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Preface

This volume contains the proceedings of the 22nd International Conference on
Computer-Aided Verification (CAV) held in Edinburgh, UK, July 15–19 2010.
CAV is dedicated to the advancement of the theory and practice of computer-
assisted formal analysis methods for software and hardware systems. The confer-
ence covers the spectrum from theoretical results to concrete applications, with
an emphasis on practical verification tools and the algorithms and techniques
that are needed for their implementation.

We received 145 submissions: 101 submissions of regular papers and 44 sub-
missions of tool papers. These submissions went through a meticulous review
process; each submission was reviewed by at least 4, and on average 4.2 Program
Committee members. Authors had the opportunity to respond to the initial re-
views during an author response period. This helped the Program Committee
members to select 51 papers: 34 regular papers and 17 tool papers.

In addition to the accepted papers, the program also included:

– Five invited talks:

• Policy Monitoring in First-Order Temporal Logic, by David Basin (ETH
Zurich)

• Retrofitting Legacy Code for Security, by Somesh Jha (University of
Wisconsin-Madison)

• Induction, Invariants, and Abstraction, by Deepak Kapur (University of
New Mexico)

• Quantitative Information Flow: From Theory to Practice? by Pasquale
Malacaria (Queen Mary University) and

• Memory Management in Concurrent Algorithms, by Maged Michael
(IBM)

– Four invited tutorials:

• ABC: An Academic Industrial-Strength Verification Tool, by Robert
Brayton (University of California, Berkeley)

• Software Model Checking, by Kenneth McMillan (Cadence Berkeley Labs)
• There’s Plenty of Room at the Bottom: Analyzing and Verifying

Machine Code, by Thomas Reps (University of Wisconsin-Madison) and
• Constraint Solving for Program Verification: Theory and Practice by

Example, by Andrey Rybalchenko (Technische Universität München)

The program also included a session dedicated to the memory of Amir Pnueli,
who died on November 2, 2009. Amir was one of the main leaders of modern
advances in formal verification, and up to this year, he served on the CAV
Steering Committee. His death is a big loss to our community. We dedicate
these proceedings to his memory.



VI Preface

CAV 2010 was part of the Federated Logic Conference (FLoC 2010), hosted
by the School of Informatics at the University of Edinburgh, Scotland. It was
jointly organized with ICLP (International Conference on Logic Programming),
IJCAR (International Joint Conference on Automated Reasoning), LICS (Logic
in Computer Science), RTA (Rewriting Techniques and Applications), SAT (The-
ory and Applications of Satisfiability Testing), CSF (The Computer Security
Foundations Symposium), and ITP (International Conference on Interactive
Theorem Proving). In particular, the invited talks by David Basin and Deepak
Kapur were, respectively, FLoC plenary and keynote talks.

CAV 2010 had eight affiliated workshops:

– The Fifth Automated Formal Methods Workshop (AFM 2010)
– Exploiting Concurrency Efficiently and Correctly (EC2-2010)
– Workshop on Evaluation Methods for Solvers, and Quality Metrics for

Solutions (EMSQMS 2010)
– The First Hardware Verification Workshop (HWVW 2010)
– The Third International Workshop on Numerical Software Verification

(NSV-3)
– The Second International Workshop on Practical Synthesis for Concurrent

Systems (PSY 2010)
– International Workshop on Satisfiability Modulo Theories (SMT 2010)
– Synthesis, Verification and Analysis of Rich Models (SVARM 2010)

During the organization of CAV 2010, Edmund Clarke retired from the Steer-
ing Committee, and Orna Grumberg and Kenneth McMillan joined. Edmund
Clarke was one of the founders of CAV, and we would like to especially thank
him for his support of CAV from the start. We also thank the other Steering
Committee members and the Chairs of CAV 2008 and CAV 2009 for their help
and advice. We wish also to thank the Program Committee members and the
external reviewers for their work in evaluating the submissions and assuring a
high-quality program. We also thank Tomás Vojnar for his help in organizing
the workshops. Finally, we thank Andrei Voronkov for creating and supporting
the EasyChair conference management system.

CAV 2010 was supported by generous sponsorships. We gratefully acknowl-
edge the support from Jasper Design Automation, IBM Research, Microsoft Re-
search, NEC, EPSRC, NSF, Association for Symbolic Logic, CADE Inc., Google,
Hewlett-Packard, and Intel.

July 2010 Tayssir Touili
Byron Cook

Paul Jackson
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Policy Monitoring in First-Order Temporal Logic�

David Basin, Felix Klaedtke, and Samuel Müller

Department of Computer Science, ETH Zurich, Switzerland

Abstract. We present an approach to monitoring system policies. As
a specification language, we use an expressive fragment of a temporal
logic, which can be effectively monitored. We report on case studies in
security and compliance monitoring and use these to show the adequacy
of our specification language for naturally expressing complex, realistic
policies and the practical feasibility of monitoring these policies using
our monitoring algorithm.

1 Introduction

Runtime monitoring is an approach to verifying system properties at execution
time by using an online algorithm to check whether a system trace satisfies
a temporal property. Whereas novel application areas such as compliance or
business activity monitoring [8,19,24] require expressive property specification
languages, current monitoring techniques are restricted in the properties they
can handle. They either support properties expressed in propositional temporal
logics and thus cannot cope with variables ranging over infinite domains [11,
27,34,39,49], do not provide both universal and existential quantification [6,30,
40,43] or only in restricted ways [6,25,47,48], do not allow arbitrary quantifier
alternation [6,38], cannot handle unrestricted negation [13,38,46], do not provide
quantitative temporal operators [38,43], or cannot simultaneously handle both
past and future operators [13,25,38–40,44,46,48].

In this paper, we present our recent work [9,10] on runtime monitoring using
an expressive safety fragment of metric first-order temporal logic (MFOTL),
which overcomes most of the above limitations. The fragment consists of formulae
of the form �φ, where φ is bounded, i.e., its temporal operators refer only finitely
into the future. As both (metric) past and bounded future operators may be
arbitrarily nested, MFOTL supports natural specifications of complex policies.
Moreover, the monitors work with infinite structures where relations are either
representable by automata, so-called automatic structures [12,32], or are finite.

We review MFOTL and our monitoring algorithm, present applications, and
give performance results. For reasons of space, we only consider here monitoring
structures with finite relations. In [10], we also show how to handle automatic
structures and provide all definitions, algorithms, and proofs. Further details on
our case studies and performance results are given in [9].
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The applications we present come from the domain of security and compli-
ance monitoring. An example, from financial reporting, is the requirement: Every
transaction of a customer who has within the last 30 days been involved in a pre-
vious suspicious transaction, must be reported as suspicious within two days. Our
examples illustrate MFOTL’s suitability for specifying complex, realistic security
policies. The class of policies covered constitute safety properties, where com-
pliance can be checked by monitoring system traces. In the domain of security,
this encompasses most traditional access-control policies as well as usage-control
policies and policies arising in regulatory compliance. As we will see, such policies
often combine event and state predicates, relations on data, and complex tem-
poral relationships; all of these aspects can be naturally represented by MFOTL
formulae interpreted over a metric, point-based semantics.

To evaluate our monitoring algorithm, we monitored different policies on syn-
thetic data streams. Our experiments indicate that our approach is practically
feasible with modest computing and storage requirements. Indeed, given that
events can be processed in the order of milliseconds, the efficiency is such that
our monitors can also be used online to detect policy violations.

2 Monitoring Metric First-Order Temporal Properties

We first introduce metric first-order temporal logic (MFOTL), an extension of
propositional metric temporal logic [33]. Afterwards, we describe our monitoring
algorithm from [10] for a safety fragment of MFOTL.

2.1 Metric Temporal First-Order Logic

Syntax and Semantics. Let I be the set of nonempty intervals over N. We often
write an interval in I as [b, b′) := {a ∈ N |b ≤ a < b′}, where b ∈ N, b′ ∈ N∪{∞},
and b < b′. A signature S is a tuple (C, R, ι), where C is a finite set of constant
symbols, R is a finite set of predicates disjoint from C, and the function ι : R → N

associates each predicate r ∈ R with an arity ι(r) ∈ N. In the following, let
S = (C, R, ι) be a signature and V a countably infinite set of variables, assuming
V ∩ (C ∪ R) = ∅.

The (MFOTL) formulae over the signature S are given by the grammar

φ ::= t1≈ t2 | t1≺ t2 | r(t1, . . . , tι(r)) | ¬φ | φ∧φ | ∃x.φ | �Iφ | �Iφ | φ SI φ | φ UI φ ,

where t1, t2, . . . range over the elements in V ∪C, and r, x, and I range over the
elements in R, V , and I, respectively.

To define MFOTL’s semantics, we need the following notions. A (first-order)
structure D over S consists of a domain |D| �= ∅ and interpretations cD ∈ |D|
and rD ⊆ |D|ι(r), for each c ∈ C and r ∈ R. A temporal (first-order) structure
over S is a pair (D̄, τ̄ ), where D̄ = (D0, D1, . . . ) is a sequence of structures over S
and τ̄ = (τ0, τ1, . . . ) is a sequence of natural numbers (i.e., time stamps), where:

1. The sequence τ̄ is monotonically increasing (i.e., τi ≤ τi+1, for all i ≥ 0) and
makes progress (i.e., for every i ≥ 0, there is some j > i such that τj > τi).
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(D̄, τ̄ , v, i) |= t ≈ t′ iff v(t) = v(t′)
(D̄, τ̄ , v, i) |= t ≺ t′ iff v(t) < v(t′)
(D̄, τ̄ , v, i) |= r(t1, . . . , tι(r)) iff

(
v(t1), . . . , v(tι(r))

) ∈ rDi

(D̄, τ̄ , v, i) |= ¬φ iff (D̄, τ̄ , v, i) �|= φ
(D̄, τ̄ , v, i) |= φ ∧ ψ iff (D̄, τ̄ , v, i) |= φ and (D̄, τ̄ , v, i) |= ψ
(D̄, τ̄ , v, i) |= ∃x. φ iff (D̄, τ̄ , v[x/d], i) |= φ, for some d ∈ |D̄|
(D̄, τ̄ , v, i) |= �I φ iff i > 0, τi − τi−1 ∈ I, and (D̄, τ̄ , v, i− 1) |= φ
(D̄, τ̄ , v, i) |= �I φ iff τi+1 − τi ∈ I and (D̄, τ̄ , v, i+ 1) |= φ
(D̄, τ̄ , v, i) |= φ SI ψ iff for some j ≤ i, τi − τj ∈ I, (D̄, τ̄ , v, j) |= ψ,

and (D̄, τ̄ , v, k) |= φ, for all k ∈ [j + 1, i+ 1)
(D̄, τ̄ , v, i) |= φ UI ψ iff for some j ≥ i, τj − τi ∈ I, (D̄, τ̄ , v, j) |= ψ,

and (D̄, τ̄ , v, k) |= φ, for all k ∈ [i, j)

Fig. 1. Semantics of MFOTL

2. D̄ has constant domains, i.e., |Di| = |Di+1|, for all i ≥ 0. We denote the
domain by |D̄| and require that |D̄| is strict linearly ordered by a relation <.

3. Each constant symbol c ∈ C has a rigid interpretation, i.e., cDi = cDi+1 , for
all i ≥ 0. We denote c’s interpretation by cD̄.
A valuation is a mapping v : V → |D̄|. We abuse notation by applying a

valuation v also to constant symbols c ∈ C, with v(c) = cD̄. For a valuation v,
the variable vector x̄ = (x1, . . . , xn), and d̄ = (d1, . . . , dn) ∈ |D̄|n, v[x̄/d̄] is the
valuation mapping xi to di, for 1 ≤ i ≤ n, and the other variables’ valuation is
unaltered.

The semantics of MFOTL, (D̄, τ̄ , v, i) |= φ, is given in Figure 1, where
(D̄, τ̄ ) is a temporal structure over the signature S, with D̄ = (D0, D1, . . . ),
τ̄ = (τ0, τ1, . . . ), v a valuation, i ∈ N, and φ a formula over S. Note that the
temporal operators are augmented with intervals and a formula of the form �I φ,�I φ, φSI ψ, or φUI ψ is only satisfied in (D̄, τ̄) at the time point i if it is satisfied
within the bounds given by the interval I of the respective temporal operator,
which are relative to the current time stamp τi.

Terminology and Notation. We use standard syntactic sugar such as �I φ :=
¬(true SI ¬φ) and �I φ := ¬(true UI ¬φ), where true := ∃x. x ≈ x. We also use
non-metric operators like �φ := �[0,∞) φ. We omit parentheses where possible,
e.g., unary operators (temporal and Boolean) bind stronger than binary ones.

We call formulae with no temporal operators first-order. A formula α is
bounded if the interval I of every temporal operator UI occurring in α is fi-
nite. The outermost connective (i.e., Boolean connective, quantifier, or temporal
operator) occurring in a formula α is called the main connective of α. A formula
that has a temporal operator as its main connective is a temporal formula. The
set tsub(α) of immediate temporal subformulae of α is: (i) tsub(β), if α = ¬β
or α = ∃x. β, (ii) tsub(β) ∪ tsub(γ), if α = β ∧ γ, (iii) {α}, if α is a temporal
formula, and (iv) ∅ otherwise. For instance, for α := ((� β) S γ) ∧ �β′, we have
tsub(α) = tsub((� β) S γ) ∪ tsub(� β′) = {(�β) S γ, �β′}.
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For a formula α with the free variables x̄ = (x1, . . . , xn), we define the set of
satisfying elements at time point i ∈ N in the temporal structure (D̄, τ̄) as

α(D̄,τ̄ ,i) :=
{
d̄ ∈ |D̄|n

∣∣ (D̄, τ̄ , v[x̄/d̄], i) |= α, for some valuation v
}

.

If α is first-order, α(D̄,τ̄ ,i) only depends on the structure Di and we just write
αDi in this case.

2.2 Monitoring

In the following, let Ψ be an MFOTL formula over the signature S = (C, R, ι). To
effectively monitor Ψ , we restrict both the formula Ψ and the temporal structure
(D̄, τ̄ ) over S, where D̄ = (D0, D1, . . . ) and τ̄ = (τ0, τ1, . . . ). To begin with, we
require Ψ to be of the form �Ψ ′, where Ψ ′ is bounded.1 To detect violations,
prior to monitoring, we try to rewrite ¬Ψ ′ to a logically equivalent formula Φ,
belonging to a syntactically-defined fragment. The monitoring algorithm then
iteratively processes the temporal structure (D̄, τ̄), evaluating Φ at each time
point. Note that to identify violations, Ψ usually contains free variables and the
violations are the satisfying assignments of Φ, which the monitor outputs.

The reason for rewriting ¬Ψ ′ to Φ, rather than using ¬Ψ ′ directly, is that
the monitoring algorithm stores intermediate results when processing (D̄, τ̄ ) and
therefore these results must be finite relations.2 In particular, every relation rDi

must be finite, for i ∈ N and r ∈ R. With the restriction to finite relations, we
inherit a standard problem from database theory [3]. Namely, when |D̄| is infinite,
a query with negation can have an infinite answer set that itself cannot be
represented by a finite relation. The restriction to so-called domain-independent
queries, i.e., queries for which the answer set only depends on elements that occur
in the database, only partially solves the problem: This guarantees finiteness but
checking domain independence is undecidable [22]. A standard approach taken
in database theory is therefore to try to rewrite a query into a form that falls into
a syntactically-defined fragment that guarantees both the domain independence
and the finiteness of the intermediate results. We take this approach and further
details on rewrite rules and such a syntactically-defined fragment for MFOTL
can be found in [10]. In the remainder of this section, we assume that Φ is from
this monitorable fragment.

Overview. Our monitoring algorithm incrementally builds a sequence of struc-
tures D̂0, D̂1, . . . over an extended signature Ŝ. The extension depends on the

1 It follows that Ψ describes a safety property. Note, however, there are safety prop-
erties expressible in MFOTL that do not have such a syntactic form [15]. This is in
contrast to propositional linear temporal logic, where every ω-regular safety property
can be expressed as a formula � β, where β contains only past operators [36].

2 In fact, a weaker requirement suffices, namely, each Di is an automatic structure [12,
32] and the Dis are uniformly represented. When using automatic structures, no
further requirements on Ψ ′ are necessary and our monitoring algorithm can work
with any Φ that is logically equivalent to ¬Ψ ′. The intermediate results are also
“automatic” and effectively computable [10].
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temporal subformulae of Φ. For each time point i, we determine the elements
that satisfy Φ by evaluating a first-order formula Φ̂ over D̂i. Observe that for a
temporal subformula with a future operator as its main connective, we usually
cannot yet carry out this evaluation at time point i. The monitoring algorithm
therefore maintains a queue of unevaluated formulae and evaluates them when
enough time has elapsed.

We describe first how we extend S and transform Φ. Afterwards, we explain
how we incrementally build D̂i. Finally, we present our monitoring algorithm. For
the ease of exposition, we assume in the following that the temporal subformulae
of Φ are of the form β SI γ and �[0,b) β. The more general case for the temporal
operator UI is along the same lines as �[0,b) but is technically more involved.
The cases for �I and �I are straightforward and omitted here.

Signature Extension and Structure Construction. The extended signature Ŝ con-
tains all constants and predicates in S, with the same arities. Moreover, for each
temporal subformula α of Φ, Ŝ includes the new auxiliary predicates pα and rα,
of arities n and n + 1 respectively, where n is the number of free variables in α.
For θ, a subformula of Φ over the signature S, θ̂ denotes the transformed formula
over Ŝ, where each α ∈ tsub(θ) with the free variables x̄ is replaced by pα(x̄).

For i ∈ N, c ∈ C, and r ∈ R, we define |D̂i| := |D̄| ∪ N, cD̂i := cDi , and
rD̂i := rDi . The auxiliary relations in the D̂is are defined inductively over both
time and the formula structure. Furthermore, their construction is incremental
in the sense that it reuses the auxiliary relations from the previous time points.

We start with the auxiliary relations for a subformula α of the form β S[b,b′) γ.
The non-metric variant of the construction reflects that β S γ is logically equiv-
alent to γ ∨β ∧ �(β S γ): For i ≥ 0 and assuming without loss of generality that
β and γ have the same vector of free variables, we define

pD̂i

βSγ := γ̂D̂i ∪
{

∅ if i = 0,

β̂D̂i ∩ p
D̂i−1
βSγ if i > 0.

Observe that this definition only depends on the relations in D̂i for which the
corresponding predicates occur in the subformulae of β̂ or γ̂, and on the auxiliary
relation p

D̂i−1
βSγ , when i > 0.

To incorporate the timing constraint for the interval [b, b′) of the S operator,
we first incrementally construct the auxiliary relations for rα similar to the
definition above: For i ≥ 0, we define rD̂i

α := N ∪ U , where N := γ̂D̂i × {0} and

U :=

{
∅ if i = 0,{
(ā, y)

∣∣ ā ∈ β̂D̂i , y < b′, and (ā, y + τi−1 − τi) ∈ r
D̂i−1
α

}
if i > 0.

Intuitively, a pair (ā, y) is in rD̂i
α if ā satisfies α at the time point i independent

of the lower bound b, where the “age” y indicates how long ago the formula α

was satisfied by ā. If ā satisfies γ at the time point i, it is added to rD̂i
α with the

age 0. For i > 0, we also update the tuples (ā, y) ∈ r
D̂i−1
α when ā satisfies β at

time point i, i.e., the age is adjusted by the difference of the time stamps τi−1
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and τi in case the new age is less than b′. Otherwise it is too old to satisfy α and
the updated tuple is not included in rD̂i

α .
Finally, we obtain the auxiliary relation pD̂i

α from rD̂i
α by checking whether

the age of a tuple in rD̂i
α is old enough:

pD̂i
α :=

{
ā
∣∣ (ā, y) ∈ rD̂i

α , for some y ≥ b
}

.

We now address the bounded future operator �[0,b), with b ∈ N \ {0}. Assume
that α = �[0,b) β. For i ∈ N, let �i := max{k ∈ N | τi+k − τi < b} denote the
lookahead offset at time point i. Note that only β̂D̂i , . . . , β̂D̂i+�i are relevant for
determining α(D̄,τ̄ ,i). For i ∈ N, we could directly define pD̂i

α as
⋂

j∈{0,...,�i} β̂D̂i+j .
However, this construction has the drawback that for i and i + 1, we must
recompute the intersections of the β̂D̂i+j s for j ∈ {1, . . . , �i}.

We instead define pD̂i
α in terms of the incrementally-built auxiliary relation

rD̂i
α , where (ā, k) ∈ rD̂i

α iff ā ∈ β̂D̂i+j , for all j ∈ {k, . . . , �i}. As before, we
construct rD̂i

α from two sets N and U . N contains the elements from the new
time points i + �i−1, . . . , i + �i, where �−1 := 0 for convenience. U contains the

updated elements from r
D̂i−1
α , if i > 0. To update an element (ā, k) ∈ r

D̂i−1
α , we

check that ā also satisfies β at the new time points. Furthermore, we decrease
its index k, if k > 0. Formally, for i ≥ 0, we define rD̂i

α := N ∪ U , where

N :=
{
(ā, k)

∣∣ �i−1 ≤ k ≤ �i and ā ∈ β̂D̂i+k+j , for all j ∈ N with k + j ≤ �i

}
and U := ∅ when i = 0 and if i > 0, then

U :=
{
(ā, max{0, k−1})

∣∣(ā, k) ∈ rD̂i−1
α and if �i−�i−1 ≥ 0 then (ā, �i−1) ∈ N

}
.

Finally, we define pD̂i
α := {ā | (ā, 0) ∈ rD̂i

α }.
We remark that both constructions of the auxiliary relations for the subfor-

mulae for the forms β SI γ and �[0,b) β can be optimized. For example, we can

delete a tuple (ā, k) in rD̂i

�[0,b) β if it also contains a tuple (ā, k′) with k′ < k.

Example. Before presenting our monitoring algorithm, we illustrate the formula
transformation and the constructions of the auxiliary relations with the formula

�∀x. in(x) → ♦[0,6) out(x) .

To detect violations, we negate this formula and push negation inwards. To deter-
mine which elements violate the property, we also drop the quantifier, obtaining
the formula ♦

(
in(x)∧�[0,6) ¬out(x)

)
. Since relations for out are finite, ¬out(x)

describes an infinite set and therefore the auxiliary relations for the subformula
�[0,6) ¬out(x) are infinite. Hence, we further rewrite the formula into the logi-
cally equivalent formula ♦Φ, with Φ := in(x) ∧ �[0,6)

(
¬out(x) ∧ �[0,6) in(x)

)
.

The formula Φ is in our monitorable MFOTL fragment.
Observe that α := �[0,6)

(
¬out(x)∧�[0,6) in(x)

)
and α′ := �[0,6) in(x) are the

only temporal subformulae of Φ. The transformed formula Φ̂ = in(x) ∧ pα(x)
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�
time

index i:

time stamp τi:

inDi :

outDi :

pD̂i
α′ :

0

1

{a, c}
∅
{a, c}

1

1

{b, d}
∅
{a, b, c, d}

2

3

∅
{b}
{a, b, c, d}

3

6

{c}
{a}
{a, b, c, d}

4

7

∅
{d}
{c}

5

9

{d}
∅
{c, d}

· · ·
· · ·
· · ·
· · ·
· · ·

Fig. 2. A temporal structure

is over the signature Ŝ that extends Φ’s signature with the auxiliary unary
predicates pα and pα′ and the binary predicates rα and rα′ .

We only illustrate the incremental constructions of the auxiliary relations for
α by considering the temporal structure in Figure 2, which also depicts the
relations for pα′ . Observe that to build the relations rD̂i

α , for i ≥ 0, we require

the relations outDi+k and the auxiliary relations p
D̂i+k

α′ with k ∈ {0, . . . , �i}, for
the lookahead offset �i at time point i.

For the time point i = 0, we have �0 = 3 because τ3 − τ0 < 6 and τ4 − τ0 = 6.
Furthermore, the auxiliary relation rD̂0

α is {(c, k)|0 ≤ k ≤ 3}∪{(d, k)|1 ≤ k ≤ 3}.
In general, a pair (ā, k) is in rD̂i

α iff ā did not occur in one of the relations outDi+j ,
with j ∈ {k, . . . , �i} and ā previously appeared in inDj′ , for some j′ ≤ i+ j with
τi+j−τj′ < 6. For example, the pair (c, 2) is in rD̂0

α , since c is not in outD2∪outD3

and c is in inD0 and hence in pD̂2
α′ and pD̂3

α′ . Recall that the lookahead offset �0

is 3 and therefore we only look at the time points 0 through 3. We obtain pD̂0
α

as {ā | (ā, 0) ∈ rD̂0
α } = {c}, which contains also the satisfying elements for Φ at

time point 0, since pD̂0
α ∩ inD0 = {c}.

For the time point i = 1, the lookahead offset �1 is 2. Since �1 = �0−1, we need
not consider any new time points, i.e., we obtain rD̂1

α from rD̂0
α by updating the

tuples contained in rD̂0
α , yielding rD̂1

α = {(c, 0), (c, 1), (c, 2), (d, 0), (d, 1), (d, 2)}
and pD̂1

α = {c, d}. The corresponding set of violating elements is pD̂1
α ∩ inD1 =

{d}. For the time point i = 2, we must also account for the new time point 4,
since �2 = 2. The only new element in rD̂2

α is (c, 2). The updated elements are
(c, 0) and (c, 1). The pairs in rD̂1

α with the first component d are not updated
since d ∈ outD4 . We therefore obtain pD̂2

α = {c} and pD̂2
α ∩ inD2 = ∅.

The Monitoring Algorithm. Figure 3 presents our monitoring algorithm MΦ.
Without loss of generality, we assume that each temporal subformula occurs
only once in Φ. In the following, we describe MΦ’s operation.

MΦ uses two counters � and i. The counter � is the index of the current element
(D�, τ�) in the input sequence (D0, τ0), (D1, τ1), . . . , which is processed sequen-
tially. Initially, � is 0 and it is incremented with each loop iteration (lines 4–14).
The counter i ≤ � is the index of the next time point i (possibly in the past, from
�’s point of view) for which we evaluate Φ̂ over the structure D̂i. The evaluation
is delayed until the relations pD̂i

α for α ∈ tsub(Φ) have all been built (lines 10–12).
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1 	← 0 % current index in input sequence (D0, τ0), (D1, τ1), . . .
2 i← 0 % index of next query evaluation in input sequence (D0, τ0), (D1, τ1), . . .
3 Q← {(α, 0,waitfor(α)

) ∣∣ α is a temporal subformula of Φ
}

4 loop
5 Carry over constants and relations of D� to D̂�.
6 forall (α, j, ∅) ∈ Q do % respect ordering of subformulae

7 Build auxiliary relations p
D̂j
α and r

D̂j
α .

8 Discard auxiliary relations that were involved in the construction of r
D̂j
α .

9 while all auxiliary relations pD̂i
α are built for α ∈ tsub(Φ) do % eval query

10 Output (Φ̂)D̂i and τi.

11 Discard structure D̂i−1, if i > 0.
12 i← i+ 1

13 Q← {(α, 	+ 1,waitfor(α)
) ∣∣ α is a temporal subformula of Φ

}∪{(
α, j,

⋃
α′∈update(S,τ�+1−τ�)

waitfor(α′)
∣∣ (α, j, S) ∈ Q and S �= ∅}

14 	← 	+ 1 % process next element (D�+1, τ�+1) in input sequence

Fig. 3. Monitoring algorithm MΦ

Furthermore, MΦ uses the list3 Q to ensure that the auxiliary relations of
D̂0, D̂1, . . . are built at the right time: if (α, j, ∅) is an element of Q at the
beginning of a loop iteration, enough time has elapsed to build the relations for
the temporal subformula α of the structure D̂j . MΦ initializes Q in line 3. The
function waitfor identifies the subformulae that delay the formula evaluation:

waitfor (α) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
waitfor (β) if α = ¬β or α = ∃x. β,
waitfor (β) ∪ waitfor (γ) if α = β ∧ γ or α = β SI γ,
{α} if α = �[0,b) β,
∅ otherwise.

The list Q is updated in line 13 before we increment � and start a new loop
iteration. For an update, we use the set update(U, t) defined as

{�[0,b−t) β | �[0,b) β ∈ U and b − t > 0} ∪ {β | �[0,b) β ∈ U and b − t ≤ 0} ,

where U is a set of formulae and t ∈ N. The update adds a new tuple (α, � +
1,waitfor (α)) to Q, for each temporal subformula α of Φ, and it removes the
tuples of the form (α, j, ∅) from Q. Moreover, for tuples (α, j, S) with S �= ∅,
the set S is updated using the functions waitfor and update, accounting for the
elapsed time to the next time point, i.e. τ�+1 − τ�.

In lines 6–8, we build the relations for which enough time has elapsed, i.e.,
the auxiliary relations for α in D̂j with (α, j, ∅) ∈ Q. Since a tuple (α′, j, ∅)
does not occur before a tuple (α, j, ∅) in Q, where α is a subformula of α′, the

3 We abuse notation by using set notation for lists. Moreover, we assume that Q is
ordered so that (α, j, S) occurs before (α′, j′, S′), whenever α is a proper subformula
of α′, or α = α′ and j < j′.
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relations in D̂j for α are built before those for α′. To build the relations, we
use the incremental constructions described earlier in this section. After we have
built these relations for α in D̂j, we discard relations no longer needed to reduce
space consumption. For instance, if j > 0 and α = β SI γ, then we discard the
relations r

D̂j−1
α and p

D̂j

α′ with α′ ∈ tsub(β) ∪ tsub(γ).
In lines 9–12, if the auxiliary relations for pα in D̂i of all immediate temporal

subformulae α of Φ have been built, then MΦ outputs the valuations violating Ψ ′

at time point i together with τi. Furthermore, after each output, the remainder
of the extended structure D̂i−1 is discarded (if i > 0) and i is incremented by 1.

Note that because MΦ does not terminate, it is not an algorithm in the strict
sense. However, it effectively computes the elements violating Ψ ′, for every time
point n. More precisely, whenever MΦ outputs the set (Φ̂)D̂i in line 10, then this
set is finite, effectively computable, and (Φ̂)D̂i = (¬Ψ ′)(D̄,τ̄ ,i). Moreover, for each
n ∈ N, MΦ eventually sets the counter i to n in some loop iteration.

Since MΦ iteratively processes the structures and time stamps in the temporal
structure (D̄, τ̄ ), we measure its memory usage with respect to the processed
prefix of (D̄, τ̄ ). The counters � and i are at most the length of the processed
prefix. Hence, in the nth loop iteration, we need O(log n) bits for these two
counters. We can modify the monitoring algorithm MΦ so that it is independent
of the prefix length by replacing the two counters with a single counter that stores
� − i, i.e., the distance of � from i. Since the list Q stores tuples that contain
indices of the processed prefix, we must make them relative to the next query
evaluation. Under the additional assumption that there are at most m equal
time stamps in τ̄ , the number of bits for the new counter is then logarithmically
bounded by the maximal lookahead offset, which is at most m · s, where s is the
sum of the upper bounds of the intervals of the future operators occurring in
Φ. Furthermore, the number of elements in the list Q is bounded by m · s · k,
where k is the number of temporal subformulae in Φ. Most importantly, the
number of elements in the auxiliary relations that MΦ stores in the nth loop
iteration can be polynomially bounded by m, s, k, and the cardinality of the
active domain of the processed prefix, where adom�(D̄) := {cD̄ | c ∈ C} ∪⋃

0≤n≤�

⋃
r∈R{dj | (d1, . . . , dι(r)) ∈ rDn and 1 ≤ j ≤ ι(r)}. The degree of the

polynomial is linear in the maximal number of free variables occurring in a
temporal subformula of Φ. To achieve this polynomial bound, we must optimize
the incremental construction of the auxiliary relations for rβS[b,∞)γ so that the
age of an element is the minimum of its actual age and the interval’s lower
bound b.

Given the above modifications to MΦ and the additional assumption on the
number of equal time stamps, the monitor’s memory usage is polynomially
bounded and independent of the length of the processed prefix. Moreover, the
bound on the cardinalities of the auxiliary relations is independent of how often
an element of |D̄| appears in the relations of the processed prefix of the given
temporal structure (D̄, τ̄ ).
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3 Case Studies

We have carried out several case studies where we formalized and monitored a
wide range of policies from the domain of security and regulatory compliance. In
the following, we give two representative examples and report on the monitors’
runtime performance for these cases. Other examples are given in [9].

3.1 Approval Requirements

Consider a policy governing the publication of business reports within a company,
where all reports must be approved prior to publication. A simplified form of
such a policy might be

�∀f. publish(f) → � approve(f) .

But this is too simplistic. More realistically, we would also require, for example,
that the person publishing the report must be an accountant and the person
approving the publication must be the accountant’s manager. Moreover, the
approval must happen within, say, 10 days prior to publication.

Note that predicates like approving a report and being someone’s manager dif-
fer in the following respect. The act of approving a report represents an event :
It happens at a time point and does not have a duration. In contrast, being
someone’s manager describes a state that has a duration. Since MFOTL’s se-
mantics is point-based, it naturally captures events. Entities like system states
do not have a direct counterpart in MFOTL. However, we can model them using
start and finish events. The following formalization of the above policy illustrates
these two different kinds of entities and how we deal with them in MFOTL. To
distinguish between them, we use the terms event predicate and state predicate.

Signature. The signature consists of the unary relation symbols accS and accF ,
and the binary relation symbols mgrS , mgrF , publish, and approve . Intuitively,
mgrS(m, a) marks the time when m becomes a’s manager and mgrF (m, a) marks
the corresponding finishing time. Analogously, accS(a) and accF (a) mark the
starting and finishing times of a being an accountant. We use these predicates
to simulate state predicates in MFOTL, e.g., the formula acc(a) := ¬accF (a) S
accS(a) holds at the time points where a is an accountant. It states that a
starting event for a being an accountant has previously occurred and the corre-
sponding finishing event has not occurred since then. Analogously, mgr(m, a) :=
¬mgrF (m, a)SmgrS(m, a) is the state predicate expressing that m is a’s manager.

Formalization. Before formalizing the approval policy, we formalize assump-
tions about the start and finish events in a temporal structure (D̄, τ̄ ). These
assumptions reflect the system requirement that these events are generated in a
“well-formed” way. First, we assume that start and finish events do not occur at
the same time point, since their ordering would then be unclear. For example,
for the start and finish events of being an accountant, we assume that (D̄, τ̄)
satisfies the formula

� ∀a. ¬
(
accS(a) ∧ accF (a)

)
.
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Furthermore, we assume that every finish event is preceded by a matching start
event and between two start events there is a finish event. Formally, for the start
and finish events of being an accountant, we assume that (D̄, τ̄ ) satisfies

�∀a. accF (a) → � acc(a) and � ∀a. accS(a) → ¬� acc(a) .

The assumptions for mgrS and mgrF are similar and we omit them.
Our formalization of the policy that whenever a report is published, it must

be published by an accountant and the report must be approved by her manager
within at most 10 time units prior to publication is now given by the formula

� ∀a. ∀f. publish(a, f) → acc(a) ∧ �[0,11) ∃m.mgr(m, a) ∧ approve(m, f) . (P1)

Note that the state predicates acc and mgr can change over time and that such
changes are accounted for in our MFOTL formalization of this security policy.
In particular, at the time point where m approves the report f , the formula (P1)
requires that m is a’s manager. However, m need no longer be a’s manager when
a publishes f , although a must be an accountant at that time point.

The resulting monitor for (P1) can be used in an offline setting, e.g., to read
log files and report policy violations. When the monitor is built into a policy
decision point, it can also be used, in this case, for policy enforcement.

3.2 Transaction Requirements

Our next example is a compliance policy for a banking system that processes
customer transactions. The requirements stem from anti-money laundering reg-
ulations such as the Bank Secrecy Act [1] and the USA Patriot Act [2].

Signature. Let S be the signature (C, R, ι), with C := {th}, R :=
{trans, auth, report}, and ι(trans) := 3, ι(auth) := 2, and ι(report) := 1. The
ternary predicate trans represents the execution of a transaction of some cus-
tomer transferring a sum of money. The binary predicate auth denotes the autho-
rization of a transaction by some employee. Finally, the unary predicate report
represents the situation where a transaction is reported as suspicious.

Formalization. We first formalize that executed transactions t of any customers
c must be reported within at most 5 days if the transferred money a exceeds a
given threshold th.

�∀c. ∀t. ∀a. trans(c, t, a) ∧ th ≺ a → ♦[0,6) report(t) . (P2)

Moreover, transactions that exceed the threshold must be authorized by some
employee e prior to execution.

� ∀c. ∀t. ∀a. trans(c, t, a) ∧ th ≺ a → �[2,21) ∃e. auth(e, t) . (P3)

Here we require that the authorization takes place at least 2 days and at most
20 days before executing the transaction. Our last requirement concerns the
transactions of a customer that has previously made transactions that were
classified as suspicious. Namely, every executed transaction t of a customer c,



12 D. Basin, F. Klaedtke, and S. Müller

who has within the last 30 days been involved in a suspicious transaction t′,
must be reported as suspicious within 2 days.
�∀c. ∀t. ∀a. trans(c, t, a) ∧

(
�[0,31) ∃t′. ∃a′. trans(c, t′, a′) ∧ ♦[0,6) report(t′)

)
→

♦[0,3) report(t) .
(P4)

3.3 Experimental Evaluation

We implemented a Java prototype of the monitoring algorithm and evaluated
its performance on the above policies. As input data, we synthetically generate
finite prefixes of temporal structures, as this allows us to study the algorithm’s
performance under different parameter settings. Namely, for each formula, we
synthesize finite prefixes of temporal structures over the formula’s signature
by drawing the time stamps and the elements of the relations from predefined
sample spaces using a discrete uniform distribution. We restrict ourselves to
relational structures with singleton relations that also satisfy the given well-
formedness assumptions. To assess the monitor’s long-run performance, we then
conduct a steady-state analysis [35], which is a standard method for estimating
the behavior of non-terminating processes in the limit. For more information on
our experimental setup, see [9].

Table 1 summarizes our experimental results using a 1.4GHz dual core com-
puter with 3GBytes of RAM. The size of the sample space for the m different
kinds of data, e.g., managers, accountants, and files, is denoted by Ωn1×···×nm .
The sample space for time stamps is chosen so that the different lengths of the
generated temporal structures simulate scenarios with the (approximate) event
frequencies 110, 220, . . . , 550, i.e., the number of structures associated with each
time point that approximately occur in the time window specified by the met-
ric temporal operators of the given formula. We measure the following aspects.
(1) ipt denotes the steady-state mean incremental processing times, in millisec-
onds. The incremental processing time is the time the monitor needs to construct
and update the auxiliary relations in one loop iteration. (2) sc denotes a point
estimate of the steady-state mean space consumption, where the actual average
space consumption lies in the specified interval with a probability of 95%. We
measured the monitor’s space consumption as the sum of the cardinalities of
the auxiliary relations. (3) omax denotes the maximal space consumption that
we observed in our experiments. Finally, (4) radom denotes the average of the
cardinalities of the relevant active domains4 after the warm-up phase.
4 The relevant active domain with respect to a time point is the set of data elements of

the temporal structure that appear in the relations in the formula’s time window at
the time point. Although these cardinalities are only a rough complexity measure for
the processed input prefix, they help us judge the monitor’s performance better than
more simplistic measures like the cardinality of the active domain of the processed
prefix or the length of the prefix. In particular, the cardinalities of the relevant active
domains relate the incremental update times and the cardinalities of the auxiliary
relations to the input prefix of a temporal structure with respect to the formula to
be monitored. The elements that do not occur in the relevant active domain for a
time point are irrelevant for detecting policy violations at that time point.
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Table 1. Experimental results of the steady-state analysis

event frequency
formula aspect 110 220 330 440 550 sample space

(P1)

ipt 14.1 21.8 26.0 37.7 39.4

Ω20×20×2000
sc 672±70.5 1,267±135.2 1,857±200.3 2,442±265.4 3,024±331.2

omax 1,208 2,155 3,006 3,988 4,884
radom 281 477 661 818 950

(P2)

ipt 7.0 13.1 17.9 21.0 29.6

Ω1000×25000×2
sc 353±4.4 700±8.7 1,044±12.0 1,386±15.2 1,725±20.7

omax 2,135 3,959 5,172 7,377 8,714
radom 404 762 1,098 1,422 1,726

(P3)

ipt 1.7 2.8 3.7 4.8 10.4

Ω1000×25000×2×200
sc 119±1.3 235±2.6 350±3.9 465±5.0 579±5.6

omax 158 282 412 545 659
radom 492 893 1,252 1,583 1,893

(P4)

ipt 2.2 3.5 4.7 6.0 7.6

Ω1000×25000×2
sc 140±2.8 405±9.0 801±19.1 1,334±32.2 1,994±47.8

omax 723 1,270 2,242 3,302 4,360
radom 404 762 1,098 1,422 1,726

The results of our experiments, depicted in Table 1, predict low space con-
sumption and running times of the monitoring algorithm in the long run. This
suggests that we can monitor realistic policies with manageable overhead. More-
over, the monitoring algorithm scales well with respect to the event frequency:
the growth rates of all four aspects measured are approximately linear with
respect to the event frequency.

Our results also shed light on the relationship between formula structure and
monitoring efficiency. The state predicates used in (P1) result in additional tem-
poral subformulae and hence increased space consumption and processing time.
Moreover, the maximal observed space consumption is close to the estimated
steady-state mean space consumption for formulae only referring to the past.
For formulae containing future operators, i.e. (P2) and (P4), these values differ
up to a factor of 6 since the monitoring algorithm delays the policy check at time
points when it depends on future events. The information about the current time
point must be stored in auxiliary relations until this check is performed.

4 Related Work

Temporal logics are widely applicable in computing since they allow one to for-
mally and naturally express system properties and they can be handled algorith-
mically. For instance, in system verification, the propositional temporal logics
LTL, CTL, and PSL are widely used [16,42,50]. Linear-time temporal logics like
first-order extensions of LTL and different real-time extensions [4] have also been
used to formalize [8,19,24,28,29,31,51] and to reason about [8,14,19,20] system
policies. However, reasoning about policies has been mostly carried out in just
the propositional setting [8,20]. For instance, in [8], policy consistency is reduced
to checking whether an LTL formula is satisfiable and verification techniques for
LTL are proposed for checking runtime compliance. This kind of reasoning is in-
adequate for systems with unboundedly many users or data elements. Note that
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although a system has only finitely many users at each time point, the number
of users over time is usually unbounded.

In the domain of security and compliance checking, bounds on the number
of users or data elements are usually unrealistic. Hence most monitoring algo-
rithms, e.g. [11,17,18,21,23,30,34,40,44], are of limited use in this domain. The
rule-based monitoring approach implemented in the closely related EAGLE [6]
and RuleR [7] frameworks partially overcomes this limitation. There, properties
are given as so-called temporal equations, which can have parameters referring
to data that are instantiated during monitoring. EAGLE’s rule-based approach
has been used in [19] to monitor regulations, where one distinguishes between
provisions and obligations and where regulations can refer to other regulations.
Analogous to the use of parametric temporal equations in EAGLE and RuleR,
the monitoring algorithm from [41,43] for auditing log files instantiates the pa-
rameters occurring in the given temporal formula during the monitoring process.
Roughly speaking, such instantiations create propositions on demand and the
number of propositions can be unbounded. These instantiations can also be seen
as a restricted form of existential quantification, where variables are assigned to
values that appear at the current position of the input trace.

The linear-time temporal logic used for monitoring in [25,26] directly supports
quantification. However, quantified variables only range over elements that ap-
pear at the current position of the input trace. Similar to [6,7,43], quantification
is handled by instantiations. In contrast, our monitoring algorithm does not cre-
ate propositions at runtime. Instead it creates auxiliary relations for the temporal
subformulae of the given MFOTL formula. Our monitoring algorithm thereby
handles more general existential and universal quantification; however, formulae
must be domain independent. A simple, albeit artificial, example is the formula
�∃x. (� p(x)) ∧ ¬q(x) whose negation is ♦∀x. (� p(x)) → q(x), which is in our
monitorable fragment. However, elements a ∈ |D̄| for which a ∈ pDi+1 holds,
need not appear at the current time point i. The monitoring approach in [48] is
similar to the one in [25] but instead of using a tableau construction as in [25],
it uses so-called parametric alternating automata, which are instantiated during
runtime. Other differences to our monitoring algorithm are that the monitoring
algorithms in [25,48] do not handle past operators and future operators need not
be bounded.

Our monitoring algorithm is based on Chomicki’s monitor for checking
integrity constraints on temporal databases [13]. It extends and improves
Chomicki’s monitor by supporting bounded future operators and by simplify-
ing and optimizing the incremental update constructions for the metric opera-
tors. Moreover, when using automatic structures, no syntactic restrictions on the
MFOTL formula to domain-independent queries are necessary. Other monitoring
algorithms for temporal databases are given in [38,46]. Both of these algorithms
support only future operators and neither handles arbitrary quantifier alterna-
tion. Processing database streams is also related to monitoring and compliance
checking. However, query languages like CQL [5] are less expressive temporally.
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What they usually provide instead are operators for manipulating sequences, for
example, transforming streams into relations and vice versa.

In this paper, our focus is on monitoring for compliance checking, rather than
policy enforcement[37,45]. Enforcement is more difficult as it may necessitate
changing future actions or predicting when existing actions have consistent ex-
tensions. It is also complicated by distribution, as a monitor may be able to
observe events, but not necessarily control them.

5 Conclusions

We have given an overview of some of the ideas behind our approach to runtime
monitoring using an expressive fragment of a metric first-order temporal logic.
We have also given examples illustrating how policies can be formalized and we
have analyzed the monitor’s resource requirements.

Of course, our approach is not a panacea. Policies outside the scope of MFOTL
include those for which no domain-independent formalization exists or those
requiring a more expressive logic. An example of the latter is the requirement a
report must be filed within 3 days when all transactions of a trader over the last
week sum up to more than $50 million, involving the aggregation operator for
summation. Similarly, our experiments indicate that the monitoring algorithm
does not handle all policies equally well as a policy’s syntactic form may influence
monitoring efficiency. In general, for monitoring those properties formalizable in
MFOTL, there may be more efficient, specialized algorithms than ours. Despite
these limitations, MFOTL appears to sit in the sweet spot between expressivity
and complexity: it is a large hammer, applicable to many problems, and has
acceptable runtime performance.

We have indicated that our monitors can be used in some cases for policy
enforcement. We plan to explore how this can best be done and to compare
the performance with competing approaches. We would also like to carry out
concrete case studies in the application domains presented in this paper.
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Research in computer security has historically advocated Design for Security,
the principle that security must be proactively integrated into the design of a
system. While examples exist in the research literature of systems that have
been designed for security, there are few examples of such systems deployed
in the real world. Economic and practical considerations force developers to
abandon security and focus instead on functionality and performance, which are
more tangible than security. As a result, large bodies of legacy code often have
inadequate security mechanisms. Security mechanisms are added to legacy code
on-demand using ad hoc and manual techniques, and the resulting systems are
often insecure.

This talk advocates the need for techniques to retrofit systems with secu-
rity mechanisms. In particular, it focuses on the problem of retrofitting legacy
code with mechanisms for authorization policy enforcement. It introduces a new
formalism, called fingerprints, to represent security-sensitive operations. Finger-
prints are code templates that represent accesses to security-critical resources,
and denote key steps needed to perform operations on these resources. This talk
develops both fingerprint mining and fingerprint matching algorithms.

Fingerprint mining algorithms discover fingerprints of security-sensitive oper-
ations by analyzing source code. This talk presents two novel algorithms that
use dynamic program analysis and static program analysis, respectively, to mine
fingerprints. The fingerprints so mined are used by the fingerprint matching algo-
rithm to statically locate security-sensitive operations. Program transformation
is then employed to statically modify source code by adding authorization policy
lookups at each location that performs a security-sensitive operation.

These techniques have been applied to three real-world systems. These case
studies demonstrate that techniques based upon program analysis and transfor-
mation offer a principled and automated alternative to the ad hoc and manual
techniques that are currently used to retrofit legacy software with security mech-
anisms. Time permitting, we will talk about other problems in the context of
retrofitting legacy code for security. I will also indicate where ideas from model-
checking have been used in this work.
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Quantitative Information Flow: From Theory to
Practice?

Pasquale Malacaria
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Most computational systems share two basic properties: first they process infor-
mation, second they allow for observations of this processing to be made. For
example a program will typically process the inputs and allows its output to be
observed on a screen. In a distributed system each unit processes information
and will allow some observation to be made by the environment or other units,
for example by message passing. In an election voters cast their vote, officials
count the votes and the public can observe the election result.

The general aim of Quantitative Information Flow (QIF) [4,5] is to measure
the amount of information about a source of information that can be gained by
observations on some related system component. An application in the context
of programming languages is for example to measure leakage of confidential
information in programs.

The simplest example motivating QIF is a password checking program where
secret data (stored in the high variable h) can be deduced by observing the final
value of the low variable l:

if (h == l) l = 0 else l = 1

The above program is insecure and the aim of QIF is to measure its insecurity.
Further examples of this scenario is code handling medical records, code query-

ing databases, arithmetic operations within a cryptographic package, RFID tag
identification etc. In these examples we expect sound code to leak as little as
possible. There are also positive applications of QIF, where the analysis should
return high leakage; examples of this scenario are programs computing best fit
representation for data, hash coding, image processing code, strategy game solv-
ing programs etc.

In both scenarios would be very useful to have reasoning techniques and tools,
possibly automatic tools, able to measure how much information is leaked.

QIF attempts to answer a set of questions related to leakage, for example are
we interested in the total possible amount leaked, or only if it leaks below or
above a certain threshold? clearly the former question is in general harder than
the latter because for the latter we can stop measuring leakage once reached
the threshold. Also is the ration leaked or the amount itself the information
we want? for example a 3 bits leak is one tenth for a 30 bits secret but is one
hundred percent for a 3 bits secret.

The nature of what is leaked is also very important, typically does it leak
always the same information? for example there is a very big difference if the
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code leaks always the same bit when it is run or if leaks a different bit every time
is run. Other important questions are: at what rate, i.e. how fast, is information
leaked? and what’s the maximum leakage (the channel capacity) over all possible
choice of probabilities for the inputs?

The fundamental question has to be what is exactly that we want to use as a
measure [13].

The basic albeit crude unit of measure in the analysis is the number of states of
the source of information that can be distinguished by the observations. Classical
non-interference [8] amounts to not to be able to make any distinction by looking
at the observations, whereas total leakage corresponds to be able to make all
possible distinctions. The tricky bit is, of course, what lies in between these two
extreme.

In the past years a number of works have refined this idea and provided a
solid theoretical background for QIF [5,10,13]. The theory is based on Infor-
mation Theoretical terms, the main being Shannon’s entropy but also Renyi’s
entropies and guessability measures have been shown to be relevant. The Infor-
mation Theoretical approach has been shown to be powerful and able to provide
natural, intuitive and precise reasoning principles for program constructs includ-
ing loops [9,10]. The theory has also been fruitfully applied to the analysis of
anonymity protocols, where the same framework has been used to measure the
loss of anonymity [2,3].

More recent works have investigated automation of such ideas, and verification
techniques like abstract interpretation, bounded model checkers and SAT solvers
have been applied in this context [1,7,11,12]. Implementation of the quantitative
aspects of the analysis presents however a number of challenges [14], the main
being scalability and handling of data structures.

Some of these challenges could probably be solved by appropriate abstraction
techniques, some may be better addressed by statistical means [6].

The talk will give an overview of the field, the basic ideas, reasoning principles
and problems.
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Many shared memory concurrent algorithms involve accessing dynamic nodes
of shared structures optimistically, where a thread may access dynamic nodes
while they are being updated by concurrent threads. Optimistic access is of-
ten necessary to enable non-blocking progress, and it is desirable for increasing
concurrency and reducing conflicts among concurrent operations.

Optimistic access to dynamic nodes and structures makes the memory man-
agement of such nodes one of the most complex aspects of concurrent algorithms.
For example, a thread operating on a shared dynamic structure may access a
dynamic node after it was removed from the structure by another thread, and
possibly even after it was reclaimed for unrelated reuse. Unless the algorithm
and the memory management method it employs are carefully designed to han-
dle such situations correctly, they can lead to various errors such as memory
access violations, return of incorrect results, and/or corruption of shared data.

The main purpose of memory management in the context of concurrent al-
gorithms is to balance the goal of enabling and maximizing the flexible reuse
of dynamic nodes that are no longer needed, with the goal of maximizing the
flexibility of safe access to dynamic nodes.

The verification of a concurrent algorithm is incomplete without taking into
account the algorithm’s memory management properties. Some such properties
need to be verified explicitly, as they are not necessarily covered by conventional
safety and progress properties, such as linearizability and deadlock-freedom. Un-
derstanding the subtleties of memory management properties of concurrent al-
gorithms and the relations between these properties can help make verification
of concurrent algorithms more effective and complete.

The talk discusses memory management problems and issues in concurrent
algorithms, including the tightly-related ABA problem, categories of memory
management and ABA-prevention solutions, types of memory access properties
of concurrent algorithms, memory bounds, progress properties of memory man-
agement methods, and relations among these various properties.
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Abstract. ABC is a public-domain system for logic synthesis and formal 
verification of binary logic circuits appearing in synchronous hardware designs. 
ABC combines scalable logic transformations based on And-Inverter Graphs 
(AIGs), with a variety of innovative algorithms. A focus on the synergy of 
sequential synthesis and sequential verification leads to improvements in both 
domains. This paper introduces ABC, motivates its development, and illustrates 
its use in formal verification. 

Keywords: Model checking, equivalence checking, logic synthesis, simulation, 
integrated sequential verification flow. 

1   Introduction 

Progress in both academic research and industrial products critically depends on the 
availability of cutting-edge open-source tools in the given domain of EDA. Such tools 
can be used for benchmarking, comparison, and education. They provide a shared 
platform for experiments and can help simplify the development of new algorithms. 
Equally important for progress is access to real industrial-sized benchmarks. 

For many years, the common base for research in logic synthesis has been SIS, a 
synthesis system developed by our research group at UC Berkeley in 1987-1991. Both 
SIS [35] and its predecessor MIS [8], pioneered multi-level combinational logic 
synthesis and became trend-setting prototypes for a large number of synthesis tools 
developed by industry. 

In the domain of formal verification, a similar public system has been VIS [9], 
started at UC Berkeley around 1995 and continued at the University of Colorado, 
Boulder, and University of Texas, Austin. In particular, VIS features the latest 
algorithms for implicit state enumeration [15] with BDDs [11] using the CUDD 
package [36].  

While SIS reached a plateau in its development in the middle 90’s, logic 
representation and manipulation methods continued to be improved. In the early 
2000s, And-Inverter Graphs (AIGs) emerged as a new efficient representation for 
problems arising in formal verification [22], largely due to the published work of A. 
Kuehlmann and his colleagues at IBM.  

In that same period, our research group worked on a multi-valued logic synthesis 
system, MVSIS [13]. Aiming to find better ways to manipulate multi-valued relations, 
we experimented with new logic representations, such as AIGs, and found that, in 
addition to their use in formal verification, they can replace more-traditional 



 ABC: An Academic Industrial-Strength Verification Tool 25 

representations in logic synthesis. As a result of our experiments with MVSIS, we 
developed a methodology for tackling problems, which are traditionally solved with 
SOPs [35] and BDDs [37], using a combination of random/guided simulation of AIGs 
and Boolean satisfiability (SAT) [25].  

Based on AIGs as a new efficient representation for large logic cones, and SAT as 
a new way of solving Boolean problems, in the summer 2005, we switched from 
multi-valued methods in MVSIS to binary AIG-based synthesis methods. The 
resulting CAD system, ABC, incorporates the best algorithmic features of MVSIS, 
while supplementing them with new findings.  

One such finding is a novel method for AIG-based logic synthesis that replaced the 
traditional SIS logic synthesis flow, which was based on iterating elimination, 
substitution, kerneling, don’t-care-based simplification, as exemplified by SIS scripts, 
script.algebraic and script.rugged. Our work on AIGs was motivated by fast 
compression of Boolean networks in formal verification [5]. We extended this method 
to work in synthesis, by making it delay-aware and replacing two-level structural 
matching of AIG subgraphs with functional matching of the subgraphs based on 
enumeration of 4-input cuts [26].  

It turned out that the fast AIG-based optimizations could be made even more efficient 
by applying them to the network many times. Doing so with different parameter settings 
led to results in synthesis comparable or better than those of SIS, while requiring much 
less memory and runtime. Also this method is conceptually simpler than the SIS 
optimization flow, saving months of human-effort in code development and tuning. The 
savings in runtime/memory led to the increased scalability of ABC, compared to SIS. 
As a result, ABC can work on designs with millions of nodes, while SIS does not finish 
on these designs after many hours, and even if it finishes, the results are often inferior to 
those obtained by the fast iterative computations in ABC. 

The next step in developing ABC was to add an equivalence checker for verifying 
the results of synthesis, both combinational and sequential [29]. Successful 
equivalence checking motivated experiments with model checking, because both 
types of verification work on a miter circuit and have the common goal of reducing it 
to the constant 0. To test this out, we submitted an equivalence checker in ABC to the 
hardware model checking competition at CAV 2008, winning in two out of three 
categories. 

Working on both sequential synthesis and verification has allowed us to leverage 
the latest results in both domains and observe their growing synergy. For example, the 
ability to synthesize large problems and show impressive gains spurs development of 
equally scalable equivalence checking methods, while the ability to scalably verify 
sequential equivalence problems spurs the development, use, and acceptance of 
aggressive sequential synthesis. In ABC, similar concepts are used in both synthesis 
and verification: AIGs, rewriting, SAT, sequential SAT sweeping, retiming, 
interpolation, etc.  

This paper provides an overview of ABC, lists some of the ways in which 
verification ideas have enriched synthesis methods, shows how verification is helped 
by constraining or augmenting sequential synthesis, and details how various 
algorithms have been put together to create a fairly powerful model checking engine 
that can rival some commercial offerings. We give an example of the verification 
flow applied to an industrial model checking problem. 
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The rest of the paper is organized as follows. Section 2 introduces the basic 
terminology used in logic synthesis and verification. Section 3 describes combinational 
and sequential AIGs and their advantages over traditional representations. Section 4 
discusses the duality of synthesis and verification. Section 5 gives a case study of an 
efficient AIG implementation, complete with experimental results. Section 6 describes 
both the synthesis and verification flows in ABC and provides an example of the 
verification flow applied to an industrial model checking problem. Section 7 concludes 
the paper and sketches some on-going research. 

2   Background  

2.1   Boolean Network  

A Boolean network is a directed acyclic graph (DAG) with nodes corresponding to 
logic gates and directed edges corresponding to wires connecting the gates. The terms 
Boolean network, netlist, and circuit are used interchangeably in this paper. If the 
network is sequential, the memory elements are assumed to be D flip-flops with initial 
states.  

A node n has zero or more fanins, i.e. nodes driving n, and zero or more fanouts, 
i.e. nodes driven by n. The primary inputs (PIs) are nodes without fanins in the 
current network. The primary outputs (POs) are a subset of nodes of the network. A 
fanin (fanout) cone of node n is a subset of all nodes of the network, reachable 
through the fanin (fanout) edges of the node. 

2.2   Logic Synthesis  

Logic synthesis transforms a Boolean network to satisfy some criteria, for example, 
reduce the number of nodes, logic levels, switching activity. Technology mapping 
deals with representing the logic in terms of a given set of primitives, such as standard 
cells or lookup tables.  

Combinational logic synthesis involves changing the combinational logic of the 
circuit with no knowledge of its reachable states.  As a result, the Boolean functions 
of the POs and register inputs are preserved for any state of the registers.  In contrast, 
sequential logic synthesis preserves behavior on the reachable states and allows 
arbitrary changes on the unreachable states. Thus, after sequential synthesis, the 
combinational functions of the POs and register inputs may have changed, but the 
resulting circuit is sequentially-equivalent to the original.   

2.3   Formal Verification  

Formal verification tries to prove that the design is correct in some sense.  
The two most common forms of formal verification are model checking and 

equivalence checking. Model checking of safety properties considers the design along 
with one or more properties and checks if the properties hold on all reachable states. 
Equivalence checking checks if  the design after synthesis is equal to its initial 
version, called the golden model.  
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In modern verification flows, the circuit to be model-checked is transformed into a 
circuit called a model checking miter by supplementing the logic of the design with a 
monitor logic, which checks the correctness of the property. Similarly, in equivalence 
checking, the two circuits to be verified are transformed into an equivalence checking 
miter [7] derived by combining the pairs of inputs with the same names and feeding 
the pairs of outputs with the same names into EXOR gates, which are ORed to 
produce the single output of the miter.  

In both property and equivalence checking, the miter is a circuit with the inputs of 
the original circuit and an output that produces value 0, if and only if the original 
circuit satisfies the property or if the two circuits produce identical output values 
under any input assignment (or, in sequential verification, under any sequence of 
input assignments, starting from the initial state).  

The task of formal verification is to prove that the constructed miter always 
produces value 0. If synthesis alone does not solve the miter, the output can be 
asserted to be constant 1 and a SAT solver can be run on the resulting problem. If the 
solver returns “unsatisfiable”, the miter is proved constant 0 and the property holds, or 
the original circuits are equivalent. If the solver returns “satisfiable”, an assignment of 
the PIs leading to 1 at the output of the miter, called a counter-example, is produced, 
which is useful for debugging the circuit. 

2.4   Verifiable Synthesis  

An ultimate goal of a synthesis system is to produce good results in terms of area, 
power, speed, capability for physical implementation etc, while allowing an unbiased 
(independent) verification tool to prove that functionality is preserved. Developing 
verifiable synthesis methods is difficult because of the inherent complexity of the 
sequential verification problem [20].  

One verifiable sequential synthesis is described in [29]. This is based on identifying 
pairs of sequentially-equivalent nodes/registers, that is groups of signals having the 
same or opposite values in all reachable states. Such equivalent nodes/registers can be 
merged without changing the sequential behavior of the circuit, often leading to 
substantial reductions, e.g. some parts of the logic can be discarded because they no 
longer affect the POs. This sequential synthesis technique is used extensively in ABC 
to reduce both designs and sequential miters. 

3   And-Inverter Graphs 

3.1   Combinational AIGs  

A combinational And-Invertor Graph (AIG) is a Boolean network composed of two-
input ANDs and inverters. To derive an AIG, the SOPs of the nodes in a logic 
network are factored, the AND and OR gates of the factored forms are converted into 
two-input ANDs and inverters using DeMorgan’s rule, and these nodes are added to 
the AIG manager in a topological order. The size (area) of an AIG is the number of 
its nodes; the depth (delay) is the number of nodes on the longest path from the PIs to 
the POs. The goal of optimization by local transformations of an AIG is to reduce 
both area and delay.   
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Structural hashing of AIGs ensures that all constants are propagated and, for each 
pair of nodes, there is at most one AND node having them as fanins (up to a 
permutation). Structural hashing is performed by hash-table lookups when AND 
nodes are created and added to an AIG manager. Structural hashing was originally 
introduced for netlists of arbitrary gates in early IBM CAD tools [15] and was 
extensively used in formal verification [22]. Structural hashing can be applied on-the-
fly during AIG construction, which reduces the AIG size. To reduce the number of 
AIG levels, the AIG is often balanced by applying the associative transform, a(bc) = 
(ab)c. Both structural hashing and balancing are performed in one topological 
traversal from the PIs and have linear complexity in the number of AIG nodes.  

A cut C of a node n is a set of nodes of the network, called leaves of the cut, such 
that each path from a PI to n passes through at least one leaf. Node n is called the root 
of cut C. The cut size is the number of its leaves. A trivial cut of a node is the cut 
composed of the node itself. A cut is K-feasible if the number of nodes in the cut does 
not exceed K. A cut is dominated if there is another cut of the same node, which is 
contained, set-theoretically, in the given cut. 

A local function of an AIG node n, denoted fn(x), is a Boolean function of the logic 
cone rooted in n and expressed in terms of the leaves, x, of a cut of n. The global 
function of an AIG node is its function in terms of the PIs of the network. 

3.2   Sequential AIGs  

Sequential AIGs extend combinational AIGs with technology-independent D-flip-flops 
with one input and one output, controlled by the same clock, omitted in the AIG 
representations.   

We represent flip-flops in the AIG explicitly as additional PI/POs pairs. The PIs 
and register outputs are called combinational inputs (CIs) and the POs and register 
inputs are called combinational outputs (COs). The additional pairs of CI/CO nodes 
follow the regular PIs/POs, and are in one to one correspondence with each other. 
This representation of sequential AIGs differs from that used in [1] where latches are 
represented as attributes on AIG edges, similar to the work of Leiserson and Saxe 
[23].  

The chosen representation of sequential AIGs allows us to work with the AIG 
manager as if it was a combinational AIG, and only utilize its sequential properties 
when sequential transformations are applied. For example, combinational AIG 
rewriting works uniformly on combinational and sequential AIGs, while sequential 
cleanup, which removes structurally equivalent flip-flops, exploits the fact that they 
are represented as additional PIs and POs. Sequential transformation, such as 
retiming, can add and remove latches as needed. 

3.3   Distinctive Features of AIGs  

Representing logic using networks containing two-input nodes is not new. In SIS, there 
is a command tech_decomp [35] generating a two-input AND/OR decomposition of 
the network. However, there are several important differences that make two-input 
node representation in the form of AIGs much more efficient that its predecessors in 
SIS: 
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• Structural hashing ensures that AIGs do not contain structurally identical nodes. 
For example, node a∧b can only exist in one copy. When a new node is being 
created, the hash table is checked, and if such node already exists, the old node 
is returned. The on-the-fly structural hashing is very important in synthesis 
applications because, by giving a global view of the AIG, it finds, in constant 
time, simple logic sharing across the network. 

• Representing inverters as edge attributes. This feature is borrowed from the 
efficient implementation of BDDs using complemented edges [36]. As a result, 
single-input nodes representing invertors and buffers do not have to be created. 
This saves memory and allows for applying DeMorgan’s rule on-the-fly, which 
increases logic sharing. 

• The AIG representation is uniform and fine-grain, resulting in a small, fixed 
amount of memory per node. The nodes are stored in one memory array in a 
topological order, resulting in fast, CPU-cache-friendly traversals. To further 
save memory, our AIG packages compute fanout information on demand, 
resulting in 50% memory reduction in most applications. Similar to the AIG 
itself, fanout information for arbitrary AIG structures can be represented 
efficiently using a constant amount of memory per node. 

Fig. 1 shows a Boolean function and two of its structurally-different AIGs. The nodes 
in the graphs denote AND-gates, while the bubbles stand for complemented edges. 
The figure shows that the same completely-specified Boolean function can be 
represented by two structurally different AIGs, one with smaller size and larger depth, 
the other vice versa. 

3.4   Comparing Logic Synthesis in SIS and in ABC  

In terms of logic representation, the main difference between SIS and ABC, is that 
SIS works on a logic network whose nodes are represented using SOPs, while ABC 
works on an AIG whose nodes are two-input AND gates. A SIS network can be 
converted into an AIG by decomposing each node into two-input AND gates. For a 
deterministic decomposition algorithm, the resulting AIG is unique.  However, the 
reverse transformation is not unique, because many logic networks can be derived 
from the same AIG by grouping AND gates in different ways. This constitutes the 
main difference between SIS and ABC. 

SIS works on one copy of a logic network, defined by the current boundaries of its 
logic nodes, while ABC works on an AIG. A cut computed for an AND node in the 
AIG can be seen as a logic node. Since there are many cuts per logic node, the AIG can 
be seen as an implicit representation of many logic networks. When AIG rewriting is 
performed in ABC, a minimal representation is found among all decompositions of all 
structural cuts in the AIG, while global logic sharing is captured using a structural 
hashing table. Thus, ABC is more likely to find a smaller representation in terms of 
AIG nodes than SIS, which works on one copy of the logic network and performs only 
those transformations that are allowed by this network. 

SIS and ABC use different heuristics for logic manipulation, so it is still possible 
that, for a particular network, SIS finds a better solution than ABC. 
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Fig. 1. Two different AIGs for a Boolean function 

3.5   Advantages of AIGs summarized  

The following properties of AIGs fascilitate development of robust applications in 
synthesis, mapping, and formal verification:  

• AIGs unify the synthesis/mapping/verification by representing logic compactly 
and uniformly. The results of technology-independent synthesis are naturally 
expressed as an AIG. During technology mapping, the AIG is used as a subject 
graph annotated with cuts that are matched with LUTs or gates. At any time, 
verification can be performed by contructing a miter of the two synthesis 
snapshots represented as one AIG, handled by a complex AIG-based 
verification flow.  

• Although AIG transformations are local, they are performed with a global view 
afforded by the structural hashing table. Because these computations are 
memory/runtime efficient, they can be iterated, leading to superior results, 
unmatched by a single application of a more global transform.  

• An AIG can be efficiently duplicated, stored, and passed between calling 
applications as a memory buffer or compactly stored on disk in the AIGER 
format [4].  

4   Synthesis-Verification Duality 

Recent advances in formal verification and logic synthesis have made these fields 
increasingly interdependent, especially in the sequential domain [10].  

In addition to algorithm migration (for example, AIG rewriting, SAT solving, 
interpolation came to synthesis from verification), hard verification problems 
challenge synthesis methods that are used to simplify them, while robust verification 
solutions enable more aggressive synthesis. For example, bold moves can be made in 
sequential synthesis by assuming something that seems likely to hold but cannot be 
proved easily. If the result can be verified (provided that sequential verification is 
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powerful enough), synthesis is over. Otherwise, different types of synthesis can be 
tried, for example, traditional or other risk-free synthesis. Preliminary experiments 
show potentially large gains in synthesis for industrial problems. 

4.1   Known Synergies 

In this section, we outline several aspects of combinational and sequential verification 
that benefit from synthesis.  

Combinational equivalence checking (CEC) proves equivalence of primary outputs 
and register inputs after combinational synthesis. To this end, a combinational miter is 
constructed and solved using a set of integrated methods, including simulation, SAT 
solving, and BDD or SAT sweeping [22]. Running combinational synthesis on a miter 
during verification substantially improves the CEC runtime [27]. This is because 
synthesis quickly merges shallow equivalences and reduces the size of the miter, 
allowing difficult SAT calls go through faster.  

A similar observation can be made about retiming [23]. If retiming has been 
applied during sequential synthesis, it is advantageous to apply most-forward retiming 
as one of the preprocessing steps during sequential verification. It can be shown that if 
during sequential synthesis only retiming was applied without changing the logic 
structure, then most forward retiming followed by an inductive register 
correspondence computation is guaranteed to prove sequential equivalence [21]. This 
observation is used in our verification tool, which allows the user to enable retiming 
as an intermediate step during sequential verification [29]. 

Yet another synthesis/verification synergy holds when induction is used to detect 
and merge sequentially equivalent nodes. The following result was obtained in [29]: if 
a circuit was synthesized using only k-step induction to find equivalent signals, then 
equivalence between the original and final circuits is guaranteed provable using k-step 
induction with the same k.  

These results lead to the following rule of thumb which is used in our verification 
flow: if a transformation is applied during synthesis, it is often helpful (and necessary) 
to apply the same or more powerful transformations during verification. 

5   Case Study: Developing a Fast Sequential Simulator for AIGs 

Several applications suffer from the prohibitive runtime of a sequential gate-level 
simulator. For example, in formal verification, the simulator is used to quickly detect 
easy-to-disprove properties or as a way to compute simulation signatures of internal 
nodes proving their equivalence. The same sequential simulator is useful to estimate 
switching activity of registers and internal nodes. The pre-computed switching 
activity can direct transformations that reduce dynamic power dissipation in low-
power synthesis. In this case study, based on [19], we discuss how to develop a fast 
sequential simulator using AIGs.  

5.1   Problem Formulation  

The design is sequentially simulated for a fixed number of time-frames. A sequential 
simulator applies, at each time step, a set of values to the PIs. In the simplest case, 
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random PI patterns are generated to have a 0.5 probability of the node changing its 
value (fixed toggle rate). In other scenarios, the probability of an input transitions  
is given by the user, or produced by another tool. For example, if an input trace is 
known, it may be used for simulating the design. It is assumed that the initial state is 
known and initializes the sequential elements at the first time-frame. In subsequent 
time frames, the state derived at the previous iteration is used. 

The runtime of sequential simulation can be reduced by minimizing the memory 
footprint. This is because most CPUs have a local cache ranging in size from 2Mb to 
16Mb. If an application requires more memory than this, repeated cache misses cause 
the runtime to degrade. Therefore, the challenge is to design a simulator that uses a 
minimalistic data-structure without compromising the computation speed.  

We found three orthogonal ways of reducing the memory requirements of the 
simulator, which in concert greatly improve its performance. 

Compacting logic representation. Sequential designs are represented as AIGs. A 
typical AIG package uses 32 or more bytes to represent each AIG object (an internal 
AND node, an PI/PO, or a flop outputs/inputs). However, a minimalistic AIG package 
requires only 8 bytes per object. For an internal node, two integer fields, four bytes 
each, are used to store the fanin IDs. Other data structures may be temporarily 
allocated, for example, a hash-table for structural hashing may be used during AIG 
construction and deallocated before simulation begins. 

Recycling simulation memory. When simulation is applied to a large sequential 
design, storing simulated values for all nodes in each timeframe requires a lot of 
memory. One way of avoid this, is to use the simulation information as soon as it is 
computed and to recycle the memory when it is not needed. For example, to estimate 
switching activity, we are only interested in counting the number of transitions seen at 
each node. For this, an integer counter can be used, thereby adding four bytes per 
object to the AIG package memory requirements, while the simulation information 
does not have to be stored.  

Additionally, there is no need to allocate simulation memory for each object in the 
AIG. At any time during simulation, we only need to store simulation values for each 
combinational input/output and the nodes on the simulation frontier. These are all the 
nodes whose fanins are already simulated but at least one fanout is not yet simulated. 
For industrial designs, the number of internal nodes where simulation information 
should be stored is typically very small. For example, large industrial designs tend to 
have simulation frontier that is less than 1% of the total number of AIG nodes. The 
notion of a simulation frontier has also been useful to reduce memory requirements 
for the representation of priority cuts [28]. 

Bit-parallel simulation of two time-frames at the same time. A naïve approach to 
estimate the transition probability for each AIG node would be to store simulation 
patterns in two consecutive timeframes. Then, this information is compared (using 
bitwise XOR), and the number of ones in the bitwise representation is accumulated 
while simulating the timeframes. However, saving simulation information at each 
node for two consecutive timeframes leads to a large memory footprint. For example, 
an AIG with 1M objects requires 80Mb to store the simulation information for two 
timeframes, assuming 10 machine words (40 bytes) per object.  
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This increase in memory can be avoided by simultaneously simulating data 
belonging to two consecutive timeframes. In this case, comparison across the 
timeframes is made immediately, without memorizing previously computed results. 
This leads to duplicating the computation effort by simulating every pattern twice, one 
with the previous state value and the other with the current state value. However, the 
speedup due to not having to traverse the additional memory (causing excessive cash 
misses) outweighs the disadvantage of the re-computation. 

5.2   Experimental Results  

This section summarizes two experiments performed to evaluate the new simulator.  
The first experiment, was designed to show that the new sequential simulator, 

called SimSwitch, has affordable runtimes for large designs.  Four industrial designs 
ranging from 304K to 1.3M AIG nodes were simulated with different numbers of 
simulation patterns, ranging from 2,560 to 20,480. The input toggle rate was assumed 
to be 0.5. The results are shown in Table 1. Columns “AIG” and “FF” show the 
numbers of AIG nodes and registers. The runtimes for different amounts of input 
patterns are shown in the last columns. Note that the runtimes are quite affordable 
even for the design with 1.3M AIG nodes. In all four cases, the 2,560 patterns were 
sufficient for node switching activity rates to converge to a steady state.  

Table 1. Runtime of SimSwitch 

Runtime for inputs patterns (seconds) Design AIG FF 

2560 5120 10240 20480 

C1 304K 1585 0.1 0.2 0.2 0.4 
C2 362K 27514 2.7 2.9 4.1 6.6 
C3 842K 58322 7.4 7.6 10.2 18.2 
C4 1306K 87157 12.1 15.4 15.7 24.2 

 
In the second experiment, we compare the runtime of SimSwitch vs. ACE-2.0 on 

14 industry designs and 12 large academic benchmarks. The input toggle rate is 
assumed to be 0.5 for both tools. The number of input patterns is assumed to be 5,000 
for both runs. All circuits are decomposed into AIG netlists before performing the 
switching estimation. The table of results can be found in [19]. The summary of 
results are as follows:  

• For industry designs, SimSwitch is 149+ times faster than ACE-2.0.   
• For academic benchmarks, SimSwitch is 85+ times faster than ACE-2.0.  
• SimSwitch finished all testcases while ACE-2.0 times out on four industrial 

designs. 

6   Optimization and Verification Flows   

This section describes integrated sequences of transformations applied in ABC.  
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6.1   Integration of Synthesis 

The optimization algorithms of ABC are integrated into a system called Magic [31] 
and interfaced with a design database developed to store realistic industrial designs. 
For instance, Magic handles multiple clock domains, flip-flops with complex controls, 
and special objects such as adder chains, RAMs, DSP modules, etc. Magic was 
developed to work with hierarchical designs whose sequential logic cones, when 
represented as a monolithic AIG, contain more than 1M nodes. The algorithms are 
described in the following publications: 

 
Synthesis 

Scalable sequential synthesis [29] and retiming [34]. 
Combinational synthesis using AIG rewriting [26]. 
Combinational restructuring for delay optimization [30]. 
 

Mapping 
Mapping with structural choices [14]. 
Mapping with global view and priority cuts [28]. 
Mapping to optimize application-specific metrics [18][19]. 
 

Verification 
Fast sequential simulation [19] 
Improved combinational equivalence checking [27]. 
Improved sequential equivalence checking [29][33]. 
 

The integration of components inside Magic is shown in Fig. 2. The design database 
is the central component interfacing the application packages. The design entry into 
Magic is performed through a file or via programmable APIs.  

Design 
database 

Sequential 
synthesis 

AIG 
rewriting 

File / Code 
interface 

Computing 
choices 

LUT 
mapping 

Retiming 

Structuring 
for delay 

Post-place 
optimization 

Verification  
 

Fig. 2. Interaction of application packages in Magic 

Shown on the right of Fig. 2, is sequential synthesis based on detecting, proving, 
and merging sequentially equivalent nodes. This transformation can be applied at the 



 ABC: An Academic Industrial-Strength Verification Tool 35 

beginning of the flow, before combinational synthesis and mapping. Another optional 
transform is retiming that reduces the total number of logic levels in the AIG or in the 
mapped network. Reducing the number of logic levels correlates with but does not 
always lead to an improvement in the clock frequency after place-and-route. The 
sequential transforms can be verified by sequential simulation and sequential 
equivalence checking. 

Shown on the left of Fig. 2, is the combinational synthesis flow, which includes 
AIG rewriting, computing structural choices, and FPGA look-up-table (LUT) 
mapping. Computation of structural choices can be skipped if fast low-effort synthesis 
is desired. The result of mapping is returned to the design database or passed on to 
restructuring for delay optimization.  After combinational synthesis, the design can be 
verified using combinational equivalence checking. 

Finally, the box in the bottom right corner represents post-placement resynthesis, 
which includes incremental restructuring and retiming with wire-delay information.  

6.2   Integration of Verification 

Similar to IBM’s tool SixthSense [2], the verification subsystem of ABC is an 
integrated set of applications, divided into several categories: miter simplifiers (i.e. 
sequential synthesis), bug-hunters (i.e. bounded model checking), and provers (i.e. 
interpolation). The high-level interface coded in Python orchestrates the applications 
and determines the resource limits used. An embedded Python interpreter allows for 
defining new procedures in addition to those included. 

An AIG file is read in, and the objective is to prove each output unsatisfiable or 
find a counter-example. The top-level functions are prove and prove_g_pos. The 
former works for single-output properties, while the latter applies the former to each 
output of a multi-output miter, or to several outputs grouped together based on the 
group’s support. The main flow is 

pre_simp → quick_verify → abstract → quick_verify → speculate → final_verify, 

with each function passing the resulting AIG to the next function. At each stage, a set 
of resources is selected to spend on an algorithm. These resources are: total time, limit 
on the number of conflicts in SAT, maximum number of timeframes to unroll, 
maximum number of BDD nodes, etc. The allocation of resources is guided by the 
state of verification and the AIG parameters (the number of PIs, POs, FFs, AIG 
nodes, BMC depth reached, etc), which vary when the AIG is simplified and 
abstracted.   

A global parameter x_factor can be used to increase the resources. If the problem is 
proved UNSAT by one of the application packages, the computation stops and the 
result is returned. . If the problem is found SAT and no abstraction has been done, the 
counter-example is returned. 

The function pre_simp tries to reduce the AIG by applying several simplification 
algorithms: 

• Phase abstraction, trying to identify clock-like periodic behaviors and deciding to 
unfold the design several frames depending on the clocks found and the amount 
of simplification this may allow [6]. 

• Trimming, which eliminates PIs that have no fanouts. 
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• Constraint extraction, which looks for implicit constraints inductively, uses these 
to simplify the design, and folds them back in with a structure such that if ever a 
constraint is not satisfied, the output is forced to be 0 from then on [12]. 

• Forward retiming and sequential FF correspondence, which finds correspondences 
between FFs and reduces the FF count, especially in SEC examples [29]. 

• Strong simplification script simplify, which iterates AIG rewriting, retiming for 
minimum FF (flip-flop) count, k-step sequential signal correspondence with k 
selected based on problem size. Also, the effort spent in signal correspondence 
can be adjusted by using a dedicated circuit-based SAT solver. 

If simplify has already been applied to an AIG, then repeating it is usually fast, so the 
verification flow iterates it several times when other reductions have been done. 

The function quick_verify, performed after each significant AIG reduction, is a low 
resource version of final_verify. These functions try to prove the problem by running 
interpolation or, if the problem seems small enough, by attempting BDD reachability. 

The algorithm abstract is a combination of counter-example abstraction and proof-
based abstraction implemented in a single SAT instance [17]. It returns an abstracted 
version of the AIG (a set of registers removed and replaced by PIs) and the frame 
count it was able to explore. To double check that a valid abstraction is derived, BMC 
(or, if the problem is small enough, BDD reachability) is applied to the resulting 
abstraction using additional resources. If a counter-example is found, abstract is 
restarted with additional resources from the frame where the counter-example was 
found.  

The algorithm speculate applies speculative reduction [32][33]. This algorithm 
finds candidate sequential equivalences in the AIG, and creates a speculative reduced 
model, by transferring the fanouts of each equivalence class to a single representative, 
while creating new outputs, which become additional proof obligations. This model is 
refined as counter-examples are produced, finally arriving at a model that has no 
counterexamples up to some depth explored by BMC. Then, attempts are made to 
prove the outputs of the speculatively reduced model. If all outputs are successfully 
proved, the initial verification problem is solved. If at least one of the outputs failed, 
the candidate equivalences have to be filtered and speculative reduction repeated. 

6.3   Example of Running the Verification Flow 

Below is an example of a printout produced by ABC during verification of an 
industrial design. Comments follow the printout. 

 
abc> Read_file  example1.aig 
PIs = 532, POs = 1, FF = 2389, ANDs = 12049 
abc> prove 
 
Simplifying 
Number of constraints found = 3 
Forward retiming, quick_simp, scorr_comp, trm: PIs = 532, POs = 1, FF = 2342,  
ANDs = 11054 
Simplify:    PIs = 532, POs = 1, FF = 2335, ANDs = 10607 
Phase abstraction:    PIs = 283, POs = 2, FF = 1460, ANDs = 8911 
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Abstracting 
Initial abstraction:     PIs = 1624, POs = 2, FF = 119, ANDs = 1716, max depth = 39 
Testing with BMC 
bmc3 -C 100000 -T 50 -F 78:     No CEX found in 51 frames 
Latches reduced from 1460 to 119 
Simplify:     PIs = 1624, POs = 2, FF = 119, ANDs = 1687, max depth = 51 
Trimming:     PIs = 158, POs = 2, FF = 119, ANDs = 734, max depth = 51 
Simplify:     PIs = 158, POs = 2, FF = 119, ANDs = 731, max depth = 51 
 
Speculating 
Initial speculation:    PIs = 158, POs = 26, FF = 119, ANDs = 578, max depth = 51 
Fast interpolation:    reduced POs to 24 
Testing with BMC 
bmc3 -C 150000 -T 75:    No CEX found in 1999 frames 
PIs = 158, POs = 24, FF = 119, ANDs = 578, max depth = 1999 
Simplify:     PIs = 158, POs = 24, FF = 119, ANDs = 535, max depth = 1999 
Trimming:     PIs = 86, POs = 24, FF = 119, ANDs = 513, max depth = 1999 
 
Verifying  
Running reach -v -B 1000000 -F 10000 -T 75:    BDD reachability aborted 
RUNNING interpolation with 20000 conflicts, 50 sec, max 100 frames:  'UNSAT‘ 
 
Elapsed time: 457.87 seconds, total: 458.52 seconds 

 
NOTES: 

1. The file example1.aig is first read in and its statistics are reported: 532 
primary inputs, 1 primary output, 2389 flip-flops, and 12049 AIG nodes. 

2. 3 implicit constraints were found, but they turned out to be only mildly 
useful in simplifying the problem. 

3. Phase abstraction found a cycle of length 2 and this was useful for 
simplifying the problem to 1460 FF from 2335 FF. Note that the number of 
outputs increased to 2 because the problem was unrolled 2 time frames. 

4. Abstraction was successful in reducing the FF count to 119. This was 
proved valid out to 39 time frames.  

5. BMC verified that the abstraction produced is actually valid to 51 frames, 
which gives us good confidence that the abstraction is valid for all time. 

6. Trimming reduced the inputs relevant to the abstraction from 1624 to 158 
and simplify reduced the number of AIG nodes to 731. 

7. Speculation produced a speculative reduced model (SRM) with 24 new 
outputs to be proved and low resource interpolation proved 2 of them. The 
SRM model is simpler and has only 578 AIG nodes. The SRM was tested 
with BMC and proved valid out to 1999 frames. 

8. Subsequent trimming and simplification reduced the PIs to 86 and AIG 
size to 513. 

9. The final verification step first tried BDD reachability allowing it 75 sec. 
and to grow to up to 1M BDD nodes. It could not converge with these 
resources so it was aborted. Then interpolation has returned UNSAT, and 
hence all 24 outputs are proved.  
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10. Although quick_verify was applied between simplification and abstraction, 
and between abstraction and speculation, it was not able to prove anything, 
so its output is not shown. 

11. The total time was 457 seconds on a Lenovo X301 laptop with 1.4Gb Intel 
Core2 Duo CPU and 3Gb RAM. 

7   Conclusions and Future Work 

In this paper, we discussed the development of ABC and described its basic 
principles. Started five years ago, ABC continues to grow and gain momentum as a 
public-domain tool for logic synthesis and verification. New implementations, 
improvements, bug fixes, and performance tunings are added frequently. Even the 
core computations continue to improve through better implementation and exploiting 
the synergy between synthesis and verification. Possibly another 2-5x speedup can be 
obtained in these computations using the latest findings in the field. As always, a gain 
in runtime allows us to perform more iterations of synthesis with larger resource 
limits, resulting in stronger verification capabilities. 

Future work will continue in the following directions: 

• Improving core applications, such as AIG rewriting (by partitioning the problem 
and prioritizing rewriting moves) and technology mapping (by specializing the 
mapper to an architecture based on a given lookup-table size or a given 
programmable cell). 

• Developing new applications (for example, a fast incremental circuit-based SAT 
solver or a back-end prover based on an OR-decomposition of the property cone, 
targetting properties not provable by known methods). 

• Building industrial optimization/mapping/verification flows, such as Magic [31], 
targeting other implementation technologies (for example, the FPGA synthesis 
flow can be extended to work for standard cells). 

• Disseminating the innovative principles of building efficient AIG/SAT/ 
simulation applications and the ways of exploiting the synergy of synthesis and 
verification. 

• Customizing ABC for users in such domains as software synthesis, cryptography, 
computational biology, etc. 

ABC is available for free from Berkeley Verification and Synthesis Research Center [3]. 
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Abstract. This paper discusses the obstacles that stand in the way
of doing a good job of machine-code analysis. Compared with analysis
of source code, the challenge is to drop all assumptions about having
certain kinds of information available (variables, control-flow graph, call-
graph, etc.) and also to address new kinds of behaviors (arithmetic on
addresses, jumps to “hidden” instructions starting at positions that are
out of registration with the instruction boundaries of a given reading of
an instruction stream, self-modifying code, etc.).

The paper describes some of the challenges that arise when analyzing
machine code, and what can be done about them. It also provides a
rationale for some of the design decisions made in the machine-code-
analysis tools that we have built over the past few years.

1 Introduction

This paper is intended to complement the papers that we have written over the
past few years on verifying safety properties of stripped executables. Elsewhere
(e.g., [9] and [3, §1]) we have argued at length the benefits of analyzing machine
code rather than source code. In brief,

– Machine code is an artifact that is closer to what actually executes on the
machine; models derived from machine code can be more accurate than mod-
els derived from source code (particularly because compilation, optimization,
and link-time transformation can change how the code behaves).

– When source code is compiled, the compiler and optimizer make certain
choices that eliminate some possible behaviors—hence there is sometimes
the opportunity to obtain more precise answers from machine-code analysis
than from source-code analysis.
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Rather than rehashing those arguments here, we take them as givens, and focus
instead on the obstacles standing in the way of doing a good job of machine-code
analysis. The paper explains some of the challenges that arise when analyzing
machine code, and what can be done about them. It thereby provides a rationale
for some of the design decisions made in the machine-code-analysis tools that we
have built over the past few years, in particular CodeSurfer/x86 [8,3], DDA/x86
[7], and MCVETO [27]. Those three tools represent several firsts:

– CodeSurfer/x86 is the first program-slicing tool for machine code that is able
to track the flow of values through memory, and thus help with understand-
ing dependences transmitted via memory loads and stores.

– DDA/x86 is the first automatic program-verification tool that is able to
check whether a stripped executable—such as a device driver—conforms to
an API-usage rule (specified as a finite-state machine).

– MCVETO is the first automatic program-verification tool capable of verifying
(or detecting flaws in) self-modifying code.

As with any verification tool, each of these tools comes with a few caveats about
the class of programs to which it can be applied, which are due to certain design
decisions concerning the analysis techniques used.

The remainder of the paper is organized as follows: §2 describes some of the
challenges presented by machine-code analysis and verification, as well as differ-
ent aspects of the design space for analysis and verification tools. §3 discusses
one point in the design space: when the goal is to account only for behaviors
expected from a standard compilation model, but report evidence of possible
deviations from such behaviors. §4 discusses another point in the design space:
when the goal is to verify machine code, including accounting for deviant behav-
iors. §5 discusses how we have created a way to build “Yacc-like” tool generators
for machine-code analysis and verification tools (i.e., from a semantic specifica-
tion of a language L, we are able to create automatically an instantiation of a
given tool for L). §6 concerns related work. (Portions of the paper are based on
material published elsewhere, e.g., [7,3,21,27].)

2 The Design Space for Machine-Code Analysis

Machine-code-analysis problems come in at least three varieties: (i) in addition
to the executable, the program’s source code is also available; (ii) the source
code is unavailable, but the executable includes symbol-table/debugging
information (“unstripped executables”); (iii) the executable has no symbol-
table/debugging information (“stripped executables”). The appropriate variant
to work with depends on the intended application. Some analysis techniques
apply to multiple variants, but other techniques are severely hampered when
symbol-table/debugging information is absent. In our work, we have primar-
ily been concerned with the analysis of stripped executables, both because it
is the most challenging situation, and because it is what is needed in the common
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situation where one needs to install a device driver or commercial off-the-shelf ap-
plication delivered as stripped machine code. If an individual or company wishes
to vet such programs for bugs, security vulnerabilities, or malicious code (e.g.,
back doors, time bombs, or logic bombs) analysis tools for stripped executables
are required.

Compared with source-code analysis, analysis of stripped executables presents
several problems. In particular, standard approaches to source-code analysis as-
sume that certain information is available—or at least obtainable by separate
analysis phases with limited interactions between phases, e.g.,

– a control-flow graph (CFG), or interprocedural CFG (ICFG)
– a call-graph
– a set of variables, split into disjoint sets of local and global variables
– a set of non-overlapping procedures
– type information
– points-to information or alias information

The availability of such information permits the use of techniques that can
greatly aid the analysis task. For instance, when one can assume that (i) the
program’s variables can be split into (a) global variables and (b) local variables
that are encapsulated in a conceptually protected environment, and (ii) a pro-
cedure’s return address is never corrupted, analyzers often tabulate and reuse
explicit summaries that characterize a procedure’s behavior.

Source-code-analysis tools sometimes also use questionable techniques, such as
interpreting operations in integer arithmetic, rather than bit-vector arithmetic.
They also usually make assumptions about the semantics that are not true at the
machine-code level—for instance, they usually assume that the area of memory
beyond the top-of-stack is not part of the execution state at all (i.e., they adopt
the fiction that such memory does not exist).

In general, analysis of stripped executables presents many challenges and dif-
ficulties, including

absence of information about variables: In stripped executables, no information
is provided about the program’s global and local variables.

a semantics based on a flat memory model: With machine code, there is no no-
tion of separate “protected” storage areas for the local variables of different
procedure invocations, nor any notion of protected fields of an activation
record. For instance, a procedure’s return address is stored on the stack; an
analyzer must prove that it is not corrupted, or discover what new values it
could have.

absence of type information: In particular, int-valued and address-valued quan-
tities are indistinguishable at runtime.

arithmetic on addresses is used extensively: Moreover, numeric and address-
dereference operations are inextricably intertwined, even during simple oper-
ations. For instance, consider the load of a local variable v, located at offset
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void foo() {
int arr[2], n;

void (*addr bar)() = bar;

if(MakeChoice() == 7) n = 4; // (*)

else n = 2;

for(int i = 0; i < n; i++)

arr[i] = (int)addr bar; // (**)

return; // can return to the entry of bar

}

void bar() {
ERR: return;

}

int main() {
foo();

return 0;

}

Fig. 1. A program that, on some executions, can modify the return address of foo

so that foo returns to the beginning of bar, thereby reaching ERR. (MakeChoice is a
primitive that returns a random 32-bit number).

-12 in the current activation record, into register eax: mov eax,[ebp-12].1

This instruction involves a numeric operation (ebp-12) to calculate an ad-
dress whose value is then dereferenced ([ebp-12]) to fetch the value of v,
after which the value is placed in eax.

instruction aliasing: Programs written in instruction sets with varying-length
instructions, such as x86, can have “hidden” instructions starting at positions
that are out of registration with the instruction boundaries of a given reading
of an instruction stream [22].

self-modifying code: With self-modifying code there is no fixed association
between an address and the instruction at that address.

Because certain kinds of information ordinarily available during source-code
analysis (variables, control-flow graph, call-graph, etc.) are not available when
analyzing machine code, some standard techniques are precluded. For instance,
source-code analysis tools often use separate phases of (i) points-to/alias anal-
ysis (analysis of addresses) and (ii) analysis of arithmetic operations. Because
numeric and address-dereference operations are inextricably intertwined, as dis-
cussed above, only very imprecise information would result with the same orga-
nization of analysis phases.

1 For readers who need a brief introduction to the 32-bit Intel x86 instruction set
(also called IA32), it has six 32-bit general-purpose registers (eax, ebx, ecx, edx,
esi, and edi), plus two additional registers: ebp, the frame pointer, and esp, the
stack pointer. By convention, register eax is used to pass back the return value from
a function call. In Intel assembly syntax, the movement of data is from right to left
(e.g., mov eax,ecx sets the value of eax to the value of ecx). Arithmetic and logi-
cal instructions are primarily two-address instructions (e.g., add eax,ecx performs
eax := eax + ecx). An operand in square brackets denotes a dereference (e.g., if
v is a local variable stored at offset -12 off the frame pointer, mov [ebp-12],ecx

performs v := ecx). Branching is carried out according to the values of condition
codes (“flags”) set by an earlier instruction. For instance, to branch to L1 when eax

and ebx are equal, one performs cmp eax,ebx, which sets ZF (the zero flag) to 1 iff
eax− ebx = 0. At a subsequent jump instruction jz L1, control is transferred to L1

if ZF = 1; otherwise, control falls through.
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Fig. 1 is an example that will be used to illustrate two points in the design
space of machine-code-analysis tools with respect to the question of corruption
of a procedure’s return address. When the program shown in Fig. 1 is compiled
with Visual Studio 2005, the return address is located two 4-byte words beyond
arr—in essence, at arr[3]. When MakeChoice returns 7 at line (*), n is set to
4, and thus in the loop arr[3] is set to the starting address of procedure bar.
Consequently, the execution of foo can modify foo’s return address so that foo
returns to the beginning of bar.

In general, tools that represent different points in the design space have dif-
ferent answers to the question

What properties are checked, and what is expected of the analyzer after the
first anomalous action is detected?

First, consider the actions of a typical source-code analyzer, which would propa-
gate abstract states through an interprocedural control-flow graph (ICFG). The
call on foo in main causes it to begin analyzing foo. Once it is finished analyzing
foo, it would follow the “return-edge” in the ICFG back to the point in main
after the call on foo. However, a typical source-code analyzer does not repre-
sent the return address explicitly in the abstract state and relies on an unsound
assumption that the return address cannot be modified. The analyzer would
never analyze the path from main to foo to bar, and would thus miss one of the
program’s possible behaviors. The analyzer might report an array-out-of-bounds
error at line (**).

exit

addr_bar = bar

enter
foo exit

enter
main

return 0call foo

if M
akeC

hoice==7if 
M

ak
eC

ho
ic

e≠
7

n = 2 n = 4

i = 0

arr[i] = (int)addr_bar

if i < n

if 
i ≥

n

return

i++

exit
enter
bar

ERR:
return

Fig. 2. Conventional ICFG for the program shown in
Fig. 1. Note that the CFG for bar is disconnected from
the rest of the ICFG.

As explained in
more detail in §3, in
CodeSurfer/x86 and
DDA/x86, we were able
to make our analy-
sis problems resemble
standard source-code
analysis problems, to
a considerable degree.
One difference is that
in CodeSurfer/x86 and
DDA/x86 the return
address is represented
explicitly in the abstract
state. At a return, the
current (abstract) value
of the return address
is checked against the
expected value. If the
return address is not
guaranteed to have the
expected value, a report
is issued that the return
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address may have been modified. However, for reasons explained in §3, the
analyses used in CodeSurfer/x86 and DDA/x86 proceed according to the origi-
nal return address—i.e., by returning from foo to main. Similar to source-code
analyzers, they would not analyze the path from main to foo to bar. Although
they miss one of the program’s possible behaviors, they report that there is
possibly an anomalous overwrite of the return address.

In contrast, MCVETO uses some techniques that permit it not only to detect
the presence of “deviant behaviors”, but also to explore them as well. The state-
space-exploration method used in MCVETO discovers that the execution of foo
can modify foo’s return address. It uses the modified return address to discover
that foo actually returns to the beginning of bar, and correctly reports that
ERR is reachable.

3 Accounting for Behaviors Expected from a Standard
Compilation Model

As illustrated in §2, CodeSurfer/x862 only follows behaviors expected from a
standard compilation model. It is prepared to detect and report deviations from
such behaviors, but not prepared to explore the consequences of deviant be-
havior. By a “standard compilation model”, we mean that the executable has
procedures, activation records (ARs), a global data region, and a free-storage
pool; might use virtual functions and DLLs; maintains a runtime stack; each
global variable resides at a fixed offset in memory; each local variable of a pro-
cedure f resides at a fixed offset in the ARs for f ; actual parameters of f are
pushed onto the stack by the caller so that the corresponding formal parameters
reside at fixed offsets in the ARs for f ; the program’s instructions occupy a fixed
area of memory, and are not self-modifying.

During the analyses performed by CodeSurfer/x86, these aspects of the pro-
gram are checked. When violations are detected, an error report is issued,
and the analysis proceeds. In doing so, however, we generally chose to have
CodeSurfer/x86’s analysis algorithms only explore behaviors that stay within
those of the desired execution model. For instance, as discussed in §2, if the
analysis discovers that the return address might be modified within a procedure,
CodeSurfer/x86 reports the potential violation, but proceeds without modify-
ing the control flow of the program. In the case of self-modifying code, either
a write into the code will be reported or a jump or call to data will be re-
ported.

If the executable conforms to the standard compilation model, CodeSurfer/
x86 returns valid analysis results for it; if the executable does not conform to the
model, then one or more violations will be discovered, and corresponding error
reports will be issued; if the (human) analyst can determine that the error report
is indeed a false positive, then the analysis results are valid. The advantages of

2 Henceforth, we will not refer to DDA/x86 explicitly. Essentially all of the observa-
tions made about CodeSurfer/x86 apply to DDA/x86 as well.
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this approach are three-fold: (i) it provides the ability to analyze some aspects
of programs that may deviate from the desired execution model; (ii) it generates
reports of possible deviations from the desired execution model; (iii) it does not
force the analyzer to explore all of the consequences of each (apparent) deviation,
which may be a false positive due to loss of precision that occurs during static
analysis. If a deviation is possible, then at least one report will be a true positive:
each possible first violation will be reported.

Memory Model. Although in the concrete semantics of x86 machine code the
activation records for procedures, the heap, and the memory area for global data
are all part of one address space, for the purposes of analysis, CodeSurfer/x86
adopts an approach that is similar to that used in source-code analyzers: the
address space is treated as being separated into a set of disjoint areas, which
are referred to as memory-regions. Each memory-region represents a group of
locations that have similar runtime properties; in particular, the runtime loca-
tions that belong to the ARs of a given procedure belong to one memory-region.
Each (abstract) byte in a memory-region represents a set of concrete memory
locations. For a given program, there are three kinds of regions: (1) the global-
region, for memory locations that hold initialized and uninitialized global data,
(2) AR-regions, each of which contains the locations of the ARs of a particular
procedure, and (3) malloc-regions, each of which contains the locations allocated
at a particular malloc site [5].

All data objects, whether local, global, or in the heap, are treated in a fashion
similar to the way compilers arrange to access variables in local ARs, namely,
via an offset: an abstract address in a memory-region is represented by a pair:
(memory-region, offset). For an n-bit architecture, the size of each memory-
region in the abstract memory model is 2n. For each region, the range of offsets
within the memory-region is [−2n−1, 2n−1 − 1]. Offset 0 in an AR-region repre-
sents all concrete starting addresses of the ARs that the AR-region represents.
Offset 0 in a malloc-region represents all concrete starting addresses of the heap
blocks that the malloc-region represents. Offset 0 of the global-region repre-
sents the concrete address 0. Nothing is assumed about the relative positions of
memory-regions.

Analysis Algorithms. To a substantial degree, the analysis algorithms used in
CodeSurfer/x86 closely resemble standard source-code analyses, although con-
siderable work was necessary to map ideas from source-code analysis over to
machine-code analysis. One of the main themes of the work on CodeSurfer/x86
was how an analyzer can bootstrap itself from preliminary intermediate repre-
sentations (IRs) that record fairly basic information about the code of a stripped
executable to IRs on which it is possible to run analyses that resemble standard
source-code analyses. (See [3, §2.2,§4, and §5].)

The analyses used in CodeSurfer/x86 address the following problem:
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Given a (possibly stripped) executable E, identify the procedures, data ob-
jects, types, and libraries that it uses, and,
– for each instruction I in E and its libraries,
– for each interprocedural calling context of I, and
– for each machine register and variable V in scope at I,

statically compute an accurate over-approximation to the set of values that
V may contain when I executes.

The work presented in our 2004 paper [4] provided a way to apply the tools of ab-
stract interpretation [12] to the problem of analyzing stripped executables (using
the memory model sketched above) to statically compute an over-approximation
at each program point to the set of values that a register or memory location
could contain. We followed that work up with other techniques to complement
and enhance the approach [26,19,25,5,6,2,7]. That body of work resulted in a
method to recover a good approximation to an executable’s variables and dy-
namically allocated memory objects, and to track the flow of values through
them.

Caveats. Some of the limitations of CodeSurfer/x86 are due to the memory
model that it uses. For instance, the memory-region-based memory model inter-
feres with the ability to interpret masking operations applied to stack addresses.
Rather than having addr & MASK, one has (AR, offset) & MASK, which generally
results in � (i.e., any possible address) because nothing is known about the
possible addresses of the base of AR, and hence nothing is known about the
set of bit patterns that (AR, offset) represents. (Such masking operations are
sometimes introduced by gcc to enforce stack alignment.)

4 Verification in the Presence of Deviant Behaviors

MCVETO has pioneered some techniques that permit it to verify safety properties
of machine code, even if the program deviates from the behaviors expected from
a standard compilation model. Because the goal is to account for deviant behav-
iors, the situation is more challenging than the one discussed in §3. For instance,
in the case of self-modifying code, standard structures such as the ICFG and the
call-graph are not even well-defined. That is, as discussed in §2, standard ways
of interpreting the ICFG during analysis are not sound. One must look to other
abstractions of the program’s state space to accommodate such situations.

Our MCVETO tool addresses these issues by generalizing the source-code-
analysis technique of directed proof generation (DPG) [16]. Given a program P
and a particular control location target in P , DPG returns either an input for
which execution leads to target or a proof that target is unreachable (or DPG
does not terminate). DPG makes use of two approximations of P ’s state space:
– A set T of concrete traces, obtained by running P with specific inputs. T

underapproximates P ’s state space.
– A graph G, called the abstract graph, obtained from P via abstraction (and

abstraction refinement). G overapproximates P ’s state space.
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Fig. 3. (a) The general refinement step used in DPG. Refinement predicate ρ ensures
that no execution can follow n′ → m. (b) The initial abstract graph used in MCVETO.
(* is a wild-card symbol that matches all instructions).

The two abstractions are played off one another, using the basic step from di-
rected test generation [14] to determine whether it is possible to drive execution
down a new path to target:

– If G has no path from start to target, then DPG has proven that target is
unreachable, and G serves as the proof.

– If G has a path from start to target with a feasible prefix that has not been
explored before, DPG initiates a concrete execution to attempt to reach
target. Such a step augments the underapproximation T .

– If G has a path from start to target but the path has an infeasible prefix, DPG
refines the overapproximation by performing the node-splitting operation
shown in Fig. 3(a).

DPG is attractive for addressing the problem that we face, for two reasons.
First, it is able to account for a program’s deviant behaviors during the process
of building up the underapproximation of the program’s state space. Second, as
we discuss below, the overapproximation of the program’s state space can be
constructed without relying on an ICFG or call-graph being available.

What Must be Handled Differently in Machine-Code DPG? The ab-
stract graph used during DPG is an overapproximation of the program’s state
space. The versions of DPG used in SYNERGY [16], DASH [10], and SMASH [15]
all start with an ICFG, which, when working with stripped machine code, is
not only unavailable initially but may not even be well-defined. Nevertheless, for
machine code, one can still create an over-approximation of the state space, as
long as one makes a few adjustments to the basic elements of DPG.

1. The system needs to treat the value of the program counter (PC) as data so
that predicates can refer to the value of the PC.

2. The system needs to learn the over-approximation starting with a cruder
over-approximation than an ICFG. In particular, MCVETO starts from the
initial abstraction shown in Fig. 3(b), which only has two abstract states,
defined by the predicates “PC = target” and “PC �= target”. The abstraction
is gradually refined as more of the program is exercised.
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Fig. 4. Automata created by generalizing two execution traces. Each automaton con-
tains an accepting state, called TS (for “target surrogate”). TS is accepting because it
may represent target, as well as all non-target locations not visited by the trace.

3. To handle self-modifying code, a predicate that labels an abstract state may
hold a constraint that specifies what instruction is decoded from memory,
starting at the address held by the PC.

4. In addition to refinements of the abstract graph performed by the step shown
in Fig. 3(a), the abstract graph is also refined each time a concrete execu-
tion fails to reach target. These refinements are inspired, in part, by the trace-
refinement technique of Heizmann et al. [17]. The abstract graph is considered
to be an automaton (e.g., s is a non-final state in Fig. 3(b), whereas target
t is a final state). A concrete execution trace τ that reaches target is mini-
mal if no proper prefix of τ reaches target. Each concrete execution trace that
fails to reach target is generalized to create an automaton (or “folded trace”)
that accepts an overapproximation of the set of minimal concrete execution
traces that reach target. The automaton is intersected with the current ab-
stract graph to create the next version of the abstract graph.

The approach adopted by MCVETO has a number of advantages. First, it al-
lows MCVETO to build a sound overapproximation of the program’s state space
on-the-fly, performing disassembly during state-space exploration, but never on
more than one instruction at a time and without relying on a static split between
code vs. data. In particular, MCVETO does not have to be prepared to disassem-
ble collections of nested branches, loops, procedures, or the whole program all
at once, which is what can confuse conventional disassemblers [22]. Second, be-
cause the abstraction of the program’s state space is built entirely on-the-fly, it
allows MCVETO to analyze programs with instruction aliasing. Third, it permits
MCVETO to be able to verify (or detect flaws in) self-modifying code. With self-
modifying code there is no fixed association between an address and the instruc-
tion at that address. However, by labeling each abstract state with a predicate
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that refers to the address held by the PC, as well as a predicate that specifies
what instruction is decoded from memory, starting at the address held by the PC,
the abstract graph can capture relationships on an address, the instruction at
that address, and the states that can arise for that 〈address, instruction〉 combi-
nation. A sound overapproximation of the program’s state space is created auto-
matically by MCVETO’s two mechanisms for refining the abstract graph. Fourth,
trace generalization allows eliminating families of infeasible traces. Compared
to prior techniques that also have this ability [11,17], the technique involves no
calls on an SMT solver, and avoids the potentially expensive step of automaton
complementation (see [27, §3.1]).

int foo(int a) { return a; }
int main() {
int n = 1; (*)

asm {
mov eax, 0;

L1: mov edx, 0xd0ff046a; // (**)

add n, eax; // (***)

cmp eax, 4;

jz L2;

mov eax, foo;

lea ebx, L1+1;

jmp ebx;

L2: }
if(n == 1)

ERR:; // Unreachable

return 0;

}

Fig. 5. A program that illustrates in-
struction aliasing. At line (**), when the
instruction is read at the second byte, it
becomes L1+1: push 4; call eax.

Returning to the example from
Figs. 1 and 2 of a procedure that can
corrupt its return address, Fig. 4(a)
shows the automaton obtained via trace
generalization of the execution trace
most likely to be performed during
the initial execution. The directed-test-
generation step then forces execution
down the branch for MakeChoice()==7.
In that execution, foo returns to the be-
ginning of bar, from which ERR is reach-
able. (Fig. 4(b) shows the automaton
that would be obtained via trace gen-
eralization from the second execution
trace.)

Fig. 5 shows a program that makes
use of instruction aliasing. At line (**),
when the instruction is read at the sec-
ond byte (i.e., starting at L1+1), it be-
comes L1+1: push 4; call eax. ERR
is unreachable because when the branch
condition if(n==1) is evaluated, n al-
ways has the value 5: 1 from the initialization in line (*) plus 4 from the value
of eax added in line (***), which is the return value from the hidden call to foo
at line (**).

MCVETO builds an abstract graph based on the path

n=1; mov eax,0; L1: mov edx,0xd0ff046a; add n,eax; cmp eax,4; jz L2; mov

eax,foo; lea ebx,L1+1; jmp ebx; L1+1: push 4; call eax; return a; add

n,eax; cmp eax,4; jz L2; L2:; if(n==1); return 0

It then does a series of refinements of the abstract graph that culminate in a
version in which there is no path from the beginning of the graph to ERR.

Discovering Candidate Invariants. To improve convergence, we introduced
speculative trace refinement, which enhances the methods that MCVETO uses
to refine the abstract graph. Speculative trace refinement was motivated by the
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observation that DPG is able to avoid exhaustive loop unrolling if it discovers
the right loop invariant. It involves first discovering invariants that hold for
nodes of folded traces; the invariants are then incorporated into the abstract
graph via automaton intersection. The basic idea is to apply dataflow analysis
to a graph obtained from a folded trace to obtain invariants for its states. In
the broader context of the full program, these are only candidate invariants.
They are introduced into the abstract graph in the hope that they are also
invariants of the full program. The recovery of invariants is similar in spirit to
the computation of invariants from traces in Daikon [13], but in MCVETO they
are computed ex post facto by dataflow analysis on a folded trace. Although
the technique causes the abstract graph to be refined speculatively, the abstract
graph is a sound overapproximation of the program’s state space at all times.

We take this technique one step further for cases when proxies for program
variables are needed in an analysis (e.g., affine-relation analysis [23]). Because no
information is available about a program’s global and local variables in stripped
executables, we perform aggregate-structure identification [24] on a concrete
trace to obtain a set of inferred memory variables. Because an analysis may
not account for the full effects of indirect memory references on the inferred
variables, to incorporate a discovered candidate invariant ϕ for node n into a
folded trace safely, we split n on ϕ and ¬ϕ.

Caveats. MCVETO actually uses nested-word automata [1] rather than finite-
state automata to represent the abstract graph and the folded traces that rep-
resent generalizations of execution traces. MCVETO makes the assumption that
each call instruction represents a procedure call, and each ret instruction rep-
resents a return from a procedure call. This decision was motivated by the desire
to have a DPG-based algorithm for verifying machine code that took advantage
of the fact that most programs are well-behaved in most execution contexts. The
consequence of this decision is that because MCVETO has some expectations on
the behaviors of the program, for it to prove that target is unreachable it must
also prove that the program cannot deviate from the set of expected behaviors
(see [27, §3.5]). If a deviant behavior is discovered, it is reported and MCVETO

terminates its search.

5 Automatic Tool Generation

Although CodeSurfer/x86 was based on analysis methods that are, in principle,
language-independent, the original implementation was tied to the x86 instruc-
tion set. That situation is fairly typical of much work on program analysis:
although the techniques described in the literature are, in principle, language-
independent, implementations are often tied to one specific language. Retar-
geting them to another language can be an expensive and error-prone process.
For machine-code analyses, having a language-dependent implementation is even
worse than for source-code analyses because of the size and complexity of instruc-
tion sets. Because of instruction-set evolution over time (and the desire to have
backward compatibility as word size increased from 8 bits to 64 bits), instruction
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sets such as the x86 instruction set have several hundred kinds of instructions.
Some instruction sets also have special features not found in other instruction
sets. To address the problem of supporting multiple instruction sets, another
aspect of our work on machine-code analysis has been to develop a meta-tool,
or tool-generator, called TSL [21] (for Transformer Specification Language), to
help in the creation of tools for analyzing machine code.

A tool generator (or tool-component generator) such as YACC [18] takes a
declarative description of some desired behavior and automatically generates an
implementation of a component that behaves in the desired way. Often the gen-
erated component consists of generated tables and code, plus some unchanging
driver code that is used in each generated tool component. The advantage of a
tool generator is that it creates correct-by-construction implementations.

For machine-code analysis, the desired components each consist of a suitable
abstract interpretation of the instruction set, together with some kind of anal-
ysis driver (a solver for finding the fixed-point of a set of dataflow equations,
a symbolic evaluator for performing symbolic execution, etc.). TSL is a system
that takes a description of the concrete semantics of an instruction set, a descrip-
tion of an abstract interpretation, and creates an implementation of an abstract
interpreter for the given instruction set.

TSL : concrete semantics × abstract domain → abstract semantics.

In that sense, TSL is a tool generator that, for a fixed instruction-set semantics,
automatically creates different abstract interpreters for the instruction set.

An instruction set’s concrete semantics is specified in TSL’s input language,
which is a strongly typed, first-order functional language with a datatype-
definition mechanism for defining recursive datatypes, plus deconstruction by
means of pattern matching. Writing a TSL specification for an instruction set is
similar to writing an interpreter in first-order ML. For instance, the specification
of an instruction set’s concrete semantics is written as a TSL function

state interpInstr(instruction I, state S) {...};
where instruction and state are user-defined datatypes that represent the in-
structions and the semantic states, respectively.

TSL’s input language provides a fixed set of base-types; a fixed set of arith-
metic, bitwise, relational, and logical operators; and a facility for defining map-
types. The meanings of the input-language constructs can be redefined by sup-
plying alternative interpretations of them. When semantic reinterpretation is
performed in this way—namely, on the operations of the input-language—it
is independent of any given instruction set. Consequently, once a reinterpreta-
tion has been defined that reinterprets TSL in a manner appropriate for some
state-space-exploration method, the same reinterpretation can be applied to each
instruction set whose semantics has been specified in TSL.

The reinterpretation mechanism allows TSL to be used to implement tool-
component generators and tool generators. Each implementation of an analysis
component’s driver (e.g., fixed-point-finding solver, symbolic executor) serves as
the unchanging driver for use in different instantiations of the analysis compo-
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nent for different instruction sets. The TSL language becomes the specification
language for retargeting that analysis component for different instruction sets:

analyzer generator = abstract-semantics generator + analysis driver.
For tools like CodeSurfer/x86 and MCVETO, which incorporate multiple analysis
components, we thereby obtain YACC-like tool generators for such tools:

concrete semantics of L → Tool/L.
Moreover, because all analysis components are generated from a single specifica-
tion of the instruction set’s concrete semantics, the generated implementations
of the analysis components are guaranteed to be mutually consistent (and also to
be consistent with an instruction-set emulator that is generated from the same
specification of the concrete semantics).

As an example of the kind of leverage that TSL provides, the most recent
incarnation of CodeSurfer/x86—a revised version whose analysis components
are implemented via TSL—uses eight separate reinterpretations generated from
the TSL specification of the x86 instruction set. The x86 version of MCVETO uses
three additional reinterpretations [20] generated from the same TSL specification.
Discussion. MCVETO does not model all aspects of a machine-code program.
For instance, it does not model timing-related behavior, the hardware caches, the
Interrupt Descriptor Table (necessary for modeling interrupt-handler dispatch),
etc. However, the use of TSL allows additional aspects to be added to the concrete
operational semantics, independently from MCVETO’s DPG algorithms. For ex-
ample, although our current TSL description of the x86 instruction set does not
model the Interrupt Descriptor Table, that is only a shortcoming of the current
description and not of MCVETO’s DPG algorithms. If the TSL description of
the x86 instruction set were augmented to incorporate the Interrupt Descriptor
Table in the semantics, the YACC-like tool-generation capabilities would allow
easy regeneration of augmented versions of the emulator and symbolic-analysis
components used in MCVETO’s DPG algorithm.

Moreover, the use of TSL aids the process of augmenting a system like
MCVETO with non-standard semantic instrumentation that allows checking for
policy violations. For instance, MCVETO currently uses a non-standard instru-
mented semantics in which the standard instruction-set semantics is augmented
with an auxiliary stack [27, §3.5]. Initially, the auxiliary stack is empty; at each
call instruction, a copy of the return address pushed on the processor stack is
also pushed on the auxiliary stack; at each ret instruction, the auxiliary stack
is checked to make sure that it is non-empty and that the address popped from
the processor stack matches the address popped from the auxiliary stack.

6 Related Work

Machine-code analysis has been gaining increased attention, and by now there
is a considerable literature on static, dynamic, and symbolic analysis of machine
code. It includes such topics as platforms and infrastructure for performing anal-
ysis, improved methods to create CFGs, suitable abstract domains for dataflow
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analysis of machine code, applications in software engineering and program
understanding, verification of safety properties, testing (including discovery of
security vulnerabilities), malware analysis, type inference, analysis of cache be-
havior, proof-carrying code, relating source code to the resulting compiled code,
and low-level models of the semantics of high-level code. Space limitations pre-
clude a detailed discussion of related work in this paper. An in-depth discussion
of work related to CodeSurfer/x86 can be found in [3].
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Constraint Solving for Program Verification:
Theory and Practice by Example

Andrey Rybalchenko

Technische Universität München

Abstract. Program verification relies on the construction of auxiliary
assertions describing various aspects of program behaviour, e.g., in-
ductive invariants, resource bounds, and interpolants for characterizing
reachable program states, ranking functions for approximating number of
execution steps until program termination, or recurrence sets for demon-
strating non-termination. Recent advances in the development of con-
straint solving tools offer an unprecedented opportunity for the efficient
automation of this task. This paper presents a series of examples illustrat-
ing algorithms for the automatic construction of such auxiliary assertions
by utilizing constraint solvers as the basic computing machinery.

1 Introduction

Program verification has a long history of using constraint-based algorithms as
main building blocks. In principle, constraint-based algorithms follow two ma-
jor steps. First, during the constraint generation step a program property of
interest is formulated as a set of constraints. Any solution to these constraints
determines the property. During the second step, the constraints are solved.
Usually, this step is executed using a separate constraint solving procedure.
Such separation of concerns, i.e., constraint generation vs. solving, can liberate
the designer of the verification tool from the tedious task of creating a dedi-
cated algorithm. Instead, an existing off-the-shelf constraint solver can be put
to work.

In this paper, we show how constraints can be used to prove program
(non-)termination and safety by generating ranking functions, interpolants, in-
variants, resource bounds, and recurrence sets. First, we focus on assertions ex-
pressed in linear arithmetic, which form a practically important class, and then
show extensions with uninterpreted function symbols. Our presentation uses a
collection on examples to illustrate the algorithms.

The rest of the paper is organized as follows. Section 2 illustrates the gener-
ation of linear ranking functions. In Section 3, we show how linear interpolants
can be computed. Section 4 presents linear invariant generation and an opti-
mization technique that exploits program test cases. It also shows how invariant
generation can be adapted to compute bounds on resource consumption. We use
an additional, possibly non-terminating program in Section 5 to illustrate the
construction of recurrence sets for proving non-termination. Section 6 shows how
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main(int x, int y, int z) {

assume(y >= z);

while (x < y) {

x++;

}

assert(x >= z);

}

(a)

	1

	2

τ1

τ2

	3

τ3

	4

τ4

	5

τ5

(b)

ρ1 = (y ≥ z ∧ x′ = x ∧ y′ = y ∧ z′ = z)

ρ2 = (x+ 1 ≤ y ∧ x′ = x+ 1 ∧ y′ = y ∧ z′ = z)

ρ3 = (x ≥ y ∧ x′ = x ∧ y′ = y ∧ z′ = z)

ρ4 = (x ≥ z ∧ x′ = x ∧ y′ = y ∧ z′ = z)

ρ5 = (x+ 1 ≤ z ∧ x′ = x ∧ y′ = y ∧ z′ = z)

(c)

Fig. 1. An example program (a), its control-flow graph (b), and the corresponding
transition relations (c)

constraint-based algorithms for the synthesis of linear assertions can be extended
to deal with the combination of linear arithmetic and uninterpreted functions.
Here, we use the interpolation algorithm as an example.

We use the program shown in Figure 1 as a source of termination, interpolation
and safety proving obligations. When translating the program instructions into
the corresponding transition relations we approximate integer program variables
by rationals, in order to reduce the complexity the resulting constraint generation
and solving tasks. Hence, the relation ρ2 has a guard x + 1 ≤ y. Furthermore,
the failure of the assert statement is represented by reachability of the control
location �5.

2 Linear Ranking Functions

Program termination is an important property that ensures its responsiveness.
Proving program terminations requires construction of ranking functions that
over-approximate the number of execution steps that the program can make
from a given state until termination. Linear ranking functions express such ap-
proximations by linear assertions over the program variables.

Input. We illustrate the construction of ranking functions on the while loop
from the program in Figure 1, as shown below. See [5] for its detailed description
and pointers to the related work.
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while (x < y) {
x++;

}

We deliberately choose a loop that neither contains further nesting loops nor
branching control flow inside the loop body in order to highlight the main ideas
of the constraint-based ranking function generation.

Our algorithm will search for a linear expression over the program variables
that proves termination. Such an expression is determined by the coefficients of
the occurring variables. Let fx and fy be the coefficients for the variables x and
y, respectively. Since the program variable z does not play a role in the loop, to
simplify the presentation we do not take it into consideration.

A linear expression is a ranking function if its value is bounded from below
for all states on which the loop can make a step, and is decreasing by some a
priory fixed positive amount. Let δ0 be the lower bound for the value of the
ranking function, and δ by the lower bound on the amount of decrease. Then,
we obtain the following defining constraint on the ranking function coefficients
and the bound values.

∃fx ∃fy ∃δ0 ∃δ

∀x ∀y ∀x′ ∀y′ :
(δ ≥ 1 ∧
ρ2 → (fxx + fyy ≥ δ0 ∧

fxx′ + fyy
′ ≤ fxx + fyy − δ))

(1)

Any satisfying assignment to fx, fy, δ0 and δ determines a linear ranking function
for the loop.

The constraint (1) contains universal quantification over the program variables
and their primed version, which makes it difficult to solve directly using existing
constraint solvers. At the next step, we will address this obstacle by eliminating
the universal quantification.

Constraints. First, we represent the transition relation of the loop in matrix
form, which will help us during the constraint generation. After replacing equal-
ities by conjunctions of corresponding inequalities, we obtain the matrix form
below.

ρ2 = (x + 1 ≤ y ∧ x′ = x + 1 ∧ y′ = y)
= (x − y ≤ −1 ∧ −x + x′ ≤ 1 ∧ x − x′ ≤ −1 ∧ −y + y′ ≤ 0 ∧ y − y′ ≤ 0)

=

⎛⎜⎜⎜⎜⎝
1 −1 0 0

−1 0 1 0
1 0 −1 0
0 −1 0 1
0 1 0 −1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎝

x
y
x′

y′

⎞⎟⎟⎠ ≤

⎛⎜⎜⎜⎜⎝
−1
1

−1
0
0

⎞⎟⎟⎟⎟⎠
The bound and decrease conditions from (1) produce the following matrix forms.



60 A. Rybalchenko

fxx + fyy ≥ δ0 =
(
−fx −fy 0 0

)⎛⎜⎜⎝
x
y
x′

y′

⎞⎟⎟⎠ ≤ −δ0

fxx′ + fyy′ ≤ fxx + fyy − δ =
(
−fx −fy fx fy

)⎛⎜⎜⎝
x
y
x′

y′

⎞⎟⎟⎠ ≤ −δ

Now we are ready to eliminate the universal quantification. For this purpose we
apply Farkas’ lemma, which formally states

((∃x : Ax ≤ b) ∧ (∀x : Ax ≤ b → cx ≤ γ)) ↔ (∃λ : λ ≥ 0 ∧ λA = c ∧ λb ≤ γ) .

This statement asserts that every linear consequence of a satisfiable set of lin-
ear inequalities can be obtained as a non-negative linear combination of these
inequalities. As an immediate consequence we obtain that for a non-satisfiable
set of linear inequalities we can derive an unsatisfiable inequality, i.e.,

(∀x : ¬(Ax ≤ b)) ↔ (∃λ : λ ≥ 0 ∧ λA = 0 ∧ λb ≤ −1) .

By applying Farkas’ lemma on (1) we obtain the following constraint.

∃fx ∃fy ∃δ0 ∃δ

∃λ ∃μ :
(δ ≥ 1 ∧
λ ≥ 0 ∧
μ ≥ 0 ∧

λ

⎛⎜⎜⎜⎜⎝
1 −1 0 0

−1 0 1 0
1 0 −1 0
0 −1 0 1
0 1 0 −1

⎞⎟⎟⎟⎟⎠ =
(
−fx −fy 0 0

)
∧ λ

⎛⎜⎜⎜⎜⎝
−1
1

−1
0
0

⎞⎟⎟⎟⎟⎠ ≤ −δ0 ∧

μ

⎛⎜⎜⎜⎜⎝
1 −1 0 0

−1 0 1 0
1 0 −1 0
0 −1 0 1
0 1 0 −1

⎞⎟⎟⎟⎟⎠ =
(
−fx −fy fx fy

)
∧ μ

⎛⎜⎜⎜⎜⎝
−1
1

−1
0
0

⎞⎟⎟⎟⎟⎠ ≤ −δ

(2)

This constraint contains only existentially quantified rational variables and con-
sists of linear (in)equalities. Thus, it can be efficiently solved by the existing
tools for Linear Programming over rationals.

Solution. We apply a linear constraint solver on (2) and obtain the following
solution.
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λ = (1 0 0 0 0)
μ = (0 0 1 1 0)
fx = −1
fy = 1
δ0 = 1
δ = 1

This solution states that the expression −x + y decreases during each iteration of
the loop by at least 1, and is greater than 1 for all states that satisfy the loop guard.

3 Constraint Linear Interpolants

Interpolants are logical assertions over program states that can separate program
states that satisfy a desired property from the ones that violate the property.
Interpolants play an important role in automated abstraction of sets of program
states and their automatic construction is a crucial building block for program
verification tools. In this section we present an algorithm for the computation of
linear interpolants. A unique feature of our algorithm is the possibility to bias
the outcome using additional constraints.

In program verification, interpolants are computed for formulas that are ex-
tracted from program paths, i.e., sequences of program statements that follow
the control flow graph of the program. We illustrate the interpolant computation
algorithm using a program path from Figure 1, and refer to [7] for a detailed
description of the algorithm and a discussion of the related work.

Input. We consider a path τ1τ3τ5, which corresponds to an execution of the pro-
gram that does not enter the loop and fails the assert statement. This path does
not modify the values of the program variables, but rather imposes a sequence
of conditions y ≥ z ∧ x ≥ y ∧ x + 1 ≤ z. Since this sequence is not satisfiable, a
program verifier can issue an interpolation query that needs to compute a sep-
aration between the states that the program reaches after taking the transition
τ3 and the states that violate the assertion. Formally, we are interested in an
inequality ixx + iyy + izz ≤ i0, called an interpolant, such that

∃ix ∃iy ∃iz ∃i0

∀x ∀y ∀z :
((y ≥ z ∧ x ≥ y) → ixx + iyy + izz ≤ i0) ∧
((ixx + iyy + izz ≤ i0 ∧ x + 1 ≤ z) → 0 ≤ −1)

(3)

Furthermore, we require that ixx + iyy + izz ≤ i0 only refers to the variables
that appear both in y ≥ z ∧ x ≥ y and x + 1 ≤ z, which are x and z. Hence,
iz needs to be equal to 0, which is ensured by the above constraint without any
additional effort.

Constraints. First we represent the sequence of conditions in matrix form as
follows.
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(y ≥ z ∧ x ≥ y ∧ x + 1 ≤ z) =
(−y + z ≤ 0 ∧ −x + y ≤ 0 ∧ x − z ≤ −1) =⎛⎝ 0 −1 1

−1 1 0
1 0 −1

⎞⎠⎛⎝x
y
z

⎞⎠ ≤

⎛⎝ 0
0

−1

⎞⎠
Since (3) contains universal quantification, we apply Farkas’ to enable applica-
bility of Linear Programming tools and obtain the following constraint.

∃ix ∃iy ∃iz ∃i0

∃λ ∃μ :
λ ≥ 0 ∧ μ ≥ 0 ∧

(λ μ)

⎛⎝ 0 −1 1
−1 1 0
1 0 −1

⎞⎠ = 0 ∧ (λ μ)

⎛⎝ 0
0

−1

⎞⎠ ≤ −1 ∧

(ix iy iz) = λ

(
0 −1 1

−1 1 0

)
∧ i0 = λ

(
0
0

)
(4)

This constraint uses two vectors λ and μ to represent the linear combination
that derives the unsatisfiable inequality 0 ≤ −1. The vector λ tracks the first
two inequalities, and μ tracks the third inequality.

Solution. By solving (4) we obtain

λ = (1 1),
μ = 1 ,

ix = −1 ,

iy = 0 ,

iz = 1 ,

i0 = 0 .

The resulting interpolant is −x + z ≤ 0.
The constraint-based approach to interpolant computation offers a unique

opportunity to bias the resulting interpolant using additional constraints. That
is, (4) can be extended with an additional constraint C( i

i0 ) ≤ c that encode the
bias condition.

4 Linear Invariants

Invariants are assertions over program variables whose value does not change dur-
ing program execution. In program verification invariants are used to describe
sets of reachable program states, and are an indispensable tool for reasoning
about program correctness. In this section, we show how invariants proving the
non-reachability of the error location in the program can be computed by using
constraint-based techniques, and present a testing-based approach for simpli-
fying the resulting constraint generation task. Furthermore, we briefly present
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a close connection between invariant and bound generation. See [4,2] for the
corresponding algorithms and further details.

We illustrate the invariant generation on the program shown in Figure 1 and
construct an invariant that proves the non-reachability of the location �5, which
serves as the error location.

Input. Our goal is to compute two linear inequalities over program variables
pxx + pyy + pzz ≤ p0 and qxx + qyy + qzz ≤ q0 for the locations �2 and �3,
respectively, such that these inequalities (1) represent all program states that
are reachable at the respective locations, (2) serve as an induction hypothesis
for proving (1) by induction over the number of program steps required to reach
a program state, and (3) imply that no program execution can reach the error
location �5. We encode the conditions (1–3) on the unknown invariant coefficients
as the following constraint.

∃px ∃py ∃pz ∃p0 ∃qx ∃qy ∃qz ∃q0

∀x ∀y ∀z ∀x′ ∀y′ ∀z′ :
(ρ1 → pxx′ + pyy′ + pzz

′ ≤ p0) ∧
((pxx + pyy + pzz ≤ p0 ∧ ρ2) → pxx′ + pyy

′ + pzz
′ ≤ p0) ∧

((pxx + pyy + pzz ≤ p0 ∧ ρ3) → qxx′ + qyy′ + qzz
′ ≤ q0) ∧

((qxx + qyy + qzz ≤ p0 ∧ ρ4) → 0 ≤ 0) ∧
((qxx + qyy + qzz ≤ p0 ∧ ρ5) → 0 ≤ −1)

(5)

For each program transition this constraint contains a corresponding conjunct.
The conjunct ensures that given a set of states at the start location of the
transition all states reachable by applying the transition are represented by the
assertion associated with the destination location. For example, the first conjunct
asserts that applying τ1 on any state leads to a state represented by pxx+pyy +
pzz ≤ p0.

Constraints. Since (5) contains universal quantification, we resort to the
Farkas’ lemma-based elimination, which yields the following constraint.

∃px ∃py ∃pz ∃p0 ∃qx ∃qy ∃qz ∃q0

∃λ1 ∃λ2 ∃λ3 ∃λ4 ∃λ5 :
λ1 ≥ 0 ∧ · · · ∧ λ5 ≥ 0 ∧
λ1R1 = (0 px py pz) ∧ λ1r1 ≤ p0 ∧

λ2

(
px py pz 0

R2

)
= (0 px py pz) ∧ λ2

(
p0
r2

)
≤ p0 ∧

λ3

(
px py pz 0

R3

)
= (0 qx qy qz) ∧ λ3

(
p0
r3

)
≤ q0 ∧

λ4

(
qx qy qz 0

R4

)
= 0 ∧ λ4

(
q0
r4

)
≤ 0 ∧

λ5

(
qx qy qz 0

R5

)
= 0 ∧ λ5

(
q0
r5

)
≤ −1

(6)
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Unfortunately, this constraint is non-linear since it contains multiplication
between unknown components of λ1, . . . , λ5 and the unknown coefficients
px, py, pz, p0, qx, qy, qz , q0.

Solution. In contrast to interpolation or ranking function generation, we cannot
directly apply Linear Programming tools to solve (6) and need to introduce
additional solving steps, as described in Section 4.1 and [4]. These steps lead
to the significant reduction of the number of non-linear terms, and make the
constraints amenable to solving using case analysis on the remaining unknown
coefficients for derivations.

For our program we obtain the following solution.

λ1 = (1 1 1 1)
λ2 = (1 0 1 1 1)
λ3 = (1 1 1 1 1)
λ4 = (0 0 0 0 0)
λ5 = (1 1 0 0 0)

px = 0 py = −1 pz = 1 p0 = 0
qx = −1 qy = 0 qz = 1 q0 = 0

This solution defines an invariant −y + x ≤ 0 at the location �2 and −x + z ≤ 0
at the location �3.

