G., Policriti, A., Rossi, G.: Che genere di insiemi/multi-insiemi/iper-
insiemi incorporare nella programazione logica? In: Saccà, D. (ed.) GULP 1993,
pp. 55–70 (1993)

[93] Omodeo, E.G., Schwartz, J.T.: A ‘Theory’ mechanism for a proof-verifier based
on first-order set theory. In: Kakas, A.C., Sadri, F. (eds.) Computational
Logic: Logic Programming and Beyond. LNCS (LNAI), vol. 2408, pp. 214–230.
Springer, Heidelberg (2002)

[94] Omodeo, E.G., Tomescu, A.I.: Using ÆtnaNova to formally prove that the Davis-
Putnam satisfiability test is correct. Le Matematiche 63, 85–105 (2008); A pre-
liminary version was presented at CILC 2007 (Messina)

[95] Papadimitriou, C.: On the complexity of integer programming. J. of the ACM 28
(1981)

[96] Parlamento, F., Policriti, A.: Decision procedures for elementary sublanguages
of set theory. IX: Unsolvability of the decision problem for a restricted subclass
of the Δ0-formulas in set theory. Comm. Pure Appl. Math. XLI, 221–251 (1988)

[97] Parlamento, F., Policriti, A.: Decision procedures for elementary sublanguages
of set theory: XIII. Model graphs, reflection and decidability. J. Automated Rea-
soning 7(2), 271–284 (1991)

[98] Paulson, L.C.: Set Theory for Verification. II: Induction and Recursion. J. Au-
tomated Reasoning 15(2), 167–215 (1995)

[99] Policriti, A., Schwartz, J.T.: T -theorem proving. I. J. of Symbolic Computa-
tion 20(3), 315–342 (1995)

[100] Prawitz, D., Prawitz, H., Voghera, N.: A mechanical proof procedure and its
realization in an electronic computer. J. of the ACM 7, 102–128 (1960); Reprinted
in [112]

[101] Presburger, M.: Über die vollständigkeit eines gewissen systems der aritme-
thik ganzer zahlen, in welchem die addition als einzige operation hervortritt.
In: Comptes Rendus du premier Congrès des Mathématiciens des Pays slaves,
Warsaw, pp. 92–101 (1929)

[102] Quaife, A.: Automated Deduction in von Neumann-Bernays-Gödel Set Theory.
J. Automated Reasoning 8(1), 91–147 (1992)

[103] Renegar, J.: A faster PSPACE algorithm for deciding the existential theory of the
reals. In: 29th Annual Symposium on Foundations of Computer Science (FOCS
1988), Los Angeles, Ca., USA, pp. 291–295. IEEE Computer Society Press,
Los Alamitos (1988)

[104] Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. of
the ACM 12(1), 23–41 (1965); Reprinted in [112]

[105] Robu, J.: Geometry Theorem Proving in the Frame of the Theorema Project.
Technical Report 02-23, RISC Report Series, University of Linz, Austria. PhD
Thesis (2002)



62 A. Formisano and E.G. Omodeo

[106] Rossi, G., Jayaraman, B. (eds.): Proc. of the Workshop on Declarative Program-
ming with Sets, DPS 1999, Paris. Technical Report N. 200, Dipartimento di
Matematica, Università di Parma, Italy (1999)

[107] Schwartz, J.T.: Instantiation and decision procedures for certain classes of quan-
tified set-theoretic formulae. Technical Report 78-10, Institute for Computer Ap-
plications in Science and Engineering, NASA Langley Research Center, Hamp-
ton, Virginia (1978)

[108] Schwartz, J.T., Dewar, R.K.B., Dubinsky, E., Schonberg, E.: Programming with
sets: An introduction to SETL. Texts and Monographs in Computer Science.
Springer, Heidelberg (1986)

[109] Shankar, N., Rueß, H.: Combining Shostak theories. In: Tison, S. (ed.) RTA
2002. LNCS, vol. 2378, pp. 1–18. Springer, Heidelberg (2002)

[110] Shostak, R.E.: A practical decision procedure for arithmetic with function sym-
bols. J. of the ACM 26(2), 351–360 (1979)

[111] Shostak, R.E.: Deciding combinations of theories. J. of the ACM 31, 1–12 (1984)
[112] Siekmann, J., Wrightson, G.: Automation of Reasoning I and II. Springer, Hei-

delberg (1983)
[113] Siekmann, J.H.: Unification theory. J. of Symbolic Computation 7(3-4), 207–274

(1989)
[114] Sigal, R.: Desiderata for logic programming with sets. In: Mello [78], pp. 127–141
[115] Stickel, M.E.: Automated deduction by theory resolution. J. Automated Rea-

soning 1(4), 333–355 (1985)
[116] Szmielew, W.: Elementary properties of Abelian groups. Fundamenta Mathe-

maticae 41, 203–271 (1954)
[117] Tarski, A.: Sur les ensembles fini. Fundamenta Mathematicae VI, 45–95 (1924)
[118] Tarski, A.: A decision method for elementary algebra and geometry. Berkeley

University Press (1951)
[119] Tarski, A.: What is elementary geometry? In: Hintikka, J. (ed.) The philosophy of

mathematics — Oxford readings in philosophy, pp. 164–175. Oxford University
Press, Oxford (1969); First published in 1959

[120] Tinelli, C., Ringeissen, C.: Unions of non-disjoint theories and combinations of
satisfiability procedures. Theoretical Computer Science 290(1), 291–353 (2003)

[121] Tinelli, C., Zarba, C.G.: Combining nonstably infinite theories. J. Automated
Reasoning 34(3), 209–238 (2005)

[122] Vaught, R.L.: On a theorem of Cobham concerning undecidable theories. In:
Nagel, E., Suppes, P., Tarski, A. (eds.) Proc. of the 1960 International Congress
on Logic, Methodology, and Philosophy of Science, pp. 14–25. Stanford Univer-
sity Press (1962)

[123] Wos, L.: The problem of finding an inference rule for set theory. J. Automated
Reasoning 5(1), 93–95 (1989)

[124] Wu, W.-T.: On the decision problem and the mechanization of theorem-proving
in elementary geometry. Scientia Sinica 21(2), 159–172 (1978); Also in Selected
works of Wen-Tsün Wu. World Scientific Publishing, Singapore (2008)

[125] Zarba, C.G.: Combining lists with integers. In: Goré, R., Leitsch, A., Nipkov,
T. (eds.) International Joint Conference on Automated Reasoning, IJCAR 2001
(Short Papers), Technical Report DII 11/01, pp. 180–189. University of Siena,
Italy (2001)

[126] Zarba, C.G.: Combining multisets with integers. In: Voronkov, A. (ed.) CADE
2002. LNCS (LNAI), vol. 2392, p. 363. Springer, Heidelberg (2002)

[127] Zarba, C.G.: Combining sets with integers. In: Armando, A. (ed.) FroCos 2002.
LNCS (LNAI), vol. 2309, pp. 103–116. Springer, Heidelberg (2002)



Theory-Specific Automated Reasoning 63

[128] Zarba, C.G.: A tableau calculus for combining non-disjoint theories. In: Egly, U.,
Fermüller, C. (eds.) TABLEAUX 2002. LNCS (LNAI), vol. 2381, pp. 315–329.
Springer, Heidelberg (2002)

[129] Zarba, C.G.: Combining sets with elements. In: Dershowitz [45], pp. 762–782
[130] Zarba, C.G.: Combining sets with cardinals. J. Automated Reasoning 34(1), 1–29

(2005)
[131] Zarba, C.G., Cantone, D., Schwartz, J.T.: A decision procedure for a sublanguage

of set theory involving monotone, additive, and multiplicative functions, I: The
two-level case. J. Automated Reasoning 33(3-4), 251–269 (2004)



Constraint Logic Programming

Marco Gavanelli1 and Francesca Rossi2

1 Dipartimento di Ingegneria-Università di Ferrara
2 Dipartimento di Matematica Pura e Applicata - Università di Padova

Abstract. Constraint Logic Programming (CLP) is one of the most
successful branches of Logic Programming; it attracts the interest of the-
oreticians and practitioners, and it is currently used in many commercial
applications. Since the original proposal, it has developed enormously:
many languages and systems are now available either as open source
programs or as commercial systems.

Also, CLP has been one of the technologies able to recruit researchers
from other communities to the declarative programming cause. Current
CLP engines include technologies and results developed in other commu-
nities, which themselves discovered logic as an invaluable tool to model
and solve real-life problems.

1 The CLP Paradigm

Constraint Logic Programming (CLP) [7] represents a successful attempt to
merge the best features of logic programming (LP) and constraint solving.

Constraint solving [127, 6, 56, 31] includes a variety of expressive modelling
frameworks and efficient solving tools for real-life problems that can be de-
scribed via a set of variables and constraints over them. A constraint is just
a restriction imposed over the combination of values of some variables of the
problem. Solving a problem with constraints means finding a way to assign val-
ues to all its variables such that all constraints are satisfied. Constraint solving
methods have been successfully applied to many application domains, such as
scheduling, planning, resource allocation, vehicle routing, computer networks,
and bioinformatics [137, 127, 51].

Embedding the notion of constraint into a high-level programming language
allows for a more flexible and practical constraint processing environment, where
constraints can be represented as formulae and can be incrementally accumu-
lated. Moreover, the presence of constraints in a programming language usually
augments its expressive power, in the sense that some complex relations can be
defined easily by means of constraints, and there are also efficient techniques to
prove them.

For these reasons, constraints have been embedded in many programming
environments, but some are more suitable than others. For example, the fact
that constraints can be seen as relations or predicates, that constraint solving
can be seen as a generalized form of unification, that their conjunction can be
seen as a logical and, and that backtracking search is the base methodology to

A. Dovier, E. Pontelli (Eds.): 25 Years of Logic Programming, LNCS 6125, pp. 64–86, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Constraint Logic Programming 65

solve them, makes them very compatible with logic programming, which is based
on predicates, unification, logical conjunctions, and depth-first search.

These observations led to the development of the CLP paradigm, where con-
straints are embedded in the logic programming paradigm. The main goal is to
maintain a declarative programming paradigm while increasing expressivity and
efficiency via the use of specific constraint sorts and algorithms.

The first CLP language was Prolog II [42], designed by Colmerauer in the early
80’s. Prolog II could treat term equations like Prolog, but in addition could also
handle term disequations. After this, Jaffar and Lassez observed that both term
equations and disequations were just a special form of constraints, and developed
the concept of a constraint logic programming scheme in 1987 [99].

Syntactically, constraints are added to logic programming by considering a
specific constraint sort (e.g., linear equations over the reals) and then allowing
constraints of this type in the body of the usual logic programming clauses.
Beside the classical resolution engine of logic programming, a (complete or in-
complete) constraint solving system is added, able to check the consistency of
constraints of the considered sort. Moving from LP to CLP, the concept of uni-
fication is generalized to constraint solving: the relationship between a goal and
a clause (to be used in a resolution step) can be described not only via term
equations but via more general statements, i.e., constraints. This allows for a
more general and flexible way to control the flow of the computation. Also, the
presence of an underlying constraint solver, usually based on incomplete con-
straint propagation of some sort, allows one to alternate backtracking search (as
in classical LP) with efficient constraint propagation, thus generating a more
efficient solver, that is nevertheless complete, being based on systematic search.

More precisely, a CLP clause is just like an LP clause, except that its body
may contain also constraints of the considered sort. For example, if we can use
linear inequations over the reals, a CLP clause could be:

p(X,Y) :- X < Y+1, q(X), r(X,Y,Z).

Logically speaking, this clause states that p(X,Y) is true if q(X) and r(X,Y,Z)
are true, and if the value of x is smaller than that of y + 1.

From the operational point of view, in an LP resolution step, we have to check
the existence of a most general unifier between the selected subgoal and the head
of a clause. In CLP, instead, we also have to check the consistency of the current
set of constraints (called the constraint store) with the constraints in the body
of the clause. Thus two solvers are involved: unification, as usual in LP, and the
specific constraint solver for the constraints in use. To make it more efficient,
this constraint solver may be not complete, that is, it may fail to discover some
inconsistencies.

While in LP a computation state consists of a goal and a substitution, in
CLP we have a goal and a constraint store. While in LP we just accumulate
substitutions during a computation, in CLP we also accumulate constraints.
Given a state 〈G, S〉, where G is the current goal (the resolvent) and S is the
current constraint store, assume G consists of an atom A (that we want to
rewrite) and a rest R, i.e., G = (A, R). Then, at each step:



66 M. Gavanelli and F. Rossi

– if A is a constraint, A is added to S and its consistency is checked through a
transition that checks if consistent(A∧S); if it is, the new state is 〈R, prop(S∧
A)〉, where prop(C) is the result of applying some constraint propagation
algorithm (like arc-consistency) to the constraint store C;

– if instead A is a literal, and there is a clause H : −B with the same head-
predicate as A, then we add the constraint A = H to the constraint store,
check its consistency, and replace A with B in the resolvent: the new goal is
then 〈(B, R), prop(S ∧ {A = H})〉.

A CLP computation is successful if there is a way to get from the initial state
〈G, true〉 to the goal 〈G′, S〉, where G′ is the empty goal and S is satisfiable.

Derivation trees are defined as in LP, except that each node in the tree now
represents both the current goal and the current constraint store. Also, in prac-
tical CLP systems, the usual depth-first Prolog traversal mode is retained, with
subgoals selected from left to right, and clauses from the first to the last one.
Early detection of failing computations is achieved by checking the consistency
of the current constraint store. At each node, the underlying constraint system
is automatically invoked (via function prop above) to check consistency and the
computation along this path continues only if the check is successful (although
the check itself could be incomplete). Otherwise, backtracking is performed.

Although CLP significantly extends LP in expressive power and application
domains, it maintains its semantic properties, such as the existence of equivalent
operational, model-theoretic, and fixpoint semantics [99]. Several semantics, de-
scribing different observable properties of CLP programs, have been presented
in the literature, with significant contributions from Italian researchers [84, 94,
52,74,43, 115, 19]. Properties of such semantics, such as fully abstraction, com-
positionality, and correctness, have been studied in depth. The power of CLP
has also been exploited to treat negation in LP, by allowing constraints that are
equalities or inequalities over the Herbrand domain [29]. Also, constraint solving
in LP was compared with the equivalent notions in automated deduction [8].

Finally, abstract interpretation has been applied to CLP [11], but we will not
discuss the issue because it is subject of another chapter of this book [59].

2 Constraint Sorts

CLP is not a programming language, but a programming paradigm, which is
parametric with respect to the class (sort) of constraints used in the language.
Working with a particular CLP language means choosing a specific class of con-
straints (for example, finite domains, linear, or arithmetic) and a suitable con-
straint system for that class. Notice also that unification is not replaced, rather it
is assisted by the specific constraint solver, since every CLP language also needs
to perform usual LP-style unification over its variables.

Denoting a CLP language over a constraint class X as CLP(X), we can say
that logic programming is just CLP (Trees), where Trees identifies the class of
term equalities, with the unification algorithm to solve them. Other examples
of instances of the CLP scheme are Prolog III [41], that treats constraints over



Constraint Logic Programming 67

terms, strings, booleans, and real linear arithmetic, and the language CLP(R)
[100], that works with both terms and arithmetic constraints over the reals.

The possibility to instantiate the CLP scheme with many constraint sorts is
one of the features that made CLP successful, since in this way the variety of
solvers added to a LP language becomes almost unlimited (e.g., [110]).

2.1 Finite Domains

A popular class of constraints used with the CLP scheme is the class of con-
straints with variables ranging over finite domains. Constraint logic program-
ming using finite domain constraints is a useful language scheme, referred to as
CLP(FD). Its applicability is very large, since many real-life problems can be
modelled via imposing a set of constraints over variables with finite domains (for
example, the wide class of Constraint Satisfaction Problems [56]). Examples can
be found in configuration, scheduling, and resource allocation [56, 127, 12, 51].

Finite domain constraints, as used within CLP languages, are usually intended
to be arithmetic constraints over finite integer domain variables. Thus a CLP(FD)
language needs a constraint system which is able to perform consistency checks
and projection over this kind of constraints. Usually, the consistency check is based
on some kind of constraint propagation, such as arc-consistency [105], some weaker
version, like bound-consistency [20], or, more rarely, path-consistency [117] (see
also Section 3.1).

Many CLP(FD) languages or environments have been developed, either in
academic or commercial environments. Constraint logic programming over finite
domains was first implemented in the late 80’s by Pascal Van Hentenryck [135]
within the language CHIP. Since then, more sophisticated constraint propagation
algorithms have been developed and added to more recent CLP(FD) languages,
like ECLiPSe [37], GNU Prolog [60], CIAO [32], B-Prolog [141], SWI-Prolog [139]
and SICStus Prolog [35].

One of the main features of CLP(FD) languages is that they have a specific
mechanism for defining the initial finite domains of the variables: usually as an
interval over the integers. For example, a typical CLP(FD) syntax to say that
the domain of variable x contains all integers between 1 and 10 is X in [1..10],
or X::[1,10], or fd domain(X,1,10).

Another feature of all CLP(FD) languages is the use of a built-in predicate
called labeling defined over a list of variables, and which finds values for them
such that all constraints in the current store are satisfied. The labeling pred-
icate provides a mechanism to generate solutions, that is, variable assignments
that satisfy all accumulated constraints. More precisely, this predicate triggers
backtracking search over a set of variables. For example, the following clause
defines a problem with three finite domain variables (x, y, and z), each with
domain containing the integers from 1 to 10, and sets a constraint over them
(x+y = 9−z). After this, it triggers backtracking search via predicate labeling:

p(X,Y,Z) :- [X,Y,Z]::[1,10], X + Y = 9 - Z, labeling([X,Y,Z]).



68 M. Gavanelli and F. Rossi

The result of executing the goal :- p(X,Y,Z). is any instantiation of the three
variables over their domains which satisfies the constraint x + y = 9 − x. No-
tice that without labeling, this same goal would return just the new domains
obtained after applying constraint propagation (together with the constraint
store). E.g., running this goal in the CLP(FD) language GNU Prolog [40] re-
turns the answer [X,Y,Z]:[1,7], meaning that the domains have been reduced
from [1..10] to [1..7] via constraint propagation. The clause above presents the
typical shape of a CLP(FD) program: first the variable domains are specified,
then the constraints are imposed, and finally the backtracking search is invoked
via a labeling predicate. A CLP(FD) program can consist of many clauses, but
the overall structure of the program always reflects this order, which refers to a
methodology called constrain and generate, where first variables are constrained
and only later (when the domains are smaller) backtracking search is invoked.
This corresponds to applying constraint propagation prior to search and there-
fore avoiding early some dead-ends.

In many CLP(FD) systems, arc-consistency is considered too expensive: for
each binary constraint one should (in general) check if for each domain element
there exists a support in the other domain. So, for each constraint involving two
variables with d elements in the domains, one has to do O(d2) constraint checks.
Since constraints are many, and arc-consistency propagation can wake up many
times the same constraint, a quicker algorithm is often adopted, at the expenses
of a lower pruning. Bound consistency considers only the bounds (minimum and
maximum values) of the domains, so the number of checks is drastically reduced.
This means that, e.g., the propagation of the X = 2Y constraint will not remove
all the odd values from the domain of X , but will have to perform only 4 checks.

A powerful feature of CLP(FD) is that for each constraint one can have a
different propagation algorithm: if we know an efficient algorithm to perform arc-
consistency for a specific constraint, we can use it, even if for other constraints
the solver performs only bound consistency. For example, consider the goal A ::
[−1, 0, 1], B :: [−1, 1], C :: [0, 1], A = B, A2 ≤ C. If all the constraints have
bound-consistency propagation, no pruning occurs, in fact all the extreme values
in each domain are consistent with some value in each other domain. On the other
hand, arc-consistency propagation for the equality constraint is very simple: one
has to compute the intersection of the two domains, which has linear complexity,
instead of the expensive O(d2) of the general case. By applying arc-consistency
to the A = B constraint we can remove value 0 from the domain of A. Now, the
bound-consistency propagation of A2 ≤ C detects that the value 0 in the domain
of C is no longer supported and removes it, implicitly assigning 1 to C. So, by
strengthening the propagation of a single constraint (in the example, the equality
constraint), we can propagate removals also by constraints with a weak bound-
consistency propagation.

Global constraints are non-binary constraints that appear often in applications
and for which specialized constraint propagation methods are developed. Some-
times those constraints are logically equivalent to the conjunction of a set of bi-
nary constraints, but global constraints typically perform stronger propagation



Constraint Logic Programming 69

than applying standard arc-consistency to many binary constraints. A typical
example is the alldifferent constraint [136], which requires that n variables
have mutually different values. Although this constraint can be defined with a
binary not-equal constraint for each pair of variables, such a representation does
not allow for much domain pruning by arc-consistency. Since such a constraint
appears very often, it is worthwhile to strengthen its propagation method by em-
ploying an ad hoc filtering algorithm. The concept of arc-consistency was suitably
extended for non-binary constraints and named Generalized Arc-Consistency
(GAC). Most current CLP languages are equipped with a rich taxonomy of global
constraints. During a computation, the current constraint store in a CLP com-
putation may contain both binary and global constraints such as alldifferent.
At each step, when constraint propagation is performed, each constraint prop-
agates with its own algorithm, and achieves arc or bound-consistency. Not all
non-binary constraints have a specialized constraint propagation algorithm, just
those that occur more frequently in applications.

Other logic languages, such as Answer Set Programming (ASP) [27], address
similar types of problems addressed by CLP(FD); there are works comparing
the two approaches [63, 109], and also integrating the two [15]. We will not give
more details on ASP, since it is the subject of another chapter of this book [27].

2.2 Sets

Various Italian researchers studied the integration of sets into logic programming.
Sets are widely used in mathematics to define new objects, and they allow for
a natural representation of concepts in AI and in software engineering. One
of the languages that integrate sets into logic programming is {log} [64], that
later evolved into the language CLP(SET ) [65]. In CLP(SET ), unification is
extended to deal with variables representing sets and set objects. Prolog users
often represent collections of values as lists, but this is insufficient when one needs
a set semantics. Sets intrinsically remove symmetries (see also Section 4.2), since
{1,2} and {2,1} are the same set, while for lists [1,2] and [2,1] represent different
terms (i.e., they do not unify). In CLP(SET ), {1,2} = {2,1} succeeds, as well as
{1,2,3,2} = {3,2,1,1}; moreover, one can have variables and non-ground terms as
elements of sets, so the unification {p(X), p(2)} = {Y } succeeds, giving Y = p(2)
and X = 2. CLP(SET ) supports sets, possibly partially specified and nested like
e.g. {X, {∅}} ∪ Y . Moreover, set unification and set constraint solving has been
analysed in a modular way so as to easily replace sets with multi sets (and other
similar data structures)—see e.g. [67, 66].

CLP(SET ) has been used for various applications, among which to represent
actions [124], and to implement abductive reasoning [89] (see also Section 3.3).
Other efforts tried to integrate reasoning on sets with the classical CLP(FD). In
one case the starting point was a visual search application [45]. Visual search and
image recognition are classical applications of CLP(FD) [45, 75]. Visual search
is the task of finding an object (described in some formal way, called the object
model) in an image. CLP(FD) provides the language for describing the object
model: first one decides the visual features (the basic components of the image,



70 M. Gavanelli and F. Rossi

such as lines, points, surface patches, etc.), then he/she defines the object model
by means of constraints that relate the visual features (surface s1 is orthogonal
to surface s2, etc.). Now, before CLP(FD) performs constraint propagation and
subsequent search, one has to know all the visual features in the image, as they
compose the domains of the variables. This task is performed by a segmentation
system, that takes often most of the computing time, since it has to relate the
pixels of the image with higher-level information. In order to speed up the acqui-
sition process, one can interleave constraint propagation and value acquisition;
in this way only those features actually required for solving the CSP are acquired
from the segmentation system. The classical CSP model is then extended to an
Interactive CSP [46], with corresponding solving algorithms. A corresponding
CLP language [88] uses sets to represent the domains of FD variables. Later on,
a general integration of the two sorts was proposed [50,18], which integrates sets
and finite domain variables to speedup the CLP(SET ) computation.

3 Related Frameworks

3.1 Constraint Handling Rules

In classical CLP languages, solvers are embedded in the language in a hard-wired
way: each language comes with one or more solvers for some constraint sorts.
However, defining a new constraint, or even a new solver, is often tricky: one
has to know (part of) the implementation of the solver itself, study the interface
for defining new constraints, and implement the propagation algorithm. While
usually very efficient, this approach is rather operational and not always flexible.
Constraint Handling Rules (CHR) [82] represents a successful example of a high-
level, logic language for designing constraint solvers. Also, usually solvers adopt
arc or bound consistency, that look at one constraint at a time. For example,
the constraints [A, B] : [1..10], A ≤ B, B ≤ A, A �= B do not perform any
pruning, even if we can easily see that there is no solution. If we looked at
pairs of constraints, we could infer from (A ≤ B ∧ B ≤ A) that A = B, and
from (A = B ∧ A �= B) that there is no solution. Intuitively, looking at pairs
of constraints allows one to achieve higher levels of consistency, such as path-
consistency [117].

CHR is a powerful language for modelling solvers, based on the rewriting of
constraints into simpler ones until they are solved. CHR can be seen as a CLP
language where clauses are multi-headed guarded rules for constraint rewriting.

CHR rules are of two kinds, based on the notions of simplification and propaga-
tion over user-defined constraints. Simplification rules replace constraints by sim-
pler constraints while preserving logical equivalence. Propagation rules add new,
logically redundant constraints, which may cause further simplifications. More
precisely, a CHR program is a finite set of CHR rules. A simplification CHR rule
is of the form H ⇔G|B and a propagation CHR rule is of the form H ⇒G|B. The
multi-head H is a conjunction of CHR constraints. The optional guard G is a con-
junction of built-in constraints. The body B is a conjunction of built-in and CHR



Constraint Logic Programming 71

constraints. An example of a simplification rule is X ≤ Y ∧ Y ≤ X ⇔ X = Y ,
while a possible propagation rules is X ≤ Y ∧ Y ≤ Z ⇒ X ≤ Z.

A state of a computation is a conjunction of built-in and CHR constraints,
and states evolve via derivation steps. An initial state (or query) is an arbitrary
state. In a final state (or answer), either the built-in constraints are inconsis-
tent or no derivation step is possible anymore. A rule with head H and guard
G is applicable to CHR constraints H ′ in the context of constraints D, if the
underlying constraint theory entails D and ∃θ(Hθ = H ′ ∧ Gθ). Notice that the
symbol = is to be understood as built-in constraint for syntactic equality and
is usually implemented by a (one-way) unification. If H ′ matches H , we equate
H ′ and H . This corresponds to parameter passing in conventional programming
languages, since only variables from the rule head H can be further constrained,
and all those variables are new. Finally, using the variable equalities from D and
H ′ = H , we check the guard G.

Any of the applicable rules can be applied, but the choice of the rule is a
committed choice, thus it cannot be undone.

If an applicable simplification rule (H ⇔ G | B) is applied to the CHR
constraints H ′, H ′ is removed from the state, and the body B, the equation
H = H ′, and the guard G are added to the state. If a propagation rule (H ⇒
G | B) is applied to H ′, we add B, H = H ′ and G, but do not remove H ′.

CHR is now implemented in most major CLP languages (e.g., SICStus, SWI
or ECLiPSe), and the number of applications developed in CHR is impressive
(see, e.g., the web page1 “The first fifty applications using CHR”, amongst which
we find many works of Italian researchers [4, 126,22, 61].)

Beside the operational semantics briefly outlined above, several declarative
semantics have been defined for CHR programs, and soundness and complete-
ness results have been obtained. The issue of confluence has also been studied
in depth, since applicable CHR rules may be applied in any order giving rise
to resulting states with the same meaning but not necessarily the same syntax.
This may be a problem in terms of constraint solvers, since the ability to detect
the inconsistency of the current set of constraints depends also on the syntax.
Another important property is compositionality [58]. This property allows to
compute the semantics of a conjunctive query from the semantics of its compo-
nents, and is obviously very desirable since it allows to define incremental and
modular analysis and verification tools.

Various extensions of the basic CHR language have been proposed in the
literature. For example, CHR has been extended with a probabilistic weighting
of the rules, by specifying the probability of their application [83]. In this way, it is
possible to formalise various randomised algorithms, such as simulated annealing.

3.2 Concurrent Constraint Programming

In CLP, each computation step adds new constraints to the constraint store, and
checks if the resulting store is consistent. However, the constraint store could
also be used to check whether it contains enough information to entail certain
1 http://www.cs.kuleuven.be/∼dtai/projects/CHR/chr-appls.html



72 M. Gavanelli and F. Rossi

constraints. This is what is done in the concurrent constraint (cc) programming
paradigm [130], where several agents work concurrently with a unique constraint
store. Each agent can perform two kinds of actions: either to add (called tell) a
new constraint to the store, and proceed if this produces a consistent new store,
or to wait (called ask) until the current store entails a certain constraint, and
proceed only after this holds. In this paradigm, the concurrent agents commu-
nicate via the shared constraint store. CLP can be seen, very abstractly, as a
restriction of the cc paradigm where only tell operations are performed.

Many significant results from Italian researchers have been obtained in defin-
ing and proving properties of several different semantics for the cc paradigm [53,
73,71]. Also, the cc paradigm has been extended to work with soft constraints [26],
with probabilistic actions [123], and with timed operators [54,23].

We avoid entering into the details of the various research lines related to cc,
since it is the subject of another chapter of this volume [85].

3.3 Abductive Constraint Logic Programming

Logic programming is based on deductive reasoning, i.e., if we have a rule with
conditions and a conclusion, and we know that the preconditions of the rule are
true, we infer that also the conclusion is true. On the other hand, the human
mind uses also other types of inference: for example, in medical diagnosis a
physician is given a set of symptoms, that are the effects of some illness, and
has to infer the illness that possibly caused such effects. The inference rule that
allows one to reason from the conclusions to possible causes, or conditions, was
called abduction by the philosopher Peirce.

Abductive Logic Programming [102,101] is an extension of LP that deals with
incomplete information by performing abduction. In ALP, there are some syn-
tactically distinguished predicates that have no definition, and cannot be proven:
an abductive proof-procedure will assume their possible truth, and provide the
abduced literal in the answer. E.g., an abductive program could be:

headache :- flu.

where flu is declared as an abducible predicate. Given the query :- headache,
an abductive proof-procedure will provide as answer

yes, flu.

However, abductive reasoning has a very wide search space, and researchers soon
found out that it could be reduced by means of constraints [103]. Obviously the
integration also provides more expressivity to the abductive language, as the
user can now write constraints in his/her programs. This opened the path to
the development of a series of proof-procedures that integrate abductive reason-
ing with constraint propagation [104, 69, 3]. Abductive constraint programming
languages have been used for a variety of applications, including agents, plan-
ning, web service composition [2, 1], web sites verification [107] and two-player
games [87].

More on Abductive Logic Programming can be found in the chapter [95].



Constraint Logic Programming 73

3.4 Soft Constraints and Preferences

Classical constraints are statements that have to be satisfied in order to ob-
tain a feasible solution. Thus the role of a constraint solver is to find a variable
assignment that satisfies all constraints. In several real-life scenarios, this ap-
proach is too rigid, since there may be no variable assignment that satisfies all
constraints. These scenarios often occur when constraints are used to formalize
desired properties rather than requirements that cannot be violated. Such de-
sired properties are not faithfully represented by constraints, but should rather
be considered as preferences, whose violation should be avoided as far as possible.
Soft constraints [24] provide one way to model such preferences, by extending
the classical constraint notion into a more general and flexible one.

A soft constraint is just like a constraint, but instead of being only satisfied or
violated, it may have several levels of satisfiability. Historically, first a variety of
specific extensions of the basic constraint formalism have been introduced, such
as fuzzy constraints [129]. Later, these extensions have been generalized using
more abstract frameworks, which have been crucial in proving general proper-
ties and in identifying the relationship among the specific frameworks [24, 133].
Moreover, for each of the specific classes, algorithms for solving problems speci-
fied in the corresponding formalisms have been defined. In fact, many techniques
and approaches to solve classical constraints, included constraint propagation,
have been generalized to work also with soft constraints.

In the semiring-based formalism [24], a soft constraint is a cost function, where
each assignment of the variables of the constraint is associated to an element
coming from an ordered set, whose properties are similar to those of a semiring.
This set contains all possible levels of preference (or costs, or quality, etc.),
of a variable assignment in the considered constraint class. For example, for
fuzzy constraints, the preference levels are values between 0 and 1, and higher
values are more preferred. Classical constraints can also be cast in this general
framework: in this case the preference set contains just two elements (true and
false, or satisfied and violated). The preference set also comes with an operation
to combine preference levels. This is useful to compute the satisfiability level
of a complete variable assignment from those given by the constraints to the
portion of the assignment relevant to them. For example, in fuzzy constraints the
combination takes the minimum preference level, while in classical constraints
it is just a logical and, since all constraints need to be satisfied. A survey of the
various approaches to deal with soft constraints can be found in [113].

The notion of global constraints has been exploited also in the context of soft
constraints. For example, in [97] a general method to soften global constraints is
presented, which is based on the notion of a flow in a graph, and several global
constraints are defined in their soft version. Also, in [140] efficient algorithms are
proposed to achieve generalized arc consistency for the soft global cardinality
constraint.

Classical CLP handles only standard constraint solving. Thus it is natural to
try to extend the CLP formalism in order to handle also soft constraints. A first
attempt was the hierarchical CLP (HCLP) system [28], a CLP language where



74 M. Gavanelli and F. Rossi

each constraint has a level of importance and a solution of a constraint problem is
found by respecting the hierarchy of constraints. The finite domain CLP language
clp(fd) [40] has been extended to handle semiring-based constraints, obtaining a
language paradigm called clp(fd,S) [93] where S is any semiring, chosen by the
user. By choosing one particular semiring, the user uses a specific class of soft
constraints: fuzzy, optimized, probabilistic, or even classical hard constraints.

The language SCLP [25] treats in a uniform way, and with the same underlying
machinery, all constraints that can be seen as instances of the semiring-based
approach: from optimization to satisfaction problems, from fuzzy to probabilistic,
prioritized, or uncertain constraints, and also multi-criteria problems, while still
being able to handle classical constraints. Syntactically, SCLP extends CLP by
allowing the presence of preference levels as the body of a clause. E.g., the
clause p(X,Y,N) :- (X+Y)/N. states that (X + Y )/N is the preference level to
be given to the assignment (X, Y, N) for constraint p. The usual three equivalent
semantics (model-theoretic, fix-point, and operational) can be defined also for
the SCLP paradigm, although suitably generalized to handle soft constraints.

4 Improvements, Solution Techniques

4.1 Integration with Operations Research

CLP(FD) is an effective language to model and solve combinatorial problems.
However, there are other frameworks that address the same problems, such
as meta-heuristics, integer linear programming, population-based methods, etc.
CLP(FD) has unique advantages: there are many types of available constraints,
compared to integer linear programming that accepts only linear inequalities. It
supports complete solving algorithms, while local search or genetic algorithms
are usually incomplete (i.e., they might fail to produce a solution even if it
exists). On the other hand, there are some types of problems in which other
techniques are more efficient. For this reason, various efforts tried to merge algo-
rithms and solvers, in order to improve on both of them. The fact that CLP(FD)
is very general makes it the ideal playground to test the integration of different
techniques.

One type of integration, already mentioned, is global constraints. In general,
the (generalized) arc-consistency propagation of an n-ary constraint is very ex-
pensive (see, e.g., [116]): since an n-ary constraint can encode a whole CSP,
removing all values that do not belong to a solution is in general NP-hard.
However, despite this worst-case complexity, there exist significant constraints
of practical use that have polynomial-time, specific propagation algorithms. For
example, the alldifferent constraint uses results from graph theory, the global
cardinality constraint gcc computes the maximum flow of a graph, all tech-
niques borrowed from Operations Research (OR). In OR there are very efficient
algorithms to solve very specific tasks, however a slight change in the problem
formulation (e.g., a new constraint added by the user) can make a very good
algorithm inapplicable. CLP(FD), instead, is very general-purpose. In OR, com-
bining a graph algorithm with a maximum flow is a rather complex task, while



Constraint Logic Programming 75

in CLP(FD) it is trivial: just a matter of adding two constraints (alldifferent
and gcc) to the program, and they will automatically communicate through the
constraint store and the domains of the variables. The user does not even need
to know the details of the propagation algorithm.

Another key observation is that CLP(FD), being based on the concept of
consistency, is very oriented to solve satisfiability problems, and optimization
problems are often converted into (sequences of) satisfiability ones. OR, instead,
has a wide literature focussed on optimization problems, using bounds, relax-
ations, and cuts, to remove sub-optimal parts of the search space. Moreover,
arc-consistency reasons about one constraint at a time, meaning that if no con-
straint is able to perform pruning alone, no propagation occurs. This can be
partially solved using higher levels of consistency, also supported by languages
like CHR (Section 3.1), but this is not always a solution, since higher levels of
consistency require more computation time. Linear programming algorithms, in-
stead, navigate a polytope focussing only on the vertices carrying the best values
of objective function, so they have a more global view.

So, an interesting way to integrate CLP and OR is by trying to exploit both the
satisfaction-based techniques of CLP and the optimization-based tools of OR. A
simple idea is to use both a linear model and a CLP(FD) model at the same time:
if either of the two detects inconsistency, we can fail and backtrack. An important
information a linear solver provides is a bound: by giving up the integrality
constraint, the linear solver is able to compute an over-optimal solution. So,
if the linear relaxation of the current node gives a worse bound than the best
solution found so far, the current node can be pruned [34]. Moreover, the linear
solver is able to provide another piece of information, namely reduced costs. For
each variable xi in the linear model, the reduced cost ri is the derivative of the
objective function with respect to xi. Suppose we have a minimization problem
min(f), and that the linear relaxation provides a value LB (Lower Bound).
Suppose that we already know a solution with cost UB (Upper Bound). Of
course, if LB ≥ UB, we can fail and backtrack. Otherwise, suppose that there
is some variable xi that in the optimal solution of the linear relaxation takes
value 0, and suppose the reduced cost is 10. This means that, if we change the
value of xi to 1, the value of the objective function will increase of at least 10.
If LB + 10 ≥ UB, then I cannot add 1 to xi, because that would mean going to
a worse solution than the current best, so we can remove the value 1 from the
domain of xi. This is called cost-based filtering [80,90].

Other techniques from (integer) linear programming have been adapted to
include constraint programming. Column generation is a technique used in linear
programming to solve very large problems. The basic idea is that the simplex
algorithm uses a tableaux to represent the linear program, and uses reduced
costs to drive the search. Since reduced costs are the derivatives of the objective
function with respect to the variables in the current solution, if all reduced
costs are positive, then there is no way to reduce the value of the objective
function, i.e., we are in the optimal solution (global minimum). Otherwise, if
there is at least a negative reduced cost, increasing the value of the corresponding



76 M. Gavanelli and F. Rossi

variable will reduce the objective function, and the search continues. However,
if the tableaux contains a huge number of columns, finding a negative cost may
become a constraint satisfaction problem itself that can be solved with various
techniques, including constraint programming [96].

Bender’s decomposition is another technique used to solve very large prob-
lems. The whole problem is decomposed into a master problem and a sub-
problem, that will then communicate. One of the two could be more easily
solvable by an FD solver, while the other by a linear solver; this gives an in-
teresting pattern to have the two solvers communicate [70,17, 98].

Finally, variousmethods exist to integrate local searchwith CLP [38,112,78,39].

4.2 Symmetry Breaking

In CLP and constraint reasoning in general, there are several techniques that
try to change the problem formulation to improve the efficiency of the solution
process. For example, some approaches include rewriting (through folding and
unfolding steps) a constraint logic program [77], to make it more efficient for a
specific instance or a query. We will not go into further details, as the interested
reader will find an exhaustive exposition in another chapter of this book [122].

Another interesting and useful idea is to try to remove some symmetrical
parts of the search space, by rewriting the constraint program or by adding (by
hand or automatically [108], in the CLP program) so-called symmetry breaking
constraints. In fact, the presence of symmetries can expand exponentially the
size of the search space. Consider, for example, a graph coloring problem: each
node of a graph should be assigned a color from a finite palette (the same one for
all nodes), with the constraint that two nodes connected with an arc should have
different colors. Backtracking search will try to assign a value to a first node, for
example color red to node N1. Suppose that, after constraint propagation and a
long search, we find out that there is no solution with N1 = red: backtrack search
will now choose the second value in the domain of N1, say blue. However, since
the colors are symmetric, there is no solution with blue as well. This observation
can be used to reduce significantly the search space. Other problems have many
more symmetries than the graph coloring. The classical benchmark problem in
this research area is the social golfer, which is an abstraction of many real-life
scenarios: N golf players want to play golf every week, in groups of M golfers;
we have to find a schedule for W weeks such that no two players play in the
same group more than once.

A first way to tackle this problem is by changing the constraint model, by
switching to a representation with no symmetries, or with a reduced number
of symmetries. The first solution to the social golfer problem was implemented
by Stefano Novello in CLP [120]. The idea was to use a set representation (see
also Section 2.2): the position of elements in a set is immaterial, so the intrinsic
symmetry related to the order of the elements no longer exists.

Other solutions include finding the equivalence classes for the symmetries, and
adding constraints that are satisfied only by one representative of each equiv-
alence class. In the graph coloring example, one can leave only one element in



Constraint Logic Programming 77

the domain of a given node. Of course, this simple constraint will not always re-
move all the symmetries, but it usually greatly reduces the search space. When
the constraint problem is represented by a sequence of symmetric variables (i.e.,
every permutation of a solution is still a solution), one can impose that the vari-
ables are ordered. If the problem contains a matrix of variables, and exchanging
two lines or two columns of a solution yields another solution, a lexicographic
ordering between the rows/columns can be imposed [81].

In some cases, one has a very powerful heuristics for solving a CSP, and the
heuristic can become less effective if we change the constraint model; in particular
the heuristic could be deceived by the addition of symmetry breaking constraints.
In those cases, one can revert to algorithms that break the symmetries during
search: i.e., after exploring (unsuccessfully) some part of the search space, they
prune the symmetrical parts of the already explored zones [114, 92,79,72].

All these methods assume that the symmetries are already known; however,
there are also approaches trying to identify the symmetries from the specifica-
tions [108]. In some cases, one tries to detect the symmetries from the general
model [33], without looking at the specific instance. E.g., the graph coloring
problem has symmetries in general, irrespectively of the particular graph we are
considering. In other cases, one tries to detect symmetries that hold only in the
given instance we are about to solve [86].

5 Applications

CLP has shown to be successfully used in many application domains. For space
reasons, we will just mention few of them, not intending to give a complete
survey. The reader can refer to existing surveys on CLP applications [137], as
well as on the chapter on applications of LP in this book [51].

In recent years, biology has been the source of interesting application problems
for the whole of computer science, due to the large volume of data and the
combinatorial nature of many scenarios. CLP, and constraint programming in
general, has been recently applied to some of these problems [10]. In particular,
CLP has been used to tackle the protein structure prediction problem, which is
one of the most challenging problems in biological sciences, and which can be seen
as an optimization problem [48, 55]. The complexity of constraint propagation
was also studied [49]. The results obtained on small proteins show that CLP
can be employed for studying protein simplified models. The advantage of CLP
over other approaches lies in the rapid software prototyping, in the easy way
of encoding heuristics, and in the several efficient constraint-based techniques,
such as constraint propagation, to prune huge search spaces.

Constraint logic programming was also used to reason about spatial and tem-
poral data, and a CLP solver was integrated with a geographical information
system. One practical applications was the study of the mating habit of the
crested porcupine [125], in which information is gathered through radio-collars
and processed by a CLP program.

Planning and scheduling have always been two of the main application ar-
eas for constraint-based approaches [12]. Scheduling is the problem of assigning



78 M. Gavanelli and F. Rossi

a timing to the various tasks composing a complex activity, and often, other
resources. As such, it has various specializations: in sport scheduling [131] one
wants to fix the matches of a tournament; in school timetabling [132, 86] the
aim is deciding when and where lessons take place, in crew rostering we have
to find a sequencing of a given set of duties into rosters satisfying operational
constraints [34], etc. [30, 36]. CLP(FD) has proved to be very successful in this
area mainly because of an important global constraint, called cumulative. This
constraint relates the start times, the durations, and the resource consumptions
of a set of tasks, and it ensures that in any instant of time, the total resource
consumption of the tasks being executed does not exceed a given limit. So, for a
school timetabling, one can state that the rooms are resources: if in a school there
are R available rooms, there cannot be more that R lessons at the same time.
Teachers can also be considered as resources: two contemporary lessons cannot
involve the same teacher, and so on. There are various implementations of the
cumulative constraint, that give different balances of computational complexity
(usually from O(n2) to O(n3)) and achieved pruning.

Planning, instead, is the problem of finding a sequence of actions that, taken
in the correct order, achieve a given goal. Each action has pre-conditions and
post-conditions, and the automatic planner must ensure that the post-conditions
of some action do not invalidate the pre-conditions of the subsequent actions.
CLP(FD) is useful to detect such possible situations, called threats [14,13], and
to implement the temporal reasoning [121]. Also, some notable works propose
to implement action description languages in CLP(FD) [62].

A remarkable amount of work in CLP is connected with database theories and
applications. Considering the theory, the semantics of the U-Datalog language
is cast through a CLP semantics, and, in particular, updates in rule bodies
are specified through constraints [118]. Constraints are also used to schedule
the transactions in a distributed database [111]. Constraints are also useful to
represent incomplete information, e.g., in temporal-probabilistic databases [106].

CLP(FD) was used to find an optimal placement of sirens to alert the popu-
lation in Venice of the high tide [9]. The map of the city is divided by a grid into
cells, and for each cell a number of features is recorded, such as the average and
maximum height of the buildings, their density, etc. The authors use a simulator
to compute the sound propagation, and they relate the sound propagation with
the position of the sirens through constraints. The objective is to find the best
placement (that minimizes the number of sirens) such that in each cell the signal
strength is greater than or equal to a given threshold.

Other authors [76] tackle the problem of detecting excess of pollution in the
Venice lagoon. Every day, information is acquired through sensors, and fed to
a decision support system. The system is implemented in CLP, and uses con-
straints to model the propagation of pollutants in the lagoon; it is able to provide
suggestions to the Venice Water Magistracy on which implants to close, which
to relocate, etc, to keep the level of pollution within acceptable levels.

The system LODE [91] applies CLP to reason about temporal information in
an e-learning software devoted to deaf children. Deaf people can have difficulties



Constraint Logic Programming 79

in understanding temporal relations in textual information, and such software
helps them by proposing stories and exercises.

Verification is a very important application of CLP, that has been deeply
studied by many authors in Italy and abroad. It is also a vast discipline, that
includes important applications of theoretical and practical importance, such as
security verification [57,44,16]. We will not delve into this fascinating discipline,
because it is the subject of another chapter of this book [59].

6 Conclusions

Constraint Logic Programming is a computation paradigm that joins the theoret-
ical features of Logic Programming (declarative semantics, soundness, complete-
ness) with an important range of practical applications. However, additional ef-
forts are needed to make it more widely applicable. Features such as uncertainty,
multi-agent reasoning, lack of data, and vast amounts of information, just to cite
few examples, should be fully integrated and satisfactorily handled in CLP-style
languages if we want CLP to be successfully used also in more modern applica-
tions. We also see two other threats to the spreading of the CLP technology into
the industrial world. One is the lack of a common syntax: as already hinted in
Section 2.1, every CLP(FD) solver has itw own syntax for defining domains, and
same constraints can have different names. There are standardisation efforts,
and new modelling languages such as (Mini)Zinc [119] become more and more
supported by CLP systems, but still the goal of a commonly agreed language
seems far away. A second threat comes from imperative and object-oriented lan-
guages: many solvers are now available also with C++ (ILOG2, Gecode [134]) or
Java syntax (Choco, Jacop3, JsetL [128]), giving up the gains coming from logic
programming, but with the advantage of an easier integration into already devel-
oped applications. To keep up with those solvers, CLP languages should either
provide new features, unapplicable to imperative/OOP languages, or have better
integration with real world applications, with the ability to develop attractive
user interfaces, access to web services, and so on. Finally, CLP languages are usu-
ally tailored for the experienced user: one can develop extremely efficient search
strategies, and heuristics for solving a specific problem, even with integration
of different solvers, but these technologies are often out of reach for the naive
user. CLP has taken the opposite viewpoint with respect to, e.g., SAT, MIP or
ASP solvers: in those languages the user has only to state the problem, and the
solver will choose a good strategy to solve it. Research trying to bridge the gap
between the unexperienced user and the state-of-the-art technology could really
boost the widespreading of the CLP word.

Acknowledgements. This research has been partially funded by PRIN 2008
project ‘Innovative and multi-disciplinary approaches for constraint and prefer-
ence reasoning’.
2 ILOG: www.ilog.com/products/cp/
3 Choco: http://choco.emn.fr/, Jacop: http://jacop.osolpro.com/



80 M. Gavanelli and F. Rossi

References

1. Alberti, M., Cattafi, M., Gavanelli, M., Lamma, E., Chesani, F., Montali, M.,
Mello, P., Torroni, P.: Integrating abductive logic programming and description
logics in a dynamic contracting architecture. In: IEEE Int. Conf. on Web Services
(2009)

2. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Montali, M.: An
abductive framework for a-priori verification of web services. In: PPDP (2006)

3. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Ver-
ifiable agent interaction in abductive logic programming: the SCIFF framework.
ACM Transactions on Computational Logics 9(4) (2008)

4. Alberti, M., Lamma, E.: Synthesis of object models from partial models: A CSP
perspective. In: van Harmelen, F. (ed.) ECAI, pp. 116–120. IOS Press, Amsterdam
(2002)

5. Alpuente, M., Sessa, M. (eds.): GULP-PRODE 1995 (1995)
6. Apt, K.R.: Principles of Constraint Programming. Cambridge Univ. Press,

Cambridge (2003)
7. Apt, K.R., Wallace, M.G.: Constraint Logic Programming Using ECLiPSe.

Cambridge University Press, Cambridge (2006)
8. Armando, A., Melis, E., Ranise, S.: Constraint solving in logic programming and

in automated deduction: A comparison. In: Giunchiglia, F. (ed.) AIMSA 1998.
LNCS (LNAI), vol. 1480, pp. 28–38. Springer, Heidelberg (1998)

9. Avanzini, F., Rocchesso, D., Belussi, A., Dal Palù, A., Dovier, A.: Designing an
urban-scale auditory alert system. IEEE Computer 37(9), 55–61 (2004)

10. Backofen, R., Gilbert, D.: Bioinformatics and constraints. In: Rossi, et al [127]
11. Bagnara, R., Gori, R., Hill, P.M., Zaffanella, E.: Finite-tree analysis for con-

straint logic-based languages. In: Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126,
pp. 165–184. Springer, Heidelberg (2001)

12. Baptiste, P., Laborie, P., Le Pape, C., Nuijten, W.: Constraint-based scheduling
and planning. In: Rossi, et al [127]

13. Barruffi, R., Milano, M., Montanari, R.: Planning for security management. IEEE
Intelligent Systems 16(1), 74–80 (2001)

14. Barruffi, R., Milano, M., Torroni, P.: Planning while executing: A constraint-based
approach. In: Ohsuga, S., Raś, Z.W. (eds.) ISMIS 2000. LNCS (LNAI), vol. 1932,
pp. 228–236. Springer, Heidelberg (2000)

15. Baselice, S., Bonatti, P., Gelfond, M.: Towards an integration of answer set
and constraint solving. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS,
vol. 3668, pp. 52–66. Springer, Heidelberg (2005)

16. Bella, G., Bistarelli, S.: Soft constraint programming to analysing security proto-
cols. TPLP 4(5-6), 545–572 (2004)

17. Benini, L., Lombardi, M., Mantovani, M., Milano, M., Ruggiero, M.: Multi-
stage Benders decomposition for optimizing multicore architectures. In: Perron,
L., Trick, M.A. (eds.) CPAIOR 2008. LNCS, vol. 5015, pp. 36–50. Springer,
Heidelberg (2008)

18. Bergenti, F., Dal Palù, A., Rossi, G.: Generalizing finite domain constraint solving.
In: Formisano, A. (ed.) CILC 2008 (2008)

19. Bertolino, B., Bonatti, P.A., Montesi, D., Pelagatti, S.: Correctness and complete-
ness of logic programs under the CLP schema. In: Asirelli, P. (ed.) Proc. Sixth
Italian Conference on Logic Programming, Pisa, Italy, pp. 391–405 (1991)

20. Bessiere, C.: Constraint propagation. In: Rossi, et al. [127]



Constraint Logic Programming 81

21. Bessière, C. (ed.): CP 2007. LNCS, vol. 4741. Springer, Heidelberg (2007)
22. Bistarelli, S., Frühwirth, T.W., Marte, M.: Soft constraint propagation and solving

in chrs. In: SAC, pp. 1–5. ACM, New York (2002)
23. Bistarelli, S., Gabbrielli, M., Meo, M., Santini, F.: Timed soft concurrent con-

straint programs. In: Lea, D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS,
vol. 5052, pp. 50–66. Springer, Heidelberg (2008)

24. Bistarelli, S., Montanari, U., Rossi, F.: Semiring based constraint solving and
optimization. Journal of the ACM 44(2), 201–236 (1997)

25. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint logic program-
ming. In: IJCAI 2001, pp. 352–357 (2001)

26. Bistarelli, S., Montanari, U., Rossi, F.: Soft concurrent constraint programming.
In: Le Métayer, D. (ed.) ESOP 2002. LNCS, vol. 2305, pp. 53–67. Springer,
Heidelberg (2002)

27. Bonatti, P., Calimeri, F., Leone, N., Ricca, F.: Answer Set Programming. In:
Dovier, A., Pontelli, E. (eds.) 25 Years of Logic Programming, ch.8. LNCS,
vol. 6125, pp. 159–182. Springer, Heidelberg (2010)

28. Borning, A., Maher, M., Martindale, A., Wilson, M.: Constraint hierarchies and
logic programming. In: Levi, G., Martelli, M. (eds.) ICLP (1989)

29. Bruscoli, P., Levi, F., Levi, G., Meo, M.: Compilative constructive negation
in constraint logic programs. In: Tison, S. (ed.) CAAP 1994. LNCS, vol. 787,
pp. 52–67. Springer, Heidelberg (1994)

30. Brusoni, V., Console, L., Lamma, E., Mello, P., Milano, M., Terenziani, P.:
Resource-based vs. task-based approaches for scheduling problems. In:
Michalewicz, M., Raś, Z.W. (eds.) ISMIS 1996. LNCS, vol. 1079. Springer,
Heidelberg (1996)

31. Buscemi, M.G., Montanari, U.: A survey of constraint-based programming
paradigms. Computer Science Review 2(3), 137–141 (2008)

32. Cabeza, D., Hermenegildo, M.: Implementing distributed concurrent constraint
execution in the CIAO system. In: Lucio, P., Martelli, M., Navarro, M. (eds.)
APPIA-GULP-PRODE (1996)

33. Cadoli, M., Mancini, T.: Using a theorem prover for reasoning on constraint prob-
lems. In: Bandini, S., Manzoni, S. (eds.) AI*IA. Springer, Heidelberg (2005)

34. Caprara, A., Focacci, F., Lamma, E., Mello, P., Milano, M., Toth, P., Vigo, D.:
Integrating constraint logic programming and operations research techniques for
the crew rostering problem. Softw. Pract. Exper. 28(1), 49–76 (1998)

35. Carlsson, M., Widen, J.: SICStus Prolog User’s Manual. Technical report, Swedish
Institute of Computer Science (SICS) (1999)

36. Carraresi, P., Gallo, G., Rago, G.: A hypergraph model for constraint logic pro-
gramming and applications to bus drivers’ scheduling. AMAI 8(3-4) (1993)

37. Cheadle, A., Harvey, W., Sadler, A., Schimpf, J., Shen, K., Wallace, M.: ECLiPSe:
a tutorial introduction (2003), http://eclipse-clp.org/doc/tutorial

38. Cipriano, R., Di Gaspero, L., Dovier, A.: Hybrid approaches for rostering: A case
study in the integration of constraint programming and local search. In: Almeida,
F., Blesa Aguilera, M.J., Blum, C., Moreno Vega, J.M., Pérez Pérez, M., Roli, A.,
Sampels, M. (eds.) HM 2006. LNCS, vol. 4030, pp. 110–123. Springer, Heidelberg
(2006)

39. Cipriano, R., Di Gaspero, L., Dovier, A.: A hybrid solver for large neighborhood
search: Mixing Gecode and EasyLocal++. In: Sampels, M. (ed.) HM 2009. LNCS,
vol. 5818, pp. 141–155. Springer, Heidelberg (2009)

40. Codognet, P., Diaz, D.: Compiling constraints in clp(fd). J. Log. Prog. (1996)

http://eclipse-clp.org/doc/tutorial


82 M. Gavanelli and F. Rossi

41. Colmerauer, A.: An introduction to Prolog-III. Communication of the ACM
(1990)

42. Colmerauer, A.: Prolog II reference manual and theoretical model. Technical re-
port, Groupe Intelligence Artificielle, Universitè Aix-Mareseille II (October 1982)

43. Colussi, L., Marchiori, E., Marchiori, M.: A dataflow semantics for constraint logic
programs. In: Alpuente, Sessa [5], pp. 557–568

44. Corin, R., Etalle, S.: An improved constraint-based system for the verification of
security protocols. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS,
vol. 2477, pp. 326–341. Springer, Heidelberg (2002)

45. Cucchiara, R., Gavanelli, M., Lamma, E., Mello, P., Milano, M., Piccardi, M.:
Extending CLP(FD) with interactive data acquisition for 3D visual object recog-
nition. In: Proc. PACLP 1999, pp. 137–155 (1999)

46. Cucchiara, R., Gavanelli, M., Lamma, E., Mello, P., Milano, M., Piccardi, M.:
From eager to lazy constrained data acquisition: A general framework. New Gen-
eration Computing 19(4), 339–367 (2001)

47. Dahl, V., Niemelä, I. (eds.): ICLP 2007. LNCS, vol. 4670. Springer, Heidelberg
(2007)

48. Dal Palù, A., Dovier, A., Fogolari, F.: Constraint logic programming approach to
protein structure prediction. BMC Bioinformatics 5 (2004)

49. Dal Palù, A., Dovier, A., Pontelli, E.: Computing approximate solutions of the
protein structure determination problem using global constraints on discrete crys-
tal lattices. Int’l Journal of Data Mining and Bioinformatics 4(1) (January 2010)

50. Dal Palù, A., Dovier, A., Pontelli, E., Rossi, G.: Integrating finite domain con-
straints and CLP with sets. In: PPDP 2003, pp. 219–229. ACM, New York (2003)

51. Dal Palù, A., Torroni, P.: 25 Years of Applications of Logic Programming. In:
Dovier, Pontelli [68], vol. 6125, ch.14, pp. 298–325 (2010)

52. de Boer, F.S., Di Pierro, A., Palamidessi, C.: An algebraic perspective of con-
straint logic programming. Journal of Logic and Computation 7(1), 1–38 (1997)

53. de Boer, F.S., Gabbrielli, M.: Infinite computations in concurrent constraint pro-
gramming. Electr. Notes Theor. Comput. Sci. 6 (1997)

54. de Boer, F.S., Gabbrielli, M., Meo, M.C.: A timed concurrent constraint language.
Inf. Comput. 161(1), 45–83 (2000)

55. De Maria, E., Dovier, A., Montanari, A., Piazza, C.: Exploiting model checking
in constraint-based approaches to the protein folding. In: WCB 2006 (2006)

56. Dechter, R.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)
57. Delzanno, G., Etalle, S.: Proof theory, transformations, and logic programming

for debugging security protocols. In: Pettorossi, A. (ed.) LOPSTR 2001. LNCS,
vol. 2372, p. 76. Springer, Heidelberg (2002)

58. Delzanno, G., Gabbrielli, M., Meo, M.: A compositional semantics for CHR. In:
PPDP 2005, pp. 209–217. ACM, New York (2005)

59. Delzanno, G., Giacobazzi, R., Ranzato, F.: Analysis, Abstract Interpretation,
and Verification in (Constraint Logic) Programming. In: Dovier, Pontelli [68],
vol. 6125, ch. 7, pp. 136–158 (2010)

60. Dı́az, D., Codognet, P.: GNU Prolog: Beyond compiling Prolog to C. In:
Pontelli, E., Santos Costa, V. (eds.) PADL 2000. LNCS, vol. 1753, p. 81. Springer,
Heidelberg (2000)

61. Dondossola, G., Ratto, E.: GRF temporal reasoning language. Technical report,
CISE, Milano (1993)

62. Dovier, A., Formisano, A., Pontelli, E.: Multivalued action languages with con-
straints in CLP(FD). In: Dahl, Niemelä [47], pp. 255–270



Constraint Logic Programming 83

63. Dovier, A., Formisano, A., Pontelli, E.: An empirical study of constraint logic
programming and answer set programming solutions of combinatorial problems.
J. Exp. Theor. Artif. Intell. 21(2) (2009)

64. Dovier, A., Omodeo, E., Pontelli, E., Rossi, G.: {log}: A logic programming lan-
guage with finite sets. In: ICLP, pp. 111–124 (1991)

65. Dovier, A., Piazza, C., Pontelli, E., Rossi, G.: Sets and constraint logic program-
ming. ACM Trans. Program. Lang. Syst. 22(5), 861–931 (2000)

66. Dovier, A., Piazza, C., Rossi, G.: A uniform approach to constraint-solving for
lists, multisets, compact lists, and sets. ACM Trans. Comput. Log. 9(3) (2008)

67. Dovier, A., Policriti, A., Rossi, G.: A uniform axiomatic view of lists, multisets,
and sets, and the relevant unification algorithms. Fundam. Inform. 36(2-3) (1998)

68. Dovier, A., Pontelli, E. (eds.): 25 Years of Logic Programming. LNCS, vol. 6125.
Springer, Heidelberg (2010)

69. Endriss, U., Mancarella, P., Sadri, F., Terreni, G., Toni, F.: The CIFF proof pro-
cedure for abductive logic programming with constraints. In: Alferes, J.J., Leite,
J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 31–43. Springer, Heidelberg
(2004)

70. Eremin, A., Wallace, M.: Hybrid Benders decomposition algorithms in constraint
logic programming. In: Walsh [138], pp. 1–15

71. Etalle, S., Gabbrielli, M., Meo, M.: Transformations of CCP programs. ACM
Trans. Program. Lang. Syst. 23(3), 304–395 (2001)

72. Fahle, T., Schamberger, S., Sellman, M.: Symmetry breaking. In: Walsh [138]
73. Falaschi, M., Gabbrielli, M., Marriott, K., Palamidessi, C.: Confluence in concur-

rent constraint programming. Theor. Comput. Sci. 183(2), 281–315 (1997)
74. Falaschi, M., Gabbrielli, M., Marriott, K., Palamidessi, C.: Constraint logic pro-

gramming with dynamic scheduling: A semantics based on closure operators. In-
formation and Computation 137(1), 41–67 (1997)

75. Farenzena, M., Fusiello, A., Dovier, A.: Reconstruction with interval constraints
propagation. In: CVPR, pp. 1185–1190. IEEE Computer Society, Los Alamitos
(2006)

76. Festa, G., Sardu, G., Felici, R.: A decision support system for the Venice lagoon.
In: Herold, A. (ed.) Handbook of parallel constraint logic programming applica-
tions (1995)

77. Fioravanti, F., Pettorossi, A., Proietti, M.: Transformation rules for locally strat-
ified constraint logic programs. In: Bruynooghe, M., Lau, K.-K. (eds.) Program
Development in Computational Logic. LNCS, vol. 3049, pp. 291–339. Springer,
Heidelberg (2004)

78. Focacci, F., Laburthe, F., Lodi, A.: Local search and constraint programming: LS
and CP illustrated on a transportation problem. In: Milano, M. (ed.) Constraint
and Integer Programming. Towards a Unified Methodology, pp. 137–167. Kluwer
Academic Publishers, Dordrecht (2003)

79. Focacci, F., Milano, M.: Global cut framework for removing symmetries. In: Walsh
[138], pp. 77–92

80. Focacci, F., Milano, M., Lodi, A.: Soving TSP with time windows with constraints.
In: International Conference on Logic Programming, pp. 515–529 (1999)

81. Frisch, A., Hnich, B., Kızıltan, Z., Miguel, I., Walsh, T.: Propagation algorithms
for lexicographic ordering constraints. Artif. Int. 170(10), 803–834 (2006)

82. Frühwirth, T.: Theory and practice of constraint handling rules. Journal of Logic
Programming 37, 95–138 (1998)

83. Frühwirth, T., Di Pierro, A., Wiklicky, H.: An implementation of probabilistic
constraint handling rules. In: Comini, M., Falaschi, M. (eds.) WFLP (2002)



84 M. Gavanelli and F. Rossi

84. Gabbrielli, M., Dore, G.M., Levi, G.: Observable semantics for constraint logic
programs. J. Log. Comput. 5(2), 133–171 (1995)

85. Gabbrielli, M., Palamidessi, C., Valencia, F.D.: Concurrent and Reactive Con-
straint Programming. In: Dovier, Pontelli [68], vol. 6125, ch. 11, pp. 225–248
(2010)

86. Gavanelli, M.: University timetabling in ECLiPSe. ALP Newsletter 19(3) (2006)
87. Gavanelli, M., Alberti, M., Lamma, E.: Integration of abductive reasoning and

constraint optimization in SCIFF. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009.
LNCS, vol. 5649, pp. 387–401. Springer, Heidelberg (2009)

88. Gavanelli, M., Lamma, E., Mello, P., Milano, M.: Dealing with incomplete knowl-
edge on CLP(FD) variable domains. ACM TOPLAS 27(2) (2005)

89. Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: An abductive framework for
information exchange in multi-agent systems. In: Dix, J., Leite, J. (eds.) CLIMA
2004. LNCS (LNAI), vol. 3259, pp. 34–52. Springer, Heidelberg (2004)

90. Gavanelli, M., Milano, M.: Cost-based filtering for determining the Pareto frontier.
In: Junker, U., Kießling, W. (eds.) Multidisciplinary Workshop on Advances in
Preference Handling, in conjunction with ECAI 2006 (2006)

91. Gennari, R., Mich, O.: Constraint-based temporal reasoning for e-learning with
LODE. In: Bessiere [21]

92. Gent, I.P., Smith, B.M.: Symmetry breaking in constraint programming. In: Horn,
W. (ed.) ECAI, pp. 599–603. IOS Press, Amsterdam (2000)

93. Georget, Y., Codognet, P.: Compiling semiring-based constraints with clp(fd,s).
In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, p. 205. Springer,
Heidelberg (1998)

94. Giacobazzi, R., Debray, S., Levi, G.: Generalized semantics and abstract inter-
pretation for constraint logic programs. J. Log. Program. 25(3) (1995)

95. Giordano, L., Toni, F.: Knowledge representation and non-monotonic reasoning.
In: Dovier, Pontelli [68], vol. 6125, ch. 5, pp. 86–110 (2010)

96. Gualandi, S., Malucelli, F.: Constraint programming-based column generation.
4OR: A Quarterly Journal of Operations Research 7(2), 113–137 (2009)

97. Van Hoeve, W.J., Pesant, G., Rousseau, L.-M.: On global warming: Flow-based
soft global constraints. Journal of Heuristics 12(4-5), 347–373 (2006)

98. Hooker, J.: Logic-Based Methods for Optimization: Combining Optimization and
Constraint Satisfaction. John Wiley & Sons, Chichester (2000)

99. Jaffar, J., Lassez, J.-L.: Constraint logic programming. In: Proc. 14th symp. on
Principles of programming languages. ACM, New York (1987)

100. Jaffar, J., Michaylov, S., Stuckey, P., Yap, R.: The CLP(R) Language and System.
ACM Transactions on Programming Languages and Systems (1992)

101. Kakas, A.C., Kowalski, R.A., Toni, F.: Abductive Logic Programming. Journal of
Logic and Computation 2(6), 719–770 (1993)

102. Kakas, A.C., Mancarella, P.: On the relation between Truth Maintenance and
Abduction. In: Fukumura, T. (ed.) PRICAI (1990)

103. Kakas, A.C., Michael, A., Mourlas, C.: ACLP: Abductive Constraint Logic Pro-
gramming. Journal of Logic Programming 44(1-3), 129–177 (2000)

104. Kakas, A.C., van Nuffelen, B., Denecker, M.: A-System: Problem solving through
abduction. In: Nebel, B. (ed.) Proc. of IJCAI 2001, pp. 591–596 (2001)

105. Mackworth, A.: Consistency in networks of relations. Artif. Intell. 8(1) (1977)
106. Majkic, Z.: Constraint logic programming and logic modality for event’s valid-

time approximation. In: 2nd Indian Int. Conf. on Artificial Intelligence (2005)
107. Mancarella, P., Terreni, G., Toni, F.: Web sites verification: An abductive logic

programming tool. In: Dahl, Niemelä [47]



Constraint Logic Programming 85

108. Mancini, T., Cadoli, M.: Detecting and breaking symmetries by reasoning on
problem specifications. In: Zucker, J.-D., Saitta, L. (eds.) SARA 2005. LNCS
(LNAI), vol. 3607, pp. 165–181. Springer, Heidelberg (2005)

109. Mancini, T., Micaletto, D., Patrizi, F., Cadoli, M.: Evaluating ASP and commer-
cial solvers on the CSPLib. Constraints 13(4), 407–436 (2008)

110. Manco, G., Turini, F.: A structural (meta-logical) semantics for linear objects. In:
Alpuente, Sessa [5], pp. 421–434

111. Mascardi, V., Merelli, E.: Agent-oriented and constraint technologies for dis-
tributed transaction management. In: Parenti, R., Masulli, F. (eds.) Proc. Int.
ICSC Symposia IIA 1999 and SOCO 1999 (1999)

112. Merelli, E., De Leone, R., Martelli, M., Panti, M.: Embedding constraint logic
programming formula in a local search algorithm for job shop scheduling. In:
EURO XVI, Bruxelles (July 1998)

113. Meseguer, P., Rossi, F., Schiex, T.: Soft constraints. In: Rossi, et al [127]
114. Meseguer, P., Torras, C.: Exploiting symmetries within constraint satisfaction

search. Artificial Intelligence 129(1-2), 133–163 (2001)
115. Mesnard, F., Ruggieri, S.: On proving left termination of constraint logic pro-

grams. ACM Trans. Comput. Log. 4(2) (2003)
116. Mohr, R., Masini, G.: Good old discrete relaxation. In: ECAI (1988)
117. Montanari, U.: Networks of constraints: Fundamental properties and applications

to picture processing. Information Science 7, 95–132 (1974)
118. Montesi, D., Bertino, E., Martelli, M.: Transactions and updates in deductive

databases. IEEE Trans. Knowledge and Data Engineering 9(5), 784–797 (1997)
119. Nethercote, N., Stuckey, P., Becket, R., Brand, S., Duck, G., Tack, G.: MiniZinc:

Towards a standard CP modelling language. In: Bessiere [21], pp. 529–543
120. Novello, S.: ECLiPSe examples (1998),

http://eclipse-clp.org/examples/golf.ecl.txt

121. Orlandini, A.: Model-based rescue robot control with ECLiPSe framework. In:
Oddi, A., Cesta, A., Fages, F., Policella, N., Rossi, F. (eds.) CSCLP (2008)

122. Pettorossi, A., Proietti, M., Senni, V.: The Transformational Approach to Pro-
gram Development. In: Dovier, Pontelli [68], vol. 6125, ch. 6, pp. 111–135 (2010)

123. Pierro, A.D., Wiklicky, H.: An operational semantics for probabilistic concurrent
constraint programming. In: ICCL, pp. 174–183 (1998)

124. Provetti, A., Rossi, G.: Action specifications in {log}. In: Falaschi, M., Navarro,
M., Policriti, A. (eds.) APPIA-GULP-PRODE (1997)

125. Raffaetà, A., Ceccarelli, T., Centeno, D., Giannotti, F., Massolo, A., Parent,
C., Renso, C., Spaccapietra, S., Turini, F.: An application of advanced spatio-
temporal formalisms to behavioural ecology. Geoinformatica 12(1), 37–72 (2008)

126. Raffaetà, A., Frühwirth, T.W.: Spatio-temporal annotated constraint logic
programming. In: Ramakrishnan, I.V. (ed.) PADL 2001. LNCS, vol. 1990,
pp. 259–273. Springer, Heidelberg (2001)

127. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming.
Elsevier, Amsterdam (2006)

128. Rossi, G., Panegai, E., Poleo, E.: JSetL: a Java library for supporting declarative
programming in Java. Softw. Pract. Exper. 37(2), 115–149 (2007)

129. Ruttkay, Z.: Fuzzy constraint satisfaction. In: FUZZ-IEEE 1994, Orlando, FL
(1994)

130. Saraswat, V.A.: Concurrent Constraint Programming. MIT Press, Cambridge
(2003)

131. Schaerf, A.: Scheduling sport tournaments using constraint logic programming.
Constraints 4(1), 43–65 (1999)

http://eclipse-clp.org/examples/golf.ecl.txt


86 M. Gavanelli and F. Rossi

132. Schaerf, A.: A survey of automated timetabling. Artif. Intell. Review 13(2) (1999)
133. Schiex, T., Fargier, H., Verfaillie, G.: Valued constraint satisfaction problems:

hard and easy problems. In: IJCAI 1995, pp. 631–637 (1995)
134. Schulte, C., Stuckey, P.: Efficient constraint propagation engines. In: ToPLaS 2008

(2008)
135. Van Hentenryck, P.: Constraint Satisfaction in Logic Programming. MIT,

Cambridge (1989)
136. van Hoeve, W.-J.: The all different constraint: a survey. In: Sixth Annual Work-

shop of the ERCIM Working Group on Constraints (2001)
137. Wallace, M.: Practical applications of constraint programming. Constraints (1996)
138. Walsh, T. (ed.): CP 2001. LNCS, vol. 2239. Springer, Heidelberg (2001)
139. Wielemaker, J., Huang, Z., Van der Meij, L.: SWI-Prolog and the web. Theory

and Practice of Logic Programming 8(3), 363–392 (2008)
140. Zanarini, A., Milano, M., Pesant, G.: Improved algorithm for the soft global car-

dinality constraint. In: Beck, J.C., Smith, B.M. (eds.) CPAIOR 2006. LNCS,
vol. 3990, pp. 288–299. Springer, Heidelberg (2006)

141. Zhou, N.-F.: Programming finite-domain constraint propagators in action rules.
Theory and Practice of Logic Programming 6(5), 483–507 (2006)



Knowledge Representation and

Non-monotonic Reasoning

Laura Giordano1 and Francesca Toni2

1 Università del Piemonte Orientale, Italy
laura@mfn.unipmn.it

2 Imperial College London, UK
ft@imperial.ac.uk

Abstract. Logic programming has been deployed to support non-mono-
tonic reasoning since the late ’80s. In this paper, we review semantics,
formalisms and computational mechanisms for logic programming for
non-monotonic reasoning. We also discuss some formalisms that have
emerged from the cross fertilization between the two areas and some
applications in as diverse areas as reasoning about dynamic domains,
security, diagnosis and legal reasoning.

1 Introduction

Since the beginning of the ’80s, when non-monotonic logics first came into ex-
istence [114,93,94,96], members of the AI community have started their investi-
gation in the field of commonsense reasoning. Modelling commonsense reasoning
requires the ability to jump to conclusions in the presence of incomplete knowl-
edge as well as the ability to revise knowledge to deal with new, possibly con-
flicting evidence. Non-monotonic logics exhibit these abilities and allow to model
non-monotonic reasoning (NMR). The topic soon aroused the interest of the logic
programming (LP) community. Indeed, since its onset in the ’70s [79], LP was
meant as a paradigm which combines the use of logic for knowledge representa-
tion with efficient goal directed proof procedures, and the construct of negation
as failure (NAF) [27], which was originally introduced as a procedural feature of
Prolog, is inherently non-monotonic. This has given rise, from the end of the ’80s,
to a challenging research activity on the semantics for NAF and, more generally,
on NMR in LP.

The development of new logical semantics for capturing the non-monotonic
features of logic programs, and, in particular, to provide a logical characterization
of NAF, has resulted in the cross fertilization between the areas of NMR and
LP. On the one hand, the features of non-monotonic logics have been adapted
and tuned to the need of LP giving rise to new logical semantics and extensions
of LP. On the other hand, the non-monotonic solutions proposed in the context
of LP have led to the definition of new logics for NMR (notably argumentation
theory [19,44,18] and inductive definitions [37]).

The aim of this paper is to provide a short survey of the work in the field
of NMR and LP, with a special attention to the use of NMR for knowledge

A. Dovier, E. Pontelli (Eds.): 25 Years of Logic Programming, LNCS 6125, pp. 87–111, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



88 L. Giordano and F. Toni

representation and with focus on putting the contribution by the Italian LP
community and by Italian researchers abroad within the context of this field.

The paper is organized as follows. In Section 2 we give an overview of semantics
for LP seen as a mechanism for NMR. In Section 3 we discuss some extensions
of LP which have stemmed from the understanding of LP as a mechanism for
NMR. In Section 4 we discuss applications and in Section 5 we conclude.

2 LP and Non-monotonicity: Semantics for NAF

NAF has been introduced in LP as an extra-logical feature which allows to
capture non-derivability. It has soon become the main tool for performing NMR
in LP and a lot of efforts has been devoted to the specification of a declarative
logical semantics for it. This section is devoted to providing an outline of the
main approaches to the definition of a semantics of logic programs with NAF
that have been presented in the literature.

General logic programs extend the formalism of definite clauses by allowing
the new connective not, NAF, to occur in the body of clauses. A clause of a
general logic program has the form:

A0 ← A1 ∧ . . . ∧An ∧ not Bn+1 ∧ . . . ∧ not Bn+m (n ≥ 0, m ≥ 0)

where the Aj ’s and Bi’s are atomic formulas, and all variables in them are
(implicitly) universally quantified with scope the whole clause. If n = 0 = m,
the body of the clause corresponds to the special atom true. A0 is referred to as
the head of the clause.

To deal with NAF, SLD resolution [80] has been extended to SLDNF reso-
lution [89]. From the operational point of view (assuming Bi is ground), a goal
not Bi succeeds when the goal Bi fails finitely. Conversely, the goal not Bi fails
finitely when the goal Bi succeeds. To provide a formulation of SLDNF in the
propositional case, let us introduce the following abstract syntax for goals G and
for clauses C:

G ::= true | A | not A | G1 ∧G2

C ::= A ← G

where the body of a clause is defined to be a goal, that is, a conjunction of literals
(atoms or negated atoms). We introduce two relations, �t to denote success and
�f to denote finite failure. The operational semantics is defined by the following
rules, which determine when a goal G succeeds (�t G) or finitely fails (�f G)
from a (general logic) program P :

�t true
�t A if there is a clause A← G ∈ P such that �t G
�t not A if �f A
�t G1 ∧G2 if �t G1 and �t G2

�f A if, for all clauses A← G ∈ P , �f G
�f not A if �t A
�f G1 ∧G2 if �f G1 or �f G2



Knowledge Representation and Non-monotonic Reasoning 89

When the above operational semantics is extended to the first order case, suit-
able conditions have to be introduced to guarantee that when a negative goal is
selected all its free variables are groundly instantiated. This is needed to guar-
antee the soundness and completeness of the proof procedure. Let us consider
P1 with the following clauses:

flies(X)← bird(X) ∧ not abnormal bird(X)
abnormal bird(Y )← penguin(Y )
abnormal bird(Y )← ostrich(Y )
bird(Z)← penguin(Z)
bird(tweety)
penguin(opus)

The goal flies(tweety) succeeds from P1 (�t flies(tweety)) while the goal
flies(opus) fails finitely (�f flies(opus)). Observe, however, that the proof of
the goal not abnormal bird(X) (where X is implicitly existentially quantified)
would flounder, as X is not ground. To avoid floundering situations, a notion
of allowedness has been defined for programs and goals [83]. In particular, the
allowedness condition on clauses requires that each variable occurring anywhere
in a clause occurs in at least one positive literal in its body. This condition is
satisfied by program P1 above.

Starting from this operational behavior and in order to fulfil the requirements
of knowledge representation, the LP community has developed different seman-
tics for capturing NAF, but also alternative proof procedure for LP with NAF,
and, more generally, alternative ways for modelling non-monotonicity in LP. The
first way of providing a logical understanding for NAF is due to Clark [27], who
introduced a construction, known as Clark’s completion, which is based on the
idea of interpreting the program as a set of sufficient and necessary conditions
rather than simply as a set of sufficient conditions. More precisely, each pred-
icate in a program is taken to be completely defined by the set of all clauses
where it occurs in the head, and to be false in all other cases. For instance, the
Clark’s completion of the earlier program P1 is:

(∀X)flies(X)↔ bird(X) ∧ not abnormal bird(X)
(∀Y )abnormal bird(Y )↔ penguin(Y ) ∨ ostrich(Y )
(∀Z)bird(Z) ↔ Z = tweety ∨ penguin(Z)
(∀W )penguin(W )↔W = opus
(∀S)ostrich(S) ↔ false

In classical logic, from the above completion, we can conclude:

penguin(opus), bird(opus), abnormal bird(opus),
bird(tweety), not penguin(tweety), not abnormal bird(tweety),
not flies(opus), flies(tweety).

Clark’s completion is strongly related to McCarthy’s Circumscription [93], as
proven in [115]. One problem of Clark’s completion is that in general the com-
pletion of a program is not guaranteed to be consistent. As shown by Shepherd-
son [124,125], Clark’s completion, as well as Reiter’s Closed World Assumption



90 L. Giordano and F. Toni

(CWA) [113], cannot provide an exact characterization of NAF in SDLNF. How-
ever, as we will see below, the idea of defining a completion of the program has
had a big impact on the field and has been proved to be crucial for the definition
of other approaches to non-monotonicity in LP.

One of the approaches to define a semantics for NAF is based on the idea
of putting some syntactic restrictions on the logic program. Chandra and Harel
[23] introduced a notion of stratification, which was further generalized by Przy-
musinski, by defining a notion of local stratification and the notion of perfect
model [111]. The idea of stratification is that of partitioning the predicate sym-
bols of the program into different strata in such a way that the definition of each
predicate can depend positively on predicates defined in lower strata or in the
same stratum, while it can depend negatively only on predicates defined in lower
strata.

Another direction in the definition of a semantics for NAF is based on the
idea of using a three-valued logic rather than a two-valued logic. Fitting [50]
and Kunen [82] have introduced a three-valued semantics for LP with NAF
based on Kleene’s strong three-valued logic. They showed that the least three-
valued model of the program completion can be computed as the fix-point of a
certain operator. In this approach, loops causing non-terminating computations
are captured by means of the truth-value undefined. For instance, given the
program P2 with clauses

a ← a
b ← not b
c ← true
c ← not d

this semantics assigns the truth-value true to c, the truth-value false to d and
the truth-value undefined to both a and b, as both the proofs of goal a and of
goal b produce non-terminating computations.

A different three-valued semantics for logic programs, the well-founded seman-
tics, has been defined by Van Gelder, Ross and Schlifp [56,129]. Differently from
the semantics of Fitting and Kunen, which captures a notion of finite failure, the
well-founded semantics captures a notion of infinite failure. For instance, given
the program P consisting solely of clause a ← a, differently from Fitting’s and
Kunen’s semantics, the well-founded semantics assigns false to a, as the proof of
goal a infinitely fails.

Assume that P is the Herbrand instantiation for a general logic program. The
definition of the well-founded semantics is based on the notion of unfounded set.
A set of atoms A is an unfounded set of a program P with respect to a (partial)
interpretation I (i.e. a set of positive and negative literals) if, informally, for
each atom p ∈ A, no clause in P can be used to support p, given what is already
known (I). More precisely, for each atom p ∈ A, each clause for p either contains
a literal in the body which is false in I, or [unfounded condition] it contains a
positive literal in the body which is contained in A. The unfounded condition
says that “of all the rules that might still be usable to derive something in the



Knowledge Representation and Non-monotonic Reasoning 91

set A, each requires an atom to be true” [129]. By this condition, atoms (say
a, b, c) among which there is a circular positive dependendency (for instance, a
depends positively on b, b depends positively on c and c depends positively on a)
and that do not have any alternative independent support, are taken to belong
to the unfounded set.

The well-founded model is defined by taking the least fix-point of the operator
WP (I) = TP (I) ∪ UP (I), where TP (I) is the immediate consequence operator
and UP (I) is the greatest unfounded set of P wrt I. As the operator WP (I) is
monotone with respect to subset inclusion, the least fix-point can be computed
by transfinite iteration. At each iteration step, the atoms in TP (I) are taken to be
true, while the atoms in UP (I) are taken to be false. The value of the remaining
atoms is unknown. As an example, given the program P2 above, the well-founded
semantics would assign the truth-values true to c, false to d and a and undefined
to b. Van Gelder et al [129] establish a precise relationship between the well-
founded semantics and Fitting/Kunen three-valued models of the completed
program. They also prove that, for locally stratified programs, the well-founded
model coincides with the perfect model. An efficient implementation of the well-
founded semantics is provided by the XSB system1, which makes use of tabling.
Tabling allows non-floundering datalog (function-free) programs with NAF to
terminate with polynomial data complexity.

Fitting/Kunen semantics as well as the well-founded semantics are defined for
any (general) logic program and have polynomial data complexity. However, they
only allow skeptical forms of reasoning. In 1988, Gelfond and Lifschitz proposed
a new declarative semantics for LP with NAF [57]: the stable model semantics
(SMS). Although very simple, SMS is applicable also to programs which are not
stratified (and not even locally stratified). According to the SMS, a program may
have many different models, in the same way that a default theory may have
many different extensions [114]. To define stable models, Gelfond and Lifschitz
define a suitable transformation P I of a program P , given an interpretation I (a
subset of the Herbrand base of P ). We assume that each clause of P containing
variables is replaced by all its ground instances, so that all atoms in P are
ground. The transformed program P I is defined as the program obtained from
P by deleting: (a) each clause that has a literal not A in its body, with A ∈ I;
(b) all the literals not A in the bodies of the remaining clauses. The program P I

is a definite set of clauses and has a unique minimal model Γ (P I). I is defined
to be a stable model of program P if I = Γ (P I).

Let us consider again the earlier program P1 and let P be the ground program
containing all the ground instances of the clauses in P1. The interpretation I =
{penguin(opus), bird(opus), abnormal bird(opus), bird(tweety), flies(tweety)}
is a stable model of P . Observe that the transformed program P I contains the
clause flies(tweety) ← bird(tweety), as abnormal bird(tweety) �∈ I, while P I

does not contain the clause flies(opus)←bird(opus), as abnormal bird(opus)∈I.
A general program may have more than one stable model or no stable model

at all. For instance, the program P3 with clauses

1 http://xsb.sourceforge.net/



92 L. Giordano and F. Toni

p ← not q
q ← not p

has two extensions, I1 = {p} and I2 = {q}, while P4 consisting solely of clause
p ← not p has no stable model. However, Gelfond and Lifschitz showed [57] that
any locally stratified program has a unique stable model, which is identical to
its perfect model.

The stable model semantics has strong relations with default logic and au-
toepistemic logic. In particular, [57] relates stable models to the translation of
logic programs into autoepistemic theories [96]. Concerning the relationships be-
tween the stable model semantics and the well-founded semantics, [129] shows
that if a program P has a well-founded total model (i.e. a model in which no
atom is undefined), then that model is the unique stable model of P . Moreover,
the well-founded (partial) model of a program P is a subset of every stable model
of P . In [112] an extended stable model semantics has been proposed, based on a
three-valued semantics, where the well-founded model is the least extended sta-
ble model. In [31], Costantini has provided a characterization of stable models in
terms of their difference with the WFM, while in [32] she has defined a syntactic
characterization of the class of logic programs for which a stable model exists.

The stable model semantics has been widely studied and successfully extended
to a wider class of programs, including programs with explicit negation as well
as disjunction in the head of clauses, thus leading to the development of Answer
Set Programming (ASP). A lot of work has been devoted to the development
of efficient techniques for computing stable models, e.g. [24,20,98]. We refer to
Section 3 for a short description of ASP and to [14] for a detailed treatment
of the subject. Concerning the study of the stable models in the first-order
case, we mention the work in [16], where a class of normal logic programs is
studied whose consequences under the stable model semantics can be effectively
computed, despite the fact that they admit function symbols (hence, infinite
domains) and recursion.

Another line of research, initiated by Eshghi and Kowalski [49], is based
on the recognition of the close relationship between NAF and abduction and
the possibility to give an abductive semantics to LP with NAF. In the abduc-
tive approach, negative literals are regarded as abducibles or assumptions (see
Section 3 for details on these notions). Eshghi and Kowalski have defined an
abductive proof procedure which extends SLDNF resolution. In addition to the
usual yes/no answers of SLDNF, the abductive procedure also provides an ab-
ductive explanation. In this way, alternative abductive explanations may be fea-
sible for a given query. Dung [46] has proven the correctness of the Eshghi and
Kowalski’s abductive proof procedure with respect to the preferred extension
semantics for LP with NAF [46]. This is equivalent [75] to the partial stable
model semantics of [118]. The seminal work of Eshghi and Kowalski has given
rise to the development of the area of Abductive Logic Programming (ALP),
discussed in Section 3.

Due to space limitations, we are unable to make a comprehensive survey of all
the relevant work on LP and NAF. We conclude this section by mentioning the



Knowledge Representation and Non-monotonic Reasoning 93

autoepistemic extension of LP in [15] , the logic MBNF introduced by Lifschitz
[87], the work on NAF in LP with hypothetical implications [64], the work on
ordered LP in [84], and, also, all the work on disjunctive LP, for which we refer
to the survey in [95].

3 Beyond NAF: Non-monotonic LP Extensions

Starting from the study of the semantics of NAF, new LP languages and frame-
works have been developed, explicitly focused on the task of knowledge repre-
sentation and NMR. We have already mentioned above how the work on the
stable model semantics has led to the development of ASP, which constitutes
one of the main current trends of the work in LP and NMR (see [14]). Basically,
ASP relies upon

– the representation of knowledge in terms of logic programs with NAF (and
possibly other features, e.g. explicit negation, disjunction, constraints etc);

– the interpretation of these logic programs under the stable model seman-
tics [57] and its extensions (to deal with explicit negation, disjunction, con-
straints, etc);

– efficient computational mechanisms (ASP solvers) to compute stable mod-
els for propositional logic programs, typically based upon SAT solvers, and
efficient “grounders” to turn non-propositional logic programs into proposi-
tional ones.

In a nutshell, in order to solve a problem, an ASP programmer designs a (possibly
extended) logic program so that stable models of the program correspond to
desired solutions to the problem. ASP solvers can then be used to compute
these solutions. A simple example is the 3-graph-colouring problem, which can
be modelled using the ASP program

clrd(V, 1)← not clrd(V, 2) ∧ not clrd(V, 3) ∧ vtx(V )
clrd(V, 2)← not clrd(V, 1) ∧ not clrd(V, 3) ∧ vtx(V )
clrd(V, 3)← not clrd(V, 1) ∧ not clrd(V, 2) ∧ vtx(V )
← edge(V, U) ∧ clrd(V, C) ∧ clrd(U, C)

Here, the last clause can be seen as a clause defining false, where false can never
hold in any stable model. It is an example of denial integrity constraint, further
discussed below. Each answer set of this ASP program gives a valid coloring for
the graph defined by the vtx and edge predicates. For example, assume that the
ASP program is extended by a simple graph description vtx(a), vtx(b), vtx(c),
edge(a, b), edge(a, c), then the colouring {clrd(a, 1), clrd(b, 2), clrd(c, 2)} can be
obtained from an answer set. In order to detect this colouring, the full answer
set needs to be computed.

ALP [72,73,39] is a methodology for knowledge representation and reasoning,
emerged in the late ’80s, which relies upon



94 L. Giordano and F. Toni

– the representation of knowledge in terms of abductive logic programs, which
consist of logic programs (possibly extended with NAF, explicit negation,
constraints etc) and abducibles, namely atoms representing information about
which there is incomplete (possibly no) knowledge;

– the interpretation of these logic programs with abducibles under abductive
extensions of some LP semantics (catering for NAF, explicit negation, con-
straints etc, if these are features of the abductive logic programs);

– abductive proof procedures to compute abductive answers to queries, given
the abductive logic programs, typically based upon extensions of SLD
resolution.

Integrity constraints are often also included in abductive logic programs, to pro-
vide partial information about the abducibles. These may be in the form of de-
nials (as for the earlier ASP example) or implications, of the form L1∧. . .∧Lm →
A, where the Li’s are literals (possibly true), A is an atom (possibly false, in
which case we have a denial), and all variables are implicitly universally quanti-
fied with scope the whole implication.

Intuitively, a logic program provides definitions for certain predicates, while
abducibles can be used to extend these definitions to form possible explanations
for queries, which can be regarded as observations against the background of
the world knowledge encoded in the given abductive logic program. Integrity
constraints, on the other hand, restrict the range of possible explanations. Infor-
mally, given an abductive logic program 〈P ; A; IC〉 and a query (i.e. implicitly
existentially quantified conjunction of literals) Q, an explanation for Q is a set
of abducible atoms Δ that, together with P , both “entails” (an appropriate in-
stantiation of) Q, with respect to some notion of “entailment”, and “satisfies”
the set of integrity constraints IC (see [72,73] for possible notions of integrity
constraint “satisfaction”).

The notion of “entailment” depends on the semantics associated with the logic
program P (as we have seen in Section 2, there are many different possible choices
for such semantics). For example, Eshghi and Kowalski [49] use the preferred
extension/partial stable model semantics of [46,118], Kakas and Mancarella [74]
use the stable model semantics, and Console et al. [29], Fung and Kowalski [51],
Denecker and De Schreye [41], Alberti et al. [1] and Mancarella et al. [90] all use
the completion semantics [27] or some of its variant (as discussed in Section 2).
For example, Kunen’s three-valued completion semantics [82] is used in [51,90].

In a nutshell, in order to solve a problem, an ALP programmer designs an
abductive logic program and a query so that the explanations for the query
correspond to desired solutions to the problem. Abductive proof procedures can
then be used to compute these solutions.

A simple example is the following abductive logic program modelling a prim-
itive planning agent a (more sophisticated agent-based applications of ALP are
mentioned in Section 4). Let P be

has(a, X)← buy(a, X)
has(a, X)← borrow(a, X, Y ) ∧ friend(Y )
friend(b)



Knowledge Representation and Non-monotonic Reasoning 95

A consist of all instances of buy(a, X) and borrow(a, X, Y ), and IC be

buy(a, X) ∧ not money(a)→ false

Then, given the query has(a, r), for some resource r, there is only one possible
explanation, namely {borrow(a, r, b)}. If P also includes money(a), then there is
an additional explanation for the query, namely {buy(a, r)}. Here explanations
correspond to possible courses of actions for agent a, given that the query is the
goal of a.

Note that, differently from ASP, ALP only focuses on “relevant” bits of the
given knowledge base (abductive logic program). Indeed, in our simple example,
the computation of explanations for the given goal has(a, r) completely disre-
gards the possibility that a may want to obtain other resources. Moreover, if P
also contains clauses corresponding to other potential goals of a (e.g. for register-
ing for a conference, arranging for travel, etc), the computation of explanations
for the given goal has(a, r) ignores the other parts of P . Finally, abductive proof
procedures may compute non-ground, bound or unbound, explanations. This is
a useful feature in open and partially specified environments, e.g. the web and
multi-agent systems. For example, consider the “web repair” problem of [90],
where P is

is node(N, T )← node(N, T ) ∧ node type(T )
is node(N, T )← add node(N, T ) ∧ node type(T )
is link(N1, N2)← link(N1, N2)∧ link check(N1, N2)
is link(N1, N2)← add link(N1, N2) ∧ link check(N1, N2)
link check(N1, N2)← is node(N1, ) ∧ is node(N2, ) ∧N1 �=N2
book links(B)← is node(B, book)∧is node(R, review)∧is link(B, R)∧

is node(L, lib) ∧ is link(B, L)

together with some concrete definition of node-types, nodes, and links, e.g.
node type(lib), node type(book), node(n1,book), link(n1,n3), node type(review),
node(n3, review), IC is

add node(N, T 1) ∧ node(N, T 2)→ false
add link(N1, N2)∧ link(N1, N2)→ false
is node(N, T 1) ∧ is node(N, T 2) ∧ T 1 �= T 2→ false
is node(B, book) → book links(B)

and the abducibles are all atoms in the predicates add node and add link. CIFF
[90] computes two answers to the empty query:

{add link(n1, L), add node(L, lib), L �= n3, L �= n1}

corresponding to the addition of some new node of type lib and a link from n1
to it, and

{add link(n1, L), add node(L, lib), add link(n1, R),
add node(R, review), L �= n3, L �= n1, R �= n3, R �= n1, R �= L},

corresponding to the addition of a new review node R with appropriate links.
Both answers are partially uninstantiated.