4.1 Static and Dynamic Constraint Simplification

Now we show how program test cases can be used to obtain additional constraint
simplification when computing invariants.

We use the program in Figure 1 and consider a set of program states below,
which can be recorded during a test run of the program.

s1 = (�1, x = 1, y = 0, z = 2)
s2 = (�2, x = 2, y = 0, z = 2)
s3 = (�2, x = 2, y = 1, z = 2)
s4 = (�2, x = 2, y = 1, z = 2)
s5 = (�2, x = 2, y = 2, z = 2)
s6 = (�3, x = 3, y = 2, z = 2)

These states are reachable, hence any program invariant holds for these states.
Hence, we perform a partial evaluation of the unknown invariant templates at
locations �2 and �3 on states s2, . . . , s5 and s6, respectively:

ϕ1 = (px1 + py2 + pz1 ≤ p0)
ϕ2 = (px1 + py2 + pz1 ≤ p0)
ϕ3 = (px2 + py2 + pz1 ≤ p0)
ϕ4 = (qx2 + qy2 + qz1 ≤ q0)
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The obtained constraints are linear and they must hold for any template instan-
tiation. Hence the constraint

px + 2py + pz ≤ p0 ∧ px + 2py + pz ≤ p0 ∧ 2px + 2py + pz ≤ p0 ∧
2qx + 2qy + qz ≤ q0

can be added to (6) as an additional strengthening without changing the set
of solutions. Practically however this strengthening results in a series of sim-
plifications of the non-linear parts of (6), which can dramatically increase the
constraint solving efficiency.

4.2 Bound Generation as Unknown Assertion

Program execution can consume various resources, e.g., memory or time. For
our example program in Figure 1, the number of loop iterations might be such
a resource since it correlates with the program execution time. Resource bounds
are logical assertions that provide an estimate on the resource consumption,
and their automatic generation is an important task, esp. for program execution
environments with limited resource availability.

There is a close connection between expressions describing resource bounds
and program assertions specifying conditions on reachable program states. We
can encode the check if a given bound holds for all program execution as a pro-
gram assertion over auxiliary program variables that keep track of the resource
consumption. In our example the assertion statement ensures that the consump-
tion of time, as tracked by the variable x, is bounded from above by the value
of the variable z.

Unknown resource bounds can be synthesized using our constraint-based in-
variant generation algorithm described above after a minor modification of the
employed constraint encoding. Next we show how to modify our constraints (5)
and (6) to identify a bound on the number of loop iterations, under the assump-
tion that the assertion statement is not present in the program.

First, we assume that the unknown bound assertion is represented by an
inequality

x ≤ byy + bzz + b0 .

Now, our goal is to identify the values of the coefficients by, bz, and b0 together
with an invariant that proves the validity of the bound.

We encode our goal as a constraint by replacing the last conjunct in (5), which
was present due to the assertion statement, with the following implication.

qxx + qyy + qzz ≤ q0 → x ≤ by ≤ byy + bzz + b0

This implication requires that the program invariant at the location after the
loop exit implies the bound validity.

After eliminating universal quantification from the modified constraint and a
subsequent solving attempt we realize that no bound on x can be found. If we
consider a modified program that includes an assume statement

assume(z>=x);
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as its first instruction and reflect the modification in the constraints, then we
will be able to compute the following bound.

x ≤ y

5 Recurrence Sets

Inherent limitations of the existing tools for proving program termination can
lead to cases when non-conclusive results are reported. Since a failure to find
a termination argument does not directly imply that the program does not
terminate on certain inputs, we need dedicated methods that can prove non-
termination of programs. In this section we present such a method. It is based
on the notion of recurrence set that serves as a proof for the existence of a
non-terminating program execution.

Input. We show how non-termination can be proved by constructing recurrence
sets using the example in Figure 2. The complete version of the corresponding
algorithm is presented in [3].

main(int x, int y, int z) {

assume(y >= z);

while (x < y) {

x=x+1+z;

}

}

(a)

	1

	2

τ1

τ2

	3

τ3

(b)

ρ1 = (y ≥ z ∧ x′ = x ∧ y′ = y ∧ z′ = z)

ρ2 = (x+ 1 ≤ y ∧ x′ = x+ 1 + z ∧ y′ = y ∧ z′ = z)

ρ3 = (x ≥ y ∧ x′ = x ∧ y′ = y ∧ z′ = z)

(c)

Fig. 2. A non-terminating example program (a), its control-flow graph (b), and the
corresponding transition relations (c)

To prove non-termination we will compute a recurrence set consisting of pro-
gram states that can be reached at the loop entry and lead to an additional
loop iteration. We assume that a desired recurrence set can be expressed by
a conjunction of two inequalities pv ≤ p0 ∧ qv ≤ q0 over the vector of pro-
gram variables v consisting of x, y, and z, while p, p0, q, and q0 are un-
known coefficients. To simplify notation, we write Sv ≤ s for the conjunction of
pv ≤ p0 and qv ≤ q0. Then, the following constraint encodes the recurrence set
condition.
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∃S ∃s :
(∃v : Sv ≤ s) ∧
(∃v ∃v′ : ρ1(v, v′) ∧ Sv′ ≤ s) ∧
(∀v ∃v′ : Sv ≤ s → (ρ2(v, v′) ∧ Sv′ ≤ s))

(7)

The first conjunct guarantees that the recurrence set is not empty. The second
conjunct requires that the recurrence set contains at least one state that is
reachable by following the transition τ1, i.e., by when the loop is reached for the
first time. The last conjunct guarantees that every state in the recurrence set
can follow the loop transition τ2 and get back to the recurrence set. Together,
these properties guarantee that there exists an infinite program execution that
can be constructed from the elements of the recurrence set.

Constraints. The constraint (7) contains universal quantification and quan-
tifier alternation, which makes it difficult to solve using the existing quantifier
elimination tools. As the first step, we simplify (7) by exploiting the structure
of transition relations ρ1 and ρ2. Our simplification relies on the fact that the
values of primed variables are defined by update expressions, and substitutes
the primed variables by the corresponding update expressions. We obtain the
following simplified equivalent of (7).

∃S ∃s :

(∃x ∃y ∃z : S
(

x
y
z

)
≤ s) ∧

(∃x ∃y ∃z : y ≥ z ∧ S
(

x
y
z

)
≤ s) ∧

(∀x ∀y ∀z : S
(

x
y
z

)
≤ s → (x + 1 ≤ y ∧ S

(
x+1+z

y
z

)
≤ s))

Furthermore, we will omit the first conjunct since it is subsumed by the second
conjunct.

Next, we eliminate universal quantification by applying Farkas’ lemma. The
application yields the following constraint. It only contains existential quantifi-
cation and uses Sx, Sy, and Sz to refer to the first, second, and the third column
of S, respectively.

∃S ∃s :

(∃x ∃y ∃z : S
(

x
y
z

)
≤ s) ∧

(∃x ∃y ∃z : y ≥ z ∧ S
(

x
y
z

)
≤ s) ∧

(∃λ : λ ≥ 0 ∧ λS =
(
1 −1 0

)
∧ λs ≤ −1) ∧

(∃Λ : Λ ≥ 0 ∧ ΛS =
(
Sx Sy Sz + Sx

)
∧ Λs ≤ (s − Sx))

(8)

Solution. We apply solving techniques that we used for dealing with non-linear
constraints during invariant generation, see Section 4, and obtain the following
solution.
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x = −2
y = −1
z = −1
λ = (1 0)

Λ =
(

1 0
1 1

)
p = (1 − 1 0)

p0 = −1
q = (0 0 1)

q0 = −1

This solution defines the recurrence set

x − y ≤ −1 ∧ z ≤ −1 ,

and states that the program does not terminate if executed from an initial state
that assigns x = −2, y = −1, and z = −1.

6 Combination with Uninterpreted Functions

In the previous sections we showed how auxiliary assertions represented by linear
inequalities can be generated using constraint-based techniques. In this section
we show that these techniques can be directly extended to deal with assertions
represented by linear arithmetic combined with uninterpreted functions. This
combined theory plays in important role in program verification, where uninter-
preted functions are used to abstract functions that too complex to be modeled
precisely. The basis of the extension is the hierarchical approach to the combi-
nation of logical theories [6]. We refer to [7,1] for constraint-based interpolation
and invariant generation algorithms for the combination of linear arithmetic and
uninterpreted functions. Next, we will illustrate the interpolation algorithm for
linear arithmetic and function symbols using a small example.

Input. The interpolation algorithm takes as input a pair of mutually unsatisfi-
able assertions ϕ and ψ shown below.

ϕ = (x ≤ a ∧ a ≤ y ∧ f(a) ≤ 0)
ψ = (y ≤ b ∧ b ≤ x ∧ 1 ≤ f(b))

The proof of unsatisfiability requires reasoning about linear arithmetic and
uninterpreted function, which we represent by the logical consequence rela-
tion |=LI+UIF.

ϕ ∧ ψ |=LI+UIF ⊥
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The goal of the interpolation algorithm is to construct an assertion χ such
that

ϕ |=LI+UIF χ ,

χ ∧ ψ |=LI+UIF ⊥ ,

χ is expressed over common symbols of ϕ and ψ .

(9)

Constraints and solution. As common in reasoning about combined theories,
we first apply a purification step that separates arithmetic constraints from the
function applications as follows.

ϕLI = (x ≤ a ∧ a ≤ y ∧ c ≤ 0)
ψLI = (y ≤ b ∧ b ≤ x ∧ 1 ≤ d)
D = {c �→ f(a), d �→ f(b)}
X = {a = b → c = d}

The sets of inequalities ϕLI and ψLI do not have any function symbols, which
were replaced by fresh variables. The mapping between these fresh variables
and the corresponding function applications is give by the set D. The set X
contains functionality axiom instances that we create for all pairs of occurrences
of function applications. These instances are expressed in linear arithmetic. For
our example there is only one such instance.

The hierarchical reasoning approach guarantees that instances collected in X
are sufficient for proving the mutual unsatisfiability of the pure assertions ϕLI
and ψLI, i.e.,

ϕLI ∧ ψLI ∧
∧

X |=LI ⊥

Unfortunately we cannot apply an algorithm for interpolation in linear arith-
metic on the unsatisfiable conjunction presented above since the axiom instance
in X contains variables that appear both in ϕLI and ψLI, which will lead to an
interpolation result that violates the third condition in 9.

Instead, we resort to a case-based reasoning as follows. First, we attempt to
compute an interpolant by considering the pure assertions, but do not succeed
since they are mutually satisfiable, i.e.,

ϕLI ∧ ψLI �|=LI ⊥

Nevertheless, the conjunction of pure assertions implies the precondition for
applying the functionality axiom instance from X , i.e.,

ϕLI ∧ ψLI |=LI a = b

From this implication follows that we can compute intermediate terms that are
represented over variables that are common to ϕLI and ψLI. Formally, we have

ϕLI ∧ ψLI |=LI a ≤ y ∧ y ≤ b ,

ϕLI ∧ ψLI |=LI a ≥ x ∧ x ≥ b .
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We rearrange these implications and obtain the following implications.

ϕLI |=LI x ≤ a ∧ a ≤ y

ψLI |=LI y ≤ b ∧ b ≤ x

These implications are used by our interpolation algorithm to derive appropriate
case reasoning, which will be presented later on. Furthermore, our algorithm
creates an additional function application f(y) together with a corresponding
fresh variable e, which is used for the purification and is recorded in the set D.

D = {c �→ f(a), d �→ f(b), e �→ f(y)}

The first step of the case reasoning requires computing an interpolant for the
following unsatisfiable conjunction.

(ϕLI ∧ a = e) ∧ (ψLI ∧ e = b) |=LI ⊥

By applying the algorithm presented in Section 3 we obtain a partial interpolant
e ≤ 0 such that

ϕLI ∧ a = e |=LI e ≤ 0 ,

e ≤ 0 ∧ ψLI ∧ e = b |=LI ⊥ .

The partial interpolant is completed using the case reasoning information as
follows.

χLI = (x �= y ∨ (x = y ∧ e ≤ 0))

After replacing the fresh variables by the corresponding function applications
we obtain the following interpolant χ for the original input ϕ and ψ.

χ = (x �= y ∨ (x = y ∧ e ≤ 0))[f(q)/e]
= x �= y ∨ (x = y ∧ f(q) ≤ 0)

7 Conclusion

We presented a collection of examples demonstrating that several kinds of auxil-
iary assertions that play a crucial role in program verification can be effectively
synthesized using constraint-based techniques.
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Abstract. We address the issue of automatic invariant synthesis for sequential
programs manipulating singly-linked lists carrying data over infinite data do-
mains. We define for that a framework based on abstract interpretation which
combines a specific finite-range abstraction on the shape of the heap with an ab-
stract domain on sequences of data, considered as a parameter of the approach.
We instantiate our framework by introducing different abstractions on data se-
quences allowing to reason about various aspects such as their sizes, the sums
or the multisets of their elements, or relations on their data at different (linearly
ordered or successive) positions. To express the latter relations we define a new
domain whose elements correspond to an expressive class of first order univer-
sally quantified formulas. We have implemented our techniques in an efficient
prototype tool and we have shown that our approach is powerful enough to gen-
erate non-trivial invariants for a significant class of programs.

1 Introduction

Invariant synthesis is an essential ingredient in various program verification and analysis
methodologies. In this paper, we address this issue for sequential programs manipulat-
ing singly-linked lists carrying data over infinite data domains such as integers or reals.
Specifications of such programs typically involve constraints on various aspects such as
the sizes of the lists, the multisets of their elements, as well as relations between data
at their different positions, e.g., ordering constraints or even more complex arithmetical
constraints on consecutive elements, or combining relations between the sizes, the sum
of all elements, etc., of different lists.

Consider for instance the procedure Dispatch3 given in Figure 1(b). It puts all the
cells of the input list which have data larger than 3 to the list grt, and it puts all the
other ones to the list less. Naturally, the specification of this procedure (at line 10)
includes (1) the property expressed by the universally quantified first-order formula

∀y. grt ∗−→y ⇒ data(y) ≥ 3 ∧ ∀y. less ∗−→y ⇒ data(y) < 3 (A)
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Averiss (ANR-06-SETIN-001) and Veridyc (ANR-09-SEGI-016).

T. Touili, B. Cook, and P. Jackson (Eds.): CAV 2010, LNCS 6174, pp. 72–88, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Invariant Synthesis for Programs Manipulating Lists with Unbounded Data 73

which says that every cell y reachable from grt (resp. less) have data greater (resp.
smaller) than 3, and (2) the preservation property saying that the multiset of the input list
is equal to the union of the multisets of the two output lists. This property is expressed
by

ms init= ms(grt)∪ms(less) (B)

where the variable ms init represents the multiset of the elements of the input list, and
ms(grt) (resp. ms(less)) denotes the multiset of the elements of grt (resp. less). A
weaker property is length preservation, expressed by:

len init= len(grt +−−→null)+len(less +−−→null), (C)

where len init is the length of the input list.

procedure Fibonacci(list* head)
1: { list *x=head;
2: int m1=1;
3: int m2=0;
4: while (x != null)
5: { x->data=m1+m2;
6: m1=m2;
7: m2=x->data;
8: x=x->next;
9: }
10:}

procedure Dispatch3(list* head)
1: { list *tmp=null, grt=null, less=null;
2: while (head != null)
3: { tmp=head->next;
4: if (head->data >= 3)
5: { head->next=grt; grt=head; }
6: else
7: { head->next=less; less=head; }
8: head=tmp;
9: }
10:}

(a) (b)

Fig. 1. Procedures Fibonacci and Dispatch3

The specification of sorting algorithms is similar since it includes an ordering con-
straint on the output list that is easily expressible using a universally quantified first-
order formula, and a preservation constraint saying that the input and output lists have
the same elements that is expressible using multiset constraints.

Moreover, an interesting property of the procedure Dispatch3 above is that the sum
of all the elements in the list grt is larger than 3 times the size of that list, i.e.

∑
grt

∗−→y

data(y)− 3 ×len(grt +−−→null) ≥ 0 (D)

Consider now the procedure Fibonacci given in Figure 1(a). It takes a list as an input
and initializes its elements following the Fibonacci sequence. The natural specification
for the procedure (at line 10) is expressed by the universally-quantified formula

∀y1,y2,y3. head
∗−→y1 −→y2 −→y3 ⇒ data(y3) = data(y2)+data(y1) (E)

which corresponds precisely to the definition of the Fibonacci sequence. Moreover, an
interesting property of the Fibonacci sequence { fi}i≥1 is that ∑i=n

i=1 fi = 2 fn + fn−1 − 1.
This can be expressed (again at line 10) by the following constraint

∑
head

∗−→y

data(y) = 2 ×m2+m1− 1 (F)
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The automatic synthesis of invariants like those shown above is a challenging prob-
lem since it requires combining in a nontrivial way different analysis techniques. This
paper introduces a uniform framework based on abstract interpretation for tackling this
problem. We define a generic abstract domain AHS for reasoning about dynamic lists
with unbounded data which includes an abstraction on the shape of the heap and which
is parametrized by some abstract domain on finite sequences of data (a data words ab-
stract domain, DW-domain for short). The latter is intended to abstract the sequences
of data in the lists by capturing relevant aspects such as their sizes, the sums or the mul-
tisets of their elements, or some class of constraints on their data at different (linearly
ordered or successive) positions.

We instantiate our framework by defining new DW-domains corresponding to the
aspects mentioned above. The most complex DW-domain is composed of first-order
formulas such that their (quantified) universal part is of the form ∀y. (P ⇒ U), where
y is a vector of variables interpreted to positions in the words, P is a constraint on the
positions (seen as integers) associated with the y’s, and U is a constraint on the data
values at these positions, and possibly also on the positions when data are of numerical
type. Then, we assume that our DW-domain on first-order properties is parametrized
by some abstract data domain, and we consider that U is defined as an object in that
abstract domain. For the sake of simplicity of the presentation, we consider in the rest
of the paper that the data are always of type integer (and therefore it is possible to
take as abstract data domains the standard octagons or polyhedra abstract domains for
instance). Our approach can in fact be applied to any other data domain. As for the
syntax of the constraint P, we assume that we are given a finite set of fixed patterns (or
templates) such as, for instance, order constraints or difference constraints.

Then, an object in the domain AHS is a finite collection of pairs (G̃,W̃ ) such that
(1) G̃ is a graph (where each node has an out-degree of at most 1) representing the
set of all the garbage-free heap graphs that can be obtained by inserting sequences of
non-shared nodes (nodes with in-degree 1) between any pair of nodes in G̃ (thus edges
in G̃ represents list segments without sharing), and (2) W̃ is an abstract object in the
considered DW-domain constraining the sequences of data attached to each edge in G̃.
So, all the shared nodes in the concrete heaps are present in G̃, but G̃ may have nodes
which are not shared. Non-shared nodes which are not pointed by program variables are
called simple nodes. We assume that objects in our abstract domain have graphs with
k simple nodes, for some given bound k that is also a parameter of the domain. This
assumption implies that the number of such graphs is finite (since for a given program
with lists it is well known that the number of shared nodes is bounded).

We define sound abstract transformers for the statements in the class of programs
we consider. Due to the bound on the number of simple nodes, and since heap trans-
formations may add simple nodes, we use a normalization operation that shrinks paths
of simple nodes into a single edge. This operation is accompanied with an operation
that generalizes the known relations on the data attached to the eliminated simple nodes
in order to produce a constraint (in the DW-domain) on the data word associated with
the edge resulting from the normalization. This step is actually quite delicate and spe-
cial care has to be taken in order to keep preciseness. In particular, this is the crucial
step that allows to generate universally quantified properties from a number of relations
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between a finite (bounded) number of nodes. We have defined sufficient conditions on
the sets of allowed patterns under which we obtain best abstract transformers.

We have implemented (in C) a prototype tool CINV based on our approach, and
we have carried out several experiments (more than 30 examples) on list manipulating
programs (including for instance sorting algorithms such as insertion sort, and the two
examples in Figure 1).

2 Modeling and Reasoning about Programs with Singly-Linked
Lists

We consider a class of strongly typed imperative programs manipulating dynamic singly
linked lists. We suppose that all manipulated lists have the same type, i.e., reference to a
record called list including one reference field next and one data field data of integer
type. While the generalization to records with several data fields is straightforward, the
presence of a single reference field is important for this work. The programs we consider
do not contain procedure calls or concurrency constructs.

Program syntax: Programs are defined on a set of data variables DVar of type Z and
a set of pointer variables PVar of type list (which includes the constant null). Data
variables can be used in data terms built using operations over Z and in boolean condi-
tions on data built using predicates over Z. Pointers can be used in data terms (p->data
and in assignments corresponding to heap manipulation like memory allocation/deallo-
cation (new/free), selector field updates (p->next=. . . , p->data=. . . ), and pointer as-
signments (p=. . . ). Boolean conditions on pointers are built using predicates (p==q and
p==null) testing for equality and definedness of pointer variables. No arithmetics is al-
lowed on pointers. We allow sequential composition (;), conditionals (if-then-else),
and iterations (while). The full syntax is given in [2].

Program semantics: A program configuration is given by a configuration for the heap
and a valuation of data variables. Heaps can be represented naturally by a directed
graph. Each object of type list is represented by a node. The constant null is repre-
sented by a distinguished node �. The pointer field next is represented by the edges of
the graph. The nodes are labeled by the values of the data field data and by the program
pointer variables which are pointing to the corresponding objects. Every node has ex-
actly one successor, except for �, the node representing null. For example, the graph in
Figure 4(a) represents a heap containing two lists [4,0,5,2,3] and [1,4,3,6,2,3] which
share their two last cells. Two of the nodes are labeled by the pointer variables x and y.

Definition 1. A heap over PVar and DVar is a tuple H = (N,S,V,L,D) where:
– N is a finite set of nodes which contains a distinguished node �,
– S : N ⇀ N is a successor partial function s.t. only S(�) is undefined,
– V : PVar → N is a function associating nodes to pointer variables s.t. V (null) = �,
– L : N ⇀ Z is a partial function associating nodes to integers s.t. only L(�) is undefined,
– D : DVar → Z is a valuation for the data variables.

A node which is labeled by a pointer variable or which has at least two predecessors
is called a cut point. Otherwise, it is called a simple node.
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n �∈ H.N H.V (p) = �

post(p=new,H) = addNode(p,n)(H)
a-new

H ′ = unfold(p)(H) H ′.V (p) = �

post(p->next=null,H) = Herr
a-ptr1

H ′ = unfold(p)(H) H ′.V (p) �= �

post(p->next=null,H) = delGarbage(updS(getV (p), �)(H ′))
a-ptr2

H.V (p) �= � eval(dt)(H) �= ⊥
post(p->data=dt,H) = updL(getV (p),dt)(H)

a-d1
H.V (p) = �

post(p->data=dt,H) = Herr
a-d2

Fig. 2. A fragment of the definition of post(St,H)

In the following, we consider only heaps without garbage, i.e., all the nodes are
reachable from nodes labeled by pointer variables. For simplicity, we suppose that
each pointer assignment p->next=q, resp. p=q, is preceded by p->next=null, resp.
p=null. We define a postcondition operator, denoted post(St,H), for any statement St
and any heap H. Figure 2 illustrates a part of its definition that contains all the important
graph transformations; the full definition is provided in [2]. A collecting semantics can
be defined as usual by extending post to sets of heaps. The heap Herr is a special value
denoting the sink heap configuration obtained when null dereferences are done.

The formal definition of operators used in this semantics is given on Figure 3. To
access the components of a heap H, we use the dotted notation, e.g., H.N denotes
the set of nodes of H. For components which are functions, e.g., S, we use currified
operators get to apply these components to any heap. In the conclusion of the rule
a-ptr2, we abuse notation by letting � denote the constant function which associates �
to each node. For instance, getS( fn)(H) returns the successor in H of a node denoted
by fn(H). Similarly, we use the upd operators to alter the components of heaps. The
operator addNode(p,n)(H) adds a fresh node n (not in H.N) to H s.t. it is pointed by
p and its data is arbitrary. The eval operator evaluates data terms in a concrete heap
to integer values or, when null is dereferenced, to ⊥. The operator unfold(p)(H) is
introduced to obtain similar definitions for the concrete and abstract program semantics;
in the concrete semantics, it is the identity. The operator delGarbage(H) removes from
the heap all the garbage nodes using two operators: (1) getGarbage(H) returns the
complete set of garbage nodes (computed, e.g., by a graph traversal algorithm starting
from the nodes pointed by program variables); (2) proj(N)(H) removes from H a set
of nodes N ⊂ H.N ( f ↑ N denotes a function obtained from f by removing from its
domain the set N).

getV (p)(H) def= H.V (p) getS( fn)(H) def= H.S( fn(H)) unfold(p)(H) def= H

addNode(p,n)(H) def= (H.N,H.S[n �→ �],H.V [p �→ n],H.L[n �→ v],H.D) for some v ∈ Z

delGarbage(H) def= proj(getGarbage(H))(H)
proj(N)(H) def= (H.N \N,(H.S ↑ N)[�/n]n∈N ,(H.V )[�/n]n∈N ,H.L ↑ N,H.D)

updS( fn, fm)(H) def= (H.N,H.S[ fn(H) �→ fm(H)],H.V,H.L,H.D)
updL( fn,dt)(H) def= (H.N,H.S,H.V,H.L[ fn(H) �→ eval(dt)(H)],H.D)

Fig. 3. Operators used in post(St,H)
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3 Abstract Domain for Program Configurations

Starting from a heap H, we can define a precise abstraction by (1) a graph G containing
as nodes at least all the cut points in H such that two nodes in G are connected by an
edge if there exists a path between them in H, and (2) a constraint W̃ that associates to
each node n in G, let m be its successor, a word over Z which represents the data values
of the path nn1 . . .nk from H, where nk is a predecessor of m. For example, Figures
4(b–c) give precise abstractions for the heap in Figure 4(a). Coarser abstractions can
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Fig. 4. Concrete and abstract representations for program heaps

be obtained by replacing W̃ with less precise constraints characterizing the data words
attached to the nodes of the graph and the values of the program data variables. For that,
abstract domains on words are used which capture various aspects such as constraints on
the sizes, the multisets of their elements, or the data at different positions of the words.
For example, Figures 5(a–b) give a precise abstraction of the heap configuration at line 2
of the procedure Dispatch3 from Figure 1(b). Another abstraction of this configuration
is defined using the same graph together with the constraints from Figure 5(c) which
characterize the data at any position of the words attached to the nodes of the graph.
These constraints are expressed by (universally quantified) first-order formulas where
hd(n2) denotes the first symbol of the word denoted by n2, y is a variable interpreted as
a position in some word, y ∈ tl(n2) means that y belongs to the tail of n2, and n2[y] is
a term interpreted as the data at the position y of n2.

n1

{head,tmp}

n2

n3

{grt}

{less}

#

Precise constraints:

n1 : (3,4,5)
n2 : (5,6)
n3 : (1,2)

Universally quantified formulas:

hd(n2) ≥ 3∧hd(n3) < 3
∀y. y ∈ tl(n2) ⇒ n2[y] ≥ 3
∀y. y ∈ tl(n3) ⇒ n3[y] < 3

(a) (b) (c)

Fig. 5. Different abstractions for some configuration of Dispatch3

3.1 Preliminaries on Abstract Interpretation

Let C = (C,⊆) and A = (A,�) be two lattices (⊆, resp. �, are order relations on C,
resp. A). The lattice A is an abstract domain for C [5] if there exists a Galois connection
between C and A , that is, a pair of monotone functions (α : C → A,γ : A →C) such that
for any c ∈ C and a ∈ A, α(c) � a iff c ⊆ γ(a). Also, C is called the concrete domain for
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A . In the following, an abstract domain A is denoted by A = (A,�,�,�,�,⊥), where
� denotes its greatest lower bound (meet) operator, � denotes its lowest greater bound
(join) operator, � its top element and ⊥ its bottom element. Moreover, as usual in the
abstract interpretation framework, ∇ represents the widening operator.

Let FC be a set of concrete transformers, that is, of functions from C into C. If A is an
abstract domain for C , the set of its abstract transformers, denoted F #

A , contains a func-
tion f # : A → A for each f ∈ FC . The transformer f # is sound if f (γ(a)) ⊆ γ( f #(a)), for
any a ∈ A. f # is a best abstraction if α( f (γ(a))) = f #(a) and it is an exact abstraction
if f (γ(a)) = γ( f #(a)), for any abstract value a ∈ A.

3.2 Data Words (Abstract) Domains

To represent constraints on words associated to the nodes of the graph as in Figure 5(b)-
(c) and the values of the program data variables we use elements from a data words
abstract domain. Let DWVar be a set of variables called data word variables and let Z+

denote the set of non-empty sequences over Z. Also, let hd(w) (and tl(w)) denote the
first element (resp. the tail) of the word w, [] (and [e]) the empty word (resp. the word
with one element e), and @ the concatenation operator.
Definition 2. The data words domain over DWVar and DVar, denoted by
CW(DWVar,DVar), is the lattice of sets of pairs (L,D) with L : DWVar → Z+ and
D : DVar → Z.
For any data words domain, we define a set of transformers, denoted by FCW

, as follows
(w,w′ ∈ DWVar, d ∈ DVar, W ∈ CW):

– addSglt(w,W ) adds to each pair (L,D) of W a new word w s.t. tl(L(w)) = [], i.e.,
w has only one element,

– selectSglt(w,W ) (resp. selectNonSglt(w,W )) selects from W the pairs (L,D)
for which tl(L(w)) = [] (resp. tl(L(w)) �= []), i.e., pairs where the word w has one
element (resp. at least two elements),

– split(w,w′,W ) changes the L component of each pair in W by adding a new word
w′ and then assigning [hd(L(w))] to L(w) and tl(L(w)) to L(w′),

– updFst(w,dt,W ) changes the L component of each pair (L,D) of W s.t. hd(L(w))
takes the value of the arithmetic expression dt in which the basic terms are integer
constants, data variables, and terms of the form hd(w′) with w′ ∈ DWVar,

– proj(U,W ) removes from the domain of L the variables in U , for each (L,D) ∈W ,
– concat(V,W ), where V is a vector of data word variables, changes the L compo-

nent of each pair (L,D) of W by assigning to V [0] the concatenation of the words repre-
sented by the variables in V , i.e., L(V [0])@ · · ·@L(V [|V |−1]) and by projecting out the
variables in V except the first one. Then, concat(V1, . . . ,Vt ,W ) is the component-wise
extension of concat(V,W ) to t vectors of data word variables, for any 1 ≤ t.

Definition 3. AW =
(
AW,�W,�W,�W,�W,⊥W

)
is a DW-domain over DWVar and

DVar if it is an abstract domain for CW(DWVar,DVar). Let F #
AW

denote the set of ab-
stract transformers corresponding to FCW

.

We define in Section 4 a DW-domain which formalizes the abstraction from Figure 5(c).
Moreover, we define in [2] the DW-domain AΣ (resp. AM) representing constraints over
the sum (resp. the multiset) of data in a word.
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3.3 The Domain of Abstract Heap Sets

In the following, we assume that for each node of a heap there exists a data word vari-
able with the same name.

Definition 4. An abstract heap over PVar, DVar, and a DW-domain AW is a tuple H̃ =
〈N,S,V,W̃ 〉 where N,S,V are as in the definition of heaps, and W̃ is an abstract value
in AW over the data word variables N \ {�} and the data variables DVar. A k-abstract
heap is an abstract heap with at most k simple nodes.

An example of an abstract heap is given in Figure 5(a) and (c). Two abstract heaps are
isomorphic if their underlying graphs are isomorphic. Let CH denote the lattice of sets
of heaps. We define AH(k,AW) an abstract domain for CH whose elements are k-abstract
heaps over AW s.t. (1) for any two isomorphic abstract heaps, the lattice operators are
obtained by applying the corresponding operators between the values from AW, and
(2) the join and the widening (resp. meet) of two non-isomorphic abstract heaps is �H

(resp. ⊥H). Notice that ∇H is a widening operator because the heaps generated by the
programs we consider (see Section 2) contain a bounded number of cut points [15].

Finally, we define AHS(k,AW) =
(
AHS(k,AW),�HS,�HS,�HS,�HS,⊥HS

)
as a finite

powerset domain over AH(k,AW). Its elements are called k-abstract heap sets. Obvi-
ously, AHS(k,AW) is an abstract domain for CH.

Definition 5. A k-abstract heap set over PVar, DVar, and a DW-domain AW is a finite
set of non-isomorphic k-abstract heaps over PVar, DVar, and AW.

The operators associated to AHS(k,AW) and its widening operator are obtained from
those of AH(k,AW) as usual [6]. For example, the join of two abstract heap sets is
computed by taking the union of these sets and by applying the join operator between
any two isomorphic abstract heap graphs.

3.4 Abstract Postcondition Transfomer

The abstract postcondition transformer post# on abstract heap sets is obtained by re-
placing in the definition of post (see Figure 2) the heap H by an abstract heap set AH

and every concrete operator defined in Figure 3 by its abstract version given in Figure 6.
Next, post# is extended to obtain a postcondition transformer on k-abstract heap

sets, denoted post#
k , by

post#
k (St,AH) def=

⊔
HS

H̃∈post#(St,AH) Normalize
#
k(H̃),

where Normalize#
k takes as input an abstract heap graph H̃ and, if H̃ is not a k-abstract

heap graph then it returns a 0-abstract heap graph (an abstract heap graph with no simple
nodes). Suppose that V1, . . . ,Vt are all the (disjoint) paths in H̃ of the form nn1 . . .nk,
where k ≥ 1, n is a cut point, ni is a simple node, for any 1 ≤ i ≤ k, and the successor
of nk is a cut point. Normalize#

k calls the transformer concat#(V1, . . . ,Vt ,W̃ ), then it
replaces the paths of simple nodes starting from Vi[0] by one edge, and finally it removes
from the graph the simple nodes of each Vi.

Remark 1. By definition 4, for any call to concat#(V1, . . . ,Vt ,W̃ ) made by post#
k ,

the sum |V1| + . . . + |Vt | is bounded by 2k. Consequently, we can define transformers
concat# s.t. concat#(V1, . . . ,Vt ,W̃ ) with W̃ ∈ AW is undefined if |V1|+ . . .+ |Vt | > 2k.
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F(AH) def=
F

HS

H̃∈AH
F(H̃), for any F ∈ {get#V (p),get#S( fn),unfold#(n),addNode#(p,n),

delGarbage#,proj#(N),updS#( fn, fm),updL#( fn,dt)}

get#V (p)(H̃) def= H̃.V (p) get#S( fn)(H̃) def= H̃.S( fn(H̃))
unfold#(n)(H̃) def= 〈H̃.N, H̃.S, H̃.V,selectSglt#(n, H̃.W̃ )〉

�HS 〈H̃.N ∪{m}, H̃.S[n �→ m,m �→ H̃.S(n)], H̃.V,

selectSglt#(n,split#(n,m,selectNonSglt#(n, H̃.W̃ )))〉
addNode#(p,n)(H̃) def= 〈H̃.N, H̃.S[n �→ �], H̃.V [p �→ n],addSglt#(n, H̃.W̃ )〉
delGarbage#(H̃) def= proj#(getGarbage(H̃))(H̃)

proj#(N)(H̃) def= 〈H̃.N \N,(H̃ .S ↑ N)[�/n]n∈N ,(H̃.V )[�/n]n∈N ,proj#(N, H̃.W̃ )〉
updS#( fn, fm)(H̃) def= 〈H̃.N, H̃.S[ fn(H̃) �→ fm(H̃)], H̃.V, H̃.W̃ 〉

updL#( fn,dt)(H̃) def= 〈H̃.N, H̃.S, H̃.V,updFst#( fn(H̃),dt[hd(H̃.V (p))/p->data]p∈PVars, H̃.W̃ )〉

Fig. 6. Operators used in post#(St,AH)

Theorem 1. For any k-abstract heap set AH in AHS(k,AW), the following hold:
– (soundness) post(St,γHS(AH)) �HS γHS(post#

k(St,AH));
– (precision) if all the abstract transformers in F #

AW
of the domain AW are best (exact,

resp.) abstractions then post#
k is also a best (exact, resp.) abstraction.

We define in the next section a DW-domain for which F #
AW

contains sound and best ab-
stract transformers. [2] presents other sound transformers for DW-domains representing
sum and multiset constraints.

4 A DW-Domain with Universally Quantified Formulas

We define the DW-domain AU =
(
AU,�U,�U,�U,�U,⊥U

)
whose elements are first-

order formulas with free variables in DWVar∪DVar.

4.1 Abstract Domain Definition

The formulas in AU contain a quantifier-free part and a conjunction of universally quan-
tified formulas of the form ∀y. (P ⇒ U), where y is a vector of (integer) variables
representing positions in the words, the guard P is a constraint over y, and U is a
quantifier-free formula over DVar, y, and DWVar. The formula P is defined using a
finite set P of guard patterns considered as a parameter of AU.

Syntax of guard patterns: Let O ⊆ DWVar be a set of distinguished data word vari-
ables and ω1, . . . ,ωn ∈ O. Let y1, . . . ,yn be non-empty vectors of position variables
interpreted as positions in the words denoted by ω1, . . . ,ωn (these variables are uni-
versally quantified in the elements of AU). We assume that these vectors are pairwise
disjoint and that ωi �= ω j, for any i �= j. We denote by y j

i the jth element of the vector yi,
1 ≤ j ≤ |yi|. Let Ω ⊆ O be a set of variables not necessarily distinct from ω1, . . . ,ωn.

The guard patterns are conjunctions of (1) a formula that associates vectors of posi-
tion variables with data word variables, (2) an arithmetical constraint on the values of
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some position variables, and (3) order constraints between the position variables asso-
ciated with the same data word variable. Formally,

P(y1, . . . ,yn,ω1, . . . ,ωn,Ω) ::=
∧

1≤i≤n

yi ∈ tl(ωi)∧PL(y1
1, . . . ,y

1
n,Ω)∧

∧
1≤i≤n

Pi
R(yi)

PR(y1y2 . . .ym) ::= y1 ≺1 y2 ≺2 . . . ≺m ym

where (1) for each vector yi, yi ∈ tl(ωi) states that the positions denoted by yi belong
to the tail of the word denoted by ωi and that len(ωi) ≥ |yi| + 1; the terms len(ωi)
and tl(ωi) denote the length and the tail of the word represented by ωi, (2) PL is a
boolean combination of linear constraints over y1

i with 1 ≤ i ≤ n; these constraints may
use the terms len(ω) with ω ∈ Ω but we assume that PL is not a constraint for the
lengths of the words in Ω, i.e., ∧ω∈Ωlen(ω) > 0 implies ∃y1

1, . . . ,y
1
n. PL (in Presburger

arithmetic), (3) for each vector yi, the formula PR(yi) is an order constraint over yi,
where ≺i∈ {≤,<,<1} with x <1 y iff y = x + 1.

The elements of AU: Let V ⊆ DWVar and let P be a set of guard patterns. We define
P (V ) to be the set of all formulas obtained from some P(y1, . . . ,yn,ω1, . . . ,ωn,Ω) ∈ P
by substituting each ωi with some wi ∈ DWVar, for any 1 ≤ i ≤ n, and Ω with some
W ⊆ DWVar. We assume that wi �= wj, for any i �= j. Then, an element of AU has the
following syntax:

W̃ (V ) ::= E(V )∧
∧

g(y)∈P (V )

∀y. g(y) ⇒Ug (G)

where E(V ) is a quantifier-free arithmetical formula over DVar and terms hd(w),
len(w) with w ∈ V , g(y) is a guard of the form P(y1, . . . ,yn,w1, . . . ,wn,W) with
y = y1 ∪ . . .∪yn, and Ug is a quantifier-free arithmetical formula over the terms in E(V )
together with w[y] and y, for any w ∈ DWVar and y ∈ y. The terms hd(w), resp. w[y],
denote the data at the first position, resp. the position denoted by y, of the word repre-
sented by w. We assume that E and UP are also elements of some numerical abstract
domain AZ =

(
AZ,�Z,�Z,�Z,�Z,⊥Z

)
which is a parameter of AU.

Examples: The following formula is an element of AU parametrized by P = {y1 ∈
tl(ω1)∧ y2 ∈ tl(ω2)∧ y1 = y2} and the Polyhedra domain [7]. It expresses the fact
that the word denoted by w1 is a copy of the word denoted by w2:

len(w1) = len(w2)∧hd(w1) = hd(w2)
∧∀y1,y2.

(
(y1 ∈ tl(w1)∧ y2 ∈ tl(w2)∧ y1 = y2) ⇒ w1[y1] = w2[y2]

) (H)

The following element of AU over P = {(y1,y2,y3) ∈ tl(ω)∧ y1 <1 y2 <1 y3} and the
Polyhedra domain represents words w whose data are in the Fibonacci sequence:

hd(w) = 1∧∀y1,y2,y3.
(
(y1,y2,y3) ∈ tl(w)∧y1 <1 y2 <1 y3)⇒w[y3] = w[y1]+w[y2]

)
.

Lattice operators: The concretization function for elements in AU is defined according
to the classical semantics of these formulas. The value �U (resp. ⊥U) is defined by the
formula in which E and all Ug are �Z (resp. ⊥Z). Let

W̃ (V1)= E(V1)∧
∧

g(y)∈P (V1)

∀y. (g(y)⇒Ug) and W̃ ′(V2)= E ′(V2)∧
∧

g(y)∈P (V2)

∀y. (g(y)⇒U ′
g).
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Before applying any lattice operator we add to W̃ (resp. W̃ ′) universally quantified for-
mulas ∀y. g(y) ⇒ �Z, for any g(y) ∈ P (V1) \ P (V2) (resp. g(y) ∈ P (V2) \ P (V1)).
Then, W̃ �U W̃ ′ iff (1) E �Z E ′, and (2) for each g(y) = P(y1, . . . ,yn,w1, . . . ,wn,W) ∈
P (V1)∪P (V2), if for all i ∈ [1,n], E �Z len(wi) ≥ |yi|+1 then E �Z Ug �Z U ′

g. Also,

W̃ �U W̃ ′ is defined by E �Z E ′ ∧∧g(y)∈P (V1)∪P (V2) ∀y. (g(y) ⇒ Ug �Z U ′
g). The opera-

tors �U and ∇U are defined in a similar way.
In the following, we present the two most interesting abstract transformers in F #

AU
,

split# and concat#. For the sake of readability, we present these transformers only
for guard patterns of the form P(y1,ω1,Ω), i.e., patterns with positions belonging to
only one word. The general case is given in [2]. At the end of this section, we give
sufficient conditions to obtain soundness and precision for all transformers in F #

AU
.

4.2 Abstract Transformer split#

Let W̃ (V ) = E(V ) ∧ φ(V ) ∈ AU as in (G). The transformer split#(u,v,W̃ ) splits u
into its head and its tail; the head is assigned to u and the tail to v. It produces a formula
E ′(V ∪{v})∧φ′(V ∪{v}), where φ′(V ∪{v}) =

∧
g(y)∈P (V ∪{v}) ∀y. g(y) ⇒U ′

g and:

1. E ′ is obtained from E by: (1) adding constraints on hd(v) obtained from φ(V ), (2)
substituting len(u) with len(v)+ 1 and assigning 1 to len(u),

2. φ′ is obtained from φ by: (1) adding constraints on tl(v) computed from the con-
straints on tl(u) in φ, and then, (2) applying the second step from the computation
of E ′ to the right hand side of each implication.

In the following, we detail only the important steps.

Constraints on hd(v): Let ∀y. g(y) ⇒ Ug be a conjunct of φ with y = y1 . . .ym and
g(y) = y ∈ tl(u) ∧ y1 ≺1 y2 ≺2 . . . ≺m ym ∧ PL(y1,W). A constraint on hd(v) in W̃ ′

is deduced from Ug when y1 coincides with the first position in v. Formally, if the
Presburger formula y1 ≺1 y2 ≺2 . . . ≺m ym ∧PL(y1,W)∧E ∧ y1 = 1 is satisfiable then

E ′
g = E �Z

(
Ug↑Z

(
y \ y1

))[
1/y1,hd(v)/u[y1]

]
is a constraint on hd(v). Then, E ′ is the meet (�Z) between all abstract values E ′

g,
computed as above, for every conjunct ∀y. g(y) ⇒Ug of φ with g(y) ∈ P ({u}).

Constraints on tl(v): The formulas that constrain the tail of v are of the form
∀y. g(y) ⇒ U ′

g, where g(y) ∈ P ({v}). We compute simultaneously all U ′
g with g(y) ∈

P ({v}) as follows: (1) we start with U ′
g = �Z, for every g(y)∈ P ({v}), and (2) for every

g(y) = y ∈ tl(u)∧ y1 ≺1 y2 ≺2 . . . ≺m ym ∧PL(y1,W) in P (V ), we do the following:

– if y1 ≺1 y2 ≺2 . . . ≺m ym ∧PL(y1,W)∧E ∧y1 > 1 is satisfiable, then let g′ = g [v/u]
and U ′

g′ = U ′
g′ �Z Ug;

– if y1 ≺1 y2 ≺2 . . . ≺m ym ∧ PL(y1,W) ∧ E ∧ y1 = 1 is satisfiable and |y| > 1, then
we try to generate a universal formula constraining |y| − 1 positions that holds
on the tail of v. Let y′ = y2 . . .ym and g′(y′) = y′ ∈ tl(v) ∧ y2 ≺2 . . . ≺m ym. If
g′(y′) ∈ P ({v}) then U ′

g′ = U ′
g′ �Z Ug↑Z

(
{y2, . . . ,ym}

)
.
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4.3 Abstract Transformer concat#

Let W̃ (V ) = E(V )∧ φ(V ) ∈ AU and V = v1 . . .vn be a vector of variables in V . The
transformer concat#(V,W̃ ) assigns to v1 the concatenation of the words represented by
the variables from V in W̃ and it removes v2,. . .,vn.

Let α1β1 . . .αmβmαm+1 be a decomposition of V , where βi are maximal sub-vectors
of V of length at least 2 such that for any 1 ≤ i ≤ m and v ∈ βi, E �Z len(v) = 1 (α1

and αm+1 may be empty). We define W̃ ′(V ′) = concat#(V,W̃ (V )) in two steps:

1. we concatenate the singleton words of each βi, for i = 1 to n. Let W̃0(V0) = W̃ (V )
where V0 = V , and for every 1 ≤ i ≤ m, let W̃i+1(Vi+1) = concat#(βi,W̃i(Vi))
where Vi+1 = Vi \ tl(βi). This step generates universally quantified formulas on
hd(βi) by collecting from E the constraints on hd(v) with v ∈ tl(βi);

2. let α′ = α1hd(β1) . . .αmhd(βm)αm+1. Notice that α′ does not contain two succes-
sive variables denoting singletons. We define W̃ ′(V ′) = concat#(V ′,W̃m(Vm)),
where V ′ = Vm \tl(α′).

The result of concat#(V,W̃ (V )) is a formula of the form E ′(V ′) ∧ φ′(V ′), where
φ′(V ′) =

∧
g(y)∈P (V ′) ∀y. g(y) ⇒U ′

g and:

– E ′ is obtained from E by: (1) updating the length constraints, i.e. len(v1) =
len(v1)+ . . .+len(vn), and (2) projecting out hd(v) and len(v) with v ∈ V \{v1},

– φ′ is obtained from φ and E by replacing each sub-formula ∀y. g(y)⇒Ug of φ with
∀y. g(y) ⇒U ′

g such that:
1. if g(y) �∈ P (V ) (g does not constrain the words denoted by V ), then U ′

g is ob-
tained from Ug by applying the same transformations as for E ′;

2. if g(y) ∈ P ({v1}) then U ′
g is the strongest possible constraint that we can com-

pute from W̃ which characterizes the data from the tail of v1, knowing that v1

represents in W̃ ′ the concatenation of the words denoted by v1, . . . ,vn in W̃ .

We give hereafter the computation of the sub-formulas of φ′ over v1 when V is a se-
quence of singletons, and when V doesn’t contain more than two successive singletons.

Concatenating words of length one: Let V = v1 . . .vn be a vector of data word vari-
ables in V such that E �Z len(vi) = 1, for all 1 ≤ i ≤ n.

Let g(y)∈ P ({v1}) be a guard with |y| ≤ n. For every σg : y→ [2..n], if g(y) σg ∧E is
a satisfiable Presburger formula, then let Eσg be the numerical abstract value computed
from E by (1) substituting, for any i in the co-domain of σg, each occurrence of hd(vi)
with v1[σ−1

g (i)], (2) substituting each len(vi) with 1, and (3) projecting out all the terms
hd(vi) with i not in the co-domain of σg. We define U ′

g as the join of all abstract values
Eσg computed as above.

Example 1. Suppose that we analyse the procedure Dispatch3 from Figure 1 using
AHS(1,AU) where AU is parametrized by P = {y ∈ tl(ω1)} and the Polyhedra domain.
Also, suppose that the initial abstract configuration is the one from Figure 7(a). After
several iterations of the loop, one of the obtained abstract heaps is pictured in Figure
7(c). It is obtained by applying Normalize#

k on the abstract heap in Figure 7(b), which
calls concat#(n2,n1,n,W̃ ) where W̃ is the formula in Figure 7(b). To compute U such
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n #

{head} {tmp,grt,less}

len(n) > 1∧hd(n) ≤ 7
∧∀y. y ∈ tl(n) ⇒ n[y] ≤ 7

(a)

nn2

{grt}
#n3

{head,tmp} {less}

n1

len(n) = 1∧len(n1) = 1∧len(n2) = 1
∧3 ≤ hd(n) ≤ 7∧3 ≤ hd(n1) ≤ 7∧3 ≤ hd(n2) ≤ 7
∧∀y. y ∈ tl(n3) ⇒ n3[y] ≤ 7

(b)

#n3

{head,tmp}
{less}

n2

{grt}

len(n2) = 3∧3 ≤ hd(n2) ≤ 7∧
∧∀y. y ∈ tl(n3) ⇒ n3[y] ≤ 7
∧∀y. y ∈ tl(n2) ⇒ (3 ≤ n2[y] ≤ 7

∧3 ≤ hd(n2) ≤ 7)
(c)

Fig. 7. Abstract heaps for the procedure Dispatch3

that ∀y. y ∈ tl(n2)⇒U is a sub-formula of W̃ ′ we use σ1(y) = 1 and σ2(y) = 2 and we
define Eσi = 3 ≤ n2[y] ≤ 7 ∧3 ≤ hd(n2) ≤ 7, for all 1 ≤ i ≤ 2. Then, U = Eσ1 �Z Eσ2 .

Concatenating words of length greater than one: Let V = v1, . . . ,vn be a vector of
variables from V s.t. there exists no 1 ≤ i < n with E �Z len(vi) = 1∧len(vi+1) = 1.

Our aim is to generate, for every g(y) ∈ P ({v1}), a formula of the form ∀y. g(y) ⇒
U ′

g on the concatenation of v1,. . .,vn from formulas describing in W̃ properties of each of
the vis. In order to obtain non-trivial properties (i.e., U ′

g is not simply �Z) we need that
the set of guard patterns P contains “enough” patterns to capture relations on elements
within the input words v1,. . .,vn. This is ensured by considering a set of patterns denoted
by Closure(P(y,ω,Ω),ω1 . . . ,ωn), where P(y,ω,Ω) is the pattern used to define the
guard g(y).

We give here a brief description of Closure(P(y,ω,Ω),ω1 . . . ,ωn) (the full defini-
tion is given in [2]). Assume that ω represents the concatenation of n words denoted
by ω1,. . .,ωn ∈ O. Let p : y → Z be a valuation for the variables y that satisfies P and
p = p(y), for some y ∈ y. If p < len(ω1) then p is also a position of the word denoted
by ω1, if len(ω1) ≤ p < len(ω1)+len(ω2) then p−len(ω1) is a position of ω2, etc.
In general, with any such p we can associate a position on one of the words ω1,. . .,ωn.
Therefore, for any valuation p as above we define:

1. a mapping σ : y → {hd(ω1),tl(ω1) . . . ,hd(ωn),tl(ωn)} s.t for any y ∈ y, σ(y) =
hd(ωi) iff p(y) corresponds to the first position of ωi and σ(y) = tl(ωi) iff p(y)
corresponds to a position in the tail of ωi,

2. n valuations pi : σ−1(tl(ωi)) → Z, for any 1 ≤ i ≤ n, where σ−1(tl(ωi)) is the set
of variables from y which are mapped to tl(ωi) by σ and pi(y) is the position in
the tail of ωi which corresponds to p(y).

Let ΣP be the set of all mappings σ as above. Then, for every σ ∈ ΣP, we define
a set of patterns Tσ of the form P′(σ−1(tl(ωi)),ωi,Ω) with 1 ≤ i ≤ n. The pattern
P′(σ−1(tl(ωi)),ωi,Ω) characterizes the valuations pi, for any p a valuation for y cor-
responding to σ that satisfies P. Finally, we define Closure(P(y,ω,Ω),ω1 . . . ,ωn)
as the union of all the Tσ s.t. σ ∈ ΣP. Let Closure(P,k) denote the union of all
Closure(P,ω1, . . . ,ωn) with n ≤ 2k. By Remark 1, Closure(P,k) is sufficient to handle
any call to concat# made by the domain of k-abstract heap sets.

We now have all the ingredients to define the value U ′
g with g(y) ∈ P ({v1}): (1)

assume that g(y) is obtained from P(y,ω,Ω) ∈ P by some substitution γ : O→ DWVar,
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(2) let σ ∈ ΣP, Tσ ∈ Closure(P(y,ω,Ω),ω1 . . . ,ωn), and T σ be the guards obtained
from Tσ by applying γ and by substituting every ωi with vi, for any 1 ≤ i ≤ n; we define

UTσ =
�

Z

g′∈T σ
Ug′ �Z (E θ)↑{hd(v),len(v)|v ∈ {v2, . . . ,vn}},

where Ug′ is implied by g′ in φ and θ substitutes every hd(vi) for which σ(y) = hd(ωi),
for some y ∈ y, with v1[y], and (3) U ′

P is the join of all U ′
Tσ

with σ ∈ ΣP.
Example 2. Suppose that we analyse the procedure Fibonacci from Section 1 using
the domain of 3-abstract heap sets parametrized by AU over P = Closure(P,3), where
P((y1,y2,y3),ω) = (y1,y2,y3) ∈ tl(ω)∧ y1 <1 y2 <1 y3, and the Polyhedra domain.

The analysis starts from an initial state in which head points to a non-empty list.
After some iterations of the loop, we obtain an abstract heap having 7 nodes in a row,
ni, 1 ≤ i ≤ 6, and # such that n1 and n6 are pointed by the program variables head and
x, resp. We apply Normalize#

k which calls concat#((n1,n2,n3,n4,n5),W̃0), where W̃0

is the formula in AU associated to this abstract heap. W̃0 is a conjunction between

E ::= len(n1) = 5 ∧hd(n1) = 1 ∧hd(n2) = 8 ∧hd(n3) = 13 ∧hd(n4) = 21
∧hd(n5) = 34 ∧m1 = 13 ∧m2 = 21 ∧∧2≤i≤5len(ni) = 1

and some universally-quantified formulas, including

ψ ::= ∀y1,y2,y3. ((y1,y2,y3) ∈ tl(n1)∧ y1 <1 y2 <1 y3) ⇒ (n1[y3] = n1[y1]+ n1[y2])
∧∀y1. ((y1) ∈ tl(n1)∧ y1 = len(n1)− 1)⇒ (n1[y1] = 3) ,

We identify α1 = n1 and β1 = (n2,n3,n4,n5) s.t. β1 represents only singletons and
we compute W̃1 by applying concat#(β1,W̃0). In W̃1, the constraints on n1 are the
same as in W̃0, the data word variables n3, n4, and n5 are removed, and the universally
quantified formulas over n2 are transformed such that n2 represents the concatenation
of the singletons denoted by n2, n3, n4, and n5 in W̃0. For example, we deduce that
ψ′ := ∀y3. ((y3) ∈ tl(n2)∧ y3 = 1) ⇒ (n2[y3] = 8).

Now we apply concat#(n1n2,W̃ ). We use the fact that Closure(P,ω1,ω2)
[n1/ω1,n2/ω2] is the union of Ti with 1 ≤ i ≤ 5 where

T1 = {g1 ::= (y1) ∈ tl(n1)∧ y1 = len(n1)− 1, g2 ::= (y3) ∈ tl(n2)∧ y3 = 1}
T2 = {g3 ::= (y1,y2) ∈ tl(n1)∧ y1 <1 y2 ∧ y1 = len(n1)− 2},T3={g4 ::= P [n1/ω]},

T4 = {g5 ::= (y2,y3) ∈ tl(n2)∧ y2 <1 y3 ∧ y2 = 1},T5 = {g6 ::= P [n2/ω]}.

The procedure concat#(W̃ ,n1,n2) computes the value implied by the guard
P((y1,y2,y3),n1) in W̃ ′ as U ′

P =
⊔

Z

1≤i≤5 UTi
, where E1 is the quantifier-free part of W̃1,

UT1
= Ug1 �Z Ug2 �Z E1 [n1[y2]/hd(n2)], UT2

= Ug3 �Z E1 [n1[y3]/hd(n2)], UT3
= Ug4 ,

UT4
= Ug5 �Z E1 [n1[y1]/hd(n2)], and UT5

= Ug6 .
For example, from E1, the second conjunct of ψ, and ψ′, we obtain that UT1

=
n1[y1] = 3 ∧ n1[y2] = 5 ∧ n1[y3] = 8, which describes a sub-sequence of the Fibonacci
number series. Actually, every UTi

describes a sub-sequence of this series which implies
that the data from the tail of n1 is also such a sub-sequence.

4.4 Soundness and Precision

An abstract value W̃ ∈ AU such that αU(γU(W̃ )) = W̃ is called a closed abstract value.
A set of guard patterns P is closed if it equals Closure(P ′,k), for some P ′. A guard
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pattern P(y1,ω1 . . . ,yq,ωq) with yi = y1
i . . .ypi

i , for any 1 ≤ i ≤ q, is called simple if it
is of the form:

∧
1≤i≤q yi ∈ tl(ωi) ∧ y1

i ≤ y2
i ≤ . . . ≤ ypi

i . Based on these definitions,
the soundness and the precision of the abstract transformers are given by the following
theorem. The precision of all the transformers except updFst# is obtained, for example,
using the Octahedra [4] or the Polyhedra domain [7].

Theorem 2. Let AU be an abstract domain as above parametrized by a set of guard
patterns P and by a numerical abstract domain AZ which contains a sound projection
operator and an exact meet operator (i.e., γZ(E �Z E ′) = γZ(E)∩ γZ(E ′)). Then,

– All the abstract transformers of AU are sound.
– If (1) P is closed and it contains only simple patterns (2) the projection operator

from AZ is exact, and (3) the abstract transformers in AZ corresponding to as-
signments x = z1 + . . . + zt , x = z1 − 1, and x = 1, where x,z1, . . . ,zt are integer
variables, are exact, then αU(F(Param,γU(W̃ ))) = F#(Param,W̃), for any F ex-
cept updFst, for any set of parameters Param, and for any closed W̃ . Moreover,
if the abstract transformer in AZ is exact for data expressions of the form dt, then
updFst(x,dt,W̃ ) is a best abstraction for any closed W̃ .

The full version [2] contains a procedure that computes for any abstract value W̃ ∈ AU,
a closed abstract value W̃ ′ s.t. γU(W̃ ) = γU(W̃ ′). Moreover, we show that for simple
patterns, all the abstract transformers preserve the closure property, that is, they output
closed values when applied to closed values.

5 Experimental Results

We have implemented the abstract reachability analysis using the AHS(AW) domain in a
tool called CINV1. Our implementation is generic in three dimensions. First, AHS(AW)
is interfaced with the APRON platform [13], in order to use its fix-point computation
engines; we use INTERPROC. Second, the implementations of the DW-domains can be
plugged in the AHS(AW) domain. We have implemented the DW-domain AU for the
set of patterns y ∈ tl(w), (y1,y2) ∈ tl(w)∧ y1 < y2, and y1 ∈ tl(w1)∧ y2 ∈ tl(w2).
In addition, we have implemented AΣ and AM for reasoning about sums and multisets.
Third, the implemented DW-domains are generic on the numerical domain AZ used
to represent data and length constraints. For this, we use again the APRON interface to
access domains like octagons or polyhedra.

We have carried out experiments on a wide spectrum of programs including pro-
grams performing list traversal to search or to update data, programs with destructive
updates and changes in the shape (e.g., list dispatch or reversal, sorting algorithms such
as insertion sort), and programs computing complex arithmetical relations. Our tool was
able to synthesize ordering constraints, data preservation constraints like those in (B)
and (C) from Section 1, relations between data and lengths of lists, e.g. (D), and com-
plex arithmetical relations, e.g. (F). Besides constraints which affect only one list, CINV

was able to synthesize relations on data from different lists. For example, the program
that creates a copy of a list, generates the post-condition given in (H) from Section 4.

1 A detailed presentation is available at http://www.liafa.jussieu.fr/cinv/
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Performances: Each example has been carried out in less than 1 second using 4KB to
63MB on an Intel 686 with 2GHz and 1 Go of RAM. The most expensive example is
the insertion sort (with destructive updates) which takes 0.99s and 62.2MB. Traversal
algorithms such as search and local update algorithms, require only few hundredths
of a second, e.g., 0.02s for the maximum calculation. Properties of programs such as
Fibonacci are generated in few tenths of seconds, e.g., 0.42s for (F).

6 Conclusion and Related Work

We have defined powerful invariant synthesis techniques for a significant class of pro-
grams manipulating dynamic lists with unbounded data. Future work includes (1) ex-
tending the framework to handle a wider class of data structures, e.g. doubly-linked lists,
composed data structures, (2) developing heuristic techniques for automatic synthesis
of the patterns used in AU, and (3) defining other abstract domains for data sequences,
in particular, domains based on different classes of universally quantified formulas.

Related Work: Invariant synthesis for programs with dynamic data structures has been
addressed using different approaches including abstract interpretation [8–12, 16–18],
Craig interpolants [14], and automata-theoretic techniques [1, 3]. The contributions of
our paper are (1) a generic framework for combining an abstraction for the heap with
various abstraction for data sequences, (2) new abstract domains on data sequences to
reason about aspects beyond the reach of the existing methods such as the sum or the
multiset of all elements in a sequence, as well as a new domain for generating an ex-
pressive class of first order universal formulas, and (3) precision results of the abstract
transformers for a significant class of programs. Several works [8, 12, 16] consider in-
variant synthesis for programs with uni-dimensional arrays of integers. These programs
can be straightforwardly encoded in our framework. In [11], a synthesis technique for
universally quantified formulas is presented. Our technique differs from this one by the
type of user guiding information. Indeed, the quantified formulas considered in [11] are
of the form ∀y. F1 ⇒ F2, where F2 must be given by the user. In contrast, our approach
fixes the formulas in left hand side of the implication and synthesizes the right hand
side. Therefore, the two approaches are in principle incomparable. The techniques in
[8, 12] are applicable to programs with arrays. The class of invariants they can generate
is included in the one handled by our approach using AHS(AU). These techniques are
based on an automatically generated finite partitioning of the array indices. We consider
a larger class of programs for which these techniques can not be applied. The analysis
introduced in [16] for programs with arrays can synthesize invariants on multisets of
the elements in array fragments. This technique differs from ours based on the domain
AHS(AU) by the fact that it can not be applied directly to programs with dynamic lists.
Finally, the analysis in [10] combines a numerical abstract domain with a shape anal-
ysis. It is not restricted by the class of data structures but it considers only properties
related to the shape and to the size of the memory, assuming that data have been ab-
stracted away. Our approach is less general concerning shape properties but it is more
expressive concerning properties on data.
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Abstract. Modern termination provers rely on a safety checker to con-
struct disjunctively well-founded transition invariants. This safety check
is known to be the bottleneck of the procedure. We present an alter-
native algorithm that uses a light-weight check based on transitivity of
ranking relations to prove program termination. We provide an exper-
imental evaluation over a set of 87 Windows drivers, and demonstrate
that our algorithm is often able to conclude termination by examining
only a small fraction of the program. As a consequence, our algorithm is
able to outperform known approaches by multiple orders of magnitude.

1 Introduction

Automated termination analysis of systems code has advanced to a level that
permits industrial application of termination provers. One possible way to obtain
a formal argument for termination of a program is to rank all states of the pro-
gram with natural numbers such that for any pair of consecutive states si, si+1
the rank is decreasing, i.e., rank(si+1) < rank(si). In other words, a program is
terminating if there exists a ranking function for every program execution.

Substantial progress towards the applicability of procedures that compute
ranking arguments to industrial code was achieved by an algorithm called Binary
Reachability Analysis (BRA), proposed by Cook, Podelski, and Rybalchenko [1].
This approach combines detection of ranking functions for program paths with a
procedure for checking safety properties, e.g., a Model Checker. The key idea of
the algorithm is to encode an intermediate termination argument into a program
annotated with an assertion, which is then passed to the safety checker. Any
counterexample for the assertion produced by the safety checker contains a path
that violates the intermediate termination argument. The counterexample path
is then used to compute a better termination argument with the help of methods
that discover ranking functions for program paths.
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A broad range of experiments with different implementations have shown
that the bottleneck of this approach is the safety check [1,2]: Cook et al. [1]
report more than 30 hours of runtime for some of their benchmarks. The time
for computing the ranking function for a given program path is insignificant in
comparison. Part of the reason for the difficulty of the safety checks is their dual
role: they ensure that a disjunctively composed termination argument is correct
and they need to provide sufficiently deep counterexamples for the generation of
further ranking arguments.

We propose a new algorithm for termination analysis that addresses these
challenges as follows: 1) We use a light-weight criterion for termination based on
compositionality of transition invariants. 2) Instead of using full counterexample
paths, the algorithm applies the path ranking procedure directly to increasingly
deep unwindings of the program until a suitable ranking argument is found. We
prove soundness and completeness (for finite-state programs) of our approach
and support it by an extensive evaluation on a large set of Windows device
drivers. Our algorithm performs up to 3 orders of magnitude faster than BRA,
as it avoids the bottleneck of safety checking in the iterative construction of a
termination argument.

2 Background

Preliminaries. We define notation for programs and record some basic prop-
erties we require later on. Programs are modeled as transition systems.

Definition 1 (Transition System). A transition system (program) P is a
three tuple 〈S, I,R〉, where

– S is a (possibly infinite) set of states,
– I ⊆ S is the set of initial states,
– R ⊆ S × S is the transition relation.

A computation of a transition system is a maximal sequence of states s0, s1,
. . . such that s0 ∈ I and (si, si+1) ∈ R for all i ≥ 0. A program is terminating iff
all computations of the program eventually reach a final state. The non-reflexive
transitive closure of R is denoted by R+, and the reflexive transitive closure of
R is denoted by R∗. The set of reachable states is R∗(I).

Podelski and Rybalchenko [3] use Transition Invariants to prove termination
of programs:

Definition 2 (Transition Invariant [3]). A transition invariant T for pro-
gram P = 〈S, I,R〉 is a superset of the transitive closure of R restricted to the
reachable state space, i.e., R+ ∩ (R∗(I) ×R∗(I)) ⊆ T .

A well-founded relation is a relation that does not contain infinite descending
chains. Podelski and Rybalchenko define a weaker notion as follows:

Definition 3 (Disjunctive Well-foundedness [3]). A relation T is disjunc-
tively well-founded (d.wf.) if it is a finite union T = T1∪ . . .∪Tn of well-founded
(wf.) relations.
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A program is terminating if it does not have infinite computations, and Podel-
ski and Rybalchenko show that disjunctive well-foundedness is enough to prove
termination of a program:

Theorem 1 (Termination [3]). A program P is terminating iff there exists a
d.wf. transition invariant for P .

The literature presents a broad range of methods to obtain transition invariants.
Usually, this is accomplished via synthesis of ranking functions, which define
well-founded ranking relations [2,4,5,6]. We refer to such methods as ranking
procedures.

Binary Reachability Analysis [1]. Theorem 1 gives rise to an algorithm for prov-
ing termination that constructs a d.wf. transition invariant in an incremental
fashion. Initially, an empty termination argument is used, i.e., T0 = ∅. Then, a
Model Checker is used to search the reachable state space for a counterexam-
ple to termination argument Ti. If there is none, termination is proven. Other-
wise, let π be the counterexample path. The counterexample may be genuine,
i.e., demonstrate a prefix of a non-terminating computation. Otherwise, a well-
founded relation T that includes π is constructed (via a ranking procedure).
Finally, the current termination argument is updated, i.e., Ti+1 = Ti ∪ T and
the process is repeated.

This principle has been put to the test in various tools, most notably in
Terminator [1], ARMC [7], and in an experimental version of SatAbs [2].

3 Compositional Termination Analysis

The literature contains a broad range of reports of experiments with multiple
implementations that indicate that the bottleneck of Binary Reachability Analy-
sis is that the safety checks are often difficult to decide by means of the currently
available software Model Checkers [1,2]. This problem unfortunately applies to
both cases of finding a counterexample to an intermediate termination argument
and to proving that no such counterexample exists.

As an example, consider a program that contains a trivial loop. The d.wf. tran-
sition invariant for the loop can be constructed in a negligible amount of time,
but the computation of a path to the beginning of the loop may already exceed
the computational resources available.

In this section, we describe a new algorithm for proving program termination
that achieves the same result while avoiding excessively expensive safety checks.

We first define the usual relational composition operator ◦ for two relations
A,B : S × S as

A ◦B := {(s, s′) ∃s′′.(s, s′′) ∈ A ∧ (s′′, s′) ∈ B} .

Note that a relation R is transitive if it is closed under relational composition,
i.e., when R ◦ R ⊆ R. To simplify presentation, we also define R1 := R and
Rn := Rn−1 ◦R for any relation R : S × S.
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While d.wf. transition invariants are not in general well-founded, there is a
trivial subclass for which this is the case:

Definition 4 (Compositional Transition Invariant). A d.wf. transition in-
variant T is called compositional if it is also transitive, or equivalently, closed
under composition with itself, i.e., when T ◦ T ⊆ T .1

A compositional transition invariant is of course well-founded, since it is an
inductive transition invariant for itself [3]. Using this observation and Theorem 1,
we conclude:

Corollary 1. A program P terminates if there exists a compositional transition
invariant for P .

In Binary Reachability Analysis, the Model Checker needs to compute a coun-
terexample to an intermediate termination argument, which is often difficult.
The counterexample begins with a stem, i.e., a path to the entry point of the
loop. For many programs, the existence of a d.wf. transition invariant does not
actually depend on the entry state of the loop. For example, termination of a
trivial loop that increments a variable i to a given upper limit u does not actu-
ally depend on the initial value of i, nor does it depend on u. The assurance of
progress towards u is enough to conclude termination.

The other purpose of the Model Checker in BRA is to check that a candidate
transition invariant indeed includes R+ restricted to the reachable states. To
this end, we note that the (non-reflexive) transitive closure of R is essentially an
unwinding of program loops:

R+ = R ∪ (R ◦R) ∪ (R ◦R ◦R) ∪ . . . =
∞⋃

i=1

Ri .

Instead of searching for a d.wf. transition invariant that is a superset of R+, we
can therefore decompose the problem into a series of smaller ones. We consider
a series of loop-free programs in which R is unwound k times, i.e., the program
that contains the transitions in R1 ∪ . . . ∪Rk.

Observation 2. Let P = 〈S, I,R〉 and k ≥ 1. If there is a d.wf. Tk with⋃k
j=1 R

j ⊆ Tk and Tk is also transitive, then Tk is a compositional transition
invariant for P .

Proof. We show that Tk is a transition invariant for P , i.e., R+ ∩ (R∗(I) ×
R∗(I)) ⊆ Tk. Let (x, x′) ∈ R+ ∩ (R∗(I) × R∗(I)). There must exist a path over
R-edges from x to x′. Let l be the length of the path, i.e., (x, x′) ∈ Rl. Note that
R ⊆ Tk, and thus, Rl ⊆ T l

k. As Tk is transitive, T l
k ⊆ Tk. �

This suggests a trivial algorithm that attempts to construct d.wf. relations Ti for
incrementally deep unwindings of P until it finally finds a transitive Tk, which
1 We use the term compositional instead of transitive for transition invariants in order

to comply with the terminology in the existing literature [3].
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proves termination of P . However, this trivial algorithm need not terminate, even
for simple inputs. This is due to the fact that Ti does not necessarily have to be
different from Ti−1, in which case the algorithm will never find a compositional
transition invariant.

We provide an alternative that does not suffer from this limitation and takes
advantage of the fact that most terminating loops encountered in practice have
transition invariants with few disjuncts. To present this algorithm, we require the
following lemma, which enables us to exclude computations from the program
that we have already proven terminating in a previous iteration:

Lemma 1. Let P = 〈S, I,R〉 and k ≥ 1. Let T1, . . . , Tk be a sequence of d.wf. re-
lations such that each is a superset of the respective

⋃i
j=1 R

j restricted to reach-
able transitions that are not contained in any previous Tj, i.e.,

i⋃
j=1

Rj \
i−1⋃
j=1

Tj ∩ (R∗(I) ×R∗(I)) ⊆ Ti .

If Q :=
⋃k

i=1 Ti is transitive, then Q is a compositional transition invariant for
the program P .

Proof. We have
⋃k

i=1 R
i ⊆

⋃k
i=1 Ti = Q and in particular R ⊆ Q. Therefore

R+ ⊆ Q+ and since Q is transitive it follows that R+ ⊆ Q. It is d.wf. as it is a
finite union of d.wf. relations. �

As an optimization, we may safely omit some of the Ti while searching for a
transitive Tk:

Lemma 2 (Optimization). Let T0, . . . , Tk be the sequence of d.wf. relations
for application of Lemma 1. The claim of the lemma holds even if some of the
T1, . . . , Tk−1 are not provided (empty).

Proof. We show thatQ is a transition invariant for P . Let (x, x′) ∈ R+∩(R∗(I)×
R∗(I)). As in the proof of Obs. 2, (x, x′) ∈ Rl for some l. The claim holds
trivially for l ≤ k as

⋃k
i=1 R

i ⊆ Q. For l > k, note that (x, x′) ∈ (Rjk ◦ Rl−jk)
and 0 ≤ l − jk < k for some j ≥ 1. Note that Rjk ⊆ Qj and Rl−jk ⊆ Q. Thus,
(x, x′) ∈ (Qj ◦Q) = Qj+1. As Q is transitive, Qj+1 ⊆ Q, and thus (x, x′) ∈ Q.

The proof of Lemma 1 still applies. As an example, our implemenation only uses
those Ti where i is a power of two.

The procedure that we draw from Lemma 2 is Algorithm 1, and we call
it Compositional Termination Analysis (CTA). This algorithm makes use of an
external ranking procedure called rank, which generates a d.wf. ranking relation
for a given set of transitions, or alternatively a set C ∈ S of states such that
R∗(C) contains infinite computations. We say that rank is sound if it always
returns either a d.wf. superset of its input or a non-empty set of states C, and
we call it complete if it terminates on every input.
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input : P = 〈S, I,R〉
output : ‘Terminating’ / ‘Non-Terminating’
begin1

T := ∅;2

X := S;3

i := 1;4

while true do5

〈Ti, C〉 := rank ((
⋃i

j=1R
j \ T ) ∩ (X ×X));6

if C ∩ R∗(I) �= ∅ then7

return ‘Non-Terminating’;8

else if C = ∅ and T ∪ Ti is transitive then9

return ‘Terminating’;10

else11

X := X \ C;12

T := T ∪ Ti;13

i := i+ j, where j > 0;14

end15

end16

end17

Algorithm 1. Compositional Termination Analysis

Algorithm 1 maintains a set X ⊆ S that is an over-approximation of the
set of reachable states, i.e., R∗(I) ⊆ X . It starts with X = S and at i = 1.
It iterates over i and generates d.wf. ranking relations Ti for the transitions in⋃i

j=1 R
j \ T . As long as such relations are found, they are added to T . Once it

finds a transitive T , the algorithm stops, as P terminates according to Lemma 2.
When ranking fails for some i, the algorithm checks whether there is a reachable
state in C, in which case R∗(C) contains a counterexample to termination and
the algorithm consequently reports P as non-terminating. Otherwise, it removes
C from X , which represents a refinement of the current over-approximation of
the set of reachable states.

Theorem 3. Assuming the sub-procedure rank is sound, Algorithm 1 is sound.

Proof. When the algorithm terminates with ‘terminating’ (line 10), the sequence
of relations Ti constructed so far is suitable for application of Lemma 2, which
proves termination. It is easy to see that the set R∗(I) in Lemma 2 can be over-
approximated to X . If the algorithm returns ‘non-terminating’ at line 8, it has
found a set of reachable states from which infinite computations exist, i.e., there
is a concrete counterexample to termination. �

Lines 12–14 ensure progress between iterations by excluding unreachable states
(C) from the approximation X and adding the most recently found Ti in T .
However, for non-terminating input programs, the algorithm may not terminate
for two reasons: a) rank is not required to terminate, and b) there may be
an infinite sequence of iterations. This is not the case for finite S if the input
program is non-terminating, since sound and complete ranking procedures exist
(e.g., [5,2]) and progress towards the goal can thus be ensured:
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Corollary 2. If the sub-procedure rank is sound and complete for finite-state
programs, then Algorithm 1 is sound and complete for non-terminating finite-
state programs.

Proof. We assume a non-terminating input program P = 〈S, I,R〉. As S is finite
there must exist a looping counterexample with a finite stem. In each iteration,
either T increases or X decreases, as C ∩ X = ∅. Thus, the algorithm will
eventually consider an unwinding long enough to contain the stem, at which
point rank returns a C with C ∩ R∗(I) �= ∅ (since it is sound and complete).
In both cases, progress is ensured because rank always returns a d.wf. ranking
relation or a non-empty set C. In the worst case, the number of iterations is
equal to the length of the shortest counterexample to termination. �
Note that the algorithm is not complete for terminating programs even if they
are finite-state. This is due to the fact that T is not guranteed to ever become
transitive, even if it contains R+.

Example. We demonstrate the advantage of our approach over BRA on the
following simple program, where � represents non-deterministic choice.

integer i ;

while i <255 do begin
i f � then i := i +1;
else i := i +2;

end

The state space in this example is S = �0, and i is the only variable. A suitable
wf. transition invariant is {(i, i′) ∈ S2 i < i′ ∧ i′ ≤ 256}, which is easily
generated within a negligible amount of time. BRA subsequently needs to verify
the absence of further counterexamples, which requires 14 refinement iterations
when the SatAbs engine is used. Compositional Termination Analysis returns
immediately after synthesizing the ranking function, because the corresponding
relation is transitive. A different ranking procedure may return a d.wf. transition
invariant with one disjunct for each path through the loop body. In this case, our
algorithm stops in the second iteration, because there are no more transitions
that are not included in either of the two disjuncts.

Remark. The check in line 9 of the algorithm corresponds to checking whether
T ◦ T ⊆ T for some relation T : S × S. This corresponds to checking validity of

∀x, y ∈ S. (x, y) ∈ T → (x, y) ∈ T ◦ T ,

which, in the case of symbolically-represented relations, can be established using
one call to a suitable decision procedure.

4 Implementation

We have implemented Compositional Termination Analysis for ANSI-C pro-
grams. Our implementation follows Algorithm 1. It instruments the program
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with termination assertions as described by Cook et al. [1] and subsequently
applies the termination analysis once to each loop in the program. There are
two additional features that need discussion, namely our abstracting loop slicer,
and the blockwise ranking procedure.

4.1 Slicing and Loop Abstraction

To reduce the resource requirements of the Model Checker, our implementa-
tion analyzes each loop separately. It generates an inter-procedural slice [8] of
the program, slicing backwards from the termination assertion. In addition, we
rewrite the program into a single-loop program, abstracting from the behavior
of all other loops.

Following the hypothesis that loop termination rarely depends on complex
variables that are possibly calculated by other loops, our slicing algorithm re-
places all assignments that depend on five or more variables with non-
deterministic values. Also all loops other than the analyzed one are ‘havocked’:
they are replaced by program fragments that assign non-deterministic values to
all variables that might change during the execution of the loop (similar to the
loop summarization in [9]).

Note that this is a purely practical issue: The benchmarks we use require
far too much time to run without this abstraction. We have noticed however,
that the abstraction is almost always precise enough, i.e., we loose only very few
termination proofs. Of course, we use the exactly same slices for all methods
that we compare in our evaluation.

4.2 Blockwise Ranking

The sub-procedure rank in Algorithm 1 may be implemented in various ways.
For example, it is possible to enumerate all paths through

⋃i
j=0 R

j and to obtain
a d.wf. ranking relation for every path separately. To avoid this enumeration,
we employ the symbolic execution engine of CBMC [10] to find paths through
the program that are not yet included in the candidate transition invariant. For
this purpose, we create a temporary program that first initializes all variables
with non-deterministic values, saves the state, and then executes Ri, which is
loop-free. Finally, we check for inclusion of the loop pre- and post-states in the
current candidate transition invariant (starting with the empty set).

If a counterexample is found, we extract a path from it and try to compute a
wf. ranking relation for it. If this succeeds, this relation is added disjunctively to
the current (d.wf.) candidate transition invariant. This procedure is equivalent to
the application of Binary Reachability Analysis to a loop-free program fragment.

The explicit check for compositionality of the candidate transition invariant
can often be avoided. If we find that T is composed of a single wf. ranking
relation, we trivially know that the transition relation is also well-founded, since
it is a subset of a wf. transition invariant.
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1 void main ( )
2 {
3 int x ;
4 int debug = 0 ;
5
6 while (x<255) {
7 i f ( x%2!=0) x−−;
8 else x+=2;
9 i f ( debug !=0) x=0;

10 }
11 }

Fig. 1. A loop with four paths through its body

The synthesis of ranking relations for paths is out of the scope of this paper,
but we would like to point the interested reader to some recent results in this
area [2,4,5].

4.3 Illustration

To illustrate Compositional Termination Analysis and our implementation, we
demonstrate the most important steps on a simple program. The source code for
this demonstration is given in Figure 1 and it consists of an ANSI-C program
that contains a single loop with four paths through its body. Figure 2 shows the
control flow graph of this program and defines the program locations l1 to l9.

Our algorithm starts at i = 1 and R1 is equivalent to a single unwinding of the
loop, i.e., a single copy of the loop body. The initial value of X is S, which allows
any entry state of the loop, including states that have the variable debug set to
values other than 0. The initial termination argument T is ∅. The procedure
rank analyzes R1 and, since T is empty, any path between the locations l2
and l8 violates the current termination argument. Consider the path passing
through locations l2, l3, l4, l6, l7, l8. There is no wf. ranking relation for this path
because the segment between locations l7 and l8 sets x to 0. This means that
x is always set to the same value, which also happens to satisfy the loop entry
condition. Furthermore, the variable debug never changes its value. Thus, the
procedure rank returns a non-empty path precondition C ≡ (debug �= 0)∧ (x <
255)∧(x%2 �= 0). However, C does not contain any reachable loop entry state in
the original program because debug is set to 0 between l1 and l2. Consequently,
the test at line 7 of Algorithm 1 fails and X is updated to X \ C at line 12 of
Algorithm 1.

The algorithm continues with a refined X , while T is still empty. There ex-
ist two more paths through the block R1: l2, l3, l4, l6, l8 and l2, l3, l5, l6, l8. The
procedure rank finds a ranking function for each of them, namely +x for the
first path and −x for the second, and constructs the d.wf. ranking relation
T1 ≡ x < x′ ∨ −x < −x′, which is disjuncively composed of two ranking re-
lations over the pre- and post-state of the loop (x and x′, respectively).
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l1 l2 l3

l4

l5

l6

l7

l8

l9

x := ∗
debug := 0

x < 255

x
≥

25
5

x%2 	= 0

x%2 = 0

x := x − 1

x := x + 2
debug 	= 0 x = 0

debug = 0

Fig. 2. Control-flow graph of the program in Fig. 1

The constructed d.wf. ranking relation T1 is added to the termination argu-
ment T and i is increased. Since the d.wf. ranking relation found in the previous
iteration was disjunctive, the algorithm proceeds to the next iteration, where
rank examines R2, i.e., it now explores two loop unwindings. However, it cannot
find any new path that is both in R2 and not included in T . Therefore, the algo-
rithm concludes that the program in Fig. 1 terminates according to Lemma 2.

5 Experimental Results

We have evaluated our implementation of Compositional Termination Analysis
on a set of 87 Windows device drivers taken from the Windows Device Driver
Kit.2 Every driver is analyzed in two different configurations, which results in a
total of 174 benchmarks. We use Goto-CC

3 to extract control flow graphs from
the original sources, which are then passed to our Compositional Termination
Analysis engine.

We compare our implementation to an implementation of Binary Reachabil-
ity Analysis using SatAbs as the safety checker. In all our experiments, we use
a simple and incomplete coefficient enumeration approach to synthesize poly-
nomial ranking functions using a SAT solver. This and our implementation of
Binary Reachability Analysis have been used in a recent comparison of ranking
engines [2]. For our evaluation we run Binary Reachability Analysis on every
driver using a timeout of 2 hours and a memory limit of 2 GB on an Intel Xeon
3 GHz machine. All those loops that this engine analyzes successfully within the
time limit serve as the baseline for our comparison. Note that some loops may
not require calls to a ranking engine, either because they are unreachable or ter-
mination is trivial and shown by preprocessing. We have excluded those loops,
i.e., our evaluation is only on loops that require a ranking engine at least once.
Our baseline consists of 99 terminating and 45 non-terminating benchmarks.

Whenever the ranking engine is not able to find a valid d.wf. transition invari-
ant for a block, it returns the weakest precondition of a corresponding path. This
precondition describes a set of states from which termination of the program is
not guaranteed. Our implementation can be configured to react to this situation

2 Version 6, available online at http://www.microsoft.com/whdc/devtools/wdk/
3 http://www.cprover.org/goto-cc/

http://www.microsoft.com/whdc/devtools/wdk/
http://www.cprover.org/goto-cc/
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Fig. 3. Experimental results using path precondition checks
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Fig. 4. Experimental results when using loop reachability checks

in three different ways: a) check reachability of the precondition, b) check reach-
ability of the loop, or c) report the loop as non-terminating. We present results
for all three variants.

First, we discuss the results obtained from variant a), which checks path
preconditions using a Model Checker (SatAbs in our implementation) and thus
features the same level of precision as Binary Reachability Analysis. Every data
point in Figure 3 represents one loop. On the horizontal axis we indicate the
total time taken to analyze this loop using Binary Reachability Analysis. The
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Fig. 5. Experimental results without loop reachability or precondition checks

vertical axis indicates the time taken by Compositional Termination Analysis.
As apparent in Figure 3, Compositional Termination Analysis is up to three
orders of magnitude faster. The average speedup factor is 52. However, there are
a few non-terminating benchmarks on which it is slower. This is due to the fact
that on non-terminating loops many (or all) path preconditions are eventually
enumerated. The resulting loop-free programs are sometimes too difficult for the
model checker. A possible solution for this problem are techniques that compute
a more general precondition of non-termination. A recent technique described by
Cook et al. [11], which constructs preconditions of termination, could be applied
for this purpose.

Figure 4 provides the results obtained when checking for general loop reacha-
bility, which is essentially a crude over-approximation of the precondition of the
non-terminating paths through the loop. The results are very similar to those of
the previous variant. This is due to the fact that most loops are indeed reachable
and so are most path preconditions. There is no difference in precision compared
to variant a) on these benchmarks, i.e., no termination proofs are lost compared
to an actual precondition check.

Finally, we discuss the results obtained with variant c), which reports non-
termination immediately, i.e., without checking reachability of the loop or a
precondition. Naturally, this version of our algorithm is the fastest (Fig. 5). The
imprecision introduced by not checking loop reachability or path preconditions
does not have any effect on these benchmarks.

Figure 6 shows that the overall capacity of Compositional Termination Anal-
ysis is much higher than that of Binary Reachability Analysis: At an equal level
of precision, Compositional Termination Analysis is able to analyze more than
three times the number of benchmarks that Binary Reachability Analysis is able
to analyze.
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All our experimental data, the implementation, and additional material is
available for further research at http://www.cprover.org/termination/.

6 Related Work

Termination analysis has its roots in the work of Turing [12,13]. Since then,
substantial progress has been made in various areas of computer science: logic
programming (e.g., [14]), term rewriting-based analysis (e.g., [15]), and func-
tional programming (e.g., [16]).

We make use of a sub-procedure for ranking individual paths [4,17,6]; this
problem is orthogonal to our contribution, which is focused on the iterative
construction of a termination argument for a full program. We elaborate on the
differences of our new algorithm and BRA as described in [3,18,1,11].

The basis for reasoning about transition invariants, including the result that
d.wf. transition invariants can be used to show termination, has been presented
in [3]. The BRA algorithm was presented in [1]. We also make use of the results
of [3], but develop them in a different direction: we show how to prove termination
using the compositionality of transition invariants. Our algorithm passes smaller,
loop-free fragments of the program to the safety checker, which enables it to
outperform Binary Reachability Analysis.

In [11], the authors under-approximate the weakest precondition of paths to
find a condition for termination. This result can be exploited in the context of
our algorithm as well, as it allows for a generalization of path preconditions.

Berdine et al. present an algorithm for proving termination that is based on
abstract interpretation [19]. Using an invariance analysis they construct a vari-
ance analysis, and they use the fact that the transitive closure of a well-founded
relation is also well-founded to show that the fixed-point obtained by their anal-
ysis is correct. Their result may be used to improve the overall performance of
our algorithm, as it can be modified to generate d.wf. transition invariants via
abstraction.

Biere, Artho, and Schuppan propose an encoding of liveness properties into
an assertion [20]. This approach allows proving termination of programs without

http://www.cprover.org/termination/
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a ranking sub-procedure. It has been reported to prove termination of pro-
grams that require non-linear ranking functions. Prior experimental results on
our benchmarks indicate this encoding results in difficult safety checks [2].

7 Conclusion

The safety check is known as the bottleneck of Binary Reachability Analysis
(BRA). We present a new algorithm for proving program termination that avoids
this expensive safety check and is therefore able to outperform BRA. The latter
relies on a safety checker to detect correctness of a disjunctively well-founded
termination argument. We propose to check for compositionality of a candidate
termination argument, which is much less expensive. To perform this test, our
algorithm passes only loop-free segments of the program to a symbolic execution
engine and, consequently, achieves much higher performance than other termi-
nation provers. In case the termination argument has to be refined, BRA uses
a full counterexample path computed by a safety checker. In contrast, we pass
an incrementally deeper unwinding of the loop to the rank finding procedure.
Experimental results indicate an average speedup factor of 52 in comparison to
BRA.
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Lazy Annotation for Program Testing and
Verification

Kenneth L. McMillan

Cadence Berkeley Labs

Abstract. We describe an interpolant-based approach to test genera-
tion and model checking for sequential programs. The method generates
Floyd/Hoare style annotations of the program on demand, as a result of
failure to achieve goals, in a manner analogous to conflict clause learning
in a DPLL style SAT solver.

1 Introduction

The DPLL approach to Boolean satisfiability combines search and deduction
in a mutually reinforcing way. It focuses deduction where the search becomes
blocked, deducing facts that guide the search away from the failure. Here, we
consider an approach to program testing and verification inspired by DPLL. As
in DART [3], we use symbolic execution to search the space of execution paths.
When the search fails to reach a goal, we deduce a program annotation that will
prevent us from being blocked in the same way in the future. Since annotations
are deduced only in response to search failures, we will call this method lazy
annotation.

The algorithm proceeds roughly as follows. We designate a set of program
locations as goals to be reached. In the following examples, the goals are calls to a
function error. The vertices (locations) and edges (statements) of the program’s
control flow graph will be labeled with formulas. A label represents a condition
under which no goal can be reached. Initially, there are no labels (no annotation
being equivalent to false). We execute the program symbolically along some
chosen path. Each input to the program is represented by a symbolic value pi. In
the symbolic state, each program variable is evaluated as a symbolic expression
over these parameters. A constraint is also maintained, which accumulates the
conjunction of the branch guards along the chosen path, as a function of the
parameters.

We say that our state is blocked if the current vertex label is implied, meaning
we cannot reach a goal from this state. When we are blocked, we will backtrack
along the edge we just executed, annotating it with a new label that blocks that
edge. When choosing a branch to execute, we are guided by these edge labels.
A blocked edge cannot lead to a goal, so we always continue along an unblocked
edge if there is one. When all outgoing edges are blocked in the current state,
we label the current location with the conjunction of the conditions that block
the outgoing edges, thus blocking the current state and causing us to backtrack.

T. Touili, B. Cook, and P. Jackson (Eds.): CAV 2010, LNCS 6174, pp. 104–118, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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As an example, consider the fragment simple in Figure 1. Suppose on entering
this code at l1, our symbolic state is x = p0 with constraint T (true). Branching
from l1 to l2, we obtain the constraint p0 = 0. At l2 we have the choice to branch
to l3 or l6. Since neither edge is labeled, we choose arbitrarily l6. Now there
is only one choice and we branch to l7, obtaining the unsatisfiable constraint
p0 = 0∧p0 < 0. At this point we are blocked, since F (false) holds in the current
state and absence of annotation is equivalent to F .

We therefore backtrack, annotating edge l6 → l7. In general, if the current
annotation is φ, we can annotate the incoming edge with the weakest precondi-
tion of φ along that edge. In this case, the current annotation is φ = F and the
weakest precondition is x ≥ 0. After backtracking, we return to l6. There is only
outgoing edge, labeled x ≥ 0. Therefore, we can label l6 : x ≥ 0. We are now
blocked (since x = 0 in our current state) so we backtrack to l2, labeling edge
l2 → l6 : x ≥ 0 (again using the wp). Notice that each time we label an edge,
that edge becomes blocked in the current symbolic state (and possibly other
states).

Since the edge l2 → l3, is still unblocked, we follow it. Our annotation has
forced the search in a different direction. Moving on to l4, we have y = p1 (a new
input), then at l5 we have the constraint p1 ≥ 0 (corresponding to the guard
y ≥ 0). Finally we arrive at l6 in the state x = p0+p1 with constraints p0 = 0 and
p1 ≥ 0. Since this implies the previous annotation l6 : x ≥ 0, we are blocked.
The fact we previously learned tells us there is no path to the goal from our
current state. Backtracking to l5 and taking the weakest precondition of x ≥ 0
then gives us l5 : x + y ≥ 0. When we backtrack to l4, however, we observe a
slight problem. The weakest (liberal) precondition of x + y ≥ 0 with respect to
the assertion y ≥ 0 is y < 0∨x+y ≥ 0. However, the variable y is irrelevant here,
and we could just as well block the state with x ≥ 0 (also a precondition, not
the weakest). This latter fact can be computed as an interpolant as we will show
later. The advantage of the interpolant becomes clear in the next step when the
weakest precondition would yield l3 : ∀y. (y < 0∨x+y ≥ 0). We can simplify this
to x ≥ 0, but this requires quantifier elimination, which can be very expensive.
By computing preconditions with interpolants, we avoid the need for quantifier
elimination.

Now we backtrack to l2, labeling the edge (l2 → l3) with x ≥ 0. At this
point, both edges from l2 are blocked, so we label it with the conjunction of the
blocking labels along these edges, yielding l2 : x ≥ 0. Finally, we label l1 : T ,
proving that the goal error cannot be reached from l1.

Lazy annotation has the advantage that, like DPLL, it can recover from irrel-
evant or too-specific deductions. Consider, for example, fragment diamond, and
suppose we first execute the path through l3 and l7. After backtracking, we label
l6 → l7 : p. Then executing edge l6 → l9 we are blocked, because a = 1 in the
current state. Thus, rather than exploring this path and discovering it is also
safe because p holds, we label l6 → l9 with the irrelevant condition a, and thus
we label l6 : p∧a. However, when we return to l6 via l5, note what happens. The
edge l6 → l7 is blocked by label p so we follow l6 → l9, ultimately labeling it p
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simple:

l1 assume(x == 0);

l2 if(*){
l3 int y = *;

l4 assume(y >= 0);

l5 x = x + y;

}
l6 if(x < 0)

l7 error();

diamond:

l1 assert(p);

l2 if(*)

l3 a = 1;

else

l5 a = 0;

l6 if(a)

l7 x = x + 1;

l8 else

l9 x = x - 1;

l10 if(!p)

l11 error();

loop1:

l1 assert(x == y);

l2 i = 0

l3 while(i < n){
l4 x = x + 1;

l5 i = i + 1;

l6 }
l10 if(x < y)

l11 error();

int x;

foo(){
l1 x = x + 1;

l2 return;}

call1:

l3 x = y;

l4 foo();

l5 if(x < y)

l6 error();

int x;

rec1(){
l1 if(*){
l3 rec1();

l4 rec1();

}
l5 x = x + 1;

l6 return;

}

Fig. 1. Example program fragments

as well. Thus, we label l6 : p. Location l6 is now labeled by the disjunction of p
and p ∧ a. The stronger condition p ∧ a is effectively subsumed, and we discard
it.

Note how this differs from partition refinement approaches such as Synergy [5]
and its descendants [4]. In Synergy, after executing the path through l7, loca-
tion l9 is on the frontier. This causes l6 to be partitioned by the irrelevant
predicate a. There is no way to recover from this irrelevant refinement. With
sequences of such diamonds, we can construct reasonable scenarios in which this
leads Synergy to an exponential explosion of partitions, while lazy annotation is
polynomial.

Unbounded loops. Consider the simple unbounded loop in fragment loop1.
To force this loop to terminate, we will use a simple trick: we instrument the
program with a variable τ that decreases in every iteration, and we annotate all
locations with τ < 0, blocking any path in which τ becomes negative. We pick
an arbitrary initial value of τ , say, zero. This forces the loop to be executed at
most once. Say we execute first the path that skips the loop. Using interpolants,
we label l3 → l10 : x ≥ y and backtrack into the loop. When the loop completes,
we decrement τ and are thus blocked by l3 : τ < 0. We thus backtrack through
the loop. Using interpolants, we obtain l3 → l4 : τ < 1. Thus, we label l3 : x ≥
y ∧ τ < 1. Backtracking further, we label l1 : τ < 1 and terminate. We have not
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proved unreachability of error, since our annotation depends on the bogus label
τ < 0. However, our annotation can be strengthened by induction. We simply
plug τ = 0 into our labels and see if they are inductive. We obtain l3 : x ≥ y
which is in fact inductive, so we keep it. We drop any non-inductive labels
iteratively, obtaining the greatest inductive subset as a fixed point. Effectively
we have used bounded model checking as a heuristic for constructing an inductive
invariant. Note that using weakest precondition, we would have obtained l3 : x ≥
0∨ i < n which is not inductive. To handle unbounded loops, we need some form
of generalization, here provided by interpolation. If strengthening by induction
fails to prove unreachability, we can increase the initial τ value and try again.

Procedure summaries. To handle programs with procedures modularly, we
label them with negative summaries. This is a formula that uses primed variables
to represent the exit state of the procedure, and is true when that exit state is not
reachable. For example, if on exit the value of x must be greater than its current
value, the negative summary would be x′ ≤ x. We can use lazy annotation to
compute a summary for a procedure from a given initial state, with a desired
post-condition ψ. This reusable summary can replace a call to the procedure in
various contexts. Consider fragment call1 in the figure. Here, we start at l3 in
state x = p0, y = p1. When we reach the call to foo at l4, we recursively call
lazy annotation to compute a summary of foo that proves the current post-
condition of the call, which is l5 : F . Obviously, this cannot be proved, and we
obtain a counterexample, which is a path to the return state x = p1 + 1, y = p1.
Continuing from l5, we eventually label l5 : y ≤ x. Now when we backtrack to l4,
we recursively try to compute a summary of foo that proves the post-condition
y ≤ x. This time we succeed, computing the negative summary l1 : x′ < x as
an interpolant (see Section 2.3). Using this summary for l4 → l5, we can label
l4 : x ≥ y and terminate. Moreover this same summary at l1 may be useful in
other contexts, allowing us to return immediately from foo.

The advantage of using interpolants to compute summaries is that we can
obtain more general summaries. A method such as Smash [4] that uses weakest
precondition to compute a summary with the post-condition x ≥ y would yield

a summary such as x ≥ y
foo⇒ x ≥ y containing the irrelevant variable y. To be

able to reuse this summary in another context, we need to be able to univer-
sally quantify over y, which again involves us in quantifier elimination. Using
interpolants, this complication is avoided.

Recursion. Finally, consider the recursive function rec1 in the figure and sup-
pose we want to compute a summary for initial state x = 0 and post-condition
x ≥ 0. To force termination, we decrement τ on recursive calls, and initialize τ
to 1. Now suppose we first take the path through l3. Because τ is decremented,
the recursive calls at l3 and l4 must take the non-recursive path, yielding an
exit state x = 2. This satisfies the post-condition x ≥ 0, giving a negative
summary l5 : x′ < x. Backtracking to l4, we again call recursively with a post-
condition equivalent to x ≥ 0 (for details, see Section 2.3) which yields a sum-
mary l1 : x′ < x ∧ τ < 1. The same summary is reused in backtracking to
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l3, which eventually gives us l1 : x′ < x ∧ τ < 2. Setting τ = 0, we find that
l1 : x′ < x is inductive and terminate.

Related work. Lazy annotation is similar to lazy abstraction with interpolants
[8] in that it computes an inductive invariant using only interpolation. Because
it explores only feasible paths, however, it is useful for testing, and can effi-
ciently handle bounded loops. Moreover, it handles procedures modularly. It is
also similar in some respects to Synergy [5] and related methods [4] that use
partition refinement. However, unlike these methods, it can recover from too-
specific refinements. In fact, we can think of the annotation as partitioning each
location into exactly two state sets. Lazy annotation can also compute more
general summaries using interpolants.

Relative to predicate abstraction approaches [1,9], lazy annotation has the
advantage that it avoids the expensive predicate image computation. However
it is in another sense orthogonal to these methods, as predicate abstraction can
be used to inductively strengthen the annotations obtained by lazy annotation,
possibly speeding convergence for unbounded loops, while avoiding the many
iterations produced by counter-example guided abstraction refinement. In fact,
any backward abstract interpretation can be used for this purpose.

2 Lazy Annotation

Throughout this paper, we will use standard first-order logic (FOL) and the
notation L(Σ) to denote the set of well-formed formulas (wff’s) of FOL over a
vocabulary Σ of uninterpreted symbols (the formulas may also include various
interpreted symbols, such as = and +). For a given formula φ, L(φ) will denote
the wff’s over the uninterpreted vocabulary of φ. We will write φ[σ] to indicate
that structure σ is a model of formula φ. To every uninterpreted symbol s, we
associate a unique symbol s′ (that is, s with one prime added). For any formula
or term φ or vocabulary S, we will write φ′ or S′ for the result of adding one
prime to all the non-logical symbols in φ or S.

Given a pair of FOL formulas (A,B), such that A ∧ B is inconsistent, an
interpolant for (A,B) is a formula Â such that A implies Â, Â implies ¬B, and
Â ∈ L(A) ∩ L(B). The Craig interpolation lemma [2] states that interpolants
always exist for inconsistent formulas in FOL. A variety of techniques exist for
deriving an interpolant for (A,B) from refutation of A ∧ B in a suitable proof
system [7]. This allows us to generate interpolants using a theorem prover or
proof-generating decision procedure.

Modeling programs. We assume a vocabulary S of variables representing the
program’s data state, a domain D of data values, and a collection of program
actions A provided by the programming language. A program is a finite, rooted,
labeled graph (Λ, l0, Δ) where Λ is a finite set of program locations, l0 ∈ Λ is a
distinguished initial location and Δ ⊆ Λ ×A × Λ is a set of transitions labeled
by actions. Let Out(l) denote the set of outgoing edges from location l.
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A program path of length k is an alternating sequence of the form l0a0l1a1 . . . lk,
where each triple (li, ai, li+1) is in Δ. A data state in D is a map S → D. We fix
an initial data state d0. The semantics of an action a ∈ A, denoted Sem(a), is
subset of D×D. A program run of length k is a pair (π, σ), where π is a program
path, and σ = d0 · · · dk is a sequence of data states such that for all 0 ≤ i < k,
(di, di+1) ∈ Sem(ai). A state is a pair (l, d) ∈ Λ×D. The reachable states are all
the pairs (lk, dk) for some run of length k.

A state formula is a formula in L(S). A transition formula is a formula in
L(S ∪ S′). For action a and formulas φ, ψ (that may contain non-program vari-
ables) the Hoare triple {φ}a{ψ} is valid when for every data state d1, and in-
terpretation I of the non-program variables, such that φ[d1 ∪ I] and every d2
such that (d1, d2) ∈ Sem(a), we have ψ[d2 ∪ I]. We assume that Sem(a) can
be expressed as a transition formula, which by abuse of notation, we will write
Sem(a). Since actions and transition formulas are interchangeable, we will also
write {φ}t{ψ} where t is an arbitrary transition formula.

It is useful to define a relational join operator for relations expressed as for-
mulas. Let φ and ψ be formulas, and f be an indexed set of variables with
a unique variable fv associated to each v ∈ S. Then φ ×f ψ is the formula
φ〈fv/v

′〉 ∧ ψ〈fv/v〉. If φ and ψ are transition formulas, we can think of this for-
mula as representing a succession of two transitions, the first satisfying φ and
the second satisfying ψ, with f representing the intermediate state. If we omit
the subscript f , then the intention is that f is some set of variables not previ-
ously used. One important fact we will use is that {φ}t{ψ} is valid exactly when
φ ∧ (t× ¬ψ) is unsatisfiable.

Symbolic Interpreters. A symbolic data state represents a set of data states
parametrically. The symbolic data states S consist of the triples (P,C,E), where
P is a set of parameters (variables not in S), C ∈ L(P ) is a constraint over the
parameters, and E is a map from the program variables S to functions over P .
We assume the these functions are expressible as first order terms over P . Thus, a
symbolic state s can be characterized by the predicate χ(s) = C∧

∧
v∈S v = E(v).

A symbolic data state s represents a set of data states γ(s) defined as follows:

γ(s) = {d ∈ D | d |= ∃P. χ(s)}

This is the set of data states produced by the map E for some valuation of the
parameters satisfying the constraintC. We assume a defined initial symbolic data
state so such that γ(s0) = {do}. A (full) symbolic state is a pair (l, s) ∈ Λ× S.

A symbolic interpreter SI maps A to S ×S. We require that SI(a) is total for
all actions a. Intuitively, a symbolic interpreter takes a symbolic state and an
action, and returns a non-empty set of symbolic states representing the effect of
executing a. Symbolic interpreter SI is sound when, for all symbolic states s and
actions a,

∪γ(SI(a)(s)) = Sem(a)(γ(s))
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That is, the symbolic successors of s must together represent exactly the suc-
cessors of the concrete states represented by s. Note that the set of states rep-
resented can be empty, since the constraint in a symbolic state can be F .

Note that SI(a) may be a function (i.e., deterministic). In this case, non-
determinism in a is modeled by the introduction of parameters. On the other
hand, we may decide based on heuristic considerations to replace parameters
with concrete values, introducing non-determinism in SI(a). Injecting concrete
values in this way is analogous to decision making in DPLL. Soundness is not
sacrificed as long as SI is sound. As in DART, however, it is also possible to
substitute concrete values in an unsound way for operations which cannot be
modeled symbolically [3].

2.1 Intraprocedural Algorithm

We first consider the case without procedure calls. We define a set of goals
G0 ⊂ Λ that we wish to reach. For each goal, we wish to find a concrete run
reaching the goal, or a proof that it is unreachable. The state of the algorithm is
a triple (Q,A,G), where Q is a query set, A is a program annotation, and G ⊆ Λ
is the set of remaining goals. A query is a pair (s, ψ), where s is a symbolic state
called the initial state, and ψ is a formula called the post-condition of the query.
In the intraprocedural setting, the post-condition serves no purpose. It will be
used later when computing procedure summaries.

An annotation is a set of pairs in (Λ ∪Δ) ×L(S). We will notate these pairs
in the form l : φ or e : φ, where l is a location, e an edge and φ a formula called
the label. The intended semantics is that no path beginning with location l or
edge e can reach any remaining goal if φ is initially true. We will write A(l) for
∨{φ | l : φ ∈ A}.

For an edge e = (l1, a, l2), we say that a label e : φ is justified in A when
{φ} a {A(l2)}, that is, when it implies the annotation of l2 after executing a.
We notate this condition J (e : φ,A). For a location l, we will say that a label
l : φ is justified in A when, for all edges e ∈ Out(l), there exists e : ψ ∈ A such
that φ ⇒ ψ. An annotation is justified when all its elements are justified. A
justified annotation is inductive. If it is also initially true, then it is an inductive
invariant. Our algorithm maintains the invariant that A is always justified.

We will say that a query q = ((l, s), ψ) is blocked by formula φ, when s |= φ
and write B(q, φ). With respect to q, the edge e is blocked when B(q, A(e)), and
the location l is blocked when B(q, A(l)).

The algorithm IntraLA proceeds according to the transition rules defined in
Figure 2. The initialization rule Init sets the algorithmstate toQ = {((l0, s0), ψ0)},
A = A0 = ∅, G = G0. That is, we are at the program’s initial state, with no loca-
tions labeled, and all goals yet to be reached. The decision rule Decide generates
a new query from an existing one by symbolically executing one program action. It
may choose any edge that is not blocked, and any symbolic successor state gener-
ated by the action a. If the newly generated query is itself not blocked, it is added
to the query set.
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Init {((l0, s0), ψ0}, A0, G0

Decide
Q, A, G

Q+ ((l2, s2), ψ), A, G

q = ((l1, s1), ψ) ∈ Q
e = (l1, a, l2) ∈ Δ
¬B(q,A(e))
s2 ∈ SI(a)(s1)
¬B(((l2, s2), ψ), A(l2))

Conjoin
Q,A,G

Q− q, A+ l : φ, G− l

q = ((l, s), ψ) ∈ Q
¬B(q, A(l))
∀e ∈ Out(l), e : φe ∈ A ∧ B(q, φe)
φ = ∧{φe | e ∈ Out(l)}

Learn
Q,A,G

Q, A+ e : φ, G

q = ((l1, s1), ψ) ∈ Q
e = (l1, a, l2) ∈ Δ
B(q, φ)
J (e : φ,A)

Fig. 2. Algorithm IntraLA

If all of the outgoing edges of a query are blocked, the Conjoin rule is used
to block the query by labeling its location with the conjunction of the labels
that block the outgoing edges. At this point, we know that the symbolic state
is not empty (since otherwise the query would already be blocked). Thus, if the
location is a goal, we have reached the goal, and we remove it from the set of
remaining goals. The blocked query is discarded.

The remaining case is that some outgoing edge e = (l1, a, l2) is not blocked,
but every possible symbolic step along that edge leads to a blocked state. In this
case, the Learn rule infers a new label φ that blocks the edge. The new edge label
can be any formula φ that both blocks the current query and is justified. Such
a formula can be obtained as an interpolant for (A,B), where A = χ(s1) and
B = Sem(a) ∧ ¬A(l2)′. Thus we can derive φ, if it exists, using an interpolating
theorem prover [7].

The algorithm maintains the invariant that no queries are blocked, and, for
every l ∈ G, A(l) = F . It terminates when no rules can be applied, which implies
the query set is empty.

Theorem 1. When algorithm IntraLA terminates, all the locations in G0 \G
are reachable and all the locations in G are unreachable.

Proof sketch. All the rules preserve the invariant that A is justified (therefore
inductive), that all the locations in G are unlabeled (meaning their annotation is
equivalent to F ) and that no queries are blocked. Now suppose the algorithm is
in a state where no rules can be applied and consider some q ∈ Q. Since Decide

does not apply, all possible successor queries are blocked. Thus, since Learn does
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not apply, all outgoing edges are blocked. Thus, since Conjoin does not apply,
q is blocked, a contradiction. Since Q is empty, it follows that the initial query
is blocked, meaning that d0 |= A(l0). Therefore, A is an inductive invariant.
Since all remaining goals are annotated F , it follows that they are unreachable.
Moreover, since goals are only removed from G when reached, all locations in
G0 \G are reachable. �

Of course, we can also terminate the algorithm immediately if the set of remain-
ing goals becomes empty.

2.2 Handling Unbounded Executions

The approach described above has one clear drawback: if the program has any
loop that can execute unboundedly, then the algorithm will not terminate. That
is, for any learning to occur, we must first reach a blocked state. However, if
there is an unbounded loop, we can keep extending the run infinitely without
reaching a blocked state.

To deal with this situation, we use the following generic approach. We intro-
duce an auxiliary variable τ to the program. This variable must be non-increasing
and infinitely often decreasing according to some pre-order that is well-founded
over a domain characterized by some predicate W . For example, τ could be an
integer that is decremented by every program action and the domain predicate
could be τ >= 0. We can think of τ as the program’s “time to live”. Alterna-
tively, it would be sufficient to decrement τ on each back-edge of the program
graph, so that τ has to be decremented at least once on each cycle. Or, τ could
be a vector with one element for each SCC of the graph.

Now fix an initial value τ0 of τ , and label every location l with the predicate
¬W . With this construction, every infinite run is eventually blocked. Thus, algo-
rithm IntraLA is guaranteed to terminate (at least if the symbolic interpreter
SI is finitely non-deterministic). When termination occurs, the annotation A is a
proof that the remaining goals cannot be reached for the particular initial value
τ0. This is, in effect, a form of bounded model checking.

To obtain an unbounded proof, we can use the heuristic that bounded proofs
may contain the ingredients of unbounded proofs. To do this, we will eliminate
the dependence on τ in the annotation A, resulting in an unbounded annotation
AU . This can be done, for example by substituting some fixed value ⊥ for τ ,
typically the bottom value of the pre-order.

The unbounded annotation AU is not necessarily justified. However, we can
make it justified by iteratively dropping labels that are not justified until a fixed
point is reached. The result is the greatest inductive subset of AU . This set of
unbounded facts can then be used to strengthen A. If the resulting annotation is
true in the initial state for all values of τ , then we have proved unreachability of
the remaining goals. Otherwise, we increase τ0 and repeat algorithm IntraLA.
This overall procedure is depicted in Figure 3.

Because the problem of determining the reachable goals is undecidable, we
do not expect this algorithm to terminate in all cases. The hope is that the
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Algorithm Strengthen

Input: a query q and goal set G0

Output: set of unreachable goals

Q← {q}, A← ∅, G← G0

while T do
Run IntraLA on (q,A,G) to termination
AU ← {l : φ〈⊥/τ 〉 | l : φ ∈ A}
while exists l : φ ∈ AU s. t. ¬J (l : φ,A) do

AU ← AU − l : φ
done
if B(q, AU (l0)) return G
A← A ∪AU

increase τ0
done

Fig. 3. Algorithm with inductive strengthening

computed interpolants will converge to inductive assertions after a small number
of iterations of the loops, and thus τ0 will not become large. An alternative
inductive strengthening approach would be to apply predicate abstraction using
the atomic predicates occurring in AU . Though the cost would be higher, the
chance of convergence might be better.

We must also take care to handle loops with large fixed bounds efficiently. That
is, suppose we have a loop that iterates N times where N is a large fixed number.
If we increment τ0 by one, then we may increment τ0 N times before exiting
the loop, resulting in O(N2) decision steps. One simple way to prevent this
would be to double τ0 instead of incrementing it, which would give O(N logN)
steps. Alternatively, if we can determine statically that the loop is bounded,
we can simply remove the decrements of τ from the loop, without causing non-
termination of IntraLA.

2.3 Interprocedural Algorithm

To handle procedures in a modular fashion, we will annotate the program with
negative summaries. This is a transition formula φ with the intended meaning
that if φ[d0, d1] holds, then entry to the procedure in data state d0 may not result
in exit in state d1. Negative summaries are used because they are inductive in
the normal, forward sense.

To detect goals reached within procedures, we designate a special variable f .
On reaching a goal, a procedure aborts, that is, it exits immediately with f true.
On normal exit, f is false. Given a negative summary φ, we can think of φ〈T/f ′〉
as a pre-condition under which the procedure guarantees not to reach a goal and
abort.

Modeling Programs with Procedures. To model data in programs with
procedures we designate a set of global variables G and local variables L. For
i = 0, 1, . . . the frame Li consists of a variable vi for each v ∈ L. A frame
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Function Sum(q0, A,G)

Apply IntraLA from initial state ({q0}, A,G) until
1) there exists ((l, d), ψ) ∈ Q, where l ∈ Ω:

in which case, return (d,A,G), or
2) Q is empty:

in which case, return (ε, A,G).

Fig. 4. Algorithm for procedure summary construction

represents the local state of one procedure instance, with L0 representing the
current procedure instance.

To model procedure calls, we introduce special actions call(l), where l is a
location of a procedure to be called. We introduce a set of procedure call edges Θ
that are distinct from the ordinary edgesΔ. We also designate a set Ω ⊂ Λ of exit
states. Due to space considerations, we give the semantics of calls only informally.
The effect of an edge (l1, call(l2), l3) is to transfer control to l2, execute until
reaching an exit state, then return by transferring control to l3. The effect of a
call action on the data state is to “push” one frame on the “stack”. We define an
operation push on data states that shifts the local variables up by one frame, so
that push(d)(vi+1) = d(vi). On return, one stack frame is “popped”. We define
pop(d) so that pop(d)(vi) = d(vi+1). We also define corresponding renaming
operators on formulas, so that push(φ) = φ〈Li+1/Li〉 and pop(φ) = φ〈Li−1/Li〉.
Computing summaries. We will say a query q = ((l, s), ψ) is blocked by a
negative summary φ, that is, B(q, φ), when every exit allowed by φ satisfies the
post-condition ψ. Because summaries are negative, this is equivalent to saying
that {χ(s)} ¬φ {ψ} or that the formula χ(s) ∧ (¬φ × ¬ψ) is unsatisfiable.

Justification of ordinary edges and locations remains as before. Now, however,
we say that φ is justified at an exit state l when φ = ¬IS ∨ f ′, where IS is
the identity relation over the data variables S. In other words, exiting from
a procedure leaves the data unchanged, and does not abort. We will consider
justification of call edges shortly.

Using algorithm IntraLA, we can define a function Sum (see Figure 4) that
constructs a negative summary for a procedure. It takes a query ((l1, d1), ψ) and
returns either a reachable exit state d2 that does not satisfy the post-condition ψ
(i.e. a counterexample to the query) or it labels l1 with a summary that ensures
that no such counterexample exists.

Using procedure summaries. We use procedure summaries to justify the
annotation of call edges. Intuitively, a summary φ is justified at a call edge
e = (l1, call(l2), l3) if it is justified by considering the summary of the called pro-
cedure l2 as an action. There are two subtleties involved in this, however. The
first is that we must account for the shift in stack frames between the calling and
called contexts. We can do this by applying the push operator to the formulas
in the calling context. The second is that the calling context must abort if the
called context aborts. We can effect this by weakening the summary at the return
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location. We define W(φ) = φ∧¬(f ∧f ′). In effect, this removes transitions from
the negative summary at the return site, allowing the calling context to abort
when the called function does. Using this notion, the justification condition for
procedure calls is defined as follows:

J ((l1, call(l2), l3) : φ,A) iff {push(φ)} ¬A(l2) {push(W(A(l3))}

We can then prove the following lemma:

Lemma 1. If negative summary annotation A is justified, and if d0 |= A(l0)〈
T/f ′〉 and if A(l) = F for some location l, then location l is unreachable.

Proof sketch. By induction on the length of runs, we show that if the initial state
(l0, d0) of a run satisfies A(l0)〈T/f ′〉 then every state (li, di) satisfies A(li)〈T/f ′〉.
This property is preserved by call actions because we have weakened the sum-
mary at the return site, so that the caller aborts when the callee aborts. As a
result, no reachable state can be labeled F . �

Now we are ready to define versions of the Decide and Learn rules for call
edges. These are shown in Figure 5. In both cases, we have an outgoing call
edge e from the current query. We compute a post-condition ψ2 for the called
function based on the current summary of the return site and the post-condition
of the calling context. Notice we use the weakened summary to allow the called
function to abort. Also notice that we apply push to the current state when
entering the called function. If Sum returns an exit state, then the return site
is not blocked, and DecideC generates a new query after the call (note pop is
applied to this state). On the other hand, if Sum returns ε, then we are blocked.
Thus LearnC can annotate the edge with a blocking formula φ.

A suitable condition φ that is both blocking and justified can be obtained
as an interpolant for (A,B), where A = χ(s1) ∧ ¬ψ′

1 and B = ¬pop(A(l2)) ×
¬W(A(l3)). That is, the transition formulas implied byA are exactly the negative
summaries blocking the query q (note s1 is the symbolic state of q and ψ1 is the
post-condition of q). The transition formulas inconsistent with B are exactly
those justified at the call edge. Moreover, an interpolant for (A,B) must be a
transition formula, since only variables in S ∪ S′ can be common to A and B.
Thus, any interpolant for (A,B) satisfies the conditions for the annotation φ of
the call edge.

We will call the algorithm IntraLA with the addition of these two rules
InterLA. The initial annotation A0 consists of the labels r : ¬IS ∨ f ′, for
all the exit locations r ∈ Ω. The initial post-condition ψ0 = ¬f . Essentially,
this constructs a summary that proves that the program does not abort. This
procedure is recursive. When it encounters a call edge, it calls Sum with a suitable
query. This in turn runs InterLA on the called procedure. The recursive call
can result in the addition of labels, and the elimination of reachable goals.

Theorem 2. When algorithm InterLA terminates, all the locations in G0 \G
are reachable and all the locations in G are unreachable.
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DecideC
Q, A, G

Q+ ((l3,pop(s3)), ψ1), A3, G3

(s3, A3, G3) = Sum(q2, A,G)
¬B(q, A(e))

LearnC
Q,A,G

Q, A+ e : φ, G

(ε, A3, G3) = Sum(q2, A,G)
B(q, φ)
J (e : φ,A3)

where

⎧⎪⎪⎨⎪⎪⎩
q = ((l1, s1), ψ1) ∈ Q
e = (l1, call(l2), l3) ∈ Θ
ψ2 = ¬W(A(l3))× ψ1

q2 = ((l2,push(s1), ψ2)

Fig. 5. Rules for InterLA (in addition to IntraLA)

Proof sketch. As in the intraprocedural case, all the rules preserve the invariant
that A is justified and that the locations in G are unlabeled. When the initial
query ((l0, s0),¬f) is blocked, we know that d0 |= A(l0)〈T/f ′〉 therefore by the
lemma, all unlabeled locations are unreachable. �

3 Implementation and Experiments

Algorithm InterLA has been implemented in a tool we will call Impact II.
This tool uses the LLVM compiler infrastructure [6] to generate CFG’s from C
programs, with basic blocks corresponding to edges of the graph. The tool uses
the FOCI interpolating prover [7] both for checking satisfiability of formulas
and computing interpolants. The C heap is modeled using the theory of arrays.
Static analysis is used to partition loads and stores into alias classes, with each
alias class modeled by an array. External functions are modeled as having no
side effects and returning a non-deterministic value, which can be considered an
input to the program.

When a goal location is reached, Impact II extracts a satisfying assignment
to the symbolic constraint C of the symbolic state as a test case. By initially
marking every location as a goal, we can generate a set of tests that provides
100% coverage of reachable locations, and prove that the uncovered locations
are unreachable (since the compiler inlines small functions, some goals may be
duplicated).

Experiments were conducted to test the hypothesis that this approach can
produce a greater diversity of program behavior more quickly than methods
such as DART that enumerate all execution paths. We used as benchmarks sev-
eral device driver examples previously used as software model checking bench-
marks [8]. We compare InterLA against an implementation of DART using
the same symbolic interpreter and prover. This allows us to gauge the effect of
learned annotations in guiding the search. Without learning, we simply enumer-
ate all possible control paths. DART terminates in these tests because all the
loops are bounded and there is no recursion.
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Fig. 6. Comparison of test generation with and without learning

Figure 6 plots the number of coverage goals reached as a function of the num-
ber of times the symbolic interpreter backtrackedto an alternative programbranch
(which is also thenumber of test sequences generated).Three examples1 are shown,
with the number of reachable basic blocks ranging from 104 to 279. Each plot
shows a line for InterLA (“learn”) and a line for DART (“no learn”). The tables
compare the number of backtracks needed for saturation (all reachable locations
reached) and completion. Without learning, there are long plateaus during which
many paths are explored but no new locations are reached. Learning clearly acts
to push the search away from these regions, allowing the search to make steady
progress. This effect is more pronounced in the larger program, with learning re-
ducing backtracks to completion by a factor 84.

4 Conclusion

Lazy annotation allows us to deduce program annotations in response to search
failure, much in the way that a DPLL SAT solver learns conflict clauses. As we

1 Source code available at http://www.kenmcmil.com/benchmarks.html
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have seen, this allows us to prune the search in test generation to achieve a given
coverage goal at a greatly reduced cost. The method also has some potential ad-
vantages with respect to existing software model checking techniques. Since it
is based entirely on interpolants, it avoids the expense of quantifier elimination
or predicate image computations. The annotation approach avoids irreversible
partitioning of the abstract state space, and potentially allows more general pro-
cedure summaries. Compared to lazy abstraction with interpolants, the method
allows procedure summarization (thus may be more effective for deeply nested
procedures) and handles bounded loops more effectively. In the other hand, it
may be that the lazy abstraction approach of exploring infeasible program paths
produces interpolants that are more relevant to the property being checked.
Moreover, the question of how to obtain convergence in practice for unbounded
loops needs further study.
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Abstract. The Sdv Research Platform (Sdvrp) is a new academic re-
lease of Static Driver Verifier (Sdv) and the Slam software model checker
that contains: (1) a parameterized version of Sdv that allows one to write
custom API rules for APIs independent of device drivers; (2) thousands
of Boolean programs generated by Sdv in the course of verifying Win-
dows device drivers, including the functional and performance results (of
the Bebop model checker) and test scripts to allow comparison against
other Boolean program model checkers; (3) a new version of the Slam

analysis engine, called Slam2, that is much more robust and performant.

1 Introduction

Static Driver Verifier [1] (Sdv) is a verification tool included in the Windows
Driver Kit (WDK), using Slam [4] as the underlying analysis engine. Sdv comes
with support for three classes of drivers: WDM (The Windows Driver Model);
KMDF (Kernel Mode Driver Framework); NDIS (Network Driver Interface Spec-
ification). For each of these driver classes, Sdv provides a number of class-specific
components (for example, API rules and an environment model). API rules are
expressed in the Slic language [5] and describe the proper way to use the driver
APIs.

The Sdv Research Platform (Sdvrp) is a new academic release of Sdv that
contains a number of features that should be useful to the verification research
community:

– Static Module Verification: Sdvrp enables the development of Slic rules
for APIs independent of device drivers, and the application of Sdv to mod-
ules that use these APIs. With this feature, researchers can use Sdv to verify
that clients of an API adhere to the API specification.

– Boolean Program Repository and Test Scripts: Sdvrp contains thou-
sands of Boolean programs generated by Sdv in the course of verifying
Windows device drivers, including the functional and performance results
of running the symbolic model checker Bebop [3] on these programs.

– Slam2 Engine: Sdvrp contains a new version of the Slam analysis engine
(Slam2) that is much more robust and performant than the first version of
Slam. Sdv for Windows 7 uses Slam2.

Sdvrp is available from http://research.microsoft.com/slam/ under a li-
cense for academic use.

T. Touili, B. Cook, and P. Jackson (Eds.): CAV 2010, LNCS 6174, pp. 119–122, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. The interaction between the platform model, a module, and a rule. The platform
manager model calls into the entry points of the module. The module itself interacts
with the underlying API model, while the rule specifies the safe interactions between
the various components.

2 Static Module Verification

In its early days, Sdv verified API usage requirements on WDM Drivers. With
the success of Sdv, came the difficulty of scaling out to other classes of drivers
and programs, which in turn motivated the need to parameterize Sdv so it could
be adapted for other uses.

At a high level, Sdv consists of a verification engine, a model of the operat-
ing system (platform/environment model), and a set of driver API rules. The
verification engine checks whether a user provided driver in the context of the
operating system model adheres to the applicable driver API usage rules.

Sdvrp generalizes this concept by allowing researchers to provide their own
version of the platform model and the API usage rules. Together these two parts
comprise a plugin for static module verification. The verification engine now
checks whether a user provided C module adheres to the plugin API usage rules,
in the context of the plugin platform model. This allows Sdv to be applied to
many other pieces of code besides device drivers.

The platform model itself can be thought of as having two major parts. First,
the platform model implements how the platform exercises the module by calling
into the module’s entry points. This is done by the platform manager model. We
can think of this component as the “main” routine of the system. Second, the
platform API model provides an implementation of the APIs that the module
can use. They are simplified implementations of each platform API that contain
behaviors relevant for the verification of associated platform API rules. The
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platform model is written using the C language, with one special construct for
introducing non-deterministic choice.

Figure 1 shows the interaction between the platform model, the module, and a
rule. The platform manager model calls into the entry points of the module. The
module itself interacts with the underlying API model, while the rule monitors
the interactions between the various components. Slic [5] rules allow declaration
of state as well as state transitions based on API events (call/return). When
Sdv finds a rule violation, it constructs an error trace that passes through the
platform model, the module, and the rule.

Along with the three highly developed plugins for existing driver platform
models, Sdvrp also comes with a minimal plugin. All of these are available for
use, modification, and cloning for research purposes.

3 Boolean Program Repository

Sdv/Slam generates Boolean programs that represent abstractions of C pro-
grams, where each Boolean variable represents a predicate on the state of the
C program. Boolean programs are an interesting object of study because they
admit efficient symbolic model checking, despite the fact that they have recur-
sive procedures. Bebop [3] is Slam’s model checker for Boolean programs. Sdv

runs on many drivers, for each driver checking many Slic rules. A single run
of Sdv on a driver against a rule can generate many Boolean programs, one for
each iteration of the counterexample guided abstraction refinement (CEGAR)
process, which successively refines the Boolean program. The Sdvrp contains
the Boolean programs generated by Sdv when run on the drivers in the WDK,
as well as the functional and performance results of running Bebop on these
programs. Furthermore, the Sdvrp contains the set of test scripts used to gen-
erate the results, so that others may easily substitute other Boolean program
model checkers in place of Bebop.

4 Slam2 Engine

Slam2 improves the precision, reliability, maintainability and scalability of the
original Slam verification engine (Slam1). Sdv 2.0, released with the Windows
7 WDK, uses Slam2. For Sdv 2.0, the true bugs/total bugs ratio is 90-98% on
Windows 7 Microsoft drivers, depending on the class of driver. The number of
non-useful results (timeouts, “don’t know” results) has been reduced greatly. In
particular, for drivers shipped as WDK samples, it is 3.5% for WDM drivers and
0.02% for KMDF drivers.

Comparing Slam2 to Slam1, on WDM drivers Slam1 had 19.7% false defects
(31/157 reported defects), while Slam2 had 0.4% (2/512). On WDM drivers,
Slam1 had 6% “give-up” runs (285/4692), while Slam2 had 3.2% (187/5727).
On KMDF drivers Slam1 had 25% false defects (75/300), while Slam2 had
0% (0/271). On KMDF drivers Slam1 had 1% “give-up” runs (31/3111), while
Slam2 had 0.004% (2/5202)
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Slam2 implements a CEGAR loop, which consists of the following main com-
ponents: a predicate abstraction module, a model checker, and an error trace
validation/predicate discovery module. Slam2 has a new field-sensitive alias
analysis with improved precision and performance, and uses the Z3 state-of-the-
art SMT solver [6] and new axiomatization of pointer aliasing [2].

The changes in Slam2 are mostly related to the abstraction, trace validation
and predicate discovery functionalities of the CEGAR loop. An abstract inter-
mediate representation (IR) of the input program is introduced as an interface
between the low-level IR representing the C program and the CEGAR loop,
which permits independence from the input language and from the granularity
of abstraction (single statement or multiple statements).

The error trace validation algorithm in Slam2 is bi-directional with respect
to the error trace, combining forward symbolic execution of the error trace
(strongest postconditions) with backwards symbolic execution (weakest precon-
ditions). As a result, significant optimization is achieved on long error traces
often encountered in the runs on Windows Device Drivers.

Forward execution computes data about the trace (procedure call graph, vari-
able values at each step, pointer aliasing, etc.). The data is used to perform simple
feasibility checks on the trace and to optimize subsequent backwards execution
and predicate discovery algorithms. Backwards execution is optimized by taking
into account data about the trace discovered on the forward pass (for example,
program-point-specific pointer aliasing).

Slam2 implements a new algorithm for discovering Boolean predicates, which
is a part of the backwards execution pass. The algorithm is iterative and pro-
gresses (on an as-needed basic) from generating a small set of new predicates via
computationally cheaper techniques, towards larger sets of predicates via more
expensive discovery algorithms.

References

1. Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey, C., On-
drusek, B., Rajamani, S.K., Ustuner, A.: Thorough static analysis of device drivers.
In: EuroSys, pp. 73–85 (2006)

2. Ball, T., Bounimova, E., de Moura, L., Levin, V.: Efficient evaluation of pointer
predicates with z3 smt solver in slam2. Technical Report MSR-TR-2010-24,
Microsoft Research (2010)

3. Ball, T., Rajamani, S.K.: Bebop: A symbolic model checker for Boolean programs.
In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp.
113–130. Springer, Heidelberg (2000)

4. Ball, T., Rajamani, S.K.: The SLAM toolkit. In: Berry, G., Comon, H., Finkel, A.
(eds.) CAV 2001. LNCS, vol. 2102, pp. 260–264. Springer, Heidelberg (2001)

5. Ball, T., Rajamani, S.K.: SLIC: A specification language for interface checking.
Technical Report MSR-TR-2001-21, Microsoft Research (2001)

6. de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)



Dsolve: Safety Verification via Liquid Types�

Ming Kawaguchi, Patrick M. Rondon, and Ranjit Jhala

University of California, San Diego
{mwookawa,prondon,jhala}@cs.ucsd.edu

Abstract. We present Dsolve, a verification tool for OCaml. Dsolve

automates verification by inferring “Liquid” refinement types that are
expressive enough to verify a variety of complex safety properties.

1 Overview

Refinement types are a means of expressing rich program invariants by combining
classical types with logical predicates. For example, using refinement types, one
can express the fact that x is an array of positive integers by stating that x
has the type {ν : int | 0 < ν} array. While refinement types have been shown
to be a powerful technique for verifying higher-order functional programs [1–4],
refinement type systems have previously been difficult to use because of a high
programmer annotation burden.

We present Dsolve, a tool that automates the verification of safety properties
of OCaml programs by inferring refinement types. Using Dsolve, we were able
to verify properties of real-world OCaml programs as diverse as array bounds
safety and correctness of sorting and tree-balancing algorithms while incurring a
modest overhead in terms of the annotations and hints required for verification.
Further, we were able to use the refinement types inferred by Dsolve on buggy
programs to diagnose and correct the problems, demonstrating its value as a
tool for program understanding.

Dsolve works by inferring Liquid Types, which are refinement types whose
refinements are conjunctions of predicates taken from a user-provided finite set of
logical qualifiers. Each logical qualifier is a predicate over the program variables
and the special value variable ν, which is used to refer to values of the refined
type. The Liquid Type restriction makes inference tractable while still retaining
enough expressiveness to verify safety properties of real-world OCaml programs.

2 Example

In this section, we illustrate Liquid Types and show how Dsolve is able to verify
a polymorphic, higher-order, array-manipulating program, shown in Figure 1.
We will show how Dsolve statically verifies the safety of the program’s array
� This work was supported by NSF grants CCF-0644361, CNS-0720802, CCF-0702603,

and a gift from Microsoft Research.
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1 let rec foldn m n b g =
2 if m < n then foldn (m+1) n (g m b) g else b
3

4 let weighted_avg x w =
5 if Array.length x > 0 && Array.length x = Array.length w then
6 let b = x.(0) * w.(0), w.(0) in
7 let f = fun i (sum, n) −> sum + x.(i) * w.(i), n + w.(i) in
8 let sum, n = foldn l (Array.length x) b f in
9       sum / n

10 else
11 assert false
12

13 let _ = weighted_avg [|10; 15; 20|] [|1; 1; 1|]

Fig. 1. An Example OCaml Program

accesses and division operation (i.e., that the array indices are within bounds on
lines 5, 6, 7 and that the denominator is non-zero on line 9).

Qualifiers. Dsolve takes a set of logical qualifiers as input from the user,
which it uses to construct refinement types. Assume that the user has supplied
the following qualifiers: {0 < ν, � ≤ ν, ν < �, ν < len �}, where the uninter-
preted function symbol len is an abbreviation for Array.length and � denotes
a “wildcard” that is instantiated with program variables.

The higher-order function foldn folds over the integers from m to n. Dsolve

infers that foldn calls g with values between m and n, that is, foldn has type

m :int → n :int → α → (g :{ν : int | m ≤ ν ∧ ν < n} → α → α) → α.

This is a Liquid Type since the refinement for the input of g is the conjunction of
� ≤ ν and ν < �, where the wildcards are instantiated with m and n, respectively.

The function weighted avg uses foldn to compute the weighted average of
the array x’s values using the corresponding weights in array w. From the call
on line 13, Dsolve infers that x and w have the same positive length and that
w contains only positive entries. Dsolve then determines that the condition on
line 5 is always true, so the assertion on line 11 never executes, and that the
array accesses on line 6 are within bounds. Using the types of foldn and x,
Dsolve also determines that function f on line 7 has type

f :: {ν : int | 0 < ν ∧ ν < len x ∧ ν < len w} → int ∗ pos → int ∗ pos.

where pos abbreviates {ν : int | 0 < ν}. Thus, Dsolve determines that all ac-
cesses to arrays x and w within f are safe. Finally, Dsolve determines from f’s
type that n is always positive, and so the division on line 9 is safe.

Modular Verification. Dsolve verified the safety of this program using whole-
program analysis, i.e., by analyzing the call to weighted avg on line 13. The pro-
grammer could also verify the above program by writing the following interface
specification (or “contract”) for weighted avg:

x :{ν : int array | len ν > 0} → {ν : pos array | len ν = len x} → int

Dsolve can use these specifications to verify modules without driver code and
also to verify a module’s clients.
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3 Tool

Architecture. Dsolve is divided into the following three phases, described in
detail in [5, 6]. First, the OCaml compiler’s parser and typechecker are used to
translate the input program to a typed AST; this phase also parses the module’s
refinement type specification. Second, the typed AST is traversed to generate
a set of subtyping constraints over templates that represent the potentially un-
known refinement types of the program expressions. Third, the constraints are
solved using predicate abstraction over a finite set of predicates generated from
user-provided logical qualifiers. This pass uses the Z3 SMT solver [7] to discharge
logical implications corresponding to the subtyping constraints. If the constraints
can be satisfied, the program is deemed safe. Otherwise, Dsolve reports a type
error and the lines in the original source program that yielded the unsatisfiable
constraints.

Dsolve is conservative. If an error is reported, it may be because the program
is unsafe, or because the set of qualifiers provided was insufficient, or because
the invariants needed to prove safety cannot be expressed within our refinement
type system.

Input. Dsolve takes as input a source (.ml) file containing an OCaml pro-
gram, an interface (.mlq) file containing a refinement type specification for the
interface functions of the .ml file, and a qualifier (.hquals) file containing a set
of logical qualifiers. Dsolve combines the qualifiers from the .hquals file with
some scraped from the specification .mlq file and a standard qualifier library to
obtain the set of logical qualifiers used to infer liquid types.

Output. Dsolve produces as output a refinement type for each program ex-
pression in a standard OCaml type annotation (.annot) file. The user can
view the inferred refinement types using standard tools like Emacs, Vim, and
Caml2HTML. If all the constraints are satisfied, the program is reported as
safe. Otherwise, Dsolve outputs warnings indicating the potentially unsafe ex-
pressions in the program.

Modular Checking. Dsolve verifies one module at a time. If a module depends
on another module, it can be checked against that module’s .mlq file; the other
module’s source code is not required.

Abstract Modules. It is possible to create a .mlq file which defines types,
axioms (background predicates), and uninterpreted functions without a .ml file.
Such “abstract modules” allow the user to extend Dsolve with reasoning about
mathematical structures which do not appear directly in the program. For ex-
ample, an abstract module Set.mlq might contain a type which represents a
polymorphic set collection, along with an appropriate refined interface and ax-
ioms which build a set theory. This set theory can be used in another module’s
type refinements; for example, it may be used in a sorting module to verify that
the sets of elements in the input and output lists of a sorting function are equal.

Availability. The Dsolve source distribution is available, along with bench-
marks and an online demo, at http://pho.ucsd.edu/liquid/.

http://pho.ucsd.edu/liquid/
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4 Experiments

We report the results of applying Dsolve to real-world OCaml programs.

Static Array Bounds Checking. We have previously used benchmarks from
the DML project [1, 8] to show that Dsolve significantly reduces annotation
overhead burden in the static verification of array safety [5]. In our study, we au-
tomatically generated qualifiers of the form ν �� X , where ��∈ {<,≤,=, �=, >,≥}
and X ∈ {0, �, len �}. This allowed us to reduce annotation overhead from 17%
of LOC using DML to under 1% of LOC using Dsolve. Runtimes ranged from
1 to 64 seconds, the longest being for bitv [9], a 426-line bit vector library.

Data Structures. We have also used Dsolve to verify data structure invariants
in production OCaml libraries [6], including that OCaml’s List.stablesort
outputs a sorted list, that OCaml’s Map module implements an AVL tree and
that Map’s keys form a set. Runtimes in this study ranged from 1 to 103 seconds,
the longest being for vec [10], a 343-line OCaml extensible array library.

Program Understanding. Dsolve also helped us find and fix a subtle bug in
vec. A vec extensible array is represented by a balanced tree with a balance
factor of at most 2. As originally released, vec contained a flawed recursive
balancing routine, recbal, which was meant to efficiently merge two balanced
trees of arbitrarily different heights into a single balanced tree. When run on
this code, the strongest invariant Dsolve could infer was that the output tree
would have a balance factor of at most 4. By changing recbal and re-inferring
types, we were able to isolate the faulty code paths and find test inputs with
output balance factor of 4. Dsolve verified the fix, which the author adopted.
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Abstract. Testing of multi-threaded programs poses enormous challenges. To
improve the coverage of testing, we present a framework named CONTESSA that
augments conventional testing (concrete execution) with symbolic analysis in a
scalable and efficient manner to explore both thread interleaving and input data
space. It is built on partial-order reduction techniques that generate verification
conditions with reduced size and search space. It also provides a visual support
for debugging the witness traces. We show its significance in testbeds.

1 Introduction

Concurrency testing poses a major challenge due to large interleaving space of con-
current programs. To expose a concurrency bug, a test case should not only provide a
bug-exposing input, but also provide a bug-triggering execution interleaving. Testing a
program’s behavior for every interleaving on every test input is infeasible.

Dynamic model checking [1–3], for a given test input performs systematic execution
of a program under different thread interleavings. Even for a fixed test input, explicit
enumeration of interleavings can still be quite expensive. Although partial order re-
duction techniques (POR) reduce the set of interleavings to explore, the reduced set
often remains prohibitively large. Some previous work use ad-hoc approaches such as
perturbing program execution by injecting artificial delays after every synchronization
points [4], or use randomized dynamic analysis to detect real races [5]. Although such
approaches addresses scalability, often they do not provide adequate coverage.

1.1 CONTESSA Framework: Overview

To improve the coverage of testing, we present a framework named CONTESSA that
augments conventional CONcurrency TESting with Symbolic Analysis in a scalable
and efficient manner to explore both thread interleavings and the input data space, as
shown in the Figure 1.

First we automatically instrument a given source code (a multi-threaded C/C++ pro-
gram) for logging global access events. We then obtain an executable binary of the
instrumented code. (Alternately, one can instrument the binary directly for logging the
global events.) We run the binary on a given set of test cases that include monitors
corresponding to reachability properties such as common program errors, data races,

� Sudipta Kundu worked on the project as an intern at NECLA. He is now at Synopsys Inc.
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atomicity violations [6]. Corresponding to each run, we obtain a corresponding con-
crete execution trace. From a set of these traces, we derive a lean partition of the pro-
gram called a concurrent trace program (CTP) [7]. Implicitly, such a CTP captures all
linearizations of the trace events that respect the control flow of the program.

To strike a balance between coverage and scalability, we use such a derived CTP
to drive our symbolic analysis, i.e., to explore various interleavings symbolically to
validate a given set of reachability properties. Specifically, the search engine combines
a partial-order reduction technique [8] with a token-based (asynchronous) modeling

Contessa

Source 
Programs

Instrument, 

Compile

Execute 
Binary

Generate
CTP

Test 

Cases w/
Monitors

Event Trace
Viewer

Witness 
Traces

Symbolic

Analysis

Fig. 1. Concurrent testing framework

approach [9] to generate verification
conditions directly without an explicit
scheduler. The corresponding formula
is efficiently encoded [8] to obtain re-
duction both in the size and the in-
terleaving search space. Such formulas
can then be solved by the state-of-the-
art SMT (Satisfiability Modulo The-
ory) solvers (e.g. [10]) with relative
ease. The witness traces corresponding to the properties can be visualized in an event
trace viewer, making debugging process easier. The tool currently supports C/C++ pro-
grams on the Linux/Pthreads platforms.

Although one can derive the verification conditions directly from a source code
(e.g. [9]), they are typically modeled imprecisely due to dynamic data elements such
as pointers, linked lists, arrays and library calls. Such imprecision typically leads to
spurious witnesses. To overcome the issue of spuriousness, we generate these condi-
tions directly from CTPs which includes all the valid program traces. As a CTP is much
smaller in size compared to the entire source program, it leads to manageable-sized
verification conditions. Moreover, such CTPs can also be derived easily from prevalent
testing infrastructures. In short, the strength of the tool is in finding “error traces” based
on symbolic analysis of a set of “good traces.”

2 Tool Flow

We highlight the various steps of the tool chain with an example shown in Figure 2. The
example is a multi-threaded C program {foo, bar} with shared variables G,H,L.
The test harness invokes the main program foo with various random test values.
The program is automatically instrumented (not shown) to log various memory accesses
and synchronization events (denoted as ti) during execution. The trace programs TPα

and TPβ correspond to two traces α = t10{t11 · · · t17}{t21 · · · t25}t18t19 with x =
0, G = 1, H = 0, and β = t10t11{t21 · · · t24}t12t13t16t17t25t18t19 with x = 3, G =
0, H = 0, respectively of the test system. The concrete values of trace events are shown
in the brackets (and underlined). Note, a trace program denotes a totally ordered events.
The assertion at t19 denotes the correctness property, which holds for these two runs.
Due to a potential race condition between t13 and t25, the assertion may fail on a run
such as t10t11{t21 · · · t24}t12t25t13{t16 · · · t19} with x = 2, G = 0, H = 0.
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9

// global vars
Lock L;
int G,H;

Test() {//test module 
int x;
L = 0;//unlock state
G = rand(0…10);
H = rand(0…10);
x = rand(0…10);
foo(x);

}

// System under test
foo (int x) {
t10:
t11:  fork(bar);
t12:  lock (L);
t13:  if (G=1) {
t14:      H=1; 
t15:      x++;
t16:  } else x∗=2;

t17:  unlock (L);
t18:  join(bar);
t19:  assert (x != 3);
t20:}

bar () {
t21:  lock (L);
t22:  if (H=0)  
t23:    G=0;
t24:  unlock (L);
t25:  G=1;
t26:}

foo (thread 1)

t10: x=0, G=1, H=0, L=0
t11: fork(bar);
t12: lock(L); (L=1)
t13: assume[G=1]; (G=1)
t14: H=1; (H=1)
t15: x++;  (x=1)
t17: unlock(L); (L=0)

t18: join(bar);
t19: assert (x != 3); (x=1)

bar  (thread 2)

t21: lock(L); (L=1)
t22: assume[H=0]; (H=0)
t23: G=0; (G=0)
t24: unlock(L); (L=0)
t25: G=1; (G=1);

foo (thread 1) 

t10: x=3, G=0, H=0, L=0
t11: fork(bar);

t12: lock(L); (L=1)
t13: assume[G=0]; (G=0)
t16: x∗=2; (x=6); 

t17: unlock(L); (L=0)

t18: join(bar);
t19: assert (x != 3); (x=6)

bar (thread 2) 

t21: lock(L); (L=1)
t22: assume[H=0]; (H=0)
t23:: G=0;(G=0)
t24: unlock(L); (L=0)

t25: G=1; (G=1);

x∈ [0…10]
G ∈ [0…10]
H ∈ [0…10]

lock(L)

[G ≠ 1]

unlock(L)

H=1

assert (x ≠ 3)

x++

[G=1]

t10

t12

t13

t20

t17

t14

t15

G=1

lock(L)

[H=0]

unlock(L)

G=0

t21

t22
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t24

t23

Fork

Join

Trace Program TPα for a Concrete Execution Trace α

MAT-Table

“Sufficient and Necessary context 
switches (token-passing pairs) to explore 
for a given CTP”

{ t17 → t21, t24 → t12, t13 → t25, t25 → t13 }

MAT Analysis

Control edges from both traces
Control edges from trace α only
Control edges from trace β only  
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Fig. 2. A run of the tool

Generate CTP. From a trace, we obtain a concurrent trace program (CTP) by relax-
ing the order (of events) induced by non-deterministic scheduling, and maintaining
only those that are induced by thread program order and fork/join semantics [7]. For
the example, fork/join induces following partial-order event pairs: (t11, t12), (t11, t21),
(t25, t18), and (t17, t18). We also allow data inputs to take range values as defined in the
test harness. As shown, x,G and H take arbitrary values within the range [0 · · · 10].

We representCTPα (CTPβ), as a concurrent control flow graphCCFGα (CCFGβ)
(not shown separately). The control edges in a CCFG represent the partially-ordered
events of the CTP. These two CCFGs can be “stitched” together by merging the respec-
tive control edges. This combined CCFG implicitly represents a “merged” CTP. The
solid arrows denote the control edges common in both CTPs, whereas the dotted/dashed
arrows denote the exclusive control edges from CTPα/CTPβ , respectively.

Symbolic Analysis. All linearizations of a CTP may not correspond to actual execu-
tions of the program. For example, a linearization · · · t25t13t16 · · · does not correspond
to any executable trace (as the branch [G �= 1] will not hold). We define “feasible lin-
earizations” of a CTP to be those that correspond to actual program executions [7].
We generate verification conditions (using the following encoding) to search within the
feasible linearizations of a CTP; if an error is found, it is guaranteed to be real.
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SMT-based Encoding (mat-enc). We use a token-passing modeling approach [9] to
generate a quantifier-free first-order logic formula (φ). First, we create independent
(uncoupled) models for each individual thread in the CTP. On such thread-models, we
apply thread-local transformation and simplification [9] to reduce the thread modeling
constraints (φTM ). Second, we add token passing constraintsφTPM between only those
context-switching events as identified by MAT analysis (described next). Optionally, we
add thread-specific fine grained context-bounding constraints φCB for more scalability,
though at the cost of completeness. The formula φ represents the following conjunction,
where φPRP denote the formula corresponding to the correctness property.

φ = φTM ∧ φTPM ∧ ¬φPRP ( ∧ φCB )

MAT Analysis. On a CTP, we use a partial-order reduction technique based on Mutu-
ally Atomic Transactions (MAT) [8] to identify an optimal and adequate set of context
switches (or token-passing pairs) to cover the entire interleaving space of the CTP. The
basic idea is as follows: a MAT is a pair of transactions (i.e., a sequence of transitions)
corresponding to two threads, such that only the last transitions in the pair of transac-
tions have conflicting shared variable accesses. An interesting observation is that there
are only two different program behaviors possible by interleaving the various transi-
tions in a MAT. As shown for the example, MAT analysis produces a necessary set of
only 4 context switches, whose combination guarantees a complete thread interleaving
coverage for the CTP. Such a reduced set of context switches not only reduces the in-
terleaving search space but also the size of the formula φ. Due to this improvement, the
tool can search a potentially a larger CTP (i.e., a larger coverage) for possible violations.

3 Evaluation

We applied CONTESSA to several case studies. In one case study [8], our goal was to
check assertions that specify the functional correctness of multi-threaded programs. We
used random test vectors to generate CTPs of trace depths of 400. Note, though each test
vector may produce a distinct trace (CCFG), typically it differs from the rest only in a
few control edges. By stitching these CCFGs, as mentioned earlier, we obtain a compact
CTP. In these CTPs, the number of threads was 2 to 3, the number of shared accesses
was between 4 and 200 per thread. The total number of possible context-switches was
between 50-800K. After MAT analysis, the number of context-switches was reduced
to 14-2500. This reduction directly translated in the size reduction of verification con-
ditions from the range 32K-48M to 26K-3.3M. On a few of these CTPs, we found
assertion violations in less than a minute.

In another case study, we applied our tool to obtain CTPs from execution traces
generated by Java PathFinder [11]. The test programs include publicly available multi-
threaded Java benchmarks such as hdec, Daisy, and Tsp. The trace lengths range from
200 to 45K, and the number of threads ranges from 3 to 21. In these generated CTPs, the
number of lock/unlock events ranges from 4 to 1K, and the number of wait/notify events
ranges from 0 to 41. Our symbolic analysis algorithm were able to find data races in a
few of these CTPs within one minute, producing corresponding witness traces. Thus,
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our tool can effectively be applied as a plug-in module in prevalent testing infrastruc-
tures to improve the test coverage of concurrent programs.

Overall, we believe that the tool is a promising compromise between scalability of
testing and coverage of symbolic static analysis.
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Abstract. There are two main classes of methods for checking univer-
sality and language inclusion of Büchi-automata: Rank-based methods
and Ramsey-based methods. While rank-based methods have a better
worst-case complexity, Ramsey-based methods have been shown to be
quite competitive in practice [10,9]. It was shown in [10] (for universality
checking) that a simple subsumption technique, which avoids exploration
of certain cases, greatly improves the performance of the Ramsey-based
method. Here, we present a much more general subsumption technique
for the Ramsey-based method, which is based on using simulation pre-
order on the states of the Büchi-automata. This technique applies to both
universality and inclusion checking, yielding a substantial performance
gain over the previous simple subsumption approach of [10].

1 Introduction

Universality and language-inclusion checking are important problems in the the-
ory of automata with significant applications, e.g., in model-checking. More pre-
cisely, the problem of checking whether an implementation meets a specification
can be formulated as a language inclusion problem. The behavior of the imple-
mentation is represented by an automaton A, the specification is given by an
automaton B, and one checks whether L(A) ⊆ L(B). As one is generally inter-
ested in non-halting computations, automata are used as acceptors of languages
over infinite words. In this paper, we concentrate on Büchi automata, where
accepting runs are those containing some accepting state infinitely often.

A näıve inclusion-checking algorithm involves complementation: One has that
L(A) ⊆ L(B) iff L(A)∩L(B) = ∅. However, the complementary automaton B is,
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in the worst case, exponentially bigger than the original automaton B. Hence,
direct complementation should be avoided.

Among methods that keep the complementation step implicit, Rank-based and
Ramsey-based methods have recently gained interest. The former uses a rank-
based analysis of rejecting runs [14], leading to a simplified complementation
procedure. The latter is based on Büchi’s original combinatorial Ramsey-based
argument for showing closure of ω-regular languages under complementation [4].
Notice that a high worst-case complexity is unavoidable, since both universality
and language-inclusion testing are PSPACE-complete problems.

However, in practice, subsumption techniques can often greatly speed up uni-
versality/inclusion checking by avoiding the exploration of certain cases that are
subsumed by other cases. Recently, [5] described a simple set-inclusion-based
subsumption technique that speeds up the rank-based method for both uni-
versality and language inclusion checking. Using this technique, [5] is capable
of handling automata several orders of magnitude larger than previously possi-
ble. Similarly, [10] improved the Ramsey-based method (but only for universality
checking) by a simple subsumption technique that compares finite labeled graphs
(using set-inclusion on the set of arcs, plus an order on the labels; see the last
paragraph in Section 3).

Our contribution. We improve the Ramsey-based approach in a twofold way.
First, we show how to employ simulation preorder to generalize the simple sub-
sumption technique of [10] for Ramsey-based universality checking. Second, we
introduce a simulation-based subsumption relation for Ramsey-based language
inclusion checking, thus extending the theory of subsumption to the realm of
Ramsey-based inclusion checking. Note that the proposed use of simulations
is significantly different from just using simulations to reduce Büchi automata
(quotienting), followed by an application of the original approach. The reason
is that, when reducing automata, one has to use simulation equivalences which
tend to be much smaller (and hence less helpful) than simulation preorders,
which are used in our method. Therefore, our approach takes full advantage of
the asymmetry of simulation preorder, making it more general than just quoti-
enting beforehand the automaton w.r.t. the induced equivalence.

Experimental results show that our algorithm based on simulation subsump-
tion significantly and consistently outperforms the algorithm based on the orig-
inal subsumption of [10]. We perform the evaluation on Büchi automata models
of several mutual exclusion algorithms (the largest having several thousands of
states and tens of thousands of transitions), random Büchi automata generated
from LTL formulae, and Büchi automata generated from the random model
of [18]. In many cases, the difference between the two approaches is very signifi-
cant. For example, our approach finishes an experiment on the Bakery algorithm
in minutes, while the original approach cannot handle it in hours. In the largest
examples generated from LTL formulae, our approach is on average 20 times
faster than the original one when testing universality and more than 1900 times
faster when testing language inclusion. All relevant information is provided on-
line [21], enabling interested readers to reproduce our experiments.



134 P.A. Abdulla et al.

2 Preliminaries

A Büchi Automaton (BA) A is a tuple (Σ,Q, I, F, δ) where Σ is a finite alphabet,
Q is a finite set of states, I ⊆ Q is a non-empty set of initial states, F ⊆ Q is
a set of accepting states, and δ ⊆ Q × Σ × Q is the transition relation. For
convenience, we write p a−→ q instead of (p, a, q) ∈ δ.

A run of A on a word w = a1a2 . . . ∈ Σω starting in a state q0 ∈ Q is
an infinite sequence q0q1q2 . . . such that qj−1

aj−→ qj for all j > 0. The run is
accepting iff qi ∈ F for infinitely many i. The language of A is the set L(A) =
{w ∈ Σω | A has an accepting run on w starting from some q0 ∈ I}.

A path in A on a finite word w = a1 . . . an ∈ Σ+ is a finite sequence q0q1 . . . qn
where qj−1

aj−→ qj for all 0 < j ≤ n. The path is accepting iff qi ∈ F for some
0 ≤ i ≤ n. We define the following predicates for p, q ∈ Q: (1) p w=⇒

F
q iff there is

an accepting path on w from p to q. (2) p w=⇒ q iff there is a path (not necessarily

accepting) on w from p to q. (3) p
w

�=⇒ q iff there is no path on w from p to q.
Define E = Q× {0, 1,−1}×Q and let GA be the largest subset of 2E whose

elements contain exactly one member of {〈p, 0, q〉, 〈p, 1, q〉, 〈p,−1, q〉} for every
p, q ∈ Q. Each element in GA is a {0, 1,−1}-arc-labeled graph on Q.

For each pair of states p, q ∈ Q, we define the following three sets of languages:
(1) L(p, 1, q) = {w ∈ Σ+ | p w=⇒

F
q}, (2) L(p, 0, q) = {w ∈ Σ+ | p w=⇒ q ∧

¬
(
p

w=⇒
F

q
)
}, (3) L(p,−1, q) = {w ∈ Σ+ | p

w

�=⇒ q}. As in [10], the language of

a graph g ∈ GA is defined as the intersection of the languages of arcs in g, i.e.,
L(g) =

⋂
〈p,a,q〉∈g L(p, a, q). For each word w ∈ Σ+ and each pair p, q ∈ Q, there

exists exactly one arc 〈p, a, q〉 such that w ∈ L(p, a, q). Therefore, the languages
of the graphs in GA form a partition of Σ+, since they are the intersections of
the languages of the arcs. Let Ygh be the ω-regular language L(g) · L(h)ω .

Lemma 1. (1) Σω =
⋃

g,h∈GA Ygh. (2) For g, h ∈ GA s.t. L(g),L(h) �= ∅,
either Ygh ∩ L(A) = ∅ or Ygh ⊆ L(A). (3) L(A) =

⋃
g,h∈GA∧Ygh∩L(A)=∅ Ygh.

In fact, Lemma 1 is a relaxed version of the lemma proved by a Ramsey-based
argument described in [16,9,10]. A proof can be found in [1].

3 Ramsey-Based Universality Testing

Based on Lemma 1, one can construct an algorithm for checking universality of
BA [9]. This type of algorithm is said to be Ramsey-based, since the proof of
Lemma 1 relies on the infinite Ramsey theorem. Lemma 1 implies that L(A)
is universal iff ∀g, h ∈ GA : Ygh ⊆ L(A). Since L(g) = ∅ or L(h) = ∅ implies
Ygh ⊆ L(A), it suffices to build and check graphs with nonempty languages in
GA when testing universality.
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As proposed in [9,10,13], the set Gf
A = {g ∈ GA | L(g) �= ∅} can be generated

iteratively as follows. First, given g, h ∈ GA, their composition g;h is defined as

{〈p,−1, q〉 | ∀t ∈ Q : (〈p, a, t〉 ∈ g ∧ 〈t, b, q〉 ∈ h) → (a = −1 ∨ b = −1)} ∪
{〈p, 0, q〉 | ∃r ∈ Q : 〈p, 0, r〉 ∈ g ∧ 〈r, 0, q〉 ∈ h ∧

∧ ∀t ∈ Q : (〈p, a, t〉 ∈ g ∧ 〈t, b, q〉 ∈ h) → (a �= 1 ∧ b �= 1)} ∪
{〈p, 1, q〉 | ∃r ∈ Q : 〈p, a, r〉 ∈ g ∧ 〈r, b, q〉 ∈ h ∧ ¬(a �= 1 ∧ b �= 1)}.

For all a ∈ Σ, define the single-character graph ga = {〈p,−1, q〉 | q /∈ δ(p, a)} ∪
{〈p, 0, q〉 | p ∈ (Q\F )∧q ∈ (δ(p, a)\F )} ∪{〈p, 1, q〉 | q ∈ δ(p, a)∧{p, q}∩F �= ∅}.
Let G1

A = {ga | a ∈ Σ}. As shown in [8] (Lemma 3.1.1), one can obtain Gf
A by

repeatedly composing graphs in G1
A until a fixpoint is reached:

Lemma 2. A graph g is in Gf
A iff ∃g1, . . . , gn ∈ G1

A : g = g1; . . . ; gn.

It remains to sketch how to check that no pair 〈g, h〉 of graphs g, h ∈ Gf
A is

a counterexample to universality, which, by Point 3 of Lemma 1, reduces to
testing Ygh ∩L(A) �= ∅. The so called lasso-finding test, proposed in [10], can be
used for this purpose. The lasso-finding test of a pair of graphs 〈g, h〉 checks the
existence of a lasso, i.e., a path in g from some state p ∈ I to some state q ∈ F
and a path in h from q to itself. Equivalently, we consider a pair of graphs 〈g, h〉
to pass the lasso-finding test (denoted by LFT (g, h)) iff there is an arc 〈p, a0, q0〉
in g and an infinite sequence of arcs 〈q0, a1, q1〉, 〈q1, a2, q2〉, . . . in h s.t. p ∈ I,
ai ∈ {0, 1} for all i ≥ 0, and aj = 1 for infinitely many j ∈ N. The following
lemma was proved in [10] (we provide a considerably simplified proof in [1]).

Lemma 3. L(A) is universal iff LFT (g, h) for all g, h ∈ Gf
A.

To be more specific, the procedure for the lasso-finding test works as follows. It
(1) finds all 1-SCCs (strongly connected components that contain only {0, 1}-
labeled arcs and at least one of the arcs is 1-labeled) in h, (2) records the set
of states Th from which there is an {0, 1}-labeled path to some state in some
1-SCC, (3) records the set of states Hg such that for all q ∈ Hg, there exists an
arc 〈p, a, q〉 ∈ g for some p ∈ I and a ≥ 0, and then (4) checks if Hg ∩ Th �= ∅.
We have LFT (g, h) iff Hg ∩Th �= ∅. This procedure is polynomial in the number
of {0, 1}-labeled arcs in g and h.

Finally, Algorithm 1 gives a näıve universality test obtained by combining
the above principles for generating Gf

A and using LFT . A more efficient version
of the algorithm is given in [10], using the following idea. For f, g, h ∈ GA,
we say that g � h iff for each arc 〈p, a, q〉 ∈ g, there is an arc 〈p, a′, q〉 ∈ h
such that a ≤ a′. If g � h, we have that (1) LFT (f , g) =⇒ LFT (f , h) and
(2) LFT (g, f ) =⇒ LFT (h, f ) for all f ∈ GA. Since the algorithm searches
for counterexamples to universality, the tests on h are subsumed by the tests
on g, and thus h can be discarded. We refer to this method, which is based
on the relation �, as subsumption, in contrast to our more general simulation
subsumption which is described in the next section.
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Algorithm 1. Ramsey-based Universality Checking
Input: A BA A = (Σ,Q, I, F, δ), the set of all single-character graphs G1

A
Output: TRUE if A is universal. Otherwise, FALSE.
Next := G1

A; Processed := ∅;1

while Next �= ∅ do2

Pick and remove a graph g from Next ;3

foreach h ∈ Processed do4

if ¬LFT (g , h) ∨ ¬LFT (h, g) ∨ ¬LFT (g , g) then return FALSE ;5

Add g to Processed ;6

foreach h ∈ G1
A do if g;h /∈ Processed then Add g;h to Next ;7

return TRUE ;8

4 Improving Universality Testing via Simulation

In this section, we describe our technique to use simulation-based subsumption in
order to accelerate the Ramsey-based universality test [10] for Büchi automata.

A simulation on a BA A = (Σ,Q, I, F, δ) is a relation R ⊆ Q × Q such
that pRr only if (1) p ∈ F =⇒ r ∈ F , and (2) for every transition p

a−→ p′,
there is a transition r

a−→ r′ such that p′Rr′. It can be shown that there exists
a unique maximal simulation, which is a preorder (called simulation preorder and
denoted by �A, or just � when A is clear from the context), computable in time
O(|Σ||Q||δ|) [11,12]. The relation � = � ∩ � is called simulation equivalence.

If A is interpreted as an automaton over finite words, � implies language
containment, and quotienting w.r.t. � preserves the regular language. If A is
interpreted as a BA, then the particular type of simulation defined above is
called direct simulation. It implies ω-language containment, and (unlike for fair
simulation [7]) quotienting w.r.t. � preserves the ω-regular language of A.

Our method for accelerating the Ramsey-based universality test [10] of A is
based on two optimizations which we describe below together with some intu-
ition underlying their correctness. We formally prove the correctness of these
optimizations in Lemmas 4–8, presented afterwards.

Optimization 1. The first optimization is based on the observation that the
subsumption relation � from [10] can be weakened by exploiting simulation
preorder. We call our weaker notion the simulation-subsumption-based relation,
written �∀∃. The idea is as follows: While in � one requires that arcs of the form
〈p, a, q〉 can only be subsumed by arcs of the form 〈p, a′, q′〉 with a ≤ a′ ∧ q′ = q,
we generalize this notion by replacing the last equality with simulation. This
gives rise to the definition of �∀∃ below.

Definition 1. For any g, h ∈ GA, we say that g �∀∃ h iff for every arc 〈p, a, q〉 ∈
g, there exists an arc 〈p, a′, q′〉 ∈ h such that a ≤ a′ and q � q′.

Optimization 2. The second optimization builds on the fact that even the struc-
ture of the particular graphs in GA can be simplified via simulation-subsumption,
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allowing us to replace some {0, 1}-labeled arcs by negative arcs. Since the com-
plexity of the lasso-finding test, subsumption-checking, and graph-composition
is polynomial in the number of {0, 1}-arcs, having smaller graphs reduces the
cost of these operations.

For the purpose of reducing graphs, we define a (possibly non-deterministic)
operation Min that maps each graph f ∈ GA to a graph Min(f) ∈ GA such that
Min(f) �∗ f . Here, g �∗ h means that g is either equal to h, or it is a reduced
version of h that can be derived from h by weakening some of the arcs that are
subsumed (simulation-smaller) by other arcs present both in g and h. We define
�∗ below.

Definition 2. For any graphs g, h ∈ GA, we write g � h iff there exist arcs
〈p, a, q〉 ∈ h and 〈p, a′, q′〉 ∈ g ∩ h s.t. a ≤ a′, q � q′, and g = (h \ {〈p, a, q〉}) ∪
{〈p, a′′, q〉} where a′′ ≤ a. The relation �∗ is the transitive closure of �.

We write Gm
A = {g ∈ GA | ∃h ∈ Gf

A : g �∗ h} to denote the set of reduced ver-
sions of graphs with nonempty languages. In practice, Min can be implemented
such that it returns a graph which is as �∗-small as possible (meaning that as
many arcs as possible will be restricted down to −1).

Correctness of the Optimizations. We now prove the correctness of our opti-
mizations in a formal way. The correctness of the second optimization follows
directly from 1) the observation that � implies �∀∃-equivalence (Lemma 4), and
2) the fact that Gm

A is closed under composition (Lemma 8).
Let �∀∃ = �∀∃ ∩ (�∀∃)−1. The lemma below follows by transitivity.

Lemma 4. For any g, h ∈ GA, if g �∗ h then g �∀∃ h.

In particular, minimized graphs are �∀∃-equivalent to their original version.
Notice that the relation �∗ does not preserve the language of graphs (and often
for g �∗ h, L(g) = ∅ when L(h) �= ∅).

The correctness of the first optimization follows from the following observa-
tions. First, the lasso-finding test is �∀∃-monotonic, i.e., if �∀∃-smaller (pairs
of) graphs pass the test, then so do �∀∃-bigger (pairs of) graphs (Lemma 7). In
particular, for graphs f, g, h ∈ Gf

A such that g �∀∃ h, LFT (g, f ) =⇒ LFT (h, f )
and LFT (f , g) =⇒ LFT (f , h). Therefore, we can ignore all lasso-finding
tests related to the bigger h. Second, graph-composition is also �∀∃-monotonic
(Lemma 6): Composing �∀∃-smaller graphs always yields �∀∃-smaller graphs.
Thus, we can also ignore all lasso-finding tests related to any extension h; f of
h, for some f ∈ Gf

A.
We begin by proving an auxiliary lemma—used to prove Lemma 6—which

says that minimized graphs are in some sense complete w.r.t. simulation-bigger
states.

Lemma 5. Let g be a graph in Gm
A . We have that 〈p, a, q〉 ∈ g ∧ p � p′ implies

∃〈p′, a′, q′〉 ∈ g : a ≤ a′ ∧ q � q′.
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Proof. If a = −1, the lemma trivially holds (e.g., by taking q′ = q). Assume
therefore a ∈ {0, 1}. From g ∈ Gm

A , there is some g′ ∈ Gf
A such that g �∗ g′.

Since L(g′) �= ∅ and a ∈ {0, 1}, there is some word w ∈ L(g′) such that p w=⇒ q.
Since p � p′, there is some q′′ such that p′ w=⇒ q′′, q � q′′, and if p w=⇒

F
q, then

p′ w=⇒
F

q′′. Since w ∈ L(g′), 〈p′, a′′, q′′〉 ∈ g′ for a ≤ a′′. From Lemma 4, we get

that there is an arc 〈p′, a′, q′〉 ∈ g such that a ≤ a′′ ≤ a′ and q � q′′ � q′. �

The lemma below states that composing minimized graphs is a �∀∃-monotonic
operation. We actually prove a slightly stronger property, since we do not require
that all graphs are minimal.

Lemma 6. Let f, g, f ′ ∈ GA and g′ ∈ Gm
A be graphs s.t. f �∀∃ f ′ and g �∀∃ g′.

Then f ; g �∀∃ f ′; g′.

Proof. We consider an arc 〈p, c, r〉 in f ; g and show that f ′; g′ must contain
a larger arc w.r.t. �∀∃. The case c = −1 is trivial. For c ∈ {0, 1}, there must be
arcs 〈p, a, q〉 ∈ f and 〈q, b, r〉 ∈ g where a, b ∈ {0, 1} and c = max({a, b}). Since
f �∀∃ f ′, there is an arc 〈p, a′, q′〉 ∈ f ′ with a ≤ a′ and q � q′. Since g �∀∃ g′,
there is an arc 〈q, b′, r′〉 ∈ g′ with b ≤ b′ and r � r′. Since g′ ∈ Gm

A , Lemma 5
implies that there is an arc 〈q′, b′′, r′′〉 ∈ g′ s.t. b ≤ b′ ≤ b′′ and r � r′ � r′′. Thus
〈p, c′′, r′′〉 ∈ f ′; g′ where c = max({a, b}) ≤ max({a′, b′′}) ≤ c′′ and r � r′′. �

Below, we prove a lemma allowing us to replace lasso-finding tests on graphs
by lasso-finding tests on (minimized versions of) smaller graphs. For the sake of
generality, we prove a somewhat stronger property.

Lemma 7. Let e, f , g, h be graphs in GA such that {f, h} ∩Gm
A �= ∅, e �∀∃ g,

and f �∀∃ h. Then LFT (e, f ) =⇒ LFT (g, h).

Proof. If LFT (e, f ), there exist an arc 〈p, a0, q0〉 ∈ e and an infinite sequence of
arcs 〈q0, a1, q1〉, 〈q1, a2, q2〉, . . . in f s.t. p ∈ I, ai ∈ {0, 1} for all i, and aj = 1
for infinitely many j. By the premise e �∀∃ g, there is 〈p, a′0, q′0〉 ∈ g s.t. a0 ≤ a′0
and q0 � q′0 (Property 1). We now show how to construct an infinite sequence
q′0a

′
1q

′
1a

′
2q

′
2 · · · that satisfies the following (Property 2): 〈q′n, a′n+1, q

′
n+1〉 ∈ h,

an+1 ≤ a′n+1, and qn � q′n for all n ≥ 0. We do this by proving that every finite
sequence q′0a′1q′1 . . . q′k−1a

′
kq

′
k satisfying Property 2 can be extended by one step

to length k + 1 while preserving Property 2. Moreover, such a sequence can be
started (case k = 0) since for k = 0, Property 1 implies Property 2 as q′1 is not in
the sequence then. For the extension, we distinguish two (non-exclusive) cases:

1. f ∈ Gm
A . Since 〈qk, ak+1, qk+1〉 ∈ f and qk � q′k (by Property 2), Lemma 5

implies that there exists an arc 〈q′k, a, q〉 ∈ f such that ak+1 ≤ a and qk+1 �
q. Since f �∀∃ h, there must be some arc 〈q′k, a′k+1, q

′
k+1〉 ∈ h such that

ak+1 ≤ a ≤ a′k+1 and qk+1 � q � q′k+1.
2. h ∈ Gm

A . Since 〈qk, ak+1, qk+1〉 ∈ f and f �∀∃ h, there is some arc 〈qk, a, q〉 ∈
h s.t. ak+1 ≤ a and qk+1 � q. Since qk � q′k (by Property 2) and 〈qk, a, q〉 ∈ h,
Lemma 5 implies that there is an arc 〈q′k, a′k+1q

′
k+1〉 ∈ h such that ak+1 ≤

a ≤ a′k+1 and qk+1 � q � q′k+1.
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To conclude, there exist an arc 〈p, a′0, q′0〉 ∈ g and an infinite sequence of arcs
〈q′0, a′1, q′1〉, 〈q′1, a′2, q′2〉, . . . in h such that p ∈ I and a′i ∈ {0, 1} for all i and
a′j = 1 for infinitely many j. Hence, LFT (g, h) holds. �

Finally, we show that the set Gm
A is closed under composition.

Lemma 8. Gm
A is closed under composition. That is, ∀e, f ∈ Gm

A : e; f ∈ Gm
A .

Proof. As e, f ∈ Gm
A , there are g, h ∈ Gf

A with e �∗ g and f �∗ h. We will
show that e; f �∗ g;h (notice that this does not directly follow from Lemma 6,
since �∀∃ does not imply �∗). Since by Lemma 2, g;h ∈ Gf

A, this will give
e; f ∈ Gm

A . By the definition of �∗, there are g0, h0, g1, h1, . . . , gn, hn ∈ Gm
A s.t.

g0 = g, h0 = h, gn = e, hn = f , and for each i : 1 ≤ i ≤ n, gi � gi−1 and
hi � hi−1. We will show that for any i : 1 ≤ i ≤ n, gi;hi �∗ gi−1;hi−1 which
implies that e; f �∗ g;h.

Since gi � gi−1, for every arc 〈p, a, q〉 ∈ gi, 〈p, a′, q〉 ∈ gi−1 with a ≤ a′. Since
hi � hi−1, for every arc 〈q, b, r〉 ∈ hi, 〈q, b′, r〉 ∈ hi−1 with b ≤ b′. Therefore,
by the definition of composition, for each 〈p, c, r〉 ∈ gi;hi, we have 〈p, c′, r〉 ∈
gi−1;hi−1 with c ≤ c′. To prove that gi;hi �∗ gi−1;hi−1, it remains to show that
there is also 〈p, c̄, r̄〉 ∈ gi;hi ∩ gi−1;hi−1 with c′ ≤ c̄ and r � r̄. The case when
c = c′ is trivial. If c < c′, then 0 ≤ c′ and thus there are 〈p, a, q〉 ∈ gi−1 and
〈q, b, r〉 ∈ hi−1 s.t. c′ = max({a, b}). Since gi � gi−1, there is 〈p, ā, q̄〉 ∈ gi ∩ gi−1
with a ≤ ā and q � q̄. By Lemma 5 and as hi ∈ Gm

A , there is also 〈q̄, b′, r′〉 ∈ hi

with b ≤ b′ and r � r′. Since hi � hi−1, there is 〈q̄, b̄, r̄〉 ∈ hi ∩ hi−1 where
b′ ≤ b̄ and r′ � r̄. Together with 〈p, ā, q̄〉 ∈ gi ∩ gi−1, this implies that there
is 〈p, c̄, r̄〉 ∈ gi;hi ∩ gi−1;hi−1 with max({ā, b̄}) ≤ c̄ and r′ � r̄. Since c′ =
max({a, b}) ≤ max({ā, b̄}) ≤ c̄ and r � r′ � r̄, 〈p, c̄, r̄〉 is the wanted arc. �

The Algorithm. Algorithm 2 gives a complete description of our approach to
universality testing of BA. In this algorithm, Lines 4, 5, 14, and 15 implement
Optimization 1; Lines 1 and 13 implement Optimization 2. Overall, the algorithm
works such that for each graph in Gf

A, a minimization of some �∀∃-smaller graph
is generated and used in the lasso-finding tests (and only minimizations of graphs
�∀∃-smaller than those in Gf

A are generated and used). The correctness of the
algorithm is stated in Theorem 1, which is proved in [1] using the closure of Gm

A
under composition stated in Lemma 8, the monotonicity from Lemma 6, and the
preservation of lasso-finding tests from Lemma 7.

Theorem 1. Algorithm 2 terminates. It returns TRUE iff A is universal.

5 Language Inclusion of BA

Let A = (Σ,QA, IA, FA, δA) and B = (Σ,QB, IB, FB, δB) be two BA. Let �A
and �B be the maximal simulations on A and B, respectively. We first introduce
some further notations from [9] before explaining how to extend our approach
from universality to language inclusion checking. Define the set EA = QA×QA.
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Algorithm 2. Simulation-optimized Ramsey-based Universality Checking
Input: A BA A = (Σ,Q, I, F, δ), the set of all single-character graphs G1

A.
Output: TRUE if A is universal. Otherwise, FALSE.
Next := {Min(g) | g ∈ G1

A}; Init := ∅;1

while Next �= ∅ do2

Pick and remove a graph g from Next ;3

if ∃f ∈ Init : f �∀∃ g then Discard g and continue;4

Remove all graphs f from Init s.t. g �∀∃ f ;5

Add g into Init ;6

Next := Init ; Processed := ∅;7

while Next �= ∅ do8

Pick a graph g from Next ;9

if ¬LFT (g , g)∨ ∃h ∈ Processed : ¬LFT (h, g) ∨ ¬LFT (g , h) then10

return FALSE ;
Remove g from Next and add it to Processed ;11

foreach h ∈ Init do12

f = Min(g;h);13

if ∃k ∈ Processed ∪Next : k �∀∃ f then Discard f and continue;14

Remove all graphs k from Processed ∪Next s.t. f �∀∃ k;15

Add f into Next ;16

return TRUE ;17

Each element in EA is an edge 〈p, q〉 asserting that there is a path from p to q
in A. Define the language of an edge 〈p, q〉 as L(p, q) = {w ∈ Σ+ | p w=⇒ q}.

Define SA,B = EA × GB. We call g = 〈g, g〉 a supergraph in SA,B. For any
supergraph g ∈ SA,B, its language L(g) is defined as L(g)∩L(g). Let Zgh be the
ω-regular language L(g) ·L(h)ω . We say Zgh is proper if g = 〈p, q〉 and h = 〈q, q〉
for some p ∈ IA and q ∈ FA. Notice that, by the definition of properness, every
proper Zgh is contained in L(A). The following is a relaxed version of Lemma 4
in [9] (the constraints of being a proper Zgh are weaker than those in [9]).

Lemma 9. (1) L(A) =
⋃
{Zgh | Zgh is proper}. (2) For all non-empty proper

Zgh, either Zgh ∩ L(B) = ∅ or Zgh ⊆ L(B). (3) L(A) ∩ L(B) =
⋃
{Zgh |

Zgh is proper and Zgh ∩ L(B) = ∅}.

The above lemma implies that L(A) ⊆ L(B) iff for all g,h ∈ SA,B, either Zgh is
not proper or Zgh ⊆ L(B). Since L(g) = ∅ or L(h) = ∅ implies Zgh ⊆ L(B), it is
sufficient to build and check only supergraphs with nonempty languages (whose
set we denote Sf

A,B) when checking language inclusion.
Supergraphs in Sf

A,B = {g ∈ SA,B | L(g) �= ∅} can be built as follows.
First, supergraphs g = 〈〈pg, qg〉, g〉 and h = 〈〈ph, qh〉, h〉 in SA,B are compos-
able iff qg = ph. Then, their composition g;h is defined as 〈〈pg, qh〉, g;h〉. For
all a ∈ Σ, define the set of single-character supergraphs Sa = {〈〈p, q〉, ga〉 |
q ∈ δA(p, a)}. Let S1

A,B :=
⋃

a∈Σ S
a. As in universality checking, one can obtain
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Sf
A,B by repeatedly composing composable supergraphs in S1

A,B until a fixpoint
is reached.

A method to check whether a pair of supergraphs 〈g,h〉 is a counterexample
to L(A) ⊆ L(B), i.e., a test whether Zgh is both proper and disjoint from L(B),
was proposed in [9]. A pair of supergraphs 〈g = 〈g, g〉,h = 〈h, h〉〉 passes the
double-graph test (denoted DGT (g,h)) iff Zgh is not proper or LFT (g, h). The
following lemma is due to [9] .

Lemma 10. L(A) ⊆ L(B) iff DGT (g,h) for all g,h ∈ Sf
A,B.

Analogously to the universality checking algorithm in Section 3, a language
inclusion checking algorithm can be obtained by combining the above principles
for generating supergraphs in Sf

A,B and using the double-graph test (cf. [1]).

6 Improving Language Inclusion Testing via Simulation

Here we describe our approach of utilizing simulation-based subsumption tech-
niques to improve the Ramsey-based language inclusion test.

In order to be able to use simulation-based subsumption as in Section 4, we
lift the subsumption relation �∀∃ to supergraphs as follows: Let g = 〈〈pg, qg〉, g〉
and h = 〈〈ph, qh〉, h〉 be two supergraphs in SA,B. Let g �∀∃

S h iff pg = ph,
qg �A qh, and g �∀∃ h. Define �∀∃

S as �∀∃
S ∩ (�∀∃

S )−1.
Since we want to work with supergraphs that are minimal w.r.t. �∀∃

S , we need
to change the definition of properness and the respective double-graph test. We
say that Zgh is weakly proper iff g = 〈p, q〉 and h = 〈q1, q2〉 where p ∈ IA,
q2 ∈ FA, q �A q1, and q2 �A q1.

Definition 3. Supergraphs g,h ∈ SA,B pass the relaxed double-graph test, writ-
ten RDGT (g,h), iff either (1) Zgh is not weakly proper, or (2) LFT (g, h).

The following Lemma 11 is needed to prove the central Theorem 2.

Lemma 11. Every weakly proper Zgh is contained in L(A).

Theorem 2. L(A) ⊆ L(B) iff RDGT (g,h) for all g,h ∈ Sf
A,B.

Furthermore, we lift the notions of �∗ and Min from Section 4 from graphs to
supergraphs. For any two supergraphs g = 〈g, g〉,h = 〈h, h〉 from SA,B, we write
g �∗

S h iff g = h and g �∗ h. Then Sm
A,B = {g ∈ SA,B | ∃h ∈ Sf

A,B : g �∗
S h}.

MinS(g) again computes a graph that is �∗
S-smaller than g. It is a possibly

non-deterministic operation such that MinS(g, g) = 〈g,Min(g)〉.
Like in Section 4, it is now possible to prove a closure of Sm

A,B under composi-
tion as well as preservation of the double-graph test on �∀∃

S -larger supergraphs
(cf. [1]). What slightly differs is the monotonicity of the composition, which is
caused by the additional composability requirement. To cope with it, we define
a new relation �∀∃, weakening �∀∃

S : For g = 〈〈p, q〉, g〉,h = 〈〈p′, q′〉, h〉 ∈ SA,B,
g �∀∃ h iff p′ � p, q′ � q, and g �∀∃ h. Notice that �∀∃

S indeed implies �∀∃.
From the definitions of �∀∃

S , �∀∃, and Lemma 6, we then easily get the following
relaxed monotonicity lemma.
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Algorithm 3. Optimized Ramsey-based Language Inclusion Checking
Input: BA A = (Σ,QA, IA, FA, δA), B = (Σ,QB, IB, FB, δB), and the set S1

A,B.
Output: TRUE if L(A) ⊆ L(B). Otherwise, FALSE.
Next := {MinS(g) | g ∈ S1

A,B}; Init := ∅;1

while Next �= ∅ do2

Pick and remove a supergraph g from Next ;3

if ∃f ∈ Init : f �∀∃
S g then Discard g and continue;4

Remove all supergraphs f from Init s.t. g �∀∃
S f ;5

Add g into Init;6

Next := Init ; Processed := ∅;7

while Next �= ∅ do8

Pick a supergraph g from Next ;9

if ¬RDGT (g,g) ∨ ∃h ∈ Processed : ¬RDGT (h,g) ∨ ¬RDGT (g,h) then10

return FALSE ;
Remove g from Next and add it to Processed ;11

foreach h ∈ Init where 〈g,h〉 are composable do12

f := MinS(g;h);13

if ∃k ∈ Processed ∪ Next : k �∀∃
S f then Discard f and continue;14

Remove all supergraphs k from Processed ∪Next s.t. f �∀∃
S k;15

Add f into Next ;16

return TRUE ;17

Lemma 12. For any e, f ,g ∈ SA,B and h ∈ Sm
A,B with e �∀∃

S g, and f �∀∃ h
where e, f and g,h are composable, e; f �∀∃

S g;h.

Now we show that it is safe to work with �∀∃
S -smaller supergraphs in the incre-

mental supergraph construction. Given supergraphs e, g, h s.t. e �∀∃
S g and g, h

are composable, one can always find a supergraph f satisfying the preconditions
of Lemma 12—excluding the situation of only the bigger supergraphs g, h being
composable. Fortunately, it is possible to show that the needed supergraph f
always exists in Sm

A,B. Moreover, since only 1-letter supergraphs are used on the
right of the composition, all supergraphs needed as right operands in the com-
positional construction can always be found in the minimization of S1

A,B, which
can easily be generated.

Algorithm 3 is our simulation-optimized algorithm for BA inclusion-checking.
Its correctness is stated below and proved in [1].

Theorem 3. Algorithm 3 terminates. It returns TRUE iff L(A) ⊆ L(B).

7 Experimental Results

We have implemented both our simulation subsumption algorithms and the
original ones of Fogarty and Vardi [9,10] in Java. For universality testing, we
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Fig. 1. Timeout cases of universality checking on Tabakov and Vardi’s random model.
The vertical axis is the percentage of tasks that cannot be finished within the timeout
period and the horizontal axis is the acceptance density (ad).

compared our algorithm to the one in [10].1 For language inclusion testing, we
compared our simulation subsumption algorithm to a restricted version that
uses the simple subsumption relation of [10]. (The language inclusion checking
algorithm described in [9] does not use any subsumption at all and performed
much worse.) We refer interested readers to [21] for all relevant materials needed
to reproduce the results. A description of the machines that we used is given
in [1].

Universality Testing. We have two sets of experiments. In Experiment 1, we
use Tabakov and Vardi’s random model. This model fixes the alphabet size
to 2 and uses two parameters: transition density (i.e. the average number of
outgoing transitions per alphabet symbol) and acceptance density (percentage
of accepting states). We use this approach with td = 0.5, 1, . . . , 4 and ad =
0.1, 0.2, . . . , 1.0, and generate 100 random BA for each combination of td and
ad. In Figure 1, we compare the number of timeouts between the two approaches
when the number of states is 100 and the timeout period is 3500 seconds2. We
only list cases with td = 1.5, 2.0, 2.5, 3.0, since in the other cases both methods
can complete most of the tasks within the timeout period. For the two most
difficult configurations (td = 2.5, 3.0), the difference between the two approaches
gets larger as ad increases. The trend shown in Figure 1 stayed the same when
the number of states increases. We refer the interested readers to the Tech.
Report [1] for results of automata with the number of states ranging from 10
to 200.
1 The algorithm in [10] uses the simple subsumption relation �, and also a different

search strategy than our algorithm. To take into account the latter, we have also
included a combination of our search strategy with the simple subsumption into our
experiments. We evaluated the new search strategy with random automata of size
20. While our search strategy with the simple subsumption � is already on average
about 20% faster than [10], the main improvement we witness in our experiments is
achieved by using the simulation subsumption �∀∃.

2 Our approach can be slightly slower than [9] in some rare cases, due to the overhead
of computing simulation. For those cases, the simulation relation is sparse and does
not yield any speedup. However, since there are efficient algorithms for computing
simulation, the relative overhead is quite small on difficult instances.
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Fig. 2. Universality checking on automata generated from random LTL. Each point in
the figure is the average result of 100 different instances. The horizontal axis is the size
of the alphabet. The vertical axis is the average execution time in seconds.

Table 1. Language inclusion checking on mutual exclusion algorithms. The columns
“Original” and “Error” refer to the original, resp., erroneous, model. We test inclusion
for both directions. “>1day” = the task cannot be finished within one day. “oom” =
required memory > 8GB. If a task completes successfully, we record the run time and
the fact whether language inclusion holds or not (“T” or “F”, respectively).

Original Error Subsumption Simulation Sub.
Tr. St. Tr. St. L(E)⊆L(O) L(O)⊆L(E) L(E)⊆L(O) L(O)⊆L(E)

Bakery 2697 1506 2085 1146 >1day >1day 32m15s(F) 49m57s
Peterson 34 20 33 20 2.7s(T) 1.4s(F) 0.9s(T) 0.2s(F)

Dining phil. Ver.1 212 80 464 161 >1day >1day 11m52s(F) >1day
Dining phil. Ver.2 212 80 482 161 >1day >1day 14m40s(F) >1day

Fisher Ver.1 1395 634 3850 1532 >1day oom 1m23s(F) >1day
Fisher Ver.2 1395 634 1420 643 >1day >1day 8s(T) 8s(T)

MCS queue lock 21503 7963 3222 1408 >1day >1day 1h36m(T) 6m22s(F)

Experiment 2 uses BA from random LTL formulae. We generate only valid
formulae (in the form f ∨ ¬f), thus ensuring that the corresponding BA are
universal. We only focus on valid formulae since most BA generated from random
LTL formulae can be recognized as non-universal in almost no time. Thus, the
results would not have been interesting. We generate LTL formulae with lengths
12, 18, 24, and 30 and 1–4 propositions (which corresponds to automata with
alphabet sizes 2, 4, 8, and 16). For each configuration, we generate 100 BA3. The
results are shown in Figure 2. The difference between the two approaches is quite
large in this set of experiments. With formulae of length 30 and 4 propositions,
our approach is 20 times faster than the original subsumption based approach.

Language Inclusion Testing. We again have two sets of experiments. In Ex-
periment 1, we inject (artificial) errors into models of several mutual exclusion
algorithms from [15]4, translate both the original and the modified version into

3 We do not have formulae having length 12 and 4 propositions because our genera-
tor [19] requires that (length of formula/3) > number of propositions .

4 The models in [15] are based on guarded commands. We modify the models by
randomly weakening or strengthening the guard of some commands.
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Fig. 3. Language inclusion checking on automata generated from random LTL. Each
point in the figure is the average result of 10 different instances. The horizontal axis is
the size of the alphabet. The vertical axis is the average execution time in seconds.

BA, and test whether the control flow (w.r.t. the occupation of the critical sec-
tion) of the two versions is the same. In these models, a state p is accepting iff
the critical section is occupied by some process in p. The results are shown in
Table 1. The results of a slightly different version where all states are accepting
is given in [1]. In both versions, our approach has significantly and consistently
better performance than the basic subsumption approach.

In Experiment 2, we translate two randomly generated LTL formulae to BA
A, B and then check whether L(A) ⊆ L(B). We use formulae having length 10,
15, and 20 and 1–3 propositions (which corresponds to BA of alphabet sizes 2,
4, and 8). For each length of formula and each number of propositions, we gen-
erate 10 pairs of BA. The relative results are shown in Figure 3. The difference
in performance of using the basic subsumption and the simulation subsump-
tion is again quite significant here. For the largest cases (with formulae having
length 20 and 3 propositions), our approach is 1914 times faster than the basic
subsumption approach.

8 Conclusions and Extensions

We have introduced simulation-based subsumption techniques for Ramsey-based
universality/language-inclusion checking for nondeterministic BA. We evalu-
ated our approach by a wide set of experiments, showing that the simulation-
subsumption approach consistently outperforms the basic subsumption of [10].

Our techniques can be extended in several ways. Weaker simulations for BA
have been defined in the literature, e.g., delayed/fair simulation [7], or their
multipebble extensions [6]. One possibility is to quotient the BA w.r.t. (mul-
tipebble) delayed simulation, which (unlike quotienting w.r.t. fair simulation)
preserves the language. Furthermore, in our language inclusion checking algo-
rithm, the subsumption w.r.t. direct simulation �A on A can be replaced by
the weaker delayed simulation (but not by fair simulation). Moreover, in the
definition of being weakly proper in Section 6, in the condition q �A q1, the
�A can be replaced by any other relation that implies ω-language containment,
e.g., fair simulation. On the other hand, delayed/fair simulation cannot be used
for subsumption in the automaton B in inclusion checking (nor in universality
checking), since Lemma 6 does not carry over.
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Next, our language-inclusion algorithm does not currently exploit any sim-
ulation preorders between A and B. Of course, direct/delayed/fair simulation
between the respective initial states of A and B is sufficient (but not necessary)
for language inclusion. However, it is more challenging to exploit simulation
preorders between internal states of A and internal states of B.

Finally, it is easy to see that the proposed simulation subsumption technique
can be built over backward simulation preorder too. It would, however, be inter-
esting to evaluate such an approach experimentally. Further, one could then also
try to extend the framework to use some form of mediated preorders combining
forward and backward simulation preorders like in the approach of [3].

References

1. Abdulla, P.A., Chen, Y.-F., Clemente, L., Hoĺık, L., Hong, C.-D., Mayr, R.,
Vojnar, T.: Simulation Subsumption in Ramsey-based Büchi Automata Univer-
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Efficient Emptiness Check for Timed Büchi
Automata
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Abstract. The Büchi non-emptiness problem for timed automata
concerns deciding if a given automaton has an infinite non-Zeno run sat-
isfying the Büchi accepting condition. The standard solution to this prob-
lem involves adding an auxiliary clock to take care of the non-Zenoness.
In this paper, we show that this simple transformation may sometimes
result in an exponential blowup. We propose a method avoiding this
blowup.

1 Introduction

Timed automata [1] are widely used to model real-time systems. They are ob-
tained from finite automata by adding clocks that can be reset and whose values
can be compared with constants. The crucial property of timed automata is that
their emptiness is decidable. This model has been implemented in verification
tools like Uppaal [3] or Kronos [7], and used in industrial case studies [12,4,13].

While most tools concentrate on the reachability problem, the questions con-
cerning infinite executions of timed automata are also of interest. In the case
of infinite executions one has to eliminate so called Zeno runs. These are ex-
ecutions that contain infinitely many steps taken in a finite time interval. For
obvious reasons such executions are considered unrealistic. In this paper we
study the problem of deciding if a given timed automaton has a non-Zeno run
passing through accepting states infinitely often. We call this problem Büchi
non-emptiness problem.

This basic problem has been of course studied already in the paper introducing
timed automata. It has been shown that using so called region abstraction the
problem can be reduced to the problem of finding a path in a finite region graph
satisfying some particular conditions. The main difference between the cases of
finite and infinite executions is that in the latter one needs to decide if the path
that has been found corresponds to a non Zeno run of the automaton.

Subsequent research has shown that the region abstraction is very inefficient
for reachability problems. Another method using zones instead of regions has
been proposed. It is used at present in all timed-verification tools. While sim-
ple at the first sight, the zone abstraction was delicate to get right. This is
mainly because the basic properties of regions do not transfer to zones. The
zone abstraction also works for infinite executions, but unlike for regions, it is
impossible to decide if a path in a zone graph corresponds to a non-Zeno run of
the automaton.
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There exists a simple solution to the problem of Zeno runs that amounts to
transforming automata in such way that every run passing through an accepting
state infinitely often is non-Zeno. An automaton with such a property is called
strongly non-Zeno. The transformation is easy to describe and requires addition
of one new clock. This paper is motivated by our experiments with an imple-
mentation of this construction. We have observed that this apparently simple
transformation can give a big overhead in the size of a zone graph.

In this paper we closely examine the transformation to strongly non-Zeno
automata [17], and show that it can inflict a blowup of the zone graph; and this
blowup could even be exponential in the number of clocks. To substantiate, we
exhibit an example of an automaton having a zone graph of polynomial size,
whose transformed version has a zone graph of exponential size. We propose
another solution to avoid this phenomenon. Instead of modifying the automaton,
we modify the zone graph. We show that this modification allows us to detect if
a path can be instantiated to a non-Zeno run. Moreover the size of the modified
graph is |ZG(A)|.|X |, where |ZG(A)| is the size of the zone graph and |X | is
the number of clocks.

In the second part of the paper we propose an algorithm for testing the exis-
tence of accepting non-Zeno runs in timed automata. The problem we face highly
resembles the emptiness testing of finite automata with generalized Büchi con-
ditions. Since the most efficient solutions for the latter problem are based on the
Tarjan’s algorithm, we take the same way here. We present an algorithm whose
running time is bounded by |ZG(A)|.|X |2. We also report on the experiments
performed with a preliminary implementation of this algorithm.

Related work. The zone approach has been introduced in Petri net context [5], and
then adapted to the framework of timed automata [9]. The advantage of zones over
regions is that they do not require to consider every possible unit time interval sep-
arately. The delicate point about zones was to find a right approximation operator.
Indeed while regions are both pre- and post-stable, zones are not pre-stable, and
some care is needed to guarantee post-stability. Post-stability is enough for cor-
rectness of the reachability algorithm, and for testing if a path in the zone graph
can be instantiated to a run of the automaton. It is however not possible to de-
termine if a path can be instantiated to a non-Zeno run. The solution involving
adding one clock has been discussed in [15,17,2]. Recently, Tripakis [16] has shown
a way to extract an accepting run from a zone graph of the automaton. Combined
with the construction of adding one clock this gives a solution to our problem.
A different approach has been considered in [11] where syntactic conditions are
proposed for a timed automaton to be free from Zeno runs. Notice that for obvi-
ous complexity reasons, any such condition must be either not complete, or of the
same algorithmic complexity as the emptiness test itself.

Organization of the paper. In the next section we formalize our problem, and dis-
cuss region and zone abstractions. As an intermediate step we give a short proof
of the above mentioned result from [16]. Section 3 explains the problems with
the transformation to strongly non-Zeno automata, and describes our alternative
method. The following section is devoted to a description of the algorithm.
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2 The Emptiness Problem for Timed Büchi Automata

2.1 Timed Büchi Automata

Let X be a set of clocks, i.e., variables that range over R≥0, the set of non-
negative real numbers. Clock constraints are conjunctions of comparisons of
variables with integer constants, e.g. (x ≤ 3 ∧ y > 0). Let Φ(X) denote the
set of clock constraints over clock variables X .

A clock valuation over X is a function ν : X → R≥0. We denote RX
≥0 for

the set of clock valuations over X , and 0 : X → {0} for the valuation that
associates 0 to every clock in X . We write ν |= φ when ν satisfies φ, i.e. when
every constraint in φ holds after replacing every x by ν(x).

For a valuation ν and δ ∈ R≥0, let (ν + δ) be the valuation such that (ν +
δ)(x) = ν(x) + δ for all x ∈ X . For a set R ⊆ X , let [R]ν be the valuation such
that ([R]ν)(x) = 0 if x ∈ R and ([R]ν)(x) = ν(x) otherwise.

A Timed Büchi Automaton (TBA) is a tuple A = (Q, q0, X, T,Acc) where Q
is a finite set of states, q0 ∈ Q is the initial state, X is a finite set of clocks,
Acc ⊆ Q is a set of accepting states, and T ⊆ Q×Φ(X)× 2X ×Q is a finite set
of transitions (q, g, R, q′) where g is a guard, and R is a reset of the transition.

A configuration of A is a pair (q, ν) ∈ Q× RX
≥0; with (q0,0) being the initial

configuration. A discrete transition between configurations (q, ν) t
⇀ (q′, ν′) for

t = (q, g, R, q′) is defined when ν � g and ν′ = [R]ν. We also have delay transi-
tions between configurations: (q, ν) δ

⇁ (q, ν + δ) for every q, ν and δ ∈ R≥0. We

write (q, ν)
δ,t−→ (q′, ν′) if (q, ν) δ

⇁ (q, ν + δ) t
⇀ (q′, ν′).

A run of A is a finite or infinite sequence of configurations connected by
δ,t−→

transitions, starting from the initial state q0 and the initial valuation ν0 = 0:

(q0, ν0)
δ0,t0−−−→ (q1, ν1)

δ1,t1−−−→ · · ·

A run σ satisfies the Büchi condition if it visits accepting configurations infinitely
often, that is configurations with a state from Acc. The duration of the run is
the accumulated delay:

∑
i≥0 δi. A run σ is Zeno if its duration is bounded.

Definition 1. The Büchi non-emptiness problem is to decide if A has a non-
Zeno run satisfying the Büchi condition.

The class of TBA we consider is usually known as diagonal-free TBA since clock
comparisons like x − y ≤ 1 are disallowed. Since we are interested in the Büchi
non-emptiness problem, we can consider automata without an input alphabet
and without invariants since they can be simulated by guards.

The Büchi non-emptiness problem is known to be Pspace-complete [1].

2.2 Regions and Region Graphs

A simple decision procedure for the Büchi non-emptiness problem builds from A
a graph called the region graph and tests if there is a path in this graph satisfying
certain conditions. We will define two types of regions.
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Fix a constant M and a finite set of clocks X . Two valuations ν, ν′ ∈ RX
≥0 are

region equivalent w.r.t. M , denoted ν ∼M ν′ iff for every x, y ∈ X :

1. ν(x) > M iff ν′(x) > M ;
2. if ν(x) ≤M , then �ν(x)� = �ν′(x)�;
3. if ν(x) ≤M , then {ν(x)} = 0 iff {ν′(x)} = 0;
4. if ν(x) ≤M and ν(y) ≤M then {ν(x)} ≤ {ν(y)} iff {ν′(x)} ≤ {ν′(y)}.

The first three conditions ensure that the two valuations satisfy the same guards.
The last one enforces that for every δ ∈ R≥0 there is δ′ ∈ R≥0, such that
valuations ν + δ and ν′ + δ′ satisfy the same guards.

We will also define diagonal region equivalence (d-region equivalence for short)
that strengthens the last condition to

4d. for every integer c ∈ (−M,M): ν(x) − ν(y) ≤ c iff ν′(x) − ν′(y) ≤ c

This region equivalence is denoted by ∼d
M . Observe that it is finer than ∼M .

A region is an equivalence class of ∼M . We write [ν]∼M for the region of ν,
and RM for the set of all regions with respect to M . Similarly, for d-region
equivalence we write: [ν]d∼M

and Rd
M . If r is a region or a d-region then we will

write r � g to mean that every valuation in r satisfies the guard g. Observe that
all valuations in a region, or a d-region, satisfy the same guards.

For an automaton A, we define its region graph, RG(A), using ∼M relation,
where M is the biggest constant appearing in the guards of its transitions. Nodes
of RG(A) are of the form (q, r) for q a state of A and r ∈ RM a region. There
is a transition (q, r) t−→ (q′, r′) if there are ν ∈ r, δ ∈ R≥0 and ν′ ∈ r′ with

(q, ν) δ,t−→ (q′, ν′). Observe that a transition in the region graph is not decorated
with a delay. The graph RGd(A) is defined similarly but using the ∼d

M relation.
It will be important to understand the properties of pre- and post-stability of

regions or d-regions [17]. We state them formally. A transition (q, r) t−→ (q′, r′)
in a region graph or a d-region graph is:

– Pre-stable if for every ν ∈ r there are ν′ ∈ r′, δ ∈ R≥0 s.t. (q, ν)
δ,t−→ (q′, ν′).

– Post-stable if for every ν′ ∈ r′ there are ν ∈ r, δ ∈ R≥0 s.t. (q, ν)
δ,t−→ (q′, ν′).

The following lemma (cf. [6]) explains our interest in ∼d
M relation.

Lemma 1 (Pre and post-stability). Transitions in RGd(A) are pre-stable
and post-stable. Transitions in RG(A) are pre-stable but not necessarily post-
stable.

Consider two sequences

(q0, ν0)
δ0,t0−−−→ (q1, ν1)

δ1,t1−−−→ · · · (1)

(q0, r0)
t0−→ (q1, r1)

t1−→ · · · (2)

where the first is a run in A, and the second is a path in RG(A) or RGd(A). We
say that the first is an instance of the second if νi ∈ ri for all i ≥ 0. Equivalently,
we say that the second is an abstraction of the first. The following lemma is a
direct consequence of the pre-stability property.
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Lemma 2. Every path in RG(A) is an abstraction of a run of A, and con-
versely, every run of A is an instance of a path in RG(A). Similarly for RGd(A).

This lemma allows us to relate the existence of an accepting run of A to the
existence of paths with special properties in RG(A) or RGd(A). We say that a
path as in (2) satisfies the Büchi condition if it has infinitely many occurrences
of states from Acc. The path is called progressive if for every clock x ∈ X :

– either x is almost always above M : there is n with ri � x > M for all i > n;
– or x is reset infinitely often and strictly positive infinitely often: for every n

there are i, j > n such that ri � (x = 0) and rj � (x > 0).

Theorem 1 ([1]). For every TBA A, L(A) �= ∅ iff RG(A) has a progressive
path satisfying the Büchi condition. Similarly for RGd(A).

While this theorem gives an algorithm for solving our problem, it turns out that
this method is very impractical. The number of regions RA(A) is O(|X |!2|X|

M |X|) [1] and constructing all of them, or even searching through them on-the-
fly, has proved to be very costly.

2.3 Zones and Zone Graphs

Timed verification tools use zones instead of regions. A zone is a set of valuations
defined by a conjunction of two kinds of constraints : comparison of the difference
between two clocks with a constant, or comparison of the value of a single clock
with a constant. For example (x− y ≥ 1)∧ (y < 2) is a zone. While at first sight
it may seem that there are more zones than regions, this is not the case if we
count only those that are reachable from the initial valuation.

Since zones are sets of valuations defined by constraints, one can define dis-
crete and delay transitions directly on zones. For δ ∈ R≥0, we have (q, Z) δ

⇁
(q, Z ′) if Z ′ is the smallest zone containing the set of all the valuations ν + δ

with ν ∈ Z. Similarly, for a discrete transition we put (q, Z) t
⇀ (q′, Z ′) if Z ′ is

the set of all the valuations ν′ such that (q, ν) t
⇀ (q′, ν′) for some ν ∈ Z; Z ′ is

a zone in this case. Moreover zones can be represented using Difference Bound
Matrices (DBMs), and transitions can be computed efficiently on DBMs [9]. The
problem is that the number of reachable zones is not guaranteed to be finite [8].

In order to ensure that the number of reachable zones is finite, one introduces
abstraction operators. We mention the three most common ones in the literature.
They refer to region graphs, RG(A) or RGd(A), and use the constant M that
is the maximal constant appearing in the guards of A.

– ClosureM (Z): the smallest union of regions containing Z;
– Closured

M (Z): similarly but for d-regions;
– ApproxM (Z): the smallest union of d-regions that is convex and contains Z.

The following lemma establishes the links between the three abstraction opera-
tors, and is very useful to transpose reachability results from one abstraction to
the other.
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Lemma 3 ([6]). For every zone Z: Z ⊆ Closured
M (Z) ⊆ ApproxM (Z) ⊆

ClosureM (Z).

A symbolic zone S is a zone approximated with one of the above abstraction
operators. Now, similar to region graphs, we define simulation graphs where after
every transition a specific approximation operation is used, that is each node in
the simulation graph is of the form (q, S) with S being a symbolic zone . So we
have three graphs corresponding to the three approximation operations.

Take an automaton A and let M be the biggest constant appearing in the
guards of its transitions. In the simulation graph SG(A) the nodes are of the
form (q,ClosureM (Z)) where q is a state of A and Z is a zone. The initial node
is (q0,ClosureM (Z0)), with q0 the initial state of A, and Z0 the zone setting
all the variables to 0. The transitions in the graph are (q,ClosureM (Z)) t−→
(q′,ClosureM (Z ′)) where Z ′ is the set of valuations ν′ such that there exist

ν ∈ ClosureM (Z) and δ ∈ R≥0 satisfying (q, ν)
δ,t−→ (q′, ν′). Similarly for SGd(A)

and SGa(A) but replacing ClosureM with operations Closured
M and ApproxM ,

respectively. The notions of an abstraction of a run of A, and an instance of a
path in a simulation graph are defined in the same way as that of region graphs.

Tools like Kronos or Uppaal use ApproxM abstraction. The two others are less
interesting for implementations since the result may not be convex. Nevertheless,
they are useful in proofs. The following lemma (cf. [8]) says that transitions in
SG(A) are post-stable with respect to regions.

Lemma 4. Let (q, S) t−→ (q′, S′) be a transition in SG(A). For every region
r′ ⊆ S′, there is a region r ⊆ S such that (q, r) t−→ (q′, r′) is a transition in
RG(A).

We get a correspondence between paths in simulation graphs and runs of A.

Theorem 2 ([16]). Every path in SG(A) is an abstraction of a run of A, and
conversely, every run of A is an instance of a path in SG(A). Similarly for SGd

and SGa.

Proof. We first show that a path in SG(A) is an abstraction of a run of A.
Take a path (q0, S0)

t0−→ (q1, S1)
t1−→ . . . in SG(A). Construct a DAG with

nodes (i, qi, ri) such that ri is a region in Si. We put an edge from (i, qi, ri) to
(i+1, qi+1, ri+1) if (qi, ri)

ti−→ (qi+1, ri+1). By Lemma 4, every node in this DAG
has at least one predecessor, and the branching of every node is bounded by
the number of regions. Hence, this DAG has an infinite path that is a path in
RG(A). By Lemma 2 this path can be instantiated to a run of A.

To conclude the proof one shows that a run of A can be abstracted to a path in
SGd(A). Then using Lemma 3 this path can be converted to a path in SGa(A),
and later to one in SG(A). We omit the details.

Observe that this theorem does not guarantee that a path we find in a simulation
graph has an instantiation that is non-Zeno. It is indeed impossible to guarantee
this unless some additional conditions on paths or automata are imposed.
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In the subsequent sections, we are interested only in the simulation graph
SGa. Observe that the symbolic zone obtained by the approximation of a zone
using ApproxM is in fact a zone. Hence, we prefer to call it a zone graph and
denote it as ZGa. Every node of ZGa is of the form (q, Z) where Z is a zone.

3 Finding Non Zeno Paths

As we have remarked above, in order to use Theorem 2 we need to be sure that
a path we get can be instantiated to a non-Zeno run. We discuss the solutions
proposed in the literature, and then offer a better one. Thanks to pre-stability
of the region graph, the progress criterion on regions has been defined in [1] for
selecting runs from RG(A) that have a non-Zeno instantiation (see Section 2.2).
Notice that the semantics of TBA in [1] constrains all delays δi to be strictly
positive, but the progress criterion can be extended to the stronger semantics
that is used nowadays (see [17] for instance). However, since zone graphs are not
pre-stable, this method cannot be directly extended to zone graphs.

3.1 Adding One Clock

A common solution to deal with Zeno runs is to transform an automaton into a
strongly non-Zeno automaton, i.e. such that all runs satisfying the Büchi condi-
tion are guaranteed to be non-Zeno. We present this solution here and discuss
why, although simple, it may add an exponential factor in the decision procedure.

The transformation of A into a strongly non-Zeno automaton SNZ(A) pro-
posed in [17] adds one clock z and duplicates accepting states. One copy of the
state is as before but is no longer accepting. The other copy is accepting, but
it can be reached only when z ≥ 1. Moreover when it is reached z is reset to 0.
The only transition from this second copy leads to the first copy. (See Vk and
Wk on Figure 1 for an example.) This construction ensures that at least one unit
of time has passed between two visits to an accepting state. A slightly different
construction is mentioned in [2]. Of course one can also have other modifications,
and it is impossible to treat all the imaginable constructions at once. Our objec-
tive here is to show that the constructions proposed in the literature produce a
phenomenon that causes proliferation of zones that can sometimes be exponen-
tial in the number of clocks. The discussion below will focus on the construction
from [17], but the one from [2] suffers from the same problem.

The problem comes from the fact that the constraint z ≥ 1 may be a source
of rapid multiplication of the number of zones in the zone graph of SNZ(A).
Consider Vk and Wk from Figure 1 for k = 2. Starting at the state b2 of V2
in the zone 0 ≤ y ≤ x1 ≤ x2, there are two reachable zones with state b2.
Moreover, if we reset x1 followed by y from the two zones, we reach the same
zone 0 ≤ y ≤ x1 ≤ x2. In contrast starting in b2 of W2 = SNZ(V2) from
0 ≤ y ≤ x1 ≤ x2 ≤ z gives at least d zones, and resetting x1 followed by y still
yields d zones.

We now exploit this fact to give an example of a TBA An whose zone graph
has a number of zones linear in the number of clocks, but Bn = SNZ(An) has a



Efficient Emptiness Check for Timed Büchi Automata 155

. . . ck0 ck1 . . . ckk cky . . .
{xk} {xk−1} {x1} {y}

Rk

bk

ak

. . . . . .

y ≤ d {x1, . . . , xk−1}

Vk

bk

ak
1 ak

2

. . . . . .

y ≤ d ∧
z ≥ 1 {z} y ≤ d ∧

z < 1

{x1, . . . , xk−1}

Wk = SNZ(Vk)

Rn Vn
. . . R2 V2An Rn Wn

. . . R2 W2Bn

Fig. 1. Gadgets for An and Bn = SNZ(An)

zone graph of size exponential in the number of clocks. An is constructed from
the automata gadgets Vk and Rk as shown in Figure 1. Observe that the role
of Rk is to enforce an order 0 ≤ y ≤ x1 ≤ · · · ≤ xk between clock values. By
induction on k one can compute that there are only two zones at locations bk

since Rk+1 made the two zones in bk+1 collapse into the same zone in bk. Hence
the number of nodes in the zone graph of An is O(n).

Let us now consider Bn, the strongly non-Zeno automaton obtained from An

following [17]. Every gadget Vk gets transformed to Wk. While exploring Wk,
one introduces a distance between the clocks xk−1 and xk. So when leaving it one
gets zones with xk − xk−1 ≥ c, where c ∈ {0, 1, 2, . . . , d}. The distance between
xk and xk−1 is preserved by Rk. In consequence, Wn produces at least d + 1
zones. For each of these zones Wn−1 produces d+ 1 more zones. In the end, the
zone graph of Bn has at least (d+ 1)n−1 zones at the state b2.

We have thus shown that An has O(n) zones while Bn = SNZ(An) has
an exponential number of zones even when the constant d is 1. Observe that
the construction shows that even with two clocks the number of zones blows
exponentially in the binary representation of d. Note that the automaton An does
not have a non-Zeno accepting run. Hence, every search algorithm is compelled
to explore all the zones of Bn.

3.2 A More Efficient Solution

Our solution stems from a realization that we only need one non-Zeno run satis-
fying the Büchi condition and so in a way transforming an automaton to strongly
non-Zeno is an overkill. We propose not to modify the automaton, but to intro-
duce additional information to the zone graph ZGa(A). The nodes will now be
triples (q, Z, Y ) where Y ⊆ X is the set of clocks that can potentially be equal
to 0. It means in particular that other clock variables, i.e. those from X −Y are
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assumed to be bigger than 0. We write (X − Y ) > 0 for the constraint saying
that all the variables in X − Y are not 0.

Definition 2. Let A be a TBA over a set of clocks X. The guessing zone graph
GZGa(A) has nodes of the form (q, Z, Y ) where (q, Z) is a node in ZGa(A)
and Y ⊆ X. The initial node is (q0, Z0, X), with (q0, Z0) the initial node of
ZGa(A). There is a transition (q, Z, Y ) t−→ (q′, Z ′, Y ∪ R) in GZGa(A) if there
is a transition (q, Z) t−→ (q′, Z ′) in ZGa(A) with t = (q, g, R, q′), and there
are valuations ν ∈ Z, ν′ ∈ Z ′, and δ such that ν + δ � (X − Y ) > 0 and

(q, ν)
δ,t−→ (q, ν′). We also introduce a new auxiliary letter τ , and put transitions

(q, Z, Y ) τ−→ (q, Z, Y ′) for Y ′ = ∅ or Y ′ = Y .

Observe that the definition of transitions reflects the intuition about Y we have
described above. Indeed, the additional requirement on the transition (q, Z, Y ) t−→
(q′, Z ′, Y ∪R) is that it should be realizable when the clocks outside Y are strictly
positive; so there should be a valuation satisfying (X − Y ) > 0 that realizes this
transition. As we will see later, this construction entails that from a node (q, Z, ∅)
every reachable zero-check is preceded by the reset of the variable that is checked,
and hence nothing prevents a time elapse in this node. A node of the form (q, Z, ∅)
is called clear. We call a node (q, Z, Y ) accepting if it contains an accepting state q.

Example. Figure 2 depicts a TBA A1 along with its zone graph ZGa(A1) and
its guessing zone graph GZGa(A1) where τ -loops have been omitted.

a

b

x ≥ 1
x ≤ 1
{x}

A1

a, x = 0

b, x ≥ 1

x ≥ 1
x ≤ 1
{x}

ZGa(A1)

a, x = 0, {x} a, x = 0, ∅

b, x ≥ 1, {x} b, x ≥ 1, ∅

x ≥ 1

τ

x ≥ 1
x ≤ 1
{x}

τ

x ≤ 1{x}

GZGa(A1)

Fig. 2. A TBA A1 and the guessing zone graph GZGa(A1)

Notice that directly from the definition it follows that a path in GZGa(A) de-
termines a path in ZGa(A) obtained by removing τ transitions and the third
component from nodes.

A variable x is bounded by a transition of GZGa(A) if the guard of the tran-

sition implies x ≤ c for some constant c. More precisely: for (q, Z, Y )
(q,g,R,q′)−−−−−−→

(q′, Z ′, Y ′), the guard g implies (x ≤ c). A variable is reset by the transition if
it belongs to the reset set R of the transition.

We say that a path is blocked if there is a variable that is bounded infinitely
often and reset only finitely often by the transitions on the path. Otherwise the
path is called unblocked.
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Theorem 3. A TBA A has a non-Zeno run satisfying the Büchi condition iff
there exists an unblocked path in GZGa(A) visiting both an accepting node and
a clear node infinitely often.

The proof of Theorem 3 follows from Lemmas 5 and 6 below. We omit the proof
of the first of the two lemmas and concentrate on a more difficult Lemma 6. It
is here that the third component of states is used.

At the beginning of the section we had recalled that the progress criterion in [1]
characterizes the paths in region graphs that have non-Zeno instantiations. We
had mentioned that it cannot be directly extended to zone graphs since their tran-
sitions are not pre-stable. Lemma 6 below shows that by slightly complicating the
zone graph we can recover a result very similar to Lemma 4.13 in [1].

Lemma 5. If A has a non-Zeno run satisfying the Büchi condition, then in
GZGa(A) there is an unblocked path visiting both an accepting node and a clear
node infinitely often.

Lemma 6. Suppose GZGa(A) has an unblocked path visiting infinitely often
both a clear node and an accepting node then A has a non-Zeno run satisfying
the Büchi condition.

Proof. Let σ be a path in GZGa(A) as required by the assumptions of the lemma
(without loss of generality we assume every alternate transition is a τ transition):

(q0, Z0, Y0)
τ−→ (q0, Z0, Y

′
0) t0−→ · · · (qi, Zi, Yi)

τ−→ (qi, Zi, Y
′
i ) ti−→ · · ·

Take a corresponding path in ZGa(A) and one instance ρ = (q0, ν0), (q1, ν1) . . .
that exists by Theorem 2. If it is non-Zeno then we are done.

Suppose ρ is Zeno. Let Xr be the set of variables reset infinitely often on σ.
By assumption on σ, every variable not in Xr is bounded only finitely often.
Since ρ is Zeno, there is an index m such that the duration of the suffix of the
run starting from (qm, νm) is bounded by 1/2, and no transition in this suffix
bounds a variable outside Xr. Let n > m be such that every variable from Xr

is reset between m and n. Observe that νn(x) < 1/2 for every x ∈ Xr.
Take positions i, j such that i, j > n, Yi = Yj = ∅ and all the variables from

Xr are reset between i and j. We look at the part of the run ρ:

(qi, νi)
δi,ti−−−→ (qi+1, νi+1)

δi+1,ti+1−−−−−−→ . . . (qj , νj)

and claim that every sequence of the form

(qi, ν′i)
δi,ti−−−→ (qi+1, ν

′
i+1)

δi+1,ti+1−−−−−−→ . . . (qj , ν′j)

is a part of a run of A provided there is ζ ∈ R≥0 such that the following three
conditions hold for all k = i, . . . , j:

1. ν′k(x) = νk(x) + ζ + 1/2 for all x �∈ Xr,
2. ν′k(x) = νk(x) + 1/2 if x ∈ Xr and x has not been reset between i and k.
3. ν′k(x) = νk(x) otherwise, i.e., when x ∈ Xr and x has been reset between i

and k.
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Before proving this claim, let us explain how to use it to conclude the proof. The
claim shows that in (qi, νi) we can pass 1/2 units of time and then construct
a part of the run of A arriving at (qj , ν′j) where ν′j(x) = νj(x) for all variables
in Xr, and ν′j(x) = νj(x) + 1/2 for other variables. Now, we can find l > j, so
that the pair (j, l) has the same properties as (i, j). We can pass 1/2 units of
time in j and repeat the above construction getting a longer run that has passed
1/2 units of time twice. This way we construct a run that passes 1/2 units of
time infinitely often. By the construction it passes also infinitely often through
accepting nodes.

It remains to prove the claim. Take a transition (qk, νk)
δk,tk−−−→ (qk+1, νk+1)

and show that (qk, ν′k)
δk,tk−−−→ (qk+1, ν

′
k+1) is also a transition allowed by the

automaton. Let g and R be the guard of tk and the reset of tk, respectively.
First we need to show that ν′k+δk satisfies the guard of tk. For this, we need to

check if for every variable x ∈ X the constraints in g concerning x are satisfied.
We have three cases:
– If x �∈ Xr then x is not bounded by the transition tk, that means that in g

the constraints on x are of the form (x > c) or (x ≥ c). Since (νk + δk)(x)
satisfies these constraints so does (ν′k + δk)(x) ≥ (νk + δk)(x).

– If x ∈ Xr and it is reset between i and k then ν′k(x) = νk(x) so we are done.
– Otherwise, we observe that x �∈ Yk. This is because Yi = ∅, and then only

variables that are reset are added to Y . Since x is not reset between i and
k, it cannot be in Yk. By definition of transitions in GZGa(A) this means
that g ∧ (x > 0) is consistent. We have that 0 ≤ (νk + δk)(x) < 1/2 and
1/2 ≤ (ν′k +δk)(x) < 1. So ν′k +δk satisfies all the constraints in g concerning
x as νk + δk does.

This shows that there is a transition (qk, ν′k)
δ′

k,tk−−−→ (qk+1, ν
′) for the uniquely

determined ν′ = [R](ν′k + δk). It is enough to show that ν′ = ν′k+1. For variables
not in Xr it is clear as they are not reset. For variables that have been reset
between i and k this is also clear as they have the same values in ν′k+1 and ν′.
For the remaining variables, if a variable is not reset by the transition tk then
condition (2) holds. If it is reset then its value in ν′ becomes 0; but so it is in
ν′k+1, and so the third condition holds. This proves the claim.

Finally, we provide an explanation as to why the proposed solution does not
produce an exponential blowup. At first it may seem that we have gained nothing
because when adding arbitrary sets Y we have automatically caused exponential
blowup to the zone graph. We claim that this is not the case for the part of
GZGa(A) reachable from the initial node, namely a node with the initial state
of A and the zone putting every clock to 0.

We say that a zone orders clocks if for every two clocks x, y, the zone implies
that at least one of x ≤ y, or y ≤ x holds.

Lemma 7. If a node with a zone Z is reachable from the initial node of the zone
graph ZGa(A) then Z orders clocks. The same holds for GZGa(A).

Suppose that Z orders clocks. We say that a set of clocks Y respects the order
given by Z if whenever y ∈ Y and Z implies x ≤ y then x ∈ Y .
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Lemma 8. If a node (q, Z, Y ) is reachable from the initial node of the zone
graph GZGa(A) then Y respects the order given by Z.

Lemma 7 follows since a transition from a zone that orders clocks gives back a
zone that orders clocks, and the ApproxM operator approximates it again to a
zone that orders clocks. Notice that the initial zone clearly orders clocks. The
proof of Lemma 8 proceeds by an induction on the length of a path. The above
two lemmas give us the desired bound.

Theorem 4. Let |ZGa(A)| be the size of the zone graph, and |X | be the num-
ber of clocks in A. The number of reachable nodes of GZGa(A) is bounded by
|ZGa(A)|.(|X | + 1).

The theorem follows directly from the above two lemmas. Of course, imposing
that zones have ordered clocks in the definition of GZGa(A) we would get the
same bound for the entire GZGa(A).

4 Algorithm

We use Theorem 3 to construct an algorithm to decide if an automaton A has
a non-Zeno run satisfying the Büchi condition. This theorem requires to find
an unblocked path in GZGa(A) visiting both an accepting state and a clear
state infinitely often. This problem is similar to that of testing for emptiness of
automata with generalized Büchi conditions as we need to satisfy two infinitary
conditions at the same time. The requirement of a path being unblocked adds
additional complexity to the problem. The best algorithms for testing emptiness
of automata with generalized Büchi conditions are based on strongly connected
components (SCC) [14,10]. So this is the way we take here.

We apply a variant of Tarjan’s algorithm for detecting maximal SCCs in
GZGa(A). During the computation of the maximal SCCs, we keep track of
whether an accepting node and a clear node have been seen. For the unblocked
condition we use two sets of clocks UBΓ and RΓ that respectively contain the
clocks that are bounded and the clocks that are reset in the SCC Γ . At the end
of the exploration of Γ we check if:

1. we have passed through an accepting node and a clear node,
2. there are no blocking clocks: UBΓ ⊆ RΓ .

If the two conditions are satisfied then we can conclude saying that A has an
accepting non-Zeno run. Indeed, a path passing infinitely often through all the
nodes of Γ would satisfy the conditions of Theorem 3, giving a required run of
A. If the first condition does not hold then the same theorem says that Γ does
not have a witness for a non-Zeno run of A satisfying the Büchi condition.

The interesting case is when the first condition holds but not the second. We
can then discard from Γ all the edges blocking clocks from UBΓ − RΓ , and
reexamine it. If Γ without discarded edges is still an SCC then we are done. If
not we restart our algorithm on Γ with the discarded edges removed. Observe
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that we will not do more than |X | restarts, as each time we eliminate at least
one clock. If after exploring the entire graph, the algorithm has not found a
subgraph satisfying the two conditions then it declares that there is no run of A
with the desired properties. Its correctness is based on Theorem 3.

Recall that by Theorem 4 the size of GZGa(A) is |ZGa(A)| · |X |. The com-
plexity of the algorithm follows from the complexity of Tarjan’s algorithm and
the remark about the number of recursive calls being bounded by the number
of clocks. We hence obtain the following.

Theorem 5. The above algorithm is correct and runs in time O(|ZGa(A)|.|X |2).

5 Conclusions

Büchi non-emptiness problem is one of the standard problems for timed au-
tomata. Since the paper introducing the model, it has been widely accepted
that addition of one auxiliary clock is an adequate method to deal with the
problem of Zeno paths. This technique is also used in the recently proposed zone
based algorithm for the problem [16].

In this paper, we have argued that in some cases the auxiliary clock may cause
exponential blowup in the size of the zone graph. We have proposed another
method that is based on a modification of the zone graph. The resulting graph
grows only by a factor that is linear in the number of clocks. In our opinion,
the efficiency gains of our method outweigh the fact that it requires some small
modifications in the code dealing with zone graph exploration.

It is difficult to estimate how often introducing the auxiliary clock may cause
an exponential blowup. The example in Figure 1 suggests that the problem
appears when there is a blocked cycle containing an accepting state. A prototype
implementation of our algorithm shows that a blowup occurs in the Train-Gate
example (e.g. [11]) when checking for bounded response to train access requests.
For 2 trains, the zone graph has 988 zones whereas after adding the auxiliary
clock it blows to 227482 zones. The guessing zone graph has 3840 zones. To be
fair, among the 227482 zones, 146061 are accepting with a self-loop, so in this
example any on-the-fly algorithm should work rather quickly. Our prototype
visits 1677 zones (in 0.42s). The example from Figure 1 with n = 10 and d = 1
has a zone graph with 151 zones and a guessing zone graph with 1563 zones. Its
size grows to 36007 when adding the extra clock. Raising d to 15, we obtain 151,
1563 and 135444 zones respectively, which confirms the expected blowup.

It is possible to apply the modification to the zone graph on-the-fly. It could
also be restricted only to strongly connected components having “zero checks”.
This seems to be another source of big potential gains. We are currently working
on an on-the-fly optimized algorithm. The first results are very encouraging. Of-
ten our prototype implementation solves the emptiness problem at the same cost
as reachability when the automaton has no Zeno accepting runs. For instance,
the zone graph for Fischer’s protocol with 4 processes has 46129 zones and is
computed in 14.22s1. To answer the mutual exclusion problem it is necessary
1 On a 2.4GHz Intel Core 2 Duo MacBook with 2GB of memory.
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to visit the entire zone graph. Our algorithm does it in 15.77s. Applying the
construction from [17] we get the graph with 96913 zones, and it takes 37.10s to
visit all of them. Hence, even in this example, where all the runs are non-Zeno,
adding one clock has a noticeable impact.
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Abstract. We present the tool MERIT, a CEGAR model-checker for safety prop-
erties of counter-systems, which sits in the Lazy Abstraction with Interpolants
(LAWI) framework. LAWI is parametric with respect to the interpolation tech-
nique and so is MERIT. Thanks to its open architecture, MERIT makes it possi-
ble to experiment new refinement techniques without having to re-implement the
generic, technical part of the framework. In this paper, we first recall the basics of
the LAWI algorithm. We then explain two heuristics in order to help termination
of the CEGAR loop: the first one presents different approaches to symbolically
compute interpolants. The second one focuses on how to improve the unwinding
strategy. We finally report our experimental results, obtained using those heuris-
tics, on a large amount of classical models.

1 Motivations

Lazy Abstraction with interpolants (LAWI). [8] is a generic technique to verify the
safety of a system. It builds a tree by unwinding the control structure of the system.
Each edge of this tree represents a transition between two control points, and each node
is labeled by an over-approximation of the actual reachable configuration at that node.

LAWI follows the CEGAR [3] paradigm. It loops over three steps: explore, check, and
refine. The explore step expands the reachability tree by unwinding the control structure.
At first, one starts from a very coarse abstraction of the system, ignoring the transition
effect, just checking the reachability of control locations marked as bad. For that reason,
reaching a bad location does not necessarily mean that the system is unsafe. The check
step looks at a branch leading to a bad location, and tries to prove that it is spurious, that
is, not feasible in the actual system. If it fails, then the system is unsafe and an error trace
is reported. If it succeeds, then the unwinding must be refined to eliminate this spurious
path. The refine step consists in labeling each node on the branch by an interpolant that
over-approximates more closely the actual configurations. This explains the term lazy
[5]: the refinement occurs only on a branch, not on the whole tree.

Since the unwinding is in general infinite, the algorithm might not terminate. To help
termination, LAWI uses a covering relation between nodes. Under some conditions one
can guarantee that any configuration reachable from a node s is also reachable from a
node t in the tree. Node t then covers node s, which prevents from having to explore
the subtree rooted at s, thus limiting the tree growth. LAWI terminates when all leaves
in the unwinding tree are covered. However, since nodes are relabeled during the refine
step, a covered node may be uncovered, so that termination can still not be guaranteed.

T. Touili, B. Cook, and P. Jackson (Eds.): CAV 2010, LNCS 6174, pp. 162–166, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Interpolation with Symbolic Computation. Let us explain more precisely how to
refine a spurious path s0

τ1−→ s1
τ2−→ · · · τn−→ sn, where each si is a node of the

unwinding and each τi a transition of the system. An interpolant for this path [8] is given
by sets I0, I1, . . . , In such that I0 over-approximates the initial set of states, τk(Ik) ⊆
Ik+1 for any k and In = ∅. Such a path interpolant witnesses that the path is spurious.
In general, there are several path interpolants. The choice of the interpolant affects the
algorithm behavior (and termination), since the covering relation depends on it.

In [8] theorem proving and Craig interpolation is used to compute interpolants. Our
work focuses on model-checking counter-systems [9] with unbounded variables. The
transition relations are encoded in the Presburger logic. So far, Craig interpolation al-
gorithms are known only for fragments of this logic [6]. In [4] it is showed how to
compute interpolants symbolically. We have chosen to first experiment symbolic com-
putation techniques in our model-checker, using the TaPAS tools [7]: an interface to
various automata- or formula-based symbolic set representations.

2 The MERIT Model-Checker

MERIT is a model-checker for counter-systems based on the LAWI framework. We dis-
cuss its architecture, and present two improvements to the generic algorithm that we
both implemented in MERIT.

Open architecture. An interesting feature of the LAWI algorithm is that it offers a clear
split between operations that work only on the control graph of the transition system,
and those that compute interpolants. Thanks to this, we were able to use virtually any
kind of techniques to compute interpolants: theorem proving, SMT-solvers, or symbolic
computation. All operations or queries made on interpolants are implemented behind
the interface of a single module, called a refinery. Changing the way interpolants are
computed is just a matter of changing the refinery. We currently have one fully func-
tional refinery based on the TAPAS framework [7] and we are working on an SMT-
solver based refinery.

Optimizing the interpolants. MERIT implements the classical symbolic weakest pre-
and strongest post-conditions computations, which provide path interpolants [4]. They
are named weakest (resp. strongest) since they are the maximal (resp. minimal) sets
of configurations that can appear on a path interpolant. MERIT also implements two
original, and in practice more efficient techniques, that we both experimented.
– The first uses post- symbolic computation to find the closest node from the root of the

refined branch where the reachability set becomes empty. From that node, it replays
the trace backwards, computing the weakest path interpolant. This way, we obtain
shorter branches than when using a weak-pre computation, but weaker interpolants
on the higher part of the branch than when using a post computation. The idea of the
heuristic is to make it easier to cover nodes by producing large interpolants high in
the tree.

– The second one is the dual of the first: it starts with a backward symbolic computa-
tion, and it then tightens interpolants on the lower part of the branch using strongest
interpolants.

Experimental results for the later technique, called cut-post, are given in Table 1.
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Tuning the unwinding strategy: BFS vs. DFS. Our experiments also show that the
strategy used to expand the tree has an impact on the algorithm termination. In [8] it is
suggested to use a DFS strategy to expand the tree. Indeed a DFS strategy seems more
adequate than a BFS one: suppose that the algorithem has to visit nodes at depth d.
With systems having control locations of out-degree k, it is then necessary to compute
and store at least kd nodes. In practice models with few control locations and high
out-degree emerge naturally1.

The problem comes from the fact that a naive implementation of the DFS expansion
strategy can behaves like a BFS. Indeed, in [8] a node is expanded by adding all its
children at once: e.g. a node t gets 3 children u, v, w. Because those nodes have not
been refined, they are labeled by the full variable domain. Thus each of them can cover
any node added after itself (provided they correspond to the same control location). The
DFS proceeds by expanding u. Suppose now that children of u are all covered by either
v or w. The DFS is therefore stopped and we have to explore a new branch (in v sub-
tree). Again, the children of v may become covered by w. We see how a “BFS-like”
behavior arises. This phenomenon does occur in practice and a combinatorial blowup
indeed impairs the algorithm termination.

To fix this problem, we add only one child, and pursue the DFS with it. When that
child is popped from the DFS stack, we add its sibling and repeat the same process. This
way we add less nodes labeled by the full variable domain, which prevents from cov-
ering uselessly. The termination condition becomes more complicated. We also have to
check that we did not forget to fully expand all internal nodes. Nonetheless our experi-
ments show that, using this strategy, our tool can cope with models where the original
strategy fails. The impact on the tool performance can be drastic, as showed in Table 1.

3 Experimental Results

MERIT has been tested with a pool of about 50 infinite-state systems, ranging from
broadcast protocols to programs with dynamic data-structures. The benchmark suite
we use is available on the tool webpage (cf. Availability section, p. 165). The verifica-
tion was successful in about 80% of the tests and MERIT detected 100% of the unsafe
models.

The use of the “append one child at a time” unwinding strategy and the cut-pre or
cut-post refinement techniques presented in Sec. 2 allowed MERIT to almost double
the number of models it can tackle. Table 1 presents the results obtained (1) with the
original algorithm, the weakest pre-conditions refinement (column Original Pre), the
one child at a time algorithm with the same refinement technique (column 1 child Pre),
as well as the one child algorithm with the cut-post refinement method (column 1 child
cut-post). This shows how much we improved from the original algorithm. We also
compare our tool to the tools FAST2 and ASPIC3 because they make use of acceleration
[1] techniques which are particularly efficient on the models we use to test MERIT.
However MERIT is more efficient than FAST and ASPIC on many models.

1 Like for distributed system models, where the global control structure encoded by variables.
2 Available at http://www.lsv.ens-cachan.fr/Software/fast/
3 Available at http://laure.gonnord.org/pro/aspic/aspic.html

http://www.lsv.ens-cachan.fr/Software/fast/
http://laure.gonnord.org/pro/aspic/aspic.html
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Table 1. Benchmark results

Original Pre 1 child Pre 1 child cut-post FAST ASPIC

MODEL V T O N R TIME N R TIME N R TIME TIME TIME

ILLINOIS 5 9 S 4152 415 2.12 777 388 1.72 - - TOUT 1.75 ?
insert 48 51 S 74 11 1.28 70 11 1.35 70 11 1.25 3.97 0.14
MESI 5 4 S 287 57 1.42 107 53 1.05 35 17 1.13 1.71 ?
merge 847 1347 S 6661 944 27.77 5413 952 40.34 189 30 3.79 TOUT 2.27
MOESI 6 4 S 27 5 1.23 11 5 1.14 35 17 1.16 1.36 ?
train 7 12 S 20878 4302 268.64 205 101 1.51 1531 765 13.55 2.29 ?
deleteAll 18 19 U 13 2 1.10 13 2 0.98 13 2 1.18 1.0 0.11

Legend: V = # of variables; T: # of transitions; O: outcome, S means safe, U unsafe, ? tool does
not know ; N: # tree nodes, R: # refinements. TOUT means time-out, MOUT memory outage.

4 Conclusion and Development Perspectives

In this paper we presented MERIT, a model-checker tool that use symbolic interpolant
computation techniques. It implements the Lazy Abstraction with Interpolants algo-
rithm [8]. The models we experimented are particularly suited for acceleration tech-
niques. However MERIT was able to tackle many models without using acceleration.

Short-term goals: One of our short term goals is to get a fully functionnal SMT-Solver
based refinery, to see how such a technique can compete with symbolic ones.

Mid-term goals: We noticed that some refinement techniques are complementary: they
succeed on different sets of models and the union of those sets almost covers the whole
set of models. We tried hybrid refinement techniques that combine them. This allowed
MERIT tackle more models. However the problem of choosing, on the fly, the proper
interpolation technique for a branch is still an open problem.

Finally, our experiments showed that some difficult examples would benefit from
acceleration [2] techniques like the train model in Tab. 1. However combining LAWI

and acceleration is still an open question. Acceleration is costly and the trade-off be-
tween that cost and the benefit for the cover relation has to be investigated.

Availability. MERIT is available under free software license at http://www.labri.
fr/~caniart/merit.html.
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Abstract. We describe Breach, a Matlab/C++ toolbox providing a co-
herent set of simulation-based techniques aimed at the analysis of de-
terministic models of hybrid dynamical systems. The primary feature of
Breach is to facilitate the computation and the property investigation
of large sets of trajectories. It relies on an efficient numerical solver of
ordinary differential equations that can also provide information about
sensitivity with respect to parameters variation. The latter is used to
perform approximate reachability analysis and parameter synthesis. A
major novel feature is the robust monitoring of metric interval temporal
logic (MITL) formulas. The application domain of Breach ranges from
embedded systems design to the analysis of complex non-linear models
from systems biology.

1 Introduction

Model-based analysis and design techniques for complex systems with parame-
ters uncertainty rely mostly on extensive simulation. Hybrid systems feature a
mix of continuous and discrete components and most often their number of pos-
sible behaviors is infinite, rendering formal design by exhaustive simulation im-
possible. Instead, reachability analysis is used to generate over-approximations of
the set of possible behaviors to prove that they all satisfy a given property. Effi-
cient techniques and tools exist for hybrid systems with linear continuous dynam-
ics [ADF+06] but to the best of our knowledge, no tool can be readily scalable for
hybrid non-linear dynamics, as can be, for instance, simulation. Hence the origi-
nal idea (also following [KKMS03, GP]) that lead to the development of Breach
was to estimate dense sets reachable by the system based only on a finite (though
possibly large) number of simulations. Breach implements this idea and was used,
e.g., to produce the results presented in [DKR, DCL09]. It has now matured into
a more general exploration tool for hybrid dynamical systems with uncertain pa-
rameters, with a convenient graphical user interface and the possibility to write
MITL formulas and efficiently monitor their satisfaction robustness.

2 Hybrid Systems Definition and Simulation

Breach deals with piecewise-continuous hybrid systems specified as

T. Touili, B. Cook, and P. Jackson (Eds.): CAV 2010, LNCS 6174, pp. 167–170, 2010.
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⎧⎨⎩ ẋ = f(q,x,p), x(0) = x0
q+ = e(q−, λ), q(0) = q0
λ = sign(g(x))

(1)

where x ∈ R
n is the state, p ∈ P ⊂ R

np is the parameter vector, q ∈ Q is
the discrete state, g is the guard function mapping Rn to Rng , and sign is the
usual sign function extended to vectors. The function e is the event function
which updates the discrete state when the sign of one component of g changes.
A trajectory ξp is a function from T = R+ to Rn satisfying (1) for all t in
T. For convenience, the initial state x0 is included in the parameter vector p.
Thus ξp(0) = x0 = (x0,1, x0,2, . . . , x0,n) where for all i ≤ n, x0,i = pi. Breach
implements a standard discontinuity locking method for the simulation of such
systems, based on CVodes ODE solver1. Sensitivity analysis consists in mea-
suring the influence of a parameter change δp on a trajectory ξp. A first-order
approximation can be obtained by the Taylor expansion

ξp+δp(t) = ξp(t) +
∂ξp
∂p

(t) δp + ϕ(t, δp) where ϕ(t, δp) = O
(
‖δp‖2) (2)

The derivative of ξp(t) with respect to p in the right hand side of (2) is called
the sensitivity matrix and denoted as Sp(t) = ∂ξp

∂p (t). CVodes implements a
common method to compute it for an ODE, by integrating a linear time varying
ODE satisfied by Sp(t). For hybrid systems such as (1), the sensitivity equation
can be solved between two consecutive events but Sp is discontinuous when a
guard is crossed. Breach implements the computation of the discontinuity jumps
provided that the guard functions are smooth enough at the crossing point (see
[DKR] for more details).

3 Main Features Overview

Reachability using sensitivity analysis. The reachable set induced by a set of pa-
rameters P at time t is Rt(P) =

⋃
p∈P ξp(t). We showed in [DKR] that it can be

approximated by using sensitivity analysis. Let p and p′ be two parameter vectors
in P and assume that we computed the trajectory ξp and the sensitivity matrix
Sp at time t. Then we can use ξp(t) and Sp(t) to estimate ξp′(t). We denote this
estimate by ξ̂pp′(t). The idea is to drop higher order terms in the Taylor expan-
sion (2), which gives ξ̂pp′(t) = ξp(t) + Sp(t)(p′ − p). If we extend this estimate to
all parameters p′ in P , we get the following estimate for the reachable set Rt(P):
R̂p

t (P) =
⋃

p′∈P ξ̂p′(t) = {ξp − Sp(t)p}⊕Sp(t)P . If the approximation with one
trajectory is too coarse, it can be improved by refining P into smaller sets until
an error tolerance factor is satisfied [DKR]. The process is illustrated in Fig.1. It
converges quadratically, although the error cannot be formally bounded in general
(as is the case with numerical simulation). In [DKR], a local iterative refinement
of the parameters boxes for which the reachable set intersects a bad set is used to
synthesize sets of trajectories satisfying a safety property.
1 See https://computation.llnl.gov/casc/sundials/main.html
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Fig. 1. Approximation of the reachable set for a Van der Pol equation using one tra-
jectory, four trajectories, and an automatic refinement produced by the reachability
routine of Breach with control of the error

Fig. 2. Top: main window of Breach, manipulating parameter sets and properties. Each
cross in the plot is for a given parameter vector and all parameters with the same color
satisfy the same set of properties. Bottom: Trajectories explorer window. Each plot
can display either the evolution of the state variables, their sensitivities or the robust
satisfaction of MITL formulas. All parameters can be modified and the trajectories
recomputed on-the-fly.

Property-driven parameters synthesis. Recently, we implemented an extension
to support formulas of Signal Temporal Logic (STL), an analog extension of the
Metric Interval Temporal Logic (MITL) which has the following core grammar:

ϕ := p | ¬ϕ | ϕ ∧ ϕ | ϕ1UIϕ (3)

The specificity of STL lies in the nature of its atomic predicates p, which
are expressions of the form y(x0, x1, . . . , xn, t) > 0. A parser allows to specify
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textually formulas with a richer grammar. E.g., a valid expression is (x0[t]>0)=>
eventually [1,2] ((x1[t]-1>0) until [1,2](-x2[t]-.1>0)). Breach is
able to monitor the Boolean satisfaction as well as the quantitative satisfac-
tion. For p, the former is given by the sign of y (similarly to the tool AMT2) and
the latter is given by |y|. For a compound formula the semantics follows that of
[FP07]. We are not aware of other tools implementing this feature, except for
TaLiRo3 which Breach outperformed in our experiments. In particular, Breach
does not suffer from the memory explosion problem reported in the user guide
of Taliro for larger formulas. The computational time is experimentally linear
in the size of the trace and the size of the formula, which is a light overhead to
the cost of the simulation (see Breach website for examples and data). The use
of sensitivity analysis for properties other than safety is still a work in progress,
but Breach provides heuristics to find separations between parameter regions
satisfying different properties. The GUI is shown on Fig. 2. In addition to defin-
ing systems and interfacing the above mentioned methods, it allows to explore
the behaviors and monitor their properties by tuning the parameters on-the-fly.

4 Discussion and Future Work

Breach is still in very active development. For the moment, the GUI allows to
specify models as general nonlinear ODES. For hybrid systems, the user still has
to provide write small portions of C code to implement transitions (an example is
given on the web site). Also, although in [DKR] we demonstrated the feasibility
of analysing Simulink models with Breach , this feature still need some work in
particular when the system is hybrid.
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1 Introduction

JTLV1 is a computer-aided verification scripting environment offering state-of-the-art
Integrated Developer Environment for algorithmic verification applications. JTLV may
be viewed as a new, and much enhanced TLV [18], with Java rather than TLV-basic
as the scripting language. JTLV attaches its internal parsers as an Eclipse editor, and
facilitates a rich, common, and abstract verification developer environment that is im-
plemented as an Eclipse plugin.

JTLV allows for easy access to various low-level BDD packages with a high-level Java
programming environment, without the need to alter, or even access, the implementation
of the underlying BDD packages. It allows for the manipulation and on-the-fly creation of
BDD structures originating from various BDD packages, whether existing ones or user-
defined ones. In fact, the developer can instantiate several BDD managers, and alternate
between them during run-time of a single application so to gain their combined benefits.

Through the high-level API the developer can load into the Java code several SMV-
like modules representing programs and specification files, and directly access their
components. The developer can also procedurally construct such modules and spec-
ifications, which enables loading various data structures (e.g., statecharts, LSCs, and
automata) and compile them into modules.

JTLV offers users the advantages of the numerous tools developed by Java’s ecosys-
tem (e.g., debuggers, performance tools, etc.). Moreover, JTLV developers are able to
introduce software methodologies such as multi-threading, object oriented design for
verification algorithms, and reuse of implementations.

2 JTLV: Architecture

JTLV, described in Fig. 1, is composed of three main components, the API, the Eclipse
Interface, and the Core.
� This research was supported by the John von Neumann Minerva Center for the Development

of Reactive Systems at the Weizmann Institute of Science, and by an Advanced Research Grant
awarded to David Harel from the European Research Council (ERC) under the European Com-
munity’s 7th Framework Programme (FP7/2007-2013). This material is based on work sup-
ported by the National Science Foundation, while Lenore Zuck was working at the Foundation.
Any opinion, finding, and conclusions or recommendations expressed in this article are those
of the author and do not necessarily reflect the views of the National Science Foundation.

1 JTLV homepage: http://jtlv.ysaar.net
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Fig. 1. JTLV Architecture

API. In the following we present a set of sample functionalities. An exhaustive list of
the API is in [20]

– TLV-like ability to procedurally create and manipulate BDD’s on-the-fly, a useful
feature when dealing with abstractions and refinements ([1]);

– seamlessly alternate BDD packages at run-time (due to the factory design pattern
[22]);

– save (and load) BDDs to (and from) the file system;
– load modules written in NuSMV-like language enriched with Cadence SMV-like

parsing of loops and arrays of processes;
– procedurally access module’s fields as well as its BDD’s;
– perform basic functionalities on a module, e.g., compute successors or predeces-

sors, feasible states, shortest paths from one state to another, etc.;
– procedurally create new modules and add, remove, and manipulate fields ;
– load temporal logic specification files;
– procedurally create and access the specification objects.

JTLV supports threads, that are Java native threads coupled with dedicated BDD mem-
ory managers. Each thread can execute freely, without dependencies or synchronization
with other threads. To allow for BDD-communication among threads, JTLV provides a
low-level procedure that copies BDDs from one BDD manager into another. Our experi-
ence has shown that for applications that accommodate compositionality, an execution
using threads outperforms its sequential counterparts.

Assisted by the API, the user can implement numerous types of verification algo-
rithms, some mentioned in the next section. It also contains the OpenVDL (Open Veri-
fication Developer Library), which is a collection of known implementations enabling
their reuse.

Eclipse User Interface. Porting the necessary infrastructure into Java enables plugging
JTLV into Eclipse, which in turn facilitates rich new editors to module and specification
languages (see website for snapshots). A new JTLV project automatically plugs-in all
libraries. JTLV project introduces new builders that take advantage of the underlying
parsers, and connects them to these designated new editors.

Core. The core component encapsulates the BDD implementation and parses the mod-
ules and specifications. Through the JAVA-BDD ([22]) factory design pattern, a devel-
oper can use a variety of BDD packages (e.g., CUDD [21], BUDDY [14], and CAL [19]),
or design a new one. This also allows for the development of an application regardless
of the BDD package used. In fact, the developer can alternate BDD packages during



JTLV: A Framework for Developing Verification Algorithms 173

run-time of a single application. The encapsulation of the memory management sys-
tem allows JTLV to easily instantiate numerous BDD managers so to gain the combined
benefits of several BDD packages simultaneously. This is enabled by APIs that allow for
translations among BDD’s generated by different packages, so that one can apply the
functionality of a BDD-package on a BDD generated by another package.

3 Conclusion, Related, and Future Work

We introduced JTLV, a scripting environment for developing algorithmic verification
applications. JTLV is not a dedicated model checker (e.g. [2,13,10]) – its goal is to
provide for a convenient development environment, and thus cannot be compared to a
particular model checkers. Yet, as shown in Table 1, our implementation of invariance
checking at times outperforms similar computations in such model checkers.

Table 1. Performance results (in sec.) of JTLV, compared to other model checkers

Check Invariant Muxsem 56 Bakery 7 Szymanski 6

JTLV 11 39.9 34.4
TLV 21.4 36.2 19

NuSMV 18.1 37.8 19.4
Cadence SMV 24.6 53.6 36.7

We are happy to report that JTLV already has a small, and avid, user community, in-
cluding researchers from Imperial College London [15], New York University [5,4,6],
Bell Labs Alcatel-Lucent [5,4,6], Weizmann Institute [8,9], Microsoft Research Cam-
bridge, RWTH-Aachen, California Institute of Technology [24,23], GRASP Labora-
tory University of Pennsylvania [7], and University of California Los Angeles. In these
works JTLV is applied to: Streett and Rabin Games; Synthesis of GR(k) specifications;
Compositional multi-theaded model checking; Compositional LTL model checking;
Verifying heap properties; Automata representation of LSCs and Statecharts; Synthe-
sis of LSCs and of hybrid controllers.

The JTLV library (see [20]) includes numerous model checking applications, includ-
ing LTL and CTL* model checking [12], fair-simulation [11], a synthesis algorithm [17],
Streett and Rabin games [16], compositional model checking ([3]), and compositional
multi threaded model checking [6]. The API can also facilitate the reduction of other mod-
els into the verification framework (see, e.g., [8] where LSCs are reduced to automata).

We are currently developing a new thread-safe BDD package to allow concurrent ac-
cess from multiple clients. Integrating a thread-safe BDD package into JTLV will entail
a new methodology, which will streamline the development of multi-threaded symbolic
algorithms. This calls for an in-depth overview of many symbolic applications. We are
also in the process of developing new interfaces to non-BDD managers

References

1. Balaban, I., Fang, Y., Pnueli, A., Zuck, L.D.: IIV: An Invisible Invariant Verifier. In: Etessami,
K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 408–412. Springer, Heidelberg
(2005)



174 A. Pnueli, Y. Sa’ar, and L.D. Zuck

2. Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.: NuSMV: A new symbolic model
verifier. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 495–499.
Springer, Heidelberg (1999)

3. Cohen, A., Namjoshi, K.S.: Local proofs for linear-time properties of concurrent programs.
In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 149–161. Springer, Heidel-
berg (2008)

4. Cohen, A., Namjoshi, K.S., Sa’ar, Y.: A dash of fairness for compositional reasoning. In:
Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 543–557. Springer,
Heidelberg (2010)

5. Cohen, A., Namjoshi, K.S., Sa’ar, Y.: Split: A compositional LTL verifier. In: Touili, T.,
Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 558–561. Springer, Heidelberg
(2010)

6. Cohen, A., Namjoshi, K.S., Sa’ar, Y., Zuck, L.D., Kisyova, K.I.: Parallelizing a symbolic
compositional model-checking algorithm (in preparation) (2010)

7. Gazit, H.K., Ayanian, N., Pappas, G., Kumar, V.: Recycling controllers. In: IEEE Conference
on Automation Science and Engineering, Washington (August 2008)

8. Harel, D., Maoz, S., Segall, I.: Using automata representations of LSCs for smart play-out
and synthesis (in preparation) (2010)

9. Harel, D., Segall, I.: Synthesis from live sequence chart specifications (in preparation) (2010)
10. Holzmann, G.: Spin model checker, the: primer and reference manual. Addison-Wesley Pro-

fessional, Reading (2003)
11. Kesten, Y., Piterman, N., Pnueli, A.: Bridging the gap between fair simulation and trace

inclusion. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 381–392.
Springer, Heidelberg (2003)

12. Kesten, Y., Pnueli, A., Raviv, L., Shahar, E.: LTL model checking with strong fairness. For-
mal Methods in System Design (2002)

13. Cadence Berkeley Lab. Cadence SMV (1998), http://www-cad.eecs.berkeley.
edu/kenmcmil/smv

14. Nielson, J.L.: Buddy, http://buddy.sourceforge.net
15. Piterman, N.: Suggested projects (2009), http://www.doc.ic.ac.uk/˜npiterma/

projects.html
16. Piterman, N., Pnueli, A.: Faster solutions of rabin and streett games. In: LICS, pp. 275–284

(2006)
17. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: Emerson, E.A.,

Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer, Heidelberg
(2005)

18. Pnueli, A., Shahar, E.: A platform for combining deductive with algorithmic verification.
In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 184–195. Springer,
Heidelberg (1996)

19. Ranjan, R.K., Sanghavi, J.V., Brayton, R.K., Vincentelli, A.S.: High performance BDD pack-
age based on exploiting memory hierarchy. In: DAC’96, June 1996, pp. 635–640 (1996)

20. Sa’ar, Y.: JTLV – web API, http://jtlv.ysaar.net/resources/javaDoc/
API1.3.2/

21. Somenzi, F.: CUDD: CU Decision Diagram package (1998), http://vlsi.colorado.
edu/˜fabio/CUDD/

22. Whaley, J.: JavaBDD, http://javabdd.sourceforge.net
23. Wongpiromsarn, T., Topcu, U., Murray, R.M.: Automatic synthesis of robust embedded con-

trol software. submitted to AAAI’10 (2010)
24. Wongpiromsarn, T., Topcu, U., Murray, R.M.: Receding horizon control for temporal logic

specifications. In: HSCC’10 (2010)

http://www-cad.eecs.berkeley.edu/kenmcmil/smv
http://www-cad.eecs.berkeley.edu/kenmcmil/smv
http://buddy.sourceforge.net
http://www.doc.ic.ac.uk/~npiterma/projects.html
http://www.doc.ic.ac.uk/~npiterma/projects.html
http://jtlv.ysaar.net/resources/javaDoc/API1.3.2/
http://jtlv.ysaar.net/resources/javaDoc/API1.3.2/
http://vlsi.colorado.edu/~fabio/CUDD/
http://vlsi.colorado.edu/~fabio/CUDD/
http://javabdd.sourceforge.net


Petruchio: From Dynamic Networks to Nets

Roland Meyer1 and Tim Strazny2

1 LIAFA & CNRS
2 University of Oldenburg

Abstract. We introduce Petruchio, a tool for computing Petri net
translations of dynamic networks. To cater for unbounded architectures
beyond the capabilities of existing implementations, the principle fixed-
point engine runs interleaved with coverability queries. We discuss
algorithmic enhancements and provide experimental evidence that
Petruchio copes with models of reasonable size.

1 Introduction

Petruchio computes Petri net representations of dynamic networks, as they
are the basis to automatic-verification efforts [19]. As opposed to static net-
works where the topology is fixed, in dynamic networks the number of compo-
nents as well as connections changes at runtime. Whereas earlier tools covered
only finite state models [6,23,9], Petruchio features the unbounded intercon-
nection topologies needed when tackling software. Theoretically, the implemen-
tation rests upon recent insights on the relationship between dynamic networks
and Petri nets [15,14]. Practically, the heart of our algorithm is an unconven-
tional fixed-point computation interleaved with coverability queries.

Run on a series of benchmarks, we routinely translate systems of two hundred
lines of π-calculus code into Petri nets of around 1k places within seconds. The
computability threshold lies around 90k transitions, which is in turn beyond
the capabilities of latest net verification tools [13]. A concurrency bug found
in an automated manufacturing system and automatic verification of the gsm
benchmark underline the practicability of our tool [16].

Related Work. There has been recent interest in translation-based network
verification [4,3,16], Petruchio puts these efforts into practice. Besides, the
well-structured transition system framework [2,5,8,1,24] as well as abstraction-
based verification techniques [21,20,11,22] have been applied.

2 Foundations behind Petruchio

Online banking services are typical dynamic networks where failures have severe
consequences and thus verification is required. We model this example in the
π-calculus and for simplicity explain the implementation of the Petri net trans-
lation from [14]. Based on similar algorithmic ideas, the fixed-point engine in
Petruchio also handles the more involved translations from [3,15].
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S(url) = url(y).(y〈bal〉 | S(url))

C (url) = νip.url〈ip〉.ip(dat).C (url)

url
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C C
ip1 ip2

T T

S(url)

E (url)

C (url)
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Fig. 1. π-calculus model Bnk of an online banking service (top left) and a reachable
state represented as interconnection topology (bottom left). The structural semantics
NS [[Bnk ]] is depicted to the right, CON abbreviates νip.(ip(dat).C (url) | ip〈bal〉).

The overall functionality of the banking system Bnk is a login of the client,
which spawns a new thread that displays the account balance. We detail the
π-calculus model in Figure 1. The bank server S (url) is located at some url
and ready to receive the ip-address of a customer, url(y). Upon reception, a new
thread is spawned (parallel composition | ). It transmits the balance, y〈bal〉, and
terminates. The server itself is immediately ready for new requests. To guarantee
proper interaction, the client sends its private (indicated by a νip quantifier) ip-
address url〈ip〉 and waits on this channel for data. We assume an environment
E (url) that generates further customers.

Translation. Although the banking service exhibits an unbounded number of
connection topologies, there exists a finite basis of connection fragments they
are built from. Fragments are maximal subgraphs induced by private channels
and can be determined in linear time by minimising the scopes of the quanti-
fiers. For instance, a private connection between client and thread is fragment
νip.(ip(dat).C (url) | ip〈bal 〉). It is present twice in the example state in Figure 1.

For verification purposes, the structural semantics translates dynamic net-
works into Petri nets. Every reachable fragment yields a place, communications
inside and between fragments determine the transitions, and the initial state
is the decomposition of the system’s initial state into fragments. The running
example is represented by the Petri net NS [[Bnk ]] in Figure 1.

An isomorphism between the transition systems, Sys =iso NS [[Sys ]], proves
the net representation suitable for model checking purposes. In fact, it is a lower
bound on the information required for verifying topological properties. This fol-
lows from a full abstraction result wrt. syntactic equivalence, Sys ≡ Sys ′ iff
NS [[Sys ]] = NS [[Sys ′]], and the descriptive power of topological logics [7].

3 Algorithmic Aspects

The declarative definition of the structural semantics leaves the problem of its
computability open. Taking a classical view from denotational semantics, we un-
derstand it as an unconventional least fixed-point on a particular set of nets. A
dynamic network Sys gives rise to a function φSys on nets. As an example, con-
sider the subnetN shown in the box in Figure 1. An application φBnk (N) extends
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it by the communication between client and server (dark). The least fixed-point
of such a φSys is in fact the structural semantics, NS [[Sys ]] = lfp(φSys ). Thanks
to continuity, we can compute it by iterating the function on the empty net,
lfp(φSys ) = �{φn

Sys (N∅) � n ∈ N}. The algorithm terminates precisely on sys-
tems with a finite structural semantics. They are completely characterised by
the existence of a finite basis of fragments [14].

Leading yardstick to a practical implementation is the efficient computation
of extensions and the quick insertion of places.

Computing Extensions. An application of function φSys determines the set
of transitions the net has to be extended with. Transitions between fragments
rely on pairs (F,G) of potential communication partners. Hashing the leading
communication channels, they can be determined in constant time. Each such
pair then needs a semantic confirmation of F and Gs simultaneous reachability.
We reduce it to a coverability problem in the Petri net built so far and implement
strategies to avoid unnecessary queries and speed-up coverability checks.

To reduce the number of checks, Petruchio augments the breadth-first fixed-
point computation with dedicated depth-first searches. Whenever fragments F
and G are found simultaneously markable, we build their internal closure cl(F ).
It consists of all fragments reachable from F with internal communications. By
definition, containment in the internal closure is a semantic confirmation for all
potential communication partners F ′ ∈ cl(F ) and G′ ∈ cl(G). Their transitions
can be added without further coverability queries.

Despite the advantage of incremental computability [12], Karp and Miller
graphs turned out impractical for coverability checks due to their size. Instead,
we perform independent backwards searches [2] that we prune with knowledge
about place bounds. These bounds are derived from place invariants, and we
currently use an incomplete cubic time algorithm. Our experiments show that
already non-optimal bounds dramatically speed-up the backwards search.

Inserting Places. Every newly discovered fragment F in φSys (N) has to be
compared for syntactic equivalence ≡ with the places in the original net N . Since
these checks F ≡ G are graph isomorphism complete [10], we implemented a
technique in Petruchio to minimise their number.

We abstract fragments to so-called signatures sig(F ). As equality of these
signatures is necessary for syntactic equivalence, they allow us to quickly refute
non-equivalent pairs F �≡ G. Technically, the theory rests upon functions α
that are invariant under syntactic equivalence, F ≡ G implies α(F ) = α(G). A
signature is a combination of these indicator values, sig(F ) := α(F ).β(F ) . . . We
use ten values, ranging from number of free names to sequences of input and
output actions. All of them are computable in linear time.

As all indicator values stem from totally ordered domains, the lexicographic
order on signatures is total. When a new fragment is inserted, we can thus rely
on a (logarithmic) binary search for candidates sig(F ) = sig(G) that need to be
checked for syntactic equivalence. The check itself is implemented in Petruchio

and we provide the option to hand over larger instances to a graph isomorphism
solver that we integrated in black-box fashion [10,17].
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Experimental Evaluation. The implementation encapsulates coverability
checker and fixed-point engine into separate
threads that run loosely coupled. We demon-
strate its efficiency on the gsm handover proce-
dure [18] and an automatic manufacturing sys-
tem [16]. Note that HTSP with a parametric

Model LOC |P| |T| |E| t[s]
GSM 84 131 263 526 1.55
HTSP 194 903 1103 3482 3.24
HTSC 195 1912 3515 11881 15.7

number of transport vehicles yields a smaller net than the concrete model HTSC

with six of them, underpinning the need for unbounded verification techniques.
For each model, we give loc, Petri net size (places, transitions, edges), and
compile-time on an AMD Athlon 64 X2 Dual Core with 2.5 GHz.
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Abstract. We present an algorithm that given a Discrete Time Linear
Hybrid System H returns a correct-by-construction software implemen-
tation K for a (near time optimal) robust quantized feedback controller
for H along with the set of states on which K is guaranteed to work cor-
rectly (controllable region). Furthermore, K has a Worst Case Execution
Time linear in the number of bits of the quantization schema.

1 Introduction

Software generation from models and formal specifications forms the core of
model based design of embedded software [18]. This approach is particularly
interesting for control systems since in such a case system specifications are
much easier to define than the control software behavior itself.

A control system consists of two subsystems (forming the closed loop system):
the controller and the plant. In an endless loop the controller measures outputs
from and sends commands to the plant in order to drive it towards a given
goal. In our setting the controller consists of software implementing the control
law. System requirements are typically given as specifications for the closed loop
system. Control engineering techniques are used to design the control law (i.e.
the functional specifications for the control software) from the closed loop system
specifications. Software engineering techniques are then used to design control
software implementing a given control law.

Unfortunately, when the plant model is a hybrid system [4,1,3] existence of
a control law is undecidable (e.g. see [17]) even for linear hybrid automata.
This scenario is further complicated by the quantization process always present
in software based control systems. Namely, measures from sensors go through
an AD (analog-to-digital) conversion before being sent to the control software
and commands from the control software go through a DA (digital-to-analog)
conversion before being sent to plant actuators. Furthermore, typically a robust
control is desired, that is, one that meets the given closed loop requirements
notwithstanding (nondeterministic) variations in the plant parameters.

As for hybrid systems, no approach is available for the automatic synthesis
of robust quantized feedback control laws and of their software implementation.
This motivates the focus of our paper.
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c© Springer-Verlag Berlin Heidelberg 2010



Synthesis of Quantized Feedback Control Software for Discrete Time 181

Our Main Contributions. A Discrete Time Linear Hybrid System (DTLHS)
is a discrete time hybrid system whose dynamics is defined as the logical con-
junction of linear constraints on its continuous as well as discrete variables.

We present an effective algorithm that, given a DTLHS model H for the plant
and a quantization schema (i.e. how many bits we use for AD conversion), returns
a pair (K, R), where: K is a correct-by-construction software implementation
(C language in our case) of a (near time optimal) Quantized Feedback Controller
(QFC) for H and R is an OBDD [10] representation of the set of states (con-
trollable region) on which K is guaranteed to meet the closed loop requirements.
Furthermore,K is robust with respect to nondeterministic variations in the plant
parameters and has a Worst Case Execution Time (WCET) guaranteed to be
linear in the number of bits of the quantization schema.

We implemented our algorithm on top of the CUDD package and of the GLPK
Mixed Integer Linear Programming (MILP) solver and present experimental re-
sults on using our tool to synthesize robust QFCs for a widely used mixed-mode
analog circuit: the buck DC-DC converter (e.g. see [26]).

Analog DC-DC converters are a vital part of many mission (e.g. satellites)
or safety (e.g. aircrafts) critical applications. However the ever increasing de-
mand for energy efficiency and easy reconfigurability makes fully software based
switching converters (e.g., as in [26]) a very attractive alternative to analog ones.
Unfortunately, lack of formal reliability assessment (in order to bound the failure
probability to 10−9) limits the deployment of software based switching convert-
ers in safety critical applications. Reliability analysis for switching converters
using an analog control schema has been studied in [13]. For software based con-
verters, carrying out such a reliability analysis entails formal verification of the
control law as well as of its software implementation. The above considerations
make the buck DC-DC converter a very interesting (and challenging) example
for automatic synthesis of correct-by-construction control software.

Our experimental results show that within about 20 hours of CPU time and
within 200MB of RAM we can synthesize (K, R) as above for a 10 bit quantized
buck DC-DC converter.

Related Work. Synthesis of Quantized Feedback Control Laws for linear sys-
tems has been widely studied in control engineering (e.g. see [14]). However, to
the best of our knowledge, no previously published paper addresses synthesis
of Quantized Feedback Control Software for DTLHSs. Indeed, our work differs
from previously published ones in the following aspects: (1) we provide a tool for
automatic synthesis of correct-by-construction control software (rather than de-
sign methodologies for the control law); (2) we synthesize robust control software
(thus encompassing quantization) whereas robust control law design techniques
do not take into account the software implementation; (3) in order to generate
provably correct software, we assume a nondeterministic (malicious) model for
quantization errors rather than a stochastic one, as usually done in control engi-
neering; (4) our synthesis tool also returns the controllable region, that is the set
of states on which the synthesized control software is guaranteed to work cor-
rectly (this is very important for Fault Detection Isolation and Recovery, FDIR,
e.g. see [21]). In the following we discuss some related literature.
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Quantization can be seen as a form of abstraction, where the abstract state
space and transitions are defined by the number of bits of AD conversion.
Abstraction for hybrid systems has been widely studied. For example, see
[25,2,20,19] and citations thereof. Note however that all published literature
on abstraction focuses on designing abstractions to support verification or con-
trol law design. In our case instead, the abstraction is fully defined by the AD
conversion schema and our focus is on devising techniques to effectively remove
abstract transitions in order to counteract the nondeterminism (information loss)
stemming from the quantization process.