96 L. Giordano and F. Toni

Several systems implementing abductive proof procedures exist, e.g., recently,
the A-system [76], SCIFF [1], and CIFF [90]. An abductive variant of Prolog has
also been implemented [26]. Several extensions of standard ALP exist, e.g. to in-
corporate arithmetical constraints solving [1,90] (see also [55]), and events and
protocols [1]. All state-of-the-art systems can deal with non-propositional ab-
ductive logic programs (with function symbols) and non-ground queries and can
compute partially instantiated abductive explanations as for the earlier example.

Argumentation [72,73,44,18] was developed, starting in the early ’90s, as a
computational framework to reconcile and understand common features and
differences amongst most existing approaches to NMR, including NAF in LP,
theorist [104], default logic [114], autoepistemic logic [96], non-monotonic modal
logic [94] and circumscription [93]. Argumentation relies upon

– the representation of knowledge in terms of an argumentation framework,
defining arguments and a binary attack relation between the arguments,

– the interpretation of these argumentation frameworks using a dialectical se-
mantics, for example that of admissibility, whereby a set of arguments is
admissible if it does not attack itself and it attacks every argument attack-
ing it,

– a computational machinery for assessing the acceptability of a given set
of arguments, according to the given dialectical semantics, or searching for
acceptable sets of arguments containing the given set.

In its most abstract form [44], an argumentation framework simply consists of
a pre-defined set of arguments and binary attack relation. Several more con-
crete argumentation frameworks have been defined, many extending LP, e.g.
Assumption-based Argumentation (ABA) [18,45], DeLP [54], and the approach
of [106]. For lack of space, below we focus on ABA, since this is the most general
and a well-documented instance of abstract argumentation. In this approach, ar-
guments are deductions (using inference rules in an underlying logic) supported
by assumptions and an attack by one argument against another is a deduction
by the first argument of the contrary of an assumption supporting the second
argument. ABA is equipped with a computational machinery, in the form of
dispute derivations [45], to determine the acceptability of (arguments support-
ing) claims. Dispute derivations determine the acceptability of given claims by
building and exploring a dialectical structure of a proponent’s argument for a
claim, an opponent’s counterarguments attacking the argument, the proponent’s
arguments attacking all the opponents’ counterarguments, and so on. This com-
putation style, which has its roots in SLDNF, has several advantages over other
computational mechanisms for argumentation. These advantages are due mainly
to the fine level of granularity afforded by interleaving the construction of argu-
ments and determining their acceptability.

By instantiating the notion of arguments and the attack relations in the
abstract argumentation framework of [44] or by instantiating rules, assump-
tions and contraries in ABA, different concrete non-monotonic frameworks can
be constructed. For example, the instance of ABA where rules are LP rules,



Knowledge Representation and Non-monotonic Reasoning 97

assumptions are NAF literals in these rules, and the contrary of a literal not p
is p, corresponds to LP, with different LP semantics for NAF given by different
dialectical semantics. As an example, the notion of admissibility given early
corresponds to preferred extensions/partial stable models in LP. ALP can also
be obtained as an instance of ABA, by also including abducibles amongst the
assumptions and by using integrity constraints for setting the contrary of these
new assumptions [128].

Several dialectical semantics for argumentation have been defined [44,18,48],
all corresponding to semantics for NAF (for instances of argumentation corre-
sponding to LP). In particular, the stability dialectical semantics [44,18] corre-
sponds to the stable model semantics, the grounded dialectical semantics [44,18]
corresponds to the well-founded semantics, the admissibility dialectical seman-
tics [44,18] corresponds to the preferred extension/partial stable model seman-
tics, and the ideal dialectical semantics [48] corresponds to the ideal semantics
of [2].

Argumentation is a suitable knowledge representation framework when it is
important to be able to “inspect” the rationale for accepting a claim/an argu-
ment, rather than solely providing a yes/no answer. For example, consider the
following simple “home-buying” ABA framework, where the set of rules is

good(H) ← in city(H, L) ∧ garden(H) ∧ quiet(H)
valid complaint(H)← police report(H, R) ∧ relevant(H, R)
irrelevant(H, R)← about(R, O) ∧ not owner(H, O)

together with clauses defining a number of specific candidate homes, e.g.
in city(h1,london), garden(h1), owner(h1, sue).

Let the set of assumptions consist of all instances of quiet(H) and relevant(H, R),
as well as all ground NAF literals. Let the contraries of assumptions be given as
follows2

valid complaint(H) is a contrary of quiet(H)
wooden floors(H) is another contrary of quiet(H)
irrelevant(H, R) is the contrary of relevant(H, R)
A is the contrary of not A for all atoms A

Then, the claim good(h1) is acceptable (under any dialectical semantics) on the
ground of an acceptable argument arg1 supported by the assumption quiet(h1).
If police report(h1, r) is added to the set of rules, then good(h1) is not acceptable,
since arg1 is now defeated by an argument arg2 for valid complaint(h1), sup-
ported by the assumption relevant(h1, r). If however about(r, ted) is also added
to the set of rules, then good(h1) is again acceptable, since arg2 is now counter-
attacked by an argument for irrelevant(h1, r), supported by the assumption
not owner(h1, ted), which cannot be attacked. In this latter case, arg1 and arg3
form an acceptable set of arguments for the claim.
2 We follow here the presentation of ABA given by [53] and allow for assumptions to

have multiple contraries.



98 L. Giordano and F. Toni

Several argumentation systems are available, e.g. CaSAPI3 implementing dis-
pute derivations for ABA, and DeLP4, for the argumentation approach of [54].

Other non-monotonic extensions of LP include

– the Inductive Definitions of [37], providing a declarative viewpoint on LP in-
tegrated with classical logic, with semantics generalising to the well-founded
semantics for LP;

– FLORA-2 [77], which is a recent knowledge representation and programming
environment extending LP by incorporating object-oriented programming as
in F-logic, meta-programming as in Hilog and the framework for modelling
state changes and side effects given by Transaction Logic.

Also, Defeasible Logic [101], an important family of NMR methods, has been
shown to have close links to the stable model and three-value completion se-
mantics of LP [4].

4 Dealing with Specific Reasoning Tasks and Applications

In this section we describe how non-monotonic variants of LP formalisms have
been used to cope with specific knowledge representation and reasoning tasks,
and how, in some cases, new specific formalisms have been developed for this
purpose.

Reasoning about dynamic domains
Reasoning about dynamic domains is one of the main tasks an intelligent agent
has to perform. Much work has been done to address the problem of modelling
the dynamics of systems following a logical approach.

The seminal work of McCarthy [92] on the situation calculus and of Kowalski
and Sergot [78] on the event calculus have devised two main directions to define
a logical approach for modelling actions. A third direction has started more
recently with Gelfond and Lifschitz work on the action description language A
[58], which has given rise to the definition of a whole family of action description
languages. A further direction is given by modal and dynamic logic approaches
to reasoning about actions [110,60,62].

In the context of reasoning about actions, the dynamics of a system is usually
represented by providing a specification, in a domain description, of the effects
of actions on the world and their executability conditions. The properties of the
world which may change from a state to another are represented by propositions
called fluents.

The situation calculus and the event calculus are based on different ontologies.
While the situation calculus takes the state of the world as primary, by encoding
actions as transformations on states, the event calculus takes events as primary.
Gelfond and Lifschitz language A is essentially the propositional fragment of
Pednault’s ADL [102] and can be regarded as adopting the same ontology as

3 http://www.doc.ic.ac.uk/ dg00/casapi.html
4 http://lidia.cs.uns.edu.ar/delp client/



Knowledge Representation and Non-monotonic Reasoning 99

the situation calculus. The same can be said about theories of action based on
modal and dynamic action logics.

As an example, let us consider the following specification of the well known
Yale shooting problem [70] in the situation calculus. The situation calculus is
based on first-order logic: situations are sequences of actions (for instance, [load,
wait, shoot]), corresponding to possible world histories, and are represented by
terms such as do(shoot, do(wait, do(load, s0))), where s0 is the initial situation.
(Relational) fluents are represented by predicate symbols extended with an extra
argument denoting a situation, such as, alive(s0) or alive(do(wait, do(load, s0))).
The effects of actions on the state of the world are described by effect axioms,
like:

loaded(do(load, s))
loaded(s)→ ¬alive(do(shoot, s)))

(where s is a variable denoting a situation and ¬ denotes classical negation)
meaning that the gun is loaded after the execution of the action load and that
the turkey is not alive after the execution of the action shoot, when the gun
is loaded. Preconditions are requirements that must be satisfied in the current
situation for the action to be executable. In the shooting domain, we can assume
that all actions are always executable, so we have, for instance:

Poss(load, s)↔ true

A more interesting precondition law, from [117],

Poss(repair(r, x), s) ↔ has glue(r, s) ∧ broken(x, s)

says that, whenever it is possible for a robot to repair an object, then the object
must be broken and there must be glue available.

Let us assume that in the initial situation the turkey is alive and the gun is
not loaded (i.e., alive(s0) and ¬loaded(s0)). Then, will the turkey be alive after
the sequence of actions [load, wait and shoot]? Namely, does alive(do(shoot,
do(wait, do(load, s0)))) hold?

To answer this temporal projection problem, we need a solution to the frame
problem, i.e. the problem of specifying (in a parsimonious way) that all the
properties of the world (fluents) that are not affected by the execution of the
actions do not change. Fluent values must be assumed to persist, unless they are
changed by action execution. Hence, solving the frame problem requires to cope
with some form of non-monotonicity.

Monotonic and non-monotonic solutions have been proposed in the literature
to deal with the frame problem in different formalisms. In particular, for the
situation calculus, Reiter provides a monotonic solution to the frame problem
[117], by introducing the so-called successor state axioms, which provide a suit-
able completion of the action laws, in a compact way. From the computational
point of view, regression forms the basis for many planning procedures and
for automated reasoning in the situation calculus. As a consequence of Clark’s
completion result, Prolog provides a natural implementation of action theories



100 L. Giordano and F. Toni

formulated in the situation calculus. In particular, Reiter proves the correctness
of the Prolog implementation under a restriction to closed initial database [117].

Reiter’s version of the situation calculus has then been used as the basis of
the high-level language GOLOG [85], a logic programming language for rea-
soning about dynamic domains in which the definition of complex actions is
allowed by making use of high-level algol-like constructs (including procedures).
The semantics of GOLOG is defined via macro-expansion into sentences of the
situation calculus and its implementation relies on the definition of a Prolog
interpreter. In [34,35], GOLOG has been further extended in order to deal with
concurrency (ConGolog) and with exogenous actions. In particular, the problem
of executing programs including sensing action is tackled in [35] . These feature
make GOLOG a LP language well suited for implementing applications in dy-
namic domains, like robotics, agent control, and intelligent software agents. In
particular, we refer to [5] for the use of GOLOG in planning applications.

In the event calculus [78], events occur at time-points; an event can make a
property true (the event initiates the property) or it can make a property false
(the event terminates the property). As a difference with the situation calculus,
the event calculus adopts a linear representation of time rather than a branching
one (we refer to [13] for a detailed comparison of the two formalisms). Since the
event calculus is defined within the LP framework, a natural solution to the frame
problem is provided by the non-monotonic semantics of NAF. Sadri and Kowalski
[119] compare the simpler variant of the event calculus with time-points (SEC)
to the original formulation of the event calculus with time periods and proposes
a new variant, which is essentially the Clark’s completion of SEC augmented
with integrity constraints. In [122], a formulation of the event calculus based
on many-sorted first-order predicate calculus augmented with circumscription is
provided. Based on this formulation, in [123] an abductive event calculus planner
is developed, whose computations are closely related with those of partial-order
planning algorithms. We cannot enter the details of the huge amount of work on
the event calculus. Concerning the case when only partial information about the
order of events is available, we mention the work by Chittaro, Montanari and
Provetti [25] on the skeptical and credulous variants of the event calculus. Such
variants allow the distinction between the properties which are necessarily true
and those that are possibly true, when events are partially ordered. This work
has lead to the development of a uniform modal framework to define a number
of extensions of the event calculus of increasing expressive power [22,21]. An
encoding of such calculi in the language λ-Prolog is provided in [22,21].

The action description language A introduced by Gelfond and Lifschitz [58]
is intended to provide a simple and declarative description of actions, by means
of action laws of the form A causes F if P1, . . . , Pk, saying that the execution
of action A has the effect of making F true, when executed in a state in which
P1, . . . , Pk hold. Essentially, an action description in the language A provides an
abstract description of a transition system, consisting of a set of nodes, repre-
senting the states of the domain, and a set of arcs labelled by actions connecting



Knowledge Representation and Non-monotonic Reasoning 101

the nodes [59]. The semantics of the language A provides a mapping between an
action description and the corresponding transition system.

Starting form the language A, a whole family of action languages have been
defined through the addition of new features enhancing the expressivity of the
language. In particular, we mention the language L [11], including static con-
straints, sensing actions, and observable fluents, the language AL [10], which
includes static and dynamic causal laws, executability conditions, as well as con-
current actions, and the languages C [66] and C+ [65] which provide an account
of causality and deal with actions with indirect and non-deterministic effects and
with concurrent actions.

From the computational point of view, [40] and [47] have proposed translation
of (extensions of) the language A into ALP, while [86] has defined an extension
of the language A to deal with concurrent actions, together with a sound and
complete translation to ALP. Recently, ASP has been shown to be well suited for
reasoning about dynamic domains, so that an action specification can be encoded
into an ASP program (see for instance [10]). This technique, in particular, has
been used for planning and diagnosis (see [14]).

A different approach to reasoning about actions is based on the use of modal,
temporal and dynamic logics. The suitability of such non classical logics for
reasoning about actions has been pointed out by several authors [110,60,62,63].
Indeed, classical dynamic logic essentially adopts the same ontology as the situ-
ation calculus, by taking the state of the world as primary, and encoding actions
as transformations on states. Thus, actions can be represented in a natural way
by modalities, and states as sequences of modalities. In the LP setting, [7] defines
a modal LP language (Dylog) for reasoning about complex actions, which are
defined using modal inclusion axioms. The language is able to handle knowledge
producing actions and incomplete knowledge. An abductive goal-directed proof
procedure is defined, which allows agents to reason about complex actions and
to generate conditional plans.

A lot of work has been done on the ramification problem, i.e. the problem of
dealing with the dependencies among fluents. Besides the work on the languages
C [66] and C+ [65], we mention:

– [91], where a causal approach to ramification is proposed in which causal
rules are represented by inference rules;

– [88], which deals with causality and indirect effects in the situation calculus;
– [62], which deals with ramification and causality in a modal action logic;
– [38], where a solution to the ramification based on inductive definitions is

proposed; and, finally,
– the work by Thielscher on causality [126] leading to the definition of the

Fluent Calculus [127].

Diagnosis
In [28] Console et al. define a theory of diagnosis for incomplete causal models
consisting, essentially, of a set of Horn clauses and a set of hypotheses. An
abductive definition of diagnosis is provided, which is equivalently formulated



102 L. Giordano and F. Toni

in terms of circumscription. The diagnostic process described in the paper was
implemented in Prolog. The relationships between abduction and deduction have
been explored in [29].

In [109] Preist, Eshghi and Bertolino present a definition of diagnoses which
allows to use NAF in the modelling language. The definition is based on the
generalized stable model semantics of abduction presented in [71]. The resulting
framework naturally incorporates both abductive and consistency-based [116]
diagnosis. The work is similar in spirit to the work by Console and Torasso [30]
devising a spectrum of alternatives in the logical definition of diagnosis, based
on the formulation of a diagnostic problem as an ALP problem. In [12] Baral et
al. provide a characterization of diagnosis, diagnostic planning, and repair in an
extension of the action language L [11].

Legal Reasoning
The important contributution of LP with NAF for the logical analysis of legal
reasoning and for legal knowledge representation is widely acknowledged [107].
Pioneering work in the ’80s on the formalisation of the British Nationality Act
[121] first pointed to the great potential of using LP with NAF to model excep-
tions in law. For example, the clause

brit(X)← newborn found in uk(X) ∧ not born outside uk(X)

represents the information that a newborn infant found on UK ground can be
deemed to be a British citizen unless it can be shown that the infant was born
outside the UK.

The argumentation-based interpretation of LP (see Section 3) has then served,
from the mid-’90s, as a framework for modelling legal arguments. Prakken and
Sartor [105] proposed a form of extended LP (with NAF and explicit negation),
augmented with preferences in turn defined by LP clauses, to formalise legal texts
with contradictory rules, rules with assumptions, inapplicability statements, and
defeasible priority rules. They adopt an argumentation-based semantics (see
Section 3) of their augmented extended LPs to support the construction of le-
gal arguments from these legal texts. They consider several applications, from
Italian, Dutch and European law.

Kowalski and Toni [81] propose a concrete instance of ABA (see Section 3)
to model legal arguments, e.g. of the form advocated in [105]. This instance is
an abstraction of LP with NAF as well as default logic and autoepistemic/non-
monotonic modal logic. It incorporates, at the object-level, meta-level defeasible
preferences over rules.

Nitta and Shibasaki [99] propose an extension of LP-based argumentation
incorporating defeasible preferences as well as analogical reasoning, applied to
Japanese law.

This line of work has continued in the last years, e.g. Prakken and Sartor [108]
extend the approach of [105] to model the legal concept of “burden of proof”,
and show examples from the Italian and USA law.



Knowledge Representation and Non-monotonic Reasoning 103

Governatori and Rotolo propose an approach to legal reasoning based on the
use of Defeasible Logic. In particular, [68] extends Defeasible Logic with the
notions of agency, intention and obligation, while [67] extends RuleML with
deontic and defeasible aspects for reasoning about business contracts.

Belief revision. The problems of revision and update are strongly related with
the problem of reasoning about dynamic domains as they are concerned with
reasoning about change. There is no room here for an extensive discussion on
these topics, so we will limit our discussion to few aspects. Starting from the
beginning of the ’90s, LP semantics has been extended to provide a semantic
characterization for reason maintenance systems (and, in particular, for Doyle’s
TMS [43] and De Kleer ATMS [36]) and, more generally, for capturing some
form of revision or contradiction removal. TMS justifications can be seen, es-
sentially, as clauses with NAF, which also include integrity constraints. In [61]
a notion of generalized stable model has been defined to provide a semantics to
the TMS accounting for the process of conflict resolution. In [130] a similar ap-
proach has been used to define a skeptical reason maintenance system based on
the well-founded semantics. An extension of the well-founded semantics for logic
programs with explicit negation and contradiction removal has been presented
in [103]. [131] defines a tractable semantics for extended logic programs that al-
lows for an incremental computation and forms a common core for the grounded
argumentation semantics (see Section 3) and Alferes et al.’s well-founded seman-
tics [2]. The semantics is based on the concept of iterative belief revision. [52]
introduces a LP language CondLP which supports hypothetical and counterfac-
tual reasoning. The language is based on a conditional logic which enables to
formalize conditional updates of the knowledge base and relies on an abductive
semantics. The kind of revision performed by this language is strongly related
to Nebel’s prioritized base revision [97]. Sadri and Toni in [120] deal with the
problem of performing belief revision on-line, while reasoning is taking place, by
means of an abductive proof procedure.

Security policies
Antoniou et al [3] provide an overview of rule based approaches to policy spec-
ification. They discuss the benefits of using LP with NAF to model security
policies such as “if a packet of protocol X goes from hosts Y to hosts Z then
[don’t] let it pass”. As they mention, “default decisions arise naturally in real-
world security policies. For example, open policies prescribe that authorizations
by default are granted, whereas closed policies prescribe that they should be
denied unless stated otherwise”. Bandara et al. [8] model these rules and pref-
erences over them in the LP-based argumentation framework of [100]. We refer
to [17] for an overview of the research on Semantic Web Policies.

Other application domains
There are several other areas that we have not mentioned, in which non-monotonic
LP formalisms have been extensively (and successfully) used. These include, in
particular, the areas of agent and multiagent systems, deductive databases and
semantic web. These topics are addressed in [6] and [69].



104 L. Giordano and F. Toni

5 Conclusions

Non-monotonic reasoning (NMR) has been an important focus for the logic
programming (LP) community since Clark’s work on negation as failure (NAF)
[27]. Various semantics for LP with NAF have been given, and several extensions
of LP with NAF have been proposed and applied in practice. The Italian LP
community appears to be very active in the field and has provided relevant
contributions to LP and NMR research. In part, this could be explained by the
availability of Italian and European projects, which have supported this research
(and, in particular, of several basic research projects developed during the ’90s),
but also by the good integration of the Italian research community with the
international one through scientific collaborations and student exchanges.

Earlier surveys on LP and knowledge representation/NMR [95,9] had iden-
tified some open issues for this filed. We now reassess some of these issues, in
the light of research in this area since the publication of those surveys. This
assessment aims at identifying current challenges for the Italian LP community.

Both Minker [95] and Baral and Gelfond [9] agree on the need of applications
and solution for practical problems, rather than toy problems, with features of
non-monotonicity. We have discussed progress on some applications in Section 4.
For lack of space, we have omitted to discuss some recent applications of non-
monotonic LP frameworks, notably agent and multi-agent applications and web
applications. These are discussed in[6] and [69] respectively.

Minker points to the need for understanding the relationships amongst vari-
ous theories of NMR, including LP-based and non-LP-based ones, with the aim
of being able to discriminate which theory to use for specific problems. These re-
lationships are now well understood, as we have discussed, in part, in Sections 2
and 3. For example, argumentation [44,18] provides an abstract setting for un-
derstanding the relationships between different LP semantics and formalisms for
NMR other than LP.

Baral and Gelfond [9] suggest the need for developing query-answering systems.
These exist nowadays for several LP-based frameworks for knowledge representa-
tion, notably XSB (see Section 2), ASP (see [14]), abductive logic programming
(see Section 3) and argumentation (see Section 3).

For lack of space, we have omitted to mention the substantial body of work
devoted to the study of the computational complexity of non-monotonic LP
formalisms. Both tractability and complexity issues of LPNMR formalisms have
been studied extensively in the last two decades. This study has become of
fundamental importance for comparing different formalisms. We refer to [33] for
a survey of results on LP complexity and tractability.

Some challenges still exist. For example, the field would benefit from further
applications, of a larger scale, possibly leading to industrial take-up. Moreover,
the efficient treatment of non-ground queries and non-ground LP with infinite do-
mains is still to a large extent open. Finally, further research is needed to charac-
terise tractable, but useful fragment of several LP formalisms, e.g. argumentation.



Knowledge Representation and Non-monotonic Reasoning 105

Acknowledgement

The first author has been partially supported by Regione Piemonte, Bando Con-
verging Technologies 2007, Project ICT4LAW. The authors would like to thank
anonymous referees for useful comments on drafts of this work, and Marek Sergot
and Alberto Martelli for helpful discussions.

References

1. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Ver-
ifiable agent interaction in abductive logic programming: the SCIFF framework.
ACM Transactions on Computational Logic (ToCL) 9(4) (2008)

2. Alferes, J.J., Dung, P.M., Pereira, L.M.: Scenario semantics of extended logic
programs. In: LPNMR, pp. 334–348 (1993)

3. Antoniou, G., Baldoni, M., Bonatti, P.A., Nejdl, W., Olmedilla, D.: Rule-based
policy specification. In: Secure Data Management in Decentralized Systems. Ad-
vances in Information Security, vol. 33, pp. 169–216. Springer, Heidelberg (2007)

4. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Embedding defeasible
logic into logic programming. TPLP 6(6), 703–735 (2006)

5. Baier, J.A., McIlraith, S.A.: On planning with programs that sense. In: KR,
pp. 492–502 (2006)

6. Baldoni, M., Baroglio, C., Mascardi, V., Omicini, A., Torroni, P.: Agents, Multi-
Agent Systems and Declarative Programming: What, When, Where, Why, Who,
How? In: Dovier, A., Pontelli, E. (eds.) 25 Years of Logic Programming in Italy,
ch. 10. LNCS, vol. 6125, pp. 204–230. Springer, Heidelberg (2010)

7. Baldoni, M., Martelli, A., Patti, V., Giordano, L.: Programming rational agents
in a modal action logic. Ann. Math. Artif. Intell. 41(2-4), 207–257 (2004)

8. Bandara, A.K., Kakas, A.C., Lupu, E.C., Russo, A.: Using argumentation logic
for firewall policy specification and analysis. In: State, R., van der Meer, S.,
O’Sullivan, D., Pfeifer, T. (eds.) DSOM 2006. LNCS, vol. 4269, pp. 185–196.
Springer, Heidelberg (2006)

9. Baral, C., Gelfond, M.: Logic programming and knowledge representation. Journal
of Logic Programming 19, 73–148 (1994)

10. Baral, C., Gelfond, M.: Reasoning agents in dynamic domains, pp. 257–279 (2000)
11. Baral, C., Gelfond, M., Provetti, A.: Representing actions: Laws, observations and

hypotheses. J. Log. Program. 31(1-3), 201–243 (1997)
12. Baral, C., McIlraith, S., Son, T.: Formulating diagnostic problem solving using an

action language with narratives and sensing. In: Proceedings of the Seventh In-
ternational Conference on Principles of Knowledge Representation and Reasoning
(KR 2000), Breckenridge, Colorado, USA, April 12-15, pp. 311–322 (2000)

13. Belleghem, K.V., Denecker, M., Schreye, D.D.: On the relation between situation
calculus and event calculus. J. Log. Program. 31(1-3), 3–37 (1997)

14. Bonatti, P., Calimeri, F., Leone, N., Ricca, F.: Answer Set Programming. In:
Dovier, A., Pontelli, E. (eds.) 25 Years of Logic Programming in Italy, ch. 8.
LNCS, vol. 6125, pp. 159–182. Springer, Heidelberg (2010)

15. Bonatti, P.A.: Autoepistemic logic programming. J. Autom. Reasoning 13(1),
35–67 (1994)

16. Bonatti, P.A.: Reasoning with infinite stable models. Artif. Intell. 156(1), 75–111
(2004)



106 L. Giordano and F. Toni

17. Bonatti, P.A., Duma, C., Fuchs, N., Nejdl, W., Olmedilla, D., Peer, J., Shahmehri,
N.: Semantic web policies – A discussion of requirements and research issues.
In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 712–724.
Springer, Heidelberg (2006)

18. Bondarenko, A., Dung, P.M., Kowalski, R.A., Toni, F.: An abstract,
argumentation-theoretic approach to default reasoning. Artificial Intelli-
gence 93(1-2), 63–101 (1997)

19. Bondarenko, A., Toni, F., Kowalski, R.: An assumption-based framework for non-
monotonic reasoning. In: Nerode, A., Pereira, L. (eds.) Proc. 2nd International
Workshop on Logic Programming and Non-monotonic Reasoning, pp. 171–189.
MIT Press, Cambridge (1993)

20. Buccafurri, F., Leone, N., Rullo, P.: Stable models and their computation for logic
programming with inheritance and true negation. J. Log. Program. 27(1), 5–43
(1996)

21. Cervesato, I., Franceschet, M., Montanari, A.: A guided tour through some ex-
tensions of the Event Calculus. Computational Intelligence 16(2), 307–347 (2000)

22. Cervesato, I., Montanari, A.: A general modal framework for the Event Calculus
and its skeptical and creduluos variants. J. Log. Program. 38(2), 111–164 (1999)

23. Chandra, A., Harel, D.: Horn clause queries and generalizations. Journal of Logic
Programming 2(1), 1–5 (1985)

24. Chen, W., Warren, D.S.: Computation of stable models and its integration with
logical query processing. IEEE Transactions on Knowledge and Data Engineer-
ing 8, 8–5 (1994)

25. Chittaro, L., Montanari, A., Provetti, A.: Skeptical and credoluos event calculi
for supporting modal queries. In: ECAI 1994, pp. 361–365 (1994)

26. Christiansen, H., Dahl, V.: HYPROLOG: A new logic programming language
with assumptions and abduction. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005.
LNCS, vol. 3668, pp. 159–173. Springer, Heidelberg (2005)

27. Clark, K.L.: Negation as failure. In: Logic and Data Bases. Plenum Press (1978)
28. Console, L., Dupré, D.T., Torasso, P.: A theory of diagnosis for incomplete causal

models. In: IJCAI, pp. 1311–1317 (1989)
29. Console, L., Dupre, D.T., Torasso, P.: On the relationship between abduction and

deduction. Journal of Logic and Computation 1(5), 661–690 (1991)
30. Console, L., Torasso, P.: A spectrum of logical definitions of model-based diagno-

sis. Computational Intelligence 7, 133–141 (1991)
31. Costantini, S.: Contributions to the stable model semantics of logic programs with

negation. Theor. Comput. Sci. 149(2), 231–255 (1995)
32. Costantini, S.: On the existence of stable models of non-stratified logic programs.

TPLP 6(1-2), 169–212 (2006)
33. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive

power of logic programming. ACM Comput. Surv. 33(3), 374–425 (2001)
34. De Giacomo, G., Lesperance, Y., Levesque, H.J.: Reasoning about concurrent ex-

ecution, prioritized interrupts, and exogenous actions in the situation calculus. In:
IJCAI 1997: Proceedings of the Fifteenth international joint conference on Artifi-
cal intelligence, pp. 1221–1226. Morgan Kaufmann Publishers Inc., San Francisco
(1997)

35. De Giacomo, G., Levesque, H.J.: An incremental interpreter for high-level pro-
grams with sensing. In: Logical Foundations for Cognitive Agents, pp. 86–102.
Springer, Heidelberg (1998)

36. de Kleer, J.: An assumption-based tms. Artif. Intell. 28(2), 127–162 (1986)



Knowledge Representation and Non-monotonic Reasoning 107

37. Denecker, M., Bruynooghe, M., Marek, V.W.: Minimal belief and negation as
failure. ACM Trans. Comput. Log. 2(4), 623–654 (2001)

38. Denecker, M., Dupré, D.T., Belleghem, K.V.: An inductive definition approach to
ramifications. Electron. Trans. Artif. Intell. 2, 25–67 (1998)

39. Denecker, M., Kakas, A.C.: Abduction in Logic Programming. In: Kakas, A.C.,
Sadri, F. (eds.) Computational Logic: Logic Programming and Beyond, Part I.
LNCS (LNAI), vol. 2407, pp. 402–436. Springer, Heidelberg (2002)

40. Denecker, M., Schreye, D.D.: Representing incomplete knowledge in abductive
logic programming. In: Proc. of the International Symposium on Logic Program-
ming, pp. 147–163. MIT Press, Cambridge (1993)

41. Denecker, M., Schreye, D.D.: SLDNFA: an abductive procedure for abductive
logic programs. Journal of Logic Programming 34(2), 111–167 (1998)

42. Dovier, A., Pontelli, E. (eds.): 25 Years of Logic Programming in Italy. LNCS,
vol. 6125. Springer, Heidelberg (2010)

43. Doyle, J.: A truth maintenance system. Artif. Intell. 12(3), 231–272 (1979)
44. Dung, P.: On the acceptability of arguments and its fundamental role in non-

monotonic reasoning, logic programming, and n-person games. Artificial Intelli-
gence 77(2), 321–357 (1995)

45. Dung, P., Kowalski, R., Toni, F.: Assumption-based argumentation. In: Rahwan,
I., Simari, G. (eds.) Argumentation in AI: The Book. Springer, Heidelberg (2009)
(to appear)

46. Dung, P.M.: Negations as hypotheses: An abductive foundation for logic program-
ming. In: ICLP, pp. 3–17 (1991)

47. Dung, P.M.: Representing actions in logic programming and its applications in
database updates. In: ICLP, pp. 222–238 (1993)

48. Dung, P.M., Mancarella, P., Toni, F.: Computing ideal sceptical argumentation.
Artificial Intelligence 171(10-15), 642–674 (2007)

49. Eshghi, K., Kowalski, R.A.: Abduction compared with negation by failure. In:
ICLP, pp. 234–254 (1989)

50. Fitting, M.: A Kripke/Kleene semantics for logic programs. Journal of Logic Pro-
gramming 2, 295–312 (1985)

51. Fung, T.H., Kowalski, R.A.: The IFF proof procedure for abductive logic pro-
gramming. Journal of Logic Programming 33(2), 151–165 (1998)

52. Gabbay, D.M., Giordano, L., Martelli, A., Olivetti, N., Sapino, M.L.: Conditional
reasoning in logic programming. J. Log. Program. 44(1-3), 37–74 (2000)

53. Gaertner, D., Toni, F.: Hybrid argumentation and its properties. In: Hunter, A.
(ed.) Proceedings of the Second International Conference on Computational Mod-
els of Argument (COMMA 2008), pp. 183–195. IOS Press, Amsterdam (2008)

54. Garćıa, A.J., Dix, J., Simari, G.R.: Argument-based logic programming. In:
Rahwan, I., Simari, G. (eds.) Argumentation in AI: The Book. Springer,
Heidelberg (2009) (to appear)

55. Gavanelli, M., Rossi, F.: Constraint Logic Programming. In: Dovier, A.,
Pontelli, E. (eds.) 25 Years of Logic Programming in Italy, ch. 4. LNCS, vol. 6125,
pp. 64–86. Springer, Heidelberg (2010)

56. Gelder, A.V., Ross, K.A., Schlipf, J.S.: Unfounded sets and well-founded semantics
for general logic programs. In: PODS, pp. 221–230 (1988)

57. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Kowalski, R., Bowen, K. (eds.) Proceedings of the Fifth International Conference
and Symposium on Logic Programming, pp. 1070–1080. MIT Press, Cambridge
(1988)



108 L. Giordano and F. Toni

58. Gelfond, M., Lifschitz, V.: Representing action and change by logic programs.
Journal of logic Programming 17, 301–322 (1993)

59. Gelfond, M., Lifschitz, V.: Action languages. Electronic Transactions on AI 3(16),
193–210 (1998)

60. Giacomo, G.D., Lenzerini, M.: PDL-based framework for reasoning about actions.
In: AI*IA, pp. 103–114 (1995)

61. Giordano, L., Martelli, A.: Generalized stable models, truth maintenance and
conflict resolution. In: ICLP, pp. 427–441 (1990)

62. Giordano, L., Martelli, A., Schwind, C.: Ramification and causality in a modal
action logic. J. Log. Comput. 10(5), 625–662 (2000)

63. Giordano, L., Martelli, A., Schwind, C.: Specifying and verifying interaction pro-
tocols in a temporal action logic. J. Applied Logic 5(2), 214–234 (2007)

64. Giordano, L., Olivetti, N.: Combining negation as failure and embedded implica-
tions in logic programs. J. Log. Program. 36(2), 91–147 (1998)

65. Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic
causal theories. Artif. Intell. 153(1-2), 49–104 (2004)

66. Giunchiglia, E., Lifschitz, V.: An action language based on causal explanation:
Preliminary report. In: AAAI/IAAI, pp. 623–630 (1998)

67. Governatori, G.: Representing business contracts in ruleml. Int. J. Cooperative
Information Systems 14(2-3), 180–216 (2005)

68. Governatori, G., Rotolo, A.: Defeasible logic: Agency, intention and obligation. In:
Lomuscio, A., Nute, D. (eds.) DEON 2004. LNCS (LNAI), vol. 3065, pp. 114–128.
Springer, Heidelberg (2004)

69. Greco, S., Lisi, F.: Logic Programming Languages for Databases and the Web.
In: Dovier, A., Pontelli, E. (eds.) 25 Years of Logic Programming in Italy, ch. 9.
LNCS, vol. 6125, pp. 183–203. Springer, Heidelberg (2010)

70. Hanks, S., McDermott, D.V.: Nonmonotonic logic and temporal projection. Artif.
Intell. 33(3), 379–412 (1987)

71. Kakas, A., Mancarella, P.: Generalized stable models: A semantics for abduction.
In: ECAI, pp. 385–391 (1990)

72. Kakas, A.C., Kowalski, R.A., Toni, F.: Abductive logic programming. Journal of
Logic and Computation 2(6), 719–770 (1993)

73. Kakas, A.C., Kowalski, R.A., Toni, F.: The role of abduction in logic program-
ming. In: Handbook of Logic in Artificial Intelligence and Logic Programming,
vol. 5, pp. 235–324. OUP (1998)

74. Kakas, A.C., Mancarella, P.: Generalized stable models: a semantics for abduc-
tion. In: Proceedings of the 9th European Conference on Artificial Intelligence,
pp. 385–391 (1990)

75. Kakas, A.C., Mancarella, P.: Short note: Preferred extensions are partial stable
models. J. Log. Program. 14(3&4), 341–348 (1992)

76. Kakas, A.C., Van Nuffelen, B., Denecker, M.: A-system: Problem solving through
abduction. In: Proceedings of the 17th International Joint Conference on Artificial
Intelligence, pp. 591–596 (2001)

77. Kifer, M.: Nonmonotonic Reasoning in FLORA-2. In: Baral, C., Greco, G.,
Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 1–12.
Springer, Heidelberg (2005)

78. Kowalski, R., Sergot, M.: A logic-based calculus of events. New Generation Com-
puting 4(1), 67–95 (1986)

79. Kowalski, R.A.: Predicate logic as programming language. In: IFIP Congress,
pp. 569–574 (1974)



Knowledge Representation and Non-monotonic Reasoning 109

80. Kowalski, R.A., Kuehner, D.: Linear resolution with selection function. Artif.
Intell. 2(3/4), 227–260 (1971)

81. Kowalski, R.A., Toni, F.: Abstract argumentation. Artif. Intell. Law 4(3-4),
275–296 (1996)

82. Kunen, K.: Negation in logic programming. Journal of Logic Programming 4(4),
289–308 (1987)

83. Kunen, K.: Signed data dependencies in logic programs. J. Log. Program. 7(3),
231–245 (1989)

84. Leone, N., Rullo, P.: Ordered logic programming with sets. J. Log. Comput. 3(6),
621–642 (1993)

85. Levesque, H., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.: Golog: A logic pro-
gramming language for dynamic domains. Journal of Logic Programming 31,
59–83 (1997)

86. Li, R., Pereira, L.M.: Representing and reasoning about concurrent actions with
abductive logic programs. Ann. Math. Artif. Intell. 21(2-4), 245–303 (1997)

87. Lifschitz, V.: Minimal belief and negation as failure. Artificial Intelligence 70(1-2),
53–72 (1994)

88. Lin, F.: Embracing causality in specifying the indirect effects of actions. In: IJCAI,
pp. 1985–1993 (1995)

89. Lloyd, J.W.: Foundations of Logic Programming, 1st edn. Springer, Heidelberg
(1984)

90. Mancarella, P., Terreni, G., Sadri, F., Toni, F., Endriss, U.: The CIFF proof pro-
cedure for abductive logic programming with constraints: Theory, implementation
and experiments. Theory and Practice of Logic Programming 9(6), 691–750 (2009)

91. McCain, N., Turner, H.: A causal theory of ramifications and qualifications. In:
IJCAI, pp. 1978–1984 (1995)

92. McCarthy, J.: Situations actions and causal laws. Technical Report. Stan-
ford (1963); Reprinted in Semantic Information Processing (Minsky, M. (ed.)),
pp. 410-417. MIT Press, Cambridge (1968)

93. McCarthy, J.: Circumscription—a form of non-monotonic reasoning. Artificial
Intelligence 13, 27–39 (1980)

94. McDermott, D.V.: Nonmonotonic logic ii: Nonmonotonic modal theories. J.
ACM 29(1), 33–57 (1982)

95. Minker, J.: An overview of nonmonotonic reasoning and logic programming. Jour-
nal of Logic Programming, Special Issue 17, 95–126 (1993)

96. Moore, R.C.: Semantical considerations on nonmonotonic logic. Artif. In-
tell. 25(1), 75–94 (1985)

97. Nebel, B.: Belief revision and default reasoning: Syntax-based approaches. In: KR,
pp. 417–428 (1991)

98. Niemel, I., Simons, P.: Efficient implementation of the well-founded and stable
model semantics. In: Proceedings of the Joint International Conference and Sym-
posium on Logic Programming, pp. 289–303. MIT Press, Cambridge (1996)

99. Nitta, K., Shibasaki, M.: Defeasible reasoning in japanese criminal jurisprudence.
Artif. Intell. Law 5(1-2), 139–159 (1997)

100. Noël, V., Kakas, A.C.: Gorgias-c: Extending argumentation with constraint solv-
ing. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753,
pp. 535–541. Springer, Heidelberg (2009)

101. Nute, D.: Defeasible logic. In: Bartenstein, O., Geske, U., Hannebauer, M.,
Yoshie, O. (eds.) INAP 2001. LNCS (LNAI), vol. 2543, pp. 87–114. Springer,
Heidelberg (2003)



110 L. Giordano and F. Toni

102. Pednault, E.P.D.: Adl: Exploring the middle ground between strips and the situ-
ation calculus. In: KR, pp. 324–332 (1989)

103. Pereira, L.M., Alferes, J.J., Apaŕıcio, J.N.: Contradiction removal semantics with
explicit negation. In: Masuch, M., Polos, L. (eds.) Logic at Work 1992. LNCS,
vol. 808. Springer, Heidelberg (1994)

104. Poole, D.: A logical framework for default reasoning. Artif. Intell. 36(1), 27–47
(1988)

105. Prakken, H., Sartor, G.: A dialectical model of assessing conflicting arguments in
legal reasoning. Artif. Intell. Law 4(3-4), 331–368 (1996)

106. Prakken, H., Sartor, G.: Argument-based extended logic programming with de-
feasible priorities. Journal of Applied Non-classical Logics 7, 25–75 (1997)

107. Prakken, H., Sartor, G.: The Role of Logic in Computational Models of Le-
gal Argument: A Critical Survey. In: Kakas, A.C., Sadri, F. (eds.) Computa-
tional Logic: Logic Programming and Beyond, Part II. LNCS (LNAI), vol. 2408,
pp. 342–381. Springer, Heidelberg (2002)

108. Prakken, H., Sartor, G.: Formalising arguments about the burden of persuasion.
In: ICAIL-The Eleventh International Conference on Artificial Intelligence and
Law, Proceedings of the Conference, Stanford Law School, Stanford, California,
USA, June 4-8, pp. 97–106. ACM, New York (2007)

109. Preist, C., Eshghi, K.: Consistency-based and abductive diagnoses as generalised
stable models. In: FGCS, pp. 514–521 (1992)

110. Prendinger, H., Schurz, G.: Reasoning about action and change. A dynamic logic
approach. Journal of Logic, Language and Information 5(2), 209–245 (1996)

111. Przymusinski, T.C.: Perfect model semantics. In: ICLP/SLP, pp. 1081–1096
(1988)

112. Przymusinski, T.C.: Extended stable semantics for normal and disjunctive pro-
grams. In: ICLP, pp. 459–477 (1990)

113. Reiter, R.: On closed world data bases. In: Logic and Data Bases, pp. 55–76 (1977)
114. Reiter, R.: A logic for default reasoning. Artificial Intelligence 13(1-2), 81–132

(1980)
115. Reiter, R.: Circumscription implies predicate completion (sometimes). In: AAAI,

pp. 418–420 (1982)
116. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95

(1987)
117. Reiter, R.: Knowledge in action. MIT Press, Cambridge (2001)
118. Saccà, D., Zaniolo, C.: Stable models and non-determinism in logic programs

with negation. In: Proceedings of the Ninth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, Nashville, Tennessee, April 2-4,
pp. 205–217. ACM Press, New York (1990)

119. Sadri, F., Kowalski, R.A.: Variants of the event calculus. In: ICLP, pp. 67–81
(1995)

120. Sadri, F., Toni, F.: Interleaving belief updating and reasoning in abductive logic
programming. In: Brewka, G., Coradeschi, S., Perini, A., Traverso, P. (eds.) Pro-
ceedings of the 17th European Conference on Artificial Intelligence (ECAI 2006),
Riva del Garda, Italy, 28 August–1 September 2006. IOS Press, Amsterdam (2006)

121. Sergot, M.J., Sadri, F., Kowalski, R.A., Kriwaczek, F., Hammond, P., Cory, H.T.:
The british nationality act as a logic program. Commun. ACM 29(5), 370–386
(1986)

122. Shanahan, M.: Solving the frame problem: A mathematical investigation of the
common sense law of inertia. MIT Press, Cambridge (1997)



Knowledge Representation and Non-monotonic Reasoning 111

123. Shanahan, M.: An abductive event calculus planner. J. Log. Program. 44(1-3),
207–240 (2000)

124. Shepherdson, J.C.: Negation as failure: A comparison of clark’s completed data
base and reiter’s closed world assumption. J. Log. Program. 1(1), 51–79 (1984)

125. Shepherdson, J.C.: Negation as failure ii. J. Log. Program. 2(3), 185–202 (1985)
126. Thielscher, M.: Ramification and causality. Artif. Intell. 89(1-2), 317–364 (1997)
127. Thielscher, M.: From situation calculus to fluent calculus: State update axioms as

a solution to the inferential frame problem. Artif. Intell. 111(1-2), 277–299 (1999)
128. Toni, F.: A semantics for the Kakas-Mancarella procedure for abductive logic pro-

gramming. In: Alpuente, M., Sessa, M.I. (eds.) 995 Joint Conference on Declara-
tive Programming, GULP-PRODE 1995, Marina di Vietri, Italy, September 11-14,
pp. 231–244 (1995)

129. Van Gelder, A., Ross, K., Schlifp, J.: The well-founded semantics for general logic
programs. Journal of ACM 38(3), 620–650 (1991)

130. Witteveen, C., Brewka, G.: Skeptical reason maintenance and belief revision. Ar-
tif. Intell. 61(1), 1–36 (1993)

131. You, J.-H., Cartwright, R., Li, M.: Iterative belief revision in extended logic pro-
gramming. Theoretical Computer Science, 170–171 (1996)



The Transformational Approach to
Program Development

Alberto Pettorossi1, Maurizio Proietti2, and Valerio Senni1

1 DISP, University of Rome Tor Vergata, Via del Politecnico 1, I-00133 Rome, Italy
{pettorossi,senni}@disp.uniroma2.it

2 IASI-CNR, Viale Manzoni 30, I-00185 Rome, Italy
proietti@iasi.cnr.it

Abstract. We present an overview of the program transformation techniques
which have been proposed over the past twenty-five years in the context of logic
programming. We consider the approach based on rules and strategies. First, we
present the transformation rules and we address the issue of their correctness.
Then, we present the transformation strategies and, through some examples, we
illustrate their use for improving program efficiency via the elimination of un-
necessary variables, the reduction of nondeterminism, and the use of program
specialization. We also describe the use of the transformation methodology for
the synthesis of logic programs from first-order specifications. Finally, we illus-
trate some transformational techniques for verifying first-order properties of logic
programs and their application to model checking for finite and infinite state con-
current systems.

1 Introduction

When deriving programs from specifications there are, among others, two main ob-
jectives to achieve: (i) program correctness, and (ii) program efficiency. Unfortunately,
these two objectives are often in contrast with each other. Efficient programs may be
rather intricate and their correctness proofs may be quite complex and long.

In order to overcome this difficulty, one can use the so called program transformation
methodology by which starting from the given formal specifications, one derives effi-
cient programs by applying a sequence of transformation rules, each of which preserves
correctness. The transformation methodology is particularly appealing when programs
are written in a declarative language such as a functional language or a logic language.
In those cases, in fact, (i) the formal specifications are formulas which can easily be
translated into an initial program which is, thus, correct by construction, and (ii) the
transformation rules can be viewed as correctness preserving deduction rules in a suit-
able logic.

In order to get final programs which are more efficient than the initial ones, we need
to apply the transformation rules according to suitable transformation strategies. This
particular approach to program transformation, called the rules + strategies approach,
has been first advocated in the seminal paper by Burstall and Darlington [17] in the case
of functional programs. Then, as we will indicate at the beginning of the next section, it

A. Dovier, E. Pontelli (Eds.): 25 Years of Logic Programming, LNCS 6125, pp. 112–135, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



The Transformational Approach to Program Development 113

has been adapted to logic programs [31,64], constraint logic programs [22,40], and the
so-called functional-logic languages [1].

The program transformation methodology can also be used for performing program
synthesis (see, for instance, [41] and also [5] for a recent survey). In that case the ini-
tial program is the declarative specification of a problem and the derived, transformed
program is the encoding of an efficient algorithm for solving that problem.

In recent years program transformation has also been used as a technique for pro-
gram verification. It has been shown that via program transformation, one can prove
properties of programs [47] and also perform model checking for finite or infinite state
systems [25].

In this paper we will focus our attention on the use of the program transformation
methodology for the development of logic programs and we will mainly refer to the con-
tributions coming from that area. In Section 2 we will present the most popular trans-
formation rules, such as unfolding and folding, and we will mention some correctness
results for those rules in various logic languages. In Section 3 we will describe some of
the strategies that can be used to guide the application of the transformation rules for
improving program efficiency. In Sections 4 and 5 we will present some transforma-
tional methods for program synthesis and program verification. Finally, in Section 6 we
will discuss some future research directions in program transformation.

2 Transformation Rules

Various sets of program transformation rules have been proposed in the literature for
several declarative programming languages. In their landmark paper [64] Tamaki and
Sato considered definite logic programs and presented a set of transformation rules,
including definition, unfolding, folding, goal replacement, and clause deletion. Under
suitable restrictions, these rules are correct w.r.t. the least Herbrand model seman-
tics [64]. Indeed, if from program P0 we derive program Pn by several applications
of the transformation rules, then under certain conditions the least Herbrand model is
preserved, that is, M(P0) = M(Pn), where by M(P ) we denote the least Herbrand
model of the program P . In the subsequent years, Tamaki and Sato’s approach has been
extended in several directions as we now indicate.

(1) Transformation rules for other logic-based programming languages, besides definite
logic programs, have been considered. For instance, various rules have been presented
for transforming: (i) general logic programs with negation [58], (ii) constraint logic
programs [22,26,40], (iii) concurrent constraint logic programs [23,24], (iv) constraint
handling rules [62], and functional-logic programs [1].

(2) The correctness of the transformation rules w.r.t. various semantics of logic lan-
guages has been proved. In particular, it has been shown that, under suitable condi-
tions, the unfolding and folding transformation rules preserve: (i) the set of answer
substitutions computed by SLD-resolution [6], (ii) the sequence of answer substitutions
computed according to the Prolog operational semantics [49], (iii) termination proper-
ties such as finite failure [58] and left-termination [11], universal termination [7], and
acyclicity [12], (iv) various semantics of general logic programs, such as the Clark com-
pletion [30], the perfect models of stratified programs [40,58], the stable models [57],



114 A. Pettorossi, M. Proietti, and V. Senni

the well-founded models [59], and Kunen’s and Fitting’s three-valued models [10]. Sys-
tematic approaches for proving the correctness of the transformation rules based on the
notions of semantic kernel and argumentation semantics, have been proposed in [4] and
[65], respectively.

(3) The set of transformation rules has been extended either by adding extra rules such
as negative unfolding and negative folding [26,60], and simultaneous replacement [10],
or by relaxing the conditions under which we can apply the usual rules [48,53].

Now we present a set of transformation rules for locally stratified programs [40,45,60].
We will use these rules in the program transformations described in Sections 3, 4, and 5.

Given a locally stratified program P , throughout the paper by M(P ) we denote
the perfect model of P [2], which is equal to the least Herbrand model in the case of
definite logic programs. Given any conjunction C of one or more literals, by vars(C)
we denote the set of variables occurring in C. A similar notation will also be used for
sets of conjunctions of literals. When applying the transformation rules we will feel
free to rewrite clauses by: (i) renaming their variables, and (ii) rearranging the order
and removing repeated occurrences of literals occurring in their bodies.

The transformation rules are used to construct a sequence P0, . . . , Pn of programs,
called a transformation sequence. The construction of that sequence is done as fol-
lows. Suppose that we have constructed the transformation sequence P0, . . . , Pk, for
0≤ k ≤ n−1. Then the next program Pk+1 in the transformation sequence is derived
from program Pk by the application of a transformation rule among the following rules
R1–R9.

Rule R1 is the definition introduction rule which is applied for introducing a new
predicate definition by one or more clauses.

R1. Definition Introduction. Let us consider m (≥1) clauses of the form:

δ1 : newp(X1, . . . , Xh)← B1, . . . , δm : newp(X1, . . . , Xh)← Bm

where: (i) newp is a predicate symbol not occurring in {P0, . . . , Pk}, (ii) X1, . . . , Xh

are distinct variables occurring in {B1, . . . , Bm}, (iii) every predicate symbol occur-
ring in {B1, . . . , Bm} also occurs in P0. The set {δ1, . . . , δm} of clauses is called the
definition of newp.

By definition introduction from program Pk we derive the program Pk+1 = Pk ∪
{δ1, . . . , δm}. For k≥ 0, Defsk denotes the set of clauses introduced by the definition
rule during the transformation sequence P0, . . . , Pk. In particular, Defs0 ={}.

The unfolding rule consists in: (i) replacing an atom A occurring in the body of a
clause by a suitable instance of the disjunction of the bodies of the clauses whose heads
unify with A, and (ii) applying suitable boolean laws for deriving clauses. There are
two unfolding rules: (1) the positive unfolding, and (2) the negative unfolding, corre-
sponding to the case where A occurs positively or negatively, respectively, in the body
of the clause to be unfolded.

R2. Positive Unfolding. Let γ : H ← GL ∧ A ∧ GR be a clause in program Pk and
let P ′

k be a variant of Pk without variables in common with γ. Let

γ1 : K1 ← B1, . . . , γm : Km ← Bm (m ≥ 0)

be all clauses of P ′
k such that, for i = 1, . . . , m, A is unifiable with Ki, with most

general unifier ϑi.



The Transformational Approach to Program Development 115

By unfolding γ w.r.t. A we derive the clauses η1, . . . , ηm, where for i = 1, . . . , m,
ηi is (H ← GL ∧Bi ∧GR)ϑi. From Pk we derive the program Pk+1 = (Pk − {γ})∪
{η1, . . . , ηm}.

The existential variables of a clause γ are the variables occurring in the body of γ
and not in its head.

R3. Negative Unfolding. Let γ : H ← GL ∧¬A∧GR be a clause in program Pk and
let P ′

k be a variant of Pk without variables in common with γ. Let

γ1 : K1 ← B1, . . . , γm : Km ← Bm (m ≥ 0)

be all clauses of program P ′
k such that A is unifiable with K1, . . . , Km, with most

general unifiers ϑ1, . . . , ϑm, respectively. Assume that:

1. A = K1ϑ1 = · · · = Kmϑm, that is, for i = 1, . . . , m, A is an instance of Ki,
2. for i = 1, . . . , m, γi has no existential variables, and
3. from GL ∧¬(B1ϑ1 ∨ . . .∨Bmϑm)∧GR we get a logically equivalent disjunction

Q1 ∨ . . . ∨ Qr of goals, with r ≥ 0, by first pushing ¬ inside and then pushing ∨
outside.

By unfolding γ w.r.t. ¬A we derive the clauses η1, . . . , ηr, where for i = 1, . . . , r, ηi is
H ← Qi. From Pk we derive the new program Pk+1 = (Pk − {γ}) ∪ {η1, . . . , ηr}.

The folding rule consists in replacing instances of the bodies of the clauses which are
the definition of a predicate by the corresponding head. As for unfolding, we have both
the positive folding rule and the negative folding rule, depending on whether folding is
applied to positive or negative occurrences of (conjunctions of) literals. Note that by the
positive folding rule we may replace m (≥1) clauses by one clause only.

R4. Positive Folding. Let γ1, . . . , γm, with m≥1, be clauses in Pk and let Defs′k be a
variant of Defsk without variables in common with γ1, . . . , γm. Let the definition of a
predicate in Defs′k consist of the m clauses

δ1 : K ← B1, . . . , δm : K ← Bm

where, for i = 1, . . . , m, Bi is a non-empty conjunction of literals. Suppose that there
exists a substitution ϑ such that, for i = 1, . . . , m, clause γi is of the form H ←
GL ∧ Biϑ ∧ GR and, for every variable X ∈ vars(Bi) − vars(K), the following
conditions hold: (i) Xϑ is a variable not occurring in {H, GL, GR}, and (ii) Xϑ does
not occur in the term Y ϑ, for any variable Y occurring in Bi and different from X .
By folding γ1, . . . , γm using δ1, . . . , δm we derive the clause η: H ← GL ∧Kϑ∧GR.
From Pk we derive the program Pk+1 = (Pk − {γ1, . . . , γm}) ∪ {η}.
R5. Negative Folding. Let γ be a clause in Pk and let Defs′k be a variant of Defsk

without variables in common with γ. Suppose that there exists a predicate in Defs′k
whose definition consists of a single clause δ : K ← A, where A is an atom. Suppose
also that there exists a substitution ϑ such that clause γ is of the form: H ← GL ∧
¬Aϑ ∧GR and vars(K) = vars(A).
By folding γ using δ we derive the clause η: H ← GL ∧ ¬Kϑ ∧ GR. From Pk we
derive the program Pk+1 = (Pk−{γ}) ∪ {η}.

The following clause deletion rule allows us to remove from Pk a redundant clause γ,
that is, a clause γ such that M(Pk) = M(Pk−{γ}). Since the problem of testing
whether or not M(Pk) = M(Pk−{γ}) is undecidable, we will consider some sufficient



116 A. Pettorossi, M. Proietti, and V. Senni

conditions based on decidable properties. These sufficient conditions are based on the
notions of subsumed clause, clause with false body, and useless clause, which we now
define.

A clause γ is subsumed by a clause of the form H ← G1 if γ is of the form (H ←
G1 ∧G2)ϑ for some substitution ϑ and conjunction of literals G2. A clause has a false
body if it is of the form H ← G1 ∧A ∧ ¬A ∧G2.

The set of useless predicates in a program P is the maximal set U of predicates
occurring in P such that a predicate p is in U iff every clause γ with head predicated p
is of the form p(. . .) ← G1 ∧ q(. . .) ∧ G2 for some q in U . A clause in a program P
is useless if the predicate of its head is useless in P . For example, in the following
program:

p(X)← q(X) ∧ ¬r(X)
q(X)← p(X)
r(a) ←

p and q are useless predicates, while r is not useless.

R6. Clause Deletion. Let γ be a clause in Pk. By clause deletion we derive the program
Pk+1 = Pk − {γ} if one of the following three cases occurs:

R6s. γ is subsumed by a clause in Pk − {γ};
R6f. γ has a false body;

R6u. γ is useless in Pk.

The following goal replacement rule allows us to replace a conjunction of literals oc-
curring in the body of a clause by an equivalent conjunction of literals.

R7. Goal Replacement. Let γ: H ← G1 ∧Q ∧G2 be a clause in Pk. Suppose that for
some conjunction R of literals we have:

M(P0) |= ∀X1 . . . ∀Xu (∃Y1 . . .∃Yv Q↔ ∃Z1 . . . ∃Zw R)

where: (i) {X1, . . . , Xu} = vars({H, G1, G2}), (ii) {Y1, . . . , Yv} = vars(Q)−
{X1, . . . , Xu}, and (iii) {Z1, . . . , Zw} = vars(R)− {X1, . . . , Xu}.

Then by goal replacement from γ we derive the clause η: H ← G1 ∧R ∧G2. From
Pk we derive the new program Pk+1 = (Pk − {γ}) ∪ {η}.

The following equality introduction rule R8i allows us to substitute a variable for a
term occurring in a clause, by adding an equality in the body of the clause. The equality
elimination rule R8e can be viewed as the inverse of rule R8i.

R8. Equality Introduction and Elimination. Let γ be a clause of the form (H ←
Body){X/t}, such that the variable X does not occur in t and let δ be the clause:
H ←X = t ∧ Body .
R8i. By equality introduction we derive clause δ from clause γ. If γ occurs in Pk then
we derive the new program Pk+1 = (Pk − {γ}) ∪ {δ}.
R8e. By equality elimination we derive clause γ from clause δ. If δ occurs in Pk then
we derive the new program Pk+1 = (Pk − {δ}) ∪ {γ}.

The clause splitting rule allows us to reason by cases according to the truth value of
a given atom.



The Transformational Approach to Program Development 117

R9. Clause Splitting. Let γ : H ← G be a clause in Pk and A be an atom. Then from
clause γ we derive the two clauses γ1: H ← A ∧ G and γ2: H ← ¬A ∧ G. From Pk

we derive the new program Pk+1 = (Pk − {γ}) ∪ {γ1, γ2}.
We say that a transformation sequence P0, . . . , Pn is correct (w.r.t. the perfect model

semantics), if P0 ∪Defsn and Pn are locally stratified and M(P0 ∪Defsn) = M(Pn).
Note that, since we can introduce new predicate symbols by using rule R1, it may be
the case that for a correct transformation sequence we have M(P0) �= M(Pn).

Transformation sequences constructed by an unrestricted use of the transformation
rules may not be correct. Consider, for instance, the program:

P0: p← q q ←
The perfect model of P0 is M(P0)={p, q} and M(P0) |= p ↔ q. Thus, we may apply
the goal replacement rule R7 and replace q by p in p ← q. We derive the new program:

P1: p← p q ←
The transformation sequence P0, P1 is not correct, because M(P1) = {q} and, thus,
M(P0) �=M(P1). Indeed, P0 succeeds for the goal p, while P1 does not terminate for
the goal p.

One can show that the correctness of a transformation sequence is guaranteed if
termination is preserved, that is, if the initial program terminates then also the final
program terminates. Now we will state a sufficient condition for the correctness of
the transformation rules R1–R9 based on the notion of left termination [3]. An LDNF
derivation is an SLDNF derivation constructed by using the leftmost selection rule [3].

Definition 1. A program P is called left terminating if all LDNF derivations of P start-
ing from a ground goal, are finite.

The following Theorem 1 which follows from results presented in [3,9], states that
if we consider a transformation sequence of locally stratified, non-floundering [3,39]
programs, then the preservation of left termination guarantees the preservation of the
perfect model.

Theorem 1 (Correctness of the Transformation Rules). Let P0, . . . , Pn be a trans-
formation sequence such that, for k = 0, . . . , n, program Pk is locally stratified, non-
floundering, and left terminating. Then M(P0 ∪Defsn)=M(Pn).

In Theorem 1 we referred to the notion of left termination. However, weaker notions of
termination may be considered and in [36], for instance, there is a correctness result for
definite programs based on existential termination.

Theorem 1 is theoretically relevant because it relates the correctness of a transforma-
tion sequence and the preservation of left termination. However, this result is of limited
use in practice for two reasons: (1) left termination is an undecidable property (as well
as the properties of being locally stratified and non-floundering), and (2) left termination
(or other notions of termination) may be too restrictive, especially in the cases where
logic programs are used as specifications.

In Section 5 we will show some examples of transformation of nonterminating pro-
grams in the context of program verification and model checking. Correctness results



118 A. Pettorossi, M. Proietti, and V. Senni

w.r.t. the perfect model semantics which do not make explicit use of termination prop-
erties can be found in [26,40,52,58,60]. For lack of space we do not report those results
here.

3 Transformation Strategies

In order to construct a transformation sequence P0, . . . , Pn such that the final program
Pn is more efficient than the initial program P0, we need to apply suitable procedures,
called transformation strategies.

In this section we will describe some of the strategies which have been proposed in
the literature. In particular, we will present: (i) a strategy for eliminating unnecessary
variables [50], (ii) a strategy for reducing nondeterminism [26], and (iii) a strategy for
performing program specialization [46].

Several other strategies for transforming logic programs have been proposed. For
instance, (i) the strategy for deriving tail recursive programs [20], (ii) the strategy for
compiling control [13], and (iii) the strategy for changing data representations and, in
particular, for replacing ordinary lists by difference-lists [68].

3.1 Eliminating Unnecessary Variables

Logic programs written in a declarative style often make use of existential variables
(see Section 2) and multiple variables, that is, variables with multiple occurrences in
the body of a clause. Existential variables and multiple variables are collectively called
unnecessary variables. In the practice of logic programming, multiple occurrences of
existential variables are often used for storing intermediate results, while multiple oc-
currences of non-existential variables are often used for defining predicates which per-
form multiple traversals of the input data structure.

The strategy presented in [50] has the objective of eliminating unnecessary variables,
thereby avoiding both the construction of intermediate results and the multiple traversal
of data structures. This strategy is related to the deforestation [67] and the tupling [43]
strategies, which were introduced for the case of functional programs, and it is also
related to conjunctive partial deduction [19] which is a technique for eliminating un-
necessary variables that follows the partial deduction [37] approach, instead of the rules
+ strategies approach.

Now we show an example of application of the strategy for eliminating unnecessary
variables.

Example 1 (Two Players Impartial Game). Consider two players sitting at a table. On
the table there is a heap of matches. The two players play alternate moves and each
move consists in taking away either one (move 1) or two matches (move 2) from the
table. A player wins if after the opponent’s move, he finds no matches on the table.
Let us introduce the predicate win(N, M) which holds iff either N =0 or there are N
matches on the table and the player who has to move, wins by making move M .

Given a natural number N , the following program Game computes a move M , if it
exists, such that win(N, M) holds.



The Transformational Approach to Program Development 119

1. win(N, M)← nat(N) ∧move(M) ∧ w(N, M) 5. nat(0)←
2. w(0, M)← 6. nat(s(N)) ← nat(N)
3. w(s(N), 1) ← ¬w(N, 1) ∧ ¬w(N, 2) 7. move(1)←
4. w(s(s(N)), 2) ← ¬w(N, 1) ∧ ¬w(N, 2) 8. move(2)←

The variable M occurs twice in the body of clause 1. Likewise, the variable N occurs
twice in the body of clauses 1, 3, and 4. In particular, the multiple occurrences of N
in clauses 3 and 4 leads to a computation with O(2n) time complexity for any query
win(n, M), where n is a natural number and M is a variable. We want to improve
the efficiency of the above program Game by eliminating the multiple occurrences of
variables. The strategy which allows us to do so consists in the iteration of the following
two phases (see [50] for details).

Unfold phase: We apply the unfolding rule one or more times starting from clause 1,
thereby deriving a set U of clauses;

Define-Fold phase: For each clause γ in U with multiple occurrences of variables in its
body, we introduce a suitable new clause δ by rule R1, and we fold γ using δ so that the
derived clause η has no multiple occurrences of variables in its body.

For each new clause introduced during the Define-Fold phase, we perform one more
iteration of the Unfold and Define-Fold phases. We store in a set, called Defs, all clauses
introduced during every Define-Fold phase and we introduce a new clause δ only if we
cannot apply the folding rule by using a clause already belonging to the set Defs.

Let us see this strategy for eliminating the multiple occurrences of variables in action
in our example.

First Iteration

Unfold. We apply the positive unfolding rule to clause 1 w.r.t. the leftmost atom in its
body and we derive the following two clauses:

9. win(0, M)← move(M) ∧w(0, M)
10. win(s(N), M) ← nat(N) ∧move(M) ∧w(s(N), M)

By several applications of the positive unfolding rule, from clauses 9 and 10 we derive:

11. win(0, M)← move(M)
12. win(s(N), 1) ← nat(N) ∧ ¬w(N, 1) ∧ ¬w(N, 2)
13. win(s(N), 2) ← nat(N) ∧ w(s(N), 2)

Define-Fold. We eliminate the multiple occurrences of the variable N from the bodies
of clauses 12 and 13 by applying the definition introduction rule R1 and the positive
folding rule R4 as follows. By rule R1 we introduce the following two clauses:

14. new1(N)← nat(N) ∧ ¬w(N, 1) ∧ ¬w(N, 2)
15. new2(N)← nat(N) ∧ w(s(N), 2)
and by folding clauses 12 and 13 using clauses 14 and 15, respectively, we derive:

16. win(s(N), 1) ← new1(N)
17. win(s(N), 2) ← new2(N)

without multiple occurrences of variables in their bodies. However, in the bodies of
clauses 14 and 15 there are multiple occurrences of variables and, in order to eliminate



120 A. Pettorossi, M. Proietti, and V. Senni

them, we have to perform one more iteration of the Unfold and Define-Fold phases
starting from those two clauses.

Second Iteration

Unfold. By unfolding clause 14 w.r.t. the leftmost atom in its body, we derive:

18. new1(0)← ¬w(0, 1) ∧ ¬w(0, 2)
19. new1(s(N))← nat(N) ∧ ¬w(s(N), 1) ∧ ¬w(s(N), 2)

By negative unfolding, clause 18 is deleted because w(0, 1) (and also w(0, 2)) holds
(see clause 2). From clause 19, by negative unfolding w.r.t. ¬w(s(N), 1), we derive:

20. new1(s(N))← nat(N) ∧w(N, 1) ∧ ¬w(s(N), 2)
21. new1(s(N))← nat(N) ∧w(N, 2) ∧ ¬w(s(N), 2)

Define-Fold. By applying rule R1, we introduce the following two clauses:

22. new3(N)← nat(N) ∧ w(N, 1) ∧ ¬w(s(N), 2)
23. new4(N)← nat(N) ∧ w(N, 2) ∧ ¬w(s(N), 2)

By folding clauses 20 and 21 using clauses 22 and 23, respectively, we derive:

24. new1(s(N))← new3(N)
25. new1(s(N))← new4(N)

without multiple occurrences of variables in their bodies. Since in the clauses 22 and
23 introduced by rule R1, there are multiple occurrences of variables, we continue the
execution of the strategy starting from these two clauses as we have done above starting
from clauses 14 and 15. After some more iterations of the Unfold and Define-Fold
phases we derive the following final program GameF without multiple occurrences of
variables.

11. win(0, N)← move(N) 26. new2(s(N))← new1(N)
16. win(s(N), 1) ← new1(N) 27. new3(0)←
17. win(s(N), 2) ← new2(N) 28. new4(0)←
24. new1(s(N))← new3(N) 29. new4(s(N))← new5(N)
25. new1(s(N))← new4(N) 30. new5(s(N))← new1(N)

It can be verified that for the program derivation we have now completed, the local
stratification, non-floundering, and left termination conditions of Theorem 1 are all sat-
isfied. In particular, the final program GameL is a left terminating, definite program
(and, hence, locally stratified and non-floundering). Thus, M(Game)=M(GameL).

Program GameL runs in nondeterministic O(n) time for any query of the form
win(n, M). In the next section we will present the transformation from programGameL

into a program running in deterministic O(n) time.

3.2 Reducing Nondeterminism

In this section we will present the Determinization strategy [26] which can be applied
for improving the efficiency of logic programs by reducing the nondeterminism of their
computations. We will see this strategy in action by applying it to the program GameL

we have derived at the end of the previous section.



The Transformational Approach to Program Development 121

Example 2 (Two Players Impartial Game, Continued). The program GameL is nonde-
terministic because, for any given query win(n, M), where n is a ground term denoting
a natural number, SLD-resolution may generate a call which is unifiable with the head
of more than one program clause. For instance, if n>0, the initial call win(n, M) uni-
fies with the heads of both clause 16 and clause 17. In other terms, these two clauses
are not mutually exclusive with respect to calls of the form win(n, M), where n is a
ground term.

Non-mutually exclusive clauses can be avoided by transforming program GameL as
follows. By the equality introduction rule R8i, from clauses 16 and 17 we derive:

31. win(s(N), M) ←M =1 ∧ new1(N)
32. win(s(N), M) ←M =2 ∧ new2(N)

By applying the definition introduction rule, we introduce the following two clauses:

33. new6(N, M)← M =1 ∧ new1(N)
34. new6(N, M)← M =2 ∧ new2(N)

By folding clauses 31 and 32 using clauses 33 and 34 we derive:

35. win(s(N), M) ← new6(N, M)

The predicate win is defined by the two clauses 11 and 35 which are mutually exclusive
w.r.t. calls of the form win(n, M). Indeed, for any given ground term n, there is at most
one clause in {11, 35} whose head is unifiable with win(n, M).

Now we are left with the problem of transforming the two clauses 33 and 34 in-
troduced by rule R1, into a set of mutually exclusive clauses (w.r.t. calls of the form
new6(n, M), where n is a ground term). The Determinization strategy proceeds simi-
larly to the strategy for eliminating unnecessary variables presented in Section 3.1, by it-
erating an Unfold phase followed by a Define-Fold phase. During the Define-Fold phase
we derive mutually exclusive clauses by introducing new predicates possibly defined by
more than one clause (while in the strategy for eliminating unnecessary variables each
new predicate is defined by precisely one clause).

Let us now see how the Determinization strategy proceeds in action in our example.
For lack of space, we present the first iteration only.

First Iteration

Unfold. By positive unfolding, from clauses 33 and 34 we derive:

36. new6(s(N), M)←M =1 ∧ new3(N)
37. new6(s(N), M)←M =1 ∧ new4(N)
38. new6(s(N), M)←M =2 ∧ new1(N)

Define-Fold. Clauses 36, 37, and 38 are not mutually exclusive. By the definition intro-
duction rule we introduce the following three clauses:

39. new7(N, M)← M =1 ∧ new3(N)
40. new7(N, M)← M =1 ∧ new4(N)
41. new7(N, M)← M =2 ∧ new1(N)

By folding clauses 36, 37, and 38 using clauses 39, 40, and 41 we derive:

42. new6(s(N), M)← new7(N, M)



122 A. Pettorossi, M. Proietti, and V. Senni

Clause 42 constitutes a set of mutually exclusive clauses for new6 (because it is one
clause only). In order to transform the newly introduced clauses 39, 40, and 41 into
mutually exclusive clauses, we continue the execution of the Determinization strategy
and, after several iterations we derive the following program GameD:

11. win(0, M)← move(M)
35. win(s(N), M) ← new6(N, M)
42. new6(s(N), M)← new7(N, M) 45. new8(0, M)←M =2
43. new7(0, M)←M =1 46. new8(s(N), M)← new9(N, M)
44. new7(s(N), M)← new8(N, M) 47. new9(s(N), M)← new7(N, M)

Program GameD is left terminating and all conditions of Theorem 1 are satisfied. Thus,
M(Game)=M(GameD). Moreover, program GameD is a set of mutually exclusive
clauses and computes the winning move, for any natural number n, in O(n) determin-
istic time.

3.3 Program Specialization

Programs are often written in a parametric form so that they can be reused in different
contexts, and when a parametric program is reused, one may want to improve its per-
formance by taking advantage of the new context of use. This improvement can often
be realized by applying a transformation methodology, called program specialization
(see [29,32,37] for introductions).

The most used technique for program specialization is partial evaluation, also called
partial deduction in the case of logic programs, where it has been first proposed by [33]
(see also [14,15,28,38,55,61,63,66] for early work on this subject). Essentially, partial
deduction can be performed by applying the transformation rules R1 (definition in-
troduction), R2 (positive unfolding), R4 (positive folding), and R5 (negative folding)
presented in Section 2 with the following restriction: by rule R1 we can introduce a
new clause of the form newp(X1, . . . , Xh)← A, where A is an atom and X1, . . . , Xh

are the variables occurring in A. This restriction limits also folding, as rules R4 and R5
are applied using clauses introduced by rule R1.

Program specialization techniques which make use of more powerful rules, such as
unrestricted definition introduction (and, hence, unrestricted folding) and goal replace-
ment have been first proposed in [8]. Here we will present an example of application
of the specialization strategy introduced in [46], which extends partial deduction by
also eliminating unnecessary variables and reducing nondeterminism. In our example
we will derive a specialized pattern matcher for a given pattern, starting from a given
parametric pattern matcher. In this example we will use constraint logic programs. As
already mentioned, the extension of the transformation rules to the case of constraint
logic programs has been studied in [22,26,40].

Example 3 (Constrained Matching). We define a matching relation between two strings
of numbers called, respectively, the pattern P and the string S. We say that the pattern
P matches the string S, and we write m(P, S), iff P = [p1, . . . , pn] and in S there is
a substring Q = [q1, . . . , qn] such that for i = 1, . . . , n, pi ≤ qi. (Much more complex
matchers can be considered by allowing a matching relation which can be defined by
any constraint logic program.)



The Transformational Approach to Program Development 123

The following constraint logic program Match can be taken as the specification of
our parametric pattern matcher for the pattern P :

1. m(P, S)←app(B, C, S) ∧ app(A, Q, B) ∧ leq(P, Q)
2. app([ ],Ys,Ys)←
3. app([X |Xs],Ys, [X |Zs]) ← app(Xs ,Ys ,Zs)
4. leq([ ], [ ])←
5. leq([X |Xs], [Y |Ys]) ← X≤Y ∧ leq(Xs ,Ys)

Suppose that we want to specialize this pattern matcher to the specific pattern
P = [1,0,2]. The specialization strategy we now apply has the same structure as the
strategies presented in Sections 3.1 and 3.2. The improvements gained through the ap-
plication of the specialization strategy are due to the fact that this strategy: (i) makes
some precalculations which depend on the specific pattern P = [1,0,2], (ii) eliminates
unnecessary variables, and (iii) reduces nondeterminism. As already mentioned, these
improvements are possible because we use more powerful transformation rules with re-
spect to partial deduction (which would only perform the precalculations of Point (i)).

The specialization strategy starts off by introducing the following clause which de-
fines the specialized matching relation msp :

6. msp(S)← m([1,0,2], S)

Now we iterate Unfold and Define-Fold phases. The main difference with the applica-
tions of the strategies presented in Sections 3.1 and 3.2 will be that, in order to get mu-
tually exclusive clauses, before applying the definition introduction rule and the folding
rule, we will apply the clause splitting rule R9 whenever needed.

First Iteration

Unfold. We unfold clause 6 w.r.t. the atom m([1,0,2],S). We derive:

7. msp(S)← app(B, C, S) ∧ app(A, Q, B) ∧ leq([1,0,2], Q)

Define-Fold. In order to fold clause 7, we introduce the following definition:

8. new1(S)← app(B, C, S) ∧ app(A, Q, B) ∧ leq([1,0,2], Q)

Then we fold clause 7 and we derive:

9. msp(S)← new1(S)

Now the strategy continues by transforming the newly introduced clause 8.

Second Iteration

Unfold. We unfold clause 8 w.r.t. the atoms app and leq and we get:

10. new1([X |Xs])← 1≤X ∧ app(Q, C,Xs) ∧ leq([0,2], Q)
11. new1([X |Xs])← app(B, C,Xs) ∧ app(A, Q, B) ∧ leq([1,0,2], Q)

Clause Splitting. In order to derive mutually exclusive clauses, thereby reducing nonde-
terminism, we apply the clause splitting rule to clause 11, by separating the cases when
1 ≤ X and when 1 > X (that is, ¬(1 ≤ X)). We get:

12. new1([X |Xs])←1≤X ∧ app(B, C,Xs) ∧ app(A, Q, B) ∧ leq([1,0,2], Q)
13. new1([X |Xs])←1>X ∧ app(B, C,Xs) ∧ app(A, Q, B) ∧ leq([1,0,2], Q)



124 A. Pettorossi, M. Proietti, and V. Senni

Define-Fold. In order to fold clauses 10 and 12 we introduce the following two clauses
defining the predicate new2:
14. new2(Xs)← app(Q, C,Xs) ∧ leq([0, 2], Q)
15. new2(Xs)← app(B,C,Xs) ∧ app(A,Q,B) ∧ leq([1,0,2],Q)
Then we fold clauses 10 and 12 by using the two clauses 14 and 15 and we also fold
clause 13 by using clause 8. We derive the following clauses:
16. new1([X |Xs]) ← 1≤X ∧ new2(Xs)
17. new1([X |Xs]) ← 1>X ∧ new1(Xs)
Note that these two clauses: (i) are specialized w.r.t. the information that the first el-
ement of the pattern is 1, (ii) have no unnecessary variables, and (iii) are mutually
exclusive because of the constraints 1≤X and 1>X .

Now the program transformation strategy continues by transforming clauses 14 and
15, which define predicate new2. After a few more iterations of the Unfold, Clause Split-
ting, and Define-Fold phases, we derive the following specialized program Matchsp :

9. msp(S) ← new1(S)
16. new1([X |Xs]) ← 1≤X ∧ new2(Xs)
17. new1([X |Xs]) ← 1>X ∧ new1(Xs)
18. new2([X |Xs]) ← 1≤X ∧ new3(Xs)
19. new2([X |Xs]) ← 0≤X ∧ 1>X ∧ new4(Xs)
20. new2([X |Xs]) ← 0>X ∧ new1(Xs)
21. new3([X |Xs]) ← 2≤X ∧ new5(Xs)
22. new3([X |Xs]) ← 1≤X ∧ 2>X ∧ new3(Xs)
23. new3([X |Xs]) ← 0≤X ∧ 1>X ∧ new4(Xs)
24. new3([X |Xs]) ← 0>X ∧ new1(Xs)
25. new4([X |Xs]) ← 2≤X ∧ new6(Xs)
26. new4([X |Xs]) ← 1≤X ∧ 2>X ∧ new2(Xs)
27. new4([X |Xs]) ← 1>X ∧ new1(Xs)
28. new5([X |Xs]) ←
29. new6([X |Xs]) ←
This final program Matchsp has no occurrences of unnecessary variables and is de-
terministic in the sense that at most one clause can be applied during the evaluation
of any ground goal. The efficiency of Matchsp is very high because it behaves like a
deterministic finite automaton (see Figure 1) as the Knuth-Morris-Pratt matcher.

4 Program Synthesis

Program synthesis is a technique for the automatic derivation of programs from their
formal specifications (see, for instance, [41] for the derivation of functional programs
and [16,27,31] for the derivation of logic programs from first-order logic specifications).

In this section we present a transformational approach to program synthesis [26,56].
By following this approach, the synthesis of an efficient logic program from a first order
logic specification can be performed in two steps: first (1) we translate the specifica-
tion into a possibly inefficient logic program by applying the Lloyd-Topor transforma-
tion [39], and then (2) we derive an efficient program by applying the transformation
rules and strategies described in Sections 2 and 3.



The Transformational Approach to Program Development 125

Fig. 1. The finite automaton corresponding to the program Matchsp made out of clauses 9 and
16–29. The initial state is new1 and the final states are new5 and new6.

The transformational program synthesis approach will be presented through the
N -queens example. This example also illustrates that powerful programming tech-
niques such as recursion and backtracking, which are often presented in the literature for
solving the N -queens problem, can indeed be automatically derived by transformation.

Example 4 (N -queens). We are required to place N (≥ 0) queens on an N×N chess
board, so that no two queens attack each other, that is, they do not lie on the same row,
column, or diagonal. By using the fact that no two queens should lie on the same row, we
represent the positions of the N queens on the board as a permutation L = [i1, . . . , iN ]
of the list [1, . . . , N ] which tells us that the queen on row k is placed on column ik.

A specification of the solution L for the N -queens problem is given by the following
first-order formula:

board(N, L) =def nat(N) ∧ nat−list(L) ∧ length(L, N) ∧
∀X (member(X, L)→ in(X, 1, N)) ∧
∀A∀B ∀K ∀M

((1≤K ∧K≤M ∧ occurs(A, K, L) ∧ occurs(B,M,L))
→ (A �=B ∧A−B �=M−K ∧B−A �=M−K))

where the various predicates that occur in board(N, L), are defined by the following
constraint logic program P :

nat(0)←
nat(N)← N =M +1 ∧M≥0 ∧ nat(M)
nat−list([ ]) ←
nat−list([H |T ])← nat(H) ∧ nat−list(T )
length([ ], 0)←
length([H |T ], N)← N =M +1 ∧M≥0 ∧ length(T, M)
member(X, [H |T ])← X =H
member(X, [H |T ])← member(X, T )
in(X, M, N)← X =N ∧M≤N
in(X, M, N)← N =K+1∧M≤K ∧ in(X, M, K)
occurs(X, I, [H |T ])← I =1 ∧X =H
occurs(X, J, [H |T ])← J =I+1 ∧ I≥1 ∧ occurs(X, I, T )



126 A. Pettorossi, M. Proietti, and V. Senni

In this program P we have that: (i) in(X, M, N) iff M≤X≤N , and (ii) occurs(X, I,
[a1, . . . , an]) iff X =ai and I = i. Now, we would like to synthesize a constraint logic
program R which computes a predicate queens(N, L) such that, for every N and L,
the following property holds:

M(R) |= queens(N, L) iff M(P ) |= board(N, L) (α)

where by M(R) and M(P ) we denote the perfect model of the programs R and P ,
respectively. By applying the technique presented in [26], we start off from the formula
queens(N, L) ← board(N, L) (where board(N, L) is the first order formula defined
above) and, by applying a variant of the Lloyd-Topor transformation, we derive the
following stratified program F :

queens(N, L)← nat(N)∧ nat−list(L)∧ length(L, N)∧¬aux1(L, N)∧¬aux2(L)
aux1(L, N)← member(X, L) ∧ ¬in(X, 1, N)
aux2(L)← 1≤K ∧K≤M ∧ ¬(A �=B ∧A−B �=M−K ∧B−A �=M−K) ∧

occurs(A, K, L) ∧ occurs(B, M, L)
It can be shown that this variant of the Lloyd-Topor transformation preserves the perfect
model semantics and, thus, we have that, for every N and L:

M(P ∪ F ) |= queens(N, L) iff M(P ) |= board(N, L).
The derived program P ∪ F is not satisfactory from a computational point of view,
when using LDNF resolution. Indeed, for a query of the form queens(n, L), where n
is a nonnegative integer and L is a variable, program P ∪F works by first generating
a value l for the list L and then testing whether or not length(l, n) ∧ ¬aux1(l, n) ∧
¬aux2(l) holds. This generate-and-test behavior is very inefficient and it may also lead
to nontermination. Thus, the process of program synthesis proceeds by applying the
definition, unfolding, folding, and goal replacement transformation rules, according to
a strategy similar to the ones we have described in Section 3, with the objective of
deriving a more efficient program. We derive the following definite program R:

queens(N, L)← new2(N, L, 0)
new2(N, [ ], K)← N =K
new2(N, [H |T ], K)← N ≥K +1 ∧ new2(N, T, K+1)∧ new3(H, T, N, 0)
new3(A, [ ], N, M)← in(A, 1, N) ∧ nat(A)
new3(A, [B|T ], N, M)← A �=B ∧A−B �=M +1 ∧B−A �=M +1 ∧ nat(B) ∧

new3(A, T, N, M +1)

together with the clauses listed above which define the predicates in and nat .
Since the transformation rules preserve the perfect model semantics, for every N

and L, we have that, M(R) |= queens(N, L) iff M(P ∪ F ) |= queens(N, L) and,
thus, Property (α) holds. It can be shown that program R terminates for all queries of
the form queens(n, L). Program R computes a solution for the N -queens problem in a
clever way: each time a new queen is placed on the board, program R tests whether or
not that queen attacks any other queen already placed on the board.

5 Program Verification

Proofs of program properties are often needed during program development for check-
ing the correctness of software components with respect to their specifications. It has



The Transformational Approach to Program Development 127

been shown that the transformation rules introduced in [17,64] can be used for proving
several kinds of program properties, such as equivalences of functions defined by recur-
sive equation programs [34], equivalences of predicates defined by logic programs [44],
first-order properties of predicates defined by constraint logic programs [47], and tem-
poral properties of concurrent systems [25,54].

In this section we see the use of program transformation for proving program prop-
erties specified either by first-order logic formulas or by temporal logic formulas.

5.1 The Unfold/Fold Proof Method

Through a simple example taken from [47], now we illustrate a method, called un-
fold/fold proof method, which uses the program transformation methodology for prov-
ing first-order properties of constraint logic programs. Consider the following constraint
logic program Member which defines the membership relation between an element and
a list of elements:

member(X, [Y |L])← X =Y list([ ]) ←
member(X, [Y |L])← member(X, L) list([H |T ])← list(T )

Suppose we want to show that every finite list of numbers has an upper bound, that is,
we want to prove the following formula:

∀L (list(L)→ ∃U ∀X (member (X, L)→ X≤U)) (β)
The unfold/fold proof method works in two steps, which are similar to the two steps
of the transformational synthesis approach presented in Section 4. In the first step, the
formula β is transformed into a set of clauses by applying a variant of the Lloyd-Topor
transformation, thereby deriving the following program:

P1: prop ← ¬p
p ← list(L) ∧ ¬q(L)
q(L)← list(L) ∧ ¬r(L, U)
r(L, U)←X >U ∧ list(L) ∧member(X, L)

The predicate prop is equivalent to β in the sense that M(Member ) |=β iff M(Member
∪P1) |= prop. The correctness of this transformation can be checked by realizing that
M(Member) |= β ↔ ¬∃L(list(L) ∧ ¬(∃U(list(L) ∧¬(∃X (X > U ∧ list(L) ∧
member(X, L))))).

In the second step, we eliminate the existential variables occurring in P1 (see Sec-
tion 2 for a definition) by applying the transformation strategy for eliminating unnec-
essary variables presented in Section 3.1. We derive the following program P2 which
defines the predicate prop:

P2: prop ← ¬p p ← p1 p1 ← p1

Now, P2 is a propositional program and has a finite perfect model, which is {prop}.
Since it can be shown that all transformations we have performed preserve the perfect
model, we have that M(Member ) |= β iff M(P2) |= prop and, therefore, we have
completed the proof of β because prop belongs to M(P2).

The expert reader will note that the unfold/fold proof method we have now illus-
trated, can be viewed as an extension to constraint logic programs of the quantifier
elimination method, which has well-known applications in the field of automated theo-
rem proving (see [51] for a brief survey).



128 A. Pettorossi, M. Proietti, and V. Senni

5.2 Infinite-State Model Checking

As indicated in [18], the behavior of a concurrent system that evolves over time accord-
ing to a given protocol can be modeled as a state transition system, that is, (i) a set S of
states, (ii) an initial state s0 ∈ S, and (iii) a transition relation t ⊆ S × S. We assume
that the transition relation t is total, that is, for every state s ∈ S there exists at least
one state s′ ∈ S, called a successor state of s, such that t(s, s′) holds. A computation
path starting from a state s1 (not necessarily, the initial state) is an infinite sequence of
states s1 s2 . . . such that, for every i≥1, there is a transition from si to si+1, that is,
t(si, si+1) holds.

The properties of the evolution over time, that is, the computation paths, of a concur-
rent system can be specified by using a formula of a temporal logic called Computation
Tree Logic (or CTL, for short [18]). The formulas of CTL are built from a given set
of elementary properties, each of which may or may not hold in a particular state, by
using: (i) the connectives: not and and, (ii) the quantifiers along a computation path:
g (‘for all states on the path’ or ‘globally’), f (‘there exists a state on the path’ or ‘in
the future’), x (‘next time’), and u (‘until’), and (iii) the quantifiers over computation
paths: a (‘for all paths’) and e (‘there exists a path’). Quantified formulas are written in
a compact form and, for instance, we will write ef (F ) and ag(F ), instead of e(f(F ))
and a(g(F )), respectively.

Very efficient algorithms and tools exist for verifying temporal properties of finite
state transition systems, that is, systems where the set S of states is finite [18]. How-
ever, many concurrent systems cannot be modeled by finite state transition systems. The
problem of verifying CTL properties of infinite state transition systems is, unfortunately,
undecidable and, thus, it cannot be tackled by traditional model checking techniques.
For this reason various methods based on automated theorem proving have been pro-
posed for extending model checking so to deal with infinite state systems (see [21] for
a method based on constraint logic programming). Due to the above mentioned unde-
cidability limitation, all these methods are necessarily incomplete.

Now we present a method for verifying temporal properties of (finite or infinite)
state transition systems which is based on transformation techniques for constraint logic
programs [25]. As an example we consider the Bakery protocol [35] and we verify that
it satisfies the mutual exclusion and starvation freedom properties.

Let us consider two agents A and B which want to access a shared resource in
a mutually exclusive way by using the Bakery protocol. The state of the agent A is
represented by a pair 〈A1, A2〉, where A1, called the control state, is an element of the
set {t, w, u} (where t, w, and u stand for think, wait, and use, respectively) and A2,
called the counter, is a natural number. Analogously, the state of agent B is represented
by a pair 〈B1, B2〉. The state of the system consisting of the two agents A and B,
whose states are 〈A1, A2〉 and 〈B1, B2〉, respectively, is represented by the 4-tuple
〈A1, A2, B1, B2〉. The transition relation t of the two agent system from an old state
OldS to a new state NewS , is defined as follows:

t(OldS , NewS) ← tA(OldS , NewS )
t(OldS , NewS) ← tB(OldS , NewS )
where the transition relation tA for the agent A is given by the following clauses whose
bodies are conjunctions of constraints (see also Figure 2):



The Transformational Approach to Program Development 129

��

�

�
�

�
�

�
�

�
�

� �
�
�

�
�

〈think , A2, B1, B2〉
A2:=B2+1

〈wait , A2, B1, B2〉
A2<B2 ∨ B2=0

〈use, A2, B1, B2〉

A2:=0

Fig. 2. The Bakery protocol: a graphical representation of the transition relation tA for the
agent A. The assignment X := e on the arc from a state s1 to a state s2 tells us that the value of
the variable X in s2 is the value of the expression e in s1. The boolean expression b on the arc
from a state s1 to a state s2 tells us that the transition from s1 to s2 takes place iff b holds.

tA(〈t , A2, B1, B2〉, 〈w , A21, B1, B2〉)← A21=B2+1
tA(〈w , A2, B1, B2〉, 〈u, A2, B1, B2〉)← A2<B2
tA(〈w , A2, B1, B2〉, 〈u, A2, B1, B2〉)← B2=0
tA(〈u, A2, B1, B2〉, 〈t , A21, B1, B2〉)← A21=0

The following similar clauses define the transition relation tB for the agent B:

tB(〈A1, A2, t , B2〉, 〈A1, A2,w , B21〉)← B21=A2+1
tB(〈A1, A2,w , B2〉, 〈A1, A2, u, B2〉)← B2<A2
tB(〈A1, A2,w , B2〉, 〈A1, A2, u, B2〉)← A2=0
tB(〈A1, A2, u, B2〉, 〈A1, A2, t , B21〉)← B21=0

Note that the system has an infinite number of states, because counters may increase in
an unbounded way.

The temporal properties of a transition system are specified by defining a predicate
sat(S, P ) which holds if and only if the temporal formula P is true at the state S. For
instance, the following clauses define the predicate sat(S, P ) for the cases where P is:
(i) an elementary formula F , (ii) a formula of the form not(F ), (iii) a formula of the
form and(F1, F2), and (iv) a formula of the form ef (F ):

sat(S, F )← elem(S, F )
sat(S,not(F ))← ¬sat(S, F )
sat(X, and(F1, F2)) ← sat(X, F1) ∧ sat(X, F2)
sat(S, ef (F )) ← sat(S, F )
sat(S, ef (F )) ← t(S, T ) ∧ sat(T, ef (F ))

where elem(S, F ) holds iff F is an elementary property which is true at state S. In
particular, for the Bakery protocol we have the following clause:

elem(〈u, A2, u, B2〉, unsafe)←
that is, unsafe holds at a state where both agents A and B are in the control state u , that
is, both agents use the shared resource at the same time. We have that sat(S, ef (F ))
holds iff there exists a computation path π starting from state S and there exists a state
S′ on π such that F is true at S′.

The mutual exclusion property holds for the Bakery protocol if there is no computa-
tion path starting from the initial state such that at a state on this path the unsafe property
holds. Thus, the mutual exclusion property holds if sat(〈t , 0, t , 0〉,not(ef (unsafe)))
belongs to the perfect model M(Pmex ), where: (i) 〈t , 0, t , 0〉 is the initial state of the



130 A. Pettorossi, M. Proietti, and V. Senni

system and (ii) Pmex is the program consisting of the clauses for the predicates t, tA,
tB , sat, and elem defined above.

In order to show that sat(〈t , 0, t , 0〉,not(ef (unsafe))) ∈ M(Pmex ), we introduce a
new predicate mex defined by the following clause:

mex ← sat(〈t , 0, t , 0〉,not(ef (unsafe))) (μ)

and we transform the program Pmex ∪ {μ} into a new program Q which contains a
clause of the form mex ← (see [25] for details). This transformation is performed
by applying the definition, unfolding, and folding rules according to a strategy similar
to the specialization strategy presented in Section 3.3, that is, a strategy that derives
specialized clauses for the evaluation of the predicate mex . From the correctness of the
transformation rules we have that mex ∈M(Q) iff mex ∈ M(Pmex∪{μ}) and, hence,
sat(〈t , 0, t , 0〉,not(ef (unsafe))) ∈ M(Pmex ), that is, the mutual exclusion property
holds.

By applying the same methodology we can also prove the starvation freedom prop-
erty for the Bakery protocol. This property ensures that an agent, say A, which requests
the shared resource, will eventually get it. This property is expressed by the CTL for-
mula: ag(wA → af (uA)), which is equivalent to: not(ef (and(wA,not(af (uA))))).
The clauses defining the elementary properties wA and uA are:

elem(〈w , A2, B1, B2〉,wA)←
elem(〈u, A2, B1, B2〉, uA) ←
The clauses defining the predicate sat(S, P ) for the case where P is a CTL formula of
the form af (F ) are:

sat(X, af (F )) ← sat(X, F )
sat(X, af (F ))← ts(X,Ys) ∧ sat all (Ys , af (F ))
sat all([ ], F )←
sat all([X |Xs], F )← sat(X, F ) ∧ sat all (Xs, F )

where ts(X,Ys) holds iff Ys is a list of all the successor states of the state X . For
instance, one of the clauses defining predicate ts in our Bakery example is:

ts(〈t , A2, t , B2〉, [〈w , A21, t , B2〉, 〈t , A2,w , B21〉])← A21=B2+1∧B21=A2+1

which says that the state 〈t , A2, t , B2〉 has two successor states: 〈w , A21, t , B2〉, with
A21=B2+1, and 〈t , A2,w , B21〉, with B21=A2+1.