Control synthesis for Timed Automata (TA) [4], Linear Hybrid Automata
(LHA) [1,3] as well as nonlinear hybrid systems has been extensively studied.
Examples are in [22,11,6,30,16,28,5,9,8] and citations thereof. We note however
that all above papers address design of control laws and do not take into account
the quantization process, that is, they assume exact (i.e. real valued) state mea-
sures. Here instead we address design of quantized feedback control software.

Correct-by-construction software synthesis in a finite state context has been
studied in [7,29,27,12]. The above approaches cannot be directly used in our
context since they do not account for continuous state variables.

2 Background

Unless otherwise stated each variable x ranges on a known bounded interval Dx

either of the reals or of the integers (discrete variables). We denote with sup(x)
(inf(x)) the sup (inf) of Dx. Boolean variables are discrete variables ranging on
the set B = {0, 1}. We denote with X = [x1, . . . xn] a finite sequence (list) of
variables, with ∪ list concatenation and with DX =

∏
x∈X Dx the domain of X .

A valuation X∗ ∈ DX over a list of variables X is a function v that maps each
variable x ∈ X to a value v(x) in Dx. We may use the same notation to denote
a variable (a syntactic object) and one of its valuations. The intended meaning
will be always clear from the context. To clarify that a variable [valuation] x is
real (integer, boolean) valued we may write xr (xd, xb). Analogously Xr (Xd,
Xb) denotes the sequence of real (integer, boolean) variables [valuations] in X .
If x is a boolean variable [valuation] we write x̄ for (1 − x).

A linear expression (overX) is a linear combination with real coefficients of vari-
ables in X . A constraint (over X) is an expression of the form α �� b where α is a
linear expression overX , �� is one of≤,≥, = and b is a real constant. A constraint is
a predicate onX . IfA(X) andB(X) are predicates onX , then (A(X)∧B(X)) and
(A(X)∨B(X)) are predicates on X. A conjunctive predicate is just a conjunction
of linear constraints. A satisfying assignment to P (X) is a valuationX∗ such that
P (X∗) = 1. Abusing notation we may denote with P the set of satisfying assign-
ments to P (X). Given a predicate P (X) and a fresh boolean variable y �∈ X , the
if-then predicate y → P (X) [ȳ → P (X)] denotes the predicate ((y = 0) ∨ P (X))
[((y = 1) ∨ P (X))]. In our setting (bounded variables), for any predicate P (X)
there exists a sequence Z of fresh boolean variables and a conjunctive predicate
Q(Z,X) s.t. ∀X [P (X) ⇐⇒ ∃Z Q(Z,X)] (see [23] for details). Thus, any if-then
predicate can be transformed into a conjunctive predicate. Accordingly, we will
regard and use if-then predicates as conjunctive predicates.
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A Mixed Integer Linear Programming (MILP) problem with decision vari-
ables X is a tuple (max, J(X), A(X)) where: X is a list of variables, J(X)
(objective function) is a linear expression on X and A(X) (constraints) is a con-
junctive predicate on X . A solution to (max, J(X), A(X)) is a valuation X∗ s.t.
A(X∗) holds and, for any valuation Ξ, (A(Ξ) → (J(Ξ) ≤ J(X∗))). We write
(min, J(X), A(X)) for (max,−J(X), A(X)). A feasibility problem is a MILP
problem of the form (max, 0, A(X)). We write also A(X) for (max, 0, A(X)).

A Labeled Transition System (LTS) is a tuple S = (S,A, T ) where: S is a
(possibly infinite) set of states, A is a (possibly infinite) set of actions, T :
S × A × S → B is the transition relation of S. Let s ∈ S and a ∈ A. We
denote with: Adm(S, s) the set of actions admissible in s, that is Adm(S, s) =
{a ∈ A | ∃s′T (s, a, s′)} and with Img(S, s, a) the set of next states from s via
a, that is Img(S, s, a) = {s′ ∈ S | T (s, a, s′)}. A run or path for S is a sequence
π = s(0)a(0)s(1)a(1)s(2)a(2) . . . of states s(t) and actions a(t) such that ∀t ≥ 0
T (s(t), a(t), s(t+1)). The length |π| of a run π is the number of actions in π. We
denote with π(S)(t) the t-th state element of π, and with π(A)(t) the t-th action
element of π. That is π(S)(t) = s(t), and π(A)(t) = a(t).

3 Discrete Time Linear Hybrid Systems

In this section we introduce Discrete Time Linear Hybrid Systems (DTLHS).

Definition 1. A Discrete Time Linear Hybrid System (DTLHS) is a tuple H =
(X, U, Y, N) where:

– X = Xr∪Xd is a finite sequence of real (Xr) and discrete (Xd) present state
variables. We denote with X ′ the sequence of next state variables obtained
by decorating with ′ all variables in X.

– U = U r ∪ Ud is a finite sequence of input variables.
– Y = Y r ∪ Y d is a finite sequence of auxiliary variables. Auxiliary variables

are typically used to model modes (e.g., from switching elements such as
diodes) or uncontrollable inputs (e.g., disturbances).

– N(X,U, Y,X ′) is a conjunctive predicate over X ∪ U ∪ Y ∪X ′ defining the
transition relation (next state) of the system.

Note that in our setting (bounded variables) any predicate can be transformed
into a conjunctive predicate (Sect. 2). Accordingly, in Def. 1, without loss of gen-
erality we focused on conjunctive predicates in order to simplify our exposition.

The dynamics of a DTLHS H = (X , U , Y , N) is defined by LTS(H) = (DX ,
DU , N̄) where: N̄ : DX × DU × DX → B is a function s.t. N̄(s, a, s′) =
∃ y ∈ DY N(s, a, y, s′). A state for H is a state for LTS(H) and a run (or path)
for H is a run for LTS(H) (Sect. 2).

Example 1. Let H = ({x}, {u},∅, N) with Dx = [−2.5, 2.5], Du = {0, 1}, and
N(x, u, x′) = [u → x′ = αx] ∧ [u → x′ = βx] with α = 1

2 and β = 3
2 . When

Y = ∅ (as here) for the sake of simplicity we omit it from N arguments.
Adding nondeterminism to H allows us to synthesize robust controllers. For

example, variations in the parameter α can be modelled with a tolerance ρ ∈ [0, 1]
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(e.g., ρ = 0.5) for α. This replaces N with: Nρ = [u → x′ ≤ (1 + ρ)αx] ∧
[u → x′ ≥ (1 − ρ)αx] ∧ [u → x′ = βx]. Suitable control synthesis on Hρ =
({x}, {u},∅, Nρ) will yield a robust (up to ρ) controller for H.

Example 2. The buck DC-DC converter (right part of Fig. 1) is a mixed-
mode analog circuit converting the DC input voltage (Vi in Fig. 1) to a
desired DC output voltage (vO in Fig. 1). The typical software based ap-
proach (e.g. see [26]) is to control the switch u in Fig. 1 (typically im-
plemented with a MOSFET) with a microcontroller. Designing the software
to run on the microcontroller to properly actuate the switch is the con-
trol design problem for the buck DC-DC converter in our context. The cir-
cuit in Fig. 1 can be modeled as a DTLHS H = (X , U , Y , N) with:
X = Xr = [iL, vO], U = Ud = [u], Y = Y r ∪ Y d with Y r = [iu, vu,
iD, vD] and Y d = [q]. H auxiliary variables Y stem from the constitu-
tive equations of the switching elements (i.e. the switch u and the diode D
in Fig. 1). The transition relation N(X,U, Y,X ′) for H is shown in Fig. 1
(left) where we use a discrete time model with sampling time T (writing
x′ for x(t + 1)) and model a tolerance ρ = 0.25 (25%) on Vi values. In
Fig. 1 (left), constants ai,j , bi,j depend on the circuit parameters R, rL, rC , L, C
and algebraic constraints (i.e. constraints not involving next state variables)
stem from the constitutive equations of the switching elements (see [23] for
details).

N(X,U, Y,X ′) = ((iL′ = (1 + Ta1,1)iL + Ta1,2vO +
Tb1,1vD)
∧ (vO

′ = Ta2,1iL + (1 + Ta2,2)vO + Tb2,1vD)
∧ (vu − vD ≤ (1 + ρ)Vi) ∧ (vu − vD ≥ (1− ρ)Vi)
∧ (iD = iL − iu) ∧ (q → vD = 0) ∧ (q → iD ≥ 0)
∧ (q̄ → vD ≤ 0) ∧ (q̄ → vD = Roff iD)
∧ (u→ vu = 0) ∧ (ū→ vu = Roff iu))
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Fig. 1. Buck DC-DC converter

4 Quantized Feedback Control Problem for DTLHS

We define the Feedback Control Problem for LTSs (Def. 2) and for DTLHSs
(Def. 4). On such a base we define the Quantized Feedback Control Problem for
DTLHSs (Def. 6).

We begin by extending to (possibly infinite) LTSs the definitions in [29,12]
for finite LTSs. In what follows, let S = (S,A, T ) be an LTS, I, G ⊆ S be,
respectively, the initial and goal sets of S.

Definition 2. A controller for S is a function K : S×A→ B s.t. ∀s ∈ S, ∀a ∈
A, if K(s, a) then ∃s′ T (s, a, s′). Dom(K) denotes the set of states for which at
least a control action is enabled. Formally, Dom(K) = {s ∈ S | ∃a K(s, a)}. S(K)

denotes the closed loop system, that is the LTS (S,A, T (K)), where T (K)(s, a, s′)
= T (s, a, s′) ∧K(s, a). A control problem for S is a triple (S, I, G).
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A controller for S (Def. 2) is used to restrict S behavior so that all states in
the initial region (I) will reach in one or more steps the goal region (G). In the
following, we formalize such a concept by defining strong and weak solutions to
an LTS control problem.

We call a path π fullpath [7] if either it is infinite or its last state π(S)(|π|)
has no successors. We denote with Path(s) the set of fullpaths starting in state
s, i.e. the set of fullpaths π such that π(S)(0) = s. Observe that Path(s) is never
empty, since it contains at least the path of length 0 containing only state s.

Given a path π in S, J(S, π,G) denotes the unique n > 0, if it exists, s.t.
[π(S)(n) ∈ G]∧ [∀ 0 < i < n.π(S)(i) �∈ G], +∞ otherwise. We require n > 0 since
our systems are nonterminating and each controllable state (including a goal
state) must have a path of positive length to a goal state. The worst case dis-
tance (pessimistic view) of a state s from the goal region G is Jstrong(S, G, s) =
sup{J(S, π,G) | π ∈ Path(s)}. The best case distance (optimistic view) of a state
s from the goal region G is Jweak(S, G, s) = inf{J(S, π,G) | π ∈ Path(s)}.

Definition 3. A strong [weak] solution to a control problem P = (S, I, G)
is a controller K for S, such that I ⊆ Dom(K) and for all s ∈ Dom(K),
Jstrong(S(K), G, s) [Jweak(S(K), G, s)] is finite.

Example 3. Let S0 [S1] be the LTS which transition relation consists of the
continuous [all] arrows in Fig. 2 (left). Let Î = {−1, 0, 1} and Ĝ = {0}. Then,
K̂(ŝ, û) ≡ [ŝ �= 0 ⇒ û = 0] is a strong solution to the control problem (S0, Î, Ĝ)
and a weak solution to (S1, Î, Ĝ).

Remark 1. Note that if K is a strong solution to (S, I, G) and G ⊆ I (as it is
usually the case in control problems) then all paths starting from Dom(K) (⊆ I)
will touch G infinitely often (stability).

A DTLHS control problem is a triple (H, I, G) where H is a DTLHS and
(LTS(H), I, G) is an LTS control problem. For DTLHSs we restrict ourselves to
control problems where I and G can be represented as conjunctive predicates.
From [17] it is easy to show that DTLHS control problems are undecidable [23].
For DTLHS control problems usually robust controllers are desired. That is,
controllers that, notwithstanding nondeterminism in the plant (e.g. due to pa-
rameter variations), drive the plant state to the goal region. For this reason,
and to counteract the nondeterminism stemming from the quantization process,
we focus on strong solutions. Furthermore, to accommodate quantization errors,
always present in software based controllers, it is useful to relax the notion of
control solution by tolerating an (arbitrarily small) error ε on the continuous
variables. This leads to the definition of ε-solution. Let ε be a nonnegative real
number, W r =

∏n
i=1W

r
i ⊆ Dr

X , W d =
∏m

i=1W
d
i ⊆ Dd

X and W = W r × W d ⊆
Dr

X ×Dd
X . The ε-relaxation of W is the set (ball of radius ε) Bε(W )= {(z1, . . . zn,

q1, . . . qm) | (q1, . . . qm) ∈ W d and ∀i ∈ {1, . . . n} ∃ xi ∈W r
i s.t. |zi − xi| ≤ ε}.

Definition 4. Let (H, I, G) be a DTLHS control problem and ε be a nonnegative
real number. An ε-solution to (H, I, G) is a strong solution to the LTS control
problem (LTS(H), I,Bε(G)).
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Example 4. Let P = (H, I, G), H as in Ex. 1, I = Dx and G = {0} (represented
by conjunctive predicate x = 0). Control problem P has no solution (because
of the Zeno phenomenon), but for all ε > 0 it has the ε-solution K s.t. ∀x ∈
I. K(x, 0) = 1.

Example 5. The typical goal of a controller for the buck DC-DC converter in
Ex. 2 is keeping the output voltage vO close enough to a given reference value
Vref . This leads to the control problem P = (H, I, G) where: H is defined in
Ex. 2, I = (|iL| ≤ 2) ∧ (0 ≤ vO ≤ 6.5), G = (|vO − Vref | ≤ θ) ∧ (|iL| ≤ 2) and
θ = 0.01 is the desired converter precision.

In order to define quantized feedback control problems for DTLHSs (Def. 6) we
introduce quantizations (Def. 5). Let x be a real valued variable ranging on a
bounded interval of reals Dx = [ax, bx]. A quantization for x is a function γ

from Dx to a bounded interval of integers γ(Dx) = [âx, b̂x]. For ease of nota-
tion we extend quantizations to integer variables ranging on a bounded interval
of integers by stipulating that the only quantization γ for such variables is the
identity function (i.e. γ(x) = x). The width

∥∥γ−1(v)
∥∥ of v ∈ γ(Dx) in γ is de-

fined as follows:
∥∥γ−1(v)

∥∥ = sup { |w − z| | w, z ∈ Dx ∧ γ(w) = γ(z) = v}. The
quantization step ‖γ‖ is defined as follows: ‖γ‖ = max

{ ∥∥γ−1(v)
∥∥ | v ∈ γ(Dx)

}
.

Definition 5. Let H = (X,U, Y,N) be a DTLHS. A quantization Γ for H is
a set of maps Γ = {γw | γw is a quantization for w ∈ X ∪ U}. Let W =
[w1, . . . wk] ⊆ X ∪ U and v = [v1, . . . vk] ∈ DW . We write Γ (v) for the tuple
[γw1(v1), . . . γwk

(vk)] and Γ (DW ) for the set of tuples {Γ (v) | v ∈ DW }. Finally,
the quantization step ‖Γ‖ for Γ is defined as: ‖Γ‖ = max{ ‖γ‖ | γ ∈ Γ}.

A control problem admits a quantized solution if control decisions can be made
by just looking at quantized values. This enables a software implementation for
a controller.

Definition 6. Let H = (X,U, Y,N) be a DTLHS, Γ be a quantization for H
and P = (H, I, G) be a control problem. A Γ Quantized Feedback Control (QFC)
solution to P is a ‖Γ‖-solution K(x, u) to P such that K(x, u) = K̂(Γ (x), Γ (u))
where K̂ : Γ (DX) × Γ (DU ) → B.
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Fig. 2. Γ control abstraction for DTLHSs in Exs. 3 and 8 (left) and Ex. 9 (right)

Example 6. Let P be as in Ex. 4, Γ (x) = round(x/2) (where round(x) = �x�+
�2(x− �x�)� is the usual rounding function) and K̂ as in Ex. 3. Then, ‖Γ‖ = 2
and K(x, u) = K̂(Γ (x), Γ (u)) is a Γ QFC solution to P .
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5 Control Abstraction

The AD process maps intervals of state values into discrete state values. As a re-
sult the control software sees the controlled system (plant) as a nondeterministic
finite automaton. Of course we want our control software to work notwithstand-
ing such a nondeterminism (strong solution, Def. 3). To this end we should try
to limit such a nondeterminism as much as possible. This leads to the notion of
control abstraction (Def. 8), the main focus of this section.

Since QFC (Def. 6) rests on AD conversion we must be careful not to drive
the plant outside the bounds in which AD conversion works correctly. This leads
to the definition of safe action (Def. 7). Intuitively, an action is safe in a state if
it never drives the system outside of its state bounds.

Definition 7. Let H = (X,U, Y,N) be a DTLHS and Γ be a quantization.

1. We say that action u ∈ DU is safe for s ∈ DX (in H) if for all s′, [∃y ∈
DY N(s, u, y, s′) implies s′ ∈ DX ].

2. We say that action û ∈ Γ (DU ) is Γ -safe in state ŝ ∈ Γ (DX) if for all
s ∈ Γ−1(ŝ), u ∈ Γ−1(û), u is safe for s in H.

Note that, in general, not all actions u ∈ DU are safe in H since Def. 1 only asks
N to be a conjunctive predicate.

Example 7. Let H be as in Ex. 1. Then action u = 1 is not safe in state s = 2
since we have N(2, 1, 3), and s′ = 3 is outside H state bounds.

A control abstraction (Def. 8) is a finite state automaton modelling how a DTLHS
is seen from the control software because of AD conversion.

Definition 8. Let H = (X,U, Y,N) be a DTLHS and Γ be a quantization for
H. We say that the LTS Ĥ = (Γ (DX), Γ (DU ), N̂) is a Γ control abstraction of
H if its transition relation N̂ satisfies the following conditions.

1. Each abstract transition stems from a concrete transition. Formally: for all
ŝ, ŝ′ ∈ Γ (DX), û ∈ Γ (DU ), if N̂(ŝ, û, ŝ′) then there exist s ∈ Γ−1(ŝ), u ∈
Γ−1(û), s′ ∈ Γ−1(ŝ′), y ∈ DY s.t. N(s, u, y, s′).

2. If an abstract action is safe then all its possible concrete effects (besides
self-loops) are faithfully represented in the abstract system. Formally: for all
ŝ ∈ Γ (DX), û Γ -safe in ŝ, s ∈ Γ−1(ŝ), u ∈ Γ−1(û), s′ ∈ DX , if [∃y ∈
DY N(s, u, y, s′)] and Γ (s) �= Γ (s′) then N̂(Γ (s), Γ (u), Γ (s′)).

3. If there is no upper bound to the length of concrete paths inside the counter-
image of an abstract state then there is an (abstract) self-loop. Formally:
for all ŝ ∈ Γ (DX), û ∈ Γ (DU ), if ∀k ∃x(0), . . . x(k + 1) ∈ Γ−1(ŝ)
∃u(0), . . . u(k) ∈ Γ−1(û) ∃y(0), . . . y(k) ∈ DY [

∧k
t=0N(x(t), u(t), y(t), x(t +

1))] then N̂(ŝ, û, ŝ).

We say that Ĥ is a control abstraction of H if Ĥ is a Γ control abstraction of H
for some quantization Γ . Finally, we denote with AΓ (H) the set of all Γ control
abstractions on H.
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Note that any abstraction (e.g. see [2]) is also a control abstraction. However,
the converse is false since some concrete transition (e.g. a self loop or an unsafe
action) may have no abstract image. Let S1 = (S, A, T1) and S2 = (S, A, T2)
be LTSs. We say that S1 refines S2 (notation S1 � S2) iff for each s, s′ ∈ S,
a ∈ A, T1(s, a, s′) implies T2(s, a, s′). The binary relation � is a partial order.
Moreover, the poset (AΓ (H),�) is a lattice. Furthermore, since AΓ (H) is a finite
set, the poset (AΓ (H),�) has unique maximum and unique minimum elements.

Example 8. Let H be as in Ex. 1 and Γ be as in Ex. 6. Each Γ control abstraction
of H has the form Ĥ = ({−1, 0, 1}, {0, 1}, N̂), where the set of transitions in N̂
is any subset, containing all continuous arrows, of the set of transitions of the
automaton depicted in Fig. 2 (left). In particular, a control abstraction may
omit some self loops (namely, those with dotted arrows in Fig. 2). Transitions
N̂(0, 0, 0) and N̂(0, 1, 0) must belong to all Γ control abstractions, because of
condition 3 in Def. 8. In fact all paths starting in 0 will remain in 0 forever. The
transition relation defined in Fig. 2 (left) by continuous arrows is the minimum
Γ control abstraction Ĥmin of H whereas the transition relation defined by all
arrows is the maximum Γ control abstraction Ĥmax of H. Note that there is
no controller (strongly) driving all states of Ĥmax to state 0. In fact, because
of self-loops, action 0 from state 1 may lead to state 0 as well as to state 1
(self-loop). On the other hand the controller K̂ enabling only action 0 in any
state will (weakly) drive all states of Ĥmax to 0 since each state in Ĥmax has at
least a 0-labelled transition leading to state 0. Controller K̂ will also (strongly
and thus weakly) drive all states of Ĥmin (including 0) to state 0.

Remark 2. Example 8 suggests that we should focus on minimum control ab-
stractions in order to increase our chances of finding a strong controller. Cor-
rectness of such an intuition will be shown in Theor. 1. As for computing the
minimum control abstraction we note that this entails deciding if a given self-
loop can be eliminated according to condition 3 in Def. 8. Unfortunately it is
easy to show that such a problem comes down to solve a reachability problem on
linear hybrid systems, that, by [17], is undecidable. Thus, self-loop eliminability
is undecidable too in our context. As a result, in general, we cannot hope to
compute exactly the minimum control abstraction.

6 Synthesis of Quantized Feedback Control Software

We outline our synthesis algorithm QKS (Quantized feedback Kontrol Synthesis)
and give its properties (Theor. 1). Details are in [23]. QKS takes as input a tuple
(Γ , H, I, G), where: H = (X , U , Y , N) is a DTLHS, Γ is a quantization for
H and (H, I, G) is a control problem. QKS returns a tuple (μ, D̂, K̂), where:
μ ∈ {Sol,NoSol,Unk}, K(x, u) = K̂(Γ (x), Γ (u)) is a Γ QFC solution for H
(Def. 6), D̂ = Dom(K̂) and D = Γ−1(D̂) = Dom(K) is K controllable region.

We compute QKS output as follows. As a first step we compute a Γ control
abstraction Q̂ = (Γ (DX), Γ (DU ), N̂) of H as close as we can (see Remark 2) to
the minimum one. Sect. 6.1 (function minCtrAbs in Alg. 1) outlines how Q̂ can be
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computed. Let Î = Γ (I), Ĝ = Γ (G) and K̂ be the most general optimal (mgo)
strong solution to the (LTS) control problem (Q̂, ∅, Ĝ). Intuitively, the mgo
strong solution K̂ to a control problem (Q̂, ∅, Ĝ) is the unique strong solution
that, disallowing as few actions as possible, drives as many states as possible to
a state in Ĝ along a shortest path. We compute (the OBDD representation for)
K̂ by implementing a suitable variant of the algorithm in [12]. Finally, we define:
K(x, u) = K̂(Γ (x), Γ (u)), D̂ = Dom(K̂), and D = Γ−1(D̂) = Dom(K).

If Î ⊆ D̂ then QKS returns μ = Sol. Note that in such a case, from the
construction in [12], K̂ is time optimal for the control problem (Q̂, Î, Ĝ), thus
K will typically move along a shortest path to G (i.e., K is near time-optimal). If
Î �⊆ D̂ then we compute the maximum Γ control abstraction Ŵ of H and use the
algorithm in [29] to check if there exists a weak solution to (Ŵ , Î, Ĝ). If that is
the case QKS returns μ = Unk, otherwise QKS returns μ = NoSol. Note that
the maximum control abstraction may contain also (possibly) unsafe transitions
(condition 2 of Def. 8). Thus a weak solution for Ŵ may exist even when no
weak solution for Q̂ exists. Using the above notations Theor. 1 summarizes the
main properties of QKS.

Theorem 1. Let H be a DTLHS, Γ be a quantization and (H, I, G) be a
control problem. Then QKS(Γ , H, I, G) returns a triple (μ, D̂, K̂) s.t.: μ ∈
{Sol,NoSol,Unk}, D̂ = Dom(K̂), D = Γ−1(D̂) and K = K̂(Γ (x), Γ (u)) is
a Γ QFC solution to the control problem (H, D,G). Furthermore, the following
holds.

1. If μ = Sol then I ⊆ D and K is a Γ QFC solution to the control problem
(H, I, G).

2. If μ = NoSol then there is no Γ QFC solution to the control problem
(H, I, G).

3. If μ = Unk then QKS is inconclusive, that is (H, I, G) may or may not have
a Γ QFC solution.

Note that the AD conversion hardware is modelled by Γ and that from the
OBDD for K̂ above we get a C program (Section 6.2). Thus K̂ as described
above defines indeed the control software we are looking for. Finally, note that
case 3 in Theor. 1 stems from undecidability of the QFC problem [17].

Example 9. Let P = (H, I, G) be as in Ex. 4 and Γ be as in Ex. 8. For all
Γ control abstractions Ĥ (and thus for the minimum one shown in Ex. 8) not
containing the self loops N̂(−1, 0,−1) and N̂(1, 0, 1), K̂ as in Ex. 3 is the mgo
strong solution to (Ĥ, ∅, Γ (G)). Thus, K(s, u) as in Ex. 6 is a Γ QFC solution
to P . Weak solutions to (Ĥ, Γ (I), Γ (G)) exist for all Γ control abstractions Ĥ.
Note that existence of a Γ QFC solution to a control problem depends on Γ . Let
us consider the quantization Γ ′(x)=�x/2� for H. Then the maximum Γ ′ control
abstraction of H is L = ({−2,−1, 0, 1}, {0, 1}, N̂), where the transition N̂ is
depicted in Fig. 2 (right). Clearly (L, Γ ′(I), Γ ′(G)) has no weak solution since
there is no path to the goal Γ ′(G) = {0} from any of the states −2, −1. Thus P
has no Γ ′ QFC solution.



190 F. Mari et al.

6.1 Computing Control Abstractions

Function minCtrAbs in Alg. 1 computes a close to minimum Γ control abstraction
(Def. 8) Q̂ = (Γ (DX), Γ (DU ), N̂) of H = (X , U , Y , N) as well as Î = Γ (I) and
Ĝ = Γ (G).

Line 6 initializes (the OBDDs for) N̂ , Î, Ĝ to ∅ (i.e. the boolean function
identically 0). Line 2 loops through all |Γ (DX)| states ŝ of Ĥ. Line 3 [line 4] add
state ŝ to Î [Ĝ] if ŝ is the image of a concrete state in I [G]. Line 5 loops through
all |Γ (DU )| actions û of Ĥ. Line 13 checks if action û is Γ -safe in ŝ (see Def. 7.2
and Def. 8.2). Function SelfLoop in line 7 returns 0 when, accordingly to Def.
8.3 a self-loop need not to be in N̂ . An exact check is undecidable (Remark 2),
however our gradient based SelfLoop function typically turns out (Tab. 1 in Sect.
7) to be a quite tight overapproximation of the sets of (strictly needed) self-loops.
We compute SelfLoop(ŝ, û) as follows. For each real valued state component xi,
let wi[Wi]= (min[max], x′i − xi, N(X,U, Y,X ′) ∧ Γ (X) = ŝ ∧ Γ (U) = û). If for
some i [wi �= 0 ∧ Wi �= 0 ∧ (wi and Wi have the same sign)] then SelfLoop
returns 0 (since any long enough sequence of concrete actions in Γ−1(û) will
drive state component xi outside of Γ−1(ŝ)), otherwise SelfLoop returns 1. Lines
9, 10, 11 compute a quite tight overapproximation (Over_Img) of the set of
states reachable in one step from ŝ. Line 12 loops on all |Over_Img| abstract
next states ŝ′ that may be reachable with the abstract outgoing transition (ŝ, û)
under consideration. Line 13 checks if there exists a concrete transition realizing
the abstract transition (ŝ, û, ŝ′) when ŝ �= ŝ′ (no self-loop) and if so adds the
abstract transition (ŝ, û, ŝ′) to N̂ (line 14). Finally, line 15 returns the (transition
relation for) the control abstraction along with Î and Ĝ.

Remark 3. From the loops in lines 2, 5, 12 we see that the worst case runtime
for Alg. 1 is O(|Γ (DX)|2|Γ (DU )|). However, thanks to the heuristic in lines 9–
11, Alg. 1 typical runtime is about O(|Γ (DX)||Γ (DU )|) as confirmed by our
experimental results (Sect. 7, Fig. 3(b)).

Remark 4. Alg. 1 is explicit in the (abstract) states and actions of Ĥ and sym-
bolic with respect to the auxiliary variables (modes) in the transition relation
N of H. As a result our approach will work well with systems with just a few
state variables and many modes, our target here.

6.2 Control Software with a Guaranteed WCET

From controller K̂ computed by QKS (see Sect. 6) we generate our correct-
by-construction control software (obdd2c(K̂)). This is done (function obdd2c)
by translating the OBDD representing K̂ into C code along the lines of [29].
From such a construction we can easily compute the Worst Case Execution
Time (WCET) for our controller. We have: WCET = nrTB , where r [n] is the
number of bits used to represent plant actions [states] and TB is the time needed
to execute the C instructions modelling the if-then-else semantics of OBDD
nodes as well as edge complementation (since we use the CUDD package).
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Algorithm 1. Building control abstractions
Input: A quantization Γ , a DTLHS H = (X,U, Y,N), a control problem (H, I , G).
function minCtrAbs(Γ , H, I , G):
1. N̂ ← ∅, Î ← ∅, Ĝ← ∅, let X = [x1, . . . , xn], X ′ = [x′

1, . . . , x
′
n]

2. for all ŝ ∈ Γ (DX) do
3. if (MILP (min, 0, I(X) ∧ Γ (X) = ŝ) is feasible) then Î← Î ∪ {ŝ}
4. if (MILP (min, 0, G(X) ∧ Γ (X) = ŝ) is feasible) then Ĝ← Ĝ ∪ {ŝ}
5. for all û ∈ Γ (DU ) do
6. if (MILP (min, 0, N(X,U, Y,X ′) ∧ Γ (X) = ŝ ∧ Γ (U) = û ∧ X ′ /∈ DX) is

feasible) then continue
7. if SelfLoop(ŝ, û) then N̂ ← N̂ ∪ {(ŝ, û, ŝ)}
8. for all i = 1, . . . n do
9. mi ← x′∗

i , where X ′∗ = [x′∗
1 , . . . , x

′∗
n ] is a solution to the MILP (min, x′

i,
N(X,U, Y,X ′) ∧ Γ (X) = ŝ ∧ Γ (U) = û)

10. Mi ← x′∗
i , where X ′∗ = [x′∗

1 , . . . , x
′∗
n ] is a solution to the MILP (max, x′

i,
N(X,U, Y,X ′) ∧ Γ (X) = ŝ ∧ Γ (U) = û)

11. let Over_Img(ŝ, û) =
∏

i=1,...n[γxi(mi), γxi(Mi)]
12. for all ŝ′ ∈ Over_Img(ŝ, û) do
13. if ŝ �= ŝ′ ∧ (MILP (min, 0, N(X,U, Y,X ′)∧Γ (X) = ŝ∧Γ (U) = û∧Γ (X ′) =

ŝ′) is feasible) then
14. N̂←N̂ ∪ {(ŝ, û, ŝ′)}
15. return (N̂, Î , Ĝ)

Let T be the chosen sampling time. Then it must be: WCET ≤ T . That
is, nrTB ≤ T . This equation allows us to know, before hand, the realizability
(e.g. with respect to schedulability constraints) of the (to be designed) control
software. For example, let TB = 10−7secs, n = 10 and r = 1. Then, the for the
system sampling time we have: T ≥ 10−6 = WCET .

7 Experimental Results

We implemented QKS (Sect. 6) in C, using GLPK to solve MILP problems and
the CUDD package for OBDD based computations.

Our experiments aim at evaluating effectiveness of: control abstraction (Q̂,
Sect. 6.1) generation, synthesis of OBDD representation of control law (K̂,
Sect. 6), control software (obdd2c(K̂), Sect. 6.2) size and guaranteed opera-
tional ranges (i.e. controllable region). Note that control software reaction time
(WCET) is known a priori from Sect. 6.2 and its robustness to parameter vari-
ations in the controlled system (H) as well as enforcement of safety bounds on
state variables are an input to our synthesis algorithm (e.g. see Ex. 1, 2).

We present experimental results obtained by using QKS on the buck DC-DC
converter described in Ex. 2. We denote with H the DTLHS modeling such a
converter. We set the parameters of H as follows: T = 10−6 secs, L = 2 · 10−4

H, rL = 0.1 Ω, rC = 0.1 Ω, R = 5 ± 25% Ω, C = 5 · 10−5 F, Vi = 15 ± 25% V
and require our controller to be robust to foreseen variations (25%) in the load
(R) and in the power supply (Vi).
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The model in Ex. 2 already accounts for variations in the power supply. Vari-
ations in the load R can be taken into account along the same lines, however
much more work is needed (along the lines of [15]) since H dynamics is not
linear in R. This adds 11 auxiliary boolean variables to the model in Ex. 2.
Details are in [23]. For converters, safety (as well as physical) considerations
set requirements on admissible values for state variables. We set: DiL = [−4, 4],
DvO = [−1, 7]. Note that robustness requires that, notwithstanding nondetermin-
istic variations (within the given tolerances) for power supply and load, the syn-
thesized controller always keeps state variables within their admissible regions.
We use the following bounds for auxiliary variables: Diu = DiD = [−103, 103]
and Dvu = DvD = [−107, 107]. The initial region I and goal region G are as in
Ex. 5. Finally, the DTLHS control problem we consider is P = (H, I, G). Note
that no (formally proved) robust control software is available for buck DC-DC
converters.

We use a uniform quantization dividing the domain of each state variable
(iL, vO) into 2b equal intervals, where b is the number of bits used by AD con-
version. We call the resulting quantization Γb. The quantization step is ‖Γb‖ =
23−b.

For each value of interest for b, following Sect. 6, we compute: (1) a (close to
minimum) Γb control abstraction Ĥb for H, (2) the mgo strong solution K̂b for
P̂b = (Ĥb, ∅, Γb(G)), (3) K̂b controllable region D̂b = Dom(K̂b), (4) a Γb QFC
solution Kb(s, u) = K̂b(Γb(s), Γb(u)) to the control problem Pb = (H, Γ−1

b (D̂b),
G). Note that, since we have two quantized variables (iL, vO) each one with b
bits, the number of states in the control abstraction is exactly 22b.

Tab. 1 shows our experimental results. Columns in Tab. 1 have the following
meaning. Column b shows the number of AD bits. Columns labelled Control
Abstraction show performances for Alg. 1. Column CPU shows Alg. 1 time (in
secs) to compute Ĥb. Column Arcs shows the number of transitions in Ĥb. In
order to assess effectiveness of function SelfLoop (Sect. 6.1) column MaxLoops
shows the number of loops in the maximum Γb control abstraction for H, while
column LoopFrac shows the fraction of such loops in Ĥb. Columns labelled Con-
troller Synthesis show the computation time in secs (CPU) for the generation
of K̂b, and the size of its OBDD representation (OBDD). The latter is also the
size (number of lines) of the C code for our synthesized implementation of K̂b

Table 1. Buck DC-DC converter (Sect. 3): control abstraction and controller synthesis
results. Experiments run on an Intel 3.0 GHz Dual Core Linux PC with 4 GB of RAM.

Control Abstraction Controller Synthesis Total

b CPU Arcs MaxLoops LoopFrac CPU OBDD CPU

8 2.50e+03 1.35e+06 2.54e+04 0.00323 0.00e+00 1.07e+02 2.50e+03
9 1.13e+04 7.72e+06 1.87e+04 0.00440 1.00e+02 1.24e+03 1.14e+04
10 6.94e+04 5.14e+07 2.09e+04 0.00781 7.00e+02 2.75e+03 7.01e+04
11 4.08e+05 4.24e+08 2.29e+04 0.01417 5.00e+03 7.00e+03 4.13e+05
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Fig. 3. QKS performance

(obdd2c(K̂b)). Finally, column Total shows the total computation time in secs
(CPU) for the whole process (i.e., control abstraction plus controller source code
generation). All computations were completed using no more than 200MB. As
for the value of μ (see Theor. 1), we have that μ =Unk for b = 8, and μ =Sol
in all other cases.

From Tab. 1 we see that computing control abstractions (i.e. Alg. 1) is the
most expensive operation in QKS (see Sect. 6) and that thanks to function
SelfLoop K̂b contains no more than 2% of the loops in the maximum Γb control
abstraction for H.

For each MILP problem in Alg. 1, Fig. 3(b) shows (as a function of b) the
number of MILP instances solved while Fig. 3(a) shows (as a function of b) the
average CPU time (in seconds) spent solving a single MILP problem instance.
CPU time standard deviation is always less than 0.003. The correspondence
between the curves in Figs. 3(b), 3(a) and Alg. 1 is the following. MILP1 refers
to line 3 (and represents also the data for the twin MILP in line 4). MILP2
refers to MILP problems in function SelfLoop (line 7). MILP3 refers to line 9
(and represents also the data for the twin MILP in line 10). MILP4 refers to line
13 and MILP5 refers to line 6.

From Fig.3(a) we see that the average time spent solving each MILP in-
stance is small. The lower [upper] bound to the number of times MILP4 (i.e.
the most called MILP in Alg. 1) is called (#MILP4) is |Γ (DX)||Γ (DU )| = 22b+1

[|Γ (DX)|2|Γ (DU )| = 24b+1] (see Remark 3). From Fig. 3(b) we see that #MILP4
is quite close to |Γ (DX)||Γ (DU )| = 22b+1. This shows effectiveness of our heuris-
tic to tightly overapproximate Over_Img (lines 9–11 of Alg. 1).

One of the most important features of our approach is that it returns the
guaranteed operational range (precondition) of the synthesized software (Theor.
1). This is the controllable region D returned by QKS in Sect. 6. Fig. 3(c)
shows the controllable region D for K10 along with some trajectories (with time
increasing counterclockwise) for the closed loop system. Since for b = 10 we have
μ = Sol, we have that I ⊆ D (see also Fig. 3(c)). Thus we know (on a formal
ground) that 10 bit AD (‖Γ10‖ = 2−7) conversion suffices for our purposes. The
controllable region for K11 turns out to be only slightly larger than the one for
K10.
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8 Conclusion

We presented an effective algorithm that given a DTLHS H and a quantization
schema returns a correct-by-construction robust control software K for H along
with the controllable region R for K. Furthermore, our control software has
a WCET linear in the number of bits of the quantization schema. We have
implemented our algorithm and shown feasibility of our approach by presenting
experimental results on using it to synthesize C controllers for the buck DC-
DC converter. Our approach is explicit in the quantized state variables and
symbolic in the system modes. Accordingly, it works well with systems with a
small number of (continuous) state variables and possibly many modes. Many
hybrid systems fall in this category.

Future research may investigate fully symbolic approaches, e.g., based on
Fourier-Motzkin (FM) variable elimination, to compute control abstractions.
Since FM tools typically work on rational numbers this would also have the
effect of avoiding possible numerical errors of MILP solvers [24].
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Abstract. The interplay of random phenomena and continuous real-time con-
trol deserves increased attention for instance in wireless sensing and control
applications. Safety verification for such systems thus needs to consider prob-
abilistic variations of systems with hybrid dynamics. In safety verification of
classical hybrid systems we are interested in whether a certain set of unsafe sys-
tem states can be reached from a set of initial states. In the probabilistic setting,
we may ask instead whether the probability of reaching unsafe states is below
some given threshold. In this paper, we consider probabilistic hybrid systems and
develop a general abstraction technique for verifying probabilistic safety prob-
lems. This gives rise to the first mechanisable technique that can, in practice,
formally verify safety properties of non-trivial continuous-time stochastic hybrid
systems—without resorting to point-wise discretisation. Moreover, being based
on arbitrary abstractions computed by tools for the analysis of non-probabilistic
hybrid systems, improvements in effectivity of such tools directly carry over to
improvements in effectivity of the technique we describe. We demonstrate the
applicability of our approach on a number of case studies, tackled using a proto-
typical implementation.

1 Introduction

Conventional hybrid system formalisms [1–4] capture many characteristics of real sys-
tems (telecommunication networks, air traffic management, etc.). However, in some
modern application areas, the lack of randomness hampers faithful modelling and ver-
ification. This is especially true for wireless sensing and control applications, where
message loss probabilities and other random effects (node placement, node failure, bat-
tery drain) turn the overall control problem into a problem that can only be managed
with a certain, hopefully sufficiently large, probability.

The idea of integrating probabilities into hybrid systems is not new, and different
models have been proposed, each from its own perspective [5–9]. The most important
difference lies in the place where to introduce randomness. One option is to replace de-
terministic jumps by probability distributions over deterministic jumps. Another option
is to replace differential equations in each mode by stochastic differential equations.
More general models can be obtained by blending the above two choices, and by com-
bining with memoryless timed probabilistic jumps [10].

An important problem in hybrid systems theory is that of reachability analysis. In
general terms, a reachability analysis problem consists in evaluating whether a given
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system will reach certain unsafe states, starting from certain initial states. This problem
is associated with the safety verification problem: if the system cannot reach any unsafe
state, then the system is declared to be safe. In the probabilistic setting, the safety veri-
fication problem can be formulated as that of checking whether the probability that the
system trajectories reach an unsafe state from its initial states can be bounded by some
given probability threshold.

In this paper, we focus on the probabilistic hybrid automata model [6], an extension
of hybrid automata where the jumps involve probability distributions. This makes it pos-
sible to model component failures, message losses, buffer overflows and the like. Since
these phenomena are important aspects when aiming at faithful models for networked
and embedded applications, the interest in this formalism is growing [11,12].

Up to now, foundational results on the probabilistic reachability problem for prob-
abilistic hybrid automata are scarce. Since they form a strict superclass of hybrid au-
tomata, this is not surprising. Decidability results are known for probabilistic linear
hybrid automata and o-minimal hybrid automata [6].

This paper reports how we harvest and combine recent advances in the hybrid au-
tomata and the probabilistic automata worlds, in order to treat the general case. We are
doing so by computing safe over-approximations via abstractions in the continuous as
well as the probabilistic domain. One of the core challenges then is how to construct
a sound probabilistic abstraction over a given covering of the state space. For this pur-
pose, we first consider the non-probabilistic hybrid automaton obtained by replacing
probabilistic branching with nondeterministic choices. Provided that there is a finite
abstraction for this classical hybrid automaton, we then decorate this abstraction with
probabilities to obtain a probabilistic abstraction, namely a finite probabilistic automa-
ton [13]. We show the soundness of this abstraction, which allows us to verify proba-
bilistic safety properties on the abstraction: if such a property holds in the abstraction,
it holds also in the concrete system. Otherwise, refinement of the abstraction is required
to obtain a more precise result.

Our abstraction approach can be considered as an orthogonal combination of the
abstraction for hybrid automata [4,14], and Markov decision processes [15,16]. Be-
cause of this orthogonality, abstractions of probabilistic hybrid automata can be com-
puted via abstractions for non-probabilistic hybrid automata and Markov decision pro-
cesses. To show the applicability of this combination, we implemented a prototype tool,
ProHVer, that first builds an abstraction via existing techniques [17] for classical hy-
brid automata, and then via techniques for Markov decision processes [15,16,18]. Sub-
sequently, a fixed-point engine computes the reachability probabilities on the abstrac-
tion, which provides a safe upper bound. If needed, iterative refinement of the hybrid
abstraction is performed. We report several successful applications of this prototypical
implementation on different case studies. To the best of our knowledge, this is the first
implementation which automatically checks safety properties for probabilistic hybrid
automata.

2 Related Work

The verification of safety properties is undecidable for general hybrid automata. How-
ever, certain classes (e.g., initialised rectangular automata [19], o-minimal hybrid
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automata [20]), are decidable, and there are algorithms that construct finite bisimulation
quotient automata. These results have been lifted to probabilistic hybrid automata [6],
and provide exact results, rooted in a bisimulation-based abstraction. In these special
cases, our approach can yield the same results, but it gives us the freedom to use differ-
ent abstractions, that are more adapted to the problem at hand, but then not exact, but
over-approximating. We actually treat the general case using that a practical verifica-
tion can —to a certain extent— circumvent the decidability barrier by a semi-decision
algorithm: we exploit tools that can, in practice, verify hybrid automata belonging to
undecidable classes, to verify corresponding probabilistic hybrid automata.

The abstraction approach has also successfully been applied to probabilistic timed
automata [18,21], a class of probabilistic hybrid automata, where only derivatives of
constant value 1 occur. Their abstract analysis is based on difference-bound matrices
(DBMs), and does not extend to the general setting considered here. Fränzle et al. [11,
12] use stochastic SAT to solve reachability problems on probabilistic hybrid automata.
Their analysis is limited to depth-bounded reachability properties, i.e., the probability
of reaching a location within at most N discrete jumps.

While the model we consider has probabilistic discrete jumps, there are several
other suggestions equipping hybrid automata with continuous-time jumps. Davis [22]
introduced piecewise deterministic Markov processes, whose state changes are trig-
gered spontaneously as in continuous-time Markov chains. Stochastic differential equa-
tions [23] incorporate the continuous dynamics with random perturbations, such as
Brownian motion. In stochastic hybrid systems [24,25], the transitions between differ-
ent locations are resolved via a race between different Poisson processes. While these
models enjoy a variety of applications, their analysis are limited and often based on
Monte-Carlo simulations [8,9,26,27].

3 Preliminaries

In this section, we repeat the definition of conventional hybrid automata, in the style
of [4], followed by the definition of probabilistic hybrid automata [6].

3.1 Hybrid Automata

We fix a variable m ranging over a finite set of discrete modes M = {m1, . . . ,mn}
and variables x1, . . . , xk ranging over reals R. We denote by S the resulting state space
M × Rk. For denoting the derivatives of x1, . . . , xk we use variables ẋ1, . . . , ẋk, rang-
ing over R correspondingly. For simplicity, we sometimes use the vector x to denote
(x1, . . . , xk), and (m,x) to denote a state. Similar notations are used for the primed
and dotted versions x′, ẋ.

In order to describe hybrid automata we use constraints that are arbitrary Boolean
combinations of equalities and inequalities over terms. These constraints are used, on
the one hand, to describe the possible flows and jumps and, on the other hand, to mark
certain parts of the state space (e.g., the set of initial/unsafe states). A state space con-
straint is a constraint over the variablesm,x. A flow constraint is a constraint over the
variablesm, x, ẋ.
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For capturing the jump behaviours, we introduce the notion of update constraints.
An update constraint u, also called a guarded command, has the form: condition →
update where condition is a constraint overm,x, and update is an expression denoting
a function M×Rk → M×Rk which is called the reset mapping form and x. Intuitively,
assume that the state (m,x) satisfies condition , then the mode m and variable x are
updated1 to the new state update(m,x).

A jump constraint is a finite disjunction
∨

u∈U u where U is a set of guarded com-
mands. The constraint

∨
u∈U u can be represented by the set U for simplicity.

A hybrid automaton is a tuple H = (Flow ,U, Init ,UnSafe) consisting of a flow
constraint Flow , a finite set of update constraints U, a state space constraint Init de-
scribing the set of initial states, and a state space constraint UnSafe describing the set
of unsafe states.

A flow of length l in a mode m is a function r : [0, l] $→ Rk with l > 0 such that
r is differentiable for all t ∈ [0, l], and for all t ∈ [0, l], (m, r(t), ṙ(t)) satisfies Flow,
where ṙ is the derivative of r.

Transition System Semantics. The semantics of a hybrid automaton is a transi-
tion system with an uncountable set of states. Formally, the semantics of H =
{Flow ,U, Init ,UnSafe} is a transition system TH = (S, T, SInit , SUnSafe ) where
S = M × Rk is the set of states, SInit = {s ∈ S | s satisfies Init} denotes the set
of initial states, and SUnSafe = {s ∈ S | s satisfies UnSafe} represents the set of
unsafe states. The transition set T is defined as the union of two transition relations
TC, TD ⊆ S × S, where TC corresponds to transitions due to continuous flows defined
by:

– ((m,x), (m,x′)) ∈ TC, if there exists a flow r of length l in m such that r(0) = x
and r(l) = x′;

and TD corresponds to transitions due to discrete jumps. The transition due to an update
constraint u : condition → update, denoted by TD(u) is defined by:

– ((m,x), (m′,x′)) ∈ TD(u) if (m,x) satisfies the guard condition and it holds
that (m′,x′) = update(m,x).

Then, we define TD = ∪u∈UTD(u).
In the rest of the paper, if no confusion arises, we use Init to denote both the con-

straint for the initial states and the set of initial states. Similarly, UnSafe is used to
denote both the constraint for the unsafe states and the set of unsafe states.

3.2 Probabilistic Automata

For defining the semantics of a probabilistic hybrid automaton, we recall first the no-
tion of a probabilistic automaton [13]. It is an extension of a transition system with
probabilistic branching.

1 Our definition of jumps is deterministic, as in [14], i.e., if a jump is triggered for a state satis-
fying condition , the successor state is updated deterministically according to update . In [4],
the jump is defined to be nondeterministic: if a state satisfies condition , a successor will be
selected nondeterministically from a set of states. Our method can be easily extended to this.
We restrict to deterministic jumps for simplicity of the presentation in this paper.
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We first introduce some notation. Let S be a (possibly uncountable) set. A distribu-
tion over S is a function μ : S → [0, 1] such that (a) the set {s ∈ S | μ(s) > 0} is finite,
and (b) the sum

∑
s∈S μ(s) = 1. Let the support Supp(μ) of μ be {s ∈ S | μ(s) > 0}.

Let Distr(S) denote the set of all distributions over S. For an arbitrary but fixed state
s in S, a Dirac distribution for s, denoted by Diracs, is a distribution over S such that
Diracs(s) = 1, that is, Supp(Diracs) = {s}. Note that the Dirac distribution will be
used to describe the continuous evolution of a probabilistic hybrid automaton.

Definition 1. A probabilistic automaton M is a tuple (S,Steps , Init ,UnSafe), where
Steps ⊆ S × Distr(S), Init ⊆ S, and UnSafe ⊆ S. Here, S denotes the (possible
uncountable) set of states, Init is the set of initial states, UnSafe the set of unsafe states,
and Steps ⊆ S × Distr(S) the transition relation.

For a transition (s, μ) ∈ Steps , we use s → μ as a shorthand notation, and call μ a
successor distribution of s. Let Steps(s) be the set {μ | (s, μ) ∈ Steps}. We assume
that Steps(s) �= ∅ for all s ∈ S.

A path of M is a finite or infinite sequence σ = s0μ0s1μ1 . . . such that si → μi and
μi(si+1) > 0 for all possible i ≥ 0. We denote by first(σ) the first state s0 of σ, by
σ[i] the i + 1-th state si, and, if σ is finite, by last(σ) the last state of σ. Let Path be
the set of all infinite paths and Path∗ the set of all finite paths.

The non-deterministic choices in M can be resolved by adversaries. Formally, an
adversary of M is a map A : Path∗ → Distr(Steps) such that A(σ)(s, μ) > 0
implies that s = last(σ) and s → μ. Intuitively, if A(σ)(s, μ) > 0, then the successor
distribution μ should be selected from state s with probabilityA(σ)(s, μ). Moreover, an
adversary A is called Markovian if for all σ ∈ Path∗, A(σ) = A(last(σ)), that is, for
each finite path,A depends only on its last state. An adversaryA is called deterministic
if for all σ ∈ Path∗, A(σ) is always a Dirac distribution. We say that an adversaryA is
simple if A is Markovian and deterministic. Given an adversaryA and an initial state s,
a unique probability measure over Path , which is denoted by ProbAs , can be defined.

3.3 Probabilistic Hybrid Automata

Now we recall the definition of probabilistic hybrid automata, by equipping the discrete
jumps with probabilities. This is needed to model, for example, component failure or
message losses.

For capturing the probabilistic jump behaviours, a guarded command c is defined to
have the form

condition → p1 : update1 + . . .+ pqc : updateqc

where qc ≥ 1 denotes the number of probabilistic branching of c, pi > 0 for i =
1, . . . , qc and

∑qc
i=1 pi = 1, condition is a constraint over (m,x), and updatei is an ex-

pression denoting a reset mapping form and x for all i = 1, . . . , qc. Intuitively, if a state
(m,x) satisfies the guard condition , a jump to states (m1,x1), . . . , (mqc ,xqc) occurs
such that (mi,xi) = updatei(m,x) is selected with probability pi for i = 1, . . . , qc.
Observe that for different i �= j, it could be the case that (mi,xi) = (mj ,xj). In this
paper we assume that qc is finite for all c.
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Definition 2. A probabilistic hybrid automaton is a tupleH = (Flow ,C, Init ,UnSafe)
where Flow , Init ,UnSafe are the same as in the hybrid automaton, and C is a finite set
of guarded commands C.

The probabilistic hybrid automaton induces a classical hybrid automaton where proba-
bilistic branching is replaced by nondeterministic choices. Intuitively, the semantics of
the latter spans the semantics of the former.

Definition 3. Let c : condition → p1 : update1 + . . . + pqc : updateqc be a guarded
command. It induces a set of q update constraints: ind(c) = {u1, . . . ,uqc} where ui

corresponds to the update constraint condition → updatei for i = 1, . . . , qc. More-
over, we define ind(C) :=

⋃
c∈C ind(c).

Let H = (Flow ,C, Init ,UnSafe) be a probabilistic hybrid automaton. The induced
hybrid automaton is a tuple ind(H) = (Flow , ind(C), Init ,UnSafe).

Semantics. The semantics of a probabilistic hybrid automaton is a probabilistic au-
tomaton [6]. Let H = (Flow ,C, Init ,UnSafe) be a probabilistic hybrid automaton. Let
ind(H) denote the induced hybrid automaton, and let Tind(H) = (S, T, Init ,UnSafe)
denote the transition system representing the semantics of ind(H). Recall that T =
TC ∪ TD where TC corresponds to transitions due to continuous flow and TD corre-
sponds to transitions due to discrete jumps.

The semantics of H is the probabilistic automaton MH = (S,Steps , Init ,UnSafe)
where S, Init ,UnSafe are the same as in Tind(H), and Steps is defined as the union
of two transition relations StepsC ,StepsD ⊆ S × Distr(S). Here, as in the non-
probabilistic setting, StepsC corresponds to transitions due to continuous flows, while
StepsD corresponds to transitions due to discrete jumps. Both of them are defined re-
spectively as follows.

For each transition ((m,x), (m,x′)) ∈ TC in ind(H), there is a corresponding
transition in H from (m,x) to (m,x′) with probability 1. So, StepsC is defined by:
StepsC = {((m,x),Dirac(m,x′)) | ((m,x), (m,x′)) ∈ TC}.

Now we discuss transitions induced by discrete jumps. First, for a guarded
command c, we define the set StepsD(c) corresponding to it. Let ind(c) =
{u1, . . . ,uqc} be as defined in Definition 3. Then, for arbitrary qc + 1 states (m,x),
(m1,x1), . . . , (mqc ,xqc) ∈ S satisfying the condition ((m,x), (mi,xi)) ∈ TD(ui)
for i = 1, . . . , qc, we introduce the transition ((m,x), μ) ∈ StepsD(c) with

μ(mi,xi) =
∑

j∈{j|mj=mi∧xj=xi}
pj , (1)

for i = 1, . . . , qc. Then, StepsD is defined to be
⋃
c∈C StepsD(c). Recall that we have

assumed that qc is finite for all c. This implies Supp(μ) is finite for all transitions (s, μ)
with s ∈ S.

Safety Properties. For hybrid automata, the safety property asserts that the unsafe
states can never be reached. For probabilistic hybrid automata, however, the safety prop-
erty expresses that the maximal probability of reaching the set UnSafe is bounded by
some give threshold ε. In the following we fix a certain threshold ε. Let Reach(UnSafe)
denote the set of paths {σ ∈ Path | ∃i. σ[i] ∈ UnSafe}. The automatonH is called safe
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if for each adversaryA and each initial state s of M(H), ProbAs (Reach(UnSafe)) ≤ ε
holds. In this paper, we would like to develop a framework to deal with such a proba-
bilistic safety verification problem for general probabilistic hybrid automata.

Simulation Relations. We recall the notion of simulations between probabilistic au-
tomata. Intuitively, if M2 simulates M1, that is, M2 is an over-approximation of M1,
then M2 can mimic all behaviours of M1. Thus, this allows us to verify safety prop-
erties on the abstraction M2 instead of M1. To establish the notion of simulations, we
introduce first the notion of weight functions [28], which establish the correspondence
between distributions.

Definition 4. Let μ1 ∈ Distr(S1) and μ2 ∈ Distr(S2) be two distributions. For a
relation R ⊆ S1 × S2, a weight function for (μ1, μ2) with respect to R is a function
Δ : S1 × S2 → [0, 1] such that (i) Δ(s1, s2) > 0 implies (s1, s2) ∈ R, (ii) μ1(s1) =∑

s2∈S2
Δ(s1, s2) for s1 ∈ S1, and (iii) μ2(s2) =

∑
s1∈S1

Δ(s1, s2) for s2 ∈ S2.
We write μ1 �R μ2 if and only if there exists a weight function for μ1 and μ2 with

respect to R.

Now, we recall the notion of simulations [13]. The simulation requires that every suc-
cessor distribution of a state of M1 is related to a successor distribution of its corre-
sponding state of M2 via a weight function.

Definition 5. Given two automata M1 = (S1, Init1,Steps1,UnSafe1) and M2 =
(S2, Init2,Steps2,UnSafe2), we say that M2 simulates M1, denoted by M1 � M2,
if and only if there exists a relationR ⊆ S1×S2, which we will call simulation relation
from now on, such that

1. for each s1 ∈ Init1 there exists an s2 ∈ Init2 with (s1, s2) ∈ R.
2. for each s1 ∈ UnSafe1 there exists an s2 ∈ UnSafe2 with (s1, s2) ∈ R.
3. for each pair (s1, s2) ∈ R, if there exists (s1, μ1) ∈ Steps1, there exists a distribu-

tion μ2 ∈ Distr(S2) such that (s2, μ2) ∈ Steps2 and μ1 �R μ2.

4 Abstractions for Probabilistic Hybrid Automata

Various abstraction refinement techniques have been developed for verifying safety
properties against non-probabilistic hybrid automata. All of them have a common strat-
egy: the set S is covered by a finite set of abstract states, each representing a set of
concrete states. Then, the abstraction is constructed which is an over-approximation of
the original system. Afterwards, the safety property is checked on the abstraction. If
the set of unsafe states is unreachable, the original system is safe since the abstraction
over-approximates the original system. If not, the covering might have been chosen
too coarse, and a refinement step is needed. Based on this idea, predicate abstraction
based abstraction refinement has been used [3,14] for safety verification of linear hy-
brid automata, and constraint propagation based abstraction refinement has been used
for safety verification of general hybrid automata [4].

Let H = (Flow ,C, Init ,UnSafe) be a probabilistic hybrid automaton. The aim
of this section is—independent of which abstraction technique is used—to develop
a framework for constructing an abstraction for H, which is a finite probabilistic
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automaton. First we introduce the notion of abstract states which form a (not neces-
sarily disjoint) covering of the concrete state space:

Definition 6. An abstract state is a pair (m,B) where m ∈ M and B ⊆ Rk. The set
B is a finite set of abstract states such that S =

⋃
{(m,x) | (m,B) ∈ B ∧ x ∈ B}.

In the above definition, any two abstract states (m,B1) and (m,B2) may have common
interiors, including common borders2. The case allowing common interiors is the case if
the polyhedra based abstraction technique is used [17], and common border is the case
if the constraint propagation based abstraction technique is used [4]. Our abstraction
scheme in this section works for all of them.

H ind(H)

QuoH(B) Quoind(H)(B)

AbsH(B) Absind(H)(B)

Lemma 3

Theorem 1

Lemma 1

Lemma 2

Fig. 1. Computation of the
abstraction

Fig. 1 illustrates how this section is organised. Given
a probabilistic hybrid automaton H and an abstract state
space B, we introduce the quotient automaton for both
ind(H) and H in Sec. 4.1, respectively. In Sec. 4.2, we
show the soundness with respect to the quotient automaton
(cf. Lemma 1 and Lemma 2).

The quotient automaton is in general hard to compute.
Thus, we introduce in Sec. 4.3 general abstractions, which
over-approximate the quotient automata conservatively. In
Sec. 4.4, we discuss how the abstraction for the given prob-
abilistic hybrid automaton is constructed (see Fig. 1): we
construct first the abstraction of the induced hybrid automaton, from which the abstrac-
tion of the probabilistic setting is then obtained.

4.1 Quotient Automaton for H
We define the quotient automaton for the probabilistic hybrid automaton H. First we
define the quotient automaton for the induced hybrid automaton ind(H). As a conven-
tion we use T , I,U to denote the set of transitions, initial states, unsafe states in the
quotient automata.

Definition 7. Let H = (Flow ,C, Init ,UnSafe) be a probabilistic hybrid automaton,
and let B denote the abstract state space. Let Tind(H) = (S, TC ∪ TD, Init ,UnSafe)
denote the automaton representing the semantics of ind(H). The quotient automa-
ton for Tind(H), denoted by Quoind(H)(B), is a finite transition system (B, T , I,U)
where

– I = {(m,B) ∈ B | ∃x ∈ B. (m,x) ∈ Init},
– U = {(m,B) ∈ B | ∃x ∈ B. (m,x) ∈ UnSafe},
– TC corresponds to the set of abstract transitions due to continuous flow: TC =

{((m,B), (m,B′)) ∈ B2 | ∃x ∈ B ∧ ∃x′ ∈ B′ ∧ ((m,x), (m,x′)) ∈ TC},
– TD corresponds to the set of abstract transitions due to discrete jumps. We first

define the transition induced by one fixed update u ∈ ind(C). Assume that we have

2 We may also require that abstract states form a partitioning over the original state S, with
pairwise disjoint abstract states. Such abstractions are, however, harder to construct for non-
trivial models.
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((m,x), (m′,x′)) ∈ StepsD(u). Then, it induces an abstract transition ((m,B),
(m′, B′)) ∈ TD(u) where B,B′ are the abstract states containing x, x′ respec-
tively. Then, let TD = ∪u∈ind(C)TD(u).

Let H = (Flow ,C, Init ,UnSafe) be a probabilistic hybrid automaton, and let MH =
(S,StepsC∪StepsD, Init ,UnSafe) denote the automaton representing the semantics of
H. As in the induced non-probabilistic setting, we define a quotient automaton, denoted
by QuoH(B), for an abstract state space B. For this we first introduce the set of lifted
distributions:

Definition 8. Let H and MH be as described above. Let B denote the abstract state
space. Let c ∈ C and assume that (s, μ) ∈ StepsD(c) in MH. By definition of
StepsD(c), there exist states (m1,x1), . . . , (mqc ,xqc) ∈ S satisfying the condition
((m,x), (mi,xi)) ∈ TD(ui) for i = 1, . . . , qc. Then, for arbitrary abstract states
(m1, B1), . . . , (mqc , Bqc) with xi ∈ Bi for i = 1, . . . , qc we introduce the distribution
μ′ ∈ Distr(B) by: μ′(mi, Bi) =

∑
{j|(mj ,Bj)=(mi,Bi)} μ(mj ,xj). The set of lifted

distributions liftB(μ) contains all such μ′.

Let μ be the distribution according to a guarded command c. Since the covering B is in
general not disjoint, a concrete state (mi,xi) might belong to more than one abstract
states. In this case μ induces more than one lifted distribution. In the above definition,
this is reflected by the way of defining one specific lifted distribution μ′, for which we
first fix to which abstract state each concrete state (mi,xi) belongs. Note that if B is a
disjoint partitioning of S, the set liftB(μ) is a singleton. We now introduce the quotient
automaton for the probabilistic hybrid automaton:

Definition 9. Let H and MH be as described above. Let B denote the abstract state
space. The quotient automaton for MH with respect to B is defined by QuoH(B) =
(B,ST , I,U) where I andU are defined as forQuoind(H)(B), and ST = ST C∪ST D
is the set of abstract transitions where:

– ST C corresponds to the set of abstract transitions due to continuous flow: ST C =
{((m,B),Dirac(m,B′)) | ∃x ∈ B ∧ ∃x′ ∈ B′ ∧ ((m,x), (m,x′)) ∈ StepsC}.

– ST D corresponds to the set of abstract transitions due to discrete jumps. We
first define the transition induced by one fixed guarded command c. Consider
all ((m,x), μ) ∈ StepsD(c). These pairs induce corresponding abstract transi-
tions ((m,B), μ′) ∈ ST D(c) where B is the abstract state containing x, and
μ′ ∈ liftB(μ). Then, let ST D = ∪c∈CST D(c).

Example 1. Consider Fig. 2 and assume we have a guarded command c : condition →
p1 : up1 + . . . + p4 : up4. Thus qc = 4. The abstract states are represented by cir-
cles, labelled with the corresponding tuple. The concrete states are represented by black
points, labelled with only the evaluation of the variables (assume that all of them are
different). Thus s0 represents state (m0, s0) and so on. Arrows are transitions in the con-
crete models, where the labels represent the probability pi of the corresponding update
upi of c.
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(m0, B0)

(m3, B3)
(m1, B1)

p1 : up1

p2 : up2

(m2, B2)

s4
s1

s2
s3

s0

p4 : up4

p3 : up3

Fig. 2. Illustrating the abstract
discrete transitions in the quo-
tient automaton

Consider the two (there may be more) con-
crete transitions in Tind(H): ((m0, s0), (m1, s1)),
((m0, s0), (m1, s2)) ∈ TD. Both of them lead from
(m0, B0) to the same abstract state (m1, B1). By Def-
inition 7, we have that ((m0, B0), (mi, Bi)) ∈ TD for
i = 1, 2, 3 in Quoind(H)(B).

We have a concrete transition ((m0, s0), μ) where μ
is defined by: μ(si) = pi for i = 1, 2, 3, 4. Assume
first that B0, B1, B2, B3 are disjoint. By Definition 8,
liftB(μ) = {μ′} where μ′ is defined by: μ′(m1, B1) =
p1 + p2, μ′(m2, B2) = p3, and μ′(m3, B3) = p4.
Then, by Definition 9, this induces an abstract transi-
tion ((m0, B0), μ′) ∈ liftB(μ) in QuoH(B).

Assume now that the abstract states B1 and B2 are not disjoint, and that s2 is on
the common border of (m1, B1) and (m2, B2) (which implies also m1 = m2). In this
case the set liftB(μ) contains another element μ′′ which defined by: μ′′(m1, B1) = p1,
μ′′(m2, B2) = p2 + p3 and μ′′(m3, B3) = p4. Again by Definition 9, μ′′ induces
another abstract transition ((m0, B0), μ′′) in QuoH(B).

4.2 Soundness

Given a probabilistic hybrid automaton H and a set of abstract states B, we defined
a probabilistic quotient automaton QuoH(B). The following lemma shows that this
automaton conservatively over-approximates MH.

Lemma 1. QuoH(B) simulates MH.

Proof sketch: We define R = {((m,x), (m′, B)) ∈ S × B | m = m′ ∧ x ∈
B}. It suffices to show that R is a simulation relation. Let ((m,x), (m,B)) ∈ R.
The first two conditions for simulation relations are trivially satisfied. It remains the
third condition. There are two type of transitions starting from (m,x) in MH: the
case ((m,x),Dirac(m,x′)) ∈ StepsC is trivial and skipped. Now consider the case
((m,x), μ) ∈ StepsD: there exists then a guarded command c such that ((m,x), μ) ∈
StepsD(c). Let c and ind(c) = {u1, . . . ,uqc} be as described in Definition 3, and
let (mi,xi) = updatei(m,x) be the state with respect to updatei for i = 1, . . . , qc.
Note that it could be the case that, for i �= j, xi = xj . Moreover, let (mi, Bi) ∈ B
denote the abstract state satisfying xi ∈ Bi. By construction of the relation R, we
know that ((mi,xi), (mi, Bi)) ∈ R. By the definition of ST (cf. Definition 11), we
have that ((m,B), μ′) ∈ ST D(c) where μ′(mi, Bi) =

∑
j∈{j|mj=mi∧Bj=Bi} pj for

i = 1, . . . , qc. Define Δ for (μ, μ′) with respect to R by: Δ((mi,xi), (mi, Bi)) equals
μ(mi,xi) for i = 1, . . . , qc, and equals 0 otherwise. It remains to show that Δ is the
proper weight function. For the first condition, assume Δ((m∗,x∗), (m′, B′)) > 0. By
the definition of Δ, we have m∗ = m′ and x∗ ∈ B′, implying ((m∗,x∗), (m′, B′)) ∈
R. Now we show the third condition (the second condition is similar). Let (mj , Bj) be
an abstract state with j ∈ {1, . . . , qc} (otherwise trivial). On one hand, due to the defi-
nition of μ′, μ′(mj , Bj) =

∑
i∈I pi where I = {i | mi = mj ∧Bi = Bj} denotes the

set of all indices i such that (mi, Bi) = (mj , Bj). On the other hand, by the definition
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of Δ, it holds
∑

i∈I pi =
∑

xk∈Bj
μ(mj ,xk) =

∑
k∈I Δ((mj ,xk), (mj , Bj)) (cf.

Equation (1)), which implies the third condition.

Since simulation on probabilistic automata preserves safety properties [13], we have
the correctness of our construction:

Lemma 2. The abstraction preserves the safety property: if the probability of reaching
UnSafe in QuoH(B) is bounded by ε, this is also the case in H.

4.3 Abstractions for H
Consider the probabilistic hybrid automatonH. Often the computation of the exact quo-
tient automatonQuoH(B) as defined in Definition 9 refers to concrete states, and is hard
or even impossible. In this subsection we introduce the notion of abstractions which
over-approximate the quotient automata. As a convention we use the primed version
T ′, I ′,U ′ to denote the set of transitions, initial states, unsafe states in the abstraction.

Definition 10. Let H = (Flow ,C, Init ,UnSafe) be a probabilistic hybrid automaton,
and let B denote the abstract state space. Then,

– Absind(H)(B) = (B, T ′, I ′,U ′) is an abstraction of the quotient Quoind(H)(B) iff
T ′ = ∪u∈ind(C)T ′

D(u)∪T ′
C and it holds TC ⊆ T ′

C , TD(u) ⊆ T ′
D(u) for u ∈ ind(C),

I ⊆ I′ and U ⊆ U ′,
– AbsH(B) = (B,ST ′, I ′,U ′) is an abstraction of the quotient QuoH(B) iff ST ′ =

∪c∈CST ′
D(c) ∪ ST ′

C and it holds ST D(c) ⊆ ST ′
D(c) for c ∈ C, ST C ⊆ ST ′

C ,
I ⊆ I′ and U ⊆ U ′.

In that case, we say also that Absind(H)(B) is an abstraction of the induced hybrid
automaton ind(H). Similarly, we say also that AbsH(B) is an abstraction of the prob-
abilistic hybrid automaton H. Since the abstraction as defined may have more initial
states, unsafe states and transitions than the quotient automaton, it is easy to verify that
the abstraction simulates the corresponding quotient automaton. Since simulation is
transitive, the abstraction also simulates the corresponding semantics automaton. Thus,
the abstraction preserves also safety properties of H.

4.4 Computing Abstractions

Let H be a probabilistic hybrid automaton. Existing methods can be used to compute
an abstractionAbsind(H)(B) for the induced hybrid automaton ind(H), for example [4,
14,17]. In the following we define an abstraction based on Absind(H)(B):

Definition 11. For a probabilistic hybrid automaton H, let B be the abstract state
space, and Absind(H) = (B, T ′

D ∪ T ′
C , I ′,U ′) be an abstraction of ind(H). We define

AbsH(B) = (B,ST ′
C ∪ ST ′

D, I ′,U ′) for H as follows:

– ST ′
C = T ′

C ,
– ST ′

D corresponds to the set of abstract transitions due to discrete jumps.
We first define the transition induced by one fixed guarded command c :
condition → p1 : update1 + . . . + pqc : updateqc , and ind(c) =
{u1, . . . ,uqc} as defined in Definition 3. Then, for every sequence of abstract states



Safety Verification for Probabilistic Hybrid Systems 207

(m,B), (m1, B1), . . . , (mqc , Bqc) satisfying the condition: ((m,B), (mi, Bi)) ∈
T ′
D(ui) for i = 1, . . . , qc we introduce the transition ((m,B), μ) ∈ ST ′

D(c) such
that μ(mi, Bi) =

∑
j∈{j|mj=mi∧Bj=Bi} pj for i = 1, . . . , qc. Then, ST ′

D is de-

fined to be
⋃
c∈C ST

′
D(c).

Is AbsH(B) in fact an abstraction of H? Since Absind(H)(B) is an abstraction for
Quoind(H)(B), by Definition 10 it holds that TC ⊆ T ′

C , I ⊆ I′,U ⊆ U ′ and that
TD(u) ⊆ T ′

D(u) for u ∈ ind(C). Note that in general most of the inclusions above are
strict [4,14]. By the construction of AbsH(B), it holds that ST C ⊆ ST ′

C , I ⊆ I′,U ⊆
U ′. The following lemma shows that it holds also ST D ⊆ ST ′

D:

Lemma 3. Consider the abstraction AbsH(B) as defined in Definition 11. Then, it
holds that ST D(c) ⊆ ST ′

D(c), for all c ∈ C.

Proof sketch: Fix c ∈ C. Assume that ((m,B), μ′) ∈ ST D(c). Then, by Defi-
nition 9, there exists x ∈ B and a transition ((m,x), μ) ∈ StepsD(c) such that
μ′ ∈ liftB(μ). For i = 1, . . . , qc, let (mi,xi) = updatei(m,x), and let (mi, Bi) be the
abstract states corresponding to the distribution μ′ (cf. Definition 8), i.e., μ′(mi, Bi) =∑

{j|(mj ,Bj)=(mi,Bi)} μ(mj ,xj). Obviously, ((m,x), (mi,xi)) ∈ TD(ui). Since xi ∈
Bi it holds that ((m,B), (mi, Bi)) ∈ TD(ui) ⊆ T ′

D(ui) for i = 1, . . . , qc. By Defini-
tion 11, we have that ((m,B), μ′) ∈ ST D(c).

The set of transitions ST ′
D(c) is indeed an over-approximation, which is illustrated as

follows.

(m0, B0)

(m3, B3)
(m1, B1)

(m2, B2)

p4 : up4

p2 : up2

p3 : up3

s1

s0
s2

s4

s3

s5

s6

p3 : up3

p2 : up2

p1 : up1

p4 : up4

Fig. 3. Abstracting abstract
discrete transitions

Example 2. Consider the fragment of the abstraction de-
picted in Fig. 3 in which we assume that the transitions
correspond to the guarded command c with qc = 4:
condition → p1 : up1 + . . . + p4 : up4. The abstract
states are represented by circles, labelled with the cor-
responding tuple. The concrete states are represented by
black points, labelled with only the evaluation of the vari-
ables (assume that all of them are different). Thus s0 rep-
resents state (m0, s0) and so on. Arrows are transitions in
the concrete models, where the labels represent the prob-
ability pi of the corresponding update upi of c. Assume
that all of the concrete states are different and are not on borders. (Note: only parts
of successor distributions are depicted, and we assume that other parts (e.g. for state
(m0, s1)) lead to abstract states outside the depicted fragment.)
havNow we consider the distribution μ∗ ∈ Distr(B) which is defined as follows:
μ∗(m1, B1) = p1 + p2, μ∗(m2, B2) = p3 and μ∗(m3, B3) = p4. By the above
assumption, no concrete successor distributions of s0, s1 or s2 could induce μ∗ ac-
cording Definition 8. Thus, by Definition 9, ((m0, B0), μ∗) �∈ ST D(c). On the other
hand, it holds ((m0, B0), (m1, B1)) ∈ T ′

D(upi) for i = 1, 2, ((m0, B0), (m2, B2)) ∈
T ′
D(up3), and ((m0, B0), (m3, B3)) ∈ T ′

D(up4). Thus, by Definition 11 we have that
((m0, B0), μ∗) ∈ ST ′

D(c).
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Lemma 3 implies that AbsH(B) is an abstraction of QuoH(B). Thus:

Theorem 1. For every probabilistic hybrid automaton H , for every abstraction
Absind(H)(B) of the induced hybrid automaton ind(H), the safety of AbsH(B) implies
the safety of H .

5 Experiments

We implemented our method in the prototypical tool ProHVer (probabilistic hybrid
automata verifier). It combines a modified version of PHAVer [17] to obtain the abstract
state space with a component to compute an upper probability bound for the reachability
problem using value iteration in the induced abstract probabilistic automaton. To show
the applicability of our approach, we applied ProHVer on several case studies, which
are small but diverse in the nature of their behaviour. Even though in each of them
we considered bounded reachability (by using a clock variable to bound the time) to get
result other than 1, our method is not in principal restricted to time bounded reachability.
PHAVer covers the reachable continuous space (per discrete location) by polyhedra

of a maximal width. It can split locations (introducing new discrete locations) if the
over-approximations carried out while constructing this covering are too coarse. This is
effective in practice. But if we attempt to improve precision by reducing the maximal
width, the resulting covering and location splits can look entirely different. This carries
over to the probabilistic side.

This phenomenon of PHAVer may induce situations, where that reduced width set-
ting does not lead to tighter probability bounds. Usually it does.

Error

Heat

Cool Check

Ṫ = 0

Ṫ = 2
T ≤ 10 ∧ t ≤ 3

T ≥ 5

Ṫ = −T Ṫ = −T/2

T ≥ 9

T ≤ 6 →

t ≤ 1

0.05

0.95 : t′ = 0
t′ = 0

t ≥ 2 →
t′ = 0

t ≥ 0.5 →

Fig. 4. A probabilistic hybrid automaton
for the thermostat

We here consider the thermostat exam-
ple depicted in Fig. 4, which is extended
from the one in [14]. There are four modes:
Cool ,Heat ,Check and Error . The latter
mode models the occurrence of a failure,
where the temperature sensor gets stuck at the
last checked temperature. The set of variables
are {t, x, T} where T represents the temper-
ature, t represents a local timer and x is used
to measure the total time passed so far. Thus,
in all modes it holds that ẋ = 1 and ṫ = 1.
In each mode there is also an invariant constraint restricting the set of state space for
this mode. Invariant constraints are only for the sake of convenience and comparison
with [14].

The given initial condition is m = Heat ∧ t = 0 ∧ x = 0 ∧ 9 ≤ T ≤ 10. The
unsafe constraint is m = Error ∧ x ≤ 5, which corresponds to reaching the Error
mode within time 5. Assume that the probability threshold for this risk is specified to
be 0.2. ProHVer can verify this nontrivial system and property, and will answer that
the system is safe, the upper bound computed is 0.097.

In Fig. 5, we give probability bounds and performance statistics (time to build the
abstraction – the value iteration time is negligible, and number of constructed abstract
states) for different time bounds. For the left (right) part we instantiated the splitting
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interval for variable x with length 2 (respectively length 10). This governs the refine-
ment technique of PHAVer. The time needed for the analysis as well as the number
of states of the abstract transition systems grows about linearly in the time bound,

time interval length 2 interval length 10
bound prob. build (s) #states prob. build (s) #states

2 0 0 11 0 0 8
4 0.05 0 43 1 0 12
5 0.097 1 58 1 0 13

20 0.370 20 916 1 1 95
40 0.642 68 2207 0.512 30 609
80 0.884 134 4916 1 96 1717

120 0.940 159 4704 0.878 52 1502
160 0.986 322 10195 0.954 307 4260
180 0.986 398 10760 0.961 226 3768
600 1.0 1938 47609 1 1101 12617

Fig. 5. Thermostat performance

though with oscillations. Comparing the left
and the right side, we see that for the larger
interval we need less resources, as was to be
expected. Due to the way PHAVer splits lo-
cations along intervals, for some table entries,
we see somewhat counter-intuitive behaviour.
We observe that bounds do not necessarily
improve with decreasing interval length. This
is because PHAVer does not guarantee ab-
stractions with smaller intervals to be an im-
provement, though they are in most cases.
Furthermore, the abstraction we obtain from

PHAVer can not guarantee probability bounds to increase monotonically with the time
bound. This is because a slightly increased time bound might induce an entirely differ-
ent abstraction, leading to a tighter probability bound, and thus giving the impression
of a decrease in probability, even though the actual maximal probability indeed stays
the same or increases.

In addition to the thermostat case, we have considered a selection of other case stud-
ies: a bouncing ball assembled from different materials, a water level control system
where sensor values may be delayed probabilistically, and an autonomous lawn-mower
that uses a probability bias to avoid patterns on lawns. As safety problems to be verified
we considered (time bounded) reachability properties. We varied the time bounds and
other parameters of the analysis, leading to different upper bounds of varying precision.
Mostly, the upper bounds we could obtain were tight or exact (checked by manual in-
spection). Due to space restrictions, we have put the complete descriptions of all case
studies and corresponding results on our preliminary homepage for the tool at:

http://depend.cs.uni-sb.de/tools/prohver

6 Conclusions

In this paper we have discussed how to check safety properties for probabilistic hybrid
automata. These models and properties are of central importance for the design and ver-
ification of emerging wireless and embedded real-time applications. Moreover, being
based on arbitrary abstractions computed by tools for the analysis of non-probabilistic
hybrid automata, improvements in effectivity of such tools directly carry over to im-
provements in effectivity of the technique we describe. The applicability of our ap-
proach has been demonstrated on a number of case studies, tackled using a prototypical
implementation.

As future work we are investigating whether our approach can be adapted to the
safety verification problem for more general probabilistic hybrid systems [7,8], that is,
systems with stochastic differential equations instead of ordinary differential equations.

http://depend.cs.uni-sb.de/tools/prohver
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Abstract. We define and study a new abstract domain which is a fine-grained
combination of zonotopes with (sub-)polyhedric domains such as the interval, oc-
tagon, linear template or polyhedron domains. While abstract transfer functions
are still rather inexpensive and accurate even for interpreting non-linear compu-
tations, we are able to also interpret tests (i.e. intersections) efficiently. This fixes
a known drawback of zonotopic methods, as used for reachability analysis for
hybrid systems as well as for invariant generation in abstract interpretation: in-
tersection of zonotopes are not always zonotopes, and there is not even a best
zonotopic over-approximation of the intersection. We describe some examples
and an implementation of our method in the APRON library, and discuss some
further interesting combinations of zonotopes with non-linear or non-convex do-
mains such as quadratic templates and maxplus polyhedra.

1 Introduction

Zonotopic abstractions are known to give fast and accurate over-approximations in in-
variant synthesis for static analysis of programs, as introduced by the authors [10, 11, 7],
as well as in reachability analysis of hybrid systems [8]. The main reason for this is that
the interpretation of linear assignments is exact and done in linear time in terms of the
“complexity” of the zonotopes, and non-linear expressions are dynamically linearized
in a rather inexpensive way, unlike for most of other sub-polyhedric domains (zones
[19], linear templates [21], even polyhedra [6]). But unions, at the exception of recent
work [14], and more particularly intersections [9] are not canonical operations, and are
generally computed using approximate and costly methods, contrarily to the other do-
mains we mentioned. We present in this article a way to combine the best of the two
worlds: by constructing a form of logical product [15] of zonotopes with any of these
sub-polyhedric domains, we still get accurate and inexpensive methods to deal with
the interpretation of linear and non-linear assignments, while intersections in particular,
come clean thanks to the sub-polyhedric component of the domain.

Consider for instance the following program (loosely based on non-linear interpola-
tion methods in e.g. embedded systems), which will be our running example:

r e a l x = [ 0 , 1 0 ] ;
r e a l y = x∗x − x ;
i f ( y >= 0) y = x / 1 0 ; /∗ ( x=0 or x >= 1) and y i n [ 0 , 1 ] ∗ /
e l s e y = x∗x +2; /∗ ( x>0 and x<1) and y i n [ 2 , 3 ] ∗ /

T. Touili, B. Cook, and P. Jackson (Eds.): CAV 2010, LNCS 6174, pp. 212–226, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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As indicated in the comments of the program, the if branch is taken when we have
x = 0 or x ≥ 1, so that y at the end of the program, is always in [0, 3]. Although this
program looks quite simple, it is difficult to analyze, and the invariants found for y at the
end of the program by classical domains1 are disappointing: intervals, octagons, polyhe-
dra, or zonotopes without constraint all find a range of values for y larger or equal than
[0, 102]: even those which interpret quite accurately non-linear operations are not able
to derive a constraint on x from the constraint on y. Whereas by the method proposed
here, a logical product of zonotopes with intervals, in its APRON implementation, we
find the much better range [0, 9.72] (comparable to the exact result [0, 3]).

Contents of the paper. We first introduce in Section 2 affine sets, a zonotopic abstract
domain for abstract interpretation, that abstracts input/output relations in a program.
We then introduce the problem of computing intersections in Section 3: starting with
the running example, we define constrained affine sets as the combination of zonotopes
with polyhedric domains and show they are well suited for the interpretation of tests. We
then generalize the order on affine sets to constrained affine sets and define monotonic
abstract transfer functions for arithmetic operators, that over-approximate the concrete
semantics. Section 4 completes the definition of this new abstract domain: starting with
the easier “one-variable” problem, we then give an algorithm for computing a join oper-
ator. We demonstrate the interest of the domain by describing in Section 5 the results on
some examples, based on an implementation of our method in the library APRON. We
conclude by a discussion of future work, including some further interesting combina-
tions of zonotopes with non-linear or non-convex domains such as quadratic templates
and maxplus polyhedra.

Related work. In [17], the authors propose an approach based on a reduced product [5],
to get more tractable and efficient methods for deriving sub-polyhedric invariants. But,
still, the reduction algorithm of [17] is fairly expensive, and this domain also suffers
from the drawbacks of polyhedra, in the sense that it is not well suited for efficiently
and precisely deriving invariants for non-linear computations. Logical products in ab-
stract interpretation are defined in [15]. The authors use the Nelson-Oppen combination
method for logical theories, in the convex case, to get polynomial time abstractions on
a much finer (than classical reduced products) combination of two abstract domains. As
explained in Section 3.2, this approach does not directly carry over our case, because the
theories we want to combine do not satisfy all the hypotheses of [15]. We thus choose
in this paper a direct approach to the logical product of zonotopes with other classical
abstract domains.

2 Affine Sets: Main Definitions and Properties

2.1 Affine Arithmetic and Zonotopes

Affine arithmetic is an extension of interval arithmetic on affine forms, first introduced
in [4], that takes into account affine correlations between variables. An affine form is a

1 The experiments were carried out using the domains interfaced within APRON [20].
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formal sum over a set of noise symbols εi

x̂
def= αx

0 +
n∑

i=1

αx
i εi,

with αx
i ∈ R for all i. Each noise symbol εi stands for an independent component

of the total uncertainty on the quantity x̂, its value is unknown but bounded in [-1,1];
the corresponding coefficient αx

i is a known real value, which gives the magnitude of
that component. The same noise symbol can be shared by several quantities, indicating
correlations among them. These noise symbols can not only model uncertainty in data
or parameters, but also uncertainty coming from computation. The semantics of affine
operations is straightforward, non affine operations are linearized and introduce a new
noise symbol: we refer the reader to [11, 13] for more details.

In what follows, we introduce matrix notations to handle tuples of affine forms. We
note M(n, p) the space of matrices with n lines and p columns of real coefficients.
A tuple of affine forms expressing the set of values taken by p variables over n noise
symbols εi, 1 ≤ i ≤ n, can be represented by a matrixA ∈ M(n+ 1, p). We formally
define the zonotopic concretization of such tuples by :

Definition 1. Let a tuple of affine forms with p variables over n noise symbols, defined
by a matrix A ∈ M(n+ 1, p). Its concretization is the zonotope

γ(A) =
{

tAte | e ∈ R
n+1, e0 = 1, ‖e‖∞ = 1

}
⊆ R

p .

x

y

10 15 20 25 30
5

10

15 For example, for n = 4 and p = 2,
the gray zonotope is the concretisa-
tion of the affine set X = (x̂, ŷ),
with x̂ = 20 − 4ε1 + 2ε3 + 3ε4,
ŷ = 10 − 2ε1 + ε2 − ε4, and
tA =

(
20 −4 0 2 3
10 −2 1 0 −1

)
.

2.2 An Ordered Structure: Affine Sets

In order to construct an ordered structure preserving abstract input/output relations [14],
we now define affine sets X as Minkowski sums of a central zonotope, γ(CX) and of
a perturbation zonotope centered on 0, γ(PX). Central zonotopes depend on central
noise symbols εi, whose interpretation is fixed once and for all in the whole program:
they represent the uncertainty on input values to the program, with which we want
to keep as many relations as possible. Perturbation zonotopes depend on perturbation
symbols ηj which are created along the interpretation of the program and represent the
uncertainty of values due to the control-flow abstraction, for instance while computing
the join of two abstract values.

Definition 2. We define an affine set X by the pair of matrices
(CX , PX) ∈ M(n+ 1, p)×M(m, p). The affine form πk(X) = cX0k +

∑n
i=1 c

X
ikεi +∑m

j=1 p
X
jkηj , where the εi are the central noise symbols and the ηj the perturbation or

union noise symbols, describes the kth variable of X .



A Logical Product Approach to Zonotope Intersection 215

We define an order on affine sets [7, 14] which is slightly more strict than concretization
inclusion: it formalizes the fact that the central symbols have a specific interpretation as
parametrizing the initial values of input arguments to the analyzed program:

Definition 3. LetX = (CX , PX), Y = (CY , PY ) be two affine sets in M(n+1, p)×
M(m, p). We say that X ≤ Y iff

∀u ∈ R
p, ‖(CY − CX)u‖1 ≤ ‖PY u‖1 − ‖PXu‖1 .

It expresses that the norm of the difference (CY − CX)u for all u ∈ Rp is less than
what the perturbation terms PX and PY allow, that is the difference of the norms of
PY u with PXu.

Classically, input/output functional abstractions are handled by adding slack vari-
ables corresponding to the initial values of the inputs. Here, we want relations between
the variables of the program and the uncertain inputs, that is the inputs that create noise
symbols. It can be proved that the relation of Definition 3 is equivalent to the geometric
order on the larger zonotopes obtained by adding these slack variables to the zonotopes
represented by our affine sets.

The binary relation ≤ of Definition 3 is a preorder, that we identify in the sequel
with the partial order, quotient of this preorder by the equivalence relation2 X ∼ Y iff
by definition X ≤ Y and Y ≤ X . Note also that this partial order is decidable, with a
complexity bounded by a polynomial in p and an exponential in n+m. In practice, see
[14], we do not need to use this costly general decision procedure.

3 Constrained Affine Sets for Intersection

We now introduce the logical product of the domain A1 of Section 2 with any lattice,
(A2,≤2,∪2,∩2), used to abstract the values of the noise symbols εi and ηj . Formally,
supposing that we have n + 1 noise symbols εi and m noise symbols ηj as in Section
2.2, we are given a concretization function: γ2 : A2 → P({1}×Rn×Rm) and pseudo-
inverse α2. We now define constrained affine sets:

Definition 4. A constrained affine set U is a pairU = (X,ΦX) whereX = (CX , PX)
is an affine set, andΦX is an element ofA2. Equivalently, we writeU = (CX , PX , ΦX).

Classical abstractions of “constraints” on the εi we will be using throughout this text
are A consisting of products of 1 + n + m intervals (with the first one always being
equal to 1), zones, octagons, and polyhedra (in the hyperplane ε0 = 1).

3.1 Interpretation of Tests

Equality tests on variables. We first consider the case of the interpretation of equality
test of two variables within an abstract state. Let us begin by a motivating example,
which will make clear what the general interpretation of Definition 5 should be.

2 It can be characterized by CX = CY and same concretizations for PX and P Y .
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Example 1. Consider, with an interval domain for the noise symbols, Z = [[x1 ==
x2]]X where ⎧⎨⎩Φ

X = 1 × [−1, 1]× [−1, 1]× [−1, 1]
x̂X

1 = 4 + ε1 + ε2 + η1, γ(x̂1) = [1, 7]
x̂X

2 = −ε1 + 3ε2, γ(x̂2) = [−4, 4]

We look for ẑ = x̂1 = x̂2, with ẑ = z0 + z1ε1 + z2ε2 + z3η1. Using x̂1 − x̂2 = 0, i.e.

4 + 2ε1 − 2ε2 + η1 = 0, (1)

and substituting η1 in ẑ − x̂1 = 0, we deduce z0 = 4z3, z1 = 2z3 − 1, z2 = −2z3 + 3.
The abstraction in intervals of constraint (1) yields tighter bounds on the noise symbols:
ΦZ = 1× [−1,−0.5]× [0.5, 1]× [−1, 0]. We now look for z3 that minimizes the width
of the concretization of z, that is 0.5|2z3 − 1| + 0.5|3 − 2z3| + |z3|. A straightforward
O((m+n)2) method to solve the problem evaluates this expression for z3 successively
equal to 0, 0.5 and 1.5: the minimum is reached for z3 = 0.5. We then have{

ΦZ = 1 × [−1,−0.5]× [0.5, 1]× [−1, 0]
x̂Z

1 = x̂Z
2 (= ẑ) = 2 + 2ε2 + 0.5η1, γ(x̂Z

1 ) = γ(x̂Z
2 ) = [2.5, 4]

Note that the concretization γ(x̂Z
1 ) = γ(x̂Z

2 ) is not only better than the intersection of
the concretizations γ(x̂X

1 ) and γ(x̂X
2 ) which is [1, 4], but also better than the intersection

of the concretization of affine forms (x̂X
1 ) and (x̂X

2 ) for noise symbols in ΦZ . Note that
there is not always a unique solution minimizing the width of the concretization.

In the following, we use bold letters to denote intervals, and for an interval u = [u, u],
we note dev(u) = u− u.

Definition 5. Let X = (CX , PX , ΦX) a constrained affine set with (CX , PX) ∈
M(n+ 1, p) ×M(m, p). We define Z = [[xj == xi]]X by:
- ΦZ = ΦX

⋂
α2
({

(ε1, . . . , εn, η1, . . . , ηm) | (cX0j − cX0i) +
∑n

r=1(c
X
rj − cXri)εr+∑m

r=1(p
X
rj − pX

ri)ηr = 0
})

,
- cZrl = cXrl , ∀r ∈ {0, . . . , n}, and ∀l ∈ {1, . . . , p}, l �= i, j,
- pZ

rl = pX
rl , ∀r ∈ {1, . . . ,m} and ∀l ∈ {1, . . . , p}, l �= i, j.

Let k such that cXkj − cXki �= 0, we define

cZli = cZlj = cXli +
cXlj − cXli
cXkj − cXki

(cZki − cXkj) ∀l ∈ {0, . . . , n}, l �= k, (2)

pZ
li = pZ

lj = pX
li +

pX
lj − pX

li

cXkj − cXki

(cZki − cXkj) ∀l ∈ {1, . . . ,m}, (3)

with cZki that minimizes
∑n

l=1 |cZli | dev(εZ
l ) +

∑m
l=1 |pZ

li | dev(ηZ
l ).

If for all k, cXkj = cXki, then we look for r such that pX
rj − pX

ri �= 0; if for all r, pX
rj = pX

ri

then xi = xj and Z = X .

This expresses that the abstraction of the constraint on the noise symbols induced by
the test is added to the domain of constraints, and the exact constraint is used to define
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an affine form z satisfying z = xZ
j = xZ

i , and such that γ(z) is minimal. Indeed, let k
such that cXkj − cXki �= 0, then xj == xi allows to express εk as

εk = cX0j − cX0i +
∑

1≤l≤n,l 	=k

(cXlj − cXli )
cXki − cXkj

εl +
∑

1≤l≤m

(pX
lj − pX

li )
cXki − cXkj

ηl . (4)

We now look for πi(Z) = πj(Z) equal to πi(X) and πj(X) under condition (4) on the
noise symbols (where πk(X) describes the kth variable of X, as introduced in Definition
2). Substituting εk in for example πi(Z) = πi(X), we can express, for all l, cZli and pZ

li

as functions of cZki and get possibly an infinite number of solutions defined by (2) and (3)
that are all equivalent when (4) holds. When condition (4) will be abstracted in a noise
symbols abstract domain such as intervals, these abstract solutions will no longer be
equivalent, we choose the one that minimizes the width of γ(πi(Z)) which is given by∑n

l=1 |cZli | dev(εZ
l )+

∑m
l=1 |pZ

li | dev(ηZ
l ). This sum is of the form

∑m+n
l=1 |al + blc

Z
ki|,

with known constants al and bl. The minimization problem can be efficiently solved in
O((m + n)log(m+ n)) time, m+ n being the number of noise symbols appearing in
the expressions of xi and xj , by noting that the minimum is reached for cZki = −al0

bl0

for a l0 ∈ {1, . . . ,m + n}. When it is reached for two indexes lp and lq, it is reached
for all cZki in

[
−alp

blp
,−alp

blp

]
, but we choose one of the bounds of this intervals because it

corresponds to the substitution in xZ
i of one of the noise symbols, and is in the interest

for the interpretation of tests on expressions.

Equality tests on expressions. Now, in the case of an equality test between arithmetic
expressions, new constraints on the noise symbols can be added, corresponding to the
equality of the two expressions interpreted as affine forms. We also choose new affine
forms for variables appearing in the equality test: letX = (CX , PX , ΦX) a constrained
affine set with (CX , PX) ∈ M(n + 1, p) × M(m, p). We define Z = [[exp1 ==
exp2]]X by: Y1 = [[xp+1 = exp1]][[xp+2 = exp2]]X using the semantics for arithmetic
operations, as defined in section 3.3, then Y2 = [[xp+1 == xp+2]]Y1. Noting that one of
the noise symbols appearing in the constraint introduced by the equality test, does not
appear in xY2

p+1 = xY2
p+2 as computed by Definition 5, using this constraint we substitute

this noise symbol in the other variables in Y2. We then eliminate the added variables
xp+1 and xp+2 to obtain Z , in which exp1 == exp2 is thus algebraically satisfied.

Example 2. Consider Z = [[x1 + x2 == x3]]X where⎧⎪⎪⎨⎪⎪⎩
ΦX = 1 × [−1, 1]× [−1, 1] × [−1, 1]
x̂X

1 = 2 + ε1, γ(x̂1) = [1, 3]
x̂X

2 = 2 + ε2 + η1, γ(x̂2) = [0, 4]
x̂X

3 = −ε1 + 3ε2, γ(x̂3) = [−4, 4]

We first compute x4 := x1 + x2 in affine arithmetic: here, problem x4 == x3 is then
the test we solved in example 1. The abstraction in intervals of constraint (1) yields
ΦZ = 1× [−1,−0.5]× [0.5, 1]× [−1, 0], and an affine form xZ

3 optimal in the sense of
the width of its concretization, xZ

3 = 2+ 2ε2 +0.5η1. Now, x̂X
1 + x̂X

2 = x̂Z
3 is satisfied

when constraint (1) holds exactly, but not in its interval abstractionΦZ . But substituting
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ε1 which does not appear in xZ
3 by −2 + ε2 − 0.5η1 in x̂X

1 and x̂X
2 , we obtain forms

x̂Z
1 and x̂Z

2 that satisfy x1 + x2 == x3 in the abstract domain:⎧⎪⎪⎨⎪⎪⎩
ΦZ = 1 × [−1,−0.5]× [0.5, 1]× [−1, 0]
x̂Z

1 = ε2 − 0.5η1, γ(x̂1) = [0.5, 1.5]
x̂Z

2 = 2 + ε2 + η1, γ(x̂2) = [1.5, 3]
x̂Z

3 = 2 + 2ε2 + 0.5η1, γ(x̂Z
1 ) = γ(x̂Z

2 ) = [2.5, 4]

Inequality tests. In the case of inequality tests, we only add constraints on noise sym-
bols, for example for strict inequality:

Definition 6. Let X = (CX , PX , ΦX) a constrained affine set with (CX , PX) ∈
M(n+ 1, p) ×M(m, p). We define Z = [[exp1 < exp2]]X by Z = (CX , PX , ΦZ):
ΦZ = ΦX

⋂
α2
({

(ε1, . . . , εn, η1, . . . , ηm) | (cY0p+2 − cY0p+1)+∑n
k=1(c

Y
kp+2 − cYkp+1)εk +

∑m
k=1(p

Y
kp+2 − pY

kp+1)ηk < 0
})

,

where Y = [[xp+1 = exp1]][[xp+2 = exp2]]X .

3.2 Order Relation

In a standard reduced product [5] of A1 with A2, the order relation would naturally
be based on the component-wise ordering. But in such products, we cannot possibly
reduce the abstract values so that to gain as much collaboration as needed between A1
and A2 for giving formal grounds to the reasoning of Example 1 for instance. What
we really need is to combine the logical theories of affine sets, Th(A1)3 with the one
of quantifier-free linear arithmetic [18] over the reals, , Th(A2)4, including all the do-
mains we have in mind in this paper (intervals, zones, octagons, linear and non-linear
templates, polyhedra). Look back at Example 1: we found a solution to the constraint
x1 == x2 via a fine-grained interaction between the two theories Th(A1) and Th(A2).
Unfortunately, the methods of [15] are not directly applicable; in particular A1 is not
naturally expressible as a logical lattice - it is not even a lattice in general. Also, the
signaturesΣA1 andΣA2 share common symbols, which is not allowed in the approach
of [15].

In order to compute the abstract transfer functions in the logical product Th(A1) ∪
Th(A2), we first define an order relation on the product domain A1 × A2, that al-
lows a fine interaction between the two domains. First, X = (CX , PX , ΦX) ≤ Y =
(CY , PY , ΦY ) should imply that ΦX ≤2 Φ

Y , i.e. the range of values that noise sym-
bols can take in form X is smaller than for Y . Then, we mean to adapt Definition 3 for
noise symbols no longer defined in [−1, 1] as in the unconstrained case, but in the range
of values ΦX common to X and Y . Noting that:

‖CXu‖1 = sup
εi∈[−1,1]

|〈ε, CXu〉|,

where 〈., .〉 is the standard scalar product of vectors in Rn+1, we set:

3 SignatureΣA1 comprises equality, addition, multiplication by real numbers and real numbers.
4 Signature ΣA2 comprises ΣA1 plus inequality and negation.
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Definition 7. Let X and Y be two constrained affine sets. We say that X ≤ Y iff
ΦX ≤2 Φ

Y and, for all t ∈ Rp,

sup
(ε,−)∈γ2(ΦX)

|〈(CY −CX)t, ε〉| ≤ sup
(−,η)∈γ2(ΦY )

|〈PY t, η〉| − sup
(−,η)∈γ2(ΦX )

|〈PX t, η〉| .

The binary relation defined in Definition 7 is a preorder on constrained affine sets which
coincides with Definition 3 in the “unconstrained” case when ΦX = ΦY = {1} ×
[−1, 1]n+m. We use in the sequel its quotient by its equivalence relation, i.e. the partial
order generated by it.

Definition 8. Let X be a constrained affine set. Its concretization in P(Rp) is

γ(X) =
{

tCXε+ tPXη | ε, η ∈ γ2(ΦX)
}
.

For ΦX such that γ2(ΦX) = {1} × [−1, 1]n+m, this is equivalent to the concretization
of the affine set (CX , PX) as defined in Section 2.2. As for affine sets [14], the order
relation of Definition 7 is stronger than the geometric order: if X ≤ Y then γ(X) ⊆
γ(Y ). This allows for expressing functional dependencies between the input and current
values of each variables as discussed in [14].

Note that γ is in general computable when A is a subpolyhedric domain (intervals,
zones, octagons, linear templates and general polyhedra), as a linear transformation
applied to a polyhedron. In the same case, the interval concretisation of X can be com-
puted using any (guaranteed) solver for linear programs such as LURUPA [16], since it
involves 2p (for p variables) linear programs:

sup
ε,η∈γ(ΦX)

tCXε+ tPXη, and inf
ε,η∈γ(ΦX)

tCXε+ tPXη .

Of course, whenA is the domain of intervals, this is done by a direct and easy calculation.

3.3 Semantics of Arithmetic Operations

Operations are not different than the ones generally defined on zonotopes, or on affine
forms, see [4, 14], the only difference is in the multiplication where we use the con-
straints on εi and ηj to derive bounds for the non-linear part.

We note [[new εn+1]]A2Φ
X the creation of a new noise symbol εn+1 with (concrete)

values in [−1, 1]. We first define the assignment of a new variable xp+1 with a range of
value [a, b]:

Definition 9. Let X = (CX , PX , ΦX) be a constrained affine set with (CX , PX) ∈
M(n + 1, p) × M(m, p) and a, b ∈ R. We define Z = [[xp+1 = [a, b]]]X where
(CZ , PZ) ∈ M(n+ 2, p+ 1) ×M(m, p+ 1) with : ΦZ = [[new εn+1]]A2Φ

X , CZ =⎛⎜⎜⎜⎜⎝
a+b
2
0

CX . . .
0

0 |a−b|
2

⎞⎟⎟⎟⎟⎠, PZ =

⎛⎝ 0
PX . . .

0

⎞⎠ .
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We carry on by addition, or more precisely, the operation interpreting the assignment
xp+1 := xi + xj and adding new variable xp+1 to the affine set:

Definition 10. Let X = (CX , PX , ΦX) be a constrained affine set where (CX , PX)
is in M(n + 1, p) ×M(m, p). We define Z = [[xp+1 = xi + xj ]]X = (CZ , PZ , ΦZ)
where (CZ , PZ) ∈ M(n+ 1, p+ 1) ×M(m, p+ 1) by ΦZ = ΦX and

CZ =

⎛⎝CX

cX0,i + cX0,j

. . .
cXn,i + cXn,j

⎞⎠ and PZ =

⎛⎝PX

pX
1,i + pX

1,j

. . .
pX

m,i + pX
m,j

⎞⎠ .

The following operation defines the multiplication of variables xi and xj , appending
the result to the constrained affine setX . All polynomial assignments can be defined
using this and the previous operations.

Definition 11. Let X = (CX , PX , ΦX) be a constrained affine set where (CX , PX)
is in M(n + 1, p) ×M(m, p). We define Z = (CZ , PZ , ΦZ) = [[xp+1 = xi × xj ]]X
where (CZ , PZ) ∈ M(n+ 2, p+ 1) ×M(m+ 1, p+ 1) by :

– ΦZ = [[new εn+1]]A2 ◦ [[new ηm+1]]A2Φ
X

– czl,k = cxl,k and czn+1,k = 0 for all l = 0, . . . , n and k = 1, . . . , p
– Let mr (resp. μr) be the (r + 1)th coordinate (i.e. corresponding to εr) of

mid(γ(ΦX)) (resp. of dev(γ(ΦX))), where mid (resp. dev ) denotes the mid-
dle (resp. the radius) of an interval, ql (resp. χl) be the (l + n + 1)th coor-
dinate (i.e. corresponding to ηl) of mid(γ(ΦX)) (resp. of dev(γ(ΦX))). Write
dx

i = cx0,i +
∑

1≤r≤n c
x
r,imr +

∑
1≤l≤m px

l,iql:
cz0,p+1 = dx

i d
x
j −
∑

1≤r≤n(dx
i c

x
r,j + dx

j c
x
r,i)mr −

∑
1≤l≤m(dx

i p
x
l,j + dx

i p
x
l,i)ql +∑

1≤r≤n
1
2c

x
r,ic

x
r,jμ

2
r +
∑

1≤l≤m
1
2p

x
l,ip

x
l,jχ

2
l

– czl,p+1 = dx
i c

x
l,j + cxl,id

x
j for all l = 1, . . . , n

– czn+1,p+1 =
∑

1≤r≤n
1
2 |cxr,ic

x
r,j |μ2

r +
∑

1≤r 	=l≤n |cxr,ic
y
l,j |μrμl

– pz
l,k = px

l,k, pz
m+1,k = 0 and pz

l,p+1 = 0, for all l = 1, . . . ,m and k = 1, . . . , p
– pz

m+1,p+1 =
∑

1≤l≤m |px
l,ip

x
l,j |χ2

l +
∑

1≤r 	=l≤m |px
r,ip

x
l,j |χrχl +

∑1≤l≤m
0≤r≤n (|cxr,ip

x
l,j |

+|px
l,ic

x
r,j |)μrχl.

The correctness of this abstract semantics stems from the fact that these operations are
increasing functions over the set of constrained affine sets. For sub-polyhedric domains
A2, mr, ql, μr and χl are easily computable, solving with a guaranteed linear solver
the four linear programming problems supε,η∈γ(ΦX) εr (resp. inf) and supε,η∈γ(ΦX) ηl

(resp. inf) - for an interval domain for A2, no such computation is needed of course.
Getting back to the running example of Section 1, in the false branch of the

if (y>=0) test, we have to compute y = x ∗ x + 2 with x = 5 + 5ε1 and
ε1 ∈ [−1,−0.444]. Using Definition 11 which takes advantage of the bounds on ε1
to get a better bound on the non-linear part (typically not possible if we had constructed
a reduced product), we get y = 14.93 + 13.9ε1 + 0.96ε3 with ε3 ∈ [−1, 1]. This gives
γ(y) = [0.07, 9.72], which is very precise since γ(x) = [0, 2.77], hence we should
ideally find γ(y) in γ(x)∗γ(x)+2 = [2, 9.72]. Note that the multiplication given in Def-
inition 11 and used here, is not the direct adaptation of the multiplication in the uncon-
strained case, that would give the much less accurate form y = 41.97+50ε1+10.03ε3:
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the better formulation is obtained by choosing an affine form that is a linearization of
xi × xj no longer at 0, but at the center of the range of the constrained noise symbols.

4 Join Operator on Constrained Affine Sets

We first examine the easier case of finding a join operator for affine sets with just one
variable, and A2 being the lattice of intervals. We then use the characterisations we
find in this case to give efficient formulas for a precise (although over-approximated)
join operator in the general case. We do not study here maximal lower bounds of affine
sets, although they are naturally linked to the interpretation of tests, Section 3.1, this is
outside the scope of this paper.

4.1 The One-Dimensional Case

In dimension one, constrained affine sets are simply constrained affine forms:

â =
(
â(ε) = αa

0 +
n∑
1

αa
i εi, β

a, Φa
)
,

where ε = (ε1, . . . , εn)t belongs to Φa, and βa is non negative. We use the bold face
notation, εa

i , to denote the interval concretization of εi. Let â and b̂ be two constrained
affine forms. Then â ≤ b̂ in the sense of Definition 7 if and only if{

Φa ⊆ Φb

supε∈Φa |â(ε) − b̂(ε)| ≤ βb − βa

In general, there is no least upper bound for two constrained affine forms, but rather, as
already noted in the unconstrained case [13, 14], minimal upper bounds. A sufficient
condition for ĉ to be a minimal upper bound is to enforce a minimal concretization,
that is, γ(ĉ) = γ(â) ∪ γ(b̂), and then minimize βc among upper bounds with this
concretization.

Algorithm 1 computes this particular mub in some cases (when the first return
branch is taken), and else an upper bound with minimal interval concretisation. Let us
introduce the following notion used in the algorithm: let i and j be two intervals; i and
j are said to be in generic position if (i ⊆ j or j ⊆ i) imply (sup(i) = sup(j) or
inf(i) = inf(j)). We say by extension that two affine forms are in generic position if
their interval concretizations are in generic position. The join algorithm is similar to the
formula in the unconstrained case described in [14] except we have to be cautious about
the relative position of the ranges of noise symbols.

Example 3. To complete the analysis of the running example of Section 1, the join of
the abstract values for y on the two branches must be computed:⎧⎨⎩Φ

a = 1 × [−1, 1] × [−1, 1]× [−1, 1]
â = 0.5 + 0.5ε1
γ(â) = [0, 1]

⎧⎨⎩
Φb = 1 × [−1,−0.444]× [−1, 1]× [−1, 1]
b̂ = 14.93395 + 13.9ε1 + 0.96605ε3
γ(b̂) = [0.0679, 9.7284]
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Algorithm 1. Join of two constrained affine forms

if â and b̂ are in generic position then
if mid(γ(b̂)) ≤ mid(γ(â)) then swap â and b̂.
for i ≥ 1 do

αc
i ←− 0

if εa
i and εb

i are in generic position then
if αa

i ≥ 0 and αb
i ≥ 0 then

if mid(εa
i ) ≤ mid(εa

i ∪ εb
i ) and mid(εb

i ) ≥ mid(εa
i ∪ εb

i ) then
αc

i ←− min(αa
i , α

b
i )

if αa
i ≤ 0 and αb

i ≤ 0 then
if mid(εa

i ) ≥ mid(εa
i ∪ εb

i ) and mid(εb
i ) ≤ mid(εa

i ∪ εb
i ) then

αc
i ←− max(αa

i , α
b
i )

if 0 ≤∑n
i=1 α

c
i (mid(εa

i ∪ εb
i )−mid(εa

i )) ≤ mid(γ(â) ∪ γ(b̂))−mid(γ(â)) and
mid(γ(â) ∪ γ(b̂))−mid(γ(b̂)) ≤∑n

i=1 α
c
i (mid(εa

i ∪ εb
i )−mid(εb

i )) ≤ 0 then
βc ←− dev(γ(â) ∪ γ(b̂))−∑n

i=1 |αc
i |dev(εa

i ∪ εb
i )

αc
0 ←− mid(γ(â) ∪ γ(b̂))−∑n

i=1 α
c
i mid(εa

i ∪ εb
i )

return (αc
0, α

c
1, . . . , α

c
n, β

c) /* MUB */

βc ←− dev(γ(â) ∪ γ(b̂)), αc
0 ←− mid(γ(â) ∪ γ(b̂)), return (αc

0, β
c) /* UB */

â and b̂ are in generic positions, and so are εa
1 and εb

1, but condition mid(εb
1) ≥

mid(εa
1 ∪εb

1) is not satisfied, so that the join gives the following minimal upper bound:{
Φc = 1 × [−1, 1]× [−1, 1]× [−1, 1]× [−1, 1]
ĉ = 4.8642 + 4.8642η1, γ(ĉ) = [0, 9.7284]

Example 4. Let us now consider a second example:{
Φa = 1 × [−1, 0]× [−1, 1]
â = 1 + 2ε1 − ε2, γ(â) = [−2, 2]

{
Φb = 1 × [−1, 1]× [0, 0.5]
b̂ = 4 + 3ε1 − ε2, γ(b̂) = [−2, 7]

â and b̂ are in generic positions, as well as εa
1 and εb

1, while εa
2 and εb

2 are not; the join
gives the following minimal upper bound:{

Φc = 1 × [−1, 1]× [−1, 1]× [−1, 1]
ĉ = 5

2 + 2ε1 + 5
2η1, γ(ĉ) = [−2, 7]

4.2 Join Operator in the General Case

As in the unconstrained case [14], mubs for the global order on constrained affine sets
are difficult to characterize. Instead of doing so, we choose in this paper to describe a
simple yet efficient way of computing a good over-approximation of such mubs, relying
on Algorithm 1 for mubs with minimal concretisation for constrained affine forms.
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We first project the constrained affine forms defining each variable of the environ-
ment (the πk(X), for all k) by considering all noise symbols as if they were central
noise symbols. We then use Algorithm 1 to independently compute a minimal upper
bound for the constrained affine form defining each variable of the environment (on
πk(X), for all k), and introduce a new noise symbol for each variable to handle the
perturbation term computed in this Algorithm. We thus obtain an upper bound of the
constrained affine set.

Example 5. Consider, for all noise symbols in [−1, 1], constrained affine sets X and Y
defined by x1 = 1 + ε1, x2 = 1 + ε2, and y1 = 1 + η1, y2 = 1 + η1. Considering
first the 1D cases, we have x1 ≤ y1 and x2 ≤ y2. However we do not have X ≤ Y for
the global order of Definition 7. Applying the join operator defined here on X and Y ,
we construct Z, defined by z1 = 1 + η2 and z2 = 1 + η3. We now have X ≤ Z and
Y ≤ Z .

5 Experiments

In this section, we compare results5 we obtain with our new domain, called constrained
T1+, in its APRON implementation, with the octagon and polyhedron APRON domains
and the unconstrained T1+[7]. Our constrained T1+ implementation allows to choose
as a parameter of the analysis, the APRON domain we want to use to abstract the con-
straints on noise symbols. However, at this stage, conditionals are interpreted only for
the interval domain, we thus present results for this domain only.

Table 1 shows the numerical range of a variable of interest of each test case and for
each domain, after giving the exact range we would hope to find. It can be noted that
on these examples, constrained T1+ is always more accurate than octagons, and is also
more accurate than polyhedra on non affine problems.

Table 1. Comparison of Constrained T1+ with APRON’s abstract domains

Exact Octagons Polyhedra T1+ Cons. T1+
InterQ1 [0, 1875] [−3750, 6093] [−2578, 4687] [0, 2500] [0, 1875]
Cosine [−1, 1] [−1.50, 1.0] [−1.50, 1.0] [−1.073, 1] [−1, 1]
SinCos {1} [0.84, 1.15] [0.91, 1.07] [0.86, 1.15] [0.99, 1.00]
InterL2 {0.1} [−1, 1] [0.1, 0.4] [−1, 1] [0.1, 1]
InterQ2 {0.36} [−1, 1] [−0.8, 1] [−1, 1] [−0.4, 1]

In Table 1, InterQ1 combines linear tests with quadratic expressions, only con-
strained T1+ finds the right upper bound of the invariant. Cosine is a piecewise 3rd
order polynomial interpolation of the cosine function: once again, only constrained T1+
finds the exact invariant. The program SinCos computes the sum of the squares of the
sine and cosine functions (real result is 1). InterL2 (resp. InterQ2) computes a
piecewise affine (resp. quadratic) function of the input, then focuses on the inverse im-
age of 1 by this function.

5 Sources of the examples are available online
http://www.lix.polytechnique.fr/Labo/Khalil.Ghorbal/CAV2010

http://www.lix.polytechnique.fr/Labo/Khalil.Ghorbal/CAV2010
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g ( x ) = s q r t ( x∗x−x + 0 . 5 ) / s q r t ( x∗x + 0 . 5 ) ;
x = [ −2 ,2];
/∗ f o r n s u b d i v i s i o n s ∗ /
h = 4 / n ;
i f (−x<=h−2)

y = g ( x ) ; z = g ( y ) ;
. . .
e l s e i f (−x<=i∗h−2) /∗ i i n { 2 , . . . , n−1}∗ /

y = g ( x ) ; z = g ( y ) ;
. . .
e l s e

y = g ( x ) ; z = g ( y ) ;

x

g(g(x))

20−2

0.54

0.58

0.62

Fig. 1. Implementation of g(g(x)) for x in [-2,2] (left) and plot of g(g(x)) (right)
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Fig. 2. Comparing analysis time and results of the different APRON domains

We now consider the computation of g(g(x)) on the range x = [−2, 2], where

g(x) =
√
x2 − x+ 0.5√
x2 + 0.5

.

We parametrize the program that computes g(g(x)) by a number of tests that subdivide
the domain of the input variable (see Figure 1 left for a parametrization by n subdivi-
sions), in order to compare the relative costs and precisions of the different domains
when the size of the program grows.

It can be noted (Figure 2 left) that our domain scales up well while giving here more
accurate results (Figure 2 right) than the other domains. As a matter of fact, with an
interval domain for the noise symbols, all abstract transfer functions are linear or at
worst quadratic in the number of noise symbols appearing in the affine forms. Notice
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also that our implementations detects the squares of variables, which allows constrained
T1+ to give [0, 4.72] without subdivisions while all other domains end with [−∞,+∞]
(noted by the dotted lines on Figure 2 right). The fact that the results observed for 3 and
5 subdivisions (Figure 2 right) are less accurate respectively than those observed for 2
and 4 subdivisions, is related to the behaviour of g(g(x)) on [−2, 2] (see Figure 1 right):
for example when a change of monotony appears near the center of a subdivision, the
approximations will be less accurate than when it appears at the border.

6 Conclusion, and Future Work

In this paper, we studied the logical product of the domain of affine sets with sub-
polyhedric domains on noise symbols, although the framework as described here is
much more general. We concentrated on such abstract domains for A for practical rea-
sons, in order to have actual algorithms to compute the abstract transfer functions.

However, in some embedded control systems, quadratic constraints appear already
on the set of initial values to be treated by the control program, or as a necessary con-
dition for behaving well, numerically speaking. For example in [3], as in a large class
of navigation systems, the control program manipulates normalized quaternions, that
describe the current position in 3D, of an aircraft, missile, rocket etc. We think that a
combination of zonotopes with quadratic templates [1] in the lines of this article would
be of interest to analyze these programs.

Also, as noticed in [2], maxplus polyhedra encompass a large subclass of disjunc-
tions of zones; hence, by combining it with affine sets, we get another rather inexpensive
way to derive a partially disjunctive analysis from affine forms (another with respect to
the ideas presented in [13]).

Another future line of work is to combine the ideas of this paper with the ones of
[12] to get better under-approximation methods in static analysis.

Acknowledgments. This work was partially funded by the French national research
agency (ANR) projects ASOPT (Analyse Statique et OPTimisation) and Eva-Flo (Eval-
uation et Validation Automatique pour le Calcul Flottant) as well as by DIGITEO
project PASO.
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Abstract. Computing transitive closures of integer relations is the key to finding
precise invariants of integer programs. In this paper, we describe an efficient al-
gorithm for computing the transitive closures of difference bounds, octagonal and
finite monoid affine relations. On the theoretical side, this framework provides a
common solution to the acceleration problem, for all these three classes of re-
lations. In practice, according to our experiments, the new method performs up
to four orders of magnitude better than the previous ones, making it a promising
approach for the verification of integer programs.

1 Introduction

The verification of safety properties of infinite-state systems (such as device drivers,
communication protocols, control software, etc.) requires the computation of the set of
reachable states, starting with an initial state from a given (possibly infinite) set. There
are currently two ways of doing this: (i) compute a finite representation of an over-
approximation of the set of reachable states, by applying a widening operator at each
step, or (ii) attempt to compute precisely the transitive closure of the transition rela-
tion; the set of reachable states is the image of the set of initial states via the transitive
closure. The first approach is guaranteed to terminate, but the abstraction usually intro-
duces imprecision that may blur the verification result. On the other hand, the second
approach, although precise, is not guaranteed to terminate – the problem of verifying
safety properties being, in general, undecidable.

In practice, one usually tries to combine the two approaches and benefit from the
advantages of both. To this end, it is important to know for which classes of transition
relations it is possible to compute the transitive closure precisely and fast – the relations
falling outside these classes being dealt with using suitable abstractions. To the best of
our knowledge, the three main classes of integer relations for which transitive closures
can be computed precisely in finite time are: (1) difference bounds constraints [9,8],
(2) octagons [12,6], and (3) finite monoid affine transformations [5,10]. For these three
classes, the transitive closures can be moreover defined in Presburger arithmetic.
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The contributions of this paper are two-fold. On the theoretical side, we show that the
three classes of relations mentioned above are ultimately periodic, i.e. each relation R
can be mapped into an integer matrixMR such that the sequence {MRk}∞k=0 is periodic.
The proof that a sequence of matrices is ultimately periodic relies on a result from
tropical semiring theory [13]. This provides shorter proofs to the fact that the transitive
closures for these classes can be effectivelly computed, and that they are Presburger
definable.

On the practical side, the algorithm introduced in this paper computes the transitive
closure of difference bounds and octagonal relations up to four orders of magnitude
faster than the original methods from [8,6], and also scales much better in the number
of variables. The experimental comparison with the FAST tool [4] for difference bounds
relations shows that large relations (> 50 variables), causing FAST to run out of mem-
ory, can now be handled by our implementation in less than 8 seconds, on average. We
currently do not have a full implementation of the finite monoid affine transformation
class, which is needed in order to compare our method with tools like FAST [4], LASH
[14], or TReX [2], for this class of relations.

Related Work. Early attempts to apply Model Checking techniques to the verification
of infinite-state systems consider the problem of accelerating transition relations by
successive under-approximations, without any guarantee of termination. For systems
with integer variables, the acceleration of affine relations has been considered primarily
in the works of Annichini et. al [1], Boigelot [5], and Finkel and Leroux [10]. Finite
monoid affine relations have been first studied by Boigelot [5], who shows that the finite
monoid property is decidable, and that the transitive closure is Presburger definable in
this case. On what concerns non-deterministic transition relations, difference bounds
constraints appear in the context of timed automata verification. The transitive closure
of a difference bounds constraint is shown to be Presburger definable first by Comon
and Jurski [9]. Their proof was subsequently simplified and extended to parametric
difference bounds constraints in [8]. We also showed that octagonal relations can be
accelerated precisely, and that the transitive closure is also Presburger definable [6].
The proofs of ultimate periodicity from this paper are based on some of our previous
results [8,6]. For difference bounds constraints, the proof from [8] was simplified using
a result from tropical semiring theory [13].
Roadmap The paper is organized as follows: Section 2 gives the definition of ultimately
periodic relations, Section 3 describes the algorithm for computing transitive closures
of ultimately periodic relations, in general, Section 4 describes three instances of the
algorithm, Section 5 presents the experimental results, and Section 6 concludes. Missing
proofs are deferred to [7] due to reasons of space.

2 Preliminaries

We denote by Z, N and N+ the sets of integers, positive (including zero) and strictly
positive integers, respectivelly. The first order additive theory of integers is known as
Presburger Arithmetic. The tropical semiring is defined as T = (Z∞,min,+,∞, 0)
[13], where Z∞ = Z ∪ {∞}, with the extended arithmetic operations x + ∞ = ∞,
min(x,∞) = x, for all x ∈ Z, where min(x, y) denotes the minimum between the



Fast Acceleration of Ultimately Periodic Relations 229

values x and y. For two square matrices A,B ∈ Sm×m, we define (A + B)ij =
Aij +Bij and (A × B)ij = minm

k=1(aik + bkj), for all 1 ≤ i, j ≤ m. Let I ∈ Tm×m

be the identity matrix, i.e. Iii = 0 and Iij = ∞, for all 1 ≤ i, j ≤ m, i �= j.

Definition 1. [13] An infinite sequence {sk}∞k=0 ∈ T is called ultimately periodic if:

∃K ∃c > 0 ∃λ0, λ1, . . . , λc−1 ∈ T . s(k+1)c+i = λi + skc+i

for all k ≥ K and i = 0, 1, . . . , c − 1. The smallest c and λ0, λ1, . . . , λc−1 for which
the above holds are called the period and rates of {sk}∞k=0, respectivelly.

Example 1. The sequence σk = {3k+1 | k = 2l, l ≥ 2} ∪ {5k+3 | k = 2l+1, l ≥ 2}
is ultimately periodic, with K = 4, period c = 2 and rates λ0 = 6, λ1 = 10. �

A sequence of matrices {Ak}∞k=0 ∈ Tm×m is said to be ultimately periodic if, for all
1 ≤ i, j ≤ m, the sequence {(Ak)ij}∞k=0 is ultimately periodic. A matrix A ∈ Tm×m

is called ultimately periodic if the sequence {Ak}∞k=1 is ultimately periodic, where
A0 = I andAk = A×Ak−1, for any k > 0. It is known that, every matrix is ultimately
periodic in the tropical semiring [13].

We have the following characterization of ultimately periodic sequences of matrices:

Lemma 1. A sequence of matrices {Ak}∞k=1 ∈ Tm×m is ultimately periodic if and
only if:

∃K ∃c > 0 ∃Λ0, Λ1, . . . , Λc−1 ∈ T
m×m . A(k+1)c+i = Λi +Akc+i

for all k ≥ K and i = 0, 1, . . . , c− 1.

IfA ∈ Tm×m is a square matrix and n ∈ T, we define the matrix (n ·A)ij = n ·Aij , for
all 1 ≤ i, j ≤ m. If k is a parameter (typically interpreted over T), then T[k] denotes
the set of all terms where k may occur, built from the constants and operators of T. For
instance, if A,B ∈ Tm×m, then k · A + B ∈ T[k]m×m denotes the matrix of terms
(k · A+B)ij = k ·Aij +Bij , for all 1 ≤ i, j ≤ m.

2.1 Ultimately Periodic Relations

Let x = {x1, x2, . . . , xN} be a set of variables,N > 0, and let x′ = {x′1, x′2, . . . , x′N}.
A relation is an arithmetic formulaR(x,x′) with free variables x∪x′. We say that two
relations R and R′ are equivalent, denoted R ⇔ R′ if under all valuations of x and
x′, R is true if and only if R′ is true. A relation is called consistent if and only if there
exist valuations of x and x′ under which it holds. We denote a consistent relation R by
writing R � false, and an inconsistent relation by writing R⇔ false.

The composition of two relations is defined as R ◦ R′ ≡ ∃y . R(x,y) ∧ R′(y,x′).
Let I be the identity relation

∧
x∈x x

′ = x. We define R0 ≡ I and Rn ≡ Rn−1 ◦ R,
for any n > 0. With these notations, R∗ ≡

∨∞
i=0 R

i denotes the transitive closure of
R. A relation R is called ω-consistent if Rn is consistent for all n > 0. For the rest of
this section, let R be a class of relations1.

1 A class of relations is usually defined by syntactic conditions.
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Definition 2. A relationR(x,x′) ∈ R is called ultimately periodic if and only if either:

1. there exists i0 ≥ 0 such that Ri0 is inconsistent, or
2. for all i ≥ 0, Ri is consistent, and there exists two functions:

– σ : R → T
m×m
⊥ mapping each consistent relation in R into a m×m matrix

of T, for some m > 0, and each inconsistent relation into ⊥.
– ρ : Tm×m → R mapping each m×m matrix of T into a relation in R, such

that ρ(σ(R)) ⇔ R, for each consistent relation R ∈ R
such that the infinite sequence of matrices {σ(Ri)}∞i=0 ∈ Tm×m is ultimately
periodic.

Notice that the first condition of the definition implies that σ(Ri) = ⊥, for all i ≥ i0. If
each relationR ∈ R is ultimately periodic, then R is called ultimately periodic as well.
The following lemma gives an alternative characterization of ω-consistent ultimately
periodic relations.

Lemma 2. An ω-consistent relation R is ultimately periodic if and only if there exist
K ≥ 0, b ≥ 0, c > 0 and Λ0, Λ1, . . . , Λc−1 ∈ T

m×m such that the following hold:

1. σ(R(n+1)c+i) = Λi + σ(Rnc+i), for all n ≥ K .
2. Rnc+b+i ⇔ ρ(n · Λi + σ(Rb+i)), for all n ≥ 0.

for all i = 0, 1, . . . , c− 1, where σ and ρ are the functions from Def. 2.

Proof. By Lemma 1, if R is ω-consistent, then it is ultimately periodic if and only if

∃K ∃c > 0 ∃Λ0, Λ1, . . . , Λc−1 ∈ T
N×N . σ(R(k+1)c+i) = Λi + σ(Rkc+i)

for all k ≥ K and i = 0, 1, . . . , c− 1. By induction on k ≥ K , one shows first that

Rkc+i ⇔ ρ(Λi
k−K + σ(RKc+i)), ∀k ≥ K

Let b = Kc. By replacing k −K with k, we obtain

Rkc+b+i ⇔ ρ(Λi
k + σ(Rb+i)), ∀k ≥ 0

�
For practical reasons related to the representation of R∗, we are interested in finding
the symbolic expression Rk, where k is a parameter (because R∗ ≡ ∃k . Rk). Notice
that the second point of lemma 2 can be used to compute the expression Rk symbol-
ically (as a formula over x, x′ and k), assuming that we are given a function, call it
π : T[k]m×m → R(k), where R(k) is the class of all parametric relations over x,x′

and k. Intuitivelly, π is the parametric counterpart of the ρ function from Def. 2, map-
ping a matrix of terms over k into a parametric relationR(x,x′, k). Concrete definitions
of π will be given in Section 4.
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3 Computing Transitive Closures of Ultimately Periodic Relations

In this section we give a generic algorithm that computes the transitive closure of a given
ultimately periodic relation. The algorithm needs to be instantiated for a specific class
R of ultimately periodic relations by providing the mappings σ, ρ (Def. 2) and π (the
parametric counterpart of ρ) as discussed in the previous. Next, in Section 4, we show
how this algorithm can be used for accelerating three classes of relations: difference
bounds, octagons, and finite monoid affine transformations.

Fig. 1 shows the generic framework for computing transitive closures. The input to
the algorithm is a relation R, and the mappings σ : R → Tm×m, ρ : Tm×m → R,
and π : T[k]m×m → R(k). The algorithm is guaranteed to terminate ifR is ultimately
periodic, as it will be explained in the following.

The main idea of the algorithm is to discover the prefix b and period c of the sequence
{σ(Ri)}∞i=0 – cf. the second point of lemma 2. If R is ultimately periodic, such values
are guaranteed to exist. The dove-tailing enumeration on lines 1 and 2 is guaranteed to
yield the smallest value c for which the sequence is shown to be periodic2.

Second, the algorithm attempts to compute the first rate of the sequence (line 6), by
comparing the matrices σ(Rb), σ(Rc+b) and σ(R2c+b). If the difference Λ between
σ(Rc+b) and σ(Rb) equals the difference between σ(R2c+b) and σ(Rc+b), then Λ is a
valid candidate for the first rate of the progression (see lemma 2). Notice that the con-
sistency check on line 4 is needed to ensure that we apply σ to consistent relations –
otherwise, the relation is not ω-consistent, and the algorithm returns directly the transi-
tive closure, i.e. the finite disjunction

∨kc+b−1
i=0 Ri, 0 ≤ k ≤ 2 (line 4).

Once a candidate Λ for the initial rate was found, the test Q1 on line 7 is used to
check that R is ultimately periodic and ω-consistent. Notice that the characterization
of ultimately periodic relations from lemma 2 cannot be applied here, since Rn is not
known in general, for arbitrary n ≥ 0. The condition used here is local, i.e. it needs
only the relation Rb, for a typically small constant b ≥ 0. The next lemma establishes
the correctness of the criterion used by Q1:

Lemma 3. An ω-consistent relation R is ultimately periodic if and only if

∃b ∃c > 0 ∃Λ0, Λ1, . . . , Λc−1 ∈ T
m×m . ρ(n · Λi + σ(Rb+i)) ◦Rc ⇔ ρ((n+ 1)·

Λi + σ(Rb+i))

for all n ≥ 0 and i = 0, 1, . . . , c − 1, where σ and ρ are the functions from Def. 2.
Moreover, Λ0, Λ1, . . . , Λc−1 satisfy the equivalences of Lemma 2.

Proof. “⇒” IfR is ω-consistent and ultimately periodic, by Lemma 2, there exist b ≥ 0,
c > 0 and Λ0, Λ1, . . . , Λc−1 ∈ Tm×m such that

Rkc+b+i ⇔ ρ(Λi
k + σ(Rb+i))

2 The nested loop from Fig. 1 will always yield a pair (b, c) such that b ≥ c. To ensure that b is
also minimal, and thus cover up the case b < c, once the smallest period c has been detected
at prefix b = c, we need to also try all prefixes b = c− 1, c− 2, . . . , 0.
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for all k ≥ 0 and i = 0, 1, . . . , c− 1. We have:

R(k+1)c+b+i ⇔ Rkc+b+i ◦Rc

ρ(Λi
k+1 + σ(Rb+i)) ⇔ ρ(Λi

k + σ(Rb+i)) ◦Rc

“⇐” We prove the equivalent condition of Lemma 2 by induction on k ≥ 0. The base
case k = 0 is immediate. The induction step is as follows:

R(k+1)c+b+i ⇔ Rkc+b+i ◦Rc

⇔ ρ(Λi
k + σ(Rb+i)) ◦Rc , by the induction hypothesis

⇔ ρ(Λi
k+1 + σ(Rb+i))

�
The universal query Q1 on line 7 is in general handled by procedures that are specific

to the class of relations R we work with. Notice furthermore that Q1 can be handled
symbolically by checking the validity of the first order formula: ∀k . π(k ·Λ+σ(Rb))◦
Rc ⇔ π((k + 1) · Λ + σ(Rb)), where π is the parametric counterpart of ρ. Next,
in Section 4, we detail two ways in which this test can be performed efficiently (for
difference bounds and octagonal relations), without resorting to external proof engines,
such as SMT or Presburger solvers.

1. foreach b := 0, 1, 2, . . . do
2. foreach c := 1, 2, . . . , b do
3. foreach k := 0, 1, 2 do
4. if Rkc+b ⇔ false then return R∗ ≡

Wkc+b−1
i=0 Ri

5. endfor
6. if exists Λ ∈ T

m×m : σ(Rc+b) = Λ + σ(Rb) and σ(R2c+b) = Λ + σ(Rc+b) then
7. if forall n ≥ 0 : ρ(n · Λ + σ(Rb)) ◦ Rc ⇔ ρ((n + 1) · Λ + σ(Rb)) � false (Q1) then
8. return R∗ ≡

Wb−1
i=0 Ri ∨ ∃k ≥ 0 .

Wc−1
i=0 π(k · Λ + σ(Rb)) ◦ Ri

9. else if exists n ≥ 0 : ρ(n · Λ + σ(Rb)) ◦ Rc ⇔ false (Q2) then
10. let n0 = min{n | ρ(n · Λ + σ(Rb)) ◦ Rc ⇔ false}
11. if forall n ∈ [0, n0 − 1] : ρ(n · Λ + σ(Rb)) ◦ Rc ⇔ ρ((n + 1) · Λ + σ(Rb)) then
12. return R∗ ≡

Wb−1
i=0 Ri ∨

Wn0−1
n=0

Wc−1
i=0 ρ(n · Λ + σ(Rb)) ◦ Ri

13. endif
14. endif
15. endfor
16. endfor

Fig. 1. Transitive Closure Algorithm

If the universal query on line 7 holds, the rate Λ can be used now to express the
transitive closure (line 8) as a finite disjunction over the prefix (

∨b−1
i=0 R

i) followed by
a formula defining an arbitrary number of iterations (∃k .

∨c−1
i=0 π(k · Λ + σ(Rb)) ◦

Ri). Note that the formula on line 8 defines indeed the transitive closure of R, as a
consequence of lemma 2. Moreover, this is a formula of Presburger arithmetic, provided
that the classes of relations R and R(k) are Presburger definable.

Otherwise, if Q1 does not hold, there are two possibilities: either (i) Λ is actually not
the first rate of the sequence {σ(Ri)}∞i=0 for given b ≥ 0 and c > 0, or (ii) the relation
is not ω-consistent. In the first case, we need to reiterate with another prefix-period pair,
which will give us another candidate Λ.
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In the second case, Rm becomes inconsistent, for some m > 0 – in this case the
computation of its transitive closure is possible, in principle, by taking the disjunction
of all powers ofR up tom. However, in practice this may take a long time, ifm is large.
In order to speed up the computation, we check whether:

– ρ(n ·Λ+σ(Rb))◦Rc is inconsistent (line 9); the existential query Q2 (and namely
finding the smallest value for which it holds) is dealt with in Section 4, specifically
for the classes of difference bounds and octagonal relations.

– R is periodic with first rate Λ between 0 and n0 − 1 (line 11), where n0 is the
smallest n satisfying the first point (line 10).

If both conditions above hold, then m = (n0 + 1)c+ b is the smallest value for which
Rm becomes inconsistent, and moreover, R is periodic with rate Λ between 0 and m.
If this is the case, we compute the transitive closure using the period Λ and return (line
12). The following theorem can be proved along the lines of the discussion above:

Theorem 1. If R is an ultimately periodic relation, the algorithm in Fig. 1 eventually
terminates and returns the transitive closure of R.

4 Some Ultimately Periodic Classes of Arithmetic Relations

This section is dedicated to the application of the transitive closure computation al-
gorithm from the previous section (Fig. 1) to three classes of arithmetic relations, for
which the transitive closure is Presburger-definable: difference bounds relations [8],
octagonal relations [6], and finite monoid affine transformations [5].

In order to apply the transitive closure computation method, one needs to address two
issues. First, the class of relations considered needs to be proved ultimately periodic (or
else, our algorithm is not guaranteed to terminate). The proofs rely mostly on the fact
that any matrix A is ultimately periodic in T [13] (see Section 2 for the definition of
ultimately periodic matrices).

Second, the queries Q1 and Q2 (Fig. 1) need to be answered efficiently, by avoiding
excessive calls to external decision procedures. In theory, all these queries can be ex-
pressed in Presburger arithmetic, for the classes of difference constraints, octagons and
affine transformations, yet in practice we would like to avoid as much as possible us-
ing Presburger solvers, due to reasons of high complexity. For the classes of difference
bounds and octagons, we give direct decision methods for handling these queries. The
class of affine transformations without guards can also be dealt with by simply check-
ing equivalence between Diophantine systems, whereas the general case still needs to
be handled by a Presburger solver.

4.1 Difference Constraints

Let x = {x1, x2, ..., xN} be a set of variables ranging over Z.

Definition 3. A formula φ(x) is a difference bounds constraint if it is equivalent to a
finite conjunction of atomic propositions of the form xi−xj ≤ aij , 1 ≤ i, j ≤ N, i �= j,
where aij ∈ Z.
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For example, x = y+ 5 is a difference bounds constraint, as it is equivalent to x− y ≤
5 ∧ y − x ≤ −5. Let Rdb denote the class of difference bound relations. Difference
bounds constraints are alternatively represented as matrices or, equivalently, weighted
graphs.

Given a difference bounds constraint φ, a difference bounds matrix (DBM) repre-
senting φ is a matrix Mφ ∈ T

N×N such that (Mφ)ij = aij , if xi − xj ≤ aij is

an atomic proposition in φ, and ∞, otherwise. Dually, if M ∈ TN×N is a DBM, the
corresponding difference bounds constraint is ΔM ≡

∧
Mij<∞ xi − xj ≤Mij .

A DBM M is said to be consistent if and only if its corresponding constraint ϕM is
consistent. An elementary path in a DBMM is a sequence of indices 1 ≤ i1, i2, . . . , ik ≤
N , where i1,...,k−1 are pairwise distinct, such that Mijij+1 < ∞, for all 1 ≤ j < k.
An elementary path is called an elementary cycle if moreover i1 = ik. An elementary
cycle is said to be strictly negative if

∑k−1
j=1 Mijij+1 < 0. A DBM M is inconsistent

if and only if it has a strictly negative elementary cycle – a proof can be found in [12].
The next definition gives a canonical form for consistent DBMs.

Definition 4. A consistent DBMM ∈ TN×N is said to be closed if and only ifMii = 0
and Mij ≤Mik +Mkj , for all 1 ≤ i, j, k ≤ N .

Given a consistent DBM M , we denote by M∗ the (unique) closed DBM such that
ϕM ⇔ ϕM∗ . It is well-known that, if M is consistent, then M∗ is unique, and can be
computed from M in time O(N3), by the classical Floyd-Warshall algorithm. More-
over, if M is a consistent DBM, we have, for all 1 ≤ i, j ≤ N :

M∗
ij = min

{
k−1∑
l=0

Milil+1 i = i0 . . . ik−1 = j is an elementary path in M

}
(1)

The closed form of DBMs is needed for the elimination of existentially quantified vari-
ables – if φ is a difference bounds constraint, then ∃x . φ is also a difference bounds
constraint [12]. Consequently, we have that the class of difference bounds relations is
closed under relational composition:R1(x,x′)◦R2(x,x′) ≡ ∃y . R1(x,y)∧R2(y,x′).

Difference Bounds Relations are Ultimately Periodic. Given a consistent difference
bounds relation R(x,x′) ∈ Rdb, let σ(R) = MR ∈ T2N×2N be the characteristic
DBM of R, and for any M ∈ T2N×2N , let ρ(M) = ΔM ∈ Rdb be the difference
bounds relation corresponding to R. Clearly, ρ(σ(R)) ⇔ R, as required by Def. 2.

With these definitions, the algorithm in Fig. 1 will return the transitive closure of
a difference bounds relation R, provided that the sequence {σ(Ri)}∞i=0 is ultimately
periodic. If R is not ω-consistent then, by Def. 2, it is ultimately periodic. We consider
henceforth that R is ω-consistent, i.e. σ(Ri) = MRi , for all i ≥ 0.

For a difference bounds relation R, we define the directed graph GR, whose set of
vertices is the set x ∪ x′, and in which there is an edge from xi to xj labeled αij if and
only if the atomic proposition xi − xj ≤ αij occurs in R. Clearly, MR is the incidence
matrix of GR.

Next, we define the concatenation of GR with itself as the disjoint union of two
copies of GR, in which the x′ vertices of the second copy overlap with the x vertices
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of the first copy. Then Rm corresponds to the graph Gm
R , obtained by concatenating the

graph of R to itself m > 0 times. Since Rdb is closed under relational composition,
then Rm ∈ Rdb, and moreover we have:∧

1≤i,j≤N xi − xj ≤ min{x0
i −→ x0

j} ∧ x′i − x′j ≤ min{xm
i −→ xm

j } ∧
xi − x′j ≤ min{x0

i −→ xm
j } ∧ x′i − xj ≤ min{xm

i −→ x0
j}

where min{xp
i −→ xq

j} is the minimal weight of all paths between the extremal vertices

xp
i and xq

j in Gm
R , for p, q ∈ {0,m}. In other words, we have the equalities from Fig. 2

(a), for all 1 ≤ i, j ≤ N .

(MRm)i,j = min{x0
i −→ x0

j}
(MRm )i+N,j+N = min{xm

i −→ xm
j }

(MRm)i,j+N = min{x0
i −→ xm

j }
(MRm )i+N,j = min{xm

i −→ x0
j}

(a)

min{x0
i −→ x0

j} = (Mm
R )Ief (xi),Fef (xj)

min{xm
i −→ xm

j } = (Mm
R )Ieb(xi),Feb(xj)

min{x0
i −→ xm

j } = (Mm
R )Iof (xi),Fof (xj)

min{xm
i −→ x0

j} = (Mm
R )Iob(xi),Fob(xj)

(b)

Fig. 2

As proved in [8], the paths between xp
i and xq

j , for arbitrary 1 ≤ i, j ≤ N and p, q ∈
{0,m}, can be seen as words (over a finite alphabet of subgraphs of Gm

R ) recognized by
a finite weighted automaton of size up to 5N . For space reasons, the definition of this
automaton is detailed in [7].

Let MR be the incidence matrix of this automaton. By the construction of MR, for
each variable x ∈ x, there are eight indices, denoted as3 Iof (x), Iob(x), Ief (x), Ieb(x),
Fof (x), Fob(x), Fef (x), Feb(x) ∈ {1, . . . , 5N}, such that all relations from Fig. 2 (b)
hold, for all 1 ≤ i, j ≤ N . Intuitivelly, all paths from x0

i to x0
j are recognized by

the automaton with Ief (xi) and Fef (xj) as the initial and final states, respectivelly.
The same holds for the other pairs of indices, from Fig. 2 (b). It is easy to see (as an
immediate consequence of the interpretation of the matrix product in T) that, for any
m > 0, the matrixMm

R gives the minimal weight among all paths, of lengthm, between
xp

i and xq
j , for any 1 ≤ i, j ≤ N and p, q ∈ {0,m}. But the sequence {Mm

R}∞m=0 is
ultimately periodic, since every matrix is ultimately periodic in T [13]. By equating
the relations from Fig. 2 (a) with the ones from Fig. 2 (b), we obtain that the sequence
{σ(Rm)}∞m=0 = {MRm}∞m=0 is ultimately periodic as well.

In conclusion, the algorithm from Fig. 1 will terminate on difference bounds rela-
tions. Moreover, the result is a formula in Presburger arithmetic. This also simplifies
the proof that transitive closures of difference bounds relations are Presburger defin-
able, from [8], since the minimal paths of length m within the weighted automaton
recognizing the paths of Gm

R correspond in fact to elements of the m-th power of MR

(the incidence matrix of the automaton) in T.
3 Paths between x0 and ym (xm and y0) are called odd forward (backward) in [8], whereas

paths between x0 and y0 (xm and ym) are called even forward (backward). Hence the indices
of , ob, ef and eb.
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Checking ω-Consistency and Inconsistency of Difference Bounds Relations. For
a difference bounds relation R(x,x′) ∈ Rdb and a matrix Λ ∈ T2N×2N , we give
methods to decide the queries Q1 and Q2 (lines 7 and 9 in Fig. 1) efficiently. To this
end, we consider the class of parametric difference bounds relations. From now on, let
k �∈ x be a variable interpreted over N+.

Definition 5. A formula φ(x, k) is a parametric difference bounds constraint if it is
equivalent to a finite conjunction of atomic propositions of the form xi −xj ≤ aij ·k+
bij , for some 1 ≤ i, j ≤ N , i �= j, where aij , bij ∈ Z.

The class of parametric difference bounds relations with parameter k is denoted as
Rdb(k). A parametric difference bounds constraint φ(k) can be represented by a matrix
Mφ[k] of linear terms, where (Mφ[k])ij = aij · k + bij if xi − xj ≤ aij · k + bij
occurs in φ, and ∞ otherwise. Dually, a matrixM [k] of linear terms corresponds to the
formulaΔM (k) ≡

∧
M [k]ij 	=∞ xi−xj ≤M [k]ij . With these considerations, we define

π(M [k]) = ΔM (k). Clearly, we have π(k ·Λ+σ(Rb)) ∈ Rdb(k), forR ∈ Rdb, b ≥ 0
and Λ ∈ T2N×2N .

Parametric DBMs do not have a closed form, since in general, the minimum of two
linear terms in k (for all valuations of k) cannot be expressed again as a linear term.
According to (1), one can define the closed form of a parametric DBM as a matrix of
terms of the form min{ai·k+bi}m

i=1, for some ai, bi ∈ Z andm > 0. Then the queryQ1
can be written as a conjunction of formulae of the form ∀k > 0 . min{ai ·k+ bi}m

i=1 =
a0 · k + b0. The following lemma gives a way to decide the validity of such formulae:

Lemma 4. Given %, a0, a1, . . . , am, b0, b1, . . . , bm ∈ Z, the following are equivalent:

1. ∀k ≥ % . min{ai · k + bi}m
i=1 = a0 · k + b0

2.
∨m

i=1(ai = a0 ∧ bi = b0) ∧
∧m

j=1(a0 ≤ aj ∧ a0 · %+ b0 ≤ aj · %+ bj)

In analogy to the non-parametric case, the inconsistency of a parametric difference
bounds constraint φ(k) amounts to the existence of a strictly negative elementary cycle
in Mφ[k], for some valuation k ∈ N+. We are also interested in finding the smallest
value for which such a cycle exists. The following lemma gives this value.

Lemma 5. Let φ(x, k) be a parametric difference bounds constraint and Mφ[k] be
its associated matrix. For some aij , bij ∈ Z, let {aij · k + bij}mi

j=1, i = 1, . . . , 2N
be the set of terms denoting weights of elementary cycles going through i. Then φ is
inconsistent for some % ∈ N and k ≥ % if and only if there exists 1 ≤ i ≤ 2N and
1 ≤ j ≤ mi such that either (i) aij < 0 or (ii) aij ≥ 0 ∧ aij · % + bij < 0 holds.
Moreover, the smallest value for which φ becomes inconsistent is min2N

i=1{minmi

j=1 γij},

where γij = max(%, �− bij

aij
� + 1), if aij < 0, γij = %, if aij ≥ 0 ∧ aij · %+ bij < 0,

and γij = ∞, otherwise.

4.2 Octagons

Let x = {x1, x2, ..., xN} be a set of variables ranging over Z.
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Definition 6. A formula φ(x) is an octagonal constraint if it is equivalent to a finite
conjunction of terms of the form ±xi ± xj ≤ aij , 2xi ≤ bi, or −2xi ≤ ci, where
aij , bi, ci ∈ Z and 1 ≤ i, j ≤ N, i �= j.

The class of octagonal relations is denoted by Roct in the following. We represent oc-
tagons as difference bounds constraints over the set of variables y = {y1, y2, . . . , y2N},
with the convention that y2i−1 stands for xi and y2i for −xi, respectively. For example,
the octagonal constraint x1 + x2 = 3 is represented as y1 − y4 ≤ 3∧ y2 − y3 ≤ −3. To
handle the y variables in the following, we define ı̄ = i− 1, if i is even, and ı̄ = i+1 if
i is odd. Obviously, we have ¯̄ı = i, for all i ∈ Z, i ≥ 0. We denote by φ the difference
bounds formula φ[y1/x1, y2/ − x1, . . . , y2n−1/xn, y2n/ − xn] over y. The following
equivalence relates φ and φ :

φ(x) ⇔ (∃y2, y4, . . . , y2N . φ ∧
N∧

i=1

y2i−1 + y2i = 0)[x1/y1, . . . , xn/y2N−1] (2)

An octagonal constraint φ is equivalently represented by the DBM Mφ ∈ T
2N×2N ,

corresponding to φ. We say that a DBM M ∈ T2N×2N is coherent iff Mij = Mj̄ı̄ for
all 1 ≤ i, j ≤ 2N . This property is needed since any atomic proposition xi − xj ≤ a,
in φ can be represented as both y2i−1 − y2j−1 ≤ a and y2j − y2i ≤ a, 1 ≤ i, j ≤ N .
Dually, a coherent DBM M ∈ T

2N×2N corresponds to the octagonal constraint ΩM :∧
1≤i,j≤N

(xi − xj ≤M2i−1,2j−1 ∧ xi + xj ≤M2i−1,2j ∧−xi − xj ≤M2i,2j−1) (3)

A coherent DBM M is said to be octagonal-consistent if and only if ΩM is consistent.

Definition 7. An octagonal-consistent coherent DBM M ∈ T2N×2N is said to be
tightly closed if and only if the following hold:

1. Mii = 0, ∀1 ≤ i ≤ 2N 3. Mij ≤Mik +Mkj , ∀1 ≤ i, j, k ≤ 2N
2. Miı̄ is even, ∀1 ≤ i ≤ 2N 4. Mij ≤ �Miı̄

2 � + �Mj̄j

2 �, ∀1 ≤ i, j ≤ 2N

The following theorem from [3] provides an effective way of testing consistency and
computing the tight closure of a coherent DBM. Moreover, it shows that the tight clo-
sure of a given DBM is unique and can also be computed in time O(N3).

Theorem 2. [3] LetM ∈T2N×2N be a coherent DBM. ThenM is octagonal-consistent
if and only if M is consistent and �Miı̄

2 � + �Mj̄j

2 � ≥ 0, for all 1 ≤ i, j ≤ 2N, i �= j.
Moreover, the tight closure of M is the DBM M t ∈ T2N×2N defined as M t

ij =

min
{
M∗

ij ,
⌊

M∗
iı̄

2

⌋
+
⌊

M ∗̄
jj

2

⌋}
, for all 1 ≤ i, j ≤ 2N , where M∗ ∈ T2N×2N is the

closure of M .

The tight closure of an octagonal constraint is needed for existential quantifier elimi-
nation, and ultimately, for proving that the class of octagonal relations is closed under
composition [6].
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Octagonal Relations are Ultimately Periodic. Given a consistent octagonal relation
R(x,x′) let σ(R) = MR. Dually, for any coherent DBM M ∈ T4N×4N , let ρ(M) =
ΩM . Clearly, ρ(σ(R)) ⇔ R, as required by Def. 2.

In order to prove that the class Roct of octagonal relations is ultimately periodic, we
need to prove that the sequence {σ(Rm)}∞m=0 is ultimately periodic, for an arbitrary
relation R ∈ Roct. It is sufficient to consider only the case where R is ω-consistent,
hence σ(Rm) = MRm , for all m ≥ 0. We rely in the following on the main result of
[6], which establishes a relation between MRm (the octagonal DBM corresponding to
the m-th iteration of R) and MR

m (the DBM corresponding to the m-th iteration of
R ∈ Rdb), for m > 0:

(MRm)ij = min
{
(MR

m)ij ,
⌊

(MRm )iı̄

2

⌋
+
⌊

(MRm )j̄j

2

⌋}
, for all 1 ≤ i, j ≤ 4N (∗)

This relation is in fact a generalization of the tight closure expression from theorem 2,
from m = 1 to any m > 0.

In Section 4.1 it was shown that difference bounds relations are ultimately periodic.
In particular, this means that the sequence {MR

m}∞m=0, corresponding to the iteration
of the difference bounds relation R, is ultimately periodic. To prove that the sequence
{MRm}∞m=0 is also ultimately periodic, it is sufficient to show that: the minimum and
the sum of two ultimately periodic sequences are ultimately periodic, and also that the
integer half of an ultimately periodic sequence is also ultimately periodic.

Lemma 6. Let {sm}∞m=0 and {tm}∞m=0 be two ultimately periodic sequences. Then
the sequences {min(sm, tm)}∞m=0, {sm + tm}∞m=0 and

{⌊
sm

2

⌋}∞
m=0 are ultimately

periodic as well.

Together with the above relation (∗), lemma 6 proves that Roct is ultimately periodic.

Checking ω-Consistency and Inconsistency of Octagonal Relations. This section
describes an efficient method of deciding the queries Q1 and Q2 (lines 7 and 9 in Fig. 1)
for the class of octagonal relations. In order to deal with these queries symbolically,we
need to consider first the class Roct(k) of octagonal relations with parameter k. In the
rest of this section, let k �∈ x be a variable ranging over N+.

Definition 8. Then a formula φ(x, z) is a parametric octagonal constraint if it is equiv-
alent to a finite conjunction of terms of the form ±xi±xj ≤ aij ·k+bij , 2xi ≤ ci ·k+di,
or −2xi ≤ c′i · k + d′i, where aij , bij , ci, di, c

′
i, d

′
i ∈ Z and 1 ≤ i, j ≤ N, i �= j.

A parametric octagon φ(x, k) is represented by a matrix Mφ[k]T[k]2N×2N of linear

terms over k, and viceversa, a matrix M [k] ∈ T[k]2N×2N corresponds to a parametric
octagon ΩM (k). We define π(M [k]) = ΩM (k). As in the case of difference bounds
constraints, one notices that π(k · Λ + σ(Rb)) ∈ Roct(k), for R ∈ Roct, b ≥ 0 and
Λ ∈ T4N×4N .

The composition of parametric octagonal relations (from e.g. Q1) requires the com-
putation of the tight closure in the presence of parameters. According to theorem 2,
the parametric tight closure can be expressed as a matrix of elements of the form
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min{ti(k)}m
i=1, where ti(k) are either: (i) linear terms, i.e. ti(k) = ai · k + bi, or

(ii) sums of halved linear terms, i.e. ti(k) = �ai·k+bi

2 � + � ci·k+di

2 �.
The main idea is to split a halved linear term of the form �a·k+b

2 �, k > 0 into two
linear terms a · k + � b

2� and a · k + � b−a
2 �, corresponding to the cases of k > 0 being

even or odd, respectivelly. This is justified by the following equivalence:

{�a·k+b
2 � | k > 0} = {a · k + � b

2� | k > 0} ∪ {a · k + � b−a
2 � | k > 0}

Hence, an expression of the form min{ti(k)}m
i=1 yields two expressions min{tei (k)}m

i=1,
for even k, and min{toi (k)}m

i=1, for odd k, where tei and toi , 1 ≤ i ≤ m, are effec-
tively computable linear terms. With these considerations, Q1 (for octagonal relations)
is equivalent to a conjunction of equalities of the form ∀k > 0 . min{t•i (k)}m

i=1 =
t•0(k), • ∈ {e, o}. Now we can apply lemma 4 to the right-hand sides of the equiva-
lences above, to give efficient equivalent conditions for deciding Q1.

The query Q2 is, according to theorem 2, equivalent to finding either (i) a strictly
negative cycle in a parametric octagonal DBM M [k], or (ii) a pair of indices 1 ≤ i, j ≤
4N, i �= j such that �M [k]iı̄

2 � + �M [k]j̄j

2 � < 0. Considering that the set of terms corre-
sponding to the two cases above is T = {ai ·k+ bi}m

i=1 ∪ {� ci·k+di

2 �+ � ei·k+fi

2 �}p
i=1,

we split each term t ∈ T into two matching linear terms, and obtain, equivalently:

Te,o = {αe
i · k + βe

i }
m+p
i=1 ∪ {αo

i · k + βo
i }

m+p
i=1

Now we can apply lemma 5, and compute the minimal value for which a term t ∈ Te,o

becomes negative, i.e. n0 = minm+p
i=1 min(2γe

i , 2γ
o
i −1), where γ•i = max(1, �− β•

i

α•
i
�+

1), if α•i < 0, 1 if α•i ≥ 0 ∧ α•i + β•i < 0, and ∞, otherwise, for • ∈ {e, o}.

4.3 Finite Monoid Affine Transformations

The class of affine transformations is one of the most general classes of determinis-
tic transition relations involving integer variables. If x = 〈x1, . . . , xN 〉 is a vector of
variables ranging over Z, an affine transformation is a relation of the form:

T ≡ x′ = A⊗ x + b ∧ φ(x) (4)

where A ∈ Z
N×N , b ∈ Z

N , φ is a Presburger formula, and ⊗ stands for the standard
matrix multiplication in Z.

The affine transformation is said to have the finite monoid property [5,10] if the
monoid 〈MA,⊗〉, where MA = {A⊗i | i ≥ 0} is finite. In this case, we also say that
A is finite monoid. Here A⊗0 = IN and A⊗i = A ⊗ A⊗i−1, for i > 0. Intuitivelly,
the finite monoid property is equivalent to the fact that A has finitely many powers (for
the standard integer multiplication) that repeat periodically. It is easy to see that A is
finite monoid if and only if there exists p ≥ 0 and l > 0 such that A⊗p = A⊗p+l, i.e.
MA = {A⊗0

, . . . , A⊗p
, . . . , A⊗p+l−1}.

IfA is finite monoid, it can be shown that T ∗ can be defined in Presburger arithmetic
[5,10]. We achieve the same result below, by showing that finite monoid affine transfor-
mations are ultimately periodic relations. As a byproduct, the transitive closure of such
relations can also be computed by the algorithm in Fig. 1.
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An affine tranformation T (4) can be equivalently written in the homogeneous form:

T ≡ x′h = Ah ⊗ xh ∧ φh(xh) where Ah ≡
(

A b
0 . . . 0 1

)
where xh = 〈x1, . . . xN , xN+1〉 with xN+1 �∈ x being a fresh variable and φh(xh) ≡
φ(x) ∧ xN+1 = 1. In general, the k-th iteration of an affine transformation can be
expressed as:

T k ≡ x′h = Ah
⊗k ⊗ xh ∧ ∀0 ≤ % < k . φh(Ah

⊗� ⊗ xh) (5)

Notice that, if x(0)
h denotes the initial values of xh, the values of xh at the %-th itera-

tion are x(�)
h = Ah

⊗� ⊗ x(0)
h . Moreover, we need to ensure that all guards up to (and

including) the (k − 1)-th step are satisfied, i.e. φh(Ah
⊗� ⊗ xh), for all 0 ≤ % < k.

For the rest of the section we fix A and b, as in (4). The encoding of a consistent
affine transformation T is defined as σ(T ) = Ah ∈ T(N+1)×(N+1). Dually, for some
M ∈ T[k](N+1)×(N+1), we define:

π(M) : ∃xN+1, x
′
N+1 . x

′
h = M ⊗ xh ∧ ∀0 ≤ % < k . φh(M [%/k] ⊗ xh)

where M [%/k] denotes the matrixM in which each occurrence of k is replaced by %. In
contrast with the previous cases (Section 4.1 and Section 4.2), only M is not sufficient
here to recover the relation π(M) – φ needs to be remembered as well4.

With these definitions, we have σ(T k) = A⊗
h

k
, for all k > 0 – as an immediate con-

sequence of (5). The next lemma proves that the class of finite monoid affine relations
is ultimately periodic.

Lemma 7. Given a finite monoid matrix A ∈ ZN×N and a vector b ∈ ZN , the se-

quence {A⊗
h

k}∞k=0 is ultimately periodic.

The queries Q1 and Q2 (lines 7 and 9 in Fig. 1) in the case of finite monoid affine trans-
formations, are expressible in Presburger arithmetic. These problems could be simpli-
fied in the case of affine transformations without guards, i.e T ≡ x′ = Ax + b. The
transformation is, in this case, ω-consistent. Consequently, Q1 reduces to an equiva-
lence between two homogeneous systems x′h = A1h ⊗ xh and x′h = A2h ⊗ xh. This
is true if and only if A1h = A2h. The query Q2 becomes trivially false in this case.

5 Experimental Results

We have implemented the transitive closure algorithm from Fig. 1 within the FLATA
toolset [11], a framework we develop for the analysis of counter systems. We compared
the performance of this algorithm with our older transitive closure computation methods
for difference bounds [8] and octagonal relations [6]. We currently lack experimental
data for finite monoid relations (namely, a comparison with existing tools such as FAST

4 This incurs a slight modification of the algorithm presented in Fig. 1.
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[4], LASH [14] or TReX [2] on this class), as our implementation of finite monoid affine
transformation class is still underway.

Table 1 shows the results of the comparison between the older algorithms described
in [8,6] (denoted as old) and the algorithm in Fig. 1 for difference bounds relations
d1,...,6 and octagonal relations o1,...,6. The tests have been performed on both compact
(minimum number of constraints) and canonical (i.e. closed, for difference bounds and
tightly closed, for octagons) relations. The speedup column gives the ratio between the
old and new execution times. The experiments were performed on a 2.53GHz machine
with 2.9GB of memory.

Table 1. Comparison with older algorithms on difference bounds and octagons. Times are in
milliseconds.

Relation new compact canonical
old speedup old speedup

d0 (x − x′ = −1) ∧ (x = y′) 0.18 0.7 3.89 38.77 215.39
d1 (x − x′ = −1) ∧ (x′ = y′) 0.18 18.18 101.0 38.77 215.39
d2 (x − x′ = −1) ∧ (x = y′) ∧ (x − z′ ≤ 5) ∧ (z = z′) 1.2 26.5 22.1 33431.2 27859.3
d3 (x − x′ = −1) ∧ (x = y′) ∧ (x − z ≤ 5) ∧ (z = z′) 0.6 32.7 54.5 33505.5 55841.7
d4 (x − x′ = −1) ∧ (x = y) ∧ (x − z ≤ 5) ∧ (z = z′) 0.5 702.3 1404.6 48913.8 97827.6
d5 (a = c) ∧ (b = a′) ∧ (b = b′) ∧ (c = c′) 1.8 5556.6 3087.0 > 106 ∞

d6

(a − b′ ≤ −1) ∧ (a − e′ ≤ −2) ∧ (b − a′ ≤ −2)

5.6 > 106 ∞ > 106 ∞
∧(b − c′ ≤ −1) ∧ (c − b′ ≤ −2) ∧ (c − d′ ≤ −1)
∧(d − c′ ≤ −2) ∧ (d − e′ ≤ −1 ∧ e − a′ ≤ −1)
∧(e − d′ ≤ −2) ∧ (a′ − b ≤ 4) ∧ (a′ − c ≤ 3)
∧(b′−c ≤ 4 ∧ b′−d ≤ 3) ∧ (c′−d ≤ 4) ∧ (c′−e ≤ 3)
∧(d′−a ≤ 3 ∧ d′−e ≤ 4) ∧ (e′−a ≤ 4) ∧ (e′−b ≤ 3)

o1 (x + x′ = 1) 0.21 0.91 4.33 0.91 4.33
o2 (x + y′ ≤ −1) ∧ (−y − x′ ≤ −2) 0.29 0.85 2.93 0.84 2.9
o3 (x ≤ x′) ∧ (x + y′ ≤ −1) ∧ (−y − x′ ≤ −2) 0.32 0.93 2.91 0.94 2.94
o4 (x + y ≤ 5) ∧ (−x + x′ ≤ −2) ∧ (−y + y′ ≤ −3) 0.21 3.67 17.48 13.52 64.38
o5 (x + y ≤ 1) ∧ (−x ≤ 0) ∧ (−y ≤ 0) 1.2 20050.9 16709.1 > 106 ∞

o6

(x ≥ 0) ∧ (y ≥ 0) ∧ (x′ ≥ 0) ∧ (y′ ≥ 0)
2.5 > 106 ∞ > 106 ∞∧(x + y ≤ 1) ∧ (x′ + y′ ≤ 1) ∧ (x − 1 ≤ x′)

∧(x′ ≤ x + 1) ∧ (y − 1 ≤ y′) ∧ (y′ ≤ y + 1)

Table 2. Comparison with FAST (MONA plugin) on deterministic difference bounds. Times are
in seconds. ET – timeout 30 s, EB – BDD too large, EM – out of memory.

vars FLATA FAST
done av. ET done av. ET EM EB

10 50 1.5 0 49 0.6 0 0 1
15 50 1.6 0 31 10.5 17 0 2
20 50 1.6 0 4 3.4 9 8 29
25 50 1.6 0 2 4.2 2 10 36
50 50 1.6 0 0 - 0 0 50

100 49 7.7 1 0 - 0 0 50

vars FLATA FAST
done av. ET done av. ET EM EB

10 50 1.5 0 22 6.9 23 1 4
15 50 1.5 0 1 20.6 4 3 42
20 50 1.6 0 0 - 1 0 49
25 43 1.7 7 0 - 0 0 50
50 50 2.3 0 0 - 0 0 50
100 42 5.5 8 0 - 0 0 50

(a) – matrix density 3% (b) – matrix density 10%

As shown in Table 1, the maximum observed speedup is almost 105 for difference
bounds (d4 in canonical form) and of the order of four for octagons. For the relations
d5 (canonical form), d6 and o6 the computation using older methods took longer than



242 M. Bozga, R. Iosif, and F. Konečný

106 msec. It is also worth noticing that the highest execution time with the new method
was of 2.5 msec.

Table 2 compares FLATA with FAST [4] on counter systems with one self loop la-
beled with a randomly generated deterministic difference bound relation. We generated
50 such relations for each size N = 10, 15, 20, 25, 50, 100. Notice that FAST usually
runs out of memory for more than 25 variables, whereas FLATA can handle 100 vari-
ables in reasonable time (less than 8 seconds on average).

6 Conclusion

We presented a new, scalable algorithm for computing the transitive closure of ul-
timately periodic relations. We show that this algorithm is applicable to difference
bounds, octagonal and finite monoid affine relations, as all three classes are shown to be
ultimately periodic. Experimental results show great improvement in the time needed
to compute transitive closures of difference bounds and octagonal relations.
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6. Bozga, M., Gı̂rlea, C., Iosif, R.: Iterating octagons. In: TACAS ’09, pp. 337–351. Springer,
Heidelberg (2009)
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Abstract. A key problem in the adoption of artificial neural networks in safety-
related applications is that misbehaviors can be hardly ruled out with traditional
analytical or probabilistic techniques. In this paper we focus on specific networks
known as Multi-Layer Perceptrons (MLPs), and we propose a solution to ver-
ify their safety using abstractions to Boolean combinations of linear arithmetic
constraints. We show that our abstractions are consistent, i.e., whenever the ab-
stract MLP is declared to be safe, the same holds for the concrete one. Spurious
counterexamples, on the other hand, trigger refinements and can be leveraged
to automate the correction of misbehaviors. We describe an implementation of
our approach based on the HYSAT solver, detailing the abstraction-refinement
process and the automated correction strategy. Finally, we present experimental
results confirming the feasibility of our approach on a realistic case study.

1 Introduction

Artificial neural networks are one of the most investigated and well-established Ma-
chine Learning techniques, and they find application in a wide range of research and
engineering domains – see, e.g., [1]. However, in spite of some exceptions, neural net-
works are confined to systems which comply only to the lowest safety integrity levels,
achievable with standard industrial best practices [2]. The main reason is the absence of
effective safety assurance methods for systems using neural networks. In particular, tra-
ditional analytical and probabilistic methods can be ineffective in ensuring that outputs
do not generate potential hazards in safety-critical applications [3] .

In this paper we propose a formal method to verify safety of neural networks. We
consider a specific kind of feed-forward neural network known as Multi-Layer Percep-
tron (MLP), and we state that an MLP is safe when, given every possible input value, its
output is guaranteed to range within specific bounds. Even if we consider MLPs with
a fairly simple topology, the Universal Approximation Theorem [4] guarantees that, in
principle, such MLPs can approximate every non-linear real-valued function of n real-
valued inputs. Also, our notion of safety is representative of all the cases in which an
out-of-range response is unacceptable, such as, e.g., minimum and maximum reach of
an industrial manipulator, lowest and highest percentage of a component in a mixture,
and minimum and maximum dose of a drug that can be administered to a patient.

Our first contribution, in the spirit of [5], is the abstraction of MLPs to correspond-
ing Boolean combinations of linear arithmetic constraints. Abstraction is a key enabler

T. Touili, B. Cook, and P. Jackson (Eds.): CAV 2010, LNCS 6174, pp. 243–257, 2010.
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for verification, because MLPs are compositions of non-linear and transcendental real-
valued functions, and the theories to handle such functions are undecidable [6]. Even
considering rational approximations of real numbers, the amount of computational re-
sources required to reason with realistic networks could still be prohibitive. For the
MLPs that we consider, we show that our abstraction mechanism yields consistent over-
approximations of concrete networks, i.e., once the abstract MLP is proven to be safe,
the same holds true for the concrete one. Clearly, abstraction opens the path to spuri-
ous counterexamples, i.e., violations of the abstract safety property which fail to realize
on the concrete MLP. In these cases, since we control the “coarseness” of the abstrac-
tion through a numeric parameter, it is sufficient to modify such parameter to refine the
abstraction and then retry the verification. While our approach is clearly inspired by
counterexample guided abstraction-refinement (CEGAR) [7], in our case refinement is
not guided by the counterexample, but just caused by it, so we speak of counterexample
triggered abstraction-refinement (CETAR).

Our second contribution is a strategy for automating MLP repair – a term borrowed
from [8] that we use to indicate modifications of the MLP synthesis attempting to cor-
rect its misbehaviors. The idea behind repair is simple, yet fairly effective. The problem
with an unsafe network is that it should be redesigned to improve its performances.
This is more of an art than a science, and it has to do with various factors, including
the knowledge of the physical domain in which the MLP operates. However, spurious
counterexamples open an interesting path to automated repair, because they are essen-
tially an input vector which would violate the safety constraints if the concrete MLP
were to respond with less precision than what is built in it. Intuitively, since the abstract
MLP consistently over-approximates the concrete one, a spurious counterexample is a
weak spot of the abstract MLP which could be critical also for the concrete one. We
provide strong empirical evidence in support of this intuition, and also in support of the
fact that adding spurious counterexamples to the training set yields MLPs which are
safer than the original ones.

We implemented the above ideas in the tool NEVER (for Neural networks Verifier) [9]
which leverages HYSAT [6] to verify abstract networks and the SHARK library [10] to
provide MLP infrastructure, including representation and support for evaluation and re-
pairing. In order to test the effectiveness of our approach, we experiment with NEVER

on a case study about learning the forward kinematics of an industrial manipulator. We
aim to show that NEVER can handle realistic sized MLPs, as well as support the MLP
designer in establishing or, at least, in improving the safety of his design in a com-
pletely automated way. The paper is structured as follows. Section 2 is a crash-course
on MLPs – introducing basic notation, terminology and methodologies – and includes
a detailed description of our case study. In Section 3 we describe MLP abstraction, and
we prove its consistency. We also describe the basic CETAR algorithm, and we show
some experiments confirming its feasibility. In Section 4, we extend the basic algorithm
with automated repair, we provide empirical evidence to support the correctness of our
approach, and we show experiments confirming its effectiveness in our case study. We
conclude the paper in Section 5 with some final remarks and a comparison of our work
with related literature.
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Fig. 1. Left: our MLP architecture of choice; neurons and connections are represented by circles
and arrows, respectively. Right: PUMA 500 industrial manipulator.

2 Preliminaries

Structure Multi-Layer Perceptrons (MLPs) [11] are probably the most widely studied
and used type of artificial neural network. An MLP is composed of a system of in-
terconnected computing units (neurons), which are organized in layers. Figure 1 (left)
shows our MLP architecture of choice, consisting of three layers: An input layer, that
serves to pass the input vector to the network. A hidden layer of computation neurons.
An output layer composed of at least a computation neuron. The MLPs that we consider
are fully connected, i.e., each neuron is connected to every neuron in the previous and
next layer. An MLP processes the information as follows. Let us consider the network
ν in Figure 1. Having n neurons in the input layer (n = 4 in Figure 1), the i-th input
value is denoted by xi, i = {1, . . . , n}. With m neurons in the hidden layer (m = 2
in Figure 1), the total input yj received by neuron j, with j = {1, . . . ,m}, is called
induced local field (ILF) and it is defined as

yj =
n∑

i=1

ajixi + bj (1)

where aji is the weight of the connection from the i-th neuron in the input layer to
the j-th neuron in the hidden layer, and the constant bj is the bias of the j-th neuron.
The output of a neuron j in the hidden layer is a monotonic non-linear function of
its ILF, the activation function. As long as such activation function is differentiable
everywhere, MLPs with only one hidden layer can, in principle, approximate any real-
valued function with n real-valued inputs [4]. A commonly used activation function [11]
is the logistic function

σ(r) =
1

1 + exp(−r) , r ∈ R (2)

Therefore, the output of the MLP is

ν(x) =
m∑

j=1

cjσ(yj) + d (3)
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where cj denotes the weight of the connection from the j-th neuron in the hidden layer
to the output neuron, while d represents the bias of the output neuron. Equation (3) im-
plies that the identity function is used as activation function of input- and output-layer
neurons. This is a common choice when MLPs deal with regression problems. In regres-
sion problems, we are given a set of patterns, i.e., input vectorsX = {x1, . . . , xk} with
xi ∈ R

n, and a corresponding set of labels, i.e., output values Y = {y1, . . . , yk} with
yi ∈ R. We think of the labels as generated by some unknown function f : Rn → R

applied to the patterns, i.e., f(xi) = yi for i ∈ {1, . . . , k}. The task of ν is to extrapo-
late f given X and Y , i.e., construct ν from X and Y so that when we are given some
x∗ �∈ X we should ensure that ν(x∗) is “as close as possible” to f(x∗). In the following,
we briefly describe how this can be achieved in practice.

Training and Validation. Given a set of patterns X and a corresponding set of labels
Y generated by some unknown function f , the process of tuning the weights and the
biases of an MLP ν in order to extrapolate f is called training, and the pair (X,Y )
is called the training set. We can see training as a way of learning a concept, i.e., the
function f , from the labelled patterns in the training set. In particular, we speak of
supervised learning because labels can be used as a reference for training, i.e., whenever
ν(xi) �= yi with xi ∈ X and yi ∈ Y an error signal can be computed to determine how
much the weights should be adjusted to improve the quality of the response of ν. A well-
established training algorithm for MLPs is back-propagation (BP) [11]. Informally, an
epoch of BP-based training is the combination of two steps. In the forward step, for all
i ∈ {1, . . . , k}, xi ∈ X is input to ν, and some cumulative error measure ε is evaluated.
In the backward step, the weights and the biases of the network are all adjusted in
order to reduce ε. After a number of epochs, e.g., when ε stabilizes under a desired
threshold, BP stops and returns the weights of the neurons, i.e., ν is the inductive model
of f .

In general, extrapolation is an ill-posed problem. Even assuming that X and Y are
sufficient to learn f , it is still the case that different setsX,Y will yield different settings
of the MLP parameters. Indeed, we cannot choose elements of X and Y to guarantee
that the resulting network ν will not underfit f , i.e., consistently deviate from f , or
overfit f , i.e., be very close to f only when the input vector is in X . Both underfit-
ting and overfitting lead to poor generalization performances, i.e., the network largely
fails to predict f(x∗) on yet-to-be-seen inputs x∗. Statistical techniques can provide
reasonable estimates of the generalization error – see, e.g., [11]. In our experiments, we
use leave-one-out cross-validation (or, simply, leave-one-out) which works as follows.
Given the set of patternsX and the set of labels Y , we obtain the MLP ν(i) by applying
BP to the set of patterns X(i) = {x1, . . . , xi−1, xi+1, . . . xk} and to the corresponding
set of labels Y(i). If we repeat the process k times, then we obtain k different MLPs so
that we can estimate the generalization error as

ε̂ =

√√√√1
k

k∑
i=1

(yi − ν(i)(xi))2 (4)
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which is the root mean squared error (RMSE) among all the predictions made by each
ν(i) when tested on the unseen input xi. Both leave-one-out and RMSE are a common
method of estimating and summarizing the generalization error in MLP applications
(see e.g. [11]).

Case Study. The experiments that we present1 concern a realistic case study about the
control of a Unimate PUMA 500 industrial manipulator – see Figure 1 (right). This is
a 6 degrees-of-freedom manipulator with revolute joints, which has been widely used
in industry and it is still common in academic research projects. The joints are actuated
by DC servo motors with encoders to locate angular positions. Our case study focuses
on learning forward kinematics, i.e., the mapping from joint angles to end-effector po-
sition along a single coordinate of a Cartesian system having origin in the center of the
robot’s workspace. Our desiderata is thus to build an MLP predicting the final position
of the end-effector knowing the joint angles. Since we learn the mapping using exam-
ples inside a region that we consider to be safe for the manipulator’s motion, we expect
the MLP to never emit a prediction that exceeds the safe region. An MLP failing to
do so is to be considered unsafe. To train the MLP, we consider a training set (X,Y )
collecting 141 entries. The patterns x ∈ X are vectors encoding the 6 joint angles, i.e.,
x = 〈θ1, . . . , θ6〉 (in radians), and the labels are the corresponding end-effector coor-
dinate (in meters). The range that we consider to be safe for motion goes from -0.35m
to 0.35m, thus for all y ∈ Y we have y ∈ [−0.35, 0.35]. We have built the training
set using the ROBOOP library [12] which provides facilities for simulating the PUMA
manipulator. The MLP was trained using the IRPROPPLUS algorithm [13], which is a
modern implementation of BP. Inside our system, training an MLP to perform forward
kinematics takes 0.64s across 500 epochs, yielding a RMSE estimate of the generaliza-
tion error ε̂ = 0.024m – the error distribution ranges from a minimum of 3.2×10−5m
to a maximum of 0.123m, with a median value of 0.020m. It is worth noticing that such
generalization error would be considered very satisfactory in MLP applications.

3 Verifying MLPs with Abstraction

Given an MLP ν with n inputs and a single output we define

– the input domain of ν as a Cartesian product I = D1 × . . . × Dn where for all
1 ≤ i ≤ n the i-th element of the productDi = [ai, bi] is a closed interval bounded
by ai, bi ∈ R; and

– the output domain of ν as a closed interval O = [a, b] bounded by a, b ∈ R.

In the definition above, and throughout the rest of the paper, a closed interval [a, b]
bounded by a, b ∈ R is the set of real numbers comprised between a and b, i.e, [a, b] =
{x | a ≤ x ≤ b} with a ≤ b. We thus consider any MLP ν as a function ν : I → O,
and we say that ν is safe if it satisfies the property

∀x ∈ I : ν(x) ∈ [l, h] (5)

1 Our empirical analysis is obtained on a family of identical Linux workstations comprised of
10 Intel Core 2 Duo 2.13 GHz PCs with 4GB of RAM running Linux Debian 2.6.18.5.
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where l, h ∈ O are safety thresholds, i.e., constants defining an interval wherein the
MLP output is to range, given all acceptable input values. Testing exhaustively all the
input vectors in I to make sure that ν respects condition (5) is untenable. On the other
hand, statistical approaches based on sampling input vectors – see, e.g., [14] – can
only give a probabilistic guarantee. In the spirit of [5], we propose to verify a con-
sistent abstraction of ν, i.e., a function ν̃ such that if the property corresponding to
(5) is satisfied by ν̃ in a suitable abstract domain, then it must hold also for ν. As in
any abstraction-based approach to verification, the key point is that verifying condition
(5) in the abstract domain is feasible, possibly without using excessive computational
resources. This comes at the price of spurious counterexamples, i.e., there may exist
some abstract counterexamples that do not correspond to concrete ones. A spurious
counterexample calls for a refinement of the abstraction which, in turn, can make the
verification process more expensive. In practice, we hope to be able to either verify ν
or exhibit a counterexample within a reasonable number of refinements.

Following the framework of [5], we build abstract interpretations of MLPs where
the concrete domain R is the set of real numbers, and the corresponding abstract do-
main [R] = {[a, b] | a, b ∈ R} is the set of (closed) intervals of real numbers. In the
abstract domain we have the usual containment relation “�” such that given two inter-
vals [a, b] ∈ [R] and [c, d] ∈ [R] we have that [a, b] � [c, d] exactly when a ≥ c and
b ≤ d, i.e., [a, b] is a subinterval of – or it coincides with – [c, d]. Given any set X ⊆ R,
abstraction is defined as the mapping α : 2R → [R] such that

α(X) = [min{X},max{X}] (6)

In other words, given a set X ⊆ R, α(X) is the smallest interval encompassing all the
elements of X , i.e., for all x ∈ X , x ranges within α(X) and there is no [a, b] � α(X)
for which the same holds unless [a, b] coincides with α(X). Conversely, given [a, b] ∈
[R], concretization is defined as the mapping γ : [R] → 2R such that

γ([a, b]) = {x | x ∈ [a, b]} (7)

which represents the set of all real numbers comprised in the interval [a, b]. Given the
posets 〈2R,⊆〉 and 〈[R],�〉, the pair 〈α, γ〉 is indeed a Galois connection because the
following four properties follow from definitions (6) and (7):

1. Given two sets X,Y ∈ 2R, if X ⊆ Y then α(X) � α(Y ).
2. Given two intervals [a, b] ∈ [R] and [c, d] ∈ [R], if [a, b] � [c, d] then γ([a, b]) ⊆
γ([c, d]).

3. Given a set X ∈ 2R, we have that X ⊆ γ(α(X)).
4. Given an interval [a, b] ∈ [R], we have that α(γ([a, b]) coincides with [a, b].

Let ν : I → O denote the MLP for which we wish to prove safety in terms of (5). We
refer to ν as the concrete MLP. Given a concrete domain D = [a, b], the corresponding
abstract domain is [D] = {[x, y] | a ≤ x ≤ y ≤ b}, and we denote with [x] a
generic element of [D]. We can naturally extend the abstraction to Cartesian products
of domains, i.e., given I = D1 × . . . ×Dn, we define [I] = [D1] × . . . × [Dn], and
we denote with [x] = 〈[x1], . . . , [xn]〉 the elements of [I] that we call interval vectors.



An Abstraction-Refinement Approach to Verification of Artificial Neural Networks 249

Fig. 2. Activation function σ(x) and its abstraction σ̃p(x) in the range x ∈ [−2, 2]. The solid line
denotes σ, while the boxes denote σ̃p with p = 0.5.

If X ⊆ I with X = {x1, . . . , xk} is a set of input vectors, then we can extend the
abstraction function α by considering

α(X) = 〈[ min
1≤j≤k

{x1j}, max
1≤j≤k

{x1j}], . . . , [ min
1≤i≤k

{xnj}, max
1≤j≤k

{xnj}]〉 (8)

where xij denotes the i-th component (1 ≤ i ≤ n) of the j-th vector in X (1 ≤ j ≤ k).
The result of α(X) is thus the interval vector whose components are n intervals, each
obtained by considering minimum and maximum of the corresponding components in
the input vectors. An abstract MLP ν̃ is a function ν̃ : [I] → [O]. Given a set of input
vectorsX ⊆ I, ν̃ provides a consistent abstraction of ν if it satisfies

{ν(x) | x ∈ X} ⊆ γ(ν̃(α(X))) (9)

In words, when given the interval vector α(X) as input, ν̃ outputs an interval which
corresponds to a superset of the values that ν would output if given as input all the
vectors in X . Given our safety thresholds l, h ∈ O, if we can prove

∀[x] ∈ [I] : ν̃([x]) � [l, h] (10)

then, from (9) and the definition of γ, it immediately follows that

{ν(x) | x ∈ I} ⊆ {y | l ≤ y ≤ h} (11)

which implies that condition (5) is satisfied by ν, because ν may not output a value
outside [l, h] without violating (11).

We abstract the concrete MLP ν assuming that the activation function of the hidden-
layer neurons is the logistic function (2), where σ(x) : R → Oσ and Oσ = [0, 1]. Given
an abstraction parameter p ∈ R

+, the abstract activation function σ̃p can be obtained
by considering the maximum increment of σ over intervals of length p. Since σ is a
monotonically increasing function, and its first derivative is maximum in the origin,
we can use the increment of σ in the origin as the upper bound on the increment of σ
elsewhere. The tangent to σ in the origin has slope 1/4 so we have that

∀x ∈ R : 0 ≤ σ(x + p) − σ(x) ≤ p

4
(12)
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NEVER(Δ,Π , [l, h], p, r)
1 isSafe← FALSE; isFeasible← FALSE

2 ν ← TRAIN(Δ,Π)
3 repeat
4 ν̃p← ABSTRACT(ν, p)
5 s̃← NIL; isSafe← CHECKSAFETY(ν̃p, [l, h], s̃)
6 if (not isSafe) then
7 isFeasible← CHECKFEASIBILITY(ν, s̃)
8 if (not isFeasible) then
9 p← p / r

10 until isSafe or (not isSafe and isFeasible)
11 return isSafe

Fig. 3. Pseudo-code of NEVER

for any choice of the parameter p ∈ R
+. Now let x0 and x1 be the values that satisfy

σ(x0) = p/4 and σ(x1) = 1−p/4, respectively. We define σ̃p : [R] → [Oσ] as follows:

σ̃p([xa, xb]) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[0, p/4] if xb ≤ x0
[0, σ(�xb

p �) + p
4 ] if xa ≤ x0 and xb < x1

[σ(�xa

p �), σ(�xb

p �) + p
4 ] if x0 < xa and xb < x1

[σ(�xa

p �), 1] if x0 < xa and x1 ≤ xb

[1 − p/4, 1] if xa ≥ x1

(13)

Figure 2 gives a pictorial representation of the above definition. As we can see, σ̃p is
a consistent abstraction of σ because it respects property (9) by construction. Accord-
ing to (13) we can control how much σ̃p over-approximates σ, since large values of p
correspond to coarse-grained abstractions, whereas small values of p correspond to fine-
grained ones. Formally, if p < q then for all [x] ∈ [R], we have that σ̃p([x]) � σ̃q([x]).
We can now define ν̃p : [I] → [O] as

ν̃p([x]) =
m∑

j=1

cj σ̃p(ỹj([x])) + d (14)

where ỹj([x]) =
∑n

i=1 aji[xi] + bj , and we overload the standard symbols to denote
products and sums, e.g., we write x + y to mean x+̃y when x, y ∈ [R]. Since σ̃p is a
consistent abstraction of σ, and products and sums on intervals are consistent abstrac-
tions of the corresponding operations on real numbers, defining ν̃p as in (14) provides
a consistent abstraction of ν. This means that our original goal of proving the safety
of ν according to (5) can be now recast, modulo refinements, to the goal of proving its
abstract counterpart (10).

We can leverage the above definitions to provide a complete abstraction-refinement
algorithm to prove MLP safety. The pseudo-code in Figure 3 is at the core of our tool
NEVER2 which we built as proof of concept. NEVER takes as input a training set Δ, a

2 NEVER is available for download at http://www.mind-lab.it/never. NEVER is
written in C++, and it uses HYSAT to verify abstract MLPs and the SHARK library to handle
representation, training, and repairing of the concrete MLPs.

http://www.mind-lab.it/never
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Table 1. Safety checking with NEVER. The first two columns (“l” and “h”) report lower and
upper safety thresholds, respectively. The third column reports the final result of NEVER, and
column “# CETAR” indicates the number of abstraction-refinement loops. The two columns un-
der “TIME” report the total CPU time (in seconds) spent by NEVER and by HYSAT, respectively.

l h RESULT # CETAR TIME

TOTAL HYSAT
-0.350 0.350 UNSAFE 8 1.95 1.01
-0.450 0.450 UNSAFE 9 3.15 2.10
-0.550 0.550 UNSAFE 12 6.87 5.66
-0.575 0.575 SAFE 11 6.16 4.99
-0.600 0.600 SAFE 1 0.79 0.12
-0.650 0.650 SAFE 1 0.80 0.13

set of MLP parameters Π , the safety thresholds [l, h], the initial abstraction parameter
p, and the refinement rate r. In line 1, two Boolean flags are defined, namely isSafe and
isFeasible. The former is set to TRUE when verification of the abstract network suc-
ceeds; the latter is set to TRUE when an abstract counterexample can be realized on the
concrete MLP. In line 2, a call to the function TRAIN yields a concrete MLP ν from the
set Δ. The set Π must supply parameters to control topology and training of the MLP,
i.e., the number of neurons in the hidden layer and the number of BP epochs. The result
ν is the MLP with the least cumulative error among all the networks obtained across
the epochs [10]. Lines 4 to 11 are the CETAR loop. Given p, the function ABSTRACT

computes ν̃p exactly as shown in (14) and related definitions. In line 5, CHECKSAFETY

is devoted to interfacing with the HYSAT solver in order to verify ν̃p. In particular,
HYSAT is supplied with a Boolean combination of linear arithmetic constraints mod-
eling ν̃p : [I] → [O], and defining the domains [I] and O, plus a further constraint
encoding the safety condition. In particular, this is about finding some interval [x] ∈ [I]
such that ν̃([x]) �� [l, h]. CHECKSAFETY takes as input also a variable s̃ that is used to
store the abstract counterexample, if any. CHECKSAFETY returns one of the following
results:

– If the set of constraints supplied to HYSAT is unsatisfiable, then for all [x] ∈ [I]
we have ν̃p([x]) � [l, h]. In this case, the return value is TRUE, and s̃ is not set.

– If the set of constraints supplied to HYSAT is satisfiable, this means that there exists
an interval [x] ∈ [I] such that ν̃([x]) �� [l, h]. In this case, such [x] is collected in
s̃, and the return value is FALSE.

If isSafe is TRUE after the call to CHECKSAFETY, then the loop ends and NEVER exits
successfully. Otherwise, the abstract counterexample s̃ must be checked to see whether
it is spurious or not. This is the task of CHECKFEASIBILITY, which takes as input
the concrete MLP ν, and a concrete counterexample extracted3 from s̃. If the abstract
counterexample can be realized then the loop ends and NEVER exits reporting an un-
successful verification. Otherwise, we update the abstraction parameter p according to
the refinement rate r – line 9 – and we restart the loop.

We conclude this section with an experimental account of NEVER using the case
study introduced in Section 2. Our main target is to find a region [l, h] within which

3 We consider a vector whose components are the midpoints of the components of the interval
vector emitted by HYSAT as witness.
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we can guarantee a safe calculation of the forward kinematics by means of a trained
MLP. To do so, we set the initial abstraction parameter to p = 0.5 and the refinement
rate to r = 1.1, and we train an MLP with 3 neurons in the hidden layer. In order to
find l and h, we start by considering the interval [−0.35, 0.35] – recall that this is the
interval in which we consider motion to be safe. Whenever we find a counterexample
stating that the network is unsafe with respect to given bounds, we enlarge the bounds.
Once we have reached a safe configuration, we try to shrink the bounds, until we reach
the tightest bounds that we can consider safe. The results of the above experiment are
reported in Table 1. In the Table, we can see that NEVER is able to guarantee that the
MLP is safe in the range [−0.575, 0.575]. If we try to shrink these bounds, then NEVER

is always able to find a set of inputs that makes the MLP exceed the bounds. Notice that
the highest total amount of CPU time corresponds to the intervals [−0.550, 0.550] and
[−0.575, 0.575], which are the largest unsafe one and the tightest safe one, respectively.
In both cases, the number of abstraction-refinement loops is also larger than other con-
figurations that we tried.

Given that there is only one parameter governing the abstraction, we may consider
whether starting with a precise abstraction, i.e., setting a relatively small value of p,
would bring any advantage. However, we should keep into account that the smaller is p,
the larger is the HYSAT internal propositional encoding to check safety in the abstract
domain. As a consequence, HYSAT computations may turn out to be unfeasibly slow
if the starting value of p is too small. To see this, let us consider the range [−0.65, 0.65]
for which Table 1 reports that HYSAT solves the abstract safety check with p = 0.5
in 0.13 CPU seconds, and NEVER performs a single CETAR loop. The corresponding
propositional encoding accounts for 599 variables and 2501 clauses in this case. If we
consider the same safety check using p = 0.05, then we still have a single CETAR
loop, but HYSAT now runs for 30.26 CPU seconds, with an internal encoding of 5273
variables and 29322 clauses. Notice that the CPU time spent by HYSAT in this single
case is already more than the sum of its runtime across all the cases in Table 1. Setting
p = 0.005 confirms this trend: HYSAT solves the abstract safety check in 96116 CPU
seconds (about 27 hours), and the internal encoding accounts for 50774 variables and
443400 clauses. If we consider the product between variables and clauses as a rough
estimate of the encoding size, we see that a 10× increase in precision corresponds to
at least a 100× increase in the size of the encoding. Regarding CPU times, there is
more than a 200× increase when going from p = 0.5 to p = 0.05, and more than a
3000× increase when going from p = 0.05 to p = 0.005. In light of these results, it
seems reasonable to start with coarse abstractions and let the CETAR loop refine them
as needed. As we show in the following, efficiency of the automated repair heuristic is
also another compelling reason behind this choice.

4 Repairing MLPs Using Spurious Counterexamples

In the previous Section we have established that, in spite of a very low generalization
error, there are specific inputs to the MLP which trigger a misbehavior. As a matter of
fact, the bounds in which we are able to guarantee safety would not be very satisfac-
tory in a practical application, since they are about 64% larger than the desired ones.
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This result begs the question of whether it is possible to improve MLPs response us-
ing the output of NEVER. In this section, we provide strong empirical evidence that
adding spurious counterexamples to the dataset Δ and training a new MLP, yields a
network whose safety bounds are tighter than the original ones. We manage to show
this because our forward kinematics dataset is obtained with a simulator, so whenever
a spurious counterexample is found, i.e., a vector of joint angles causing a misbehav-
ior in the abstract network, we can compute the true response of the system, i.e., the
position of the end-effector along a single axis. While this is feasible in our experimen-
tal setting, the problem is that MLPs are useful exactly in those cases where the target
function f : I → O is unknown. However, we show that even in such cases the original
MLP can be repaired, at least to some extent, by leveraging spurious counterexamples
and the response of the concrete MLP under test. Intuitively, this makes sense because
the concrete MLP ought to be an accurate approximation of the target function. Our
experiments show that adding spurious counterexamples to the dataset Δ and training a
new MLP inside the CETAR loop, also yields networks whose safety bounds are tighter
than the original ones. Since Δ must contain patterns of the form (〈θ1, . . . , θ6〉, y), and
counterexamples are interval vectors of the form s̃ = 〈[θ1], . . . , [θ6]〉 we have the prob-
lem of determining the pattern corresponding to s̃ which must be added to Δ. Let ν be
the MLP under test, and s̃ be a corresponding spurious counterexample. We proceed in
two steps: First, we extract a concrete input vector s = 〈θ1, . . . , θ6〉 from s̃ as described
in the previous Section. Second, we compute ν(s), and we add the pattern (s, ν(s)) to
Δ. As we can see in Figure 3, if s̃ is a spurious counterexample, the computation of s
already comes for free because it is needed to check feasibility (line 7).

Our first experiment shows that leveraging spurious counterexamples together with
their true response – a process that we call manual-repair in the following – yields
MLPs with improved safety bounds. We consider the tightest SAFE interval in Table 1
([−0.575, 0.575]), and we proceed as follows:

1. We train a new MLP ν1 using the dataset Δ1 = Δ ∪ (s1, f(s1)) where Δ is the
original dataset, s1 is extracted from s̃ after the first execution of the CETAR loop
during the check of [−0.575, 0.575], and f(s1) is the output of the simulator.

2. We sample ten different input vectors {r1, . . . , r10}, uniformly at random from the
input space; for each of them, we obtain a dataset Γi = Δ ∪ (ri, f(ri)) where Δ
and f are the same as above; finally we train ten different MLPs {μ1, . . . , μ10},
where μi is trained on Γi for 1 ≤ i ≤ 10.

Given the MLP ν1 and the control MLPs {μ1, . . . , μ10}, we check for their safety with
NEVER. In the case of ν1 we are able to show that the range [−0.4, 0.4] is safe, which
is already a considerable improvement over [−0.575, 0.575]. On the other hand, in the
case of {μ1, . . . , μ10} the tightest bounds that we can obtain range from [−0.47, 0.47]
to [−0.6, 0.6]. This means that a targeted choice of a “weak spot” driven by a spurious
counterexample turns out to be winning over a random choice. This situation is depicted
in Figure 4 (left), where we can see the output of the original MLP ν corresponding to
s1 (circle dot) and to {r1 . . . r10} (triangle dots). As we can see, ν(s) = 0.484 is out-
side the target bound of [−0.35, 0.35] – notice that f(s) = 0.17 in this case. On the
other hand, random input vectors do not trigger, on average, an out-of-range response
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Fig. 4. Representation of ROBOOP and MLPs input-output in the manual-repair experiment. The
plane (PC1-PC2) at the bottom is a two-dimensional projection of the input domain obtained
considering only the first two components of a Principal Component Analysis (PCA) of the input
vectors – see, e.g., Chap. 7 of [15] for an introduction to PCA. The Y axis is the output of
ROBOOP and the MLPs under test. The plane (Y-PC2) on the left shows the output vs. the second
principal component. All square points in space are the output of ROBOOP corresponding to the
input vectors, and we also show them projected onto the (Y-PC2) plane. Circles and triangles
in space are the output of the MLPs under test: circles correspond to spurious counterexamples
obtained by NEVER; triangles correspond to random input samples that we use as control; for
both of them we also show their projection onto the (Y-PC2) plane. For all data points, a line
joins the output of the system – either ROBOOP or the MLPs under test – to the corresponding
input pattern in the (PC1-PC2) plane.

of ν4. We repeat steps 1 and 2 above, this time consideringΔ1 as the initial dataset, and
thus computing a new datasetΔ2 = Δ1∪ (s2, f(s2)) where s2 is extracted from s̃ after
the second execution of the CETAR loop. We consider a new MLP ν2 trained on Δ2,
as well as other ten networks trained adding a random input pattern to Δ1. Checking
safety with NEVER, we are now able to show that the range [−0.355, 0.355] is safe
for ν2, while the safety intervals for the remaining networks range from [−0.4, 0.4] to
[−0.56, 0.56]. In Figure 4 (right) we show graphically the results of this second round,
where we can see again that the response of ν1(s2) is much closer to the target bound
than the response of ν1 when considering random input patterns. In the end, the above
manual-repair experiment provides strong empirical evidence that spurious counterex-
amples are significantly more informative than randomly chosen input patterns and that
they can help in improving the original safety bounds. However, a precise theoretical
explanation of the phenomenon remains to be found. In this regard, we also notice
that there are cases in which training on a dataset enlarged by a single pattern may
cause NEVER to be unable to confirm the same safety bounds that could be proven be-
fore. In other words, safety is not guaranteed to be preserved when adding patterns and
retraining.

4 Notice that s is still spurious in this case because we are aiming to the bound [−0.575, 0.575].
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Table 2. Safety checking with NEVER and repair. The table is organized as Table 1, with the only
exception of column “MLP”, which reports the CPU time used to train the MLP.

l h RESULT # CETAR TIME

TOTAL MLP HYSAT
-0.350 0.350 UNSAFE 11 9.50 7.31 1.65
-0.400 0.400 UNSAFE 7 6.74 4.68 1.81
-0.425 0.425 UNSAFE 13 24.93 8.74 1.52
-0.450 0.450 SAFE 3 3.11 1.92 1.10

To automate repairing, we modify NEVER by replacing lines 6-9 in the pseudo-code
of Figure 3 with the following:

6 if (not isSafe) then
7 o← NIL; isFeasible ← CHECKFEASIBILITY(ν, s̃, o)
8 if (not isFeasible) then
9 p← p / r; Δ← UPDATE(Δ, s̃, o); ν ← TRAIN(Δ, Π)

The parameter o is used to store the answer of ν when given s̃ as input. The rest of
the code is meant to update the concrete MLP by (i) adding the input pattern extracted
from the spurious counterexample s̃ and the corresponding output o to the set Δ, and
(ii) training a new network on the extended set.

After this modification, we run a new experiment similar to the one shown in Sec-
tion 3, with the aim of showing that we can improve the safety of the MLP in a com-
pletely automated, yet fairly efficient, way. Our goal is again finding values of l and
h as close as possible to the ones for which the controller was trained. Table 2 shows
the result of the experiment above. As we can see in the Table, we can now claim
that the MLP prediction will never exceed the range [−0.450, 0.450], which is “only”
28% larger than the desired one. Using this repairing heuristic in NEVER we are thus
able to shrink the safety bounds of about 0.125m with respect to those obtained with-
out repairing. This gain comes at the expense of more CPU time spent to retrain the
MLP, which happens whenever we find a spurious counterexample, independently of
whether NEVER will be successful in repairing the network. For instance, considering
the range [−0.350, 0.350] in Table 1, we see that the total CPU time spent to declare
the network unsafe is 1.95s without repairing, whereas the same result with repairing
takes 9.50s in Table 2. Notice that updating the MLP also implies an increase of the
total amount of CETAR loops (from 8 to 11). On the other hand, still considering the
range [−0.350, 0.350], we can see that the average time spent by HYSAT to check
the abstract network is about the same for the two cases.

Since we have shown in the previous Section that reducing p is bound to increase
HYSAT runtimes substantially, automated repairing with a fixed p could be an option.
Indeed, the repair procedure generates a new ν at each execution of the CETAR loop,
independently from the value of p. Even if it is possible to repair the original MLP
without refinement, our experiments show that this can be less effective than repair
coupled with refinement. Let us consider the results reported in Table 2, and let p = 0.5
for each loop. We report the NEVER returns SAFE for the interval [−0.450, 0.450] after
59.12s and 36 loops. The first consideration about this result concerns the CPU time
spent, which is one order of magnitude higher than repair with refinement, and it is
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mainly due to the higher number of retrainings. The second consideration is about the
total amount of loops. Considering that the proportion of new patterns with respect to
the original dataset is about 25%, and also considering that p = 0.5 is rather coarse, we
also incur into a high risk of overfitting the MLP.

5 Conclusion and Related Work

Summing up, the abstraction-refinement approach that we proposed allows the applica-
tion of formal methods to verify and repair MLPs. The two key results of our work are
(i) showing that a consistent abstraction mechanism allows the verification of realistic
MLPs, and (ii) showing that our repair heuristic can improve the safety of MLPs in a
completely automated way. To the best of our knowledge, this is the first time in which
formal verification of a functional Machine Learning technique is investigated. Contri-
butions that are close to ours include a series of paper by Gordon, see e.g. [8], which
focus on the domain of discrete-state systems with adaptive components. Since MLPs
are stateless and defined over continuous variables, the results of [8] and subsequent
works are unsuitable for our purposes. Robot control in the presence of safety con-
straints is a topic which is receiving increasing attention in recent years – see, e.g., [16].
However, the contributions in this area focus mostly on the verification of traditional,
i.e., non-adaptive, methods of control. While this is a topic of interest in some fields of
Machine Learning and Robotics – see, e.g., [14,3] – such contributions do not attack the
problem using formal methods. Finally, since learning the weights of the connections
among neurons can be viewed as synthesizing a relatively simple parametric program,
our repairing procedure bears resemblances with the counterexample-driven inductive
synthesis presented in [17], and the abstraction-guided synthesis presented in [18]. In
both cases the setting is quite different, as the focus is on how to repair concurrent
programs. However, it is probably worth investigating further connections of our work
with [17,18] and, more in general, with the field of inductive programming.
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Abstract. We present a class of relaxed memory models, defined in Coq,
parameterised by the chosen permitted local reorderings of reads and
writes, and the visibility of inter- and intra-processor communications
through memory (e.g. store atomicity relaxation). We prove results on
the required behaviour and placement of memory fences to restore a
given model (such as Sequential Consistency) from a weaker one. Based
on this class of models we develop a tool, diy, that systematically and
automatically generates and runs litmus tests to determine properties
of processor implementations. We detail the results of our experiments
on Power and the model we base on them. This work identified a rare
implementation error in Power 5 memory barriers (for which IBM is
providing a workaround); our results also suggest that Power 6 does not
suffer from this problem.

1 Introduction

Most multiprocessors exhibit subtle relaxed-memory behaviour, with writes from
one thread not immediately visible to all others; they do not provide sequentially
consistent (SC ) memory [17]. For some, such as x86 [22,20] and Power [21],
the vendor documentation is in inevitably ambiguous informal prose, leading
to confusion. Thus we have no foundation for software verification of concurrent
systems code, and no target specification for hardware verification of microarchi-
tecture. To remedy this state of affairs, we take a firmly empirical approach, de-
veloping, in tandem, testing tools and models of multiprocessor behaviour—the
test results guiding model development and the modelling suggesting interesting
tests. In this paper we make five new contributions:

1. We introduce a class of memory models, defined in Coq [8], which we show
how to instantiate to produce SC , TSO [24], and a Power model (3 below).

2. We describe our diy testing tool. Much discussion of memory models has been
in terms of litmus tests (e.g. iriw [9]): ad-hoc multiprocessor programs for
which particular final states may be allowed on a given architecture. Given a
violation of SC , diy systematically and automatically generates litmus tests
(including classical ones such as iriw) and runs them on the hardware.

3. We model important aspects of Power processors’ behaviour, i.e. ordering
relaxations, the lack of store atomicity [3,7], and A-cumulative barriers [21].

4. We use diy to generate about 800 tests, running them up to 1e12 times on
3 Power machines. Our experimental results confirm that our model cap-
tures many important aspects of the processor’s behaviour, despite being

T. Touili, B. Cook, and P. Jackson (Eds.): CAV 2010, LNCS 6174, pp. 258–272, 2010.
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Init: x=0; y=0;
P0 P1

(a) x← 1 (c) y← 1

(b) r1← y (d) r2← x

Observed? r1=0; r2=0;

(a) Wx1

(b) Ry0

(c) Wy1

(d) Rx0

po:0 po:1

(a) Wx1

(b) Ry0

(c) Wy1

(d) Rx0

po:0 rf

fr

po:1rf

fr

rf

rf

(a) Program
(b) Events and Program

Order (c) An execution witness

Fig. 1. A program and a candidate execution

in a simple global-time style rather than the per-processor timelines of the
architecture text. They also identified a rarely occurring implementation er-
ror in Power 5 memory barriers (for which IBM is providing a workaround).
They further suggest that Power 6 does not suffer from this.

5. We prove in Coq theorems about the strength and placement of memory
barriers required to regain a strong model from a weaker model.

The experimental details and the sources and documentation of diy are avail-
able online1, as are the Coq development and typeset outlines of the proofs2.

2 Our Class of Models

A memory model determines whether a candidate execution of a program is valid.
For example, Fig. 1(a) shows a simple litmus test, comprising an initial state
(which gathers the initial values of registers and memory locations used in the
test), a program in pseudo- or assembly code, and a final condition on registers
and memory (we write x, y for memory locations and r1, r2 for registers). If each
location initially holds 0 (henceforth we omit the initial state if so), then, e.g.
on x86 processors, there are valid executions with the specified final state [20].

Rather than dealing directly with programs, our models are in terms of the
events E occurring in a candidate program execution. A memory event m rep-
resents a memory access, specified by its direction (write or read), its location
loc(m), its value val(m), its processor proc(m), and a unique label. The store to
x with value 1 marked (a) in Fig. 1(a) generates the event (a) Wx1 in Fig. 1(b).
Henceforth, we write r (resp. w) for a read (resp. write) event. We write M�,v

(resp. R�,v, W�,v) for the set of memory events (resp. reads, writes) to a location
� with value v (we omit � and v when quantifying over all of them). A barrier
instruction generates a barrier event b; we write B for the set of all such events.
1 http://diy.inria.fr/
2 http://moscova.inria.fr/~alglave/wmm/

http://diy.inria.fr/
http://moscova.inria.fr/~alglave/wmm/
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Name Notation Comment Sec.
program order m1

po→ m2 per-processor total order 2

dependencies m1
dp→ m2 dependencies 2

po-loc m1
po-loc→ m2 program order restricted to the same location 2.3

preserved program order m1
ppo→ m2 pairs maintained in program order 2.2

read-from map w
rf→ r links a write to a read reading its value 2.1

external read-from map w
rfe→ r

rf→ between events from distinct processors 2.2

internal read-from map w
rfi→ r

rf→ between events from the same processor 2.2

global read-from map w
grf→ r

rf→ considered global 2.2
write serialisation w1

ws→ w2 total order on writes to the same location 2.1

from-read map r
fr→ w r reads from a write preceding w in ws→ 2.1

barriers m1
ab→ m2 ordering induced by barriers 2.2

global happens-before m1
ghb→ m2 union of global relations 2.2

m1
hb-seq→ m2 shorthand for m1 ( rf→ ∪ ws→ ∪ fr→) m2 2.3

Fig. 2. Table of relations

The models are defined in terms of binary relations over these events, and
Fig. 2 has a table of the relations we use.

As usual, the program order
po→ is a total order amongst the events from the

same processor that never relates events from different processors. It reflects the
sequential execution of instructions on a single processor: given two instruction
execution instances i1 and i2 that generate events e1 and e2, e1

po→ e2 means
that a sequential processor would execute i1 before i2. When instructions may
perform several memory accesses, we take intra-instruction dependencies [22]
into account to build a total order.

We postulate a
dp→ relation to model the dependencies between instructions,

such as data or control dependencies [21, pp. 653-668]. This relation is a subre-
lation of

po→, and always has a read as its source.

2.1 Execution Witnesses

Although
po→ conveys important features of program execution, e.g. branch reso-

lution, it does not characterise an execution. To do so, we postulate two relations
rf→ and ws→ over memory events.

Reads-from map. We write w
rf→ r to mean that r loads the value stored by w

(so w and r must share the same location and value). Given a read r there exists
a unique write w such that w

rf→ r (w can be an init store when r loads from
the initial state). Thus, rf→ must be well formed following the wf − rf predicate:

wf − rf( rf→) 	
(

rf→ ⊆
⋃
�,v

(W�,v × R�,v)
)

∧ (∀r, ∃! w. w
rf→ r)
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Write serialisation. We assume all values written to a given location � to be se-
rialised, following a coherence order. This property is widely assumed by modern
architectures. We define ws→ as the union of the coherence orders for all memory
locations, which must be well formed following the wf − ws predicate:

wf − ws(ws→) 	
(

ws→ ⊆
⋃
�

(W� × W�)
)

∧
(
∀�. total − order

(
ws→, (W� × W�)

))

From-read map. We define the following derived relation fr→[4] which gathers all
pairs of reads r and writes w such that r reads from a write that is before w
in ws→:

r
fr→ w 	 ∃ w′. w′ rf→ r ∧ w′ ws→ w

We define an execution witness X as follows (the well-formedness predicate wf
on execution witnesses is the conjunction of those for ws→ and rf→):

X 	 (E,
po→,

dp→,
rf→,

ws→)

Fig. 1(c) shows an execution witness for the test of Fig. 1(a). The load (d) reads
the initial value of x, later overwritten by the store (a). Since the init store to x

comes first in ws→, hence before (a), we have (d) fr→ (a).

2.2 Global Happens-Before

An execution witness is valid if the memory events can be embedded in an acyclic
global happens-before relation ghb→ (together with two auxiliary conditions detailed
in Sec. 2.3). This order corresponds roughly to the vendor documentation concept
of memory events being globally performed [21,13]: a write in ghb→ represents the
point in global time when this write becomes visible to all processors; whereas
a read in ghb→ represents the point in global time when the read takes place.

There remain key choices as to which relations we include in ghb→ (i.e. which
we consider to be in global time), which leads us to define a class of models.

Globality. Writes are not necessarily globally performed at once. Thus, rf→ is not
necessarily included in ghb→ . Let us distinguish between internal (resp. external)
rf→, when the two events in rf→ are on the same (resp. distinct) processor(s),
written rfi→ (resp. rfe→) : w

rfi→ r 	 w
rf→ r ∧ proc(w) = proc(r) and w

rfe→ r 	 w
rf→

r ∧ proc(w) �= proc(r). Some architectures allow store forwarding (or read own
writes early [3]): the processor issuing a given write can read its value before any
other participant accesses it. Then rfi→ is not included in ghb→ . Other architectures
allow two processors sharing a cache to read a write issued by their neighbour
w .r .t . the cache hierarchy before any other participant that does not share the
same cache—a particular case of read others’ writes early [3]. Then rfe→ is not

considered global. We write
grf→ for the subrelation of rf→ included in ghb→ .
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In our class of models, ws→ and fr→ are always included in ghb→ . Indeed, the write
serialisation for a given location � is the order in which writes to � are globally
performed. Moreover, as r

fr→ w expresses that the write w′ from which r reads is
globally performed before w, it forces the read r to be globally performed (since
a read is globally performed as soon as it is performed) before w is globally
performed.

Preserved program order. In any given architecture, certain pairs of events in the
program order are guaranteed to occur in that order. We postulate a global rela-
tion ppo→ gathering all such pairs. For example, the execution witness in Fig. 1(c)
is only valid if the writes and reads to different locations on each processor have
been reordered. Indeed, if these pairs were forced to be in program order, we
would have a cycle in ghb→ : (a) ppo→ (b) fr→ (c) ppo→ (d) fr→ (a).

Barrier constraints. Architectures also provide barrier instructions, e.g. the
Power sync (discussed in Sec. 3) to enforce ordering between pairs of events.
We postulate a global relation ab→ gathering all such pairs.

Architectures. We call a particular model of our class an architecture, written A

(or Aε for when ab→ is empty); ppo (resp. grf , ab, A.ghb) is the function returning

the ppo→ (resp.
grf→,

ab→ and ghb→ ) relation when given an execution witness:

A 	 (ppo, grf , ab)

We define ghb→ as the union of the global relations:

ghb→ 	 ppo→ ∪ ws→ ∪ fr→ ∪ grf→ ∪ ab→

2.3 Validity of an Execution w .r .t . an Architecture

We now add two sanity conditions to the above. First, we require each processor
to respect memory coherence for each location [11]. If a processor writes e.g. v
to � and then reads v′ from �, v′ should not precede v in the write serialisation. We
define the relation po-loc→ over accesses to the same location in the program order,
and require po-loc→ , rf→, ws→ and fr→ to be compatible (writing hb-seq→ for rf→ ∪ ws→ ∪ fr→):

m1
po-loc→ m2 	 m1

po→ m2 ∧ loc(m1) = loc(m2)

uniproc(X) 	 acyclic(hb-seq→ ∪ po-loc→ )

For example, in Fig. 3 (a), we have (c) ws→ (a) (by x final value) and (a) rf→ (c)
(by r1 final value). The cycle (a) rf→ (b) po-loc→ (c) ws→ (a) invalidates this execution:
(b) cannot read from (a) as it is a future value of x in ws→.

Second, we rule out programs where values come out of thin air [19] (as
in Fig. 3 (b)):

thin(X) 	 acyclic( rf→ ∪ dp→)
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P0 P1

(a) x← 1 (b) r1← x

(c) x← 2

(a) uniproc Forbidden: x=1; r1=1;

P0 P1

(a) r1← x (c) r4← y

r9← xor r1,r1 r9← xor r4,r4

(b) y← 1+r9 (d) x← 1+r9

(b) thin Forbidden: r1=1; r4=1;

(a) Wx1

(b) Rx1

(c) Wx2

rf rf

po:1 po-loc

ws

(a) Rx1

(b) Wy1

(c) Ry1

(d) Wx1

dp

rf

rf

dp

rf

rf

Fig. 3. Invalid executions according to the uniproc and thin criteria

We define the validity of an execution w .r .t . an architecture A as the conjunc-
tion of three checks independent of the architecture, namely wf(X), uniproc(X)
and thin(X) with a last one that characterises the architecture:

A.valid(X) 	 wf(X) ∧ uniproc(X) ∧ thin(X) ∧ acyclic(A.ghb(X))

2.4 Comparing Architectures via Validity Predicates

From our definition of validity arises a simple notion of comparison among ar-
chitectures. A1 ≤ A2 means that A1 is weaker than A2:

A1 ≤ A2 	 (ppo1→ ⊆ppo2→ ) ∧ (grf1→⊆grf2→ )

The validity of an execution is decreasing w .r .t . the strength of the predicate;
i.e. a weak architecture exhibits at least all the behaviours of a stronger one:

∀A1A2, (A1 ≤ A2) ⇒ (∀X, Aε
2.valid(X) ⇒ Aε

1.valid(X))

Programs running on an architecture Aε
1 exhibit executions that would be valid

on a stronger architecture Aε
2; we characterise all such executions as follows:

A1.checkA2(X) 	 acyclic(grf2→ ∪ ws→ ∪ fr→ ∪ ppo2→ )

These two theorems, though fairly simple, will be useful to compare two models
and to restore a strong model from a weaker one, as in Sec. 3.

2.5 Examples

We propose here alternative formulations of SC [17] and Sparc’s TSO [24] in
our framework, which we proved equivalent to the original definitions. We omit
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proofs and the formal details for lack of space, but they can be found online2. We
write po(X) (resp. rf(X), rfe(X)) for the function extracting the

po→ (resp. rf→, rfe→)
relation from X . We define notations to extract pairs of memory events from the
program order: MM 	 λX. ((M × M) ∩ po(X)), RM 	 λX. ((R × M)∩po(X))
and WW 	 λX. ((W × W) ∩ po(X)).

SC allows no reordering of events (ppo→ equals po→ on memory events) and makes
writes available to all processors as soon as they are issued ( rf→ are global).
Thus, there is no need for barriers, and any architecture is weaker than SC :
SC 	 (MM , rf, λX.∅). The following criterion characterises, as in Sec. 2.4,
valid SC executions on any architecture: A.checkSC (X) = acyclic(hb-seq→ ∪ po→).
Thus, the outcome of Fig. 1 will never be the result of an SC execution, as it
exhibits the cycle: (a)

po→ (b) fr→ (c)
po→ (d) fr→ (a).

TSO allows two relaxations [3]: write to read program order, meaning its ppo→
includes all pairs but the store-load ones (ppotso 	 (λX. (RM (X) ∪ WW (X)))
and read own write early ( rfi→ are not global). We elide barrier semantics, detailed
in Sec. 3: TSO ε 	 (ppotso, rfe, λX.∅). Sec. 2.4 shows the following criterion char-
acterises valid executions (w .r .t . any A ≤ TSO) that would be valid on TSOε,
e.g. in Fig. 1: A.checkTSO(X) = acyclic(ws→ ∪ fr→ ∪ rfe→ ∪ ppo-tso→ ).

3 Semantics of Barriers

We define the semantics and placement in the code that barriers should have to
restore a stronger model from a weaker one. It is clearly enough to have w

ab1→ r

whenever w
grf2\1→ r holds to restore store atomicity, i.e. a barrier ensuring rf→

is global. But then a processor holding such a barrier placed after r would wait
until w is globally performed, then read again to ensure r is globally performed
after w. We provide a less costly requirement: when w

rf→ r
po→ m, where r may

not be globally performed after w is, inserting a barrier instruction between the
instructions generating r and m only forces the processor generating r and m to
delay m until w is globally performed.

Formally, given A1 ≤ A2, we define the predicate fb (fully barriered) on
executions X by

A1.fbA2(X) 	
(
(ppo2\1→ ) ∪ (grf2\1→ ; ppo2→ )

)
⊆ ab1→

where r2\1→ 	 r2→ \ r1→ is the set difference, and x
r1→; r2→ y 	 ∃z. x

r1→ z ∧ z
r2→ y.

The fb predicate provides an insight on the strength that the barriers of the
architecture A1 should have to restore the stronger A2. They should:

1. restore the pairs that are preserved in the program order on A2 and not
on A1, which is a static property;
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2. compensate for the fact that some writes may not be globally performed at
once on A1 while they are on A2, which we model by (some subrelation of)
rf→ not being global on A1 while it is on A2; this is a dynamic property.

We can then prove that the above condition on ab1→ is sufficient to regain Aε
2

from A1:

Theorem 1 (Barrier guarantee)

∀A1A2, (A1 ≤ A2) ⇒ (∀X, A1.valid(X) ∧ A1.fbA2(X) ⇒ Aε
2.valid(X))

The static property of barriers is expressed by the condition ppo2\1→ ⊆ ab1→ . A bar-
rier provided by A1 should ensure that the events generated by a same processor
are globally performed in program order if they are on A2. In this case, it is
enough to insert a barrier between the instructions that generate these events.

The dynamic property of barriers is expressed by the condition grf2\1→ ; ppo2→ ⊆ ab1→ .
A barrier provided by A1 should ensure store atomicity to the write events that
have this property on A2. This is how we interpret the cumulativity of barriers as
stated by Power [21]: the A-cumulativity (resp. B-cumulativity) property applies
to barriers that enforce ordering of pairs in rf→;

po→ (resp.
po→; rf→). We consider a

barrier that only preserves pairs in
po→ to be non-cumulative. Thm. 1 states that,

to restore A2 from A1, it suffices to insert an A-cumulative barrier between each
pair of instructions such that the first one in the program order reads from a
write which is to be globally performed on A2 but is not on A1.

Restoring SC . We model an A-cumulative barrier as a function returning an
ordering relation when given a placement of the barriers in the code:

m1
fenced→ m2 	 ∃b. m1

po→ b
po→ m2

A − cumul(X,
fenced→ ) 	 fenced→ ∪ rf→; fenced→

Thm. 1 shows that inserting such a barrier between all
po→ pairs restores SC :

Corollary 1 (Barriers restoring SC )

∀A X, (A.valid(X) ∧ A − cumul(X,MM ) ⊆ab→) ⇒ SC .valid(X)

Consider e.g. the iriw test depicted in Fig. 4. The specified outcome may be the
result of a non-SC execution on a weak architecture in the absence of barriers.
Our A-cumulative barrier forbids this outcome, as shown in Fig. 4: if placed
between each pair of reads on P0 and P1, not only does it prevent their reordering,
but also ensures that the write (e) on P2 (resp. (y) P3) is globally performed
before the second read (b) on P0 (resp. (d) on P1).

Thus, we force a program to have an SC behaviour by fencing all pairs in
po→.

Yet, it would be enough to invalidate non-SC executions, by fencing only the
po→

pairs in the hb-seq→ ∪ po→ cycles of these executions. We believe the static analysis
of [23] (based on compile-time approximation of hb-seq→ ∪ po→ cycles) applies to
architectures relaxing store atomicity, if their barriers offer A-cumulativity.
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iriw

P0 P1 P2 P3

(a) r1← x (c) r2← y (e) x← 1 (f) y← 2

fence fence

(b) r2← y (d) r1← x

Observed? 0:r1=1; 0:r2=0; 1:r2=2; 1:r1=0;

(a) Rx1(b) Ry0

(f ) Wy2

(c) Ry2 (d) Rx0

(e) Wx1

fenced

fr

fenced

fr

rfA cumul

rf A cumul

Fig. 4. Study of iriw with A-cumulative barriers

4 diy: A Testing Tool

We present our diy (do it yourself ) tool, which computes litmus tests in x86 or
Power assembly code by generating violations of SC , i.e. cycles in hb-seq→ ∪ po→. A
diy tutorial is available1.

4.1 Cycles as Specifications of Litmus Tests

Consider e.g. the outcome of Fig. 4 (a): it leads to the hb-seq→ ∪ po→ cycle of Fig. 4 (b):
from r1 = 1 on P0, we know the load (a) reads from the store (e) on P2, thus
(e) rfe→ (a). By the fence on P0, we know (a) fenced→ (b) and since r2 = 0 on P0,
we know the load (b) read from the initial state, thus (b) fre→ (f); idem on P1.

The interesting behaviour of a litmus test can be characterised by a cycle
formed of relations: e.g. the iriw test of Fig. 4 can be built from the cycle rfe→
; fenced→ ; fre→; rfe→; fenced→ ; fre→. The computed outcome ensures the input cycle appears
in at least one of the execution witnesses of the test. If the outcome is observed,
then at least one subsequence in the cycle is not global, i.e. not in ghb→ : e.g. if
the fence of Fig. 4 orders pairs of loads and since ab→ and fr→ are global, then
rfe→; fenced→ �⊆ghb→ , i.e. the fence is not A-cumulative.

We call sequences of relations relaxations and give them a concrete syntax
(see Fig. 7 and 8). Thus Rfe represents a rfe→ arrow, Fre a fre→ arrow, and DpdR a
dp→ (Dp) arrow targeting a read (R), with different (d) source and target locations.

diy needs to be specified which relaxations are considered global and which
are not. When specified a pool of global relaxations, a single non-global relax-
ation, and a size n (i.e. the number of relaxations arrows in the cycle, e.g. 6
for iriw), diy generates cycles up to size n that contains at least one occurrence
of the non-global relaxation. If no non-global relaxation is specified, diy generates
cycles up to size n containing the specified global relaxations. When the cycles
generation is done, diy computes litmus tests from these cycles, as detailed in the
following.



Fences in Weak Memory Models 267

4.2 Code Generation

We show here how we generate a Power litmus test from a given cycle of re-
laxations by an example below. The complete algorithm for code generation is
available online2. We write for the information not yet set by diy: is an
undetermined event, W a write with yet unset location and value, and Rx a
read from x with undetermined value.

1. Consider e.g. the input cycle, issued by diy’s cycles generation phase:

(a) Rfe−→ (b) DpdR−→ (c) Fre−→ (d) Rfe−→ (e) DpdR−→ (f) Fre−→ (a)

.
2. A linear scan sets the directions from the edges. Observe e.g. the last edge;

Fre−→ requires a R source and a W target:

(a)W Rfe−→ (b)R DpdR−→ (c)R Fre−→ (d)W Rfe−→ (e)R DpdR−→ (f)R Fre−→ (a)

3. We pick an event e which is the target of a relaxation specifying a location
change. If there is none, generation fails. Otherwise, a linear scan starting
from e sets the locations. At the end of the scan, if e and its predecessor have
the same location (e.g. Rfe−→ e

PodRW−→ ), generation fails. As DpdR−→ specifies a
location change (i.e. we pick (c)), we rewrite the cycle as:

(c)R Fre−→ (d)W Rfe−→ (e)R DpdR−→ (f)R Fre−→ (a)W Rfe−→ (b)R DpdR−→ (c)

We set the locations starting from (c), changing location between (e) and (f):

(c)Rx
Fre−→ ()dWx

Rfe−→ (e)Rx
DpdR−→ (f)Ry

Fre−→ (a)Wy
Rfe−→ (b)Ry

DpdR−→ (c)

4. We cut the input cycle into maximal sequences of events with the same
location (i.e. (c)(d)(e) and (f)(a)(b)), each being scanned w .r .t . the cycle
order: the first write in each sequence is given value 1, the second one 2, etc.
The values then reflect the write serialisation order for the specified location:

(c)Rx Fre−→ (d)Wx1 Rfe−→ (e)Rx DpdR−→ (f)Ry Fre−→ (a)Wy1 Rfe−→ (b)Ry DpdR−→ (c)

5. Significant reads are the sources of fr→ and the targets of rf→ edges. We asso-
ciate them with the write on the other side of the edge. In the rf→ case, the
value of the read is the one of its associated write. In the fr→ case, the value
of the read is the value of the predecessor of its associated write in ws→, i.e. by
construction the value of its associated write minus 1. Non significant reads
do not appear in the test condition. All the reads are significant here:

(c)Rx0 Fre−→ (d)Wx1 Rfe−→ (e)Rx1 DpdR−→ (f)Ry0 Fre−→ (a)Wy1 Rfe−→ (b)Ry1 DpdR−→ (c)

6. We generate the litmus test given in Fig. 5 for Power.
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{ 0:r2=y; 0:r5=x; 1:r2=x; 2:r2=x; 2:r5=y; 3:r2=y; }

P0 | P1 | P2 | P3

(b) lwz r1,0(r2) | li r1,1 | (e) lwz r1,0(r2) | li r1,1

xor r3,r1,r1 | (d) stw r1,0(r2) | xor r3,r1,r1 |(a) stw r1,0(r2)

(c) lwzx r4,r3,r5 | | (f) lwzx r4,r3,r5 |

exists (0:r1=1 /\ 0:r4=0 /\ 2:r1=1 /\ 2:r4=0)

Fig. 5. iriw with dependencies in Power assembly

We add e.g. a xor instruction between the instructions associated with the
events (b) and (c) to implement the dependency required by the DpdR−→ relation
between them.

The test in Fig. 5 actually is a Power implementation of iriw [9] with dependen-
cies. diy recovers indeed many classical tests, such as rwc [9] (see also Fig. 8).

5 Case Study: The Power Architecture

We now instantiate the formalism of Sec. 2 for Power by adding register events to
reflect register accesses [22], and commit events to express branching decisions.
C is the set of commits, and c is an element of C. We handle three barrier
instructions : isync, sync and lwsync. We distinguish the corresponding events
by the eponymous predicates, e.g. is-isync. An execution witness includes an
additional intra-instruction causality relation iico→ : e.g. executing the indirect load
lwz r1, 0(r2) (r2 holding the address of a memory location x containing 1)
creates three events (a)Rr2x, (b)Rx1 and (c)Wr11, such that (a) iico→ (b) iico→ (c).
Moreover, rf→ now also relates register events: we write rf-reg→ the subrelation of
rf→ relating register stores to register loads that read their values.

Preserved program order. We present in Fig. 6(a) the definition of ppo-ppc→ , induced
by lifting the ordering constraints of a processor to the global level (where + is the
transitive closure). This is a formal presentation of the data dependencies (dd→)
and control dependencies (ctrl→ and isync→ ) of [21, p. 661] which allows loads to be
speculated if no isync is added after the branch but prevents stores from being
speculated in any case. This is similar to Sparc RMO [24, V9, p. 265].

Read-from maps. Since Power allows store buffering [21, p.661], rfi→ is not global.
Running iriw with data dependencies (Fig. 5) on Power reveals that rfe→ is not
global either. This is the main particularity of the Power architecture.

Barriers. We define in Fig. 6 (b) the sync barrier [21, p. 700] as the SC-restoring
A-cumulative barrier of Sec. 3 extended to B-cumulativity. Power features an-
other cumulative barrier [21, p. 700], lwsync, defined in Fig. 6 (b). lwsync acts
as sync except on store-load pairs, in both the base and cumulativity cases.
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dd→	 (rf-reg→ ∪ iico→)+ r
ctrl→ w 	 ∃c ∈ C. r

dd→ c
po→ w

r
isync→ e 	 ∃c ∈ C. r

dd→ c ∧ ∃b. is-isync(b) ∧ c po→ b
po→ e

dp→	ctrl→ ∪ isync→ ∪((dd→ ∪ (po-loc→ ∩ (W× R))
)+ ∩ (R×M)

) ppo-ppc→ 	dp→
(a) Preserved program order

m1
sync→ m2 	
∃b. is-sync(b) ∧m1

po→ b
po→ m2

m1
ab-sync→ m2 	
m1

sync→ m2

∨ ∃r. m1
rf→ r

ab-sync→ m2

∨ ∃w. m1
ab-sync→ w

rf→ m2

(b) Barrier sync

m1
lwsync→ m2 	
∃b. is-lwsync(b) ∧m1

po→ b
po→ m2

m1
ab-lwsync→ m2 	
m1

lwsync→ m2 ∩ ((W×W) ∪ (R×M))
∨ ∃r.m1

rf→ r
ab-lwsync→ m2 ∧m2 ∈W

∨ ∃w.m1
ab-lwsync→ w

rf→ m2 ∧m1 ∈ R

(c) Barrier lwsync
ab-ppc→ 	 ab-sync→ ∪ ab-lwsync→
Power 	 (ppo-ppc→ , ∅, ab-ppc→ )

Fig. 6. A Power model

Experiment. diy generated 800 Power tests and ran them up to 1e12 times each
on 3 machines: squale, a 4-processor Power G5 running Mac OS X, hpcx a Power
5 with 16 processors per node and vargas, a Power 6 with 32 processors per node,
both of them running AIX. The detailed protocol and results are available1.

Following our model, we assumed ws→, fr→, ppo-ppc→ and ab-ppc→ to be global and
tested it by computing safe tests whose input cycles only include relaxations we
suppose global, e.g. SyncdWW−→ ; Wse−→; SyncdWR−→ ; Fre−→. We ran the tests supposed to,
according to our model, exhibit relaxations. These tests are given in Fig. 7 (where
M stands for million). We observed all of them at least on one machine, which
corresponds with our model. For each relaxation observed on a given machine,
we write the highest number of outcomes. When a relaxation is not observed, we
write the total of outcomes: thus we write e.g. 0/16725M for PodRR on vargas.

For each machine, we observed the number of runs required to exhibit the
least frequent relaxation (e.g. 32 million for Rfe on vargas), and ran the safe
tests at least 20 times this number. The outcomes of the safe tests have not
been observed on vargas and squale, which increases our confidence in the safe
set we assumed. Yet, hpcx exhibits non-SC behaviours for some A-cumulativity
tests, including classical ones [9] like iriw with sync instructions on P0 and
P1(see Fig. 8). We understand that this is due to an erratum in the Power 5
implementation. IBM is providing a workaround, replacing the sync barrier by
a short code sequence [Personal Communication], and our testing suggests this
does regain SC behaviour for the examples in question (e.g. with 0/4e10 non-SC
results for iriw). We understand also that the erratum should not be observable
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Relaxation Definitiona hpcx squale vargas

PosRR r�

po→ r′� 2/40M 3/2M 0/4745M
PodRR r�

po→ r′
�′ 2275/320M 12/2M 0/16725M

PodRW r�

po→ w′
�′ 8653/400M 178/2M 0/6305M

PodWW w�

po→ w′
�′ 2029/4M 2299/2M 2092501/32M

PodWR w�

po→ r′
�′ 51085/40M 178286/2M 672001/32M

Rfi rfi→ 7286/4M 1133/2M 145/32M

Rfe rfe→ 177/400M 0/1776M 9/32M
LwSyncsWR w�

lwsync→ r′� 243423/600M 2/40M 385/32M
LwSyncdWR w�

lwsync→ r′
�′ 103814/640M 11/2M 117670/32M

ACLwSyncsRR w�
rfe→ r′�

lwsync→ r′′� 11/320M 0/960M 1/21M

ACLwSyncdRR w�
rfe→ r′�

lwsync→ r′′
�′ 124/400M 0/7665M 2/21M

BCLwSyncsWW w�
lwsync→ w′

�

rfe→ r′′� 68/400M 0/560M 2/160M

BCLwSyncdWW w�
lwsync→ w′

�′
rfe→ r′′�′ 158/400M 0/11715M 1/21M

a Notation: r� (w�) is a read (write) event with location �.

Fig. 7. Selected results of the diy experiment matching our model

Cycle hpcx Name in [9]

Rfe SyncdRR Fre Rfe SyncdRR Fre 2/320M iriw
Rfe SyncdRR Fre SyncdWR Fre 3/400M rwc

DpdR Fre Rfe SyncsRR DpdR Fre Rfe SyncsRR 1/320M
Wse LwSyncdWW Wse Rfe SyncdRW 1/800M
Wse SyncdWR Fre Rfe LwSyncdRW 1/400M

Fig. 8. Anomalies observed on Power 5

for conventional lock-based code and that Power 6 is not subject to it; the latter
is consistent with our testing on vargas.

6 Related Work

Formal memory models roughly fall into two classes: operational models and
axiomatic models. Operational models, e.g. [25,15], are abstractions of actual
machines composed of idealised hardware components such as queues. They
can be appealingly intuitive and offer a relatively direct path to simulation, at
least in principle. Axiomatic models focus on segregating allowed and forbidden
behaviours, usually by constraining various order relations on memory accesses;
they are particularly well adapted for model exploration, as we do here. Several
of the more formal vendor specifications have been in this style [5,24,16].

One generic axiomatic model related to ours is Nemos [26]. This covers a broad
range of models including Itanium as the most substantial example. Itanium is
rather different to Power; we do not know whether our framework could handle
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such a model or whether a satisfactory Power model could be expressed in Nemos.
By contrast, our framework owes much to the concept of relaxation, informally
presented in [3]. As regards tools, Nemos calculates the behaviour of example
programs w.r.t. to a model, but offers no support for generating or running tests
on actual hardware.

Previous work on model-building based on experimental testing includes that
of Collier [12] and Adir et al. [2,1]. The former is based on hand-coded test
programs and Collier’s model, in which the cumulativity of the Power barriers
does not seem to fit naturally. The latter developed an axiomatic model for a
version of Power before cumulative barriers [1]; their testing [2] aims to pro-
duce interesting collisions (accesses to related locations) with knowledge of the
microarchitecture, using an architecture model as an oracle to determine the
legal results of tests rather than (as we do) generating interesting tests from the
memory model.

7 Conclusion

We present here a general class of axiomatic memory models, extending smoothly
from SC to a highly relaxed model for Power processors. We model their relax-
ation of store atomicity without requiring multiple write events per store [16],
or a view order per processor [12,1,21,6]. Our principal validity condition is sim-
ple, just an acyclicity check of the global happens before relation. This check is
already known for SC [18], and recent verification tools use it for architectures
with store buffer relaxation [14,10]. Our Power model captures key aspects of
the behaviour of cumulative barriers, though we do not regard it as definitive:
on the one hand there are known tests for which the model is too weak w.r.t. our
perception of the architect’s intent (particularly involving the lightweight bar-
rier lwsync); on the other hand, given that we rely heavily on black-box testing,
it is hard to establish confidence that there are not tests that would invalidate
our model. Despite that, our automatic test generation based on the model suc-
ceeds in generating interesting tests, revealing a rare Power 5 implementation
erratum for barriers in lock-free code. This is a significant advance over reliance
on hand-crafted litmus tests.
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Abstract. Well-defined memory consistency models are necessary for
writing correct parallel software. Developing and understanding formal
specifications of hardware memory models is a challenge due to the sub-
tle differences in allowed reorderings and different specification styles.
To facilitate exploration of memory model specifications, we have devel-
oped a technique for systematically comparing hardware memory models
specified using both operational and axiomatic styles. Given two spec-
ifications, our approach generates all possible multi-threaded programs
up to a specified bound, and for each such program, checks if one of
the models can lead to an observable behavior not possible in the other
model. When the models differs, the tool finds a minimal “litmus test”
program that demonstrates the difference. A number of optimizations
reduce the number of programs that need to be examined. Our pro-
totype implementation has successfully compared both axiomatic and
operational specifications of six different hardware memory models. We
describe two case studies: (1) development of a non-store atomic vari-
ant of an existing memory model, which illustrates the use of the tool
while developing a new memory model, and (2) identification of a subtle
specification mistake in a recently published axiomatic specification of
TSO.

1 Introduction

Well-defined memory consistency models are necessary for writing correct and
efficient shared memory programs [1]. The emergence of mainstream multi-
core processors as well as recent developments in language-level memory mod-
els [3,18], have stirred new interest in hardware-level memory models. The formal
specification of memory models is challenging due to the many subtle differences
between them. Examples of such differences include different allowed reorder-
ings, store atomicity, types of memory fences, load forwarding, control and data
dependencies, and different specification styles (operational and axiomatic). Ar-
chitecture manuals include litmus tests that can be used to differentiate between
memory models [15,22], but these litmus tests are not complete, and coming up
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with new litmus tests requires identifying the subtle difference between memory
models this test is meant to detect.

Our goal is to aid the process of developing specifications for hardware-level
memory models by providing a technique for systematically comparing memory
model specifications. When there is a difference between the two memory models,
the technique generates a litmus test as a counter-example, including both a
program and an outcome allowed only in one of the models. Such a technique
can be used in several different scenarios. One case is comparing two presumably
equivalent models, for example comparing an axiomatic specification given as a
set of first order logic formulas to an operational specification that describes the
model as a state transition system. Alternatively, we may also want to check
whether one model is strictly weaker (or stronger) than the other.

Our approach is based on systematic generation of all possible programs up
to a specified size bound. For each program, we check if one of the models
can lead to an observable behavior that is not possible in the other model. To
produce the set of observable behaviors for a program under a given memory
model, we use two different search techniques depending on whether the model
specification is operational or axiomatic. When there is an observable behavior
in one memory model that is not allowed by the other model, the approach
outputs the program and the contrasting behavior. Because we explore starting
with the smallest programs, this is a minimal litmus test.

We employ several techniques to make this approach practical. A naive enu-
meration of all test programs up to the specified bound produces too many
programs, so we employ optimizations to reduce the number of programs that
need to be examined. We use symmetry reductions based on value, address
and thread symmetries. Furthermore, we identify and skip redundant programs
that will not expose any new differences by analyzing the conflict graph of the
program. We use partial order reduction techniques to optimize exploration of
operational models and an incremental SAT approach for axiomatic models.

We tested this approach by comparing the axiomatic and operational specifi-
cations of six different memory models: Sequential Consistency (SC), SPARC’s
TSO, PSO and RMO [22] and non-store-atomic relaxations of TSO and PSO.
Our technique finds the known differences, but it also uncovered some errors in
two of our specifications, which we corrected. Finding differences takes less than
a second in most cases and only several minutes in the worst cases we encoun-
tered. We tested the scalability of this technique and found that we can explore
all programs up to six read and write operations plus any number of fences in
a few minutes. Our results indicate these bounds are adequate to detect subtle
differences.

We performed two case studies. We developed a specification of a non-store-
atomic variant of PSO, which illustrates that the tool quickly identifies subtle
specification mistakes. In another case study, we contrasted SOBER’s axiomatic
specification of TSO [5] with an operational specification of TSO and showed
our technique detects a recently discovered specification error [7].
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Initially X = 0; Y = 0

T1 T2
Write X ← 1 Write Y ← 1
Read Y → r1 Read X → r2

Is the outcome r1 = 0; r2 = 0 allowed?

Fig. 1. Testing write-after-read reordering

2 Specifying Memory Models

A memory consistency model is a specification of the shared memory semantics
of a parallel system [1]. The simplest memory model is Sequential Consistency
(SC) [16]. An execution of a concurrent program is sequentially consistent if
all reads and writes appear to have occurred in a sequential order that is in
agreement with the individual program orders of each thread. In order to im-
prove system performance and allow common hardware optimization techniques
such as store buffers, many systems implement weaker memory models such as
SPARC’s TSO, PSO and RMO [22], Intel’s x86 [15], Intel’s Itanium [24], ARM
and PowerPC [2].

Consider for example the program in Fig. 1. Executing under SC, at least
one of the writes must occur before any of the reads, and therefore the outcome
r1 = 0; r2 = 0 is not allowed. A processor that has a store buffer, on the
other hand, can defer the writes to the main memory and effectively reorder
the writes after the reads, and thus reading zero for both registers is allowed.
SPARC’s TSO and x86 both allow this relaxation. Other memory models allow
further relaxations such as write after write and read after read (RMO, Itanium,
PowerPC). Some memory models such as SC are store atomic, in the sense that
all threads observe writes in the same order, but other memory models are non-
store-atomic and allow different threads to observe writes from other threads in
a different order (such as PowerPC).

2.1 Operational Specification

The purpose of a memory model specification is to express precise constraints
on which values can be associated with reads in a given multi-threaded program.
One method of specifying a memory model is using an operational style, which
abstracts actual hardware structures such as a store buffer. This section describes
operational specifications for several memory models that we defined as a part
of this work.

For example, we have specified TSO using three different types of components
that run concurrently [17]. A processor component produces a sequence of mem-
ory operations, a memory location component keeps track of the latest value
written to a specific memory location, and a write queue component implements
a FIFO buffer for write messages, and supports read forwarding. These compo-
nents are connected in the configuration described in Fig. 2 (left) to implement
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Fig. 2. Component diagram of TSO (left), PSO (middle) and NPSO (right)

TSO. Each processor is connected to a single write queue (WQ) that releases
writes from this processor to the main memory.

SPARC’s PSO (Partial Store Order [22]), a memory model that relaxes TSO
by allowing to reorder writes after writes to different addresses. It can be specified
in a similar manner, using the configuration illustrated in Fig. 2 (middle). Instead
of one queue per processor, there is a queue per address for each of the processors.
Writes to different addresses are stored at different queues, which can send the
writes in any order, thus enabling reordering writes after later writes.

The two previous models are store atomic (all threads observe writes from
other threads in the same order). In non-store-atomic memory models, different
threads do not have to agree on the order of writes from other threads. As
an example for a non-store-atomic memory model we present here NPSO, the
non-store-atomic version of PSO. The diagram in Fig. 2 (right) presents the
operational specification for NPSO. Because each thread may observe stores
from different threads in a different order, the NPSO specification does not use
one main memory as in the previous models. Instead, each thread has its own
local memory. To preserve coherence and ensure all writes to the same address
would be observed in a total order. The model maintains coherence by using an
additional layer of write queues.

We have defined operational specifications in this style for additional memory
models [17] such as RMO and the non-store-atomic versions of each of the store
atomic models (NTSO and NPSO). To model these, we add additional compo-
nent types. The encoding for RMO, for example, requires the ability to read
future values to reorder reads after later writes.

2.2 Axiomatic Specification

An alternative approach is the axiomatic style of specifications, given by a set
of axioms that define which execution traces are allowed by the model and
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in particular which writes can be observed by each read. An execution trace
is a sequence of memory operations (Read, Write, Fence) produced by a pro-
gram. Each operation in the trace includes an identifier of the thread that pro-
duced this operation, and the address and value of the operation for reads and
writes.

Axiomatic specifications usually refer to the program order, <p. For two oper-
ations x and y, x <p y if both x and y belong to the same thread and x precedes
y in the execution trace. The program order, however, is not necessarily the or-
der in which memory operations are observed by the main memory. The memory
order, <m, is a total order that indicates the order in which memory operations
affect the main memory. A read observes the latest write to the same address
according to <m.

We define store atomic memory models using two types of axioms: a read-
values axiom and an ordering axiom. The read-values axiom states that each
read observes the latest write to the same location according to the memory
order. To support load forwarding, reads may observe local writes that precede
them in program order, even if such write is ordered after the read in the memory
order. We handle this forwarding in same style as in Burckhardt et al [4], by
defining a function sees(x, y, <), which is true if y is a write and y < x or
y <p x. The read-values axiom for store-atomic memory models is:

Read values. Given a read x and a write y to the same address as x, then x
and y have the same value if sees(x, y, <m) and there is no other write z
such that sees(x, z, <m) and y <m z. If for a read x there is no write y such
that sees(x, y, <m) then the read value is 0.

All our store atomic memory model specifications use the same read-values ax-
iom, but differ in the definition of the ordering axiom, specifying which memory
orders are allowed by the model. For example, TSO allows reordering only writes
after later reads, and therefore the TSO reordering axiom is:

TSO-reordering. For every x and y, x <p y implies that x <m y, unless x is
a write and y is a read.

The ordering axiom for PSO relaxes TSP by allowing reordering writes with
other writes to a different location. The ordering axiom for PSO is:

PSO-reordering. For every x and y, if x <p y then x <m y in the following
cases: 1. x is a read. 2. Either x or y is a fence. 3. Both x and y are writes
and they both have the same address.

In non-store-atomic models, threads may observe stores in different orders, so
we can no longer use one global memory order. Instead, we define an order
<t for each thread t, which we call the view of thread t. To ensure transitive
causal order between operations, the view includes all operations and not only
writes.

As in the store-atomic case, loads see the latest stores to the same address
except in the case of forwarding, but the relevant order for loads in thread t is
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view order <t. We modify the read-values and ordering axioms to observe the
latest write in the relevant view:

Non-store-atomic read-values. Given a read x in thread t and a write y to
the same address as x, then x and y have the same value if y is the most
recent write according to sees(x, y, <t). If for a read x in thread t there is
no write y such that sees(x, y, <t), the read value is 0.

To define NPSO, the non-store atomic version of PSO maintains the same order
restrictions between operation from the same thread as in the case of PSO:

NPSO ordering. For every x and y, if x <p y then for every t x <t y must
hold in the following cases: 1. x is a read. 2. Either x or y is a fence. 3. Both
x and y are writes and they both have the same address.

The non-store-atomic case requires adding another axiom for coherence, stating
that there is a total order between writes to the same address:

NPSO coherence. For every two write operations x and y that write to the
same address, and for every two threads, t and t′, if x <t y then x <′

t y.

The above axioms represent our first attempt at specifying a model which is a
non-store atomic relaxation of PSO in an axiomatic style, but, as we describe in
Section 4, this specification is too weak. In Section 4.3, we use our technique to
develop the missing axioms for NPSO.

3 Comparing Memory Models

This section presents a technique for comparing memory models. Our goal is
to check the difference between two models, and when the two models are not
equivalent, to generate a litmus test that shows the difference between the two.
Two memory models M and M ′ are not equivalent if any program displays
different behaviors under M and M ′.

Based on a review of published litmus tests in the literature and our own ex-
perience, tests that detect differences between memory models tend to be small,
and hence an exhaustive search of test programs up to a given bound is a plau-
sible approach for debugging memory model specifications. Given upper bounds
for the total number of instructions in a program, the number of operations per
thread, the number of threads as well as the number of memory locations, the
technique exhaustively explores all programs within these bounds.

We start by defining the test program space for contrasting memory models.
We present reduction techniques for trimming down the number of programs to
a manageable size. Finally, we discuss techniques to efficiently compare the set
of possible outcomes for a given program both for operational and axiomatic
specification styles.
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Test A
T1 T2
Write Y ← 1 Read X → r1
Read Y → r2 Fence
Write X ← 2 Read Y → r3

Test B
T1 T2
Write X ← 1 Read Y → r1
Read X → r2 Fence
Write Y ← 2 Read X → r3

Test C
T1 T2
Read Y → r1 Write X ← 1
Fence Read X → r2
Read X → r3 Write Y ← 2

Fig. 3. Address symmetry (A and B); Thread symmetry (B and C)

3.1 Test Programs

A test program is a concurrent program consisting of n threads, t1, ...tn, where
each thread is a sequence of memory operations. A memory operation can be
one of:

– Read Addr → reg - a read from a constant address to a register
– Write Addr ← V al - a write of a constant value to a constant address
– Fence - a full memory ordering barrier (fence)

The above three instructions suffice to contrast the models we have considered
in this paper. Our methodology as well as the tool can be extended to include
other instructions and data dependencies.

3.2 Program Enumeration

Even when considering small bounds on test size, the program space can be too
big to be explored in a reasonable time. Thus, we reduce the number of tested
programs to a smaller number of representatives that are still sufficient for finding
differences. First, because all writes are constants, registers in the program are
used only for defining the final outcome. Therefore, we assign a unique register
to each read. Likewise, the actual values read or written are inconsequential. We
are interested only in which stores each load instruction can read. So instead
of exploring all different combinations of write values, we assign a unique value
for each write. We also restrict the places where we add fences: fences at the
beginning or end of a thread have no effect, nor does a fence followed by another
fence, so we eliminate all fences that are not between two other instructions.

Next, we use the symmetry properties of the memory model to reduce the
number of programs. We use two symmetries: address symmetry and thread
symmetry. In Fig. 3, the two programs display address symmetry: we obtain
Test B from Test A by switching the Xs with the Y s. These two programs
display the same behaviors and therefore it is sufficient to test only one of them.
Similarly, Test C is the same as Test B with thread T1 switched with T2. By
transitivity, any combination of thread and address permutation are equivalent.
Hence, Test A and Test C are also symmetric.

We generate only one representative for each symmetry class by assigning
an order between elements in a permutation and sorting them, and then we
generate programs with sorted elements only. We sort the addresses according
to the order of their appearance in the program, starting from T1 and continuing
to the next thread after the end of each thread: the first memory access in T1
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1: Write X 1 1: Read Y r1

T1

2: Write Y 1 2: Read X r2

T2

3: Write Z 1

1: Read W r1

2: Write Z 1

4: Write W r2

T3

1: Write X 1 1: Read X r1

T1

2: Write Y 1 2: Read Y r2

T2

1: Write X 1

2: Read X r1

T1

1: Write Y 1

2: Read Y r2

T2

Test D Test E

Test F

Fig. 4. Redundant tests

is always to location 0, the next memory access could either be to 0 again or
to 1 and so on. When the highest address accessed so far is i, the next memory
operation involves any address between 0 to i + 1. Similarly, we perform thread
symmetry reduction by sorting threads according to some lexicographical order
between instructions. The order we use is Write < Read < Fence, where two
writes (or reads) are sorted according to their address. By generating programs so
that the threads are sorted according to this lexicographical order and addresses
by the order of their appearance, the enumeration algorithm avoids generating
symmetric tests.

3.3 Redundant Test Elimination

Some test programs are redundant in the sense that these tests are either not
going to detect any difference between memory models or are subsumed by
smaller programs that detect the same difference. First, we conclude that some
programs are redundant simply by looking at the program structure. Consider,
for example, Test D in Fig. 4. In this case, there are no shared variables between
the two threads, and any execution under any memory model would give the
same outcome. Similarly, in Test E both variables are shared, but even SC (the
strongest model we typically consider) allows all possible outcomes. In both tests,
there is no possible conflict in SC and therefore no cases that could be relaxed
under a weaker memory model. Furthermore, consider Test F in Fig 4. This test
can be decomposed into two separate tests: Test F1 includes T1 and the first
two instructions in T2, and test F2 includes the last two instructions in T2 and
T3. Test F is not going to exhibit any behaviors that can not be detected by F1



Generating Litmus Tests for Contrasting Memory Consistency Models 281

and F2, because the only relation between the two is the program order relation
between instruction 2 and 3 in T2.

We eliminate such redundant test programs by generating a conflict graph for
the test program. A conflict graph G is a directed graph where each operation
is a node and the edges represent potential conflicts between the operations. For
every two operations, X and Y, there is an edge in G from X to Y if either: (1)
X <p Y , or (2) either of X or Y are write operations and both access the same
address. A test is redundant if the conflict graph G for this test is not strongly
connected, i.e., there are operations X and Y in the graph such that there is no
path from X to Y . For example, in Test C, there is no path from instruction 3
to instruction 2 in T2, and therefore this test is redundant.

Given a program P whose conflict graph in not strongly connected, we parti-
tion the instructions in P into two partitions, P1 and P2, such that no variables
are shared between P1 and P2, and if x is an instruction in P1 and y is an
instruction in P2 and both x and y are in the same thread, then x <p y. We
expect that for such a program, no instruction in P1 would interfere with the
execution of P2 and vice versa, and hence the cross product of the outcomes of
the program in partition P1 and the outcomes of the program in partition P2 is
the set of outcomes of P. Therefore, if P detects a difference between two models,
either P1 or P2 should detect a difference as well.

3.4 Computing All Outcomes of a Test Program

For each of the test programs we determine if the set of outcomes of P running
under a memory model M is the same as for P running on M ′. The approach
we take is to find all possible outcomes under both models independently and
then compare them.

Finding all outcomes for an operational memory model is done in a manner
similar to Park and Dill [21]. We use a model checker to find the reachable state
space of the model. We extract the outcomes from the set of reachable final states
found by the model checker. Our initial experiences in translating the operational
models into Promela and running Spin [14] resulted in an inefficient exploration
tool. Consequently, we implemented a custom explicit state enumeration model-
checker in C++ using sleep-set partial order reduction [12] and state caching.

For memory models specified axiomatically, the model is translated into a
propositional formula. The model is specified as a set of first order formulas.
In the context of finite programs all the variables have finite domains, so we
convert the specification into predicate calculus by unfolding the quantifiers. A
satisfying assignment is obtained by a SAT solver, which is one possible outcome
of the program. To find all possible outcomes, we add the clause representing
the negation of the outcome to the model and run the SAT solver again. As
long as there are additional possible outcomes, the SAT solver returns another
satisfying assignment. We repeat this process iteratively until the model becomes
unsatisfiable. As we only add constraints to the model, the SAT solver uses
conflict clauses from previous runs to make subsequent iterations faster. For the
prototype, we used minisat [11] as the SAT solver.
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Table 1. Contrasting axiomatic and operational models: time/instructions/threads

Operational SC TSO PSO RMO NTSO NPSO
Axiomatic

SC - 1s/4/2 1s/4/2 1s/4/2 8s/4/2 1s/4/2
TSO 1s/4/2 - 1s/4/2 1s/4/2 130s/5/3 1s/4/2
PSO 1s/4/2 1s/4/2 - 1s/4/2 8s/4/2 16s/5/3

RMO 1s/4/2 1s/4/2 1s/4/2 - 8s/4/2 16s/5/3
NTSO 2s/4/2 39s/5/3 2s/4/2 2s/4/2 - 2s/4/2
NPSO 2s/4/2 2s/4/2 40s/5/3 2s/4/2 9s/4/2 -

4 Experiments

This section describes the experiments we performed to demonstrate the fea-
sibility and usefulness of our approach, including: (1) measuring the execution
time for contrasting the operational and axiomatic specifications of six mem-
ory models, (2) showing the effectiveness of the reductions targeted at reducing
the number of test programs considered, and (3) performing two case studies in
which the tool is used to debug memory model specifications.

4.1 Comparing Different Memory Models

We tested our technique by comparing the operational and axiomatic specifica-
tions for various memory models: SC, the three SPARC memory models, and
the non-store-atomic extensions of TSO and PSO. As seen in Table 1, a counter
example is found for most cases within less than a second. The slowest times
occur when comparing models to their non-store-atomic extension, which takes
over two minutes for TSO versus NTSO. The litmus tests produced by the tool
as counter examples were mostly the litmus tests we expected. However, the
tool found subtle errors in our initial operational specification for RMO and for
NTSO, which we fixed.

4.2 Test Reductions and Scalability

The graph in Fig. 5 shows the number of tests generated with up to three memory
locations, up to three instructions per thread, and a varying number of total
instructions. Fences are not counted towards the total number of instructions.
Symmetry reductions provide approximately a 10x reduction in the number of
tests, and redundant program elimination provides an additional 10x reduction,
resulting in an overall reduction by a factor of 100x in the number of generated
tests. The graph in Fig. 6 shows the average time per test for both operational
and axiomatic memory models. As seen in this graph, the average time per test
is no more than several seconds for programs with up to nine instructions, which
means a bound of six or seven instructions can be explored in a reasonable time.

4.3 Debugging Our Axiomatic Specification for NPSO

As a case study for using our technique for debugging a new memory model spec-
ification, we developed an axiomatic specification for NPSO, a non-store-atomic
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relaxation of PSO. We used an existing operational specification for NPSO as a
reference model. We started with the axiomatic specification defined in Section
2.2, which is an extension of PSO that allows each thread to observe memory
operations in a different order with the addition of a coherence axiom. We then
ran the prototype with a bound of six instructions.

The prototype reported that Test G in Fig. 7 is allowed in the axiomatic but
not in the operational specification. This is a well-known litmus test, which usu-
ally illustrates reorderings of reads after later writes. In this specification, how-
ever, we explicitly disallow reordering reads after writes. This outcome occurred
because threads are not required to agree on the order of writes to different ad-
dresses. To correct the specification, we must rule out this kind of behavior and
enforce some notion of causal transitivity. Our first attempt to fix it required
that if a read sees a write to the same address in some thread, it can be ordered
only after this read in the local thread that issued the write. Running the tool
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Test G
T1 T2
Read X → r1 Read Y → r2
Write Y ← 1 Write X ← 2
Outcome: r1 = 2; r2 = 1
time to find: 2s

Test H
T1 T2 T3
Read X → r1 Read Y → r2 Read Z → r3
Write Y ← 1 Write Z ← 2 Write X ← 3
Outcome: r1 = 3; r2 = 1; r3 = 2
time to find: 824s

Test I
T1 T2
Write X ← 1 Write Y ← 2
Fence Fence
Read Y → r1 Read X → r2
Outcome: r1 = 0; r2 = 0
time to find: 22s

Test J
T1 T2 T3
Write X ← 1 Read Y → r2 Write Y ← 2
Fence Read X → r3
Write Y ← 2
Outcome: r1 = 0; r2 = 2; r3 = 0
time to find: 411s

Fig. 7. Litmus tests generated for buggy NPSO specifications

Test K
T1 T2
Write X ← 1 Write Y ← 3
Write Y ← 2 Read Y → r2
Read Y → r1 Read X → r3
Outcome: r1 = 3; r2 = 3; r3 = 0
time to find: 111s

Test L
T1 T2
Write X ← 1 Write Y ← 2
Fence Read Y → r2
Read Y → r1 Read X → r3
Outcome: r1 = 0; r2 = 2; r3 = 0
time to find: 43s

Fig. 8. Litmus tests generated for SOBER

again after this modification generated Test H in Fig. 7. The proposed axiom
was sufficient to rule out cycles involving two threads, but not cycles involving
three threads and three addresses. We fixed this by using an alternative axiom,
stating that if a read precedes a write to any address according to the local
thread of this write, it will precede this write in any other thread.

After fixing the issue of causal transitivity, we ran the prototype again and
received Test I in Fig. 7. This outcome is allowed when fences affect only lo-
cal order and there is no total order among fences. We fixed it by adding an
axiom that requires a total order between fences. In the final iteration, we re-
ceived Test J in Fig. 7. In this case, the operational model drains both the local
and the global queues after a fence, which rules out the outcome listed under
Test J. A total order between fences is not sufficient to rule out this outcome.
We strengthen the total order axiom by requiring all threads to agree about the
order between fences and any other operations. After fixing this axiom, we found
no new mismatches between the models.

4.4 Debugging the Axiomatic Specification of TSO Used in SOBER

The second case study for our technique was debugging the axiomatic specifica-
tion of TSO used by SOBER [5]. SOBER is a technique for detecting potential
SC violations in software. SOBER uses an axiomatically defined memory model
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that is intended to be equivalent to SPARC’s TSO. The authors stated that their
axiomatic definition is equivalent to their operational specification of TSO [6].
However, Burnim et al [7] discovered that SOBER’s axiomatic specification and
TSO are, in fact, not equivalent. We used SOBER’s specification as a case study
to see if our technique could detect the discrepancy between the two models
without any prior knowledge about the nature of this discrepancy.

We compared SOBER’s axiomatic specification with our operational specifi-
cation for TSO. Our tool took less than two minutes to generate Test K in Fig. 8,
which is allowed by TSO but not by SOBER’s specification. Such a test is often
used to distinguish TSO from IBM 370 [1], which is essentially TSO without
forwarding. We then contrasted SOBER with IBM 370 and received Test L in
Fig. 8, demonstrating that SOBER allows behaviors that are not allowed by
IBM 370. We implemented a fix suggest by Burckhardt (personal communica-
tion), and we found no new mismatch between the fixed model our specification
of TSO.

5 Related Work

Many studies describe tools for testing litmus tests on a formally specified mem-
ory model [10,20,21,23,24]. Given a parallel program and an expected outcome,
these tools report whether the specified outcome is feasible on a specified mem-
ory model. Most of these tools test for one outcome at a time [10,20,23,24]. Park
and Dill [21] presented a tool that enabled exploring all outcomes for a given
parallel program using an operational specification for RMO.

Another approach for debugging a memory model is the “test model-checking”
methodology [19]. In this approach, a memory model is verified against a state
machine that generates a non-deterministic sequence of writes and test for certain
assertions. Each test-generating state machine is designed to detect a certain
architectural rule. This approach provides a stronger verification than testing
specific litmus tests.

A technique for validating that a system correctly implements a memory
model is dynamic testing, which is used by tools such as TSOtool [13] and
LCHECK [9]. These tools generate random tests, execute them on a certain
hardware, and verify that the execution adheres to a given memory model.

Few studies involve a direct comparison between two memory models. Chat-
terjee et al [8] shows the equivalence of an operational specification of the Alpha
memory model to an implementation of the same model. This work finds a refine-
ment map between the two models via model-checking and uses an intermediate
abstraction that exploit structural similarities between the two models to facil-
itate the proof. Other studies [10,20] use theorem proving to prove equivalence
between an operational and axiomatic specification of the same model.

6 Conclusions

We presented a technique for contrasting memory models and implemented a
prototype based on this technique. Our experiments showed that this approach
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can detect differences between memory models within seconds or minutes, and
the case studies showed that by contrasting memory models we can detect sub-
tle differences between memory models that might have gone undetected using
a predetermined set of litmus tests. Several key features make this technique a
viable tool for debugging memory model specifications: it provides feedback in
reasonable time, it generates a minimal-length litmus test as a counter exam-
ple, which are easy to analyze and understand, it is fully automatic, and it is
flexible and general in the sense that it can support different memory models,
specification styles, and exploration techniques.

One limitation of our approach is that it does not provide a complete verifi-
cation for the equivalence of two models. We test programs only up to a certain
bound, and we cannot guarantee that there is no longer test that differentiates
between the two specifications. Furthermore, redundant program elimination re-
ductions may not be safe when comparing some models. We plan to extend this
work to equivalence verification by finding sufficient bounds for a rich but re-
stricted domain of memory models and prove that the reductions we use are safe
for this domain of models.
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Abstract. We present the algorithms used in MCVETO (Machine-Code
VErification TOol), a tool to check whether a stripped machine-
code program satisfies a safety property. The verification problem that
MCVETO addresses is challenging because it cannot assume that it has
access to (i) certain structures commonly relied on by source-code ver-
ification tools, such as control-flow graphs and call-graphs, and (ii)
meta-data, such as information about variables, types, and aliasing. It
cannot even rely on out-of-scope local variables and return addresses be-
ing protected from the program’s actions. What distinguishes MCVETO

from other work on software model checking is that it shows how veri-
fication of machine-code can be performed, while avoiding conventional
techniques that would be unsound if applied at the machine-code level.

1 Introduction

Recent research has led to new kinds of tools for analyzing programs for bugs and
security vulnerabilities. In these tools, program analysis conservatively answers
the question “Can the program reach a bad state?” Many impressive results have
been achieved; however, the vast majority of existing tools analyze source code,
whereas most programs are delivered as machine code. If analysts wish to vet
such programs for bugs and security vulnerabilities, tools for analyzing machine
code are needed.

Machine-code analysis presents many new challenges. For instance, at the
machine-code level, memory is one large byte-addressable array, and an ana-
lyzer must handle computed—and possibly non-aligned—addresses. It is crucial
to track array accesses and updates accurately; however, the task is complicated
by the fact that arithmetic and dereferencing operations are both pervasive and
inextricably intermingled. For instance, if local variable x is at offset –12 from the
activation record’s frame pointer (register ebp), an access on x would be turned
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into an operand [ebp–12]. Evaluating the operand first involves pointer arith-
metic (“ebp–12”) and then dereferencing the computed address (“[·]”). On the
other hand, machine-code analysis also offers new opportunities, in particular,
the opportunity to track low-level, platform-specific details, such as memory-
layout effects. Programmers are typically unaware of such details; however, they
are often the source of exploitable security vulnerabilities.

The algorithms used in software model checkers that work on source code
[5,15,6] would be be unsound if applied to machine code. For instance, before
starting the verification process proper, SLAM [5] and BLAST [15] perform flow-
insensitive (and possibly field-sensitive) points-to analysis. However, such anal-
yses often make unsound assumptions, such as assuming that the result of an
arithmetic operation on a pointer always remains inside the pointer’s original tar-
get. Such an approach assumes—without checking—that the program is ANSI
C compliant, and hence causes the model checker to ignore behaviors that are
allowed by some compilers (e.g., arithmetic is performed on pointers that are sub-
sequently used for indirect function calls; pointers move off the ends of structs
or arrays, and are subsequently dereferenced). A program can use such features
for good reasons—e.g., as a way for a C program to simulate subclassing—but
they can also be a source of bugs and security vulnerabilities.