Let Psf denote the program obtained by adding to Pmex the clauses defining: (i) the
elementary properties wA and uA, (ii) the predicate ts, (iii) the atom sat(X, af (F )),
and (iv) the predicate sat all . In order to verify the starvation freedom property we
introduce the clause:

sf ← sat(〈t , 0, t , 0〉,not(ef (and(wA,not(af (uA)))))) (σ)

and, by applying the definition, unfolding, and folding rules according to the specializa-
tion strategy, we transform the program Psf ∪{σ} into a new program R which contains
a clause of the form sf ←.

Note that the derivations needed for verifying the mutual exclusion and the starvation
freedom properties can be done in a fully automatic way by using the experimental
constraint logic program transformation system MAP [42].



The Transformational Approach to Program Development 131

6 Conclusions and Future Directions

We have presented the program transformation methodology and we have demonstrated
that it is very effective for: (i) the derivation of correct software modules from their for-
mal specifications, and (ii) the proof of properties of programs. Since program transfor-
mation preserves correctness and improves efficiency, it is very useful for constructing
software products which are provably correct and whose time and space performance is
very high.

During the past twenty-five years the research community in Italy has given a very
relevant contribution to the program transformation field and, more in general, to the
field of logic-based program development. The extent of this contribution is witnessed
by the numerous scientific papers, a small fraction of which have been mentioned in
this brief survey.

The contribution of the Italian research community has also been carried out through
the participation in several national and international research projects which included
as an important topic the transformation methodology of logic programs. In particu-
lar, we would like to mention the following projects: (i) ESPRIT Alpes (1984–89),
(ii) Compulog I and Compulog II (1989–95), (iii) the INTAS Project ‘Efficient Sym-
bolic Computing’ (1994-98), (iv) the Network of Excellence on Computational Logic,
(v) the Humal Capital and Mobility Project ‘Logic Program Synthesis and Transfor-
mation’ (1993–96), (vi) the Italian ‘Progetto Finalizzato Informatica II’ (1989–93),
(vii) the ANATRA Project ‘Strumenti per l’analisi e la trasformazione dei programmi’
(1994–95), (viii) ‘Programmazione Logica: Strumenti per analisi e trasformazione di
programmi, Tecniche di ingegneria del software, Estensioni con vincoli, concorrenza
ed oggetti’ (1995–96), (ix) Progetto Speciale ‘Verifica, analisi e trasformazione di pro-
grammi logici’ (1998–99), and (x) ‘Tecniche formali per la specifica, l’analisi, la ver-
ifica, la sintesi e la trasformazione di sistemi software’ (1998–2000). These projects
were supported by the European Union, the Italian Ministry of Education, University,
and Research (MIUR), and the Italian National Research Council (CNR).

All these projects gave to the research community in Italy invaluable opportunities
to cooperate with other scientific groups in Europe, to strengthen their theoretical back-
ground on logic programming and to produce powerful systems and tools for logic
program development, logic program analysis, knowledge representation and manipu-
lation using logic. Research teams in Bologna, Padua, Pisa, Rome, and Venice, among
others, grew considerably strong through those projects and their expertise and compe-
tence spread all over the international community and since then, their high reputation
has been widely recognized.

Finally, the Italian research community has also given a very relevant contribution to
the organization and the scientific success of the various meetings dedicated to the dis-
semination of research in logic program transformation, such as the series of Workshops
and Symposia on Logic-Based Program Synthesis and Transformation (LOPSTR), held
annually since 1991, and on Partial Evaluation and Semantics-Based Program Manipu-
lation (PEPM).

Now, looking at the directions for future research, we would like to point out that,
in order to make program transformation even more effective, we need to increase the
level of automation of the transformation strategies for program improvement, program



132 A. Pettorossi, M. Proietti, and V. Senni

synthesis, and program verification. Furthermore, these strategies should be incorpo-
rated into powerful tools for program development.

Another important direction for future research is the exploration of new areas of
application of the transformation methodology. In this paper we have described the use
of program transformation for verifying temporal properties of infinite state concurrent
systems. Similar techniques could also be devised for verifying other kinds of prop-
erties and other classes of systems, such as security properties of distributed systems,
safety properties of hybrid systems, and protocol conformance of multiagent systems.
A more challenging issue is the fully automatic synthesis of software systems which
are guaranteed to satisfy some given properties specified by the designer.

Acknowledgements

We would like to thank the members of GULP, the Italian Association for Logic Pro-
gramming, who throughout all these years have been for us of great scientific support
and encouragement. Their cooperation and friendship are very much appreciated.

Many thanks also to Agostino Dovier and Enrico Pontelli, editors of this book, for
their invitation to present the contributions of the program transformation methodology
in the field of logic programming.

References

1. Alpuente, M., Falaschi, M., Moreno, G., Vidal, G.: A transformation system for lazy func-
tional logic programs. In: Middeldorp, A., Sato, T. (eds.) FLOPS 1999. LNCS, vol. 1722,
pp. 147–162. Springer, Heidelberg (1999)

2. Apt, K.R., Bol, R.N.: Logic programming and negation: A survey. Journal of Logic Program-
ming 19, 20, 9–71 (1994)

3. Apt, K.R., Pedreschi, D.: Reasoning about termination of pure logic programs. Information
and Computation 106, 109–157 (1993)

4. Aravindan, C., Dung, P.M.: On the correctness of unfold/fold transformation of normal and
extended logic programs. Journal of Logic Programming 24(3), 201–217 (1995)

5. Basin, D., Deville, Y., Flener, P., Hamfelt, A., Fischer Nilsson, J.: Synthesis of programs in
computational logic. In: Bruynooghe, M., Lau, K.-K. (eds.) Program Development in Com-
putational Logic. LNCS, vol. 3049, pp. 30–65. Springer, Heidelberg (2004)

6. Bossi, A., Cocco, N.: Basic transformation operations which preserve computed answer sub-
stitutions of logic programs. Journal of Logic Programming 16(1&2), 47–87 (1993)

7. Bossi, A., Cocco, N.: Preserving universal termination through unfold/fold. In: Rodrı́guez-
Artalejo, M., Levi, G. (eds.) ALP 1994. LNCS, vol. 850, pp. 269–286. Springer, Heidelberg
(1994)

8. Bossi, A., Cocco, N., Dulli, S.: A method for specializing logic programs. ACM Transactions
on Programming Languages and Systems 12(2), 253–302 (1990)

9. Bossi, A., Cocco, N., Etalle, S.: Transforming normal programs by replacement. In:
Pettorossi, A. (ed.) META 1992. LNCS, vol. 649, pp. 265–279. Springer, Heidelberg (1992)

10. Bossi, A., Cocco, N., Etalle, S.: Simultaneous replacement in normal programs. Journal of
Logic and Computation 6(1), 79–120 (1996)

11. Bossi, A., Cocco, N., Etalle, S.: Transforming left-terminating programs: The reordering
problem. In: Proietti, M. (ed.) LOPSTR 1995. LNCS, vol. 1048, pp. 33–45. Springer,
Heidelberg (1996)



The Transformational Approach to Program Development 133

12. Bossi, A., Etalle, S.: Transforming acyclic programs. ACM Transactions on Programming
Languages and Systems 16(4), 1081–1096 (1994)

13. Bruynooghe, M., De Schreye, D., Krekels, B.: Compiling control. Journal of Logic Pro-
gramming 6, 135–162 (1989)

14. Bugliesi, M., Lamma, E., Mello, P.: Partial evaluation for hierarchies of logic theories. In:
Debray, S., Hermenegildo, M. (eds.) Logic Programming: Proceedings of the 1990 North
American Conference, Austin, Texas, October 1990, pp. 359–376. MIT Press, Cambridge
(1990)

15. Bugliesi, M., Rossi, F.: Partial evaluation in Prolog: Some Improvements about Cut. In: Lusk,
E.L., Overbeek, R.A. (eds.) Logic Programming: Proceedings of the North American Con-
ference 1989, Cleveland, Ohio, October 1989, pp. 645–660. MIT Press, Cambridge (1989)

16. Bundy, A., Smaill, A., Wiggins, G.: The synthesis of logic programs from inductive proofs.
In: Lloyd, J.W. (ed.) Computational Logic, Symposium Proceedings, Brussels, November
1990, pp. 135–149. Springer, Berlin (1990)

17. Burstall, R.M., Darlington, J.: A transformation system for developing recursive programs.
Journal of the ACM 24(1), 44–67 (1977)

18. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)
19. De Schreye, D., Glück, R., Jørgensen, J., Leuschel, M., Martens, B., Sørensen, M.H.: Con-

junctive partial deduction: Foundations, control, algorithms, and experiments. Journal of
Logic Programming 41(2–3), 231–277 (1999)

20. Debray, S.K.: Optimizing almost-tail-recursive Prolog programs. In: Jouannaud, J.-P. (ed.)
FPCA 1985. LNCS, vol. 201, pp. 204–219. Springer, Heidelberg (1985)

21. Delzanno, G., Podelski, A.: Constraint-based deductive model checking. International Jour-
nal on Software Tools for Technology Transfer 3(3), 250–270 (2001)

22. Etalle, S., Gabbrielli, M.: Transformations of CLP modules. Theoretical Computer
Science 166, 101–146 (1996)

23. Etalle, S., Gabbrielli, M., Marchiori, E.: A transformation system for CLP with dynamic
scheduling and CCP. In: PEPM 1997, pp. 137–150. ACM Press, New York (1997)

24. Etalle, S., Gabbrielli, M., Meo, M.C.: Transformations of ccp programs. ACM Transactions
on Programming Languages and Systems 23(3), 304–395 (2001)

25. Fioravanti, F., Pettorossi, A., Proietti, M.: Verifying CTL properties of infinite state systems
by specializing constraint logic programs. In: Proceedings of the ACM Sigplan Workshop on
Verification and Computational Logic VCL 2001, Florence (Italy), Technical Report DSSE-
TR-2001-3, pp. 85–96. University of Southampton, UK (2001)

26. Fioravanti, F., Pettorossi, A., Proietti, M.: Transformation rules for locally stratified con-
straint logic programs. In: Bruynooghe, M., Lau, K.-K. (eds.) Program Development in Com-
putational Logic. LNCS, vol. 3049, pp. 292–340. Springer, Heidelberg (2004)

27. Flener, P., Lau, K.-K., Ornaghi, M., Richardson, J.: An abstract formalization of correct
schemas for program synthesis. Journal of Symbolic Computation 30(1), 93–127 (2000)

28. Gallagher, J.P.: Transforming programs by specialising interpreters. In: Proceedings Seventh
European Conference on Artificial Intelligence, ECAI 1986, pp. 109–122 (1986)

29. Gallagher, J.P.: Tutorial on specialisation of logic programs. In: Proceedings of the 1993
ACM SIGPLAN Symposium on Partial Evaluation and Semantics Based Program Manipu-
lation, PEPM 1993, Copenhagen, Denmark, pp. 88–98. ACM Press, New York (1993)

30. Gardner, P.A., Shepherdson, J.C.: Unfold/fold transformations of logic programs. In:
Lassez, J.-L., Plotkin, G. (eds.) Computational Logic, Essays in Honor of Alan Robinson,
pp. 565–583. MIT, Cambridge (1991)

31. Hogger, C.J.: Derivation of logic programs. Journal of the ACM 28(2), 372–392 (1981)
32. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program Genera-

tion. Prentice-Hall, Englewood Cliffs (1993)



134 A. Pettorossi, M. Proietti, and V. Senni

33. Komorowski, H.J.: Partial evaluation as a means for inferencing data structures in an ap-
plicative language: A theory and implementation in the case of Prolog. In: Ninth ACM
Symposium on Principles of Programming Languages, Albuquerque, New Mexico, USA,
pp. 255–267 (1982)

34. Kott, L.: The McCarthy’s induction principle: ‘oldy’ but ‘goody’. Calcolo 19(1), 59–69
(1982)

35. Lamport, L.: A new solution of Dijkstra’s concurrent programming problem. Communica-
tions of the ACM 17(8), 453–455 (1974)

36. Lau, K.-K., Ornaghi, M., Pettorossi, A., Proietti, M.: Correctness of logic program transfor-
mation based on existential termination. In: Lloyd, J.W. (ed.) Proceedings of the 1995 Inter-
national Logic Programming Symposium (ILPS 1995), pp. 480–494. MIT Press, Cambridge
(1995)

37. Leuschel, M., Bruynooghe, M.: Logic program specialisation through partial deduction: Con-
trol issues. Theory and Practice of Logic Programming 2(4&5), 461–515 (2002)

38. Levi, G., Sardu, G.: Partial evaluation of meta programs in a multiple worlds logic language.
New Generation Computing 6(2&3), 227–248 (1988)

39. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Berlin (1987)
40. Maher, M.J.: A transformation system for deductive database modules with perfect model

semantics. Theoretical Computer Science 110, 377–403 (1993)
41. Manna, Z., Waldinger, R.: A deductive approach to program synthesis. ACM Toplas 2,

90–121 (1980)
42. The MAP transformation system (1995–2010),

http://www.iasi.cnr.it/˜proietti/system.html
43. Pettorossi, A.: A powerful strategy for deriving efficient programs by transformation.

In: ACM Symposium on Lisp and Functional Programming, pp. 273–281. ACM Press,
New York (1984)

44. Pettorossi, A., Proietti, M.: Synthesis and transformation of logic programs using unfold/fold
proofs. Journal of Logic Programming 41(2&3), 197–230 (1999)

45. Pettorossi, A., Proietti, M.: Perfect model checking via unfold/fold transformations. In:
Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M., Lau, K.-
K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 613–628. Springer,
Heidelberg (2000)

46. Pettorossi, A., Proietti, M., Renault, S.: Derivation of efficient logic programs by special-
ization and reduction of nondeterminism. Higher-Order and Symbolic Computation 18(1-2),
121–210 (2005)

47. Pettorossi, A., Proietti, M., Senni, V.: Proving properties of constraint logic programs by
eliminating existential variables. In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS,
vol. 4079, pp. 179–195. Springer, Heidelberg (2006)

48. Pettorossi, A., Proietti, M., Senni, V.: Automatic correctness proofs for logic program trans-
formations. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 364–379.
Springer, Heidelberg (2007)

49. Proietti, M., Pettorossi, A.: Semantics preserving transformation rules for Prolog. In: 1991
ACM SIGPLAN Symposium on Partial Evaluation and Semantics Based Program Manip-
ulation, PEPM 1991, Yale University, New Haven, Connecticut, USA, pp. 274–284. ACM
Press, New York (1991)

50. Proietti, M., Pettorossi, A.: Unfolding-definition-folding, in this order, for avoiding unneces-
sary variables in logic programs. Theoretical Computer Science 142(1), 89–124 (1995)

51. Rabin, M.O.: Decidable theories. In: Barwise, J. (ed.) Handbook of Mathematical Logic,
pp. 595–629. North-Holland, Amsterdam (1977)

http://www.iasi.cnr.it/~proietti/system.html


The Transformational Approach to Program Development 135

52. Roychoudhury, A., Narayan Kumar, K., Ramakrishnan, C.R., Ramakrishnan, I.V.: Beyond
Tamaki-Sato style unfold/fold transformations for normal logic programs. International Jour-
nal on Foundations of Computer Science 13(3), 387–403 (2002)

53. Roychoudhury, A., Narayan Kumar, K., Ramakrishnan, C.R., Ramakrishnan, I.V.: An un-
fold/fold transformation framework for definite logic programs. ACM Transactions on Pro-
gramming Languages and Systems 26, 264–509 (2004)

54. Roychoudhury, A., Narayan Kumar, K., Ramakrishnan, C.R., Ramakrishnan, I.V., Smolka,
S.A.: Verification of parameterized systems using logic program transformations. In:
Schwartzbach, M.I., Graf, S. (eds.) TACAS 2000. LNCS, vol. 1785, pp. 172–187. Springer,
Heidelberg (2000)

55. Safra, S., Shapiro, E.: Meta interpreters for real. In: Kugler, H.J. (ed.) Proceedings Informa-
tion Processing 1986, pp. 271–278. North-Holland, Amsterdam (1986)

56. Sato, T., Tamaki, H.: Transformational logic program synthesis. In: Proceedings of the Inter-
national Conference on Fifth Generation Computer Systems, pp. 195–201. ICOT (1984)

57. Seki, H.: A comparative study of the well-founded and the stable model semantics: Trans-
formation’s viewpoint. In: Proceedings of the Workshop on Logic Programming and Non-
monotonic Logic, pp. 115–123. Cornell University (1990)

58. Seki, H.: Unfold/fold transformation of stratified programs. Theoretical Computer
Science 86, 107–139 (1991)

59. Seki, H.: Unfold/fold transformation of general logic programs for well-founded semantics.
Journal of Logic Programming 16(1&2), 5–23 (1993)

60. Seki, H.: On inductive and coinductive proofs via unfold/fold transformations. In:
De Schreye, D. (ed.) LOPSTR 2009. LNCS, vol. 6037, pp. 82–96. Springer, Heidelberg
(2009)

61. Sterling, L., Beer, R.D.: Incremental flavour-mixing of meta-interpreters for expert system
construction. In: Proceedings of 3rd International Symposium on Logic Programming, Salt
Lake City, Utah, USA, pp. 20–27. IEEE Press, Los Alamitos (1986)

62. Tacchella, P., Gabbrielli, M., Meo, M.C.: Unfolding in CHR. In: Proceedings of the 9th Inter-
national ACM SIGPLAN Conference on Principles and Practice of Declarative Programming
(PPDP 2007), pp. 179–186 (2007)

63. Takeuchi, A., Furukawa, K.: Partial evaluation of Prolog programs and its application to
meta-programming. In: Kugler, H.J. (ed.) Proceedings of Information Processing 1986,
pp. 415–420. North-Holland, Amsterdam (1986)

64. Tamaki, H., Sato, T.: Unfold/fold transformation of logic programs. In: Tärnlund, S.-Å. (ed.)
Proceedings of the Second International Conference on Logic Programming (ICLP 1984),
pp. 127–138. Uppsala University, Uppsala (1984)

65. Toni, F., Kowalski, R.: An argumentation-theoretic approach to logic program transforma-
tion. In: Proietti, M. (ed.) LOPSTR 1995. LNCS, vol. 1048, pp. 61–75. Springer, Heidelberg
(1996)

66. Venken, R.: A Prolog meta-interpretation for partial evaluation and its application to source-
to-source transformation and query optimization. In: O’Shea, T. (ed.) Proceedings of ECAI
1984, pp. 91–100. North-Holland, Amsterdam (1984)

67. Wadler, P.L.: Deforestation: Transforming programs to eliminate trees. Theoretical Computer
Science 73, 231–248 (1990)

68. Zhang, J., Grant, P.W.: An automatic difference-list transformation algorithm for Prolog. In:
Proceedings 1988 European Conference on Artificial Intelligence, ECAI 1988, pp. 320–325.
Pitman (1988)



Static Analysis, Abstract Interpretation and Verification
in (Constraint Logic) Programming

Giorgio Delzanno1, Roberto Giacobazzi2, and Francesco Ranzato3

1 Università di Genova, Italy
giorgio@disi.unige.it
2 Università di Verona, Italy

roberto.giacobazzi@univr.it
3 Università di Padova, Italy

francesco.ranzato@unipd.it

Abstract. We survey some general principles and methodologies for program
analysis and verification. In particular, we focus on abstract interpretation and
model checking techniques, and on their applications to constraint logic programs.

Introduction

Logic programming has served as a unique training ground for static analysis, abstract
interpretation and verification. Operational and denotational semantics of logic pro-
grams feature simple and clean inductive definitions that made it possible to apply a
variety of known analysis and verification techniques and tools and to define new ones
tailored to solve specific problems arisen in logic programming (e.g. variable aliasing
and unification). We survey here some general notions and methods — in particular ab-
stract interpretation and model checking — for analysing and verifying programs and
systems, especially focused to (constraint) logic programs.

In Section 1 we first review the principles of the abstract interpretation approach, in
particular methodologies for designing abstract domains through systematic techniques
such as abstract domain refinement and simplification. We then show how these meth-
ods have been applied in the systematic design of analyses and semantics in the context
of logic programming.

In Section 2 we recall the main concepts underlying model checking. In model
checking, the behavior of a program is described by a finite graph (a Kripke model) that
describes the set of all reachable states. In this setting, temporal formulae can be used
to naturally specify functional properties of the system (e.g. safety and absence of star-
vation). The model checking problem consists in checking the temporal specification
against the model of the system. For specifications given in Computation Tree Logic
(CTL), the algorithm for deciding the model checking problem is based on a fixpoint
semantics of the temporal connectives. We exploit here this connection to establish a
link between CTL model checking and the fixpoint semantics of logic programs. We
then discuss implications of this link with a particular focus on the utilization of evalua-
tion strategies used for logic programming as a tool for model checking of infinite-state
concurrent systems.

A. Dovier, E. Pontelli (Eds.): 25 Years of Logic Programming, LNCS 6125, pp. 136–158, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Static Analysis, Abstract Interpretation and Verification 137

In Section 3 we focus on abstract interpretation-based model checking. In abstract
model checking, the verification of a temporal specification is performed in an abstract
model that can be designed as an abstract interpretation of the concrete system. In par-
ticular, we concentrate on strong preservation properties of abstract models, namely on
the equivalence of verifying temporal specifications in abstract and concrete models.
Strong preservation is highly desirable since it allows us to draw consequences on the
concrete model from negative answers on the abstract model. We survey how abstract
interpretation allows to cast strong preservation as a completeness property of abstract
models and consequently how this provides systematic methods to design strongly pre-
serving abstract models through abstract domain refinements.

Finally, in Section 4 we discuss how methods used for evaluation and analysis of
logic programs can be used to extend verification methods based on abstract model
checking, e.g., to the case of infinite-state systems.

1 Semantics, Static Analysis and Abstract Interpretation

1.1 Abstract Interpretation Basics

One fundamental feature of abstract interpretation is that most properties in approximat-
ing semantics, like precision, completeness, and compositionality, which may involve
complex operators, fixpoints etc., all depend upon the notion of abstraction, which is
precisely and uniquely determined by the chosen domain of properties [16]. Central in
the design of abstract interpretations is therefore the notion of domain. This is the case
for instance in program analysis, in type inference and in comparative semantics, where
the various abstract (approximate) semantics all correspond to suitable abstractions,
namely domains.

In the following, 〈C,≤,∨,∧,�,⊥〉 denotes a generic complete lattice C, with or-
dering ≤, lub ∨, glb ∧, greatest element (top) �, and least element (bottom) ⊥. The
downward closure of a subset S ⊆ C is defined as ↓S � {x ∈ C | ∃y ∈ S. x ≤ y},
where ↓x is a shorthand for ↓{x}. The upward closure ↑ is dually defined. The notation
C ∼= D denotes that C and D are isomorphic, possibly ordered, structures. Recall that
a function f : C → D is (Scott-)continuous if f preserves lub’s of (nonempty) chains
iff f preserves lub’s of directed subsets. In what follows, we consider abstract interpre-
tation based on Galois connections or, equivalently, closure operators [15,16]. A pair of
functions f : A → B and g : B → A between posets forms an adjunction, or Galois
connection (GC for short), denoted by (A, f, B, g), if

∀x ∈ A.∀y ∈ B. f(x) ≤B y ⇔ x ≤A g(y).

f (resp. g) is called the left- ( right-) adjoint to g (f ) and it is an additive (co-additive)
function, i.e., f preserves lub’s (glb’s) of all subsets of A (empty set included). Additive
and co-additive functions f admit, respectively, right f+ and left f− adjoint as follows:
f+ � λx. ∨ {y | f(y) ≤ x } and f− � λx. ∧ {y | x ≤ f(y)}. Let us also recall that
(f+)− = (f−)+ = f . In GC-based abstract interpretation the concrete C and abstract
A domains are often assumed to be complete lattices and are related by abstraction
α : C → A and concretization γ : A → C maps forming a GC (C, α, A, γ). If in



138 G. Delzanno, R. Giacobazzi, and F. Ranzato

addition ∀a ∈ A. α(γ(a)) = a, then (C, α, A, γ) is called a Galois insertion (GI).
When (C, α, A, γ) is a GI each value of the abstract domain A is useful in representing
C, namely all the elements of A represent distinct members of C, being γ 1-1. Any
GC may be lifted to a GI by identifying in an equivalence class those values of the
abstract domain with the same concretization. This process is known as reduction of the
abstract domain. An (upper) closure operator on a poset C is a map ρ : C → C which
is monotone, idempotent, and extensive (∀x ∈ C. x ≤ ρ(x)). The set of all closure
operators on C is denoted by uco(C). Each closure operator ρ is uniquely determined
by its image ρ(C) as follows: ρ(x) � ∧{y ∈ ρ(C) | x ≤ y}. A fundamental property of
closure operators is that if C is a complete lattice then both 〈uco(C),�〉, where � is the
pointwise ordering, and 〈ρ(C),≤C〉 are complete lattices. It is well known since [16]
that abstract domains can be equivalently specified either as Galois insertions or as
closure operators on the concrete domain. In particular, a subset X ⊆ C is the image of
a closure ρ on C iff X is a Moore-family of C, i.e., X =M(X) � {∧S ∈ C | S ⊆ X}
(where ∧∅ = � ∈ M(X)) iff X is isomorphic to an abstract domain A in a GI
(C, α, A, γ). For any subset X ⊆ C,M(X) is called the Moore-closure of X in C, i.e.,
M(X) is the least (w.r.t. set-inclusion) subset of C which contains X and it is a Moore-
family of C. 〈uco(C),�〉 is isomorphic to the so-called lattice 〈Abs(C),�〉 of abstract
interpretations of C [16]. Hence, given any two abstractions A, B ∈ Abs(C), A is more
precise (or conrete) than B, denoted by A � B, when B ⊆ A as Moore families of C. In
the following, it is particularly convenient to identify an abstract domain A ∈ Abs(C)
as (image of) a closure operator on C, which, as a function, is denoted by ρA.

1.2 Backward and Forward Completeness

Soundness of an abstraction can be specified in two equivalent ways [15]. Let C be a
concrete domain, (C, α, A, γ) a Galois insertion, f : C → C a concrete semantic op-
eration and f 
 : A → A a corresponding abstract operation. Then, (C, α, A, γ) and f 


give rise to a sound abstraction when α◦f � f 
◦α, or equivalently (by adjunction) when
f◦γ � γ◦f 
. While the above two definitions of soundness are equivalent, it turns out that
they are not equivalent when equality is required and they encode two different forms of
completeness: in the first case, α◦f = f 
◦α is called backward (B-) completeness while
f◦γ = γ◦f 
 is called forward (F -) completeness — the reason for these names will be
clear later in the paper. B-completeness (see [44]) corresponds to ask that the abstract
function f 
 perfectly mimics the concrete function f when the latter is approximated in
A, viz. both functions are compared in the abstract domain A. On the other hand, F -
completeness (see [37]) corresponds to ask that f 
 perfectly mimics the function f when
applied to the same abstract value, viz. they are both compared in the concrete domain
C.

Recall that the best correct approximation of f on the abstract domain A is defined
to be the abstract function α◦f◦γ. It turns out (this is a simple extension of a characteri-
zation in [44]) that, given an abstract domain A, there exists an either B- or F -complete
abstract function f 
 defined on A iff the best correct approximation of f on A is, re-
spectively, either B- or F -complete. This means that both B- and F -completeness are
properties of abstract domains, namely a property of the GI (C, α, A, γ). Therefore, one



Static Analysis, Abstract Interpretation and Verification 139

•
•
•
•

•

•��
��

��
��

����������

����

Z

[0, +∞]

[0, 10]

[0, 2]

[0]

[−∞, 0]

•
•
•
◦

◦

◦��
��

��
��

����������

����

Z

[0, +∞]

[0, 10]

[0, 2]

[0]

[−∞, 0]

•
◦
◦
•

•

◦��
��

��
��

����������

����

Z

[0, +∞]

[0, 10]

[0, 2]

[0]

[−∞, 0]

Sign+ ρa ρb

Fig. 1. The abstract domain Sign+ and two abstractions

may define B- and F -completeness as follows: an abstract domain A ∈ Abs(C) is B-
(F -) complete for a semantic function f if ρA◦f = ρA◦f◦ρA (f◦ρA = ρA◦f◦ρA).

While B-completeness is well known in abstract interpretation and corresponds to
the standard notion of completeness [44,60], the notion of forward completeness is less
known. B-completeness for a domain A means that the expessive power of A is such
that no loss of precision is accumulated in A by abstracting in A itself the arguments
of a semantic function f . Conversely, F -completeness means that no loss of precision
is accumulated by approximating in A the result of the function f when computed on
abstract values in A. This justifies the choice of the backward and forward terminology
above. We denote by, respectively, F(C, f) and B(C, f) the set of F - and B- complete
abstractions of C for f . It is worth noting that in general F(C, f) �⊆ B(C, f) and
F(C, f) �⊆ B(C, f), namely B- and F -completeness are incomparable notions.

Example 1. Let Sign+ be the simple abstraction of 〈℘(Z),⊆〉 for analysing integer
variables depicted in Fig. 1. Consider the pointwise square operation sq : ℘(Z) → ℘(Z)
defined as follows: sq(X) � {x2 | x ∈ X }. Let ρ ∈ uco(℘(Z)) be the closure oper-
ator associated with Sign+, i.e. ρ = γSign+ ◦ αSign+ , where the abstraction and con-
cretization maps are the obvious ones. The best correct approximation of sq in Sign+ is
sq
 : Sign+ → Sign+ defined as sq
(X) � ρ(sq(X)), with X ∈ Sign+. It is easy to
note that the closure operators ρa � {Z, [0, +∞], [0, 10]} and ρb � {Z, [0, 2], [0]}, de-
fined by their images — the images of ρa and ρb are depicted as bullets in Fig. 1 — are
such that:

– ρa ∈ F(Sign+, sq
) but ρa �∈ B(Sign+, sq
): for example, ρa(sq
(ρa([0]))) =
[0, +∞] while ρa(sq
([0])) = [0, 10];

– ρb ∈ B(Sign+, sq
) but ρb �∈ F(Sign+, sq
): for example, ρb(sq
(ρb([0, 2]))) =
Z while sq
(ρb([0, 2])) = [0, 10]. ��

One key result in [44] provides a constructive characterization of the structure of ab-
stract domains that are B-complete for continuous functions. Given a function f : C →
C and S ⊆ C, f−1(S) denotes the inverse image of f in S, i.e., {x ∈ C | f(x) ∈ S }.
Then, [44] shows that



140 G. Delzanno, R. Giacobazzi, and F. Ranzato

ρ ∈ uco(C) is B-complete for f ⇔
⋃

y∈ρ(C)

max(f−1(↓y)) ⊆ ρ(C) (∗)

Let us consider Example 1. It is easy to see that ρa is not B-complete because ρa

does not include the maximal inverse image of sq
 of the subset ↓ [0, 10], namely

max(sq
−1(↓ [0, 10])) = {[0, 2]}.
An analogous (and trivial to prove) result can be stated for F -completeness. In this

case, F -complete domains can be characterized for merely monotone operations as
follows:

ρ ∈ uco(C) is F -complete for f ⇔ f(ρ(C)) ⊆ ρ(C) (∗∗)

Thus, while B-complete domains ρ are closed under (maximal) inverse images of the
function f on ρ(C), F -complete domains ρ are closed under direct images of f on
ρ(C). It is easy to see in Example 1 that ρb is not F -complete because ρb does not
include the direct image of sq
, for instance the value [0, 10] = sq
([0, 2]). Char-
acterizations (∗) and (∗∗) together establish a tight relationship between B- and F -
completeness, which can be specified as an adjunction when the concrete function ad-
mits a right adjoint. In fact, it turns out that if f : C → C is an additive function (and
therefore admits right adjoint f+) then

B(℘(S), f) = F(℘(S), f+). (‡)

Moreover, it is always possible, by relying on (∗) and (∗∗), to associate with each
continuous semantic function f : C → C a corresponding domain refinement that
transforms any abstract domain A into the closest (most abstract) B-/F -complete do-
main for f which includes (i.e., is more precise than) A. This provides the notions of
B- and F -complete shell [44]. The domain transformersRB

f : uco(C) → uco(C) and
RF

f : uco(C) → uco(C) are defined as follows:

– RB
f � λX ∈ uco(C).M(

⋃
y∈X max(f−1(↓y)));

– RF
f � λX ∈ uco(C).M(f(X)).

It is immediate to note that both RB
f and RF

f are monotone operators on uco(C).
The following equivalence, which follows from (∗) and (∗∗), characterizes in a unique
domain-equational form the B-/F -complete shell of abstract domains for a continuous
function f : C → C. Let A ∈ uco(C) and � ∈ {B,F}:

X � A and X is �-complete for f ⇔ X = A �R�
f (X).

Therefore, the most abstract domain that includes A and is �-complete for f is

�- Shellf (A) � gfp(λX.A �R�
f (X)).

This domain is called the �-complete shell of A with respect to f .



Static Analysis, Abstract Interpretation and Verification 141

1.3 Abstract Domain Refinement and Simplification

In recent years, systematic design methods of program analysis frameworks attracted a
growing interest. This is mainly justified by the fact that the most successful static an-
alyzers are parametric with respect to the property of interest [20] and therefore allow
to easily handle a variety of possible analyses. Moreover, automatic methods for tuning
static analyses in accuracy and cost are needed in order either to avoid reimplementa-
tion when these analyses are modified or to minimize false alarms. Similar construc-
tions are also used in designing semantics by abstract interpretation (e.g., Hoare logic
as tensor product [14] and compositional semantics as reduced power [33,42]) and in
type inference (e.g., polymorphism as disjunctive completion [13,52]). Formal methods
that compare/transform abstract interpretations are therefore inherently based on corre-
sponding methods to compare/transform abstract domains. A domain, at any level of
abstraction, is a set of mathematical objects which represent the properties of interest
about a computational system and that are partially ordered with respect to their rela-
tive degree of precision. In program analysis, for instance, the design of a static analyzer
basically corresponds to study a particular abstract domain, while modifying domains
corresponds to modify analyses. As shown for instance in [71] for a reconstruction of
groundness analysis in logic programming, the design of a complex abstract domain is
generally the result of a number of steps which can be in some cases made systematic by
applying suitable domain transformers to simpler domains for the property of interest.

The main idea behind domain transformers in abstract interpretation consists in de-
signing abstract domains systematically from the specification of some simpler domains
of basic properties of interest and then solving a recursive domain equation in order
to achieve completeness with respect to some target precision level. This game can be
played for most of the existing abstract domain transformers, by viewing them as in-
stances of completeness refinements: (1) in program analysis, where a given simple (and
imprecise) analysis is refined until completeness is reached by avoiding specific fami-
lies of false alarms, and (2) in program semantics where a given observation is refined
towards completeness in order to attain compositionality, condensation properties, etc.

The foundations of a theory of abstract domain transformers were layed by Cousot
and Cousot [16] in 1979. In that seminal work the authors introduced the main struc-
ture of abstract domains enjoying Galois connections and some fundamental operators
for systematically compose domains in order to achieve attribute independent and rela-
tional analyses (respectively, the reduced product and reduced power operations). Since
then, a number of papers put forward novel domain transformers and studied the impact
of these operations in designing abstract interpreters for specific program analysis and
languages. These include Cousot and Cousot’s reduced product, disjunctive comple-
tion and reduced cardinal power [16,17,18]; Nielson’s tensor product [61]; Giacobazzi
et al.’s dependencies, dual-Moore-set completion, complete kernels and shells, Heyt-
ing completion, and least disjunctive basis [40,44,46]; Cortesi et al.’s open product,
pattern completion, and complementation [11]. The notions of domain refinement and
domain simplification, introduced in [27,39], provided the very first generalization of
these ideas. Intuitively, a refinement is any domain operator that performs an action of
refinement with respect to the standard precision ordering�, i.e., that adds information



142 G. Delzanno, R. Giacobazzi, and F. Ranzato

to domains; on the other hand, simplificators and compressors perform the dual action
of “taking out” information from domains. Still these operators represent a basis for any
design of abstractions.

Many domain refinements can be specified as F -complete refinements with respect
to a given semantic operation [35]. Intuitively, a domain refinement can be viewed as
adding the functionalities of a given semantic operation of interest, that is, the direct
image of a semantic function. As a result of the above properties of complete abstrac-
tions, this corresponds to say that a domain refinement can be specified as (greatest)
solution of a F -completeness equation. As recalled above in (‡), whenever the seman-
tic operation is additive, such a characterization can be put in an equivalent formulation
in terms of B-completeness.

Clearly, the construction of domains by iterative refinement (e.g., by solving a re-
cursive domain equation) may lead to excessively complex domains for practical ap-
plications, as well as it may be interesting to isolate inner structures inside complex
domains that model precisely some basic properties around which complex abstract do-
mains are built. As observed in [39], it is possible to define a dual theory of domain
simplificators and compressors, which shares with the above theory of domain refine-
ments precisely the same, but dual, ideas and constructions. The common aspects of
simplificators and compressors is that they both reduce precision in domains. A typical
pattern for domain simplificators is the operation that transforms a given domain A into
the most concrete (when it exists) among the abstractions of A which is complete for a
given function. Like refinements, also simplificators and compressors have a construc-
tive definition as (greatest) solutions of (systems of) recursive domain equations [44].
The main difference between simplificators and compressors can be grasped by viewing
how they react when composed with the corresponding refinements, when they exist.
Assume that an idempotent refinementR is given.R admits a simplificator S when, for
any abstraction X , R(S(X)) = S(X) and S(R(X)) = R(X). This holds when both
R and S transform domains to meet a given common property, like, for instance in the
above case, completeness. A relevant example of domain refinement which has a cor-
responding simplificator is in fact the complete shell refinement in [44]. The complete
shell refinement, given a domain A, returns the most abstract domain which includes A
and is complete for some given semantic operation f ; the corresponding simplificator,
called complete core, returns the most concrete domain which is contained in A and is
complete for f . Compressors, instead, act like “zip” runs on files. If R is a given do-
main refinement, C is a compressor forR if, for any abstraction X ,R(X) = R(C(X))
and C(R(X)) = C(X), namely when C(X) is the most abstract domain B such that
R(B) = R(X), and this basically holds when the whole refined domain R(X) can
be fully reconstructed by refinement from its so-called basis B = C(X). A domain
theoretic definition of abstract domain compressors has been introduced in [41]. Exam-
ples of domain compressors include complementation [11,28], which is the compressor
associated with reduced product, and least disjunctive basis [40], which is associated
with the disjunctive completion refinement. Clearly, not all refinements admit a corre-
sponding simplificator or compressor. Moreover, as suggested by the above definitions,
it is possible to relate refinements and simplificators/compressors by means adjunctions
[35,39].



Static Analysis, Abstract Interpretation and Verification 143

1.4 How to Cook an Abstract Domain or Semantics

The above methods can be used as a recipe for “cooking” an abstract domain/semantics
for specific applications.

1. Specify a concrete semantics for the considered programming language, with a
(possibly many sorted algebra as) concrete domain C = 〈C, op1, . . . , opn〉;

2. Identify, as a subset of the lattice of abstract interpretations, some basic semantics
properties π ⊆ Abs(C) that are to be preserved by the abstraction process;

3. Design a suitable refinementRπ which adds to domains some functionalities of the
concrete algebra C, in such a way thatRπ(X) = X ⇒ X ∈ π;

4. Define an adequate abstract domain A that encodes the basic properties of interest
(e.g. the basic properties to analyze) concerning concrete data objects;

5. Solve the (system) of recursive domain equations X = A �Rπ(X).

Step (1) is common to any abstract interpretation, and corresponds to the design of a
suitable base (typically collecting) semantics. Step (2) is instead a meta-level operation:
The designer has to identify the common structure of any domain which shares a given
semantic property that has to be preserved in the abstraction process. This may include
completeness, compositionality, and any combination of semantic properties of interest
for the specific application. A taxonomy of basic observable properties of semantics
is essential in order to solve this problem, see e.g. [21] for a recent account on the
logic programming case. Step (3) is strongly related to step (2) and is based on the
theory of domain refinements described above [39]. Step (4) strongly needs a creative
contribution of the designer, which has to guess a minimal domain of basic properties of
interest for concrete data objects. Compressors may provide here a tool for simplifying
and adapting the solutions envisaged at design time. Steps (5) is standard. Most of these
steps, in particular (3) and (5), are systematic and, in most cases, constructive.

1.5 Applications in Logic Programming

Logic programming has been an ideal programming setting where the above ideas have
found straight application. This because of the clean nature of the declarative semantics
of a (constraint) logic program, which consists of a simple fixpoint solution of a recur-
sive equation on predicates, where ground predicates provide the so called model-based
semantics and possibly nonground predicates provide the so called computed-answer
substitution semantics, also called s-semantics [26]. This motivates the use of logic
programming as a natural and intelligible environment where abstract domain trans-
formers can be tested and applied for a very first practical use, and characterized the
research in abstract interpretation in the years across Y2000 mainly in Padova, Parma,
Pisa and Verona. Of course, all the above definitions and notions hold on generic com-
plete lattices and semantic structures, fulfilling the language independence feature of
abstract interpretation. Here, we list some results in semantics and static program anal-
ysis obtained by applying the above mentioned domain transformers. These results are
characterized by a scattered coverage of known and new properties of semantics of logic
programming, all having a distinctive nature of being systematically derived by means



144 G. Delzanno, R. Giacobazzi, and F. Ranzato

of abstract domain transformations. The result was a puzzle of methods and techniques
for handling semantics and analyses with the ambition of fully developing Strachey’s
programme of “understanding of the mathematical ideas of programming languages
and combine them with other principles of common sense as correctives of exaggera-
tion, allowing the individual reader to draw as moderate conclusions as she/he will”
[74].

Analysis. The abstract domain for relational groundness analysis Pos has been recon-
structed as solution of a completeness problem, i.e., as greatest (w.r.t.�) solution of
the simple recursive abstract domain equation X = G�(X → X) over the concrete
domain of downward-closed sets of idempotent substitutions with respect to vari-
able instantiation, where → is the Heyting completion of an abstract domain [46]
and G is the basic domain for groundness analysis, specifying whether a variable is
ground or not [71]. Disjunctive completion and bases for groundness analysis have
been studied in [40].

The phenomenon of so-called condensation in logic program analysis has been
fully modeled as a completeness property of the underlying abstract domains in
[45]. A static analysis is condensing if (bottom-up) goal-independent and (top-
down) goal-dependent analyses agree, i.e., whenever it is possible to reconstruct
the analysis of a given goal from the result of a goal-independent analysis without
loss of precision. In this case, a condensing domain can always be systematically
derived from a possibly noncondensing one A by solving the recursive domain
equation X = A �X � (X

∧�X) on the concrete quantale of sets of idempotent
substitutions, where the conjunction ∧ in the quantale of idempotent substitutions
is most general unification and where

∧� is the linear refinement with respect to ∧
[45]. Condensing domains for freeness, independence, type representations, pair-
independence, non-pair-sharing, and information-flow analysis have all been de-
rived in this way in [45,56,57,58,73]. A condensing domain for sharing analysis,
i.e., a solution to the equation X = Sh �X � (X

∧�X), with Sh being the domain
for set-sharing, is still unknown. Completeness has been also used in combination
with complementation to prove that set-sharing is redundant for pair-sharing [3].

Semantics. Semantics can be composed and complemented as easy as abstract do-
mains. Applications in logic programming have shown that the semantics S � C,
obtained by complementing [11] the Clark semantics of correct answer substitu-
tions C with respect to the more concrete semantics of computed answer substitu-
tion S, corresponds precisely to the fully abstract semantics for partial computed
answer substitutions [38]. Similar characterizations have been obtained by domain
complementation of Clark vs. Herbrand model-based semantics and call vs. success
pattern semantics [38]. By considering linear refinement, the OR-compositional se-
mantics of logic programs can be systematically derived as least solution of the
recursive domain equation X = S �X � (X

��X) over the concrete quantale of
SLD-traces of atoms where conjunction is trace concatenation � [42] and

�� is the
linear refinement w.r.t. �. A more general construction for arbitrary compositional
semantics on traces can be found in [34].



Static Analysis, Abstract Interpretation and Verification 145

2 Temporal Logic and Model Checking

2.1 Basics of Model Checking

Model checking (see e.g. [10]) is a technique for verifying finite state (concurrent)
systems. It has been applied to verify properties of digital circuits, communication pro-
tocols, and, in the last years, to abstract models of software programs. Model checking
is automatic and, if the model contains an error, it produces a counterexample that can
be used to find the error in the original system. Model checking is based on the fol-
lowing ingredients: a specification language to describe a model of the behavior of a
given system, a logic to describe the properties that the model is suppose to satisfy, and
a decision procedure to test the properties against a model. The behavior of a system is
described by means of a Kripke model, i.e., a finite graph in which nodes are labeled
by propositions and edges represent transitions between states (the transition relation).
Propositions represent local properties of a given state. Global properties are described
in temporal logic, a formalism that can be used to reason on the transitive closure of
the state transition relation. There exist several types of temporal logic specification
languages. In this paper we focus on Computation Tree Logic (CTL).

Computation Tree Logic. CTL can be used to reason about branching time properties
of a Kripke model. A CTL model is a tuple M = 〈States,→, �〉 such that States is
a set of states, →⊆ States× States is a (typically total) transition relation and � :
States → ℘(Atoms) is a labeling function that defines the set of atomic predicates,
taken from a finite set Atoms, that holds at each state. When a labeling function is
omitted, we assume that �(s) = {s} (i.e., states are used as predicates). CTL formulae
extend propositional logic with temporal formulae of the form QP QT , where QP is a
path quantifier and QT is a temporal quantifier. The path quantifier can be either A (for
all paths) or E (there exists a path). The temporal quantifier can be either X (next state),
F (eventually), G (always), or U (until). For instance, the formula EXϕ holds in the
current state if there exists a successor in which ϕ holds, EFϕ holds in the current state
if there exists a path in which ϕ eventually holds, and AGϕ holds in the current state
if in all paths ϕ always holds. To formally define the semantics of CTL formulae, we
define a path σ in M as an infinite sequence of states s0s1 . . . si . . . such that sk → sk+1

for k ≥ 0 and we use σ[i] to denote the i-th state in σ. Furthermore, we use PM (s) to
define the set of paths σ in M such that σ[0] = s. The satisfiability relation M, s |= ϕ
is defined then as follows:

– M, s |= p iff p ∈ �(s)
– M, s |= ¬φ iff s �|= φ
– M, s |= ϕ ∨ ψ iff s |= ϕ or s |= ψ
– M, s |= EXϕ iff ∃σ ∈ PM (s).σ[1] |= ϕ
– M, s |= E(ϕ U ψ) iff ∃σ ∈ PM (s) ∃j ≥ 0. σ[j] |= ψ ∧ (∀k ∈ [0, j). σ[k] |= ϕ)
– M, s |= EFϕ iff ∃σ ∈ PM (s) ∃j ≥ 0.σ[j] |= ϕ
– M, s |= EGϕ iff ∃σ ∈ PM (s) ∀j ≥ 0.σ[j] |= ϕ

The semantics of the other logical/temporal operators is derived by exploiting semantic
equivalences like ¬EFϕ ≡ AG¬ϕ.



146 G. Delzanno, R. Giacobazzi, and F. Ranzato

Model Checking Problem. Given a CTL model M , an initial state s0, and a CTL
formula ϕ, the CTL model checking problem consists in checking whether M, s0 |= ϕ
holds or not.

CTL formulas can be used to express functional properties of a concurrent system
like mutual exclusion, termination, absence of starvation, etc. For instance, assume that
proposition csi denotes states in which process i is in its critical section. Mutual exclu-
sion for processes 1, . . . , n is represented then by the CTL property AG(¬(

∧n
i=1 csi)),

i.e., for all paths and all states, it is never the case that the formula cs1∧cs2∧. . .∧csn is
satisfied. For finite-state Kripke models, the CTL model checking problem is decidable
in polynomial time as discussed in the next section.

2.2 Model Checking Algorithm

The model checking decision procedure is based on a fixpoint characterization of the
semantics of CTL formulae. Given a formula ϕ, we define its denotation as the set of
states that satisfies it, namely,

[[ϕ]] � {s ∈ States |M, s |= ϕ}.

The set of CTL formulae ordered with respect to the inclusion of their denotations
forms a complete lattice. The bottom element is false (any unsatisfiable formula), the
top element is true (any tautology), and∧ and∨ correspond to the greatest lower bound
and the least upper bound operations, respectively. Temporal connectives can be viewed
as transformers of sets of states (i.e., of denotations). To clarify this point, let us recall
that temporal connectives as e.g. EF satisfy expansion axioms like

EFϕ ≡ ϕ ∨ EX EFϕ.

Lifting this axiom to the denotation level we obtain the fixpoint equation

Z = h(Z)

where h : ℘(States) → ℘(States) is defined as

h � λZ.[[ϕ]] ∪ Pre(Z)

where Pre(Z) is the set of predecessor states of Z , i.e.,

Pre(Z) � {s ∈ States | ∃s′ ∈ Z.s → s′}.

The denotation of the formula EFϕ is the least fixpoint of the operator h, which is
monotonic over the complete lattice 〈℘(States),⊆,∪,∩, States, ∅〉. By applying
Knaster-Tarski fixpoint theorem, the least fixpoint of h is the union

⋃
i≥0 Ii of the sets

I0, . . . , Ii, . . . inductively defined as I0 = ∅ and Ii+1 = h(Ii) for i ≥ 0. This com-
putation corresponds to a backward visit of the graph that defines the state transition
relation starting from the set of states that satisfy ϕ. Since the model has finitely many
states this backward analysis is always guaranteed to terminate and requires a number
of steps that is linear in the size of the model (in the worst case one state is added in
each computation of Pre).



Static Analysis, Abstract Interpretation and Verification 147

A similar reasoning can be applied to the other CTL connectives. The denotation
of formulae that quantify over all states along a path, like AG and EG, can be com-
puted as greatest fixpoints of their corresponding transformers, whereas the denotation
of temporal formulae like AF and EF can be computed as least fixpoints. The model
checking algorithm is defined then by induction on the structure of the input formula ϕ
and computes its denotations bottom-up starting from the denotations of its subformu-
lae. For instance, given the formula AG((EF p)∧ q) we first compute the denotation of
the subformula EFp, by means of a least fixpoint computation, and that of q. We then
compute their intersection I . Finally, we compute the denotation of the transformer AG
applied to I by using a greatest fixpoint computation.

The time complexity of this model checking algorithm is polynomial in the size of
the input formula ϕ and of the model M . It is important to notice that the number of
states in the transition graph is in general exponential in the description of the model
which is usually given in some high level language (e.g. a collection of formulae), and
this is commonly referred to as state explosion problem. Heuristics like symbolic model
checking [6] attack this problem by using compact representations of sets of states, e.g.,
by using binary decision diagrams as a representation of sets of states.

3 Abstract Model Checking and Refinement

Approximate automated verification by abstract model checking [9] provides one im-
portant solution to the state explosion problem [8] that arises in model checking systems
with parallel components. In abstract model checking, approximation is encoded by an
abstract model A that hides some details of the concrete model M so that verifica-
tion becomes more efficient on A rather than on M . The design of an abstract model
checking framework always includes a preservation result, roughly stating that for any
formula ϕ expressed in some language L, if A |= ϕ then M |= ϕ. Clearly, abstract
verification of ϕ on A may yield false negatives due to the approximation of M to A.
On the other hand, strong preservation means that a formula ϕ in L holds on A if and
only if ϕ holds on M . Strong preservation is thus highly desirable since it allows to
draw consequences from negative answers on the abstract side.

The relationship between abstract model checking and abstract interpretation has
been the subject of a number of works (e.g. [9,19,22,37,43]). We recall here how the
above notion of strong preservation in abstract model checking can be generalized from
an abstract interpretation perspective. This abstract interpretation-based view of strong
preservation allows to understand some common principles in well-known algorithms
that refine abstract Kripke structures in order to make them strongly preserving for some
temporal language.

3.1 Abstract Semantics of Languages

We deal with generic (temporal) languages L whose state formulae ϕ are inductively
defined by:

L " ϕ ::= p | f(ϕ1, ..., ϕn)

where p ranges over a (typically finite) set of atomic propositions Atoms, while f
ranges over a finite set Op of operators, for example standard temporal operators like



148 G. Delzanno, R. Giacobazzi, and F. Ranzato

existential/universal next EX/AX, until EU/AU, globally EG/AG, etc. The seman-
tics of a language is determined by a suitable semantic structure S, e.g. a Kripke
structure, on a concrete state space States, that provides an interpretation of atoms
and operators in L as, respectively, elements and operators on the powerset ℘(States).
Thus, S determines for any formula ϕ ∈ L a concrete semantics [[ϕ]]S ∈ ℘(States),
namely the set of states making ϕ true w.r.t. S. In turn, this also defines a state partition
PL ∈ Part(States), i.e. state equivalence, induced by the language L as follows:

PL(s) � {s′ ∈ States | ∀ϕ ∈ L. s ∈ [[ϕ]]S ⇔ s′ ∈ [[ϕ]]S}.

As shown in Section 1, abstract interpretation provides a systematic technique for ap-
proximating a concrete semantics by an abstract semantics defined on some abstract
domain. We consider abstract domains of the powerset 〈℘(States),⊆〉 that plays here
the role of concrete semantic domain. An abstract domain A ∈ Abs(℘(States)), de-
fined by abstraction/concretization maps α/γ, induces an abstract semantic structure
SA where the interpretation of an atom p ∈ ℘(States) is abstracted to α(p) while a
concrete semantic operator f : ℘(States)n → ℘(States) is abstracted by its best cor-
rect approximation fA on A, that is fA(a1, ..., an) � α(f (γ(a1), ..., γ(an))). Thus,
any abstract domain A systematically induces an abstract semantics [[ϕ]]AS ∈ A that
evaluates formulae ϕ ∈ L in the abstract domain A.

It turns out that this approach based on abstract semantics generalizes standard ab-
stract model checking [10]. Given a Kripke structure K = (States,→), a standard
abstract model is specified as an abstract Kripke structure A = (AStates,→
) where
the set AStates of abstract states is defined by a surjective map h : States → AStates
that groups together indistinguishable concrete states whereas →
 is the transition re-
lation between abstract states. Thus, AStates determines a partition of States and vice
versa any partition of States can be viewed as a set of abstract states.

It turns out that state partitions can be viewed as a particular class of abstract do-
mains. On the one hand, a partition P ∈ Part(States) can be considered an abstract
domain by means of the following Galois insertion (℘(States)⊆, αP , ℘(P )⊆, γP ):

αP (S) def= {B ∈ P | B ∩ S �= ∅}; γP (B) def= ∪B∈B B.

Hence, αP (S) encodes the minimal over-approximation of S through blocks of the state
partition P . On the other hand, any abstract domain A ∈ Abs(℘(States)) induces the
following partition part(A) ∈ Part(States):

part(A)(x) def= {y ∈ States | αA({y}) = αA({x})}.

An abstract domain A ∈ Abs(℘(States)) is called partitioning when it represents pre-
cisely a state partition, namely when γA ◦ αA = γpart(A) ◦ αpart(A).

3.2 Generalized Strong Preservation

In standard abstract model checking, given a language L and a corresponding inter-
pretation on a Kripke structure K, an abstract Kripke structure A strongly preserves L
when for any ϕ ∈ L and s ∈ States, we have that

A, h(s) |= ϕ ⇔ K, s |= ϕ



Static Analysis, Abstract Interpretation and Verification 149

�������	R
stop �� �������	RY

stop �� �������	G
go �� �������	Y

go
��

Fig. 2. A U.K. traffic light

where h : States → AStates is the abstraction map.
It turns out that strong preservation can be generalized from standard abstract Kripke

structures to abstract interpretation-based models. A generalized abstract model is given
as an abstract domain A ∈ Abs(℘(States)) that systematically induces an abstract se-
mantics [[·]]AS . We therefore define the abstract semantics [[·]]AS to be strongly preserving
(s.p. for short) for L when for any ϕ ∈ L and S ∈ ℘(States),

α(S) ≤A [[ϕ]]AS ⇔ S ⊆ [[ϕ]]S .

Observe that strong preservation is an abstract domain property, meaning that it does
not depend on the abstract interpretation of atoms and logical/temporal operators on
the abstract domain A but only depends on A itself. Thus, an abstract domain A ∈
Abs(℘(States)) is strongly preserving for L when [[·]]AS is strongly preserving for L.

Standard strong preservation becomes a particular instance, because it turns out that
an abstract Kripke structure strongly preserves L if and only if the corresponding parti-
tioning abstract domain strongly preserves L according to the above generalized mean-
ing. Generalized strong preservation may work where standard strong preservation may
fail. In fact, it may happen that although a strongly preserving abstract semantics on a
partition P always exists this abstract semantics cannot be derived from a strongly pre-
serving abstract Kripke structure on P . The following example shows this phenomenon.

Example 2. Consider the following simple language L:

L " ϕ ::= stop | go | AXXϕ

and the Kripke structure K depicted in Figure 2, where superscripts determine the la-
beling function. K models a four-state traffic light controller (like in the U.K.): Red
→ RedYellow → Green → Yellow. According to the standard semantics of AXX, we
have that K, s|=AXXϕ iff for any path s0s1s2 . . . starting from s0 = s, it happens
that K, s2|=ϕ. It turns out that [[AXXstop]]K = {G, Y } and [[AXXgo]]K = {R, RY }.
We thus consider the state partition P = {{R, RY }, {G, Y }}. However, it turns out
that there exists no abstract transition relation �


 on the abstract state space P such
that the abstract Kripke structure A = (P , �
) strongly preserves L. Assume by con-
tradiction that such an abstract Kripke structure A exists. Let B1 = {R, RY } ∈ P
and B2 = {G, Y } ∈ P . Since K, R |= AXXgo and K, G |= AXXstop, by strong
preservation, it must be that A, B1 |= AXXgo and A, B2 |= AXXstop. Hence, neces-
sarily, B1�


B2 (otherwise B1 can never reach the state B2 where the atom go holds)
and B2�


B1 (otherwise B2 can never reach the state B1 where the atom stop holds).
This leads to the contradictionA, B1 �|=AXXgo. In fact, if �


 = {(B1, B2), (B2, B1)}
then we would have that A, B1 �|=AXXgo. On the other hand, if, instead, B1�


B1 (the
case B2�


B2 is analogous), then we would still have thatA, B1 �|=AXXgo. Even more,



150 G. Delzanno, R. Giacobazzi, and F. Ranzato

along the same lines it is not hard to check that no proper abstract Kripke structure
that strongly preserves L can be defined, because even if either B1 or B2 is split (i.e.,
refined) we still cannot define an abstract transition relation that is strongly preserving
for L.
On the other hand, let us consider the partitioning abstract domain

A � {∅, {R, RY }, {G, Y }, {R, RY, G, Y }}

that is induced by the above partition P . This abstract domain A induces a correspond-
ing abstract semantics [[·]]AK : L → A, where the best correct approximation of the
operator AXX : ℘(States)→ ℘(States) on A is as follows:

αA ◦AXX ◦ γA = {∅ #→ ∅, {R, RY } #→ {G, Y }, {G, Y } #→ {R, RY },
{R, RY, G, Y } #→ {R, RY, G, Y }}.

It is easy to check that this abstract semantics [[·]]AK is strongly preserving. As observed
above, in the abstract Kripke structure A, the formulae AXXgo and AXXstop are
not strongly preserved. Here, instead, we have that αP (S) ≤A [[AXXgo]]AK ⇔ S ⊆
[[AXXgo]]K and αP (S) ≤A [[AXXstop]]AK ⇔ S ⊆ [[AXXstop]]K. ��

3.3 Strong Preservation as Completeness

Given a language L and a Kripke structure K = (States,→), a well-known key prob-
lem is to compute the smallest abstract state space AStatesL, when this exists, such that
one can define an abstract Kripke structure AL = (AStatesL,→
) that strongly pre-
servesL. This problem admits solution for a number of well-known temporal languages
like CTL (or, equivalently, the μ-calculus), ACTL and CTL-X (i.e. CTL without the
next-time operator X). A number of algorithms for solving this problem exist, like those
by Paige and Tarjan [62] for CTL, by Henzinger et al. [50], Tan and Cleaveland [75],
Ranzato and Tapparo [66] and Gentilini et al. [32,47] for ACTL, and Groote and Vaan-
drager [48] for CTL-X. These are coarsest partition refinement algorithms. Given a
language L and a state partition P ∈ Part(States) which is determined by a state la-
beling � : States → ℘(Atoms) — namely, P � {�−1(X) | X ⊆ Atoms} — these
algorithms can be viewed as computing the coarsest partition PL that refines P and al-
lows to define an abstract Kripke structure (P,→
) that strongly preservesL. It is worth
remarking that most of these algorithms have been designed for computing well-known
behavioural equivalences used in process algebra like bisimulation (for CTL), simula-
tion (for ACTL) and divergence-blind stuttering (for CTL-X) equivalence. Our abstract
interpretation-based framework allows us to provide a generalized view of these parti-
tion refinement algorithms. It turns out that the most abstract (i.e., least informative)
domain, denoted by ADL, that strongly preserves a given language L always exists,
namely the domain

�{A ∈ Abs(℘(Σ)) | A is s.p. for L}
results to be s.p. forL. It turns out that ADL is a partitioning abstract domain if and only
if L includes propositional logic, that is when L is closed under logical conjunction and
negation. Otherwise, a proper loss of information occurs when abstracting ADL to the



Static Analysis, Abstract Interpretation and Verification 151

corresponding partition PL. Moreover, for some languages L, it may happen that one
cannot define an abstract Kripke structure on the abstract state space PL that strongly
preservesLwhereas the most abstract strongly preserving domain instead exists. In fact,
in Example 2, the domain A actually is the most abstract s.p. domain for the language
L whilst no s.p. abstract Kripke structure can be defined.

As discussed in Section 1, completeness in abstract interpretation encodes an ideal
situation where the abstract semantics coincides with the abstraction of the concrete se-
mantics. A precise correspondence between generalized strong preservation and com-
pleteness in abstract interpretation can be established. This is based on the notion of
forward complete abstract domain. As recalled in Section 1, it turns out that forward
complete abstract domains can be systematically and constructively derived from non-
complete abstract domains by minimal refinements. Given any domain A ∈ Abs(C), re-
call that we denote byF -Shellf (A) the forward complete shell of A for f .F -Shellf (A)
can be obtained by iteratively closing γ(A) under direct images of f until a fixpoint is
reached, i.e.,

F - Shellf (A) � lfp
(
λX ⊆ C.γ(A) ∪X ∪ f (X)

)
.

It turns out that strong preservation is related to forward completeness as follows. As
described above, the most abstract domain ADL that strongly preservesL always exists.
It turns out that ADL coincides with the forward complete shell for the logical/temporal
operators of L of a basic abstract domain A� � M({�−1(X) | X ⊆ Atoms}) deter-
mined by the state labeling �, i.e.,

ADL = F - ShellOpL(A�).

This characterization provides a generalization of partition refinement algorithms used
in standard abstract model checking that can be therefore logically viewed as refine-
ments w.r.t. forward completeness.

Example 3. Conside the above Example 2 where the labeling determines the abstract
domain A� = {∅, {R, RY }, {G, Y }, {R, RY, G, Y }}. Let AXX be the semantic in-
terpretation of AXX. It turns out that A� is already forward complete for AXX because
AXX({R, RY }) = {G, Y } and AXX({G, Y }) = {R, RY }. Thus, here

ADL = F - ShellAXX(A�) = A�

namely A� is the most abstract strongly preserving domain for the language L. ��

Bisimulation Equivalence. As an example, let us describe how this approach allows
us to derive a novel characterization of bisimulation equivalence in terms of forward
completeness of abstract domains.

Bisimulation equivalence Pbis on some Kripke structure K can be computed by the
well-known Paige-Tarjan partition refinement algorithm PT. More precisely, if P� de-
notes the state partition determined by the labeling function � then PT(P�) = Pbis. It
is well known [5] that whenK is finitely branching, bisimulation equivalence coincides
with the state equivalence induced by Hennessy-Milner logic

HML " ϕ ::= p | ϕ1 ∧ ϕ2 | ¬ϕ | EXϕ



152 G. Delzanno, R. Giacobazzi, and F. Ranzato

that is, PHML = Pbis. As usual, the semantic interpretation of EX is the predeces-
sor Pre : ℘(States) → ℘(States), while conjunction and negation are, respectively,
interpreted as intersection ∩ and complementation � on ℘(States).

The following characterization can then be derived in our abstract interpretation-
based framework:

PT(P�) = part(F - Shell{Pre,�}(A�)).

Note that the forward complete shell does not need to take into account the intersec-
tion on ℘(States) since abstract domains, being closed under intersections, are always
forward complete for intersections. This characterization in turn leads to design a gen-
eralized Paige-Tarjan-like procedure for computing most abstract strongly preserving
domains [67].

4 Model Checking and (Constraint) Logic Programming

In the last decade there has been a growing interest in the application of logic program-
ming techniques to the specification, analysis, and verification of concurrent systems
and software programs. For instance, in Italy the research groups in Genova and Roma
have applied different types of evaluation and transformation strategies for constraint
logic programming to the verification of parameterized formulations of communication
protocols.

A nice example of the connections between verification and logic programming is
given in [24]. In the rest of the section we briefly recall the main ideas from this paper.

4.1 Model Checking and Fixpoint Semantics in LP

As discussed in Section 2, the semantics of CTL properties is defined as a least or
greatest fixpoint of a monotonic operator defined over sets of configurations, i.e., states.
This property can be exploited in order to provide a link between model checking and
logic programming. As an example, let us interpret an atomic formula p(s1, s2, val) as
a configuration of a system with two processes whose current states are, resp., s1 and s2

and with a shared variable whose current value is val. Now let P be the logic program
defined as

p(idle, X, free) : −p(use, X, lock).
p(use, X, Y ) : −p(idle, X, free).
p(X, idle, free) : −p(X, use, lock).
p(X, use, Y ) : −p(X, idle, free).

According to the above mentioned interpretation of the predicate p, the Horn clauses
in P represent one-step transitions (possible moves of one of the two processes) of
a concurrent system in which the access to the critical section use is controlled via
modifications to the global variable with states lock and free.

Let us now consider the set of ground atomic predicates

Bad � {p(use, use, lock), p(use, use, free)}.

They represent violations to the mutual exclusion property for the system represented
by the program P . To draw a link between the semantics of P and CTL properties like



Static Analysis, Abstract Interpretation and Verification 153

EF, we need to resort to the fixpoint semantics of logic programs. We first recall that
the immediate consequence operator of the logic program Q � P ∪ Bad is defined as

TQ(I) � {Aθ | A : −B ∈ Q, Bθ ∈ I, θ grounding for A, B} ∪ Bad

where I is a set of ground atoms with predicate p and constants taken from the set
{idle, busy, free, lock}. It is immediate to see that when TQ is applied to a set of atoms
I , it computes (a representation of) the set of one-step predecessors of the configurations
in I . The fixpoint semantics FQ of the program Q is defined as the least fixpoint of the
TQ operator, i.e., as the set of ground atoms

FQ � lfp(TQ) =
⋃
i≥0

T i
Q(∅).

Based on the link between TQ and the operator Pre used in the semantics of CTL, we
have that FQ is a representation of the set of all predecessors of violations to mutual
exclusion contained in Bad . In other words, FQ is equivalent to the denotation of the
CTL formula EF(use1 ∧ use2), where usei is the predicate that is true if and only if
the process i is in the critical section. In a similar way, we can use the greatest fixpoint
semantics of logic programs to characterize CTL properties like EG.

4.2 From Finite-State to Infinite-State Models

The interpretation of logic programs as a symbolic representation of transition systems
paves the way to several different logic-based methods for the verification of finite-
state and infinite-state systems. In [24], the s-semantics of constraint logic programs
is applied to symbolically reason on infinite-state transition systems. The s-semantics
of logic programs is obtained by lifting the fixpoint semantics to a domain in which
interpretations are sets of nonground atoms. Going back to the previous example, we
first observe that the set Bad can be represented with the single nonground atom.

b � p(use, use, X)

where X is a free variable. Furthermore, the bottom-up evaluation of the program
R � P ∪ {b} can be computed symbolically by replacing the operator TR with the
corresponding nonground version SR. The nonground immediate consequence opera-
tor SR is obtained by replacing in the definition of TR the grounding substitution θ with
the most general unifier between B and an atom in I . More formally, given a set of
nonground atoms I , the operator SR is defined as

SR(I) � {Aθ | A : −B ∈ R, C ∈ I, θ = m.g.u.(B, C)} ∪ Bad .

The nonground fixpoint semantics is defined as the least fixpoint of the SR operator,
i.e., as the result of a (non ground) bottom-up evaluation of the logic program R. It is
important to notice that the subsumption test between nonground atoms can be used
as termination test for this type of symbolic fixpoint computation. Optimizations like
magic set templates can be used to specialize the bottom-up evaluation procedure with
respect to a given query (e.g., a set of initial states).



154 G. Delzanno, R. Giacobazzi, and F. Ranzato

As shown in [24], the s-semantics for CLP can be used to extend the link between
bottom-up evaluation of logic programs and model checking to the case of infinite-state
transition systems. CLP clauses can be used to symbolically represent a possibly infinite
set of transition rules, and constrained atoms, i.e., atoms like p(X, Y ) : −X > Y can
be used to symbolically represent infinite sets of configurations, i.e., all the instances of
the atom p(X, Y ) obtained by solving the constraint X > Y .

4.3 Verification and Evaluation Strategies in LP

Several other types of evaluation of logic programs have been proposed for the verifi-
cation of temporal properties of transition systems.

In [30,31] the transition system of counter automata (automata with guards and
assignments over a finite set of counters) are symbolically represented as logic pro-
grams with linear arithmetic constraints. The bottom-up evaluation of logic programs
with gap-order constraints (obtained by relaxing the linear constraints in the automata)
is used to over-approximate the set of successors, i.e., the set Post∗, of the original
automata.

In [49,76] forward and backward evaluation of CLP programs is used to verify prop-
erties of real time and hybrid systems, respectively. Constraints are used here to infer
preconditions on parameters of system specifications.

Program specialization methods (e.g. partial evaluation) is another example of tech-
niques that can be used to automatically control the abstraction required for infinite-
state model checking [55,53,54]. In [29,63] program transformation techniques
combined with specialized decision procedures are used to verify temporal properties
of infinite-state systems.

The application of tabling to the evaluation of logic programs represents a further
important research line in-between logic programming and verification. The model
checker XMC based on the XSB system has been applied to several families of verifica-
tion problems and concurrent models including pi-calculus and mobile process algebra
[25,65,69,70,72]. For this kind of systems, tabling can be used to efficiently evaluate
logic programs that encode the semantics of CTL operators. Since tabling exploits dif-
ferent types of subsumption mechanisms, the resulting engine can be applied both to
finite-state and infinite-state systems.

Other promising approaches for logic-based verification techniques are based on
logic programming frameworks based on non standard logics like linear and intuitionis-
tic logic. For instance, in [4,23], bottom-up evaluation methods for logic programming
languages like LO [1] and MSR [7] extend the use of symbolic techniques based on
unification (e.g. SP -like operators) to languages that naturally model concurrency via
multiset rewriting. Other examples come from logic programming languages like Bed-
wyr [2] and LolliMon [59] that incorporate connectives to express least and greatest
fixpoint computations. The study of evaluation strategies and abstract interpretation
techniques for these powerful logic programming languages represent an interesting
research direction aimed at finding new verification methods for general classes of con-
current systems.



Static Analysis, Abstract Interpretation and Verification 155

References

1. Andreoli, J.-M., Pareschi, R.: Linear Ojects. Logical Processes with Built-in Inheritance.
New Generation Comput. 9(3/4), 445–474 (1991)

2. Baelde, D., Gacek, A., Miller, D., Nadathur, G., Tiu, A.: The Bedwyr system for model
checking over syntactic expressions. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI),
vol. 4603, pp. 391–397. Springer, Heidelberg (2007)

3. Bagnara, R., Hill, P., Zaffanella, E.: Set-sharing is redundant for pair-sharing. Theor. Comput.
Sci. 277(1-2), 3–46 (2002)

4. Bozzano, M., Delzanno, G., Martelli, M.: Model Checking Linear Logic Specifications.
TPLP 4(5-6), 573–619 (2004)

5. Browne, M.C., Clarke, E.M., Grumberg, O.: Characterizing finite Kripke structures in propo-
sitional temporal logic. Theoret. Comp. Sci. 59, 115–131 (1988)

6. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic Model Check-
ing: 1020 States and Beyond. In: Proc. IEEE LICS 1990, pp. 428–439 (1990)

7. Cervesato, I.: Typed Multiset Rewriting Specifications of Security Protocols. ENTCS 40
(2000)

8. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Progress on the state explosion prob-
lem in model checking. In: Wilhelm, R. (ed.) Informatics: 10 Years Back, 10 Years Ahead.
LNCS, vol. 2000, pp. 176–194. Springer, Heidelberg (2001)

9. Clarke, E.M., Grumberg, O., Long, D.: Model checking and abstraction. ACM Trans. Pro-
gram. Lang. Syst. 16(5), 1512–1542 (1994)

10. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cambridge
(1999)

11. Cortesi, A., Filé, G., Giacobazzi, R., Palamidessi, C., Ranzato, F.: Complementation in ab-
stract interpretation. ACM Trans. Program. Lang. Syst. 19(1), 7–47 (1997)

12. Cortesi, A., Le Charlier, B., Van Hentenryck, P.: Combinations of abstract domains for
logic programming: open product and generic pattern construction. Sci. Comput. Program.
38(1-3), 27–71 (2000)

13. Cousot, P.: Types as abstract interpretations (invited paper). In: Proc. ACM POPL 1997,
pp. 316–331 (1997)

14. Cousot, P.: Constructive design of a hierarchy of semantics of a transition system by abstract
interpretation. Theor. Comput. Sci. 277(1-2), 47–103 (2002)

15. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: Proc. of Conf. Record of the 4th
ACM Symp. on Principles of Programming Languages (POPL 1977), pp. 238–252. ACM
Press, New York (1977)

16. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Proc. of Conf.
Record of the 6th ACM Symp. on Principles of Programming Languages (POPL 1979),
pp. 269–282. ACM Press, New York (1979)

17. Cousot, P., Cousot, R.: Abstract interpretation and application to logic programs. J. Logic
Program. 13(2-3), 103–179 (1992)

18. Cousot, P., Cousot, R.: Higher-order abstract interpretation (and application to comportment
analysis generalizing strictness, termination, projection and PER analysis of functional lan-
guages) (invited paper). In: Proc. of the 1994 IEEE Internat. Conf. on Computer Languages
(ICCL 1994), pp. 95–112 (1994)

19. Cousot, P., Cousot, R.: Temporal abstract interpretation. In: Proc. 27th ACM POPL,
pp. 12–25 (2000)

20. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.: The
ASTREÉ analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 21–30. Springer,
Heidelberg (2005)



156 G. Delzanno, R. Giacobazzi, and F. Ranzato

21. Cousot, P., Cousot, R., Giacobazzi, R.: Abstract interpretation of resolution-based semantics.
Theor. Comput. Sci. 410(46), 4724–4746 (2009)

22. Dams, D., Grumberg, O., Gerth, R.: Abstract interpretation of reactive systems. ACM Trans.
Program. Lang. Syst. 16(5), 1512–1542 (1997)

23. Delzanno, G.: An Overview of MSR(C): A CLP-based Framework for the Symbolic Verifi-
cation of Parameterized Concurrent Systems. ENTCS 76 (2002)

24. Delzanno, G., Podelski, A.: Model Checking in CLP. In: Cleaveland, W.R. (ed.) TACAS
1999. LNCS, vol. 1579, pp. 223–239. Springer, Heidelberg (1999)

25. Dong, Y., Du, X., Ramakrishna, Y.S., Ramakrishnan, C.R., Ramakrishnan, I.V., Smolka,
S.A., Sokolsky, O., Stark, E.W., Scott Warren, D.: Fighting Livelock in the i-Protocol: A
Comparative Study of Verification Tools. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS,
vol. 1579, pp. 74–88. Springer, Heidelberg (1999)

26. Falaschi, M., Levi, G., Palamidessi, C., Martelli, M.: Declarative modeling of the operational
behavior of logic languages. Theor. Comput. Sci. 69(3), 289–318 (1989)

27. Filé, G., Giacobazzi, R., Ranzato, F.: A unifying view of abstract domain design. ACM Com-
put. Surv. 28(2), 333–336 (1996)

28. Filé, G., Ranzato, F.: Complementation of abstract domains made easy. In: Proc. of the 1996
Joint Internat. Conf. and Symp. on Logic Programming (JICSLP 1996), pp. 348–362 (1996)

29. Fioravanti, F., Pettorossi, A., Proietti, M.: Verification of Sets of Infinite State Processes
Using Program Transformation. In: Pettorossi, A. (ed.) LOPSTR 2001. LNCS, vol. 2372,
pp. 111–128. Springer, Heidelberg (2002)

30. Fribourg, L., Richardson, J.: Symbolic Verification with Gap-Order Constraints. In:
Gallagher, J.P. (ed.) LOPSTR 1996. LNCS, vol. 1207, pp. 20–37. Springer, Heidelberg
(1997)

31. Fribourg, L., Olsén, H.: A Decompositional Approach for Computing Least Fixed-Points of
Datalog Programs with Z-Counters. Constraints 2(3/4), 305–335 (1997)

32. Gentilini, R., Piazza, C., Policriti, A.: From bisimulation to simulation: coarsest partition
problems. J. Automated Reasoning 31(1), 73–103 (2003)

33. Giacobazzi, R., Mastroeni, I.: Compositionality in the puzzle of semantics. In: Proc. of
the ACM Symp. on Partial Evaluation and Semantics-Based Program Manipulation (PEPM
2002), pp. 87–97 (2002)

34. Giacobazzi, R., Mastroeni, I.: Transforming semantics by abstract interpretation. Theor.
Comput. Sci. 337(1-3), 1–50 (2005)

35. Giacobazzi, R., Mastroeni, I.: Transforming abstract interpretations by abstract interpreta-
tion. In: Alpuente, M., Vidal, G. (eds.) SAS 2008. LNCS, vol. 5079, pp. 1–17. Springer,
Heidelberg (2008)

36. Giacobazzi, R., Palamidessi, C., Ranzato, F.: Weak relative pseudo-complements of closure
operators. Algebra Universalis 36(3), 405–412 (1996)

37. Giacobazzi, R., Quintarelli, E.: Incompleteness, counterexamples, and refinements in ab-
stract model-checking. In: Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126, pp. 356–373.
Springer, Heidelberg (2001)

38. Giacobazzi, R., Ranzato, F.: Complementing logic program semantics. In: Hanus, M.,
Rodrı́guez-Artalejo, M. (eds.) ALP 1996. LNCS, vol. 1139, pp. 238–253. Springer,
Heidelberg (1996)

39. Giacobazzi, R., Ranzato, F.: Refining and compressing abstract domains. In: Degano, P.,
Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 771–781.
Springer, Heidelberg (1997)

40. Giacobazzi, R., Ranzato, F.: Optimal domains for disjunctive abstract interpretation. Sci.
Comput. Program 32(1-3), 177–210 (1998)



Static Analysis, Abstract Interpretation and Verification 157

41. Giacobazzi, R., Ranzato, F.: Uniform closures: order-theoretically reconstructing logic pro-
gram semantics and abstract domain refinements. Information and Computation 145(2),
153–190 (1998)

42. Giacobazzi, R., Ranzato, F.: The reduced relative power operation on abstract domains.
Theor. Comput. Sci 216, 159–211 (1999)

43. Giacobazzi, R., Ranzato, F.: Incompleteness of states w.r.t. traces in model checking. Infor-
mation and Computation 204(3), 376–407 (2006)

44. Giacobazzi, R., Ranzato, F., Scozzari, F.: Making abstract interpretations complete. J.
ACM 47(2), 361–416 (2000)

45. Giacobazzi, R., Ranzato, F., Scozzari, F.: Making abstract domains condensing. ACM Trans-
actions on Computational Logic 6(1), 33–60 (2005)

46. Giacobazzi, R., Scozzari, F.: A logical model for relational abstract domains. ACM Trans.
Program. Lang. Syst. 20(5), 1067–1109 (1998)

47. van Glabbeek, R.J., Ploeger, B.: Correcting a space-efficient simulation algorithm. In:
Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 517–529. Springer, Heidelberg
(2008)

48. Groote, J.F., Vaandrager, F.: An efficient algorithm for branching bisimulation and stuttering
equivalence. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, pp. 626–638. Springer,
Heidelberg (1990)

49. Gupta, G., Pontelli, E.: A constraint-based approach for specification and verification of real-
time systems. In: Proc. IEEE Real-Time Systems Symposium 1997, pp. 230–239 (1997)

50. Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing simulations on finite and infinite
graphs. In: Proc. 36th FOCS, pp. 453–462 (1995)

51. Henzinger, T.A., Maujumdar, R., Raskin, J.-F.: A classification of symbolic transition sys-
tems. ACM Trans. Comput. Log. 6(1), 1–31 (2005)

52. Jensen, T.P.: Disjunctive program analysis for algebraic data types. ACM Trans. Program.
Lang. Syst. 19(5), 751–803 (1997)

53. Leuschel, M., Lehmann, H.: Coverability of reset petri nets and other well-structured transi-
tion systems by partial deduction. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl,
V., Furbach, U., Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS
(LNAI), vol. 1861, pp. 101–115. Springer, Heidelberg (2000)

54. Leuschel, M., Lehmann, H.: Solving coverability problems of petri nets by partial deduction.
In: Proc. PPDP 2000, pp. 268–279 (2000)

55. Leuschel, M., Massart, T.: Infinite State Model Checking by Abstract Interpretation and
Program Specialisation. In: Bossi, A. (ed.) LOPSTR 1999. LNCS, vol. 1817, pp. 62–81.
Springer, Heidelberg (2000)

56. Levi, G., Spoto, F.: An experiment in domain refinement: Type domains and type represen-
tations for logic programs. In: Palamidessi, C., Meinke, K., Glaser, H. (eds.) ALP 1998 and
PLILP 1998. LNCS, vol. 1490, pp. 152–169. Springer, Heidelberg (1998)

57. Levi, G., Spoto, F.: Non pair-sharing and freeness analysis through linear refinement. In:
Proc. ACM PEPM, pp. 52–61 (2000)

58. Levi, G., Spoto, F.: Pair-independence and freeness analysis through linear refinement. In-
formation and Computation 182(1), 14–52 (2003)

59. López, P., Pfenning, F., Polakow, J., Watkins, K.: Monadic concurrent linear logic program-
ming. In: Proc. PPDP 2005, pp. 35–46 (2005)

60. Mycroft, A.: Completeness and predicate-based abstract interpretation. In: Proc. of the ACM
Symp. on Partial Evaluation and Program Manipulation (PEPM 1993), pp. 179–185 (1993)

61. Nielson, F.: Expected forms of data flow analyses. In: Ganzinger, H., Jones, N.D. (eds.)
Programs as Data Objects. LNCS, vol. 217, pp. 172–191. Springer, Heidelberg (1986)

62. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM Journal on Comput-
ing 16(6), 977–982 (1987)



158 G. Delzanno, R. Giacobazzi, and F. Ranzato

63. Pettorossi, A., Proietti, M., Senni, V.: Transformational Verification of Parameterized Proto-
cols Using Array Formulas. In: Hill, P.M. (ed.) LOPSTR 2005. LNCS, vol. 3901, pp. 23–43.
Springer, Heidelberg (2006)

64. Ramakrishnan, C.R.: A Model Checker for Value-Passing Mu-Calculus Using Logic Pro-
gramming. In: Ramakrishnan, I.V. (ed.) PADL 2001. LNCS, vol. 1990, pp. 1–13. Springer,
Heidelberg (2001)

65. Ramakrishna, Y.S., Ramakrishnan, C.R., Ramakrishnan, I.V., Smolka, S.A., Swift, T.,
Warren, D.S.: Efficient Model Checking Using Tabled Resolution. In: Grumberg, O. (ed.)
CAV 1997. LNCS, vol. 1254, pp. 143–154. Springer, Heidelberg (1997)

66. Ranzato, F., Tapparo, F.: A new efficient simulation equivalence algorithm. In: Proc. 22nd
IEEE Symp. on Logic in Computer Science (LICS 2007), pp. 171–180 (2007)

67. Ranzato, F., Tapparo, F.: Generalizing the Paige-Tarjan algorithm by abstract interpretation.
Information and Computation 206(5), 620–651 (2008)

68. Rosenthal, K.I.: Quantales and their applications. In: Pitman Research Notes in Mathematics.
Longman Scientific & Technical, London (1990)

69. Roychoudhury, A., Narayan Kumar, K., Ramakrishnan, C.R., Ramakrishnan, I.V., Smolka,
S.A.: Verification of Parameterized Systems Using Logic Program Transformations. In:
Schwartzbach, M.I., Graf, S. (eds.) TACAS 2000. LNCS, vol. 1785, pp. 172–187. Springer,
Heidelberg (2000)

70. Roychoudhury, A., Ramakrishnan, C.R.: Unfold/Fold Transformations for Automated Verifi-
cation of Parameterized Concurrent Systems. In: Bruynooghe, M., Lau, K.-K. (eds.) Program
Development in Computational Logic. LNCS, vol. 3049, pp. 261–290. Springer, Heidelberg
(2004)

71. Scozzari, F.: Logical optimality of groundness analysis. Theor. Comput. Sci. 277(1-2),
149–184 (2002)

72. Singh, A., Ramakrishnan, C.R., Smolka, S.A.: Query-Based Model Checking of Ad Hoc
Network Protocols. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710,
pp. 603–619. Springer, Heidelberg (2009)

73. Spoto, F.: Optimality and condensing of information flow through linear refinement. Theor.
Comput. Sci. 388(1-3), 53–82 (2007)

74. Strachey, C.: The varieties of programming language. In: Proc. of the International Comput-
ing Symposium, Cini Foundation, Venice, pp. 222–233. Springer, Heidelberg (1972)

75. Tan, L., Cleaveland, W.R.: Simulation revisited. In: Margaria, T., Yi, W. (eds.) TACAS 2001.
LNCS, vol. 2031, pp. 480–495. Springer, Heidelberg (2001)

76. Urbina, L.: Analysis of Hybrid Systems in CLP(R). In: Freuder, E.C. (ed.) CP 1996. LNCS,
vol. 1118, pp. 451–467. Springer, Heidelberg (1996)

77. Yang, P., Basu, S., Ramakrishnan, C.R.: Parameterized Verification of π-Calculus Systems.
In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 42–57. Springer,
Heidelberg (2006)



Answer Set Programming

Piero Bonatti1, Francesco Calimeri2, Nicola Leone2, and Francesco Ricca2

1 Dept. of Phisical Sciences - Sec. Informatics, University of Naples “Federico II”,
I-80126 Napoli, Italy

bonatti@na.infn.it
2 Dept. of Mathematics, University of Calabria, I-87036 Rende (CS), Italy

{calimeri,leone,ricca}@mat.unical.it

Abstract. Answer Set Programming (ASP), referred to also as Disjunctive Logic
Programming under the stable model semantics (DLP), is a powerful formalism
for Knowledge Representation and Reasoning. ASP has been the subject of in-
tensive research studies, and, also thanks to the availability of some efficient ASP
systems, has recently gained quite some popularity and is applied also in rele-
vant industrial projects. The Italian logic programming community has been very
active in this area, some ASP results achieved in Italy are widely recognized as
milestones on the road to the current state of the art. After a formal definition of
ASP, this chapter surveys the main contribution given by the Italian community
to the ASP field in the last 25 years.

1 Introduction

Answer Set Programming (ASP), [1–5] referred to also as Disjunctive Logic Program-
ming under the stable model semantics (DLP),1 is a powerful formalism for Knowledge
Representation and Reasoning.2 Bloomed from the work of Gelfond, Lifschitz [2, 3]
and Minker [6–9] in the 1980ies, it has enjoyed a continuously increasing interest within
the scientific community. One of the main reasons for the success of ASP is the high
expressive power of its language: ASP programs, indeed, allow us to express, in a pre-
cise mathematical sense, every property of finite structures over a function-free first-
order structure that is decidable in nondeterministic polynomial time with an oracle in
NP [10, 11] (i.e., ASP captures the complexity class ΣP

2 = NPNP). Thus, ASP allows
us to encode also programs which cannot be translated to SAT in polynomial time. Im-
portantly, ASP is fully declarative (the ordering of literals and rules is immaterial), and
the ASP encoding of a large variety of problems is very concise, simple, and elegant
[1, 12–15].

Example 1. To see an elegant ASP encoding, consider 3-Colorability, a well-known
NP-complete problem. Given a graph, the problem is to decide whether there exists an

1 Stable models are also named answer sets.
2 A lot of work has been done by the Italian research community both in the broader field

of knowledge representation and non-monotonic reasoning, and in the related field of logic
languages for databases. We refer the reader to Chapter 4 and Chapter 9, respectively, for a
detailed description of the italian contributions in these specific fields which are closely related
and partially overlapping with the ASP contributions.

A. Dovier, E. Pontelli (Eds.): 25 Years of Logic Programming, LNCS 6125, pp. 159–182, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



160 P. Bonatti et al.

assignment of one out of three colors (say, red, green, or blue) to each node such that
adjacent nodes always have different colors. Suppose that the graph is represented by a
set of facts F using a unary predicate node(X) and a binary predicate arc(X, Y ). Then,
the following ASP program (in combination with F) computes all 3-Colorings (as stable
models) of that graph.

r1 : color(X, red) ∨ color(X, green) ∨ color(X, blue) :- node(X).
r2 : :- color(X1, C), color(X2, C), arc(X1, X2).

Rule r1 expresses that each node must either be colored red, green, or blue;3 due to
minimality of the stable models, a node cannot be assigned more than one color. The
subsequent integrity constraint checks that no pair of adjacent nodes (connected by an
arc) is assigned the same color.

Thus, there is a one-to-one correspondence between the solutions of the 3-Coloring
problem and the answer sets of F ∪ {r1, r2}. The graph is 3-colorable if and only if
F ∪ {r1, r2} has some answer set. �

Unfortunately, the high expressiveness of ASP comes at the price of a high computa-
tional cost in the worst case, which makes the implementation of efficient systems a
difficult task. Nevertheless, starting from the second half of the 1990ies, and even more
in the latest years, a number of efficient ASP systems have been released [16–25], that
encouraged a number of applications in many real-world and industrial contexts [26–
33, 40]. These applications have confirmed the viability of the ASP exploitation for
advanced knowledge-based tasks, and stimulated further research in this field.

The Italian research community produced, in the latest 25 years, a significant con-
tribution in the area, addressing the whole spectrum of issues cited above; this con-
tribution ranged from theoretical results and characterizations [34–39] to practical
applications [26–33, 40–45], stepping through language extensions [16, 42, 46–68],
evaluation algorithms and optimization techniques [69–78]. Several of the achieved re-
sults are widely recognized as milestones on the road to the current state of the art; this
is, for instance, the case of the DLV project [16], that produced one of the world leading
ASP systems. The Italian community is currently very active on ASP, it contributes in
pushing forward the state of the art, as witnessed by the most recent results like, e.g.,
the ASP extension to deal with infinite domains which is at the frontier of the ASP
research [59, 61, 62, 64, 65, 68].

The rest of the Chapter is structured as follows: in Section 2, ASP is formally intro-
duced, syntax and semantics of the language are presented; Section 3 focuses on ASP
properties and its theoretical characterizations; Section 4 surveys linguistic extensions;
Section 5 reports on ASP with infinite domains; Section 6 first introduces the general
architecture of ASP systems, and then surveys algorithms and optimization techniques;
Section 7 first describes DLV and number of other ASP-based systems, and then re-
ports on real-world ASP applications; eventually, Section 8 collects a number of further
contributions of the Italian ASP community.

3 Variable names start with an upper case letter and constants start with a lower case letter.



Answer Set Programming 161

2 The ASP Language

In what follows, we provide a formal definition of the syntax and semantics of Answer
Set Programming in the spirit of [3].

2.1 Syntax

Following a convention dating back to Prolog, strings starting with uppercase letters
denote logical variables, while strings starting with lower case letters denote constants.
A term is either a variable or a constant. 4 An atom is an expression p(t1, . . .,tn), where
p is a predicate of arity n and t1,. . . ,tn are terms. A literal l is either an atom p (positive
literal) or its negation not p (negative literal). A set L of literals is said to be consistent
if, for every positive literal l ∈ L, its complementary literal not l is not contained in L.

A disjunctive rule (rule, for short) r is a construct:

a1 ∨ · · · ∨ an :- b1, · · · , bk, not bk+1, · · · , not bm. (1)

where a1, · · · , an, b1, · · · , bm are atoms and n ≥ 0, m ≥ k ≥ 0. The disjunction a1 ∨
· · · ∨ an is called the head of r, while the conjunction b1, ..., bk, not bk+1, ..., not bm

is referred to as the body of r. A rule without head literals (i.e. n = 0) is usually referred
to as an integrity constraint. A rule having precisely one head literal (i.e. n = 1) is called
a normal rule. If the body is empty (i.e. k = m = 0), it is called a fact, and in this case
the “ :- ” sign is usually omitted. If r is a rule of form (1), then H(r) = {a1, . . ., an} is
the set of literals in the head and B(r) = B+(r)∪B−(r) is the set of the body literals,
where B+(r) (the positive body) is {b1,. . . , bk} and B−(r) (the negative body) is {bk+1,
. . . , bm}. An ASP program (also called Disjunctive Logic Program or DLP program)
P is a finite set of rules. A not-free program P (i.e., such that ∀r ∈ P, B−(r) = ∅) is
called positive, and a v-free program P (i.e., such that ∀r ∈ P, |H(r)| ≤ 1) is called
normal logic program.

In ASP, rules are usually required to be safe; the motivation comes from the field of
databases, and for a detailed discussion we refer to [79]. A rule r is safe if each variable
in r also appears in at least one positive literal in the body of r. An ASP program is safe
if each of its rules is safe, and in the following we will only consider safe programs. A
term (an atom, a rule, a program, etc.) is called ground, if no variable appears in it; a
ground program is also called propositional.

2.2 Semantics

We next describe the semantics of ASP programs, which is based on the answer set
semantics originally defined in [3]. However, different to [3] only consistent answer
sets are considered, as it is now standard practice. In ASP the availability of some pre-
interpreted predicates is assumed, such as =, <, >. However, it would also be possible
to define them explicitly as facts, so they are not treated in a special way.

4 Note that, as common in ASP, function symbols are not considered unless explicitly specified
(see Section 5).



162 P. Bonatti et al.

Herbrand Universe and Herbrand Base. For any program P , the Herbrand universe,
denoted by UP , is the set of all constants occurring in P . If no constant occurs in P ,
UP consists of one arbitrary constant. The Herbrand Base BP is the set of all ground
atoms constructible from predicate symbols appearing in P and constants in UP .

Ground Instantiation. For any rule r, Ground(r) denotes the set of rules obtained
by replacing each variable in r by constants in UP in all possible ways. For any pro-
gram P , its ground instantiation is the set grnd(P ) =

⋃
r∈P Ground(r). Note that for

propositional programs, P = grnd(P ) holds.

Answer Sets. For every program P , its answer sets are defined by using its ground in-
stantiation grnd(P ) in two steps: first the answer sets of positive disjunctive programs
are defined, then the answer sets of general programs are defined by a reduction to pos-
itive disjunctive programs and a stability condition. An interpretation I for a program
P is a set of ground atoms I ⊆ BP . Let P be a positive program. An interpretation
X ⊆ BP is called closed under P if, for every r ∈ grnd(P ), H(r) ∩X �= ∅ whenever
B(r) ⊆ X . An interpretation which is closed under P is also called model of P . An
interpretation X ⊆ BP is an answer set for a positive program P , if it is minimal (under
set inclusion) among all interpretations that are closed under P .

Example 2. The positive program P1 = {a ∨ b ∨ c.} has the answer sets {a}, {b}, and
{c}; they are minimal and correspond to the multiple ways of satisfying the disjunction.
Its extension P2 = P1 ∪ { :- a.} has the answer sets {b} and {c}: comparing P2 with
P1, the additional constraint is not satisfied by interpretation {a}. Moreover, the positive
program P3 = P2 ∪ {b :- c. , c :- b.} has the single answer set {b, c}. It is easy to see
that, P4 = P3 ∪ { :- c} has no answer set. �

The reduct or Gelfond-Lifschitz transform [2, 3] of a ground program P w.r.t. a set
X ⊆ BP is the positive ground program PX , obtained from P by: (i) deleting all
rules r ∈ P for which B−(r) ∩ X �= ∅ holds; (ii) deleting the negative body from
the remaining rules. An answer set of a program P is a set X ⊆BP such that X is an
answer set of grnd(P )X .