This paper presents the techniques that we have implemented in a model
checker for machine code, called MCVETO (Machine-Code VErification TOol).
MCVETO uses directed proof generation (DPG) [13] to find either an input that
causes a (bad) target state to be reached, or a proof that the bad state cannot
be reached. (The third possibility is that MCVETO fails to terminate.)

What distinguishes the work on MCVETO is that it addresses a large number
of issues that have been ignored in previous work on software model checking,
and would cause previous techniques to be unsound if applied to machine code.
The contributions of our work can be summarized as follows:

1. We show how to verify safety properties of machine code while avoiding
a host of assumptions that are unsound in general, and that would be in-
appropriate in the machine-code context, such as reliance on symbol-table,
debugging, or type information, and preprocessing steps for (a) building a
precomputed, fixed, interprocedural control-flow graph (ICFG), or (b) per-
forming points-to/alias analysis.

2. MCVETO builds its (sound) abstraction of the program’s state space on-
the-fly, performing disassembly one instruction at a time during state-space
exploration, without static knowledge of the split between code vs. data. (It
does not have to be prepared to disassemble collections of nested branches,
loops, procedures, or the whole program all at once, which is what can con-
fuse conventional disassemblers [20].)
The initial abstraction has only two abstract states, defined by the predi-

cates “PC = target” and “PC �= target” (where “PC” denotes the program
counter). The abstraction is gradually refined as more of the program is
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exercised (§3). MCVETO can analyze programs with instruction aliasing1 be-
cause it builds its abstraction of the program’s state space entirely on-the-fly
(§3.1). Moreover, MCVETO is capable of verifying (or detecting flaws in) self-
modifying code (SMC). With SMC there is no fixed association between an
address and the instruction at that address, but this is handled automati-
cally by MCVETO’s mechanisms for abstraction refinement. To the best of
our knowledge, MCVETO is the first model checker to handle SMC.

3. MCVETO introduces trace generalization, a new technique for eliminating
families of infeasible traces (§3.1). Compared to prior techniques that also
have this ability [14], our technique involves no calls on an SMT solver, and
avoids the potentially expensive step of automaton complementation.

4. MCVETO introduces a new approach to performing DPG on multi-procedure
programs (§3.3). Godefroid et al. [12] presented a declarative framework
that codifies the mechanisms used for DPG in SYNERGY [13], DASH [6], and
SMASH [12] (which are all instances of the framework). In their framework,
interprocedural DPG is performed by invoking intraprocedural DPG as a
subroutine. In contrast, MCVETO’s algorithm lies outside of that framework:
the interprocedural component of MCVETO uses (and refines) an infinite
graph, which is finitely represented and queried by symbolic operations.

5. We developed a language-independent algorithm to identify the aliasing con-
dition relevant to a property in a given state (§3.4). Unlike previous tech-
niques [6], it applies when static names for variables/objects are unavailable.

Items 1 and 2 address execution details that are typically ignored (unsoundly) by
source-code analyzers. Items 3, 4, and 5 are applicable to both source-code and
machine-code analysis. MCVETO is not restricted to an impoverished language.
In particular, it handles pointers and bit-vector arithmetic.

Organization. §2 contains a brief review of DPG. §3 describes the new DPG
techniques used in MCVETO. §4 describes how different instances of MCVETO are
generated automatically from a specification of the semantics of an instruction
set. §5 presents experimental results. §6 discusses related work. §7 concludes.

2 Background on Directed Proof Generation (DPG)

Given a program P and a particular control location target in P , DPG returns
either an input for which execution leads to target or a proof that target is
unreachable (or DPG does not terminate). Two approximations of P ’s state
space are maintained:

– A set T of concrete traces, obtained by running P with specific inputs. T
underapproximates P ’s state space.

– A graph G, called the abstract graph, obtained from P via abstraction (and
abstraction refinement). G overapproximates P ’s state space.

1 Programs written in instruction sets with varying-length instructions, such as x86,
can have “hidden” instructions starting at positions that are out of registration with
the instruction boundaries of a given reading of an instruction stream [20].
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Nodes in G are labeled with formulas; edges are labeled with program state-
ments or program conditions. One node is the start node (where execution be-
gins); another node is the target node (the goal to reach). Information to relate
the under- and overapproximations is also maintained: a concrete state σ in a
trace in T is called a witness for a node n in G if σ satisfies the formula that
labels n.

n’ : ∧ ¬
k

n : 

m : 

k

n’’ : ∧
I

⟹
I

m : 

♦ ♦

♦ ♦

Fig. 1. The general refinement
step across frontier (n, I,m).
The presence of a witness is
indicated by a “�” inside of a
node.

If G has no path from start to target, then
DPG has proved that target is unreachable, and
G serves as the proof. Otherwise, DPG locates
a frontier : a triple (n, I, m), where (n, m) is an
edge on a path from start to target such that n
has a witness w but m does not, and I is the
instruction on (n, m). DPG either performs con-
crete execution (attempting to reach target) or re-
fines G by splitting nodes and removing certain
edges (which may prove that target is unreach-
able). Which action to perform is determined us-
ing the basic step from directed test generation
[10], which uses symbolic execution to try to find
an input that allows execution to cross frontier
(n, I, m). Symbolic execution is performed over symbolic states, which have
two components: a path constraint, which represents a constraint on the in-
put state, and a symbolic map, which represents the current state in terms of
input-state quantities. DPG performs symbolic execution along the path taken
during the concrete execution that produced witness w for n; it then symbol-
ically executes I, and conjoins to the path constraint the formula obtained by
evaluating m’s predicate ψ with respect to the symbolic map. It calls an SMT
solver to determine if the path constraint obtained in this way is satisfiable. If
so, the result is a satisfying assignment that is used to add a new execution
trace to T . If not, DPG refines G by splitting node n into n′ and n′′, as shown
in Fig. 1.

Refinement changes G to represent some non-connectivity information: in par-
ticular, n′ is not connected to m in the refined graph (see Fig. 1). Let ψ be the
formula that labels m, c be the concrete witness of n, and Sn be the symbolic
state obtained from the symbolic execution up to n. DPG chooses a formula ρ,
called the refinement predicate, and splits node n into n′ and n′′ to distinguish
the cases when n is reached with a concrete state that satisfies ρ (n′′) and when
it is reached with a state that satisfies ¬ρ (n′). The predicate ρ is chosen such
that (i) no state that satisfies ¬ρ can lead to a state that satisfies ψ after the
execution of I, and (ii) the symbolic state Sn satisfies ¬ρ. Condition (i) ensures
that the edge from n′ to m can be removed. Condition (ii) prohibits extending
the current path along I (forcing the DPG search to explore different paths). It
also ensures that c is a witness for n′ and not for n′′ (because c satisfies Sn)—and
thus the frontier during the next iteration must be different.
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int main() {
int x, y;
if(*) {
x = 200;
y = 300;
adjust(x, y);

}
else {
x = 300;
y = 200;
adjust(x, y);

}
if (y != 500)
UNREACHABLE();

return 0;
}

void adjust(int& x, int& y) {
while(x > 0) {
x--;
y++;

}
}

F

while(x>0)

T

x = 200

y = 300

F

x--

y++

x = 300

y = 200

exit

adjust(x,y) ad
ju

st
(x

,y
)

ret

ret

if(*)

if (y≠500)

T

FT

F

x = 300

F

x = 300

(a) (b)

Fig. 2. (a) A program with a non-deterministic branch; (b) the program’s ICFG

3 MCVETO

This section explains the methods used to achieve contributions 1–5 listed in
§1. While MCVETO was designed to provide sound DPG for machine code, a
number of its novel features are also useful for source-code DPG. Thus, to make
the paper more accessible, our running example is the C++ program in Fig. 2.
It makes a non-deterministic choice between two blocks that each call procedure
adjust, which loops—decrementing x and incrementing y. Note that the affine
relation x + y = 500 holds at the two calls on adjust, the loop-head in adjust,
and the branch on y!=500.

Representing the Abstract Graph. The infinite abstract graph used in
MCVETO is finitely represented as a nested word automaton (NWA) [2] and
queried by symbolic operations. As discussed in §3.1 the key property of
NWAs for abstraction refinement is that, even though they represent matched
call/return structure, they are closed under intersection [2]. That is, given NWAs
A1 and A2, one can construct an NWA A3 such that L(A3) = L(A1) ∩ L(A2).

In our NWAs, the alphabet consists of all possible machine-code instructions.
In addition, we annotate each state with a predicate. Operations on NWAs ex-
tend cleanly to accommodate the semantics of predicates—e.g., the ∩ operation
labels a product state 〈q1, q2〉 with the conjunction of the predicates on states
q1 and q2. In MCVETO’s abstract graph, we treat the value of the PC as data;
consequently, predicates can refer to the value of the PC (see Fig. 3).

3.1 Abstraction Refinement via Trace Generalization

In a source-code model checker, the initial overapproximation of a program’s
state space is often the program’s ICFG. Unfortunately, for machine code it
is difficult to create an accurate ICFG a priori because of the use of indirect
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Fig. 4. (a) and (b) Two generalized traces, each of which reaches the end of the pro-
gram. (c) The intersection of the two generalized traces. (A “�” indicates that a node
has a witness.)

jumps, jump tables, and indirect function calls—as well as more esoteric fea-
tures, such as instruction aliasing and SMC. For this reason, MCVETO begins
with the degenerate NWA-based abstract graph G0 shown in Fig. 3, which over-
approximates the program’s state space; i.e., Go accepts an overapproximation
of the set of minimal2 traces that reach target. The abstract graph is refined
during the state-space exploration carried out by MCVETO.

PC ≠ targets:

*

*

PC = targett:

δc =
{

(s, *, s),
(s, *, t)

}

δr =
{

(s, s, *, s),
(s, s, *, t)

}
(a) (b)

Fig. 3. (a) Internal-transitions in
the initial NWA-based abstract
graph G0 created by MCVETO; (b)
call- and return-transitions in G0. *
is a wild-card symbol that matches
all instructions.

To avoid having to disassemble collections
of nested branches, loops, procedures, or the
whole program all at once, MCVETO per-
forms trace-based disassembly: as concrete
traces are generated during DPG, instruc-
tions are disassembled one at a time by de-
coding the current bytes of memory starting
at the value of the PC. Each indirect jump or
indirect call encountered can be resolved to
a specific address. Trace-based disassembly is
one of the techniques that allows MCVETO to
handle self-modifying code.

MCVETO uses each concrete trace π ∈
T to refine abstract graph G. As men-
tioned in §2, the set T of concrete traces
underapproximates the program’s state space, whereas G represents an
overapproximation of the state space. MCVETO repeatedly solves instances of
the following trace-generalization problem:

2 A trace τ that reaches target is minimal if τ does not have a proper prefix that
reaches target.
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Given a trace π, which is an underapproximation of the program, convert π
into an NWA-based abstract graph Gπ that is an overapproximation of the
program.

We create Gπ by “folding” π—grouping together all nodes with the same PC
value, and augmenting it in a way that overapproximates the portion of the
program not explored by π (denoted by π/[PC]); see Figs. 4(a) and (b) and
Fig. 5. In particular, Gπ contains one accepting state, called TS (for “target
surrogate”). TS is an accepting state because it represents target, as well as all
non-target locations not visited by π. (Trace generalization for SMC is discussed
in [25, §3.1].)

We now have two overapproximations, the original abstract graph G and
folded trace Gπ. Thus, by performing G := G ∩ Gπ, information about the
portion of the program explored by π is incorporated into G, producing a third,
improved overapproximation; see Fig. 4(c). (Equivalently, intersection eliminates
the family of infeasible traces represented by the complement of Gπ; however,
because we already have Gπ in hand, no automaton-complementation operation
is required—cf. [14].)

The issue of how one forms an NWPrefix from an instruction sequence—i.e.,
identifying the nesting structure—is handled by a policy in the trace-recovery
tool for classifying each position as an internal-, call-, or return-position. Cur-
rently, for reasons discussed in §3.5, we use the following policy: the position
of any form of call instruction is a call-position; the position of any form of
ret instruction is a return-position. In essence, MCVETO uses call and ret
instructions to restrict the instruction sequences considered. If these match the
program’s actual instruction sequences, we obtain the benefits of the NWA-based
approach—especially the reuse of information among refinements of a given pro-
cedure. The basic MCVETO algorithm is stated as Alg. 1.

Algorithm 1 . Basic MCVETO algorithm (including trace-based disassembly)
1: π := nested-word prefix for an execution run on a random initial state
2: T := {π}; Gπ := π/[PC]; G := (NWA from Fig. 3) ∩ Gπ

3: loop
4: if target has a witness in T then return “reachable”
5: Find a path τ in G from start to target
6: if no path exists then return “not reachable”
7: Find a frontier (n, I,m) in G, where concrete state σ witnesses n
8: Perform symbolic execution of the instructions of the concrete trace that reaches

σ, and then of instruction I ; conjoin to the path constraint the formula obtained
by evaluating m’s predicate ψ with respect to the symbolic map; let S be the
path constraint so obtained

9: if S is feasible, with satisfying assignment A then
10: π := nested-word prefix for an execution run on A
11: T := T ∪ {π}; Gπ := π/[PC]; G := G ∩Gπ

12: else
13: Refine G along frontier (n, I,m) (see Fig. 1)
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Definition 1. A trace π that does not reach target is represented by (i) a nested-
word prefix (w,
) over instructions ([25, App. A]), together with (ii) an array of
PC values, PC[1..|w|+ 1], where PC[|w|+ 1] has the special value HALT if the trace
terminated execution. Internal-steps, call-steps, and return-steps are triples of
the form 〈PC[i], w[i],PC[i+ 1]〉, 1 ≤ i < |w|, depending on whether i is an internal-

position, call-position, or return-position, respectively. Given π, we construct Gπ
def=

π/[PC] as follows:
1. All positions 1 ≤ k < |w|+1 for which PC[k] has a given address a are collapsed

to a single NWA state qa. All such states are rejecting states (the target was not
reached).

2. For each internal-step 〈a, I, b〉, Gπ has an internal-transition (qa, I, qb).
3. For each call-step 〈ac, call, ae〉, Gπ has a call-transition (qac , call, qae).

(“call” stands for whatever instruction instance was used in the call-step.)
4. For each return-step 〈ax, ret, ar〉 for which the PC at the call predecessor holds

address ac, Gπ has a return-transition (qax , qac , ret, qar ). (“ret” stands for
whatever instruction instance was used in the return-step.)

5. Gπ contains one accepting state, called TS (for “target surrogate”). TS is an
accepting state because it represents target, as well as all the non-target locations
that π did not explore.

6. Gπ contains three “self-loops”: (TS, *,TS) ∈ δi, (TS, *,TS) ∈ δc, and
(TS,TS, *,TS) ∈ δr. (We use “*” in the latter two transitions because there
are many forms of call and ret instructions.)

7. For each unmatched instance of a call-step 〈ac, call, ae〉, Gπ has a return-
transition (TS, qac , *,TS). (We use * because any kind of ret instruction could
appear in the matching return-step.)

8. Let Bb denote a (direct or indirect) branch that takes branch-direction b.
– If π has an internal-step 〈a,Bb, c〉 but not an internal-step 〈a,B¬b, d〉, Gπ

has an internal-transition (qa, B¬b,TS).
– For each internal-step 〈a,BT , c〉, where B is an indirect branch, Gπ has an

internal-transition (qa, BT ,TS).
9. For each call-step 〈ac, call, ae〉 where call is an indirect call, Gπ has a call-

transition (qac , call,TS).
10. If PC[|w| + 1] �= HALT, Gπ has an internal-transition (qPC[|w|], I,TS), where

“I” stands for whatever instruction instance was used in step |w| of π. (We
assume that an uncompleted trace never stops just before a call or ret.)

11. If PC[|w| + 1] = HALT, Gπ has an internal-transition (qPC[|w|], I,Exit), where
“I” stands for whatever instruction instance was used in step |w| of π and Exit
is a distinguished non-accepting state.

Fig. 5. Definition of the trace-folding operation π/[PC]

3.2 Speculative Trace Refinement

Motivated by the observation that DPG is able to avoid exhaustive loop un-
rolling if it discovers the right loop invariant, we developed mechanisms to dis-
cover candidate invariants from a folded trace, which are then incorporated into
the abstract graph via NWA intersection. Although they are only candidate in-
variants, they are introduced into the abstract graph in the hope that they are



296 A. Thakur et al.

FT

x = 200

y = 300

exit

adjust(x,y)

ret

if(*)

if (y≠500)

TS

*

♦♦

♦

♦

♦

♦

♦

FT

F

x--

y++
T

while(x>0)
♦

♦ ♦

♦φ ¬φ
while(x>0)

F

T
y++

ret

adjust(x,y)

FT

F

x--

y++

x = 300

y = 200

ad
ju

st
(x

,y
)

ret

T

FT

TS

*

while(x>0)

exitif(*)

if (y≠500)

♦♦

♦

♦

♦ ♦

♦

♦

♦

♦

♦

φ ¬φ
while(x>0)

F

T
y++

ret
adjust(x,y)

(a) (b)

Fig. 6. Fig. 4(a) and (b) with the loop-head in adjust split with respect to the candi-
date invariant ϕ def= x+ y = 500

invariants for the full program. The basic idea is to apply dataflow analysis to
a graph obtained from the folded trace Gπ. The recovery of invariants from Gπ

is similar in spirit to the computation of invariants from traces in Daikon [9],
but in MCVETO they are computed ex post facto by dataflow analysis on the
folded trace. While any kind of dataflow analysis could be used in this fashion,
MCVETO currently uses two analyses:

– Affine-relation analysis [21] is used to obtain linear equalities over registers
and a set of memory locations, V . V is computed by running aggregate struc-
ture identification [22] on Gπ to obtain a set of inferred memory variables
M , then selecting V ⊆ M as the most frequently accessed locations in π.

– An analysis based on strided-interval arithmetic [23] is used to discover range
and congruence constraints on the values of individual registers and memory
locations.

The candidate invariants are used to create predicates for the nodes of Gπ .
Because an analysis may not account for the full effects of indirect memory
references on the inferred variables, to incorporate a discovered candidate in-
variant ϕ for node n into Gπ safely, we split n on ϕ and ¬ϕ. Again we have two
overapproximations: Gπ, from the folded trace, augmented with the candidate
invariants, and the original abstract graph G. To incorporate the candidate in-
variants into G, we perform G := G∩Gπ ; the ∩ operation labels a product state
〈q1, q2〉 with the conjunction of the predicates on states q1 of G and q2 of Gπ.

Fig. 6 shows how the candidate affine relation ϕ
def= x + y = 500 would be

introduced at the loop-head of adjust in the generalized traces from Figs. 4(a)
and (b). (Relation ϕ does, in fact, hold for the portions of the state space explored
by Figs. 4(a) and (b).) With this enhancement, subsequent steps of DPG will be
able to show that the dotted loop-heads (labeled with ¬ϕ) can never be reached
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int y;
void baz(){
y=0;
y++;
y--;

}

void lotsaBaz(int a){
y=0;
if(a>0) baz();
if(a>1) baz();
if(a>2) baz();
if(a>3) baz();
if(y!=0)
ERR: return;

}

int bar1() {
int i,r = 0;
for(i=0;i<100;i++){
complicated(); r++;

}
return r;

}

int bar2(){ return 10; }

void foo(int x){
int y;
if(x == 0) y = bar2();
else y = bar1();
if(y == 10)
ERR: return;

}

(a) (b)

Fig. 7. Programs that illustrate the benefit of using a conceptually infinite abstract
graph

from start. In addition, the predicate ϕ on the solid loop-heads enables DPG
to avoid exhaustive loop unrolling to show that the true branch of y!=500 can
never be taken.

3.3 Symbolic Methods for Interprocedural DPG

In other DPG systems [13,6,12], interprocedural DPG is performed by invoking
intraprocedural DPG as a subroutine. In contrast, MCVETO analyzes a repre-
sentation of the entire program (refined on-the-fly), which allows it to reuse all
information from previous refinement steps. For instance, in the program shown
in Fig. 7(a), procedure lotsaBazmakes several calls to baz. By invoking analysis
once for each call site on baz, a tool such as DASH has to re-learn that y is set to
0. In contrast, MCVETO only needs to learn this once and gets automatic reuse
at all call sites. Note that such reuse is achieved in a different way in SMASH

[12], which makes use of explicit procedure summaries. However, because the
split between local and global variables is not known when analyzing machine
code, it is not clear to us how MCVETO could generate such explicit summaries.

Furthermore, SMASH is still restricted to invoking intraprocedural analysis as
a subroutine, whereas MCVETO is not limited to considering frontiers in just a
single procedure: at each stage, it is free to choose a frontier in any procedure. To
see why such freedom can be important, consider the example in Fig. 7(b) (where
target is ERR). DASH might proceed as follows. The initial test uses [x $→ 42],
which goes through bar1, but does not reach target. After a few iterations, the
frontier is the call to bar1, at which point DASH is invoked on bar1 to prove
that the return value is not 10. The subproof takes a long time because of the
complicated loop in bar1. In essence, DASH gets stuck in bar1 without recourse
to an easier way to reach target. MCVETO can make the same choices, and
would start to prove the same property for the return value of bar1. However,
refinements inside of bar1 cause the abstract graph to grow, and at some point,
if the policy is to pick a frontier closest to target, the frontier switches to one in
main that is closer to target—in particular, the true branch of the if-condition
x==0. MCVETO will be able to extend that frontier by running a test with [x $→
0], which will go through bar2 and reach target. The challenge that we face
to support such flexibility is how to select the frontier while accounting for



298 A. Thakur et al.

paths that reflect the nesting structure of calls and returns. As discussed in [25,
§3.3], by doing computations via automata, transducers, and pushdown systems,
MCVETO can find the set of all frontiers, as well as identify the k closest frontiers.

3.4 A Language-Independent Approach to Aliasing Relevant to a
Property

This section describes how MCVETO identifies—in a language-independent way
suitable for use with machine code—the aliasing condition relevant to a property
in a given state. There are two challenges to defining an appropriate notion of
aliasing condition for use with machine code: (i) int-valued and address-valued
quantities are indistinguishable at runtime, and (ii) arithmetic on addresses is
used extensively.

Suppose that the frontier is (n, I, m), ψ is the formula on m, and Sn is the
symbolic state obtained via symbolic execution of a concrete trace that reaches n.
For source code, Beckman et al. [6] identify aliasing condition α by looking at the
relationship, in Sn, between the addresses written to by I and the ones used in ψ.
However, their algorithm for computing α is language-dependent : their algorithm
has the semantics of C implicitly encoded in its search for “the addresses written
to by I”. In contrast, as explained below, we developed an alternative, language-
independent approach, both to identifying α and computing Preα.

To simplify the discussion, suppose that a concrete machine-code state is
represented using two maps M : INT → INT and R : REG → INT. Map
M represents memory, and map R represents the values of machine regis-
ters. We use the standard theory of arrays to describe (functional) updates
and accesses on maps, e.g., update(m, k, d) denotes the map m with index k
updated with the value d, and access(m, k) is the value stored at index k
in m. (We use the notation m(r) as a shorthand for access(m, r).) We also
use the standard axiom from the theory of arrays: (update(m, k1, d))(k2) =
ite(k1 = k2, d, m(k2)), where ite is an if-then-else term. Suppose that I is “mov
[eax],5” (which corresponds to *eax = 5 in source-code notation) and that ψ
is (M(R(ebp) − 8) + M(R(ebp) − 12) = 10).3 First, we symbolically execute
I starting from the identity symbolic state Sid = [M $→ M, R $→ R] to obtain
the symbolic state S′ = [M $→ update(M, R(eax), 5), R $→ R]. Next, we evalu-
ate ψ under S′—i.e., perform the substitution ψ[M ← S′(M), R ← S′(R)]. For
instance, the term M(R(ebp) − 8), which denotes the contents of memory at
address R(ebp) − 8, evaluates to (update(M, R(eax), 5))(R(ebp) − 8). From the
axiom for arrays, this simplifies to ite(R(eax) = R(ebp)− 8, 5, M(R(ebp)− 8)).
Thus, the evaluation of ψ under S′ yields(

ite(R(eax) = R(ebp)− 8, 5,M(R(ebp)− 8))
+ ite(R(eax) = R(ebp)− 12, 5,M(R(ebp)− 12))

)
= 10 (1)

This formula equals Pre(I, ψ) [18].

3 In x86, ebp is the frame pointer, so if program variable x is at offset –8 and y is at
offset –12, ψ corresponds to x + y = 10.
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The process described above illustrates a general property: for any instruction
I and formula ψ, Pre(I, ψ) = ψ[M ← S′(M), R ← S′(R)], where S′ = SE�I�Sid

and SE�·� denotes symbolic execution [18].
The next steps are to identify α and to create a simplified formula ψ′ that

weakens Pre(I, ψ). These are carried out simultaneously during a traversal of
Pre(I, ψ) that makes use of the symbolic state Sn at node n. We illustrate this
on the example discussed above for a case in which Sn(R) = [eax $→ R(ebp)−8]
(i.e., continuing the scenario from footnote 3, eax holds &x). Because the ite-
terms in Eqn. (1) were generated from array accesses, ite-conditions represent
possible constituents of aliasing conditions. We initialize α to true and traverse
Eqn. (1). For each subterm t of the form ite(ϕ, t1, t2) where ϕ definitely holds
in symbolic state Sn, t is simplified to t1 and ϕ is conjoined to α. If ϕ can never
hold in Sn, t is simplified to t2 and ¬ϕ is conjoined to α. If ϕ can sometimes
hold and sometimes fail to hold in Sn, t and α are left unchanged.

In our example, R(eax) equals R(ebp)−8 in symbolic state Sn; hence, applying
the process described above to Eqn. (1) yields

ψ′ = (5 +M(R(ebp)− 12) = 10)
α = (R(eax) = R(ebp)− 8) ∧ (R(eax) �= R(ebp)− 12) (2)

The formula α ⇒ ψ′ is the desired refinement predicate Preα(I, ψ).
In practice, we found it beneficial to use an alternative approach, which is

to perform the same process of evaluating conditions of ite terms in Pre(I, ψ),
but to use one of the concrete witness states Wn of frontier node n in place of
symbolic state Sn. The latter method is less expensive (it uses formula-evaluation
steps in place of SMT solver calls), but generates an aliasing condition specific
to Wn rather than one that covers all concrete states described by Sn.

Both approaches are language-independent because they isolate where the
instruction-set semantics comes into play in Pre(I, ψ) to the computation of S′ =
SE�I�Sid; all remaining steps involve only purely logical primitives. Although
our algorithm computes Pre(I, ψ) explicitly, that step alone does not cause an
explosion in formula size; explosion is due to repeated application of Pre. In our
approach, the formula obtained via Pre(I, ψ) is immediately simplified to create
first ψ′, and then α ⇒ ψ′.

Byte-Addressable Memory. When memory is byte-addressable, the actual
memory-map type is INT32 → INT8. This complicates matters because ac-
cessing (updating) a 32-bit quantity in memory translates into four contiguous
8-bit accesses (updates). [25, §3.4] shows how a result equivalent to Eqn. (2) is
obtained for a memory-map of type INT32 → INT8.

3.5 Soundness Guarantee

The soundness argument for MCVETO is more subtle than it otherwise might ap-
pear because of examples like the one shown in Fig. 8. The statement ∗(&r+2)=r;
overwrites foo’s return address, and MakeChoice returns a random 32-bit num-
ber. At the end of foo, half the runs return normally to main. For the other half,
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the ret instruction at the end of foo serves to call bar. The problem is that for
a run that returns normally to main after trace generalization and intersection
with G0, there is no frontier. Consequently, half of the runs of MCVETO, on
average, would erroneously report that location ERR is unreachable.

void bar() {
ERR: // address here is 0x10

}
void foo() {
int b = MakeChoice() & 1;

int r = b*0x68 + (1-b)*0x10;

*(&r+2) = r;

return;

}
int main() {
foo();

// address here is 0x68

}
Fig. 8. ERR is reachable, but only
along a path in which a ret instruc-
tion serves to perform a call

MCVETO uses the following policy P for
classifying execution steps: (a) the position
of any form of call instruction is a call-
position; (b) the position of any form of ret
instruction is a return-position. Our goals are
(i) to define a property Q that is compatible
with P in the sense that MCVETO can check
for violations of Q while checking only NW-
Prefix paths ([25, App. A]), and (ii) to estab-
lish a soundness guarantee: either MCVETO

reports that Q is violated (along with an in-
put that demonstrates it), or it reports that
target is reachable (again with an input that
demonstrates it), or it correctly reports that
Q is invariant and target is unreachable. To
define Q, we augment the instruction-set se-
mantics with an auxiliary stack. Initially, the
auxiliary stack is empty; at each call, a copy
of the return address pushed on the processor stack is also pushed on the auxil-
iary stack; at each ret, the auxiliary stack is popped.

Definition 2. An acceptable execution (AE) under the instrumented seman-
tics is one in which at each ret instruction (i) the auxiliary stack is non-empty,
and (ii) the address popped from the processor stack matches the address popped
from the auxiliary stack.

In the instrumented semantics, a flag V is set whenever the program performs
an execution step that violates either condition (i) or (ii) of Defn. 2. Instead
of the initial NWA shown in Fig. 3, we use a similar two-state NWA that has
states q1: PC �= target ∧ ¬V and q2: PC = target ∨ V, where q1 is non-accepting
and q2 is accepting. In addition, we add one more rule to the trace-generalization
construction for Gπ from Fig. 5:
12. For each return-step 〈ax, ret, ar〉, Gπ has an internal-transition (qax, ret,TS).
As shown below, these modifications cause the DPG algorithm to also search for
traces that are AE violations.

Theorem 1 (Soundness of MCVETO)
1. If MCVETO reports “AE violation” (together with an input S), execution of

S performs an execution that is not an AE.
2. If MCVETO reports “bug found” (together with an input S), execution of S

performs an AE to target.
3. If MCVETO reports “OK”, then (a) the program performs only AEs, and (b)

target cannot be reached during any AE.



Directed Proof Generation for Machine Code 301

Sketch of Proof: If a program has a concrete execution trace that is not AE, there
must exist a shortest non-AE prefix, which has the form “NWPrefix ret” where
either (i) the auxiliary stack is empty, or (ii) the return address used by ret from
the processor stack fails to match the return address on the auxiliary stack. At
each stage, the abstract graph used by MCVETO accepts an overapproximation of
the program’s shortest non-AE execution-trace prefixes. This is true of the initial
graph G0 because internal transitions have wild-card symbols. Moreover, each
folded trace Gπ = π/[PC] accepts traces of the form “NWPrefix ret” due to the
addition of internal transitions to TS for each ret instruction (item 12 above).
NWA intersection of two sound overapproximations leads to a refined sound
overapproximation. Therefore, when MCVETO has shown that no accepting state
is reachable, it has also proved that the program has no AE violations.

4 Implementation

The MCVETO implementation incorporates all of the techniques described in §3.
The implementation uses only language-independent techniques; consequently,
MCVETO can be easily retargeted to different languages. The main components
of MCVETO are language-independent in two different dimensions:

1. The MCVETO DPG driver is structured so that one only needs to provide
implementations of primitives for concrete and symbolic execution of a lan-
guage’s constructs, plus a handful of other primitives (e.g., Preα). Conse-
quently, this component can be used for both source-level languages and
machine-code languages.

2. For machine-code languages, we used two tools that generate the required
implementations of the primitives for concrete and symbolic execution from
descriptions of the syntax and concrete operational semantics of an instruc-
tion set. The abstract syntax and concrete semantics are specified using TSL

(Transformer Specification Language) [19]. Translation of binary-encoded
instructions to abstract syntax trees is specified using a tool called ISAL

(Instruction Set Architecture Language).

In addition, we developed language-independent solutions to each of the issues in
MCVETO, such as identifying the aliasing condition relevant to a specific property
in a given state (§3.4). Consequently, our implementation acts as a Yacc-like tool
for creating versions of MCVETO for different languages: given a description of
language L, a version of MCVETO for L is generated automatically. We created
two specific instantiations of MCVETO from descriptions of the Intel x86 and
PowerPC instruction sets. To perform symbolic queries on the conceptually-
infinite abstract graph ([25, §3.3]), the implementation uses OpenFst [1] (for
transducers) and WALi [16] (for WPDSs).

5 Experiments

Our experiments (see Fig. 9) were run on a single core of a single-processor
quad-core 3.0 GHz Xeon computer running Windows XP, configured so that a
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Program MCVETO performance (x86)
Name Outcome #Instrs CE SE Ref time
blast2/blast2 timeout 98 ** ** ** **
fib/fib–REACH-0 timeout 49 ** ** ** **
fib/fib–REACH-1 counterex. 49 1 0 0 0.125
slam1/slam1 proof 84 15 129 307 203
smc1/smc1–REACH-0* proof 21 1 60 188 959
smc1/smc1–REACH-1* counterex. 21 1 0 0 0.016
ex5/ex counterex. 48 2 10 38 3.05
doubleloopdep/count–COUNT-6 counterex. 31 7 11 13 11.5
doubleloopdep/count–COUNT-7 counterex. 31 7 11 13 11.6
doubleloopdep/count–COUNT-8 counterex. 31 7 11 13 11.6
doubleloopdep/count–COUNT-9 counterex. 31 7 11 13 11.7
inter.synergy/barber timeout 253 ** ** ** **
inter.synergy/berkeley counterex. 104 5 13 16 3.95
inter.synergy/cars proof 196 11 118 349 188
inter.synergy/efm timeout 188 ** ** ** **
share/share–CASE-0 proof 50 3 24 75 8.5
cert/underflow counterex. 120 2 6 12 9.55
instraliasing/instraliasing–REACH-0 proof 46 2 36 126 15.0
instraliasing/instraliasing–REACH-1 counterex. 46 2 17 55 5.86
longjmp/jmp AE viol. 74 1 0 0 0.015
overview0/overview proof 49 2 31 91 54.9
small static bench/ex5 proof 33 3 7 13 2.27
small static bench/ex6 proof 30 1 55 146 153
small static bench/ex8 proof 89 4 17 46 6.31
verisec-gxine/simp bad counterex. 1067 1 0 0 0.094
verisec-gxine/simp ok proof 1068 ** ** ** **
clobber ret addr/clobber–CASE-4 AE viol. 43 4 9 18 2.13
clobber ret addr/clobber–CASE-8 AE viol. 35 2 2 5 0.625
clobber ret addr/clobber–CASE-9 proof 35 1 5 21 1.44

Fig. 9. MCVETO experiments. The columns show whether MCVETO returned a proof,
counterexample, or an AE violation (Outcome); the number of instructions (#Instrs);
the number of concrete executions (CE); the number of symbolic executions (SE), which
also equals the number of calls to the YICES solver; the number of refinements (Ref),
which also equals the number of Preα computations; and the total time (in seconds).
*SMC test case. **Exceeded twenty-minute time limit.

user process has 4 GB of memory. They were designed to test various aspects of
a DPG algorithm and to handle various intricacies that arise in machine code
(some of which are not visible in source code). We compiled the programs with
Visual Studio 8.0, and ran MCVETO on the resulting object files (without using
symbol-table information).4

The examples ex5, ex6, and ex8 are from the NECLA Static Analysis Bench-
marks. The examples barber, berkeley, cars, efm are multi-procedure versions
of the larger examples on which SYNERGY [13] was tested. (SYNERGY was tested
using single-procedure versions only.) Instraliasing illustrates the ability to
handle instruction aliasing. (The instruction count for this example was obtained
via static disassembly, and hence is only approximate.) Smc1 illustrates the abil-
ity of MCVETO to handle self-modifying code. Underflow is taken from a DHS
tutorial on security vulnerabilities. It illustrates a strncpy vulnerability.
4 The examples are available at www.cs.wisc.edu/wpis/examples/McVeto

www.cs.wisc.edu/wpis/examples/McVeto
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The examples are small, but challenging. They demonstrate MCVETO’s ability
to reason automatically about low-level details of machine code using a sequence
of sound abstractions. The question of whether the cost of soundness is inherent,
or whether there is some way that the well-behavedness of (most) code could be
exploited to make the analysis scale better is left for future research.

6 Related Work

Machine-Code Analyzers Targeted at Finding Vulnerabilities. A sub-
stantial amount of work exists on techniques to detect security vulnerabilities by
analyzing source code. Less work exists on vulnerability detection for machine
code. Kruegel et al. [17] developed a system for automating mimicry attacks;
it uses symbolic execution to discover attacks that can give up and regain ex-
ecution control by modifying the contents of the data, heap, or stack so that
the application is forced to return control to injected attack code at some point
after the execution of a system call. Cova et al. [8] used that platform to detect
security vulnerabilities in x86 executables via symbolic execution.

Prior work exists on directed test generation for machine code [11,7]. In
contrast, MCVETO implements directed proof generation. Unlike directed-test-
generation tools, MCVETO is goal-directed, and works by trying to refute the
claim “no path exists that connects program entry to a given goal state”.

Machine-Code Model Checkers. SYNERGY applies to an x86 executable for
a “single-procedure C program with only [int-valued] variables” [13] (i.e., no
pointers). It uses debugging information to obtain information about variables
and types, and uses Vulcan [24] to obtain a CFG. It uses integer arithmetic—not
bit-vector arithmetic—in its solver. In contrast, MCVETO addresses the chal-
lenges of checking properties of stripped executables articulated in §1.

Our group developed two prior machine-code model checkers, CodeSurfer/x86
[4] and DDA/x86 [3]. Neither system uses underapproximation. For overapprox-
imation, both use numeric static analysis and a different form of abstraction
refinement.

Trace Generalization. The trace-generalization technique of §3.1 has both
similarities to and differences from the trace-refinement technique of Heizmann
et al. [14]. Both techniques adopt a language-theoretic viewpoint and refine an
overapproximation to eliminate families of infeasible concrete traces. However,
trace generalization obtains the desired outcome in a substantially different way.
For Heizmann et al., once a refutation automaton is constructed—which involves
calling an SMT solver and an interpolant generator—refinement is performed by
automaton complementation followed by automaton intersection. In contrast,
our generalized traces are created by generalizing a feasible concrete trace to
create directly a representation that overapproximates the set of minimal traces
that reach target. Consequently, refinement by trace generalization involves no
calls on an SMT solver, and avoids the potentially expensive step of automaton
complementation.
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7 Conclusion

MCVETO resolves many issues that have been unsoundly ignored in previous
work on software model checking. MCVETO addresses the challenge of estab-
lishing properties of the machine code that actually executes, and thus pro-
vides one approach to checking the effects of compilation and optimization on
correctness. The contributions of the paper lie in the insights that went into
defining the innovations in dynamic and symbolic analysis used in MCVETO:
(i) sound disassembly and sound construction of an overapproximation (even
in the presence of instruction aliasing and self-modifying code) (§3.1), (ii) a
new method to eliminate families of infeasible traces (§3.1), (iii) a method to
speculatively, but soundly, elaborate the abstraction in use (§3.2), (iv) new sym-
bolic methods to query the (conceptually infinite) abstract graph (§3.3), and (v)
a language-independent approach to Preα (§3.4). Not only are our techniques
language-independent, the implementation is parameterized by specifications of
an instruction set’s semantics. By this means, MCVETO has been instantiated
for both x86 and PowerPC.
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Abstract. For efficiency and portability, network packet processing code
is typically written in low-level languages and makes use of bit-level op-
erations to compactly represent data. Although packet data is highly
structured, low-level implementation details make it difficult to verify
that the behavior of the code is consistent with high-level data invari-
ants. We introduce a new approach to the verification problem, using a
high-level definition of packet types as part of a specification rather than
an implementation. The types are not used to check the code directly;
rather, the types introduce functions and predicates that can be used to
assert the consistency of code with programmer-defined data assertions.
We describe an encoding of these types and functions using the theories
of inductive datatypes, bit vectors, and arrays in the Cvc3 SMT solver.
We present a case study in which the method is applied to open-source
networking code and verified within the Cascade verification platform.

1 Introduction

Packet-level networking code is critical to communications infrastructure and
vulnerable to malicious attacks. This code is typically written in low-level lan-
guages like C or C++. Packet fields are “parsed” using pointer arithmetic and
bit-wise operators to select individual bytes and sequences of bits within a larger
untyped buffer (e.g., a char array). This approach yields high-performance,
portable code, but can lead to subtle errors.

An alternative is to write packet-processing code in special-purpose high-level
languages, e.g., binpac [17], Melange [13], Morpheus [1], or Prolac [9]. These
languages typically provide a facility for describing network packets as a set of
nested, and possibly recursive, datatypes. The language compilers then produce
low-level packet-processing code which aims to match or exceed the performance
of the equivalent hand-coded C/C++. This requires an expensive commitment
to rewriting existing code.

We propose a new approach, one which fuses the power of higher-leveldatatypes
with the convenience and efficiency of legacy code. The key idea is to use a
high-level description of “packet types” as the basis for a specification, not an
implementation. Instead of using a compiler to try to reproduce a performant
implementation, we can annotate the existing implementation to indicate the
intended high-level semantics, then verify that the implementation is consistent

T. Touili, B. Cook, and P. Jackson (Eds.): CAV 2010, LNCS 6174, pp. 306–320, 2010.
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with those semantics. We make use of the theories of inductive datatypes, bit
vectors, and arrays in Cvc3 to encode the relationship between the high-level
and low-level semantics. Using this encoding, it is possible to verify that the low-
level code represents, in essence, an implementation of a well-typed high-level
specification.

In this paperwe will present our proposednotation for defining packet datatypes
and stating datatype invariants in C code. We describe the translation of the
datatype definition and code assertions into verification conditions in the Cvc3

SMT solver. The encoding relies crucially on automatically generated separation
invariants, which allow Cvc3 to efficiently reason about recursive data structures
without producing false assertion failures due to spurious aliasing relationships.
Finally, we present a case study applying our approach to real code from the
BIND DNS server. We are able to verify high-level data invariants of the code
with reasonable efficiency. To our knowledge, no other verification tool is capable
of automatically proving such datatype invariants on existing C code.

2 A Motivating Example

Figure 1(a) illustrates the definition of a simple, high-level list datatype in a
notation similar to that of languages like ML and Haskell. The type has two
constructors: cons, which creates a list node with an associated data array and
a cdr field representing the remainder of the list, and nil, which represents
an empty list. Figure 1(b) gives the high-level pseudo-code for a function that
computes the length of a list, defined as the number of cons values encountered
via cdr “links” before a nil. The code simply checks whether lst is a cons
value using the “tester” function isCons. If it is, it increments the length and
updates lst using the cdr field. If it is not, it returns the computed length.

In a high-level language, the compiler is given the freedom to implement
datatypes like List as it chooses, typically using linked heap structures to repre-
sent individual datatype values. The programmer concentrates on the high-level
semantics of the algorithm, allowing the compiler to encode and decode the data.
By contrast, in packet processing code, the datatype is defined in terms of an
explicit data layout. The data is “packed” into a contiguously allocated block
of memory. The high-level algorithm and the encoding and decoding of data are
intertwined.

The List type in Fig. 1(c) illustrates a simple “packed” linked list implemen-
tation. Like the definition in Fig. 1(a), List is a union type with two variants.
However, instead of simply declaring a set of data fields, each variant explicitly
defines its own representation. The representation of a cons value is: a 1-bit tag
field (the highest-order bit of the first byte), a 7-bit count field (the lower-order
bits of the first byte), a data field of exactly count bytes, and another List value
cdr, which follows immediately in memory. The value of tag is constrained by
the constant bit vector value 0b1. The constraint requires the tag bit of a cons
value always to be 1. The representation of a nil value has a similar constraint:
a nil value consists of a single 8-bit tag field, which must be 0x00. The fact
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type List =
cons {

count: Nat,
data: Int array,
cdr: List

}
| nil

(a)

Nat list_length(List lst) {
Nat count = 0;
while( isCons(lst) ) {

count++;
lst = cdr(lst);

}
return count;

}
(b)

type List =
cons {

tag:1 = 0b1,
count: 7,
data: u_char[count],
cdr: List

}
| nil {

tag:8 = 0x00
}

(c)

u_int list_length(const u_char *p) {
u_int n, count = 0;
while( (n = *p++) & 0x80 ) {

{ isCons(prev(p)) }
count++;
p += n & 0x7f;
{ toList(p) = cdr(prev(p)) }

}
if( n != 0 ) // malformed list

return (-1);
{ isNil(p) }
return count;

}
(d)

Fig. 1. Defining and using a simple linked list datatype

that the tag bit of a cons value must be 1 while the bits of a nil value must
all be 0 ensures that we can unambiguously decode cons and nil values. (A full
grammar for “packed” datatype definitions is given in Section 3.1.)

Figure 2 illustrates the interpretation of a sequence of bytes as a List value.
The first byte (0x82) has its high bit set; thus, it is a cons value. The low-order
bits tell us that count is 2; thus, data has two elements: 0x01 and 0x02. The
cdr field is another List value, encoded starting at the next byte. This byte
(0x81) is also a cons value, since it also has its high bit set. Its count field is 1,
its data field the single element 0x03. Its cdr is the List value at the next byte
(0x00), a nil value.

Figure 1(d) gives a low-level implementation of the length function, which
operates over the implicit List value pointed to by the input p. (The bracketed,
italicized portions of the code are verification annotations, which are described
in Section 3.3.) Note that the structure of the function is very similar to the
code in Fig. 1(b), but that high-level operations have been replaced by their
low-level equivalents—pointer arithmetic and bit-masking operations are used
to detect constructors and select fields. A notable addition is the if statement
that appears after the while loop. In the high-level code, we could assume that
the data was well-formed, i.e., that every list is either a cons or a nil value.
In the low-level implementation, we may encounter byte sequences which are
not assigned a meaning by the datatype definition—in this case a non-zero byte
in which the high bit is not set, which satisfies the data constraints of neither
cons nor nil. The function handles this erroneous case by returning an error
code.
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Fig. 2. The layout of a List value

The challenge, in essence, is to prove that the low-level code in Fig. 1(d) is
a refinement of the high-level code in Fig. 1(b). To this end, we need to build
a bridge between the high-level semantics of the datatype and the low-level
implementation.

3 Our Approach

The verification process proceeds in four steps:

1. The programmer provides a datatype declaration, as in Fig. 1(c), defining
the high-level structure and layout of the data.

2. Using the datatype declaration, we generate a set of Cvc3 declarations
and axioms encoding the relationship between the high-level type and its
implementation.

3. The programmer adds code annotations specifying the expected behavior of
the low-level code, in terms of functions derived from the datatype definition.

4. We use the Cascade verification platform to translate the code and anno-
tations into a set of verification conditions to be checked by Cvc3. If all of
the verification conditions are valid, then the code satisfies the specification.

3.1 Datatype Definition

Figure 3 gives the full grammar for datatype definitions. The notation for datatype
definitions is similar to that of disjoint union types in higher-level languages like
ML and Haskell. There is an important distinction: unlike datatype implemen-
tations generated by compilers, it is up to the user to ensure that the encoding
of values is unambiguous and consistent. The declaration should provide all of
the information needed both to encode a datatype value as a sequence of bytes
and to decode a well-formed sequence of bytes as a high-level datatype value.

A type consists of a set of constructors. Each constructor has a set of fields.
A field type is one of four kinds: a bit vector of constant integer size, a plain C
scalar type, an array of C type elements, or another datatype. (The syntax of C
type declarators is that of ANSI/ISO C [2].) Bit vectors and C types may have
value constraints. Bit vector constants are preceded by 0b (for binary constants)
or 0x (for hexadecimal constants). Arrays have a length: either a constant integer
or the value of a prior field—the declaration language supports a limited form
of dependent types.
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Type ::= type Id =Cons (| Cons)∗
Cons ::= Id { Field (,Field)∗ }
Field ::= Id :FieldType

FieldType ::= BvType | CType | ArrType | TypeId

BvType ::= IntConst (=BvConst)?

BvConst ::= 0b[01]+ | 0x[0-9a-fA-F]+
CType ::= CScalarType(=CConst)?

ArrType ::= CType [ArrLength]

ArrLength ::= IntConst | Id
TypeId ::= Id

Fig. 3. Grammar for datatype definitions

datatype List = cons { count : BV7, data : (BVN ,BV8) array, cdr : List }
| nil

| undefined

toList : (BVN ,BV8) array × BVN → List

sizeOfList : List → N

m : (BVN ,BV8) array

� : BVN

let x = toList(m, �) in

isCons(x) ⇐⇒ m[�][7] (ConsTest)

isNil(x) ⇐⇒ m[�] = 0 (NilTest)

isCons(x) =⇒ count(x) = m[�][6:0]

∧ (∀0 ≤ i < count(x). data(x)[i] = m[� + i + 1])

∧ cdr(x) = toList(m, � + count(x) + 1)

(ConsSel)

sizeOfList(cons(count, , cdr)) = 1 + count + sizeOfList(cdr) (ConsSize)

sizeOfList(nil) = 1 (NilSize)

sizeOfList(undefined) = 0 (UndefSize)

Fig. 4. Datatype definition and axioms for the type List

3.2 Translation to Cvc3

It is straightforward to translate the datatype definition into an inductive datatype
in the input language of Cvc3. The translation for the List datatype is given
in Fig. 4. We use N to denote the type of natural numbers; BVk to denote the
type of bit vectors of size k (i.e., k-tuples of booleans); and (α, β) array to denote
the type of arrays with indices of type α and elements of type β. We use N to
denote the (platform-dependent) size of a pointer (i.e., the type of pointers is
BVN ). For an array a, a[i] denotes the element of a at index i; similarly, for a
bit vector b, b[i] denotes the ith bit of b and b[j:i] denotes the extraction of bits
i through j (the result is a bit vector of size j − i + 1). The size of the result of
arithmetic operations on bit vectors is the size of the larger operand; the smaller
operand is implicitly zero-extended. When used in an integer context, bit vectors
are interpreted as unsigned.

The translation produces a Cvc3 datatype definition reflecting the data layout
of the declaration augmented with an explicit undefined value. Note that the tag
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fields are omitted from the definition—since they are constrained by constants,
they are only needed to decode the high-level data value.

Cvc3 automatically generates a set of datatype testers and field selectors.
The testers isCons , isNil , and isUndefined are predicates that hold for a List
value x iff x is, respectively, a cons , nil , or undefined value. The selectors count ,
data, and cdr are functions that map a List value to the value of corresponding
field.

Note that the definition of List itself does not include any data constraints on
field values. These constraints are introduced by the function toList , which maps
a pointer-indexed array of bytes m and a location � to the List value represented
by the sequence of bytes starting at � in m. The axioms ConsTest and NilTest

enforce the data constraints on the tag fields of cons and nil, respectively. The
axiom ConsSel represents the encoding of the remaining fields of cons. Note
that there is no explicit rule for the value undefined : if the data constraints given
in ConsTest and NilTest do not apply, then the only remaining value that
toList can return is undefined .

The function sizeOfList maps a List value to the size of its encoding in bytes.
By convention, the size of undefined is 0.

3.3 Code Assertions

The functions generated by the Cvc3 translation are exposed in the assertion
language as functions that take a single pointer argument. In the case of the
function toList, the additional array argument, representing the configuration
of memory, is introduced in the verification condition translation. The pointer
argument of the other functions is implicitly converted to a List value using
toList. The assertion language also provides auxiliary functions init and prev,
mapping variables to their initial values in, respectively, the current function and
loop iteration.

Returning to the code in Fig. 1(d), the bracketed, italicized assertions state the
expected high-level semantics of the implementation. Specifically, they assert:

– The loop test succeeds only for cons values.
– The body of the loop sets p to the cdr of its initial value in each loop

iteration.
– If the value is well-formed, then p points to a nil value when the function

returns.

The functions representing testers rely on the data constraints of the type, e.g.,
p points to a cons value iff the byte sequence pointed to by p satisfies the data
constraints of cons (i.e., the high bit of *p is set). The functions representing
testers rely on the structure of the type, e.g., toList(q)==cdr(p) iff p points
to a cons value and q==p+count(p)+1.

Loops can be annotated with invariants: we can separately prove initialization
and preservation of the invariant, and that each assertion in the body of the loop
is valid when the invariant is assumed on entry.
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3.4 Verification Condition Generation

The final verification step is to use the Cascade verification platform to trans-
late the code and assertions into formulas that can be validated by Cvc3. Verifi-
cation is driven by a control file, which defines a set of paths to check and allows
annotations and assertions to be injected at arbitrary points along a path. Each
code assertion is transformed into a verification condition, which is passed to
Cvc3 and checked for validity. For each condition, Cvc3 will return “valid”
(the condition is always true), “invalid” (the condition is not always true), or
“unknown” (due to incompleteness, Cvc3 could not prove invalidity). Cascade

returns “valid” for a path iff Cvc3 returns “valid” for every assertion on the
path. If Cvc3 returns “invalid” or “unknown” for any assertion, Cascade re-
turns “invalid”, along with a counterexample.

Note 1. Since the background axioms that define datatypes are universally quan-
tified, deciding validity of the generated verification conditions is undecidable in
general. Cvc3 will never return “invalid” for any verification condition that it
cannot prove valid; instead, it will return “unknown” when a pre-determined
instantiation limit is reached. There are fragments of first-order logic that are
decidable with instantiation-based algorithms [6]. Encoding the datatype asser-
tions in a decidable fragment of first-order logic is a subject for future work.

Cascade supports a number of encodings for C expressions and program se-
mantics. For datatype verification, we make use of a bit vector encoding, which
is parameterized by the platform-specific size of a pointer and of a memory word.

An additional consideration is the memory model used in the verification con-
dition. The memory model specifies the interpretation of pointer values and the
effect of memory accesses (both reads and writes) on the program state. A mem-
ory model may abstract away details of the program’s concrete semantics (e.g.,
by discarding information about the precise layout of structures in memory) or
it may refine the concrete semantics (e.g., by choosing a deterministic allocation
strategy). We discuss the memory model in detail in the next section.

4 Memory Model

In order to accurately reflect the datatype representation, we require a memory
model that is bit-precise. At the same time, to avoid a blow-up in verification
complexity and overly conservative results, we would like a relatively high-level
model that preserves the separation invariants of the implementation. To this
end, we define a memory model based on separation analysis [7] that we call a
partitioned heap.

The flat model. First, we will define for comparison a simple model which is
self-evidently sound. A flat memory model interprets every pointer expression
as a bit vector of size N . Every allocated object in the program is associated
with a region of memory (i.e., a contiguous block of locations) distinct from
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all previously allocated regions. The state of memory is modeled by a single
pointer-indexed array m. The value stored at location � is thus m[�].

Using the flat memory model, we can translate the first assertion in Fig. 1(d)
into the verification condition

m1 = m0[&p $→ m0[&p] + 1] ∧ m2 = m1[&n $→ m0[m0[&p]]] ∧ m2[&n][7]
=⇒ isCons(toList(m2, m0[&p]))

where we use &x to denote the location in memory of the variable x (i.e., its
lvalue) and a[i $→ e] to denote the update of array a with element e at index i.
Assuming &p, &n, and m[&p] are distinct, the validity of the formula is a direct
consequence of the axiom ConsTest.

The flat model accurately represents unsafe operations like casts between
incompatible types and bit-level operations on pointers. However, it is a very
weak model—its lack of guaranteed separation between objects makes it difficult
to prove strong properties of data-manipulating programs.

Example 1. Consider the Hoare triple

{ toList(q)==cdr(p) } i++ { toList(q)==cdr(p) }

where p and q are known to not alias i. In a flat memory model, this is interpreted
as

toList(m0, m0[&q]) = cdr(toList (m0, m0[&p]))
∧ m1 = m0[&i $→ m0[&i] + 1]

=⇒ toList(m1, m1[&q]) = cdr(toList(m1, m1[&p]))

Since toList is defined axiomatically using recursion (see Fig. 4), it is not imme-
diately obvious that the necessary lemma

toList(m0, m0[&p]) = toList(m1, m1[&p])

is implied (similarly for q). Even if p and q can never point to i, we cannot rule
out the possibility that the List values pointed to by p and q depend in some
way on the value of i. Now, suppose we add the assumption

allocated(p,p+sizeOfList(p)),

where allocated(x,y) means that pointer x is the base of a region of mem-
ory, disjoint from all other allocated regions, bounded by pointer y. Even then,
the proof of the assertion relies on the following theorem, which is beyond the
capability of automated theorem provers like Cvc3 to prove:

(∀y : x ≤ y ≤ x + sizeOfList(toList(m0, x)) : m0[y] = m1[y])
=⇒ toList(m0, x) = toList(m1, x)

�
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What we require is a separation invariant allowing us to apply the “frame
rule” of separation logic [19,15]:

{ toList(q)==cdr(p)*i==v } i++ { toList(q)==cdr(p)*i==v + 1 }

where * denotes separating conjunction: A*B holds iff memory can be parti-
tioned into two disjoint regions R and R′ where A and B hold, respectively.

The partitioned model. The separation invariants we need can be obtained
using separation analysis [7]. The analysis can be understood as the inverse of
may-alias analysis [10,11]: if pointers p and q can never alias, then the objects
they point to must be separated (i.e., they occupy disjoint regions of memory).

The output of the separation analysis is a partition P = {P1, . . . , Pk}, where
each Pi represents a disjoint region of memory, and a map from pointer expres-
sions to regions—if expression E is mapped to partition Pi, then E can only
point to objects allocated in region Pi. If the separation analysis maps pointers
expressions E and E′ to different partitions, then E and E′ cannot be aliased in
any well-defined execution of the program.

A P -partitioned memory model for partition P = {P1, . . . , Pk} interprets ev-
ery pointer expression as a pair (�, i) ∈ BVN × N, where � is a location and i
is a partition index. The state of memory is modeled by a collection of pointer-
indexed arrays 〈m1, . . . , mk〉. The location pointed to by pointer expression (�, i)
is the array element mi[�].

Example 2. The program in Fig. 1(d) can be divided into two partitions. The
first partition contains the parameter p and local variables n and size. The
second partition contains the object pointed-to by p. We represent the two par-
titions by two memory arrays, s and h, respectively. Thus, the value of the
variable n is represented by the array element s[&n]; the value of the expression
*p is represented by the array element h[s[&p]].

A partitioned memory model solves the problem of Example 1 by isolating
the List value in its own partition:

toList(h0, s0[&q]) = cdr (toList(h0, s0[&p])) ∧ s1 = s0[&i $→ s0[&i] + 1]
=⇒ toList(h0, s1[&q]) = cdr(toList(h0, s1[&p]))

Given that &p, &q and &i are distinct, the formula is trivially valid. �

We say a program is memory safe if all reads and writes through pointers occur
only within allocated objects. Like pointer analysis, the soundness of the separa-
tion analysis is conditional on memory safety. Thus, the soundness of verification
using a partitioned memory model will likewise be conditional on memory safety.

It may seem questionable to attempt to verify a program using information
which depends for its correctness on prior verification of the same program.
In previous work, we showed that a sound combination is possible, as long as
the verification procedure ensures that no memory safety errors occur along the
path under consideration [5]. It is thus essential that the verification conditions
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include assertions that establish the memory safety of the statements along each
path in the program.

In our experience, a partitioned memory model can make an order-of-magnitude
difference in verification time compared to a flat memory model—indeed, prop-
erties are provable by Cvc3 using a partitioned model that cannot be proved
using a flat model (see Section 5.1).

5 Case Study: Compressed Domain Names

To demonstrate the utility of our approach, we will describe a more complex
application, taken from real code. We will show the definition of a real-world
datatype, the annotations for a function operating on that datatype, and the
results of using Cascade to verify the function.

A definition for the datatype Dn, representing an RFC 1035 compressed do-
main name [14], is given in Fig. 5. Dn is a union type with three variants: label,
indirect, and nullt. The representation of a label value is: a 2-bit tag field
(which must be zeroes), a 6-bit len field (which must not be all zeroes), a label
field of exactly len bytes, and another Dn value rest, which follows immediately
in memory. An indirect value has a 2-bit tag (which must be 0b11) and a
14-bit offset. A nullt value has only an 8-bit tag, which must be zero. The con-
straints on the tag fields of label, indirect, and nullt allow us to distinguish
between values.

type Dn =
label {

tag:2 = 0b00,
len:6 != 0b000000,
name:u_char[len],
rest:Dn

}
| indirect {

tag:2 = 0b11,
offset:14

}
| nullt {

tag:8 = 0x00
}

Fig. 5. Definition of the Dn datatype

Consider the function ns name skip in Fig. 6. The low-level pointer and bit-
masking operations represent the traversal of the high-level Dn data structure.
The correctness of the implementation is properly expressed in terms of that
data structure.

In terms of the type Dn, the code in Fig. 6 is straightforward. The pointer cp,
the value pointed to by the parameter ptrptr, points to a Dn value. The loop
test (Line 12) assigns the first byte of the value to the variable n and advances
cp by one byte. If n is 0, then cp pointed to a nullt value and the loop exits.
Otherwise (Line 14), the switch statement checks the two most significant bits
of n—the tag field of a label or indirect value. If the tag field contains zeroes
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1 #define NS_CMPRSFLAGS (0xc0)
2

3 int
4 ns_name_skip(const u_char **ptrptr, const u_char *eom) {
5 { allocated(*ptrptr, eom) }
6 const u_char *cp;
7 u_int n;
8

9 cp = *ptrptr;
10 { @invariant: cp ≤ eom =⇒
11 cp + sizeOfDn(cp) = init(cp) + sizeOfDn(init(cp)) }
12 while (cp < eom && (n = *cp++) != 0) {
13 /* Check for indirection. */
14 switch (n & NS_CMPRSFLGS) {
15 case 0: /* normal case, n == len */
16 { isLabel(prev(cp)) }
17 cp += n;
18 { rest(prev(cp)) = toDn(cp) }
19 continue;
20 case NS_CMPRSFLGS: /* indirection */
21 { isIndirect(prev(cp)) }
22 cp++;
23 break;
24 default: /* illegal type */
25 __set_errno (EMSGSIZE);
26 return (-1);
27 }
28 break;
29 }
30 if (cp > eom) {
31 __set_errno (EMSGSIZE);
32 return (-1);
33 }
34 { cp = eom ∨ cp = init(cp) + sizeOfDn(init(cp)) }
35 *ptrptr = cp;
36 return (0);
37 }

Fig. 6. The function ns name skip from BIND

(Line 15), cp is advanced past the label field to point to the Dn value of the rest
field. If the tag field contains ones (Line 20), cp is advanced past the offset
field and breaks the loop. The default case of the switch statement returns
an error code—the tag field was malformed. At the end of the loop, if cp has
not exceeded the bound eom, the value of cp is one greater than the address of
the last byte of the Dn value that cp pointed to initially. This is the contract
of the function: given a reference to a pointer to a valid Dn value, it advances
the pointer past the Dn value or to the bound eom, whichever comes first, and
returns 0; if the Dn value is invalid, it returns -1.

Annotating the source code. The datatype definition is translated into an
inductive datatype with supporting functions and axioms, as in Section 3.2.
The translation generates testers isLabel , isIndirect , and isNullt ; selectors len ,
name, rest , etc.; and the encoding functions toDn and sizeOfDn . Each of these
functions is now available for use in source code assertions, as in the bracketed,
italicized portions in Fig. 6.

The annotations in Fig. 6 also make reference to some auxiliary functions:
init(x) represents the initial value of a variable x in the function; prev(x)
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s0[&cp] ≥ s0[&eom]

∨ s0[&cp] + sizeOfDn(toDn(h0, s0[&cp]))

= init(&cp) + sizeOfDn(toDn(h0, init(&cp))) (1)

s0[&cp] < s0[&eom] (2)

s1 = s0[&cp �→ s0[&cp] + 1] (3)

s2 = s1[&n �→ h0[s0[&cp]]] (4)

s2[&n] 	= 0 (5)

s2[&n][7 : 6] = 0 (6)

is label(toDn(h0, s0[&cp])) (7)

s3 = s2[&cp �→ s2[&cp] + s2[&n]] (8)

rest(toDn(h0, s0[&cp])) = toDn(h0, s3[&cp]) (9)
s4[&cp] ≥ s4[&eom]

∨s4[&cp] + sizeOfDn(toDn(h0, s4[&cp]))

= init(&cp) + sizeOfDn(toDn(h0, init(&cp))) (10)

Fig. 7. Verification conditions for ns name skip

represents the previous value of a variable x in a loop (i.e., the value at the
beginning of an iteration).

On entry to the function (Line 5), we assume that the region pointed to by
*ptrptr and bounded by eom is properly allocated. To each switch case (Lines
15 and 20), we add an assertion stating that the observed tag value (i.e, n &
NS CMPRSFLGS) is consistent with a particular datatype constructor (i.e., label
or indirect). (Note that prev(cp) refers to the value of cp before the loop test,
which has side effects). The loop invariant (Lines 10-11) states that cp advances
through the Dn data structure pointed to by init(cp)—in each iteration of the
loop, if cp has not exceeded the bound eom, it points to a Dn structure (perhaps
the “tail” of a larger, inductive value) that is co-terminal with the structure
pointed to by init(cp). On termination, the loop invariant implies the desired
post-condition: if no error condition has occurred, *ptrptr will point to the
byte immediately following the Dn value pointed to by init(cp)—the pointer
will have “skipped” the value. Note that we do not require an assertion stating
that cp is reachable from init(cp) via rest “pointers” to prove the desired
property—the property is provable using purely inductive reasoning.

Using the code annotations, Cascade can verify the function by generating
a set of verification conditions representing non-looping static paths through the
function. Fig. 7 gives an example of such a verification condition. It represents
the path from the head of the loop through the 0 case of the switch statement
(Line 15), ending with the continue statement and asserting the preservation
of the loop invariant. (Note that we assume here that pointers are 8 bits. Larger
pointer values are easily handled, but the formulas are more complicated.) As
in Section 4, the verification condition uses a partitioned memory model with
two memory arrays, s and h: the values of local variables and parameters are
stored in s while the Dn value pointed to by cp is stored in h. Proposition (1)
asserts the loop invariant on entry. Propositions (2)–(5) represent the evaluation,
including effects, of the loop test. Proposition (6) represents the matching of the
switch case. Propositions (7)–(9) capture the body of the case block. Finally,
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Proposition (10) (the proposition we would like to prove, given the previous
assumptions) asserts the preservation of the loop invariant.

5.1 Experiments

Table 1 shows the time taken by Cvc3 to prove the verification conditions gener-
ated by Cascade for ns name skip, using both the flat and partitioned memory
models. The times given are for a Intel Dual Core laptop running at 2.2GHz with
4GB RAM. Each VC represents a non-looping, non-erroneous path to an asser-
tion. The two Term VCs represent the loop exit paths: Term (1) is the path
where the first conjunct is false (cp >= eom; Term (2) is the path where the
first conjunct is true (cp < eom) and the second is false (n == 0). The verifica-
tion conditions marked with * for the flat memory model timed out after two
minutes—we believe that these formulas are not provable in Cvc3. All of the
verification conditions together can be validated using the partitioned memory
model in less than one second.

Table 1. Running times on ns name skip VCs

Time (seconds)
Name Lines Flat Part.
Init 5–12 0.34 0.03

Case 0 (1) 12-16 13.94 0.05
Case 0 (2) 12-28 33.42 0.06
Case 0 (3) 12-19 * 0.12

Case 0xc0 (1) 12–14, 20–21 6.14 0.04
Case 0xc0 (2) 12–14, 20–23, 30, 34 * 0.07

Term (1) 12, 30, 34 0.63 0.06
Term (2) 12, 30, 34 * 0.05

6 Related Work

Some early work on verification of programs operating on complex datatypes
was done by Burstall [4], Laventhal [12], and Oppen and Cook [16]. Their work
assumes that data layout is an implementation detail that can be abstracted
away. Our work here focuses on network packet processing code, where the linear
layout of the data structure is an essential property of the implementation.

More recently, O’Hearn, Reynolds, and Yang [15] have approached the prob-
lem using separation logic [19,8]. Given assumptions about the structure of the
heap, the logic allows for powerful localized reasoning. In this work, we use sep-
aration analysis in the style of Hubert and Marché [7] to establish separation
invariants, thus “localizing” the verification conditions.

Rakamaric and Hu [18] describe a variation of Burstall’s memory model [4,3]
suitable for bit-precise verification of low-level code. However, their approach
relies on a compile-time type analysis of the program—since we are trying to
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verify datatypes that are not explicitly represented in the program code, we must
rely on a more primitive model.

7 Conclusions

In this paper, we have presented a novel approach to the verification of low-
level packet processing code. Instead of rewriting code in a high-level declara-
tive language, we propose to apply the information derived from a declarative
specification to enable checking high-level assertions embedded in the low-level
implementation. The approach allows for the continued use of tested, performant
code, with the increased assurance of verification. The experimental results are
encouraging; we believe our technique can scale to several hundreds or thousands
of lines of code. In future work, we intend to extend our technique to a broader
class of datatypes, including more typical pointer-linked data structures.
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Abstract. Abstract microarchitectural models of communication fab-
rics present a challenge for verification. Due to the presence of deep
pipelining, a large number of queues and distributed control, the state
space of such models is usually too large for enumeration by protocol
verification tools such as Murphi. On the other hand, we find that state-
of-the-art rtl model checkers such as abc have poor performance on
these models since there is very little opportunity for localization and
most of the recent capacity advances in rtl model checking have come
from better ways of discarding the irrelevant parts of the model. In this
work we explore a new approach for verifying these models where we
capture a model at a high level of abstraction by requiring that it be
described using a small set of well-defined microarchitectural primitives.
We exploit the high level structure present in this description, to auto-
matically strengthen some classes of properties, in order to make them
1-step inductive, and then use an rtl model checker to prove them. In
some cases, even if we cannot make the property inductive, we can dra-
matically reduce the number and complexity of lemmas that are needed
to make the property inductive.

1 Introduction

Consider the microarchitectural model shown in Figure 1. It consists of a source
that non-deterministically generates packets that contain the 6-bit value 0. The
source feeds into a pair of serially connected fifos each of size k, the second of
which feeds into a sink that consumes a packet non-deterministically. The com-
munication between the source, the fifos and the sink is by means of a simple
handshake. We present a formal semantics for these microarchitectural primitives
in Section 3, but we hope that for now this intuitive description suffices.

Consider the problem of verifying that any packet seen at the output of the
second fifo contains the value 0. If we generate Verilog from this description
and use a state-of-the-art rtl model checking engine such as abc [3] (winner of
the 2008 cav Hardware Model Checking contest), we find that this apparently
trivial problem is surprisingly hard even for small values of k. For instance,
even for k = 4, abc takes about 10 minutes to solve this problem on an Intel
3 GHz Xeon processor resorting to interpolation to prove it. Our experience
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k k

0 (6-bit)

x y z

Fig. 1. A simple microarchitectural model with a source that generates the 6-bit value
0, two queues that can store k elements each and a sink. The components are connected
by channels x, y and z.

with other industrial tools is similar. And this is for a system with only two
queues and a simple topology. In our work on modeling the microarchitecture
of communication fabrics we routinely encounter systems where a packet may
traverse tens of queues in its lifetime (due to pipelining, path splitting and
reconvergence, etc.) and there is complex control logic for resource management.
Therefore, even if each queue is sized minimally and packets are represented
abstractly, there is still a lot of state. rtl model checkers – though useful for
bounded model checking – are unsuccessful in producing proofs for all but the
simplest examples even when run for days or weeks. On the other hand, explicit
state model checkers such as Murphi run out of memory since there are many
interleavings due to non-determinism and deep pipelining.

If we go back to our example, it is obvious to a human designer that the
property should hold. It is obvious since we are able to use our knowledge of
queues in order to reason about the system. However, when we throw this prob-
lem to abc or Murphi, this high-level information is lost. abc sees a sea of
gates, and Murphi a sea of rules. The traditional approach to handling such
verification problems is to resort to theorem proving, or its cousin manual in-
variant strengthening. In manual invariant strengthening, a verification engineer
adds additional invariants (called lemmas) to the model so that the entire set
of invariants becomes inductive. Adding these additional invariants is a black
art often requiring expertise both in formal verification and the system being
verified [10].

In this work, we seek a less labor-intensive way of exploiting the high-level
structure of our models than theorem proving or invariant strengthening. The
key idea is to require that the microarchitectural models be described in terms
of a small set of primitives such as queues, arbiters, forks and joins. Using our
knowledge of these primitives, we can automatically add a number of lemmas
so that the whole set of invariants becomes (1-step) inductive. Most of these
lemmas are not local primitive-specific invariants, but are obtained by global
analysis of the model. The experimental results are very encouraging: with no or
little human effort and little CPU time, we can now prove a number of properties
on real models which could not be proved before. In our example above, all
necessary lemmas are added automatically, and abc discharges the resulting
problem in almost no time.

The requirement that the model be expressed in terms of specific primitives
could be a difficult one to satisfy in general. However, the set of primitives we use
in this work originated in a project aimed at reducing the effort required to write
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microarchitectural models of communication fabrics [4]. Using this modeling
methodology we have been able to capture the microarchitecture of a number of
real designs and to validate them using simulation and bounded model checking.
The goal of this work is to extend verification to obtain full proofs of correctness
for some important types of properties.

The use of “high-level structure” for more efficient model checking is a holy
grail of hardware verification. We believe this work makes a contribution in
that direction by presenting a concrete proposal for describing hardware at a
level of abstraction higher than rtl along with a couple of analysis techniques
that illustrate how such structure could be exploited for efficient verification.
The properties we consider are simpler than those verified in previously pub-
lished manual efforts (e.g. see [9,10] and references therein) but we seek more
automation. On the other hand, the use of high-level structure allows us to infer
invariants which would be very difficult for existing automatic rtl-based meth-
ods (e.g. see [1] and references therein) to discover. What we present is only a
beginning, and we hope that these techniques can be extended to an even larger
class of properties in future work.

2 Methodology

Our microarchitectural models are described by instantiating components from
a library of primitives and connecting them. We refer to these models as xmas

networks (xmas stands for eXecutable MicroArchitectural Specification). The
properties to be verified are specified on these networks. For verification, an
xmas network is compiled down into a synchronous model (single clock, edge-
triggered Verilog to be precise) which is then verified. We refer to this model as
the synchronous model.

Although the techniques presented in this paper could be used to directly ver-
ify xmas models instead of the synchronous models, in this work, we simply use
the high-level structure in the xmas models to discover new invariants which are
then used in the verification of the synchronous model. We choose this approach
partly for engineering convenience (we use a conventional model checker as the
trusted engine and view the analysis described in this paper as providing verifi-
cation hints) and partly because the methods described in this paper cannot be
used to prove all properties of interest (in particular liveness). A nice side effect
of this approach is that the invariants we add get checked by the model checker
rather than being assumed as given.

3 xmas Models

xmas models are constructed by instantiating components from a library of
microarchitectural primitives and connecting them with channels. Channels are
typed. In the synchronous model, a channel x with type α has two boolean
signals x.irdy (for initiator ready) and x.trdy (for target ready) for control and
one signal x.data that has type α for the data.
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Fig. 2. A key showing the symbols for the various primitives used to model microar-
chitectural blocks. Section 3 describes these components in detail. The italicized letters
(k, f , e, g, h and s) indicate parameters. Whenever we use these primitives in a diagram
we need to specify values for these parameters. Often, to avoid clutter we do not show
these values explicitly trusting that they are clear from the context. In contrast, the
gray letters (i, o, a, and b) in this figure only indicate port names and are only shown
to help you understand the formal definitions in Section 3. Observe that for some com-
ponents such as the fork, we place the parameter close to the “corresponding” port in
the diagram.

A channel is connected to exactly two components: one component called
the initiator that “writes” to the channel (via an output port) and another
component called the target that “reads” from the channel (via an input port).
In the synchronous model, the initiator drives irdy and data signals (and reads
trdy) whereas the target drives trdy (and reads irdy and data). Intuitively, a
data element (or a packet) is transferred across a channel in those cycles when
both irdy and trdy are true. Note that a channel is just a three wires and stores
no state. A channel is represented in our diagrams by a line.

An xmas network may be viewed as a directed graph with the components as
nodes and channels as edges. Edges are directed from initiator to target.

Example. In Figure 1, there are three channels x, y and z. For channel x, the
initiator is the source and the target is the first queue. Thus x is connected to
the output port of the source and to the input port of the first queue. The output
port of the first queue is connected to channel y.

Figure 2 shows the library of kernel primitives. We formally specify each primi-
tive by providing the synchronous equations that are generated for it. We present
this in some detail because the exact definitions are important to understand
the invariants that we generate later. These definitions may be skimmed on a
first reading.

Queue. In our models, storage is implemented by queues.1 In terms of interface,
a queue is one of the simplest primitives. It is parameterized by a type α of
the elements stored in the queue and a non-negative integer k that indicates
the capacity of the queue. It has one input port i which is connected to the
target end of a channel that is used to write data into the queue. Clearly, this
channel must have type α, and for convenience we say that port i also has
type α, denoted by i : α. Likewise, the output port o : α is connected to the

1 Our queues are always fifo i.e. first-in-first-out.
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initiating end of the channel that reads data out of the queue. The equations for
a queue are:

o.irdy := (pre(num) �= 0) i.trdy := (pre(num) �= k)
enq := i.irdy and i.trdy deq := o.irdy and o.trdy

where enq and deq are combinational signals defined for convenience, and num
is the current occupancy of the queue given by:

num := pre(num) + 1 if enq and not deq
pre(num) − 1 if deq and not enq
pre(num) otherwise

where pre is the standard synchronous operator that returns the value of its
argument in the previous cycle and the value 0 in the first cycle [2]. The elements
in the queue are stored in an array called mem of size k of signals of type
α. These are indexed by head and tail pointers used for reading and writing,
correspondingly.

head := if deq then inck(pre(head)) else pre(head)
tail := if enq then inck(pre(tail)) else pre(tail)

where inck(x) ≡ if x = k − 1 then 0 else x + 1. For j ∈ {0, k − 1} we have
memj := if enq and j = pre(tail) then i.data else pre(memj)

and,
o.data := pre(mem0) if pre(head) = 0

pre(mem1) if pre(head) = 1
...

pre(memk−1) if pre(head) = k − 1

Among our set of primitives a queue is the only one that can store data. It is
also the only delay element: even if the queue is empty, an input packet is visible
at the output only after 1 cycle.

Source. A source is a primitive which is parameterized by a constant expression
e : α.2 Each cycle, it non-deterministically attempts to send a packet e through
its output port. A source has a single output port o : α and is governed by the
following equations:3

o.irdy := oracle or pre(o.irdy and not o.trdy) o.data := e

where oracle is an unconstrained primary input that is used to model the non-
determinism of the source in the synchronous model. Each source has its own
oracle. We define o.irdy in this specific manner to keep it persistent regardless
of the oracle behavior: i.e. once a source makes a value available on the channel,
it preserves that value until a transfer. Also note that one can imagine more
complex sources which emit arbitrary values from a given set. However, for ease
of exposition we stick to the simpler definition above.

2 Henceforth we only mention the value parameters of a component and leave the type
parameters implicit.

3 When o.irdy is false, o.data is a don’t care. But for brevity in the equations, we
always assign to o.data rather than only when o.irdy is asserted.



326 S. Chatterjee and M. Kishinevsky

Sink. Dually, a sink is a component which non-deterministically consumes a
packet. It has one input port i : α and is characterized by the following equation:

i.trdy := oracle or pre(i.trdy and not i.irdy)

Function. A function primitive is used to model transformations on the data.
It is parameterized by a function f : α → β. It has an input port i : α and an
output port o : β and is fully characterized by the following equations:

o.irdy := i.irdy o.data := f(i.data) i.trdy := o.trdy

Note that f is a combinational function that is applied to the input data to
generate the output data.

Fork. A fork is a primitive with one input port i : α and two outputs ports a : β
and b : γ parameterized by two functions f : α → β and g : α → γ. Intuitively,
a fork takes an input packet and creates a packet at each output. It coordinates
the input and outputs so that a transfer only takes place when the input is ready
to send and both the outputs are ready to receive. Formally,

a.irdy := i.irdy and b.trdy a.data := f(i.data)
b.irdy := i.irdy and a.trdy b.data := g(i.data)
i.trdy := a.trdy and b.trdy

Join. A join is the dual of a fork. It has two input ports a : α and b : β and
one output port o : γ. It is parameterized by a single function h : α × β → γ.
Intuitively, a join takes two input packets (one at each input) and produces a
single output packet. It coordinates the inputs and output so that a transfer
only takes place when the inputs are ready to send and the output is ready to
receive. Formally,

a.trdy := o.trdy and b.irdy b.trdy := o.trdy and a.irdy
o.irdy := a.irdy and b.irdy o.data := h(a.data, b.data)

Switch. A switch is a primitive to route packets in the network. It has an input
port i and two output ports a and b, all of type α. It is parameterized by a
switching function s : α → Bool. Informally, the switch applies s to a packet x
at its input, and if s(x) is true, it routes the packet to port a, and otherwise it
routes it to port b. Formally,

a.irdy := i.irdy and s(i.data) a.data := i.data
b.irdy := i.irdy and not s(i.data) b.data := i.data
i.trdy := (a.irdy and a.trdy) or (b.irdy and b.trdy)

Merge. Arbitration is modeled by a merge primitive that selects one packet
among multiple competing packets. A merge has multiple input ports and one
output port. Requests for a shared resource are modeled by sending packets to a
merge, and a grant is modeled by the selected packet. For simplicity we present
here a complete definition of a two-input merge that has two input ports a : α
and b : α and one output o : α.
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o.irdy := a.irdy or b.irdy
o.data := a.data if u and a.irdy

b.data if not u and b.irdy
a.trdy := u and o.trdy and a.irdy
b.trdy := not u and o.trdy and b.irdy

where u is a local Boolean state variable to ensure fairness. We could choose a
specific fairness algorithm such as

u := 1 if a.irdy and not b.irdy
0 if not a.irdy and b.irdy
not pre(u) if pre(o.irdy and o.trdy)
pre(u) otherwise

Example. Figure 3 shows two agents P and Q communicating via a router.
Packets are modeled by triples (t, s, d), where t ∈ {req, rsp} is the type of the
packet, s ∈ {P, Q} is the source and d ∈ {P, Q} is the destination. Each agent
creates new requests for the other agent or for itself. When an agent receives a
request (from the other agent or from itself) it produces a response by changing
the type of the message and swapping the source and the destination. The re-
sponse is produced after a non-deterministic delay. The response is sent back to
the requester where it is sunk after a non-deterministic delay. The router routes
messages according to their destinations i.e. d. (In practice this simplified mi-
croarchitecture would not be used since it deadlocks. Deadlocks can be avoided
by using virtual channels as we discuss later.)

nd-delay

nd-delay

(rsp sink)

(rsp sink)

agent Q

agent P

k

k

(ingress 
queue)

(ingress 
queue)

m m

n

n

router

(req,P,Q) (req,P,P)

(req,Q,P)(req,Q,Q)

(t,s,d)    (rsp,d,s)

(t,s,d)    (rsp,d,s)

(t,s,d)    (d==P)

(t,s,d)    (d==Q)

(t,s,d)    (t==req)

(t,s,d)    (t==req)

Fig. 3. Example showing a pair of agents communicating over a simple fabric (see text
for details). The nd-delay box models non-deterministic delay (the functions of the
fork are identity). Since each symbol has a precise formal semantics (see Section 3) this
figure is a precise executable description.
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4 Analysis for Channel Properties

A very common verification problem on xmas networks is to check that all values
flowing through a channel satisfy some property. For instance, at the input of
an agent, we may wish to check that all packets that arrive have the agent as
the destination. Invariants of this kind are called channel properties, and in this
section we see how such invariants may be strengthened.

4.1 Channel Properties

If x is a channel that has type α, a channel property is a function p : α → {0, 1}.
Intuitively, if a property p is asserted on a channel x, it means that whenever a
valid value is seen on the channel (i.e. x.irdy is asserted), the data on the channel
must satisfy p. Formally, a channel property p on a channel x corresponds to the
ltl invariant G(x.irdy =⇒ p(x.data)) in the synchronous model. For brevity,
we sometimes simply say property instead of channel property.

Example. The verification problem in the introduction corresponds to verifying
the channel property v $→ (v = 0) on channel z.4 This corresponds to the ltl

property G(z.irdy =⇒ (z.data = 0)) in the synchronous model.

4.2 Propagating Channel Properties

Given a channel property p, we can derive properties on other channels that are
“implied” by p using a set of rules. These rules are similar in spirit to Hoare
rules [8] used in program verification and are derived syntactically (i.e. no rea-
soning is involved). The goal is to strengthen the ltl invariant corresponding
to p in the synchronous model with the additional invariants obtained from the
new channel properties. The soundness of these rules may be verified from the
definitions given in Section 3.

Rule for Queue. Since a queue does not modify the data it holds, a property
holds on the output of a queue iff it holds on the input.

Example. In our running example (Figure 1), the property v $→ (v = 0) holds at
z iff it holds at y. Similarly the property holds at y iff it holds at x. It turns out
that adding the ltl properties corresponding to the channel properties for x and
y, does not make the resulting verification problem on the synchronous model
inductive. We need further strengthening, and we return to this topic shortly.

Rule for Function. Given an instance of a function primitive with the parameter
f : α → β, a channel property p holds at the output iff the property p′ = p ◦ f
holds at the input.

Rule for Switch. Consider an instance of a switch whose switching function
is s : α → β. The channel property p holds at the output a iff the property
4 By “v �→ (v = 0)” we mean the function that is 1 iff the input is equal to 0, i.e. the

function λv.(v = 0) using λ notation.
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v $→ (s(v) =⇒ p(v)) holds at the input. Likewise, a property p holds at output
b iff the property v $→ ((¬s(v)) =⇒ p(v)) holds at the input.

Rule for Mux. A channel property holds on the output iff it holds on each input.

Rule for Fork. A channel property p holds on the output a of a fork iff p′ = p◦f
holds on the input. Similarly, p holds on the output b of a fork iff p′ = p◦g holds
on the input.

Rule for Restricted Join. Propagating a property across a join is tricky since
the output of a join in general could be functionally dependent on both inputs.
However, in our examples drawn from the domain of communication fabrics, joins
are only used to control access to resources (e.g. see examples of credit logic and
virtual channels in Section 5). Therefore, the join function depends only on at
most one input of the join (called the functional input) i.e. it is of the form
h : α → γ (instead of h : α×β → γ). In such cases the other input carries tokens
(i.e. values having the unit type). It is easy to detect such joins automatically
since the join function h syntactically depends only on one of the inputs. If h
is constant, then either input may be taken as the functional input. Given such
a join with the restricted function h : α → γ, a property p holds at the output
iff p′ = p ◦ h holds at the functional input of the join. Extending propagation
to general joins appears to be a hard problem since it involves reasoning about
multiple channels.5

4.3 Queue Invariants

If we have a channel property p at the output of a queue, using the rule for
queues presented above, we also have the property p at the input of the queue.
However, simply adding the invariants from these properties to the ltl model
does not make the synchronous problem (1-step) inductive. It is easy to see why:
Suppose a queue is in a state where it has more than 2 elements. Even if these
properties hold at the output and input of the queue, at best they guarantee that
only the oldest and youngest element in the queue satify p. They say nothing
about the other elements in the queue.

Therefore we need additional invariants to ensure that every element stored
in the queue satisfies p. For j ∈ [0, k), where k is the size of the queue, we add
the ltl invariant (recall the state variables of a queue from Section 3)

G(usedj =⇒ p(memj))

where usedj is a predicate over the state that indicates if the jth storage element
in the queue is used or not. It is defined as follows:

usedj := (head < tail and (head ≤ j and j < tail)) or
(head > tail and (head ≤ j or j < tail)) or (num = k)

5 Even with general joins there is an easy case. If p is a property such that p′ = p ◦ h
depends on only one variable, then it suffices to propagate p′ along the corresponding
input.
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Along with this, we add the ltl assertions G(num ≤ k), G(head < k) and G(tail
< k) to ensure that these state variables are within bounds. Finally, we need to
add the following invariants to establish the correct relationship between these
3 state variables:

G(head < tail =⇒ head + num = tail)
G(head > tail =⇒ head + num = tail + k)
G(head = tail =⇒ num = 0 or num = k)

These assertions are used to ensure that the head and tail pointers behave as
expected and provide a local over-approximation of the state-space.

4.4 A Note on Local Invariants

The queue invariants added above block off portions of the unreachable state
space that would otherwise lead to false counter examples in induction. However
since these invariants are local, any correlation between different queues is not
captured. However, this is exactly how a human designer thinks about the sys-
tem: for example seldom would the correctness of a design depend on say two
head pointers in two different queues taking on the same value in all portions of
the reachable state space.

Indeed, if the correct operation of a design relies on the correlation between
different components, typically this is enforced in the design by some explicit
communication structure between them. A common case in our models for this
case is when the occupancy of multiple queues are correlated in the reachable
state space. We study this problem in the next section where we follow this
communication trail to infer the appropriate invariants.

The queue is our main state holding element. Among all the primitives, the
only other interesting state holding element is the merge which maintains state
for fairness. If the merge has multiple inputs, then the appropriate local invari-
ants for the fairness logic need to be added. (For the particular 2-input merge
presented in Section 3, we do not need to add constraints for the u variable since
it can take on both 0 and 1 values in the reachable space.)

4.5 Propagation Algorithm

Given a property p on a channel, we try to maximally propagate it backwards
using the obvious iterative algorithm. This is done by looking at the initiator
of the channel, and applying the corresponding rule from Section 4.2. This cre-
ates new properties at the inputs of the initiator. This process is repeated for
each newly added property. If the initiator is a source, then the property is not
(cannot be!) propagated further. If the xmas network has a directed cycle, the
above process will not terminate. We handle this by recording the “parent” and
stopping when a cycle is encountered.

After all properties have been propagated in this manner, for each queue in
the system, we add the local invariant according to the scheme described in
Section 4.3 for each property at the output of the queue.



Automatic Generation of Inductive Invariants 331

Theorem 1 (Partial Completeness). Given an acyclic xmas network N
where all joins are restricted, and a property p on a channel in N that holds,
the above algorithm adds sufficiently many invariants to make the synchronous
problem 1-step inductive.

The propagation algorithm often leads to the creation of a large number of prop-
erties. However, many properties can be discharged locally i.e. during the prop-
agation process, they become tautologies i.e. the constant 1 function. Therefore
we use a reasoning engine to detect tautological properties and do not propagate
them further. This is an important optimization in practice.

Example. In the example of Figure 3, let l be the property (t, s, d) $→ (d = P ) at
the ingress queue of agent P . If we propagate l backwards through the queues
and switches in the router using the above algorithm, we find that the properties
that are obtained from l at each input of the router are of the form (t, s, d) $→
((d = P ) =⇒ (d = P )) which is a tautology. These tautological properties need
not be propagated further.

Remark on cycles. Most properties become tautologies during propagation, so
cycles in the xmas network are not a problem (as in the example above). How-
ever, for those that do not become tautologies, it may be necessary to add ad-
ditional channel invariants on loops to “break” the cycle. Furthermore, in many
cases in communication fabrics we find that packets loop at most k times, where
k is small (i.e. 1 or 2). For example in Figure 3, k = 2 (for a self-request). We
could handle such cases automatically by unrolling loops k + 1 times.

5 Invariants from Flows

As remarked in Section 4.4, if the correct operation of a design relies on cor-
relation between state variables in different components then in a real design
there is usually an explicit communication mechanism between them for coordi-
nation. In this section we present an algorithm to analyze a commonly-occuring
communication of this form that leads to correlation among the occupancies of
different queues in the system. The invariants added by this analysis allow us
to prove an important class of safety properties that check that the queues in
a system are sized correctly. Such safety properties are necessary for reasoning
about liveness.

5.1 The Basic Idea

Example (credits). Consider the xmas network shown in Figure 4 which shows
a master agent M communicating with a target T . The credit logic portion of
T issues at most k outstanding credits to M at any given time. Credits are
modeled as values of the unit type called tokens. M has to wait for a credit
before it can send a request to T . The purpose of this mechanism is to ensure
that there is always room in T ’s ingress queue for requests from M i.e. nothing
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Fig. 4. Credits introduce correlation between the occupancies of different queues. Both
joins are restricted in the sense of Section 4.2 since at least one input is a token.

gets stuck on channel r. Thus r is non-blocking i.e. satisfies the LTL property:
G (r.irdy =⇒ r.trdy). Credits are freed up when data is read from the ingress
queue of T .

The non-blocking property on r is not inductive. However, by adding the
invariant

G(numc + numi = numo)

to the synchronous model, the problem becomes inductive.6 Here, numc is the
num variable of the credit queue in M , numi the same for the ingress queue in
T and numo for the outstanding credits queue in T .

The question now is how can we detect such global assertions automatically?
If x is a channel, let λx denote the number of packets that have been transferred
on x upto a given point in time (i.e. λx is the count of the number of cycles so
far in which x.irdy and x.trdy were both asserted). Now, from the equations of
a join in Section 3 it is easy to see that either a transfer happens on both inputs
and the output of a join or there is no transfer at any input or the output. Thus
for the two joins in Figure 4 we have,

λe = λf = λr and λs = λw = λz .

Similarly, for a fork it can be verified that either a transfer happens on both
output and the input or there is no transfer at all. Thus for the two forks in the
system we have the equations

λu = λt = λv and λp = λn = λs.

A queue is more interesting. Any packet that enters a queue is either still in the
queue or has exited through the output channel. Thus from the three queues in
Figure 4 we get the following three equations:

λr = numi + λp λt = numc + λe λv = numo + λw

6 Assuming that the (local) assertions G(num ≤ k) for each queue have already been
added.
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Fig. 5. Example of a shared communication path that requires more precise flow anal-
ysis. The credit logic bubbles encapsulate the logic shown in the credit logic box of
Figure 4. The switch in the target routes A packets to l1 and B packets to l2. The joins
in M are restricted and have the identity function.

From these 7 equations, we can eliminate the λ variables to get the desired re-
lationship between the num variables. This can be done automatically in the
following manner. First we create a matrix from the equations where all λ vari-
ables are to the left and all num variables are to the right. Then this matrix is
converted to Reduced Row Echelon (rre ) form by Gaussian elimination (over
the rationals). Finally, we select the equations from the rre form which involve
only the num variables (i.e. the coefficients of all λ variables are 0).

Note that the λ variables are unbounded and by this elimination process, we
are only left with relations in only the num variables (which are bounded by
the size of the queues). Hence these relations can be added as invariants to the
synchronous model.

The technique described in this section resembles generation of place invari-
ants in Petri nets [5]. However, rather than modeling the communication fabric
with Petri nets (which leads to an overhead of using explicit back-pressure arcs
and complexity in modeling the data-path) we derive those invariants directly
from more compact and natural xmas specifications.

5.2 Shared Communication

In the presence of shared communication channels the approach presented above
needs to be refined.

Example (virtual channels). Virtual channels lead to sharing. They are com-
monly used in communication fabrics to multiplex multiple logical streams onto
a single physical link with the guarantee that even if one stream is blocked at
the receiver, the other streams still make progress [7].

Figure 5 shows a simple example of virtual channels. A master agent M sends
two types of messages A and B (think of these as perhaps requests and responses)
to a target T over a single channel r. The ingress switch in T routes A and B
packets to their respective ingress queues. The credit pattern of Figure 4 is used
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to ensure that whenever a packet is presented to the egress arbiter of M , there
is guaranteed to be room in the corresponding ingress queue in T . Thus channel
r is non-blocking.

Once again, the non-blocking property on r is not inductive. However, if we
add the invariants G(numcA + numiA = numoA) and G(numcB + numiB =
numoB ) for each credit loop, then the problem becomes inductive. Here, numcA

refers to the num variable of the credit queue in M associated with the A packets,
and so on. However, if we try the approach from the previous example (with
suitable extensions for muxes and switches) we find that we can only derive the
weak invariant: G(numcA + numiA + numcB + numiB = numoA + numoB ) which
is not enough to prove the property.

We can improve the precision of the analysis by defining a λ variable per flow
through a channel. For example we know that two types of values flow through
channel r. Therefore we introduce two variables λA

r and λB
r for r where λA

r is
a count of the number of cycles when r.irdy and r.trdy have been asserted and
r.data was equal to A. Similarly, λB

r for B. Since there are two flows through r,
we assume that two flows are possible through g1 and g2 and through f1 and f2
and associate two λ variables from each of these channels: one for A and one for
B. For all the other channels, we associate only a single λ variable since there are
only single flows through them. (We will see later how to automatically figure
out the number of flow variables needed.)

Since the ingress switch in T routes A to channel l1 and B to channel l2, we
have

λA
r = λl1 and λB

r = λl2

For a merge, a packet at the output must come from one or the other input.
Therefore, we have the following equations for the egress arbiter in M :

λA
g1

+ λA
g2

= λA
r and λB

g1
+ λB

g2
= λB

r

Observe that one input of each join in M is a token input i.e. the joins are re-
stricted. We have the following relations between the outputs and the functional
inputs:

λA
f1

= λA
g1

λB
f1

= λB
g1

λA
f2

= λA
g2

λB
f2

= λB
g2

and the following relations between the token inputs and the outputs:

λe1 = λA
g1

+ λB
g1

λe2 = λA
g2

+ λB
g2

Each source however generates only one type of packet. Therefore we can set the
other λ variable on the output channel to zero i.e. λB

f1
= 0 and λA

f2
= 0.

All the other components only interface with channels carrying single flows,
and we add equations as in the credit example. Finally, as before, by eliminating
the λ variables using Gaussian elimination, we obtain the desired relations among
the num variables.
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5.3 Algorithm for Discovering Flow Invariants

Formally, if x is a channel that has type α, a flow on x is a function p : α → {0, 1}.
(Note the similarity with channel properties.) Our goal is to compute the set of
flows for each channel and the equations relating the λ variables for these flows.

Step 1. Sort the xmas graph in reverse “topological” order starting from the
sinks using the textbook depth-first-search (dfs) based topological sort algo-
rithm [6, §22.4]. If the xmas network is cyclic, this has the effect of topologically
sorting the dag obtained by deleting the backedges in the dfs.

Step 2. Assign the constant 1 function as the flow on the inputs to the sinks
and on the backedge channels. Now we process each component in the network in
the reverse “topological” order computed above by applying the following rules
to propagate flows (we use the same parameter names as in Figure 2 and use
port names to refer to the corresponding channels):

Queue. For each flow p on the output channel o, we create a new flow p on the
input channel i. We also add a new state variable called nump to the queue that
tracks how many elements satisfying p are currently in the queue. We also add
an assertion that equates nump to the number of elements that satisfy (usedj

=⇒ p(memj)) in the queue. Finally, we add the equation λp
i = nump + λp

o.

Function. For each flow p on the output channel o, we create a new flow p′ = p◦f

on the input channel i and add the equation λp′
i = λp

o.

Switch. For each flow p on the output channel a, we create a flows p′ = v $→
(s(v)and p(v)) on the input channel i and add the equation λp′

i = λp
a. Similarly

for flows on output b.

Merge. For each flow p on the output channel o, we create a flow p on input a
and another flow p on input b and add the equation λp

a + λp
b = λp

o.

Fork. For each pair (p, q) where p is a flow on output a and q on output b, we
create a new flow r = v $→ (p(f(v))and q(g(v))) on input. For each flow p on
output a, we add the equation λp

a = Σrλ
r
i where r ranges over flows that were

added to i due to p. Similar equations are added for each flow on b.

Join. Once again, we limit our attention to restricted joins. For each flow p on
the output channel o, we add a flow p′ = p ◦ h to the functional input (suppose
it is the input a). We add the constant 1 flow to the other input (i.e. b) and the
equations λp′

a = λp
o and λ1

b = Σpλ
p
o where p ranges over all the flows on o.

Source. For each flow p in the output o, we check if p(e) is true or not. If p(e)
is false, then we add the equation λp

o = 0 and mark p as dead.

During the above process, each time a new flow is created, we record its par-
ent(s). Furthermore, if a new flow is unsatisfiable i.e. the constant 0 function we
mark it dead and do not propagate it further.
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Step 3. If the xmas dag is cyclic, for each channel x that is a backedge,
the above propagation process adds new flows. These need to be related to the
constant 1 flow which was assigned before starting propagation. Therefore we
add λ1

x = Σpλ
p
x where p ranges over all the flows added to x during propagation.

Step 4. If all children of a flow p at a channel x are dead, we mark x as dead
as well and add the equation λp

x = 0. We repeat this process until no new flows
can be marked dead.

Theorem 2 (Inductivity). The set of equations obtained by this process is an
inductive invariant of the synchronous model.

Step 5. Finally, the λ variables are eliminated as explained before to obtain
relations between the num variables. Note that it is possible that there are no
relations among the num variables (e.g. Figure 1).

Remark. Since the λ variables correspond to channels which hold no state, we
conjecture that eliminating them does not destroy inductivity. This has been
confirmed by our experiments.

6 Experimental Results

6.1 Micro-benchmarks

Since the state-of-the-art model checking algorithms are unable to converge on
any of our real examples, we present a comparison on the small examples from
this paper. Table 1 shows the results of running abc (version 91206p) on several
examples (parameterized on k) without the addition of invariants as described
in this paper.

The first example is from Figure 1 where each queue is of size k. In the second
example we have a series of k queues (similar to Figure 1). In the third we
check the property in the example of Section 4.5, but to make the example more
realistic we set the the source and destination to be 2 bits wide in the packet.
Fourth and fifth are self-explanatory. In the last example we add k queues on
the channel r in Figure 5.

Column i in the table is the number of primary inputs (oracles); r and n are
number of registers and aig nodes (after synthesis). A depth of (m, n) means

Table 1. Comparison with interpolation on micro-benchmarks. See Section 6.1 for de-
tails. Most rows have two data points corresponding to different values of the parameter
k of the corresponding example.

Description k i r n depth time k i r n depth time
Two queues of size k 3 2 49 348 (5, 12) 23 4 2 63 381 bmc 24 −
k queues of size 2 3 2 49 302 (9, 12) 76 4 2 64 396 bmc 20 −
Figure 3 with all queues sized to 2 - 8 99 659 bmc 11 −
Figure 4 8 4 14 104 (13, 9) 38 12 4 14 121 bmc 27 −
Figure 5 with all queues sized to 2 - 4 17 95 (7, 4) 40
above with k queues on r 1 4 24 135 (6, 7) 112 2 4 29 151 bmc 13 −
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interpolation converged in n iterations when starting from a bmc of depth 1+m.
The time is in seconds (on a 3GHz Intel Xeon CPU) with a timeout of 300 secs
indicated by a dash (and we show the final bmc depth in the previous column).
Note that interpolation times out on many examples.

The first three rows correspond to examples for channel propagation. In all
cases when we add the invariants as described in Section 4, abc is able to solve
the problem in no time. Even if we set k = 100, the first example is solved in 7
seconds, the second in 1 second and the third in 40 seconds.

The remaining rows correspond to examples for flow invariants. Again without
the flow invariants, interpolation has a hard time. However, in these examples we
found that bdd-based reachability could solve these quickly. In all cases in our
experience, the algorithm for discovering flow invariants finds exactly those in-
variants that are interesting. For example, in the fifth example, there are initially
43 variables and 32 equations. After elimination, we are left with two invariants
(with 6 terms) corresponding to the two credit loops as expected. The time needed
for both property propagation and for detecting flow invariants is neglible.

6.2 Experience on Real Examples

We have applied the techniques described in this paper to verify a number of
abstract models used to validate the microarchitecture of future designs. These
are drawn from the domain of communication fabrics and are characterized by
deeply pipelined logic for multi-phase transactions, presence of ordering logic and
several virtual channels, and peer-to-peer traffic. Even in minimal configurations,
there are tens of simultaneous transactions in flight.

As a data point, previously on one of our simpler examples we were able to
obtain a proof of a critical non-blocking property,7 only by severely limiting the
state space by reducing the number of simultaneous outstanding transactions an
agent can issue. The proof was obtained with an explicit state model checker
with maximal reachability depth of 159 in 12 hours using 17GB of memory. In
contrast, using the flow analysis from Section 5 on the original model, 16 flow
relations are discovered (from an initial set of 176 equations on 220 variables)
and abc solves the resulting problem in 4.5 sec.

A big advantage of this technique is its robustness and scalability. Rather than
be limited to minimal configurations (and consequently reduced concurrency), we
can now verify more realistic models. Channel property verification is robust and
most properties are discharged automatically. For a few properties we need to add
additional channel properties to break loops. However, these invariants are natu-
ral and easy to add since they only talk about data and do not involve control at
all. Finally, although it may appear that flow invariants could lead to scalability
problems, so far we have not encountered any problems, even on our larger exam-
ples with dozens of flow invariants, many with tens of terms. For such problems,
an inductive engine that assumes all invariants in one cycle and then checks each
invariant separately in the following cycle appears to be scalable.

7 To check for adequate buffering to avoid deadlocks.
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7 Conclusion and Future Work

The concrete proposals for capturing and exploiting high-level information in
hardware models presented in this work have proved very useful in practice
allowing us to prove with little computational effort many hard sequential prop-
erties on real microarchitectural models which could not be proved before. The
benefit seems to be in separating control from data and exploiting knowledge of
the control to reduce the problem to a combinational one on the data.

The invariants we add may be seen as providing a bag abstraction for queues.
Although the bag abstraction has proven adequate to handle our current ex-
amples (systems with restricted joins), it appears insufficient to handle systems
with general joins. It would be interesting to extend the methods of this paper
to reason about such systems.

Finally, a lot of the computational overhead of verifying the synchronous
model may be eliminated by switching to an axiomatic semantics for xmas mod-
els for a more direct verification. This may also be an interesting direction for
building bridges to the rtl implementation.
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Abstract. We present an efficient approach to reachability analysis of Büchi
Pushdown System (BPDS) models for Hardware/Software (HW/SW) co-verificat-
ion. This approach utilizes the asynchronous nature of the HW/SW interactions to
reduce unnecessary HW/SW state transition orders being explored in co-verificat-
ion. The reduction is applied when the verification model is constructed. We have
realized this approach in our co-verification tool, CoVer, and applied it to the
co-verification of two fully functional Windows device drivers with their device
models respectively. Both of the drivers are open source and their original C code
has been used. CoVer has proven seven safety properties and detected seven pre-
viously undiscovered software bugs. Evaluation shows that the reduction can sig-
nificantly scale co-verification.

1 Introduction

Hardware/Software (HW/SW) co-verification, verifying hardware and software together,
is essential to establishing the correctness of complex computer systems. In previous
work, we proposed a Büchi Pushdown System (BPDS) as a formal representation for
co-verification [1], a Büchi Automaton (BA) represents a hardware device model and a
Labeled Pushdown System (LPDS) represents a model of the system software. The
interactions between hardware and software take place through the synchronization
of the BA and LPDS. The BPDS is amenable to standard symbolic model checking
algorithms [2].

In this paper, we exploit the fact that hardware and software are mostly asynchronous
in a system to reduce the cost of model checking. Intuitively, when hardware and soft-
ware transition asynchronously (i.e. there are no HW/SW interactions), it is unnecessary
to explore all the possible state transition orders. Furthermore, we prove that special
cases of the transition orders preserve the reachability properties in question. Partial
order reduction identifies such special transition orders, so there are fewer interleav-
ing possibilities to be explored during model checking. We base our approach on the
concept of static partial order reduction [3], where unnecessary transition orders are
pruned during the construction of the verification model. During the model construc-
tion, unnecessary transition orders are largely reduced when hardware and software are
asynchronous. On the other hand, all the synchronous transitions are preserved.

T. Touili, B. Cook, and P. Jackson (Eds.): CAV 2010, LNCS 6174, pp. 339–353, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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We implemented our approach in the co-verification tool CoVer and applied it to the
co-verification of two fully functional Windows device drivers (C programs for which
source code is publically available) with their device models. We specify the device
models based on the HW/SW interface documents that are openly available. Concep-
tually, a driver and its device model together form a BPDS model. CoVer converts the
driver and the device model into a C program and utilizes the SLAM engine [4] to
check reachability properties of the program. The abstraction/refinement process is car-
ried out by SLAM. CoVer proved seven properties and detected seven real defects in
the two drivers. All of these defects can cause serious system failures including data
loss, interrupt storm, device hang, etc.

The rest of this paper is organized as follows. Section 2 reviews related work. Sec-
tion 3 introduces the background of this paper. Section 4 presents our reachability anal-
ysis algorithm for BPDS models. Section 5 discusses how we specify a device model as
well as the implementation details of CoVer. Section 6 presents the evaluation results.
Section 7 concludes and discusses future work.

2 Related Work

Kurshan, et al. presented a co-verification framework that models hardware and soft-
ware designs using finite state machines [5]. Xie, et al. extended this framework to hard-
ware and software implementations and improved its scalability via component-based
co-verification [6]. However, finite state machines are limited in modeling software im-
plementations, since they are not suitable to represent software features such as a stack.

Another approach to integrating hardware and software within the same model is
exemplified by Monniaux in [7]. He modeled a USB host controller device using a
C program and instrumented the device driver, another C program, in such a way as
to verify that the USB host controller driver correctly interacts with the device. The
hardware and software were both modeled by C programs and thus are formally PDSs.
However, straightforward composition of the two PDSs to model the HW/SW concur-
rency is problematic, because it is known, in general, that verification of reachability
properties on concurrent PDS with unbounded stacks is undecidable [8].

Bouajjani et al. [9] presented a procedure to compute predecessor reachability of
PDS and apply this procedure to linear/branching-time property verification. This ap-
proach was improved by Schwoon [2], which results in a tool, Moped, for checking
Linear Temporal Logic (LTL) properties of PDS. A LTL formula is first negated and
then represented as a BA. The BA is combined with the PDS to monitor its state tran-
sitions; therefore the model checking problem is to compute if the BA has an accepting
run. The goal of the previous research was to verify software only; however, our goal is
to co-verify HW/SW systems.

Our previous work [1] did not exploit the fact that hardware and software are mostly
asynchronous in a system. Techniques such as partial order reduction [10] can be ap-
plied to reduce the verification complexities via the composition (Cartesian product) of
the BA and LPDS. Furthermore, our co-verification implementation in our earlier work
was not automatic since it depends on two abstraction/refinement engines (for hardware
and software specifications respectively) that were not completely integrated.
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3 Background

3.1 Büchi Automaton (BA)

A BA B, as defined in [11], is a non-deterministic finite state automaton accepting infi-
nite input strings. Formally, B = (Σ, Q, δ, q0, F ), where Σ is the input alphabet, Q is
the finite set of states, δ ⊆ (Q × Σ × Q) is the set of state transitions, q0 ∈ Q is the
initial state, and F ⊆ Q is the set of final states. B accepts an infinite input string iff
it has a run over the string that visits at least one of the final states infinitely often. A
run of B on an infinite string s is a sequence of states visited by B when taking s as the
input. We use q

σ→ q′ to denote a transition from state q to q′ with the input symbol σ.

3.2 Labeled Pushdown System (LPDS)

A LPDS P , as defined in [1], is a tuple (I, G, Γ, Δ, 〈g0, ω0〉), where I is the input
alphabet, G is a finite set of global states, Γ is a finite stack alphabet, Δ ⊆ (G × Γ ) ×
I × (G × Γ ∗) is a finite set of transition rules, and 〈g0, ω0〉 is the initial configuration.
LPDS is an extension of PDS [2] in such a way that a LPDS can take inputs. A LPDS
transition rule is written as 〈g, γ〉 τ

↪→ 〈g′, w〉, where τ ∈ I and ((g, γ), τ, (g′, w)) ∈ Δ.
A configuration of P is a pair 〈g, ω〉, where g ∈ G is a global state and w ∈ Γ ∗ is
a stack content. The set of all configurations is denoted by Conf(P). The head of a
configuration c = 〈g, γv〉 is 〈g, γ〉 and denoted as head(c), where γ ∈ Γ, v ∈ Γ ∗;

the head of a rule r : 〈g, γ〉 τ
↪→ 〈g′, ω〉 is 〈g, γ〉 and denoted as head(r). The head

of a configuration decides the transition rules that are applicable to this configuration,
where the deciding factors are the global state and the top stack symbol. Given a rule
r : 〈g, γ〉 τ

↪→ 〈g′, ω〉, for every v ∈ Γ ∗, the configuration 〈g, γv〉 is an immediate
predecessor of 〈g′, ωv〉 and 〈g′, ωv〉 is an immediate successor of 〈g, γv〉. We denote
the immediate successor relation in PDS as 〈g, γv〉 τ⇒ 〈g′, ωv〉, where we say this state
transition follows the PDS rule r. The reachability relation, ⇒∗, is the reflexive and
transitive closure of the immediate successor relation. A path of P on an infinite input
string, τ0τ1 . . . τi . . ., is written as c0

τ0⇒ c1
τ1⇒ . . . ci

τi⇒ . . ., where ci ∈ Conf(P), i ≥
0. The path is also referred to as a trace of P if c0 = 〈g0, ω0〉 is the initial configuration.

3.3 Büchi Pushdown System (BPDS)

A BPDS BP, as defined in [1], is the Cartesian product of a BA B and a LPDS P . To
construct BP, we first define (1) the input alphabet of B as the power set of the set
of propositions that may hold on a configuration of P (i.e. a symbol in Σ is a set of
propositions); (2) the input alphabet of P as the power set of the set of propositions
that may hold on a state of B (i.e. a symbol in I is a set of propositions); and (3) two
labeling functions as follows:

– LP2B : (G × Γ ) → Σ, associates the head of a LPDS configuration with the
set of propositions that hold on it. Given a configuration c ∈ Conf(P), we write
LP2B(c) instead of LP2B(head(c)) for simplicity in the rest of this paper.

– LB2P : Q → I , associates a state of B with the set of propositions that hold on it.
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BP = ((G × Q), Γ, Δ′, 〈(g0, q0), ω0〉, F ′) is constructed by taking the Cartesian prod-
uct of B and P . A BPDS rule 〈(g, q), γ〉 ↪→BP 〈(g′, q′), ω〉 ∈ Δ′ iff q

σ→ q′ ∈ δ,

σ ⊆ LP2B(〈g, γ〉) and 〈g, γ〉 τ
↪→ 〈g′, w〉 ∈ Δ, τ ⊆ LB2P(q). A configuration of BP is

referred to as 〈(g, q), ω〉 ∈ (G × Q) × Γ ∗. The set of all configurations is denoted as
Conf(BP). The labeling functions define how B and P synchronize with each other.
〈(g0, q0), ω0〉 is the initial configuration. 〈(g, q), ω〉 ∈ F ′ if q ∈ F .

Given a BPDS rule r : 〈(g, q), γ〉 ↪→BP 〈(g′, q′), ω〉 ∈ Δ′, for every v ∈ Γ ∗ the con-
figuration 〈(g, q), γv〉 is an immediate predecessor of 〈(g′, q′), ωv〉, and 〈(g′, q′), ωv〉 is
an immediate successor of 〈(g, q), γv〉. We denote the immediate successor relation in
BPDS as 〈(g, q), γv〉 ⇒BP 〈(g′, q′), ωv〉, where we say this state transition follows the
BPDS rule r. The reachability relation, ⇒∗

BP , is the reflexive and transitive closure of
the immediate successor relation. A path of BP is a sequence of BPDS configurations,
c0 ⇒BP c1 . . . ⇒BP ci ⇒BP . . ., where ci ∈ Conf(BP), i ≥ 0. The path is also
referred to as a trace of BP if c0 = 〈(g0, q0), ω0〉 is the initial configuration.

We define four concepts to assist us in analyzing the Cartesian product of B and P :

Enabledness. A BPDS BP is constructed by synchronizing a BA B and a LPDS P
through the labels on their state transitions. A Büchi transition tB : q

σ→ q′ is enabled
by a LPDS configuration c (resp. a LPDS rule r : c

τ
↪→ c′) iff σ ⊆ LP2B(c) ; otherwise

tB is disabled by c (resp. r). The LPDS rule r is enabled/disabled by the Büchi state q
(resp. the Büchi transition tB) in a similar way.

Indistinguishability. Given a Büchi transition tB : q
σ→ q′ ∈ δ, two LPDS configura-

tions c, c′ ∈ Conf(P) are (resp. a LPDS rule r : c
τ
↪→ c′ is) indistinguishable to tB iff

σ ⊆ LP2B(c) ∩ LP2B(c′), i.e. tB is enabled by both c and c′. On the other hand, given

a LPDS rule r : c
τ

↪→ c′ ∈ Δ, two Büchi states q, q′ ∈ Q are (resp. a Büchi transition
tB : q

σ→ q′ is) indistinguishable to r iff τ ⊆ LB2P(q) ∩ LB2P(q′), i.e. r is enabled by
both q and q′.

Consider a BPDS state transition, tBP : 〈(g, q), γv〉 ⇒BP 〈(g′, q′), ωv〉 (v ∈ Γ ∗),
which is the combination of tB : q

σ→ q′ ∈ δ and tP : 〈g, γv〉 τ⇒ 〈g′, ωv〉 that
follows a LPDS rule r ∈ Δ. If the Büchi states q and q′ (resp. LPDS configurations
〈g, γv〉 and 〈g′, ωv〉) are both indistinguishable to r (resp. tB), tBP can be rewritten as a
BPDS path 〈(g, q), γv〉 ⇒BP 〈(g, q′), γv〉 ⇒BP 〈(g′, q′), ωv〉 (resp. 〈(g, q), γv〉 ⇒BP
〈(g′, q), ωv〉 ⇒BP 〈(g′, q′), ωv〉), where the concurrent state transitions of B and P are
represented in an interleaved fashion with one intermediate state used.

Independence. Given a Büchi transition tB and a LPDS rule r, if they are indistinguish-
able to each other, tB and r are called independent; otherwise if either tB or r is not
indistinguishable to the other but they still enable each other, tB and r are called depen-
dent. The independence relation is symmetric. Furthermore, if tB and r are dependent,
(1) the BA B and LPDS P are called synchronous on them; and (2) the corresponding
BPDS transitions are called synchronous transitions; otherwise if tB and r are indepen-
dent, (1) B and P are called asynchronous on them; and (2) the corresponding BPDS
transitions are called asynchronous transitions.

Commutativity. Without affecting the reachability property, if a BPDS state transition,
tBP : 〈(g, q), γv〉 ⇒BP 〈(g′, q′), ωv〉 can be rewritten respectively as two BPDS paths
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such that 〈(g, q), γv〉 ⇒BP 〈(g, q′), γv〉 ⇒BP 〈(g′, q′), ωv〉 and 〈(g, q), γv〉 ⇒BP
〈(g′, q), ωv〉 ⇒BP 〈(g′, q′), ωv〉, the corresponding Büchi transition tB and LPDS rule
r are called commutative. By definition, commutativity is equivalent to independence
but seen under a different light, which will help the presentation of the paper.

3.4 Static Partial Order Reduction

One common method for reducing the complexity of model checking asynchronous
systems is partial order reduction [10], which is based on the observation that proper-
ties often do not distinguish among the state transition orders. Traditional partial order
reduction algorithms use an explicit state representation and depth first search, where
both the states and transitions to be explored are selected during the model checking
process. Kurshan et al. [3] developed an alternative approach called static partial or-
der reduction, where the key idea is to apply partial order reduction when a model is
generated from the system specification. Thus, no modification to the model checker is
necessary. The model is reduced during the compilation phase by exploring the struc-
ture of the system specification. Any model checker that accepts this kind of model can
then be applied to solve the verification problem.

4 Reachability Analysis of BPDS

4.1 Reachability Analysis of BPDS without Reduction

For reachability analysis, we have demonstrated [1] that a BPDS BP can be converted
into a PDS P ′, which we refer to as the verification model, so that model checkers
for PDS (or PDS-equivalent models) can be readily utilized. It is important to note
that P ′ is a standard PDS in the sense that P ′ does not have inputs. Given BP =
((G × Q), Γ, Δ′, 〈(g0, q0), ω0〉, F ′), we construct P ′ = (GP′ , ΓP′ , ΔP′ , c0) such that
GP′ = (G×Q), ΓP′ = Γ , c0 = 〈(g0, q0), ω0〉, and ΔP′ is converted from Δ′ = δ×Δ,

where ∀t = q
σ→ q′ ∈ δ and ∀r = 〈g, γ〉 τ

↪→ 〈g′, ω〉 ∈ Δ, if t and r are dependent, add
a rule 〈(g, q), γ〉 ↪→ 〈(g′, q′), ω〉 to ΔP′ , i.e. B and P must transition synchronously;
else if t and r are independent, add three rules to ΔP′ : (1) 〈(g, q), γ〉 ↪→ 〈(g, q′), γ〉,
i.e. B transitions and P loops; (2) 〈(g, q), γ〉 ↪→ 〈(g′, q), ω〉, i.e. P transitions and B
loops; and (3) 〈(g, q), γ〉 ↪→ 〈(g′, q′), ω〉, i.e. B and P transition together. Rules (1)
and (2) represent the non-deterministic delays that may occur between B and P . Non-
deterministic delays do not affect reachability properties. Rule (3) can be represented
by Rules (1) and (2) together because B and P are asynchronous; however we include
Rule (3) here to help the presentation of Section 4.2. The correctness of the conversion
that P ′ preserves the reachability property of BP is proved in [1].

4.2 Efficient Reachability Analysis Based on Static Partial Order Reduction

As discussed above, when a BPDS BP is converted to a PDS P ′ by the naı̈ve approach,
both the size of the state space and the number of the transition rules remain the same.
For example, the set of transition rules is the product of δ that belongs to B and Δ that
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belongs to P . However, a complete product is not necessary when B and P are asyn-
chronous. Without affecting the verification result, static partial order reduction can be
applied to reduce the transition rules generated by the product. The reduced PDS model
P ′

r will have a smaller set of transition rules ΔP′
r
⊆ ΔP′ and fewer state transition

traces while still preserving the reachability properties of P ′. Figure 1 illustrates the
verification process that supports the reduction.

BPDS BPDS2PDS  
PDS Model checker

YES

NO
BP P'with Static Partial  

Order Reduction  r
Reduced

Fig. 1. Reachability analysis of BPDS with static partial order reduction

Our reduction is based on the observation that whenBandP transition asynchronously,
one can run continuously while the other one loops. Figure 2 illustrates the idea of re-
ducing a BPDS state transition graph that starts from the configuration c0,0. Figure 2(a)

c0,0

cm,n

c1,0 c2,0 cm,0

cm,1

cm,2

c0,1

c0,2

c0,n c1,n c2,n
(a) Complete transition graph

c0,0

cm,n

c1,0 c2,0 cm,0

cm,1
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c0,1

c0,2

c0,n c1,n c2,n
(b) Reduce hori./diag. edges

c0,0

cm,n

c1,0 c2,0 cm,0

cm,1

cm,2

c0,1

c0,2

c0,n c1,n c2,n
(c) Reduce vert./diag. edges

Fig. 2. Reducing state transition edges without affecting the reachability from c0,0 when BA and
LPDS are asynchronous

is a complete state transition graph. There are three types of transition edges: (1) a
horizontal edge represents a transition when B transitions and P loops, which fol-
lows a BPDS rule in the form of 〈(g, q), γ〉 ↪→BP 〈(g, q′), γ〉; (2) a vertical edge
represents a transition when P transitions and B loops, which follows a BPDS rule
in the form of 〈(g, q), γ〉 ↪→BP 〈(g′, q), w〉; and (3) a diagonal edge represents a tran-
sition when B and P transition together, which follows a BPDS rule in the form of
〈(g, q), γ〉 ↪→BP 〈(g′, q′), w〉. For every configuration ci,j = 〈(g, q), γv〉 (0 ≤ i ≤ m

and 0 ≤ j ≤ n) as well as the Büchi transition tB : q
σ→ q′ and the LPDS rule

r : 〈g, γ〉 τ
↪→ 〈g′, ω〉 that are both enabled on ci,j , if tB and r are independent, we can

reduce many state transitions in Figure 2(a) without affecting the reachability from c0,0
to other configurations in the graph. Figure 2(b) and Figure 2(c) illustrate two reduc-
tions that reduce horizontal/diagonal transition edges and vertical/diagonal transition
edges respectively. This kind of reduction can significantly reduce the transition rules
of BP, where Büchi transitions and LPDS rules are independent.
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Now we present an optimization of our previous approach, where the reduction is
applied during the rule generation phase of constructing the verification model P ′

r. We
define a set of heads, SensitiveSet, on Conf(P) as follows:

Definition 1. SensitiveSet = { head(〈g0, ω0〉) }
⋃

{ head(c′) | ∃r = c
τ

↪→ c′ ∈ Δ,
∃tB ∈ δ, r and tB are dependent }, where 〈g0, ω0〉 is the initial configuration of P .

The concept of SensitiveSet is similar to that of sleep set [10]. However, instead of
identifying transitions that are not necessary to be executed (i.e. reducible) at a state,
SensitiveSet identifies transitions that should be kept (i.e. irreducible). Algorithm 1
applies the reduction following the idea illustrated in Figure 2(b), where the horizon-
tal/diagonal edges are reduced. If the LPDS rule r and the Büchi transition tB are

Algorithm 1. BPDS2PDS SPOR(δ × Δ)
1: Δsync ← ∅, Δvert ← ∅, Δhori ← ∅
2: for all r : 〈g, γ〉 τ

↪→ 〈g′, ω〉 ∈ Δ do
3: for all tB : q σ→ q′ ∈ δ and σ ⊆ LP2B(〈g, γ〉) and τ ⊆ LB2P (q) do
4: if r and tB are dependent then
5: {When B and P are synchronous on r and tB}
6: Δsync ← Δsync

⋃{〈(g, q), γ〉 ↪→ 〈(g′, q′), ω〉}
7: else
8: {For vertical edges (see Figure 2(b)), when P transitions and B loops}
9: Δvert ← Δvert

⋃{〈(g, q), γ〉 ↪→ 〈(g′, q), ω〉}
10: if 〈g, γ〉 ∈ SensitiveSet then
11: {For horizontal edges (see Figure 2(b)), when B transitions and P loops}
12: Δhori ← Δhori

⋃{〈(g, q), γ〉 ↪→ 〈(g, q′), γ〉}
13: end if
14: end if
15: end for
16: end for
17: ΔP′

r
← Δsync

⋃
Δvert

⋃
Δhori

18: return ΔP′
r

dependent, B and P must transition synchronously as the set of rules, Δsync, generated
in line 6; otherwise, asynchronous transitions are generated. The set of rules, Δvert,
generated in line 9 represent the vertical edges, i.e. when P transitions and B loops.
The set of rules, Δhori, representing the horizontal edges, i.e. when B transitions and
P loops, are generated in line 12 only if head(r) belongs to SensitiveSet.

In Algorithm 1, a diagonal rule is reduced if B and P are asynchronous on the cor-
responding Büchi transition and LPDS rule. This kind of reduction does not affect any
reachability property, because the diagonal rule can be represented by one horizon-
tal rule and one vertical rule respectively. A horizontal rule is reduced if the head of
the corresponding LPDS rule in P does not belong to SensitiveSet. There is a spe-
cial set of heads, DivideSet = { h | h ∈ SensitiveSet,∀r = c

τ
↪→ c′ ∈ Δ and

∀tB ∈ δ, if head(c) = h then r and tB are not dependent }. Informally, DivideSet de-
scribes a set of configurations that can be considered as divide-lines (in the traces of P
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projected from the traces of BP) for two adjacent LPDS transitions that are respectively
synchronous and asynchronous with the state transitions of B. Given a trace of P ′

r in
the form of 〈(g0, q0), ω0〉 ⇒ . . . ⇒ 〈(gj , qj), ωj〉 ⇒ . . . ⇒ 〈(gk, qk), ωk〉 ⇒ . . . (0 ≤
j < k), if head(〈gj , ωj〉) ∈ DivideSet and 〈(gk, qk), ωk〉 is the first configuration
satisfying head(〈gk, ωk〉) ∈ SensitiveSet after 〈(gj , qj), ωj〉, we can infer that no
horizontal transition occurs between 〈(gj+1, qj+1), ωj+1〉 and 〈(gk, qk), ωk〉 in the trace
(i.e. qj+1 = qk), because the horizontal transitions have been reduced.

Theorem 1. P ′
r preserves the reachability of P ′ from the initial configuration.

Proof. It is easy to observe that P ′
r and P ′ have the same state space and initial config-

uration, so the question is to prove that (1) given a configuration c and a trace of P ′ in
the form of T : c0 ⇒ c1 . . . ⇒ ci ⇒ c, there is a corresponding trace of P ′

r such that
T ′ : c0 ⇒ c′1 . . . ⇒ c′j ⇒ c; and (2) vice versa.

Two types of transitions are reduced in P ′
r, compared to P ′. As explained above, the

reduction of diagonal transitions does not affect any reachability property. We prove that
the reduction of horizontal transitions does not affect the correctness of (1) by induc-
tion. If |T | = 0, i.e. c = c0, the reachability trivially holds on P ′

r. If |T | = 1, because
there is no horizontal transition reduced on the initial configuration, for any transition
c0 ⇒ c of P ′ there must be a corresponding trace of P ′

r that preserves the reachability.
Given a trace T : c0 ⇒ c1 . . . ⇒ ci ⇒ c′ (i ≥ 0) of P ′ where |T | = i+1, if there exists
a trace T ′ : c0 ⇒ c′1 . . . ⇒ c′j ⇒ c′ (j ≥ 0) of P ′

r where |T ′| = j + 1, we show that
for all c ∈ Conf(P ′) and tP′ : c′ ⇒ c of P ′, there is a trace of P ′

r such that c0 ⇒∗ c.
Recall that the horizontal transitions are reduced in P ′

r except at configurations whose
heads belong to SensitiveSet, so we need to prove that this reduction does not affect
the reachability if tP′ involves a horizontal transition that is reduced in P ′

r. In the trace
T ′, we can always find a configuration c′k = 〈(gk, qk), ωk〉 (0 ≤ k ≤ j) such that c′k is
the last configuration satisfying head(〈gk, ωk〉) ∈ SensitiveSet. Thus, the path from
c′k to c′ has the form of (c′k : 〈(gk, qk), ωk〉) ⇒ 〈(gk+1, qk), ωk+1〉 ⇒ . . . ⇒ (c′ :
〈(gj+1, qk), ωj+1〉), where B always loops at the state qk after c′k. Because the horizon-
tal transitions are reduced on the configurations after c′k, P ′

r cannot directly have the
transition (c′ : 〈(gj+1, qk), ωj+1〉) ⇒ (c : 〈(gj+1, qk+1), ωj+1〉), i.e. the corresponding
BPDS rule 〈(gj+1, qk), γj+1〉) ↪→BP 〈(gj+1, qk+1), γj+1〉 (γj+1 is the top stack sym-
bol of ωj+1) does not exist after the reduction. According to the commutativity between
independent Büchi transitions and LPDS rules, we can shift this transition backward to
the position right after c′k where the horizontal transitions are not reduced. In this case,
the path is (c′k : 〈(gk, qk), ωk〉) ⇒ 〈(gk, qk+1), ωk〉 ⇒ 〈(gk+1, qk+1), ωk+1〉 ⇒ . . . ⇒
(c : 〈(gj+1, qk+1), ωj+1〉), so we proved that there is a trace c0 ⇒∗ c of P ′

r.
On the other direction, (2) always holds because ΔP′

r
⊆ ΔP′ . For every rule of P ′

r,
P ′ has the same rule. Thus for every trace of P ′

r, P ′ has the same trace. �

Complexity analysis. Let nSR be the number of LPDS rules (in Δ) whose heads belong
to SensitiveSet, and nsync be the number of PDS rules (in ΔP′

r
) where B and P

transition synchronously on the corresponding Büchi transitions and LPDS rules. We
have |Δhori| = nSR×|δ| and |Δsync| = nsync. As illustrated in Figure 2, asynchronous
transitions can be organized as triples where each one includes a vertical transition, a
horizontal transition, and a diagonal transition, so we have |Δvert| = |δ×Δ|−nsync

3 .
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The number of rules generated in Algorithm 1 is |ΔP′
r
| = nsync + |δ×Δ|−nsync

3 +
nSR × |δ| = 2

3nsync + |δ×Δ|
3 + nSR × |δ|. The size of transition rules reduced is

|Δ′| − |ΔP′
r
| = 2

3 |δ × Δ| − 2
3nsync − nSR × |δ|. We can infer from this expression

that the fewer places that B and P transition synchronously the more transition rules
Algorithm 1 can reduce.

Discussions. Algorithm 1 makes a product of the transition relations respectively from
the BA and LPDS, where all the transition rules are explored. Obviously, this process
could be inefficient if the BA and LPDS are represented in a flattened approach, since
the sizes of the transition relations can be exponentially large. Symbolic representations
are efficient to model transition relations; therefore the cost of Algorithm 1 can be ex-
ponentially smaller on symbolic representations than that on flattened representations.
However, the symbolic rules should be properly separated for the reduction to be effec-
tive. For example, if there is only one giant symbolic transition rule for each transition
relation, Algorithm 1 will have no reduction effect. Symbolic rules are commonly dif-
ferentiated by their control locations. This explains why the idea in Figure 2(b) is used
instead of that in Figure 2(c), because LPDS usually has a better control-flow structure
than BA.

5 Implementation

We apply the BPDS model in the verification of Windows device drivers with their
formal hardware interface models as illustrated in Figure 3, where software is repre-
sented as LPDS and hardware is represented as BA. From the view of software, we

Lower-priority Dispatch Routines
Driver

Interrupt Service Routine (ISR)

Hardware Interface Model

ModelHW/SW Interface
Hardware

Fig. 3. Driver-centric co-verification

specify both the HW/SW interface and the hardware model, which together we refer to
as a hardware interface model. The HW/SW interface describes how hardware and soft-
ware should transition synchronously when they interact through their interfaces. The
hardware model describes the desired hardware behaviors when hardware and software
transition asynchronously, i.e. when there is no HW/SW interaction.

First, we present several preliminary definitions for our implementation. Second,
we elaborate on the specification of the HW/SW interface and the hardware model
respectively by examples. Third, we illustrate our automatic co-verification tool, CoVer.

5.1 Preliminary Definitions

We use Transaction Level Modeling (TLM) to specify the hardware interface model.
TLM is a commonly used approach to hardware system-level specification, and we have



348 J. Li et al.

designed a specification language, modelC, for our TLM specification. The modelC
language uses C semantics with two extensions to support non-determinism and relative
atomicity (see definitions below). In modelC, (1) we treat numbers as bounded integers,
so hardware registers can be properly modeled; and (2) the global hardware state space
is static, i.e. there is no dynamic memory allocation.

Hardware transaction. In co-verification, the interaction between hardware and soft-
ware is relevant rather than the implementation details of a hardware device; therefore
it is unnecessary to preserve the clock-driven semantic feature. We define a hardware
transaction to represent a hardware state transition in an arbitrarily long but finite se-
quence of clock cycles. Hardware transactions are atomic to software. The concept of
hardware transaction preserves hardware design logic that is visible to software, but
hides details only necessary for synthesizable Register Transfer Level (RTL) design.

Hardware transaction function. We define a transaction function as a C function that
describes a set of hardware transactions (i.e. state transitions). Because transactions are
atomic, the intermediate states of hardware during a transaction is not visible to soft-
ware. We define the current-states and next-states of a transaction function respectively
as ρ ⊆ Q representing the hardware states when entering the function and ρ′ ⊆ Q repre-
senting the hardware states when exiting the function. Formally, a transaction function
F : Q×Q describes a set of state transitions. Following this definition, any terminating
C function can be treated as a transaction function.

Relative atomicity. Relative atomicity has two key ideas: (1) hardware transactions
are atomic from the view of software; and (2) Interrupt Service Routines (ISRs) are
atomic to other lower-priority software routines. In device/driver applications, when
hardware fires an interrupt, the Operating System (OS) calls the ISRs that are registered
in the interrupt vector table sequentially until an ISR acknowledges its ownership of
the interrupt. During this process, only one ISR can run at a time and other hardware
interrupts are suppressed [12]. The interrupted thread can continue its execution only
after the interrupting ISR terminates.