Example 3. For the negative ground program P5 = {a :- not b.}, A = {a} is the only
answer set, as PA

5 = {a.}. For example for B = {b}, PB
5 = ∅, and so B is not an

answer set. �

3 Properties and Theoretical Characterizations

The Italian research community provided relevant contributions to the study of ASP
and its theoretical characterizations. In this respect, a relevant bunch of results has been
achieved by the work in [34], which has given the theoretical foundation for realiza-
tion of the ASP system DLV system [16]. There, the authors provide: a declarative
characterization of answer sets in terms of unfounded sets; a generalization of the well-
founded (WP ) operator to disjunctive logic programs; a fixpoint semantics for function-
free programs; an algorithm for answer set computation; an in-depth analysis of the
main computational problems related to the concepts. In the this Section, we briefly
discuss these contributions.



Answer Set Programming 163

The definition of unfounded sets for disjunctive logic programs was given as an ex-
tension of the analogous concept defined for (disjunction-free) logic programs [80]. As
for normal logic programs, unfounded sets single out the atoms that are (definitely)
not derivable from a given program w.r.t. a fixed interpretation; thus, according to the
closed-world assumption [81], they single out atoms that can be stated to be false. In
a disjunctive logic program P , the union of unfounded sets for P may not be an un-
founded set for P ; thus, the existence of the greatest unfounded set (i.e., an unfounded
set that contains all other unfounded sets) is not guaranteed as in the case of normal
programs. The authors proved that for unfounded-free interpretations (i.e., interpreta-
tions that do not contain any unfounded atom), the union of different unfounded sets is
guaranteed to be an unfounded set even in the disjunctive case; the greatest unfounded
set of P w.r.t. I , denoted GUSP(I), is the union of all unfounded sets.

Several interesting relationships between answer sets and unfounded sets were also
discovered, which led to a simple, yet elegant, characterization of answer sets in terms
of unfounded sets: the answer sets of a disjunctive program P coincide with the
unfounded-free models of P , and a model of P is an answer set iff the set of false
atoms coincides with the greatest unfounded set.

The authors of [34] defined also a suitable extension of the well-founded operator
WP of Van Gelder et al. [80] to the disjunctive case; this allowed to achieve another
important result: the definition of a fixpoint semantics for disjunctive answer sets in
terms of WP . The set of answer sets of P coincides with the (total) fixpoints of WP .
By exploiting the theoretical results, the authors designed an algorithm for the compu-
tation of the answer set semantics of disjunctive programs. The key idea is that, since
answer sets are total interpretations, computing their entire negative portion is superflu-
ous; rather, it is sufficient to restrict the computation to those negative literals that are
necessary to derive the positive part. To this end, the notion of possibly-true literals is
introduced, which plays a crucial role in the computation. The algorithm is based on
a controlled search in the space of the interpretations, implemented by a backtracking
technique; and the stability of a generated model (answer set candidate) is tested by
checking whether it is unfounded-free. This is done by means of a function that runs
in polynomial time on head-cycle-free (HCF) programs [82, 83]. In the general case,
the algorithm for the computation of answer sets runs in polynomial space and single
exponential time.

4 Language Extensions

The standard language of ASP has been extended in several ways in order to improve
its expressiveness. The Italian community provided contributions regarding two of the
most relevant extensions of ASP: Optimization Constructs and Aggregates.

4.1 Optimization Constructs

The basic ASP language can be used to solve complex search problems, but it does
not natively provide constructs for specifying optimization problems (i.e. problems
where some goal function must be minimized or maximized). In the basic language,



164 P. Bonatti et al.

constraints represent a condition that must be satisfied; for this reason, they are also
called strong constraints. Contrary to strong constraints, weak constraints, introduced
in [16, 46], allow one to express desiderata, that is, conditions that should be satisfied;
their semantics involves minimizing the number of violations, thus allowing to easily
encode optimization problems. From a syntactic point of view, a weak constraint is like
a strong one, where the implication symbol :- is replaced by :∼ . The informal mean-
ing of a weak constraint :∼ B. is “try to falsify B,” or “B should preferably be false.”.
Additionally, a weight and a priority level for the weak constraint may be specified af-
ter the constraint enclosed in brackets (by means of positive integers or variables). If
not specified, the default value for weight and priority level is 1. The answer sets are
considered which minimize the sum of weights of the violated (unsatisfied) weak con-
straints in the highest priority level and, among them, those which minimize the sum of
weights of the violated weak constraints in the next lower level, and so on.

4.2 Aggregates

There are some simple properties, often arising in real-world applications, which can-
not be encoded in a simple and natural manner using ASP [47–50, 84–86]. Especially
properties that require the use of arithmetic operators on a set of elements satisfying
some conditions (like sum, count, or maximum) require rather cumbersome encodings
(often requiring an “external” ordering relation over terms) if one is confined to classic
ASP. Similar observations have also been made in related domains, which led to the def-
inition of aggregate functions. Especially in database systems this concept is at present
both theoretically and practically fully integrated. When ASP systems started to be used
in real applications, the need for aggregates become apparent also here. Hence, ASP has
been extended with special atoms handling aggregate functions [47–50, 87, 88]. Intu-
itively, an aggregate function can be thought of as a (possibly partial) function mapping
multisets of constants to a constant. The most common aggregate functions compute
the number of terms, the sum of non-negative integers, and minimum/maximum term
in a set. Aggregates are especially useful when real-world problems have to be dealt
with.

4.3 Other Extensions

In order to meet requirements of different application domains, ASP was extended in
other directions; thus, there is a number of interesting languages having the roots on
ASP.

For instance, ASP was exploited for defining and implementing the action language
(i.e., a language conceived for dealing with actions and change)K [51], while, in [52] a
framework for abduction with penalization was proposed and implemented as a front-
end for the ASP system DLV. Other ASP extensions were conceived to deal with On-
tologies (i.e. abstract models of a complex domain). In particular, in [42] an ASP-based
language for ontology specification and reasoning was proposed, which extends ASP
in order to deal with complex real-world entities, like classes, objects, compound ob-
jects, axioms, and taxonomies. In [53] an extension of ASP, called HEX-Programs,
which supports higher-order atoms as well as external atoms was proposed. External



Answer Set Programming 165

atoms allows one to embed external sources of computation in a logic program. Thus,
HEX-programs are useful for various tasks, including meta-reasoning, data type ma-
nipulations, and reasoning on top of Description Logics (DL) [89] ontologies. Tem-
plate predicates were introduced in [54]; they are special intensional predicates defined
by means of generic reusable subprograms, which were conceived for easing coding
and improving readability and compactness of programs, and allowing more effective
code reusability. An extension of ASP by the introduction of the notion of resource
is proposed in [55]. The resulting framework, named RASP, declaratively supports
quantitative reasoning on consumption and production of resources. Various forms of
preferences, policies, and cost-based criteria can be used to model the processes that
produce/consume resources [56].

In [57] standard ASP was enriched by introducing consistency-restoring rules (cr-
rules) and preferences, leading to the CR-Prolog language. Basically, in this language,
besides standard ASP rules one may specify CR-rules, that are expressions of the form:
r:a1 ∨ . . .∨ an :-+body (n ≥ 1). The intuitive meaning of CR-rule r is: if body is
true then one of a1, . . . , an is “possibly” believed to be true. Importantly, the name
of CR-prolog rules can be directly exploited to specify preferences among them. In
particular, if the fact prefer(r1, r2) is added to a CR-program, then rule r1 is preferred
over rule r2. This allows one to encode partial orderings among preferred answer sets
by explicitly writing preferences among CR-rules.

In [58] Normal Form Nested (NFN) programs, a non-propositional language similar
to Nested Logic Programming (NLP) [90] was proposed. NFN programs often allows
for more concise ASP representations by permitting a richer syntax in rule heads and
bodies. It is worth noting that, NFN programs do allow for variables, whereas NLP are
propositional. Since with the presence of variables domain independence is no longer
guaranteed, the class of safe NFN programs was defined. Moreover, it was shown that
for NFN programs which are also NLPs, the new semantics coincides with the one
of [90]; while keeping the standard meaning of answer sets on ASP programs with
variables. Finally, an algorithm which translates NFN programs into ASP programs
was provided.

In [91] the concept of ordered disjunctions was extended to cardinality constraints.
This paved the way to the definition of a policy description language that allows to
express preferences among sets of objects and to handle advanced policy description
specifications. The work followed some proposals aiming at introducing preferences in
policy description languages [92–94].

5 ASP with Infinite Domains

The first ASP languages were based on extensions of Datalog, that is, function-free
logic programs.5 From a syntactic viewpoint, the addition of functions is obtained by
generalizing the notion of term: a term is either a simple term or a functional term. A
simple term (see Section 2) is either a constant or a variable. If t1 . . . tn are terms and
f is a function symbol (functor) of arity n, then: f(t1, . . . , tn) is a functional term. It

5 In this section we use the term function to refer to uninterpreted functions (or constructors) as
in pure logic programming.



166 P. Bonatti et al.

is easy to see that such an extension make UP , BP and grnd(P ) possibly infinite, and
enhances the expressiveness of ASP. Indeed, without function symbols, ASP programs
can only reason about finite domains, and have limited data modeling abilities. Such
restrictions were motivated by complexity considerations, as answer set reasoning with
unrestricted first-order normal programs is Π1

1 -complete, and hence highly undecid-
able. However, by introducing suitable alternative syntactic restrictions on the usage of
functions, it is possible to improve the tradeoff between complexity and expressiveness.

In particular, the introduction of function symbols in ASP languages leads to sev-
eral benefits [59]: (i) Data encapsulation support, as function symbols are the main
logic programming construct for data abstraction [95]; (ii) Enhanced problem solv-
ing power, as the class of solvable problems can be extended beyond the second level
of the polynomial hierarchy (that is, the class of problems solvable with Disjunctive
Datalog with negation); (iii) Support for recursive data structures, such as lists, XML
documents, etc. Such data structures are extremely common in modern applications and
functions constitute the most natural way of encoding them; (iv) Simulation and exten-
sion of description logics [96]; in this context, function symbols are needed to encode
existential quantification through skolemization. Such work is of strategic importance
given the important role that description logics play in the semantic web.

The first class of computationally well-behaved ASP programs with function sym-
bols, called finitary programs, is due to the Italian logic programming community. They
were introduced in [60], and soon after were followed by ω-restricted programs [97].
The latter address the challenges of ASP with functions only partially. The answer sets
of ω-restricted programs are all finite, and recursion over recursive data structures is not
allowed—therefore ω-restricted programs address essentially data encapsulation only.
Finitary programs constitute a more ambitious effort, capable of supporting ASP pro-
grams with infinite and infinitely many answer sets, and a large class of recursive pred-
icates, including the standard list- and tree-manipulation programs [59].

Finitary programs are characterized by two restrictions. To simplify the presentation
here we deal only with normal (i.e. disjunction-free) logic programs—see [61, 62] for
an account of disjunctive programs. The first restriction applies to recursion, and is
expressed in terms of the notion of dependency graph of a program P , whose set of
nodes is the Herbrand base BP . The dependency graph contains a directed edge (A, A′)
if and only if there exists a rule r ∈ grnd(P ) such that A ∈ H(r) and A′ ∈ B(r). The
edge is labelled positive if A′ ∈ B+(r), and negative if A′ ∈ B−(r). Then we say that
A depends on A′ if there exists a path from A to A′ in the dependency graph.

Now we are ready to formulate the first restriction: a program P is finitely recursive
iff every atom in the Herbrand base of P depends only on finitely many other ground
atoms. Finitely recursive programs enjoy a number of nice theoretical properties proved
in [61]:6

– they enjoy an analog of the compactness property of first-order logic;
– inconsistency checking and skeptical inference are semidecidable;
– the semantics of a finitely recursive program P can be approximated through a

chain of finite programs P1 ⊆ P2 ⊆ · · · ⊆ Pi ⊆ · · · ⊆ grnd(P ).

6 Another contribution of the Italian community; best paper award at ICLP 2007.



Answer Set Programming 167

The second restriction is based on odd-cycles, that are cycles in the dependency
graph containing an odd number of negative edges. A normal program is finitary iff it
is finitely recursive and its dependency graph contains only finitely many odd-cycles.

Finitary programs are very expressive; they comprise a number of useful predi-
cates, including the standard list manipulation predicates, QBF metainterpreters, and
programs for reasoning about actions, just to name a few [59]. Moreover, they enjoy
very good computational properties [59, 63]. If the set of atoms occurring in an odd-
cycle is given, then: (a) ground credulous queries and ground skeptical queries are all
decidable; (b) unrestricted ground credulous queries and ground skeptical queries are
semidecidable.

Another Italian contribution in this field is the class of finitely ground programs
[64]. They are characterized by means of an intelligent grounding transformation that
turns any given disjunctive program P with functions into an equivalent ground pro-
gram; P is finitely ground if this transformation yields a finite program. Finitely ground
programs—due to the nature of the intelligent grounding—are well-suited for bottom-
up evaluation, while finitary programs are naturally well-suited for top-down evalua-
tions. As a consequence finitely ground programs are easier to support in systems like
DLV that adopt a bottom-up grounding approach. Finitely ground programs have no
restrictions on odd-cycles (and do not need them to be fed to the reasoner as an input).
On the other hand, they are required to be safe, which rules out a number of interest-
ing programs, such as list- and tree-manipulation programs. Moreover, like ω-restricted
programs, their semantics is always finite, both in terms of the size and the number of
answer sets.

In an interesting recent work [65], however, the duality between the two program
classes is starting to be reconciled, by showing how given a positive finitely recursive
program P and a query Q one can construct—by a magic set transformation—a finitely
ground program P ′ that yields the same answer to Q as P .

The classes of finitary and finitely ground programs, unfortunately, are not decid-
able. This result motivated further works aimed at characterizing decidable classes of
well-behaved programs with function symbols. The fathers of finitely ground programs
introduced finite domain programs, a subclass of finitely ground programs that can be
effectively recognized [64].

This line of research is having an impact on the activity of other groups outside Italy.
In [98], an extension of finite domain programs is proposed. In [96, 99, 100], another
family of effectively recognizable, well-behaved programs is investigated. This is a very
interesting line of investigation, as it covers description logics, and it may eventually
lead to interesting nonmonotonic extensions thereof. Moreover, these works adopt a
different strategy for achieving inference decidability, based on a tree-model property
and on a reasoning method analogous to blocking.

5.1 Calculi and Implementations

Further contributions stemming from the Italian community comprise resolution-based
calculi for skeptical and credulous ASP reasoning with function symbols. Skeptical res-
olution [66] consists of five inference rules: resolution, negation as failure, a structural
rule for removing successful literals, a rule for detecting contradictions, and a split rule



168 P. Bonatti et al.

Input
program OutputModelGeneratorInstantiator

StabilityChecker

Fig. 1. General architecture of an ASP system

for generating new hypotheses and carrying out reasoning by cases. The skeptical reso-
lution calculus is complete for all finitely recursive programs [61]. Recently, a credulous
resolution calculus [67] was theoretically studied and experimentally evaluated on a
few standard problems with encouraging results that deserve further investigations. The
main advantage of resolution calculi is that they need no prior instantiation (ground-
ing) of the input program; instantiation is incremental and on-demand, as in classical
resolution. Support for function symbols is also being introduced in DLV for finitely
ground programs [68]. We expect it to be soon extended to finitary programs by means
of suitable extensions of the magic sets transformation adopted in [65].

5.2 Open Issues

ASP with infinite domains is a lively area which is being further developed by several
research groups across the world. The main ongoing investigations concern:

– extending the known decidable classes of well-behaved ASP programs;
– the systematic derivation of new classes of well-behaved programs with functions

through the composition of modules belonging to known well-behaved classes
[101];

– the development and improvement of reasoning mechanisms for ASP with infinite
domains;

– the relationships between finitary and finitely ground programs.

6 Algorithms and Optimization Techniques

The general architecture of an ASP system, depicted in Figure 1, helps in understanding
the evaluation flow of the typical computation carried out for computing the answer
sets of an ASP program. Upon startup, the input specified by the user is parsed and
transformed into the internal data structures of the system.7

In general, an input program P contains variables, and the first step of a computa-
tion of an ASP system is to eliminate these variables, generating a ground instantiation
grnd(P ) of P . This variable-elimination process is called instantiation of the program
(or grounding), and is performed by the Instantiator module (see Figure 1). A naı̈ve
Instantiator would produce the full ground instantiation grnd(P ), which is, however,
undesirable from a computational point of view, as in general many useless ground rules

7 The input is usually read from text files, but some systems also interface to relational databases
for retrieving facts stored in relational tables.



Answer Set Programming 169

would be generated. An ASP system, therefore, employs a more sophisticated proce-
dure geared towards keeping the instantiated program as small as possible. A necessary
condition is, of course, that the instantiated program must have the same answer sets as
the original program; however, it should be noted that the Instantiator solves a problem
which is in general EXPTIME-hard, the produced ground program being potentially
of exponential size with respect to the input program. Optimizations in the Instantiator
therefore often have a big impact, as its output is the input for the following modules,
which implement computationally hard algorithms. Moreover, if the input program is
normal and stratified, the Instantiator module is, in some cases, able to directly compute
its answer sets (if they exist).

The subsequent computations, which constitute the non-deterministic part of an ASP
system, are then performed on grnd(P ) by both the Model Generator and the Model
Checker. Roughly, the former produces some “candidate” answer set, whose stability
is subsequently verified by the latter. Model generation is the non-deterministic core
of an ASP system, and it is usually implemented as a backtracking search similar to
the Davis-Putnam-Logemann-Loveland (DPLL) procedure [102] for SAT solving. Ba-
sically, starting from the empty (partial) interpretation, the ModelGenerator module
repeatedly assumes truth-values for atoms (branching step), subsequently computing
their deterministic consequences (propagation step). This is done until either an an-
swer set candidate is found or an inconsistency is detected. Candidate answer sets are
then checked by exploiting the Model Checker module; whereas, if an inconsistency
is detected, chosen literals have to be undone (backtracking). For disjunctive programs
model cheking is as hard as the problem solved by the Model Generator, while it is
trivial for non-disjunctive programs. Finally, once an answer set has been found, ASP
systems typically print it in text format, and possibly the Model Generator resumes in
order to look for further solutions.

All the aspects of the evaluation of ASP programs have been subject of analysis by
the Italian research community; the obtained results, divided by evaluation task, are
surveyed in the following.

Instantiation. The first contributions in this respect date back to 1999, when some op-
timization techniques, based on a rewriting of the input program, were proposed aiming
at reducing the size of the instantiation generated by the grounder [69]. Since computing
all the possible instantiations of a rule is, basically, analogous to computing all the an-
swers of a conjunctive query joining the extensions of literals of the rule body, in [70]
a new join-ordering technique was proposed, that sensibly improves the instantiation
procedures of ASP systems. Some year later, in [71] a new backjumping technique for
the instantiation of a rule was proposed which allows for reducing both the size of the
generated grounding and the time needed for producing it. All the above mentioned
techniques were incorporated in the grounder of the DLV system, and allowed for rel-
evant improvements of the performance of the system. Notably, to our knowledge, the
technique in [71] has been successfully exploited also by other two grounders, namely
GrinGo [103], and GIDL [104].

In the last years, in order to exploit the power of modern multi-core/multiprocessor
computers, a number of strategies for the parallelization of the instantiation procedure



170 P. Bonatti et al.

have been proposed [72, 73]. In particular, three levels of parallelism can be exploited
during the instantiation process, namely, components, rules and single rule level. The
first two levels were first employed in [72] while the third one was presented in [73].
Also these techniques have been implemented into the DLV grounder, and the result-
ing parallel instantiator proved to be effective on modern multi-core machines when
handling both real-world and classical problem instances [72, 73, 105].

A distributed instantiator working on a Beowulf [106] cluster was presented in [107];
further works appear in [108].

Model Generation. The Italian research community provided relevant contribution re-
garding all the aspects of model generation. About the propagation step, peculiar proper-
ties of ASP programs were exploited in [74, 109], that allow to prune the search space by
combining extension of the well-founded operator for disjunctive programs with a num-
ber of techniques based on disjunctive ASP program properties. The efficiency of the
whole model generation process depends also on two crucial features: a good heuristic
(branching rule) to choose the branching literal (i.e., the criterion determining the literal
to be assumed true at a given stage of the computation); and a smart recovery procedure
for undoing the choices causing inconsistencies. To this end, both look-ahead [75] and
look-back [76, 77] techniques and heuristics specifically conceived for enhancing the
model generation process were proposed and implemented in the state-of-the-art ASP
system DLV [16]. In a lookahead heuristic [75] each possible choice literal is tenta-
tively assumed, its consequences are computed, and some characteristic values on the
result are recorded. The look-ahead heuristics of [75] “layers” several criteria based on
peculiar properties of ASP, and basically drives the search towards “supported” interpre-
tations (since answer sets are supported interpretations (cfr. [34, 110, 111]). In a look-
back heuristics usually choices are made in such a way that the atoms most involved
in conflicts are chosen first. Motivated by heuristics implemented in SAT solvers like
Chaff [112], a family of new look-back heuristics tailored for disjunctive ASP programs
were proposed in [77]. Look-back heuristics are mainly exploited in conjunction with
backjumping, where the set of chosen literals that are relevant for an inconsistency are
detected, and the system goes back in the search until at least one choice that “entail”
the inconsistency is undone. In [76] a reason calculus that allows for determining the
relevance for an inconsistency was proposed; here the information about the choices
(“reasons”) whose truth-values have caused truth-values of other deterministically de-
rived atoms is collected and exploited for backjumping.

Native ASP systems exploit backtracking search algorithms that work directly on the
ground instantiation of the input program, like the ones described above. An alternative
approach to model generation is based on a rewriting into a propositional formula which
is then evaluated by a boolean satisfiability solver for finding answer sets. Giunchiglia
and Maratea, in collaboration with the members of the Texas Action Group at Austin,
led by Prof. Vladimir Lifschitz, designed a SAT-based approach to normal logic pro-
grams [21, 113, 114], which is now considered the reference SAT-based work in ASP.
A comparison among the techniques employed by ASP systems underlying strengths
and weaknesses of each approach was provided in [115, 116].

Techniques for parallel evaluation of ground ASP programs were studied in [117,
118] and, on clusters, in [107, 108]. Furthermore, going beyond the classical methods



Answer Set Programming 171

of computing the answer sets of a logic program, in [119, 120] a method is presented
that does not require a preliminary grounding phase.

Model Checking. is a crucial step of the computation of the answer sets. There are two
main reason for the importance of the model checking step: the exponential number of
possible models (model candidates); and the hardness of stable model checking. Note
that, when disjunction is allowed in the head, deciding whether a given model is a
stable model of a propositional ASP program is co-NPcomplete [11]. In [78] a new
transformation T , which reduces stable model checking to UNSAT, i.e., to deciding
whether a given CNF formula is unsatisfiable, is introduced. Thus, the stability of an
answer set candidate M of a program P can be verified by calling a SAT solver on the
CNF formula obtained by applying T to P . The transformation is very efficient: it runs
in logarithmic space and no new symbol is added. This approach to model checking
was implemented in the ASP system DLV [16] and some experiments confirmed its
efficacy [78].

7 Systems and Applications

Several ASP systems are available nowadays, and a number of practically relevant
real-world applications of ASP have been developed. In the following, we first present
DLV [16], a state-of-the-art ASP systems, which is widely used all over the world and
is actively developed by Italian researchers; then we mention some relevant systems
and application based on ASP.

7.1 The DLV System

The DLV system [16] is widely considered one of the state-of-the-art implementations
of answer set programming. The development of DLV started at the end of 1996, within
a research project funded by the Austrian Science Funds (FWF) and led by Nicola
Leone at the Vienna University of Technology. The first stable release became available
in 1997, and at present, DLV is the subject of an international cooperation between the
University of Calabria and the Vienna University of Technology. After its first release,
the DLV system has been significantly improved over and over in the last years. In par-
ticular, the language of DLV was enriched in several ways and currently supports the
main ASP extensions: disjunction, aggregates, weak-constraints, and function symbols
(see Section 4 and Section 5). Relevant optimization techniques have been incorpo-
rated into the DLV engine, including database techniques for efficient instantiation,
advanced pruning operators, look-ahead and look-back techniques for model genera-
tion, and innovative techniques for answer-set checking (see Section 6). Moreover, in
order to deal with data-intensive applications a database oriented version of DLV, called
DLVDB, was recently proposed [121, 122]. DLVDB is able to evaluate large amount
of data by exploiting an evaluation strategy working mostly onto the database, where
input data reside. DLVDB embodies some query-oriented optimization strategies, like
magic-sets [44], capable of significantly improving query evaluation performances. As
a result, at the time being, DLV is generally recognized to be a state-of-the-art imple-
mentation of disjunctive ASP. Importantly, DLV is widely used by researchers all over



172 P. Bonatti et al.

the world, it is employed in real-world applications (see next Section), and it is com-
petitive from the viewpoint of efficiency with the most advanced systems in the area of
Answer Set Programming [13, 123].

7.2 ASP-Based Products

In this section three industrial products strongly based on ASP, and, in particular, on
DLV are presented, namely: OntoDLV [41, 42], OLEX [30, 31], HıLεX [32, 33].

• OntoDLV [41, 42] is a system for ontologies specification and reasoning. The lan-
guage of OntoDLV is an extension of (disjunctive) ASP with all the main ontology
constructs including classes, inheritance, relations, and axioms. Importantly, OntoDLV
supports a powerful interoperability mechanism with OWL, allowing the user to retrieve
information from external OWL Ontologies and to exploit this data in OntoDLP on-
tologies and queries. OntoDLV facilitates the development of complex applications in a
user-friendly visual environment; it features a rich Application Programming Interface
(API) [124], and it is endowed with a robust persistency-layer for saving information
transparently on a DBMS, and it seamlessly integrates DLV [16].
• OLEX [30, 31] (OntoLog Enterprise Categorizer System) is a corporate classi-

fication system supporting the entire content classification life-cycle, including docu-
ment storage and organization, ontology construction, pre-processing and classification.
OLEX exploits a reasoning-based approach to text classification which synergically
combines: (i) ontologies for the formal representation of the domain knowledge; (ii)
pre-processing technologies for a symbolic representation of texts and (iii) ASP as cat-
egorization rule language. Logic rules, indeed, provides a natural and powerful way to
encode how document contents may relate to ontology concepts.
• HıLεX [32, 33] is an advanced system for ontology-based information extraction

from semi-structured and unstructured documents. HıLεX implements a semantic ap-
proach to the information extraction problem able to deal with different document for-
mats (html, pdf, doc, ...). HıLεX is based on OntoDLP for describing ontologies, and
supports a language that is founded on the concept of ontology descriptor. A “descrip-
tor” looks like a production rule in a formal attribute grammar, where syntactic items
are replaced by ontology elements. Each descriptor allows us to describe: (i) an on-
tology object in order to recognize it in a document; or (ii) how to “generate” a new
object that, in turn, may be added in the original ontology. The obtained specification is
rewritten in ASP and evaluated by means of the DLV system.

7.3 Applications

We briefly illustrate here a a number of real-world applications based on DLV or on
DLV-based products. They can be grouped in two classes: industrial applications of
DLV (developed by the company Exeura s.r.l) and other applications [40].

Industrial Applications. The main commercial applications exploiting DLV are the
following:

• Team Building in the Gioia-Tauro Seaport. A system based on DLV has been de-
veloped to automatically produce an optimal allocation of the available personnel of the



Answer Set Programming 173

international seaport of Gioia Tauro [125]. The system currently employed by the trans-
shipment company ICO BLG can build new teams satisfying a number of constraints or
complete the allocation automatically when the roles of some key employees are fixed
manually.
• E-Tourism. IDUM [26] is an intelligent e-tourism system. IDUM system helps both

employees and customers of a travel agency in finding the best possible travel solution
in a short time. In IDUM an ontology modeling the tourism scenario was developed
by using OntoDLV, and is automatically filled by processing the offers received by
a travel agent with HıLεX. IDUM mimics the behavior of the typical employee of a
travel agency by running a set of specifically devised logic programs that reason on the
information contained in the tourism ontology. The result is a system that combines the
speed of computers with the knowledge of a travel agent.
• Automatic Itinerary Search. In this application, a web portal conceived for better

exploiting the whole transportation system of the Italian region Calabria, including both
public and private companies. The system is very precise; it tells you where and what
time to catch your bus/train, where to get off and transfer, how long your trip will take,
walking directions etc. A set of specifically devises ASP programs are used to build the
required itineraries.
• e-Government. In this field, an application of the OLEX system was developed, in

which legal acts and decrees issued by public authorities are classified. The system was
validated with the help of the employees of the Calabrian Region administration, and it
performed very well by obtaining an f-measure of 92% and a mean precision of 96% in
real-world documents.
• e-Medicine. OLEX was employed for developing a system able to classify auto-

matically case histories and documents containing clinical diagnoses. The system was
commissioned, with the goal of conducting epidemiological analyses, by the ULSS n.8
(which is, a local authority for health services) of the area of Asolo, in the Italian region
Veneto. The system has been deployed and is currently employed by the personnel of
the ULSS of Asolo.

Other Applications. The European Commission funded a project on Information In-
tegration, which produced a sophisticated and efficient data integration system, called
INFOMIX, which uses DLV at its computational core [28]. The powerful mechanisms
for database interoperability, together with magic sets [43, 44] and other database op-
timization techniques, which are implemented in DLV, make DLV very well-suited
for handling information integration tasks. And DLV (in INFOMIX) was succesfully
employed to develop in a real-life integration system for the information system of the
University of Rome “La Sapienza” The DLV system has been experimented also with
an application for Census Data Repair [29], in which errors in census data are identified
and eventually repaired.

DLV has been employed at CERN, the European Laboratory for Particle Physics,
for an advanced deductive database application that involves complex knowledge ma-
nipulation on large-sized databases.

The Polish company Rodan Systems S.A. has exploited DLV in a tool for the detec-
tion of price manipulations and unauthorized use of confidential information, which is
used by the Polish Securities and Exchange Commission.



174 P. Bonatti et al.

In the area of self-healing Web Services, moreover, DLV is exploited for implement-
ing the computation of minimum cardinality diagnoses [45].

In [126] MASEL, A Multi Agent System for E-Learning and Skill Management has
been proposed. In MASEL personalized learning paths are automatically composed by
exploiting suitable ASP programs run on the DLV system. A prototype tool implement-
ing MASEL using JADE (Java Agent DEvelopment Framework) was developed.

In [127] a complete on-line exam taking portal has been described, called EXAM.
The system allows teachers and students to be assisted in the whole process of as-
sessment test building, exam taking, and test correction. The system exploits ASP for
automatically generating assessment tests based on user defined constraints: a teacher
is made able to build up an assessment test template; her preferences are then translated
into a logic specification executable by DLV.

The cooperation between the University of Milan-Bicocca and the University
of Potsdam led to the implementation of intelligent monitoring systems based on
gringo/clasp [22], where the ASP reasoning module is crucial (see, for instance,
[128, 129]).

Italian researchers have exploited ASP capabilities also for diagnosis [130] and e-
ealth [131] applications.

8 Further Contributions

This Section briefly mentions several other contributions to the ASP field due to the
work of Italian researchers.

In [132, 133], an integrated information retrieval agent based on an ASP inference
engine, named GSA2, was presented. The GSA2 approach is general and reusable, and
the result constitutes a good example of real implementation of agents based on logics.

The first purely syntactic characterization of answer sets in the context of logic pro-
gramming was introduced in [35]. In the same work, it was pointed out explicitly that
answer sets are supersets of the well-founded model (wfm) and can thus be in prin-
ciple computed after a simplification w.r.t. the wfm (this property was independently
discovered in [134]). In [36], the authors introduced a graphical representation of ASP
programs, called Extended Dependency Graph (EDG). EDG is defined on a simplified
form of programs called kernel. In [37, 38], kernel programs were exploited for defining
an algorithm for answer set computation, as answer sets can be characterized as admis-
sible colorings of the EDG. Moreover, the kernel normal form and other normal forms
of ASP programs were studied in [39]. In [135], some features that graph representa-
tions of ASP programs should exhibit, especially isomorphism between a program and
the corresponding graph, were identified. It turns out that isomorphism is possible only
if the graph representation formalism is able to distinguish the cycles occurring in the
program, and the different connections among them. Investigating the program structure
is also important for understanding the effects of updates of given program on the exis-
tence, the number and the content of answer sets. In particular, a graph representation
can be useful to understand what happens after asserting lemmas [136] and/or adding
new rules [137]. The work [138] showed that representations like the EDG (or others
that have been proposed in the literature), which are oriented to atoms and rules, can



Answer Set Programming 175

be usefully condensed into more compact representations, called Cycle Graph, which
is oriented to components. In the Cycle Graph, vertices are not atoms or rules, but sig-
nificant subprograms. The Cycle Graph allows the relationship between the syntax of
programs and the existence of answer sets to be investigated, and thus can be the basis
of software engineering methodologies for answer set programming. In [139] incon-
sistency and incompleteness in data integration are handled by introducing an “helper
model” acting as a mediator between the global conceptual data model and the data
sources.

ASP was exploited as a core inference engine for a system for qualitative manage-
ment of probabilistic uncertainty [140–142]. The system supports basic reasoning tasks
by mechanizing various notions of comparative preference notions that represent plau-
sible models of cognitive unconscious humans mental processes.

ASP was integrated with arithmetic and finite domain constraint solvers in [143].
The benefits, besides enhanced expressiveness, comprise reduced memory requirements
because the part of a program involving constraints needs not be instantiated. Conse-
quently, it was possible to extend significantly the size of the problems solved by an
ASP planner for Space Shuttle operations (see also [144]).

The mutual interdependence of ASP-based agents has been investigated [145–148]
at Università Mediterranea of Reggio Calabria. In [145], agreements possibly reached
by a collection of agents are represented. In [146, 147], a community of agents where
individual conclusions rely on others ones is modeled by nested social predicates. This
language is refined in [148] by adding social aggregates and a form of reasoning where
models include also “unfounded” interpretations in case they are mutually supported by
multiple agents. Finally, a form of preferences under uncertainty is modeled under ASP
in [149].

References

1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. CUP
(2003)

2. Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programming. In:
ICLP/SLP 1988, pp. 1070–1080. MIT Press, Cambridge (1988)

3. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive
Databases. NGC 9, 365–385 (1991)

4. Lifschitz, V.: Answer Set Planning. In: ICLP 1999, pp. 23–37 (1999)
5. Marek, V.W., Truszczyński, M.: Stable Models and an Alternative Logic Programming

Paradigm. In: The Logic Programming Paradigm – A 25-Year Perspective, pp. 375–398
(1999)

6. Minker, J. (ed.): Foundations of Deductive Databases and Logic Programming, Washington,
DC (1988)

7. Minker, J., Rajasekar, A.: A Fixpoint Semantics for Disjunctive Logic Programs. JLP 9(1),
45–74 (1990)

8. Lobo, J., Minker, J., Rajasekar, A.: Foundations of Disjunctive Logic Programming. The
MIT Press, Cambridge (1992)

9. Fernández, J.A., Minker, J.: Semantics of Disjunctive Deductive Databases. In: Hull, R.,
Biskup, J. (eds.) ICDT 1992. LNCS, vol. 646, pp. 21–50. Springer, Heidelberg (1992)

10. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM TODS 22(3), 364–418 (1997)



176 P. Bonatti et al.

11. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and Expressive Power of Logic
Programming. ACM Computing Surveys 33(3), 374–425 (2001)

12. Eiter, T., Faber, W., Leone, N., Pfeifer, G.: Declarative Problem-Solving Using the DLV
System. In: Logic-Based Artificial Intelligence, pp. 79–103. Kluwer, Dordrecht (2000)

13. Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., Truszczyński, M.: The
First Answer Set Programming System Competition. In: Baral, C., Brewka, G., Schlipf, J.
(eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 3–17. Springer, Heidelberg (2007)

14. Zhao, Y.: The Second Answer Set Programming Competition homepage (2009x),
http://www.cs.kuleuven.be/˜dtai/ASP-competition

15. Dovier, A., Formisano, A., Pontelli, E.: An Empirical Study Of Constraint Logic Program-
ming And Answer Set Programming Solutions Of Combinatorial Problems. J. Exp. Theor.
Artif. Intell. 21(2), 79–121 (2009)

16. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
System for Knowledge Representation and Reasoning. ACM TOCL 7(3), 499–562 (2006)

17. Simons, P.: Smodels Homepage (since (1996),
http://www.tcs.hut.fi/Software/smodels/

18. Simons, P., Niemelä, I., Soininen, T.: Extending and Implementing the Stable Model Se-
mantics. AI 138, 181–234 (2002)

19. Zhao, Y.: ASSAT homepage (since 2002), http://assat.cs.ust.hk/
20. Lin, F., Zhao, Y.: ASSAT: Computing Answer Sets of a Logic Program by SAT Solvers. In:

AAAI 2002, Edmonton, Alberta, Canada. AAAI Press / MIT Press (2002)
21. Babovich, Y., Maratea, M.: Cmodels-2: SAT-based Answer Sets Solver Enhanced to Non-

tight Programs (2003),
http://www.cs.utexas.edu/users/tag/cmodels.html

22. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-Driven Answer Set Solving.
In: IJCAI 2007, pp. 386–392 (2007)

23. Janhunen, T., Niemelä, I., Seipel, D., Simons, P., You, J.H.: Unfolding Partiality and Dis-
junctions in Stable Model Semantics. ACM TOCL 7(1), 1–37 (2006)

24. Lierler, Y.: Disjunctive Answer Set Programming via Satisfiability. In: Baral, C., Greco,
G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 447–451.
Springer, Heidelberg (2005)

25. Drescher, C., Gebser, M., Grote, T., Kaufmann, B., König, A., Ostrowski, M., Schaub, T.:
Conflict-Driven Disjunctive Answer Set Solving. In: Proceedings of the Eleventh Interna-
tional Conference on Principles of Knowledge Representation and Reasoning (KR 2008),
Sydney, Australia, pp. 422–432. AAAI Press, Menlo Park (2008)

26. Ielpa, S.M., Iiritano, S., Leone, N., Ricca, F.: An ASP-Based System for e-Tourism. In: Er-
dem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 368–381. Springer,
Heidelberg (2009)

27. Leone, N., Ricca, F., Terracina, G.: An ASP-Based Data Integration System. In: Erdem,
E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 528–534. Springer,
Heidelberg (2009)

28. Leone, N., Gottlob, G., Rosati, R., Eiter, T., Faber, W., Fink, M., Greco, G., Ianni, G., Kałka,
E., Lembo, D., Lenzerini, M., Lio, V., Nowicki, B., Ruzzi, M., Staniszkis, W., Terracina, G.:
The INFOMIX System for Advanced Integration of Incomplete and Inconsistent Data. In:
SIGMOD 2005, Baltimore, Maryland, USA, pp. 915–917. ACM Press, New York (2005)

29. Franconi, E., Palma, A.L., Leone, N., Perri, S.: Census Data Repair: A Challenging Appli-
cation of Disjunctive Logic Programming. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR
2001. LNCS (LNAI), vol. 2250, pp. 561–578. Springer, Heidelberg (2001)

30. Cumbo, C., Iiritano, S., Rullo, P.: OLEX – A Reasoning-Based Text Classifier. In: Alferes,
J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 722–725. Springer,
Heidelberg (2004)

http://www.cs.kuleuven.be/~dtai/ASP-competition
http://www.tcs.hut.fi/Software/smodels/
http://assat.cs.ust.hk/
http://www.cs.utexas.edu/users/tag/cmodels.html


Answer Set Programming 177

31. Rullo, P., Cumbo, C., Policicchio, V.L.: Learning Rules With Negation For Text Catego-
rization. In: ACM Symposium on Applied Computing (SAC 2007), Seoul, Korea, 11-15,
pp. 409–416. ACM, New York (2007)

32. Ruffolo, M., Manna, M.: HiLeX: A System for Semantic Information Extraction from
Web Documents. In: ICEIS. Lecture Notes in Business Information Processing, vol. (3),
pp. 194–209. Springer, Heidelberg (2008)

33. Ruffolo, M., Leone, N., Manna, M., Saccà, D., Zavatto, A.: Exploiting ASP for Semantic
Information Extraction. In: Proceedings ASP 2005 - Answer Set Programming: Advances
in Theory and Implementation, Bath, UK, pp. 248–262 (2005)

34. Leone, N., Rullo, P., Scarcello, F.: Disjunctive Stable Models: Unfounded Sets, Fixpoint
Semantics and Computation. Information and Computation 135(2), 69–112 (1997)

35. Costantini, S.: Contributions to the stable model semantics of logic programs with negation.
Theoretical Computer Science 149 (1995); preliminary version in Proc. of LPNMR93

36. Brignoli, G., Costantini, S., D’Antona, O., Provetti, A.: Characterizing and Computing Sta-
ble Models of Logic Programs: the Non–stratified Case. In: Proc. of the 1999 Conference
on Information Technology, Bhubaneswar, India (1999)

37. Bertoni, A., Grossi, G., Provetti, A., Kreinovich, V., Tari, L.: The Prospect for Answer Set
Computation by a Genetic Model. In: AAAI Spring Symposium ASP 2001, pp. 1–5. AAAI
Press, Menlo Park (2001)

38. Grossi, G., Marchi, M., Pontelli, E., Provetti, A.: Improving the AdjSolver Algorithm for
ASP Kernel Programs. In: ASP 2007, 4th International Workshop on Answer Set Program-
ming at ICLP 2007 (2007)

39. Costantini, S., Provetti, A.: Normal Forms for Answer Sets Programming. J. on TPLP 5(6)
(2005)

40. Grasso, G., Iiritano, S., Leone, N., Ricca, F.: Some DLV Applications for Knowledge
Management. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753,
pp. 591–597. Springer, Heidelberg (2009)

41. Ricca, F., Gallucci, L., Schindlauer, R., Dell’Armi, T., Grasso, G., Leone, N.: OntoDLV: an
ASP-based System for Enterprise Ontologies. Journal of Logic and Computation (2009)

42. Ricca, F., Leone, N.: Disjunctive Logic Programming With Types And Objects: The Dlv+

System. Journal of Applied Logics 5(3), 545–573 (2007)
43. Cumbo, C., Faber, W., Greco, G., Leone, N.: Enhancing the Magic-Set Method for Disjunc-

tive Datalog Programs. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132,
pp. 371–385. Springer, Heidelberg (2004)

44. Faber, W., Greco, G., Leone, N.: Magic Sets and their Application to Data Integration.
JCSS 73(4), 584–609 (2007)

45. Friedrich, G., Ivanchenko, V.: Diagnosis From First Principles For Workflow Executions.
Tech. Rep.,
http://proserver3-iwas.uni-klu.ac.at/download area/
Technical-Reports/technical report 2008 02.pdf

46. Buccafurri, F., Leone, N., Rullo, P.: Enhancing Disjunctive Datalog by Constraints. IEEE
TKDE 12(5), 845–860 (2000)

47. Calimeri, F., Faber, W., Leone, N., Perri, S.: Declarative and Computational Properties of
Logic Programs with Aggregates. In: IJCAI 2005, pp. 406–411 (2005)

48. Dell’Armi, T., Faber, W., Ielpa, G., Leone, N., Pfeifer, G.: Aggregate Functions in Disjunc-
tive Logic Programming: Semantics, Complexity, and Implementation in DLV. In: IJCAI
2003, Acapulco, Mexico, pp. 847–852 (2003)

49. Faber, W., Leone, N.: On the Complexity of Answer Set Programming with Aggregates.
In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483,
pp. 97–109. Springer, Heidelberg (2007)

http://proserver3-iwas.uni-klu.ac.at/download_area/Technical-Reports/technical_report_2008_02.pdf
http://proserver3-iwas.uni-klu.ac.at/download_area/Technical-Reports/technical_report_2008_02.pdf


178 P. Bonatti et al.

50. Faber, W., Leone, N., Pfeifer, G.: Recursive Aggregates in Disjunctive Logic Programs:
Semantics and Complexity. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI),
vol. 3229, pp. 200–212. Springer, Heidelberg (2004)

51. Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: A Logic Programming Approach to
Knowledge-State Planning: Semantics and Complexity. ACM TOCL 5(2), 206–263 (2004)

52. Perri, S., Scarcello, F., Leone, N.: Abductive Logic Programs with Penalization: Semantics,
Complexity and Implementation. TPLP 5(1–2), 123–159 (2005)

53. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A Uniform Integration of Higher-Order
Reasoning and External Evaluations in Answer Set Programming. In: IJCAI 2005, Edin-
burgh, UK, pp. 90–96 (2005)

54. Calimeri, F., Ianni, G., Ielpa, G., Pietramala, A., Santoro, M.C.: A System with Tem-
plate Answer Set Programs. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI),
vol. 3229, pp. 693–697. Springer, Heidelberg (2004)

55. Costantini, S., Formisano, A.: Answer Set Programming with Resources. Journal of Logic
and Computation (to appear, 2009),
www.dipmat.unipg.it/˜formis/papers/report200816.ps.gz
Draft available as Report-16/2008 of Dip. di Matematica e Informatica, Univ. di Perugia

56. Costantini, S., Formisano, A.: Modeling Preferences And Conditional Preferences On Re-
source Consumption And Production In Asp. Journal of of Algorithms in Cognition, Infor-
matics and Logic 64(1), 3–15 (2009)

57. Balduccini, M., Gelfond, M.: Logic Programs with Consistency-Restoring Rules. In: Inter-
national Symposium on Logical Formalization of Commonsense Reasoning. AAAI 2003
Spring Symposium Series (2003)

58. Bria, A., Faber, W., Leone, N.: Normal Form Nested Programs. FI (2009) (accepted for
publication)

59. Bonatti, P.A.: Reasoning with Infinite Stable Models. Artif. Intell. 156(1), 75–111 (2004)
60. Bonatti, P.: Reasoning with Infinite Stable Models. In: Proceedings of the Seventeenth In-

ternational Joint Conference on Artificial Intelligence, IJCAI 2001, pp. 603–610 (2001)
61. Baselice, S., Bonatti, P.A., Criscuolo, G.: On Finitely Recursive Programs. TPLP 9(2),

213–238 (2009)
62. Bonatti, P.A.: Reasoning with infinite stable models II: Disjunctive programs. In: Stuckey,

P.J. (ed.) ICLP 2002. LNCS, vol. 2401, pp. 333–346. Springer, Heidelberg (2002)
63. Bonatti, P.A.: Erratum to: Reasoning with infinite stable models [artificial intelligence

156(1) (2004) 75–111]. Artif. Intell. 172(15), 1833–1835 (2008)
64. Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Computable Functions in ASP: Theory and

Implementation. In: [150], pp.407–424
65. Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Magic Sets for the Bottom-Up Evaluation of

Finitely Recursive Programs. In: [151], 71–86
66. Bonatti, P.A.: Resolution for Skeptical Stable Model Semantics. J. Autom. Reasoning 27(4),

391–421 (2001)
67. Bonatti, P.A., Pontelli, E., Son, T.C.: Credulous Resolution for Answer Set Programming.

In: AAAI, pp. 418–423. AAAI Press, Menlo Park (2008)
68. Calimeri, F., Cozza, S., Ianni, G., Leone, N.: An ASP System with Functions, Lists, and

Sets. In: [151], 483–489
69. Faber, W., Leone, N., Mateis, C., Pfeifer, G.: Using Database Optimization Techniques

for Nonmonotonic Reasoning. In: DDLP 1999, Prolog Association of Japan, pp. 135–139
(1999)

70. Leone, N., Perri, S., Scarcello, F.: Improving ASP Instantiators by Join-Ordering Methods.
In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173,
pp. 280–294. Springer, Heidelberg (2001)

www.dipmat.unipg.it/~formis/papers/report200816.ps.gz


Answer Set Programming 179

71. Perri, S., Scarcello, F., Catalano, G., Leone, N.: Enhancing DLV Instantiator by Backjump-
ing Techniques. AMAI 51(2-4), 195–228 (2007)

72. Calimeri, F., Perri, S., Ricca, F.: Experimenting with Parallelism for the Instantiation of
ASP Programs. Journal of Algorithms in Cognition, Informatics and Logics 63(1-3), 34–54
(2008)

73. Vescio, S., Perri, S., Ricca, F.: Efficient Parallel ASP Instantiation via Dynamic Rewriting.
In: Proceedings of the First Workshop on Answer Set Programming and Other Computing
Paradigms (ASPOCP 2008), Udine, Italy (2008)

74. Calimeri, F., Faber, W., Leone, N., Pfeifer, G.: Pruning Operators for Disjunctive Logic
Programming Systems. FI 71(2-3), 183–214 (2006)

75. Faber, W., Leone, N., Pfeifer, G., Ricca, F.: On look-ahead heuristics in disjunctive logic
programming. AMAI 51(2-4), 229–266 (2007)

76. Ricca, F., Faber, W., Leone, N.: A Backjumping Technique for Disjunctive Logic Program-
ming. AI Communications 19(2), 155–172 (2006)

77. Maratea, M., Ricca, F., Faber, W., Leone, N.: Look-Back Techniques and Heuristics in
DLV: Implementation, Evaluation and Comparison to QBF Solvers. Journal of Algorithms
in Cognition, Informatics and Logics 63(1-3), 70–89 (2008)

78. Koch, C., Leone, N., Pfeifer, G.: Enhancing Disjunctive Logic Programming Systems by
SAT Checkers. AI 15(1-2), 177–212 (2003)

79. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading
(1995)

80. Van Gelder, A., Ross, K.A., Schlipf, J.S.: The Well-Founded Semantics for General Logic
Programs. J. ACM 38(3), 620–650 (1991)

81. Reiter, R.: On Closed World Data Bases. In: Logic and Data Bases, pp. 55–76. Plenum
Press, New York (1978)

82. Ben-Eliyahu, R., Dechter, R.: Propositional Semantics for Disjunctive Logic Programs.
AMAI 12, 53–87 (1994)

83. Ben-Eliyahu, R., Palopoli, L.: Reasoning with Minimal Models: Efficient Algorithms and
Applications. In: Proceedings Fourth International Conference on Principles of Knowledge
Representation and Reasoning (KR 1994), pp. 39–50 (1994)

84. Denecker, M., Pelov, N., Bruynooghe, M.: Ultimate Well-Founded and Stable Model Se-
mantics for Logic Programs with Aggregates. In: Codognet, P. (ed.) ICLP 2001. LNCS,
vol. 2237, p. 212. Springer, Heidelberg (2001)

85. Hella, L., Libkin, L., Nurmonen, J., Wong, L.: Logics with Aggregate Operators. J.
ACM 48(4), 880–907 (2001)

86. Pelov, N., Denecker, M., Bruynooghe, M.: Well-founded and Stable Semantics of Logic
Programs with Aggregates. TPLP 7(3), 301–353 (2007)

87. Elkabani, I., Pontelli, E., Son, T.C.: SmodelsA - A System for Computing Answer Sets of
Logic Programs with Aggregates. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.)
LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 427–431. Springer, Heidelberg (2005)

88. Son, T.C., Pontelli, E.: A Constructive Semantic Characterization of Aggregates in ASP.
TPLP 7, 355–375 (2007)

89. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The
Description Logic Handbook: Theory, Implementation, and Applications. CUP (2003)

90. Lifschitz, V., Tang, L.R., Turner, H.: Nested Expressions in Logic Programs. AMAI
25(3-4), 369–389 (1999)

91. Mileo, A., Schaub, T.: Qualitative Constraint Enforcement in Advanced Policy Specifi-
cation. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS (LNAI), vol. 4724, pp. 695–706.
Springer, Heidelberg (2007)



180 P. Bonatti et al.

92. Bertino, E., Mileo, A., Provetti, A.: PDL with Preferences. In: POLICY, pp. 213–222. IEEE
Computer Society, Los Alamitos (2005)

93. Marchi, M., Mileo, A., Provetti, A.: Specification and Execution of Declarative Policies
for Grid Service Selection. In (LJ) Zhang, L.-J., Jeckle, M. (eds.) ECOWS 2004. LNCS,
vol. 3250, pp. 102–115. Springer, Heidelberg (2004)

94. Bertino, E., Mileo, A., Provetti, A.: PDL with Maximum Consistency Monitors. In: Zhong,
N., Raś, Z.W., Tsumoto, S., Suzuki, E. (eds.) ISMIS 2003. LNCS (LNAI), vol. 2871,
pp. 65–74. Springer, Heidelberg (2003)

95. Sterling, L., Shapiro, E.: The Art of Prolog, 2nd edn. MIT Press, Cambridge (1994)
96. Šimkus, M., Eiter, T.: FDNC: Decidable Non-monotonic Disjunctive Logic Programs with

Function Symbols. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI),
vol. 4790, pp. 514–530. Springer, Heidelberg (2007)

97. Syrjänen, T.: Omega-Restricted Logic Programs. In: Eiter, T., Faber, W., Truszczyński, M.
(eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 267–279. Springer, Heidelberg (2001)

98. Lierler, Y., Lifschitz, V.: One More Decidable Class of Finitely Ground Programs. In: [152],
pp. 489–493

99. Eiter, T., Ortiz, M., Šimkus, M.: Reasoning Using Knots. In: Cervesato, I., Veith, H.,
Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 377–390. Springer,
Heidelberg (2008)

100. Simkus, M.: Fusion of Logic Programming and Description Logics. In: [152], pp. 551–552
101. Baselice, S., Bonatti, P.A.: Composing Normal Programs with Function Symbols. In: [150],

pp. 425–439
102. Davis, M., Logemann, G., Loveland, D.: A Machine Program for Theorem Proving. Com-

munications of the ACM 5, 394–397 (1962)
103. Gebser, M., Schaub, T., Thiele, S.: GrinGo: A New Grounder for Answer Set Program-

ming. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483,
pp. 266–271. Springer, Heidelberg (2007)

104. Wittocx, J., Mariën, M., Denecker, M.: GidL: A Grounder for FO+. In: Proceedings of the
Twelfth International Workshop on Non-Monotonic Reasoning, pp. 189–198 (2008)

105. Perri, S., Ricca, F., Sirianni, M.: A Parallel ASP Instantiator Based on DLV. In: DAMP,
pp. 73–82. ACM, New York (2010)

106. Beowulf.org: The Beowulf Cluster Site, http://www.beowulf.org.
107. Balduccini, M., Pontelli, E., Elkhatib, O., Le, H.: Issues in Parallel Execution of Non-

Monotonic Reasoning Systems. Parallel Computing 31(6), 608–647 (2005)
108. Grossi, G., Marchi, M., Pontelli, E., Provetti, A.: Experimental Analysis of Graph-based

Answer Set Computation over Parallel and Distributed Architectures. J. of Logic and Com-
putation 19(4), 697–715 (2009)

109. Faber, W., Leone, N., Pfeifer, G.: Pushing Goal Derivation in DLP Computations. In:
Gelfond, M., Leone, N., Pfeifer, G. (eds.) LPNMR 1999. LNCS (LNAI), vol. 1730,
pp. 177–191. Springer, Heidelberg (1999)

110. Marek, V.W., Subrahmanian, V.: The Relationship between Logic Program Semantics and
Non-Monotonic Reasoning. In: ICLP 1989, pp. 600–617. MIT Press, Cambridge (1989)

111. Baral, C., Gelfond, M.: Logic Programming and Knowledge Representation. JLP (19/20),
73–148 (1994)

112. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an
Efficient SAT Solver. In: DAC 2001, pp. 530–535 (2001)

113. Giunchiglia, E., Lierler, Y., Maratea, M.: Answer Set Programming Based on Propositional
Satisfiability. Journal of Automated Reasoning 36(4), 345–377 (2006)

114. Giunchiglia, E., Lierler, Y., Maratea, M.: A SAT-based Polynomial Space Algorithm for
Answer Set Programming. In: Proceedings of the 10th International Workshop on Non-
Monotonic Reasoning (NMR 2004), pp. 189–196 (2004)

http://www.beowulf.org


Answer Set Programming 181

115. Giunchiglia, E., Maratea, M.: On the relation between answer set and SAT procedures (or,
between CMODELS and SMODELS). In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS,
vol. 3668, pp. 37–51. Springer, Heidelberg (2005)

116. Giunchiglia, E., Leone, N., Maratea, M.: On the Relation among Answer Set Solvers.
AMAI 53(1-4), 169–204 (2008)

117. Pontelli, E., El-Khatib, O.: Exploiting Vertical Parallelism from Answer Set Programs. In:
Proceedings of the 1st Intl. ASP 2001 Workshop on Answer Set
Programming, Towards Efficient and Scalable Knowledge Representation and Reasoning,
Stanford, pp. 174–180 (2001)

118. Le, H.V., Pontelli, E.: Dynamic Scheduling in Parallel Answer Set Programming Solvers.
In: SpringSim (2), SCS/ACM, pp. 367–374 (2007)

119. Dal Palù, A., Dovier, A., Pontelli, E., Rossi, G.: Answer Set Programming with Constraints
Using Lazy Grounding. In: [152], pp. 115–129

120. Dal Palù, A., Dovier, A., Pontelli, E., Rossi, G.: GASP: Answer Set Programming with
Lazy Grounding. FI 96(3), 297–322 (2009)

121. Terracina, G., Leone, N., Lio, V., Panetta, C.: Experimenting with Recursive Queries in
Database and Logic Programming Systems. TPLP 8, 129–165 (2008)

122. Terracina, G., De Francesco, E., Panetta, C., Leone, N.: Enhancing a DLP System for
Advanced Database Applications. In: Calvanese, D., Lausen, G. (eds.) RR 2008. LNCS,
vol. 5341, pp. 119–134. Springer, Heidelberg (2008)

123. Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczyński, M.: The Second Answer
Set Programming Competition. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009.
LNCS, vol. 5753, pp. 637–654. Springer, Heidelberg (2009)

124. Gallucci, L., Ricca, F.: Visual Querying and Application Programming Interface for an
ASP-based Ontology Language. In: Proceedings of the Workshop on Software Engineering
for Answer Set Programming (SEA 2007), pp. 56–70 (2007)

125. Grasso, G., Iiritano, S., Leone, N., Lio, V., Ricca, F., Scalise, F.: An ASP-Based System for
Team-Building in the Gioia-Tauro Seaport. In: Peña, R. (ed.) PADL 2010. LNCS, vol. 5937,
pp. 40–42. Springer, Heidelberg (2010)

126. Garro, A., Palopoli, L., Ricca, F.: Exploiting Agents in E-Learning and Skills Management
Context. AI Communications 19(2), 137–154 (2006)

127. Ianni, G., Ricca, F., Panetta, C.: Specification of Assessment-Test Criteria through ASP
Specification. In: Answer Set Programming: Advances in Theory and Implementation,
Bath, UK, Research Press International, P.O. Box 144, Bristol BS 1YA, pp. 293–302 (2005)

128. Mileo, A., Merico, D., Bisiani, R.: Non-monotonic Reasoning Supporting Wireless Sensor
Networks for Intelligent Monitoring: The SINDI System. In: [151], pp. 585–590

129. Mileo, A., Merico, D., Bisiani, R.: A Logic Programming Approach to Home Monitoring
for Risk Prevention in Assisted Living. In: [150], pp. 145–159

130. Balduccini, M., Gelfond, M.: Diagnostic reasoning with A-Prolog. TPLP 3, 425–461 (2003)
131. Bisiani, R., Merico, D., Mileo, A., Pinardi, S.: A Logical Approach to Home Healthcare

with Intelligent Sensor-Network Support. The Computer Journal (2009); bxn074
132. Ianni, G., Calimeri, F., Lio, V., Galizia, S.: Reasoning about the Semantic Web using An-

swer Set Programming. In: APPIA-GULP-PRODE, pp. 324–336 (2003)
133. Ianni, G., Ricca, F., Calimeri, F., Lio, V., Galizia, S.: An agent system reasoning about the

web and the user. In: WWW (Alternate Track Papers & Posters), pp. 492–493 (2004)
134. Subrahmanian, V., Nau, D., Vago, C.: WFS + Branch and Bound = Stable Models. IEEE

TKDE 7(3), 362–377 (1995)
135. Costantini, S.: Comparing Different Graph Representations of Logic Programs under the

Answer Set Semantics. In: Proc. of the AAAI Spring Symposium Answer Set Program-
ming: Towards Efficient and Scalable Knowledge Representation and Reasoning, CA
(2001)



182 P. Bonatti et al.

136. Costantini, S., Lanzarone, G.A., Magliocco, G.: Asserting Lemmas in the Stable Model
Semantics. In: Logic Programming – Proc. of the 1996 Joint International Conference, USA
(1996)

137. Costantini, S., Intrigila, B., Provetti, A.: Coherence of Updates in Answer Set Program-
ming. In: IJCAI 2003 Workshop on Nonmonotonic Reasoning, Action and Change, NRAC
2003, pp. 66–72 (2003)

138. Costantini, S.: On the Existence of Stable Models of Non-Stratified Logic Programs. J. on
TPLP 6(1-2) (2006)

139. Costantini, S., Formisano, A., Omodeo, E.G.: Mappings Between Domain Models in An-
swer Set Programming. In: Answer Set Programming, Advances in Theory and Implemen-
tation, Proc. of the 2nd Intl. ASP 2003. CEUR Workshop Proc., vol. 78 (2003)

140. Capotorti, A., Formisano, A.: Comparative Uncertainty: Theory and Automation. Mathe-
matical Structures in Computer Science 18(1) (2008)

141. Capotorti, A., Formisano, A., Murador, G.: Qualitative Uncertainty Orderings Revised.
Electronic Notes in Theoretical Computer Science 169, 43–59 (2007)

142. Capotorti, A., Formisano, A.: Management of Uncertainty Orderings Through ASP. In:
Modern Information Processing: From Theory to Applications. Elsevier, Amsterdam (2004)
ISBN: 0-444-52075-9

143. Baselice, S., Bonatti, P.A., Gelfond, M.: Towards an Integration of Answer Set and Con-
straint Solving. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 52–66.
Springer, Heidelberg (2005)

144. Nogueira, M., Balduccini, M., Gelfond, M., Watson, R., Barry, M.: An A-Prolog Decision
Support System for the Space Shuttle. In: Ramakrishnan, I.V. (ed.) PADL 2001. LNCS,
vol. 1990, pp. 169–183. Springer, Heidelberg (2001)

145. Buccafurri, F., Gottlob, G.: Multiagent compromises, joint fixpoints, and stable models. In:
Kakas, A.C., Sadri, F. (eds.) Computational Logic: Logic Programming and Beyond. LNCS
(LNAI), vol. 2407, pp. 561–585. Springer, Heidelberg (2002)

146. Buccafurri, F., Caminiti, G.: A Social Semantics for Multi-agent Systems. In: Baral, C.,
Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662,
pp. 317–329. Springer, Heidelberg (2005)

147. Buccafurri, F., Caminiti, G.: Logic Programming with Social Features. TPLP 8(5–6),
643–690 (2008)

148. Buccafurri, F., Caminiti, G., Laurendi, R.: A Logic Language with Stable Model Semantics
for Social Reasoning. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS,
vol. 5366, pp. 718–723. Springer, Heidelberg (2008)

149. Buccafurri, F., Caminiti, G., Rosaci, D.: Logic Programs with Multiple Chances. In: ECAI,
pp. 347–351 (2006)

150. Garcia de la Banda, M., Pontelli, E. (eds.): ICLP 2008. LNCS, vol. 5366. Springer,
Heidelberg (2008)

151. Erdem, E., Lin, F., Schaub, T. (eds.): LPNMR 2009. LNCS, vol. 5753, pp. 14–18. Springer,
Heidelberg (2009)

152. Hill, P.M., Warren, D.S. (eds.): Logic Programming. LNCS, vol. 5649, pp. 14–17. Springer,
Heidelberg (2009)



Logic Programming Languages for

Databases and the Web

Sergio Greco1 and Francesca A. Lisi2

1 Dipartimento di Elettronica, Informatica e Sistemistica, Università della Calabria
Via P. Bucci, 41C - Arcavacata di Rende (CS), Italy

greco@deis.unical.it
2 Dipartimento di Informatica, Università degli Studi di Bari “Aldo Moro”

Via E. Orabona, 4 - 70125 Bari, Italy
lisi@di.uniba.it

Abstract. This chapter contains a reference selection of Italian contri-
butions in the intersection of Logic Programming (LP) with databases
and the (Semantic) Web. More precisely, we will survey the main contri-
butions on deductive databases such as the coupling of Prolog systems
and database systems, evaluation and optimization techniques, Datalog
extensions for expressing nondeterministic and aggregate queries, and
active rules and their relation to deductive rules. Also we will illustrate
solutions employing LP for querying the Web, manipulating Web pages,
representing knowledge in the Semantic Web and learning Semantic Web
ontologies and rules.

1 Introduction

Deductive databases started more than 30 years ago and this area has been
characterized by intensive research for the past years. It stemmed from earlier
work on logic and databases [37,39] that was reviewed in an excellent paper by
Gallaire et al. [38]. Deductive databases extend the power of relational systems
in several ways [96] by allowing:

– the capability to express, by means of logical rules, recursive queries and
efficient algorithms for their evaluation against stored data;

– support for the use of nonmonotonic features such as negation;
– the expansion of the underlying data domain to include structured objects;
– extensions beyond first-order logic for the declarative specification of database

operations as updates;
– the development of optimization methods that guarantee the translation of

the declarative specifications into efficient access plans and their termination
when executed.

Although deductive databases have not found widespread adoptions outside
academia, some of their concepts are used in many fields where databases and in-
formation systems are used. Over the years the research in different areas where
logic-based languages are used for modeling information system features and

A. Dovier, E. Pontelli (Eds.): 25 Years of Logic Programming, LNCS 6125, pp. 183–203, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



184 S. Greco and F.A. Lisi

managing large datasets has benefited of the results of deductive databases (e.g.
integration of advanced features in SQL standards, nonmonotonic reasoning,
artificial intelligence and others).

The World Wide Web (WWW, or simply Web) is nowadays the most famous
information system. Its success is witnessed by its enormous size and rate of
growth. However, the success itself has given raise to a status of the WWW
where more sophisticated techniques are urgently needed to properly handle
such information overload. Recent years have seen a tremendous interest for
Web technologies that can employ some form of logical reasoning. In particu-
lar, the ambitious plan for an evolution of the WWW, the so-called Semantic
Web [10], has shown that it is of primary importance to find an appropriate
interaction between the Web infrastructure, and solutions coming from the LP
research area. Interest in the (Semantic) Web application context is testified by
initiatives such as the ALPSWS series of international workshops on Applica-
tions of Logic Programming to the (Semantic) Web and Web Services1 started
in 2006 and traditionally co-located with the International Conference on Logic
Programming, and the recent special issue of the TPLP journal [72].

We point out that several topics considered in this chapter have also been
investigated in the areas of Non-Monotonic Reasoning (NMR) and Answer Set
Programming (ASP) and, for more information, we refer readers to [46,12]. The
connection between the areas of deductive databases and (Semantic) Web is
strong as the Web can be modeled as a (huge) database and the research in both
fields is mainly devoted to extend Datalog to have enough expressivity and ensure
efficiency in querying and managing relational databases and the (Semantic) Web
[15]. This chapter contains a reference selection of Italian contributions in the
intersection of LP with databases (section 2) and the (Semantic) Web (section 3).

2 Deductive Databases and Logic Programming

In this section we will discuss some of the research aspects in deductive databases
with a particular attention to some fields which have been of particular inter-
est for the Italian deductive database community. In the next subsection we
will present some basic definitions on Datalog [22,98]. Next, we will discuss the
coupling of Prolog systems and database systems (subsection 2.2), and evalua-
tion and optimization techniques (subsection 2.3). Subsequently, we will present
some Datalog extensions regarding the possibility to express nondeterministic
and aggregate queries (subsections 2.4 and 2.5). Finally, we will discuss active
rules and their relation to deductive rules (subsection 2.6).

2.1 Datalog

A Datalog program is a logic program without function symbols. The restric-
tion imposed by Datalog allows to have finite models which can be efficiently
computed by means of a standard bottom-up evaluation. Extensions allowing
1 http://www.kr.tuwien.ac.at/events/alpsws2008/



Logic Programming Languages for Databases and the Web 185

complex, finite objects have also been considered, but for the sake of simplicity,
we restrict ourselves to only consider simple terms.

The semantics of a positive (i.e., negation-free) program P is given by the
minimum model that coincides with the least fixpoint T∞

P (∅) of the immedi-
ate transformation TP [68]. The semantics of a logic program with negation is
given by the stable model semantics [42,90]. Stable models are said to be to-
tal (2-valued) if atoms can be either true or false, with the standard order
false < true, or partial (3-valued) if the truth value of atoms can be true, false
or undefined, with the order false < undefined < true. On the set of partial
stable models it is possible to define an order relation so that they define a
semi-lattice [90]. Minimal and stable model semantics have also been extended
for programs with disjunctive heads [84]. It is worth observing that although
different alternative semantics have been proposed so far (e.g. well-founded se-
mantics, deterministic models, minimal founded semantics [41,93,49,35]), total
stable model semantics has been widely accepted by the nonmonotonic reasoning
community and for stratified programs these semantics coincide. In particular,
general programs with negation may have 0, one or several stable models, pos-
itive (i.e., negation-free) standard programs have unique (total) stable models,
corresponding to the minimum model, and stratified programs (i.e. programs
where recursion does not “pass” through negated atoms) have a unique (total)
stable model which is called perfect model.

Generally, the logic language Datalog is denoted by Datalog¬, whereas re-
strictions allowing only stratified negation or positive rules only are denoted,
respectively, by Datalog¬s and Datalog; the extension allowing disjunctive
heads is denoted by Datalog¬∨ [27]. Predicates are usually partitioned into
extensional (or EDB) and intensional (or IDB) predicates. EDB predicates are
associated with facts denoting the input databases2, whereas IDB predicates
are associated with rules denoting a set of (possibly recursive) views. The input
database will be denoted by D, the program will be denoted by P and it is
assumed that |P | $ |D| (the size of D is much greater than the size of P ). It is
also assumed that the rules of our programs are safe [98], i.e. variables appearing
in the head or in negated literals in the body of rules are range restricted, i.e.,
they take values from the database.

The unique stable model of a stratified program P , applied to a database
D, can be computed in polynomial time in the size of D (i.e., the number of
symbols in D). For general programs we have that i) the existence of a stable
model is not guaranteed, ii) finding a stable model is NP-hard, and iii) deciding
whether a program admits some stable model is NP-complete. For programs
with disjunctive heads the complexity is even higher (in the general case, in
the second level of the polynomial hierarchy). The notion of data complexity
is defined naturally by viewing the program P as a function computed on the
database (which is thus viewed as the input variable). Another important notion
is that of genericity which means that the database is unchanged if all constants
are consistently renamed [3].

2 For each tuple t belonging to a relation r of the input database there is a fact r(t).



186 S. Greco and F.A. Lisi

A query Q is a pair 〈g, P 〉 where P is a program and g is a predicate symbol
in P denoting the output relation; The answer of Q on D, denoted by Q(D),
is the set of relations on g denoted as Ag = {M(g)|M is a stable model of
P ∪D}. Two queries Q1 and Q2 are equivalent (Q1 ≡ Q2) if for each database
D the answers of Q1 and Q2 on D are the same. The query is called determin-
istic or non-deterministic according to whether the mapping is single-valued or
multi-valued.

Since it is assumed to deal with large databases, only tractable (i.e. polyno-
mial time) queries are considered. Therefore, in the rest of this chapter we only
consider stratified queries and tractable extensions. For queries using unstrati-
fied negation and/or disjunctive heads we address the reader to “nonmonotonic
formalisms” which are discussed in [46,12].

2.2 Coupling Relational Databases with LP Systems

Integrating LP and relational databases has been recognized to be very promising
since both LP and relational databases are related by their common ancestry of
mathematical logic [38]. The combination of advanced query processing facilities,
typical of expert systems, and efficient access techniques of relational database
systems has been very promising. In particular, Prolog systems would greatly
benefit from both the ability to store large amounts of information in secondary
memory and the optimization techniques built into database systems.

The coupling of a Prolog front-end with a database back-end has been a
very promising vehicle for developing database and knowledge-based applica-
tions and has received a lot of attention in the field’s early years. In practice,
systems linking Prolog and a relational database system simply tack on a soft-
ware interface between a pre-existing Prolog implementation and a pre-existing
relational database system. In other words, the two systems are loosely coupled.
The interface allows Prolog to query the database when needed, either via the
automatic translation of Prolog goals into SQL or else by directly embedding
SQL statements into the Prolog code.

In designing the interface between a relational database and a Prolog inter-
preter, persistence and efficiency were the major concerns. Persistence is obtained
by the capability of storing not only data but rules in the database as well. Thus,
after a session is over and a new session starts, the user does not need to re-
assert the knowledge asserted in the past. Considering efficiency, the objective
of minimizing the interaction between the two systems is achieved by means of
an optimizing translation mechanism.

A method for loading into the memory-resident database of Prolog facts per-
manently stored in secondary storage was proposed in [23,22]. The rationale of
the method is to save queries accessing the database by never repeating the
same query. This is carried out by storing in the main memory, in a compact
and efficient way, information about the past interaction with the database. An
underlying assumption of this approach is the availability of large core memories
on the machine running Prolog [47].



Logic Programming Languages for Databases and the Web 187

2.3 Query Evaluation and Optimization

In the computation of a query Q over a database D, two main approaches have
been proposed in the literature: the top-down computation (used by Prolog) and
the bottom-up computation (used by deductive database languages). The latter
is based on the fixpoint operator TP and on “database implementations” such
as the naive algorithm which transforms rules into relational algebra expressions
which are evaluated repeatedly until a fixpoint is reached; the semi-naive algo-
rithm improves the naive algorithm avoiding to re-evaluate relational expressions
on the same sets of facts [98]. With the top-down approach, only rules and atoms
relevant to the query are considered, but termination and duplicated computa-
tion are problematic issues. The bottom-up strategy always terminates instead,
but it may compute irrelevant atoms. Therefore, optimization techniques com-
bining top-down and bottom-up strategies have been proposed to try to compute
only atoms which may be “relevant” for the query in a bottom-up fashion. The
key idea here consists of rewriting the rules with respect to the query in order to
answer it without actually referring to irrelevant facts. The well-known magic-
set technique is based on rewriting the rules in P (for a given query Q = 〈g, P 〉)
into a set Pα such that, let Q = 〈g, Pα〉, Q and Qα are query-equivalent, i.e.
the sets of g-facts computed by Q and Qα are the same [9,97]. General rewriting
techniques can be applied to all queries, but their efficiency is limited, while
specialized techniques can be very efficient, but have limited applicability. An
interesting class of queries is the one known as chain queries, i.e. queries where
bindings are propagated from arguments in the head to arguments in the tail
of the rules, in a chain-like fashion. For these queries, which are rather frequent
in practice, insisting on general optimization methods is not convenient, while
specialized methods for subclasses thereof have been proposed, but do not fully
exploit bindings. The counting method specialized for bound chain queries was
proposed to further improve the efficiency of queries [91,53]. However, although
proposed in the context of general queries, it preserves the original efficiency
only for a subset of chain queries whose recursive rules are linear. The so-called
pushdown method, exploiting the relationship between chain queries, context-
free languages and pushdown automata, was later proposed [51,52]. It rewrites
queries into a form that is more suitable for the bottom-up evaluation, i.e. trans-
lates a chain query into a factorized left-linear program implementing the push-
down automaton recognizing the language associated with the query. A nice
property here is that it reduces to the counting method in all the cases where
the latter method behaves efficiently and introduces a unified framework for the
treatment of special cases, such as the factorization of right-, left-, mixed-linear
programs, as well as the linearization of non-linear programs [97].

2.4 Choice and Non-determinism in Datalog

Stable model semantics introduces a sort of non-determinism in the sense that
programs may have more than one “intended” model [42]. Non-determinism



188 S. Greco and F.A. Lisi

offers a solution to overcome the limitations in expressive power of deterministic
languages [4,5]. For instance, non-determinism can be used to capture the class
of polynomial-time queries on unordered domains [5,50]. The problem with sta-
ble model semantics is that the expressive power can blow up without control,
so that polynomial time resolution is no longer guaranteed. Thus, it is possible
that polynomial time queries are computed in exponential time, that is, it is pos-
sible to get exponential time resolution. In order to guarantee polynomial time
computability and the existence of stable models, nondeterministic constructs
and semantics have been proposed.

Given a query Q = 〈g, P 〉 and a database D, the answer to Q on D is a
relation defined as follows:

1. under non-deterministic semantics: M(g), for some stable model M for P∪D
and ∅ if no stable model exists;

2. under possibility semantics with ground query goal: M(g), if there exists a
stable model M such that M(g) �= ∅ and ∅ otherwise — thus, the answer to
a query can be either “true” or “false”;

3. under certainty semantics:
⋂

Mi(g) for all stable models Mi.

Moreover, the mappings defined by queries are multi-valued under non-
deterministic semantics and single-valued under possible and certain semantics,
i.e., possible and certain semantics are deterministic. In practice, to answer a
query under non-deterministic semantics it is sufficient to find any relation in
Q(D); this corresponds to determining any stable model. As discussed above,
full negation under stable model semantics cannot be used in practical database
languages because the complexity is not guaranteed to be polynomial also for
queries expressing polynomial problems.

A controlled usage of stable model semantics has been proposed in [44,50,92],
where the choice construct, first introduced in [60], has been given a stable model
semantics. The choice construct is used to enforce functional constraints in rules.
Thus, an atom of the form, choice((X), (Y )), where X and Y denote vectors of
variables, in a rule r denotes that any consequence derived from r must respect
the functional dependency X → Y .

A fixpoint algorithm for Datalog programs with choice constructs (called
Choice Fixpoint Procedure) has been proposed in [44,45], where it has also been
shown that the time complexity of computing, nondeterministically, a stable
model, and consequently a nondeterministic answer, is polynomial. This proce-
dure has been extended to programs with stratified negation in [50] where it has
also been shown that given a database D and a stratified program with choice
P , the problem of deciding if there exists a stable model M (non-deterministic
semantics) for P ∪D is polynomial time. In the same paper it has been demon-
strated that the class of nondeterministic polynomial problems is captured by
Datalog with stratified negation and choice. Therefore, choice is a powerful don’t-
care form of non-determinism which allows one to express some problems for
which domain ordering is needed but is not available [5,43].



Logic Programming Languages for Databases and the Web 189

2.5 Aggregates in Datalog

Early research on deductive databases strived to support a declarative high-
level formulation of problem solution without surrendering the performance ob-
tainable by careful programming in an imperative language. In this respect, an
interesting challenge is posed by optimization problems, such as finding the min-
imum spanning tree in a graph or the knapsack problem, that are encountered
in several applications.

Datalog, enriched with extrema (least/most) and choice constructs, can ex-
press and efficiently solve optimization problems requiring a greedy search strat-
egy [40,54]. Moreover, many optimization problems can be solved efficiently using
a dynamic programming technique that is based on the division of the problem
into subproblems: the original problem is divided into simpler subproblems that
are solved separately; their solutions are then used to solve the original prob-
lem. Therefore, Datalog extensions allowing to express classical problems whose
efficient solutions are based on greedy and dynamic programming methods have
been proposed as well [48].

These extensions are based on the definition of built-in aggregate predicates
which enhance Datalog representational capabilities, making it possible to nat-
urally express many well-known algorithms that have wide applicability. The
extension of Datalog with classical aggregates (least, most, count and sum) has
been investigated by considering two main aspects: the definition of suitable
semantics for programs with aggregates and the efficiency of the evaluation.

The main novelty of the proposed approach is that only stratified aggregation
and a semantics allowing to define linear orders on the input domain are consid-
ered. Moreover, the paper also considers in some cases unstratified negation to
guarantee efficiency and termination. Another important novelty is that the pa-
per introduces a new aggregate, called summation, which combined with least
and most permits us to express and efficiently compute optimization problems
such as dynamic programming and integer programming problems. More specif-
ically, the global class of integer programming problems can be easily expressed
in the proposed framework and extended programs can be efficiently computed
by using a dynamic programming evaluation technique.

The possibility of transforming queries with least and most predicates into
equivalent queries that can be computed more efficiently has been investigated
in [36]. Recently there have been further proposals to extend the well-founded
and stable model semantics with unstratified aggregates [16,80,95]. Moreover, as
pointed out in [77], unstratified aggregates are not necessary if ordered domains
and arithmetics are available.

2.6 Deductive and Active Databases

The field of active databases is based on logics and combines techniques from
databases, expert systems and artificial intelligence. The main peculiarity of
this technology is the support for automatic ‘triggering’ of rules in response to
events. Automatic triggering of rules can be useful in different areas such as



190 S. Greco and F.A. Lisi

integrity constraint maintenance, update of materialized views, knowledge bases
and expert systems [100].

Active rules follow the so called Event-Condition-Action (ECA) paradigm;
rules autonomously react to events occurring on the data, by evaluating a data
dependent condition and executing a reaction whenever the condition is true.
Active rules consist of three parts: Event (which causes the rule to be triggered),
Condition (which is checked when the rule is triggered) and Action (which is
executed when the rule is triggered and the condition is true). Thus, according
to the semantics of a single active rule, the rule reacts to a given event, tests a
condition, and performs a given action.

Understanding the behavior of active rules, especially in the case of rules which
interact with one another, is very difficult, and often the actions performed are
not the expected ones. The semantics of active rules are usually given in terms of
execution models, specifying how and when rules will be applied, but execution
models are not completely satisfactory since their behavior is not always clear
and could result in nonterminating computations. Most commercial active rule
systems operate at a relatively low-level of abstraction and are heavily influenced
by implementation-dependent procedural features. A further problem of active
databases is that, as shown in [81], most of the operational semantics proposed
in the literature have very high complexity and expressivity (PSPACE or even
higher complexity).

Different solutions using deductive database semantics to provide a clear se-
mantics to active rules have been proposed. Here we recall the solution proposed
in [61,11,33] where declarative semantics are associated to active rules, and in
[101,75], where active rules are modeled by means of deductive rules with an
attribute denoting the state of the computation. The advantage of associating
a declarative semantics to active rules is that confluence and termination are
guaranteed and complexity is much lower.

In some sense, active and deductive rules can be seen as opposite ends of a
spectrum of database rule languages [99]. Deductive rules provide a high-level
powerful framework for specifying intensional relations. In contrast, active rules
are more low-level and often need explicit control on rule execution. The problem
of providing a homogeneous framework for integrating, in a database environ-
ment, active rules, which allow the specification of actions to be executed when-
ever certain events take place, and deductive rules, which allow the specification
of deductions in a logic programming style has been investigated in [79,61].

Since active rules are often used to make databases consistent, active integrity
constraints (AICs), an extension of integrity constraints for consistent database
maintenance [21], have been recently proposed [17]. An active integrity constraint
is a special constraint whose body contains a conjunction of literals which must
be false and whose head contains a disjunction of update actions representing
actions (insertions and deletions of tuples) to be performed if the constraint is
not satisfied (that is its body is true). The AICs work in a domino-like manner as
the satisfaction of one AIC may trigger the violation and therefore the activation
of another one. The advantage of AICs is that they have declarative semantics



Logic Programming Languages for Databases and the Web 191

(i.e. they can be rewritten into logic rules), lower complexity than active rules
and can be used to compute consistent answers, even if the source database is
inconsistent [18]. An alternative semantics for AICs is proposed in [19], whereas
its relationships to Revision Programming is investigated in [20].

3 From Databases to the (Semantic) Web

The Web has caused a revolution in how we represent, retrieve, and process
information. Its growth has given us a universally accessible database but in
the form of a largely unorganized collection of documents. This is changing,
thanks to the simultaneous emergence of new ways of representing data: from
within the Web community, the eXtensible Markup Language (XML)3; and from
within the database community, semistructured data. The convergence of these
two approaches has rendered them nearly identical, thus promoting a concerted
effort to develop effective techniques for retrieving and processing both kinds of
data [2]. In spite of the success of XML as data interchange format, it has turned
out very soon that XML has severe limits in conveying data semantics.

The Semantic Web is an evolving extension of the Web in which the seman-
tics of information and services on the Web is defined, making it possible for the
Web to understand and satisfy the requests of people and machines to use the
Web content [10]. It derives from W3C (World Wide Web Consortium) director
Sir Tim Berners-Lee’s vision of the Web as a universal medium for data, infor-
mation, and knowledge exchange. At its core, the Semantic Web comprises a
set of design principles, collaborative working groups, and a variety of enabling
technologies. Some elements of the Semantic Web are expressed as prospective
future possibilities that are yet to be implemented or realized. The Semantic Web
architecture is a stack of layers, on top of XML, each of which equipped with
one or more mark-up languages, notably the Resource Description Framework
(RDF)4, the RDF Schema (RDFS)5 and the Web Ontology Language (OWL)6

all of which are intended to provide a formal description of concepts, terms, and
relationships within a given knowledge domain. The use of formal specifications,
also called ontologies, fairly overcomes the aforementioned limits of XML.

In this section, we will survey solutions employing LP for querying the Web
(subsection 3.1), for manipulating Web pages (subsection 3.2), for representing
knowledge in the Semantic Web (subsection 3.3) and for learning Semantic Web
ontologies and rules (subsection 3.4).

3.1 LP-Based Query Languages for the Web

The Web can be seen as a vast heterogeneous collection of databases, which
must be queried in order to extract information. In fact, in many ways the Web
is not similar to a database system: it has no uniform structure, no integrity
3 http://www.w3.org/XML/
4 http://www.w3.org/RDF/
5 http://www.w3.org/TR/rdf-schema/
6 http://www.w3.org/2004/OWL/



192 S. Greco and F.A. Lisi

constraints, no support for transaction processing, no management capabilities,
no standard query language, or data model. Perhaps the most popular data
model for the Web is the labelled graph, where nodes represent Web pages (or
internal components of pages) and arcs correspond to links. Labels on the arcs
can be viewed as attribute names for the nodes. The lack of structure in Web
pages has motivated the use of semistructured data techniques, which also fa-
cilitate the exchange of information between heterogeneous sources. Abiteboul
[1] suggests the following features for a semistructured data query language:
standard relational database operations (using an SQL viewpoint), navigational
capabilities in the hypertext/Web style, information retrieval influenced search
using patterns, temporal operations, and the ability to mix data and schema
(type) elements together in queries. Many languages support regular path ex-
pressions over the graph for stating navigational queries along arcs. The inclusion
of wild cards allows arbitrarily deep data and cyclic structures to be searched,
although restrictions must be applied to prevent looping.

Queries can be posed to Web pages with XML or RDF content. XML is a
notation for describing labelled ordered trees with references. Specifying a query
language for XML has been an active area of research, much of it coordinated
by the XML Query Working Group of the W3C. The suggested features for such
a language are almost identical to those for querying semistructured data. It is
hardly surprising that most proposals adopt models which view XML as an edge-
labelled directed graph, and use semistructured data query languages. The main
difference is that the elements in an XML document are sometimes ordered. The
XPath language7 is based on a tree representation of the XML document, and
provides the ability to navigate around the tree, selecting nodes by a variety of
criteria. Conversely, XQuery8 is a query and functional programming language
that is designed to query collections of XML data. XQuery provides the means to
extract and manipulate data from XML documents or any data source that can
be viewed as XML, such as relational databases. Therefore it finally supports the
needed interaction between the Web world and the database world. Ultimately,
collections of XML files will be accessed like databases. XPath 2.0 is in fact a
subset of XQuery 1.0.

RDF is an application of XML aimed at facilitating the interoperability of
meta-data across heterogeneous hosts. With RDF, the most suitable approach
is to focus on the underlying data model. Even though XQuery could be used to
query RDF descriptions in their XML encoded form, a single RDF data model
could not be correctly determined with a single query due to the fact that RDF
allows several XML syntax encodings for the same data model. Conceived to
address this issue, Metalog is a LP language where facts and rules are translated
and stored as RDF statements [73,71]. Facts are treated as RDF triples, while
rule syntax is supported with additional RDFS statements for LP elements such
as head, body, if and variable. A query language for RDF, called SPARQL9,

7 http://www.w3.org/TR/xpath20/
8 http://www.w3.org/TR/xquery/
9 http://www.w3.org/TR/rdf-sparql-query/



Logic Programming Languages for Databases and the Web 193

has been recommended by the RDF Data Access Working Group of the W3C in
2008. Also it has been proved that SPARQL and non-recursive safe Datalog¬

have equivalent expressive power, and hence, by classical results, SPARQL is
equivalent from an expressive point of view to Relational Algebra [6]. A LP-
based rule system for querying persistent RDFS data is suggested in [58] as an
alternative to SPARQL engines.

3.2 LP for Web Computation

The ability to support the execution of logic and constraint programs on parallel
and distributed architectures have prompted LP researchers to consider some
natural generalization of these programming paradigms to suit the needs of some
specific application areas among which the Web.

The concurrent constraint-based LP language W-ACE has explicit support
for the Web computation [83]. Some of its novel ideas include representing Web
pages as LP trees and the use of constraints to manipulate tree components
and the relationship between trees. W-ACE also contains modal operators for
reasoning about groups of pages, and composition operators very similar to those
in LogicWeb [69].

In [82] the author studies the use of distributed logic programming models
to provide a natural concurrent framework for Web programming. A concurrent
logic-based framework (called WEB-KLIC) has already been developed and is
currently publicly distributed as part of the ICOT Free Software Project10. A
relevant component of this part of the project includes the design of constraint
domains for representing HTML and XML documents. Also, a primary goal has
been the improvement of its CGI facilities (i.e., for server-side computation).

3.3 LP for Knowledge Representation in the Semantic Web

The advent of the Semantic Web has given a tremendous impulse on research in
Knowledge Representation (KR) due to the key role played by ontologies in the
Semantic Web architecture. Indeed the design of OWL has been based on KR
formalisms known as Description Logics (DLs) [7], more precisely on the SH
family of the so-called very expressive DLs [56]. DLs are a family of decidable
First Order Logic (FOL) fragments that allow for the specification of knowledge
in terms of classes (concepts), binary relations between classes (roles), and in-
stances (individuals). Complex concepts can be defined from atomic concepts
and roles by means of constructors such as atomic negation (¬), concept con-
junction (�), value restriction (∀), and limited existential restriction (∃) - just
to mention the basic ones. A DL KB can state both is-a relations between con-
cepts (axioms) and instance-of relations between individuals (resp. couples of
individuals) and concepts (resp. roles) (assertions). Concepts and axioms form
the so-called TBox whereas individuals and assertions form the so-called ABox.
An SH KB encompasses also a RBox, i.e. axioms defining hierarchies over roles.
10 http://www.jipdec.or.jp/icot/ARCHIVE/Museum/IFS/



194 S. Greco and F.A. Lisi

The semantics of DLs can be defined through a mapping to FOL. Thus, coher-
ently with the Open World Assumption (OWA) that holds in FOL semantics,
a DL KB represents all its models. The main reasoning task for a DL KB is
the consistency check that is performed by applying decision procedures mostly
based on tableau calculus. Summing up, when a DL-based ontology language
is adopted, an ontology is nothing else than a TBox eventually coupled with
a RBox. If the ontology is populated, it corresponds to a whole DL KB, i.e.
encompassing also an ABox.

The Semantic Web architecture poses several challenges to KR like (i) the
scalability of ontology reasoning, and (ii) the integration of rules and ontologies.
It turns out that LP can help facing these challenges, as explained in the following
subsections, though Italian research has focused more on the latter challenge.

DL reasoning with LP
A second round of standardization at W3C has very recently delivered OWL
211 which now includes several profiles (or fragments) that can be more simply
and/or efficiently implemented than the former OWL proposal. E.g., the OWL
2 RL profile is aimed at applications that require scalable reasoning without sac-
rificing too much expressive power. It is designed to accommodate both OWL
2 applications that can trade the full expressivity of the language for efficiency,
and RDFS applications that need some added expressivity from OWL 2. This is
achieved by defining a syntactic subset of OWL 2 which is amenable to imple-
mentation using rule-based technologies such as LP. The design of OWL 2 RL
has been inspired by Description Logic Programs [55] which are at the intersec-
tion of DLs and Datalog. Yet the influence of LP tradition on the implementation
of DL systems is also testified by, e.g., KAON212 and DLog13.

Contrary to most currently available DL reasoners, KAON2 does not imple-
ment the tableaux calculus [57]. Rather, it implements novel algorithms which
reduce an SHIQ KB to a disjunctive Datalog program. These algorithms allow
applying well-known deductive database techniques, such as magic sets or join-
order optimizations, to DL reasoning, thus making answering queries in KAON2
one or more orders of magnitude faster than in existing systems.

DLog is a DL ABox reasoner that uses resolution [70]. It performs query-
driven execution whereby the terminological part of the DL KB is converted
into a Prolog program using a specialisation of the PTTP Theorem Proving
approach and the assertional facts are accessed dynamically from a database.
DLog 2 will ensure scalability by specialising well-established LP techniques for
parallel computation and efficiency by using an ad-hoc abstract machine.

Rule Systems combining LP and DLs
Rules are currently in the focus within the Semantic Web architecture, and
consequently interest and activity in this area has grown rapidly over recent
years. They would allow the integration, transformation and derivation of data
11 http://www.w3.org/TR/owl2-overview/
12 http://kaon2.semanticweb.org/
13 http://www.dlog-reasoner.org/



Logic Programming Languages for Databases and the Web 195

from numerous sources in a distributed, scalable, and transparent manner. The
rules landscape features design aspects of rule markup; engineering of engines,
translators, and other tools; standardization efforts, such as the recent Rules In-
terchange Format (RIF)14 activity at W3C; and applications. Rules complement
and extend ontologies on the Semantic Web. They can be used in combination
with ontologies, or as a means to specify ontologies. Rules are also frequently
applied over ontologies, to draw inferences, express constraints, specify poli-
cies, react to events, discover new knowledge, transform data, etc. Rule markup
languages enrich Web ontologies by supporting publishing rules on the Web, ex-
change rules between different systems and tools, share guidelines and policies,
merge and maintain rulebases, and more.

The debate around a RIF is still ongoing. Because of the great variety in
rule languages and rule engine technologies, this format will consist of a core
language to be used along with a set of standard and non-standard extensions.
These extensions need not all be combinable into a single unified language. As
for the expressive power, two directions are followed: monotonic extensions to-
wards full FOL and non-monotonic extensions based on the LP tradition, i.e. on
Clausal Logics (CLs). In particular, the latter will most likely be the so-called
hybrid systems that integrate DLs and (fragments of) CLs. These KR systems
are constituted by two or more subsystems dealing with distinct portions of a
single KB by performing specific reasoning procedures [34]. The motivation for
investigating and developing such systems is to improve on two basic features
of KR formalisms, namely representational adequacy and deductive power, by
preserving the other crucial feature, i.e. decidability. Indeed DLs and CLs are
FOL fragments incomparable as for the expressiveness [13] and the semantics
[85] but combinable at different degrees of integration: tight, loose, full.

The semantic integration is tight when a model of the hybrid KB is defined
as the union of two models, one for the DL part and one for the CL part, which
share the same domain. In particular, combining DLs with CLs in a tight manner
can easily yield to undecidability if the interaction scheme between the DL and
the CL part of a hybrid KB does not fulfill the condition of safeness, i.e. does
not solve the semantic mismatch between DLs and CLs [86]. E.g., the hybrid KR
system Carin is unsafe [63] because the interaction scheme is left unrestricted.
Conversely,AL-log [24] is a safe hybrid KR system that integrates Datalog with
the DL ALC [94]. In particular, variables occurring in the body of rules may be
constrained with ALC concept assertions to be used as “typing constraints”.
This makes rules applicable only to explicitly named objects. As in Carin,
query answering is decided using the constrained SLD-resolution which however
inAL-log is decidable and runs in single non-deterministic exponential time. The
hybrid KR framework of DL+log [87] allows for the weakly-safe integration of
Datalog¬∨ with any DL. The condition of weak safeness allows to overcome
the main representational limits of the approaches based on the DL-safeness
condition, e.g. the possibility of expressing a union of conjunctive queries (UCQ),
by keeping the integration scheme still decidable. Apart from the FOL semantics,

14 http://www.w3.org/2005/rules/



196 S. Greco and F.A. Lisi

DL+log has a NM semantics obtained by extending the stable model semantics.
According to it, DL-predicates are still interpreted under OWA, while Datalog
predicates are interpreted under CWA. The problem statement of satisfiability
for finite DL+log KBs relies on the problem known as the Boolean CQ/UCQ
containment problem in DLs. It is shown that the decidability of reasoning in
DL+log, thus of ground query answering, depends on the decidability of the
Boolean CQ/UCQ containment problem in DL.

The semantic integration is loose when the DL part and the CL part are sep-
arate components connected through a minimal interface for exchanging knowl-
edge. An example of one such kind of coupling is the integration scheme for ASP
and DLs illustrated in [28]. It derives from the previous work of the same authors
on the extension of ASP with higher-order reasoning and external evaluations
[29] which has been implemented into the system DLVHEX15.

The semantic integration is full when there is no separation between vocabu-
laries of the two parts of the hybrid KB. In [76], the authors introduce a so-called
faithful integration scheme of LP with DLs using the logic of Minimal Knowledge
and Negation as Failure (MKNF).

A complete picture of the computational properties of systems combining DL
ontologies and Datalog rules can be found in [88]. An updated survey of the
literature on hybrid DL-CL systems [26] is suggested for further reading.

3.4 LP for Learning Semantic Web Ontologies and Rules

The advent of the Semantic Web has also raised a knowledge acquisition bottle-
neck problem for ontologies and rules. Some promising solutions to this problem
come from that Machine Learning approach known under the name of Inductive
Logic Programming (ILP).

Rooted into LP, the methodological apparatus of ILP inherits the inferen-
tial mechanisms for induction from Concept Learning, the most prominent of
which is generalization [78]. In Concept Learning, thus in ILP, generalization
is traditionally viewed as search through a partially ordered space of inductive
hypotheses [74]. According to this vision, an inductive hypothesis is a clausal
theory and the induction of a single clause requires (i) structuring, (ii) search-
ing and (iii) bounding the space of clauses. In order to achieve (i), a generality
order is imposed on clauses for determining which one, between two clauses, is
more general than the other. Since partial orders are considered, uncompara-
ble pairs of clauses are admitted. Once structured, the space of hypotheses can
be searched (ii) by means of refinement operators. A refinement operator is a
function which computes a set of specializations or generalizations of a clause
according to whether a top-down or a bottom-up search is performed. The two
kinds of refinement operators have been therefore called downward and upward,
respectively. The definition of refinement operators presupposes the investiga-
tion of the properties of the various orderings and is usually coupled with the
specification of a declarative bias for bounding the space of clauses (iii). This

15 http://www.kr.tuwien.ac.at/research/systems/dlvhex/



Logic Programming Languages for Databases and the Web 197

concerns anything which constrains the search for theories, e.g. a language bias
specifies syntactic constraints on the clauses in the search space.

A distinguishing feature of ILP with respect to other forms of Concept Learn-
ing is the use of background knowledge (BK), i.e. prior knowledge of the domain
of interest, during the induction process. Therefore, an ILP algorithm general-
izes from individual instances/observations in the presence of BK, finding valid
hypotheses. Validity depends on the underlying setting. At present, there exist
several settings in ILP that vary according to: (i) the scope of induction (predic-
tion vs description) and (ii) the representation of observations (ground definite
clauses vs ground unit clauses). Prediction aims at inducing hypotheses with
discriminant power as required in tasks such as classification where observations
encompass both positive and negative examples. Description is more suitable
for finding regularities in a data set. This corresponds to learning from positive
examples only. Aspect (ii) affects the notion of coverage, i.e. the condition under
which a hypothesis explains an observation. In learning from entailment, hy-
potheses are clausal theories, observations are ground definite clauses, and a hy-
pothesis covers an observation if the hypothesis logically entails the observation.
In learning from interpretations, hypotheses are clausal theories, observations
are Herbrand interpretations (ground unit clauses) and a hypothesis covers an
observation if the observation is a model for the hypothesis.

ILP has been historically concerned with Concept Learning from examples
and BK within the representation framework of Horn CL and with the aim of
prediction. More recently ILP has considered the problems of learning in different
FOL fragments such as DLs and hybrid DL-CL formalisms. This bunch of ILP
research is relevant to the Semantic Web application domain.

Inducing DL Concept Descriptions
An ILP characterization of the problem has been proposed by [8,62]. Contribu-
tions from the Italian LP community are on the formal treatment of learning
in DLs, e.g.: Supervised learning in ALC [30]; Unsupervised learning (concept
formation) in ALC [32]; Supervised learning in OWL DL [31].

Inducing Hybrid DL-CL Rules
Only three ILP frameworks have been proposed that adopt a hybrid DL-CL
representation for both hypotheses and background knowledge: [89] chooses
Carin-ALN , [64] resorts to AL-log, and [65] builds upon SHIQ+log. They
can be considered as attempts at accommodating ontologies in ILP by having
ontologies as BK. Indeed both proposals extend previous work in ILP, notably
the order of generalized subsumption [14], to hybrid DL-CL KR frameworks [66].

The framework proposed in [89] focuses on discriminant induction and adopts
the ILP setting of learning from interpretations. Hypotheses are represented as
Carin-ALN non-recursive rules with a Horn literal in the head that plays the
role of target concept. The coverage relation adapts the usual one in the ILP
setting of learning from interpretations to the case of hybrid Carin-ALN BK.
Procedures for testing both the coverage relation and the generality relation
are based on the existential entailment algorithm of Carin. In [59], the author



198 S. Greco and F.A. Lisi

studies the learnability of Carin-ALN and provides a pre-processing method
which enables traditional ILP systems to learn Carin-ALN rules.

In [64], hypotheses are represented as AL-log rules. As opposite to [89], this
framework is general, meaning that it is valid whatever the scope of induction
(prediction/description) is. Therefore the literal in the head of hypotheses rep-
resents a concept to be either discriminated from others or characterized. The
generality order for one such hypothesis language can be checked with a decid-
able procedure based on constrained SLD-resolution. Coverage relations for both
ILP settings of learning from interpretations and learning from entailment have
been defined on the basis of query answering in AL-log. As opposite to [89], the
framework has been implemented into an ILP system that supports a variant of
a very popular data mining task - frequent pattern discovery - where rich prior
conceptual knowledge is taken into account during the discovery process in order
to find patterns at multiple levels of description granularity [67].

The ILP framework presented in [65] represents hypotheses as DL+log rules
restricted to the DL SHIQ and positive Datalog. Analogously to [64], it encom-
passes both scopes of induction but, differently from [64], it assumes the ILP
setting of learning from interpretations only. Both the coverage relation and the
generality relation boil down to query answering in DL+log. Refinement oper-
ators are defined to search the hypothesis space either top-down or bottom-up.
Compared to [89] and [64], this framework shows an added value which can
be summarized as follows. First, it relies on a more expressive DL, i.e. SHIQ.
Second, it allows for inducing definitions for new DL concepts, i.e. rules with a
SHIQ literal in the head. Third, it adopts a more expressive integration scheme
of DLs and CLs, i.e. the weakly-safe one.

References

1. Abiteboul, S.: Querying semi-structured data. In: Afrati, F.N., Kolaitis, P.G.
(eds.) ICDT 1997. LNCS, vol. 1186, pp. 1–18. Springer, Heidelberg (1996)

2. Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web: From Relations to
Semistructured Data and XML. Morgan Kaufmann, San Francisco (2000)

3. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

4. Abiteboul, S., Simon, E.: Fundamental Properties of Deterministic and Nondeter-
ministic Extensions of Datalog. Theoretical Compututer Science 78(1), 137–158
(1991)

5. Abiteboul, S., Vianu, V.: Non-Determinism in Logic-Based Languages. Annals of
Mathematics and Artificial Intelligence 3(2-4), 151–186 (1991)

6. Angles, R., Gutierrez, C.: The Expressive Power of SPARQL. In: Sheth, A.P.,
Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K.
(eds.) ISWC 2008. LNCS, vol. 5318, pp. 114–129. Springer, Heidelberg (2008)

7. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation and Applica-
tions, 2nd edn. Cambridge University Press, Cambridge (2007)

8. Badea, L., Nienhuys-Cheng, S.-W.: A Refinement Operator for Description Logics.
In: Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 40–59.
Springer, Heidelberg (2000)



Logic Programming Languages for Databases and the Web 199

9. Beeri, C., Ramakrishnan, R.: On the Power of Magic. Journal of Logic Program-
ming 10(1-4), 255–299 (1991)

10. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American
(May 2001)

11. Bidoit, N., Maabout, S.: A Model Theoretic Approach to Update Rule Programs.
In: Afrati, F.N., Kolaitis, P.G. (eds.) ICDT 1997. LNCS, vol. 1186, pp. 173–187.
Springer, Heidelberg (1996)

12. Bonatti, P., Calimeri, F., Leone, N., Ricca, F.: Answer Set Programming. In:
Dovier, Pontelli [25], ch. 8, vol. 6125, pp. 159–178 (2010)

13. Borgida, A.: On the Relative Expressiveness of Description Logics and Predicate
Logics. Artificial Intelligence 82(1-2), 353–367 (1996)

14. Buntine, W.: Generalized Subsumption and Its Applications to Induction and
Redundancy. Artificial Intelligence 36(2), 149–176 (1988)

15. Cal̀ı, A., Gottlob, G., Lukasiewicz, T.: Tractable Query Answering over Ontologies
with Datalog+/-. In: Description Logics (2009)

16. Calimeri, F., Faber, W., Leone, N., Perri, S.: Declarative and Computational
Properties of Logic Programs with Aggregates. In: IJCAI, pp. 406–411 (2005)

17. Caroprese, L., Greco, S., Sirangelo, C., Zumpano, E.: Declarative Semantics of
Production Rules for Integrity Maintenance. In: Etalle, S., Truszczyński, M. (eds.)
ICLP 2006. LNCS, vol. 4079, pp. 26–40. Springer, Heidelberg (2006)

18. Caroprese, L., Greco, S., Zumpano, E.: Active Integrity Constraints for Database
Consistency Maintenance. IEEE Transactions on Knowledge and Data Engineer-
ing 21(7), 1042–1058 (2009)

19. Caroprese, L., Truszczyński, M.: Declarative Semantics for Active Integrity Con-
straints. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS,
vol. 5366, pp. 269–283. Springer, Heidelberg (2008)

20. Caroprese, L., Truszczyński, M.: Declarative Semantics for Revision Programming
and Connections to Active Integrity Constraints. In: Hölldobler, S., Lutz, C.,
Wansing, H. (eds.) JELIA 2008. LNCS (LNAI), vol. 5293, pp. 100–112. Springer,
Heidelberg (2008)

21. Ceri, S., Fraternali, P., Paraboschi, S., Tanca, L.: Automatic Generation of Pro-
duction Rules for Integrity Maintenance. ACM Transactions on Database Sys-
tems 19(3), 367–422 (1994)

22. Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer,
Heidelberg (1990)

23. Ceri, S., Gottlob, G., Wiederhold, G.: Efficient Database Access from Prolog.
IEEE Transaction on Software Engineering 15(2), 153–164 (1989)

24. Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: AL-log: Integrating Data-
log and Description Logics. J. of Intelligent Information Systems 10(3), 227–252
(1998)

25. Dovier, A., Pontelli, E. (eds.): 25 Years of Logic Programming in Italy. LNCS,
vol. 6125. Springer, Heidelberg (2010)

26. Drabent, W., Eiter, T., Ianni, G.B., Krennwallner, T., Lukasiewicz, T., Maluszyn-
ski, J.: Hybrid Reasoning with Rules and Ontologies. In: REWERSE, pp. 1–49
(2009)

27. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM Transactions on
Database Systems 22(3), 364–418 (1997)

28. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining
answer set programming with description logics for the Semantic Web. Artificial
Intelligence 172(12-13), 1495–1539 (2008)



200 S. Greco and F.A. Lisi

29. Eiter, T., Ianni, G.B., Schindlauer, R., Tompits, H.: A Uniform Integration of
Higher-Order Reasoning and External Evaluations in Answer-Set Programming.
In: IJCAI, pp. 90–96 (2005)

30. Esposito, F., Fanizzi, N., Iannone, L., Palmisano, I., Semeraro, G.: Knowledge-
Intensive Induction of Terminologies from Metadata. In: McIlraith, S.A., Plex-
ousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 441–455.
Springer, Heidelberg (2004)

31. Fanizzi, N., d’Amato, C., Esposito, F.: DL-FOIL Concept Learning in Description
Logics. In: Železný, F., Lavrač, N. (eds.) ILP 2008. LNCS (LNAI), vol. 5194, pp.
107–121. Springer, Heidelberg (2008)

32. Fanizzi, N., Iannone, L., Palmisano, I., Semeraro, G.: Concept Formation in
Expressive Description Logics. In: Boulicaut, J.-F., Esposito, F., Giannotti, F.,
Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 99–110. Springer,
Heidelberg (2004)

33. Flesca, S., Greco, S.: Declarative semantics for active rules. Theory and Practice
of Logic Programming 1(1), 43–69 (2001)

34. Frisch, A.M., Cohn, A.G.: Thoughts and Afterthoughts on the 1988 Workshop on
Principles of Hybrid Reasoning. AI Magazine 11(5), 84–87 (1991)

35. Furfaro, F., Greco, G., Greco, S.: Minimal founded semantics for disjunctive
logic programs and deductive databases. Theory and Practice of Logic Program-
ming 4(1-2), 75–93 (2004)

36. Furfaro, F., Greco, S., Ganguly, S., Zaniolo, C.: Pushing extrema aggregates to
optimize logic queries. Information Systems 27(5), 321–343 (2002)

37. Gallaire, H., Minker, J. (eds.): Logic and Data Bases. Plenum Press, New York
(1978)

38. Gallaire, H., Minker, J., Nicolas, J.M.: Logic and databases: A deductive approach.
ACM Computing Surveys 16(2), 153–185 (1984)

39. Gallaire, H., Nicolas, J.M., Minker, J. (eds.): Advances in Data Base Theory,
vol. 2. Plenum Press, New York (1984)

40. Ganguly, S., Greco, S., Zaniolo, C.: Extrema Predicates in Deductive Databases.
Journal of Computer and Systems Science 51(2), 244–259 (1995)

41. Van Gelder, A., Ross, K.A., Schlipf, J.S.: The Well-Founded Semantics for General
Logic Programs. J. ACM 38(3), 620–650 (1991)

42. Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programming.
In: ICLP/SLP, pp. 1070–1080 (1988)

43. Giannotti, F., Greco, S., Saccà, D., Zaniolo, C.: Programming with Non-
Determinism in Deductive Databases. Annals of Mathematics and Artificial In-
telligence 19(1-2), 97–125 (1997)

44. Giannotti, F., Pedreschi, D., Saccà, D., Zaniolo, C.: Non-Determinism in De-
ductive Databases. In: Delobel, C., Masunaga, Y., Kifer, M. (eds.) DOOD 1991.
LNCS, vol. 566, pp. 129–146. Springer, Heidelberg (1991)

45. Giannotti, F., Pedreschi, D., Zaniolo, C.: Semantics and Expressive Power of
Nondeterministic Constructs in Deductive Databases. Journal of Computer and
Systems Science 62(1), 15–42 (2001)

46. Giordano, L., Toni, F.: Knowledge representation and non-monotonic reasoning.
In: Dovier, Pontelli [25], ch. 5, vol. 6125, pp. 86–110 (2010)

47. Gozzi, F., Lugli, M., Ceri, S.: An overview of PRIMO: a portable interface between
PROLOG and relational databases. Information Systems 15(5), 543–553 (1990)

48. Greco, S.: Dynamic Programming in Datalog with Aggregates. IEEE Transactions
on Knowledge and Data Engineering 11(2), 265–283 (1999)



Logic Programming Languages for Databases and the Web 201

49. Greco, S., Saccà, D.: Complexity and Expressive Power of Deterministic Semantics
for Datalog. Information and Computation 153(1), 81–98 (1999)

50. Greco, S., Saccà, D., Zaniolo, C.: Datalog Queries with Stratified Negation and
Choice: from p to dp. In: Y. Vardi, M., Gottlob, G. (eds.) ICDT 1995. LNCS,
vol. 893, pp. 82–96. Springer, Heidelberg (1995)

51. Greco, S., Saccà, D., Zaniolo, C.: The PushDown Method to Optimize Chain
Logic Programs. In: Fülöp, Z., Gecseg, F. (eds.) ICALP 1995. LNCS, vol. 944,
pp. 523–534. Springer, Heidelberg (1995)

52. Greco, S., Saccà, D., Zaniolo, C.: Grammars and Automata to Optimize Chain
Logic Queries. Int. Journal Foundations of Computer Science 10(3), 349 (1999)

53. Greco, S., Zaniolo, C.: Optimization of Linear Logic Programs Using Counting
Methods. In: Pirotte, A., Delobel, C., Gottlob, G. (eds.) EDBT 1992. LNCS,
vol. 580, pp. 72–87. Springer, Heidelberg (1992)

54. Greco, S., Zaniolo, C.: Greedy algorithms in Datalog. Theory and Practice of
Logic Programming 1(4), 381–407 (2001)

55. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: com-
bining logic programs with description logic. In: WWW, pp. 48–57 (2003)

56. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to
OWL: The Making of a Web Ontology Language. Journal of Web Semantics 1(1),
7–26 (2003)

57. Hustadt, U., Motik, B., Sattler, U.: Deciding expressive description logics in the
framework of resolution. Information and Computation 206(5), 579–601 (2008)

58. Ianni, G.B., Krennwallner, T., Martello, A., Polleres, A.: A Rule System for
Querying Persistent RDFS Data. In: Aroyo, L., Traverso, P., Ciravegna, F.,
Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M.,
Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 857–862. Springer,
Heidelberg (2009)

59. Kietz, J.-U.: Learnability of Description Logic Programs. In: Matwin, S.,
Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, pp. 117–132. Springer,
Heidelberg (2003)

60. Krishnamurthy, R., Naqvi, S.A.: Non-Deterministic Choice in Datalog. In:
JCDKB, pp. 416–424 (1988)

61. Lausen, G., Ludäscher, B., May, W.: On Logical Foundations of Active Databases.
In: Logics for Databases and Information Systems, pp. 389–422 (1998)

62. Lehmann, J., Hitzler, P.: Foundations of Refinement Operators for Description
Logics. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007.
LNCS (LNAI), vol. 4894, pp. 161–174. Springer, Heidelberg (2008)

63. Levy, A.Y., Rousset, M.-C.: Combining Horn rules and description logics in
CARIN. Artificial Intelligence 104, 165–209 (1998)

64. Lisi, F.A.: Building Rules on Top of Ontologies for the Semantic Web with In-
ductive Logic Programming. Theory and Practice of Logic Programming 8(03),
271–300 (2008)

65. Lisi, F.A., Esposito, F.: Foundations of Onto-Relational Learning. In: Železný,
F., Lavrač, N. (eds.) ILP 2008. LNCS (LNAI), vol. 5194, pp. 158–175. Springer,
Heidelberg (2008)

66. Lisi, F.A., Esposito, F.: On Ontologies as Prior Conceptual Knowledge in Induc-
tive Logic Programming. In: Knowledge Discovery Enhanced with Semantic and
Social Information, pp. 3–18. Springer, Heidelberg (2009)

67. Lisi, F.A., Malerba, D.: Inducing Multi-Level Association Rules from Multiple
Relations. Machine Learning 55, 175–210 (2004)



202 S. Greco and F.A. Lisi

68. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg
(1987)

69. Loke, S.W., Davison, A.: LogicWeb: Enhancing the Web with Logic Programming.
Journal of Logic Programming 36(3), 195–240 (1998)

70. Lukácsy, G., Szeredi, P.: Efficient Description Logic Reasoning in Prolog: The
DLog system. Theory and Practice of Logic Programming 9(3), 343–414 (2009)

71. Marchiori, M.: Towards a people’s web: Metalog. In: Web Intelligence,
pp. 320–326. IEEE Computer Society Press, Los Alamitos (2004)

72. Marchiori, M.: Introduction to the Special Issue on Logic Programming and the
Web. Theory and Practice of Logic Programming 8(3), 247–248 (2008)

73. Marchiori, M., Saarela, J.: Query + Metadata + Logic = Metalog. In: W3C
Workshop on Query Languages (1998)

74. Mitchell, T.M.: Generalization as Search. Artificial Intelligence 18, 203–226 (1982)
75. Motakis, I., Zaniolo, C.: Temporal Aggregation in Active Database Rules. In:

SIGMOD Conference, pp. 440–451 (1997)
76. Motik, B., Rosati, R.: A Faithful Integration of Description Logics with Logic

Programming. In: IJCAI, pp. 477–482 (2007)
77. Mumick, I.S., Shmueli, O.: How Expressive is Statified Aggregation? Annals of

Mathematics and Artificial Intelligence 15(3-4), 407–434 (1995)
78. Nienhuys-Cheng, S.-H., de Wolf, R.: Foundations of Inductive Logic Program-

ming. Springer, Heidelberg (1997)
79. Palopoli, L., Torlone, R.: Generalized Production Rules as a Basis for Integrating

Active and Deductive Databases. IEEE Transactions on Knowledge and Data
Engineering 9(6), 848–862 (1997)

80. Pelov, N., Denecker, M., Bruynooghe, M.: Well-founded and stable semantics of
logic programs with aggregates. Theory and Practice of Logic Programming 7(3),
301–353 (2007)

81. Picouet, P., Vianu, V.: Semantics and Expressiveness Issues in Active Databases.
Journal of Computer and Systems Science 57(3), 325–355 (1998)

82. Pontelli, E.: Concurrent Web-Programming in CLP(WEB). In: HICSS (2000)
83. Pontelli, E., Gupta, G.: W-ACE: A Logic Language for Intelligent Internet Pro-

gramming. In: IEEE ICTAI, pp. 2–10 (1997)
84. Przymusinski, T.C.: Semantics of Disjunctive Logic Programs and Deductive

Databases. In: Delobel, C., Masunaga, Y., Kifer, M. (eds.) DOOD 1991. LNCS,
vol. 566, pp. 85–107. Springer, Heidelberg (1991)

85. Rosati, R.: On the decidability and complexity of integrating ontologies and rules.
Journal of Web Semantics 3(1), 61–73 (2005)

86. Rosati, R.: Semantic and Computational Advantages of the Safe Integration of
Ontologies and Rules. In: Fages, F., Soliman, S. (eds.) PPSWR 2005. LNCS,
vol. 3703, pp. 50–64. Springer, Heidelberg (2005)

87. Rosati, R.: DL+log: Tight Integration of Description Logics and Disjunctive Dat-
alog. In: KR, pp. 68–78 (2006)

88. Rosati, R.: On Combining Description Logic Ontologies and Nonrecursive Datalog
Rules. In: Calvanese, D., Lausen, G. (eds.) RR 2008. LNCS, vol. 5341, pp. 13–27.
Springer, Heidelberg (2008)

89. Rouveirol, C., Ventos, V.: Towards Learning in CARIN-ALN . In: Cussens, J.,
Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 191–208. Springer,
Heidelberg (2000)

90. Saccà, D.: The Expressive Powers of Stable Models for Bound and Unbound
DATALOG Queries. Journal of Computer System Sciences 54(3), 441–464 (1997)



Logic Programming Languages for Databases and the Web 203

91. Saccà, D., Zaniolo, C.: The Generalized Counting Method for Recursive Logic
Queries. Theoretical Computer Science 62(1-2), 187–220 (1988)

92. Saccà, D., Zaniolo, C.: Stable Models and Non-Determinism in Logic Programs
with Negation. In: PODS, pp. 205–217 (1990)

93. Saccà, D., Zaniolo, C.: Deterministic and Non-Deterministic Stable Models. Jour-
nal of Logic and Computation 7(5), 555–579 (1997)

94. Schmidt-Schauss, M., Smolka, G.: Attributive Concept Descriptions with Com-
plements. Artificial Intelligence 48(1), 1–26 (1991)

95. Son, T.C., Pontelli, E., Elkabani, I.: An unfolding-based semantics for logic pro-
gramming with aggregates. CoRR, abs/cs/0605038 (2006)

96. Tsur, S.: Deductive Databases in Action. In: PODS, pp. 142–153 (1991)
97. Ullman, J.D.: Principles of Database and Knowledge-Base Systems, vol. II.

Computer Science Press (1989)
98. Ullman, J.D.: Principles of Database and Knowledge-Base Systems, vol. I.

Computer Science Press (1988)
99. Widom, J.: Deductive and Active Databases: Two Paradigms or Ends of a Spec-

trum? In: Rules in Database Systems, pp. 306–315 (1993)
100. Widom, J., Ceri, S. (eds.): Active Database Systems: Triggers and Rules For

Advanced Database Processing. Morgan Kaufmann, San Francisco (1996)
101. Zaniolo, C.: The Nonmonotonic Semantics of Active Rules in Deductive

Databases. In: Bry, F., Ramamohanarao, K. (eds.) DOOD 1997. LNCS, vol. 1341,
pp. 265–282. Springer, Heidelberg (1997)



Agents, Multi-Agent Systems and Declarative
Programming: What, When, Where, Why, Who, How?

Matteo Baldoni1, Cristina Baroglio1, Viviana Mascardi2,
Andrea Omicini3, and Paolo Torroni3

1 Dipartimento di Informatica, Università degli Studi di Torino,
c.so Svizzera, 185 - I-10149, Torino, Italy

{baldoni,baroglio}@di.unito.it
2 DISI, Università degli Studi di Genova,

Via Dodecaneso 35 - I-16146, Genova, Italy
viviana.mascardi@unige.it

3 DEIS, ALMA MATER STUDIORUM–Università di Bologna
V.le Risorgimento, 2 - I-40136, Bologna, Italy

{paolo.torroni,andrea.omicini}@unibo.it

Abstract. This chapter tackles the relation between declarative languages and
multi-agent systems by following the dictates of the five Ws (and one H) that
characterize investigations. The aim is to present this research field, which has
a long-term tradition, and discuss about its future. The first question to answer
is “What? What are declarative agents and multi-agent systems?”. Therefore,
we will introduce the history of declarative agent systems up to the state of the
art by answering the question “When? When did research on them begin?”. We
will, then, move to the question “Where? Where can it take place?”: in which
kind of real applications and for which kind of problems declarative agents and
MAS have already proven useful? Connected to where is “Why? Why should
it happen?”. We will discuss the benefits of adopting the abstractions offered
by declarative approaches for developing communication, interaction, coopera-
tion mechanisms. We will compare with other technologies, mainly service-based
and object-oriented ones. “Who? Who can be involved?”: in order to exploit this
kind of technology what sort of background does a specialist have to acquire?
We address this question by looking at the Italian landscape of Computer Sci-
ence research and education. Finally, with the question “How? How can it hap-
pen?” we will shortly report some examples of existing declarative languages and
frameworks for the specification, verification, implementation and prototyping of
agents and MAS.

1 What? Declarative Agent Systems

The notion of declarative agent system should be taken as a conventional one, to be
used in order to focus on an essential theme in agent-oriented computing, rather than
to clearly delimit the boundaries of a well-defined research subfield. In fact, given the
ever-lasting relationship between agents and MAS, on the one hand, and declarative
approaches, languages and technologies, on the other, declarative agent systems are not
so easily distinguishable from the notion of MAS themselves. For instance, by adopting

A. Dovier, E. Pontelli (Eds.): 25 Years of Logic Programming, LNCS 6125, pp. 204–230, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Agents, Multi-Agent Systems and Declarative Programming 205

the strong notion of agency as promoted by [181], mentalistic notions, like beliefs and
desires, with an obvious declarative taste are at the core of the very notion of agent.
More specifically, they are at the core of the notion of intelligent agent.

Of course, when adopting weaker notions of agent, such as weak agents in [181], or
the autonomy-grounded definition of agent in the A&A metamodel [133], declarative
approaches and techniques are no longer strictly required, at a first glance. Whenever
MAS are adopted to build up non-trivial systems, however, declarative technologies
are typically the only viable approach, mainly due to the high-level of abstraction over
complexity they promote [134].

Declarative Agents. Historically, one landmark of declarative agent system is repre-
sented by Shoham’s AgentSpeak [156], the pioneering framework for agent-oriented
programming (AOP) promoting a mentalistic view of agents based on components such
as beliefs, decisions, capabilities, and obligations, and where the mental state of agents
is described formally in an extension of standard epistemic logics. According to [182]

AOP may be regarded as a kind of “post-declarative” programming. . . . In
AOP, the idea is that, as in declarative programming, we state our goals, and
let the built-in control mechanism figure out what to do in order to achieve
them. In this case, however, the control mechanism implements some model
of rational agency . . . Hopefully, this computational model corresponds to our
own intuitive understanding of (say) beliefs and desires, and so we need no
special training to use it. Ideally, as AOP programmers, we need not be too
concerned with how an agent achieves its goals.

Even more so, languages ranging from AgentSpeak(L) [141] to Jason [26], based on
the AOP framework, clearly show how declarative and procedural techniques cannot be
but combined when building intelligent agents. In particular, when declarative knowl-
edge, required to represent the mentalistic structures of an intelligent agent, needs to be
properly combined with procedural knowledge so as to result in an effective process of
practical reasoning. More practically, Prolog-like syntax and operators for beliefs, rules,
goals, and plans in Jason provide a clear example of how declarative and logic-based
technologies are the most suitable approach for the engineering of intelligent agents,
covering some of the essential intra-agent aspects of MAS.

Declarative Multiagent Systems. Individual aspects, however, are far from covering
all the issues of declarative agent systems. In fact, a huge space for declarative and
logic-based approaches is represented by agent societies: intuitively, the social level is
where the complexity of MAS typically grows [134]. Handling a MAS composed by
hundreds or thousands of agents, as an open system where both known and unknown
agents coexist and interact in an unpredictable way, is obviously more than a challenge
to MAS engineers. For this very reason, the social level is the one where declarative
models and technologies are likely to provide the most relevant contribution: for in-
stance, by allowing system properties to be assessed at design time, and then enforced
at run time by suitable declarative technologies, independently of the MAS dynamics,
and of the MAS environment as well.

Agent communication languages (ACL) have represented the first and most imme-
diate representatives for the use of declarative technologies in the construction of agent



206 M. Baldoni et al.

societies. In particular, it is well-known that languages as KQML [108] and FIPA ACL
[77] represent the first and the current standards, respectively, for inter-agent commu-
nication. However, while it is simple to understand how speech-act communication can
be based on a declarative approach, ACL are only the first example of declarative tech-
niques adopted for the construction of agent societies.

Even though it was not meant to address the problem of MAS coordination, one
of the milestones of declarative technologies for MAS is represented by the work on
Shared Prolog [31], a Linda-based language for the coordination of Prolog agents.
There, for the first time, a logic-based language was used to coordinate a number of
concurrent agents, thus exploiting a declarative technology in order to govern interac-
tion within an agent society. Subsequently, other declarative and logic-based languages
were conceived and developed for the construction of agent societies based on coordi-
nation abstractions, such as the coordination language ReSpecT: there, both the mes-
sages and the social rules of are specified in terms of first-order logic tuples hosted in
distributed logic-based tuple centres [132].

A step further is represented by the notion of social integrity constraints [7], which
formalizes social concepts such as violation, fulfilment, social expectation within a
logic-based framework, concepts that can be enforced at run-time through a suitably-
defined logic-based infrastructure. At the infrastructural level, declarative technologies
are essential in the definition of the concept of MAS institution. This is the case of Basic
Institutions, formally defined in [39], and founded on the social interpretation of agent
communicative acts, and of Logic-based Electronic Institutions [172], first-order logic
tools aimed at the specification of open agent organizations.

Declarative Agent Systems

Overall, it is apparent that declarative languages and techniques are essential in the
design and development of modern MAS, where they are typically used to address
most critical aspects. Both intra- and inter-agent issues, in fact, are more and more
faced by adopting declarative approaches, the most relevant of which are presented in
the remainder of this chapter. So, in the end, it would be quite artificial to draw a line
between declarative and non-declarative agent systems: more easily, it is typically the
case that one should devise those portions of (nearly) any MAS that exploit declarative
and logic-based technologies.

2 When?

The history of declarative agent systems partially coincides with that of intentional
systems in Artificial Intelligence: the notion of an intelligent agent as an entity which
appears to be the subject of beliefs, desires, commitments, and other mental attitudes
[156] is well known and accepted by many researchers. The philosopher Dennett coined
the term intentional system to denote systems of this kind [50]. In that period (after
STRIPS), Artificial Intelligence posed a great emphasis on the use of formal repre-
sentations, often associated with deductive forms of reasoning [180], and logic pro-
gramming developed very fast, producing languages that allow for writing executable
specifications [160].



Agents, Multi-Agent Systems and Declarative Programming 207

Since intelligent software agents must be programmed using languages that can be
compiled or interpreted, as any other piece of software, the need for programming
languages that could fill the gap between the logical theory and the practical issues
concerned with software agents’ development arose very soon. Computational logic
emerged as a natural tool for developing approaches and solutions, in regards to many
aspects. First of all, for the formalization of state-related information (knowledge, be-
liefs, goals, environment). Moreover, for the formalization of behavior, and therefore,
of the skill of reasoning in order to find new information, to take decisions, to build
plans. Generally, to produce proper reactions to the environment and to other agents.

The first real implementation of an intentional system was SRI’s Procedural Rea-
soning System, PRS [82,97], developed to represent and use an expert’s procedural
knowledge for accomplishing goals and tasks, based on the research on procedural rea-
soning carried out at the Artificial Intelligence Center, SRI International. Procedural
knowledge amounts to descriptions of collections of structured actions for use in spe-
cific situations. PRS supported the definition of real-time, continuously-active, intelli-
gent systems that make use of procedural knowledge, such as diagnostic programs and
system controllers. In order to formalize intentional systems, different logics were de-
veloped, among which the theory of intentions [38], the Belief-Desire-Intention (BDI)
logic [142], and that of Knowledge-Abilities-Results-Opportunity [168]. The success of
these first implementations gave new impulse to the use of logic approaches for repre-
senting and giving a semantics to agents and to their behaviors. A noteworthy example
in this respect is Wooldridge’s Ph.D. thesis [178], which paved the way to research on
agent theories, architectures and languages [129].

Shoham’s paper Agent-Oriented Programming [156] describes one of the first at-
tempts to define a programming language based on intentional notions. The mental
categories upon which Agent-0 is based are belief and obligation (or commitment). De-
cision (or choice) is treated as obligation to oneself. Relevant is also dMARS [54],
implemented at the Australian AI Institute under the direction of Georgeff, which was
a kind of second generation PRS, implemented in C++ and used for commercial agent
development projects [83].

These first attemps bear the ambition of developing an approach that more fully
draws from the experience of computational logic. A first proposal in this direction
is METATEM [66]. So in the ’90s, there was, on the one hand, a strain towards the
engineering of agents and agent systems in order to meet the requirements of commer-
cialization. To this respect it is important to mention AAII, spun out of Agentis In-
ternational1 to address the commercialization of the developed technology, and Agent
Oriented Software (AOS), formed by a number of ex-AAII staff to pursue agent tech-
nology developing JACK Intelligent Agents [35].

On the other hand, METATEM proved the importance of computational logic for the
feasibility of the verification of properties, like interoperability, of complex (agent) sys-
tems. New themes started to be tackled. In order to reason about systems of agents it is in
fact necessary to represent also the other agents’ beliefs and goals, and to represent in a
declarative way the rules that govern their interactions and the communication. It is also
important to introduce processes of negotiation and to deal with possibly conflicting

1 http://www.agentissoftware.com/

http://www.agentissoftware.com/


208 M. Baldoni et al.

sets of goals. This led to the proposal of languages like Golog [114] and ConGolog
[48], of approaches for the representation of interaction protocols like those of Singh
[157], and proposals like AgentSpeak(L) [141] which aimed to help the understanding
of the relation between practical implementations of the BDI architecture such as PRS
and the formalization of the ideas behind the BDI architecture using modal logics [143].
It is important to notice how, in the same years, the revamp of programming languages
exploiting garbage collection, such as Java, and the greater efficiency of hardware due
to the technological advancements brought a renovated attention onto declarative pro-
gramming languages due to their ability of dealing with the openness, the dynamicity,
and the flexibility that characterize complex systems.

3 Where? Applications

The exploitation of declarative agent systems for industrial projects and applications has
a long and successful history dating back to the early and mid nineties. In the following,
we provide some meaningful examples coming from different application domains—
some of which developed and tested in real, safety-critical scenarios. In the overall, they
show that an agent-oriented solution adopting declarative techniques can be fruitfully
exploited to satisfy concrete industrial needs, and demonstrate as well the success of
declarative agent technologies and systems outside the boundaries of academia.

Among the oldest applications of declarative agents we may mention a re-implemen-
tation of TEAM-CPS [175] where agents used the PRODIGY planning system [122] for
local network planning, and the Agent-Orientated Programming framework for commu-
nication and control. In 1997, Leckie et al. [110] developed a prototype agent-based sys-
tem for performance monitoring and fault diagnosis in a telecommunications network,
where agents were implemented using C5 [148], based on the OPS5 rule language [75],
and communicated using KQML.

ARCHON (ARchitecture for Cooperative Heterogeneous ON-line systems [99]) was
Europe’s largest ever project in the area of Distributed Artificial Intelligence. It was em-
ployed for monitoring and controlling the cycle of generating, transporting and
distributing electrical energy to industrial and domestic customers, for the Iberdrola
company, one of the world’s leading private energy groups. ARCHON’s Planning and
Coordination Module was implemented as a rule-based system.

In [152], Schroeder et al. describe a declarative and reactive diagnostic agent based
on extended logic programming. Both the inference engine used for computing diag-
noses and the reactive layer that implements a meta-interpreter for the agent were im-
plemented in Prolog extended with communication facilities.

The IMPACT agent framework [12] integrates concepts from deontic logic and was
used to develop real applications. They include combat information management where
IMPACT was used to provide yellow pages matchmaking services and aerospace appli-
cations where IMPACT technology led to the development of a multiagent solution to
the “controlled flight into terrain” problem.

Moving to nowadays, [154] describes Space Shuttle Ground Processing with Mon-
itoring Agents. JESS, the Java Expert System Shell [78], is used to realize a system



Agents, Multi-Agent Systems and Declarative Programming 209

that helps the monitoring of all the processes, instrumentation and data flows of the
Kennedy Space Center’s Launch Processing System. The system, called NESTA, helps
to monitor and above all to discover problems concerning the “ground process”, i.e.
the set of operations carried out in the weeks before the Space Shuttle’s launch. NESTA
autonomously and continuously monitors shuttle telemetry data and automatically alerts
NASA shuttle engineers if it discovers predefined situations.

Daimler A.G. is exploiting BDI-agent features to develop a “goal-context” model-
ing technique for describing and executing agile business processes. The goal-context
approach aims at (i) having a modular process model that describes the process’ steps
separate from the process’ goals and contexts; and (ii) having different modeling levels,
for the different parts of the process model. The goal-context approach was used for
the engineering change management process of Daimler, and Jadex [29] was employed
for developing a running prototype [34]. The change management real application is
currently being implemented using the Whitestein agent platform [147,33]. Go4Flex2

is a follow-up of these activities, where the goal-context approach will be applied to
another area at Daimler.

Other applications of Jadex include a prototype developed for a company to use se-
mantic Web Technologies for improving the search [174], and two simulations based
on real (company) data. The first one dealt with logistics in a big packet delivery com-
pany [146]. In the second scenario Jadex was used to build a patient scheduling system
evaluated using statistical data from over 3000 patient cases collected at the Klinikum
Kulmbach hospital [186].

In a recent project that involved DISI, the Computer Science Department of Genoa
University, and Ansaldo Segnalamento Ferroviario, the Italian leader in design and con-
struction of signalling and automation systems for conventional and high speed railway
lines, a MAS prototype was developed which monitors processes running in a railway
signalling plant, detects functioning anomalies, and provides support to the early noti-
fication of problems [30]. The prototype was implemented and tested using DCaseLP
[117]. Due to the intrinsic rule-based nature of monitoring agents, Prolog proved ex-
tremely suitable for their implementation.

In the past, DCaseLP and its ancestor, CaseLP, were used for many industrial re-
search projects: the Kicker project, based on a previous “freight train traffic” application
[42], was developed within the framework of the EuROPE-TRIS Project as a result of
an industrial collaboration with the Information Systems Division of Italian Railways
(Ferrovie dello Stato s.p.a.), and dealt with the train dispatching problem. CaseLP was
employed for the design and development of a working prototype of a vehicle moni-
toring system, which was carried out in collaboration with Elsag s.p.a. [11]. Finally, a
prototype of a multimedia, multichannel, personalized news provider [49] was devel-
oped using CaseLP in collaboration with Ksolutions s.p.a. as part of the ClickWorld
project, a national, Ministry-funded research project.

2APL has been employed for virtual training systems in the TNO research orga-
nization in the Netherlands. In [88] 2APL is used as an example to illustrate how a
virtual training system can be modeled, whereas in [89] some experiments are reported
in which 2APL agents are used to generate explanations in virtual training systems.

2 http://jadex.informatik.uni-hamburg.de/go4flex/

http://jadex.informatik.uni-hamburg.de/go4flex/


210 M. Baldoni et al.

Descriptions of industrial applications of commercial BDI style agent systems in-
clude [61] and [21] which cover the JACK and Agentis agent platforms, respectively.
Whitestein’s Living Systems technology3 has been applied in scenarios spanning from
telecommunications to logistics, supply chain management, and manufacturing.

4 Why? Benefits

The reasons of the success of the agents and declarative programming binomial is that
declarative approaches are particularly suitable to handle the complexity of agent sys-
tems. Agent systems are dynamic, in the sense that at runtime agents can enter and
exit the system and they can be modified at any moment. The interacting are hetero-
geneous, they have their own goals and they may need to define agreements for co-
operating. Declarative languages abstract away from the execution mechanisms and,
by merging semantics and computation, they allow the study of a solution and of its
properties in the world of concepts. Although in the industry there seems to be a mi-
nor interest towards declarative languages, many concepts introduced by declarative
approaches are adopted by more widely spread languages and tools. Bytecode, script-
ing, assertions, pattern matching, destructuring, correctness are a few examples. Agent
and multi-agent systems based on declarative approaches supply very effective mecha-
nisms for communication, interaction, and cooperation that can be used to implement
choreographies, interaction protocols and orchestrations.

These are particularly useful in addressing computing problems which share with
multi-agent systems the properties of openness, dynamicity, and flexibility, involving
a large number of heterogeneous components that are physically distributed and that
interoperate. Some examples are Web Services [184,9], Mashups [100], SOA [151],
Sensor Networks [106], Middleware [98], Distributed components [138]. These devel-
opments require the specification of proper interfaces that make components accessible
through standard protocols and make it possible to develop new applications by com-
bining and integrating existing components. To this aim, components should bear some
public information about themselves, their structure, the way in which they are sup-
posed to be used, and so forth. This information should be represented according to
some conventional formalism which relies on well-founded models, upon which it is
possible to define access and usage mechanisms. In the following we briefly highlight
some areas in which the declarative approach is clearly emerging as predominant w.r.t.
other approaches.

Exemplary is the case of the Semantic Web, where declarative languages are be-
coming very important in the Semantic Web, and where the focus started to shift from
the ontology layer to the logic layer, with a consequent need of expressing rules and
of applying various forms of reasoning [2], an interest also witnessed by the RULE
Markup Language initiative, by the creation of a W3C working group to define a Rule
Interchange Format [3].

The Internet itself provides interesting hooks to the declarative languages commu-
nity. For instance, OASIS, with the language BPEL4WS [130] (a de facto standard for

3 http://www.whitestein.com/autonomic-technology-platform/
overview

http://www.whitestein.com/autonomic-technology-platform/overview
http://www.whitestein.com/autonomic-technology-platform/overview


Agents, Multi-Agent Systems and Declarative Programming 211

the specification of single services, allowing the representation of a local view of the
interaction that should take place, i.e. the interaction from the point of view of the pro-
cess), has emphasized the need of a language that can be used both as an execution
language for specifying the actual behavior of a participant in a business interaction,
and noticeably as a modeling language, for specifying the interaction at an abstract
level. The need of an abstract representation that can be reasoned about emerged even
more notably for the composition of services. Here it is crucial to have tools that allow
the verification at design time of properties regarding the behavioral aspects of the com-
posed system. Although proposals have been made for composition rules and models,
like BPMN [176] and WS-CDL [102], a comprehensive solution is currently lacking
(BPEL4WS is not enough) and research is moving towards considering declarative ap-
proaches [167,137,123].

For instance, the work by Zaremski and Wing on software components matching,
based on a logic representation of their preconditions and effects [185], inspired most
of the work on semantic matchmaking for Web Service discovery. Semantic Web ap-
proaches commonly describe services in terms of inputs, outputs, preconditions and
effects [1,153]. Inputs and outputs are usually expressed by ontological terms, while
preconditidons and effects are often expressed by means of logic representations.
Amongst the works on semantic matchmaking, Paolucci et al. [135] propose four de-
grees of match (exact, plugin, subsumes, and fail). These matches tackle representations,
in which services are described by means of inputs and outputs; specifically, matches are
computed on the ontological relations of the outputs of an advertisement for a service
and a query. The advantage of these kinds of match is that a service description does
not need to exactly correspond to the request: this flexibility fosters the re-use of Web
Services. The work by Zaremski and Wing also influenced the Web Service Modeling
Ontology proposal [62], an organizational framework for Semantic Web Services.

On the other hand, often services are not sought to be used individually but rather to
be used jointly for executing tasks that none of them alone can accomplish. Semantic
annotations of the kind “inputs, outputs, preconditions, and effects” are not sufficient
in this case: it becomes useful to introduce a notion of goal [139,171,14], which can
be used to guide both the selection and the composition of services. The introduction
of goals strengthens the need of adopting declarative agents. Agents, in fact, include
the ability of dealing with goals and performing goal-driven forms of reasoning; agents
also feature autonomy and proactivity, which help when dealing with open environ-
ments, allowing for instance a greater fault tolerance and an easy approach to exception
handling [119,140,28].

Besides being used as modeling languages and for reasoning in a goal-driven man-
ner, declarative approaches are starting to gain attention also as a means for designing
behaviors, replacing more traditional (in the area of Business Process Management)
procedural approaches and languages, like Petri nets [144] and PI-calculus [121]. The
reason (see [137]) is that systems which allow users to maneuver within the process
model or change it while working are considered as the most suitable for dynamic pro-
cess management. Traditional approaches, having an imperative nature, appear to be too
rigid as they strictly prescribe how to work, often forcing an overspecification, which
as a side effect compromises dinamicity. Opposed to the imperative approaches, Pesic



212 M. Baldoni et al.

and van der Aalst [137] have proposed ConDec, a language for modeling and enacting
dynamic business processes. A ConDec model mainly consists of a set of activities and
a set of relationships that constrain the way activities can be executed, and are referred
to as constraints. Constraints can be interpreted as policies/business rules, and may re-
flect different kinds of knowledge, e.g., external regulations and norms, internal policies
and best practices, service/choreography goals. Differently than in the prescriptive ap-
proaches, where what is not explicitly modeled is forbidden, ConDec models are open:
activities can be freely executed, unless they are subject to constraints. This choice has
two implications. First, a ConDec model accommodates many different possible exe-
cutions, improving flexibility. Second, the language provides abstractions to explicitly
capture not only what is mandatory, but also what is forbidden. In this way, the set
of possible executions does not need to be expressed extensionally and models remain
compact. Agent research too explored similar approaches to obtain openness, flexibility,
and heterogeneity. Yolum and Singh [183] propose to adopt the notion of commitment
to provide a declarative semantics to the interaction protocols: an agent (the debtor)
makes a commitment to another agent (the creditor) to bring about a certain property.
Commitments capture and handle mutual obligations which relate interacting agents,
giving a meaning to the exchanged messages in terms of their impact on commitments.
The adoption of commitments allows a greater flexibility in two respects: the interacting
parties can be heterogeneous in their implementations as long as they have the ability of
understanding the social commitments and of reasoning about them; their executions do
not have to attain to a rigidly encoded behavior, but just not to violate the commitments.
The commitment approach has been studied also by others such as [76,86].

A social approach, closer to Logic Programming, has been developed within the
SOCS EU Project (see also Section “How?”) where global interactions protocols are
specified by means of the SCIFF language [6] and its Abductive Logic Programming
(ALP) semantics [101]. Protocols are specified only by considering the external observ-
able behavior of interacting entities, and by the concept of expectation about desired
events and interaction. Events and expectations are linked by way of forward rules.
The SCIFF language comes with an associated proof procedure, used to verify at run-
time (or a posteriori, by analyzing a log of the interaction) whether interacting agents
conform to the interaction protocols defined. The SCIFF approach is starting to attract
the attention of researchers working on Web Services because of the its potential as
a tool for verifying the interoperability and for giving an executable semantics to lan-
guages like ConDec [124]. The SCIFF framework has also been used to implement
commitments [164] via a reactive version of the event calculus [37]. A discussion of
commitments and expectations together is proposed in [166].

Another issue in which agents’ declarative approaches proved their usefulness and
that also gained attention in other fields is trust negotiation. Trust negotiation [18,22,93]
is an approach to security and privacy preserving interactions in open networked envi-
ronment. In such scenarios peers often interact without any previous relationship and
without sharing any common security domain. As a consequence, traditional authenti-
cation is sometimes undesirable and frequently impossible. Access control policies and
privacy policies are based on user properties. Such properties can be encoded in vari-
ous ways, including digital credentials, unsigned declarations, and reputation measures



Agents, Multi-Agent Systems and Declarative Programming 213

[23]. Some proposals for declarative languages that allow the representation of different
kinds of policies (e.g. XACML [131] and P3P [173]) have been made by standardiza-
tion committees and for reasoning about them [24].

Bordering with Trust Negotiation is Argumentation theory [58], where logic mod-
els for debate and negotiation are used for modeling agent reasoning and dialogue.
The possibility of structuring rational discussion aimed at reaching mutually accept-
able conclusions, and the potential for intuitive, modular and tractable implementations
are promising tools in all those fields where there is the need of testing the validity of
certain kinds of evidence.

5 Who? Required Background

In 1987, while GULP was founded and IJCAI was held in Italy, the main Italian ICT and
consumer electronics event, SMAU, was just discovering AI [19]. The heterogeneous
mix of AI promoters included small enterprises of academic roots, such as Delphi,
a University of Pisa’s spin-off then based in Viareggio, and big actors such as IBM,
and included many more in between. Back then AI mainly meant Expert Systems, and
the use of Prolog inference engines and the adoption of declarative technologies in
general was considered a very promising approach. Nixdorf Italia, involved in Esprit-
2 research projects and in the development of air fleet optimization tools for Alitalia,
was using a development environment written in Prolog, called Twaice [120]. IBM,
Unisys, Pirelli Informatica and Datitalia Processing, among others, were all promoting
expert systems for configuration and diagnosis which made use of knowledge bases and
declarative rules. IBM was pushing expert systems technologies by announcing a series
of AI courses.

As discussed in [149] the interest for declarative solutions seemed to fade in the years
that preceded 2000. In spite of that, declarative programming started to being taught at
Italian universities and a growing number of AI-related courses put a significant em-
phasis on Prolog and rule-based languages. In 2007, GULP ran a survey to evaluate the
extent of computational logic teaching at Italian universities. It turns out that nowadays
declarative programming is being taught in 20 Italian universities at around 50 courses,
at various levels in computer science and engineering curricula. Some of these courses
have been running for as long as 20 years. They are sometimes elective courses attended
by small classes. In many cases, however, they are fundamental courses (programming
methodologies, AI, logics) attended by large classes with as many as 150 students. In
80% of the cases, the syllabus includes practical lab sessions that teach students how to
use SWI Prolog, SICStus, ECLIPSe or other Prolog engines, ASP solvers such as DLV,
SAT solvers and model checkers. Every year, around 1500 university students over the
country attend on average 20 hours of lectures on computational logic topics, 80% of
which focus on logic programming. This is an immense heritage. Many graduates who
join the labour market master the basics of declarative languages and technologies.

In more recent times, a number of applications of logic programming have been
developed, mainly by academic actors, and most of them were never fully fledged
[43]. However, even if the majority of Italian software companies chose not to en-
dorse the declarative paradigm, most of Italian programmers and software engineers do



214 M. Baldoni et al.

have the necessary background to start working with rules, knowledge bases and infer-
ence engines. The effects of this situation are cultural rather than practical. Declarative
technologies do not play a major role in implementing systems, but they nevertheless
influence the way many programmers and software engineers conceive the systems they
implement. Or, at least, they have the potential to do so.

Agent technologies can bring this potential to the surface and help exploit it. As dis-
cussed in Section “What”, declarative agent systems are a collection of paradigms and
ways of thinking about software systems, rather than a unique, well-defined engineer-
ing solution. Although younger than logic programming as a discipline, autonomous
agents and multi-agent systems also started to being taught at Italian universities. These
are sometimes a part of software engineering and AI courses, but also live as stand-alone
courses.4

Who can be involved in declarative agent and MAS technologies then, and what
kind of background is required to do so? The answer to the second question is easy:
today’s graduates already have such a background, or they can easily acquire it since it
is already a part of academic curricula. Then, who can or should be involved?

In our opinion, the ability to think in terms of declarative agent and MAS technolo-
gies should be mastered by all software engineers who need to develop systems of
some complexity. With a warning. The research effort in this domain is considerable
and steady, and we hope to see a constant improvement in the theory and in the tools.
However, in approaching the world of agents, today’s software engineers should neither
seek for revolutionary solutions nor expect to find out that all they have being using so
far has become obsolete. That would be a wrong approach. Instead, they should con-
sider declarative agents as a way of thinking that should guide many separate aspects of
a system’s design.

The ideas of goals, capabilities, action, interaction, delegation, commitment, trust,
artifact and so on could be exported to so many concrete software engineering prob-
lems. This does not necessarily mean that one should use Tropos, Gaia or West2East for
requirements elicitation and system design, DCaseLP, Jade, KGP or DyLog for imple-
menting the components, CArtAgO for the middleware and SCIFF for monitoring their
execution. But we suggest that these be considered as sources of inspiration, because
a deep understanding of such technologies will help producing software solutions that
are more correct and thus safer, and at the same time more scalable, easier to maintain
and monitor, and more suited to integration and interoperation.

6 How? Tools and Languages

In this section we briefly survey (without the presumption of being exhaustive) the tools
and the languages that exploit declarative approaches. We structure the presentation in
two parts. The former presents the most noticeable BDI-style proposals, while the latter
presents approaches based on computational logic. For each of the main proposals, we

4 The Universities of Palermo, Genova, L’Aquila, Torino, Bologna, Firenze, Pavia, Roma La
Sapienza, Trento, Bari, Modena e Reggio Emilia, Pisa, Milano’s Politecnico and many other
ones offer such courses.



Agents, Multi-Agent Systems and Declarative Programming 215

describe the same four facets, so to facilitate a comparison: Semantics, Implementation,
Extensions, and Purpose of use. The last part of the presentation is mainly devoted to
Italian research.

6.1 BDI-Style Tools and Languages

AgentSpeak(L) [141] takes as its starting point PRS and its dMARS implementation.
It is based on a restricted first-order language with events and actions. Beliefs, desires
and intentions of the agent are not represented as modal formulas, but they are ascribed
to agents, in an implicit way, at design time. The current state of the agent can be viewed
as its current belief base; states that the agent wants to bring about can be viewed as de-
sires; and the adoption of programs to satisfy such stimuli can be viewed as intentions.

Semantics: At run-time, an agent consists of a set of beliefs, a set of plans, a set of
intentions, a set of events, a set of actions, and a set of selection functions. The opera-
tional semantics is driven by the rules for selecting plans, adopting them as intentions,
and executing the adopted intentions [55].

Implementation: There are many implementations of the AgentSpeak(L) language,
among which: (a) SIM Speak [115] (the first AgentSpeak(L) interpreter), which runs
on Sloman’s SIM AGENT toolkit, a testbed for cognitively rich agent architectures
[158]; (b) Jason [27] that implements, in Java, the operational semantics of an extended
version of AgentSpeak(L) (http://jason.sourceforge.net)

Extensions: The community working on AgentSpeak(L) is, and has been in the past,
very active. Many extensions exist, among which: cooperation through plan exchange
[10]; ontological reasoning [126]; belief revision [8]; team formation [96]; combination
with the Semantic Web [107].

Purpose of use: The main application of AgentSpeak(L) is in formal verification. Bor-
dini et al. [25] developed model-checking techniques that apply directly to multi-agent
programs written in AgentSpeak(L). AgentSpeak(L) multi-agent systems are translated
into either Promela or Java models, and then, respectively, SPIN or JPF are used as
model checkers.

3APL – “An Abstract Agent Programming Language” [90] – supports the design and
construction of intelligent agents for the development of complex systems through the
concepts beliefs and procedural goals (also often termed plans). In turn, these can be
used to describe and understand the computational system in a natural way. Beliefs
represent the issues the agent must deal with, while goals allow the agent both to focus
on what it must achieve and to represent the way in which it can achieve it. The practical
reasoning rules provide the agent with planning capabilities to find an appropriate plan
to achieve a goal, capabilities to create new goals to deal with a particular situation, and
capabilities to use the rules to revise a plan.

Semantics: 3APL semantics was originally specified by means of Plotkin-style transi-
tion semantics [91] and has been re-specified in Z later on [53]. In [45], the specification
of a programming language for implementing the deliberation cycle of cognitive agents
is shown, and 3APL has been used as the object language.

http://jason.sourceforge.net


216 M. Baldoni et al.

Implementation: Both a Java version and an Haskell version of 3APL can be down-
loaded from http://www.cs.uu.nl/3apl/. More recently, a simplified version
has been implemented in the Maude term rewriting language [170].

Extensions: The newest incarnation of 3APL is 2APL (A Practical Agent Programming
Language) [44]. It can be downloaded from http://www.cs.uu.nl/2apl/

Purpose of use: The 2APL platform which provides a set of tools designed to support
the implementation, execution, and testing of multi-agent systems. Its application in the
field of virtual training has been discussed in Section 3.

Among the other proposals, it is worthwhile to mention Agent-0 by Shoham [156],
which exploits a declarative approach and is the first proposal of an agent-oriented
approach to programming. For Shoham, a complete AOP system will include three pri-
mary components: (a) A restricted formal language with clear syntax and semantics for
describing mental states, the mental state will be defined uniquely by several modal-
ities, such as belief and commitments; (b) An interpreted programming language in
which to define and program agents, with primitive commands such as REQUEST and
INFORM; (c) An “agentification process” to treat existing hardware devices or soft-
ware applications like agents. Agent-0 is targetted towards the second component. Two
prototype interpreters were developed: one implemented in Common Lisp, and another
developed by Hewlett Packard as part of a joint project to incorporate AOP in the New
WaveTM architecture. Agent-0 has two extensions, PLACA [162] and Agent-K [46].

Another interesting tool is Jadex [29], which brings together BDI-style reasoning and
FIPA-compliant communication [64] and extends the traditional BDI-model (e.g. with
explicit goals). Jadex agents have beliefs, goals, that are implicit or explicit descriptions
of states to be achieved, and plans. The Jadex research project is conducted by the
Distributed Systems and Information Systems Group at the University of Hamburg.
The developed software framework is available under GNUs LGPL license5. It allows
for programming intelligent software agents in XML and Java and can be deployed
on different kinds of middleware such as JADE, a software framework implemented in
Java that facilitates development of interoperable intelligent multi-agent systems and
that is distributed under an Open Source License [20].

Finally, Dribble [169] is a propositional language that constitutes a synthesis between
the declarative features of the language GOAL [92], and the procedural features of
3APL. GOAL agents do not provide planning features, but they do offer the possibility
to use declarative goals to select actions. The language Dribble thus incorporates beliefs
and goals as well as planning features. Also worthwhile to mention MYWORLD [179],
in which agents are directly programmed in terms of beliefs and intentions; ViP [105],
a visual programming language for plan execution systems with a formal semantics
based upon an agent process algebra; CAN [177], a conceptual notation for agents
with procedural and declarative goals; NUIN [52], a Java framework for building BDI
agents, with strong emphasis on Semantic Web aspects; SPARK [127], that builds on
PRS and supports the construction of large-scale, practical agent systems; and JAM
[95] that combines ideas drawn from the BDI theories, the PRS system and its UMPRS
and PRS-CL implementations, the SRI International’s ACT plan interlingua [128], and

5 http://sourceforge.net/projects/jadex/

http://www.cs.uu.nl/3apl/
http://www.cs.uu.nl/2apl/
http://sourceforge.net/projects/jadex/


Agents, Multi-Agent Systems and Declarative Programming 217

the Structured Circuit Semantics (SCS) representation [111]. It also addresses mobility
aspects from Agent Tcl [87], Agents for Remote Action (ARA) [136], Aglets [109] and
others. A survey of languages for programming BDI-style agents can be found in [116].

6.2 Computational Logic-Based Tools and Languages

The IMPACT Agent Language [12] is a relevant example of use of deontic logic to
specify agents.

Semantics: The paper [60] provides a series of successively more refined semantics
for action programs that compute the set of all action status atoms that are true with
respect to an agent program P , the current state S and the set IC of underlying integrity
constraints on agent states.

Implementations: The implementation of an IMPACT agent program consists of two
major parts, both implemented in Java: (a) the IMPACT Agent Development Environ-
ment which is used by the developer to build and compile agents, and (b) the run-time
part that allows the agent to autonomously update its “reasonable status set” and execute
actions as its state changes.

Extensions: Many extensions to the IMPACT framework are discussed in [161] which
analyses meta agent programs to reason about other agents based on the beliefs they
hold; temporal agent programs to specify temporal aspects of actions and states; proba-
bilistic agent programs to deal with uncertainty; and secure agent programs to provide
agents with security mechanisms. Agents able to recover from an integrity constraints
violation and able to continue to process some requests while continuing to recover are
discussed in [59]. The integration of planning algorithms in the IMPACT framework is
discussed in [56].

Purpose of use: IMPACT’s purpose is to allow the integration of heterogeneous infor-
mation sources and software packages for solving real problems.

Golog [114] is a logic-programming language based on situation calculus, that allows
for reasoning on both atomic and complex actions. ConGolog [48] is the concurrent
extension of Golog, and it includes facilities for prioritizing the concurrent execution,
interrupting the execution when certain conditions become true, and dealing with ex-
ogenous actions. Golog is an alternative to traditional plan synthesis, since it allows
forms of procedural planning.

Semantics: The semantics of ConGolog and Golog is based on situation calculus and
is in the style of transition semantics.

Implementations: Interpreters have been developed in SWI-Prolog and for ECLIPSE
as well (http://www.cs.toronto.edu/cogrobo/main/systems/).

Extensions: Many extensions exist: Legolog (LEGO MINDSTORM in (Con)Golog
[113]), IndiGolog (Incremental Deterministic (Con)Golog [47]), CASL (Cognitive A-
gent Specification Language [155]), and an extension of ConGolog with sensing actions
[145]. More recently, Golog has been exploited to represent flexible templates of Web
service composition and integrate user preferences in the composition process [159]. In
[79], the compilation of ConGolog into Basic Action Theories for planning is discussed.

http://www.cs.toronto.edu/cogrobo/main/systems/


218 M. Baldoni et al.

Purpose of use: Golog and ConGolog allow the design of flexible controllers for agents
living in complex scenarios. IndiGolog provides a practical framework for real robots
that must sense the environment and react to changes occurring in it. CASL is an envi-
ronment based on ConGolog which provides a verification environment.

Concurrent METATEM [66] is a programming language for distributed artificial in-
telligence, based on first-order linear temporal logic [65]. A Concurrent METATEM
system contains a number of concurrently executing agents which are able to com-
municate through message passing. Each agent executes a first-order temporal logic
specification of its desired behavior.

Semantics: METATEM semantics is the one defined for first-order linear temporal
logic.

Implementations: Two implementations have been produced. The first is a proto-
type interpreter for propositional METATEM implemented in Scheme. A more robust
Prolog-based interpreter for a restricted first-order version of METATEM has been used
as a transaction programming language for temporal databases [63].

Extensions: Single Concurrent METATEM agents have been extended with delibera-
tion and beliefs [68] and with resource-bounded reasoning [71]. Compilation
techniques for MASs specified in Concurrent METATEM are analyzed in [103]. Con-
current METATEM has been proposed as a coordination language in [104]. The defini-
tion of groups of agents in Concurrent METATEM is discussed in [69,73]. The research
on single Concurrent METATEM agents converged with the research on Concurrent
METATEM MASs in the paper [72] where “confidence” is added to both single and
multiple agents. The development of teams of agents is discussed in [94].

Purpose of use: In [67] a range of sample applications of Concurrent METATEM uti-
lizing both the core features of the language and some of its extensions are discussed.
They include bidding, problem solving, process control, fault tolerance. Concurrent
METATEM has the potential of specifying and verifying applications in all of the areas
above [74], but it is not suitable for the development of real systems.

SCIFF is a framework, developed within the EU-funded SOCS project,6 thought to
specify and verify interaction in open agent societies [6].

The SCIFF language is equipped with a semantics based on Abductive Logic Pro-
gramming (ALP) [101]. Interaction is modeled by way of rules (Social integrity con-
straints), which associate the current state of affairs, including all the relevant events
detected so far, with a number of alternative possible future worlds, characterized in
terms of what is expected or not expected of them. SCIFF’s operational component
is an ALP proof procedure for reasoning with expectations in dynamic environments.
The SOCS approach to the specification and verification of agent societies [4], is open,
aimed at minimally restricting the operation of system components, and it is inspired
by the deontic notions of prohibitions and permission.

6 Societies Of ComputeeS (SOCS, IST-2001-32530): a computational logic model for the de-
scription, analysis and verification of global and open societies of heterogeneous computees.
http://lia.deis.unibo.it/research/SOCS/

http://lia.deis.unibo.it/research/SOCS/


Agents, Multi-Agent Systems and Declarative Programming 219

Semantics: The semantics of SCIFF is given as a mapping to ALP, augmented with
a notion of consistency of expectations. SCIFF is sound and complete under realistic
domain assumptions [6].

Implementations: SCIFF is implemented using Constraint Handling Rules [80]. It runs
on SICStus Prolog and on SWI Prolog. SCIFF is also embedded in SOCS-SI, a Java tool
for runtime monitoring and verification of agent interaction [5].

Extensions: Recent extensions of SCIFF are an efficient implementation of the Event
Calculus for Commitment tracking [165,37], extensions for static verification of declar-
ative models [125], its integration with Tropos [32], its extension for constraint opti-
mization [81], and a number of extensions for several application domains described in
the SCIFF7 and CLIMB8 Web sites.

Purpose of use: SCIFF is used for interaction specification and verification. Its main
application domains, beside multi-agent systems, are business processes, Web service
choreographies, and medical guidelines.

DCaseLP is a multi-language development environment for Multi-Agent Systems. It
provides tools and languages for modelling and implementing a MAS prototype fol-
lowing a set of steps which guide the developer from the late requirement analysis to
the prototype implementation. The languages and tools that DCaseLP integrates are
UML and an XML-based language for the analysis and design stages, Java, JESS and
TuProlog [51] for the implementation stage, and JADE for the execution stage. Soft-
ware libraries for translating UML class diagrams into code and for integrating JESS
and TuProlog agents into the JADE platform are also provided.

Semantics: No unifying formal semantics of the agents and the MAS, despite the lan-
guage they are modeled or implemented in, have been defined.

Implementations: DCaseLP is implemented on top of JADE and provides libraries for
seamless integration of agents implemented in TuProlog or JESS and enriched with
FIPA-compliant communication capabilities. It can be downloaded from the web site9.

Extensions: A translator from UML sequence diagrams to Prolog agent skeletons that
can be embedded into DCaseLP has been developed and integrated within the computer-
aided Agent-Oriented Software Engineering West2East framework [36].

Purpose of use: DCaseLP main purpose is fast prototyping of agent systems. Its appli-
cations in industrial research projects have been discussed in Section 3.

Dynamics in Logic [17,13] is a programming language for reasoning about actions,
that can be used for specifying agents and for executing agent specifications. The au-
thors adopt a modal action theory, in which actions are represented by modalities. The
adoption of Dynamic Logic or a modal logic to deal with the problem of reasoning
about actions and change is motivated by the fact that modal logic allows a very natural

7 http://lia.deis.unibo.it/research/sciff/
8 http://lia.deis.unibo.it/research/climb/
9 http://www.disi.unige.it/person/MascardiV/Software/DCaseLP.
html

http://lia.deis.unibo.it/research/sciff/
http://lia.deis.unibo.it/research/climb/
http://www.disi.unige.it/person/MascardiV/Software/DCaseLP.html
http://www.disi.unige.it/person/MascardiV/Software/DCaseLP.html


220 M. Baldoni et al.

representation of actions as state transitions, through the accessibility relation of Kripke
structures. Since the intentional notions (or attitudes), which are used to describe agents,
are usually represented as modalities, the proposed modal action theory is well suited
to incorporate them. The language can represent incomplete belief states and can deal
with sensing actions as well as with complex actions.

Semantics. The logical characterization of Dynamics in Logic is provided in two steps:
(a) a multimodal logic interpretation of a dynamic domain description which describes
the monotonic part of the language is introduced; (b) an abductive semantics to account
for non-monotonic behavior of the language is provided [17]. The language relies on
such abductive semantics to provide a nonmonotonic solution to the frame problem;
when there are no ramifications, it has been proved to be equivalent to the languageA.

Implementation. A goal-directed proof procedure for reasoning about complex actions
(including sensing actions), which can be considered as an interpreter of the language, is
supplied. This procedure can be extended for constructing linear and conditional plans
to achieve a given goal from an incompletely specified initial state. The interpreter was
implemented in Sicsuts Prolog; it is a straightforward implementation of its operational
semantics and is available on request.

Extensions. In [13] the language was extended to represent beliefs of other agents in
order to reason about conversations. A communication kit including a primitive set
of speech acts, a set of special “get message” actions, was included, allowing for the
specification of conversation protocols. Other proposals with a causality operator are
presented in [84,85].

Purpose of use. The language Dynamics on Logic is suitable for building agents acting,
interacting and planning in dynamic environments. A web agent system called WLog
[15], supplying adaptive services in a web-based application context, has been devel-
oped to demonstrate the language potential in developing adaptative web applications as
software agents. More recently, the language has been used also for giving a declarative
interpretation to web services [14,16].

DALI language and agent architecture [41]. DALI is an agent programming lan-
guage encompassing basic patterns for reactivity, proactivity, internal thinking, and
memory. A DALI agent is a logic program that contains reactive rules, aimed at in-
teracting with an external environment. The reactive and proactive behavior of a DALI
agent is triggered by several kinds of events: external, internal, present and past events.

Semantics: The declarative and procedural semantics of DALI is defined as an evolu-
tionary semantics in order to cope with the evolution of an agent corresponding to the
perception of events. The semantics has been generalized so as to include the commu-
nication architecture by resorting to the general framework RCL (Reflective Computa-
tional Logic) based on the concept of reflection principle.

Implementations: The DALI interpreter has been implemented in SICStus Prolog, and
includes a FIPA-compliant communication library. The DALI interpreter is in principle
able to interoperate with other FIPA-compliant platforms; interoperability with JADE is
already guaranteed. DALI agents can be distributed on the web, as the implementation
of the communication primitives is based on TCP/IP.



Agents, Multi-Agent Systems and Declarative Programming 221

Purpose of use: DALI is suitable to implement reactive agents, embedded in an in-
teractive environment. Cultural heritage applications have been proposed, where DALI
agents discover the users’ movements via a Galileo satellite signal and proactively learn
and enhance user profiles to competently assist users during their visits [40].

Finally, for more information on computational logics and MAS, we forward the in-
terested reader to a number of comprehensive surveys already available in the literature,
among which [150,163,118,70].

Acknowledgments

The authors acknowledge Alexander Pokahr and Lars Braubach for their support in
describing Jadex applications, and Maaike Harbers and Mehdi Dastani for the help in
describing 2APL ones. Viviana Mascardi is partially supported by the Iniziativa Soft-
ware CINI-FinMeccanica Project.

References

1. OWL-S: Semantic markup for web services, http://www.w3.org/Submission/
2004/SUBM-OWL-S-20041122/

2. Reasoning on the web with rules and semantics, network of excellence, http://
rewerse.net

3. Rule interchange format. W3C, http://www.w3.org/2005/rules/wiki/RIF_
Working_Group

4. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: The SOCS com-
putational logic approach to the specification and verification of agent societies. In: Priami,
C., Quaglia, P. (eds.) GC 2004. LNCS, vol. 3267, pp. 314–339. Springer, Heidelberg (2005)

5. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Compliance ver-
ification of agent interaction: a logic-based tool. Applied Artificial Intelligence 20(2-4),
133–157 (2006)

6. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Verifiable agent
interaction in abductive logic programming: The sciff framework. ACM Trans. Comput.
Logic 9(4), 1–43 (2008)

7. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Modeling Interactions Using
Social Integrity Constraints: A Resource Sharing Case Study. In: Leite, J., Omicini, A.,
Sterling, L., Torroni, P. (eds.) DALT 2003. LNCS (LNAI), vol. 2990, pp. 243–262. Springer,
Heidelberg (2004)

8. Alechina, N., Bordini, R.H., Hübner, J.F., Jago, M., Logan, B.: Belief revision for AgentS-
peak agents. In: Proc. of AAMAS 2006, pp. 1288–1290. ACM, New York (2006)

9. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services. Springer, Heidelberg (2004)
10. Ancona, D., Mascardi, V., Hübner, J.F., Bordini, R.H.: Coo-AgentSpeak: Cooperation in

AgentSpeak through Plan Exchange. In: Proc. of AAMAS 2004, pp. 698–705 (2004)
11. Appiani, E., Martelli, M., Mascardi, V.: A multi-agent approach to vehicle monitoring in

motorway. Technical report, DISI – Università di Genova. DISI TR-00-13. Presented at
the poster session of the 2nd European Workshop on Advanced Video-based Surveillance
Systems, AVBS 2001 (2000)

12. Arisha, K., Eiter, T., Kraus, S., Ozcan, F., Ross, R., Subrahmanian, V.S.: IMPACT: A plat-
form for collaborating agents. IEEE Intelligent Systems 14(2), 64–72 (1999)

http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/
http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/
http://rewerse.net
http://rewerse.net
http://www.w3.org/2005/rules/wiki/RIF_Working_Group
http://www.w3.org/2005/rules/wiki/RIF_Working_Group


222 M. Baldoni et al.

13. Baldoni, M., Baroglio, C., Martelli, A., Patti, V.: Reasoning about interaction protocols for
customizing web service selection and composition. JLAP, special issue on Web Services
and Formal Methods 70(1), 53–73 (2007)

14. Baldoni, M., Baroglio, C., Martelli, A., Patti, V., Schifanella, C.: Reasoning on choreogra-
phies and capability requirements. International Journal of BPIM 2(4), 247–261 (2007)

15. Baldoni, M., Baroglio, C., Patti, V.: Web-based adaptive tutoring: an approach based on
logic agents and reasoning about actions. Artificial Intelligence Review 22, 3–39 (2004)

16. Baldoni, M., Baroglio, C., Patti, V., Schifanella, C.: Conservative re-use ensuring matches
for service selection. In: Proc. of Sixth European Workshop on Multi-Agent Systems, EU-
MAS 2008, Bath, UK (December 2008)

17. Baldoni, M., Giordano, L., Martelli, A., Patti, V.: Programming Rational Agents in a
Modal Action Logic. AMAI, Special issue on Logic-Based Agent Implementation 41(2-4),
207–257 (2004)

18. Baselice, S., Bonatti, P.A., Faella, M.: Policy language specification. Technical Report I2-
D2, REWERSE network of excellence (2007)

19. Bazzocchi, L.: Lo SMAU scopre l’intelligenza artificiale. Office Automation, 86–90
(November 1988), http://www.bazzocchi.com/

20. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with JADE.
Wiley, Chichester (2007)

21. Benfield, S.S., Hendrickson, J., Galanti, D.: Making a strong business case for multiagent
technology. In: AAMAS 2006, pp. 10–15. ACM, New York (2006)

22. Bonatti, P.A., De Coi, J.L., Olmedilla, D., Sauro, L.: Policy-driven negotiations and expla-
nations: Exploiting logic-programming for trust management, privacy & security. In: Garcia
de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 779–784. Springer,
Heidelberg (2008)

23. Bonatti, P.A., Duma, C., Fuchs, N.E., Nejdl, W., Olmedilla, D., Peer, J., Shahmehri, N.:
Semantic web policies – A discussion of requirements and research issues. In: Sure, Y.,
Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 712–724. Springer, Heidelberg
(2006)

24. Bonatti1, P.A., Coi, J.L.D., Olmedilla, D.: Protunes technical specifications. Technical Re-
port I2-D12, REWERSE (2007)

25. Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: Verifying multi-agent programs by
model checking. JAAMAS 12(2), 239–256 (2006)

26. Bordini, R.H., Hübner, J.F.: BDI agent programming in AgentSpeak using Jason (tutorial
paper). In: Toni, F., Torroni, P. (eds.) CLIMA 2005. LNCS (LNAI), vol. 3900, pp. 143–164.
Springer, Heidelberg (2006)

27. Bordini, R.H., Hübner, J.F., Wooldridge, M. (eds.): Programming Multi-Agent Systems in
AgentSpeak using Jason. Wiley, Chichester (2007)

28. Bozzo, L., Mascardi, V., Ancona, D., Busetta, P.: CooWS: Adaptive BDI agents meet
service-oriented computing. In: Proc. of WWW/Internet, pp. 205–209 (2005)

29. Braubach, L., Pokahr, A., Lamersdorf, W.: Jadex: A short overview. In: Main Conference
Net.ObjectDays 2004, pp. 195–207 (2004)

30. Briola, D., Mascardi, V., Martelli, M.: Intelligent agents that monitor, diagnose and solve
problems: Two success stories of industry-university collaboration. Journal of Information
Assurance and Security 4(2), 106–116 (2009)

31. Brogi, A., Ciancarini, P.: The concurrent language, Shared Prolog. ACM Transactions on
Programming Languages and Systems (TOPLAS) 13(1), 99–123 (1991)

32. Bryl, V., Mello, P., Montali, M., Torroni, P., Zannone, N.: B-tropos: Agent-oriented require-
ments engineering meets computational logic for declarative business process modelling
and verification. In: Sadri, F., Satoh, K. (eds.) CLIMA VIII 2007. LNCS (LNAI), vol. 5056,
pp. 157–176. Springer, Heidelberg (2008)

http://www.bazzocchi.com/


Agents, Multi-Agent Systems and Declarative Programming 223

33. Burmeister, B., Arnold, M., Copaciu, F., Rimassa, G.: BDI-agents for agile goal-oriented
business processes. In: Proc. of AAMAS 2008, pp. 37–44. IFAAMAS (2008)

34. Burmeister, B., Steiert, H.-P., Bauer, T., Baumgärtel, H.: Agile processes through goal- and
context-oriented business process modeling. In: Eder, J., Dustdar, S. (eds.) BPM Workshops
2006. LNCS, vol. 4103, pp. 217–228. Springer, Heidelberg (2006)

35. Busetta, P., Ronnquist, R., Hodgson, A., Lucas, A.: JACK intelligent agents – components
for intelligent agents in Java. AgentLink News Letter 2 (1999)

36. Casella, G., Mascardi, V.: West2East: exploiting WEb Service Technologies to Engineer
Agent-based SofTware. IJAOSE 1(3/4), 396–434 (2007)

37. Chesani, F., Mello, P., Montali, M., Torroni, P.: Commitment tracking via the reactive event
calculus. In: Proc. of IJCAI, pp. 91–96 (2009)

38. Cohen, P.R., Levesque, H.J.: Intention is choice with commitment. Artificial Intelligence 42
(1990)

39. Colombetti, M., Fornara, N., Verdicchio, M.: A social approach to communication in multi-
agent systems. In: Leite, J., Omicini, A., Sterling, L., Torroni, P. (eds.) DALT 2003. LNCS
(LNAI), vol. 2990, pp. 191–220. Springer, Heidelberg (2004)

40. Costantini, S., Mostarda, L., Tocchio, A., Tsintza, P.: Dalica: Agent-based ambient intelli-
gence for cultural-heritage scenarios. IEEE Intelligent Systems 23(2), 34–41 (2008)

41. Costantini, S., Tocchio, A.: The DALI logic programming agent-oriented language. In:
Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 685–688. Springer,
Heidelberg (2004)

42. Cuppari, A., Guida, P.L., Martelli, M., Mascardi, V., Zini, F.: An agent-based prototype for
freight trains traffic management. In: Proceedings of the FMERail Workshop 5. Springer,
Heidelberg (1999)

43. Dal Palù, A., Torroni, P.: 25 Years of Applications of Logic Programming. In: Dovier,
A., Pontelli, E. (eds.) 25 Years of Logic Programming in Italy, ch. 14. LNCS, vol. 6125,
pp. 300–328. Springer, Heidelberg (2010)

44. Dastani, M.: 2APL: a practical agent programming language. Autonomous Agents and
Multi-Agent Systems 16(3), 214–248 (2008)

45. Dastani, M., de Boer, F.S., Dignum, F., Meyer, J.-J.C.: Programming agent deliberation –
an approach illustrated using the 3APL language. In: Proc. of AAMAS 2003 (2003)

46. Davies, W.H., Edwards, P.: Agent-K: An integration of AOP & KQML. In: Proceedings of
the Workshop on Intelligent Information Agents (1994)

47. De Giacomo, G., Lespérance, Y., Levesque, H., Sardiña, S.: On the semantics of de-
liberation in IndiGolog – from theory to implementation. In: Proceedings of KR 2002,
pp. 603–614. Morgan Kaufmann, San Francisco (2002)

48. De Giacomo, G., Lespérance, Y., Levesque, H.J.: Congolog, a concurrent programming
language based on the situation calculus. Artificial Intelligence 121, 109–169 (2000)

49. Delato, M., Martelli, A., Martelli, M., Mascardi, V., Verri, A.: A multimedia, multichannel,
and personalized news provider. In: Ventre, G., Canonico, R. (eds.) MIPS 2003. LNCS,
vol. 2899, pp. 388–399. Springer, Heidelberg (2003)

50. Dennett, D.C.: The Intentional Stance. MIT Press, Cambridge (1987)
51. Denti, E., Omicini, A., Ricci, A.: Multi-paradigm Java-Prolog integration in tuProlog. Sci.

Comput. Program. 57(2), 217–250 (2005)
52. Dickinson, I., Wooldridge, M.: Towards practical reasoning agents for the semantic web.

In: Proc. of AAMAS 2003, pp. 827–834 (2003)
53. d’Inverno, M., Hindriks, K.V., Luck, M.: A formal architecture for the 3APL agent pro-

gramming language. In: Bowen, J.P., Dunne, S., Galloway, A., King, S. (eds.) B 2000,
ZUM 2000, and ZB 2000. LNCS, vol. 1878, pp. 168–187. Springer, Heidelberg (2000)



224 M. Baldoni et al.

54. d’Inverno, M., Kinny, D., Luck, M., Wooldridge, M.: A formal specification of dMARS. In:
Rao, A., Singh, M.P., Wooldridge, M.J. (eds.) ATAL 1997. LNCS, vol. 1365, pp. 155–176.
Springer, Heidelberg (1998)

55. d’Inverno, M., Luck, M.: Engineering AgentSpeak(L): A formal computational model.
Logic and Computation Journal 8(3), 1–27 (1998)

56. Dix, J., Munoz-Avila, H., Nau, D.: IMPACTing SHOP: Putting an AI planner into a Multi-
Agent Environment. Annals of Mathematics and AI 4(37), 381–407 (2003)

57. Dovier, A., Pontelli, E. (eds.): 25 Years of Logic Programming in Italy. LNCS, vol. 6125.
Springer, Heidelberg (2010)

58. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–358 (1995)

59. Eiter, T., Mascardi, V., Subrahmanian, V.S.: Error-Tolerant Agents. In: Kakas, A.C., Sadri,
F. (eds.) Computational Logic: Logic Programming and Beyond, part I. LNCS (LNAI),
vol. 2407, pp. 586–625. Springer, Heidelberg (2002)

60. Eiter, T., Subrahmanian, V.S., Pick, G.: Heterogeneous active agents, I: Semantics. Artificial
Intelligence 108(1-2), 179–255 (1999)

61. Evertsz, R., Fletcher, M., Jones, R., Jarvis, J., Brusey, J., Dance, S.: Implementing industrial
multi-agent systems using JACK. In: Dastani, M.M., Dix, J., El Fallah-Seghrouchni, A.
(eds.) PROMAS 2003. LNCS (LNAI), vol. 3067, pp. 18–48. Springer, Heidelberg (2004)

62. Fensel, D., Lausen, H., de Bruijn, J., Stollberg, M., Roman, D., Polleres, A.: Enabling Se-
mantic Web Services: The Web Service Modeling Ontology. Springer, Heidelberg

63. Finger, M., McBrien, P., Owens, R.: Databases and executable temporal logic. In: Comis-
sion of the European Communities (ed.) Proceedings of the Annual ESPRIT Conference
1991, pp. 288–302 (1991)

64. FIPA Home Page, http://www.fipa.org/
65. Fisher, M.: A normal form for first-order temporal formulae. In: Kapur, D. (ed.) CADE

1992. LNCS, vol. 607, pp. 370–384. Springer, Heidelberg (1992)
66. Fisher, M.: Concurrent METATEM – A language for modeling reactive systems. In: Reeve,

M., Bode, A., Wolf, G. (eds.) PARLE 1993. LNCS, vol. 694, pp. 185–196. Springer,
Heidelberg (1993)

67. Fisher, M.: A survey of Concurrent METATEM – the language and its applications. In:
Gabbay, D.M., Ohlbach, H.J. (eds.) ICTL 1994. LNCS, vol. 827, pp. 480–505. Springer,
Heidelberg (1994)

68. Fisher, M.: Implementing BDI-like systems by direct execution. In: Proc. of IJCAI 1997,
pp. 316–321. Morgan Kaufmann, San Francisco (1997)

69. Fisher, M.: Representing abstract agent architectures. In: Rao, A.S., Singh, M.P., Müller,
J.P. (eds.) ATAL 1998. LNCS (LNAI), vol. 1555, pp. 227–241. Springer, Heidelberg (1999)

70. Fisher, M., Bordini, R., Hirsch, B., Torroni, P.: Computational logics and agents: A road
map of current technologies and future trends. Computational Intelligence 23(1), 61–91
(2007)

71. Fisher, M., Ghidini, C.: Programming resource-bounded deliberative agents. In: Proc. of
IJCAI 1999, pp. 200–205. Morgan Kaufmann, San Francisco (1999)

72. Fisher, M., Ghidini, C.: The ABC of rational agent programming. In: Proc. of AAMAS
2002, pp. 849–856. ACM Press, New York (2002)

73. Fisher, M., Kakoudakis, T.: Flexible agent grouping in executable temporal logic. In: Inten-
sional Programming II (ISPLIP 1999). World Scientific Publishers, Singapore (2000)

74. Fisher, M., Wooldridge, M.: On the formal specification and verification of multi-agent
systems. International Journal of Cooperative Information Systems 6(1), 37–65 (1997)

75. Forgy, C.: Ops5 user’s manual. Technical Report CMU-CS-81-135, Carnegie-Mellon
University (1981)

http://www.fipa.org/


Agents, Multi-Agent Systems and Declarative Programming 225

76. Fornara, N., Colombetti, M.: A commitment-based approach to agent communication. Ap-
plied Artificial Intelligence 18(9-10), 853–866 (2004)

77. Foundation for Intelligent Physical Agents (FIPA). Agent Communication Language Spec-
ifications (2002)

78. Friedman-Hill, E.: Jess in Action: Java Rule-Based Systems (In Action series). Manning
Publications (2002)

79. Fritz, C., Baier, J.A., McIlraith, S.A.: ConGolog, sin trans: Compiling ConGolog into basic
action theories for planning and beyond. In: Proc. of 11th Int. Conf. on PKRR, pp. 600–610
(2008)

80. Frühwirth, T.: Theory and practice of constraint handling rules. Journal of Logic Program-
ming 37(1-3), 95–138 (1998)

81. Gavanelli, M., Alberti, M., Lamma, E.: Integration of abductive reasoning and constraint
optimization in SCIFF. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649,
pp. 387–401. Springer, Heidelberg (2009)

82. Georgeff, M.P., Lansky, A.L.: Reactive reasoning and planning. In: Proc. of AAAI 1987,
pp. 677–682 (1987)

83. Georgeff, M.P., Rao, A.S.: A profile of the Australian AI institute. IEEE Expert 11(6),
89–92 (1996)

84. Giordano, L., Martelli, A., Schwind, C.: Ramification and causality in a modal action logic.
Journal of Logic and Computation 10(5), 626–662 (2000)

85. Giordano, L., Martelli, A., Schwind, C.: Reasoning About Actions in Dynamic Linear Time
Temporal Logic. Journal of the IGPL 9(2), 298–303 (2001)

86. Giordano, L., Martelli, A., Schwind, C.: Specifying and Verifying Interaction Protocols in
a Temporal Action Logic. Journal of Applied Logic 5(2), 214–234 (2007)

87. Gray, R.S., Kotz, D., Cybenko, G., Rus, D.: Agent Tcl. In: Mobile Agents: Explanations
and Examples. Manning Publishing (1997)

88. Harbers, M., van den Bosch, K., Meyer, J.: Enhancing training by using agents with a theory
of mind. In: EduMAS 2009, Proceedings, pp. 23–30 (2009)

89. Harbers, M., van den Bosch, K., Meyer, J.-J.C.: A study into preferred explanations of
virtual agent behavior. In: Ruttkay, Z., Kipp, M., Nijholt, A., Vilhjálmsson, H.H. (eds.) IVA
2009. LNCS, vol. 5773, pp. 132–145. Springer, Heidelberg (2009)

90. Hindriks, K.V., Boer, F.S.D., der Hoek, W.V., Meyer, J.-J.C.: Agent programming in 3APL.
AAMAS Journal 2(4), 357–401 (1999)

91. Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.-J.C.: Formal semantics for an
abstract agent programming language. In: Rao, A., Singh, M.P., Wooldridge, M.J. (eds.)
ATAL 1997. LNCS, vol. 1365, pp. 215–229. Springer, Heidelberg (1998)

92. Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.-J.C.: Agent programming with
declarative goals. In: Castelfranchi, C., Lespérance, Y. (eds.) ATAL 2000. LNCS (LNAI),
vol. 1986, pp. 228–243. Springer, Heidelberg (2001)

93. Hinrichs, T.L., Gude, N.S., Casado, M., Mitchell, J.C., Shenker, S.: Practical declarative
network management. In: WREN 2009: Proceedings of the 1st ACM workshop on Research
on enterprise networking, pp. 1–10. ACM, New York (2009)

94. Hirsch, B., Fisher, M., Ghidini, C.: Organising logic-based agents. In: Hinchey, M.G., Rash,
J.L., Truszkowski, W.F., Rouff, C.A., Gordon-Spears, D.F. (eds.) FAABS 2002. LNCS
(LNAI), vol. 2699, pp. 15–27. Springer, Heidelberg (2003)

95. Huber, M.J.: JAM: A BDI-theoretic mobile agent architecture. In: Agents 1999, Third In-
ternational Conference on Autonomous Agents, Proceedings, pp. 236–243 (1999)

96. Hübner, J.F., Bordini, R.H.: Developing a team of gold miners using Jason. In: Dastani,
M.M., El Fallah Seghrouchni, A., Ricci, A., Winikoff, M. (eds.) ProMAS 2007. LNCS
(LNAI), vol. 4908, pp. 241–245. Springer, Heidelberg (2008)



226 M. Baldoni et al.

97. Ingrand, F.F., Georgeff, M.P., Rao, A.S.: An architecture for real-time reasoning and system
control. IEEE Expert Magazine 7(6), 33–44 (1992)

98. Issarny, V., Caporuscio, M., Georgantas, N.: A perspective on the future of middleware-
based software engineering. In: FOSE 2007: 2007 Future of Software Engineering,
Washington, DC, USA, pp. 244–258. IEEE Computer Society, Los Alamitos (2007)

99. Jennings, N.R., Mamdani, E.H., Corera, J.M., Laresgoiti, I., Perriollat, F., Skarek, P.,
Zsolt Varga, L.: Using Archon to develop real-world DAI applications, part 1. IEEE Ex-
pert 11(6), 64–70 (1996)

100. Jhingran, A.: Enterprise information mashups: integrating information, simply. In: Proc. of
VLDB 2006, pp. 3–4. VLDB Endowment (2006)

101. Kakas, A.C., Kowalski, R., Toni, F.: The role of abduction in logic programming. In:
Gabbay, C.H.D.M., Robinson, J. (eds.) Handbook of Logic in Artificial Intelligence and
Logic Programming 5, pp. 235–324. Oxford University Press, Oxford

102. Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T., Lafon, Y.: Web services choreography
description language version 1.0 (2004), http://www.w3.org/TR/ws-cdl-10/

103. Kellett, A., Fisher, M.: Automata representations for concurrent METATEM. In: Proc. of
TIME 1997, pp. 12–19. IEEE Press, Los Alamitos (1997)

104. Kellett, A., Fisher, M.: Concurrent METATEM as a coordination language. In: Garlan, D.,
Le Métayer, D. (eds.) COORDINATION 1997. LNCS, vol. 1282, pp. 418–421. Springer,
Heidelberg (1997)

105. Kinny, D.: ViP: a visual programming language for plan execution systems. In: Proc. of
AAMAS 2002, pp. 721–728 (2002)

106. Klan, D., Hose, K., Sattler, K.-U.: Developing and deploying sensor network applications
with anduin. In: Proc. of DMSN 2009, pp. 1–6. ACM, New York (2009)

107. Klapiscak, T., Bordini, R.H.: JASDL: A practical programming approach combining agent
and semantic web technologies. In: Baldoni, M., Son, T.C., van Riemsdijk, M.B., Winikoff,
M. (eds.) DALT 2008. LNCS (LNAI), vol. 5397, pp. 91–110. Springer, Heidelberg (2009)

108. Labrou, Y., Finin, T.: Semantics and conversations for an agent communication language.
In: Readings in Agents, pp. 235–242. Morgan Kaufmann, San Francisco (1997)

109. Lange, D., Mitsuru, O.: Programming and Deploying Java Mobile Agents with Aglets
(1998)

110. Leckie, C., Senjen, R., Ward, B., Zhao, M.: Communication and coordination for intelligent
fault diagnosis agents. In: 8th IFIP/IEEE International Workshop for Distributed Systems
Operations and Management, DSOM 1997, Proceedings, pp. 280–291 (1997)

111. Lee, J., Durfee, E.H.: Structured circuit semantics for reactive plan execution systems. In:
Proc. of AAAI 1994, pp. 1232–1237 (1994)

112. Leite, J., Omicini, A., Sterling, L., Torroni, P. (eds.): DALT 2003. LNCS (LNAI), vol. 2990.
Springer, Heidelberg (2004)

113. Levesque, H.J., Pagnucco, M.: Legolog: Inexpensive experiments in cognitive robotics. In:
Proc. of CogRob 2000 (2000)

114. Levesque, H.J., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.B.: Golog: A logic program-
ming language for dynamic domains. Journal of Logic Programming 31, 59–84 (1997)

115. Machado, R., Bordini, R.H.: Running agentSpeak(L) agents on SIM AGENT. In: Meyer,
J.-J.C., Tambe, M. (eds.) ATAL 2001. LNCS (LNAI), vol. 2333, pp. 158–174. Springer,
Heidelberg (2002)

116. Mascardi, V., Demergasso, D., Ancona, D.: Languages for programming BDI-style agents:
an overview. In: Corradini, F., Paoli, F.D., Merelli, E., Omicini, A. (eds.) WOA 2005: Dagli
Oggetti agli Agenti, Proceedings, pp. 9–15. Pitagora Editrice Bologna (2005)

117. Mascardi, V., Martelli, M., Gungui, I.: DCaseLP: a prototyping environment for multi-
language agent systems. In: Dastani, M.M., El Fallah Seghrouchni, A., Leite, J., Torroni, P.
(eds.) LADS 2007. LNCS (LNAI), vol. 5118, pp. 139–155. Springer, Heidelberg (2008)

http://www.w3.org/TR/ws-cdl-10/


Agents, Multi-Agent Systems and Declarative Programming 227

118. Mascardi, V., Martelli, M., Sterling, L.: Logic-based specification languages for intelligent
software agents. J. of TPLP 4(4), 429–494 (2004)

119. Banzi, M., Caire, G., Gotta, D.: Wade: A software platform to develop mission critical
applications exploiting agents and workflows. In: Proc. of AAMAS 2008 (2008)

120. Mellis, W.: TWAICE: A knowledge engineering tool. Inf. Syst. 15(1), 137–150 (1990)
121. Milner, R.: Communicating and Mobile Systems: the Pi-Calculus, June 1999. Cambridge

University Press, Cambridge (1999)
122. Minton, S., Knoblock, C.A., Kuokka, D.R., Gil, Y., Joseph, R.L., Carbonell, J.G.:

Prodigy 2.0: The manual and tutorial. Technical Report CMU-CS-89-146, Carnegie-Mellon
University (1989)

123. Montali, M.: Specification and Verification of Open Declarative Interaction Models: a
Logic-Based Framework. PhD thesis, DEIS, University of Bologna, Italy (2009)

124. Montali, M., Pesic, M., van der Aalst, W.M.P., Chesani, F., Mello, P., Storari, S.: Declarative
specification and verification of service choreographies. ACM Transactions on the Web
(2010)

125. Montali, M., Torroni, P., Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P.: Ver-
ification from declarative specifications using logic programming. In: Garcia de la Banda,
M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 440–454. Springer, Heidelberg
(2008)

126. Moreira, Á.F., Vieira, R., Bordini, R.H., Hübner, J.F.: Agent-oriented programming with
underlying ontological reasoning. In: Baldoni, M., Endriss, U., Omicini, A., Torroni, P.
(eds.) DALT 2005. LNCS (LNAI), vol. 3904, pp. 155–170. Springer, Heidelberg (2006)

127. Morley, D., Myers, K.: The SPARK agent framework. In: Proc. of AAMAS 2004,
pp. 714–721 (2004)

128. Myers, K.L., Wilkins, D.E.: The Act Formalism, Version 2.2. Technical report, SRI Inter-
national AI Center Technical Report, SRI International, Menlo Park, CA (1997)

129. Nwana, H.S., Ndumu, D.T.: An introduction to agent technology. In: Nwana, H.S., Azarmi,
N. (eds.) Software Agents and Soft Computing: Towards Enhancing Machine Intelligence.
LNCS, vol. 1198, pp. 3–26. Springer, Heidelberg (1997)

130. OASIS. Business process execution language for web services v.1.1 (2003)
131. OASIS, eXtensible Access Control Markup Language (XACML) Version 2.0 (2005),

http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.
0-core-spec-os.pdf

132. Omicini, A., Denti, E.: From tuple spaces to tuple centres. Science of Computer Program-
ming 41(3), 277–294 (2001)

133. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model for multi-agent sys-
tems. Autonomous Agents and Multi-Agent Systems 17(3), 432–456 (2008); Special Issue
on Foundations, Advanced Topics and Industrial Perspectives of Multi-Agent Systems

134. Omicini, A., Zambonelli, F.: MAS as complex systems: A view on the role of declarative
approaches. In: Leite, J., Omicini, A., Sterling, L., Torroni, P. (eds.) DALT 2003. LNCS
(LNAI), vol. 2990, pp. 1–16. Springer, Heidelberg (2004)

135. Paolucci, M., Kawamura, T., Payne, T., Sycara, K.: Semantic matching of web services
capabilities. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 333–347.
Springer, Heidelberg (2002)

136. Peine, H.: ARA - Agents for Remote Action. In: Mobile Agents. Manning Publishing
(1997)

137. Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business processes
management. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103,
pp. 169–180. Springer, Heidelberg (2006)

http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf


228 M. Baldoni et al.

138. Phung-Khac, A., Beugnard, A., Gilliot, J.-M., Segarra, M.-T.: Model-driven development of
component-based adaptive distributed applications. In: Proc. of SAC 2008, pp. 2186–2191.
ACM, New York (2008)

139. Pistore, M., Spalazzi, L., Traverso, P.: A minimalist approach to semantic annotations
for web processes compositions. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS,
vol. 4011, pp. 620–634. Springer, Heidelberg (2006)

140. Piunti, M., Santi, A., Ricci, A.: Programming SOA/WS systems with cognitive agents and
artifact-based environments. In: Proc. of MALLOW 2009 Multi-Agent Logics, Languages,
and Organisations Federated Workshops, CEUR Workshop Proceedings (2009) ISSN
1613-0073

141. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language. In:
Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp. 42–55.
Springer, Heidelberg (1996)

142. Rao, A.S., Georgeff, M.P.: Asymmetry thesis and side-effect problems in linear-time and
branching-time intention logics. In: Proc. of IJCAI 1991, pp. 498–504 (1991)

143. Rao, A.S., Georgeff, M.P.: Decision procedures for BDI logics. J. Log. Comput. 8(3),
293–342 (1998)

144. Reisig, W., Rozenberg, G. (eds.): APN 1998. LNCS, vol. 1491. Springer, Heidelberg
(1998); the volumes are based on the Advanced Course on Petri Nets, held in Dagstuhl
(September 1996)

145. Reiter, R.: On knowledge-based programming with sensing in the situation calculus. ACM
Transactions on Computational Logic (TOCL) 2(4), 433–457 (2001)

146. Renz, W.: Models and multi-agent simulations of logistics networks - a case-study in self-
organization by microeconomics. In: MKWI 2008. GITO-Verlag, Berlin (2008)

147. Rimassa, G., Burmeister, B.: Achieving business process agility in engineering change man-
agement with agent technology. In: WOA 2007, pp. 1–7. Seneca Edizioni Torino (2007)

148. Roland, J., Vesonder, G., Wilson, J.: C5 user manual, release 2.1. Technical report, AT&T
Bell Laboratories (1990)

149. Rossi, G.: Logic Programming in Italy: A Historical Perspective. In: Dovier, A., Pontelli,
E. (eds.) 25 Years of Logic Programming in Italy. LNCS, vol. 6125, pp. 1–14. Springer,
Heidelberg (2010)

150. Sadri, F., Toni, F.: Computational Logic and Multi-Agent Systems: a Roadmap. Technical
report, Department of Computing, Imperial College, London (1999)

151. Salasin, J., Madni, A.M.: Metrics for service-oriented architecture (soa) systems: What de-
velopers should know. J. Integr. Des. Process Sci. 11(2), 55–71 (2007)

152. Schroeder, M., de Almeida Móra, I., Pereira, L.M.: A deliberative and reactive diagnosis
agent based on logic programming. In: Rao, A., Singh, M.P., Wooldridge, M.J. (eds.) ATAL
1997. LNCS, vol. 1365, pp. 293–307. Springer, Heidelberg (1998)

153. Semantic Annotations for WSDL Working Group. Semantic annotations for wsdl and xml
schema. Technical report, W3C (2007)

154. Semmel, G.S., Davis, S.R., Leucht, K.W., Rowe, D.A., Smith, K.E., Boloni, L.: Space
shuttle ground processing with monitoring agents. IEEE Intelligent Systems 21(1), 68–73
(2006)

155. Shapiro, S., Lespérance, Y., Levesque, H.J.: The cognitive agent specification language and
verification environment for multiagent systems. In: Proc. of AAMAS 2002, pp. 19–26.
ACM Press, New York (2002)

156. Shoham, Y.: Agent-oriented programming. Artificial Intelligence 60(1), 51–92 (1993)
157. Singh, M.P.: Agent communication languages: Rethinking the principles. IEEE Com-

puter 31(12), 40–47 (1998)



Agents, Multi-Agent Systems and Declarative Programming 229

158. Sloman, A., Poli, R.: SIM AGENT: A toolkit for exploring agent design. In: Tambe, M.,
Müller, J., Wooldridge, M.J. (eds.) IJCAI-WS 1995 and ATAL 1995. LNCS, vol. 1037,
pp. 392–407. Springer, Heidelberg (1996)

159. Sohrabi, S., Prokoshyna, N., McIlraith, S.A.: Web service composition via the customiza-
tion of Golog programs with user preferences. In: Borgida, A.T., Chaudhri, V.K., Giorgini,
P., Yu, E.S. (eds.) Conceptual Modeling: Foundations and Applications: Essays in Honor of
John Mylopoulos, pp. 319–334. Springer, Heidelberg (2009)

160. Sterling, L., Shapiro, E.: The art of Prolog: advanced programming techniques (1986)
161. Subrahmanian, V., Bonatti, P., Dix, J., Eiter, T., Kraus, S., Özcan, F., Ross, R.: Heterogenous

Active Agents, 580 pages. MIT Press, Cambridge (2000)
162. Thomas, S.R.: The PLACA agent programming language. In: Wooldridge, M.J., Jennings,

N.R. (eds.) ECAI 1994 and ATAL 1994. LNCS, vol. 890, pp. 355–370. Springer, Heidelberg
(1995)

163. Torroni, P.: Computational logic in multi-agent systems: Recent advances and future direc-
tions. Ann. Math. Artif. Intell. 42(1-3), 293–305 (2004)

164. Torroni, P., Chesani, F., Mello, P., Montali, M.: Social commitments in time: Satisfied or
compensated. In: Baldoni, M., van Riemsdijk, M.B. (eds.) DALT 2009. LNCS, vol. 5948,
pp. 228–243. Springer, Heidelberg (2010)

165. Torroni, P., Chesani, F., Mello, P., Montali, M.: Social commitments in time: satisfied or
compensated. In: Baldoni, M., Bentahar, J., Lloyd, J., van Riemsdijk, M.B. (eds.) DALT
2009. LNCS, Springer, Heidelberg (2010)

166. Torroni, P., Yolum, P., Singh, M.P., Alberti, M., Chesani, F., Gavanelli, M., Lamma, E.,
Mello, P.: Modelling interactions via commitments and expectations. In: Handbook of
Research on Multi-Agent Systems: Semantics and Dynamics of Organizational Models,
Hershey, Pennsylvania, March 2009, pp. 263–284. IGI Global (2009)

167. van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M., Russell, N., Verbeek, H.M.W.,
Wohed, P.: Life after BPEL? In: Bravetti, M., Kloul, L., Zavattaro, G. (eds.) EPEW/WS-
EM 2005. LNCS, vol. 3670, pp. 35–50. Springer, Heidelberg (2005)

168. Van Linder, B.: Modal Logics for Rational Agents. PhD thesis, Universiteit Utrecht,
Utrecht, The Netherlands (1987)

169. van Riemsdijk, B., van der Hoek, W., Meyer, J.-J.C.: Agent programming in Dribble: from
beliefs to goals using plans. In: Proc. of AAMAS 2003, pp. 393–400 (2003)

170. van Riemsdijk, M.B., de Boer, F.S., Dastani, M.M., Meyer, J.-J.C.: Prototyping 3APL in
the Maude term rewriting language. In: Inoue, K., Satoh, K., Toni, F. (eds.) CLIMA 2006.
LNCS (LNAI), vol. 4371, pp. 95–114. Springer, Heidelberg (2007)

171. van Riemsdijk, M.B., Wirsing, M.: Goal-Oriented and Procedural Service Orchestration. A
Formal Comparison. In: AWESOME 2007, Durham, UK (September 2007)

172. Vasconcelos, W.W.: Logic-based electronic institutions. In: Leite, J., Omicini, A.,
Sterling, L., Torroni, P. (eds.) DALT 2003. LNCS (LNAI), vol. 2990, pp. 221–242. Springer,
Heidelberg (2004)

173. W3C The Platform for Privacy Preferences 1.0 (P3P1.0) Specification (2002), http://
www.w3.org/TR/P3P/

174. Weber, N., Braubach, L., Pokahr, A., Lamersdorf, W.: Agent-based semantic search at mo-
toso.de. In: Braubach, L., van der Hoek, W., Petta, P., Pokahr, A. (eds.) MATES 2009.
LNCS, vol. 5774, pp. 278–287. Springer, Heidelberg (2009)

175. Weihmayer, T., Tan, M.: Modeling cooperative agents for customer network control using
planning and agent-oriented programming. In: IEEE Global Telecommunications Confer-
ence, Globecom 1992, Proceedings, pp. 537–543. IEEE, Los Alamitos (1992)

176. White, S.: Business Process Modeling Notation Specification 1.0. Technical report, OMG
(2006)

http://www.w3.org/TR/P3P/
http://www.w3.org/TR/P3P/


230 M. Baldoni et al.

177. Winikoff, M., Padgham, L., Harland, J., Thangarajah, J.: Declarative & procedural goals in
intelligent agent systems. In: Proc. of KR 2002, pp. 470–481 (2002)

178. Wooldridge, M.: The Logical Model of Computational Multi–Agent Systems. PhD thesis,
Department of Computation, UMIST, Manchester, UK (1992)

179. Wooldridge, M.: This is MYWORLD: The logic of an agent-oriented testbed for DAI.
In: Wooldridge, M.J., Jennings, N.R. (eds.) ECAI 1994 and ATAL 1994. LNCS, vol. 890,
pp. 160–178. Springer, Heidelberg (1995)

180. Wooldridge, M.: An Introduction to MultiAgent Systems. Wiley, Chichester (2002)
181. Wooldridge, M., Jennings, N.R.: Intelligent agents: Theory and practice. Knowledge Engi-

neering Review 10(2), 115–152 (1995)
182. Wooldridge, M.J.: In: Kandzia, P., Klusch, M. (eds.) CIA 1997. LNCS, vol. 1202, pp. 1–18.