Software synchronization points. As the concrete counterpart of the SensitiveSet
concept, we define software synchronization points as a set of program locations1 where
the program statements right before these locations may be dependent with some of the
hardware state transitions. In general, there are three types of software synchroniza-
tion points: (1) the point where the program is initialized; (2) those points right after
software reads/writes hardware interface registers; and (3) those points where hardware
interrupts may affect the verification results. The first and second types are straightfor-
ward for hardware and software to transition synchronously. We may understand the
third type in such a way that the effect of interrupts (by executing ISRs) may influence
certain program statements, e.g. the statements that access global variables.

1 Assuming the program is preprocessed to ensure that every statement is atomic from the view
of hardware.
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5.2 Specifying Hardware Interface Model

In the specification of the hardware BA model, B = (Σ, Q, δ, q0, F ), the alphabet Σ
is the power set of the set of propositions induced by software interface events (see
definition below); the set of states Q is defined by global variables; the initial state q0 is
given by an initialization function; and the transition relation R = Revt ∪ Rmodel has
two parts: Revt, is a set of transitions that are dependent with at least one of the software
LPDS transition rules; Rmodel, is a set of transitions that are not dependent with any
of the LPDS transition rules. Informally, Revt is described by the HW/SW interface
and Rmodel is described by the hardware model. In this paper, we are interested only in
safety properties; therefore the Büchi constraint F is not necessary to be specified.

Specifying the HW/SW interface. The HW/SW interface, as the abstraction of the
HW/SW layers between the target device and driver, propagates the hardware (resp.
software) interface events to software (resp. hardware).

Figure 4 illustrates an example of a software interface event function in response
to a register write operation. The keyword atomic indicates that WritePortA
is a transaction function atomic from the view of software. This transaction function
describes a set of state transitions, R′

evt ⊆ Revt, when the driver writes to the inter-
face register, PortA, of the Sealevel PIO-24 digital I/O device (see Section 6). Figure 5

atomic VOID WritePortA(UCHAR ucRegData) {
// If Port A is configured as an “input” port
if ( g DIORegs.CW.CWD4 == 1 ) {

// Write to the output register instead of the port
g DIOState.OutputRegA.ucValue = ucRegData;

} else { // Otherwise, configured as an “output” port
// Update both the port and the output register
g DIORegs.A.ucValue = ucRegData;
g DIOState.OutputRegA.ucValue = ucRegData;

}
}

Fig. 4. An implementation of a software in-
terface event

VOID WRITE REGISTER UCHAR
(PUCHAR Register, UCHAR ucData) {

switch ( Register ) {
case REG PORTA: WritePortA(ucData); return;
case REG PORTB: WritePortB(ucData); return;
. . .
case REG CONFIG: WriteConfig(ucData); return;
case REG STATUS: WriteStatus(ucData); return;
default: abort “Register address error.”; return;

}
}

Fig. 5. Relating register calls to software inter-
face events

illustrates an example how function calls to a software write-register function (origi-
nally provided by the OS) are related to interface event functions. A software interface
event happens when the entry stack symbol of the interface event function is reached.

When hardware fires an interrupt, the ISR should be invoked to service this inter-
rupt. The HW/SW interface simulates this process as shown in Figure 6. The variable
IsrRunning represents the software status and the variable InterruptPending
represents the hardware status. The function RunIsr has three parts, (1) check/prepare
the precondition before invoking the ISR; (2) invoke the ISR; and (3) set both the hard-
ware and software to proper status after ISR. The first and third parts describe syn-
chronous state transitions of both hardware and software. Formally, when hardware
(the BA) fires an interrupt, i.e. the interrupt pending status is set to be true, the corre-
sponding state transitions in software (the LPDS) will be enabled, so the BA and the
LPDS will transition synchronously in the next state transition.
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VOID RunIsr() {
atomic {
// Make sure only one ISR is invoked
if ( (IsrRunning == TRUE) ||

(InterruptPending == FALSE) )
return;

IsrRunning = TRUE;
}

// Invoke the ISR
IsrFoo();

atomic {
IsrRunning = FALSE;
InterruptPending = FALSE;

}
}

Fig. 6. Interrupt monitoring
function

atomic VOID Run DIO() {

// non-deterministic choices
switch ( choice() ) {

// Port I/O Management
case 0: RunPorts(); break;

// Interrupt Management
case 1: RunInterrupt(); break;
. . .

}

Fig. 7. The transaction function
of the Sealevel PIO-24 card

VOID HWInstr() {

// non-deterministic choices
while( choice() ) {

// Run hardware transaction
Run DIO();

// If interrupt has been fired
RunIsr();

}
}

Fig. 8. The hardware in-
strumentation function

Specifying the hardware model. The hardware model describes the desired hardware
behaviors when hardware works asynchronously with software to realize system func-
tionalities. Conceptually, the behavior of the hardware model is represented as a set of
state transitions, Rmodel, where all the transitions are labeled by a set of propositions
that hold when no software interface event happens. Figure 7 illustrates an example of a
transaction function, Run DIO, that specifies the set of state transitions, Rmodel, for the
digital I/O device. When Run DIO is executed multiple times, the stub-functions such
as RunPorts and RunInterrupt are non-deterministically invoked to simulate the
concurrent sub-modules of the hardware device.

Hardware instrumentation function. We define a C function to invoke independent
hardware transaction functions (for the hardware model) and ISRs. Figure 8 illus-
trates such an example, where RunIsr is invoked right after every hardware trans-
action, Run DIO. If an interrupt is fired due to a hardware state transition by executing
Run DIO, the context-switch to the ISR is modeled as a function call, where the exe-
cution privilege switches back to the interrupted thread only after the ISR returns. This
approach is correct to simulate the context-switches because ISRs are relatively atomic
to other driver routines. The non-deterministic while-loop simulates the delays of either
software or hardware. This is correct when only safety properties are verified.

5.3 Co-verification Tool, CoVer

Our co-verification tool, CoVer, has two automatic steps. First, the frontend instruments
(i.e. make the product of) the driver with the hardware interface model to generate
a C program, which conceptually is the reduced verification model P ′

r discussed in
Section 4.2. Second, the SLAM engine checks the reachability property (in the form of
a SLIC rule [4]) of the C program.

The instrumentation step has two parts. First, the dependent HW/SW transitions
when driver writes hardware registers are modeled by replacing the implementation
of the driver programming interfaces (see Figure 5), which is provided in the harness
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of Static Driver Verifier [4]. Second, CoVer inserts function calls to the hardware in-
strumentation function HWInstr into the C code of the driver, between the driver
statements. Without reductions, the function calls need to be inserted after every driver
statement. Using our reduction algorithm, CoVer first detects the software synchroniza-
tion points in the driver code and then inserts the function calls only at those detected
points. Conceptually, the instrumentation lets hardware run continuously for all the pos-
sibilities after every HW/SW synchronous transition. Compared to the trivial approach
that inserts HWInstr after every software statement to simulate the HW/SW concur-
rent state transitions, our approach can significantly reduce the complexity of the veri-
fication model, because the number of software synchronization points are usually very
small in common applications.

6 Evaluation

We have applied our approach to the verification of two fully functional Windows de-
vice drivers: (1) the Sealevel PCI (Peripheral Component Interconnect) PIO-24 Digital
I/O card driver from Open Systems Resources (OSR), and (2) the Intel 82557/82558
based PCI Ethernet adapter driver from Microsoft Windows Driver Kit (WDK) samples.
We developed hardware interface models respectively for the drivers and verified two
kinds of properties: (1) whether a driver callback function2 accesses the hardware inter-
face registers in correct ways, e.g. a command should not be issued when the hardware
is busy; and (2) whether a driver callback function can cause an out-of-synchronization
between the driver and the device. In other words, we check if the return value of a
driver callback function correctly indicates the current hardware state. Because both of
the drivers have been provided to public as samples for years, we did not expect to find
many bugs. However, CoVer detected seven real bugs. All these bugs can cause mal-
function of the devices/drivers, where the symptoms include data loss, interrupt storm,
device hang, etc. Our evaluation runs on a Lenovo ThinkPad notebook with Dual Core
2.66GHz CPU and 4GB memory. We set the timeout and spaceout threshold as 3000
seconds and 2000MB respectively.

Table 1 presents the statistics on the verification of the PIO-24 driver with its hard-
ware interface model. CoVer detected four bugs and proved two properties of the driver.
For example, the driver has two global variables to maintain the I/O request status and
the device I/O port status respectively. The values of the two variables become inconsis-
tent when the ISR interrupts the callback function EvtDeviceControl at a specific
program location. This inconsistency will cause the driver to return invalid data to user
applications later, which violates the rule InvalidRead. Another serious bug (de-
tected by the rule ProperISR1) of this driver can cause interrupt storm. The design
of the device expects interrupts being repeatedly generated in certain configuration,
however the driver does not handle the interrupts correctly which will cause interrupts
being fired more frequently than that can be consumed, i.e. interrupt storm. As a com-
parison, the Ethernet adapter driver disables the interrupt first and re-enables it after the

2 Windows OS invokes the predefined driver callback functions to service the I/O requests from
user applications.
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Table 1. Statistics on the co-verification of the Sealevel PIO-24 device/driver

Size of the driver (# of lines) 1724
Size of the hardware interface model (# of lines) 1232

No Reduction Reduction
Rule Description Time Mem. Time Mem. Result

(Sec) (MB) (Sec) (MB)

DevD0Entry Driver and device will not go out-of-synchronization when starting. 391.3 293 214.3 181 Passed
DevD0Exit Driver and device will not go out-of-synchronization when stopping. 71.1 69 38.4 43 Passed
IsrCallDpc ISR will not queue DPC without reading specific hardware registers. Timeout N/A 700.5 218 Failed
InvalidRead Driver will not read any invalid input data. 589.4 132 91.3 66 Failed
ProperISR1 ISR will clear the device interrupt-pending status before return. 58.9 58 35.2 43 Failed
ProperISR2 ISR will not acknowledge the interrupt fired by other devices. 74.1 62 28.7 37 Failed

interrupt processing is completed later in DPC (Deferred Procedure Call). This prevents
the situation when interrupts overwhelm the PCI bus.

Table 2 presents the statistics on the verification of the Intel 82557/82558 based
PCI Ethernet adapter driver with its hardware interface model. CoVer detected three
bugs and proved five properties of the driver. For example, CoVer detects a bug that
violates the rule DevD0Entry and reports an error trace where the callback function
EvtDeviceD0Entry returns TRUE even if the driver fails to initialize the device
correctly. This is a direct violation of Windows device driver programming standards
and will cause the device unusable without the OS being notified. The error trace also
illustrates that the driver continues its attempts to initialize the device even after the
previous device operations have failed. This may cause the device permanently unac-
cessible. Compared to the PIO-24 device/driver, the Ethernet adapter device/driver have
more comprehensive functionalities and implementation, where the static partial order
reduction is clearly necessary for most of the rules to be even verified.

Table 2. Statistics on the co-verification of the Intel PCI Ethernet adapter device/driver

Size of the driver (# of lines) 14406
Size of the hardware interface model (# of lines) 3518

No Reduction Reduction
Rule Description Time Mem. Time Mem. Result

(Sec) (MB) (Sec) (MB)

DevD0Entry Driver and device will not go out-of-synchronization when starting. 1328.3 758 367.1 182 Failed
DevD0Exit Driver and device will not go out-of-synchronization when stopping. Timeout N/A 206.6 143 Failed
IsrCallDpc ISR will not queue DPC without reading specific hardware registers. 64.1 99 39.9 79 Passed
ProperISR1 ISR will clear the device interrupt-pending status before return. 48.9 59 32.6 52 Passed
ProperISR2 ISR will not acknowledge the interrupt fired by other devices. 779.3 291 407.4 199 Passed
DoubleCUC Driver will not issue a command while the command unit is busy. Timeout N/A 602.4 238 Failed
DoubleRUC Driver will not issue a command while the receiving unit is busy. N/A Spaceout 1797.3 231 Passed
ProperReset Driver uses a correct sequence to reset the device. Timeout N/A 86.9 71 Passed

7 Conclusion and Future Work

We have presented an efficient approach to reachability analysis of BPDS models for
HW/SW co-verification. The key idea of this approach is to reduce unnecessary state
transition orders between hardware and software, so there are fewer possibilities to be
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explored in verification. We have implemented this approach in our co-verification tool,
CoVer, and successfully applied it to co-verify two Windows device drivers with their
device models. CoVer proved seven properties and detected seven previously undis-
covered software bugs which can cause serious system failures. Evaluation shows that
the reduction can significantly scale co-verification. These results demonstrate that our
approach is very promising in ensuring the correct interactions between hardware and
software. For the next step, we plan to apply our approach to more devices and drivers.
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In model checking, analysis algorithms are applied to large graphs (state spaces), which
model the behavior of (computer) systems. These models are typically generated from
specifications in high-level languages. The LTSMIN toolset1 provides means to gen-
erate state spaces from high-level specifications, to check safety properties on-the-fly,
to store the resulting labelled transition systems (LTSs) in compressed format, and to
minimize them with respect to (branching) bisimulation.

1 Motivation: A Modular, High-Performance Model Checker

The LTSMIN toolset provides a new level of modular design to high-performance model
checkers. Its distinguishing feature is the wide spectrum of supported specification lan-
guages and model checking paradigms. On the language side (Sec. 3.1), it supports
process algebras (MCRL), state based languages (PROMELA, DVE) and even discrete
abstractions of ODE models (MAPLE, GNA). On the algorithmic side (Sec. 3.2), it
supports two main streams in high-performance model checking: reachability analysis
based on BDDs (symbolic) and on a cluster of workstations (distributed, enumerative).
LTSMIN also incorporates a distributed implementation of state space minimization,
preserving strong or branching bisimulation.

For end users, this implies that they can exploit other, scalable, verification algo-
rithms than supported by their native tools, without changing specification language.
Our experiments (Sec. 4) show that the LTSMIN toolset can match, and often outper-
form, existing tools tailored to their own specification language.

From an algorithm engineering point of view, LTSMIN fosters the availability of
benchmark suites across multiple specification languages and verification communities.
This makes benchmarking studies more robust, by separating out language-specific is-
sues, which is of separate scientific interest. The LTSMIN toolset integrates very well
with existing third-party tools (Sec. 3.3), for the benefit of their users, and also for the
independent certification of model checking results.

The technical enabler of the LTSMIN toolset is its PINS interface (Sec. 2). This gen-
eral abstraction of specification languages places very few constraints on their features,
evident by the variety of supported languages (Sec. 3.1) and algorithms. PINS still en-
ables the algorithms to exploit the parallel structure inherent in many specifications.
Several optimizations are implemented as generic PINS2PINS wrappers, abstracting

� This research has been partially funded by the EC project EC-MOAN (FP6-NEST 043235).
1 http://fmt.cs.utwente.nl/tools/ltsmin/, current version: 1.5, available as open-

source software.
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Fig. 1. Architectural Overview of PINS-Based Tools

from both, input language and the actual model checking paradigm. Thus, this opens
new opportunities for research of reusable and composable implementations of model
checking algorithms and optimizations.

2 Architecture: A Partitioned Next State Interface (PINS)

In order to separate specification languages from model checking algorithms, many
enumerative, on-the-fly model checkers are based on some next-state interface. It pro-
vides transitions between otherwise opaque and monolithic states. For example, the
OPEN/CÆSAR interface [1] has been underlying the success of the CADP toolkit [2].

The unifying concept in LTSMIN is an improvement of this interface, which we call
PINS, an Interface based on a Partitioned Next-State function. PINS connects language
modules to analysis algorithms. The language modules compute for each specification a
static dependency matrix, and implement a next-state function reflecting the operational
semantics. The analysis algorithms access this abstraction of the specification, which
still captures sufficient combinatorial structure to enable huge state space reductions.
The key feature to this is the possibility to obtain transitions between subvectors. Due
to lack of space, full details are provided elsewhere [3,4].

In a nutshell, a state for PINS is a vector of N slots, where a single slot can represent
anything. The transition relation is split disjunctively into K groups. The K×N Boolean
dependency matrix then denotes on which slots each group might depend. Dynamically,
a dependency matrix is exploited as follows. Assume that transition group k depends
on a short vector of state slots 〈x1, . . . ,x�〉 only. PINS next state function operates on
this short vector, yielding a short next state, say 〈y1, . . . ,y�〉. Note that this result can be
reused for many concrete states. By this single call we found a set of transitions on long
state vectors: 〈x1, . . . ,x�,a�+1, . . . ,aN〉 → 〈y1, . . . ,y�,a�+1, . . . ,aN〉.

Finally, some optimizations can be expressed purely as transformations of the PINS

matrix, also rewiring next-state calls. Such building blocks are implemented once, but
all combinations of specification languages and analysis tools can benefit (Fig. 1).
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The LTSMIN toolset consists of 28,000 lines of C Code.2 The interfacing code for
the supported frontends (DVE, NIPS, µCRL, mCRL2, our own ETF, Sec. 3.3) consists
of only 200–500 lines each. The majority of code is in the three reachability tools, their
support data structures, PINS2PINS wrappers, and the TORX [5] and CADP [1] con-
nectors. Taken together, this yields 25 tool combinations, in addition to the minimiza-
tion tool and various other support tools. The toolset is tested on Linux and MacOS X.

3 Functionality

3.1 Multiple Specification Languages

State-Based Languages. We implemented a language module for the DVE implemen-
tation of Barnat el al., giving access to the BEEM benchmark database [6]. Another lan-
guage module connects the NIPSVM state generator [7], an interpreter for PROMELA,
giving access to (pure) SPIN models [8]. The latter module could be refined by mak-
ing the dependency matrix sparser for global variables and channels, which in general
would improve the performance of the reachability tools.
Process Algebras. We have connected the native state generators of the µCRL [9] and
mCRL2 [10] toolsets to LTSMIN. Both toolsets specify models in ACP-style process
algebra with data, and are heavily used in industrial case studies [9]. They provide
expressive ways to model systems, e.g., abstract data types (unbounded numbers, lists,
trees), constrained data enumeration, and multi-way handshake communication.

Through the link with LTSMIN, users of all these tools gain for free 100% compatible
enumerative, symbolic and distributed model checking tools, as well as compact state
space storage formats and minimization tools.

3.2 Reachability and Minimization Tools

We implemented several tools for high-performance state space generation, in particu-
lar based on symbolic and distributed model checking. All exploration tools can check
safety properties on-the-fly, and produce counter examples upon property violation. Al-
ternatively, full state spaces can be generated and stored for minimization and analysis
by external third-party model checkers.

Sequential: Implementations of standard enumerative reachability algorithms, using
BFS or DFS search order. These PINS-based tools allow a base-line comparison
with the native space generation facilities.

Symbolic: Implementations of symbolic reachability tools. Sets of states are stored as
(binary) decision diagrams. The state space is computed symbolically by appli-
cations of the relational product. More precisely, for any specification language
with an enumerative state generator implementing PINS, we automatically obtain
a symbolic generator [3,4].

Distributed: Implementations of distributed state space generators, now based on the
PINS interface, generalizing our earlier work [11]. This effectively combines the
memory of many workstations, also achieving considerable speedups.

2 Measured with David A. Wheeler’s ‘SLOCCount’.
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PINS2PINS wrappers: All generators profit from optimizations in the PINS2PINS layer
(Fig. 1). Local transition caching is useful for both enumerative generators; tree
compression [11] is a technique for reducing memory footprint of enumerative gen-
erators; and variable reordering and transition regrouping [3] are useful for the
symbolic generator, and in combination with transition caching.

Finally, in case of full state space generation, the LTSMIN toolset includes the dis-
tributed minimization tool ltsmin-mpi for (strong and branching) bisimulation reduc-
tion of labelled transition systems [12]. Also, Orzan’s distributed τ-cycle elimination
ce-mpi [13] tool is included. τ-Cycle freeness in turn admits the use of a simplified
distributed minimization algorithm [14] for branching bisimulation. State based equiv-
alences could be easily obtained by modifying the initial partition.

3.3 Tool Interoperability

Besides connecting to native state space generators of various languages (Sec. 3.1),
LTSMIN provides converters or interfaces to third party back-end model checkers.

ETF. We defined our own Extended Table Format,3 which enumerates all short tran-
sitions for all groups. It serves as input language of PINS, and as concise output format.
E.g., we saw a 0.57 billion state LTS fit in a 1.6 Kb ETF file.

CADP and µCRL. LTSMIN has connections to the well-known CADP toolbox. State
spaces can be exported in binary coded graph (BCG) format. LTSMIN also implements
the CÆSAR/OPEN interface [1] to CADP’s on-the-fly model checking and bisimulation
algorithms. State spaces can be converted in µCRL’s DIR format, allowing to use and
compare against their implementation of distributed minimization tools.

DIVINE framework. The LTSMIN toolset includes a converter (etf2dve) from our
ETF format to the input language of the DIVINE toolset [15], DVE. Thus, we obtain
access to DIVINE’s battery of distributed model checking algorithms. An interesting
application is the certification of model checking results, to improve user confidence.

TORX testing tool. LTSMIN implements the TORX RPC interface (〈spec〉2torx),
which allows test case derivation with TORX [5] for all PINS language modules. Ad-
ditionally, JTORX allows checking two specifications for ioco-conformance [16].

GNA tool. In EC-MOAN,4 the Genetic Network Analyzer [17] exports discrete ab-
stractions of biological ODE models to ETF, and LTSMIN generates their state space
for further analysis.

4 Experiments

We performed extensive benchmarking. Precise experimental results go beyond the
scope of this tool paper. As illustration, the log-log scatter plot in Fig. 2 shows how
distributed and symbolic model checking tools complement each other on selected DVE

3 http://fmt.cs.utwente.nl/tools/ltsmin/etf.html
4 European FP6 project on biological cell modeling and analysis, see
http://www.ec-moan.org/

http://fmt.cs.utwente.nl/tools/ltsmin/etf.html
http://www.ec-moan.org/
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Fig. 2. Wall-clock time in seconds for distributed
(x) and symbolic (y) reachability

models from the BEnchmarks for Ex-
plicit Model Checkers (BEEM) data-
base [6], ranging from 3×106 to 0.57×
109 states. Each point represents two
runs for one specification. The vertical
axis indicates the wall-clock time (in
seconds) for symbolic reachability (us-
ing variable reordering and the chain-
ing heuristic); the horizontal axis denotes
the time taken by distributed reachability
(on 8×6 cores; with transition caching).
The two models near the bottom-right
corner are cases where symbolic meth-
ods are more than two orders of magni-
tude faster, whereas for lift.[78] and
pgm_protocol.8 the distributed tool is
faster by more than factor 10. These are
the first reported BDD-based experiments on benchmarks from the BEEM database,
whose models are naturally biased towards enumerative methods.

In INESS,5 LTSmin is used for the safety analysis of novel railway interlocking
specifications. XUML statecharts are translated to MCRL2, and analyzed for safety
properties by LTSMIN [18]. Depending on the track layout, we generated state spaces
of up to 1.5× 1011 states directly from MCRL2 models, by means of our symbolic
tools.
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Abstract. This paper presents libalf, a comprehensive, open-source library
for learning formal languages. libalf covers various well-known learning tech-
niques for finite automata (e.g. Angluin’s L∗, Biermann, RPNI etc.) as well as
novel learning algorithms (such as for NFA and visibly one-counter automata).
libalf is flexible and allows facilely interchanging learning algorithms and
combining domain-specific features in a plug-and-play fashion. Its modular de-
sign and C++ implementation make it a suitable platform for adding and engi-
neering further learning algorithms for new target models (e.g., Büchi automata).

1 Introduction

The common objective of all learning algorithms is to generalize knowledge gained
throughout a learning process. In such a process, the learning algorithm is confronted
with classified examples. They are utilized to derive some kind of hypothesis which is
able to classify new examples in conformance with the examples already seen. Typi-
cally, learning algorithms are grouped into online and offline algorithms. Online learn-
ing techniques are capable of actively asking queries to some kind of teacher who is able
to classify these queries. Offline algorithms, on the other hand, are passively provided
with a set of classified examples from which they have to build an apposite hypothesis.

In recent years, learning algorithms have become increasingly popular for various
application domains and have been successfully used in different fields of computer
science, reaching from robotics over pattern recognition (e.g., in bioinformatics) to
natural language recognition. Especially in the area of automatic verification, learning
techniques have proved their great usefulness. They were used for minimizing partially
specified systems [1], model checking blackbox systems (e.g., [2]), and for improving
regular model checking (e.g., [3]). To put it bluntly, automata learning is en vogue.

The need for a unifying framework collecting various types of learning techniques
is, thus, beyond all questions. In addition, it is desirable to have possibilities of easily
exchanging or extending the implemented learning algorithms to compare assets and
drawbacks for certain user applications. For users’ convenience a library should provide
additional features, such as means for statistical evaluation or loggers. Unfortunately,
existing learning frameworks only partly cover these requirements.

The main objective of this paper is to present a new library called the automata
learning framework (libalf for short). libalf unifies different kinds of learning

� This work is partially supported by the DAAD (Procope 2009).

T. Touili, B. Cook, and P. Jackson (Eds.): CAV 2010, LNCS 6174, pp. 360–364, 2010.
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techniques into a single flexible and easy-to-extend library with a clearly structured
user interface. We would like libalf to become a comprehensive compendium of
learning techniques to which everybody has access and can contribute in a public do-
main fashion.

2 Related Work

A large number of learning algorithms can be found in the literature. Usually, the
most important and influential ones are implemented again and again, but often as
quick-and-dirty implementations, which are only meant to be a proof-of-concept of the
researcher’s theoretical work. Typically, this implies a lack of extensibility and compa-
rability as the authors did not have time to bother for a clear, extensible design. We are
only aware of two learning libraries that aim for the objectives mentioned above; note
that Java PathFinder (cf. [4]) also contains a learning submodule (implementing
Angluin’s L∗ algorithm), but this software seems to be too restricted for most cases.

The LearnLib library [5] allows learning of deterministic finite-state automata.
It is available as a dedicated, password-protected server located at the University of
Dortmund and can be accessed via the Internet. The LearnLib implements Angluin’s
L∗ algorithm for inferring DFA and some slight variants for deriving Mealy machines.

The Rich Automata Learning and Testing library [6] (RALT) has been developed
in Java yielding a platform independent solution. It also implements L∗ and three
relatives for inferring Mealy machines. Regrettably, RALT seems not publicly available.

However, two requirements that seem to be crucial for many user application are
clearly missing: Firstly, both libraries are limited to learning Mealy machines in an An-
gluin setting, but in many environments different learning settings occur. Beyond that,
a way to augment the libraries with new learning algorithms, in particular for additional
kinds of automata models, is clearly missing. Secondly, as LearnLib can be only
accessed remotely and RALT is not available, it seems impossible to assess their perfor-
mance; in fact, we were not able to experimentally evaluate or benchmark libalf to
neither existing library in any appropriate manner. To the best of our knowledge libalf
is currently the only available automata learning library that is competitive and flexible
enough for real world applications.

3 A Library for Learning Automata: libalf

Table 1. Algorithms available in libalf.

Online algorithms Offline algorithms

Angluin’s L∗ (2 variants) Biermann (2 variants)
NL∗ [7] RPNI
Kearns / Vazirani DeLeTe2
Visibly 1-counter automata [8]

The libalf library is an actively developed
and stable open source library1 for learning
and manipulating formal languages; it puts
the emphasis on learning deterministic and
non-deterministic finite-state machines, but
can be easily augmented with new automata
classes (for instance, libalf already supports learning of visibly one-counter au-
tomata). As of today, libalf comprises a total of nine learning algorithms, cf. Table 1.

1 libalf is freely available on http://libalf.informatik.rwth-aachen.de/

http://libalf.informatik.rwth-aachen.de/
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libalf consists of a core C++ library and is complemented by two additional com-
ponents: liblangen (a library to generate random regular languages) and AMoRE++
(a C++ automata library, among others featuring the antichains algorithm described in
[9]). Although written in C++, libalf fits seamlessly into diverse environments: it
runs on MSWindows, Linux, and MacOS (in 32- and 64-bit) and features a platform
independent Java interface (using the Java Native Interface JNI). In addition, the so-
called dispatcher implements a network-based client-server architecture, which allows
one to run libalf remotely, e.g., on a high-performance machine.

The key objectives of libalf are high flexibility and simple extensibility. High flex-
ibility, on the one hand, means that libalf lets the user easily switch between learning
algorithms and information sources (often only by changing a single line of code2). This
allows one to experiment with different learning techniques, making it possible for the
user to choose the algorithm best suited for her setting. Moreover, libalf’s visual-
ization and logging facilities enable researchers to gain a deeper understanding of the
differences of existing and new algorithms.

Simple extensibility, on the other hand, mainly refers to libalf’s structured C++
class hierarchy, especially the learning algorithms and automata models. That allows
developers to easily enrich libalf with additional features such as new learning al-
gorithms, advanced automata classes, domain-specific optimizations, etc.

Obviously, developing a flexible and easy-to-use library while preserving high ex-
tensibility was one of the implementation’s most challenging tasks. A comparison of
important learning libraries to libalf is given in Table 2.

Table 2. Overview over the most important learning libraries in comparison to libalf

libalf LearnLib RALT

Algorithms online / offline online online
currently 9 1 (L∗) 1 (L∗)

Hypotheses DFA, NFA, Mealy, visibly one-counter, etc. DFA, Mealy DFA, Mealy
Open source yes no n/a
Availability C++, Java (JNI) C++ Java

source code, binary, dispatcher via Internet connection only n / a
Specifics filters, normalizers, statistics, visualization filters, statistics, visualization visualization

Technical Details. In libalf words w ∈ Σ∗ (i.e., queries) are represented as lists
of symbols, where each symbol is a 32-bit integer. Thus, the maximal size |Σ| of an
alphabet Σ is 232. For hypotheses, on the other hand, libalf provides generic but
simple interfaces such that new automata classes can easily be added. However, the
AMoRE++ library can be used if a more powerful automata library is needed.
libalf’s main components are the learning algorithms and the so-called know-

ledgebase. The knowledgebase is an efficient storage for language information and col-
lects queries and classifications thereof; in libalf a classification can be any C++
object, but in most algorithms it is a Boolean value. Using an external storage has the
advantage of being independent of the choice of the learning algorithm. So it becomes
possible to quickly interchange different learning algorithms or run them (even concur-
rently) on the basis of the same knowledgebase (i.e. queries are only conducted once

2 Visit our website for a Java online demo on how to employ libalf in a user application.



libalf: The Automata Learning Framework 363

and are then available to any learning algorithm). Clearly, this helps the user experiment
and decide which algorithm to use in her specific setting.

Additionally, libalf features two types of domain-specific optimizations: filters
and normalizers. Filters are a means for reducing the number of queries asked to the
teacher. The idea is that in many cases the classification of a query can be decided with-
out consulting the teacher just by applying simple domain-specific knowledge; take,
for instance, well-formedness of XML-documents as such a criterion. If a query can
already be answered by a filter, it is not passed on to the teacher and the number of
queries actually asked to the teacher is reduced. Moreover, filters can be composed by
logical connectors (and, or, not).

In contrast, normalizers are a means to reduce memory consumption during the lear-
ning phase. A normalizer defines a domain-specific equivalence relation ∼⊆ Σ∗ × Σ∗

over all words and only stores data for one representative of each equivalence class (i.e.
data for equivalent queries is only queried and stored once). This does not only reduce
the consumed memory, but also the number of queries conducted. By subtyping the
respective interface, a user can easily define her own domain-specific optimizations.

Finally, libalf comprises auxiliary components to ease application development
and debugging: a logger (an adjustable logging facility an algorithm can write to), ex-
tensive statistics and methods to produce GraphViz visualizations. All of libalf’s
components are designed to be used in a plug-and-play manner and, to this end, no
knowledge about the libraries implementation is required.

4 Conclusion

libalf is a new, comprehensive open-source learning framework, which is easy to
use and extend. It gathers several on- and offline learning techniques. The main features
of our library and other approaches described previously are summarized in Table 2.

Our learning library is currently used and extended for inferring CFMs from MSC
specifications [10] and for learning attractor sets in infinite games (D. Neider, RWTH
Aachen). Moreover, there are requests for using libalf for searching through source
code to find similar code fragments, so-called clones, (E. Jürgen, TU Munich) and for
learning black box systems from log files.

For future work, we plan to augment libalf with additional learning algorithms,
e.g., learning using homing sequences or Trakhtenbrot’s algorithm, and to integrate
learning techniques for other important language classes, such as transducers, Büchi
automata etc. Another ongoing work puts different learning algorithms in comparison.
In this project, we compare different online and offline learning algorithms and evaluate
their average time complexity. The results obtained so far look very promising.
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Rüdiger Ehlers

Reactive Systems Group
Saarland University

ehlers@react.cs.uni-saarland.de

Abstract. Synthesis of finite state systems from full linear time tem-
poral logic (LTL) specifications is gaining more and more attention as
several recent achievements have significantly improved its practical ap-
plicability. Many works in this area are based on the Safraless synthesis
approach. Here, the computation is usually performed either in an ex-
plicit way or using symbolic data structures other than binary decision
diagrams (BDDs). In this paper, we close this gap and consider Safra-
less synthesis using BDDs as state space representation. The key to this
combination is the application of novel optimisation techniques which
decrease the number of state bits in such a representation significantly.
We evaluate our approach on several practical benchmarks, including a
new load balancing case study. Our experiments show an improvement
of several orders of magnitude over previous approaches.

1 Introduction

Ensuring the correctness of a system is a difficult task. Bugs in manually con-
structed hard- or software are often missed during testing. To remedy this prob-
lem, two lines of research have emerged. The first one deals with the verification
of systems that have already been built and spans topics such as process cal-
culi and model checking. The second line concerns the automatic derivation of
systems that are correct by construction, also called synthesis. In both cases,
the specification of the system needs to be given, but we can save the work of
constructing the actual system in the case of synthesis.

Unfortunately, the complexity of synthesis has been proven to be rather high.
For example, when given a specification in form of a property in linear time tem-
poral logic (LTL), the synthesis task has a complexity that is doubly-exponential
in the size of the specification [17]. Recently, it has been argued that this is how-
ever not a big problem [18] as realisable practical specifications typically have
implementations that are small, which can be exploited. This observation is used
in the context of bounded synthesis [18,8], which builds upon the Safraless synthe-
sis principle [14]. Here, the LTL specification is converted to a universal co-Büchi
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word or tree automaton, which is then, together with a bound b ∈ IN, used for
building a safety game such that winning strategies in the game correspond to
implementations satisfying the specification. The bound in this setting describes
the maximum allowed number of visits to rejecting states in the co-Büchi au-
tomaton. If there exists an implementation satisfying a given specification, then
there exists some bound such that the resulting game is winning.

In practice, the bound required is usually rather small, often much smaller
than the number of states in the smallest implementation. This leads to im-
proved running times of implementations following this approach. Consequently,
all modern tools for full LTL synthesis publicly available nowadays build upon
Safraless synthesis. The first of these, named Lily [11], performs the realisability
check in an explicit way. Recently, a symbolic algorithm based on antichains
has been presented [8], showing a better performance on larger specifications.
Surprisingly, the usage of binary decision diagrams (BDDs), a technique that
has skyrocketed the size of the systems that can be handled by model checking
tools [15], seems to be unconsidered in this context so far. A possible explanation
for this is that the safety games constructed in the bounded synthesis context
contain a lot of counters with dependencies between them in the transition rela-
tion. It has been observed that this can tremendously blow-up the size of BDDs
[22,19,3]. Thus, for success using this technique, it is a central requirement that
efficient techniques for reducing the number of counters are being used. In this
paper we investigate this problem and present such techniques. By taking them
together, we can improve upon the performance of previous approaches to full
LTL synthesis by several orders of magnitude.

In particular, we show how to split a specification, consisting of assumptions
about the environment and guarantees that the system needs to fulfill, into safety
and non-safety parts, which can be handled separately in the synthesis game.
As for safety properties, no counters are necessary, this reduces the computation
time significantly and allows utilising a major strength of BDDs: efficient dealing
with automata that run in parallel. Since it has been argued that typical spec-
ifications found in practice are mostly of the form

∧
a∈A a →

∧
g∈G g for some

sets of assumptions A and guarantees G [2,20], both containing LTL formulas,
we design our technique to be adapted to this case. As a second contribution, we
discuss the efficient encoding of the safety and non-safety parts in BDD-based
games. Finally, we show how to adapt the techniques presented to checking the
unrealisability of a given specification in an efficient way. We evaluate our ap-
proach on the benchmarks from [11,8] and also present a new, more complex
load balancing benchmark that allows for a more meaningful discussion of the
practical applicability of our approach.

This paper is structured as follows. In the next section, we briefly discuss the
preliminaries and give suitable references for those readers who are not familiar
with the fundamentals of bounded synthesis. Then, we show how a specifica-
tion can be split into safety and non-safety parts without losing soundness or
completeness of the synthesis procedure. Section 4 describes how to efficiently
encode both parts in a symbolic state space. In Section 5, we continue with the
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explanation of how the unrealisability of a specification can also be checked with
our approach. Section 6 contains the experimental results of running our proto-
type tool on the benchmarks from [11] and [8] as well as on a novel load-balancing
system case study. We conclude with a summary.

2 Preliminaries

This section describes the fundamentals of the bounded synthesis approach. We
choose the notation in a way such that it fits best to the presentation of the new
concepts in the remaining sections.

Mealy automata: For the representation of systems to be synthesized, a suit-
able computation model is required. In this work, we use Mealy automata [16].
Formally, a Mealy automaton M = (S, I, O, δ, sin) is defined as a 5-tuple with
the set of states S, the input set I, the output set O, the transition function
δ : (S × I) → (S × O) and the initial state sin ∈ S. For the scope of this paper,
we assume that the sets S, I and O are finite. We set I = 2API for some input
proposition set API and O = 2APO for some output proposition set APO as this
facilitates the description of properties of Mealy automata with temporal logic.

Given some input stream d = d1d2 . . . ∈ Iω to a Mealy automaton, we define
the computation of the automaton induced by d as π = s0s1s2 . . . ∈ Sω s.t.
s0 = sin and for all rounds j ∈ IN0, we have δ(sj , dj+1) = (sj+1, o) for some
o ∈ O. Furthermore, the output of A over d is defined as ρ = ρ1ρ2 . . . such
that for all j ∈ IN0, we have δ(sj , dj+1) = (sj+1, ρj+1). We furthermore say that
w = (d1 ∪ ρ1)(d2 ∪ ρ2) . . . is a word induced by M.

Linear time temporal logic (LTL) & universal co-Büchi word automata:
For the specification of a system to be synthesized, some description logic is nec-
essary. Linear time temporal logic (LTL) has been the predominantly used such
logic in previous works. It allows the usage of the Safraless synthesis approach,
which circumvents the need for constructing deterministic automata from the
specification that occurs in other synthesis methodologies.

Due to space restrictions, we do not define LTL and its semantics here but
rather refer to [7]. Formulas in LTL can use the temporal operators “G” (glob-
ally), “F” (finally), “X” (next time) and “U” (until). We say that some automa-
ton M satisfies an LTL formula ψ if for all words w = w1w2 . . . induced by M,
we have w |= ψ. Some LTL formulas are also called safety properties ; this is the
case if for every word w not satisfying the property, there exists some prefix w′

of w such that no word having the same prefix satisfies the property.
Formulas in LTL can be transformed into equivalent universal co-Büchi word

automata (UCW), i.e., given an LTL formula ψ, a UCW A of size at most
exponential in |ψ| can be obtained such that for every Mealy automaton M, all
runs induced by M are accepted by A if and only if all words induced by M
satisfy ψ.

We define universal co-Büchi word automata as five-tuples A=(Q, Σ, δ, qin, F )
with a set of states Q, an alphabet Σ, a transition function δ : Q × Σ → 2Q,
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an initial state qin ∈ Q and some set of rejecting states F ⊆ Q. Given a word
w = w1w2 . . . ∈ Σω, we say that a sequence π = π0π1π2 . . . ∈ Qω is a run of A
over w if π0 = qin and for all j ∈ IN0, πj+1 ∈ δ(πj , wj+1). A word w is accepted
by A if for all runs π of A over w, we have inf(π) ∩ F = ∅ for inf denoting the
function that maps a sequence onto the set of elements that occurs infinitely
often in it. We say that a Mealy automaton M is accepted by A if all words
induced by M are accepted by A. Due to the finiteness of Mealy automata, if
M is accepted by A, there exists a finite upper bound b(M,A) on the number of
rejecting states visited on the runs of A on any word induced by M. This bound
is always at most |F | · |S| for S being the state set of the Mealy automaton [18].

Safety games: Given some universal co-Büchi word automaton A = (Q, Σ, δ,
qin, F ) with Σ = I ×O and some bound b ∈ IN, we can build a two-player safety
game G such that player 1 wins the game if and only if there exists some Mealy
automaton M over the inputs I and outputs O with b(M,A) ≤ b [18].

Formally, we define safety games as tuples G = (V, Σ0, Σ1, δ, vin, vF ) with some
vertex set (also called state space in the context of synthesis) V , some action
set Σ0 for player 0, some action set Σ1 for player 1, some total edge function
δ : V ×Σ0×Σ1 → V , some initial vertex vin and some final vertex vF . We require
that vF is absorbing, i.e., for all x ∈ Σ0×Σ1, δ(vF , x) = vF . A decision sequence
is an infinite sequence ρ = ρ0ρ

′
0ρ1ρ

′
1 . . . such that for all j ∈ IN0, ρj ∈ Σ0 and

ρ′j ∈ Σ1. Such a decision sequence induces an infinite play π = π0π1 . . . in G such
that π0 = vin and for all j ∈ IN0, we have δ(πj , ρj , ρ

′
j) = πj+1. We call plays

winning for player 1 (the system player) if there does not exist some j ∈ IN such
that πj = vF . For the scope of this paper, we also need reachability games ; in
these, player 1 wins a play if there exists some j ∈ IN such that πj = vF .

Safety games are memoryless determined, i.e., if and only if player 1 wins the
game, there exists some function f : V × Σ0 → Σ1 such that for all decision se-
quences ρ = ρ0ρ

′
0ρ1ρ

′
1 . . . with corresponding plays π = π0π1 . . ., if ρ′j = f(πj , ρj)

for all j ∈ IN0, then π is winning for player 1. The situation for player 0 is dual.
Given some bound b ∈ IN, some input and output alphabets Σ0/Σ1 and some

universal co-Büchi word automaton A = (Q, Σ, δ, q0, F ) with Σ = Σ0 × Σ1, the
corresponding (classical) synthesis game is defined as G = (V, Σ0, Σ1, δ, vin, vF )
with a vertex set V comprising all functions mapping the states in Q onto
{⊥, 0, 1, . . . , b}. The vertices of the game encode in which states of A a run
of the automaton corresponding to the input/output played by the players so
far could be. All such states have a numeral value assigned, whereas the others
are mapped to ⊥. The numeral value represents how many rejecting states have
been visited at most along such a run so far (the so-called counters). For details
of this approach, the reader is referred to [18].

We have defined safety games in a way such that we can efficiently extract
a Mealy automaton M satisfying A from a winning strategy f . We define the
winning region of G to be the largest subset of vertices in V such that for setting
vin to any of these, the game is winning for player 1.

Binary decision diagrams: For representing sets of vertices and the transition
relation in safety games symbolically, we use reduced ordered binary decision
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diagrams (BDDs) [4,5], which represent characteristic functions f : 2V → B

for some finite set of variables V . Since they are well-established in the context
of formal verification, we do not describe their details here but rather treat
them on an abstract level and state the operations on them that we use. For
a comprehensive overview, see [5]. Given two BDDs f and f ′, we define their
conjunction and disjunction as (f ∧ f ′)(x) = f(x) ∧ f ′(x) and (f ∨ f ′)(x) =
f(x)∨f ′(x) for all x ⊆ V . The negation of a BDD is defined similarly. Given some
set of variables V ′ ⊆ V and a BDD f , we define ∃V ′.f as a function that maps
all x ⊆ V to true for which there exists some x′ ⊆ V ′ such that f(x′∪(x\V ′)) =
true. Dually, we define ∀V ′.f ≡ ¬(∃V ′.¬f). Given two ordered lists of variables
L = l1, . . . , ln and L′ = l′1, . . . l′n of the same length, we furthermore denote
by f [L/L′] the BDD for which some x ⊆ V is mapped to true if and only if
f(x \ {l′1, . . . , l′n} ∪ {li | ∃1 ≤ i ≤ n : l′i ∈ x}) = true.

2.1 Differences to Other Works

In contrast to previous works on Safraless synthesis, we give a simplified presen-
tation here, which relies on universal co-Büchi word automata (UCW) instead
of co-Büchi tree automata [14,18] or transition-based UCWs [8].

Furthermore, the definition of safety games differs from the one used when
synthesizing Moore automata. First of all, we assume that player 0 (the envi-
ronment) does the first move instead of player 1 (the system player). This way,
the game model corresponds to the behaviour of Mealy automata. This slightly
changes the semantics of the LTL formulas for synthesis. For example, the speci-
fication G(r ↔ g) for the input atomic proposition (AP) set {r} and the output
AP set {g} is realisable, whereas for the reversed order of input and output used
in previous works, it is unrealisable. The intuition of this change is that this
reduces the number of next-time LTL operators necessary for practical specifi-
cations, thus reducing the size of the UCW for the specification and the synthesis
time needed in total. Nevertheless, the techniques presented in this paper are
equally applicable to Moore automata synthesis.

Additionally, the fact that we do not have vertex sets for both players 0 and
1 in the game allows us to simplify the game solving process and also saves
bits for the state sets in a symbolic game solving process. Given a safety game
G = (V, Σ0, Σ1, δ, vin , vF ), we build a BDD Bδ corresponding to δ over the four
lists of variables {pre, in , out , post} such that for all q, q′ ∈ Q, i ∈ Σ1 and o ∈ Σ2,
by abuse of notation, Bδ(q, i, o, q′) = true if and only if δ(q, i, o) = q′ (for some
encoding of the states, inputs and outputs into the BDD variables). Using Bδ

and some BDD BF over the variables in post mapping only vF to true, we can
compute the winning region of G as νX.X ∧ (∀in .∃out , post .(Bδ ∧X [post/pre]∧
(¬BF ))) for ν denoting the greatest fixed point operator.

3 Safety and Non-safety: Splitting the Specification

In this section, we explain how to decompose an LTL specification being subject
to synthesis in a way such that non-safety and safety properties can be treated in
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parallel. Recall that we assume that the specification is written in the form ψ =∧
a∈A a →

∧
g∈G g. In the classical bounded synthesis approach, ψ is transformed

to a UCW which in turn is converted to its induced safety game for some given
bound. Here, we propose a slightly different approach. Instead of building one
single game from the specification, we split the latter into parts, build individual
games for each of the parts and then take their parallel composition to obtain a
composite game. This has several advantages:

1. It has been observed [8] that the time to compute a UCW from an LTL
formula is a significant part of the overall realisability checking time. By
splitting the specification beforehand, building a monolithic UCW is avoided,
resulting in a lower total computation time.

2. Taking the parallel composition of multiple game structures can be done in
a relatively efficient way when using BDDs for solving the composite game.

3. The state spaces of games corresponding to safety properties do not need
the counters that are employed in the bounded synthesis approach. Thus, by
decomposing the specification into safety and non-safety parts, we can save
counters, which in turn reduces the computation time further.

In order to obtain a valid decomposition scheme, the resulting game must be
winning for player 1 (the system player) in the same cases as before, i.e., if and
only if either a safety or non-safety assumption is violated or all guarantees are
fulfilled. The technique presented in the following does not preserve the smallest
bound b such that the specification is fulfillable (as the bound depends on the
syntactic structure of the UCW). However, the method proposed is still sound
and complete, i.e., if and only if there exists a bound b such that the safety game
induced by the UCW for the overall specification and b is winning for player
1, there exists some bound for the non-safety part of the specification and the
technique presented in this section such that the resulting game is winning for
player 1.

In [20], the authors propose a method to solve a generalised parity game
for a specification of the form

∧
a∈A a →

∧
g∈G g as stated above successively.

They first build games for the safety assumptions and guarantees, strip the
non-winning parts (for the system player) from them and compose them with
games for the remaining parts of the specification. For completeness of this
methodology, the non-safety assumptions however must not have any effect on
the fulfillability of the safety guarantees. In general, we cannot assume this; we
thus propose a different method here that is based on introducing some kind of
signal into the game that links the safety guarantees and the non-safety part of
the specification.

We start by splitting the specification ψ =
∧

a∈A a →
∧

g∈G g into four sets
of LTL formulas: the safety assumptions As, the safety guarantees Gs, the non-
safety assumptions An, and the non-safety guarantees Gn. Then, we build a
reachability game G1 for the safety assumptions that is won by player 1 if some
assumption in As is violated. For the next step, we add one bit to the output
atomic proposition set of the system to be synthesized; let its name be safeg.
We build a safety game G2 from the safety guarantees Gs that is won by player
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1 if safeg always represents whether one of the safety guarantees has already
been violated. For the non-safety part, we take the modified specification ψ′ =
(
∧

a∈An
a) → (

∧
g∈Gn

g ∧ G(safeg)) and convert it to a UCW A. Given a bound
b ∈ IN and having prepared G1, G2 and A, we can now build the composite game
G:

1. We take A and b and build the corresponding bounded synthesis safety game.
Let its name be G3.

2. We define the overall synthesis game G as the parallel composition of G1,
G2 and G3, i.e., the vertex set is the product of the individual vertex sets
and the transition relation is defined such that the games G1, G2 and G3 are
played in parallel (over the same inputs and outputs). We say that G1, G2
and G3 are components of G.

3. Let q1
F , q2

F and q3
F be the final vertices of the games G1, G2 and G3, respec-

tively. We define a play π in G to be winning for the system player if either
q1
F is visited at some point on π or q2

F and q3
F are never visited.

We obtain the following result:

Theorem 1. For every LTL specification ψ =
∧

a∈A a →
∧

g∈G g, there exists
some bound b ∈ IN such that the composite game G built from ψ and b as defined
above is won by the system player 1 if and only if there exist some bound b′ ∈ IN
such that the (classical) safety synthesis game induced by the UCW corresponding
to ψ and b′ is winning for player 1.

Proof. By examining the possible causes for winning/losing the synthesis games,
the correctness of the claim can easily be seen. �

Let BF
1 be a BDD over the set of variables pre representing the final vertices of

the game G1 and BF
2 and BF

3 be BDDs over post for the final vertices of G2 and
G3, respectively. For Bδ being the BDD representing the transition relation of
G, we can obtain the winning region of player 1 by computing (for μ denoting
the least fixed point operator):

V = μY.Y ∨ BF
1 ∨ (∀in .∃out , post .Bδ ∧ Y [post/pre])

W = νX.V ∨ (X ∧ (∀in.∃out , post .Bδ ∧ X [post/pre] ∧ (¬BF
2 ) ∧ (¬BF

3 )))

In these equations, V represents the states that are winning due to the fact
that the system player can choose a sequence of decisions such that some safety
assumption is not fulfilled; W is the winning region for player 1 in G.

We can simplify the computation by taking V = BF
1 , making the composite

game essentially a safety game. To see this, consider a state in the game in
which some guarantee has just been violated but that is still winning as from
that state onwards, the system player can force the other player into a state in
which also some safety assumption is violated. As the game is finite, there is an
upper bound of k steps for some k ∈ IN on the length of such a bridging path
in the game. By increasing the bound used for building G3 by k, it can be made
sure that qF

1 is reached before qF
3 is visited, making the game also winning with
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the modified definition for V . We use this simplification for our implementation
to be described in Section 6 as it facilitates the extraction of winning strategies
from the game.

4 Encoding Bounded Synthesis in BDDs

The efficiency of solving games using BDDs heavily depends on a smart encoding
of the state space into the BDD bits. As already stated, for a symbolic solution
of a safety game, four groups of BDD variables are needed: two groups for the
game vertices (pre and post), one for the input to the system and one for the
output. As we defined the input as I = 2API and the output as O = 2APO for
the scope of this paper, a straight-forward boolean encoding of I and O for usage
in the BDDs exists: we allocate one BDD bit for each element of API and APO.
It remains to find a suitable encoding for the state space of the game.

First of all, if the state space is the product of some smaller state spaces, we
can parallelise the problem; for example, if V = V1 × V2 × . . . × Vm for some
m ∈ IN, we can find good encodings for each of the state spaces V1, . . . , Vm

individually. We are thus able to handle the state space encodings of G1, G2 and
G3 (as defined in the previous section) separately.

4.1 The Non-safety Part

Recall that in the context of bounded synthesis, the safety game induced by a
UCW for a given bound b has a certain property: the state space consists of all
functions mapping the states of the UCW onto {⊥, 0, 1, . . . , b} for b being the
chosen bound. For each state, we can encode the value the function maps to
individually. For the scope of this paper, we define the following encoding for
this counter set {⊥, 0, 1, . . . , b}: we use �log2(b + 1)� + 1 bits. One bit is used
for representing whether the value equals ⊥, the remaining bits represent the
standard binary encoding of the numeral (if given). Taking an extra bit for the
⊥ value has the advantage of obtaining smaller BDDs in most cases as this value
appears very often in the definition of the transition relation.

We also use and propose two additional tricks. First of all, the games defined
in the previous section are built in a way such that they permit one type of non-
determinism: we can allow the system player to choose a successor state from a
set of possible ones. If the system player can do this in a greedy way, i.e., the
non-determinism can be resolved after each input/output cycle without losing
completeness, the game semantics remain unchanged. For bounded synthesis,
we can thus relax the transition relation slightly: we allow the system player to
increase her counters in addition to the counter increases imposed by visits to
rejecting states. We also allow her to set some counters from ⊥ to some arbitrary
other value. This non-minimality [1] of the transition relation typically decreases
the size of its symbolic encoding. A similar idea was also pursued by Henzinger
et al. [10] for simplifying the process of automaton determinisation.

As a second trick, we can use some automata-theoretic argument for not
having to store counters for certain states. Let a strongly connected component
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(SCC) in a UCW be a maximal set of states such that there exist sequences of
transitions between all pairs of states in the SCC. It is well-known that every
infinite run of a UCW A enters a strongly connected component in A after a finite
number of steps that it never leaves again. It is accepting if and only if in this
last SCC, rejecting states are visited only finitely often. This fact gives rise to an
optimisation idea: for transient states or states in SCCs without rejecting states,
we do not really need counters: we can assume that the counter corresponding
to such a state is always reset to 0. We call those states in A transient that can
only be visited once on every run of the automaton. Thus, only one bit is needed
for such states instead of �log2(b + 1)� + 1 bits. This modification does not alter
the soundness or completeness of the overall synthesis procedure. Additionally,
as some counters are now reset on some transitions, in practice we often have
the situation that for realisable specifications, the number of counter bits per
remaining state necessary for finding out that the specification is realisable is
also less.

4.2 The Safety Part

For the encoding of the game components corresponding to safety assumptions
and guarantees, we state two different, straight-forward methods, which we ex-
plain in the following. The first method only works for locally checkable properties
and is usually more efficient than the second one in this case, whereas the latter
method is capable of handling arbitrary safety properties.

Smart encoding of locally checkable properties: If an LTL property is
of the form ψ = G(φ) with a formula φ in which the only temporal operator
occurring is X , then ψ is a locally checkable property [12]. Let k be the deepest
nesting of the X operator in φ. For checking the satisfaction of such a property
along a trace, it suffices to store whether the property has already been violated,
the last k input/outputs (also called history) and the current round number
(with the domain {0, 1, . . . , k − 1,≥ k}). Then, in every round with a number
≥ k, we update whether the specification is already falsified with the input and
output in the last k rounds and the current round. For encoding the round
number in a symbolic way, we use a binary representation.

Encoding such a property in this way has some advantages: First of all, the
encoding proposed is canonical. Furthermore, multiple properties can share the
information stored in the game state space this way, so we can recycle the stored
information for all such locally checkable safety properties. Note that it is possible
to reduce the number of bits necessary for storage by leaving out the history bits
not needed for checking the given properties.

The general method: Safety properties have equivalent syntactically safe
UCW, i.e., in the UCW, all rejecting states are absorbing. In this case, the
UCW can be determinised by the power set construction. Thus, we can assign
to each state in the universal automaton a state bit which is set to 1 whenever
there is a run from the initial state to the respective state encoded by the bit
for the input/output played by the players during the game so far.
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This method is applicable to all safety properties but requires the computation
of a universal co-Büchi automaton having the property stated above. While it has
been observed that checking if a property is safety is not harder than building an
equivalent universal co-Büchi automaton [13], it is not guaranteed that typical
procedures for constructing UCWs from LTL properties yield automata that
have this property. For conciseness, we use a simplified approach in our actual
implementation. If the procedure employed for converting an LTL formula into
a UCW yields a UCW for which all rejecting states are absorbing or transient,
we declare the property as being safety and otherwise treat it as a non-safety
property. While we may miss safety properties this way, the soundness of the
overall approach is preserved.

5 Checking Unrealisability

So far, we have only dealt with the case that we want to prove realisability of
a specification. If a specification is unrealisable, then for no bound b ∈ IN, the
safety game induced by the bound and the specification is won for the system
player. Thus, an implementation of our approach, which would typically increase
the bound successively until the induced safety game is winning for the system
player, does not terminate in this case. In [8], it is described how the bounded
synthesis approach can be used for detecting unrealisability quickly anyway: we
simply run the synthesis procedure both on the original specification as well as
on the negated specification with swapped input and output in parallel. One of
these runs is guaranteed to terminate. Whenever this happens, we can abort the
other run. This results in an decision procedure for the overall problem.

When applying the optimisations from this paper, this idea is not directly
usable, as when negating the specification, the result is not again of the form∧

a∈A a →
∧

g∈G g for some sets of assumptions A and guarantees G. Instead,
checking if the environment player wins can be done by swapping input and
output, negating only the modified specification, and making the final states
of G1 losing for player 1 instead of winning. Then, player 1 (which is now the
environment player) wins only if the safety assumptions are fulfilled, the safeg

bit always represents if a safety guarantee has already been violated, and the
negated modified specification is fulfilled (with respect to the given bound).

Using the notations from Section 3, after replacing G3 with a game correspond-
ing to the negated modified specification, we can compute the set of winning
states for the environment player by:

W = νX.X ∧ (¬BF
1 ) ∧ (∃in .∀out .∃post .Bδ ∧ X [post/pre] ∧ (¬BF

2 ) ∧ (¬BF
3 ))

6 Experimental Results

We implemented our symbolic bounded synthesis approach in C++ with the
BDD library CUDD v.2.4.2 [21], using dynamic variable reordering. The pro-
totype tool assumes that the individual guarantees and assumptions are given
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separately. The first step in the computation is to split non-safety properties from
safety ones. For this, the tool calls the LTL-to-Büchi converter LTL2BA v.1.1 [9]
on the negations of the properties to obtain equivalent universal co-Büchi word
automata. As described in Section 4.2, we then check if the automata obtained
are syntactically safe. Locally checkable properties are converted to games using
the procedure specialised in this case, all other safety properties are treated by
the general procedure given. The UCW corresponding to the modified non-safety
part of the specification (as described in Section 3) is again computed by calling
LTL2BA on it. The last step for realisability checking is to solve the composite
games built for a successively increasing number of counter bits per state in the
UCW until the game is winning for the system player. We always start with two
bits.

We always check for realisability and unrealisabilty of the given specification
simultaneously, as described in the previous section. In case of realisability, we
extract an implementation that fulfills the specification. We do this in a fully
symbolic way: the first step is to compute the winning region of the game and
identify state bits that have a fixed value throughout all winning plays. These
state bits are removed. Then, we restrict the transition relation to moves by
the system player for which the lexicographically minimal next winning state is
chosen (for some order of the state bits). We do the same for the output bits, i.e.,
for some order of the output bits, we restrict the resulting transition relation to
lexicographically minimal output bit valuations (with respect to the remaining
choices for the system player). As a result, the transition relation is weakened in
a way such that there is precisely one combination of next state and output bit
valuation left for every reachable state and input variable assignment, making
the behaviour of player 1 deterministic. The remaining game graph is, together
with the specification, converted to a NuSMV [6] model. This allows running
NuSMV to verify the correctness of the models produced.

All computation times given in the following are obtained on a Sun XFire
computer with 2.6Ghz AMD Opteron processors running an x64-version of Li-
nux. All tools considered are single-threaded. We restricted the memory usage to
2 GB and set a timeout of 3600 seconds. The running times for our tool always
include the computation times of LTL2BA.

6.1 Performance Comparison on the Examples from [11,8]

We compare our prototype implementation with the only other currently publicly
available tools for full LTL synthesis, namely Lily v.1.0.2 [11] and Acacia v.0.3.9
[8]. In the following, for Acacia as well as our prototype tool, we only give
running times for the non-realisability check if the property is not realisable and
the realisability check and model synthesis if the property is realisable.

The 23 mutex variations used as examples in [11,8] are a natural starting point
for our investigation. For usage with our tool, we adapted these examples to the
Mealy-type computation model used in this work (as described in Section 2.1) by
prefixing all references to input variables with a next-time operator. For these 23
examples, Lily needed 54.35 seconds of computation time (of which 44.25 seconds
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Table 1. Comparison of the running times of Acacia and our prototype tool (in se-
conds) on the scalable example no. 3 from [8]. In this table, we denote timeouts by
“t/o” and running out of memory by “m/o”. As Lily performs worse than Acacia on
this benchmark, we did not include Lily in this comparison.

# of Clients: 1 2 3 4 5 6 7 10 14 15 20 21 22
Acacia running times: 0.9 2.0 4.0 9.8 47.3 506.5 m/o m/o m/o m/o m/o m/o m/o
Prototype running times: 0.3 0.7 0.6 1.9 0.9 4.6 3.0 651.5 491.0 t/o 1909.0 t/o t/o

were devoted to computing the automata from the given specifications). Acacia
in turn finished the task in 53.71 seconds (including 42.2 seconds for building
the automata). Our prototype implementation had a total running time of about
19.41 seconds. As computing the automata from the specification parts is not a
pure preprocessing step in our prototype, we do not split up the total running
time here.

In [8], the authors also modify one of these examples in order to be scalable.
Table 1 contains the respective results for this example.

6.2 A Load Balancing System

For evaluating the techniques presented in this paper in a more practical context,
we present an example concerning a load balancing unit distributing requests to
a fixed number of servers. Such a unit typically occurs as a component of a bigger
system which in turn utilises it for scheduling internal requests. We demonstrate
how a synthesis procedure can be used in the early development process of the
bigger system in order to systematically engineer the requirements of the load
balancer. Using a synthesis tool in this context makes it possible detect errors in
the specification that result in unrealisability as early as possible. We start by
stating the fundamental properties of the load balancing system and finally tune
it towards serving requests to the first server in a prioritised way. After each
added specification/assumption, we run our example implementation in order to
check if the specification is still realisable.

The following list contains the parts of the specification. Table 2 gives the
running times of our tool and Acacia for the respective sets of assumptions
and guarantees and some numbers of clients n ∈ {2, . . . , 9}. The system to be
synthesized uses the input bits r0, . . . , rn−1 for receiving the information whether
some server is sufficiently under-utilised to accommodate another task and the
output bits g0, . . . , gn−1 for the task assignments. An additional input job reports
on an incoming job to be assigned. For usage with Acacia, all occurrences of
output variables in the specification have been prefixed with a next-time operator
to take into account the different underlying computation model.

1. Guarantee: Non-ready servers are never bothered:
∧

0≤i<n G(gi → ri)
2. Guarantee: A task is only assigned to one server:

∧
0≤i<n G(gi →

(
∧

j∈{1,...,n}\{i} ¬gj))
3. Guarantee: Every server is used infinitely often:

∧
0≤i<n GF (gi)
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Table 2. Running times of Acacia (“A”) and our prototype tool (“P”) for the sub-
problems defined in Section 6.2 for n ∈ {2, . . . , 9}. For each combination of assumptions
and guarantees, it is reported whether the specification was satisfiable (+/-), how many
counter bits per state in the UCW were involved at the end of the computation (only
for our prototype tool) and how long the computation took (in seconds). We left out
the Lily tool as it is not competitive on the load balancing example.

Tool Specification / # Clients 2 3 4 5 6 7 8 9

P 1 + 2 0.6 + 2 0.6 + 2 0.2 + 2 1.3 + 2 0.2 + 2 0.3 + 2 0.2 + 2 0.3
A + 0.3 + 0.4 + 0.6 + 0.9 + 1.5 + 2.7 + 5.3 + 12.1
P

1 ∧ 2
+ 2 0.4 + 2 0.3 + 2 0.6 + 2 0.6 + 2 0.7 + 2 0.6 + 2 0.6 + 2 0.7

A + 0.3 + 0.3 + 0.4 + 0.4 + 0.6 + 0.9 + 1.6 + 3.1
P

1 ∧ 2 ∧ 3
- 2 0.5 - 2 0.5 - 2 0.5 - 2 0.5 - 2 0.7 - 2 1.0 - 2 6.9 - 2 73.9

A - 19.2 - 475.6 timeout timeout timeout timeout timeout timeout
P

1 ∧ 2 ∧ 4
+ 2 0.3 + 3 0.4 + 3 0.9 + 4 65.5 + 4 104.6 + 4 990.3 timeout timeout

A + 0.6 + 1.3 + 8.7 + 277.9 timeout timeout timeout timeout
P

1 ∧ 2 ∧ 4 ∧ 5
- 2 0.2 - 2 0.7 timeout timeout timeout timeout timeout timeout

A - 163.4 timeout timeout timeout timeout timeout timeout timeout
P 6→ 1 ∧ 2 ∧ 4 ∧ 5 - 2 0.2 - 2 0.7 - 2 3244.1 timeout timeout timeout timeout timeout
A - 175.3 timeout timeout timeout timeout timeout timeout timeout
P

6 ∧ 7→ 1 ∧ 2 ∧ 4 ∧ 5
- 2 0.5 - 2 1.1 timeout timeout timeout timeout timeout timeout

A - 190.7 timeout timeout timeout timeout timeout timeout timeout
P 6 ∧ 7→ 1 ∧ 2 ∧ 5 ∧ 8 + 2 0.3 + 3 0.6 + 3 2.4 + 4 20.7 + 4 368.6 timeout timeout timeout
A + 7.5 + 69.0 + 357.4 timeout timeout timeout timeout timeout
P

6 ∧ 7→ 1 ∧ 2 ∧ 5 ∧ 8 ∧ 9
- 2 0.3 - 2 0.2 - 2 0.3 - 2 1.0 - 2 16.8 - 2 449.1 timeout timeout

A - 48.8 - 2133.5 timeout timeout timeout timeout timeout timeout
P

6 ∧ 7 ∧ 10→ 1 ∧ 2 ∧ 5 ∧ 8 ∧ 9
+ 2 0.4 + 2 0.8 + 3 118.7 timeout timeout timeout timeout timeout

A + 26.9 + 295.8 timeout timeout timeout timeout timeout timeout

Note that the guarantees 1,2 and 3 cannot be fulfilled at the same time as some
server might not report when it is ready. Therefore, we replace the third part of
the specification and continue:

4. Guarantee: Liveness of the system:
∧

0≤i<n GF (ri) → GF (gi)
5. Guarantee: Only jobs that actually exist are assigned:

G((
∨

0≤i<n gi) → job).

Again, the guarantees 1, 2, 4 and 5 are unrealisable in conjunction as the job
signal might never be given. We add the assumption that this is not the case:

6. Assumption: There are always incoming jobs: GF job

At this point, the system designer gets to know that this added requirement does
not fix the unrealisability problem, either. The reason is that the clock cycles in
which job is set and the cycles in which some server is ready might occur in an
interleaved way. We therefore add:

7. Assumption: The job signal stays set until the job has been assigned: G(job∧
(
∧

0≤i<n ¬gi) → X(job))

Note that the specification is still not realisable. The reason is that the ready
signal of one server i might always be given after a job assignment to another
server j has been given (for some i �= j). If server i then always immediately
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withdraws its ready signal, the controller can never schedule a job to server i,
contradicting guarantee 4 if both servers i and j are ready infinitely often. We
therefore modify guarantee 4 to not consider these cases:

8. Guarantee: Every ready signal is either withdrawn or eventually handled:∧
0≤i<n ¬(FG(ri ∧ ¬gi))

We continue by adding a priority to the first server. Note that this breaks re-
alisability again, as server 0 can block the others. As an example, we solve this
problem by adding the assumption that server 0 works sufficiently long after it
obtains a new job before signalling ready again.

9. Guarantee: Server 0 gets a job whenever a job is given and it is ready:
G((
∨

1≤i<n gi) → ¬r0)
10. Assertion: Server 0 does not report being ready when it gets a task until

after an incoming job has been reported on for the next time: G(g0 →
((¬job ∧ ¬r0) U (job ∧ ¬r0))).

7 Conclusion and Outlook

In this paper, we described the steps necessary to make the bounded synthesis
approach work well with symbolic data structures such as BDDs. The key re-
quirement was to reduce the number of counters in the safety games that occur
in this approach as much as possible. We performed this task by splitting the
specification into safety and non-safety parts and presented an additional trick
that allowed stripping some counters from the game component corresponding
to the non-safety specification conjuncts. We also discussed efficient encodings
of the safety part of the specification into games. Experimental results show a
huge speed-up compared to previous works.

One particular issue we did not address in this paper is the extraction of small
implementations in the synthesis process for the case that the specification is re-
alisable. Similarly to the observations made in the context of generalised reactiv-
ity(1) synthesis, where the expressivity of full LTL is traded against the possibility
to use more efficient algorithms for performing the synthesis process, the models
produced are often non-optimal [2], i.e., unnecessarily large. Thus, further work
will deal with the more effective extraction of winning strategies. While the tech-
niques presented here are already suitable for requirements engineering and pro-
totype extraction, the problem of how to obtain small implementations which can
directly be converted to suitable hardware circuits is still open.
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Abstract. Often one has a preference order among the different systems that
satisfy a given specification. Under a probabilistic assumption about the possible
inputs, such a preference order is naturally expressed by a weighted automaton,
which assigns to each word a value, such that a system is preferred if it generates
a higher expected value. We solve the following optimal-synthesis problem: given
an omega-regular specification, a Markov chain that describes the distribution of
inputs, and a weighted automaton that measures how well a system satisfies the
given specification under the given input assumption, synthesize a system that
optimizes the measured value.

For safety specifications and measures that are defined by mean-payoff au-
tomata, the optimal-synthesis problem amounts to finding a strategy in a Markov
decision process (MDP) that is optimal for a long-run average reward objective,
which can be done in polynomial time. For general omega-regular specifications,
the solution rests on a new, polynomial-time algorithm for computing optimal
strategies in MDPs with mean-payoff parity objectives. We present some experi-
mental results showing optimal systems that were automatically generated in this
way.

1 Introduction

Quantitative reasoning is traditionally used to measure quantitative properties of sys-
tems, such as performance or reliability (cf. [1, 4, 30, 33]). More recently, quantitative
reasoning has been shown useful also in the classically Boolean contexts of verification
(where we ask if a given system satisfies a given specification) and synthesis (where a
system is automatically derived from a specification) [6, 31]. In particular, by augment-
ing a Boolean specifications with a quantitative specifications, we can measure how
“well” a system satisfies the specification. For example, among systems that respond to
requests, we may prefer one system over another if it responds quicker, or it responds
to more requests, or it issues fewer unrequested responses, etc. In synthesis, we can use
such measures to guide the synthesis process towards deriving a system that is, in the
desired sense, “optimal” among all systems that satisfy the specification [6].
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There are many ways to define a quantitative measure that captures the “goodness”
of a system with respect to the Boolean specification, and particular measures can be
quite different, but there are two questions every such measure has to answer: (1) how
to assign a quantitative value to one particular behavior of a system (measure along a
behavior) and (2) how to aggregate the quantitative values that are assigned to the pos-
sible behaviors of the system (measure across behaviors). Recall the response property.
Suppose there is a sequence of requests along a behavior and we are interested primarily
in response time, i.e., the quicker the system responds, the better. As measure (1) along
a particular behavior, we may be interested in an average or the supremum (i.e., worst
case) of all response times, or in any other function that aggregates all response times
along a behavior into a single real value. The choice of measure (2) across behaviors
is independent: we may be interested in an average of all values assigned to individual
behaviors, or in the supremum, or again, in some other function. In this way, we can
measure the average (across behaviors) of average (along a behavior) response times, or
the average of worst-case response times, or the worst case of average response times,
or the worst case of worst-case response times, etc. Note that these are the same two
choices that appear in weighted automata and max-plus algebras (cf. [17, 25, 28]).

In previous work, we studied various measures (1) along a behavior. In particular,
lexicographically ordered tuples of averages [6] and ratios [7] are of natural interest
in certain contexts. Alur et al. [2] consider an automaton model with a quantitative
measure (1) that is defined with respect to certain accumulation points along a behavior.
However, in all of these cases, for measure (2) only the worst case (i.e., supremum) is
considered. This comes natural as an extension of Boolean thinking, where a system
fails to satisfy a property if even a single behavior violates the property. But in this
way, we cannot distinguish between two systems that have the same worst cases across
behaviors, but in one system almost all possible behaviors exhibit the worst case, while
in the other only very few behaviors do so. In contrast, in performance evaluation one
usually considers the average case across different behaviors.

For instance, consider a resource controller for two clients. Clients send requests,
and the controller grants the resource to one of them at a time. Suppose we prefer,
again, systems where requests are granted “as quickly as possible.” Every controller
that avoids simultaneous grants will have a behavior along which at least one grant is
delayed by one step, namely, the behavior along which both clients continuously send
requests. The best the controller can do is to alternate between the clients. Now, if
systems are measured with respect to the worst-case behaviors, then a controller that
always alternates between both clients, independent of the actual requests, is as good
as a controller that tries to grant all requests immediately and only alternates when
both clients request the resource at the same time. Clearly, if we wish to synthesize the
preferred controller, we need to apply an average-case measure across behaviors.

In this paper, we present a measure (2) that averages across all possible behaviors of
a system and solve the corresponding synthesis problem to derive an optimal system.
In synthesis, the different possible behaviors of a system are caused by different input
sequences. Therefore, in order to take a meaningful average across different behaviors,
we need to assume a probability distribution over the possible input sequences. For
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example, if on input 0 a system has response time r0, and on input 1 response time r1,
and input 0 is twice as likely as input 1, then the average response time is (2r0 + r1)/3.

The resulting synthesis problem is as follows: given a Boolean specification ϕ, a
probabilistic input assumption μ, and a measure that assigns to each system M a value
Vϕ

μ (M) of how “well” M satisfies ϕ under μ, construct a system M such thatVϕ
μ (M) ≥

Vϕ
μ (M ′) for all M ′. We solve this problem for qualitative specifications that are given as

ω-automata, input assumptions that are given as finite Markov chains, and a quantitative
specification given as mean-payoff automata which defines a quantitative language by
assigning values to behaviors. From the above three inputs we derive a measure that
captures (1) an average along system behaviors as well as (2) an average across system
behaviors; and thus we obtain a measure that induces a value for each system.

To our knowledge this is the first solution of a synthesis problem for an average-case
measure across system behaviors. Technically the solution rests on a new, polynomial-
time algorithm for computing optimal strategies in MDPs with mean-payoff parity ob-
jectives. In contrast to MDPs with mean-payoff objectives, where pure memoryless
optimal strategies exist, optimal strategies for mean-payoff parity objectives in MDPs
require infinite memory. It follows from our result that the infinite memory can be cap-
tured with a counter, and with this insight we develop the polynomial time algorithm
for solving MDPs with mean-payoff parity objectives

Related works. Many formalisms for quantitative specifications have been considered
in the literature [2, 8–11, 19, 20, 23, 24, 32]; most of these works (other than [2, 11, 19])
do not consider mean-payoff specifications and none of these works focus on how
quantitative specifications can be used to obtain better implementations for the syn-
thesis problem. Furthermore, several notions of metrics for probabilistic systems and
games have been proposed in the literature [21, 22]; these metrics provide a mea-
sure that indicates how close are two systems with respect to all temporal properties
expressible in a logic; whereas our work uses quantitative specification to compare
systems wrt the property of interest. Similar in spirit but based on a completely differ-
ent technique, is the work by Niebert et al. [34], who group behaviors into good and
bad with respect to satisfying a given LTL specification and use a CTL∗-like analy-
sis specification to quantify over the good and bad behaviors. This measure of logical
properties was used by Katz and Peled [31] to guide genetic algorithms to discover
counterexamples and corrections for distributed protocols. Control and synthesis in the
presence of uncertainty has been considered in several works such as [3, 5, 16]: in all
these works, the framework consists of MDPs to model nondeterministic and proba-
bilistic behavior, and the specification is a Boolean specification. In contrast to these
works where the probabilistic choice represent uncertainty, in our work the probabilis-
tic choice represent a model for the environment assumption on the input sequences that
allows us to consider the system as a whole. Moreover, we consider quantitative objec-
tives. MDPs with mean-payoff objectives are well studied. The books [26, 36] present
a detailed analysis of this topic. We present a polynomial-time solution to a more
general condition: the Boolean combination of mean-payoff and parity condition on
MDPs.
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2 Preliminaries

Alphabet, words, and languages. An alphabet Σ consists of a finite set of letters σ ∈
Σ. A word w over Σ is either a finite or infinite sequence of letters, i.e., w ∈ Σ∗ ∪Σω.
Given a word w ∈ Σω, we denote by wi the letter at position i of w and by wi the prefix
of w of length i, i.e., wi = w1w2 . . . wi. We denote by |w| the length of the word w,
i.e., |wi| = i and |w| = ∞, if w is infinite. A qualitative language L is a subset of Σω.
A quantitative language L [11] is a mapping from the set of words to the set of reals,
i.e., L : Σω → R. Note that the characteristic function of a qualitative language L is
a quantitative language mapping words to 0 and 1. Given a qualitative language L, we
use L also to denote its characteristic function.

Automata with parity, safety, and mean-payoff objective. An (finite-state) automa-
ton is a tuple A = (Σ, Q, q0, Δ), where Σ is a alphabet, Q is a (finite) set of states,
q0 ∈ Q is an initial state, and Δ : Q × Σ ⇀ Q1 is a transition function that maps
a state and a letter to a successor state. The run of A on a word w = w0w1 . . . is a
sequence of states ρ = ρ0ρ1 . . . such that (i) ρ0 = q0 and (ii) for all 0 ≤ i ≤ |w|,
Δ(ρi, wi) = ρi+1). A parity automaton is a tuple A = ((Σ, Q, q0, Δ), p), where
(Σ, Q, q0, Δ) is a finite-state automaton and p : Q → {0, 1, . . . , d} is a priority
function that maps every state to a natural number in [0, d] called priority. A par-
ity automaton A accepts a word w if the least priority of all states occurring in-
finitely often in the run ρ of A on w is even, i.e., minq∈Inf(ρ) p(q) is even, where
Inf(ρ) = {q | ∀i∃j > i ρj = q}. The language of A denoted by LA is the set of
all words accepted by A. A safety automaton is a parity automaton with only prior-
ities 0 and 1, and no transitions from priority-1 to priority-0 states. A mean-payoff
automaton is a tuple A = ((Σ, Q, q0, Δ), r), where (Σ, Q, q0, Δ) is a finite-state au-
tomaton and r : Q × Σ → N is a reward function that associates to each transition of
the automaton a reward v ∈ N. A mean-payoff automaton assigns to each word w the
long-run average of the rewards, i.e., for a word w let ρ be the run of A on w, then we
have LA(w) = 1

n ·
∑n

i=1 r(ρi, wi), if w is finite, and LA(w) = lim infn→∞ LA(wn)
otherwise. Note that LA is a function assigning values to words.

State machines and specifications. A (finite-)state machine (or system) with input sig-
nals I and output signals O is a tuple M = (Q, q0, Δ, λ), where (ΣI , Q, q0, Δ) with
ΣI = 2I is a (finite-state) automaton and λ : Q × ΣI → Σ0 with ΣI = 2I and
ΣO = 2O is a labeling function that maps every transition in Δ to an element in ΣO.
The sets ΣI and ΣO are called the input and the output alphabet of M , respectively. We
denote the joint alphabet 2I∪O by Σ. Given an input word w ∈ Σ∗

I ∪ Σω
I , let ρ by the

run of M on w, the outcome of M on w, denoted by OM (w), is the word v ∈ Σ∗ ∪Σω

s.t. for all 0 ≤ i ≤ |w|, vi = wi ∪ λ(ρi, wi). So, OM is the function mapping input
words to outcomes. The language of M , denoted LM , is the set of all outcomes of M .

We analyze state machines with respect to qualitative and quantitative specifications.
Qualitative specifications are qualitative languages, i.e., subsets of Σω or equivalently
functions mapping words to 0 and 1. We consider ω-regular specifications given as
safety or parity automata. Given a safety or parity automaton A and a state machine M ,
we say M satisfies LA (written M |= LA) if LM ⊆ LA or equivalently ∀w ∈ Σω

I :

1 Note that our automata are deterministic and complete to simplify the presentation.
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LA(OM (w)) = 1. A quantitative specification is given by a quantitative language L,
i.e., a function that assigns values to words. Given a state machine M , we use function
composition to relate L and M , i.e., L◦OM is mapping every input word w of M to the
value assigned by L to the outcome of M on w. We consider quantitative specifications
given by Mean-payoff automata.

Markov chains and Markov Decision Processes (MDP). A probability distribution
over a finite set S is a function d : S → [0, 1] such that

∑
q∈Q d(q) = 1. We denote

the set of all probabilistic distributions over S by D(S). A Markov Decision Process
(MDP) G = (S, s0, E, S1, SP , δ) consists of a finite set of states S, an initial state
s0 ∈ S, a set of edges E ⊆ S × S, a partition (S1, SP ) of the set S, and a probabilistic
transition function δ: SP → D(S). The states in S1 are the player-1 states, where
player 1 decides the successor state; and the states in SP are the probabilistic states,
where the successor state is chosen according to the probabilistic transition function δ.
So, we can view an MDP as a game between two players: player 1 and a random player
that plays according to δ. We assume that for s ∈ SP and t ∈ S, we have (s, t) ∈ E
iff δ(s)(t) > 0, and we often write δ(s, t) for δ(s)(t). For technical convenience we
assume that every state has at least one outgoing edge. For a state s ∈ S, we write E(s)
to denote the set {t ∈ S | (s, t) ∈ E} of possible successors. If the set S1 = ∅, then
G is called a Markov Chain and we omit the partition (S1, SP ) from the definition. A
Σ-labeled MDP (G, λ) is an MDP G with a labeling function λ : S → Σ assigning
to each state of G a letter from Σ. We assume that labeled MDPs are deterministic
and complete, i.e., (i) ∀(s, s′), (s, s′′) ∈ E, λ(s′) = λ(s′′) → s′ = s′′ holds, and (ii)
∀s ∈ S, σ ∈ Σ, ∃s′ ∈ S s.t. (s, s′) ∈ E and λ(s′) = σ.

Plays and strategies. An infinite path, or a play, of the MDP G is an infinite sequence
ω = s0s1s2 . . . of states such that (sk, sk+1) ∈ E for all k ∈ N. Note that we use ω
for infinite sequences of states (plays) and v for finite sequences of states. We write Ω
for the set of all plays, and for a state s ∈ S, we write Ωs ⊆ Ω for the set of plays
starting at s. A strategy for player 1 is a function π: S∗S1 → D(S) that assigns a
probability distribution to all finite sequences v ∈ S∗S1 of states ending in a player-
1 state. Player 1 follows π, if she make all her moves according to the distributions
provided by π. A strategy must prescribe only available moves, i.e., for all v ∈ S∗,
s ∈ S1, and t ∈ S, if π(vs)(t) > 0, then (s, t) ∈ E. We denote by Π the set of all
strategies for player 1. Once a starting state s ∈ S and a strategy π ∈ Π is fixed, the
outcome of the game is a random walk ωπ

s for which the probabilities of every event
A ⊆ Ω, which is a measurable set of plays, are uniquely defined. For a state s ∈ S
and an event A ⊆ Ω, we write μπ

s (A) for the probability that a play belongs to A if
the game starts from the state s and player 1 follow the strategy π, respectively. For a
measurable function f : Ω → R we denote by Eπ

s [f ] the expectation of the function f
under the probability measure μπ

s (·). Strategies that do not use randomization are called
pure. A player-1 strategy π is pure if for all v ∈ S∗ and s ∈ S1, there is a state t ∈ S
such that π(vs)(t) = 1. A memoryless player-1 strategy depends only on the current
state, i.e., for all v, v′ ∈ S∗ and for all s ∈ S1 we have π(vs) = π(v′s). A memoryless
strategy can be represented as a function π: S1 → D(S). A pure memoryless strategy
is a strategy that is both pure and memoryless and can be represented as π: S1 → S.
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Quantitative objectives. A quantitative objective is given by a measurable function
f : Ω → R. We consider several objectives based on priority and reward functions.
Given a priority function p : S → {0, 1, . . . , d}, we defined the set of plays satisfying
the parity objective as Ωp = {ω ∈ Ω | min

(
p(Inf(ω))

)
is even}. A Parity objective

parityp is the characteristic function of Ωp. Given a reward function r : S → N ∪ {⊥},
the mean-payoff objective meanr for a play ω = s1s2s3 . . . is defined as meanr(ω) =
lim infn→∞ 1

n ·
∑n

i=1 r(si), if for all i > 0 : r(si) �= ⊥, otherwise meanr(ω) = ⊥.
Given a priority function p and a reward function r the mean-payoff parity objective
mpp,r assigns the long-run average of the rewards if the parity objective is satisfied;
otherwise it assigns ⊥. Formally, for a play ω we have

mpp,r(ω) =

{
meanr(ω) if parityp(ω) = 1,

⊥ otherwise.
For a reward function r : S → R the

max objective maxr assigns to a play the maximum reward that appears in the play. Note
that since S is finite, the number of different rewards appearing in a play is finite and
hence the maximum is defined. Formally, for a play ω = s1s2s3 . . . we have maxr(ω) =
max〈r(si)〉i≥0.

Values and optimal strategies. Given an MDP G, the value function VG for an objec-
tive f is the function from the state space S to the set R of reals. For all states s ∈ S, let
VG(f)(s) = sup

π∈Π
E

π
s [f ]. In other words, the value VG(f)(s) is the maximal expectation

with which player 1 can achieve her objective f from state s. A strategy π is optimal
from state s for objective f if VG(f)(s) = Eπ

s [f ]. For parity objectives, mean-payoff
objectives, and max objectives pure memoryless optimal strategies exist in MDPs.

Almost-sure winning states. Given an MDP G and a priority function p, we denote by
WG(parityp) = {s ∈ S | VG(parityp)(s) = 1}, the set of states with value 1. These
states are called the almost-sure winning states and an optimal strategy from the almost-
sure winning states is called a almost-sure winning strategy. The set WG(parityp) for an

MDP G with priority function p can be computed in O(d ·n 3
2 ) time, where n is the size

of the MDP G and d is the number of priorities [14, 15]. For states in S \ WG(parityp)
the parity objective is falsified with positive probability for all strategies, which implies
that for all states in S \WG(parityp) the value is less than 1 (i.e., VG(parityp)(s) < 1).

3 Measuring Systems

In this section, we start with an example to explain the problem and introduce our
measure. Then, we define the measure formally and show finally, how to compute the
value of a system with respect to the given measure.

Example 1. Recall the example from the introduction, where we consider a resource
controller for two clients. Client i requests the resource by setting its request signal ri.
The resource is granted to Client i by raising the grant signal gi. We require that the
controller guarantees mutually exclusive access and that it is fair, i.e., a requesting
client eventually gets access to the resource. Assume we prefer controllers that respond
quickly. Fig. 1 shows a specification that rewards a quick response to request ri. The
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Fig. 1. Automaton Ai
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r̄1/ḡ1g2(2)

r̄2/g1ḡ2(2)

r2/g1ḡ2(1)

Fig. 3. Product of System M1 with
Specification A1 and A2

specification is given as a Mean-payoff automaton that measures the average delay be-
tween a request ri and a corresponding grant gi. Transitions are labeled with a conjunc-
tion of literals2 and a reward in parentheses. In particular, whenever a request is granted
the reward is 1, while a delay of the grant results in reward 0. The automaton assigns to
each word in (2{ri,gi})ω the average reward. E.g., the value of the word (riḡi rigi)ω is
(0 + 1)/2 = 1/2. We can take two copies of this specification, one for each client, and
assign to each word in (2{r1,r2,g1,g2})ω the sum of the average rewards. E.g., the word
(r1r̄2ḡ1g2 r1r̄2g1ḡ2)ω gets an average reward of 1/2 with respect to the first client and
reward 1 with respect to the second client, which sums up to a total reward of 3/2.

Consider the systems M1 and M2 in Fig. 2 and 4, respectively. Transitions are labeled
with conjunctions of input and output literals separated by a slash. System M1 alternates
between granting the resource to Client 1 and 2. System M2 grants the resource to
Client 2, if only Client 2 is sending requests. By default it grants the resource to Client 1.
If both clients request, then the controller alternates between them. Both systems are
correct with respect to the functional requirements describe above: they are fair to both
clients and guarantee that the resource is not accessed simultaneously.

Though, one can argue that System M2 is better than M1 because the delay be-
tween requests and grants is, for most input sequences, smaller than the delay in Sys-
tem M1. For instance, consider the input trace (r̄1r2 r1r̄2)ω . The response of Sys-
tem M1 is (g1ḡ2 ḡ1g2)ω. Looking at the product between the system M1 and the spec-
ifications A1 and A2 shown in Fig. 3, we can see that this results in an average reward
of 1. Similar, Fig. 5 shows the product of M2, A1, and A2. System M2 responds with
(ḡ1g2 g1ḡ2)ω and obtains a reward of 2. Now, consider the sequence (r1r2)ω, which is
the worst input sequence the environment can provide. In both systems, this sequences
leads to a reward of 1, which is the lowest possible reward. So M1 and M2 cannot be
distinguished with respect to their worst case behavior.

To measure a system with respect to its average behavior, we aim to average over the
rewards obtained for all possible input sequences. Since we have infinite sequences, one
way to average is the limit of the average over all finite prefixes. Note that this can only
be done if we know the values of finite words with respect to the quantitative specifica-
tion. For instance, for a finite-state machine M and a Mean-payoff automaton A, we can
define the average as VLA� (M) := limn→∞ 1

|ΣI |n
∑

w∈Σn
I

LA(OM (wn)). However, if
we truly want to capture the average behavior, we need to know, how often the different

2 Note that transitions depend only on the signals that appear in their labels.
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r̄1/ḡ1g2
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Fig. 5. Product of M1, A1, and A2

parts of the system are used. This corresponds to knowing how likely the different input
sequences are. The measure above assumes that all input sequences are “equally likely”.
In order to define measures that take the behavior of the environment into account, we
use a probability measure on input words. In particular, we consider the probability
space (Σω

I ,F , μ) over Σω
I , where F is the σ-algebra generated by the cylinder sets of

Σω (which are the sets of infinite words sharing a common prefix) (in other words, we
have the Cantor topology on Σω

I ) and μ is a probability measure defined on (Σω,F).
We use finite labeled Markov chains to define the probability measure μ.

Example 2. Recall the controller of Example 1. Assume we know that Client 1 is
more likely to send requests than Client 2. We can represent such a behavior by as-
signing probabilities to the events in Σ = 2{r1,r2}. Assume Client 1 sends requests
with probability p1 and Client 2 sends them with probability p2 < p1, independent
of what has happened before. Then, we can build a labeled Markov chain with four
states Sp = {s0, s1, s2, s3} each labeled with a letter in Σ, i.e., λ(s0) = r̄1r̄2,
λ(s1) = r̄1r2, λ(s2) = r1r̄2, and λ(s3) = r1r2., and the following transition prob-
abilities: (i) δ(si)(s0) = (1 − p1) · (1 − p2), (ii) δ(si)(s1) = (1 − p1) · p2, (iii)
δ(si)(s2) = p1 · (1 − p2), and (iv) δ(si)(s3) = p1 · p2, for all i ∈ {0, 1, 2, 3}.

Once we have a probability measure μ on the input sequences and the associated
expectation measure E, we can define a satisfaction relation between systems and spec-
ifications and a measure for a system with respect to a qualitative and a quantitative
specification.

Definition 1 (Satisfaction). Given a state machine M with input alphabet ΣI , a quali-
tative specification ϕ, and a probability measure μ on (Σω

I ,F), we say that M satisfies
ϕ under μ (written M |=μ ϕ) iff M satisfies ϕ with probability 1, i.e., E[ϕ ◦ OM ] = 1,
where E is the expectation measure for μ.

Recall that we use a quantitative specification to describe how “good” a system is. Since
we aim for a system that satisfies the given (qualitative) specification and is “good” in
a given sense, we define the value of a machine with respect to a qualitative and a
quantitative specification.

Definition 2 (Value). Given a state machine M , a qualitative specification ϕ, quanti-
tative specification ψ, and a probability measure μ on (Σω

I ,F), the value of M with
respect to ϕ and ψ under μ is defined as the expectation of the function ψ ◦ OM under
the probability measure μ if M satisfies ϕ under μ, and ⊥ otherwise. Formally, let E

be the expectation measure for μ, then
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Vϕψ
μ (M) :=

{
E[ψ ◦ OM ] if M |=μ ϕ,

⊥ otherwise.

If ϕ is the set of all words, then we write Vψ
μ (M). Furthermore, we say M optimizes ψ

under μ, if Vψ
μ (M) ≥ Vψ

μ (M ′) for all systems M ′.

We could consider here also the traditional satisfaction relation, i.e., M |= ϕ. We have
algorithms for both notions but we focus on satisfaction under μ, since satisfaction with
probability 1 is the natural correctness criterion, if we are given a probabilistic environ-
ment assumption. Note that for safety specifications the two notions coincide, because
we assume that the labeled Markov chain defining the input distribution is complete.3

For parity specifications, the results in this section would change only slightly if we
replace M |=μ ϕ by M |= ϕ. In particular, instead of analyzing a Markov chain with
parity objective, we would have to analyze an automaton with parity objective. We dis-
cuss the the alternative synthesis algorithm in the conclusions.

Lemma 1. Given a finite-state machine M , a safety or a parity automaton A, a mean-
payoff automaton B, and a labeled Markov chain (G, λG) defining a probability mea-
sure μ on (Σω

I ,F), we can construct a Markov chain G′ = (S′, s′0, E
′, δ′), a reward

function r′, and a priority function p′ such that

VLA,LB
μ (M) =

{
2 · VG′(meanr′)(s′0) if A is a safety automaton,

2 · VG′(mpp′,r′)(s′0) otherwise.

We first build the product of M , A, B (cf. Fig. 3). Then, G′ alternates between (1)
moving according to G, which means choosing an input value according to the distri-
bution given by G, and (2) moving in M × A × B according to the chosen input. The
reward given by B for this transition is assigned to the intermediate state. The priori-
ties are copied from A. The value VLB

μ (M) is twice the expectation VG′(meanr′)(s′0),
since we have introduced 0-rewards in every second step. Using Lemma 1 and the fact
that we can compute VG′(meanr′)(s′0) and VG′(mpp′,r′)(s′0) in polynomial time for
Markov chains [14, 26], we obtain the following results. Detailed proofs can be found
in the technical report [12].

Theorem 1. Given a finite-state machine M , a parity automaton A, a mean-payoff
automaton B, and a labeled Markov chain (G, λG) defining a probability measure μ,
we can compute the value VLA,LB

μ (M) in polynomial time. Furthermore, if (G, λG)
defines a uniform input distribution, then VLB� (M) = VLB

μ (M)4.

Example 3. Recall the two system M1 and M2 (Fig. 2 and 4, respectively) and the
specification A (cf. Fig. 1) that rewards quick responses. The two systems are equivalent

3 Recall that a Markov chain is complete, if in every state there is an edge for every input value.
Since every edge has a positive probability, also every finite path has a positive probability and
therefore a system violating a safety specification will have a value ⊥. If the Markov chain is
not complete (i.e., we are given an input distribution that assigns probability 0 to some finite
input sequences), we require a simple pre-processing step that restricts our algorithms to the
set of states satisfying the safety condition independent of the input assumption. This set can
be computed in linear time by solving a safety game.

4 We can show that this measure is invariant under transformations of the computation tree.
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wrt the worst case behavior. Let us consider the average behavior: we build a Markov
chain G� that assigns 1/4 to all events in 2{r1,r2}. To measure M1, we take the product
between G� and M1 × A (shown in Fig. 3). The product looks like the automaton in
Fig. 3 with an intermediate state for each edge. This state is labeled with the reward
of the edge. All transition leading to intermediate states have probability 1/2, the other
once have probability 1. So the expectation of being in a state is the same for all four
main states (i.e., 1/8) and half of it in the eight intermediate states (i.e., 1/16). Four
(intermediate) states have a reward of 1, four have a reward of 2. So we get a total
reward of 4 ·1/16+4 ·2 ·1/16 = 3/4, and a system value of 1.5. This is expected when
looking at Fig. 3 because each state has two inputs resulting in a reward of 2 and two
inputs with reward 1. For System M2, we obtain Markov chain similar to Fig. 5 but now
the probability of the transitions corresponding to the self-loops on the initial state sum
up to 3/4. So it is more likely to state in the initial state, then to leave it. The expectation
for being in the states (q0, q0, q0),(q1, q0, q1), and (q2, q1, q0) are 2/3, 2/9, and 1/9,
respectively, and their expected rewards are (2 + 2 + 2 + 1)/4 = 7/4, 3/2, and 3/2,
respectively. So, the total reward of System M2 is 2/3·7/4+2/9·3/2+1/9·3/2 = 1.67,
which is clearly better than the value of system M1 for specification A.

4 Synthesizing Optimal Systems

In this section, we show how to construct a system that satisfies a qualitative specifi-
cation and optimizing a quantitative specification under a given probabilistic environ-
ment. First, we reduce the problem to finding an optimal strategy in an MDP for a
mean-payoff (parity) objective. Then, we show how to compute such a strategy using
end components and a reduction to max objective. Finally, we provide a linear program
that computes the value function of an MDP with max objective. This shows that MDPs
with mean-payoff parity objective can be solved in polynomial time.

Lemma 2. Given a safety (resp. parity) automaton A, a mean-payoff automaton B,
and a labeled Markov chain (G, λG) defining a probability measure μ on (Σω

I ,F), we
can construct a labeled MDP (G′, λG′) with G′ = (S′, s′0, E

′, S′
1, S

′
P , δ′), a reward

function r′, and a priority function p′ such that every pure strategy π that is optimal
from state s′0 for the objective meanr′ (resp. mpp′,r′) and for which Eπ

s′
0
(meanr′) �= ⊥

(resp. Eπ
s′
0
(mpp′,r′) �= ⊥) corresponds to a state machine M that satisfies LA under μ

and optimizes LB under μ.

The construction of G′ is very similar to the construction used in Lemma 1. Intuitively,
G′ alternates between mimicking a move of G and mimicking a move of A × B × C,
where C is an automaton with |ΣO|-states that pushes the output labels from transi-
tions to states, i.e., the transition function δC of C is the largest transition function s.t.
∀s, s′, σ, σ′ : δC(s, σ) = δC(s′, σ′) → σ = σ′. Priorities p′ are again copied from A
and rewards r′ from B. The labels for λG′ are either taken from λG (in intermediate
state) or they correspond to the transitions taken in C. Every pure strategy in G′

fixes one output value for every possible input sequence. The construction of the state
machine depends on the structure of the strategy. For pure memoryless strategies, the
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construction is straight forward. At the end of this section, we discuss how to deal with
other strategies.

The following theorem follows from Lemma 2 and the fact that MDPs with mean-
payoff objective have pure memoryless optimal strategies and they can be computed in
polynomial time (cf. [26]).

Theorem 2. Given a safety automaton A, a mean-payoff automaton B, and a labeled
Markov chain (G, λG) defining a probability measure μ, we can construct a finite-state
machine M (if one exists) in polynomial time that satisfies LA under μ and optimizes
LB under μ.

MDPs with mean-payoff parity objectives. It follows from Lemma 2 that if the quali-
tative specification is a parity automaton, along with the Markov chain for probabilistic
input assumption, and mean-payoff automata for quantitative specification, then the so-
lution reduces to solving MDPs with mean-payoff parity objective. In the following we
provide an algorithmic solution of MDPs with mean-payoff parity objective. We first
present few basic results on MDPs.

End components of MDPs. Given an MDP G = (S, s0, E, S1, SP , δ) , a set U ⊆ S
of states is an end component [16, 18] if U is δ-closed (i.e., for all s ∈ U ∩ SP we
have E(s) ⊆ U ) and the sub-game of G restricted to U (denoted G  U ) is strongly
connected. We denote by E(G) the set of end components of an MDP G. Given any
strategy (memoryless or not), with probability 1 the set of states visited infinitely often
along a play is an end component. More precisly, given an MDP G, for all states s ∈ S
and all strategies π ∈ Π , we have μπ

s ({ω | Inf(ω) ∈ E(G)}) = 1 [16, 18]. Further-
more, for an end component U ∈ E(G), consider the memoryless strategy πU that plays
in any state s in U ∩S1 all edges in E(s)∩U uniformly at random. In the Markov chain
obtained by fixing πU , the end component U is a closed connected recurrent set.

Lemma 3. Given an MDP G and an end component U ∈ E(G), the strategy πU en-
sures that for all states s ∈ U , we have μπU

s ({ω | Inf(ω) = U}) = 1.

It follows that the strategy πU ensures that from any starting state s, any other state t
is reached in finite time with probability 1. From Lemma 3 we can conclude that in an
MDP the value for mean-payoff parity objectives can be obtained by computing values
for end-components and then applying the maximal expectation to reach the values of
the end components.

Lemma 4. Consider an MDP G with state space S, a priority function p, and reward
function r such that (a) G is an end-component (i.e., S is an end component) and (b) the
minimum priority in S is even. Then the value for mean-payoff parity objective for all
states coincide with the value for mean-payoff objective, i.e., for all states s we have
VG(mpp,r)(s) = VG(meanr)(s).

The proof idea is to take two strategies: one for the mean-payoff and one for the parity
objective, and combine them to produce the optimal value for the mean-payoff parity
objective, which is equal to the optimal mean-payoff value. We take an optimal pure
memoryless strategy πm for the mean-payoff objective and a pure memoryless strat-
egy πS for the stochastic shortest path to reach the states with the minimum priority
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(which is even). Observe that (i) under the strategy πS , from any state s we can reach the
minimum (even) priority in finite time with probability 1; (ii) the mean-payoff value for
all states is the same, because strategy πU (from Lemma 3) ensures that every state can
reach every other state in finite time with probability 1; and (iii) the strategy πm ensures
that for any ε > 0, there exists j(ε) ∈ N such that if πm is played for any � ≥ j(ε) steps
then the expected average of the rewards for � steps is within ε of optimal mean-payoff
value. So, we can achieve the optimal mean-payoff value and satisfies the parity objec-
tive by alternating between the two strategies, if we ensure to play πm “long enough”.
Let β be the maximum absolute value of the rewards. The optimal strategy for mean-
payoff objective is played in rounds, each having two stages. The strategy for round i is
as follows: (Stage 1) First play the strategy πS till the minimum priority state is reached.
(Stage 2) Let εi = 1/i. If the game was in the first stage in this (i-th round) for ki steps,
then play the strategy πm for �i steps such that �i ≥ max{j(εi), i · ki · β}. Then the
strategy proceeds to round i + 1. This strategy guarantees the satisfaction of the parity
objective and the optimal mean-payoff value. A full proof can be found in [12].

The above lemma shows that in an end component if the minimum priority is even,
then the value for mean-payoff parity and mean-payoff objective coincide if we consider
the sub-game restricted to the end component.

Computing best end-component values. We first compute a set S∗ such that every end
component U with min(p(U)) is even is a subset of S∗. We also compute a function f∗ :
S∗ → R+ that assigns to every state s ∈ S∗ the mean-payoff parity value that can be
obtained by visiting only states of an end component that contains s. The computation
of S∗ and f∗ is as follows: (1) S∗

0 is the set of maximal end-components with priority 0
and for a state s ∈ S∗

0 the function f∗ assigns the mean-payoff value when the sub-
game is restricted to S∗

0 (by Lemma 4 we know that if we restrict the game to the
end-components, then the mean-payoff values and mean-payoff parity values coincide);
(2) for i ≥ 0, let S∗

2i be the set of maximal end components with states with priority
2i or more and that contains at least one state with priority 2i, and f∗ assigns the
mean-payoff value of the MDP restricted to the set of end components S∗

2i. The set
S∗ =

⋃�d/2�
i=0 S∗

2i. This gives the values under the end-component consideration, and to
compute the maximal reachability expectation we present the following reduction.

Transformation to MDPs with max objective. Given an MDP G = (S, s0, E, S1,
SP , δ) with a positive reward function r : S → R+ and a priority function p : S →
{0, . . . , d}, and let S∗ and f∗ be the output of the above procedure. We construct an
MDP G = (S, s0, E, S1, SP , δ) with a reward function r as follows: S = S ∪ Ŝ∗ (i.e.,
the set of states consists of the state space S and a copy Ŝ∗ of S∗), E = E ∪ {(s, ŝ) |
s ∈ S∗ ∩ S1and ŝ is the copy of s in Ŝ∗} ∪ {(ŝ, ŝ) | ŝ ∈ Ŝ∗} (i.e., along with edges E,
for all player 1 states s in S∗ there is an edge to its copy ŝ in Ŝ∗, and all states in Ŝ∗ are
absorbing states), S1 = S1 ∪ Ŝ∗, r(s) = 0 for all s ∈ S and r(ŝ) = f∗(s), where ŝ is
the copy of s. This construction ensures that VG(mpp,r)(s) = VG(maxr)(s). We refer
the reader to [12] for a detailed proof.

In order to solve G with the objective maxr, we set up the following linear program,
which can be solved with a standard LP solver (e.g., [29]).
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Linear programming for the max objective in G. The following linear program
characterizes the value function VG(maxr). Observe that we have already restricted
ourselves to the almost-sure winning states WG(parityp), and below we assume
WG(parityp) = S. For all s ∈ S we have a variable xs and the objective function
is min

∑
s∈S xs. The set of linear constraints are as follows: (1) ∀s ∈ S : xs ≥ 0,

(2) ∀s ∈ Ŝ∗ : xs = r(s), (3) ∀s ∈ S1, (s, t) ∈ E : xs ≥ xt, and (4) ∀s ∈ SP : xs =∑
t∈S δ(s)(t) · xt. The correctness proof of this linear program can be found in [12].

Lemma 5. Given a MDP with a mean-payoff parity objective, the value function for
the mean-payoff parity objective can be computed in polynomial time.

Note that the optimal strategies constructed for mean-payoff parity requires memory,
but the memory requirement is captured by a counter (which can be represented by a
state machine with state space N). The optimal strategy as described in Lemma 4 plays
two memoryless strategies, and each strategy is played a number of steps which can be
stored in a counter. Furthermore, we can show that the decision problem, whether there
exists an optimal pure memoryless strategy is NP-complete; the upper bound follows
from Theorem 1; the lower bound follows from a reduction of the directed subgraph
homeomorphism problem [27]. Lemma 2 and Lemma 5 yield the following theorem.

Theorem 3. Given a Parity specification A, a Mean-payoff specification B, and a la-
beled Markov chain (G, λ) defining a probability measure μ on (Σω

I ,F), we can con-
struct a state machine M (if one exists) in polynomial time that satisfies LA under μ
and optimizes LB under μ.

5 Experimental Results

The aim of this section is to show which types of systems, we can construct using
qualitative and quantitative specifications under probabilistic environment assumptions.
We have implemented the approach for specifications consisting of a safety automaton
A and a mean-payoff automaton B, and where the assumption μ is given as a set of
probability distributions ds over input letters for each state s of B. Our implementation
is in Scala [35]. It takes automata in GOAL-format [37] as input and first builds the
product of A and B. Then, it construct the corresponding MDP G and computes an
optimal pure memoryless strategy using policy iteration for multi-chain MDPs [26].
Finally, if the value of the strategy is different from ⊥, then it converts the strategy to a
finite-state machine M which satisfies LA (under μ) and is optimal for B under μ.

Priority-driven controller. In our first experiment, we took as the quantitative spec-
ification B the product of the specifications A1 and A2 from Example 1 (Fig. 1),
where we sum the weights on the edges. The qualitative specification is a safety au-
tomaton A ensuring mutually exclusive grants. We assumed the constant probabilities
P ({r1 = 1}) = 0.4 and P ({r2 = 1}) = 0.3 for the events r1 = 1 and r2 = 1,
respectively. The optimal machine5 constructed by the tool is shown in Fig. 6. This sys-
tem behaves like a priority-driven scheduler, which always grants the resource to the

5 State q0 and q1 are simulation equivalent but our tool does not minimize state machines yet.
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q0 q1

r1r2/g1ḡ2

r̄1 r̄2/ḡ1g2

r̄1/ḡ1g2 r1/g1ḡ2

r̄1r2/ḡ1g2

r1 r̄2/g1ḡ2

Fig. 6. Optimal machine

Table 1. Results for n-client
without response constraints

n A×B G M Value
2 4 13 2 1.854
3 8 35 4 2.368
4 16 97 8 2.520
5 32 275 16 2.534
6 64 793 32 2.534

Table 2. Results for n-client
with response constraints

n A×B G M Value
2 3 11 3 1.850
3 34 156 16 2.329
4 125 557 125 2.366

client that is more likely to send requests, if she is requesting it, otherwise the resource
is granted to the other client. This is optimal because client 1 is more likely to send
requests and so missing a request from client 2 is better than missing a request from 1.

Fair controller. In the second experiment, we added response constraints to the safety
specification. The constraints are given as safety automata that require that every request
is granted within two steps. We added one automaton Ci for each client i and the final
qualitative specification was A × C1 × C2. The optimal machine the tool constructs
is System M2 of Example 1 (Fig. 4). System M2 follows the request sent, if only a
single request is send. If both clients request simultaneously, it alternates between g1
and g2. If none of the clients is requesting it grants g1. Recall that system M1 and M2
from Example 1 exhibit the same worst-case behavior, so a synthesis approach based
on optimizing the worst-case behavior would not be able to construct M2.

General controllers. We reran both experiments for several clients. Again, the quanti-
tative specification was the product of Ai’s. We used a skewed probability distribution
with P ({rn = 1}) = 0.3 and P ({ri = 1}) = P ({ri+1 = 1}) + 0.1 for 1 ≤ i ≤ 6
and the qualitative specification required mutual exclusion. Table 1 shows the number
of clients (n), the size of the specification (A × B), the size of the corresponding MDP
(G), and the size of the resulting machine (M) and the optimal value (Value). The
runs took between least than a second to a couple of minutes. The systems generated
as a result of this experiment have an intrinsic priority to granting requests in order of
probabilities from largest to smallest. Table 2 shows the results when adding response
constraints that require that every request has to be granted within the next n steps. This
experiment leads to quite intelligent systems which prioritize with the most probable in-
put request but slowly the priority shifts to the next request variable cyclically resulting
into servicing any request in n steps when there are n clients. Note that these systems
are (as expected) quite a bit larger than the corresponding priority-driven controllers.

6 Conclusions and Future Work

In this paper we showed how to measure and synthesize systems under probabilistic
environment assumptions wrt qualitative and quantitative specifications. We considered
the satisfaction of the qualitative specification with probability 1 (M |=μ ϕ). Alterna-
tively, we could have considered the satisfaction of the qualitative specification with
certainty (M |= ϕ). For safety specification the two notions coincide, however, they
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are different for parity specification. The notion of satisfaction of the parity specifi-
cation with certainty and optimizing the mean-payoff specification can be obtained
similar to the solution of mean-payoff parity games [13] by replacing the solution of
mean-payoff games by solution of MDPs with mean-payoff objectives. However, since
solving MDPs with parity specification for certainty is equivalent to solving two-player
parity games, and no polynomial time algorithm is known for parity games, the al-
gorithmic solution for the satisfaction of the qualitative specification with certainty is
computationally expensive as compared to the polynomial time algorithm for MDPs
with mean-payoff parity objectives. Moreover, under probabilistic assumption satisfac-
tion with probability 1 is the natural notion.

In our future work, we will implement our algorithm for MDPs with mean-payoff
parity conditions and develop a tool for synthesizing systems in probabilistic environ-
ments with ω-regular specifications. In the course of developing this tool, it will be
interesting to study subclasses of specifications for which we can construct finite-state
systems (i.e., systems without counters). We will also explore the use of a logical frame-
work to express quantitative properties to simplify stating quantitative specifications.
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Abstract. We apply model checking of knowledge properties to the de-
sign of distributed controllers that enforce global constraints on concur-
rent systems. We calculate when processes can decide, autonomously, to
take or block an action so that the global constraint will not be violated.
When the separate processes cannot make this decision alone, it may be
possible to temporarily coordinate several processes in order to achieve
sufficient knowledge jointly and make combined decisions. Since the over-
head induced by such coordinations is important, we strive to minimize
their number, again using model checking. We show how this framework
is applied to the design of controllers that guarantee a priority policy
among transitions.

1 Introduction

Consider a concurrent system, where some global safety constraint, say of pri-
oritizing transitions, needs to be imposed. A completely global coordinator can
control this system and allow any of the maximal priority actions to progress in
each state. However, the situation at hand is that of a distributed control [7,12];
controllers, one per process or set of processes, may restrict the execution of
some of the transitions if their occurrence may violate the imposed constraint.
Due to the distributed nature of the system, each controller has a limited view of
the entire system. Each controller may keep some finite memory that is updated
according to the history it can observe.

The knowledge of a process in any particular local state includes the properties
that are common to all reachable (global) states containing it. There are several
definitions for knowledge, depending on how much of the local history may be
encoded in the local state. Knowledge was suggested as a tool for constructing a
controller in [6,1]. There, controlling a distributed system was achieved by first
precalculating the knowledge of a process. Based on its precalculated knowledge,
reflecting all the possible current situations of the other processes, a controller
for a process may decide at runtime whether an action of the controlled process
can be executed without violating the imposed constraint. Sometimes, however,
the process knowledge is not sufficient. Then, the joint knowledge of several
processes (also called distributed knowledge) may be monitored using fixed con-
trollers for sets of processes. Unfortunately, this approach causes the loss of
actual concurrency among the processes that are jointly monitored.
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Instead of permanent synchronizations via fixed process groups, we suggest in
this paper a method for constructing distributed controllers that synchronize pro-
cesses temporarily. We use model-checking techniques to precalculate a minimal
set of synchronization points, where joint knowledge can be achieved during short
coordination phases. An additional goal is synchronizing a minimal number of pro-
cesses as rarely as possible. After each synchronization, the participating processes
can again progress independently until a further synchronization is called for.

In [6], knowledge based controllability (termed Kripke observability) is stud-
ied as a basis for constructing a distributed controller. The problem there is
somewhat different than ours: the goal is to make the system behave exactly
according to a given regular language, while here we want to limit the possible
choices in order to impose some given global invariant. There, if a transition is
enabled by the controlled system but must be blocked according to the addi-
tional constraint, then at least one process knows that fact and is thus able to
prevent its execution. This approach requires sufficient knowledge to allow any
transition enabled according to a given regular specification. The construction
in [1] is different: it requires that at least one process knows that the occurrence
of some enabled transition preserves the correctness of the imposed constraint,
hence supporting its execution. This approach preserves the correctness of the
controller even when knowledge about other such transitions is limited, at the
expense of restricting the choice of transitions.

The approach suggested here extends the knowledge based approach of [1].
We use a coordinator algorithm, such as the α-core [5], which achieves temporary
multiprocess coordinations using asynchronous message passing. Such coordina-
tions can be used to achieve a precalculated joint knowledge, i.e., knowledge
common to several processes. Such interactions are still expensive as they incur
additional overhead. Therefore, an important part of our task is to minimize the
number of interactions and the number of processes involved in such interactions.

2 Preliminaries and Related Work

Definition 1 (Distributed Transition systems). A distributed transition
system A is a fivetuple 〈P , V, S, ι, T 〉:
– P is a finite set of processes.
– V is a finite set of variables, each ranging over some finite domain. A process

p ∈ P can access and change variables in Vp. Thus, V = ∪p∈PVp. We do
not require the sets Vp to be disjoint.

– S is the set of global states. Each state assigns a value to each variable in
V according to its domain.

– ι ∈ S is the initial state.
– T is a finite set of transitions. A transition τ ∈ T consists of an enabling

condition enτ , which is a quantifier-free first order predicate, and a state
transformation fτ . The transitions Tp ⊆ T are associated with process p.
Thus, T = ∪p∈PTp. A transition τ may belong to more than one process and
Pτ = {p|τ ∈ Tp}. Both enabling condition and transformation are over the
variables ∪p∈Pτ Vp.
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Definition 2. A local state s|p of a process p ∈ P is the restriction of a global
state s to the variables in Vp. Similarly, the joint local state s|P of a set of
processes P ⊆ P is the restriction of a global state to the variables in ∪p∈P Vp.

For a set of states S of a transition system, we denote the set of local states of
process p by S|p, and, respectively, the set of joint local states for set of processes
P ∈ P by S|P . A transition τ is enabled in a state s when s |= enτ (i.e., s satisfies
enτ ). If τ is enabled in s and τ is executed, a new state s′ = fτ (s) is reached.
We denote this by s

τ−→ s′.

Definition 3. An execution of a distributed system A is a maximal sequence
s0 s1 s2 . . . such that s0 = ι, and for each i ≥ 0, si

τi−→ si+1 for some τi. A global
state is called reachable if it appears in some execution sequence.

Definition 4. Given a system A, a set of processes P ⊆ P knows in a state
s some property ϕ over V , if s′ |= ϕ for each reachable global state s′ with
s′|P = s|P . We denote this by s |= KP ϕ .

When P is a singleton, we often write p for the set {p} as in Kpϕ. It is easy to
see that if s |= KP ϕ and s|P = s′|P then also s′ |= KP ϕ.

Definition 5. A finite state distributed disjunctive controller [7,12] for a sys-
tem A = 〈P , V, S, ι, T 〉 is a set of automata Cp = (Lp, γp, T

o
p , T c

p ,→p, Ep), one
per process p in P, where:

– Lp is the set of states of Cp, i.e., its finite memory.
– γp ∈ Lp is the initial state of CP .
– T o

p is the set of transitions observable by process p, satisfying Tp ⊆ T o
p ⊆ T :

only the execution of transitions from T o
p can change the state of Cp.

– T c
p is the set of controllable transitions, where T c

p ⊆ Tp. We require consis-
tency between processes regarding controllability: if τ is involved with several
processes, then it is either controllable by all of them or by none of them.

– →p: Lp × Tp $→ Lp is the transition function of Cp.
– Ep : S|p×Lp $→ 2T c

p is the support function, which in each local state returns
the set of controlled transitions of process p that Cp supports (i.e., allows to
proceed, when enabled).

A controller is designed to impose some constraint ψ ⊆ S ×T on a given system
A, while not introducing any new deadlock.

Definition 6. A controlled execution of a distributed system A with controllers
Cp for p ∈ P is defined over a set of controlled states G ⊆ S × Πp∈PLp. Each
controlled state g ∈ G contains some global state s ∈ S, and a state ρp ∈ Lp for
each controller Cp. An execution g0 g1 g2 . . . is a maximal sequence of controlled
states, satisfying that g0 is the controlled state containing the initial states ι of
A and γp for each Cp. Furthermore, for each adjacent pair of controlled states
gi and gi+1 there exists a transition τ such that the following holds:
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1. s
τ−→ s′ — where s ∈ S is the state component of the controlled state gi and

s′ ∈ S the one of gi+1.
2. τ ∈ Tp \ T c

p ∪ Ep(s|p, ρp) for at least one process p; that is, either τ is
uncontrollable by p or p supports τ in its current local state and given the
state of its controller Cp.

3. For the states ρi and ρi+1 of controller Cp of gi and gi+1, respectively, if
τ ∈ T o

p , then ρi
τ−→p ρi+1. Otherwise, ρi = ρi+1. That is, Cp changes its

internal state when an observable transition occurs.

We denote by Ac the transformation of A that includes both A and its controllers.

Definition 7. A controller for A achieves a goal ψ ⊆ S × T if each transition
s

τ−→ s′ (as in bullet 1. of Definition 6) satisfies that (s, τ) ∈ ψ.

Note that the goal of the controller is to satisfy an invariant that is not just
over the states (of the original system A), but may also include the immediate
transition out of that state. When no constraints on the transitions are imposed,
we can use the simpler case where ψ ⊆ S.

The definition of a controller allows the use of some finite memory that is
updated with the execution of observable transitions. This can be useful, e.g.,
when constructing a controller based on knowledge with perfect recall [11]. How-
ever, a controller based on simple knowledge, as in Definition 4, does not have
to exercise this capability, and Lp can thus consist of a single state. As in [1], we
fix as a running example a particular property that we want to synthesize: that
of enforcing some priority policy on the distributed system.

Definition 8 (Priority policy). A priority policy Pr = (T,+) for a system
A is defined as a partial order relation + on the set of transitions T .

Among the transitions enabled in state s, we can identify those with maximal
priority, i.e., enabled transitions such that for any other transition τ ′ enabled
in s, either τ ′ + τ or τ and τ ′ are incomparable. Let maxτ be a predicate that
holds in a state s, i.e., s |= maxτ , when the transition τ has a maximal priority
among the transitions enabled in s.

Definition 9. A prioritized execution of a system A according to a given pri-
ority policy Pr satisfies, in addition to the conditions of Definition 3, that when
si

τi−→ si+1, then also si |= maxτi .

The goal is then to construct a distributed controller for A such that, when run-
ning A together with its controller, only correctly prioritized executions occur.
To prevent the situation where in some state an uncontrollable transition has
lower priority than another enabled transition, we impose the restriction that
uncontrollable transitions always have maximal priority.

Definition 10. For each local state s|p of process p, define the following prop-
erties kp

i based on the knowledge of p in that state.
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– kp
1 =

∨
τ∈Tp

Kpmaxτ : process p can identify a transition τ such that it knows
that τ is enabled with maximal priority.

– kp
2 = ¬kp

1 ∧Kp

∨
q 	=p kq

1: process p does not know whether it has a transition
with maximal priority, but in all the global states s′ with s′|p = s|p some
other process q is in a local state where kq

1 holds. This allows p to remain
inactive without risk of introducing a deadlock.

– kp
3 = ¬kp

1 ∧ ¬kp
2 : p does not know whether or not there is a supported tran-

sition.

kp
1 can be extended to sets of processes: kP

1 =
∨

τ∈∪p∈P Tp
KP maxτ .

Note that kp
1∨kp

2∨kp
3 ≡ true. When the constraint ψ imposed by the controller is

different from the priority policy, the formula kp
1 needs to be changed accordingly;

instead of maxτ , it must reflect the property that executing τ does not invalidate
ψ. If ψ is a state property (ψ ⊆ S), then maxτ can be replaced by the state
predicate wpτ (ψ) (for “weakest precondition”), which reflects the state property
that holds when τ is enabled and ψ holds after its execution.

The construction in [1] checks whether
∨

p∈P kp
1 holds in all reachable states

of the original system that are not deadlock (or termination). If so, it is sufficient
that each process supports a transition when it knows that it is maximal in order
to enforce the additional constraint ψ (in that case, priority) without introducing
any additional deadlock. When this check fails, it was suggested to monitor and
control several processes together, or to use the more expensive knowledge of
perfect recall (or to use both).

3 A Synchronization Based Approach

In this paper, we suggest a new solution to the distributed control problem, which
consists of synthesizing distributed controllers that allow processes to temporarily
synchronize in order to obtain joint knowledge in those (local) states in which it
is needed. The synchronization is achieved by using an algorithm like α-core [5].
This algorithm allows processes to notify, using asynchronous message passing, a
set of coordinators about their wish to be involved in a joint action. We treat the
synchronizations provided by the α-core, or any similar algorithm, as transitions
that are joint between several participating processes. At a lower level, such
synchronizations are achieved using asynchronous message passing. We assume
that the correctness of the algorithm guarantees the atomic-like behavior of such
coordinations, allowing us to reason at this level of abstraction.

A joint local state s|P satisfying kP
1 indicates that the set of processes P know

how to act in this state by selecting some transition with maximal priority. Our
construction calculates, using model checking for knowledge properties, which
synchronizations are actually needed.

An exact check for the existence of a global (completely synchronized) con-
troller can be based on game theory. Accordingly, one may present the problem
as implementing a strategy for the following two player game. One player, the
environment, can always choose between the enabled uncontrollable transitions,
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while the other player can choose between the enabled controllable ones. The
goal of the controller is that the property ψ is satisfied by the jointly selected
execution. This can be solved using algorithms based on safety games [9].

Our algorithm first calculates the local states and joint local states (synchro-
nizations) providing sufficient knowledge to guarantee that in every global state
at least one process supports some transition. We refer to this set of (joint) local
states as the knowledge table Δ for A. We use it to transform the system into a
controlled system by implementing support to transitions: when the knowledge
is not available locally, we add temporary synchronization between processes,
according to the entries of the knowledge table. Finally, we propose to obtain a
more efficient controller by minimizing the set of coordinations.

3.1 A Set of Synchronizations Providing Sufficient Knowledge

First, we calculate the required knowledge table Δ. The construction of Δ is
performed iteratively, starting with local states, then pairs of local states, triples
etc. At each stage of the construction, Δ contains a set of (joint) local states s|P
satisfying kP

1 .

Definition 11. A set of (joint) local states Δ is an invariant of a system if each
non-deadlock state of the system contains at least one (joint) local state from Δ.

The first iteration includes in Δ, for all p ∈ P , the singleton local states satisfying
kp
1 , i.e. states in which progress of p is guaranteed. With each such local state

s|p we associate the actual transitions τ that make kp
1 hold.

If Δ is not an invariant, we first calculate for each local state not satisfying
kp
1 whether it satisfies kp

2 . Let Up be the set of local states of process p satisfying
¬(kp

1 ∨ kp
2). Now, in a second iteration, we add to Δ pairs (sp, sq) ∈ Up × Uq for

p �= q if there exists a reachable state s such that s|p = sp and s|q = sq, and
furthermore s |= k

{p,q}
1 . Again, we associate with that entry of the table Δ the

transitions τ that witness the satisfaction of k
{p,q}
1 for that entry. The second

iteration terminates as soon as Δ is an invariant or if all such pairs of local states
have been classified. In a third iteration, we consider triples of local states from
Up × Uq × Ur such that no subtuple is in Δ, and so forth.

3.2 A Distributed Controller Imposing the Global Property

We transform now the system A into a controlled transition system Ac allow-
ing only prioritized executions. We implement Ac using a set of coordinators
realizing the required synchronization of Δ by an algorithm such as the α-core.

We want to achieve the joint local knowledge promised by the precalculation
of Δ using synchronizations amongst the processes involved. Our construction
guarantees that each time the transition associated with a tuple (s|p1 . . . s|pk

)
from Δ is executed from a state that includes these local components, the prop-
erty ψ we want to impose is preserved. We transform the system A such that
only transitions associated with entries in Δ can be executed.
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If a transition τ is associated with a singleton element s|p in Δ, then the con-
troller for p, at the local state s|p, supports τ . Otherwise, τ is associated with
a tuple of local states in Δ; when reaching any of these local states, the corre-
sponding processes p1 . . . pk try to achieve a synchronization, which consequently
allows τ to execute. This is done according to the protocol of the synchroniza-
tion algorithm that is used. Upon reaching the synchronization, the associated
transition τ is then supported by any of its participating processes. Formally, for
each transition τ associated with a tuple of local states (s|p1 . . . s|pk

), we execute
a transition, enabled exactly in the joint local state with the above components,
and performing the original transformation of τ .

3.3 Minimizing the Number of Coordinators

It is wasteful to include a coordination for each joint local state involving at least
two processes in Δ. We now show how to minimize the number of coordinators
for pairs of the form (s|p, r|q) in Δ. The general version of this method for larger
tuples is analogous. We denote by Δp,q the set of pairs of Δ made of a local
state from process p and one from process q.

A naive implementation may use a coordination for every pair in Δ. Never-
theless, the large number of messages needed to implement coordination by an
algorithm like α-core suggests that we minimize the number of coordinations.
A completely opposite extreme would be to use a unique coordination between
processes p and q. Accordingly, when process p identifies that it may have a
q partner in Δp,q, then coordination starts. When coordination succeeds, the
joint event checks whether the local states of p and q actually appear in Δp,q.
If they do, it provides the appropriate behavior; otherwise, the coordination is
abandoned. In this way, many (expensive) coordinations may be made just to
be abandoned, not even guaranteeing eventual progress.

Consider now a set of pairs Γ ⊆ Δp,q such that if (s, r), (s′, r′) ∈ Γ , then
(s, r′), (s′, r) ∈ Γ (s and s′ do not have to be disjoint, and neither do r and r′).
This means that Γ is a complete bipartite subgraph of Δp,q. It is sufficient to
generate one coordination for all the pairs in Γ . Upon success of the coordination,
the precalculated table Δp,q will be consulted about which transition to allow,
depending on the components s|p and s|q. Thus, according to this strategy,
a sufficient number of interactions is formed by finding a covering partition
Γ1, . . . , Γm of complete bipartite subgraphs of Δp,q. That is, each pair (s|p, r|q) ∈
Δp,q must be in some set Γi. However, the minimization problem for such a
partition turns out to be in NP-Complete.

Property 1. [4] Given a bipartite graph G = (N, E) and a positive integer
K ≤ |E|, finding whether there exists a set of subsets N1, . . .Nk for k ≤ K of
complete bipartite subgraphs of G such that each edge (u, v) is in some Ni is in
NP-Complete.

We use the following notation: when Γ is a set of pairs of local states, one from
p and one from q, we denote by Γ |p and by Γ |q the p and the q components in
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these pairs, respectively. We apply the following heuristics to calculate a (not
necessarily minimal) set of complete bipartite subsets Γi ⊆ Δp,q covering Δp,q.
We start with a first partition Γ 0

1 , . . . , Γ 0
m0

, and refine it until we obtain a fixpoint
Γ k

1 , . . . , Γ k
mk

. We decide to start with process p if |Δp,q|p| < |Δp,q|q|, i.e., the
number of elements paired up in Δp,q is smaller for p than for q. Otherwise, we
symmetrically start with q. Let the elements of Δp,q|p be x1, . . . xm0 , and Γ 0

i be
the pairs in Δp,q containing xi. Now, we repeatedly alternate between the q side
and the p side the following step: we check for each two sets Γ l

i and Γ l
j whether

Γ l
i |q = Γ l

j |q. If it is the case, we combine them into a single set Γ l
i ∪Γ l

j . On even
steps, we replace q with p. This is done as long as we can unify new subsets in
this way. The whole process is performed in time cubic in the size of Δp,q.

Figure 1 shows the result for an example. The left-hand side represents the
coordinators induced by Δp,q and the right-side the minimal set of coordinators.
Each Γi contains a single state of q. And indeed, if we start the procedure with
q, the initial partition is already the solution.

process p process q process p process q

s3

r3

r2

r1

s1

r1

r2

r3

s1

s2

r4 r4s3

s2

Fig. 1. Minimizing the number of coordinators

4 Knowledge Based Controllers as a Practical Solution
for the Distributed Control Problem

We now show some connections between the classical controller synthesis prob-
lem (see, e.g., [7]) and knowledge based control. We have provided a solution
to the synthesis of distributed controllers, based on adding interactions between
transitions in order to combine the knowledge of individual processes. In this
section, we want to put the knowledge based solution in the context of the dis-
tributed control problem when adding interactions is not allowed. We first show
an example where the local knowledge is not sufficient for controlling the system,
but where blocking transitions — even when they are known to be maximal —
would allow controlling the system. This example shows that distributed con-
trollers are more general than knowledge based controllers. However, there is
no algorithm that guarantees constructing them: we show that even our limited
problem (and running example) of controlling a system according to priorities is
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already undecidable. This advocates that the construction of knowledge based
controllers, and furthermore, the use of additional synchronization, is a practical
solution for the distributed control problem.

The knowledge approach to control in [6] requires that there is sufficient knowl-
edge to allow any transition of the controlled system that does not violate the en-
forced property ψ. In [1], which we extend here, this requirement is relaxed; the
knowledge must suffice to execute at least one enabled transition not violating ψ
when such a transition exists. In the more general case of distributed controller
design, one may want to block some enabled transitions even if their execution
does not immediately violate the enforced property. This is required to prevent the
transformed system from later reaching deadlocked states, where the controlled
system originally had a way to progress (thus, introducing new deadlocks).

� �
α

δ

β

a

b

γ c

Fig. 2. A system with priorities δ � b� β

Consider a concurrent system, as in Figure 2, with two processes πl (left)
and πr (right), each one of them having initially a nondeterministic choice. The
priorities in this system are δ + b + β. Each process can observe only its
own transitions. In the initial state, all four enabled transitions α, γ, a, c are
unordered by priorities, and thus are all maximal. If α is fired and subsequently
a (or vice versa), we reach a global state where process πr does not have any
enabled transition with maximal priority since b + β. Process πl does, and it can
execute β. Thereafter, since δ + b, process πl cannot execute δ and must wait for
process πr to execute b. Now, with its limited observability, πl cannot distinguish
between the situation before or after b was executed by πr. Thus πl lacks the
capability, and the corresponding knowledge, of deciding whether to execute δ.
In this state, πr cannot distinguish between the situation before and after β was
executed, and cannot decide to execute b. Accordingly, the local knowledge of
the processes in this example is not sufficient to construct a controller. In the
initial state, both processes can progress freely, only to fall into a situation where
they do not know locally when they can safely progress.
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When a controller is allowed to block transitions even when their execution
does not immediately lead to violation of the property to be preserved, the sit-
uation can be recovered. In the example above, we may choose either to block α
in favor of γ, or to block a in favor of c. Blocking both α and a is not necessary.
This example also shows that there is no unique maximal solution to the control
problem that blocks the smallest number of transitions. Note that an alterna-
tive solution to blocking α or a can be achieved using a temporary interaction
between the processes, as shown earlier in this paper.

It was shown in [10,8] that the problem of synthesizing a distributed controller
is, in general, undecidable. We show here that even when restricting the synthe-
sis problem to priority policies, the problem remains undecidable. The proof for
that is given below. Notice that when we have the flexibility of allowing addi-
tional coordination, as done in this paper, the problem, in the limit, becomes a
sequential control problem, which is decidable.

Theorem 1. Constructing a distributed controller that enforces a priority policy
is undecidable.

Proof. Following [10], the proof is by reduction from the post correspondence
problem (PCP). In PCP, there is a finite set of pairs {(l1, r1), . . . , (ln, rn)}, where
the components li, ri are words over a common alphabet Σ, and one needs to de-
cide whether one can concatenate separately a left word from the left components
and a right word from the right components according to a mutual nonempty
sequence of indexes i1i2 . . . ik, such that li1 li2 . . . lik

= ri1ri2 . . . rik
.

Let i ∈ {1..n}, l̂i be the word lii, i.e., the ith left component concatenated
with the index i. Similarly, let r̂i be rii. We consider two regular languages:
L = (l̂1 + l̂2 + . . .+ l̂k)+ and R = (r̂1 + r̂2 + . . .+ r̂k)+. Now suppose a process πp

executes according to the regular expression l.L.x.a.b + r.R.x.c.d. The choice of
πp between l and r is uncontrollable. Suppose also that πp coordinates (through
shared transitions) the alphabet letters from Σ with a process πq1 , and the
indexes letters from Σ with another process πq2 . After that, πq1 and πq2 are
allowed to interact with each other. Specifically, πq2 sends πq1 the sequences of
indexes it has observed. Suppose that now πq1 has a nondeterministic choice
between two transitions: α or β. The priorities are set as b + α + a and
d + β + c. All other pairs of transitions are unordered according to +. If πq1

selects α and r was executed, or πq1 selects β and l was executed, then there is
no problem, as α is unordered with respect to c and d, and also β is unordered
with respect to a and b, respectively. Otherwise, there is no way to control the
system so that it executes the sequence a.α.b or c.β.d allowed by the priorities.