Springer, Heidelberg (1997)
183. Yolum, P., Singh, M.P.: Flexible protocol specification and execution: applying event cal-

culus planning using commitments. In: AAMAS, pp. 527–534. ACM, New York (2002)
184. Yu, Q., Liu, X., Bouguettaya, A., Medjahed, B.: Deploying and managing web services:

issues, solutions, and directions. The VLDB Journal 17(3), 537–572 (2008)
185. Zaremski, A.M., Wing, J.M.: Specification matching of software components. ACM Trans-

actions on SEM 6(4), 333–369 (1997)
186. Zöller, A., Braubach, L., Pokahr, A., Rothlauf, F., Paulussen, T.O., Lamersdorf, W., Heinzl,

A.: Evaluation of a multi-agent system for hospital patient scheduling. International Trans-
actions on Systems Science and Applications 1(4), 375–380 (2006)



Concurrent and Reactive Constraint

Programming

Maurizio Gabbrielli1, Catuscia Palamidessi2, and Frank D. Valencia3

1 Lab. Focus, INRIA and University of Bologna
2 INRIA and LIX, Ecole Polytechnique

3 CNRS, LIX, Ecole Polytechnique

Abstract. The Italian Logic Programming community has given several
contributions to the theory of Concurrent Constraint Programming. In
particular, in the topics of semantics, verification, and timed extensions.
In this paper we review the main lines of research and contributions of
the community in this field.

1 The Origins: From Concurrect Logic Programming to
Concurrent Constraint Programming

In the 80’s there had been several proposals to extend logic programming with
constructs for concurrency, aiming at the development of a concurrent language
which would maintain the typical advantages of logic programming: declarative
reading, computations as proofs, amenability to meta-programming etc. Exam-
ples of concurrent logic languages include PARLOG [14], Concurrent Prolog
[59,60], Guarded Horn Clauses (GHC) [62,63] and their so-called flat versions.
Towards the end of the decade, Concurrent constraint programming ([53,57,58])
emerged as one of the most successful proposals in this area.

Concurrent constraint programming (ccp) presented two new perspectives on
the underlying philosophy of logic programming. One is the replacement of the
concept of unification over the Herbrand universe by the more general notion
of constraint over an arbitrary domain. This is in a sense a ‘natural’ develop-
ment, and the idea was already introduced in ‘sequential’ logic programming by
Jaffar and Lassez ([46]). The other is the introduction of extra-logical operators
typical of the imperative concurrent paradigms, like CCS ([48]), TCSP ([8]) and
ACP ([1]); in particular, the choice (+), the action prefixing (→), and the hid-
ing operator (∃). Additionally, concurrent constraint programming embodies an
explicit characterization of the control mechanisms for communication and syn-
chronization by means of the introduction of two kinds of actions (ask and tell).
Also in concurrent logic languages these control features were present, but they
were hidden in various ways: the choice was represented by alternative clauses,
hiding by local (existentially quantified) variables, prefixing by commitment,
communication by sharing of variables, and synchronization by restrictions on
the unification algorithm.

There are many advantages in an explicit representation of these concurrency
control mechanisms by means of operators. First of all, they are ‘isolated’ and

A. Dovier, E. Pontelli (Eds.): 25 Years of Logic Programming, LNCS 6125, pp. 231–253, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



232 M. Gabbrielli, C. Palamidessi, and F.D. Valencia

therefore the laws of their behaviour can be understood better. For instance, one
of the problems in studying the semantics of concurrent logic programming is
that the choice mechanism is ‘mixed up’ with recursion, since a clause is in gen-
eral a recursive definition. Second, the standard tools developed in the theory of
concurrency can be applied more easily. Third, a ‘reconciliation’ with the declar-
ative principles of logic programming is more feasible, once the basic limitations
are well understood. For instance, the conditions which rule the behaviour of
ask and tell can be described in a logical way, thus providing the synchroniza-
tion mechanism with a ‘declarative flavour’ ([47,52]) that was missing in the
‘restricted-unification’ approach.

2 The ccp Paradigm

Ccp is based on the concept of store-as-constraint, in contrast to von Neumann’s
concept of store-as-valuation. The computation proceeds through the concurrent
execution of different processes, which interact and communicate through the
common store. They refine the partial information about the values of the vari-
ables by adding (telling) constraints to the store, and they test (ask ) whether
the store entails a constraint before proceeding in the computation.

One of the most characteristic features of the ccp paradigm is a formaliza-
tion of these basic operations which allow to update and to query the common
store, in terms of the logical notions of consistency, conjunction and entailment
supported by a given underlying constraint system.

Here we recall briefly the syntax and semantics of ccp. Among the several
variants which have been proposed in literature, we choose the simplest and
most basic one, called eventual tell ccp. Most of the other ccp dialects can be
obtained by enriching this one.

The ccp languages are defined parametrically w.r.t. to a given cylindric con-
straint system.

Definition 1

– A constraint system is a complete algebraic lattice 〈C,�,�, true, false〉 where
� is the lub operation, and true, false are the least and the greatest elements
of C, respectively. The entaiment relation � is the inverse ordering.

– Consider a (denumerable) set of variables x, y, z, . . .. Assume that for each
x ∈ Var a function ∃x : C → C is defined such that for any c, d ∈ C:
(i) c � ∃x(c),
(ii) if c � d then ∃x(c) � ∃x(d),
(iii) ∃x(c � ∃x(d)) = ∃x(c) � ∃x(d),
(iv) ∃x(∃y(c)) = ∃y(∃x(c)).
Then C = 〈C,≤,�, true, false ,Var , ∃〉 is a cylindric constraint system.

In order to model parameter passing, diagonal elements ([45]) are added to the
primitive constraints: We assume that, for x, y ranging in Var , D contains the
constraints dxy which satisfy the following axioms.



Concurrent and Reactive Constraint Programming 233

(i) true � dxx,
(ii) if z �= x, y then dxy = ∃z(dxz � dzy),
(iii) if x �= y then dxy � ∃x(c � dxy) � c.

Note that if C models the equality theory, then the elements dxy can be thought
of as the formulas x = y. In the following ∃x(c) is denoted by ∃xc with the
convention that, in case of ambiguity, the scope of ∃x is limited to the first
constraint subexpression. (So, for instance, ∃xc � d stands for ∃x(c) � d.)

Definition 2. Assuming a given cylindric constraint system C the syntax of
agents is given by the following grammar:

A ::= stop | tell(c) |
∑n

i=1 ask(ci)→ Ai | A ‖ A | ∃xA | p(x)

where the c, ci are supposed to be finite constraints (i.e. algebraic elements) in C.
A ccp process P is then an object of the form D.A, where D is a set of procedure
declarations of the form p(x) :: A and A is an agent.

The deterministic agents are obtained by imposing the restriction n = 1 in the
previous grammar. The standard operational model of ccp can be described by
a transition system T = (Conf ,−→). The configurations (in) Conf are pairs
consisting of a process, and a constraint in C representing the common store.
The transition relation −→⊆ Conf × Conf is described by the (least relation
satisfying the) rules R1-R6 of table 1.

The agent stop represents successful termination. The basic actions are given
by tell(c) and ask(c) constructs which act on the common store. Given a store d,
as shown by rule R1, the execution of tell(c) updates the store to c�d. The action
ask(c) represents a guard, i.e. a test on the current store d, whose execution
does not modify d. We say that ask(c) is enabled in d iff d � c. According to rule
R2 the guarded choice operator gives rise to global non-determinism: the agent∑n

i=1 ask(ci) → Ai nondeterministically selects one ask(ci) which is enabled in
the current store, and then behaves like Ai. The external environment can then
affect the choice since ask(c) is enabled iff the current store d entails c, and d can
be modified by other agents (rule R1). If no guard is enabled, then the guarded
choice agent suspends, waiting for other (parallel) agents to add information
to the store. The situation in which all the components of a system of parallel
agents suspend is called global suspension or deadlock. The operator ‖ represents
parallel composition which is described by rule R3 as interleaving. The agent
∃xA behaves like A, with x considered local to A. To describe locality in rule
R4 the syntax has been extended by an agent ∃dxA where d is a local store of A
containing information on x which is hidden in the external store. Initially the
local store is empty, i.e. ∃xA = ∃truexA.

Rule R5 treats the case of a procedure call when the actual parameter equals
the formal parameter: in this case a simple body replacement suffices. We do
not need more rules since, for the sake of simplicity, we assume that the set D
of procedure declarations is closed w.r.t. parameter names.



234 M. Gabbrielli, C. Palamidessi, and F.D. Valencia

Table 1. The transition system of ccp

R1 〈D.tell(c), d〉 −→ 〈D.Stop, c 	 d〉

R2 〈D.
∑n

i=1 ask(ci) → Ai, d〉 −→ 〈D.Aj , d〉 j ∈ [1, n] and d � ci

R3
〈D.A, c〉 −→ 〈D.A′, c′〉

〈D.A ‖ B, c〉 −→ 〈D.A′ ‖ B, c′〉
〈D.B ‖ A, c〉 −→ 〈D.B ‖ A′, c′〉

R4
〈D.A, d 	 ∃xc〉 −→ 〈D.B, d′〉

〈D.∃dxA, c〉 −→ 〈D.∃d′
xB, c 	 ∃xd′〉

R5 〈D.p(x), c〉 −→ 〈D.A, c〉 p(x) : −A ∈ D

3 Semantic Aspects of ccp

In the first few years after its design, ccp had been understood just as a particular
case of process algebra. Therefore, the definition of its compositional semantics
had been approached by the standard methods, like failure sets and bisimulation.
For instance, De Boer et al. [15,16] used tree-like structures labeled with func-
tions on substitutions. More simple tree-like structures, labeled by constraints,
were used by Gabbrielli and Levi [40]. Saraswat and Rinard [57] used similar
structures modulo equivalence relations based on bisimulation.

De Boer and Palamidessi [18] realized that, due to the fact that the com-
munication mechanism of ccp is asynchronous, the branching structures used
for process algebra are not needed. In fact, which actions are enabled does not
depend upon the current state of the environment, but only upon the store. In
a transition system this can be made explicit by adding a passive rule that does
not exist in the classical concurrent paradigms: an arbitrary assumption of a
step made by the environment. This amounts to considering all the possible in-
teractions between the given process and arbitrary environments, and it leads to
a simple compositional semantics, consisting of sequences of constraints labeled
by assume/tell modes. In this framework the parallel composition corresponds
to zip sequences, so that the assumptions of a process match with the actions of
the other, and vice-versa.

Independently, a different approach was developed in [58]. The basic idea
consists in denoting processes as Scott’s closure operators, which have the nice
property of being representable by the set of their fixpoints. The operators of
the language can then be described as operations on those sets. In particular,
parallelism can be modeled simply by intersection.

The semantics developed in [18] and in [58] are based on very different points
of view. The one in [18] is more general, in the sense that it applies, without



Concurrent and Reactive Constraint Programming 235

essential modifications, to many variants of ccp, including the atomic and non-
deterministic versions. The one in [58] is very ingenious and elegant, and can be
considered one of the principal reasons of the success of ccp. However, it works
well only in the basic fragment, the deterministic eventual tell ccp, which is ob-
tained from Definition 6 by imposing n = 1 in the summation. Both semantics
are fully abstract, and therefore in the basic fragment they are equivalent. The
precise correspondence was delineated in [19].

One question that had remained open in [18] was how to model infinite com-
putations in an abstract way, i.e. by considering only the limit of the answer
substitution. When nondeterminism is present, the denotational characteriza-
tion of infinite computation is actually a non trivial problem: The semantics
based on Smith, Hoare and Plotkin’s powerdomains constitute only a partial
solution to this problem (in the sense that they identify too much), and the se-
mantics based on metric domains are far from being abstract. This problem was
solved in [25] by considering a categorical construction called Lehmann’s power-
domain, which can be regarded as an extension of Smith’s powerdomain. This
structure contains more information than the powerdomains, enough to achieve
compositionality.

3.1 Analysis and Verification

De Boer et al. developed in [20] a system based on the closure operators semantics
to prove correctness assertions about concurrent constraint programs. Thanks to
the strong properties of ccp, this system is much simpler than the ones developed
for other parallel languages. In particular, only the strongest post-condition w.r.t.
True needs to be considered, and parallel composition is modeled simply by
logical conjunction.

Falaschi et al. investigated in [34] various fragments of ccp. Some of them
have a very simple semantics based on closure operators. Such semantics can
be considered as approximated semantics of ccp, and they were used as a basis
for static analysis [33,35], by means of abstract interpretation techniques. These
techniques allow to statically optimize programs and to approximate several im-
portant semantic properties, such as deadlock detection, groundness propagation
etc.

One interesting fragment is ccp with local choice: This corresponds in fact to
CLP with delay, an extension of Constraint Logic Programming which allows
efficient implementations. Falaschi et al. [36] and De Boer et al. [23] used this
observation for developing the semantics foundations and a verification system
of CLP with delay, by means of techniques based on closure operators.

Another approach to the analysis of ccp was pursed in [66,67] where it was
extended to ccp languages the generalized semantics approach to static analysis,
initially proposed in [42] for sequential CLP languages. [66] shows that such an
extension can be easily achieved for approximations that are closed under anti-
entailment: applications include analyses that can identify definite suspensions,
e.g., to compute upper bounds to the degree of concurrency in a ccp program. For
the more common case of entailment closed properties (that are of interest for,



236 M. Gabbrielli, C. Palamidessi, and F.D. Valencia

e.g., proving suspension freeness), it is shown in [67] that correctness can only be
achieved by modifying the generalized semantics approach so as to introduce a
domain-dependent approximation of the synchronization primitive, which cannot
be modeled as an entailment test on the abstract domain.

3.2 Fold/Unfold Transformations of ccp

Unfold/fold are source-to source transformation techniques which were first in-
troduced in functional programming by Burstall and Darlington [10], and then
adapted to logic programming both for program synthesis and for program spe-
cialization and optimization. As shown by a number of applications, these tech-
niques provide a powerful methodology for the development and optimization of
large programs, and can be regarded as the basis to be used for partial evaluation.

Despite a large amount of literature in the field of declarative sequential lan-
guages, the applications of unfold/fold transformations to concurrent languages
are relatively rare. This is partially due to the fact that the nondeterminism
and the synchronization mechanisms present in concurrent languages substan-
tially complicate their semantics, thus complicating also the definition of correct
transformation systems. Nevertheless, these transformation techniques can be
very useful also for concurrent languages, since they allow further optimizations
related to the simplification of synchronization and communication mechanisms.

One of the few papers addressing this issue is [32], where a transformation
system for concurrent constraint programming (ccp) was introduced. This sys-
tems was inspired by that one of Tamaki and Sato [61], a general framework for
the unfold/fold transformation of logic programs, which has remained over the
years the main historical reference of the field.

Compared to its predecessors, the system in [32] improves by eliminating the
limitation that in a folding operation the folding rule has to be non-recursive.
Moreover, following de Francesco and Santone [39], the applicability conditions
for this operation are based on the notion of “guardedness” and can be checked
locally on the program to be folded (rather than on the transformation history).
This makes the operation much easier to understand and to implement. Be-
sides folding and unfolding, the transformation system for ccp includes several
other new operations, namely backward instantiation, ask and tell simplification,
branch elimination, conservative ask elimination and distribution. The declara-
tive nature of ccp allows one to define reasonably simple applicability conditions
for these operations which ensure the total correctness of the system: the orig-
inal and the transformed program have the same semantics when considering
both input/output pairs and (under different applicability conditions) traces,
and distinguishing successful, deadlocked, and failed derivations.

From the correctness result follows that the original program is deadlock-free
iff the transformed one is, and this allows us to employ the transformation sys-
tem as an effective tool for proving deadlock-freeness of ccp programs. Moreover,
the systems allows to optimize programs by eliminating communication chan-
nels and synchronization points, by transforming nondeterministic computations
into deterministic ones, and by saving of computational space. Some of these



Concurrent and Reactive Constraint Programming 237

improvements were possible already in the context of GHC programs by using
the system defined in Ueda and Furukawa [64].

Following the above line of research, [3] investigated transformation tech-
niques based on the replacement. This is a powerful operation which can mimic
the most common transformation operations such as unfold, fold, switching, dis-
tribution. Because of this flexibility, it can be incorrect if used without specific
applicability conditions. The above paper presented applicability conditions for
ccp and it showed that, under these conditions, the replacement generalizes both
the unfolding operation as well as a restricted form of folding operation.

4 Timed Reactive CCP

The tcc model is a timed reactive ccp framework introduced by Saraswat et al
[54] as an extension of deterministic ccp. This model is aimed at programming
and modeling timed reactive systems and it elegantly combines deterministic ccp
with ideas from the paradigms of Synchronous Languages [2].

In order to increase the specification expressiveness of tcc, Nielsen et al [50]
introduced a non-deterministic extension of tcc, called the ntcc calculus. As its
predecessor, the ntcc calculus takes the view of reactive computation as pro-
ceeding in discrete time units (or time intervals). Time is conceptually divided
into discrete intervals. In each time interval a ccp process receives a stimulus,
represented as a constraint, from the environment, it executes with this stimu-
lus as the initial store, and when it reaches its resting point, it responds to the
environment with the final store. Furthermore, the resting point determines a
residual process, which is then executed in the next time interval.

As illustrated in [50], this view of reactive computation is particularly appro-
priate for modeling and programming reactive systems such as robotic devices
and micro-controllers. These systems typically operate in a cyclic fashion; in
each cycle they receive and input from the environment, compute on this input,
and then return the corresponding output to the environment.

4.1 Syntax and Operational Semantics of ntcc

The ntcc calculus introduces operators to specify temporal executions. The unit-
delay operation next A, also present in tcc, specifies that A should be executed
in the next time interval, and the unbounded delay operation �A specifies that A
will be eventually executed. The time-out operation unless c next A, also present
in tcc, specifies that unless c can be inferred from the final store in the current
time unit, A should be executed in the next time unit.

Furthermore, to ensure that only terminating processes can be executed within
time intervals, procedures are replaced with the simpler replicated form !A. The
replication operation !A specifies that A will be executed now and in each future
time interval. Thus, !A can be viewed as A ‖ next A ‖ next (next A) ‖ . . .

All in all, the agents of ntcc include those of ccp in Definition 2 except for
procedures, plus the above-mentioned temporal operators. More precisely,



238 M. Gabbrielli, C. Palamidessi, and F.D. Valencia

Definition 3. Assuming a given cylindric constraint system C the syntax of
ntcc agents is given by the following grammar:

A ::= stop | tell(c) |
∑n

i=1 ask (ci) → Ai | A ‖ A | ∃xA
| next A | � A | unless c next A | !A

where the c, ci are supposed to be finite constraints (i.e. algebraic elements) in
C. For the sake of consistency with Definition 2, an ntcc process P can be inter-
preted as an object of the form D.A by decreeing that D = ∅; i.e., the empty set
of procedure declarations.

4.2 Reduction Relations

The operational semantics of ntcc is given in terms of an internal reduction
relation −→ given by the rules in Table 1 plus the rules in Table 2 and the
observable reduction relation =⇒ given in Table 2.

The internal transition γ −→ γ′ specifies the internal steps much like the ccp
transitions −→ in the previous section. The additional rules R6-R8 in Table 2
realize the above intuitions about the temporal operators.

The observable transition P
(c,d)
=⇒ R should be read as “P on input c from the

environment, reduces in one time unit to R and outputs d to the environment”.
The rule ROBS realizes the above intuition by stating that an observable tran-
sition from P = D.A labeled by (c, d) is obtained by performing a sequence of
internal transitions from the initial configuration 〈P, c〉 to a final configura-
tion 〈Q, d〉 with Q = D.A′ in which no further internal evolution is possible.
The residual process R to be executed in the next time interval is equivalent to
D.F (A′), where F (A′) represents the “future” of A′. The process F (A′), given in
Definition 4, is obtained by removing from A′ summations that did not trigger
activity within the current time interval and any local information which has
been stored in A′, and by “unfolding” the sub-terms within “next” and “un-
less” expressions. This “unfolding” specifies the evolution across time intervals
of processes of the form next B and unless c next B.

Definition 4 (Future Function). Let F be the partial function defined by

F (A) =

⎧⎪⎪⎨
⎪⎪⎩

stop if A =
∑

i∈I ci → Ai

F (A1) ‖ F (A2) if A = A1 ‖ A2

∃xF (B) if A = ∃dxB
B if A = next B or A = unless c next B

4.3 A Simple Example of Weak Pre-emption

In spite of its simplicity, the tcc and ntcc extensions to ccp are far-reaching. Many
interesting temporal constructs can be expressed (see e.g. [54]). For example, tcc
allows processes to be “clocked” by other processes. This provides meaningful
pre-emption constructs and the ability to define multiple forms of time instead
of only having a unique global clock.



Concurrent and Reactive Constraint Programming 239

Table 2. Additional rules for the transitions of ntcc processes. The internal reduction
−→ is given by the rules in Table 1 and Rules R6-R8. The observable reduction =⇒
is given by Rule ROBS. The relation −→∗ denotes transitive and reflexive closure
of −→. γ �−→ holds iff that is no γ′ such that γ −→ γ′. The function F is given in
Definitions 4.

R6 〈D. �A, d〉 −→ 〈D.An, d〉 n ≥ 0
R7 〈D.unless c next A, d〉 −→ 〈D.stop, d〉, d � c
R8 〈D.!A, d〉 −→ 〈D.A ‖ next !A, c 	 d〉

ROBS
〈D.A, c〉 −→∗ 〈D.A′, c′〉 �−→

D.A, c
(c,c′)
=⇒ D.F (A′)

A rather simple example is the specification of a power-saver:

A = ! unless (LightsOff ) next � tell(LightsOff )

The power-saver agent A runs forever, hence it is replicated. Furthermore, unless
A can infer that the lights are already off in the current time interval, A should
turn them off either in the next time unit or sometime later.

Notice that because of the weak pre-emption nature of the time-out operation
in ntcc, it is not possible to specify that the lights should be turned off within
the current time interval unless they are already off.

The work in [55] introduces Default tcc as an extension of tcc with the ability
to define strong pre-emption. In this model, the time-out operation can trigger
activity in the current time interval. Strong pre-emption is useful when an action
must be triggered immediately on the absence of a constraint c rather than
delayed to the next interaction.

4.4 Observables and Their Characterizations

Let us consider an infinite sequence of observable transitions:

P = P1
(c1,c′1)====⇒ P2

(c2,c′2)====⇒ P3
(c3,c′3)====⇒ . . .

Intuitively, at time interval i, with i ≥ 0, the process Pi gets a stimulus ci

and then it provides a response c′i and evolves into Pi+1. We shall also represent

this run as P
(α,α′)
====⇒ where α = c1.c2.c3. . . . and α′ = c′1.c

′
2.c

′
3 . . ..

The observable input-output behaviour of an ntcc process is its set of stimulus-
response sequences. The strongest-postcondition, or quiescent behaviour, of a pro-
cess P is the set of sequences on input of which P can run without adding any
information whatsoever. More precisely,



240 M. Gabbrielli, C. Palamidessi, and F.D. Valencia

Definition 5 (Observables of ntcc). Let P be a process. The input-output

behaviour of P is given by Oio(P ) = {(α, α′) | P
(α,α′)
====⇒}. The strongest post-

condition of P is given by Osp(P ) = {α | P
(α,α)

====⇒}.

As shown in [50] the observable input-output behaviour of deterministic ntcc
processes (i.e., tcc processes) can be compositionally specified as closure opera-
tors over sequences of constraints much like for the deterministic ccp case. Also,
by building on the strongest-postcondition semantics for ccp in [20], the work in
[50] includes a compositional characterization of the quiescent behaviour of ntcc
processes as well as a proof system for their temporal properties. The ntcc proof
system is similar to Dijkstra’s proof system for the strongest postcondition of
imperative programs.

In [49] the authors provided a hierarchy of ntcc variants based on the input-
output behaviour. A variant C is said to be as expressive as a variant C′ if
for every process P in C′, one can compute a process E(P ) in C such that
Oio(P ) = Oio(E(P )). The variants were obtained by replacing replication with
alternative mechanisms to specify infinite behaviour: Namely, procedure defini-
tions, static-scoping parameterless recursion, and dynamic-scoping parameterless
recursion. It was shown that ntcc is equally expressive to the variant with static-
scoping parameterless recursion. These variants were also shown to be strictly
less expressive than the variant with parametric procedures which in turn was
shown to be equally expressive to the variant with dynamic-scoping parameter-
less recursion. The authors also showed that the input-output behavior of every
ntcc processes is omega-regular ; i.e. it can be specified by a finite-state Büchi
automaton [9].

In [37] it is defined a framework for the declarative debugging of ntcc programs,
which is based on a fixpoint semantics for this language. A general framework,
parametric w.r.t an abstract domain, for the static analysis of tcc programs is
provided in [38].

5 Another Timed ccp Language

A different timed extension of ccp, called tccp, was proposed in [21]. Similarly to
the previously mentioned timed languages (tcc) [54] and default tcc [55], tccp is a
language for reactive programming where computation takes a bounded period
of time rather than being instantaneous (as it is in ESTEREL [2]). However,
differently from tcc and default tcc, which are inspired by the deterministic syn-
chronous languages, tccp follows the guidelines of the timed process algebras
approach and allows for non-determinism. This corresponds to a different view
and use of a timed language: deterministic languages can be used for program-
ming “kernels” of real-time systems, since deterministic systems are simpler to
specify, debug and analyze. However, non-determinism arises when considering
larger reactive systems involving several processes running on different proces-
sors and communicating via asynchronous links. These (timed) systems can be
naturally specified and programmed by using a non-deterministic language.



Concurrent and Reactive Constraint Programming 241

Indeed all the existing timed process algebras and almost all the variants of
Statecharts admit non-determinism.

Notice that the ntcc calculus discussed in the previous section, is also a non-
deterministic timedccp language.However,ntcc is anorthogonal non-deterministic
extension of tcc, while tccp is an orthogonal timed nondeterministic extension
of ccp. That means that, unlike in tccp, in ntcc computation proceeds as in the
synchronous languages.

Below we first describe the tccp language and its operational semantics. Then
we define a fix-point semantics for it which is based on reactive sequences and
which is fully abstract w.r.t. the input/output notion of observables. All the
technical definitions and results in this section are from [21].

5.1 Syntax and Operational Semantics of tccp

When querying the store for some information which is not present (yet) a
ccp agent will simply suspend until the required information has arrived. In
many applications involving time, however, often one cannot wait indefinitely
for an event. Consider for example the case of a bank teller machine: if there
is a problem with the authorization of the bank, after a reasonable amount of
time the card should be given back to the customer. In order to model such
a situation then the language should allow us to specify that, in case a given
time bound is exceeded (i.e. a time-out occurs), the wait is interrupted and an
alternative action is taken. Moreover, in some cases it is also necessary to abort
an active process A and to start a process B when a specific event occurs (this is
usually called preemption of A). For example, according to a typical pattern, A
is the process controlling the normal activity of some physical device, the event
indicates some abnormal situation and B is the exception handler.

In order to enrich ccp agents with such timing mechanisms, we introduce a dis-
crete global clock and assume that ask and tell actions take one time-unit. Compu-
tation evolves in steps of one time-unit, so called clock-cycles, and action prefixing
is the syntactic marker which distinguishes a time instant from the next one.

Furthermore, we make the assumption that parallel processes are executed
on different processors, which implies that at each moment every enabled agent
of the system is activated. This assumption, which is common to many timed
process algebras, gives rise to what is called maximal parallelism.

Since the store is monotonically increasing and one can have dynamic process
creation, clearly the previous assumptions in principle imply that the constraint
solver takes a constant time (no matter how big the store is) and that there is
an unbound number of processors. In practice, however, one can impose suitable
restrictions on programs, thus ensuring that the (significant part of the) store
and the number of processes do not exceed a fixed bound.

In order to express time-out and preemption which, as previously mentioned,
are essential to many applications, the language is enriched by introducing a
more basic timing construct of the form

now c then A else B .



242 M. Gabbrielli, C. Palamidessi, and F.D. Valencia

This construct is similar to the analogous one used in [54], even though here it
has a different interpretation: If c is entailed by the store then the above agent
behaves as A at the current time instant, otherwise it behaves as B (at the
current time instant). Note that the ability to detect the absence of an event is
essential here.

Thus, we end up with the following syntax.

Definition 6 (tccp Language). Assuming a given cylindric constraint system
C the syntax of agents is given by the following grammar:

A ::= stop | tell(c) | ∑n
i=1ask(ci)→ Ai | now c then A else B | A ‖ B | ∃x A | p(x)

where the c, ci are supposed to be finite constraints (i.e. algebraic elements) in C.
A tccp process P is then an object of the form D .A, where D is a set of procedure
declarations of the form p(x ) : −A and A is an agent.

In order to simplify the notation, in the following we will omit the
∑n

i=1 whenever
n = 1 and we will use tell(c) → A as a shorthand for tell(c) ‖ (ask(true) → A).

The operational model of tccp can be formally described by a transition sys-
tem T = (Conf ,−→) where we assume that each transition step takes ex-
actly one time-unit. Configurations (in) Conf are pairs consisting of an agent
and a constraint in C representing the common store. The transition relation
−→⊆ Conf × Conf is the least relation satisfying the rules R1, R2, R4 and
R5 in Table 1 plus the rules in Table 3.

Notice that the rules now characterizes also the temporal evolution of the
system, so 〈A, c〉 −→ 〈B , d〉 means that if at time t we have the agent A and the
store c then at time t + 1 we have the agent B and the store d.

In particular, Rule R1 (in Table 1) shows that the evaluation of a tell action
takes one time-unit, thus the updated store c � d will be visible only starting
from the next time instant. Analogously, also the evaluation of an ask action
takes one time-unit (rule R2).

Let us now briefly discuss the new rules in Table 3.
Rules R3bis and R3ter, which replace rule R3 of Table 1, model the parallel

composition operator in terms of maximal parallelism: The agent A ‖ B executes
in one time-unit all the initial enabled actions of A and B .

The rules R9-R12 show that the agent now c then A else B behaves as A or
B depending on the fact that c is or is not entailed by the store. Note that here,
differently from the case of the ask, the evaluation of the guard is instantaneous.
Since A and B could contain nested now then else agents, a limit for the number
of these nested agents should be fixed. However, for recursive programs such a
limit is ensured by the presence of the procedure call, since we assume that the
evaluation of such a call takes one time unit.

Using the transition system described by (the rules in) Table 1 we can define
the following notion of observables which considers the input/output of termi-
nating computations, including the deadlocked ones. Here and in the sequel −→∗

denotes the reflexive and transitive closure of the relation −→.

Definition 7 (Observables). Let A be an agent. We define Oio(A) = {〈c, d〉 |
〈A, c〉 −→∗ 〈B , d〉 �→}.



Concurrent and Reactive Constraint Programming 243

Table 3. The additional rules for tccp

R3bis
〈A, c〉 −→ 〈A′, c′〉 〈B , c〉 −→ 〈B ′, d′〉

〈A ‖ B , c〉 −→ 〈A′ ‖ B ′, c′ 	 d′〉

R3ter
〈A, c〉 −→ 〈A′, c′〉 〈B , c〉 �−→

〈A ‖ B , c〉 −→ 〈A′ ‖ B , c′〉
〈B ‖ A, c〉 −→ 〈B ‖ A′, c′〉

R9
〈A, d〉 −→ 〈A′, d′〉

〈now c then A else B , d〉 −→ 〈A′, d′〉 d � c

R10
〈A, d〉 �−→

〈now c then A else B , d〉 −→ 〈A, d〉 d � c

R11
〈B , d〉 −→ 〈B ′, d′〉

〈now c then A else B , d〉 −→ 〈B ′, d′〉 d �� c

R12
〈B , d〉 �−→

〈now c then A else B , d〉 −→ 〈B , d〉 d �� c

5.2 Programming Example

We show now how some typical reactive programming idioms can be derived from
the basic combinators of tccp. Then we use these in a programming example.

Time-out. The timed guarded choice agent
n∑

i=1

ask(ci )→ Ai time-out(m) B

waits at most m time-units (m ≥ 0) for the satisfaction of one of the guards.
Before this time-out the process behaves just like the guarded choice: As soon as
there exist enabled guards, one of them and the corresponding branch is nonde-
terministically selected. After waiting for m time-units, if no guard is enabled,
the timed choice agent behaves as B . This agent can be defined inductively as
follows. Let us denote by A the agent

∑n
i=1 ask(ci) → Ai . In the base case,

m = 0, we define
∑n

i=1 ask(ci) → Ai time-out(0 ) B as the agent

now c1 then A else
( now c2 then A else

...
( now cn then A else ask(true)→ B) . . .)

For the inductive step we define
∑n

i=1 ask(ci )→ Ai time-out(m) B as

n∑
i=1

ask(ci) → Ai time-out(0)

(
n∑

i=1

ask(ci) → Ai time-out(m-1) B

)
.



244 M. Gabbrielli, C. Palamidessi, and F.D. Valencia

Watchdogs. These are typical preemption primitives of such languages as
ESTEREL and are used to interrupt the activity of a process on signal from a
specific event. Since events are expressed by constraints, a watchdog can be
defined as the process

do A watching celseB

which behaves as A, as long as c is not entailed by the store; when c is entailed,
the process A is immediately aborted and process B is started. We have here a
form of weak preemption in which the abortion of A is performed in the next
time interval. In fact, even though A is aborted at the same time instant of
the detection of the entailment of c, if c is detected at time t then c has to be
produced at time t′ with t′ < t.

Previous watchdog agent can be defined (by induction on the structure of
process A) in terms of the other constructs of the language (see [21]). For example
in case of the tell process one has the following translation

do tell(d) watching c else B ⇒ now c then B else tell(d),

As a simple example of a tccp program let us now consider a system s(Ex) con-
sisting of two processes p1 and p2 which perform some time critical activities,
reacting to external inputs transmitted on the channel Ex. The system is con-
tinuously checked by a controller which receives a stream of ok messages by each
process pi. Each ok message is sent at unpredictable time instants, however it
is assumed that each pi is working correctly iff it sends the next ok within n
time-units from the previous one. When this limit is exceeded by a process pi
the controller aborts the whole system, starts a recovery routine rr for the ac-
tivity of pi and then restart the system. The system s(Ex) is implemented by
the following program where the specific tasks of the pi’s and of the recovery
routines are not specificed:

s(Ex):- ∃ Alarm,O1,R1,O2,R2
((do p1(Ex,O1,R1) ‖ p2(Ex,O2,R2) watching Alarm = on)
‖ controller(O1,O2,R1,R2))

controller(O1,O2,R1,R2):- ∃ A1,A2
(do c(O1,A1) ‖ c(O2,A2) watching Alarm = on else
(now (A1 = on � A2 = on) then rr(R1) ‖ rr(R2) else
now A1 = on then rr(R1) else
now A2 = on then rr(R2))
‖ restart(Ex))

c(O,A):- ask (∃ Y.O=[ok|Y]) → (∃ Y tell(O=[ok|Y]) →c(Y,A))
timeout(n) tell(Alarm = on � A = on)

5.3 The Denotational Model

It is easy to see that the operational semantics which associates to an agent A
its observables Oio(A) is not compositional. A compositional characterization of



Concurrent and Reactive Constraint Programming 245

the operational semantics can be obtained by using sequences of pairs of finite
constraints, so called timed reactive sequences, analogous to those that we have
seen in the semantics of ccp.

However, a reactive sequence is now provided with a different interpretation
which accounts for the timing aspects. In fact such a sequence has the form

〈c1, d1〉 · · · 〈cn, dn〉〈d, d〉

and each pair of constraints 〈ci, di〉 now represents a computation step performed
by the agent A which, at time i, assuming ci as input constraint produces the
constraint di. The last pair denotes a “stuttering step” in which no further
information can be produced by the agent, thus indicating that a “resting point”
has been reached.

Since in tccp computations the store evolves monotonically and the constraints
arising from computation steps are finite, it is natural to assume that reactive
sequences are monotonically increasing and contains only finite constraints. The
set of all reactive sequences is denoted by S and its typical elements by s, s1 . . .,
while sets of reactive sequences are denoted by S, S1 . . . and ε indicates the
empty reactive sequence. The semantics R which associates to an agent the
reactive sequences that it generates can be defined by a fixpoint construction as
follows.

Definition 8. The semantics R ∈ Agent → P(S) is defined as the least fixed-
point of the operator Φ ∈ (Agent → P(S)) → Agent → P(S) defined by

Φ(I)(A) = {〈c, d〉 · w ∈ S | c ∈ C, 〈A, c〉 → 〈B , d〉 and w ∈ I(B)}
∪
{〈c, c〉 · w ∈ S | 〈A, c〉 �→ and w ∈ I(A) ∪ {ε}}.

The ordering on Agent → P(S) is that of (point-wise extended) set-inclusion and
it is straightforward to check that Φ is continuous, so standard results allows us
to construct the least fixpoint in ω steps.

It is possible to show that the above semantics is correct (w.r.t. the in-
put/ouput observables) and compositional, however is not fully abstract, since it
distinguishes tccp agents whose observables are the same under any possible con-
text. In order to obtain a fully abstract model one needs to introduce a suitable
abstraction on traces, however, due to the presence of the now then else con-
struct and of maximal parallelism, one cannot use here the abstraction which
has been used in [24] for ccp since this would be incorrect (it would identify
agents which can be distinguished by a context). This semantic difference has
also an expresiveness counterpart, indeed one can show [21] that tccp is strictly
more expressive than. ccp.

So, the full abstraction problem for tccp cannot be reduced to that one for
ccp. Indeed, differently from the case of ccp, the definition of a fully abstract
semantics for tccp requires the ability to specify the “difference” ci \ di−1 be-
tween an assumption ci (at time i) and the previous contribution di−1 (at time



246 M. Gabbrielli, C. Palamidessi, and F.D. Valencia

i− 1). Such a difference is formalized by using the algebraic notion of weak rela-
tive pseudo-complement [43,4]. Using this difference the abstraction α on set of
sequences can be defined as follows.

Definition 9 (Abstraction). Let s, s′ be reactive sequences. Then the & rela-
tion is defined as follows:

– s & s′ iff for some sequences s1 and s2 one has that s = s1 · 〈a, b〉〈c, d〉 · s2,
s′ = s1 · 〈a, b′〉〈c, d〉 · s2 and (c \ b′) ≤ (c \ b).

Moreover the (equivalence) relation ' is defined as follows

– s ' s′ iff the sequences s and s′ differ only in the number of repetitions of
the last element.

Given a set of reactive sequences S, α(S) denotes the least set S′ such that the
following holds:

(i) S ⊆ S′,
(ii) if s′ ∈ S′ and either s & s′ or s ' s′, then s ∈ S′.

The fully abstract semantics Rα is obtained by simply applying the function α
to R(A). One can show that the semantics obtained in this way is compositional
(w.r.t. all the operators of the language) and correct (since it allows to recon-
struct the observables Oio(A)). Moreover it is also fully abstract, as shown by
the following theorem.

Theorem 1 (Full abstraction). Assume that the constraint system is weakly
relative pseudo-complemented. Then, for any pair of tccp agents A and B,
α(R(A)) = α(R(B)) iff Oio(C [A]) = Oio(C [B ]) for each context C [·].

FInally it is worth noting that a temporal logic for reasoning on tccp programs,
inpired by this semantics, has been defined in [22].

6 Other Extensions of ccp

In this section we survey some more recent extensions of ccp which mainly deal
with probabilistic and uncertainty aspects.

6.1 Probabilistic ccp

In [27] the concurrent constraint programming paradigm is extended with a
probabilistic choice construct which replaces the nondeterministic choice of the
original paradigm; this allows a program to make stochastic moves during its
execution, so that it may be seen as a stochastic process. This embedding of
randomness within the semantics of a well structured programming paradigm,
like ccp, also aims at providing a sound framework for formalising and reasoning
about randomised algorithms and programs. For the resulting language called



Concurrent and Reactive Constraint Programming 247

probabilistic ccp, a fixpoint semantics is given in [26,28], which is based on vec-
tor spaces and the Brouwer’s fixpoint theorem. The addition of probabilities
allows for a natural formulation of the average behaviour of a program, whose
specification and analysis is particularly important in the study of system per-
formance and reliability. It also allows for an average-case analysis of programs
as opposite to the worst case analysis common to the classical static analysis
approaches [30].

Concurrent Constraint Programming has been used as a reference program-
ming paradigm for the introduction of a general theory of probabilistic abstract
interpretation, which re-formulates the classical theory of abstract interpretation
in a setting suitable for a quantitative reasoning about programs. In this set-
ting, linear spaces replace the classical order-theoretic domains, and the notion
of the so-called Moore-Penrose pseudo-inverse of a linear operator replaces the
classical notion of a Galois connection. The resulting abstractions turn out to
be close approximations of the concrete semantics, so that closeness becomes a
quantitative replacement for classical safety [29].

6.2 ccp for Service Level Agreement

Service Oriented Computing is an emerging paradigm that builds upon the
notion of services as interoperable elements that can be described, published,
searched and composed. Services may expose both functional properties (i.e.
what they do) and non-functional properties (i.e. the way they are supplied).
A Service Level Agreement (SLA) is a contract between two parties, usually a
service provider and a customer, that records non-functional properties about a
service like performance, availability, and cost.

Recently several extensions of the pure ccp language have been proposed for
dealing with Service Level Agreement aspects. Here we briefly describe the main
proposals in this area.

The concurrent constraint pi-calculus (cc-pi calculus) [12] is a model of Ser-
vice Level Agreement negotiations that is inspired by both ccp and name-passing
calculi. Specifically, the cc-pi calculus combines basic operations of concurrent
constraint programming, such as ask and atomic tell, with a symmetric, syn-
chronous mechanism of interaction between senders and receivers, where the sent
name is ‘fused’ (i.e. identified) to the received name and such an explicit fusion
enables using interchangeably the two names. The cc-pi calculus is parametric
with respect to the choice of an underlying constraint system that is defined
using a suitable semiring structure, equipped with a notion of names. Moreover,
cc-pi includes a restriction operation that allows for local stores of constraints.
Synchronisations of interacting processes may have the effect of combining local
into global stores.

Some semantic aspects of the cc-pi calculus are studied in [13], where its is
defined a notion of open bisimilarity à la pi-calculus for cc-pi. Essentially, two
processes are open bisimilar if they have the same stores of constraints - which
can be statically checked - and if their moves can be mutually simulated. In
[13] it is also shown that the polyadic Explicit Fusion calculus introduced by



248 M. Gabbrielli, C. Palamidessi, and F.D. Valencia

Gardner and Wischik can be translated into monadic cc-pi and such a transition
preserves open bisimilarity.

In [11] a further extension of the cc-pi calculus is defined by including primi-
tives for distributed nested commits, inspired by the cjoin calculus (introduced
by Bruni, Melgratti, and Montanari). The two key operations of cjoin are: the
‘abort with compensation’, to stop a negotiation and activate a compensating
process, and the ‘commit’, to store a partial agreement among the parties be-
fore moving to the next negotiation phase. This extended cc-pi calculus comes
equipped with both a small- and a big-step operational semantics which are
proved to coincide.

A different line of research is focused on the use of, so called soft constraint,
to model qualitative aspects of Service Level Agreement in the context of the ccp
paradigm. As described in more detail in another chapter of this book [41], soft
constraints extend classical constraints to represent multiple consistency levels,
and thus provide a way to express preferences, fuzziness, and uncertainty. An
extension of the ccp framework which allows soft constraints in the calculus has
been proposed in [6]. In this extension it is permitted to add (tell) or check (ask)
for soft constraints and the language is enriched with tell/ask thresholds which
can express the level of consistency of the store, thus allowing to prune and
direct the search for a solution (when some consistency levels are not satisfied).
The resulting language, called soft cc (scc), can be also very useful in many
web-related scenarios, since allows web agents to express their interaction and
negotiation protocols, and also to post their requests in terms of preferences.
Differently from the case of “hard” (or “crisp”) constraints, the underlying soft
constraint solver here can find an agreement among the agents even if their
requests are incompatible.

A timed extension of scc has been proposed in [5] in order to be able to express
also Quality of Service aspects which involve time. As in the case of scc, tell and
ask agents are equipped with a preference (or consistency) threshold which is
used to determine their success or suspension. The time and the semantic model
of this extension follows the lines of the tccp language presented in Section 5.

Another extension of scc, which allows the nonmonotonic evolution of the
constraint store, is defined in [7]. To accomplish this, some new operations are
introduced: the retract(c) reduces the current store by c; the updateX(c) trans-
actionally relaxes all the constraints of the store that deal with the variables
in X set, and then adds a constraint c; the nask(c) tests if c is not entailed by
the store. This language allows the management of resources that need a given
Quality of Service: the requirements of all the parties should converge, through
a negotiation process (which involves retract of information), on a formal agree-
ment defined as the Service Level Agreement, which specifies the contract that
must be enforced.

7 Some Working ccp Systems

In this section we shall briefly survey some existing working ccp systems.



Concurrent and Reactive Constraint Programming 249

The programming language jcc [56] was designed as an integration of default
tcc into Java and is intended for embedded reactive systems. In jcc users can
define their own constraint system and thus specialize the language to particu-
lar domains. The main purpose of jcc is to provide a model of loosely-coupled
concurrent programming in Java. The language introduces the notion of a vat.
A vat can be thought of as encapsulating a single synchronous, reactive tcc
computation. A computation consists of a dynamically changing collection of in-
teracting vats, communicating with each other through shared, mutable objects
called ports. Asking and telling objects can read from and write into the port,
respectively and the temporal constructs from the underlying tcc model allow
an object to specify code whose execution should be delayed.

In the hybrid concurrent constraint programming language, hcc [44], it is pos-
sible to express discrete and continuous evolution of time. More precisely, there
are points at which discontinuous change may occur (i.e. the execution pro-
ceeds as burst of activity) and open intervals in which the state of the system
changes continuously (i.e. the system evolves continuously and autonomously).
The notion of continuous constraint system (a real-time extension of constraint
systems) is introduced to describe the continuous evolution. The syntax of hcc
extends that of tcc with the construct hence P , asserting that P holds continu-
ously beyond the current instant. An interpreter of hcc can be found at http://
www-cs-students.stanford.edu/~vgupta/hcc/hcc.html

NtccSim is a simulation tool developed in Oz for ntcc, one of the temporal
models previously described . Constraints over finite domains and real inter-
vals have been used to implement models of biological systems. NtccSim can
be found at http://cic.javerianacali.edu.co/wiki/doku.php?id=grupos:
avispa:ntccsim. An implementation of the other temporal model previously
described, tccp, can be found at http://users.dsic.upv.es/~villanue/
tccpInterpreter

The LMNTAL model [65] provides a scalable, uniform view of concurrent pro-
gramming concepts such as processes, messages, synchronous and asynchronous
computation. It inherits ideas from the concurrent constraint language GHC and
from Janus. Communication is based on constraints over logical variables. Pro-
cesses sharing variables are thought of as been connected. Multisets of nested
nodes and links are a first-class notion in LMNtal. Transformations are rules,
much like in Janus. LMNtal provides both channel mobility and process mobility:
it allows dynamic reconfiguration of process structures as well as the migration
of nested computations. An implementation of LMNtal can be found at http://
www.ueda.info.waseda.ac.jp/lmntal/

CORDIAL [51] is a visual language intended as a user transparent integration
of constraints and objects. The language is based on a ccp calculus extended
with the notion of objects and classes. Methods are represented as windows.
Objects within methods are represented by closed contours. Object methods
launch ccp processes that, in addition to the usual ask and tell operations, can
send messages to other objects. Messages are objects connected by links to object
mailboxes. Objects are identified by an associated constraint parametrized on

http://www-cs-students.stanford.edu/~vgupta/hcc/hcc.html
http://www-cs-students.stanford.edu/~vgupta/hcc/hcc.html
http://cic.javerianacali.edu.co/wiki/doku.php?id=grupos:avispa:ntccsim
http://cic.javerianacali.edu.co/wiki/doku.php?id=grupos:avispa:ntccsim
http://users.dsic.upv.es/~villanue/
tccpInterpreter
http://www.ueda.info.waseda.ac.jp/lmntal/
http://www.ueda.info.waseda.ac.jp/lmntal/


250 M. Gabbrielli, C. Palamidessi, and F.D. Valencia

a local variable (so-called self ). Senders willing to invoke some object method
post a constraint involving some variable, say X , and then send the message to
X . Any object such that its associated constraint can be entailed by the store
conjoined with the constraint self = X , is eligible to accept the message. Some
eligible object is then non-deterministically chosen to handle the message. This
scheme allows very complex patterns of communication and mobility.

References

1. Bergstra, J., Klop, J.: Process algebra: specification and verification in bisimu-
lation semantics. In: Mathematics and Computer Science II. CWI Monographs,
pp. 61–94. North-Holland, Amsterdam (1986)

2. Berry, G., Gonthier, G.: The esterel synchronous programming language: Design,
semantics, implementation. Sci. Comput. Program. 19(2), 87–152 (1992)

3. Bertolino, M., Etalle, S., Palamidessi, C.: The replacement operation for CCP pro-
grams. In: Bossi, A. (ed.) LOPSTR 1999. LNCS, vol. 1817, pp. 216–233. Springer,
Heidelberg (2000)

4. Birkhoff, G.: Lattice theory, XXV. AMS Colloquium Publications (1967)
5. Bistarelli, S., Gabbrielli, M., Meo, M.C., Santini, F.: Timed soft concurrent con-

straint programs. In: Lea, D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS,
vol. 5052, pp. 50–66. Springer, Heidelberg (2008)

6. Bistarelli, S., Montanari, U., Rossi, F.: Soft concurrent constraint programming.
ACM Trans. Comput. Log. 7(3), 563–589 (2006)

7. Bistarelli, S., Santini, F.: A nonmonotonic soft concurrent constraint language for
sla negotiation. Electr. Notes Theor. Comput. Sci. 236, 147–162 (2009)

8. Brookes, S., Hoare, C., Roscoe, W.: A theory of communicating sequential pro-
cesses. Journal of ACM 31, 499–560 (1984)

9. Buchi, J.R.: On a decision method in restricted second order arithmetic. In: Proc.
Int. Cong. on Logic, Methodology, and Philosophy of Science, pp. 1–11. Stanford
University Press (1962)

10. Burstall, R.M., Darlington, J.: A transformation system for developing recursive
programs. J. ACM 24(1), 44–67 (1977)

11. Buscemi, M., Melgratti, H.: Transactional service level agreement. In: Barthe, G.,
Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912, pp. 124–139. Springer, Heidelberg
(2008)

12. Buscemi, M., Montanari, U.: Cc-pi: A constraint-based language for specifying
service level agreements. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421,
pp. 18–32. Springer, Heidelberg (2007)

13. Buscemi, M., Montanari, U.: Open bisimulation for the concurrent constraint pi-
calculus. In: Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 254–268.
Springer, Heidelberg (2008)

14. Clark, K., Gregory, S.: PARLOG: parallel programming in logic. ACM Trans. on
Programming Languages and Systems 8(1), 1–49 (1986)

15. de Boer, F., Kok, J., Palamidessi, C., Rutten, J.: Control flow versus logic: a
denotational and a declarative model for Guarded Horn Clauses. In: Kreczmar,
A., Mirkowska, G. (eds.) MFCS 1989. LNCS, vol. 379, pp. 165–176. Springer,
Heidelberg (1989)



Concurrent and Reactive Constraint Programming 251

16. de Boer, F., Kok, J., Palamidessi, C., Rutten, J.: Semantic models for a ver-
sion of PARLOG. In: Levi, G., Martelli, M. (eds.) Proc. of the Sixth Interna-
tional Conference on Logic Programming, Lisboa. Series in Logic Programming,
pp. 621–636. MIT Press, Cambridge (1989); Extended version in [17]

17. de Boer, F., Kok, J., Palamidessi, C., Rutten, J.: Semantic models for Concurrent
Logic Languages. Theoretical Computer Science 86(1), 3–33 (1991); A short ver-
sion appeared on Proceedings of the Seventh International Conference on Logic
Programming, Lisboa (1989)

18. de Boer, F., Palamidessi, C.: A Fully Abstract Model for Concurrent Constraint
Programming. In: Abramsky, S., Maibaum, T. (eds.) CAAP 1991 and TAPSOFT
1991. LNCS, vol. 493, pp. 296–319. Springer, Heidelberg (1991)

19. de Boer, F., Palamidessi, C.: On the semantics of concurrent constraint pro-
gramming. In: Broda, K. (ed.) Proc. of ALPUK 1992, Workshops in Computing,
pp. 145–173. Springer, Heidelberg (1992)

20. de Boer, F.S., Gabbrielli, M., Marchiori, E., Palamidessi, C.: Proving concurrent
constraint programs correct. ACM Transactions on Programming Languages and
Systems 19(5), 685–725 (1997)

21. de Boer, F.S., Gabbrielli, M., Meo, M.C.: A timed concurrent constraint language.
Inf. Comput. 161(1), 45–83 (2000)

22. de Boer, F.S., Gabbrielli, M., Meo, M.C.: A temporal logic for reasoning about
timed concurrent constraint programs. In: TIME, pp. 227–233 (2001)

23. de Boer, F.S., Gabbrielli, M., Palamidessi, C.: Proving correctness of constraint
logic programs with dynamic scheduling. In: Cousot, R., Schmidt, D.A. (eds.) SAS
1996. LNCS, vol. 1145, pp. 83–97. Springer, Heidelberg (1996)

24. de Boer, F.S., Palamidessi, C.: On the asynchronous nature of communication in
concurrent logic languages: A fully abstract model based on sequences. In: Baeten,
J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 99–114. Springer,
Heidelberg (1990)

25. de Boer, F.S., Pierro, A.D., Palamidessi, C.: Nondeterminism and infinite compu-
tations in constraint programming. Theoretical Computer Science 151(1), 37–78
(1995)

26. Di Pierro, A., Wiklicky, H.: A Banach Space Based Semantics for Probabilistic Con-
current Constraint Programming. In: Lin, X. (ed.) Proc. 4th Australasian Theory
Symposium, CATS 1998, Singapore. Australian Computer Science Communica-
tions, vol. 20 – 3, pp. 245–259. Springer, Heidelberg (1998)

27. Di Pierro, A., Wiklicky, H.: An Operational Semantics for Probabilistic Concurrent
Constraint Programming. In: Iyer, Y.C.P., Schmidt, D. (eds.) Proc. ICCL 1998
– International Conference on Computer Languages, Chicago. IEEE Computer
Society and ACM SIGPLAN, pp. 174–183. IEEE Computer Society Press, Los
Alamitos (1998)

28. Di Pierro, A., Wiklicky, H.: Probabilistic Concurrent Constraint Programming:
Towards a Fully Abstract Model. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS
1998. LNCS, vol. 1450, p. 446. Springer, Heidelberg (1998)

29. Di Pierro, A., Wiklicky, H.: Concurrent Constraint Programming: Towards Proba-
bilistic Abstract Interpretation. In: Gabbrielli, M., Pfenning, F. (eds.) Proceedings
of PPDP 2000 – Priciples and Practice of Declarative Programming, Montréal,
Canada, September 2000. ACM SIGPLAN, pp. 127–138. Association of Comput-
ing Machinery, New York (2000)

30. Di Pierro, A., Wiklicky, H.: Quantitative observables and averages in Probabilistic
Concurrent Constraint Programming. In: Apt, K.R., Kakas, A.C., Monfroy, E.,



252 M. Gabbrielli, C. Palamidessi, and F.D. Valencia

Rossi, F. (eds.) Compulog Net WS 1999. LNCS (LNAI), vol. 1865, pp. 212–236.
Springer, Heidelberg (2000)

31. Dovier, A., Pontelli, E. (eds.): 25 Years of Logic Programming in Italy. LNCS,
vol. 6125. Springer, Heidelberg (2010)

32. Etalle, S., Gabbrielli, M., Meo, M.C.: Transformations of ccp programs. ACM
Trans. Program. Lang. Syst. 23(3), 304–395 (2001)

33. Falaschi, M., Gabbrielli, M., Marriott, K., Palamidessi, C.: Compositional analy-
sis for concurrent constraint programming. In: Proc. of the Eight Annual IEEE
Symposium on Logic in Computer Science, pp. 210–221. IEEE Computer Society
Press, Los Alamitos (1993)

34. Falaschi, M., Gabbrielli, M., Marriott, K., Palamidessi, C.: Confluence in con-
current constraint programming. Theoretical Computer Science 183(2), 281–315
(1997)

35. Falaschi, M., Gabbrielli, M., Marriott, K., Palamidessi, C.: Confluence in con-
current constraint programming. Theoretical Computer Science 183(2), 281–315
(1997)

36. Falaschi, M., Gabbrielli, M., Marriott, K., Palamidessi, C.: Constraint Logic Pro-
gramming with Dynamic Scheduling: A Semantics Based on Closure Operators.
Information and Computation 137(1), 41–67 (1997)

37. Falaschi, M., Olarte, C., Palamidessi, C., Valencia, F.: Declarative diagnosis of
temporal concurrent constraint programs. In: Dahl, V., Niemelä, I. (eds.) ICLP
2007. LNCS, vol. 4670, pp. 271–285. Springer, Heidelberg (2007)

38. Falaschi, M., Olarte, C., Valencia, F.: A framework for abstract interpretation of
timed concurrent constraint programs. In: Proc. of PPDP 2009, ACM Sigplan,
pp. 107–118 (2009)

39. Francesco, N.D., Santone, A.: Unfold/fold transformations of concurrent processes.
In: Kuchen, H., Swierstra, S.D. (eds.) PLILP 1996. LNCS, vol. 1140, pp. 167–181.
Springer, Heidelberg (1996)

40. Gabbrielli, M., Levi, G.: Unfolding and fixpoint semantics for concurrent constraint
logic programs. In: Kirchner, H., Wechler, W. (eds.) ALP 1990. LNCS, vol. 463,
pp. 204–216. Springer, Heidelberg (1990)

41. Gavanelli, M., Rossi, F.: Constraint Logic Programming. In: Dovier, A., Pontelli,
E. (eds.) 25 Years of Logic Programming in Italy, ch. 4. LNCS, pp. 64–85. Springer,
Heidelberg (2010)

42. Giacobazzi, R., Debray, S.K., Levi, G.: Generalized semantics and abstract in-
terpretation for constraint logic programs. Journal of Logic Programming 25(3),
191–247 (1995)

43. Giacobazzi, R., Palamidessi, C., Ranzato, F.: Weak relative pseudo-complements
of closure operators. Algebra Universalis 36(3), 405–412 (1996)

44. Gupta, V., Jagadeesan, R., Saraswat, V.: Computing with continuous change. Sci-
ence of Computer Programming 30(1-2), 3–49 (1998)

45. Henkin, L., Monk, J., Tarski, A.: Cylindric Algebras (Part I). North-Holland,
Amsterdam (1971)

46. Jaffar, J., Lassez, J.-L.: Constraint logic programming. In: Proc. of ACM Sym-
posium on Principles of Programming Languages, pp. 111–119. ACM, New York
(1987)

47. Maher, M.J.: Logic semantics for a class of committed-choice programs. In: Lassez,
J.-L. (ed.) Proc. of the Fourth International Conference on Logic Programming,
Melbourne. Series in Logic Programming, pp. 858–876. MIT Press, Cambridge
(1987)



Concurrent and Reactive Constraint Programming 253

48. Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer,
Heidelberg (1980)

49. Nielsen, M., Palamidessi, C., Valencia, F.: On the expressive power of concurrent
constraint programming languages. In: Proc. of PPDP 2002, pp. 156–167. ACM
Press, New York (2002)

50. Nielsen, M., Palamidessi, C., Valencia, F.: Temporal concurrent constraint pro-
gramming: Denotation, logic and applications. Nordic Journal of Computing 9(2),
145–188 (2002)

51. Rueda, C., Alvarez, G., Quesada, L., Tamura, G., Valencia, F., Diaz, J., Assayag,
G.: Integrating constraints and concurrent objects in musical applications: A cal-
culus and its visual language. Constraints 6(1) (2001)

52. Saraswat, V.: A somewhat logical formulation of CLP synchronization primitives.
In: Kowalski, R.A., Bowen, K.A. (eds.) Proc. of the Fifth International Conference
on Logic Programming, Seattle, USA. Series in Logic Programming, pp. 1298–1314.
MIT Press, Cambridge (1988)

53. Saraswat, V.: Concurrent Constraint Programming. PhD thesis, Carnegie-Mellon
University, January 1989. ACM distinguished dissertation series. The MIT Press,
Cambridge (1993)

54. Saraswat, V., Jagadeesan, R., Gupta,V.: Foundations of timed concurrent constraint
programming. In: LICS, pp. 71–80. IEEE Computer Society, Los Alamitos (1994)

55. Saraswat, V., Jagadeesan, R., Gupta, V.: Timed default concurrent constraint pro-
gramming. J. Symb. Comput. 22(5/6), 475–520 (1996)

56. Saraswat, V., Jagadeesan, R., Gupta, V.: jcc: Integrating timed default concurrent
constraint programming into java. In: Pires, F.M., Abreu, S.P. (eds.) EPIA 2003.
LNCS (LNAI), vol. 2902, pp. 156–170. Springer, Heidelberg (2003)

57. Saraswat, V., Rinard, M.: Concurrent constraint programming. In: Proc. of
the seventeenth ACM Symposium on Principles of Programming Languages,
pp. 232–245. ACM, New York (1990)

58. Saraswat, V., Rinard, M., Panangaden, P.: Semantics foundations of Concurrent
Constraint Programming. In: Proc. of the eighteenth ACM Symposium on Princi-
ples of Programming Languages. ACM, New York (1991)

59. Shapiro, E.: A subset of Concurrent Prolog and its interpreter. Technical Report
TR-003, Institute for New Generation Computer Technology (ICOT), Tokyo (1983)

60. Shapiro, E.: Concurrent Prolog: A progress report. Computer 19(8), 44–58 (1986)
61. Tamaki, H., Sato, T.: Unfold/fold transformation of logic programs. In: ICLP,

pp. 127–138 (1984)
62. Ueda, K.: Guarded Horn Clauses. In: Shapiro, E. (ed.) Concurrent Prolog: Col-

lected Papers. Series in Logic Programming. MIT Press, Cambridge (1987)
63. Ueda, K.: Guarded Horn Clauses, a parallel logic programming language with

the concept of a guard. In: Nivat, M., Fuchi, K. (eds.) Programming of Future
Generation Computers, pp. 441–456. North Holland, Amsterdam (1988)

64. Ueda, K., Furukawa, K.: Transformation rules for ghc programs. In: FGCS,
pp. 582–591 (1988)

65. Ueda, K., Kato, N., Hara, K., Mizuno, K.: LMNtal as a unifying declarative lan-
guage: Live demonstration. In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006.
LNCS, vol. 4079, pp. 457–458. Springer, Heidelberg (2006)

66. Zaffanella, E.: Domain Independent Ask Approximation in CCP. In: Montanari, U.,
Rossi, F. (eds.) CP 1995. LNCS, vol. 976, pp. 362–379. Springer, Heidelberg (1995)

67. Zaffanella, E., Giacobazzi, R., Levi, G.: Abstracting synchronization in concurrent
constraint programming. Journal of Functional and Logic Programming 1997(6)
(November 1997)



Proof-Theoretic and Higher-Order Extensions of Logic
Programming

Alberto Momigliano1,2 and Mario Ornaghi1

1 Dipartimento di Scienze dell’Informazione, Università degli Studi di Milano, Italy
{momiglia,ornaghi}@dsi.unimi.it

2 Laboratory for the Foundations of Computer Science, School of Informatics,
The University of Edinburgh, Scotland

Abstract. We review the Italian contribution to proof-theoretic and higher-order
extensions of logic programming; this originated from the realization that Horn
clauses lacked standard abstraction mechanisms such as higher-order program-
ming, scoping constructs and forms of information hiding. Those extensions were
based on the Deduction and Computation paradigm as formulated in Miller et al’s
approach [51], which built logic programming around the notion of focused uni-
form proofs The Italian contribution has been both foundational and applicative,
in terms of language extensions, implementation techniques and usage of the new
features to capture various computation models. We argue that the emphasis has
now moved to the theory and practice of logical frameworks, carrying with it a
better understanding of the foundations of proof search.

1 Introduction and Motivation

We start by trying to clarify the reasons behind our choice, discussion and classifi-
cation of the literature stemming from the Italian contribution to proof-theoretic and
higher-order extensions of logic programming (LP). These papers belong to the mul-
titude of proposals of extensions of the foundations of logic programming, i.e. Horn
clauses (HC). We can trace that both to the purported limited expressibility of HC —
see the thorny issue of a logically motivated notion of negation — and to the lack of
abstraction mechanisms that are present in modern programming languages to support
the modular construction of software. Here we are referring to higher-order program-
ming, modules, abstract datatypes, scoping constructs, state encapsulation and other
forms of information hiding. One can argue that from the very beginning this has led to
the introduction of “impure”, i.e. extra-logical, features, such as cut, negation-as-failure
or assert/retract. This outcome is not specific to LP and has been named “recreating
the Turing Machine” syndrome [48]: starting from a computationally clean and seman-
tically motivated language, one tends to add external mechanisms in order to make it
suitable for programming-in-the-large. This inevitably tends to clutter the formal defi-
nition of the language (if any), making trusting the language itself and thus reasoning
about it problematic.

Hence the opposing trend in the literature to go back to the original setting and base
new constructs on more solid theoretical grounds, in our case, logic. A well-known

A. Dovier, E. Pontelli (Eds.): 25 Years of Logic Programming, LNCS 6125, pp. 254–270, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Proof-Theoretic and Higher-Order Extensions of Logic Programming 255

(and somewhat worn out) example is again the logical foundations of negation. More
in general, it is by now usual to contrast the traditional model-theoretic approach (see
Chapter [11] in this volume) to the proof-theoretic one, which “happens” to be at the
core of most of the work about higher-order extensions of logic programming.

Arguably, many theoretical developments in logic have had an important impact in
Computer Science. Concerning proof theory, we can isolate two different research di-
rections, broadly corresponding to two different paradigms: Proofs as Programs and
Deductions as Computations (DAC). In the Proof as Programs setting, proofs can be
seen as programs (a.k.a. λ-terms), while computations correspond to (β)-reductions
in a λ-calculus. The proof-theoretic basis is the normalisation or cut-elimination pro-
cedure. This approach fits with the foundations of functional programming, as well
as of constructive program synthesis. In DAC, proofs themselves become the com-
putations, while programs are specifications of non-logical symbols within the logic.
Here, cut-elimination is the conditio sine qua non and proof-theory offers sophisti-
cated restrictions to proof search in a cut-free system, while preserving completeness: a
computation is modeled as a search for a proof, under suitable “uniformity” assump-
tions [51]. LP naturally falls in the DAC approach, which has been eloquently argued
as one of its possible logical foundations elsewhere, e.g. [59].

In DAC, we distinguish between a non-logical signature, related to the problem do-
main, and the domain independent logical language. Each extension of the logical lan-
guage has a corresponding extension of the proof system, bringing at the level of logic
aspects that pertain to the computational level and allowing us to reason about them log-
ically. A paradigmatic example of DAC is Miller et al’s approach, which led to λProlog
in the late 80’s. The paper [47] clearly illustrates the basic ideas, starting from a pre-
cise notion of uniform proofs (to be defined shortly) and characterizing as “abstract
logic programming systems” those where each goal has a uniform proof. The paper
proves that (first-order) HC is an abstract LP system and then considers various exten-
sions. In particular, it is shown how scoping and encapsulation can be modeled at the
logical level, as well as how interesting higher-order programming techniques can be
supported. Essentially, the idea behind abstract LP systems is that a sequent such as
Σ : Γ −→ G represents the state of an idealized LP interpreter with current program Γ,
goal G and signature Σ. Both Γ and Σ may dynamically change during the computation.
A goal-directed or uniform proof is then a cut-free proof in which every occurrence of
a sequent whose right-hand side is non-atomic is the conclusion of a right-introduction
rule. It uses a suitable backchaining rule to “invoke” the definitions of the non-logical
symbols provided by Γ when an atomic goal A is reached. Examples of right (introduc-
tion) rules are ∀R and ⊃R, while BC is the backchain rule.

Σ, c : Γ −→ G(c) ∀R
Σ : Γ −→ ∀x. G(x)

Σ : Γ,D −→ G ⊃R
Σ : Γ −→ D ⊃ G

Σ : Γ −→ G
BC,G ⊃ A ∈ 〈Γ〉

Σ : Γ −→ A

The ∀R rule augments the signature by a new constant c of the type of x, while ⊃R

augments the program by the clause D. The backchaining rule selects a program clause
G ⊃ A in the closure 〈Γ〉 of Γ under the ∀L,∧L rules and backchains on it (see Section
2.1 when this idea is realized via focusing). An abstract logic programming



256 A. Momigliano and M. Ornaghi

language is then a logical system for which uniform proofs are complete. To make our
discussion more concrete we consider an example taken from [44], illustrating scoping
and modularity.

Example 1. Consider the well known Prolog reverse program;

reverse(L,R) :- r(L,R,[]).

r([],Ys,Ys).

r([X|Xs],R,Ys) :- r(Xs,R,[X|Ys]).

reverse/2 uses an auxiliary accumulator-based predicate r/3 to implement the fol-
lowing simple algorithm: start with the pair 〈L, []〉 and iteratively push the elements
of the first list into the second one. This example shows two problems. Firstly, the defi-
nition of r ought to be used locally, inside the scope of the main predicate, but Prolog
cannot (declaratively) hide it against undesired redefinitions. Secondly, the simple re-
verse algorithm needs only the variables L and Ys of r(L,R,Ys): R merely captures
the final result and passes it to the reverse predicate. Both problems can be solved
by introducing suitable scoping mechanisms. The following shows how this can be ac-
counted for using higher-order universal quantification and embedded implication to
provide scope to the definition of the auxiliary predicate and to the individual variables
used in it.

reverse(L,R) :-

all rev\ (

(rev([],R),

all X,Xs,Ys\ (rev([X|Xs],Ys) :- rev(Xs,[X|Ys])))

=> rev(L,[])

)

The notation follows [44], in particular all r\ G(r) is concrete syntax for ∀x :τ.G(x).
�

Roughly, an interpreter based on uniform proof search will proceed as follows. To prove
a goal, such as reverse([1,2],V), it will replace r by a new binary predicate symbol,
say c, and add to the current program the clauses:

c([],V), (all X,Xs,Ys\ c([X|Xs],Ys) :- c(Xs,[X|Ys])).

Then it will try to prove c([1,2],[]) backchaining on the rightmost clause. The vari-
able V will be instantiated to [2,1]with two further backchain steps, when the compu-
tation will eventually succeed with the goal c([],[2,1]).

Logically, the module corresponds to the following formula, where ls is the sort of
lists, i the sort of integers, and o, as usual, is the type of propositions:

Drev : ∀ls l r. (∀ls→ls→orev. rev([], r) ∧
∀i x. ∀lsxs ys. rev(xs, [x|ys]) ⊃ rev([x|xs], ys)) ⊃ rev(l, []) ⊃ (reverse(l, r))



Proof-Theoretic and Higher-Order Extensions of Logic Programming 257

In terms of logical rules, the behaviour of the interpreter corresponds to the gradual
construction of the following proof tree, where we informally label the clauses on which
we backchain:

Σ, c : Γ,Dc1 : c([],V),Dc2 : ∀ x ys xs. (c(xs, [x|ys]) ⊃ c([x|xs], ys)) −→ c([], [2, 1])
BC,Dc2

Σ, c : Γ,Dc1 : c([],V),Dc2 : ∀ x ys xs. (c(xs, [x|ys]) ⊃ c([x|xs], ys)) −→ c([2], [1])
BC,Dc2

Σ, c : Γ,Dc1 : c([],V),Dc2 : ∀ x ys xs. (c(xs, [x|ys]) ⊃ c([x|xs], ys)) −→ c([1, 2], [])
============================================================================== ⊃R,∧L
Σ, c : Γ −→ c([],V) ∧ ∀ x ys xs. (c(xs, [x|ys]) ⊃ c([x|xs], ys)) ⊃ c([1, 2], [])

∀R−→ ∀ rev. (rev([],V) ∧ ∀x ys xs. (rev(xs, [x|ys]) ⊃ rev([x|xs], ys)) ⊃ rev([1, 2], []))
BC,Drev

Σ : Γ −→ reverse([1, 2],V)

We remark that the generation of new names required by the proof rule for ∀ protects
the definition of r, since different uses will employ different names. Here, its definition
is visible only to calls to reverse and will be discharged upon success. Furthermore,
the possibility of using the definition of a predicate in the body of a clause and the
explicit use of quantifier all X,Xs,Ys allows us to link the variable R in the definition
of reverse precisely to the variable R of the predicate that will accumulate the final
result, i.e., to c([],R).

The previous example typifies our viewpoint: seeking extensions of LP in terms of
languages endowed with a notion of uniform proofs, more precisely focused uniform
proofs [2]. This shows a twofold duality:

– Between goals and clauses: a negative subformula of a goal is a program clause and
a negative subformula of a program clause is a goal.

– Between goal-oriented proof search and clause selection (focusing), once
backchaining is seen in a more general light.

This duality is more clearly seen in linear logic, where following Andreoli [2], each
connective carries an unique intrinsic attribute called a polarity that determines its
behaviour under search. Hence connectives can can be partitioned into asynchronous
(those whose right rule is invertible) and synchronous (those whose left rule is invert-
ible). This yields a highly normalized proof search mechanism, based on a systematic
interleaving between asynchronous and synchronous reductions: one decomposes the
asynchronous formulas until none remains, then picks a synchronous formula and de-
composes it until new asynchronous subformulae arise, and so on. Proofs of this kind
are called focused proofs and can be shown to be complete for entire classical linear
logic. In the linear setting the polarity of a connective coincides with its being pos-
itive/negative: however Andreoli noted that an arbitrary, albeit fixed, assignment of
polarity to atoms (a bias) will preserve completeness of focusing, with the understand-
ing that a [negative] positive bias denote [a]syncronous behaviour. Notwithstanding its
asymmetry, this observation applies to intuitionistic logic as well. In fact, it can be
shown that, for the Horn fragment, a positive bias to atoms yields hyper-resolution (for-
ward chaining), while a negative one SLD-resolution (backward chaining) [25]. More in
general, uniform proofs can be seen as a special case of focusing, where atoms are given



258 A. Momigliano and M. Ornaghi

negative bias, which happens to be complete only when existentials and disjunctions
are excluded from the syntax. These observation have been significantly generalized
in [42].

However, there is another angle to “higher-order” extensions to which we have not
done justice yet: work related to languages based on some form of λ-calculus. This is
indeed the second way a language such as λProlog extends ordinary LP, an issue which
was often argued for, when not distrusted since the early 80’s [64]. The original ratio-
nale was adding some of the higher-order features of functional programming, namely
handling functions (here predicates) as first-class citizens, without changing the com-
putation paradigm. A classic example is the mappred predicate, corresponding to the
map combinator in a language such as Standard ML:

Example 2

mappred(P,[],[]).

mappred(P,[X|Xs],[Y|Ys]) :- P(X,Y), mappred(P,Xs,Ys).

A sample goal could be

P = (lambda x y\ reverse(x,y)), mappred(P,[[1,2],[3,4]],Ys).

with answer substitution Ys = [[2,1],[4,3]]. �

Although some nifty applications based on these features emerged early on, e.g. [32],
predicate-as-values, we argue, never managed to attain the same prominence that it has
in functional programming. Functional quantification instead has had a pivotal role in
the theory and practice of logical frameworks [60], in so much as it supports higher-
order abstract syntax (HOAS) [61]. This is a declarative treatment of the syntax of
object logics, whose binding operators are all rendered via the λ-abstraction of the
meta-logic, while bound variables of the object and meta-logic are identified. In this
way seemingly banal but tediously complicated issues induced by α-equivalence and
substitution principles are taken care once and for all by the meta-logic, making the
specification and reasoning over object logic more concise and effective. This opened
up an all new field, as we briefly touch upon in the Conclusions.

The rest of this overview is organized as follows: Section 2 succinctly presents the
syntax and proof rules underlying the main LP language that we consider in separate
subsections. In Section 3 we follow the same schema, highlighting the Italian contri-
bution to the corresponding broad areas. Section 4 concludes by trying to evaluate the
impact of these works on LP and computational logic more in general.

2 Calculi for Intuitionistic and Linear Logic Programming

Uniform proofs and abstract LP systems were presented in [51] as the basis for proof-
theoretic extensions of LP. At about the same time, Girard’s 1987 “Linear Logic” paper
had a rippling effect in computer science and logic programming was quick to follow
suit. In his 1990 thesis Andreoli established the foundation of focusing proofs in linear
logic [2]. In 1991 the uniform proof approach was extended to linear logic programming
by Miller & Hodas [41]. We start with the logic underlying λProlog.



Proof-Theoretic and Higher-Order Extensions of Logic Programming 259


 �
Σ : Γ −→ �

Σ : Γ −→ G1 Σ : Γ −→ G2 
∧
Σ : Γ −→ G1 ∧G2

Σ : (Γ,D) −→ G 
 ⊃
Σ : Γ −→ D ⊃ G

(Σ, c:A) : Γ −→ [c/x]G

∀c

Σ : Γ −→ ∀x :τ.G

Σ : Γ
D−−→ A 
 fcs,D ∈ Γ

Σ : Γ −→ A

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Σ : Γ 
 Ar
·
= A : o

fcsAt
Σ : Γ

Ar−−→ A

Σ : Γ
Di−−→ A

fcs∧i

Σ : Γ
D1∧D2−−−−−→ A

Σ : Γ
[t/x]D−−−−→ A

fcs∀, Σ 
 t : τ

Σ : Γ
∀x:τ. D−−−−−→ A

Σ : Γ −→ G Σ : Γ
D−−→ A

fcs ⊃
Σ : Γ

G⊃D−−−→ A

Fig. 1. Focused intuitionistic proofs for HOHF

2.1 λProlog

It is based on the so-called Higher-Order Hereditary Harrop Formulas, an intuitionistic
fragment of Church higher-order logic. As we have mentioned in the Introduction, it
enhances Prolog in two directions. The term language is extended to allow arbitrary λ-
terms under full higher-order unification and the formula language is extended to allow
usage of arbitrarily nested universal quantifiers and implications. It can be synthesized
by the following grammar:

Terms t ::= c | x | λx:τ. t | t1 t2
Atoms A ::= Ar | A f

Clauses D ::= Ar | G ⊃ D | D1 ∧ D2 | ∀x :τ.D
Goals G ::= A | � | G1 ∧G2 | D ⊃ G | ∀x :τ.G

Signatures Σ ::= · | Σ, x:τ
Programs Γ ::= · | Γ,D

We shall be fairly loose with typing issues, noting only that we use a ML-like prenex
polymorphic system, so that for example universal quantification is given the type
∀α. (α ⊃ o) ⊃ o. To preserve the operational reading of logic programs as predicate
definitions we require clause heads to be rigid atoms, denoted Ar, i.e. the head symbol
is not a (free) variable.1 Otherwise, we call the atom flexible, denoted A f . Note that we
could add existentials and disjunctions to the syntax of goals, but with no real expressive
enhancement—see [56] for an investigation into maximal abstract logic programming
languages.

1 We gloss over other minor syntactic restrictions of occurrences of logical connectives in the
scope of rigid atoms required to preserve goal-orientedness during proof search.



260 A. Momigliano and M. Ornaghi

Some terminology: the above language is named HOHF; with HfOHF we denote
its restriction to quantification over variable and function symbols, that is o is only
allowed as a range type. Examples of HfOHF are Miller’s Lλ [45] and LF [39]. FOHF
is the further restriction to first-order quantification.

We now introduce a focused version of the uniform proofs system of [51] (Fig. 1);
it defines the following judgements, where Γ contains the program and the possible
dynamic assumptions; the judgment Σ : Γ 
 Ar

·
= A : o, whose definition we omit and

refer to the judgmental version in [22]), denotes higher-order unification.

Σ : Γ −→ G Program Γ under signature Σ uniformly entails goal G.

Σ : Γ
D−−→ A Focused clause D from Γ under signature Σ entails atom A.

We remark that the backchain rule BC of [44], considered in the introduction, can be
derived by applying the focusing rules until the head of a clause is deemed to unify the
atom on the right and then recursively applying the 
 rules.

2.2 Lolli

Based on the first-order language freely generated by multiplicative implication�, ad-
ditive unit, implication, conjunction and universal quantification, Lolli’s uniform proofs
system [41] uses a single-conclusion sequent calculus (Fig. 2) that distinguishes two
zones, Γ containing the (reusable) program together with the possible intuitionistic dy-
namic assumptions and Δ, containing the linear ones, seen as a multiset. Notice that
while Lolli is first-order, its type-theoretic counterpart, the Linear Logical Framework
LLF [23], has functional quantification; however, they have the same proof search as-
pects, safe from linear unification, as we detail in Section 3.2.

Σ : Γ;Δ −→ G Clauses Γ;Δ under signature Σ uniformly entails goal G.

Σ : Γ;Δ
D−−→ A Focused clause D from Γ or Δ \ D under signature Σ entails atom A.

We briefly examine the crucial rules, deviating from the literature by using the same
notation for additive connectives as for their intuitionistic counterparts: the fcsAt rule
encodes both initial rules of a linear calculus, by requiring the linear context to be
empty: in fact, if the focus is on a linear A, then this must be the only assumption that
can and must be consumed. If instead the focus is intuitionistic, there must be no leftover
resources, lest the computation is failed. Note also the non-deterministic partitioning of
the linear context in the focusing rule for�, highlighted by the notation ·∪ for multiset
union, to be read backwards as resource splitting. From an additive viewpoint, rule 
 �
features an implicit weakening, while 
 ∧ an implicit contraction, both w.r.t. Δ.

We now give a first linear algorithm for reversing a list.

Example 3
reverse(Xs, Ys) :- once(perm(Xs, Ys)).

perm([X|Xs], Ys)� (elm(X)� perm(Xs, Ys)).
perm([], Ys)� perm(Ys).

perm([]).
perm([X|Xs])� elm(X) ∧ perm(Xs).



Proof-Theoretic and Higher-Order Extensions of Logic Programming 261


 �
Σ : Γ; Δ −→ �

Σ : Γ; Δ −→ G1 Σ : Γ;Δ −→ G2 
∧
Σ : Γ;Δ −→ G1 ∧G2

Σ : (Γ,D);Δ −→ G 
 ⊃
Σ : Γ;Δ −→ D ⊃ G

Σ : Γ; (Δ ·∪ {D}) −→ G 
�
Σ : Γ;Δ −→ D� G

Σ : Γ;Δ
D−−→ A 
 fcsΓ,D ∈ Γ

Σ : Γ;Δ −→ A

Σ : Γ; Δ
D−−→ A 
 fcsΔ

Γ; (Δ ·∪ {D}) −→ A

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

fcsAt
Σ : Γ; · A−−→ A

Σ : Γ;Δ
Di−−→ A

fcs∧i

Σ : Γ;Δ
D1∧D2−−−−−→ A

Σ : Γ; · −→ G Σ : Γ; Δ
D−−→ A

fcs ⊃
Σ : Γ; Δ

G⊃D−−−→ A

Σ : Γ;Δ1 −→ G Σ : Γ;Δ2
D−−→ A

fcs�
Σ : Γ; (Δ1 ·∪Δ2)

G�D−−−−→ A

Fig. 2. Main rules of a focused calculus for Lolli

The perm/2 predicate simply loads (in reversed order) the elements of the input list
in the linear context in the form of elm(·) assumptions; then calls perm/1, which con-
sumes those assumptions. Because of the non-deterministic splitting induced by focus-
ing on the second clause of perm/1, we generate, upon backtracking, all permutations
of the given list. Hence the main reverse predicate selects the first solution with the
meta-predicate once/1. �

2.3 LO

Linear Objects [4, 5] was the first proposal for a linear logic programming language.
It extends Horn logic by generalizing clause heads to multisets of atoms connected by
multiplicative disjunction (�), i.e. clauses have the form

G � A1�, . . . ,�An

The starting point was the family of concurrent LP languages (see Chapter [35] in this
volume) as a way to provide a logical account of object-oriented computations: objects
are viewed as AND-concurrent, stream-communicating via shared variables (proof)
processes, where the arguments in a goal are the slots and communication streams of
an object. State transitions are realized with inference steps. For a canonical example,
the goal

point(InStrm,5,7,OutStrm)

encodes a point with the given coordinates and communication streams InStrm and
OutStrm, where a method (clause) such as
point([proj-x|InStrm],X,Y,OutStrm) :- point(InStrm,X,0,OutStrm)

specifies the transition resetting Y to 0 upon reception of the proj-x message.



262 A. Momigliano and M. Ornaghi

In this sense, LO inherits an effect-free view of objects and does not exploit the
linear logic context for state manipulation as in Lolli, since it lacks any form of scoping
constructs. On the other hand, when seen as OR-concurrency� directly supports a view
of objects as multiset of independent units. The above object becomes

point� in(InStrm)� x(5)� y(7)� out(OutStrm),

where different atoms encode a point, its coordinates and communication mediums. In
this way objects are amenable of inheritance, since a more specialized objects such as

point� in(InStrm)� x(5)� y(7)� out(OutStrm)� colour(red)

can call a method (a clause with multiple heads) such as

point� in([proj − x|InStrm])� y(Y)� point� in(InStrm)� y(0)
by matching only a sub-multiset of the atoms encoding an object. Synchronizations of
this kind can be managed using multiset rewriting techniques, but, as we will see in
Section 3.2, such synchronization is expensive.2

LO’s original proof theory [4] did not make focusing explicit, but the crucial rules
can be reconstructed as in Figure 3, where we use as a one-sided multi-succedent cal-
culus; since proof search has no dynamics, we can fix the programP and dispose of the
signature.

−→ G Program P uniformly entails multiset of goals G.
D−−→ A Focused clause D from P entails multiset of atomsA.

−→ {G1,G2} ·∪G 
 �−→ {G1 �G2} ·∪G
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−→ {G} ·∪A1
A1�,...,�An−−−−−−−−→ A2

fcs�
G�A1�,...,�An−−−−−−−−−−−→ A1 ·∪A2

−→ G
A1�,...,�An−−−−−−−−→ A

fcs ⊃
G⊃A1�,...,�An−−−−−−−−−−→ A

D1−−→ A1
D2−−→ A2

fcs�
D1�D2−−−−−→ A1 ·∪A2

Fig. 3. �-related rules in LO

To better illustrate the operational semantics of LO, we revisit once more the simple
reverse algorithm, where we manage to attain the same behavior of Example 1 even in
the absence of scoping constructs: in fact, we exploit OR-concurrency to capture the
final result and pass it to the main predicate.

2 Historically, this is the first observation that the operational semantics of linear LP brings into
intuitionistic proof search an additional “don’t know” non-determinism.



Proof-Theoretic and Higher-Order Extensions of Logic Programming 263

Example 4

dr : reverse(Xs, Ys) :- rev(Xs, [])� result(Ys).

dc : rev([X|Xs], Ys)� rev(Xs, [X|Ys]).
dn : rev([], V)� result(V).

Intuitively, we backchain on the method dc until the input list is exhausted. Then we
awaken the result(V) object by matching it with the dnmethod and return the instan-
tiation for V. �
This corresponds to this proof-tree, where again we informally use a BC rule, decorated
with the label of the clause on which we focus.

L
·
= [2, 1]

rev([],L)−→ rev([], [2, 1])

L
·
= V

result(L)−→ result(V)
BC, dn−→ rev([], [2, 1]), result(V) 
 �−→ rev([], [2, 1])� result(V)

============================ BC, dc−→ rev([1, 2], [])� result(V)
BC, dr−→ reverse([1, 2],V)

Note that it is crucial that dc uses linear implication, allowing one to split resources as
required.

We conclude this Section noting that LO’s � can also be seen as a form of con-
structive disjunction yielding indefinite answers; we will touch upon this links between
linear and disjunctive logic programming in Section 3.3.

2.4 Forum

Forum [49] can be seen as the fusion of Lolli and LO and allows one to view entire linear
logic as an abstract LP language. Indeed, simply adding multiplicative falsity ⊥ to Lolli
yields a “goal-oriented” presentation of linear logic. Thus linear negation B⊥ can be
defined as expected (B � ⊥) and hence the other connectives by de Morgan dualities.
In particular we can also view B�C as (B� ⊥)� C. Note that while these encodings
do not interfere with the soundness and completeness of focused uniform proofs, they
do not yield a predictable operational semantics such as the one a programmer would
expect. In fact, focusing on ⊥ is rather non-informative, leading a naive interpreter into
a tight and endless loop. Thus, the view of Forum as a specification language [26] and
efforts, some of which we mention in Section 3.4, to find a meaningful sub-language
amenable to a programming language interpretation.

The relevant judgments comprise two-sided multi-succedent sequents where Γ,Φ
have intuitionistic maintenance, and Δ,G have a linear one.

Σ : Γ;Δ −→ G;Φ Clauses Γ;Δ under signature Σ uniformly entails
multisets of goals G;Φ.

Σ : Γ;Δ
D−−→ A;Φ Focused clause D from Γ or Δ \ D under signature Σ entails

multisets of atomsA and goals Φ.

We refer to [50] for the twenty proof rules.



264 A. Momigliano and M. Ornaghi

3 The Italian Contribution

The origin of the Italian interest in proof-theoretic extensions of LP can be traced back
to Gabbay and Reily’s N-Prolog [34,33], which featured embedded implication in goals,
but no universal quantification: free variables can be shared in an implicational goal,
creating certain difficulties especially when coupled with negation-as-failure. This lan-
guage sparked a lot of interest, especially in Torino: A. Martelli, Giordano and others
extensively researched applications w.r.t. modules and scoping constructs and extension
to modal analysis, see e.g. [9]. We will not analyze this further as already well detailed
in [17]. We will, however, briefly mention [37] that fixes some of the problems raised
in [33]. The authors propose an operational semantics extending Stärk’s ESLDNF, es-
tablishing a soundness and completeness for non-floundering queries is with respect to
a completion theory interpreted in a three-valued modal logic.

3.1 λProlog

The second “wave” was initiated by Miller’s sabbatical in Edinburgh, where he su-
pervised Pareschi’s thesis [58]; the latter exploited hypothetical reasoning and λ-terms
to encode in a computational environment the features of certain linguistic theories,
e.g. the rendering of filler-gap dependencies. Pareschi then hooked up with Andreoli
to develop LO as we have mentioned in Section 2.3. Miller also supervised Arcelli’s
thesis [6] in Milano, where she related second-order λProlog to Reflective Prolog [27].
She and coauthors went on investigating applications of the language for example to
program transformations [7]. Independently, Momigliano [52] extended Miller’s [46],
providing a way of encoding via the double negation translation of all classical logic
into a focused uniform system. The language was FOHF, but the approach would apply
to HfOHF as well.

In [53] the issue of endowing a logical framework (namely HfOHF) with a logically
justified notion of negation is re-addressed, adapting the idea of elimination of nega-
tion [10] to the higher-order setting. This includes two separate phases. Complementing
terms, i.e. in this case higher-order patterns: due the presence of partially applied λ-
terms, intuitionistic λ-calculi are not closed under complementation, thus requiring one
to develop a strict, i.e. relevant, λ-calculus, where we can directly express whether a
function (here typically a higher-order logic variable) ought or not depend on its ar-
guments. Complementing clauses, which can be seen as a negation normal form pro-
cedure which is consistent with intuitionistic provability. It entails finding a middle
ground between the CWA usually associated with negation and the OWA typical of
logical frameworks. This has come to be known as the Regular World Assumption that
has shown to be a central notion in inductive meta-theorem proving [63, 40] in systems
such as Twelf [62].

3.2 Lolli

A problem specific to proof search in linear logic is how to effectively split resources
when dealing with multiplicative connectives, without trying exponentially many par-
titions of the linear context. Hodas and Miller developed a lazy splitting approach for



Proof-Theoretic and Higher-Order Extensions of Logic Programming 265

the operational semantics of Lolli, called the input-output model of resource consump-
tion [41]. This turns out to be just an instance of a more general resource management
problem in linear logic programming (and, with a somewhat different emphasis, in lin-
ear theorem proving). As pointed out and addressed in [21], a properly understood
operational semantics has to deal with two additional features. First, the � connective
is allowed to consume any resource, a feature which is handy to wind up with success
certain computations without burdening the user with tracking and consuming any re-
maining assumption. Secondly, additive conjunction requires strict resources, i.e. those
which can be duplicated but must be used during the solution of a given goal. A final
contribution of this paper is the residuation calculus, a form of resolution for sequent
calculi that pushes all non-determinism out of focusing and into the introduction rules.
This has also applications in proof-theoretic compilation [19].

The (linear) spine calculus [24] is an answer to a related issue: devising an efficient
representation of the (linear) λ-calculus, tailored to make building blocks of LP such
as unification efficient even in the higher-order case. In fact, and differently from the
first-order case, even restricting to terms of atomic type, in a token such as

(. . . (h M1) . . .Mn) (1)

the head is deeply buried and hence not immediately accessible. This is further com-
plicated in the linear case, where destructors can be arbitrarily interleaved. In the spine
calculus every atomic term has the form H · S , where H is the root and S the spine: a
term such as (1) translates into h · (U1; . . . ; Un; NIL), where ′;′ associates to the right,
Ui translates Mi and NIL represents the end of the spine.

The relevance of this contribution is twofold:

1. The restriction of this calculus to the intuitionistic case is the internal representation
adopted in Twelf and it is also at the basis of the Tejus compiler for λProlog [57].

2. Exploiting the Curry-Howard correspondence, spines can be seen as a term assign-
ment language for uniform provability, in particular for Lolli, LLF [23], and for any
subsystem thereof, as we exemplify in Figure 4.

We modify the main provability judgments to account for proof-terms, unifying Σ and
Γ as usual in type theory:

Γ −→ U : G U is a term (proof) of type (goal) G given assumptions Γ

Γ
D−−→ S : A S is a spine (proof) consisting of heads of type (clause) D to terms S of

type (goal) A given assumptions Γ.

Of course, once the spine representation was in place, there was still the need to provide
an unification algorithm for this language. In [22] the authors fill this gap, providing a
judgmental view of a linear pre-unification procedure in the style of Huet. Being a
conservative extension of ordinary higher-order unification, it may not terminate and
if it does, it returns a system of equations between flexible atoms, possibly yielding
infinite numbers of incomparable unifiers. The paper shows also that it is not possible
to simulate higher-order linear unification by generating standard higher-order solutions
and promoting those which satisfy the linearity constraints. Even more noteworthy, an
analogous notion to Miller’s intuitionistic higher-order patterns [45], for which mgu’s
can be effectively found, does not seem to exist in the linear setting.



266 A. Momigliano and M. Ornaghi

Γ, x : D −→ U : G 
 ⊃
Γ −→ (λx : D. U) : D ⊃ G

Γ
h:D−−→ S : A 
 fcs,D ∈ Γ

Γ −→ (h · S ) : A

fcsAt
Γ

NIL:A−−−−→ A

Γ −→ U : G Γ
S :D−−−→ A

fcs ⊃
Γ

(U;S ):G⊃D−−−−−−−−→ A

Fig. 4. Proof terms for focused uniform proofs

3.3 LO

Most of the research about linear logic programming as far as LO and Forum are
concerned was spearheaded by Giorgio Levi and his school, in their research aiming
to integrate (linear) logic programming with other paradigm such as concurrency and
object-orientation, beginning with Guglielmi and Delzanno’s thesis [38, 28]. The latter
then moved to Genoa, where he collaborated with M. Martelli, Bozzano and others.

The relationship between linear and disjunctive LP mentioned in [4] is taken up
in [12], where the authors show that LO can be seen as a sub-structural fragments of
DLP, where contraction on the right is disallowed. More extensive connections between
a fragment of LO and DLP are further established using abstract interpretation meth-
ods [13]. A propositional bottom-up semantics for LO (and its extension with mul-
tiplicative unit LO1) is proposed via a fixed point operator operating on (ideals of)
multisets. Note that the semantics is effective for LO, but not for LO1; the former, in
fact, lacks the expressivity of counting resources, while in the latter it is possible to
encode formalisms such as Petri nets with transfer arcs. Emphasis on the propositional
side was also motivated by earlier work on partial evaluation of LO programs [3]. This
yielded an approach to model-checking where verifying a safety problem encoded in
temporal logic is akin to computing the fixed point of a linear logic program. This is
further studied in [14], where bottom-up evaluation is extended to first order LO pro-
grams with universally quantified goals and possibly empty heads. See for more details
the Chapter [29] in this volume.

We remark that bottom-up evaluation has now gained an important role in general
sequent-based automated theorem proving [42, 25], as well as in the operational se-
mantics of LolliMon [43], the first-order logic programming language underlying the
Concurrent Logical Framework [66]. The latter integrates Lolli with a monadic modal-
ity encapsulating synchronous connectives.

3.4 Forum

Some early work exploited the connection between linear logic and multiset rewrit-
ing to encode aspects of planning and concurrency [15, 18]. More developed research
was concerned with finding a logical counterpart of object-based languages such as the
Object Calculus; [16] introduced Ob�, an object language where methods are rep-
resented as logical formulae and whose operational semantics is realized via proof
search. The language is then encoded in a linear extension of second-order N-Prolog,



Proof-Theoretic and Higher-Order Extensions of Logic Programming 267

with a limited form of predicate quantification In [30] the authors present a restric-
tion of Forum with the aim of integrating logic programming with the rewrite-based
specification languages; intended applications are modelling of concurrent systems and
meta-programming. Clauses have the form G1 ⊃ . . .Gn ⊃ (�A � G) and may again
incorporate a form of predicate quantification, provided the underlying term language
is basically first-order. State-based computations are specified similarly as in LO, i.e.
storing resources on the right-hand side of the sequent and matching them with multi-
headed clauses.

4 Conclusions

We have tried to show how the proof-theoretic approach to LP has led to a series of log-
ically motivated logic programming languages of increasing power, supporting mod-
ern abstraction mechanisms via higher-order extensions and imperative features via
resource-consciousness. The Italian contribution has been both foundational and ap-
plicative, in terms of language extensions, implementation techniques and usage of the
new features to capture various computation models. We cannot leave out, however,
that the original emphasis on endowing logic programming with some of the more suc-
cessful features of functional programming has died down or, better, it has changed
emphasis. Indeed, the design of LolliMon is heavily influenced by Moggi’s computa-
tional monads, which are omnipresent in functional languages such as Haskell. What
has thrived, beyond a better understanding of the foundations of proof search that is
showing promising fruits in general theorem proving, is the theory and practice of log-
ical frameworks. We argue that this development from logical representation to meta-
reasoning over the latter is a natural and welcomed one, which could not have happened
without the proof-theoretical standpoint. We can isolate two trends in which Italian re-
searchers have an active role:

1. The development of more expressive type-theoretic frameworks, from linear [23]
to concurrent ones [65, 66].

2. The integration of HOAS and principle of (co)induction, both in standard sys-
tems [54] and in ones directly derived from logic programming such as the Bedwyr
model-checker [8] and the Abella interactive theorem prover [36], see [55] for work
on their logical foundations.

Acknowledgments. This survey owes to many of Miller’s papers, especially “An
Overview of Linear Logic Programming” [50]. We thank Iliano Cervesato and Laura
Giordano for bibliographic suggestions and the anonymous referees for many useful
remarks.

References

1. Alpuente, M., Sessa, M.I. (eds.): 1995 Joint Conference on Declarative Programming,
GULP-PRODE 1995, Marina di Vietri, Italy (1995)

2. Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. J. Log. Com-
put. 2(3), 297–347 (1992)



268 A. Momigliano and M. Ornaghi

3. Andreoli, J.-M., Castagnetti, T., Pareschi, R.: Abstract interpretation of linear logic program-
ming. In: Miller, D. (ed.) Proceedings of the International Logic Programming Symposium,
Vancouver, Canada, pp. 295–314. MIT Press, Cambridge (1993)

4. Andreoli, J.-M., Pareschi, R.: LO and behold! Concurrent structured processes. In: Proceed-
ings of OOPSLA 1990, Ottawa, Canada, October 1990, vol. 25(10), pp. 44–56. Published as
ACM SIGPLAN Notices (1990)

5. Andreoli, J.-M., Pareschi, R.: Linear objects: Logical processes with built-in inheritance.
New Generation Computing 9, 445–473 (1991)

6. Arcelli, F.: Aspetti di ordine superiore e di metalivello della programmazione logica. PhD
thesis, DSI, Universitá di Milano (1991)

7. Arcelli, F., Formato, F.: Implementing higher-order term-rewriting for program transforma-
tion in λProlog. In: Alpuente, Sessa [1], pp. 245–256

8. Baelde, D., Gacek, A., Miller, D., Nadathur, G., Tiu, A.: The Bedwyr system for model
checking over syntactic expressions. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI),
vol. 4603, pp. 391–397. Springer, Heidelberg (2007)

9. Baldoni, M., Giordano, L., Martelli, A.: A modal extension of logic programming: Modular-
ity, beliefs and hypothetical reasoning. J. Log. Comput. 8(5), 597–635 (1998)

10. Barbuti, R., Mancarella, P., Pedreschi, D., Turini, F.: A transformational approach to negation
in logic programming. Journal of Logic Programming 8, 201–228 (1990)

11. Bossi, A., Meo, M.C.: Theoretical Foundations and Semantics. In: Dovier, A., Pontelli, E.
(eds.) 25 Years of Logic Programming in Italy. LNCS, pp. 15–36. Springer, Heidelberg
(2010)

12. Bozzano, M., Delzanno, G., Martelli, M.: On the relations between disjunctive and linear
logic programming. Electr. Notes Theor. Comput. Sci. 48 (2001)

13. Bozzano, M., Delzanno, G., Martelli, M.: An effective fixpoint semantics for linear logic
programs. Theory Pract. Log. Program. 2(1), 85–122 (2002)

14. Bozzano, M., Delzanno, G., Martelli, M.: Model checking linear logic specifications.
TPLP 4(5-6), 573–619 (2004)

15. Bruscoli, P., Guglielmi, A.: Expressiveness of the abstract logic programming language Fo-
rum in planning and concurrency. In: Alpuente, M., Barbuti, R., Ramos, I. (eds.) GULP-
PRODE (2), pp. 221–237 (1994)

16. Bugliesi, M., Delzanno, G., Liquori, L., Martelli, M.: Object calculi in linear logic. J. Log.
Comput. 10(1), 75–104 (2000)

17. Bugliesi, M., Lamma, E., Mello, P.: Modularity in logic programming. J. Log. Pro-
gram. 19/20, 443–502 (1994)

18. Cervesato, I.: Petri nets and linear logic: a case study for logic programming. In: Alpuente,
Sessa [1], pp. 313–320

19. Cervesato, I.: Proof-theoretic foundation of compilation in logic programming languages.
In: Jaffar, J. (ed.) Proceedings of the 1998 Joint International Conference and Symposium on
Logic Programming (JICSLP 1998), Manchester, UK, pp. 115–129. MIT Press, Cambridge
(1998)

20. Cervesato, I., Hodas, J.S., Pfenning, F.: Efficient resource management for linear logic proof
search. In: Herre, H., Dyckhoff, R., Schroeder-Heister, P. (eds.) ELP 1996. LNCS (LNAI),
vol. 1050, pp. 67–81. Springer, Heidelberg (1996)

21. Cervesato, I., Hodas, J.S., Pfenning, F.: Efficient resource management for linear logic proof
search. Theoretical Computer Science 232(1-2), 133–163 (2000); Extended version of [20]

22. Cervesato, I., Pfenning, F.: Linear higher-order pre-unification. In: Winskel, G. (ed.) Pro-
ceedings of the Twelfth Annual Sumposium on Logic in Computer Science (LICS 1997),
Warsaw, Poland, pp. 422–433. IEEE Computer Society Press, Los Alamitos (1997)

23. Cervesato, I., Pfenning, F.: A linear logical framework. Information and Computation (1998);
Special issue with invited papers from LICS 1996, Clarke, E. (ed.)



Proof-Theoretic and Higher-Order Extensions of Logic Programming 269

24. Cervesato, I., Pfenning, F.: A linear spine calculus. J. Log. Comput. 13(5), 639–688 (2003)
25. Chaudhuri, K., Pfenning, F., Price, G.: A logical characterization of forward and backward

chaining in the inverse method. J. Autom. Reasoning 40(2-3), 133–177 (2008)
26. Chirimar, J.L.: Proof Theoretic Approach to Specification Languages. PhD thesis, University

of Pennsylvania (May 1995)
27. Costantini, S., Lanzarone, G.A.: A metalogic programming language. In: ICLP, pp. 218–233

(1989)
28. Delzanno, G.: Logic and Object-Oriented Programming in Linear Logic. PhD thesis, Uni-

versitá di Pisa (February 1997)
29. Delzanno, G., Giacobazzi, R., Ranzato, F.: Static Analysis, Abstract Interpretation and Ver-

ification in (Constraint Logic) Programming. In: Dovier, A., Pontelli, E. (eds.) 25 Years of
Logic Programming in Italy. LNCS, vol. 6125, pp. 136–158. Springer, Heidelberg (2010)

30. Delzanno, G., Martelli, M.: Proofs as computations in linear logic. Theoretical Computer
Science 258(1-2), 269–297 (2001)

31. Dovier, A., Pontelli, E. (eds.): 25 Years of Logic Programming in Italy. LNCS, vol. 6125.
Springer, Heidelberg (2010)

32. Felty, A.P.: Implementing tactics and tacticals in a higher-order logic programming language.
J. Autom. Reasoning 11(1), 41–81 (1993)

33. Gabbay, D.M.: N-Prolog: An extension of Prolog with hypothetical implication II - logical
foundations, and negation as failure. J. Log. Program. 2(4), 251–283 (1985)

34. Gabbay, D.M., Reyle, U.: N-Prolog: An extension of Prolog with hypothetical implications
I. J. Log. Program. 1(4), 319–355 (1984)

35. Gabbrielli, M., Palamidessi, C., Valencia, F.D.: Concurrent and Reactive Constraint Pro-
gramming. In: Dovier, A., Pontelli, E. (eds.) 25 Years of Logic Programming in Italy. LNCS,
vol. 6125, pp. 231–253. Springer, Heidelberg (2010)

36. Gacek, A.: The Abella interactive theorem prover (system description). In: Armando, A.,
Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 154–161.
Springer, Heidelberg (2008)

37. Giordano, L., Olivetti, N.: Combining negation as failure and embedded implications in logic
programs. J. Log. Program. 36(2), 91–147 (1998)

38. Guglielmi, A.: Abstract Logic Programming in Linear Logic Independence and Causality in
a First Order Calculus. PhD thesis, Università di Pisa (April 1996)

39. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. Journal of the Associ-
ation for Computing Machinery 40(1), 143–184 (1993)

40. Harper, R., Licata, D.R.: Mechanizing metatheory in a logical framework. J. Funct. Pro-
gram. 17(4-5), 613–673 (2007)

41. Hodas, J., Miller, D.: Logic programming in a fragment of intuitionistic linear logic. In-
formation and Computation 110(2), 327–365 (1994); A preliminary version appeared in
the Proceedings of the Sixth Annual IEEE Symposium on Logic in Computer Science,
pp. 32–42, Amsterdam, The Netherlands (July 1991)

42. Liang, C., Miller, D.: Focusing and polarization in linear, intuitionistic, and classical logics.
Theoretical Computer Science 410(46) (2009)

43. López, P., Pfenning, F., Polakow, J., Watkins, K.: Monadic concurrent linear logic program-
ming. In: Barahona, P., Felty, A.P. (eds.) PPDP, pp. 35–46. ACM, New York (2005)

44. Miller, D.: Lexical scoping as universal quantification. In: Levi, G., Martelli, M. (eds.) Pro-
ceedings of the Sixth International Conference on Logic Programming, Lisbon, Portugal,
pp. 268–283. MIT Press, Cambridge (1989)

45. Miller, D.: A logic programming language with lambda-abstraction, function variables,
and simple unification. In: Schroeder-Heister, P. (ed.) ELP 1989. LNCS (LNAI), vol. 475,
pp. 253–281. Springer, Heidelberg (1991)



270 A. Momigliano and M. Ornaghi

46. Miller, D.: A logical analysis of modules in logic programming. Journal of Logic Program-
ming 6(1-2), 79–108 (1989)

47. Miller, D.: Abstractions in logic programming. In: Odifreddi, P. (ed.) Logic and Computer
Science, pp. 329–359. Academic Press, London (1990)

48. Miller, D.: A proposal for modules in λProlog. In: Dyckhoff, R. (ed.) ELP 1993. LNCS
(LNAI), vol. 798. Springer, Heidelberg (1994)

49. Miller, D.: Forum: A multiple-conclusion specification logic. Theoretical Computer Sci-
ence 165(1), 201–232 (1996)

50. Miller, D.: Overview of linear logic programming. In: Ehrhard, T., Girard, J.-Y., Ruet, P.,
Scott, P. (eds.) Linear Logic in Computer Science. London Mathematical Society Lecture
Note, vol. 316, pp. 119–150. Cambridge University Press, Cambridge (2004)

51. Miller, D., Nadathur, G., Pfenning, F., Scedrov, A.: Uniform proofs as a foundation for logic
programming. Annals of Pure and Applied Logic 51, 125–157 (1991)

52. Momigliano, A.: Minimal negation and Hereditary Harrop Formulae. In: Nerode, A., Taitslin,
M.A. (eds.) LFCS 1992. LNCS, vol. 620, pp. 326–335. Springer, Heidelberg (1992)

53. Momigliano, A.: Elimination of negation in a logical framework. In: Clote, P.G.,
Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 411–426. Springer, Heidelberg
(2000)

54. Momigliano, A., Ambler, S.: Multi-level meta-reasoning with higher-order abstract syntax.
In: Gordon, A.D. (ed.) FOSSACS 2003. LNCS, vol. 2620, pp. 375–391. Springer, Heidelberg
(2003)

55. Momigliano, A., Tiu, A.F.: Induction and co-induction in sequent calculus. In: Berardi,
S., Coppo, M., Damiani, F. (eds.) TYPES 2003. LNCS, vol. 3085, pp. 293–308. Springer,
Heidelberg (2004)

56. Nadathur, G.: Correspondences between classical, intuitionistic and uniform provability.
Theoretical Computer Science 232, 273–298 (2000)

57. Nadathur, G.: The metalanguage λProlog and its implementation. In: Kuchen, H., Ueda, K.
(eds.) FLOPS 2001. LNCS, vol. 2024, pp. 1–20. Springer, Heidelberg (2001)

58. Pareschi, R.: Type-Driven Natural Language Analysis. PhD thesis, University of Edinburgh.
University of Pennsylvania, Department of Computer and Information Science, Technical
Report No. MS-CIS-89-45 (July 1989)

59. Pfenning, F.: Computation and deduction. Unpublished lecture notes, p. 217 (Revised March
2001) (May 1992)

60. Pfenning, F.: Logical frameworks. In: Robinson, A., Voronkov, A. (eds.) Handbook of Auto-
mated Reasoning. Elsevier Science Publishers, Amsterdam (1999)

61. Pfenning, F., Elliott, C.: Higher-order abstract syntax. In: Proceedings of the ACM SIGPLAN
1988 Symposium on Language Design and Implementation, Atlanta, Georgia, June 1988,
pp. 199–208 (1988)

62. Pfenning, F., Schürmann, C.: System description: Twelf — A meta-logical framework
for deductive systems. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632,
pp. 202–206. Springer, Heidelberg (1999)

63. Schürmann, C.: Automating the Meta-Theory of Deductive Systems. PhD thesis, Carnegie-
Mellon University, CMU-CS-00-146 (2000)

64. Warren, O.H.D.: Higher-order extensions to Prolog: Are they needed? In: Hayes, J.E.,
Michie, D., Pao, Y.-H. (eds.) Machine Intelligence, vol. 10, pp. 441–454. Halsted Press
(1982)

65. Watkins, K., Cervesato, I., Pfenning, F., Walker, D.: A concurrent logical framework: The
propositional fragment. In: Berardi, S., Coppo, M., Damiani, F. (eds.) TYPES 2003. LNCS,
vol. 3085, pp. 355–377. Springer, Heidelberg (2004)

66. Watkins, K., Cervesato, I., Pfenning, F., Walker, D.: Specifying properties of concurrent com-
putations in CLF. Electr. Notes Theor. Comput. Sci. 199, 67–87 (2008)



Transformation and Debugging of Functional

Logic Programs�

Maria Alpuente1, Demis Ballis2, and Moreno Falaschi3

1 DSIC, Universidad Politécnica de Valencia
Camino de Vera s/n, Apdo. 22012, 46071 Valencia, Spain

alpuente@dsic.upv.es
2 Dip. Matematica e Informatica

Via delle Scienze 206, 33100 Udine, Italy
demis@dimi.uniud.it

3 Dip. di Scienze Matematiche e Informatiche
Pian dei Mantellini 44, 53100 Siena, Italy

moreno.falaschi@unisi.it

Abstract. The Italian contribution to functional-logic programming has
been significant and influential in a number of areas of semantics, and
semantics-based program manipulation techniques. We survey selected
topics, with a particular regard to debugging and transformation tech-
niques. These results as usual depend on the narrowing strategy which is
adopted and on the properties satisfied by the considered programs. In
this paper, we restrict ourselves to first-order functional-logic languages
without non-deterministic functions. We start by describing some ba-
sic classical transformation techniques, namely folding and unfolding.
Then, we recall the narrowing-driven partial evaluation, which is the
first generic algorithm for the specialization of functional logic programs.
Regarding debugging, we describe a goal-independent approach to auto-
matic diagnosis and correction which applies the immediate consequence
operator modeling computed answers to the diagnosis of bugs in func-
tional logic programs. A companion bug-correction program synthesis
methodology is described that attempts to correct the erroneous compo-
nents of the wrong code.

1 Introduction

Functional logic languages combine the most important features of functional
programming (expressivity of functions and types, higher-order functions, nested
expressions, efficient reduction strategies, sophisticated abstraction facilities)
and logic programming (unification, logical variables, partial data-structures,
built-in search). The operational principle of integrated languages with a com-
plete semantics is usually based on narrowing [37], which consists of the instan-

� This work has been partially supported by the Italian MUR under grant
RBIN04M8S8, FIRB project, Internationalization 2004, and the EU (FEDER) and
Spanish MEC project TIN2007-68093-C02-02.

A. Dovier, E. Pontelli (Eds.): 25 Years of Logic Programming, LNCS 6125, pp. 271–299, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



272 M. Alpuente, D. Ballis, and M. Falaschi

tiation of variables in expressions, followed by a reduction step on the instanti-
ated function call. Narrowing is complete in the sense of functional programming
(computation of normal forms) as well as logic programming (computation of
answers). Due to the huge search space of unrestricted narrowing, steadily im-
proved strategies have been proposed, with innermost narrowing and needed
narrowing being of main interest (see [41,43] for a survey.)

Functional logic programming is an area which was pioneered by Italian re-
searchers. For instance, the first published survey paper on this subject was [22].
Since then, the Italian contribution has been significant and influential in a num-
ber of semantics-based program manipulation techniques. The main purpose of
this work is to outline a selection of these techniques, with a particular regard to
debugging and transformation. Actually, good programs have to be both correct
(w.r.t. a given specification) and efficient, but these two aspects are often in
delicate balance.

Program transformations provide a methodology for deriving correct and pos-
sibly efficient programs. We recall first a simple transformation methodology
based on fold/unfold techniques [12,13]. Then we recall the narrowing-driven
partial evaluation, which was first proposed in [16] and is the first generic al-
gorithm for the specialization of functional logic programs. Regarding program
debugging, we offer an up-to-date, comprehensive, and uniform presentation of
the declarative debugging of functional logic programs as developed in [6,7]. Our
method is based on a fixpoint semantics for functional logic programs that mod-
els the set of computed answers in a bottom-up manner and is parametric w.r.t.
the considered narrowing strategy, which can be either eager or lazy. The pro-
posed methodology does not require the user to provide a symptom (a known
bug in the program) to start. Rather, our diagnoser discovers whether there is
one such bug and then tries to correct it automatically by means of inductive
learning, without asking the user to answer difficult questions about program
semantics as typically happens in algorithmic debugging. A further important
advantage of our method is the fact that we develop a finite methodology which
is also goal-independent and allows us to perform diagnosis statically. We ad-
ditionally address the problem of modifying incorrect components of the initial
program in order to form an integrated debugging framework in which it is pos-
sible to detect program bugs and correct them automatically, which we first
outlined in [4]. The correction technique is driven by a set of evidence examples
that are automatically produced as an outcome by the diagnoser, and infers the
program corrections by combining top-down (unfolding-based) transformations
with a bottom-up (induction-based) program synthesis methodology. Due to the
strong relation between program transformation and program synthesis, the co-
operation between these two methodologies within the debugging framework is
fruitful and extremely smooth.

We do not consider in this paper programs containing non-strict, non-deter-
ministic functions with call-time choice semantics [58,59], as adopted by some
modern functional logic languages like Curry [42,46] or Toy [56]. This is because
there does not exist a simple and adequate notion of narrowing for call-time



Transformation and Debugging of Functional Logic Programs 273

choice that can replace existing efficient versions of narrowing like the strategies
discussed in this paper, which are well established and appropriate operational
procedures for functional logic languages [58].

All the proposed transformation and verification frameworks have been imple-
mented into prototypical systems which have been thoroughly evaluated using
large suites of benchmarks in order to assess their usefulness experimentally.
Tools and experiments are freely available at the URL:

http://users.dsic.upv.es/grupos/elp/soft.html

Plan of the paper. The rest of the paper is organized as follows. Section 2
presents some preliminary basic definitions. In Section 3, we formalize narrow-
ing along with two well-know narrowing strategies: the leftmost-innermost (inn)
and the leftmost-outermost (out) narrowing strategy. We then formulate both
an operational semantics and a fixpoint semantics for functional logic programs
which are parametric w.r.t. the chosen narrowing strategy. We also show the
correspondence between the two program denotations. Section 4 outlines the
rudiments of functional logic program transformation, while Section 5 focuses
on the narrowing-driven approach to functional logic program specialization.
Section 6 formalizes the diagnosis framework by providing the necessary notions
of rule incorrectness and uncoveredness, and describes an effective methodology
based on abstract interpretation that can be used to implement declarative de-
buggers. Moreover, we present a bug-correction program synthesis methodology
which, after diagnosing the buggy program, tries to correct the erroneous com-
ponents of the wrong code automatically. Finally, in Section 7 we discuss some
related work.

2 Preliminaries

Let us briefly recall some known results about rewrite systems [51] and functional
logic programming (see [41,47] for extensive surveys). For simplicity, definitions
are given in the one-sorted case. The extension to many-sorted signatures is
straightforward, see [66].

Throughout this paper, V denotes a countably infinite set of variables and Σ
denotes a non-empty, finite set of function symbols, or signature, each of which
has a fixed associated arity. Throughout the paper, we will use the following
notation: lowercase letters from the end of the alphabet x, y, z, possibly with
subindices, denote variables, and we often write f/n ∈ Σ to denote that f is
a function symbol of arity n. τ(Σ ∪ V ) and τ(Σ) denote the non-ground term
algebra and the ground term algebra built on Σ ∪ V and Σ, respectively. An
equation is a syntactic expression of the form t = t′, where t, t′ ∈ τ(Σ ∪ V ).

Terms are viewed as labelled trees in the usual way. Positions are represented
by sequences of natural numbers denoting an access path in a term, where Λ
denotes the empty sequence. O(t) (resp. O(t)) denotes the set of positions (resp.
non-variable positions) of a term t. t|u is the subterm at the position u of t. t[r]u
is the term t with the subterm at the position u replaced with r. These notions



274 M. Alpuente, D. Ballis, and M. Falaschi

extend to sequences of equations in a natural way. For instance, the non-variable
position set of a sequence of equations g = (t1 = t′1, . . . , tn = t′n) can be defined
as follows: O(g) = {i.1.u | i ∈ {1, . . . , n}, u ∈ O(ti)}

⋃
{i.2.u | i ∈ {1, . . . , n}, u ∈

O(t′i)}.
By V ar(s), we denote the set of variables occurring in the syntactic object s,

while [s] denotes the set of ground instances of s. Syntactic equality is denoted
by =.

A substitution is a mapping from the set of variables V into the set of terms
τ(Σ ∪ V ). We write θ|̀s to denote the restriction of the substitution θ to the set
of variables in the syntactic object s. The empty substitution is denoted by id.
Composition of substitutions is denoted by juxtaposition, with identity element
id. A substitution θ is more general than σ, denoted by θ ≤ σ, if σ = θγ for
some substitution γ. We say that a substitution σ is a unifier of two terms t and
t′ if tσ = t′σ. We let mgu(t, t′) denote a most general unifier of t and t′.

A conditional term rewriting system (CTRS for short) is a pair (Σ,R), where
R is a finite set of reduction (or rewrite) rule schemes of the form (λ → ρ ⇐ C),
λ, ρ ∈ τ(Σ ∪ V ) and λ �∈ V . The condition C is a (possibly empty) sequence
e1, . . . , en, n ≥ 0 of equations. Variables in C or ρ that do not occur in λ are
called extra-variables. We will often write just R instead of (Σ,R). If a rewrite
rule has an empty condition, we write λ → ρ. A TRS is a CTRS whose rules
have no conditions. A goal g is a non-empty sequence of equations ⇐ C, i.e., a
rule with no head (consequent). Sometimes we leave out the ⇐ symbol when we
write goals.

For CTRS R, r << R denotes that r is a new variant of a rule in R such
that r contains only fresh variables, i.e. contains no variable previously met
during computation (standardized apart). Given a CTRS (Σ,R), we assume
that the signature Σ is partitioned into two disjoint sets Σ = C ) D, where
D = {f | (f(t1, . . . , tn) → r ⇐ C) ∈ R} and C = Σ \ D. Symbols in C
are called constructors and symbols in D are called defined functions. The el-
ements of τ(C ∪ V) are called constructor terms. A constructor substitution
σ = {x1 #→ t1, . . . , xn #→ tn} is a substitution such that each ti, i = 1, . . . , n is
a constructor term. A term is linear if it does not contain multiple occurrences
of the same variable. A pattern is a term of the form f(d̄) where f/n ∈ D and
d̄ are constructor terms. We say that a CTRS is constructor-based (CB) if the
left-hand sides of R are patterns.

A rewrite step is the application of a rewrite rule to an expression. A term s
conditionally rewrites to a term t, s →R t, if there exist u ∈ O(s), (λ → ρ ⇐
s1 = t1, . . . , sn = tn) ∈ R, and substitution σ such that s|u = λσ, t = s[ρσ]u, and
for all i ∈ {1, . . . , n} there exists a term wi such that siσ →∗

R wi and tiσ →∗
R wi,

where →∗
R is the transitive and reflexive closure of →R. The term s|u is said to

be a redex of s. When no confusion can arise, we omit the subscript R. A term
s is a normal form, if there is no term t with s →R t. A CTRS R is strongly
terminating if there are no infinite sequences of the form t0 →R t1 →R t2 →R . . .
A CTRS R is confluent if, whenever a term s reduces to two terms t1 and t2,
both t1 and t2 reduce to the same common term. The program R is said to be



Transformation and Debugging of Functional Logic Programs 275

canonical if the binary one-step rewrite relation →R defined by R is strongly
terminating and confluent [51].

3 Evaluating Functional Logic Programs by Narrowing

Functional logic languages are extensions of functional languages with princi-
ples derived from logic programming [53,68]. The computation mechanism of
functional logic languages is based on narrowing [37], a generalization of term
rewriting where unification replaces matching: both the rewrite rule and the term
to be rewritten can be instantiated. Under the narrowing mechanism, functional
programs behave like logic programs in the sense that narrowing solves equa-
tions by computing solutions with respect to a given CTRS, which is henceforth
called the “program”.

Definition 1 (Narrowing). Let R be a program and g be a goal. We say that
g conditionally narrows into g′ in R if there exist a position u ∈ O(g), r = (λ →
ρ ⇐ C) << R, and a substitution σ such that: σ = mgu(g|u, λ), and g′ is the
sequence Cσ, g[ρ]uσ.

We write g
u,r,σ
� g′ or simply g

σ
� g′. The relation � is called (unrestricted

or ordinary) conditional narrowing.

Basically, narrowing steps involve unification while functional reduction employs
pattern matching. The condition that the binding substitution σ is a mgu can be
relaxed to accomplish with certain narrowing strategies like needed narrowing
[20], which use unifiers but not necessarily most general ones.

By using Definition 1, we can define (successful) narrowing derivations as
follows. We use the symbol � to denote sequences of the form true, . . . , true,
and R+ denotes R∪ {x = x → true}, x ∈ V . Using this rule allows us to treat
syntactical unification as a narrowing step, i.e., we use the rule r = (x = x →
true) to compute mgu’s: s = t

Λ,r,σ
� true holds iff σ = mgu({s = t}).

Definition 2 (Narrowing derivation). A narrowing derivation for g in R is
defined by g

θ ∗
� g′ iff ∃θ1, . . . , ∃θn. g

θ1
� . . .

θn
� g′ and θ = θ1 . . . θn, n > 0. A

successful derivation for g in R is a narrowing derivation g
θ ∗

� � in R+, and
θ|̀V ar(g) is called a computed answer substitution (cas) for g in R.

The narrowing mechanism is a powerful tool for constructing complete equa-
tional unification algorithms for useful classes of CTRSs, including canonical
CTRSs [48]. Similarly to logic programming, completeness means the ability to
compute representatives of all solutions for one or more equations.

Example 1. Consider the following program R which defines the last element
of a list in a logic programming style, by using the list concatenation function
append (list constructors are nil (empty list) and [ | ] (cons constructor)):

R1 : last(xs) → y⇐ append(zs, [y]) = xs.
R2 : append(nil, xs) → xs.
R3 : append([x|xs], ys)→ [x|append(ys, ys)].



276 M. Alpuente, D. Ballis, and M. Falaschi

Given the input goal last(ys) = 0, narrowing is able to compute in R in-
finitely many answers of the form {ys #→ [0]}, {ys #→ [z|0]}, . . . For instance, the
first answer is computed by the following narrowing derivation (at each step, the
narrowing relation � is labelled with the applied substitution and rule1, and
the reduced subterm is underlined):

last(ys) = 0 �{ys �→xs},R1 append(ws, [y]) = xs, y = 0
�{ws �→nil},R2 ([y] = xs, y = 0)
�{y �→0},(x=x→true) (true, [0] = xs)
�{xs �→[0]},(x=x→true) �

Moreover, without assuming canonicity, Meseguer and Thati showed that nar-
rowing is still complete as a procedure to solve reachability problems [62] (that
is, to find “more general” solutions σ for the variables of s and t such that sσ
rewrites to tσ in a number of steps). Reachability problems extend narrowing
capabilities to a wider spectrum that includes the analysis of concurrent systems.
Narrowing has also received much attention due to the many other important
applications, such as automated proofs of termination [21], verification of crypto-
graphic protocols [33], equational constraint solving [10], partial evaluation [16],
program transformation [14] and model checking [34], among others.

Narrowing Strategies. Since unrestricted narrowing has quite a large search2

space, several strategies to control the selection of redexes have been developed.
A narrowing strategy (or position constraint) is any well-defined criterion which
obtains a smaller search space by permitting narrowing to reduce only some
chosen positions. A narrowing strategy ϕ can be formalized as a mapping that
assigns a subset ϕ(g) of O(g) to every input expression g (e.g. a goal different
from �) such that, for all u ∈ ϕ(g), the goal g is narrowable at position u. An
important property of a narrowing strategy ϕ is completeness, meaning that
the narrowing constrained by ϕ is still complete. There is an inherited tradeoff
coming from functional programming, between the benefits of outer evaluation of
orthogonal (i.e. left-linear and overlap-free [73]), nonterminating rules and those
of inner or eager evaluation with terminating, non-orthogonal rules. Also, under
the eager strategy, programs are required not to contain extra-variables, that is,
each program rule λ → ρ ⇐ C satisfies V ar(ρ) ∪ V ar(C) ⊂ V ar(λ), whereas
the weaker condition V ar(ρ) ⊂ V ar(λ)∪V ar(C) is commonly demanded in lazy
programs. A survey of results about the completeness of narrowing strategies
can be found in [19]. To simplify our notation, we let IRϕ denote the class of
programs that satisfy the conditions for the completeness of the strategy ϕ.

Throughout this paper, we focus our attention on two very common narrowing
strategies: the leftmost-innermost and the leftmost-outermost narrowing strate-
gies. More specifically, we let inn(g) (resp. out(g)) denote the narrowing strategy
1 Substitutions are restricted to the input variables.
2 Actually, there are three sources of non-determinism in narrowing: the choice of the

equation within the goal, the choice of the redex within the equation, and the choice
of the rewrite rule.



Transformation and Debugging of Functional Logic Programs 277

which selects the position p of the leftmost-innermost (resp. leftmost-outermost)
narrowing redex of g. 3

We formulate a conditional narrower with strategy ϕ, ϕ ∈ {inn, out}, as the
smallest relation �ϕ satisfying

u = ϕ(g) ∧ (λ → ρ ⇐ C) << Rϕ
+ ∧ σ = mgu({g|u = λ})

g
σ
�ϕ (C, g[ρ]u)σ

.

For ϕ ∈ {inn, out}, Rϕ
+ = R ∪ Eqϕ, where the set of rules Eqϕ models the

equality on terms.
Namely, Eqout is the set of rules that define the validity of equations as a

strict equality between terms which is appropriate when computations may not
terminate [63]:

c ≈ c → true % c/0 ∈ C
c(x1, . . . , xn) ≈ c(y1, . . . , yn) → (x1 ≈ y1) ∧ . . . ∧ (xn ≈ yn) % c/n ∈ C

whereas Eqinn is the standard equality defined by:

x = x→ true % x ∈ V

We also assume that equations in g and C have the form s = t whenever we
consider ϕ = inn, whereas the equations have the form s ≈ t when we consider
ϕ = out. Note that an input equation like f(a) = g(a) is not an acceptable goal
when ϕ = out. In the following, this difference will be made explicit by using
=ϕ to denote the standard equality = of terms whenever ϕ = inn, whereas =ϕ

is ≈ for the case when ϕ is out.
It is known that neither inn nor out are generally complete. For instance,

consider R = {f(y, a) → true, f(c, b) → true, g(b) → c} with input goal
f(g(x), x) =ϕ true. Then innermost narrowing only computes the answer {x #→
b} for f(g(x), x) = true whereas outermost narrowing only computes {x #→ a}
for the considered goal f(g(x), x) ≈ true. For the completeness of a narrowing
strategy, the following uniformity condition is required [66]: a confluent program
is uniform iff the position selected by ϕ is a valid narrowing position for ϕ
for all normalized substitutions (i.e. substitutions that only contain terms in
normal form) applied to it. Note that the program R above does not satisfy the
uniformity principle since the top position of the term f(g(x), x) is not a valid
narrowing position if we apply the substitution {x #→ b} to this term. A sufficient
condition for uniformity in constructor-based, canonical programs can be found
in [32]. Moreover, there are methodologies which allow one to transform non-
uniform programs into programs fulfilling the uniformity condition (e.g., see [9]).

Innermost narrowing is the foundation of several functional logic program-
ming languages like SLOG [40], LPG [23] and (a subset of) ALF [41]. Also, the
multi-paradigm language Maude [29] is equipped with a (kind of) innermost
3 The leftmost-innermost position of g is the leftmost position of g that points to a

pattern. A position p is leftmost-outermost in a set of positions O if there is no
p′ ∈ O with either p′ prefix of p, or p′ = q.i.q′ and p = q.j.q′′ and i < j, where i, j
are natural numbers and q, q′ sequences of natural numbers.



278 M. Alpuente, D. Ballis, and M. Falaschi

narrowing strategy (called variant narrowing [29]) that is part of an equational
unification procedure. Moreover, reachability analyses for programs written in
Maude rely on the so-called topmost theories [62], where the innermost strategy
is often advantageous. Recently, the notion of strategic narrowing has been pro-
posed as the main mechanism for the analysis of security policies in the strategy
language Elan, relying on the confluence, termination and sufficient complete-
ness of the underlying rewrite system [26]. In this context, innermost narrowing,
innermost priority narrowing (i.e., innermost narrowing with a partial ordering
on the program rules) and outermost narrowing have proven to be of prime
interest [26].

Modern functional logic languages like Curry [44] and Toy [56] are based on
lazy evaluation principles instead, which delay the evaluation of function argu-
ments until their values are needed to compute a result. This allows one to deal
with infinite data structures and avoids some unnecessary computations [43,41].
Needed narrowing [20] is a complete lazy narrowing strategy that is optimal
w.r.t. the length of the derivations and the number of computed solutions in
inductively sequential (IS) programs, Needed narrowing [20] can be easily and
efficiently implemented by means of a transformation proposed in [45], which
permits leftmost outermost narrowing to be used on the transformed program
while preserving the answers computed by needed narrowing in the original
program. Thanks to the possibility to use this transformation, we do not lose
(much) generality by developing our methodology for the simpler leftmost outer-
most narrowing; this simplifies reasoning about computations, and consequently
proving semantic properties, e.g. completeness.

Similarly to the other strategies discussed in this paper, needed narrowing
adopts the classical theory of rewriting (that corresponds to run-time choice
[49]) as underlying theory. However, in a run-time choice semantics, the values
of the arguments are fixed as they are used, and the copies of the arguments
created by parameter-passing may evolve independently afterwards [57]. Hence,
classical rewriting is not valid for call-time choice evaluation, which is the oper-
ational semantics commonly adopted in functional logic languages dealing with
non-strict, non-deterministic functions, and is related, at the operational level,
to the sharing mechanism of lazy evaluation in functional languages [57,58]. Nev-
ertheless, by adding a sharing mechanism to their encoding, needed narrowing
implementations are sound for the call-time choice semantics of functional logic
programs (for a discussion, see [57,58]). Moreover, for the deterministic programs
considered in this paper, run-time and call-time are able to produce the same
outcomes [58,69].

3.1 Two Functional Logic Program Denotations

The operational semantics Oca
ϕ (R) of a functional logic program R w.r.t. the

narrowing strategy ϕ ∈ {inn, out} can be defined by considering all the possible
successful narrowing derivations which can be obtained by applying the narrow-
ing strategy ϕ to “most general calls”. We denote by �ϕ the restriction of the
narrowing relation that is obtained when the narrowing strategy ϕ is used.



Transformation and Debugging of Functional Logic Programs 279

Definition 3. Let R be a program, ϕ ∈ {inn, out}. Then,

Oca
ϕ (R) = ,ϕ

R ∪ {(f(x1, . . . , xn) = xn+1)θ | (f(x1, . . . , xn) =ϕ xn+1)
θ ∗

�ϕ �
where f/n ∈ D, xn+1 and xi are distinct variables,
for i = 1, . . . , n }

where ,R denotes the set of the identical equations c(x1, . . . , xn) =ϕ c(x1, . . . , xn)
for all the constructor symbols c/n occurring in R.

It is known that the considered operational semantics can be derived by a fixpoint
computation which allows for the (bottom-up) construction of a model that is
completely goal-independent. To this respect, in [6,7] we formalized a fixpoint
semantics Fϕ(R) —parametric w.r.t. the narrowing strategy ϕ— that can be
calculated as the least fixpoint of a generalized version of the usual immediate
consequence operator [47] T ϕ

R. Since the operator T ϕ
R is continuous over the

complete lattice of the Herbrand interpretations [7], the least fixpoint of T ϕ
R

(and hence the semantics) is generated by computing at most ω iterations of the
operator T ϕ

R, that is lfp(T ϕ
R) = T ϕ

R ↑ ω. Therefore, the fixpoint semantics of a
functional logic program can be defined as follows.

Definition 4. The least fixpoint semantics of a program R in IRϕ is defined as

Fϕ(R) = lfp(T ϕ
R) = T ϕ

R ↑ ω

where ϕ ∈ {inn, out}.

The fixpoint semantics Fϕ(R) is more general than the operational semantics
Oca

ϕ (R) in the sense that it models both successful and partial (i.e. intermediate
as well as non-terminating) computations, while Oca

ϕ (R) catches only successful
narrowing derivations. Therefore, a fixpoint characterization of the operational
semantics can be derived from Fϕ(R) by removing all those equations represent-
ing computations which are still incomplete or not terminating.

Given a set of equations S, let partial(S) be an operator that selects those
equations of S that do not model successful computations, i.e., computations that
are still incomplete or do not terminate. In other words, we select all equations
whose right-hand side is not a constructor term. More formally, partial(S) =
{l = r ∈ S | r �∈ τ(C ∪ V)}.

Theorem 1. [6] The following relation holds:

Oca
ϕ (R) = Fϕ(R)− partial(Fϕ(R))

4 Narrowing-Based Program Transformation

The folding and unfolding transformations, that were first introduced by Burstall
and Darlington in [25] for functional programs, are the most basic and power-
ful techniques for a framework to transform programs. Unfolding is essentially
the replacement of a call by its body, with appropriate substitutions. Folding



280 M. Alpuente, D. Ballis, and M. Falaschi

is the inverse transformation, that is, the replacement of some piece of code by
an equivalent function call. For functional programs, folding and unfolding steps
involve only pattern matching. The fold/unfold transformation approach was
first adapted to logic programs by Tamaki and Sato [72] by replacing matching
with unification in the transformation rules. A lot of literature has been devoted
to proving the correctness of fold/unfold systems w.r.t. the various semantics
proposed for functional programs [25], logic programs [72], and constraint logic
programs [35]. However, there are several other applications for fold/unfold rules
besides providing a general theoretical basis for program transformation. For
instance, such transformations have been used to formalize inductive program-
ming frameworks for program synthesis as well as theory revision [24,4]. To this
respect, an example of an unfolding-based theory revision technique for the au-
tomated repair of functional logic programs is described in Section 6.2.

Another important application is program analysis. Program analyses can be
improved by iterating the unfolding of a program a finite number of times. In
fact, an analysis is in general more accurate on the unfolded program than on
the original program [11].

Example 2. Consider the following program R for addition and doubling of nat-
ural numbers in Peano’s notation.

double(x) → add(x, x).
add(0, x) → x.
add(s(x), y)→ s(add(x, y)).

Now, given an equational unification problem s = t in R, consider the unsatisfi-
ability analysis which is based on the idea on non-joinability of the root symbols
of the normal forms of s and t. Namely, consider the abstract TRS Rα that is
obtained by abstracting the lhs’s and rhs’s of the rules in R using the abstraction
function α(t) = f for t = f(t1, . . . , tn), whereas α(x) = c, with c ∈ C, for x ∈ V :

double→ add.
add → 0.
add → s.

Then, the analysis consists in proving that (s ↓)α and (t ↓)α are not joinable
in Rα, where (u ↓) denotes the normal form of u in R. Unfortunately, this
analysis is too näıve (imprecise) to conclude the unsatisfiability of the equation
double(s(x)) = 0, since the the normal form of double(s(x)) is add(s(x), s(x)),
whose root symbol add can be reduced to 0 in Rα. However, by unfolding the
first rule of R w.r.t. the rules for addition, we get the unfolded program Unf(R)
(see Definition 6 below):

double(0) → 0.
double(s(x))→ s(add(x, s(x))).
add(0, x) → x.
add(s(x), y) → s(add(x, y)).



Transformation and Debugging of Functional Logic Programs 281

Now, by running the analysis in the unfolded program Unf(R) instead of R,
the unsatisfiability of the considered equation double(s(x)) = 0 follows.

In the functional logic setting, a natural way to program transformation is to
use a form of narrowing-driven unfolding/folding, i.e., the expansion and the
contraction, by means of narrowing, of program subexpressions using the corre-
sponding definitions. A complete characterization of fold/unfold transformations
w.r.t. computed answers in functional logic languages with eager/lazy semantics
can be found in [12,14].

The use of narrowing empowers the fold/unfold system by implicitly em-
bedding the instantiation rule (the operation of the Burstall and Darlington
framework [25] which introduces an instance of an existing equation) into the
fold/unfold operators by means of unification.

4.1 Unfolding Functional Logic Programs

Roughly speaking, unfolding a programR w.r.t. a rule r yields a new specialized
version of R in which the rule r is replaced by new rules obtained from r by
performing a narrowing step on the right-hand side of r. Typically, unfolding is
non-deterministic, since several subterms in the right-hand side of a rule may be
narrowable.

Definition 5 (Unfolding operators). Let R be a program, and ϕ ∈ {inn, out}
be a narrowing strategy.

(i) Let r1, r2 << R such that r1 = (λ1 → ρ1 ⇐ C1) and r2 = (λ2 → ρ2 ⇐ C2).
The rule unfolding via ϕ of r1 w.r.t. r2 is defined as follows

Uϕ
r2

(r1)={λ1σ → ρ′⇐C′ | (ρ1 = y, C1)
σ,r2,u
� ϕ (ρ′=y, C′), u ∈ O(ρ1)∪O(C1)},

where y is a fresh variable.

(ii) Let r << R. The rule unfolding of r w.r.t. R via ϕ is as follows

Unf ϕ(R, r) =

{
r if Uϕ

r′(r) = ∅ for each r′ ∈ R⋃
r′∈R Uϕ

r′(r) otherwise

Under a theoretical viewpoint, given a functional logic program, it is possible to
define a semantics based on unfolding which is equivalent to its operational and
fixpoint ones. This unfolding semantics helps to prove the equivalence between
the operational and the fixpoint semantics of the language.

The formalization of such a semantics is as follows.

Definition 6 (Program Unfolding). Let R be a program, and ϕ ∈ {inn, out}
be a narrowing strategy. The unfolding of a program R via ϕ is the program
obtained by unfolding via ϕ the rules of R w.r.t. R. Formally,

Unf ϕ(R) =
⋃

r∈R
{Unf ϕ(R, r)}.



282 M. Alpuente, D. Ballis, and M. Falaschi

The repeated application of the program unfolding operator leads to a sequence
of equivalent programs which is inductively defined as follows.

Definition 7. Let R be a program, and ϕ ∈ {inn, out} be a narrowing strategy.
The sequence:
R0 = R
Ri+1 = Unf ϕ(Ri), i ≥ 0

is called the unfolding sequence starting from R via ϕ.

The unfolding semantics of a program is defined as the limit of the unfolding pro-
cess described in Definition 7. Let us now formally define the unfolding semantics
Uca

ϕ (R) of a program R. The main point of this definition is in compelling the
right-hand sides of the equations in the denotation to be constructor terms. Re-
call that ,R be the set of identical equations c(x1, . . . , xn) =ϕ c(x1, . . . , xn), for
each c/n ∈ C.

Definition 8. Let R be a program, and ϕ ∈ {inn, out} be a narrowing strategy.
Then,

Uca
ϕ (R) = ,R ∪

⋃
i∈ω

{(s = d) | (s → d) ∈ Ri and d ∈ τ(C ∪ V)}

where R0,R1, . . . is the unfolding sequence starting from R via ϕ.

Finally, the following theorem formalizes a useful alternative characterization of
the computed answers semantics Oca

ϕ (R) in terms of unfolding.

Theorem 2. Let R ∈ IRϕ. Then, Uca
ϕ (R)= Oca

ϕ (R).

4.2 Folding Functional Logic Programs

In the following, we introduce a folding transformation for the inn narrowing
strategy that can be seen as an extension to functional logic programs of the
reversible folding of [67] for logic programs. We have chosen this form of fold-
ing since it exhibits the useful, pursued property that the answer substitutions
computed by innermost narrowing are preserved through the transformation.
Actually, such a result does not hold for the out narrowing strategy.

Let us introduce the innermost folding operation. We use the following aux-
iliary notation. Let {r1, . . . rn} be a set of program rules and R be a program,
then by {r1, . . . rn} << R, we denote the fact that ri << R, for each i = 1, . . . , n.

Definition 9 (Innermost fold). Let R be a program. Let {r1, . . . , rn} << R
(the “folded rules”) and Rdef = {r′1, . . . , r′n} << R (the “folding rules”) be two
disjoint subsets of program rules (modulo renaming), with r′i = (λ′

i → ρ′i ⇐ C′
i),

i = 1, . . . , n. Let r be a rule4, u ∈ O(r) be a position of the rule r, and t be a
pattern such that, for all i = 1, . . . , n:

4 Roughly speaking, r is the “common skeleton” of the rules that are folded in the
folding step. The occurrence u in r acts as the pointer to the “hole” where the folding
call is let fall.



Transformation and Debugging of Functional Logic Programs 283

1. θi = mgu({λ′
i = t}),

2. ri = (λ → ρi ⇐ C′
i, Ci)θi and r[ρ′i]u = (λ→ ρi ⇐ Ci), and

3. for any rule r′ = (λ′ → ρ′ ⇐ C′) << R not in Rdef , λ′ does not unify with t.
Then, we define the folding of {r1, . . . , rn} in R using Rdef as follows:

Fold(R, {r1, . . . , rn}, Rdef) = (R− {r1, . . . , rn}) ∪ {rfold}
where rfold = r[t]u.

Intuitively, the folding operation proceeds in a contrary direction to the narrow-
ing steps. In narrowing steps, for a given unifier of the redex and the left-hand
side of the applied rule, a reduction step is performed on the instantiated redex,
then the conditions of the unfolding rule are added to the unfolded one, and
finally the narrowing substitution is applied. Here, first of all, folded rules are
“deinstantiated” (generalized). Next, one gets rid of the conditions of the ap-
plied folding rules, and, finally, a reduction step is performed against the reversed
heads of the folding rules.

Note that the folding operation has two sources of non-determinism. The first
is in the choice of the folded calls; the second is in the choice of a generalization
(folding call) of the heads of the instantiated function definitions which are used
to substitute the folded calls.

Example 3. Let us consider the following program R:

f(x) → s(x) ⇐ h(s(x)) = 0 (r1)
f(s(z)) → s(s(0))) ⇐ z = 0 (r2)
num(y) → y ⇐ h(y) = 0 (r3)
num(s(s(z)))→ s(s(0)) ⇐ z = 0 (r4)

Now, we can fold the rules {r1, r2} of R w.r.t. Rdef = {r3, r4} using r =
(f(x)→ �) and t = num(s(x)), obtaining the resulting program R′:

f(x) → num(s(x)) (rfold)
num(y) → y ⇐ h(y) = 0 (r3)
num(s(s(z)))→ s(s(0)) ⇐ z = 0 (r4)

In [12], it has been shown that the proposed fold transformation preserves the
operational semantics Oca

inn(R) of computed answer substitutions of functional
logic programs under the usual conditions for the completeness of the inn strat-
egy.

Theorem 3 (Strong correctness). [12] Let R ∈ IRinn be a program and R′ =
Fold(R, {r1, . . . , rn}, Rdef ) be a folding of {r1, . . . , rn} in R using Rdef . Then,
we have that Oca

inn(R) = Oca
inn(R′).

An extension of the narrowing-based fold/unfold transformation framework of
[12,13] to rewriting logic theories as implemented in the functional program-
ming language Maude [29] can be found in [3]. It allows one to deal with (non-
deterministic) rules, equations, sorts and algebraic laws (like commutativity and
associativity). This program transformation framework is also applied to to the



284 M. Alpuente, D. Ballis, and M. Falaschi

problem of securing the transfer of code from a code producer to a code consumer
by implement a Code Carrying Theory (CCT) system based on folding/unfolding
transformations. CCT is an approach for securing delivery of code from a pro-
ducer to a consumer where only a certificate (usually in the form of assertions
and proofs) is transmitted from the producer to the consumer who can check
its validity and then extract executable code from it. In the approach of [3], the
certificate consists of a sequence of transformation steps which can be applied to
a given consumer specification in order to automatically synthesize safe code in
agreement with the original requirements. The key idea behind our CCT method-
ology is as follows. Assuming the code consumer provides the requirements in
the form of a rewrite theory, the code producer can (semi-) automatically obtain
an efficient implementation of the specified functions by applying a sequence of
transformation rules. Moreover, having proved the correctness of the transfor-
mation system, the code producer can transmit as the required certificate just a
compact representation of the sequence of transformation rules to the consumer
so he does not need to manually construct any other correctness proof. By ap-
plying the transformation rules to the initial requirements, the code consumer
can inexpensively obtain the executable code that can be eventually compiled
to a different target language if needed.

5 Functional Logic Program Specialization

The aim of partial evaluation (PE) is to specialize a given program w.r.t. part
of its input data (hence also called program specialization). PE has been widely
applied in the field of functional programming (FP) [50] and logic programming
(LP) [55]. Although the objectives are similar, the general methods are often
different due to the distinct underlying computation models. This separation
has the negative consequence of duplicated work since developments are not
shared and many similarities are overlooked.

Narrowing-driven PE (NPE) [15] is the first generic algorithm for the spe-
cialization of functional logic programs. The method is formalized within the
theoretical framework established in [55,61] for the partial evaluation of logic
programs (also known as partial deduction, PD), although a number of concepts
have been generalized to deal with nested function calls. The NPE approach has
better opportunities for optimization thanks to the functional dimension (e.g.
by the inclusion of deterministic simplification steps). Also, since unification is
embedded into narrowing, it is able to automatically propagate syntactic in-
formation on the partial input (term structure) and not only constant values.
The different instances of the framework which can be obtained by considering
different narrowing strategies preserve some logical, strong (computed answers)
program semantics under conditions easily ascertained by reusing methods and
results developed for narrowing.

Given a program P and a set S of atoms, the aim of PD [55] is to derive a
new program P ′ which computes the same answers for any input goal which is
an instance of an atom in S. The program P ′ is obtained by gathering together



Transformation and Debugging of Functional Logic Programs 285

the set of resultants , which are constructed as follows: for each atom A of S,
i) first construct a finite SLD-tree, T (A), for P ∪ {⇐ A}, then ii) consider the
leaves of the non-failing branches of T (A), say G1, . . . , Gr, and the computed
substitutions along these branches, say θ1, . . . , θr, and finally iii) construct the
clauses: Aθ1 ⇐ G1,. . . , Aθr ⇐ Gr. The basic correctness of the transformation
is ensured whenever P ′ is S-closed , i.e. every atom in P ′ is an instance of an
atom in S. An independence condition, which holds if no two atoms in S have
a common instance, is needed to guarantee that P ′ does not produce additional
answers. The constructed SLD-trees can be viewed as (i) symbolic computations
for the atoms in S; the S-closedness of P ′ illustrates the idea of (ii) regularity
of a symbolic computation; and finally, (iii) program extraction from a set of
SLD-trees consists basically in building up the associated set of resultant rules.

We now identify these three categories for narrowing-driven PE [15,17].

Symbolic Execution. It is similar to PD, but we use narrowing in the place
of SLD-resolution. For a set S of terms (possibly with nested function calls)
and a functional logic program {λi → ρi ⇐ Ci}n

i=1, a partial (finite) narrow-
ing tree is constructed for each term in S. The inclusion of a deterministic,
normalization process between narrowing steps improves the elimination of
intermediate data structures and reduces the size of the specialized program
since less choices are unfolded [8]. By exploiting the results on normalizing
narrowing [41], this is achieved in a principled way which does not compro-
mise termination. Control issues are managed by using standard techniques
as in [61].

Search for Regularities. Our notion of regularity is similar to the PD closed-
ness condition, which we have generalized to recurse over the terms in order
to handle nested function calls. Informally, a term t is considered S-closed
iff it only contains constructors and variables, or i) there exists a substitu-
tion θ such that tθ ∈ S, and ii) the terms in θ are recursively S-closed. For
instance, the term f(g(0)) is closed w.r.t. the set of calls {f(x), g(x)}.

Program Extraction. In order to extend the notion of resultant to our setting,
we specialize single terms s, and consider derivations for initial goals s = y,
where y is a fresh variable not occurring in s, that we extend down to the
leaves (C, t = y) (where C are the equations brought by the conditions of
the applied program rules), and we extract the resultant as (sθ → t ⇐ C).

There are two issues of correctness for a PE procedure: termination, i.e., given
any input goal, execution should always reach a stage for which there is no way
to continue; and (partial) correctness, i.e., (if execution terminates, then) the
operational semantics of the goal with respect to the residual program and with
respect to the original program should coincide.

As for termination, NPE involves two classical termination problems: the so-
called local termination problem (the termination of unfolding, or how to control
and keep the expansion of the narrowing trees which provide partial evaluations
for individual calls finite), and the global termination (which concerns termina-
tion of recursive unfolding, or how to stop recursively constructing narrowing



286 M. Alpuente, D. Ballis, and M. Falaschi

{y �→ a(a(xs, ys), zs)} {xs �→ nil} {xs �→ [x′|x′
s]}

�

������������

������������

[x′|a(a(x′s, ys), zs)] = y

a([x′|a(x′s, ys)], zs) = ya(ys, zs) = ytrue

a(a(xs, ys), zs) = y

{y �→ a(ys, zs)} {ys �→ nil} {ys �→ [y′|y′
s]}

������������

������������
y′ : a(y′s, zs) = yzs = ytrue

a(ys, zs) = y

Fig. 1. Narrowing trees for the goals a(a(xs, ys), zs) = y and a(xs, ys) = y

trees while still guaranteeing that the desired amount of specialization is re-
tained and that the closedness condition is reached). Actually, the set of terms
S appearing in the goals with which the specialization is performed usually needs
to be augmented in order to fulfill the closedness condition. This brings up the
problem of how to keep this set finite throughout the PE process by means of
some appropriate abstraction operator which guarantees termination. Control
issues in narrowing-driven partial evaluation can be controlled by using stan-
dard techniques as in [61]. A detailed algorithm for the partial evaluation of
functional logic programs can be found in [15], which is able to guarantee the
termination of the specialization process.

A partial evaluation is defined as the set of resultants extracted from the
derivations of the constructed partial narrowing trees, as illustrated in the fol-
lowing example.

Example 4. Consider again the function append of Example 1 with initial goal
append(append(xs, ys), zs) = y. This goal appends three lists by appending the
first two, yielding an intermediate list, and then appending the last one to that.
We evaluate the goal by using normalizing conditional narrowing (that is, each
narrowing step is followed by the normalization of the narrowed goal w.r.t. the
given CTRS). Starting with the sequence q = append(append(xs, ys), zs), we
compute the trees depicted in Figure 1 for the sequence of terms

q′ = (append(append(xs, ys), zs), append(xs, ys)).

Note that append has been abbreviated to a in the picture. Then we get the
following residual program R′:



Transformation and Debugging of Functional Logic Programs 287

append(append(nil, ys), zs) → append(ys, zs)
append(append([x|xs], ys), zs)→ [x|append(append(xs, ys), zs)]
append(nil, zs)→ zs
append([y|ys], zs) → [y|append(ys, zs)]

which is able to append the three lists by passing over its input only once. This
result has been obtained thanks to using normalization. Note that no specific
strategy has been employed for executing the goal, while the intended special-
ization has been achieved.

The use of efficient forms of narrowing can significantly improve the accuracy of
the specialization method and increase the efficiency of the resulting program,
because runtime optimizations are also performed at specialization time.

The behavior of a concrete narrowing-driven partial evaluator greatly depends
on the narrowing strategy being used, since different strategies have quite differ-
ent semantic properties. It is accepted that the use of an eager narrowing strategy
is less convenient than a lazy one regarding the elimination of intermediate data
structures, although the use of normalization may alleviate the problem, as said
before. Generally speaking, if the operational semanticsOca

ϕ (R) is to be preserved
by program transformations, then the only reasonable class (for eager as well as
for lazy PE) is that of left-linear, constructor-based (CB) programs, which are
known to produce only constructor answers. These programs are generalized to
the more general class of left-linear rnf-based programs, where all arguments of
the left-hand sides of the rules are rigid normal forms, i.e. unnarrowable. Unfor-
tunately, the construction of resultants may produce rewrite rules whose left-hand
side contain nested function symbols, if the terms to be partially evaluated contain
nested function symbols. If this kind of programs are allowed by the narrowing
strategy being considered (e.g. unrestricted narrowing), there is no problem at all.
However, when dealing with narrowing strategies which require constructor-based
programs, a post-processing renaming transformation is mandatory in order to
have an executable residual program [8]. Complex terms are ‘folded’ recursively,
by replacing them by calls to new functions which satisfy the CB constraint. Fur-
thermore, it can automatically guarantee that no additional answer is computed
in the specialized program, which is otherwise ensured by an independence con-
dition on the set of partially evaluated terms (as explained in [15]) guaranteeing
that no overlaps exist between the specialized function calls.

Example 5. In Example 4, the resulting set of terms

{append(append(xs, ys), zs), append(xs, ys)}

in q′ is not independent. This example illustrates the need for an extra renaming
phase able to produce an independent set of terms such as {app 3(xs, ys, zs),
app 2(xs, ys)} and associated specialized program

app 3(nil, ys, zs) → app 2(ys, zs)
app 3([x|xs], ys, zs)→ [x|app 3(xs, ys, zs)]
app 2(nil, zs)→ zs
app 2([y|ys], zs) → [y|app 2(ys, zs)]



288 M. Alpuente, D. Ballis, and M. Falaschi

which has the same computed answers as the original program append for the
query app 3(xs, ys, zs) (modulo the renaming transformation).

The use of lazy narrowing during partial evaluation gives a better overall be-
havior regarding both the elimination of intermediate data structures and the
propagation of information. Unfortunately, this approach introduces new draw-
backs into the partial evaluation process. Firstly, the class of programs is not
preserved by the transformation; for instance, orthogonality may be destroyed.
On the other hand, the quality of the partially evaluated program may be de-
graded by introducing e.g. infinite computations which could not be proven in
the original program [18]. The use of needed narrowing during partial evalua-
tion overcomes both problems, since the structure of programs is preserved and
no redundant or undesirable derivations are encoded in the residual program.
Nevertheless, a new difficulty arises when the operation principle of residuation
is integrated within the NPE framework. Namely, the difficulty lies in preserv-
ing the floundering behaviour of the original program, ensuring that there is a
precise correspondence between the computations that suspend in the original
and the specialized programs [2].

6 Declarative Debugging

Debugging programs with the combination of user-defined functions and logic
variables is a difficult but important task which has deserved some interest in
recent years, and different debugging techniques have been proposed. The idea
behind declarative error diagnosis is to collect information about what the pro-
gram is intended to do and compare this with what it actually does. Starting
from these premises, a diagnoser can find errors. The information needed can be
found in many different ways. It can be built by asking the user (as an oracle), or
by means of a formal specification (or an older, correct, version of the program),
or some combination of both.

Abstract diagnosis [30] is a declarative debugging framework that extends the
methodology in [38,70] (which is based on using the immediate consequence op-
erator to identify bugs in logic programs) to diagnoses w.r.t. computed answers.
An important advantage of this framework is that it is goal-independent and
does not require the determination of symptoms in advance. In [6,7], we gener-
alized the declarative diagnosis methodology of [30] to the debugging of wrong
as well as missing answers of functional logic programs.

In our setting, correctness as well as completeness of a program R are estab-
lished by comparing the operational semantics Oca

ϕ (R) to an intended semantics
Ica modeling the successful narrowing derivations that a programmer has in
mind. More formally,

Definition 10. Let Ica be the intended success set semantics for program R.

1. R is partially correct w.r.t. Ica, if Oca
ϕ (R) ⊆ Ica.

2. R is complete w.r.t. Ica, if Ica ⊆ Oca
ϕ (R).

3. R is totally correct w.r.t. Ica, if Oca
ϕ (R) = Ica.



Transformation and Debugging of Functional Logic Programs 289

If a program contains errors, these are signalled by corresponding symptoms.
The “intended success set semantics” allows us to establish the validity of an
atomic equation by a simple “membership” test, in the style of the s-semantics
[36].

Definition 11. Let Ica be the intended success set semantics for R. An in-
correctness symptom is an equation e such that e ∈ Oca

ϕ (R) and e �∈ Ica. An
incompleteness symptom is an equation e such that e ∈ Ica and e �∈ Oca

ϕ (R).

For the detection of buggy rules, however, we need to consider a “well-furnished”
intended fixpoint semantics IF (such that Ica ⊆ IF), which models successful as
well as “in progress” (i.e., partial) computations, and enjoys the semantic prop-
erties of the denotation formalized in Definition 4, that is, IF should correspond
to the fixpoint semantics of the correct program and Ica = IF − partial(IF).

An equation e isuncovered if it cannot be derived by any program rule using
the intended fixpoint semantics, in symbols e ∈ IF and e �∈ T ϕ

R(IF ). Having such
a semantics, the diagnosis of buggy rules as well as the detection of uncovered
equations can be performed by exploiting the following definitions.

Definition 12. Let IF be the intended fixpoint semantics for R. If there exists
an equation e ∈ T ϕ

{r}(IF ) s.t. e is not covered by IF , then the rule r ∈ R is
incorrect on e.

Therefore, the incorrectness of rule r is signalled by a simple transformation of
the intended semantics IF .

Definition 13. Let IF be the intended fixpoint semantics for R. An equation e
is uncovered in R if e ∈ IF and e is not covered by T ϕ

R(IF ).

By the above definition, an equation e is uncovered if it cannot be derived by
any program rule using the intended fixpoint semantics. In particular, we are
interested in the equations of Ica ⊆ IF that are uncovered, i.e., e ∈ Ica and
e is not covered by T ϕ

R(IF ), since such equations represent missing computed
answers.

Partial correctness of a program is established by the following proposition.

Proposition 1. [7] If there are no incorrect rules in R w.r.t. the intended fix-
point semantics IF , then R is partially correct w.r.t. the intended success set
semantics Ica.

Assuming that IF is finite, Proposition 1 shows a simple methodology to prove
partial correctness. In the case when IF is not finite, this methodology can be
still applied by considering finite approximations of the program semantics, as
explained in Section 6.1 below. Completeness is harder, since it not possible
to detect all possible uncovered equations by comparing the specification of the
intended fixpoint semantics IF to T ϕ

R(IF ). In other words, the absence of uncov-
ered equations does not allow us to derive that the program under examination
is complete.



290 M. Alpuente, D. Ballis, and M. Falaschi

It is worth noting that checking the conditions of Definitions 12 and 13 re-
quires just one application of T ϕ

R to IF , while the standard detection based on
symptoms [70] would require either an external oracle or the construction of the
semantics, and therefore a fixpoint computation.

6.1 Abstract Diagnosis

In general, the diagnosis methodology we presented in Section 6 cannot be used
to directly derive practical debuggers, since the correctness as well as complete-
ness tests of Definitions 12–13 cannot be implemented in an effective way when
the intended semantics IF is infinite, which is a very common case.

Following an idea inspired by [30], we defined an effective diagnosis method-
ology in [6,7], which is based on abstract interpretation [31].

Abstract interpretation formalizes the idea of “approximate computation” in
which computation is performed with descriptions of data rather than with the
data themselves. In particular, the semantics operators are replaced by abstract
operators that are shown to ‘safely’ approximate the standard ones. In this
context, our abstract diagnosis framework allows one to work on finite represen-
tations of the intended semantics IF giving support to the implementation of
finite diagnosis procedures.

More specifically, the basic idea is to consider two finite sets: I+ which
over-approximates the intended fixpoint semantics IF and I− which under-
approximates IF . In our methodology, an executable specification Rspec is given
in order to effectively compute over- and under-approximations of the intended
fixpoint semantics. Basically, we take the set which results from a finite number
of iterations of the concrete immediate consequence operator T ϕ

RSpec
as under-

approximation I−, while I+ corresponds to the abstract fixpoint semantics of
the abstract specification R


spec, which is obtained from Rspec by replacing re-
cursive function calls appearing in the specification’s rules with occurrences of
the special symbol �. Such an abstraction allows us to avoid non-termination of
the fixpoint computation, and provides a simple methodology for computing I+

which is satisfactory in practice.
We then use these sets I+ and I− as shown in Theorems 4–5 in order to

implement the abstract effective versions of the correctness/completeness tests
of Definitions 12–13. Basically, the immediate consequence operator, T ϕ

R, (w.r.t.
the program R) is applied to I− to check incorrectness w.r.t. (I+, I−) and the
abstract version of the immediate consequence operator, T 
ϕ

R is applied to I+ to
check incompleteness w.r.t. (I+, I−).

Theorem 4. Let (I+, I−) be a correct approximation of the intended semantics
IF . If r is abstractly incorrect w.r.t. (I+, I−) on e, then r is incorrect on e.

Theorem 5. Let (I+, I−) be a correct approximation of the intended semantics
IF . If R is abstractly incomplete w.r.t. (I+, I−) on e, then e is uncovered in R.

The previous theorems provide a compact description of the results proved in
[6,7] and are the basis of the correctness of our abstract diagnosis framework.



Transformation and Debugging of Functional Logic Programs 291

The diagnosis w.r.t. approximate properties is always effective because the
abstract specifications are finite. If no error is found, we say that R is abstractly
correct and complete w.r.t. (I+, I−). As one can expect, the results may be
weaker than those that can be achieved on the concrete domain just because
of the approximation: the fact that R is abstractly correct and complete w.r.t.
(I+, I−) does not generally imply the total correctness ofR w.r.t. I. The method
is sound5 in the sense that each error which is found by using I+, I− is really a
bug w.r.t. I.

Example 6. Let us consider the following (wrong) Fibonacci program R.

fib(0) → 0. add(0, x) → x.
fib(x) → fibaux(0, 0, x). add(s(x), y)→ s(add(x, y)).
fibaux(x, y, 0) → x.
fibaux(x, y, s(z))→ fibaux(y, add(x, y), z).
The specification is given by the following program RSpec:

fib(0) → s(0). add(0, x) → x.
fib(s(0)) → s(0). add(s(x), y)→ s(add(x, y)).
fib(s(s(x)))→ add(fib(s(x)), fib(x)).

The abstract specification R

Spec is

fib(0) → s(0). add(0, x) → x.
fib(s(0)) → s(0). add(s(x), y)→ s(�).
fib(s(s(x)))→ add(�, �).

Let ϕ = inn; then. After 2 iterations of the T inn
RSpec

operator, we get the following
under-approximation.

I− = {0 = 0, s(x) = s(x), add(x, y) = add(x, y), fib(x) = fib(x), add(0, x) = x,

add(s(x), y) = s(add(x, y)), add(s(0), y) = s(y), fib(0) = s(0),
fib(s(0)) = s(0), fib(s(s(x))) = add(fib(s(x)), fib(x)),

add(s2(x), y) = s2(add(x, y)), fib(s(s(0))) = add(s(0), fib(0)),
fib(s(s(0))) = add(fib(s(0)), s(0))

fib(s3(x)))) = add(add(fib(s(x)), fib(x)), fib(s(x)))}
The over-approximation I+ is given by the following set of equations (after three
iterations of the T 
inn

R�
Spec

operator, we get the fixpoint):

I+ = {0 = 0, s(x) = s(x), add(x, y) = add(x, y),
fib(x) = fib(x), add(0, x) = x, add(s(x), y) = s(�),
fib(0) = s(0), fib(s(0)) = s(0), fib(s(s(x))) = add(�, �),
fib(s(s(x))) = �, fib(s(s(x))) = s(�)}

5 This is in contrast with the abstract diagnosis methodologies of [5,30], which work as
follows: when the diagnoser finds that the program is correct, then it is certainly free
of errors, whereas if an (abstract) error is reported, then it can be either a (concrete)
error or not.



292 M. Alpuente, D. Ballis, and M. Falaschi

Now, consider the equation fib(x) = fib(x) of I−. By applying T inn
{fib(0)→0} to

this equation, we get the equation e = fib(0) = 0, which is not covered by I+,
i.e., it is not subsumed by any abstract equation of I+. This proves that r is
incorrect on e.

6.2 Automated Program Correction

Inductive Logic Programming (ILP) is the field of Machine Learning concerned
with learning logic programs from positive and negative examples, generally in
the form of ground literals [64]. A challenging subfield of ILP is known as induc-
tive theory revision, which is close to program debugging under the competent
programmer assumption of [70]. In other words, the initial program R is as-
sumed to be written with the intention of being correct and, if it is not, then a
close variant Rc of it is. Automatic program correction attempts to find such a
variant.

In this context, the correction problem can be stated as follows. Let R be
a wrong program such that R′ ⊆ R is a set of wrong rules w.r.t. an intended
semantics IF . Let Ep and En be two disjoint sets of ground equations witnessing
the correct as well as the wrong computational behaviour of R. Equations in Ep

(respectively, En) are called positive examples (respectively, negative examples).
The correction problem amounts to synthesizing a set of rules X such that

Rc = (R \R′) ∪ X , Rc �ϕ Ep and Rc ��ϕ En.

where R entails E using the narrowing strategy ϕ ∈ {inn, out} (in symbols,
R �ϕ E) iff each e ∈ E is successfully derived in R using the narrowing strategy
ϕ (that is, e �∗

ϕ � in R), and R disproves E using the narrowing strategy
(in symbols, R ��ϕ E) iff no e ∈ E can be successfully derived in R using the
narrowing strategy ϕ.

ProgramRc is called corrected program (w.r.t. Ep and En). Roughly speaking,
a corrected program Rc is a program that entails all the positive examples and
disproves all the negative examples.

In [4], we developed an automated procedure for program correction which
mainly follows the top-down, inductive learning approach known as example-
guided unfolding [24], which uses unfolding as specialization operator to dis-
criminate positive from negative examples. The basic idea of the method is to
first specialize the program R by unfolding function calls in the right-hand sides
of the rules yielding a close variant R′ of R. Then, we obtain Rc by remov-
ing those rules of R′ which are responsible for the derivation of the negative
examples.

For example, consider the following program R
even(0)→ true (r1)

even(s(x))→ even(x) (r2)

which is wrong w.r.t. the usual intended semantics of the even function. More-
over, let Ep be {even(0) = true, even(s2(0)) = true, even(s4(0)) = true}
and En be {even(s(0)) = true, even(s3(0)) = true, even(s5(0)) = true}.



Transformation and Debugging of Functional Logic Programs 293

The wrong program R can be first transformed into an equivalent program
R′ by unfolding rule (r2) as follows:

even(0)→ true (r1)
even(s(0)→ true (r2

′)
even(s(s(x)))→ even(x) (r2

′′)

Then, note that we can obtain the desired corrected program by simply removing
rule r′2 from R′.

Soundness of this approach has been proven in [4].
The unfolding-based correction procedure presented above is known to pro-

duce a correction when the initial program is overly general (with some extra
outfit which is needed to specialize recursive definitions [24]); that is, it allows
us to prove all positive examples and some incorrect ones. Unfortunately, most
of the programs to be debugged are not overly general, and hence our correction
methodology cannot be directly applied. Therefore, we coupled the example-
guided unfolding approach with a generalization technique in order to correct
programs that do not fulfill the applicability condition (over-generality). The
methodology consists in applying a bottom-up pre-processing to “generalize”
the initial wrong program, before proceeding to the usual top-down correction.
Roughly speaking, we extend the original erroneous program with new synthe-
sized rules so that the entire example set Ep succeeds w.r.t. the generalized
program, and hence the top-down corrector can be effectively applied.

The generalization method exploits the bottom-up technique for the inductive
learning of functional logic programs developed by Ferri, Hernández and Ramı́rez
[39] which automatically infers new program rules from sets of ground examples.
The induction process is based on inverse narrowing — a variant of Muggleton’s
inverse resolution operator [64]— which essentially reverses the classical deduc-
tive inference process in order to generate valid premises (typically, in the form
of logic programs) from known consequences (i.e. examples).

The resulting blend of top-down and bottom-up synthesis is conceptually
cleaner than more sophisticated, purely top-down or bottom-up ones and com-
bines the advantages of both techniques.

7 Related Work and Concluding Remarks

Finding program bugs is a long-standing problem in software construction. Un-
fortunately, the debugging support is rather poor for functional languages (see
[60] and references therein), and there are no good general-purpose semantics-
based debuggers available.

In the field of multi-paradigm declarative languages, standard trace debug-
gers are based on suitably extended box models which help to display the exe-
cution. Due to the complexity of the operational semantics of (functional) logic
programs, the information obtained by tracing the execution is difficult to un-
derstand. Several authors follow the idea of algorithmic declarative debugging in



294 M. Alpuente, D. Ballis, and M. Falaschi

the style proposed by Shapiro [70]: an oracle (typically the user) is supposed to
endow the debugger with error symptoms, as well as to correctly answer oracle
questions driven by proof trees aimed at locating the actual source of errors. A
debugger for the functional logic language Escher based on this methodology is
proposed in [54]. Unfortunately, when debugging real code, the questions are of-
ten textually large and may be difficult to answer. Following the generic scheme
which is based on proof trees of [65], a procedure for the declarative debugging
of wrong answers in higher-order functional logic programs is proposed in [28].
This is a semi-automatic debugging technique where the debugger tries to locate
the node in an execution tree which is ultimately responsible for a visible bug
symptom. A declarative debugger (for wrong answers) based on this methodol-
ogy was developed for the lazy functional logic language TOY and adapted to
Curry. The methodology in [28] includes a formalization of computation trees
which is precise enough to prove the logical correctness of the debugger and also
helps to simplify oracle questions. Missing answers are debugged in [27].

As far as we know, none of the above-mentioned debuggers integrates both
diagnosis and correction capabilities in a uniform and seamless way. As a matter
of fact, program correction has scarcely been studied in the context of declara-
tive programming. In [70], a theory revision framework for correction purposes
has been proposed; however, it requires the user either to strongly interact with
the debugger or to manually correct the code. Automated correction of faulty
codes has been investigated in concurrent logic programming. In [1], a frame-
work for the diagnosis and the correction of Moded flat GHC programs has been
developed. This framework exploits strong mode/typing and constraint analy-
sis in order to locate bugs; then, symbols which are likely sources of error are
syntactically replaced by other program symbols so that new slightly different
programs (mutations) are produced. Finally, mutations are newly checked for
correctness. This approach is essentially able to correct near misses (i.e., wrong
variable/constant occurrences), but no mistakes involving predicates or func-
tion symbols can be repaired. Moreover, only modes and types are employed to
come up with a corrected program; no finer semantic information is taken into
consideration which might improve the quality of the repair.

We are not aware of any formal antecedent of the narrowing-driven approach
in the PE literature. A closer, automatic approach is that of positive supercom-
pilation [71], whose basic operation is driving [74], a unification-based trans-
formation mechanism which is somewhat similar to (lazy) narrowing. Another
related work is the framework of conjunctive partial deduction (CPD), which
aims at achieving unfold/fold-like transformations within fully automated PD
[52]. Similarly to conjunctive partial deduction [52] and supercompilation [74],
NPE combines some good features of deforestation [75], partial evaluation [50],
and PD [55,61].

All the narrowing–based techniques for program transformation and debug-
ging that are overviewed in this paper have been implemented in a collection of
tools that are publicly available at www.dsic.upv.es/users/elp/soft.html



Transformation and Debugging of Functional Logic Programs 295

Acknowledgements

This paper is a modest attempt to summarize twenty years of research on
narrowing-based program manipulation in Italy by reviewing the main lines of
research and contributions of the authors in the following fields: program trans-
formation, partial evaluation and program debugging of functional logic pro-
grams. Many thanks are due to Francisco Correa, Ginés Moreno, and Germán
Vidal, large part of the material here reported was developed with their collabo-
ration. Finally, we are very thankful to the anonymous referees for their remarks
that allowed us to improve our paper.

References

1. Ajiro, Y., Ueda, K.: Kima — an Automated Error Correction System for Concur-
rent Logic Programs. Automated Software Engineering 19, 67–94 (2002)

2. Albert, E., Alpuente, M., Hanus, M., Vidal, G.: A Partial Evaluation Framework
for Curry Programs. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.) LPAR
1999. LNCS (LNAI), vol. 1705, pp. 376–395. Springer, Heidelberg (1999)

3. Alpuente, M., Baggi, M., Ballis, D., Falaschi, M.: A Fold/Unfold Transformation
Framework for Rewrite Theories and its Application to CCT. In: Proc. 2010 ACM
SIGPLAN Symp. on Partial Evaluation and Semantics-based Program Manipula-
tion (PEPM), pp. 43–52. ACM, New York (2010)

4. Alpuente, M., Ballis, D., Correa, F.J., Falaschi, M.: Automated Correction of
Functional Logic Programs. In: Degano, P. (ed.) ESOP 2003. LNCS, vol. 2618,
pp. 54–68. Springer, Heidelberg (2003)

5. Alpuente, M., Comini, M., Escobar, S., Falaschi, M., Lucas, S.: Abstract Diagnosis
of Functional Programs. In: Leuschel, M., Bueno, F. (eds.) LOPSTR 2002. LNCS,
vol. 2664, pp. 1–16. Springer, Heidelberg (2003)

6. Alpuente, M., Correa, F., Falaschi, M.: Declarative Debugging of Functional Logic
Programs. In: Gramlich, B., Lucas, S. (eds.) Proc. Int’l Workshop on Reduction
Strategies in Rewriting and Programming, WRS 2001. ENTCS, vol. 57. Elsevier,
Amsterdam (2001)

7. Alpuente, M., Correa, F., Falaschi, M.: A Debugging Scheme for Functional Logic
Programs. In: Hanus, M. (ed.) Proc. 10th Int’l Workshop on Functional and (Con-
straint) Logic Programming, WFLP 2001. ENTCS, vol. 64. Elsevier, Amsterdam
(2002)

8. Alpuente, M., Falaschi, M., Julián, P., Vidal, G.: Specialization of Lazy Func-
tional Logic Programs. In: Proc. ACM SIGPLAN Conf. on Partial Evaluation and
Semantics-Based Program Manipulation, PEPM 1997. Sigplan Notices, vol. 32(12),
pp. 151–162. ACM Press, New York (1997)

9. Alpuente, M., Falaschi, M., Julián, P., Vidal, G.: Uniform Lazy Narrowing. Journal
of Logic and Computation 13(2), 287–312 (2003)

10. Alpuente, M., Falaschi, M., Levi, G.: Incremental Constraint Satisfaction for Equa-
tional Logic Programming. Theoretical Computer Science 142(1), 27–57 (1995)

11. Alpuente, M., Falaschi, M., Manzo, F.: Analyses of Unsatisfiability for Equational
Logic Programming. Journal of Logic Programming 22(3), 221–252 (1995)

12. Alpuente, M., Falaschi, M., Moreno, G., Vidal, G.: Safe folding/unfolding with
conditional narrowing. In: Hanus, M., Heering, J., Meinke, K. (eds.) ALP 1997
and HOA 1997. LNCS, vol. 1298, pp. 1–15. Springer, Heidelberg (1997)



296 M. Alpuente, D. Ballis, and M. Falaschi

13. Alpuente, M., Falaschi, M., Moreno, G., Vidal, G.: An Automatic Composition
Algorithm for Functional Logic Programs. In: Jeffery, K., Hlaváč, V., Wiedermann,
J. (eds.) SOFSEM 2000. LNCS, vol. 1963, pp. 289–297. Springer, Heidelberg (2000)

14. Alpuente, M., Falaschi, M., Moreno, G., Vidal, G.: Rules + Strategies for Trans-
forming Lazy Functional Logic Programs. Theoretical Computer Science 311(1-3),
479–525 (2004)

15. Alpuente, M., Falaschi, M., Vidal, G.: Narrowing-driven Partial Evaluation of Func-
tional Logic Programs. In: Riis Nielson, H. (ed.) ESOP 1996. LNCS, vol. 1058,
pp. 45–61. Springer, Heidelberg (1996)

16. Alpuente, M., Falaschi, M., Vidal, G.: Partial Evaluation of Functional Logic Pro-
grams. ACM Transactions on Programming Languages and Systems 20(4), 768–844
(1998)

17. Alpuente, M., Falaschi, M., Vidal, G.: A Unifying View of Functional and Logic
Program Specialization. ACM Computing Surveys 30(3es), 9es (1998)

18. Alpuente, M., Hanus, M., Lucas, S., Vidal, G.: Specialization of functional logic
programs based on needed narrowing. TPLP 5(3), 273–303 (2005)

19. Antoy, S.: Evaluation strategies for functional logic programming. J. Symb. Com-
put. 40(1), 875–903 (2005)

20. Antoy, S., Echahed, R., Hanus, M.: A Needed Narrowing Strategy. Journal of the
ACM 47(4), 776–822 (2000)

21. Arts, T., Giesl, J.: Termination of Term Rewriting using Dependency Pairs.
TCS 236(1-2), 133–178 (2000)

22. Bellia, M., Levi, G.: The relation between logic and functional languages. Journal
of Logic Programming 3, 217–236 (1986)

23. Bert, D., Echahed, R.: On the Operational Semantics of the Algebraic and Logic
Programming Language LPG. In: Reggio, G., Astesiano, E., Tarlecki, A. (eds.)
Abstract Data Types 1994 and COMPASS 1994. LNCS, vol. 906, pp. 132–152.
Springer, Heidelberg (1995)

24. Bostrom, H., Idestam-Alquist, P.: Induction of Logic Programs by Example–guided
Unfolding. Journal of Logic Programming 40, 159–183 (1999)

25. Burstall, R.M., Darlington, J.: A Transformation System for Developing Recursive
Programs. Journal of the ACM 24(1), 44–67 (1977)

26. Santana de Oliveira, A., Kirchner, C., Kirchner, H.: Analysis of Rewrite-Based
Access Control Policies. In: Proc. 3rd Int’l Workshop on Security and Rewriting
Techniques, SecreT 2008. ENTCS. Elsevier, Amsterdam (2008)

27. Caballero, R., Rodŕıguez Artalejo, M., del Vado Vı́rseda, R.: Declarative Diagnosis
of Missing Answers in Constraint Functional-Logic Programming. In: Garrigue, J.,
Hermenegildo, M.V. (eds.) FLOPS 2008. LNCS, vol. 4989, pp. 305–321. Springer,
Heidelberg (2008)

28. Caballero-Roldán, R., López-Fraguas, F.J., Rodŕıquez Artalejo, M.: Theoretical
Foundations for the Declarative Debugging of Lazy Functional Logic Programs. In:
Kuchen, H., Ueda, K. (eds.) FLOPS 2001. LNCS, vol. 2024, pp. 170–184. Springer,
Heidelberg (2001)

29. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J.,
Talcott, C.: All About Maude - A High-Performance Logical Framework. Springer,
New York (2007)

30. Comini, M., Levi, G., Meo, M.C., Vitiello, G.: Abstract diagnosis. Journal of Logic
Programming 39(1-3), 43–93 (1999)

31. Cousot, P., Cousot, R.: Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In: Proc.
Fourth ACM Symp. on Principles of Programming Languages, pp. 238–252 (1977)



Transformation and Debugging of Functional Logic Programs 297

32. Echahed, R.: On completeness of narrowing strategies. In: Dauchet, M., Nivat, M.
(eds.) CAAP 1988. LNCS, vol. 299, pp. 89–101. Springer, Heidelberg (1988)

33. Escobar, S., Meadows, C., Meseguer, J.: A Rewriting-Based Inference System
for the NRL Protocol Analyzer and its Meta-Logical Properties. TCS 367(1-2),
162–202 (2006)

34. Escobar, S., Meseguer, J.: Symbolic model checking of infinite-state systems using
narrowing. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 153–168. Springer,
Heidelberg (2007)

35. Etalle, S., Gabbrielli, M.: Modular Transformations of CLP Programs. In: Sterling,
L. (ed.) Proc. 12th Int’l Conf. on Logic Programming. The MIT Press, Cambridge
(1995)

36. Falaschi, M., Levi, G., Martelli, M., Palamidessi, C.: A new Declarative Semantics
for Logic Languages. In: Kowalski, R., Bowen, K. (eds.) Proc. Fifth Int’l Conf. on
Logic Programming, pp. 993–1005. The MIT Press, Cambridge (1988)

37. Fay, M.: First Order Unification in an Equational Theory. In: Proc. of 4th Int’l
Conf. on Automated Deduction, CADE 1979, pp. 161–167 (1979)

38. Ferrand, G.: Error Diagnosis in Logic Programming, and Adaptation of
E.Y.Shapiro’s Method. Journal of Logic Programming 4(3), 177–198 (1987)

39. Ferri, C., Hernández, J., Ramı́rez, M.J.: Incremental Learning of Functional
Logic Programs. In: Kuchen, H., Ueda, K. (eds.) FLOPS 2001. LNCS, vol. 2024,
pp. 233–247. Springer, Heidelberg (2001)

40. Fribourg, L.: SLOG: a logic programming language interpreter based on clausal
superposition and rewriting. In: Proc. Second IEEE Int’l Symp. on Logic Pro-
gramming, pp. 172–185. IEEE, New York (1985)

41. Hanus, M.: The Integration of Functions into Logic Programming: From Theory
to Practice. Journal of Logic Programming 19&20, 583–628 (1994)

42. Hanus, M.: A unified computation model for functional and logic programming.
In: Proc. 24th ACM Symp. on Principles of Programming Languages, Paris,
pp. 80–93. ACM, New York (1997)

43. Hanus, M.: Multi-paradigm Declarative Languages (invited tutorial). In: Dahl, V.,
Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 45–75. Springer, Heidelberg
(2007)

44. Hanus, M., Kuchen, H., Moreno-Navarro, J.J.: Curry: A Truly Functional Logic
Language. In: Proc. ILPS 1995 Workshop on Visions for the Future of Logic Pro-
gramming, pp. 95–107 (1995)

45. Hanus, M., Prehofer, C.: Higher-Order Narrowing with Definitional Trees. Journal
of Functional Programming 9(1), 33–75 (1999)

46. Hanus, M. (ed.): Curry: An Integrated Functional Logic Language (ver. 0.8.2)
(2006), http://www.informatik.uni-kiel.de/~curry

47. Hölldobler, S.: Foundations of Equational Logic Programming. LNCS (LNAI),
vol. 353. Springer, Heidelberg (1989)

48. Hullot, J.M.: Canonical Forms and Unification. In: Bibel, W. (ed.) CADE 1980.
LNCS, vol. 87, pp. 318–334. Springer, Heidelberg (1980)

49. Hussman, H.: Unification in Conditional-Equational Theories. In: Caviness, B.F.
(ed.) EUROCAL 1985. LNCS, vol. 204, pp. 543–553. Springer, Heidelberg (1985)

50. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program
Generation. Prentice-Hall, Englewood Cliffs (1993)

51. Klop, J.W.: Term Rewriting Systems. In: Abramsky, S., Gabbay, D., Maibaum, T.
(eds.) Handbook of Logic in Computer Science, vol. I, pp. 1–112. Oxford University
Press, Oxford (1992)

http://www.informatik.uni-kiel.de/~curry


298 M. Alpuente, D. Ballis, and M. Falaschi

52. Leuschel, M., De Schreye, D., de Waal, A.: A Conceptual Embedding of Folding
into Partial Deduction: Towards a Maximal Integration. In: Maher, M. (ed.) Proc.
the Joint Int’l Conf. and Symp. on Logic Programming, JICSLP 1996, pp. 319–332.
The MIT Press, Cambridge (1996)

53. Levi, G., Palamidessi, C., Bosco, P.G., Giovannetti, E., Moiso, C.: A complete
semantics caracterization of K-LEAF, a logic language with partial functions. In:
Proc. Second IEEE Symp. on Logic In Computer Science, pp. 318–327. IEEE,
New York (1987)

54. Lloyd, J.W.: Debugging for a declarative programming language. Machine Intelli-
gence 15 (1998)

55. Lloyd, J.W., Shepherdson, J.C.: Partial Evaluation in Logic Programming. Journal
of Logic Programming 11, 217–242 (1991)

56. López-Fraguas, F.J., Sánchez Hernández, J.: Toy: A multiparadigm declarative
system. In: Narendran, P., Rusinowitch, M. (eds.) RTA 1999. LNCS, vol. 1631,
pp. 244–247. Springer, Heidelberg (1999)

57. López-Fraguas, F.J., Rodŕıguez-Hortalá, J., Sánchez-Hernández, J.: A simple
rwwrite notion for call-time choice semantics. In: Proc. 9th International ACM
SIGPLAN Conference on Principles and Practice of Declarative Programming
(PPDP 2007), pp. 197–208. ACM, New York (2007)

58. López-Fraguas, F.J., Rodŕıguez-Hortalá, J., Sánchez-Hernández, J.: A flexible
framework for programming with non-deterministicfunctions. In: Proc. 2009 ACM
SIGPLAN Symp. on Partial Evaluation and Semantics-based Program Manipula-
tion (PEPM), pp. 91–100. ACM, New York (2009)

59. López-Fraguas, F.J., Rodŕıguez-Hortalá, J., Sánchez-Hernández, J.: Narrowing for
first order functional logic programs with call-time choice semantics. In: Seipel, D.,
Hanus, M., Wolf, A. (eds.) INAP 2007. LNCS, vol. 5437, pp. 206–222. Springer,
Heidelberg (2009)

60. Marlow, S., Iborra, J., Pope, B., Gill, A.: A Lightweight Interactive Debugger
for Haskell. In: Keller, G. (ed.) Proceedings of the ACM SIGPLAN Workshop
on Haskell, Haskell 2007, Freiburg, Germany, September 30, pp. 13–24. ACM,
New York (2007)

61. Martens, B., Gallagher, J.: Ensuring Global Termination of Partial Deduction while
Allowing Flexible Polyvariance. In: Sterling, L. (ed.) Proc. ICLP 1995, pp. 597–611.
MIT Press, Cambridge (1995)

62. Meseguer, J., Thati, P.: Symbolic reachability analysis using narrowing and its
application to verification of cryptographic protocols. Higher-Order and Symbolic
Computation 20(1-2), 123–160 (2007)

63. Moreno-Navarro, J.J., Rodŕıguez-Artalejo, M.: Logic Programming with Functions
and Predicates: The language Babel. Journal of Logic Programming 12(3), 191–224
(1992)

64. Muggleton, S.: Inductive Logic Programming. New Generation Computing 8(3),
295–318 (1991)

65. Naish, L.: A declarative debugging scheme. Journal of Functional and Logic Pro-
gramming 1997(3) (April 1997)

66. Padawitz, P.: Computing in Horn Clause Theories. EATCS Monographs on Theo-
retical Computer Science, vol. 16. Springer, Berlin (1988)

67. Pettorossi, A., Proietti, M.: Transformation of Logic Programs: Foundations and
Techniques. Journal of Logic Programming 19,20, 261–320 (1994)

68. Reddy, U.S.: Narrowing as the Operational Semantics of Functional Languages.
In: Proc. Second IEEE Int’l Symp. on Logic Programming, pp. 138–151. IEEE,
New York (1985)



Transformation and Debugging of Functional Logic Programs 299

69. Riesco, A., Rodŕıguez-Hortalá, J.: Programming with Singular and Plural Non-
deterministic Functions. In: Proc. 2010 ACM SIGPLAN Symp. on Partial Eval-
uation and Semantics-based Program Manipulation (PEPM), pp. 83–92. ACM,
New York (2010)

70. Shaphiro, E.Y.: Algorithmic Program Debugging. The MIT Press, Cambridge
(1982)

71. Sørensen, M.H., Glück, R., Jones, N.D.: A Positive Supercompiler. Journal of Func-
tional Programming 6(6), 811–838 (1996)

72. Tamaki, H., Sato, T.: Unfold/Fold Transformations of Logic Programs. In:
Tärnlund, S. (ed.) Proc. Second Int’l Conf. on Logic Programming, Uppsala,
Sweden, pp. 127–139 (1984)

73. TeReSe (ed.): Term Rewriting Systems. Cambridge University Press, Cambridge
(2003)

74. Turchin, V.F.: The Concept of a Supercompiler. ACM Transactions on Program-
ming Languages and Systems 8(3), 292–325 (1986)

75. Wadler, P.L.: Deforestation: Transforming programs to eliminate trees. Theoretical
Computer Science 73, 231–248 (1990)



25 Years of Applications of Logic Programming

in Italy

Alessandro Dal Palù1 and Paolo Torroni2

1 Dip. di Matematica, Università di Parma
alessandro.dalpalu@unipr.it
2 DEIS, Università di Bologna

paolo.torroni@unibo.it

Abstract. We present a review of practical applications of Logic Pro-
gramming appeared in Italy since 1985. We classify them according to
their area of application and discuss some trends emerged in the latest
developments. Notwithstanding this survey is far to be comprehensive, it
shows that Logic Programming successfully evolved and quickly adapted
to new challenges offered by a notable variety of application areas.

1 Introduction

The beginning of Logic Programming (LP) applications was driven by the in-
vestments and interest by private industries, attracted by the novelty and poten-
tialities of this technology. The enthusiasm of those years was great. Around the
time GULP was founded in 1987, the main Italian ICT and consumer electronics
event, SMAU, was discovering Artificial Intelligence (AI) [16].

AI made its debut in the Italian market from a variety of stands. Around the
same time, IJCAI was being held in Milan, witnessing an already intense research
activity in the academic world. The heterogeneous mix of AI promoters included
small enterprises of academic roots, such as Delphi, a University of Pisa’s spin-off
then located in Viareggio, and big actors such as IBM, and included many more
in between. Back then AI mainly meant Expert Systems, and the use of Prolog
inference engines and the adoption of declarative technologies in general was con-
sidered a very promising approach. Nixdorf Italia, involved in Esprit-2 research
projects and in the development of air fleet optimization tools for Alitalia, was
using a development environment written in Prolog, called Twaice. IBM, Unisys,
Pirelli Informatica and Datitalia Processing, among others, were all promoting
expert systems for configuration and diagnosis which made use of knowledge
bases and declarative rules. IBM was pushing expert systems technologies by
announcing a series of AI courses.

The mid of 90s witnessed a change in the impact of LP into industries [130].
Even if, e.g., Constraint Logic Programming started to be employed as an ef-
fective tool to solve complex and industrial problems, applications were being
developed as stand-alone projects rather than integrated in the production line
mainstream. Programmers were not familiar with Prolog and thus it was difficult

A. Dovier, E. Pontelli (Eds.): 25 Years of Logic Programming, LNCS 6125, pp. 300–328, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



25 Years of Applications of Logic Programming in Italy 301

to estimate costs and performances of projects that included LP critical compo-
nents. Often the choice was then to move to traditional technologies. Finally, LP
was a tool developed and used by researchers and little low-level programming
skills were transferred to students [88].

In the latest 15 years, the scenario evolved and expanded widely. We are wit-
nessing the birth and rise of new application domains, alongside the evolution of
older application domains in which LP had been present since the 80s, addressed
with renewed vigor motivated by more modern LP-based solutions. Probably,
LP technologies are now ripe and stakeholders ready for their adoption. We can
rely on more efficient algorithms, on the achievements of CLP, on more powerful
machines, and on a better understanding of the their theoretical underpinnings.
Another reason why there are so many academic LP applications in Italy nowa-
days may be that, recently, funding agencies privilege applied research projects
rather than basic research. This happens both at the National level, and at the
European level, where most of Italian research is seeking funding.

On the downside, comparatively little Prolog is used for applications - despite
the availability of many implementations of it. We still note, as 15 years ago,
that only some companies use Prolog. However, from the LP education point
of view, the situation has improved since 1995. In 2007, GULP ran a survey
to evaluate the extent of computational logic teaching at Italian universities. It
turns out that nowadays declarative programming is being taught in 20 out of 94
Italian universities in around 50 courses, at various levels in computer science
and engineering curricula. Some of these courses have been running for as long
as 20 years. In 80% of the cases, the syllabus includes practical lab sessions
that teach students how to use SWI Prolog, SICStus, ECLiPSe or other Prolog
engines, Answer Set Programming (ASP) solvers such as DLV, SAT solvers and
model checkers.

This is the first work that surveys LP applications in Italy in 25 years. Due
to abundance of material we came across, we had to leave out many interesting
applications. Exhaustiveness was not our aim. In particular, we restricted this
survey to applications developed in Italy. Even if these are only a fraction of the
international panorama, they represent a significant body of work. Besides, our
resources did not permit us to run a more accurate investigation of industrial
applications. However, the managed to put together a very rich selection of
experiences, and at the same time to keep the scope of this overview as broad
as possible.

Our presentation is mainly thematic, and only marginally historical. The
reader interested in the historical developments of LP research and applications
in Italy will find more information in [121]. However, it is interesting to note
the extent to which applications domains have increased in the last 25 years. In
the early days, applications of LP especially focussed on a little number of do-
mains, such as robotics. During two decades instead many other new areas were
explored and, more importantly, in very recent years each application domain,
new or old, was addressed by at least one application.



302 A. Dal Palù and P. Torroni

2 Methodology and Organization of Contributions

The applications reported in this chapter, and the information we gathered
around them, is mainly the result of bibliography search and polls submitted
to mailing lists. In particular, we used the GULP mailing list and similar means
in order to contact colleagues that are or were involved in projects dealing with
LP. The answers to our poll gave us a non exhaustive, but significant collection
of projects and experiences, often described with passion and enthusiasm.

There are two drawbacks of our investigation that we could not handle with
our resources. The first one is that older applications are more difficult to dig and
for this reason our report appears to be biased towards more recent ones. Some
information about the early applications of LP in Italy can be found in [130].
The other drawback is that potentially many industrial applications are left out,
since we had no means to reach projects that are completely independent from
academia. Considering also the relevant number of students graduated with (at
least) the basics of LP, it is reasonable to imagine a number of independent
solutions that we are not aware of. Even if strongly biased by our poll method,
it is our belief that in the years the number of industrial applications has not
dramatically increased. We can also observe the lack of an organized and inter-
national developer’s network that is often a necessary condition for technology
transfer and dissemination in the industrial and commercial entourage.

In the presentation we arbitrarily divided the various applications into 14
categories, which correspond to individual subsections (see below):

1. industrial and commercial applications;
2. knowledge and information extraction, management and integration;
3. time tabling and rostering;
4. robotics;
5. graphics and design;
6. agent systems;
7. education, learning and cultural heritage;
8. software engineering;
9. verification;

10. natural language;
11. health care;
12. reasoning;
13. bioinformatics;
14. decision support, risk analysis and alarms.

It is a complex task to create independent partitions, thus some applications
may fall into more than one category. We tried to cluster them according to
their main application area.

Figure 1 shows the number of mentioned applications, as we categorized them.
The figure does not reflect any statistically meaningful information, but it serves
to show that LP has been broadly applied to very diverse areas.



25 Years of Applications of Logic Programming in Italy 303

Fig. 1. The distribution of applications reported in this chapter

3 Applications

We present here the list of applications, divided according to the main applica-
tion areas. We wish to clarify beforehands the intended meaning for the concept
of “application”, since this could be interpreted in different manners. As com-
monly used, the term “application” refers to some kind of project, developed
outside of the academia, in which a certain technology plays a central role. In
our survey, this kind of application goes under the category of industrial and
commercial applications. However these application are the minority, if com-
pared to the number of projects in which, for example, LP is used to solve
problems arising from other academic disciplines. Therefore, in this manuscript
we also consider to be an application, in an extended meaning, any project that
was inspired by any context (including academic and public administration),
that involved some LP technology and that developed at least to the stage of
a working prototype. Nevertheless, it is worthwhile noticing that many of the
“non-industrial/non-commercial” LP applications we reviewed have evolved into
prototypes and systems that have been, or are being further developed by in-
dustrial or commercial actors.

3.1 Industrial and Commercial Applications

One of the first commercial LP applications was OMAR (late 80s): an interactive
system, developed by Momigliano and colleagues, for predictive and reactive
routing of the Alitalia fleet(s) [134]. Its kernel was developed entirely in Quintus
Prolog and it consisted of 20000 lines of code. It was the largest system of its
kind. OMAR was not an expert system, but a scheduler in which routing was
modeled as a Constraint Satisfaction Problem (CSP), and constraints were about
maintenances, schedule optimization/flexibility, geopolitical issues and so on. It
had a GUI written in C that made use of the Quintus interface, whereas the
interface with the Alitalia flight information system was handled separately in
SQL.

Since at that time there were no dedicated CLP languages yet, Prolog proved
to be an ideal modeling and solving tool. Performance was improved by OMAR



304 A. Dal Palù and P. Torroni

relying on approximated CSP algorithms (backward/forward checking, network
consistency) rather than by standard backtracking, and by making non-deter-
minism as local as possible. Prolog thus proved to be a powerful prototyping and
delivery language.

Scientifically, the project was a success. The authors proved and experimen-
tally confirmed that the worst-case complexity was n2 in the number of aircrafts
and tasks. That meant that fleet routing was completed, e.g., in half a minute for
the DC-9 fleet (26 aircrafts, 170 flights plus associated constraints) including the
time to compute the dynamic data structures from the Alitalia database. Hu-
man experts took half to one hour to complete the task. Quality-wise, OMAR’s
routing solutions were comparable with those of a (human) senior scheduler.

Unfortunately, in spite of the technical quality and academic recognition of
the OMAR project, because of mere data ownership issues, OMAR could never
be used in practice.

In the early 90s we find two notable applications which also made it to the
market. IDEA [124] was an intelligent data retrieval system designed by Sancas-
sani and colleagues at DS Logics srl in Bologna for the Epidemiological Ob-
servatory of Emilia Romagna. IDEA attempted to formalize the interaction
between the data logical view and its real physical organization in databases.
SICStus-Objects (a Prolog distribution extended with object-oriented features)
was used to achieve an efficient implementation of an intelligent inference agent,
whose task was to translate an epidemiologist’s request for data into appropriate
database queries and vice versa. Logic played a central role. The use of Prolog,
with its well-understood semantics, made the semantics of IDEA reasoning rules
clear and easy to debug. Prolog was used both to implement logical inference
but also other non-logical components.

At the same time as IDEA, the SECReTS expert system [32] was being de-
veloped, in Prolog, by Chiopris and colleagues at ICON srl in collaboration with
an Italian credit institute (BPS). SECReTS was sold to and used by several
Italian banks to support the analysis of client-specific data. The application was
successful in dealing with large amounts of data coming from the Italian Central
Bank’s Risk Center, whereas other traditional tools used earlier often failed to
identify meaningful events and to set a clear boundary between monitoring and
diagnosis. LP could address situations that required non-trivial reasoning, which
languages such as SQL could not, and it was suitable for implementing classifi-
cation and diagnosis procedures that help providing the user with an intuitive
general view of the framework, instead of a sequence of raw alarms.

In recent times, Mascardi and colleagues (Genova) implemented a MAS pro-
totype [89,21] for Ansaldo STS, that monitors processes running in a railway
signalling plant, detects functioning anomalies, and provides support to the
early notification of problems to the Command and Control System Assistance.
The MAS has been implemented using DCaseLP, a multi-language prototyping
environment that provides libraries for integrating tuProlog1 agents into Jade

1 tuProlog [54,116] is a Prolog engine written in Java. See
http://www.alice.unibo.it/xwiki/bin/view/Tuprolog/

http://www.alice.unibo.it/xwiki/bin/view/Tuprolog/


25 Years of Applications of Logic Programming in Italy 305

(see [13] for more information on these tools). Prolog has proven to be extremely
well suited to the implementation of monitoring agents because of their intrinsic
rule-based nature. The developed prototype was essential to demonstrate the
functioning of the railway signalling system, which is now being developed using
procedural languages.

Another optimization problem coming from a famous shoe industry was solved
by Meneghetti (Udine) [92], with the application of Constraint Logic Program-
ming (CLP). Floor storage system is used in the shoe industry to store fashion
products of seasonal collections with low quantity and high variety. Since space
is costly and order picking must be rapid, stacking of shoe boxes should be opti-
mized. The problem is modeled by assigning an integer code to each box basing
on shoe characteristics (model, type, color, and size) and trying to force similar
boxes into near locations to improve workers ability of fast order retrieval. The
model is encoded in CLP and solved comparing different strategies, also using
Large Neighborhood Search. Mixing CLP and LNS revealed a powerful method-
ology for solving allocation problems in floor storage systems for the shoe indus-
try. Furthermore, the declarative nature of CLP allows the programmer to easily
describe what properties are required to the desired solution. Requirements can
be modified, added or deleted to adhere to a dynamic industrial environment
without changing the basic model, but only declaring new constraints, making
it adaptable and transferrable to different industrial realities.

3.2 Knowledge and Information Extraction, Management and
Integration

LP technologies have been used in the late 90s until 2004 by Milanese and col-
leagues (Udine) in the realization of MIRAGGIO: a prototypical design support
system oriented to the dynamic generation and modification of design data and
process models [38,37,96]. The MIRAGGIO prototype was implemented in LPA2

Prolog++ [136]. It was based on a mixed Object-Oriented and frame-based ap-
proach, with the aim of defining a flexible environment for design process mod-
eling, for the reuse of previous project results, the dynamic reconfiguration and
consistency check of data structures and the reuse of previously developed design
policies. To this end MIRAGGIO was using a two-level KDB. At the base level
lied a knowledge database managing rule-based engineering and design knowl-
edge, whereas at the meta-level lied the design system management rules, aimed
to implement autonomous design strategy planning and decision support capa-
bilities based on historical records and to specify its interactive behaviour with
the designer.

More recently information integration has largely been oriented towards on-
tologies. The use of LP languages such as Prolog to implement taxonomic rea-
soning is not new. We mention the Omega system for taxonomies by Attardi
(DELPHI s.p.a., Viareggio) and Simi (Pisa) dating back to 1986 [8]. However, it
is with the recent integration of ontological reasoners into high-performance LP

2 Logic Programming Associated ltd, London.



306 A. Dal Palù and P. Torroni

reasoners such as SWI-Prolog and DLV that we start to have the first applica-
tions with concrete potential for real-world exploitation. In the Italian landscape,
Leone and colleagues (Calabria) have been developing ontology-based knowledge
management solutions for several application domains based on the DLV system.
We mention some of them, and forward the interest reader to [18,75].

The industrial exploitation of DLV [82] in the area of Knowledge Management
is explored by two University of Calabria’s spin-off companies: Exeura s.r.l. and
DLVSYSTEM s.r.l. The latter licenses and maintains DLV. The former maintains
three industrial products: OntoDLV (ontology management) [117,118], OLEX
(document classification) [125,46], and HiLeX (information extraction) [123,122],
incorporating the DLV system as the computational core. OntoDLV is an on-
tology management and reasoning system, OLEX is a document classification
system and HiLeX is an information extraction system.

DLV has also been applied in the context of knowledge management at CERN
(the European Laboratory for Particle Physics) for knowledge manipulation on
large databases; in the context of E-Tourism and Automatic Itinerary Search
(in projects funded by the Government of the Calabria Region), and in the
Team Building application, developed for the port authority of the Gioia-Tauro
Seaport.

Finally, INFOMIX [81] is an information integration application capable of
dealing with incomplete and inconsistent data, built in cooperation with RODAN
systems, a commercial DBMS developer.

In all cases, according to Leone [80], the key factor for the success of this sort
of applications was the expressiveness of the ASP language and the ease of use
of the ASP system DLV, more than its efficiency.

3.3 Time Tabling and Rostering

Time tabling and rostering are some of the oldest applications of Logic Pro-
graming. Since 1985, Monfroglio has been developing and maintaining a high
school time-tabling application written in LPA Prolog [100]. The application
has been successfully experimented and adopted in educational institutions with
more than 50 classes. In the 80s the application would take a couple of hours to
return a results (much less on today’s hardware). The advantages of this appli-
cation with respect to other commercially available software is that it is flexible,
since the user can propose an initial personal timetable, and that its output is of
higher quality, since it is possible to achieve a better distribution of the teaching
load.

Since 2004, Gavanelli (Ferrara) has been applying CLP for timetabling at
Ferrara University’s School of Engineering [72]. The application was written in
CLP(FD) ECLiPSe. This is because timetabling is a classical combinatorial opti-
mization problem, for which CLP(FD) is particularly suited. The system accom-
modates non-overlapping constraints about students, teaching staff and venues,
and other constraints specifying student and teaching staff requirements, such as
those regarding the equipment, capacity of classrooms, distance, etc. Gavanelli’s
system is currently used. The application is successful. It provides timely results,



25 Years of Applications of Logic Programming in Italy 307

months before the start of lessons, thus enabling students to plan their curricu-
lum well in advance. Moreover, it was able to eliminate the overlapping between
elective and compulsory courses, thus addressing an existing unfortunate situ-
ation which was previously unsolved. Finally, CLP made it possible to specify
some constraints which were out of bound for hand-written timetables, such as
constraints on the timetables of students who switch curriculum from one year to
another. The application, which has produced its output as a HTML document,
is now interfaced instead with Google calendar: a more flexible format which
enables the integration with other applications developed at the University of
Ferrara.

Outside of the educational environment, among the first timetabling appli-
cations we also mention the industrial-level one developed by Momigliano and
colleagues within the OMAR project (see above).

Similar to the school timetabling problem, the crew rostering problem was
also addressed using LP by Caprara, Focacci, Lamma, Mello, Milano, Toth and
Vigo (Bologna) in 1998. To this end, the authors use a mixture of AI and OR
techniques, namely OR efficient procedures based on a mathematical approach to
the problem, and CLP for knowledge representation, achieving declarativeness,
non-determinism and an incremental style of programming. This line of research
would later very successfully evolve into the integration of CP, AI, and OR
techniques [15].

3.4 Robotics

The very birth of LP in Italy happened in tight connection with research on
Robotics. The first Prolog installation dates back in 1974, when Pagello brought
from Grenoble a couple of tapes and two boxes full of punchcards with a copy of
Alain Colmerauer’s Prolog interpreter written in FORTRAN IV. Pagello had the
interpreter running on a Univac 1108 machine at Politecnico di Milano. Later in
1975 a Prolog interpreter was also available at the University of Padova. In this
way, Pagello and his colleagues could start developing Prolog applications for
planning in robotic environments, addressing the Robot plan-formation problem
introduced in Edinburgh by Bobrow. At that time, Bobrow’s problem was being
addressed by Hewitt, Sussman, McDermott and others in the US, mainly by way
of procedural constructs.

The results of this line of research was tested on a physical robot: a Cartesian
manipulator provided by Olivetti. The main purpose was the automatic gener-
ation of action sequences for robotic mechanical assembly. The Olivetti robot
was programmed in a language developed by Pagello and colleagues at the Uni-
versity of Padova and Politecnico di Milano. LP would provide the tools needed
to design more easily a higher level planning system to automatically generate
lower level instructions for the robot. The practical impact of this application
was however limited. First order predicate calculus turned out to be suitable
only for a not too complex and quite stable working environment with little in-
determinism, whereas more complex assembly problems requiring sophisticated
sensors, and mobile robotics, would be out of reach. The dichotomy between



308 A. Dal Palù and P. Torroni

procedural and declarative programming grew larger while the limitations of the
former were emphasized by the increasing complexity of robotic devices.

The interest in robotic application did not die with this first experience.
In 1993 Natali, Omicini and Zanichelli (Bologna) [109] proposed an architecture
for a robot programming environment based on Prolog, extended with control
capability towards program structuring and concurrence. The architecture re-
flected the interest, growing at that time, for the intelligent agent programming
paradigms and theories. Thanks to 15 years of advances in LP, this research had
overcome much of the limitations of earlier attempts, however its outcomes were
not directly applied to physical robots. Ten years later, Galizia [70] uses Dis-
junctive Logic Programming, and answer set planning in particular, to improve
the Space Shuttle’s planning capabilities under system malfunction conditions.
Galizia implemented a system in DLV, building on work previously conducted
at Texas Tech University’s KR Lab [110]. Experimental evaluation was done by
comparing the outputs of the newer system with those of the older one, but not
on physical robots.

Interestingly, we find that in recent times the application of LP techniques is
attracting the attention of strong Robotics research groups again. In 2007 Scalzo,
Nardi and colleagues [25] define a robotic architecture that enables the design
of robotic systems which exploit context information to adapt the behaviour
of all their subsystems. Context information is modeled explicitly, to allow for
automated reasoning to operate and suitably affect the robot’s behaviour. LP
rules specify the robot subsystems’ control. During a control cycle, the system
acquires data from the sensors and from its subsystems (e.g., navigation and
planning), extracts symbolic contextual information from the analysis of data,
and feeds it into a knowledge base and rule-based reasoning system, which in
turn feeds control parameters back to the robot’s subsystems. The approach has
been implemented and validated on simulated and on physical robots.

3.5 Graphics and Design

In the graphics domain, we find applications of LP research mainly on computer-
aided design and manufacturing and in 3D recognition.

In the late 80s, Milanese and colleagues (Udine) investigated the integration of
the Graphics Kernel System (GKS) standard and Prolog, both for graphical en-
tities modeling and for the implementation of a distributed graphics system [94].
Prolog was considered for its descriptive programming style, enabling modeling
of graphical entities via their basic elements and relations. Besides, it would ac-
commodate simple transformation rules to modify or create objects of increasing
complexity. In fact, one of the limitations of GKS, which was starting to become
a wide-spread standard, was its inability to build complex objects bottom-up
starting from simpler ones, to modify parts of graphical objects, and to associate
them with information regarding their nature and functionality. Milanese and
colleagues extended Prolog with communication and modularization constructs
to propose a distributed, multi-processor GKS model, using a two-level archi-
tecture. The base level would manage general implementation schemas, while



25 Years of Applications of Logic Programming in Italy 309

the meta-level would accommodate their instantiation in the overall graphics
scheme. Meta-programming would accommodate customization and reconfigu-
ration methodologies in a flexible way.

In the early 90s, Milanese worked with Dulli and Visentin (Padova) on the
definition of the KADMOS declarative language and its KAMPE developing en-
vironment to create and manipulate hierarchical models of graphical entities for
CAD/CAM applications [95,59,58,60]. KADMOS was a mixed logic program-
ing and object-oriented language. Inference was used to create graphical entities
that need to be validated with respect to design constraints, whereas object-
orientation was needed for inheritance, classification, and modularization. Prolog
was chosen as the implementation language for KADMOS.

In a research carried out between 1999 and 2002, Gavanelli, Lamma, Pic-
cardi (Ferrara), Cucchiara (Modena), Mello, and Milano (Bologna) applied the
CSP paradigm to 3D object recognition [44,45]. They proposed an approach for
recognizing 3D CAD-made objects in complex range images containing several
overlapped and different objects. The reasoning engine was based on Interactive
CSP, to guide the acquisition of surfaces on-demand and focus only on significant
image parts.

More recently, Farenzena and Fusiello (Verona) and Dovier (Udine) studied
the use of interval analysis and CLP to obtain an accurate geometric model of
a scene that rigorously takes into account the propagation of data errors and
roundoff [68].

3.6 Agent Systems

LP has given a large contribution to the development of agent and Multi-Agent
System (MAS) specifications and verification languages and techniques. Yet,
before agents had become so popular, at the end of the 80s Terna (Torino)
implemented a Prolog for microeconomic behaviour simulation which we can
also include in this section [132]. The program was modeling the Bank of Italy,
Industry and Unions, to build an interaction system and implement in this way
a sort of economics game.

Towards the end of the 90s, Ciampolini, Mello and Torroni (Bologna) and
Lamma (Ferrara) developed an architecture and language for multi-agent hy-
pothetical reasoning based on Abductive Logic Programming (ALP). The ar-
chitecture, ALIAS [33], was considering agents made of two modules: at the
bottom level one for hypothetical reasoning, and at the top level one for commu-
nication. The language, LAILA [34], was offering communication primitives to
accommodate distributed reasoning in collaboration, to produce globally consis-
tent results, or in competition, to produce locally consistent results. ALIAS has
been only applied to toy examples in agent negotiation, recommendation systems
and judicial evaluation of criminal evidence [35]. However, the ideas proposed in
ALIAS have been further developed in the DARE system developed at Imperial
College London [84].



310 A. Dal Palù and P. Torroni

Contemporary to the development of ALIAS, we find work on logic-based
agents by Torroni (Bologna) and Toni and Sadri (Imperial College London)
[127,128]. The use of ALP was crucial to the definition of negotiation policies
in a declarative way, with an operational execution model underneath. These
ideas remained central in the later EU-funded SOCS project,3 in which 6 uni-
versities in Europe, including Ferrara, Bologna and Pisa, collaborated in the
definition of a computational logic model for the description, analysis and veri-
fication of global and open societies of heterogeneous logic based agents, named
computees [133]. The SOCS models of agents and agent interaction were heavily
based upon proof procedures for (various extensions of) LP. In particular, the op-
erational model for KGP agents [79] relies upon CIFF [85], a proof procedure for
ALP with constraints, and Gorgias, for LP with priorities [53]. The operational
model for agent societies [1] instead relies upon SCIFF [2], a proof procedure for
ALP with arbitrarily quantified variables, CLP constraints, dynamic event han-
dling and reasoning with expectations. KGP and SCIFF have been applied to
a variety of domains, including normative MAS [126], recommendation systems,
ambient intelligence [131], business process interaction, medical guidelines, Web
service choreographies [29,30], agent-oriented requirements engineering [24], and
argumentation [135].

One of the most recent applications of SCIFF is the modeling and verification
of declarative and open interaction models specified in the graphical ConDec
language [115]. A mapping has been defined between ConDec and SCIFF [103].
Thanks to such a mapping, and to a number of SCIFF-based tools and exten-
sions, it is possible to monitor and verify at run-time business process execu-
tions with respect to the model, and analyze traces after execution (process
mining) [26,27]. To this end, a Pro-M4 plug-in has been implemented based on
SCIFF. The fully-fledged specification, verification and analysis framework is
called CLIMB (Computational Logic for the verification and Modeling of Busi-
ness processes and choreographies)5. CLIMB was used in national projects and
on some case studies of chemical and physical analysis of waste water [83] in
collaboration with HERA, a private agency, and ENEA, the Italian authority
for energy and environment, and also in collaboration with other private man-
ufacturing companies. The application of SCIFF for the static verification of
business processes has been evaluated and successfully compared with state-of-
the-art model checking techniques [104] to find that it offers greater flexibility
and scalability in a number of realistic cases.

The SOCS project also produced the PROSOCS agent platform [20] incor-
porating KGP agents and SCIFF to support the social infrastructure for inter-
agent interactions. PROSOCS has been extended within the more recent
ARGUGRID project,6 which involved 8 partners, including Pisa and 3 industrial
European partners. ARGUGRID focused on e-business applications of LP-based

3 See http://lia.deis.unibo.it/research/socs/
4 See http://prom.win.tue.nl/tools/prom/
5 See http://lia.deis.unibo.it/research/climb/
6 See http://www.argugrid.eu

http://lia.deis.unibo.it/research/socs/
http://prom.win.tue.nl/tools/prom/
http://lia.deis.unibo.it/research/climb/
http://www.argugrid.eu


25 Years of Applications of Logic Programming in Italy 311

argumentation agents to support the decision-making of intelligent agents
“representing” buyers and sellers of products in electronic marketplaces (e-
marketplaces).7 Agents in ARGUGRID are built using the GOLEM agent envi-
ronment [22], which is a generalisation of the PROSOCS platform. The GOLEM
platform is developed using Java and LP tools such as tuProlog (see above).
GOLEM is specified in the ambient event calculus [23], a logic-based formalism
that supports the representation of a distributed agent environment as a persis-
tent composite structure evolving over time. Such a complex structure supports
the interaction between agents, objects, and containers, entities that have their
own external observable state and can be distributed over a network. Following
the successful deployment of GOLEM in ARGUGRID, the system is being de-
ployed in a commercial setting in collaboration with Thinking Safe Ltd, UK,8

to provide resilience in autonomic networks and support business continuity.9

Since 1999, Costantini and Tocchio (L’Aquila) have been developing the DALI
platform to specify agents and MAS based on computational logics [43]. DALI is
interoperable with other FIPA-compliant agent platforms.10 DALI is a general-
purpose and agent-oriented logical language implemented in SICStus Prolog.
DALI has been used for industrial applications and is patent pending. It is also
used to teach AI and agents at L’Aquila.11

Since 1998, Omicini, Ricci, Denti, Viroli (Bologna, Cesena campus) Zam-
bonelli (Modena and Reggio-Emilia) and Cremonini (Milano, Crema campus)
have been working on the TuCSoN service infrastructure12 [113,114] for the co-
ordination and communication among independent and concurrent software com-
ponents, such as agents. Interaction relies on tuple centers, i.e., programmable
tuple spaces characterized by a reactive behaviour that can be programmed at
run-time. Tuples are first-order Prolog terms. The behaviour of tuple spaces is
expressed via the ReSpecT language [112]. TuCSoN is written in Java, while
ReSpecT relies on the tuProlog library (see above). To date, TuCSoN has been
used in a number of applications, including the implementation of the Agent
Coordination Context [119], to manage the interaction space between agent and
environment, of the minority game [111], for experimentation of new simula-
tion models for systems biology, based on MAS, especially in relation with the
Agents & Artifacts model [101], in the implementation of a workflow manage-
ment system prototype for virtual organizations [120], and for pervasive smart
environments.

See [13] for a more detailed account of the relations between the declarative
and the MAS communities in Italy.

7 For more insight on argumentation in LP, see [74], in this book.
8 See http://www.thinkingsafe.com/
9 See http://cacm.acm.org/news/44273

10 FIPA is an IEEE Computer Society standards organization that promotes agent-
based technology and the interoperability of its standards with other technologies.
See http://www.fipa.org/

11 See http://www.di.univaq.it/stefcost/
12 See http://alice.unibo.it/xwiki/bin/view/TuCSoN/

http://www.thinkingsafe.com/
http://cacm.acm.org/news/44273
http://www.fipa.org/
http://www.di.univaq.it/stefcost/
http://alice.unibo.it/xwiki/bin/view/TuCSoN/


312 A. Dal Palù and P. Torroni

3.7 Education, Learning and Cultural Heritage

Since its early days, dating back to 1985, LP has been used for education of high
school teachers and in experimental projects with their students by Casadei
(Bologna). Prolog was introduced and used for problem solving in diverse dis-
ciplines, to foster discussion and improve general problem solving skills, and to
run problem solving competitions. From the previously mentioned enquiry made
by GULP in 2007, about the teaching of LP at Italian Universities, it emerges
that Prolog and other LP languages are currently being used in many curricula
for teaching subjects such as AI reasoning, knowledge representation, logics and
theorem proving.

Among others, Bandini, Mosca and Palmonari (Milano Bicocca) used DLV
for education-related initiatives, such as archeological analysis and classification
of antique ceramics [108,87,107]. This project was conducted in collaboration
with Bologna’s Archeology department and more recently with the Archeometry
research group at the University of Barcelona (EURAB). The project delivered
a system for the automatic generation of stratigraphic diagrams, and for related
abductive (diagnostic) reasoning tasks [86].13 DLV lends itself very well to the
integration with external computational resources, that is components, written
in other procedural languages, for the efficient computation of functions and data
structures such as lists and sets. Data integration in DLV was particularly useful.
Preliminary results on this application are available at the Ipotesi di Preistoria
Web site.14

DLV has also been used in two other e-learning applications: MASEL and
EXAM. The former [71] is an e-learning platform that features an intelligent
core tha is able to build semi-automatically learning paths form a database
of learning objects by exploiting the DLV system. EXAM [77] is a complete
on-line exam taking portal. Teachers and students are assisted in the whole
process of assessment test building, exam taking, and test correction. One of
the most interesting features of the portal is the possibility to automatically
generate assessment tests based on user dened constraints. The assessment test
generation engine of the EXAM portal exploits DLV.

From 2005 to 2007, Costantini, Mostarda, Tocchio and Tsintza (L’Aquila)
exploited DALI agents (see above) to implement two ambient-intelligence sce-
narios. One involves cultural assets fruition, i.e., the possibility of accessing and
enjoying cultural assets. This scenario concerns the dissemination of information
about cultural assets; for example, users can visit a museum or archaeological
site and receive on their mobile devices appropriate, personalized information
about that place. The second scenario involves cultural assets monitoring, which
concerns securely transporting cultural assets from the owner organization to a
renter organization and back. The DALICA system [40,41], which implements
these scenarios in DALI, has been demonstrated in Villa Adriana (tivoli, Rome)
to an international audience of EC officers, local institutions, CUSPIS partners,

13 See [74] to know more about abduction in LP.
14 See http://ipotesidipreistoria.cib.unibo.it/article/view/1604 (in Italian).

http://ipotesidipreistoria.cib.unibo.it/article/view/1604


25 Years of Applications of Logic Programming in Italy 313

representatives of the Italian Ministry of Cultural Heritage, and a delegation of
the Chinese Ministry of Cultural Heritage.

In 2007, Gennari and Mich (Bolzano) started developing an educational Web-
based tool called LODE, for teaching learning-impaired children, especially deaf
children [73,93,7]. LODE presents children with stories and exercises for reason-
ing, globally, on the temporal dimension of the stories. On the server side, a first
prototype of LODE used the ECLiPSe CLP system to generate exercises and
to check their temporal consistency. Since 2009, LODE is a project financed by
CARITRO.15

3.8 Software Engineering

The Oikos project [4,5,6,36] was mainly carried on by Montangero (Pisa) and
Ciancarini (Bologna) in the first half of the 90s. The goal of the Oikos Project
was to describe, in a declarative style, the software development processes and
to use LP to program and execute software processes.

Oikos is a distributed software development environment where the activi-
ties’ workflow can be modeled. It is specified and implemented using Extended
Shared Prolog (ESP), a parallel logic language that deals with concurrency and
distribution. It provides a blackboard-based communication framework in which
experiments about different architectures can be performed and evaluated. The
processes modeled by Oikos are the multi-user distributed nature, a long life
span, open endedness and executability of models. Oikos predefines a number
of services offering basic facilities, like access to data bases, workspaces, user
interfaces, etc. Services are customizable, in a declarative way that matches nat-
urally the way ESP defines and controls the software process. ESP allows to
define services, to structure them in a dynamic hierarchy, and to coordinate
them according to the blackboard paradigm.

The project produced a real-case application where it was possible to enact
software processes. The example considered a non trivial task of specification of
a small language and the implementation of its compiler.

After this project the technology evolved towards the notion of workflow and
workflow engine. Notable, in the context of workflows, is the work done by Greco,
Guzzo and Saccà (Calabria) on workflow executions [76] in which a rich graph
representation of workflow schemes is combined with simple (i.e., stratified), yet
powerful DATALOG rules to express complex properties and constraints on exe-
cutions. The high expressive power of both the graphical and rule-based formal-
ism provides the designer with powerful mechanisms for reasoning on workflows.
Another notable body of work is the CLIMB framework (see above) by Montali
and colleagues (Bologna), and presented in Montali’s PhD thesis [102] which
received the GULP 2009 distinguished dissertation award.

3.9 Verification

An application of LP to software verification has been carried on by Bagnara and
Zaffanella (Parma), in collaboration with Hill (Leeds) [12]. The project started
15 See http://lode.fbk.eu

http://lode.fbk.eu


314 A. Dal Palù and P. Torroni

in the 90s and is still alive. In 2005 the project switched gear and currently a
prototype for industrial application is being developed.

In this work, LP is the framework used for definition, analysis and automatic
verification of syntactic and semantic properties of imperative languages (e.g., C,
C++ and Java). In particular, the specification of concrete semantics is based on
structured operational semantics and it can model runtime exceptions and non-
structured flow control mechanisms. The specification, being a logic program,
is executable and it is thus possible to verify the adherence of the specification
against the reference standards.

Moreover, abstract semantics can be applied as well by implementing abstract
interpretation techniques. This creates a general static analyzer that deals with
an abstract specification.

Finally, it is possible to define some additional rules that restrict some syntac-
tic and semantic possibilities that are a known possible source of errors, ranging
from some unfortunate lexical choices in the language (identifiers containing “l”
and “1”) to some syntactical rules (each switch must have a default case) and
some runtime errors (e.g., deallocation of null pointers). These kinds of rules are
seen as important contribution to standard compilers in industrial applications.

The project produced some prototypes that are currently being merged to
a tool for showing the feasibility in industrial applications. Preformance-wise,
LP reveals to be successful for these kinds of applications: a prototype is able
to verify the compliance of the Linux kernel to 80 coding rules in only a few
minutes.

Another important body of work in this area concerns run-time interaction
verification in open systems. This relates to the SOCS project (see above). The
main outcomes of the project are definitions of the agent and society models
and the proof-procedures implementing the operational models. Run-time in-
teraction verification accounts to monitoring and checking whether a particular
implemented, running agent does indeed operate according to its specification.
The SOCS project has produced logic-based tools that reason upon the exter-
nally observable behavior of interacting agents and verify whether it complies to
predefined norms or protocols. In particular, the SOCS-SI tool [3] uses the ALP
SCIFF proof-procedure [2] to consider messages exchanged by agents plus other
events and carries out such a run-time interaction verification task.

3.10 Natural Language Processing

The Natural Language Processing (NLP) application area has flourished in re-
cent years. We report here four different applications that are stimulated by the
exponential growth and availability of text in natural language from the Web
and repositories of the last years.

Since 1996, Stefano Ferilli (Bari) coordinated a project for a general-purpose
system for automatic learning of Datalog programs, starting from positive and
negative concepts that are possibly correlated [65,64,63,66]. It supports multi-
strategies (namely induction, abduction and abstraction) and it is inherently in-
cremental. It is completely written in Prolog and it is currently being developed



25 Years of Applications of Logic Programming in Italy 315

and maintained. The system is integrated in the DOMINUS system (intelligent
and automatic handling of electronic documents) and included in phases of anal-
ysis and elaboration of documents.

Another project, started in 2004, by Bos (La Sapienza) [47], focuses on NLP,
in particular on computational semantics, i.e. mapping syntactic structures pro-
duced by a parser to first-order languages. The system designed is based on
syntactic and semantic formalisms from theoretical linguistics and the imple-
mented prototype is able to analyze the entire Gigaword corpus (1 billion words)
in less than 5 days. The system is built around a wide-coverage Combinatory
Categorial Grammar (CCG) parser and connected to the Boxer module [19]
to produce interpretable structures in the form of Discourse Representation
Structures (DRSs).

The resulting open-domain QA system is well suited to analyzing large amounts
of text containing a potential answer, because of its efficiency. The grammar is
also well suited to analyzing questions, because of CCGs treatment of long-
range dependencies. The system is active and available online and it has been
downloaded by 800 people until the time of writing.16

Another recent project is a prototype for the semantic search module of the
LC3 project (MIUR Public-Private Lab). In particular, the sub-goal coordinated
by Di Martino (Napoli II) since 2007 is to build a natural language query parser,
written in Prolog, that is able to detect conceptual patterns and to build a Query
Ontology.17 The project is still active.

Finally, Mnemosine, started in 2007, is a project run by Costantini and
Paolucci (L’Aquila) [42]. They designed a semantic search engine capable of
accepting natural language queries as well as answering in natural language. Re-
sults are divided in classes of pertinence. The system is based on an iteration
of refinement steps, where the user specifies interactively his/her search query.
Mnemosine has been implemented into a working prototype and tested on the
Italian pages of Wikipedia. The main features related to LP are: the use of
SE-DCG, that are an extension of Definite Clause Grammar (DCG) of Prolog;
answers to queries are generated from a knowledge base where a Prolog reasoner
computes the results. The prototype is stable and scalable and currently being
extended.

3.11 Health Care

We have mentioned above the IDEA project on health-care support systems in
the early 90s. Many years later, we again find LP laying at the core of health-
care applications. We report on three applications that involve tumor prevention,
assisted living and classification of clinical diagnoses. They are all quite recent
and they show that LP can be effectively employed to improve the quality of
life.

The first project, named SPINNER and PRITT SPRING [28], is a collabora-
tion between academic and private parties. The project was developed between
16 See: http://svn.ask.it.usyd.edu.au/trac/candc
17 See http://lc3.spacespa.it

http://svn.ask.it.usyd.edu.au/trac/candc
http://lc3.spacespa.it


316 A. Dal Palù and P. Torroni

2004 and 2006 by Mello, Montali, Chesani (Bologna), Storari (Ferrara), in col-
laboration with Dianoema S.p.A (Bologna).

The goal of the project was to realize a careflow system that implements
workflow concepts in the clinical domain in order to administer, support and
monitor the execution of health care services performed by different health care
professionals and structures. The project concentrated on the monitoring aspects
and provided a solution for the conformance verification of careflow process
executions.

Given a careflow model, expressed with a simple graphical language for the
specification of the careflow (GOSPEL), the system translates it to a formal
language based on computational logic and ALP (SCIFF). The main advantage
of this formalism lies in its operational proof-theoretic counterpart, which is able
to verify the conformance of a given careflow process execution (in the form of
an event log) w.r.t. the model.

The feasibility of the approach has been tested on a case study related to the
careflow process described in the cervical cancer screening protocol, based on
the data provided by regional Health District.

The second application, started in 2007, is part of the Secure and INDepen-
dent LIving (SINDI) system. The system offers advanced tools for monitoring
dynamical, clinical and physical parameters. SINDI caters for two kinds of peo-
ple: elder people that are clinically stable and chronic patients that can stay at
home. The latter type of people often needs to be educated to correct behaviors
in order to limit health risks. SINDI offers medical professionals the tools to act
before the verification of potential events that may limit the autonomy of the pa-
tients. The system is made of three parts: a wireless sensor network, an interface
with the patient and a Reasoning Component that is in charge of understand-
ing the context by applying inference rules for meaningful data aggregation and
interpretation.

Work by Bisiani, Mileo, Merico and Pinardi (Nomadis Lab, Milano Bic-
occa) [17,97,98] used non monotonic reasoning as part of SINDI’s reasoning
component. There is a working prototype and its main reasoning features focus
on situation assessment and evaluation of the patient’s risk status (by comparing
gathered data and clinical knowledge base). Moreover the reasoner depicts possi-
ble future scenarios, as prevention and feedback output, based on the current risk
status. The latest version of the prototype is currently under experimentation
at the Monza Hospital.18

Finally, we mention another DLV-based application. OLEX was employed for
developing a system able to classify automatically case histories and documents
containing clinical diagnoses. The system was commissioned, with the goal of
conducting epidemiological analysis, by a local health authority in the Veneto
region (ULSS of Asolo). The system classifies available case histories, in order
to help the analysts while browsing and searching documents regarding specific
pathologies, supplied services, or patients living in a given place etc. The appli-
cation exploits an ontology of clinical case histories based on both the MESH

18 See www.nomadis.unimib.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/20

www.nomadis.unimib.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/20


25 Years of Applications of Logic Programming in Italy 317

(Medical Subject Headings) ontology and ICD9-CM, a system employed by the
Italian Ministry of Heath for handling data regarding medical services (e.g. X-
Rays analysis, plaster casts, etc.). The analyzed documents are stored in PDF
documents and contain medical reports, hospital discharge forms, clinical analy-
sis results etc. Classification rules take into account both the extracted linguistic
information and the metadata contained in the case history forms. The system
has been deployed and is currently employed by the personnel of the ULSS of
Asolo.

3.12 Reasoning

Prolog is a programming language that lends itself particularly well to the im-
plementation of other languages for reasoning. Although this way of exploiting
Prolog is not motivated by the needs of industry, it is nonetheless an LP appli-
cation. The list of languages and Prolog extensions would be very long. We men-
tion only some of them, targeting different domains. Other ones are mentioned in
other parts of this chapter and of this book (see, e.g., several implementations of
non-monotonic reasoners discussed by Giordano and Toni [74], of agent-oriented
languages surveyed by Baldoni and colleagues [13], and of higher-order LP ex-
tensions mentioned by Momigliano and Ornaghi [99]).

In the 90s Costantini (L’Aquila), Dell’Acqua (Linköping), Lanzarone (Insub-
ria), Barklund (Uppsala) worked on a Prolog extension, named Reflective Pro-
log [14]. The system allows to express meta-knowledge and includes an evaluation
meta-level that is invoked when needed from the base level. The language sup-
ports three different kinds of variables: object variables, predicate meta-variables
and function meta-variables. The rules of substitution ensure that these may
only be substituted by, respectively, an object term, a representation of a pred-
icate, and a representation of a function. There are syntactic restrictions to
keep the meta-levels distinct and prevent self reference within a single atom. A
reflective Prolog program distinguishes between the meta-evaluation level and
the base level. The former is at the top of the meta-level architecture and the
latter, containing an amalgamated theory, comprises the remaining meta-levels
below it and can not refer to any predicates in the meta-evaluation level. Pro-
cedurally, a definite Reflective Prolog program uses SLD-resolution whenever
possible but automatically switches between the levels in certain circumstances.
The declarative semantics for such programs, called the least reflective Her-
brand Model, is an adapted form of the well-known least Herbrand model. The
prototype, written in Quintus, has been later used to start new projects, e.g.
DALI.

Started in 2004, Badaloni, Giacomin and Falda (Padova) realized a Tempo-
ral Reasoner capable of handling quantitative and qualitative uncertainty and
vagueness [10,67]: the qualitative fuzzy temporal constraints are based on the
IAfuz framework formalized in [11]. Temporal uncertainty is modeled in terms
of possibility distributions and fuzzy relations. A Fuzzy Temporal Constraint



318 A. Dal Palù and P. Torroni

Network is used to represent the knowledge about the considered scenario. Tem-
poral reasoning inferences are performed by checking the consistency of the un-
derlying network. The user interface is written in SWI Prolog, with less than
3K lines of code. The constraint solver is written in C++ and connects to the
interface with XML files. In particular, the knowledge base manager normalizes
the temporal expressions and defines a method for the consistent interpretation
of expressions involving uncertainty. User scenarios are described with a simpli-
fied language and passed to the solver by XML files. Solver’s output is used to
generate answers in the same language. The prototype can handle fuzzy con-
straints (quantitative intervals and points, both precise and/or uncertain) and
to generate temporal expressions similar to natural language.

Since 2007, Costantini (L’Aquila) and Formisano (Perugia) have been devel-
oping the P-RASP system (Resourced ASP with Preferences): an extension of
ASP to manage reasoning with bounded resources [39]. The authors have devel-
oped a P-RASP inference engine.

Finally, there has been conspicuous research on the implementation of engines
to reason about action and time. We mention recent work by Dovier (Udine),
Formisano (Perugia) and Pontelli (NMSU) [56] on implementation of action
languages which makes use of CLP(FD), and the Reactive Event Calculus pro-
posed by Chesani, Mello, Montali and Torroni (Bologna) [31] based on SCIFF
(see above). In both cases, the underlying CLP framework is a key factor for
achieving a solution with is both declarative and efficient.

3.13 Bioinformatics

Bioinformatics, in broad terms, deals with the use of computational techniques
to organize and extract knowledge from biological data. It has successfully ad-
dressed problems in areas like recognition and analysis of DNA sequences, bio-
logical systems simulations, prediction of the spatial conformation of biological
polymers, and ontological analysis of biomedical knowledge. An application of
LP to bioinformatics started in 2003 by Dal Palù (Parma), Dovier (Udine), Pon-
telli (New Mexico State University, US) and Fogolari (Udine). They address
the problem of tertiary structure prediction using ab initio techniques, from the
perspective of folding a protein sequence in a discretized representation of the
three-dimensional space (viewed as a crystal lattice structure), optimizing an ob-
jective function which is related to the potential energy function of the resulting
configuration. The problem translates into a CSP, where constraints are derived
from physical properties of the molecules, and a set of heuristics that explore the
search space effectively. A survey on the project is in [52] A prototype was devel-
oped using Sicstus Prolog, CLP(FD) and parallelism [50,49]. Another optimized
solver was entirely rewritten in C++ [51] and extended traditional FD vari-
ables to three dimensional point variables. The work was also presented in Dal
Palù’s PhD thesis [48] which received the GULP 2006 distinguished dissertation
award.



25 Years of Applications of Logic Programming in Italy 319

3.14 Decision Support, Risk Analysis and Alarms

A project carried on in the early 90s, by Sardu (System & Management), Ser-
recchia, Omodeo (La Sapienza), Li, Schuerman, and Véron (ECRC19), was an
application for Decision Support System (DSS) for the environmental pollution
in the Venice lagoon [129]. The project was about the specification and design
of an application based on parallel CLP. The DSS includes a database describ-
ing pollution sources and a lagoon hydrodynamic model, integrated through a
knowledge-based core. The prototyping of the knowledge-based core was imple-
mented in ElipSys (developed by ECRC), a parallel CLP system derived from
CHIP [55].

Another application was developed by Avanzini, Rocchesso, Belussi, Dal Palù
and Dovier (Verona) [9] and aimed at creating a new auditory alert system for
high tides in Venice designed to replace the existing network of electromechan-
ical sirens. The work was developed in collaboration with the Municipality of
Venice (Center for Tide Prediction and Warning) in 2003. The project is com-
posed of different parts including the analysis of the current alert system (sound
simulation); the realization of a CLP tool to determine the optimal placement
of loudspeakers in Venice, a complex task with many physical, economic, and
social constraints (modeled with FD variables); the creation of alert sounds for
the demanding listening environment. The final phase of the project involved
iteratively validating and redesigning the alert signals using human testing. Af-
ter some years, the project was actually installed in Venice, in particular the
location of the loudspeakers followed the results of the optimization program.

A very recent collaboration, started in 2009, between Mascardi, Martelli,
Traverso (Genova), and Montolivo (Elsag-Datamat, a FinMeccanica company),
focuses on risk analysis of complex infrastructures (harbours, airports, etc). Pro-
log was used to implement a first prototype for evaluating the feasibility of the
approach. The prototype is able to computationally evaluate whether an attacker
can violate the security apparatus of a given, simplified, infrastructure. A sec-
ond prototype, implemented in Java extended with a Prolog-like backtracking
mechanism, is much more sophisticated and might develop into a product. The
project is protected by a non-disclosure agreement and the patent application
has been recently filed.

Within the ARGUGRID project (see above), Mancarella (Pisa), Toni (Impe-
rial College London) and Dung (AIT) led the development of LP-based argumen-
tation engines, in Prolog, to identify “best” decisions in uncertain environments.
The decisions may be supported by assumptions (similar to abducibles in ALP)
and the rationale for decisions is presented to users in the form of a debate (argu-
ments and counter-arguments). These engines (MARGO20 [105], CaSAPI21 [69],

19 ECRC (European Computer-Industry Research Centre GmbH, Munich, Germany)
was a a joint venture of Bull, ICL and Siemens, formed in 1984 to research new
software technologies.

20 See http://margo.sourceforge.net
21 See http://www.doc.ic.ac.uk/~dg00/casapi.html

http://margo.sourceforge.net
http://www.doc.ic.ac.uk/~dg00/casapi.html


320 A. Dal Palù and P. Torroni

and MoDiSo22 [61]) all extend, albeit in different ways and with different aims,
the abductive proof procedures for LP and ALP of [62] and [78] respectively.
These systems have been deployed as follows:

– MARGO for supporting the decision of the most suitable type of electronic
auction to be used by a seller/buyer in an e-marketplace [106] (in collabora-
tion with cosmoONE Hellas MarketSite S.A, Greece23);

– CaSAPI for selecting an e-ordering system [90](in collaboration cosmoONE
Hellas MarketSite S.A, Greece) and for selecting satellites for the acquisitions
fo best images [91] (in collaboration with GMV S.A., Spain24);

– MoDiSo for supporting the resolution of legal disputes [61].

4 Conclusions

In conclusion, LP applications are many and diverse in several, traditional and
new application domains. This survey suffers from our poll methodology, by
which most of the LP applications above are of academic inspiration. We believe,
however, that the actual landscape is not too different from the one we depicted
in this chapter.

Notwithstanding the increased education and diffusion of LP at the students
level, there is still a remarkable gap between the growth of academic research
and industrial applications. In our opinion, this may be due to the difficult in-
ternational situation of computer and software industries, worsened by a specific
Italian weakness in advanced industrial research, the crisis of AI technology and
its influence on LP.

On the upside, our work emphasizes many collaborations between research
groups and industrial and commercial partners, which makes us believe that
now time is ripe for pushing the adoption of LP outside of academic entourage.
While most of the private investors that were interested in LP 25 years ago have
apparently left the stage, other new actors are coming into play. Exeura s.r.l. is
a successful example of a company that is actually doing business and providing
services with LP technology. There are many collaborations and projects with
Public Administrations, such as municipalities and hospitals, that rely on LP
and extensions. Indeed, we are now in a very different situation from that of
15 year ago. The main obstacles to LP adoptions, such as lack of LP-education
and problems of efficiency and integration, seem to have been overcome in many
cases. 15 years ago we were wondering why LP was not used and what was
missing, while today we can get some insights from many success stories.

It is still true that average programmers and engineers are unable to write
(correct and efficient) declarative programs, although we believe that the situa-
tion is better than it used to be. Programming methodologies and environments,
debugging techniques, friendly interfaces did not evolve significantly compared

22 See http://www.cs.ait.ac.th/~dung/modiso/About.html
23 See http://www.cosmo-one.gr/en
24 See http://www.gmv.com

http://www.cs.ait.ac.th/~dung/modiso/About.html
http://www.cosmo-one.gr/en
http://www.gmv.com


25 Years of Applications of Logic Programming in Italy 321

to those of other popular imperative languages. However, these issues are con-
fined to the production of LP-based solutions and do not affect the quality of
the solutions themselves. LP technologies can now rely on efficient implemen-
tations, and offer unique degrees of flexibility. We can observe that the current
trend is to develop competitive LP-based solutions for hard problems, which
requires a solid background, education and high programming skills. This high
quality profile, in the perspective of market globalization and considering the
constant increase in the number of new and complex applications, is not neces-
sarily a negative and penalizing aspect. We believe, instead, that competencies
in declarative programming will become even more valuable in the next years.

Acknowledgements. We would like to thank the anonymous reviewers and all
the colleagues who helped us by providing insight, feedback, comments, material
and summary of their activities. A particular thank to (in alphabetical order):
Roberto Bagnara, Johan Bos, Giorgio Casadei, Paolo Ciancarini, Marco Colom-
betti, Stefania Costantini, Beniamino Di Martino, Agostino Dovier, Marco Falda,
Stedano Ferilli, Marco Gavanelli, Rosella Gennari, Giuseppina Gini, Maria Gini,
Viviana Mascardi, Paola Mello, Vitaliano Milanese, Alessandra Mileo, Alberto
Momigliano, Angelo Monfroglio, Marco Montali, Alessandro Mosca, Daniele
Nardi, Andrea Omicini, Enrico Pagello, Francesco Ricca, Carlo Matteo Scalzo,
Pietro Terna, and Francesca Toni.

References

1. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: The
SOCS computational logic approach to the specification and verification of agent
societies. In: Global Computing, pp. 314–339 (2004)

2. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Veri-
fiable agent interaction in abductive logic programming: The SCIFF framework.
ACM Trans. Comput. Log. 9(4) (2008)

3. Alberti, M., Gavanelli, M., Lamma, E., Chesani, F., Mello, P., Torroni, P.: Com-
pliance verification of agent interaction: a logic-based software tool. Applied Ar-
tificial Intelligence 20(2-4), 133–157 (2006)

4. Ambriola, V., Ciancarini, P., Montangero, C.: Enacting software processes
in Oikos. In: Software Development Environments. SIGSOFT, vol. 15(6),
pp. 12–23 (1990)

5. Ambriola, V., Ciancarini, P., Montangero, C.: The logic language ESP and its
programming environment. In: Workshop on Logic Programming Environments,
Technical Report IR-LP-31-25 of ECRC (June 1990)

6. Ambriola, V., Ciancarini, P., Montangero, C.: Software processes as a hierarchy
of services in the Oikos meta environment. In: Soft. Proc. Workshop, pp. 57–60
(1990)

7. Arfé, B., Gennari, R., Mich, O.: Before, while and after with LODE and hearing
novice readers. Tech. Rep. KRDB09-1, University of Bolzano (2009)

8. Attardi, G., Simi, M.: A description-oriented logic for building knowledge bases.
IEEE 74(10) (1986)

9. Avanzini, F., Rocchesso, D., Belussi, A., Dal Palù, A., Dovier, A.: Designing an
urban-scale auditory alert system. Computer 37(9), 55–61 (2004)



322 A. Dal Palù and P. Torroni

10. Badaloni, S., Falda, M., Giacomin, M.: Integrating quantitative and qualitative
constraints in fuzzy temporal networks. AI Communications 17(4), 183–272 (2004)

11. Badaloni, S., Giacomin, M.: The algebra IAfuz: a framework for qualitative fuzzy
temporal reasoning. Artificial Intelligence 170(10), 872–908 (2006)

12. Bagnara, R., Hill, P.M., Pescetti, A., Zaffanella, E.: On the design of generic static
analyzers for imperative languages. Quaderno 485, Dipartimento di Matematica,
Università di Parma, Italy (2008)

13. Baldoni, M., Baroglio, C., Mascardi, V., Omicini, A., Torroni, P.: Agents, Multi-
Agent Systems and Declarative Programming: What, When, Where, Why, Who,
How? In: Dovier, A., Pontelli, E. (eds.) 25 Years of Logic Programming in Italy,
ch. 10. LNCS, vol. 6125, pp. 204–230. Springer, Heidelberg (2010)

14. Barklund, J., Costantini, S., Dell’Acqua, P., Lanzarone, G.: Reflection principles
in computational logic. Journal of Logic and Computation 10, 6 (December 2000)

15. Barták, R., Milano, M. (eds.): CPAIOR 2005. LNCS, vol. 3524. Springer,
Heidelberg (2005)

16. Bazzocchi, L.: Lo SMAU scopre l’intelligenza artificiale. Office Automation, 86–90
(November 1988)

17. Bisiani, R., Merico, D., Mileo, A., Pinardi, S.: A logical approach to home health-
care with intelligent sensor-network support. The Comp. J. Adv. Access (2009)

18. Bonatti, P., Calimeri, F., Leone, N., Ricca, F.: Answer Set Programming. In: 25
Years of Logic Programming in Italy. LNCS, vol. 6125, pp. 159–182. Springer,
Heidelberg (2010)

19. Bos, J.: Towards wide-coverage semantic interpretation. In: IWCS-6, pp. 42–53
(2005)

20. Bracciali, A., Endriss, U., Demetriou, N., Kakas, A.C., Lu, W., Stathis, K.: Craft-
ing the mind of PROSOCS agents. Appl. Artif. Intelligence 20(2-4), 105–131
(2006)

21. Briola, D., Mascardi, V., Martelli, M., Arecco, G., Caccia, R., Milani, C.: A
Prolog-based MAS for railway signalling monitoring: Implementation and exper-
iments. In: WOA 2008 (2008)

22. Bromuri, S., Stathis, K.: Situating Cognitive Agents in GOLEM. In: Weyns, D.,
Brueckner, S.A., Demazeau, Y. (eds.) EEMMAS 2007. LNCS (LNAI), vol. 5049,
pp. 115–134. Springer, Heidelberg (2008)

23. Bromuri, S., Stathis, K.: Distributed agent environments in the ambient event
calculus. In: Gokhale, A.S., Schmidt, D.C. (eds.) DEBS. ACM, New York (2009)

24. Bryl, V., Mello, P., Montali, M., Torroni, P., Zannone, N.: B-Tropos: Agent-
oriented requirements engineering meets computational logic for declarative busi-
ness process modelling and verification. In: Sadri, F., Satoh, K. (eds.) CLIMA
VIII 2007. LNCS (LNAI), vol. 5056, pp. 157–176. Springer, Heidelberg (2008)

25. Calisi, D., Iocchi, L., Nardi, D., Scalzo, C.M., Ziparo, V.A.: Context-based design
of robotic systems. Robotics and Autonomous Systems 56(11), 992–1003 (2008)

26. Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Exploiting
inductive logic programming techniques for declarative process mining. In: Jensen,
K., van der Aalst, W.M.P. (eds.) Transactions on Petri Nets and Other Models
of Concurrency II. LNCS, vol. 5460, pp. 278–295. Springer, Heidelberg (2009)

27. Chesani, F., Mello, P., Montali, M., Riguzzi, F., Sebastianis, M., Storari, S.:
Checking compliance of execution traces to business rules. In: Business Process
Management Workshops, pp. 134–145 (2008)

28. Chesani, F., Mello, P., Montali, M., Storari, S.: Testing careflow process execu-
tion conformance by translating a graphical language to computational logic. In:



25 Years of Applications of Logic Programming in Italy 323

Bellazzi, R., Abu-Hanna, A., Hunter, J. (eds.) AIME 2007. LNCS (LNAI),
vol. 4594, pp. 479–488. Springer, Heidelberg (2007)

29. Chesani, F., Mello, P., Montali, M., Storari, S., Torroni, P.: On the integration of
declarative choreographies and commitment-based agent societies into the SCIFF
logic programming framework. Multiagent and Grid Systems 2 (2010)

30. Chesani, F., Mello, P., Montali, M., Torroni, P.: Verification of choreographies
during execution using the Reactive Event Calculus. In: Bruni, R., Wolf, K. (eds.)
WS-FM 2009. LNCS, vol. 5387, pp. 55–72. Springer, Heidelberg (2009)

31. Chesani, F., Mello, P., Montali, M., Torroni, P.: Commitment tracking via the
reactive event calculus. In: Boutilier, C. (ed.) IJCAI, pp. 91–96 (2009)

32. Chiopris, C.: The SECReTS banking expert system from phase 1 to phase 2.
In: Comyn, G., Ratcliffe, M.J., Fuchs, N.E. (eds.) LPSS 1992. LNCS, vol. 636,
pp. 91–99. Springer, Heidelberg (1992)

33. Ciampolini, A., Lamma, E., Mello, P., Toni, F., Torroni, P.: Co-operation and
competition in ALIAS: a logic framework for agents that negotiate. Annals of
Mathematics and Artificial Intelligence 37(1-2), 65–91 (2003)

34. Ciampolini, A., Lamma, E., Mello, P., Torroni, P.: LAILA: a language for coor-
dinating abductive reasoning among logic agents. Comp. Lang. 27(4), 137–161
(2001)

35. Ciampolini, A., Torroni, P.: Using abductive logic agents for modeling the judicial
evaluation of criminal evidence. Appl. Artif. Intelligence 18(3-4), 251–275 (2004)

36. Ciancarini, P.: Coordinating rule-based software processes with ESP. ACM Trans
on Sw Engineering and Methodolgy 2(3), 203–227 (1993)

37. Concheri, G., Milanese, V.: Interaction as an issue in the development of effec-
tive tools for the management of the engineering knowledge base. In: XI ADM
Conference, vol. B, pp. 101–108 (1999)

38. Concheri, G., Milanese, V.: MIRAGGIO: a system for the dynamic management
of product data and design models. Advances in Engineering Software 32(7),
527–543 (2001)

39. Costantini, S., Formisano, A.: Modeling preferences and conditional preferences
on resource consumption and production in ASP. Algorithms 64(1), 3–15 (2009)

40. Costantini, S., Mostarda, L., Tocchio, A., Tsintza, P.: User profile agents applied
to a cultural heritage scenario. In: SEKE (2007)

41. Costantini, S., Mostarda, L., Tocchio, A., Tsintza, P.: DALICA: Agent-based am-
bient intelligence for cultural-heritage scenarios. IEEE Intelligent Systems 23(2),
34–41 (2008)

42. Costantini, S., Paolucci, A.: Semantically augmented DCG analysis for next-
generation search engine. In: CILC (July 2008)

43. Costantini, S., Tocchio, A.: The DALI logic programming agent-oriented lan-
guage. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229,
pp. 685–688. Springer, Heidelberg (2004)

44. Cucchiara, R., Gavanelli, M., Lamma, E., Mello, P., Milano, M., Piccardi, M.:
Constraint propagation and value acquisition: Why we should do it interactively.
In: IJCAI, pp. 468–477 (1999)

45. Cucchiara, R., Gavanelli, M., Lamma, E., Mello, P., Milano, M., Piccardi, M.:
From eager to lazy constrained data acquisition: A general framework. New Gen-
eration Comput. 19(4), 339–368 (2001)

46. Cumbo, C., Iiritano, S., Rullo, P.: OLEX – A reasoning-based text classifier. In:
Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 722–725.
Springer, Heidelberg (2004)



324 A. Dal Palù and P. Torroni

47. Curran, J.R., Clark, S., Bos, J.: Linguistically motivated large-scale NLP with
C&C and Boxer. In: ACL, pp. 29–32 (2007)

48. Dal Palù, A.: Constraint Programming approaches to the Protein Structure Pre-
diction Problem. PhD thesis, University of Udine (2006)

49. Dal Palù, A., Dovier, A., Fogolari, F.: Constraint logic programming approach to
protein structure prediction. BMC Bioinformatics 5(1), 186 (2004)

50. Dal Palù, A., Dovier, A., Pontelli, E.: Heuristics, optimizations, and parallelism
for protein structure prediction in CLP(FD). In: PPDP, pp. 230–241 (2005)

51. Dal Palù, A., Dovier, A., Pontelli, E.: A constraint solver for discrete lattices,
its parallelization, and application to protein structure prediction. Softw. Pract.
Exper. 37(13), 1405–1449 (2007)

52. Dal Palù, A., Dovier, A., Pontelli, E.: Logic programming techniques in pro-
tein structure determination: Methodologies and results. In: Erdem, E., Lin,
F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 560–566. Springer,
Heidelberg (2009)

53. Demetriou, N., Kakas, A.C.: Argumentation with abduction. In: Panhellenic Sym-
posium on Logic (2003)

54. Denti, E., Omicini, A., Ricci, A.: tuProlog: A light-weight Prolog for internet
applications and infrastructures. In: Ramakrishnan, I.V. (ed.) PADL 2001. LNCS,
vol. 1990, pp. 184–198. Springer, Heidelberg (2001)

55. Dorochevsky, M., Li, L.-L., Reeve, M., Schuerman, K., Véron, A.: ElipSys - a
parallel programming system based on logic. In: Voronkov, A. (ed.) LPAR 1992.
LNCS, vol. 624, pp. 469–471. Springer, Heidelberg (1992)

56. Dovier, A., Formisano, A., Pontelli, E.: Multi-valued action languages with con-
straints in CLP(FD). Theory and Practice of Logic Programming 10, 167–235
(2010)

57. Dovier, A., Pontelli, E. (eds.): 25 Years of Logic Programming in Italy. LNCS,
vol. 6125. Springer, Heidelberg (2010)

58. Dulli, S., Galbiati, G., Milanese, V.: Hierarchical data structures and geometric
modeling: a unified approach. YUGRAPH 31(1/2), 37–42 (1990)

59. Dulli, S., Milanese, V.: A graphic programming environment based on KADMOS.
Comput. Graph. Forum 11(1), 3–16 (1992)

60. Dulli, S., Milanese, V., Visentin, A.: A multiple windows user interface. In:
CAD/Graphics New Advances in Computer Aided Design, pp. 186–188 (1993)

61. Dung, P.M., Thang, P.M.: Modular argumentation for modelling legal doctrines
in common law of contract. Artificial Intelligence and Law 17(3) (June 2009)

62. Eshghi, K., Kowalski, R.A.: Abduction compared with negation by failure. In:
ICLP, pp. 234–254 (1989)

63. Esposito, F., Fanizzi, N., Ferilli, S., Basile, T., Mauro, N.D.: Incremental multi-
strategy learning for document processing. Applied AI 17(8/9), 859–883 (2003)

64. Esposito, F., Fanizzi, N., Ferilli, S., Basile, T., Mauro, N.D.: Incremental learning
and concept drift in INTHELEX. Intelligent Data Analysis J. 8(3), 213–237 (2004)

65. Esposito, F., Fanizzi, N., Ferilli, S., Basile, T., Mauro, N.D.: Multistrategy op-
erators for relational learning and their cooperation. Fund. Inf. 69(4), 389–409
(2006)

66. Esposito, F., Fanizzi, N., Ferilli, S., Mauro, N.D.: Multistrategy theory revi-
sion: Induction and abduction in INTHELEX. Machine Learning Journal 38(1/2),
133–156 (2000)

67. Falda, M.: Translating fuzzy temporal constraints in more natural expressions.
In: ECAI 2008 workshop on Spatial and Temporal Reasoning, pp. 11–15 (2008)



25 Years of Applications of Logic Programming in Italy 325

68. Farenzena, M., Fusiello, A., Dovier, A.: Reconstruction with interval constraints
propagation. In: CVPR, pp. 1185–1190 (2006)

69. Gaertner, D., Toni, F.: Hybrid argumentation and its properties. In: COMMA,
pp. 183–195 (2008)

70. Galizia, S.: Generazione automatica di manovre per lo space shuttle mediante
la programmazione logica disgiuntiva. In: APPIA-GULP-PRODE, pp. 97–109
(2003)

71. Garro, A., Palopoli, L., Ricca, F.: Exploiting agents in e-learning and skills man-
agement context. AI Commun. 19(2), 137–154 (2006)

72. Gavanelli, M.: University timetabling in ECLiPSe. ALP Newsletter 19(3) (August
2006)

73. Gennari, R., Mich, O.: LODE: A logic-based e-learning tool for deaf children.
Tech Rep. KRDB07-3, University of Bolzano (2007)

74. Giordano, L., Toni, F.: Knowledge representation and non-monotonic reasoning.
In: Dovier, A., Pontelli, E. (eds.) 25 Years of Logic Programming in Italy. LNCS,
vol. 6125, pp. 87–111. Springer, Heidelberg (2010)

75. Grasso, G., Iiritano, S., Leone, N., Ricca, F.: Some DLV applications for knowledge
management. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS,
vol. 5753, pp. 591–597. Springer, Heidelberg (2009)

76. Greco, G., Guzzo, A., Saccà, D.: A logic framework for reasoning on workflow
executions. In: AGP 2004 (2004)

77. Ianni, G., Panetta, C., Ricca, F.: Specification of assessment-test criteria through
ASP specifications. In: Answer Set Programming, CEUR Workshop 142 (2005)

78. Kakas, A.C., Mancarella, P.: Generalized stable models: a semantics for abduction.
In: ECAI, pp. 385–391 (1990)

79. Kakas, A.C., Mancarella, P., Sadri, F., Stathis, K., Toni, F.: Computational logic
foundations of KGP agents. J. Artif. Intell. Res. (JAIR) 33, 285–348 (2008)

80. Leone, N.: Exploiting ASP in real-world applications: Main strengths and chal-
lenges. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753,
pp. 628–630. Springer, Heidelberg (2009)

81. Leone, N., Greco, G., Ianni, G., Lio, V., Terracina, G., Eiter, T., Faber, W.,
Fink, M., Gottlob, G., Rosati, R., Lembo, D., Lenzerini, M., Ruzzi, M., Kalka,
E., Nowicki, B., Staniszkis, W.: The INFOMIX system for advanced integration
of incomplete and inconsistent data. In: ACM SIGMOD, pp. 915–917 (2005)

82. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello,
F.: The DLV system for knowledge representation and reasoning. ACM Trans.
Comput. Logic 7(3), 499–562 (2006)

83. Luccarini, L., Bragadin, G.L., Mancini, M., Mello, P., Montali, M., Sottara, D.:
Formal verification of wastewater treatment processes using events detected from
continuous signals by means of artificial neural networks. Environmental Mod-
elling and Software (2009) (in press)

84. Ma, J., Russo, A., Broda, K., Clark, K.: DARE: a system for distributed abductive
reasoning. Autonomous Agents and Multi-Agent Systems 16(3), 271–297 (2008)

85. Mancarella, P., Terreni, G., Sadri, F., Toni, F., Endriss, U.: The CIFF proof pro-
cedure for abductive logic programming with constraints: Theory, implementation
and experiments. CoRR, abs/0906.1182 (2009)

86. Mantegari, G., Mosca, A., Cattani, M.: Formal knowledge representation and
automated reasoning for the study of archaeological stratigraphy. In: 12th Inter-
national Congress Cultural Heritage and New Technologies (2007)



326 A. Dal Palù and P. Torroni

87. Mantegari, G., Mosca, A., Rondelli, B., Vizzari, G.: A semantic based approach
to GIS: the PO-BASyN project. In: Computer Applications and Quantitative
Methods in Archaeology (2008)

88. Martelli, M.: Constraint logic programming: Theory and applications. In: Sessa
[130], pp. 137–166

89. Mascardi, V., Briola, D., Martelli, M., Caccia, R., Milani, C.: Monitoring and
diagnosing railway signalling with logic-based distributed agents. In: MFCS 1977.
LNCS, vol. 53, pp. 108–115. Springer, Heidelberg (2009)

90. Matt, P.-A., Toni, F., Stournaras, T., Dimitrelos, D.: Argumentation-based agents
for eprocurement. In: AAMAS (Industry Track), pp. 71–74 (2008)

91. Matt, P.-A., Toni, F., Vaccari, J.: Dominant Decisions by Argumentation Agents.
In: Workshop ArgMAS (2009)

92. Meneghetti, A.: Optimizing allocation in floor storage systems for the shoe
industry by Constraint Logic Programming. In: ISDA, pp. 467–472. IEEE,
Los Alamitos (2009)

93. Mich, O.: Constraint-based temporal reasoning and e-learning tools for deaf users.
Tech Rep KRDB08-1, University of Bolzano (2008)

94. Milanese, V.: A Prolog environment for GKS-based graphics. Comput. Graph.
Forum 7(1), 9–20 (1988)

95. Milanese, V.: KADMOS: A clausal language for CAD modeling systems with
morphological constraints. Comput. Graph. Forum 9(1), 39–51 (1990)

96. Milanese, V.: Using semantics in engineering design. In: CIM, pp. 369–378 (2003)
97. Mileo, A., Merico, D., Bisiani, R.: A logic programming approach to home moni-

toring for risk prevention in assisted living. In: Garcia de la Banda, M., Pontelli,
E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 145–159. Springer, Heidelberg (2008)

98. Mileo, A., Merico, D., Bisiani, R.: Wireless sensor networks supporting context-
aware reasoning in assisted living. In: PETRA, p. 54 (2008)

99. Momigliano, A., Ornaghi, M.: Proof-theoretic and Higher-order Extensions of
Logic Programming. In: Dovier, A., Pontelli, E. (eds.) 25 Years of Logic Pro-
gramming in Italy, ch. 12. LNCS, vol. 6125, pp. 254–270. Springer, Heidelberg
(2010)

100. Monfroglio, A.: Timetabling through a deductive database: a case study. Data
and Knowledge Engineering 3(1), 1–27 (1988)

101. Montagna, S., Ricci, A., Omicini, A.: A&A for modelling and engineering simula-
tions in systems biology. Int. J. Agent-Oriented Softw. Eng. 2(2), 222–245 (2008)

102. Montali, M.: Specification and Verification of Open Declarative Interaction Mod-
els: a Logic-Based Framework. PhD thesis, University of Bologna (2009)

103. Montali, M., Pesic, M., van der Aalst, W.M.P., Chesani, F., Mello, P., Storari, S.:
Declarative specification and verification of service choreographies. ACM Trans-
actions on the Web (2009)

104. Montali, M., Torroni, P., Alberti, M., Chesani, F., Gavanelli, M., Lamma, E.,
Mello, P.: Verification from declarative specifications using logic programming.
In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366,
pp. 440–454. Springer, Heidelberg (2008)

105. Morge, M.: The hedgehog and the fox. In: Rahwan, I., Parsons, S., Reed, C. (eds.)
Argumentation in Multi-Agent Systems. LNCS (LNAI), vol. 4946, pp. 114–131.
Springer, Heidelberg (2008)

106. Morge, M., Mancarella, P., Stournaras, T.: Argumentation pour la sélection et la
négociation de services. cas d’étude de télé-procédure. In: JFSMA, pp. 149–158
(2008)



25 Years of Applications of Logic Programming in Italy 327

107. Mosca, A., Bernini, D.: Ontology-driven geographic information system and
dlvhex reasoning for material culture analysis. In: RCRA (2008)

108. Mosca, A., Rondelli, Mantegari, G.: Integrating a knowledge-based system and
a geographical information system for the study of the archaeological material
culture. In: Cultural Heritage Workshop, AIxIA, pp. 84–91 (2008)

109. Natali, A., Omicini, A., Zanichelli, F.: Exploiting logic programming in robot
applications. In: GULP, pp. 535–548 (1993)

110. Nogueira, M., Balduccini, M., Gelfond, M., Watson, R., Barry, M.: An A-Prolog
decision support system for the Space Shuttle. In: Ramakrishnan, I.V. (ed.) PADL
2001. LNCS, vol. 1990, pp. 169–183. Springer, Heidelberg (2001)

111. Oliva, E., Viroli, M., Omicini, A.: Simulation of minority game in TuCSoN. In:
WOA, pp. 6–9 (2006)

112. Omicini, A., Denti, E.: From tuple spaces to tuple centres. Sci. Comput. Pro-
gram. 41(3), 277–294 (2001)

113. Omicini, A., Zambonelli, F.: Coordination of mobile information agents in TuC-
SoN. Internet Research: El. Networking Appl. and Policy 8(5), 400–413 (1998)

114. Omicini, A., Zambonelli, F.: Coordination for internet application development.
Autonomous Agents and Multi-Agent Systems 2(3), 251–269 (1999)

115. Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible busi-
ness processes management. In: Business Process Management Workshops,
pp. 169–180 (2006)

116. Piancastelli, G., Benini, A., Omicini, A., Ricci, A.: The architecture and design
of a malleable object-oriented Prolog engine. In: SAC, pp. 191–197 (2008)

117. Ricca, F., Gallucci, L., Schindlauer, R., Dell’Armi, T., Grasso, G., Leone, N.: On-
toDLV: an ASP-based system for enterprise ontologies. J. Log. and Comput. 19(4),
643–670 (2009)

118. Ricca, F., Leone, N.: Disjunctive logic programming with types and objects: The
DLV+ system. Journal of Applied Logics 5(3), 545–573 (2007)

119. Ricci, A., Omicini, A.: Agent coordination contexts: Experiments in TuCSoN. In:
WOA, pp. 14–21 (2002)

120. Ricci, A., Omicini, A., Denti, E.: The TuCSoN coordination infrastructure for
virtual enterprises. In: WETICE, pp. 348–353 (2001)

121. Rossi, G.: Logic Programming in Italy: A Historical Perspective. In: Dovier, A.,
Pontelli, E. (eds.) 25 Years of Logic Programming in Italy, ch. 1. LNCS, vol. 6125,
pp. 1–14. Springer, Heidelberg (2010)

122. Ruffolo, M., Leone, N., Manna, M., Saccà, D., Zavatto, A.: Exploiting ASP for se-
mantic information extraction. In: Answer Set Programming, pp. 248–262 (2005)

123. Ruffolo, M., Manna, M.: HiLeX: A system for semantic information extraction
from Web documents. Enterprise Information Systems 3(3), 194–209 (2008)

124. Ruggieri, C., Sancassani, M., Dore, N., Russo, F., Manfredi, U.: Intelligent data
retrieval in Prolog: An illuminating idea. J. Log. Program. 26(2), 169–198 (1996)

125. Rullo, P., Policicchio, V.L., Cumbo, C., Iiritano, S.: OLEX: Effective rule learning
for text categorization. Knowledge and Data Engineering 21, 1118–1132 (2008)

126. Sadri, F., Stathis, K., Toni, F.: Normative KGP agents. Comput. Math. Organ.
Theory 12(2-3), 101–126 (2006)

127. Sadri, F., Toni, F., Torroni, P.: Dialogues for negotiation: Agent varieties and dia-
logue sequences. In: Meyer, J.-J.C., Tambe, M. (eds.) ATAL 2001. LNCS (LNAI),
vol. 2333, pp. 405–421. Springer, Heidelberg (2002)

128. Sadri, F., Toni, F., Torroni, P.: An abductive logic programming architecture for
negotiating agents. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA
2002. LNCS (LNAI), vol. 2424, pp. 419–431. Springer, Heidelberg (2002)



328 A. Dal Palù and P. Torroni

129. Sardu, G., Serrecchia, G., Omodeo, E., Li, L., Schuerman, K., Véron, A.: Safe-
guarding the Venice lagoon: Ann aplication of a knowledge-based DSS. In: GULP,
pp. 519–534 (1993)

130. Sessa, M. (ed.): 1985 – 1995: Ten years of Logic Programming in Italy. Palladio,
Salerno (1995)

131. Stathis, K., Toni, F.: Ambient intelligence using KGP agents. In: Markopoulos,
P., Eggen, B., Aarts, E., Crowley, J.L. (eds.) EUSAI 2004. LNCS, vol. 3295,
pp. 351–362. Springer, Heidelberg (2004)

132. Terna, P.: Rassegna di strumenti informatici. Giappichelli, Torino (1988)
133. Toni, F., Torroni, P. (eds.): CLIMA 2005. LNCS (LNAI), vol. 3900. Springer,

Heidelberg (2006)
134. Torquati, F., Paltrinieri, M., Momigliano, A.: A constraint satisfaction approach

to operative management of aircraft routing. In: IEA/AIE, vol. 2, pp. 1140–1146
(1990)

135. Torroni, P., Gavanelli, M., Chesani, F.: Argumentation in the Semantic Web.
IEEE Intelligent Systems 22(6), 66–74 (2007)

136. Vasey, P.: Prolog++ 2.0–Programmer Reference. Logic Programming Associates,
London (1995)



Author Index

Alpuente, Maria 271

Baldoni, Matteo 204
Ballis, Demis 271
Baroglio, Cristina 204
Bonatti, Piero 159
Bossi, Annalisa 15

Calimeri, Francesco 159

Dal Palù, Alessandro 300
Delzanno, Giorgio 136

Falaschi, Moreno 271
Formisano, Andrea 37

Gabbrielli, Maurizio 231
Gavanelli, Marco 64
Giacobazzi, Roberto 136
Giordano, Laura 87
Greco, Sergio 183

Leone, Nicola 159
Lisi, Francesca A. 183

Mascardi, Viviana 204
Meo, Maria Chiara 15
Momigliano, Alberto 254

Omicini, Andrea 204
Omodeo, Eugenio G. 37
Ornaghi, Mario 254

Palamidessi, Catuscia 231
Pettorossi, Alberto 112
Proietti, Maurizio 112

Ranzato, Francesco 136
Ricca, Francesco 159
Rossi, Francesca 64
Rossi, Gianfranco 1

Senni, Valerio 112

Toni, Francesca 87
Torroni, Paolo 204, 300

Valencia, Frank D. 231


	Title
	Foreword
	Preface
	Table of Contents
	Twenty-Five Years of Logic Programming in Italy
	Logic Programming in Italy:A Historical Perspective
	Introduction
	The Early Years (ca. 1984—1993)
	The APPIA-GULP-PRODE Years (ca. 1994—2003)
	The CILC Years (ca. 2004—2010)
	The Future
	Appendices
	List of Conferences Organized by GULP
	List of Doctoral Schools Organized by GULP
	Past Presidents of GULP
	The Formal Beginning


	Theoretical Foundations and Semantics of Logic Programming
	Introduction
	Preliminaries
	Logic Programming
	Galois Insertions and Abstract Interpretation

	Observables and Composition Operators
	A General Semantic Scheme
	Getting Instances from the General Schema
	Computed Answers Substitutions and Successful Derivations
	Compositional Equivalences
	A Semantics for Partial Answers and Call Patterns

	Introducing the Selection Rule
	A Semantic Scheme for Constraint Logic Programs
	A Semantic Scheme for Static Program Analysis
	Conclusions
	References

	Theory-Specific Automated Reasoning
	Proof-Engineering and Automated Reasoning in Logic
	Set Theory as a Background for Discussion
	Interoperability among Reasoners
	Bringing Algorithmic Specifications into Play
	The Role of Decision Algorithms
	Decidable Theories
	Computable Set Theory
	Integration of Decision Algorithms

	Conclusions
	References

	Constraint Logic Programming
	The CLP Paradigm
	Constraint Sorts
	Finite Domains
	Sets

	Related Frameworks
	Constraint Handling Rules
	Concurrent Constraint Programming
	Abductive Constraint Logic Programming
	Soft Constraints and Preferences

	Improvements, Solution Techniques
	Integration with Operations Research
	Symmetry Breaking

	Applications
	Conclusions
	References

	Knowledge Representation and Non-monotonic Reasoning
	Introduction
	LP and Non-monotonicity: Semantics for NAF
	Beyond NAF: Non-monotonic LP Extensions
	Dealing with Specific Reasoning Tasks and Applications
	Conclusions
	References

	The Transformational Approach to Program Development
	Introduction
	Transformation Rules
	Transformation Strategies
	Eliminating Unnecessary Variables
	Reducing Nondeterminism
	Program Specialization

	Program Synthesis
	Program Verification
	The Unfold/Fold Proof Method
	Infinite-State Model Checking

	Conclusions and Future Directions
	References

	Static Analysis, Abstract Interpretation and Verification in (Constraint Logic) Programming
	Semantics, Static Analysis and Abstract Interpretation
	Abstract Interpretation Basics
	Backward and Forward Completeness
	Abstract Domain Refinement and Simplification
	How to Cook an Abstract Domain or Semantics
	Applications in Logic Programming

	Temporal Logic and Model Checking
	Basics of Model Checking
	Model Checking Algorithm

	Abstract Model Checking and Refinement
	Abstract Semantics of Languages
	Generalized Strong Preservation
	Strong Preservation as Completeness

	Model Checking and (Constraint) Logic Programming
	Model Checking and Fixpoint Semantics in LP
	From Finite-State to Infinite-State Models
	Verification and Evaluation Strategies in LP

	References

	Answer Set Programming
	Introduction
	The ASP Language
	Syntax
	Semantics

	Properties and Theoretical Characterizations
	Language Extensions
	Optimization Constructs
	Aggregates
	Other Extensions

	ASP with Infinite Domains 
	Calculi and Implementations
	Open Issues

	Algorithms and Optimization Techniques 
	Systems and Applications
	The DLV System
	ASP-Based Products
	Applications

	Further Contributions
	References

	Logic Programming Languages for Databases and the Web
	Introduction
	Deductive Databases and Logic Programming
	Datalog
	Coupling Relational Databases with LP Systems
	Query Evaluation and Optimization
	Choice and Non-determinism in Datalog
	Aggregates in Datalog
	Deductive and Active Databases

	From Databases to the (Semantic) Web
	LP-Based Query Languages for the Web
	LP for Web Computation
	LP for Knowledge Representation in the Semantic Web
	LP for Learning Semantic Web Ontologies and Rules

	References

	Agents, Multi-Agent Systems and Declarative Programming: What, When, Where, Why, Who, How?
	What? Declarative Agent Systems
	When?
	Where? Applications
	Why? Benefits
	Who? Required Background
	How? Tools and Languages
	BDI-Style Tools and Languages
	Computational Logic-Based Tools and Languages

	References

	Concurrent and Reactive Constraint Programming
	The Origins: From Concurrect Logic Programming to Concurrent Constraint Programming
	The ccp Paradigm
	Semantic Aspects of ccp
	Analysis and Verification
	Fold/Unfold Transformations of  $ccp$

	Timed Reactive CCP
	Syntax and Operational Semantics of $ntcc$
	Reduction Relations
	A Simple Example of Weak Pre-emption
	Observables and Their Characterizations

	Another Timed {\it ccp} Language
	Syntax and Operational Semantics of $ tccp$
	Programming Example
	The Denotational Model

	Other Extensions of {\it ccp}
	Probabilistic {\it ccp}
	ccp for Service Level Agreement

	Some Working ccp Systems
	References

	Proof-Theoretic and Higher-Order Extensions of Logic Programming
	Introduction and Motivation
	Calculi for Intuitionistic and Linear Logic Programming
	λProlog
	Lolli
	LO
	Forum

	The Italian Contribution
	λProlog
	Lolli
	LO
	Forum

	Conclusions
	References

	Transformation and Debugging of Functional Logic Programs
	Introduction
	Preliminaries
	Evaluating Functional Logic Programs by Narrowing
	Two Functional Logic Program Denotations

	Narrowing-Based Program Transformation
	Unfolding Functional Logic Programs
	Folding Functional Logic Programs

	Functional Logic Program Specialization
	Declarative Debugging
	Abstract Diagnosis
	Automated Program Correction

	Related Work and Concluding Remarks
	References

	25 Years of Applications of Logic Programmingin Italy
	Introduction
	Methodology and Organization of Contributions
	Applications
	Industrial and Commercial Applications
	Knowledge and Information Extraction, Management and Integration
	Time Tabling and Rostering
	Robotics
	Graphics and Design
	Agent Systems
	Education, Learning and Cultural Heritage
	Software Engineering
	Verification
	Natural Language Processing
	Health Care
	Reasoning
	Bioinformatics
	Decision Support, Risk Analysis and Alarms

	Conclusions
	References


	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