We show by contrapositive that if there is a controller, then the answer to the
PCP problem is negative. Suppose the answer to the PCP problem is positive,
i.e., some left and right words are identical and with the same indexes. Then
process πq1 cannot make a decision: the information that πq1 observed and later
received from πq2 is exactly the same in both cases for the mutual left and right
word. Thus, πq1 cannot anticipate whether c.d or a.b will happen and cannot
make a safe choice between α and β accordingly.
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Conversely, if there is no controller, it means that πq1 cannot make a safe
choice between α and β. This can only happen if πq1 and πq2 can observe exactly
the same visible information for both an l and an r choice by πp.

This means that deciding the existence of a controller for this system would
solve the corresponding PCP problem. It is thus undecidable.

Note that in this proof we do not ensure a finite memory controller, even when
one exists. Indeed, a finite controller may not exist. To see this, assume a PCP
problem with one word {(a, aa)}. To check whether we have observed a left or
a right word, we may just compare the number of a’s that p has observed with
the number of indexes that q has observed.

5 Implementation and Experimental Results

We have implemented a prototype for experimenting with this approach. In our
tool, we use Petri nets to represent distributed transition systems.

This tool first builds the set of reachable states and the corresponding local
knowledge of each process. Then, it checks whether local knowledge is sufficient
to ensure correct distributed execution of the system under study. Let U-states
be global states in which all corresponding local states satisfy ¬kp

1 . The existence
of a U-state means that Δ is not an invariant without adding some tuples for
synchronization. We allow simulating the system while counting the number of
synchronizations and U-states encountered during execution as a measurement
of the amount of additional synchronization required.

The example that we used in our experiments is a variant of the dining philoso-
phers where philosophers may arbitrarily take first either the fork that is on their
left or right. In addition, a philosopher may hand over a fork to one of his neigh-
bors when his second fork is not available and the neighbor is looking for a
second fork as well. Such an exchange (labeled ex) is a way to avoid the well-
known deadlocks when all philosophers take first the fork on the same side. This
example is partially represented by the Petri net of Figure 3.

In our example, places (concerning philosopher β) are defined as follows:

– fork i: the i-th fork is on the table.
– 0forkβ (resp. 2forksβ): philosopher β has no fork (resp. 2 forks) in his hands.
– 1fork l

β (resp. 1fork r
β): philosopher β holds his left (resp. right) fork.

Transitions (concerning philosopher β) play the following role:

– getkl
β (resp. getkr

β ), k = 1, 2: philosopher β takes the fork on his left (resp.
on his right). This is his k-th fork.

– eat-and-returnβ: philosopher β eats and puts both forks back on the table.
– exα,β: philosopher α gives his right fork to philosopher β.
– exβ,α: philosopher β gives his left fork to philosopher α .

Processes correspond to philosophers. The transitions defining a processβ have a β
in their name, including the four exchange transitions exα,β, exβ,α, exβ,γ and exγ,β.
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... ...

1fork r
β

fork i
0forkα

0forkβ 0forkγ

1fork l
α

2forksα 2forksγ

1fork l
γ

get2l
β

1fork l
β

fork i+1

get1l
β

2forksβ

exα,β

get2r
β

exβ,γ

exγ,β
exβ,α

eat-and-returnβ

1fork r
α 1fork r

γ

get1r
β

Fig. 3. A partial representation of the dining philosophers (philosopher β)

In Figure 3, transitions related only to philosopher β are drawn with full lines.
Transitions in dashed lines are shared between β and one of his neighbors (α on
the left, γ on the right).

Not controlling exchanges at all allows nonprogress cycles. To avoid them, we
add priorities which allow exchange actions only when a blocking situation has
been reached within some degree of locality.

First variant. We use a priority rule stating that an exchange between philoso-
phers α and β has lower priority than α or β taking a fork. This leads to the
following priorities for each α and β such that α is βs left neighbor:

– exα,β + get2lα : if α can pick up a left fork, he won’t give his right fork to β.
– exβ,α + get2rβ : symmetrically if β can pick up a right fork.

In this variant, local knowledge is sufficient. Indeed, when a philosopher α and
both his neighbors are blocked in a state where they all have a left (resp. a right)
fork, then philosopher α has enough knowledge to support an exchange with his
left (resp. right) neighbor. For any number of philosophers, there is no U-state.
Thus, no extra synchronization is needed.

Second variant. Now, to further reduce the number of exchanges, one may decide
that philosopher β may give his left fork to his left neighbor α only if (1) α is
blocked (2) β is blocked and (3) βs right neighbor γ is also blocked (the exchange
of right forks is similar). This translates into adding the following priorities:

– exα,β + get2lδ , eat-and-returnδ (with δ the left neighbor of philosopher α)
– exβ,α + get2rγ , eat-and-returnγ (with γ the right neighbor of philosopher β)
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Local knowledge alone cannot ensure here correct distributed execution. How-
ever, binary synchronizations are sufficient in this example to ensure that the
system is always able to move on, for any number of philosophers.

In Table 1, we show results for the second variant with 6, 8 and 10 philoso-
phers. There are two U-states which correspond to the situation where all philoso-
phers hold their left fork, or they all hold their right fork. For computing the
number of synchronizations, we used each time 100 runs of a length of 10,000
steps (i.e. transitions). Note that the number of exchange transitions is identical
to the number of synchronizations.

Table 1. Results for 100 executions of 10,000 steps for the second variant

philosophers 6 8 10
reachable states 729 6561 59049
synchronizations 354 285 237
U-states encountered 253 149 100

At the current stage, the minimization of the set of coordinators has not been
implemented (we use one coordinator per synchronization pair in Δ) and our
tool handles only joint local states consisting of two states.

6 Conclusion

Imposing a global constraint upon a distributed system by blocking transitions
is, in general, undecidable [10,8]. One practical approach for this problem was
to use model checking of knowledge properties [1]. If we allow additional syn-
chronization, the problem becomes decidable: at the limit, everything becomes
synchronized, although this, of course, is highly undesirable. The method pre-
sented in [1] provided a (disjunctive) controller. The problem with that approach
is that in many cases the local knowledge of the separate processes does not suf-
fice. A suggested remedy was to monitor several processes together, achieving
this way an increased level of knowledge.

In the current work we look at the situation where we are allowed to coordinate
between several processes, but only temporarily. First, we can calculate whether
the constraint we want to impose is feasible, when all processes are combined
together. This is done using game theory [9]. If this is the case, we check if we
can control the system based on the local knowledge of processes or temporary
interactions between processes. Of course, our goal is to minimize the number of
interactions, and moreover, the number of processes involved in each interaction.

For achieving a distributed implementation, one can use a multiparty syn-
chronization algorithm such as the α-core algorithm [5]. Based on that, we pre-
sented an algorithm that uses model checking to calculate when synchronization
between local states is needed. The synchronizing processes, successfully coordi-
nating, are then able to use the knowledge table calculated by model checking,
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which dictates to them which transition can be executed. Some small corrections
to the original presentation of the α-core algorithm appear in [3].

The framework suggested in this paper can be used as a distributed imple-
mentation for the Verimag BIP system [2]. BIP is based on a clear separation
between the behavior of atomic components and the interaction between such
components, which is represented using (potentially hierarchical) connectors.
Priorities offer a mechanism to enforce scheduling policies by filtering the set of
interactions that can be fired. So far, implementing BIP systems in a distributed
setting remains a challenging task.
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Abstract. Systems ought to behave reasonably even in circumstances
that are not anticipated in their specifications. We propose a definition
of robustness for liveness specifications which prescribes, for any num-
ber of environment assumptions that are violated, a minimal number of
system guarantees that must still be fulfilled. This notion of robustness
can be formulated and realized using a Generalized Reactivity formula.
We present an algorithm for synthesizing robust systems from such for-
mulas. For the important special case of Generalized Reactivity formulas
of rank 1, our algorithm improves the complexity of [PPS06] for large
specifications with a small number of assumptions and guarantees.

1 Introduction

Current verification and synthesis approaches consider the functional correctness
of a system as a Boolean question: either the specification is fulfilled, or it is
not. This approach is unsatisfactory in many situations [BCHJ09]. In particular,
many specifications consist of environment assumptions and system guarantees.
For such specifications, the classical approach does not impose any restrictions
on the behavior of the system when the environment assumptions are not ful-
filled. We argue that (1) desirable systems act in some “reasonable” way, even if
the environment does not always fulfill the assumptions and (2) it is an undue
burden on the user to specify the proper behavior of the system for each and
every environment behavior. Desirable systems should fulfill a natural “graceful
degradation” property in the sense that the system should fulfill the guarantees
as well as it can, given any behavior of the environment.

We have previously studied the verification and synthesis of robust systems
for safety specifications [BGHJ09]. In the case of safety, environment failures are
immediately apparent and the difficulty is how the system can best recover from
them. A violation of a liveness property, however, cannot be detected at any point
in time [AS85]. Thus, a system that is robust to liveness failures must attempt
to fulfill its guarantees under all circumstances, without knowing whether the
environment satisfies the assumptions.
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In this paper, we define several possible notions of robustness in the presence
of liveness, all aiming at maximizing the set of guarantees that is fulfilled for
any set of fulfilled assumptions. Suppose a specification has two assumptions
and two guarantees. In order for the specification to hold, both guarantees must
be met when both assumptions are. A system that meets both guarantees when
only one assumption is met is more robust than one that meets one (or zero)
guarantees when one assumption is met.

Example 1. We consider a variant of the dining philosophers problem [Dij68].
There are n philosophers sitting at a round table. There is one chopstick be-
tween each pair of adjacent philosophers. Because each philosopher needs two
chopsticks to eat, adjacent philosophers cannot eat simultaneously. We are in-
terested in schedulers that use input variables hi signifying that philosopher i is
hungry and output variables ei signifying that philosopher i is eating.

We have the following requirements. First, an eating philosopher prevents her
neighbors from eating. Formally, G1i = � (ei → ¬e(i−1)modn∧¬e(i+1)modn). Sec-
ond, an eating philosopher eats until she is no longer hungry: G2i = � (ei∧hi →
� ei). Third, every hungry philosopher eats eventually G3i = � (hi → � ei).
We add the assumption that an eating philosopher eventually loses her appetite:
A1i = � (ei → � ¬hi). Our final specification consists of n assumptions and 3n
guarantees:

∧n
i=1 A1i →

∧n
i=1(G1i ∧ G2i ∧ G3i).

We have synthesized a system realizing this specification for 5 philosophers
using our synthesis tool RATSY1. The system constructed by RATSY is not very
robust: When philosopher 1 violates the assumption by always being hungry,
then philosophers 1 and 3 eat forever, while the other philosophers starve. Thus
the three guarantees � (h2 → � e2), � (h4 → � e4), and � (h5 → � e5) are
violated. A more robust system would let philosopher 3 and 4 take turns, thus
violating only two guarantees. �

In this paper, we consider Generalized Reactivity specifications of rank 1 (GR(1)
specifications). GR(1) is an expressive specification formalism with a natural
distinction between assumptions and guarantees [PPS06]. Efficient tools exist
for GR(1) specifications, which have been used to synthesize relatively large
specifications [JGWB07, BGJ+̂07]. GR(1) specifications are of the form ϕ → ψ.
Here, ϕ represents the environment assumptions and ψ represents the system
guarantees and both ϕ and ψ are given as a set of deterministic Büchi automata.
These automata are combined into a product automaton with state space Q,
transition relation δ, and acceptance condition

∧m
i=1 � � ai →

∧n
i=1 � � gi.

GR(1) specifications do not require any guarantees to be fulfilled when some
assumption is violated. We propose an intuitive notion of robustness that pre-
scribes, for any number of environment assumptions that is violated, a minimal
number of system guarantees that must still be fulfilled. We show that this
and related measures of robustness can be transformed to a specification of the
form

∧k
j=1(
∧m

i=1 � � aji →
∧n

i=1 � � gji), which is a Generalized Reactivity
(generalized Streett) formula of rank k. We address the problem of verification
1 http://rat.fbk.eu/ratsy/index.php/Main/HomePage

http://rat.fbk.eu/ratsy/index.php/Main/HomePage
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and especially of synthesis of such formulas, which allows us to construct robust
systems.

The verification problem is a relatively straightforward generalization of the
verification problem for GR(1) (cf. [GBJV08]) and can be performed in time
O(m · n · |Q| · |δ|). Recall that m is the number of assumptions and n is the
number of guarantees, and |Q| and |δ| refer respectively to the size of the state
space and the transition relation of the product automaton.

The synthesis question is answered by solving a Generalized Reactivity game.
This can either be done through a specialization of Zielonka’s algorithm, or
through a novel algorithm presented in this paper, both of which can be imple-
mented symbolically. Zielonka’s algorithm runs in time O(|Q|2·k ·|δ|·(m+n)k ·k!),
which we improve to O(|Q|k · |δ| · (m · n)k·(k+1) · k!). On the other hand, our al-
gorithm produces larger strategies and thus larger robust systems: the systems
produced by Zielonka’s algorithm have size |Q| · nk · k!, whereas our algorithm
produces systems of size |Q| · ((m + 1) · (n + 1))k · k!.

Our algorithm is a generalization of a game-theoretic algorithm for the impor-
tant class of GR(1) conditions based on a reduction (via a counting construction)
to Streett games with single pair. The algorithm runs in time O(|Q| · |δ| ·(m ·n)2).
This bound improves the O(|Q|2 ·|δ|·m·n) time bound of the algorithm of [PPS06]
for the case that Q is larger than m and n, which is typical in such applications
as GR(1) synthesis.

Measures of robustness for different fault models, for example internal mal-
functions of circuits [FD08], have been studied. Classical notions of fault toler-
ance such as self-stabilization [Dij74] and the notions of closure and convergence
suggested in [Aro93] focus on safety properties. Convergence requires that a sys-
tem restores its invariant after an error has occurred, and closure requires that
the system satisfies a second, larger invariant even when errors recur. Our ap-
proach can be viewed as an extension of closure to liveness, where we require
that some weaker set of guarantees is fulfilled when the environment behaves
unexpectedly. Apart from our previous work [BGHJ09], there is little work on
synthesis of robust systems, although people have studied the related problem
of retrofitting fault tolerance to existing programs. (See, e.g., [KE05, EKA08].)

The flow of the paper is as follows. After giving the necessary notation in
Section 2, we define several notions of robustness in Section 3. In order to solve
the synthesis problem for robust systems, we introduce the necessary transfor-
mations on the formulas and game theoretic algorithms in Sections 4 and 5.
In Section 6 we return to the questions of verification and synthesis of robust
systems. We conclude with Section 7.

2 Preliminaries

We consider systems with a set of input signals I and a set of output signals O.
We define AP = I ∪O. We use the signals as atomic propositions in the specifi-
cations defined below. Our input alphabet is thus ΣI = 2I , the output alphabet
is ΣO = 2O, and we define Σ = 2AP .
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Acceptance Conditions. The specifications we use are automata and we syn-
thesize a system that realizes a given specification using games. Both automata
and games can have the following acceptance conditions. Let Q be a set of states,
an acceptance condition is a predicate Acc : Qω → B, mapping infinite runs to
true or false (accepting and not accepting, or winning and losing, respectively).
The Büchi acceptance condition is Acc(ρ) = 1 iff inf(ρ)∩F �= ∅, where F ⊆ Q is
the set of accepting states and inf(ρ) is the set of elements that occur infinitely
often in ρ. We abbreviate the Büchi condition as B(F ). A Generalized Reactivity
acceptance condition is a predicate

∧k
l=1(
∧ml

i=1 B(Al,i) →
∧nl

i=1 B(Gl,i)), where
Al,i ⊆ Q are assumptions and Gl,i ⊆ Q are guarantees. To simplify notation,
we will assume that the ml are all equal to some constant m, and similarly for
nl and n. The acceptance condition is a GR(1) acceptance condition if k = 1, it
is a generalized Büchi acceptance condition if k = 1 and m = 0, it is a Streett
acceptance condition with k pairs if m = n = 1.

Automata. A (complete deterministic) automaton A over the alphabet Σ is a
tuple A = (Q, q0, δ, Acc), where Q is a finite set of states, q0 ∈ Q is the initial
state, δ : Q × Σ → Q is the transition function, and Acc is the acceptance
condition. A run of an automaton A on a word w = w0w1 . . . ∈ Σω is the
sequence ρ(w) = ρ0ρ1 . . . ∈ Qω such that ρ0 = q0, and ρi+1 = δ(ρi, wi). An
automaton accepts a word if its run is accepting (Acc(ρ(w)) = 1); its language
L(A) consists of the set of words it accepts. A Büchi automaton A = (Q, q0, δ, F )
is an automaton with a Büchi condition with accepting state set F .

Generalized Reactivity(1) specifications. Consist of two parts: assumptions
and guarantees [PPS06]. They specify the interaction between an environment
(controlling the input variables ΣI) and a system (controlling the output vari-
ables ΣO). The specification states that the system must fulfill all guarantees
whenever the environment fulfills all assumptions.

A GR(1) specification over the alphabet Σ consists of m Büchi automata
Aa

1 , . . . , A
a
m for the environment assumptions and n Büchi automata Ag

1, . . . , A
g
n

for the system guarantees. [PPS06]. Let AGR(1) = (Q, δ, q0, Acc) be the product
of all automata Aa

i and Ag
i , where the state space is Q = Qa

1×· · ·×Qa
m×Qg

1×· · ·×
Qg

n, the transition function is δ((qa
1 , . . . , qg

n), σ) = (δa
1 (qa

1 , σ), . . . , δg
n(qg

n, σ)), and
the initial state is q0 = (qa

0,1, . . . , q
g
0,n). Let Ja

i = {(qa
1 , . . . , qg

n) ∈ Q | qa
i ∈ F a

i } be
the set of states that are accepting in Aa

i . Similarly, let Jg
i be the set of all states

of AGR(1) that are accepting in Ag
i . The acceptance condition Acc is a GR(1)

condition with assumptions Ja
i and guarantees Jg

i .
Note that the size of the state space of the specification grows exponentially

with the number of assumptions and guarantees (if the Büchi automata have
more than 2 states), whereas m and n grow linearly.

A system realizes a GR(1) specification AGR(1) if the language of the system
is part of the language of AGR(1).

Games and Strategies. A game graph is a finite directed graph G = (S, s0, E)
consisting of a set of states S, an initial state s0 ∈ S, and a set of edges E ⊆ S×S
such that each state has at least one outgoing edge. The states are partitioned
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into a set S1 of Player-1 states and a set S2 of Player-2 states. When the initial
state is not relevant, we omit it and write (S, E). A play ρ = s0s1 . . . ∈ Sω is an
infinite sequence of states such that for all i ≥ 0 we have (si, si+1) ∈ E. Given
a game graph G = (S, E), a (finite memory) strategy for Player 1 is a tuple
(Γ, γ0, π), where Γ is some (finite) set representing the memory, γ0 ∈ Γ is the
initial memory content, and π : S1×Γ → S×Γ is a function mapping a Player-1
state s and a memory content to a successor state s′ and an updated memory con-
tent such that (s, s′) ∈ E. A Player-2 strategy is defined similarly. A strategy is
positional if it depends only on the current state. We represent a positional strat-
egy π for player p as a function from Sp to S. Let ρ((Γ1, γ0,1, π1), (Γ2, γ0,2, π2), s)
denote the unique play starting at s when Player 1 plays according to the strat-
egy (Γ1, γ0,1, π1) and Player 2 plays according to (Γ2, γ0,2, π2).

A game is a tuple ((S, E), Acc), consisting of a game graph (S, E) and an
objective Acc. The game graph defines the possible actions of the players. The
objective describes the winning condition for the players. A play ρ is winning
for Player 1 if it satisfies the objective of the game, otherwise it is winning
for Player 2. A strategy π1 is winning for Player 1 if for all strategies π2 of
Player 2 the play ρ((Γ1, γ0,1, π1), (Γ2, γ0,2, π2), s0) is winning. A game is winning
for Player 1 (Player 2) if there exists a winning strategy for Player 1 (Player 2,
resp.). A Generalized Reactivity (GR) game is a game with a Generalized Reac-
tivity acceptance condition, and similarly for GR(1).

Given a game graph G, two objectives are equivalent if all plays in G have
the same winner for both objectives. The objectives are equivalent if they are
equivalent for any game graph.

GR(1) Synthesis. A GR(1) specification can easily be translated into a GR(1)
game. A winning strategy for the GR(1) game corresponds to a system that
realizes the GR(1) specification.

3 Defining Measures of Robustness

In this section we discuss how to compare systems with respect to robustness.
Usually, multiple systems satisfy a specification, but which one is most robust?
In prior work we answered this question for safety specifications: our measure of
robustness for a safety specification ϕ → ψ is the ratio between how often the
environment violates ϕ and how often the system violates ψ. For specifications
with liveness properties, this approach does not work because we cannot count
the number of violations of a liveness property. Instead, we propose to count the
number of properties violated. In the following we show two different robustness
measures, the single and the multiple counting requirements measure. Then we
formally state the requirements a robustness measure has to satisfy.

Single Counting Requirements. Recall the dining philosophers example with
n = 5 philosophers given in the introduction. Suppose system D1 always lets
one philosopher eat until she is not hungry anymore and then moves to the
next hungry philosopher in a round robin manner. If one philosopher is hungry
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forever, then no other philosopher gets to eat again. Thus, the violation of one
assumption leads to the violation of four guarantees.

Suppose system D2 lets two non-adjacent philosophers eat at the same time
until neither is hungry anymore. They take turns in the following order: first
philosopher 1 and 3 eat, then philosopher 2 and 4, and last philosopher 3 and
5 eat. If one of the currently eating philosopher is hungry forever, then the
two currently eating philosophers eat forever and no other philosopher gets to
eat again. Thus, the violation of one assumption leads to the violation of three
guarantees. System D2 is thus more robust than system D1.

An even more robust system (D3) is the one described in the introduction.
Two philosophers eat at the same time, as soon as one of them is not hun-
gry anymore another philosopher with free chopsticks is allowed to eat. If one
philosopher is hungry forever, she eats forever and the other philosophers that
are not her neighbors take turns eating. The violation of one assumption leads
to the violation of two guarantees.

We specify robust systems by adding restrictions to the original specifica-
tion. All three systems above satisfy the original specification ϕ =

∧n
i=1 A1i →∧n

i=1(G1i ∧G2i ∧G3i), but only D2 and D3 guarantee that they violate at most
three system guarantees if the environment violates one of its assumptions. For-
mally, D2 and D3 additionally satisfy

ψ1 =
( n∨

i=1

∧
j∈{1,...,n}\{i}

A1j

)
→
(
ϕS ∧

n∨
i=1

n∨
j=i+1

n∨
k=j+1

∧
l∈{1,...,n}\{i,j,k}

G3l

)
,

where ϕS =
∧n

i=1(G1i ∧ G2i). The antecedent of the formula states that the
environment satisfies n − 1 out of the n assumptions. The consequent says that
the system satisfies all the safety guarantees (G1i and G2i) but might violate
three of its liveness guarantees.

Note that in general, a robust system cannot violate a safety guarantee in
response to a violation of a fairness assumption, since a violation of a fairness
assumption can not be detected in finite time.

Since D3 violates at most two system guarantees if one environment assump-
tion is violated, it also satisfies the following formula.

ψ2 =
( n∨

i=1

∧
j∈{1,...,n}\{i}

A1j

)
→
(
ϕS ∧

n∨
i=1

n∨
j=i+1

∧
k∈{1,...,n}\{i,j}

G3k

)
These two formulas allow us to distinguish between systems D1, D2, and D3,
which satisfy the same base specification but differ in how resilient they are with
respect to violated environment assumptions. We propose to use formulas of this
type, which relate the number of satisfied assumptions to a number of satisfied
guarantees to measure how robust a system is.

Suppose A is a set of assumptions and G is a set of guarantees. Let Ak =
{A ⊆ A | |A| = k} be the set of all subsets of A of size k and let Gk be
defined similarly. We can augment the specification with a restriction of the
form (

∨
A∈Ak

∧
Ai∈A Ai) → (

∨
G∈Gl

∧
Gi∈G Gi) to check if a system satisfies l
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guarantees when k assumptions are satisfied. Naturally, a system that satisfies
more guarantees with the same number of satisfied assumptions is more robust.

Multiple Counting Requirements. In some cases we might want to have a
more fine-grained measure of robustness, which cannot be expressed by a single
restriction of the form given above. Recall again the dining philosophers example
but this time assume there are n = 7 philosophers. Suppose system D4 allows
two hungry philosophers to eat at the same time. Then, even if one philosopher
does not stop eating, the other non-adjacent philosophers can still take turns
eating. However, if two philosophers misbehave and they both get to eat (i.e.,
they do not sit next to each other), they will leave the other five philosophers
to starve. Suppose another system D5 allows three philosophers to eat at the
same time. Now, if two philosophers misbehave and they both get to eat, the
system D5 still allows another philosopher to eat and only four philosophers are
left to starve. Both D4 and D5 realize the specification ϕ. If we consider the
restrictions from above, we see that both systems satisfy the formula ψ1 and
ψ2. Our previous measure of robustness cannot distinguish between D4 and D5.
Let’s add another restriction ψ3 to our specification:

ψ3 =
( n∨

i=1

n∨
j=i+1

∧
k∈{1,...,n}\{i,j}

A1k

)
→
(
ϕS ∧

n∨
i=1

n∨
j=i+1

n∨
k=j+1

∧
l∈{1,...,n}\{i,j,k}

G3l

)
System D5 realizesϕ∧ψ2∧ψ3 but system D4 does not. We can measure the number
of satisfied guarantees for several numbers of satisfied assumptions. The restric-
tions we add to the specifications are of the form

∧
(k,l)∈L((

∨
A∈Ak

∧
Ai∈A Ai) →

(
∨

G∈Gl

∧
Gi∈G Gi)), where L is a list of pairs (k, l), requiring l guarantees to be

satisfied if k assumptions are satisfied.

Definitions. Both single and multiple counting requirements, as defined above,
can be put in the following form (as we will shown in Section 4).

Definition 1. Given a GR(1) specification AGR(1) with assumptions Ja
1 , . . . , Ja

m

and guarantees Jg
1 , . . . , Jg

n, a robustness specification for AGR(1) has the form

k∧
l=1

(
ml∧
i=1

B(Ja
l,i) →

nl∧
i=1

B(Jg
l,i)

)
,

where Ja
l,i ∈ {Ja

1 , . . . , Ja
m} and Jg

l,i ∈ {Jg
1 , . . . , Jg

n}.

There is a natural partial order on robustness specifications: If, for each set of
satisfied assumptions, a specification S requires a superset of the guarantees
required by specification S′, then S is more robust than S′. Let us denote this
order by ≺.

Definition 2. A robustness measure for a GR(1) specification is a set of ro-
bustness specifications together with a total order that respects ≺.



Robustness in the Presence of Liveness 417

For example, consider again the ‘simple counting requirements’ robustness spec-
ifications from above. A possible total order is (k = 0, l = |G|) > (k = 0, l =
|G| − 1) > . . . > (k = 0, l = 1) > (k = 1, l = |G|) > . . . > (k = |A|, l = 0),
where k is the number of satisfied assumptions and l the number of satisfied
guarantees. Another possible total order is (k = 0, l = |G|) > (k = 1, l = |G|) >
. . . > (k = |A| − 1, l = |G|) > (k = 0, l = |G| − 1) > . . . > (k = |A|, l = 0). A
total order is necessary to synthesize the most robust specification.

Section 6 shows how to verify and synthesize robust systems for a given mea-
sure. To synthesize a robust system, we solve games with the robustness specifi-
cation as objective. Section 5 shows how to solve such games. In the next section,
we show how to translate combinations of Büchi objectives to generalized Büchi
objectives.

4 Simplification of Combinations of Büchi Objectives

In this section we present a simplification of disjunctions of conjunctions of
Büchi objectives (DCB objectives) to conjunctions of Büchi objectives (gener-
alized Büchi objectives). This simplification is needed to transform counting
requirements to robustness specifications. The simplification (or reduction) in-
curs an exponential blowup. Games with generalized Büchi objectives can be
solved in polynomial time, whereas we show that games with DCB objectives
are coNP-complete. This shows that the exponential blow up in the translation
is probably inevitable.

Simplification of DCB objectives. The simplification is done in two steps.
First, we show how to translate DCB objectives to conjunctions of disjunctions
of Büchi objectives. Second, we show that conjunctions of disjunctions of Büchi
objectives can be translated to generalized Büchi objectives.

Lemma 1. Any winning condition ψ that is a DCB objective can be translated
into an equivalent winning condition ψ′ that is a conjunction of disjunctions of
Büchi objectives, such that |ψ′| = O(2|ψ|).

Proof. For any objective ψ =
∨m

i=1
∧n

j=1 B(Bij) there exists an equivalent objec-

tive ψ′ =
∧nm

i=1
∨m

j=1 B(B′
ij) with B′

ij ∈ {Bij | i ∈ {1 . . .m} and j ∈ {1 . . . n}}.
The translation is identical to that of changing DNF into CNF. �

Lemma 2. Any winning condition ψ that is a conjunction of disjunctions of
Büchi objectives can be translated into an equivalent generalized Büchi objective
ψ′, such that |ψ′| = O(|ψ|).

Proof. Since a disjunction of Büchi conditions is again a Büchi condition (B(B1)∨
B(B2) = B(B1 ∪ B2)), objectives of the form

∧k
i=1
∨l

j=1 B(Bij) can be reduced

to a generalized Büchi objective
∧k

i=1 B(
⋃l

j=1 Bij). �
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C1

C2

Ck

...

}
}
}

literal

literal

literal

Fig. 1. Game graph for 3SAT formula

Corollary 1. Any winning condition ψ that is a DCB objective can be translated
into an equivalent generalized Büchi objective ψ′, such that |ψ′| = O(2|ψ|).

Complexity of solving DCB objectives. We first show that the problem
of deciding whether Player 1 has a winning strategy for a DCB objective is
coNP-hard, and then we will argue coNP-completeness.
Hardness proof. We show that the problem of deciding whether Player 1 has a
winning strategy in a game with a DCB objective is at least as hard as deciding
whether a 3SAT formula is unsatisfiable. Consider a 3SAT formula ψ in CNF
with clauses C1, C2, . . . , Ck over variables {x1, x2, . . . , xn}, where each clause
consists of disjunctions of exactly three literals (a literal is a variable or its
complement). Given the formula ψ, we construct a game graph as shown in
Figure 1. The game graph is as follows: from the initial state, Player 1 chooses
a clause, then from a clause Player 2 chooses a literal that appears in the clause
(i.e., makes the clause true). From every literal the next state is the initial state.
The winning condition for Player 1 is

∨n
i=1(B(Xi) ∧ B(Xi)), where Xi is the

set of states that correspond to the literal xi and Xi is the set of states that
correspond to the complement literal ¬xi; in other words, Player 1 wants to visit
some variable and its complement infinitely often.

We now present two directions of the hardness proof.
Not satisfiable implies winning. We show that if ψ is not satisfiable, then

Player 1 has a winning strategy. The winning strategy is as follows: the strategy
is played in rounds; in round i Player 1 chooses the clauses C1, C2, . . . , Ck in
order, and then proceeds to round i + 1. Since ψ is not satisfiable, for every
round i there is at least one variable such that both the variable state and its
complement state is visited in round i. Since the number of variables is finite, it
follows that there must be some variable such that both the variable state and
its complement state appears infinitely often. The result follows.

Satisfiable implies not winning. We now show that if ψ is satisfiable, then
Player 2 has a winning strategy. Consider a satisfying assignment to ψ. A mem-
oryless winning strategy for Player 2 is as follows: for every clause Ci, Player 2
chooses a literal from Ci that is set true by the satisfying assignment. Given the
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strategy of Player 2, since the strategy is obtained from a valid assignment, it
follows that never a variable and its complement is visited.

The above argument gives us the following lemma.

Lemma 3. Given a game graph with a DCB objective, deciding if Player 1 has
a winning strategy is coNP-hard.

Lemma 4. Given a game graph with a DCB objective, deciding if Player 1 has
a winning strategy can be achieved in coNP.

Proof. The proof is as follows: we have already shown that DCB objectives can be
translated to a generalized Büchi objective (which is an upward-closed objective).
It follows from the result of Zielonka [Zie98] that there are memoryless winning
strategies for the complement of an upward-closed objective (in particular for
disjunction of coBüchi objectives). It follows that there always exist memoryless
winning strategies for Player 2. Hence to falsify that Player 1 has a winning
strategy, a memoryless strategy for Player 2 can be fixed (as the polynomial
witness) and the resulting one-player graph can be verified in polynomial time.
The polynomial time verification procedure uses the following fact: consider a
maximal strongly connected component (MSCC) in a one-player graph (only
Player 1), then the MSCC is winning if for some index i of the disjunction,
for every index j of the corresponding conjunction the MSCC contains at least
one Büchi state Bij . Using the above fact, MSCC decomposition of a graph,
and reachability to winning MSCCs we obtain a polynomial time verification
procedure. The result follows. �

Lemma 3 and Lemma 4 yield the following result.

Theorem 1. Given a game graph with a DCB objective for Player 1, deciding
if Player 1 has winning strategy is co-NP complete.

5 Solving Generalized Reactivity Games

In this section, we first present a translation of GR(1) winning conditions to one-
pair Streett conditions (or parity {0, 1, 2} conditions). Our reduction is based on
a counting construction similar to the reduction of generalized Büchi conditions
to Büchi conditions. Second, we generalize the translation to reduce games with
Generalized Reactivity objectives to games with Streett objectives.
Reduction. Consider aGR(1) gameG = ((S, E), Acc)withAcc =

∧m
i=1 B(Ai) →∧n

i=1 B(Gi) with Player 1 states S1 and Player 2 states S2. We construct an equiv-
alent one-pair Streett game G′ = ((S′, E′),B(A′

1) → B(G′
1)) with Player 1 states

S′
1 and Player 2 states S′

2 as follows.

1. The state space S′ = S × {0, 1, . . . , m} × {0, 1, . . . , n}, with S′
1 = S1 ×

{0, 1, . . . , m} × {0, 1, . . . , n}, and S′
2 = S2 × {0, 1, . . . , m} × {0, 1, . . . , n}.

2. The set of edges E′ is defined as follows:
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((s, i, n), (s, 0, 0)) ∈ E′ for 0 ≤ i ≤ m,
((s, m, j), (s, 0, j)) ∈ E′ if j �= n, and
((s, i, j), (s′, i′, j′)) ∈ E′ if (s, s′) ∈ E, i′= i + 1 if s′ ∈ Ai+1 otherwise i′= i,

and j′ = j + 1 if s′ ∈ Gj+1 otherwise j′ = j.

3. The Streett pair is (A′
1 = {(s, m, j) ∈ S′ | j ∈ {0, . . . , n}}, G′

1 = {(s, i, n) ∈
S′ | i ∈ {0, . . . , m}}).

We present the intuition behind the construction. Initially i and j are zero. If
all the assumptions are visited such that, assumption A2 is visited after some
visit to assumption A1; assumption A3 is visited after some visits to assumptions
A1, A2; assumption A4 is visited after some visits to assumptions A1, A2, A3; and
so on, since the last reset, then i is reset to 0. If all the guarantees are visited,
such that guarantee G2 is visited after some visit to guarantee G1; guarantee G3
is visited after some visits to guarantees G1, G2; guarantee G4 is visited after
some visits to guarantees G1, G2, G3; and so on, since the last reset, then j is
reset to 0. In between resets, i and j denote the last assumption and the last
guarantee visited in the order described above, since the last reset. The size of
the new state space is |S′| = |S| · (m + 1) · (n + 1) = O(|S| · m · n). The new
number of transitions is |E′| = |E| · (m + 1) · (n + 1) + 2 · |S| = O(|E| · m · n).

Lemma 5. There exists a winning strategy for G iff there exists a winning strat-
egy for G′.

Proof. Consider a play ρ in G and the corresponding play ρ′ in G′. We consider
two cases. Case one. We consider the case where all guarantees appear infinitely
often in ρ. If all guarantees are visited infinitely often, then a state with third
state component with value n is visited infinitely often in ρ′ (i.e., G′

1 is visited
infinitely often). Thus, if the play in G satisfies the GR(1) condition by visiting all
guarantees infinitely often, then the corresponding play in G′ visits G′

1 infinitely
often and satisfies the Streett condition.

Case two. We consider the case where some guarantee is not visited infinitely
often in ρ. In this case a state with third state component with value n is visited
only finitely often in ρ′. We consider two sub-cases.

Case two(a). If all the assumptions are visited infinitely often in ρ, then a
state with second state component with value m is visited infinitely often in
ρ′. In this case the play in G does not satisfy the GR(1) condition, and the
corresponding play in G′ visits A′

1 infinitely often and G′
1 finitely often, which

violates the Streett condition.
Case two(b). If some assumption is not visited infinitely often in ρ, then a

state with second state component with value m is visited only finitely often in
ρ′ (i.e., A′

1 is visited finitely often). In this case the play in G satisfies the GR(1)
condition, and the corresponding play in G′ satisfies the Streett condition. This
completes the proof. �

Theorem 2. Games with GR(1) objectives can be solved in O(|S| · |E| · (m ·n)2)
time.
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Since one-pair Streett (or parity {0, 1, 2})) games with |S| states and |E| edges
can be solved in O(|S| · |E|) time [Jur00], from Lemma 5 we obtain the above
theorem. It may also be noted that one-pair Streett games can be solved very
efficiently in practice [dAF07] and also symbolically [EJ91] (and implementing
our counting construction symbolically is standard). The previous best know
algorithm to solve GR(1) games was through the triple nested fix-point algorithm
of [PPS06] which works in time O(|S|2 · |E| ·n ·m). For the typical case that |S|
is much greater than m and n, our algorithm is faster.

Our algorithm can easily be generalized to Generalized Reactivity objectives.

Theorem 3. Games with Generalized Reactivity objectives can be solved in
O(|S|k · |E| · (m · n)k·(k+1) · k!) time.

Proof. Turn all GR(1) objectives into Streett pairs, the Streett game has O(|S| ·
mk · nk) states, O(|E| ·mk · nk) transitions, and k-Streett pairs. A Streett game
with k pairs, |E′| transitions and |S′| states can be solved in O(|E′| · |S′|k · k!)
[PP06]. �
A symbolic algorithm for Generalized Reactivity objectives can be obtained as
follows: use the standard symbolic implementation of the counting construction
along with the symbolic algorithm for Streett games from [PP06]. This gives us
a symbolic algorithm for solving games with Generalized Reactivity objectives.

Winning strategy and memory required. A winning strategy for a GR(k)
condition is obtained as follows: first we consider an automaton A1 of size ((n+1)·
(m + 1))k to store the values of the counters and follow the transition as given
in the reduction to Streett games with k pairs (essentially this mimics the re-
duction of the counting construction). Winning strategies in Streett games with
k pairs require at most k! memory, and a winning strategy (automata A2 with
k! memory) can be constructed from the Streett game solving algorithms (such
as [PP06] or [CHP07]). The product automaton A1 × A2 describes a winning
strategy for the GR(k) condition and requires ((n + 1) · (m + 1))k · k! memory.

In the case of GR(1) conditions, our construction of winning strategies requires
(n+1) · (m+1) memory. The memory can be improved to n as follows: once the
winning set is computed, we can run Zielonka’s algorithm to compute a winning
strategy with n memory. However, as the winning set is already computed we can
get rid of the outer iteration of Zielonka’s algorithm and re-running Zielonka’s
algorithm to compute the winning strategy, given the winning set, takes O(|S| ·
|E| · (n + m)) time.

6 Verification and Synthesis of Robust Systems

First, we show how to verify whether a system has a certain level of robustness.
Then, we give an algorithm to synthesize the most robust system with respect
to a given robustness measure.

Verification. Verification of a robustness specification is similar to the verifica-
tion of a GR(1) specification.
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Lemma 6. Given a GR(1) specification AGR(1) = (Q, δ, q0, Acc) with m as-
sumptions and n guarantees, and a system M , verification can be performed in
O(m · n · |Q|2 · |δ|) time.

Proof. Check if a trace in AGR(1) × M satisfies
∧m

i=1 B(Ai) ∧ (
∨n

i=1 ¬B(Gi))
(the negation of the specification) using the μ-calculus formula μX .(pre(X) ∨∨n

j=1 νY .(¬Gj ∧
∧m

i=1 pre(μZ .(Y ∧(Ai ∨pre(Z)))))) [GBJV08]. The complexity
of the nested fix-points is in O(|Q|2 · |δ|) [EL86]. �

Theorem 4. Given a GR(1) specification AGR(1) = (Q, δ, q0, Acc), a robustness
specification

∧k
l=1(
∧m

i=1 B(Al,i) →
∧n

i=1 B(Gl,i)), and a system M , verifying that
M satisfies the robustness specification takes O(k · m · n · |Q|2 · |δ|) time.

Proof. Check if a trace in AGR(1) × M satisfies the negation of the specifica-
tion

∨k
l=1(
∧m

i=1 B(Al,i) ∧ (
∨n

i=1 ¬B(Gl,j))) by checking the k different GR(1)
parts (

∧m
i=1 B(Al,i)∧ (

∨n
i=1 ¬B(Gl,j))) separately, one after the other, using the

method of Lemma 6. �

Synthesis. The most robust system with respect to a given robustness measure
can be synthesized by synthesizing the greatest realizable robustness specifica-
tion. Thus, synthesis can be reduced to solving GR games.

Theorem 5. Given a GR(1) specification AGR(1) = (Q, δ, q0, Acc), and a ro-
bustness measure with h robustness specifications rp =

∧k
l=1(
∧m

i=1 B(Al,i) →∧n
i=1 B(Gl,i)), with 1 ≤ p ≤ h, and a total order, synthesis of the most robust

system can be performed in O(h · |Q|k · |δ| · (m · n)k·(k+1) · k!) time. The size of
the resulting system is ((m + 1) · (n + 1))k · k! · |Q|.

Proof. The best system can be synthesized by trying the specifications in order.
Start with the lagest robustness specification according to the given total order.
Try to synthesize a system satisfying the specification using the algorithm given
in Section 5. The translation of the specification into a game graph is linear,
hence synthesis of a robustness specification can be performed in O(|Q|k · |δ| ·
(m · n)k·(k+1) · k!) time (see Theorem 3). The size of the synthesized system is
((m + 1) · (n + 1))k · k! · |Q|, if the robustness specification is realizable. If the
robustness specification is not realizable proceed with the next specification in
the given order. �

7 Conclusions

We have presented a framework for robustness for liveness specifications. The
notion of robustness that we suggest aims to maximize the number of guaran-
tees that are fulfilled for any number of assumptions that may be violated. We
have discussed several different interpretations of this notion and have shown
that they can all be reduced to Generalized Reactivity formulas. We have shown
how to verify such formulas and how to synthesize them to robust systems.
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For synthesis we have developed a novel game-theoretic algorithm that is faster
than Zielonka’s, although it does produce strategies with larger memory. Our
algorithm can also be used for the synthesis of GR(1) properties, in which case
it outperforms the algorithm of [PPS06] when the state space of the specification
is larger than the number of assumptions and guarantees.
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Abstract. Formal specifications play an increasingly important role in
system design-flows. Yet, they are not always easy to deal with. In this
paper we present RATSY, a successor of the Requirements Analysis
Tool RAT. RATSY extends RAT in several ways. First, it includes a
new graphical user interface to specify system properties as simple Büchi
word automata. Second, it can help debug incorrect specifications by
means of a game-based approach. Third, it allows correct-by-construction
synthesis of systems from their temporal properties. These new features
and their seamless integration assist in property-based design processes.

1 Introduction

Several (recent) trends in designing and implementing complex digital systems
necessitate the existence of a formal specification for the system at hand. For
example, specifications can be used to unambiguously communicate design in-
tents and interface assumptions between collaborating designers. They can also
be used to formally verify implementations by means of a model checker. More-
over, a complete formal specification may be used to automatically synthesize an
implementation using tools like Lily [6], Anzu [7], or as shown in [11]. Formal
specifications are also created, sold, and used as third-party verification IPs [4].

For some of these use cases it is of interest to create and analyze the formal
specification stand-alone, i.e., without a corresponding implementation, or before
such an implementation is ready. The tool RAT [2] supports these tasks by
allowing the user to write a specification in PSL syntax, to analyze it on a
trace level, and to check if it is realizable, i.e., if a conforming system exists.
However, RAT has some shortcomings when used for system design. Figure 1
depicts a typical property-based design flow. Some informal design intent is
turned into a formal specification, which is then refined in several iterations
involving simulation and debugging. Finally, an implementation is derived from
the specification, ideally using correct-by-construction synthesis. The user faces
several problems when putting this design flow into practice. First, it is hard
to express the design intent in a formal language. Second, our experience shows
� This work was supported by EU grants 217069 (COCONUT) and 248613

(DIAMOND) as well as Provincia Autonoma di Trento grant EMTELOS.
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Fig. 1. A typical property-based design flow

that formal specifications for complex designs are hardly ever written correctly
on the first try. Thus, there is a need for proper support in debugging. Finally,
it must be possible to synthesize an implementation from the specification.

We present the tool RATSY, an extension of RAT which provides several
new features to assist the user in a property-based design flow. First, a graphical
user interface for drawing Büchi automata has been added. These automata are
an easy-to-understand way to specify system properties. Second, the debugging
approach presented in [8] has been integrated. It aids in debugging unrealizable
specifications and in refining specifications that allow undesired behavior. Third,
synthesis functionality has been added. Finally, an additional realizability algo-
rithm [10,5] has been implemented, handling a strictly larger subset of PSL than
the one in RAT [9]. Together with the analysis features inherited from RAT,
this yields a powerful tool with full support for property-based design processes.

RATSY is available at http://rat.fbk.eu/ratsy/. The following sections
will detail the improvements and new features of RATSY.

2 Automaton Editor

The automaton editor provides an intuitive interface to specify system properties
as Büchi automata. The graphical representation makes creating and especially
maintaining specifications easier and less error-prone. Automata are restricted to
be deterministic and complete to allow for more efficient synthesis.1Completeness
is ensured by providing an implicit “dead state” as the default destination of
transitions. When transitions are added or changed, other transition conditions
are updated by the tool to maintain determinism. Automata can be drawn once
and instantiated multiple times, with template parameters allowing for differ-
ent instantiations. For use with other features of RATSY, PSL formulas are
generated automatically from the automata. Finally, the automata are used to
visualize state information during simulation and debugging (see next section).

3 Simulation and Debugging

RATSY implements the ideas presented in [8] to test and debug formal specifica-
tions. First, it allows the user to test realizable specifications. An implementation
is synthesized and the user can simulate it. Second, the tool provides an easy-to-
use method to rule out undesired behavior observed during simulation. The user
1 This is usually not a limiting factor since specifications used in practice tend to be

in this class [9]; otherwise the designer can fall back to entering formulas in PSL.

http://rat.fbk.eu/ratsy/
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Fig. 2. A part of RATSY’s GUI

can simply modify an incorrect simulation trace to match the design intent. The
tool then turns this modified trace into a property which enforces the desired
response to the inputs, thereby eliminating the undesired behavior. Third, the
user can debug unrealizable specifications. Following [8], the user plays a diag-
nostic game in the role of the system against a counterstrategy or a countertrace
synthesized from an unrealizable core of the specification. The diagnostic game
illustrates where the specification is too restrictive to be realizable.

Figure 2 shows a part of the screen when playing a diagnostic game to debug
unrealizability. Testing a realizable specification looks similar. In every step of
the game the counterstrategy determines values for the input signals, and the
user sets values for the output signals in the game window or via the automata
window. In every automaton of the specification, the current state, as well as
transitions that can still be taken, are highlighted. The user can traverse a cer-
tain transition by clicking it. All restrictions on signal values associated with
that transition are then applied. This integration with the automaton editor
greatly increases the usability and helps the user to keep track of what is
going on.

4 Technical Aspects

RATSY itself is implemented in Python. The symbolic algorithms rely on
CUDD [12] and NuSMV [3], which are accessed through a SWIG-generated [1]
wrapper. The synthesis functionality is based on a Python reimplementation of
Anzu [7] with some minor implementation-specific improvements. The synthesis
algorithm [9] handles specifications given in Generalized Reactivity (1) (GR(1))
format. By means of the NuSMV parser, RATSY can perform several syntac-
tic transformations on its own in order to turn a specification into the required
format. Furthermore, the NuSMV library automatically encodes multi-valued
variables to Boolean signals. RATSY generates circuits in BLIF and Verilog for-
mat. If syntactic transformation into GR(1) fails, but succeeds into LTL, then a
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preliminary implementation of an algorithm along the lines of [10,5] can be used
to determine realizability; debugging and synthesis are not yet available in that
case. The conversion into non-deterministic Büchi automata required by [10,5] is
performed via a (slightly adapted) version of Wring [13] from Lily [6]. RATSY

performs similar to Anzu [7,8] when operating on GR(1) specifications, and can
decide most of the examples that Acacia [5] can for full LTL.

5 Conclusions and Future Work

RATSY enhances the analysis features of RAT with a game-based debugging
approach for specifications. Furthermore, it eases specifying properties by rep-
resenting them as Büchi automata, which can be edited via a graphical user
interface. Once the user is satisfied with the result of debugging and analyzing
her specification, she can synthesize an implementation with just a few clicks. All
the new features integrate seamlessly with the well-established analysis features
of RAT. Thus, RATSY is a powerful tool to support property-based design.

In the future, we plan to implement a wider variety of output formats for
synthesis. Furthermore, we will continue work on improving the size of the syn-
thesized circuits, as well as the time needed to perform synthesis. Concerning
debugging, we plan to combine the already implemented approach with model-
based diagnosis techniques. This should further simplify the localization of errors.
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Abstract. Synthesis of program fragments from specifications can make
programs easier to write and easier to reason about. We present Comfusy,
a tool that extends the compiler for the general-purpose programming
language Scala with (non-reactive) functional synthesis over unbounded
domains. Comfusy accepts expressions with input and output variables
specifying relations on integers and sets. Comfusy symbolically computes
the precise domain for the given relation and generates the function from
inputs to outputs. The outputs are guaranteed to satisfy the relation
whenever the inputs belong to the relation domain. The core of our syn-
thesis algorithm is an extension of quantifier elimination that generates
programs to compute witnesses for eliminated variables. We present ex-
amples that demonstrate software synthesis using Comfusy and illustrate
how synthesis simplifies software development.

1 Introduction

Synthesis is among the most ambitious techniques for building correct computer
systems [4]. Recently, we have seen advances of synthesis for finite-state reactive
systems [6, 1]. In this paper, we describe a step in another direction: synthesis
for infinite-state non-reactive software systems [2]. Our goal is to gradually in-
troduce synthesis into software development by supporting new programming
language constructs that leverage synthesis in delimited portions of the pro-
gram. Specifically, we introduce a programming language construct, choose. The
choose construct accepts a parameterized predicate P . It synthesizes a function
that maps the parameters to output values satisfying P . We restrict the language
of predicates to a decidable logic, and provide a complete synthesis procedure:
whenever a value satisfying the predicate exists, the synthesized function will
compute one such value.

We continue by illustrating our system through examples. We then define our
synthesis problem more precisely and describe our implementation.1

� The author list has been sorted according to the alphabetical order; this should
not be used to determine the extent of authors’ contributions. Ruzica Piskac was
supported in part by the SNF Grant SCOPES IZ73Z0 127979. Philippe Suter was
supported by the SNF Grant 200021 120433.

1 For further details, see [2] and http://lara.epfl.ch/dokuwiki/comfusy
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2 Examples

Linear arithmetic. As a first example, consider the problem of decomposing a
number of seconds into hours, minutes and the leftover seconds. We can specify
this problem as follows:

val (hours, minutes, seconds) = choose((h: Int, m: Int, s: Int) ⇒ (
h ∗ 3600 + m ∗ 60 + s == totsec && 0 ≤ m && m < 60 && 0 ≤ s && s < 60))

On this example, Comfusy generates the following code:2

val (hours, minutes, seconds) = {
val loc1 = totsec div 3600
val num2 = totsec + ((−3600) ∗ loc1)
val loc2 = min(num2 div 60, 59)
val loc3 = totsec + ((−3600) ∗ loc1) + (−60 ∗ loc2)
(loc1, loc2, loc3)
}

Arithmetic pattern matching. We also found synthesis for linear arithmetic to be
useful for extending pattern-matching in a way that is similar to, but goes beyond
Haskell (n+k)-patterns. The following code implements the fast exponentiation
algorithm:

def pow(base : Int, p : Int) = {
def fp(m : Int, b : Int, i : Int) = i match {

case 0 ⇒ m
case 2∗j ⇒ fp(m, b∗b, j)
case 2∗j+1 ⇒ fp(m∗b, b∗b, j)
}
fp(1,base,p)
}
The third pattern, for instance, will match the integer i if there exists an integer
j such that i == 2 * j + 1. The pattern also works as a binder, and the value
computed for j is thus available on the right hand side. Comfusy checks that the
match expression is exhaustive and that no pattern is subsumed by the previous
ones, and emits a warning if it can find a value matched by no pattern or if a
pattern in unreachable.

Parametrized linear arithmetic. The previous two examples are in standard lin-
ear arithmetic. Comfusy can also handle constraints expressed in parametrized
linear arithmetic, that is, constraints that are not linear at compile-time but
become linear at run-time, when some of the values are known. For example,
the following code computes, if it exists, the integer ratio between two numbers
a and b:

val ratio = choose((r: Int) ⇒ a == r ∗ b || b == r ∗ a)

2 The div operator computes the floored integer division. For example −1 div 2 = −1.
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Although the term r ∗ b, for instance, is not linear at compile-time, the value of
b is known at run-time at the point where the value of r needs to be computed.
The synthesized code thus needs to handle all possible values of the parameters
a and b.

Set constraints. Finally, Comfusy can be used to synthesize code handling sets.
Consider the following example:

val (a1,a2) = choose((a1:Set[O],a2:Set[O]) ⇒
a1 ++ a2 == s && a1 ** a2 == Set.empty

&& a1.size − a2.size ≤ 1 && a2.size − a1.size ≤ 1)

Here, ++ and ** denote set union and intersection respectively. The generated
code constructs two sets a1 and a2 such that they form a partition of the existing
set s, with the additional constraint that the sizes of a and b should not differ
by more that 1. Note that requiring that their sizes be identical would result in
an unsatisfiable set of constraints whenever the size of s is odd.

3 Definition and Algorithm for Synthesis in Comfusy

Definitions. Let FV(q) denotes the set of free variables in a formula or term q. If
x = (x1, . . . , xn) then xs denotes the set of variables {x1, . . . , xn}. If q is a term
or formula, x = (x1, . . . , xn) a vector of variables and t = (t1, . . . , tn) a vector
of terms, then q[x := t] denotes the term resulting from substituting in q free
variables x1, . . . , xn with terms t1, . . . , tn, respectively.

Definition 1 (Synthesis Procedure). A synthesis procedure takes as input a
formula F and a vector of variables x and outputs a pair of

1. a precondition formula pre with FV(pre) ⊆ FV(F ) \ xs

2. a tuple of terms Ψ with FV(Ψ ) ⊆ FV(F ) \ xs

such that the following two implications are valid:

∃x.F → pre
pre → F [x := Ψ ]

Algorithms. Our core specification language is quantifier-free Boolean Algebra
with Presburger Arithmetic (BAPA) [3].3 Our procedure for integer linear arith-
metic synthesis is related to the Omega-test algorithm [7]. One of the key dif-
ferences is that our procedure computes witness terms for eliminated variables.
Additionally, in the parametrized arithmetic case, some choices in the algorithm
need to be delayed until the run-time values are known; the synthesized code
must account for these choices by generating different cases for different signs of
coefficients and by, e.g., invoking a GCD algorithm in the generated code. The
algorithm for constraints on sets is based on a witness-generating version of [3].
3 We currently do not support quantifiers in the specification predicates. Quantifiers do

not increase the set of definable relations, because BAPA has quantifier elimination
[3]. We could support quantifiers by running the quantifier elimination algorithm
first, then invoking our synthesis procedure.
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Comfusy scalac

scala class..
code generation

parsing,
name analysis,
type-checking

optimization,

Fig. 1. Interaction of Comfusy with scalac, the Scala compiler. Comfusy takes as an
input the abstract syntax tree of a Scala program and rewrites calls to choose to syntax
trees representing the synthesized function.

4 Implementation

We have implemented Comfusy as a plugin for the Scala compiler (scalac), adding
a phase to the standard compilation process (see Figure 1). During this phase,
our plugin extracts calls to the choose function and arithmetic patterns and re-
places them by code that computes the appropriate values. The input and output
of Comfusy are thus abstract syntax trees in the internal format of scalac. The
compiler then proceeds as usual, so all further optimizations are applied to the
synthesized code as well. Comfusy supports synthesis for predicates expressed in
integer linear arithmetic, parametrized linear arithmetic, and set algebra with
size constraints, as well as linear arithmetic patterns. Comfusy can also check
whether the synthesis predicates are always satisfiable (for all possible run-time
values of the program variables) or whether they describe unique solutions, and
emit compile-time warnings with counter-examples when necessary. We use an
off-the-shelf decision procedure for these checks [5]. In our experience, the exe-
cution time of the synthesized code is similar to equivalent hand-written code.
We also found the compile-time overhead to be negligible.
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Universal Causality Graphs: A Precise Happens-Before
Model for Detecting Bugs in Concurrent Programs
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Abstract. Triggering errors in concurrent programs is a notoriously difficult
task. A key reason for this is the behavioral complexity resulting from the large
number of interleavings of operations of different threads. Efficient static tech-
niques, therefore, play a critical role in restricting the set of interleavings that
need be explored in greater depth. The goal here is to exploit scheduling con-
straints imposed by synchronization primitives to determine whether the property
at hand can be violated and report schedules that may lead to such a violation.
Towards that end, we propose the new notion of a Universal Causality Graph
(UCG) that given a correctness property P , encodes the set of all (statically) fea-
sible interleavings that may violate P . UCGs provide a unified happens-before
model by capturing causality constraints imposed by the property at hand as well
as scheduling constraints imposed by synchronization primitives as causality con-
straints. Embedding all these constraints into one common framework allows us
to exploit the synergy between the constraints imposed by different synchroniza-
tion primitives, as well as between the constraints imposed by the property and
the primitives. This often leads to the removal of significantly more redundant in-
terleavings than would otherwise be possible. Importantly, it also guarantees both
soundness and completeness of our technique for identifying statically feasible
interleavings. As an application, we demonstrate the use of UCGs in enhancing
the precision and scalability of predictive analysis in the context of runtime veri-
fication of concurrent programs.

1 Introduction

Detecting errors in concurrent programs is a notoriously difficult task. A key reason
for this is the behavioral complexity resulting from the large number of interleavings
of different threads. This leads to the state-explosion problem which renders a full-
fledged state space exploration of concurrent programs infeasible. As a result, in recent
years runtime error detection techniques have been gaining in popularity. These come
in many variants. Runtime monitoring aims at identifying violations exposed by a given
execution trace [12, 18, 5, 9]. However, due to the large number of interleavings of the
program, triggering a concurrency bug by exploring just one interleaving is unlikely. In
contrast, runtime prediction aims at detecting violations in all feasible interleavings of
events of the given trace. In other words, even if no violation exists in that trace, but
an alternative interleaving is erroneous, a predictive method [8, 15, 2, 7, 6, 14] may be
able to catch it without actually re-running the test.

T. Touili, B. Cook, and P. Jackson (Eds.): CAV 2010, LNCS 6174, pp. 434–449, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Predictive analysis seems to offer a good compromise between runtime monitoring
and full-fledged model checking in that it guarantees better coverage than runtime mon-
itoring but mitigates the state explosion inherent in model checking. In its most general
form, predictive analysis has three steps (1) Run a test of the concurrent program to
obtain an execution trace. (2) Run a sound (over-approximate) static analysis of the
given trace to detect potential violations, e.g., data races, atomicity violations, etc. If no
violation is found, return. (3) Build a precise predictive model, and for each potential
violation, check whether it is feasible. If it is feasible, find a concrete and replayable
witness trace. Many variants of this basic framework have been proposed in the litera-
ture to explore the various tradeoffs between scalability and precision. Clearly, the main
bottleneck in scalability is the feasibility check in step 3 (essentially model checking).

In the interest of scalability some techniques avoid step 3 altogether. For instance,
Farzan et. al. [6] have proposed a static analysis for predicting atomicity violations in
which they focus on the control paths and model only nested locks. For threads synchro-
nizing via nested locks only and assuming no data variables, their analysis is sound and
complete, in that step 3 can be avoided. However, this technique is not applicable to pro-
grams using non-nested locks or synchronization primitives other than locks, including
wait/notify, barriers, etc. As a result, the reported violations may be spurious. Although
such warnings can serve as hints for subsequent analysis, they are not immediately use-
ful to programmers because deciding whether they are real errors remains a challenging
task. Other techniques try to address the scalability problem by exploring only a small
subset of the feasible interleavings via trace-based under-approximations [15, 2, 14]
thereby suffering from a very limited coverage of interleavings.

If precision is of paramount concern then static analysis (step 2) is augmented with
model checking in step 3 wherein the feasibility of the set of statically generated warn-
ings can be verified. Since model checking is computationally expensive, it is impera-
tive that the static analysis be made as precise as possible. First, if static analysis can
deduce that a set of warning locations is simply unreachable then the expensive step 3
can be avoided altogether. Second, if static analysis can deduce invariants with respect
to the trace and the property at hand, we can use them to weed out many interleavings
that need be explored via step 3 thereby enhancing its scalability. Therefore, irrespective
of the predictive analysis method being used, step 2, i.e., statically detecting potentially
erroneous interleavings of events of the given trace, occupies a key role in determining
the scalability and precision of the overall framework.

However, existing static analysis techniques suffer from several drawbacks. 1. Com-
prehensive Handling of Synchronizations: State-of-the-art static analysis techniques,
e.g. [7], apply only to programs with nested locks and are therefore not applicable to
programs using non-nested locks or wait/notify-style primitives in conjunction with
locks (nested or non-nested) which are very common in Java programs. The mover-
based atomicity checkers, such as atomizer [8], are conservative even for control path
reachability (no data); they typically can robustly handle locks but not the other syn-
chronization primitives. In contrast, our new static analysis technique can handle multi-
ple synchronization primitives used in real-life programs (e.g. Java) in a unified manner,
and is both sound and complete for control path reachability for two threads, i.e., when
there is no data, or data does not affect the control flow of the program. 2. Causal
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Constraints from Properties: The existence of standard concurrency errors like data
races and atomicity violations can be expressed uniformly as a set of happens-before
constraints between events of different threads. These property-induced constraints can
be used in conjunction with scheduling constraints imposed by synchronization prim-
itives to infer yet more happens-before constraints. To our knowledge, the interaction
of these two types of constraints has not been exploited by existing techniques which
therefore end up retaining more (spurious) interleavings than are necessary.

The main contribution of this paper is the new notion of a Universal Causality Graph
(UCG), which is a unified happens-before model for the given (trace) program as well
as the property at hand, that addresses the above challenges. UCGs allow us to capture,
as happens-before constraints, the set of all possible interleavings that are feasible under
the scheduling constraints imposed by synchronization primitives that may potentially
lead to violations of the property at hand. With a given execution trace of a program
specified as a set of local computations x1, ...xn of n threads and a property P , we
associate a UCG, denoted by U(x1,...,xn)(P ), which is a directed graph whose vertices
are a subset of the set of synchronization events occurring along x1, ..., xn and each of
whose edges e1 
 e2, represents a happens-before constraint, i.e., e1 must be executed
before e2. Thus the UCG implicitly captures the set of all interleavings of x1, ..., xn

that satisfy all the happens-before constraints represented by its edges.
UCGs have the following desirable properties (a) Precision: If data is not tracked,

for two threads the UCG captures precisely the set of interleavings of x1, . . . , x2 sat-
isfying the property P , e.g., the existence of a data race or atomicity violation. For an
arbitrary number of threads the set of interleavings captured is a super-set of the set of
interleavings satisfying P . In other words, the analysis is sound in general and complete
for two threads interacting via synchronization primitives only. (b) Unified View: The
UCG encodes both property-induced causality constraints and scheduling constraints
imposed by synchronization primitives in terms of happens-before constraints. Unlike
existing techniques, it can handle multiple synchronization primitives in a unified man-
ner. This enables us to leverage the synergy between causality constraints induced by
both the property as well as the program, and allows us to deduce more causal con-
straints than would otherwise be possible. More importantly, these constraints are nec-
essary to guarantee both soundness and completeness of our method for two threads. (c)
Scalability: Since the given trace could be arbitrarily long, incorporating all synchro-
nization events of the trace as vertices and all the deduced causal constraints as edges
into the UCG would impact the scalability of the analysis. However, we show that, for
predictive analysis of a given property, the UCG need not keep track of causality edges
induced by the entire traces x1, ..., xn but only short suffixes thereof. The novelty of
this chopping result lies in the existence of a set of special lock-free control states, from
which the UCG based analysis can still guarantee both soundness and completeness.

UCGs are a generalization of lock causality graphs (LCGs) [10] which were formu-
lated to reason about pairwise reachability for threads communicating purely via locks.
However, LCGs could only be used to reason about programs using locks. Further-
more, LCGs were formulated to reason only about pairwise reachability and therefore
could not exploit causality constraints induced by properties such as atomicity viola-
tions. Also, our UCG based analysis is a backward inference process starting from the



Universal Causality Graphs 437

property at hand—it does not enumerate interleavings. This differs from the forward
analysis used in [15, 2, 14] which explicitly enumerate thread interleavings.

Happens-before constraints have been exploited before for predictive analysis for
detecting races and atomicity violations [4, 9]. However, the causal models considered
were restrictive in that the set of interleavings explored had to preserve the global order-
ing of lock/unlock statements in the original global computation x. Since the number
of such interleavings is a small fraction of the total number of feasible interleavings of
local computations of different threads along x, these techniques could miss detection
of errors and were therefore not guaranteed sound (though they were sound with respect
to the global ordering of lock/unlock statements along x). UCGs, on the other hand, al-
low the lock/unlock statements from different threads to be re-ordered relative to each
other and will therefore explore all possible statically feasible interleavings of local
computations of different threads along x. This guarantees soundness of our technique.

The proofs of all the results can be found in the full version available on-line [1].

2 Preliminaries

A concurrent program has a set {T1, . . . , Tn} of threads and a set SV of shared vari-
ables. Each thread Ti, where 1 ≤ i ≤ n, has a set of local variables LV i. Let
T id = {1, . . . , n} be the set of thread indices. Let Vi = SV ∪ LV i, where 1 ≤ i ≤ n,
be the set of variables accessible in Ti. An execution trace of the program is a sequence
x = t1 . . . tK of events. An event t ∈ x is a tuple 〈tid, action〉, where tid ∈ T id and
action is of one of the form (let tid = i)

– guarded assignment (assume(g), asgn), where g is a condition over Vi and asgn
is a set of assignments, each of the form v := exp, where v ∈ Vi and exp is an
expression over Vi. Intuitively, g must be true for the assignments to proceed.

– fork (j) and join(j). The former models the creation of child thread Tj by thread
Ti. The latter models that thread Ti waits for thread Tj to join back.

– lock(l) and unlock(l). The former models the acquire of lock l. The latter models
the release of lock l.

– waitpre(c), waitpost(c) and notify(c). The first two, when combined, model the
wait of condition variable c. The last event models the notification of c.

Each event t in x is a unique execution instance of a statement in the program. If a state-
ment in the program is executed multiple times, e.g., in a loop or a recursive function,
each execution instance is modeled as a separate event. If we project x back to the local
threads, each current thread x1, . . . , xn is a purely straight-line program.

Synchronization Primitives. In both Java and PThreads, the primitive wait(c,l),
where l is a lock and c is a condition variable, is a composite statement. Before calling
it, thread Ti is expected to hold lock l. Upon calling it, thread Ti releases lock l, and
then blocks—waiting for another thread Tj to call notify(c). After that, and only
when lock l is available again, thread Ti wakes up and immediately re-acquires lock
l. Therefore, for verification purposes, we model wait(c,l) using the semantically
equivalent event sequence waitpre(c); unlock(l); lock(l); waitpost(c). Also note that



438 V. Kahlon and C. Wang

the suggested way of using condition variables, in both Java and PThreads, is to wrap
both wait(c,l) and notify(c) with a pair of lock(l) and unlock(l).

By defining the expression syntax suitably, the guarded assignment event itself is
expressive enough to model the execution of all kinds of statements including synchro-
nization primitives. In fact, this is what we have implemented in the model checking
procedure at the final step. The reason why we represent lock-unlock events and wait-
notify events separately is for convenience in understanding the UCG-based static anal-
ysis; in static analysis, our focus is on these concurrency/synchronization events only
(data is ignored). To understand the expressiveness of guarded assignment, consider
the following variants: (1) when the guard is true, the set asgn models normal assign-
ment statements; (2) when the set asgn is empty, assume(g) models a branching state-
ment if(cond); and (3) with both the guard and the assignment set, it can model the
atomic check-and-set operation, which is the foundation of all synchronization primi-
tives. For example, acquire of lock l in thread Ti, where i ∈ T id, is modeled as event
〈i, (assume(l = 0), {l := i})〉; here 0 means the lock is available and thread index i
indicates the lock owner. Release of lock l is modeled as 〈i, (assume(l = i), {l := 0})〉.

Concurrent Trace Programs. The semantics of an execution trace x = e1 . . . eK is
defined using a state transition system. Let V be the set of all program variables and Val
be a set of values of variables in V . A state is a map s : V → Val assigning a value to
each variable. We also use s[v] and s[exp] to denote the values of v ∈ V and expression

exp in state s. We say that a state transition s
t−→ s′ exists, where s, s′ are states and

e is a guarded assignment event in thread Ti, if the action is (assume(g), asgn), s[g] is
true, and for each assignment v := exp in asgn, s′[v ] = s[exp] holds; states s and s′

agree on all other variables. The execution trace x = t1 . . . tK can be viewed as a total
order of the events along x. From x one can derive a partial order called the concurrent
trace program (CTP) [17].

Definition 1. The concurrent trace program with respect to x, denoted CTPx, is a par-
tially ordered set (T,�) such that, T = {t | t ∈ x} is the set of events, and for any
ti, tj ∈ T , ti � tj iff

– tid(ti) = tid(tj) and i < j; or
– ti has action fork(tid(tj)); or
– tj has action join(tid(ti)); or
– ti has action waitpre(c) and tj has the matching notify(c); or
– tj has action waitpost(c) and ti has the matching notify(c).

Intuitively, CTPx orders events from the same thread by their execution order along x,
and orders events from different threads by the causal relations of fork-join and wait-
notify. Otherwise, events from different threads are not explicitly ordered with respect
to each other.

We now define feasible linearizations of CTPx. Let x′ = t′1 . . . t′n be a linearization
of CTPx, i.e. an interleaving of events of x. We say that x′ is feasible iff there exist
states s0, . . . , sn such that, s0 is the initial state of the program and for all i = 1, . . . , n,

there exists a transition si−1
t′i−→ si. This definition captures the standard sequential
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consistency semantics for concurrent programs, where we modeled concurrency primi-
tives such as locks by using auxiliary shared variables.

Causal Models for Feasible Linearizations. We recall that in predictive analysis the
given concurrent program is first executed to obtain an execution trace x. By projecting
x onto the local states of individual threads one can obtain CTPx. Then given a property
P , e.g., existence of data races or atomicity violations, the goal of predictive analysis is
to find a feasible linearization of CTPx that satisfies P .

Since the total number of linearizations of CTPx may be too large, static analysis
is often employed to isolate a (small) set of linearizations of CTPx whose feasibility
can then be checked via model checking. Here static feasibility implies that data is typi-
cally ignored and the linearizations generated are required to be feasible only under the
scheduling constraints imposed by synchronization and fork-join primitives. We pro-
pose the notion of a Universal Causality Graph that captures precisely the set of feasible
interleavings of CTPx that may lead to violations while guaranteeing (i) soundness in
general and completeness for two threads, (ii) scalability, (iii) handling of different syn-
chronization primitives in a unified manner, and (iv) exploiting the synergy between
causal constraints imposed by the property as well as the program. To the best of our
knowledge, none of the existing techniques satisfies all four of these requirements.

3 Universal Causality Graph
Given a set of local computations x1, ..., xn of threads T1,..., Tn, respectively, and a
standard property P such as the presence of a data race or an atomicity violation, we
construct a causality graph, denoted U(x1,...,xn)(P ), such that there exists an interleav-
ing of x1, ..., xn satisfying P if and only if U(x1,...,xn)(P ) is acyclic. We express both
the property as well as scheduling constraints imposed by synchronization primitives in
terms of happens-before constraints. To start with, we show how to express the occur-
rence of a property violation as a set of happens-before constraints.

3.1 Properties as Causality Constraints

We consider two standard concurrency violations: data races and atomicity violations.

Data Races. A data race occurs if there exist events ta and tb of two different threads
such that (a) a common shared variable is accessed by ta and tb with at least one of
the accesses being a write operation, and (b) there exists a reachable (global) state of
the concurrent program in which both ta and tb are enabled. In order to express the
occurrence of a data race involving ta and tb, we introduce the two happens-before
constraints ta′ 
 tb and tb′ 
 ta in the universal causality graph, where ta′ and tb′ are
the events immediately preceding ta and tb in their respective threads. Note that given
an execution trace, ta′ and tb′ are defined uniquely.

Atomicity Violations. A three-access atomicity violation [12, 6, 17] involves an event
sequence tc . . . tr . . . tc′ such that (a) tc and tc′ are in a user transaction of one thread,
and tr is in another thread, and (b) tc and tr are data dependent; and tr and tc′ are
data dependent. Depending on whether each event is a read or write, there are eight
possible combinations of the triplet tc, tr, tc′ . While R-R-R, R-R-W, and W-R-R are
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a0: lock(l3);
a1: lock(l1);
a2: waitpre(c)
a3: unlock(l1)
a4: lock(l1)
a5: waitpost(c);
a6: lock(l2);
a7: unlock(l3);
a8: unlock(l1);
a9: sh = sh + 1;
a10: unlock(l2);

T1

b0: lock(l1);
b1: notify(c);
b2: unlock(l1);
b3: lock(l1);
b4: lock(l3);
b5: unlock(l1);
b6: lock(l2);
b7: unlock(l2);
b8: unlock(l3);
b9: sh = sh + 2;
b10: ...

T2

b5
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(c) Universal Causality Graph
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(d) Lock Causality Graph
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Fig. 1. An Example Universal Causality Graph

serializable, the remaining five may indicate atomicity violations. Given the CTPx and
a transaction trans = ti . . . tj , where ti . . . tj are events from a thread in x, the set of
potential atomicity violations can be computed by scanning the trace x once, and for
each remote event tr ∈ CTPx, finding the two local events tc, tc′ ∈ trans such that
〈tc, tr, tc′〉 forms a non-serializable pattern. Such an atomicity violation can be captured
via the two happens-before constraints tc 
 tr and tr 
 tc′ .

3.2 Universal Causality Graph Construction

We motivate the concept of a Universal Causality Graph (UCG) via an example com-
prised of local traces x1 and x2 of threads T1 and T2, respectively, shown in fig 1.
Suppose that we are interested in deciding whether a9 and b9 constitute a data race.
Since the set of locks held at a9 and b9 are disjoint, these pair of locations constitute a
potential data race. Furthermore, since the traces use wait/notify statements as well as
non-nested locks, we cannot use existing techniques [7, 6, 11] to decide simultaneous
reachability of a9 and b9. As discussed in Sec. 3.1, for the race to occur there must exist
an interleaving of x1 and x2 that satisfies the constraints a8 
 b9 and b8 
 a9. Fur-
thermore, the locks along x1, x2 must be acquired in a consistent fashion and causality
constraints imposed by wait/notify events must be respected.

We now show that the causality constraints generated in the UCG by the property as
well as scheduling constraints imposed by locks, fork/join, and wait/notify events that
are relevant in exposing the data race, can be captured in a unified manner. For two
arbitrary events c1 and c2 of U(x1,x2)(P ), there exists an edge c1 
 c2 if c1 must be
executed before c2 in order for P to hold.

A UCG has two types of edges (i) Seed edges and (ii) Induced edges. Seed edges,
shown as bold edges in the UCG in Fig. 1(c), can be further classified as Property and
Synchronization seed edges.

Property Seed Edges are introduced by properties as in Sec. 3.1. In our example, the
potential data race at a9 and b9 introduces the edges a8 
 b9 and b8 
 a9.
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e1

e2

e′2

e3

e′3
e4

Fig. 2. A Causality Chain from e1 to e4

Synchronization Seed Edges are induced by fork/join and the various synchronization
primitives. For simplicity, we only discuss wait/notify. Locks do not add seed edges.

– Wait-Notify: Recall that the primitive wait(c, l1) is modeled as the event sequence
a1 : lock(l1), a2 : waitpre(c), a3 : unlock(l1), a4 : lock(l1), a5 : waitpost(c).
Let b1 be the matching notify(c). The seed edges are a2 
 b1 and b1 
 a5.
Note that since x1 and x2 are generated from concrete traces for each notify state-
ment there exists a unique matching wait statement, if any, and vice versa. Strictly
speaking, we should consider all scenarios wherein notify statements are executed
without the matching wait statements. However, that will block the wait statements
causing us to miss potential violations. In order to maximize the number of viola-
tions, we assume that all pairs of matching wait/notify statements are executed in
unison.

– Fork-Join: The first edge is from fork to the first event of the child thread. The
second edge is from the last event of the child thread to join.

The interaction between these seed edges and locks can be used to deduce more con-
straints that are captured as induced edges. They are the dashed edges in Fig. 1(c). These
induced edges are key in guaranteeing soundness and completeness.

Induced Edges: Consider the seed causality constraint b8 
 a9. From this we can
deduce the new causality constraint b7 
 a6. Towards that end, we observe that at
location a9, lock l2 is held which was acquired at a6. Also, once l2 is acquired at a6
it is not released until after T1 exits a10. Furthermore, we observe that b6 is the last
statement to acquire l2 before b8 and b7 is its matching release. Due to constraint b8

 a9 and the local constraint b7 
 b8, one can deduce, via transitivity, that b7 
 a9.
Moreover, from the mutual exclusion semantics of lock l2, we have that since l2 is held
at a9 it must first be released by T2 before T1 can acquire it via a6 without which a9
cannot be executed. Thus a6 must also be executed after b7.

From b7 
 a6 one can, in turn, deduce that b8 
 a0. This is because the last
statement to acquire l3 before b7 is b4 and its matching release is b8. Using the same
argument as above, from the causality constraint b7 
 a6 and mutual exclusion seman-
tics of lock l3, we can deduce that l3, which is held at b7, must first be released by T2
before T1 can acquire it via a0 which it needs to in order to execute a6, i.e., b8 
 a0.
The process is continued till a fixpoint is reached. Fig. 1(b) shows all the induced edges
added by starting at the seed edges b8 
 a9 and a8 
 b9.

Similarly it can be seen that the wait/notify seed edges a2 
 b1 and b1 
 a5 add
further induced edges which are not shown for reasons of clarity.
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Algorithm 1. Computing the Universal Causality Graph

1: Input: Property P and local paths x1 and x2 of T1 and T2, respectively.
2: Initialize the vertices and edges of U(x1,x2)(P ) to ∅
3: Add causality edges for P as defined in sec. 3.1 (Property Seed Edge)
4: Add fork-join induced causality edges (Fork-Join Seed Edge)
5: for each pair of locations w and n corresponding to matching wait/notify events do
6: Add edges wpre 
 n and n 
 wpost, (Wait/Notify Seed Edge)
7: end for
8: repeat
9: for each lock l do

10: for each edge dj 
 di between events dj and di of Tj and Ti, respectively do
11: If l is held at dj and not released after dj along xj then add an edge ri 
 aj , where

aj is the last statement to acquire l before dj and ri is the last statement to release l
before di

12: If l is held at dj and not released after dj along xj and l is held at di then output P
does not hold and Quit

13: Let aj be the last statement to acquire l before dj along xj and rj the matching
release for aj ; and let ri be the first statement to release l after di along xi and ai

the matching acquire for ri

14: if l is held at either di or dj then
15: add edge rj 
 ai (Induced Edge)
16: end if
17: end for
18: end for
19: until no new edges can be added
20: for i ∈ [1..2] do
21: Add edges among all events of xi occurring in U(x1,x2)(P ) to preserve their relative

ordering along xi

22: end for

3.3 Computing the Universal Causality Graph

The procedure to compute the UCG is formulated as alg. 1. It adds causality constraints
one-by-one (seed edges via steps 3-7, and induced edges via steps 8-19) till it reaches a
fixpoint. Note that steps 20-22, preserve the local causality constraints along x1, ..., xn.

Since each edge in U(x1,x2)(P ) is a happens-before constraint, we see that in order
for P to hold U(x1,x2)(P ) has to be acyclic. In fact, it turns out that for two threads
acyclicity is also a sufficient condition leading to the following Acyclicity Result.

Theorem 1. Property P is violated via a (statically) feasible interleaving of local paths
x1 and x2 of T1 and T2, respectively, if and only if U(x1,x2)(P ) is acyclic.

3.4 Generalization to n Threads

For the case of n threads, the only modification that is required to alg. 1 is in step 10.
Here a causality relation between events di and dj can be induced not only via a single
edge of the form dj 
 di but also via a causality chain from dj to di (see fig. 2), i.e.,



Universal Causality Graphs 443

a sequence of pre-existing causality edges of the form e1 
 e2, e′2 
 e3, e′3 
 e4,...,
e′k−1 
 ek, where (i) e1 = dj and ek = di, and (ii) for each m, e′m occurs after em

along xm′
for some m′ ∈ [1..n].

Thus the condition at line 10 of alg. 1 is modified as follows:

for each pair of events di and dj belonging to different threads Ti and Tj , respectively,
such that there is a causality chain from dj to di do

Complexity of the UCG Construction. The total time taken for building the UCG
is O(|E||L|), where |E| denotes the number of edges that can be added to the UCG
and |L| is the number of different locks acquired/released along x1, ..., xn. In the worst
case |E| is O((n|N |)2), where |N | is the maximum number of synchronization events
occurring along any of the local sequences x1, ..., xn.

Exploiting the Synergy between Synchronization Primitives. Existing static tech-
niques for reasoning about programs with multiple synchronization primitives like locks
and wait/notify consider the scheduling constraints imposed by them separately. Thus
a violation is said to exist if it can occur either under scheduling constraints imposed
by locks or under those imposed by wait/notifies. However, UCGs capture constraints
imposed by all the primitives in a unified manner thereby allowing us to exploit the
synergy between them. In our example, by considering constraints imposed by locks
and wait/notifies separately we cannot deduce that a9 and b9 do not race. Indeed,
the scheduling constraints imposed only by locks results in the acyclic lock causal-
ity graph Fig. 1(d). Similarly, the scheduling constraints imposed only by wait/notify
results in the acyclic wait/notify causality graph in Fig. 1 (e). In order generate a cycle
that proves infeasibility of the data race we have to consider both the primitives in uni-
son. Towards that end, we construct the UCG shown in Fig. 1(c) which has the cycle
a0 
 a2 
 b1 
 b8 
 a0 thereby allowing us to deduce that a9 and b9 do not
constitute a data race.

Exploiting the Synergy between Program and Property. Consider the cycle a0 

a2 
 b1 
 b8 
 a0 in Fig. 1(c). It is comprised of the induced edge b8 
 a0
and the wait/notify seed edge a2 
 b1. The induced edge b8 
 a0 was added via an
induction sequence (via steps 8-18) starting at the property seed edge b8 
 a9. Thus
in order to rule out the data race we have to consider the causality constraints induced
by the property as well as the synchronization primitives in unison. In contrast, existing
techniques do not exploit the synergy between these constraints and are therefore not
guaranteed complete for two threads.

3.5 Handling Multiple Properties

For clarity, the UCG construction above was formulated for a single property. However,
a given trace might generate many potential warnings for concurrency bugs and building
the UCG from scratch for each warning would be infeasible in practice. In order to
build a single UCG for all the warnings, we start by adding the seed edges for all the
warnings. The seed edges for a given property are now labeled with an id that is unique
to that property. If the same seed edge needs to be added for multiple properties then
it is labeled with the set of ids of all these properties. During the UCG construction
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via alg. 1 when an edge e induces another edge f , then the property-ids are propagated
from e to f by relabeling f with the union of ids of e and f ’s pre-existing ids. In this
way each edge in the UCG may be labeled with multiple property-ids. It is easy to see
that an edge will occur in the UCG of a property P if and only if it is labeled with P ’s
id (and possibly other ids).

The resulting UCG U contains edges that are induced by all the properties. If we are
interested in checking whether a given property P holds, then we can extract from U
the UCG induced by P by simply projecting on to the edges that are labeled with P ’s
id. Then P is satisfied if and only if the resulting sub-graph is acyclic.

The above technique of propagating the ids of properties starting from the seed edges
allows us to build the UCG only once while the validity of the different properties can
be checked separately by projecting onto the appropriate sub-graphs. Note that since
the wait/notify seed edges occur in the UCGs for all the properties, they are labeled
with ids of all the properties.

4 Chopping Result: Scaling UCG Construction

In order to leverage the UCG for a practically feasible analysis we have to address the
key issue that the number of constraints added to the UCG may be too large. This is
because (1) the traces x1 and x2 could be arbitrarily long, and (2) wait/notify events
could be many and could span the entire lengths of these traces. Thus a very large
number of wait/notify seed edges, and, as a result, induced edges, could be added along
the entire lengths of x1 and x2. It contrast (see fig. 3), when constructing the lock
causality graph (LCG) as in [10] for reasoning about threads interacting only via locks,
causality edges are added only between lock/unlock statements occurring along the
suffixes of x1 and x2 starting at their last lock-free states. In practice, these suffixes of
x1 and x2 are short, as for performance reasons programmers tend to keep the lengths
of critical sections small. This ensures that the LCG size is small thereby ensuring
scalability.

Decomposition Result. In order to guarantee scalability of the UCG construction in
the presence of both wait/notifies and locks, our goal, analogous to LCGs in [10], is
to restrict the UCG construction to only small suffixes of x1, ..., xn. Towards that end,
we start with the following key decomposition result which provides useful insight into
the structure of UCGs. Intuitively, the decomposition result states that the given paths
x1, ..., xn can be broken down into an equal number, say m, of segments, with xj =
xj1...xjm such that in order to check the acyclicity of U(x1,...,xn)(P ) it suffices to check
the acyclicity of each of the m smaller UCGs U(x1i,...,xni)(P ).

Theorem 2. (Partitioning Result). Given finite local computations x1, ..., xn of T1, ...,
Tn respectively, for each j, let xj = xj1xj2 be a partition of xj such that

– the last state occurring along xj1 is lock-free, and
– for j �= k, there does not exist a wait/notify seed edge, a fork-join seed edge or a

property seed edge with endpoints along xj1 and xk2 or along xk1 and xj2.

Then U(x1,...,xn)(P ) is acyclic if and only if U(x11,...,xn1)(P ) and U(x12,...,xn2)(P ) are
acyclic.
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Fig. 3. Universal Causality Graph Decomposition

Repeated application of the above result leads to the following partitioning result.

Corollary 3. (Decomposition Result). Given finite local computations x1, ..., xn of
threads T1, ..., Tn, respectively, for each j, let xj = xj1...xjm be a partition of xj such
that

– the last states occurring along xji, where i ∈ [1..m], are lock-free, and
– there does not exist a wait/notify seed edge, a property seed edge or a fork-join seed

edge with endpoints in xji and xki′ , where j �= k and i �= i′.

Then U(x1,...,xn)(P ) is acyclic if and only if for each i ∈ [1..m], U(x1i,...,xni)(P ) is
acyclic.

The situation is illustrated in fig. 3. The lock causality graph, shown in 3(a), is generated
only by the suffixes of x1 and x2 starting with the last lock free states llf1 and llf2 along
x1 and x2, respectively. However the UCG for x1 and x2 is comprised of the UCGs
U(x1i,x2i)(P ) (and some more edges which don’t impact its acyclicity) generated by
the pairs of segments x1i and x2i delineated, respectively, by the causality barriers b1i

and b1(i+1), and b2i and b2(i+1), where a causality barrier is as defined below:

Definition (Causality Barrier). Given finite local computations x1, ..., xn of threads
T1, ..., Tn, respectively, where xi = xi

0...x
i
ni

, we say that the n-tuple (x1
b1

, ..., xn
bn

), with
xi

bi
being a local state of Ti, forms a causality barrier if (1) for each i, xi

bi
is lock-free,

i.e., no lock is held by Ti at xi
bi

, and (2) there does not exist a seed edge (xj
m, xk

m′),
where j �= k, m ∈ [0..bj] and m′ ∈ [bk + 1, nk] or m ∈ [0..bk] and m′ ∈ [bj + 1, nj].

Intuitively, seed edges along the traces x1 and x2 gives rise to localized universal causal-
ity graphs that are separated by causality barriers.

Chopping Result for Predictive Analysis. In predictive analysis, we start from a global
execution trace x of the program. Our goal is to decide whether there exists a different
valid interleaving of the local computations x1 and x2 of T1 and T2 along x, that may
uncover an error. If we were given two arbitrary local computations y1 and y2 of threads
T1 and T2 then in order to decide whether there exists an interleaving of y1 and y2 lead-
ing to an error state, we would have to build the complete UCG along the entire lengths
of y1 and y2. However, by exploiting the fact in predictive analysis, xis are projections
of a valid global computation x onto the local states of individual threads, we now show
that we need not build the entire UCG U(x1,x2)(P ) but only the one generated by suf-
fixes x1b and x2b of x1 and x2, respectively, starting at a last barrier pair along x1 and
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Algorithm 2. Computing a Last Causality Barrier
1: Input: A pair of local paths x1 and x2 leading to local states c1 and c2 of threads T1 and T2,

respectively.
2: Let lf1 be the last lock-free state before c1 along x1 such all (start or end) vertices of property

edges occur after lf1 along x1 and letWN1 be the set of wait/notify events encountered along
the segment x1

[lf1,c1], i.e., between local states lf1 and c1 along x1

3: Set terminate to false and lf2 to c2
4: while terminate equals false do
5: Let lf ′2 be the last lock-free state before lf2 along x2 such that each wait/notify event in

WN1 is matched by an event along the segment x2
[lf ′

2,c2] and all (start or end) vertices

of property edges occur after lf2 along x2. Let WN2 be the set of wait/notify events
encountered along x2

[lf ′
2,lf2]

6: Let lf ′1 be the last lock-free state at or before lf1 along x1 such that each wait/notify
event in WN2 is matched by an event along the segment x1

[lf ′
1,c1]. Let WN ′

1 be the set of

wait/notify events encountered along x1
[lf ′

1,lf1]

7: if lf ′1 equals lf1 then
8: Set terminated = true and output ( lf1, lf ′2) as a last causality barrier
9: else

10: Set WN1 = WN ′
1, lf1 = lf ′1 and lf2 = lf ′2

11: end if
12: end while

x2. This ensures scalability of our analysis as we can, in practice, ignore most synchro-
nization primitives except for the last few. We say that the n-tuple (x1

b1
, ..., xn

bn
) of local

states of threads T1, ...., Tn is a last causality barrier along x1, ..., xn if there does not
exist another causality barrier (x1

b′1
, ..., xn

b′n
) such that for each i, xi

b′i
occurs after xi

bi

along xi and all property seed edges are of the form a 
 b, where, for some i, j, a and
b occur after xi

bi
and xj

bj
along xi and xj , respectively. Then

Theorem 4. (Chopping Result). Let x1, ..., xn be local computations of threads T1, ...,
Tn, respectively, along a valid global computation x of the given concurrent program.
Let U(x1b,...,xnb)(P ) be the UCG generated by the suffixes x1b, ..., xnb of x1, ..., xn,
respectively, beginning with a last causality barrier (x1

b1
, ..., xn

bn
) along x1, ..., xn. Then

property P is violated via a statically feasible interleaving of x1, ..., xn if and only if
U(x1b,...,xnb) is acyclic.

Computing a Last Casualty Barrier. As the final step, we present a procedure (alg. 2)
to identify a last causality barrier. For simplicity, we handle only the two thread case.
Let c1 and c2 be the last local states along x1 and x2, respectively. From c1 we traverse
backwards along x1 till we reach the last lock free state lf1 along x1 before c1. Note that
all the wait/notify events occurring between lf1 and c1 along x1, denoted by WN1, must
be matched along the suffix beginning with x2

b2
. Therefore from c2, we have to traverse

backward till we encounter the first lock-free state lf2 such that all events in WN1 are
matched along the suffix of x2 starting at lf2. However, in traversing backward from
c2 to lf2 we may encounter wait/notify events, denoted by the set WN2, that are not
matched along the suffix of x1 starting at lf1. In that case, we need to traverse further
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backwards starting at lf1 till we encounter a lock-free state lf ′1 such that all events in
WN2 are matched along the suffix of x1 starting at lf ′1. If we do not encounter any new
wait/notify event that is unmatched along the suffix of x2 starting at lf2 then we have
reached a fixpoint. Else if there exist wait/notify events occurring along the suffix of x1

starting at lf ′1 that are unmatched along the suffix of x2 starting at lf2 then the whole
procedure is repeated till a fixpoint is reached.

5 Experiments

We have implemented the proposed algorithm in a tool called Fusion [17]. Our tool
is capable of analyzing execution traces generated by both Java programs and multi-
threaded C programs using PThreads. For C programs, we use CIL [13] to instrument
the source code to create executables that can log execution traces at runtime. For Java
programs, we use execution traces logged at runtime by a modified version of the Java
PathFinder. The Java traces used in our experiments were kindly provided to us by
Mahmoud Said. Our experiments were conducted on a PC with 1.6 GHz Intel processor
and 2GB memory running Fedora 8.

The overall predictive analysis is as follows. We first find the potential errors (warn-
ings) by a simple static analysis; these are event pairs for data races and event triplets
for atomicity violations. Then we apply the UCG analysis to prune away as many spu-
rious warnings as we can. Finally, we use a SMT-based procedure (as in [17]) to check
the remaining UCG warnings. This final step uses the Yices SMT solver [3]. For each
reported error, the SMT-based procedure also returns a witness trace. The UCG warn-
ings are checked one by one in the SMT-based procedure, but we use the incremental
feature of the SMT solver to share the cost of checking different warnings. We also add
the induced constraints of the UCG to the SAT solver to help speed up the search.

Table 1 shows the results of predicting data races and three-access atomicity viola-
tions [17] in traces of Java and C programs. All benchmarks are public domain1. The
first two columns show the name and the number of threads. The next five columns show
the statistics of the trace, including the number of events, the number of lock events,
the number of wait-notify events, the number of lock variables, and the number of con-
dition variables. The next six columns show the results of predicting data races using
both static analysis and model checking. The first four columns are the total number of
warnings, the number of warnings after a lock based analysis alone (lsa), the number
of warnings after a fork/join/wait/notify analysis alone (mhb), and the number of warn-
ings after the combined UCG analysis (ucg). The next two columns shows the results of
model checking the UCG warnings, including the number of witnesses generated and
the model checking time in seconds.

The last six columns of Table 1 show the results of predicting three-access atomicity
violations. The data format is the same as predicting data races, except that the warnings
are now potential atomicity violations. Note that in order to predict atomicity violations,
the user transactions (which are intended to be atomic) need to be marked explicitly
in the traces. For Java traces, we have assumed that all the synchronized blocks are

1 The traces are available at
http://www.nec-labs.com/$\sim$chaowang/pubDOC/LnW.tar.gz

http://www.nec-labs.com/$\sim $chaowang/pubDOC/LnW.tar.gz
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Table 1. Predicting data races and atomicity violations in traces of Java/C programs

Test Program Given Trace Predicting Data Races Predicting Atomicity Violations
# events # vars static ana. (warnings) witness gen static ana. (warnings) witness gen

name thrd total lk wn lk wn total lsa mhb ucg wits time(s) total lsa mhb ucg wits time(s)

ex.race 3 29 4 0 2 0 8 8 2 2 1 0.1 2 2 0 0 0 0.0
ex.norace 3 37 8 0 2 0 8 6 2 0 0 0.0 2 2 0 0 0 0.0
ra.Main 3 55 12 5 3 4 13 13 4 4 1 0.1 2 2 0 0 0 0.0
connectionpool 4 97 16 5 1 3 89 21 28 0 0 0.0 30 6 4 0 0 0.0
liveness.BugG 7 285 39 6 9 6 408 138 280 10 0 0.4 280 60 220 0 0 0.0
s1.JGFBarrier 10 649 62 21 2 7 1831 488 1214 30 0 1.4 852 102 612 3 0 1.6
s1.JGFBarrier 13 799 77 28 2 7 2952 656 2077 49 0 3.6 950 87 709 9 0 3.7
account.Main 11 902 146 12 21 10 372 342 186 162 20 4.0 140 140 60 60 2 1.3
philo.Philo 6 1141 126 41 6 22 1719 566 576 0 0 0.0 413 81 177 0 0 0.0
s1.JGFSyncB 16 1510 237 0 2 0 21230 1142 17415 117 0 800 13578 186 11532 0 0 0.0
account.Main 21 1747 282 20 41 20 740 680 420 360 80 54.5 280 280 120 120 3 5.9
elevator.E 4 3000 368 0 11 0 1293 1276 17 0 0 0.0 6 4 2 0 0 0.0
elevator.E 4 4998 587 0 11 0 3178 3128 50 0 0 0.0 12 8 4 0 0 0.0
elevator.E 4 8000 1126 0 11 0 3553 3458 95 0 0 0.0 18 12 6 0 0 0.0

tsp.Tsp 4 45653 20 5 5 3 113 113 4 4 3 0.1 0 0 0 0 0 0.0

atom001 3 88 6 0 1 0 8 5 3 0 0 0.0 4 4 2 2 1 0.1
atom001a 3 100 8 1 1 1 12 8 4 0 0 0.0 4 4 2 2 0 0.1
atom002 3 462 124 0 2 0 96 45 51 0 0 0.0 68 68 34 34 33 36.7
atom002a 3 462 126 3 2 1 101 49 52 0 0 0.0 68 68 34 34 0 32.0
banking-av 3 748 20 0 3 0 284 284 72 72 72 3.1 64 64 32 32 32 1.5
banking-sav 3 852 28 2 3 2 333 325 80 72 24 5.2 64 64 32 32 16 3.4
banking-noav2 3 856 32 2 3 2 337 305 80 48 0 1.3 64 48 32 16 0 1.2

intended to be atomic, unless the synchronized block has a wait (in which case it is
clearly intended to be non-atomic). For the C programs used in this experiment, we have
manually annotated certain blocks in the program source code as intended-to-be-atomic.
Note that in all the examples the runtime of the UCG-based analysis is negligible in
comparison to the model checking time.

The results in Table 1 show that, if one relies on either the lock analysis alone or
the fork-join-wait-notify based analysis alone, the number of (spurious) warnings (for
data races or atomicity violations) can be large. In contrast, our UCG based analysis,
by exploiting the interaction among these two types of happens-before constraints, is
effective in pruning away spurious warnings. Also note that, even with the significantly
improved precision, the number of UCG warnings can still be large, e.g. for human
beings to inspect manually. Therefore, in our predictive analysis framework a precise
SMT-based algorithm [16, 17] is used at the final step to check all the UCG warnings.
The algorithm is precise in that it generates witness traces if and only if the UCG warn-
ings are indeed real errors. In the end, all the witnesses generated can be fed to a special
thread scheduler in the Fusion tool, to re-run the program and deterministically replay
the actual violation.

6 Conclusions

We have proposed the notion of a Universal Causality Graph (UCG), as a unified
happens-before model for detecting bugs in concurrent programs. Given a concurrent
(trace) program and a property, UCGs allow us to capture, as causality constraints, the
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set of all possible interleavings that are feasible under the scheduling constraints im-
posed by synchronization primitives and that may potentially lead to violations of the
property while guaranteeing (i) soundness and completeness, (ii) scalability, (iii) han-
dling of multiple synchronization primitives in a unified manner, and (iv) exploiting the
synergy between causal constraints imposed by the property as well as the program.
As an application, we demonstrated the use of UCGs in enhancing the precision and
scalability of predictive analysis in the context of runtime verification of concurrent
programs.
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Automatically Proving Linearizability

Viktor Vafeiadis

University of Cambridge

Abstract. This paper presents a practical automatic verification proce-
dure for proving linearizability (i.e., atomicity and functional correctness)
of concurrent data structure implementations. The procedure employs a
novel instrumentation to verify logically pure executions, and is evaluated
on a number of standard concurrent stack, queue and set algorithms.

1 Introduction

Linearizability [11] is the standard correctness requirement for concurrent im-
plementations of abstract data structures (such as stacks, queues, sets and finite
maps) packaged into a concurrent library (such as java.util.concurrent). It
requires every library operation to be atomic (behave as if it were executed in
one indivisible step) and to satisfy a given functional correctness specification.

The most common way to prove linearizability is to identify the so-called
linearization points of each operation. These are program points where the en-
tire effect of an operation execution logically takes place. Sadly, however, these
linearization points are often rather complicated: they can depend on a non-
local boolean condition and can even reside within other concurrently executing
threads. This makes a brute force search for the linearization points infeasible.

We observe, however, that in practice such complicated linearization points
arise only in operation executions that do not logically update the library’s
shared state. It is therefore possible to search for the linearization points for op-
erations whose specification is always effectful (i.e., modifies the shared state),
but we need a different approach to verify operations with a possibly pure spec-
ification (i.e., one not modifying the shared state).

This paper presents one such procedure for proving linearizability (see §4).
For operations with a possibly pure specification, it instruments the library code
with a certain ‘pure linearizability checker,’ derived from the specification, and
runs a suitably powerful abstract interpreter to validate that there are no asser-
tion violations. This effectively considers all possible linearization points in one
go and results in a non-constructive linearizability proof. As a result, we have
succeeded in verifying several concurrent stack and queue implementations, and
have obtained mixed results for set implementations (see §5 for details).

Related Work. The related verification work can be classified in three groups.
First, there are various model-checking papers [22,13,4]. These do not prove

correctness; they merely check short execution traces of a small number of
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Sequence AQ = @empty;

void enqueue(int e) {
atomic {

AQ = @app(AQ, @singl(e));

}
}

int tryDequeue(void) { int ARes;

atomic {
if (AQ == @empty) return EMPTY;

else { ARes = @hd(AQ);

AQ = @tl(AQ);

return ARes; }
} }

Fig. 1. Specification of a concurrent queue object

threads. On the positive side, such tools do not require linearization points to be
annotated, are good at quickly finding bugs, and return concrete counterexample
traces for failed verifications.

Second, there are static analyses (shape analyses, in particular) [2,3,19]. With
the exception of [2], these analyses work for an unbounded number of threads
and result in a proof of linearizability. Unfortunately, all of these analyses require
the programmer to specify the linearization points, a task that is quite difficult
when the linearization points are conditional or within the source code of other
concurrently executing operations, as we will shortly see. Our paper addresses
this limitation of the existing static analyses.

Finally, there are manual verification efforts. Some (e.g.,[18]) are pencil and
paper proofs in a particular program logic, others (e.g.,[5]) do a direct simula-
tion proof in a mechanised proof assistant, while O’Hearn et al. [15] do part of
the proof in a program logic and another part using operational reasoning on
traces.

2 A Motivating Example: The M&S Queue

We start with a motivating example for the rest of the paper: the well-known
Michael & Scott non-blocking queue [14] (henceforth referred to as the M&S
queue). Figure 1 contains the specification of the concurrent queue operations
written in C-like pseudocode. The state of the queue is represented by the shared
variable AQ, which holds a sequence of values. We use the following notation for
mathematical sequences: @empty stands for the empty sequence; @singl con-
structs a sequence consisting of one element; @app concatenates two sequences;
@hd returns the first element of a sequence; and @tl returns all but the first
element of a sequence.

The queue supports two operations: (i) enqueue, which adds an item to the
end of the queue, and (ii) tryDequeue, which removes and returns the first
item of the queue if there is one, or returns EMPTY, if the queue is empty. Both
operations are supposed to be atomic; that is, executing in one step.

Figure 2 contains the M&S queue implementation, which is significantly more
complicated than the specification above. The queue is represented by two point-
ers into a null-terminated singly-linked list. The first pointer (Q->head) points
to the beginning of the list and is updated by tryDequeue operations. The sec-
ond pointer (Q->tail) is used to find the end of the list so that enqueue can
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typedef struct Node s *Node;

struct Node s {
int val;

Node tl;

}

struct Queue {
Node head, tail;

} *Q;

void enqueue(int value) {
Node node, next, tail;

node = new node();

node->val = value;

node->tl = NULL;

while(true) {
tail = Q->tail;

next = tail->tl;

if (Q->tail != tail) continue;

if (next == NULL) {
if (CAS(&tail->tl,next,node))

break;

} else {
CAS(&Q->tail,tail,next);

}
}
CAS(&Q->tail,tail,node);

}

void init(void) {
Node node = new node();

node->tl = NULL;

Q = new queue();

Q->head = node;

Q->tail = node;

}

int tryDequeue(void) {
Node next, head, tail;

int pval;

while(true) {
head = Q->head;

tail = Q->tail;

next = head->tl;

if (Q->head != head) continue;

if (head == tail) {
if (next == NULL)

return EMPTY;

CAS(&Q->tail,tail,next);

} else {
pval = next->val;

if (CAS(&Q->head,head,next))

return pval;

}
}

}

Fig. 2. The M&S non–blocking queue implementation

locate the last node of the list. It does not necessarily point to the last node
of the list, but it can lag behind. This is because there is no widely available
hardware instruction that can change Q->tail and append one node onto the
list in one atomic step. Consequently, enqueue first appends a node onto the list
with the underlined CAS instruction, and later updates Q->tail with its final
CAS instruction. In addition, whenever a concurrently executing thread notices
that the tail pointer is lagging behind the end of the list, it tries to advance it
using the CAS(&Q->tail,tail,next) instructions.

In the remainder of this paper we shall define what it means for the imple-
mentation to satisfy its specification and present a method for proving this.

3 Linearizability

We take programs to consist of a sequential initialisation phase followed by a
parallel composition of a fixed (but not statically bounded) number of threads, T .
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The state consists of a set of global variables, G, and a set of local variables per
thread, Lt, that includes the thread’s program counter, pct. As a convention, we
will subscript thread-local variables with the corresponding thread identifier to
distinguish them from the global variables. We model each thread as a transition
relation on the valuations of the global and its local variables.

A library, A, consists of a constructor, Ainit, and a number of operations
(a.k.a., methods), A1, . . . , An, each expecting a single argument, argt, and re-
turning their result in the thread-local variable rest. A client of the library is any
program that calls the library’s constructor once in its initial sequential phase,
and then can call any number of the library’s methods possibly concurrently
with one another. Let C[A] be the transition relation denoting the composition
of the client C with the library A. We write C[A]∗ for its reflexive and transitive
closure. In such a composition, we write GC (resp. LC

t ) for the global (resp.
local) variables belonging to the client and, analogously, GA and LA

t for those
belonging to the library. We assume that GC and GA are disjoint, and that
LC

t ∩ LA
t = {argt, rest, pct}.

Linearizability [11] is a formalisation of the concept of atomicity. Briefly, it re-
quires that every execution history consisting of calls to enqueue and tryDequeue
is equivalent (up to reordering of events) to a legal, sequential history that pre-
serves the order of non-overlapping methods in the original history. We say that
a history is sequential if none of its methods overlap in time; moreover, it is legal
if each method satisfies its specification.

In this paper, we prefer a slightly different definition of linearizability given in
terms of instrumented clients.

Definition 1. An instrumented client of a library A is a client annotated with
an auxiliary global variable h as follows: (1) At the initial state, let h = ε; (2)
before every call to Ai by thread t, append (call t, i, argt) to h; and (3) after
each return from a call to Ai by thread t, append (ret t, i, rest) to h.

In effect, the auxiliary variable h records the observed execution history. Note
that there is a gap in time between when a method returns and when the return
is recorded in h. This gap allows us to define linearizability as follows:

Definition 2 (Linearizability). A library A is linearizable with respect to a
specification B if and only if for all instrumented clients C and every state s,
if (sinit, s) ∈ C[A]∗, then there exists a state s′ such that (s′init, s

′) ∈ C[B]∗ and
s(h) = s′(h), where sinit and s′init are the initial states after calling Ainit and
Binit respectively.

This definition is slightly easier to work with than the original one by Herlihy
and Wing [11], because it uses syntactic equality on the recorded histories rather
than equivalence up to reordering of non-overlapping calls of the actual histories.
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It is also more general in the sense that it corresponds to the original definition
only if all of B’s methods are atomic. The same generalisation is found in the
definition of Filipović et al. [7].

3.1 Proving Linearizability Using Linearization Points

The most common way of proving linearizability of a concurrent library is to
find the so-called linearization points of each operation and to demonstrate that
the chosen points are correct. These are points in the source code of the library
which, when executed, are deemed to perform the entire observable effect of the
operation instantaneously, and hence define the order in which the concurrent
operations are to be linearized. Within each operation execution, exactly one
linearization point must occur, but statically there can be multiple such points
along different execution paths of the operation, some of which might not even
be inside the operation’s source code!

Linearization Points of the M&S Queue. The linearization point of enqueue is
the underlined CAS instruction, when it succeeds. Its effect is to link a node to
the end of the concrete list, which logically corresponds to appending an item
to the queue.

The tryDequeuemethod has two linearization points depending on the result.
The linearization point for the empty case is the underlined assignment next =
head->tl. This is a linearization point only if the same loop iteration later
executes return EMPTY. The second linearization point is the underlined CAS
instruction. Its effect is to advance the Q->head pointer, which logically removes
the first element from the queue.

As presented, these linearization points are conditional: not every time the
underlined instructions are executed, they are linearization points. Fortunately,
the conditions of the two points involving CAS can easily be eliminated by un-
folding the definition of CAS. For example, if we expand out the definition of the
underlined CAS of enqueue, we get:

atomic { if (tail->tl == next) { tail->tl = node; break; } }

Thus, it is easy to identify the linearization point of enqueue with the under-
lined assignment to tail->tl whenever that assignment is executed. We can do
likewise with the second linearization point of tryDequeue.

In contrast, the first linearization point of tryDequeue is truly conditional.
Specifying it formally requires an auxiliary prophecy variable [1] to record
whether the program will later execute return EMPTY in the same loop iter-
ation. The prophecy variable is needed because when executing the underlined
read from head->tl we cannot tell whether the test Q->head != head on the
following line will succeed. Therefore, the full condition is:

¬prophecy(Q->head!=head)∧ head==tail∧ next==NULL .

In §4.2, we will see a technique for proving that tryDequeue is linearizable that
avoids the conditions on this linearization point and the prophecy variable.
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4 Automatic Proof Technique

4.1 Key Observation

It is clear from the M&S queue that linearization points are often conditional,
and that some conditions can be quite involved. Searching for such complex
conditions is clearly infeasible. We can, however, observe that

Operations have complex conditional linearization points
only in executions that do not logically modify the state.

For example, at the first linearization point of tryDequeue, the operation does
not logically modify the state. That is, if AQ holds the logical contents of the
queue and we execute the tryDequeue specification at that point, the value
of AQ will not be affected. It is, however, possible that tryDequeue updates
the concrete state (e.g., by performing the CAS(&Q->tail, tail, next) in a
previous loop iteration), but these updates do not affect its logical contents.

Quite surprisingly, this observation holds for most concurrent algorithms in
the literature. To the best of our knowledge, it holds for all but two of the
algorithms in Herlihy & Shavit’s book [12]. A possible explanation as to why
this is so is that logically effectful operation executions are much more difficult
to optimise than the ones that only do not logically modify the state. Therefore,
they tend to have simpler correctness arguments than the more heavily optimised
logically pure executions. Notable exceptions where our observation does not
hold are: (i) the Herlihy & Wing queue [11], (ii) the elimination-based stack
of Hendler et al. [10], and (iii) RDCSS by Harris et al. [9]. Verifying these
algorithms automatically is beyond the scope of this paper.

In the following, we shall distinguish between pure and effectful executions of
the abstract operations, i.e. the operation specifications. We say that an abstract
operation execution is pure if it does not modify the abstract state. Otherwise,
we say that the execution is effectful.

4.2 Dealing with Logically Pure Executions

To verify logically pure executions, we introduce one auxiliary boolean array,
can returnt,op [], per thread and per library operation. Each array is indexed
by the set of possible return values. While thread t is executing the operation
op, then can returnt,op satisfies the following invariant: whenever an entry,
can returnt,op [v], in the array is true, then there exists an instant since the
operation was called at which if the operation’s specification had been executed,
it would not have modified the global (abstract) state and would have returned
v. Therefore, if can returnt,op [rest] is true when the operation returns, we know
that there existed a valid linearization point during the operation’s execution.

To ensure that the aforementioned invariant holds, we set all the elements
of can return[] to false at the beginning of the operation. Then, at any later
point, we can set can return[v] to true provided that executing the operation’s
specification does not modify the global (abstract) state and returns v. This is
the task of the ‘pure linearizability checker,’ which we introduce below.
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Pure Linearizability Checker Construction. Assuming that the specifications do
not contain any loops or any function calls, we rewrite each specification as a non-
deterministic choice of a number of execution paths consisting of assignments,
assume statements, and terminated by a return command. For uniformity, we
change specifications that do not return any value to return 0. For example, the
enqueue and tryDequeue specifications become:

enq
def= AQ=@app(AQ,@singl(e)); return 0

deq(1) def= assume(AQ==@empty); return EMPTY

deq(2) def= assume(AQ �=@empty); ARes=@hd(AQ); AQ=@tl(AQ); return ARes

where tryDequeue corresponds to the non-deterministic choice among the paths
deq(1) and deq(2). We say that a path is syntactically pure if and only if it has
no assignments to global variables. For example, deq(1) is syntactically pure, but
enq and deq(2) are not.

The pure linearizability checker is constructed by replacing return v with
can return[v]=true along every syntactically pure specification path of the
method, and by truncating the non-pure paths before their first effectful com-
mand (namely, an assignment to a global variable). This construction ensures
that pure linearizability checkers set can return[v] to true only if at the current
point the specification does not modify the global state and returns v.

Going back to the queue specifications, the pure linearizability checker of
enqueue is simply the empty command, because enq is not syntactically pure.
The pure linearizability checker of tryDequeue is

if(*) {assume(AQ==@empty); can return[EMPTY]=true;}
else {assume(AQ!=@empty); ARes=@hd(AQ);}

In this case, as ARes is a dead local variable, the assignment can be removed,
and the checker can be rewritten as follows:1

if(AQ==@empty) {can return[EMPTY]=true;}

Linearization Points in Other Threads. Note that it is sound to execute the
pure checker for a thread, t, at any point in time, even between atomic steps of
other threads. This allows us to handle linearization points that are in the source
code of other concurrently executing operations. Basically, when a verifier checks
one thread with a compositional verification technique, it has a model of what
updates all the other threads can do and how these updates affect the current
thread. Thus, when symbolically evaluating the operation being verified, after
each of its atomic commands, the static analyser also symbolically evaluates
the model of what all the other threads can do, before proceeding with the
operation’s next atomic command. It suffices, therefore, to adapt the verifier to
call the relevant pure linearizability checker is also called after each atomic step
1 This simplification is for presentation purposes only. Our implementation does not

perform such simplifications.
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Algorithm 1. ProveLinearizable(opinit, specinit, op1, spec1, . . . , opn, specn)
1: iopinit ← (opinit; spec init)
2: for i← 1 to n do
3: check i ← GeneratePureChecker(speci)
4: (C, op1, . . . , opn)← GetCandidateLinPoints(op1, . . . , opn)
5: for all cand ∈ C do
6: for i← 1 to n do
7: iopi ← InstrumentLinPoints(cand, opi, speci)
8: if Verify(iopinit, iop1, check1, . . . , iopn, checkn) then
9: return ‘Success’

10: return ‘Failure’

of its model of the orther threads. This enables us to establish linearizability
even in cases where some linearization points are within a different thread. The
exact details as to how this is implemented are in §4.5.

4.3 Verification Procedure Outline

Algorithm 1 contains our procedure for proving linearizability. ProveLineariz-

able takes as arguments the library’s constructor (opinit) with its specification
(specinit), and the set of library operations (op1, . . . , opn) with their specifica-
tions (spec1, . . . , specn). The specifications are just normal methods that operate
on the logical state, which is disjoint from the concrete state.

The algorithm consists of two phases. First, it instruments the constructor
of the library, computes the pure checkers for each operation and generates a
set of candidate linearization point assignments, C. Then, it iterates over that
set checking whether any of these assignments is valid. If a valid assignment is
found, the procedure returns ‘Success’ indicating that linearizability has been
proved; otherwise, it returns ‘Failure.’

Preparation Phase. First, the algorithm instruments the library’s constructor:
iopinit is simply the sequential composition of the constructor, opinit, and its
specification, specspec. Next, pure checkers are generated, as described in §4.2.

Then, GetCandidateLinPoints is called. This, first, unfolds the definitions
of CAS and DCAS in the various operations. This syntactic transformation exposes
the trivial conditions governing the linearization points of effectful operations,
so that the transformed operation has unconditional linearization points. For
uniformity, it arranges that methods and specifications that do not return any
results, return 0 instead.

Then, along each execution path of each operation, it chooses one command
writing to the shared state as the effectful linearization point. If the opera-
tion’s specification has pure executions (e.g., tryDequeue), it also can choose no
linearization point on some of its execution paths in the hope that the execu-
tion path corresponds to pure execution of its specification. Obviously, memory
writes appearing within loops are discarded since they can be executed mul-
tiple times. This process produces one linearization point assignment: a set of
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program points that are to be treated as (unconditional) linearization points of
the method they belong to. GetCandidateLinPoints returns the set, C, of all
possible linearization point assignments.

Checking Phase. Each operation opi is instrumented with its specification speci

by adding the two new auxiliary local variables:

– lres, holding the result of the abstract method call at the effectful lineariza-
tion point if this has occurred, or the reserved value UNDEF otherwise,

– can return, an array storing the allowed return values of any pure lineariza-
tion points that have been executed so far,

and the following code:

– At the beginning of the method, InstrumentLinPoints sets lres to UNDEF.
and all the elements of can return[] to false.

– At the chosen candidate linearization points in cand that are in the source
code of opi, it inserts an assertion checking that the linearization point has
not occurred followed by a call to the abstract method:

assert(lres==UNDEF); lres=speci(args)

where args are the arguments of opi (which we assume are not modified
by opi). The assertion about lres and the subsequent assignment ensure
that the candidate linearization point is executed at most once along every
execution path.

– Finally, at the method’s return point(s), it inserts the following check:

assert(lres==res ∨ (lres==UNDEF∧ can return[res]))

where res is the variable storing the concrete method’s return value. This
check ensures that either an effectful linearization point has occurred and
that the method returned the same result as its specification, or that no
effectful linearization point has occurred, but there has been a pure lin-
earization point whose return value matches the concrete return value.

The instrumented operations are validated by calling Verify. Verify takes as
arguments the library’s instrumented constructor (iop init), its instrumented op-
erations (iop1, . . . , iopn), and one command per operation that is to be inserted
at each point during the execution of that operation. These are the just the
previously computed pure linearization checkers: check1, . . . , checkn. Note that
these checkers have to be passed as arguments to Verify (and cannot simply
be instrumented in the source code of the operations), because we want to allow
linearization points of pure executions to reside in the code of other threads.
To handle this case, Verify also inserts the checkers in its abstractions of the
other threads’ behaviour. This instrumentation cannot be done statically before
calling Verify because these abstractions have not yet been computed.

Verify constructs the most general client of the library and uses an automatic
static analysis to prove that the library is memory safe and that the assertions
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Algorithm 2. Adaptation of Stabilize(S, Rely) within opi with checker check i.
1: S ← Symb-Exec(S, ∅, check i)
2: repeat
3: Sold ← S
4: for all (R | P 
 Q) ∈ Rely do
5: S ← S ∨Abstract(Symb-Exec(May-Subtract(S,P, R) ∗Q, ∅, check i))
6: until S = Sold

7: return S

in any assert statements in the library are always satisfied. The most general
client is a top-level program which models all possible usages of the library. It
consists of the constructor followed by an unbounded parallel composition of
threads, each of which non-deterministically executes one of public methods of
the library in a loop. So, if so assertion violations occur for the most general
client of the library, then no library assertion violations will occur for any client
of the library.

4.4 Soundness

To prove soundness of our algorithm, we first show that the instrumentation
described in §4.2 and §4.3 implies linearizability:

Theorem 1 (Instrumentation Correctness). If a library A is instrumented
as described in §4.2 and §4.3 with respect to the specification B, and an execution
of a client of the instrumented library did not violate any of assertions, then that
execution was linearizable.

The proof of this theorem is quite technical and can be found in the technical
report [21]. Briefly, for each operation, we can pick the instant when lres was
set as its linearization point, or if lres was never set, then the point when
can return[r] was first set to true, where r is the eventual return value of the
operation.

The soundness of ProveLinearizable follows directly from Theorem 1 and
the specification of Verify, which ensures that no library assertions are violated
under any execution of any valid client of the library.

Theorem 2 (Soundness). If calling ProveLinearizable with the arguments
(init , init spec, op1, spec1, . . . , opn, specn) returns ‘Success,’ then the library con-
sisting of the constructor init and methods op1, . . . , opn is linearizable with re-
spect to its specification (init spec, spec1, . . . , specn).

4.5 Implementation

We have implemented the algorithm for proving linearizability within Cave,
an automatic verification tool for concurrent algorithms based on RGSep. We
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take Verify to be the RGSep action inference algorithm [20], adapted to ex-
ecute the corresponding pure checker, check i, symbolically at every step of the
‘stabilization’ calculations within each instrumented operation, iopi. Formally,
we have changed the implementation of Stabilize(S, Rely) [20, Alg. 1] to the
version shown in Alg. 2. The only changes are the two calls to symbolic execu-
tion, which effectively means that Verify simulates the pure checker after every
atomic command of the current thread accessing the shared state and also after
every atomic command of other concurrently executing threads.

Return Set Abstraction. To ensure that Verify terminates, abstraction must
(under-)approximate the set of values v for which can return[v] is true. While
this may seem unnecessary for tryDequeue because its pure executions can re-
turn only EMPTY, it is crucial for specifications, such as peek on a stack or a queue,
whose pure executions can return an unbounded number of different answers.
Our static analyser abstracts over this set by remembering only which program
variables and program constants are contained in the set. As there is only a finite
set of variables and constants appearing in the input program, the range of this
abstraction is finite, and hence the termination of the underlying static analysis
is not affected. Formally, this is an instance of ‘canonical abstraction’ [16] and
is analogous to the abstraction performed for pointers.

Implementation Optimisations. Before executing Alg. 1, Cave first executes
Verify(init , op1, skip, . . . , opn, skip) to check that the uninstrumented library
is memory safe: that it does not dereference any invalid pointers and that it does
not violate any assertions. The purpose of this initial call is threefold:

1. It aids debugging. If action inference cannot verify that the uninstrumented
program is safe (either because the program is erroneous, or because the
analysis is imprecise), there is no way that it will succeed in verifying the
instrumented programs. Thus, it is better to fail quickly, and give a simpler
error message to the user.

2. It can help quickly prune the search space of linearization point assignments.
Action inference distinguishes updates to shared memory locations from up-
dates to thread-local data, as only the former have an action associated with
them. Thus, we can ignore any candidate linearization point assignments
that involve thread-local accesses.

3. The set of RGSep actions inferred by this phase can then used as a starting
point for the following Verify calls within Alg. 1, thereby making later
action inference calls reach their fix-point in a single iteration.

We can further optimise the call to Verify in Alg. 1 in two ways. First, it can
fail immediately if the correlation between the abstract state and the concrete
state is lost. This allows us to fail much more quickly on erroneous linearization
point assignments. Second, it first tries to prove linearizability by inlining the
instrumented checkers only within the source code of the current thread (i.e.,
only at the beginning of every stabilization), and if that fails to establish lin-
earizability, then also after every stabilization iteration. This alleviates the cost



Automatically Proving Linearizability 461

Data structure Lines Ops Eff Pure LpO Time(s)

DCAS stack 52/100 2/8 2/4 1/5 0/0 0.1/0.3
Treiber stack [17] 52/100 2/8 2/4 1/5 0/0 0.1/0.3
M&S two-lock queue [14] 54/85 2/4 2/3 1/2 0/0 2.0/16.5
M&S non-block. queue [14] 82/127 2/4 2/3 1/2 0/0 1.7/4.9
DGLM non-block. queue [5] 82/126 2/4 2/3 1/2 0/0 1.8/7.6
Pessimistic set [12] 100 3 2 3 0 247.8
V&Y DCAS-based set [22] 101 3 2 3 0 51.0
ORVYY lazy set [15] 94 3 2 3 1 521.5

Fig. 3. Verification statistics for a collection of stack, queue, and set benchmarks

of inserting the pure checkers within the abstraction of other threads, when this
is not needed to prove linearizability.

5 Experimental Evaluation

We have successfully applied Cave to a number of practical concurrent stack,
queue, and set algorithms from the literature, which are reported in Fig. 3. For
some algorithms, we have considered two versions: one being just core algorithm
as normally published, and one being a mostly straightforward extension of the
algorithm providing supplementary operations. We present our results for both
versions in the same line separating the corresponding numbers with a slash.
For each algorithm, we record the number of lines of code excluding comments,
blank lines, and the specifications (Lines), the number of public methods of the
library (Ops), the number of effectful methods (Eff), the number of methods
with pure executions (Pure), the number of methods with linearization points
in other threads (LpO) and the total verification time in seconds (Time).

Stack & Queue Benchmarks. The stack algorithms use non-blocking synchro-
nisation, performing a DCAS or a CAS to update the top of the stack. The
basic versions of the stack algorithms provide just push and tryPop operations.
The tryPop operation has a pure execution in case the stack was empty, in
which case it returns a special value (similar to the tryDequeue of Fig. 1). The
extended implementations also provide waitPop (which blocks if the stack is
empty), tryPeek, waitPeek, waitEmpty, isEmpty, makeEmpty.

The queue algorithms support enqueue and tryDequeue operations with the
specifications shown in Fig. 1. The extended versions have two further operations:
a blocking dequeue and an emptiness test. The first algorithm is a lock-based
design due to Michael and Scott that uses a different lock to protect each end
of the queue. The second one is due to the same authors and was presented
in Fig. 2. The DGLM queue is a variant of M&S non-blocking queue that was
proposed by Doherty et al. [5] and verified in the PVS theorem prover.

Set Benchmarks. These have three operations: adding an element to the set,
removing one element from the set, and testing for membership in the set. The
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first two operations are effectful, but have pure executions whenever the item
to be added (resp. removed) was already in the set (resp. not in the set). In all
cases, the set is represented as a sorted singly linked list with two sentinel nodes.

The pessimistic set has a lock per list node, acquired in a hand-over-hand
fashion. The V&Y DCAS-set [22] traverses the list optimistically (i.e., with no
synchronisation) and then validates that the traversal was correct. The ORVYY
lazy set [15] also performs optimistic traversals and uses a bit for marking nodes
that are about to be deleted. This allows it to have an efficient wait-free contains
implementation. The ORVYY lazy set is particularly interesting, because one of
the linearization points of contains lies within code of a different thread.

We have also run Cave on two further set algorithms: the V&Y CAS-based
set [22] and the HHLMSS lazy set [12, §9.7], but it failed to prove linearizability.
Verification of the first example failed because one of the calls to Verify timed
out, probably due to the current näıve axiomatisation of sorted sequences in the
analyser. In the second algorithm, the correct abstraction map lies outside of
the abstract domain of our implementation of Verify and, hence, was not be
found.2

Discussion. From the verification times, one can observe that the stack algo-
rithms are relatively easy to verify. This is because of the rather simple data
structure invariants (e.g. the stack is represented by a null-terminated singly-
linked list) that Verify has to infer. In contrast, the set algorithms have much
more complicated data structure invariants (e.g. the set being represented by a
sorted list with special sentinel nodes and there can be multiple arbitrarily long
chains of deleted nodes pointing into the sorted list), which take significantly
more effort to infer. In all these algorithms, the search space for the effectful
candidate linearization point assignments was quite small. For the more compli-
cated examples, searching for incorrect assignments took a small fraction of the
whole verification time. The verification time was dominated by the validation
of the correct linearization point assignment.

Since our tool relies on abstract interpretation, our verification procedure is in-
complete: it is unable to verify many correct programs that lie outside its domain
(such as the aforementioned HHLMSS lazy set), and does not provide concrete
counterexample traces when the verification fails. Moreover, Cave cannot prove
linearizability of effectful executions whose linearization points are inside the
code of different threads (such as RDCSS and the elimination-based stack), un-
less these linearization points are somehow annotated by the programmer. It can,
however, prove linearizability of method executions having linearization points
within different threads, provided that these executions are logically effect-free,
as was the case with the ORVYY lazy set.
2 The abstraction map for the HHLMSS lazy set is the set of the values of unmarked

nodes that are reachable from the head of the list. In contrast, the ORVYY lazy set
has a simpler abstraction map: it is the set of the values of all the nodes that are
reachable from the head of the list. While it is plausible to extend the analyser to
infer such complicated abstraction maps automatically, it is probably better to leave
them as input by the programmer.
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The main observation of this paper that enabled these verification results was
to distinguish executions of the abstract operations (i.e., the specifications) that
are pure from those that are effectful. This is related to Elmas et al. [6], who
in the context of runtime refinement-violation detection treat operations with a
pure specification differently than ordinary operations. Flanagan et al. [8] also
had a somewhat related concept of purity, but in their work there is no notion of
an abstract operation, and purity is applied only to the implementation. None
of the algorithms verified here could have been verified with brute-force search
for linearization points.

6 Conclusion

This paper presented a practical technique for automatically proving linearizabil-
ity. This was implemented in a tool, Cave, which expects a library to be verified
together with its atomic functional correctness specification and attempts to
prove that the library is linearizable with respect to its specification. We have
applied our tool to a number of concurrent stack, queue, and set algorithms,
some of which were mechanically verified for the first time.

As this is the first automatic technique for verifying functional correctness
of non-trivial concurrent programs, there are several ways in which it can be
improved. One such way would be to deal with effectful linearization points in
other threads that are ‘similar’ to a linearization point in the thread being veri-
fied (where two program statements are deemed ‘similar’ if they are abstracted
by the same RGSep action). More practically, our prover should be combined
with lightweight methods for proving atomicity (e.g., [8]) and with testing tech-
niques for eliminating incorrect linearization point assignments quickly. Further,
as such provers become increasingly sophisticated, it will be important to gen-
erate proof objects that can be independently checked by a trusted computer
program. Last, but not least, there is a never-ending challenge in devising more
powerful and more efficient abstract domains for the underlying static analyses
used in procedures such as Verify. In particular, improving the support for ar-
rays would enable us to reason about several more concurrent algorithms, such
as concurrent hash tables.
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Abstract. Concurrent data structures with fine-grained synchroniza-
tion are notoriously difficult to implement correctly. The difficulty of
reasoning about these implementations does not stem from the number
of variables or the program size, but rather from the large number of pos-
sible interleavings. These implementations are therefore prime candidates
for model checking. We introduce an algorithm for verifying linearizabil-
ity of singly-linked heap-based concurrent data structures. We consider
a model consisting of an unbounded heap where each vertex stores an
element from an unbounded data domain, with a restricted set of oper-
ations for testing and updating pointers and data elements. Our main
result is that linearizability is decidable for programs that invoke a fixed
number of methods, possibly in parallel. This decidable fragment covers
many of the common implementation techniques — fine-grained locking,
lazy synchronization, and lock-free synchronization. We also show how
the technique can be used to verify optimistic implementations with the
help of programmer annotations. We developed a verification tool CoLT
and evaluated it on a representative sample of Java implementations of
the concurrent set data structure. The tool verified linearizability of a
number of implementations, found a known error in a lock-free imple-
mentation and proved that the corrected version is linearizable.

1 Introduction

Concurrency libraries such as the java.util.concurrent package JSR-166 [13] or
the Intel Threading Building Blocks support the development of efficient multi-
threaded programs by providing concurrent data structures, that is, concurrent
implementations of familiar data abstractions such as queues, sets, and stacks.
Many sophisticated algorithms that use lock-free synchronization have been pro-
posed for this purpose (see [10] for an introduction). Such implementations are
not race-free in the classic sense because they allow concurrent access to shared
memory locations without using locks for mutual exclusion. This also makes them
notoriously hard to implement correctly, as witnessed by several bugs found in
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published algorithms [5,16]. The complexity of such algorithms is not due to the
number of lines of code, but due to the multitude of interleavings that must be
examined. This suggests that such applications are prime candidates for formal
verification, and in particular, that model checking can be a potentially effective
technique for analysis.

A typical implementation of data structures such as queues and sets consists
of a linked list of vertices, with each vertex containing a data value and a next
pointer. Such a structure has two distinct sources of infinity: the data values in
individual vertices range over an unbounded domain, and the number of vertices
is unbounded. A key observation is that methods manipulating data structures
typically access data values in a restricted form using only the operations of
equality and order. This suggests that the contents of a list can be modeled as
a data word: given an unbounded domain D with equality and ordering, and a
finite enumerated set Σ of symbols, a data word is a finite sequence over D×Σ. In
our context, the set D can model keys used to search through a list, the ordering
can be used to keep the list sorted, and Σ can be used to capture features
such as marking bits or vertex-local locks used by many algorithms. However,
when concurrent methods are operating on a list without acquiring global locks,
vertices may become inaccessible from the head of the list. Indeed, many bugs
in concurrent implementations are due to the fact that “being a list” is not an
invariant, and thus, we need to explicitly model the next pointers and the shapes
they induce (see Figure 1). In this paper, we propose a formal model for a class
of such algorithms, identify restrictions needed for decidability of linearizability,
and show that many published algorithms do satisfy these restrictions.

We introduce the model of singly-linked data heaps for representing singly-
linked concurrent data structures. A singly-linked data heap consists of a set
of vertices, along with a designated start vertex, where each vertex stores an
element of D × Σ and a next field that is either null or a pointer to another
vertex. Methods operating on such structures are modeled by method automata.
A method automaton has a finite internal state and a finite number of pointer
variables ranging over vertices in the heap. The automaton can test equality of
pointers and equality as well as ordering of data values stored in vertices refer-
enced by its pointer variables. It can update fields of such vertices, and update its
pointer variables, for instance, by following the next fields. The model restricts
the updates to pointers to ensure that the list is traversed in a monotonic manner
from left to right. We show that this model is adequate to capture operations
such as search, insert, and delete, implemented using a variety of synchronization
mechanisms, such as fine grained vertex-local locking, lazy synchronization, and
primitives such as compare-and-set.

Our main result is the decidability of linearizability of method expressions. A
method expression allows to combine a fixed number of method automata using
sequential and parallel composition. Linearizability [11] is a central correctness
requirement for concurrent data structure implementations. Our algorithm takes
as input a precondition I in addition to a method expression E and checks that
all executions of E starting from a heap that satisfies I are linearizable. For
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example, given two methods to insert and delete elements of a list, our decision
procedure can check whether every execution of the parallel composition of the
two methods that starts from a sorted list is linearizable. Our decidability proof
is developed in two steps.

First, we show how linearizability of a method expression E can be reduced to
a reachability condition on a method automaton A. The automaton A simulates
E and all of its possible linearizations. For instance, if E is the A1 ‖ A2 then
the possible linearizations are A1; A2 and A2; A1. The principal insight in the
construction of A is that the automata in E can proceed through the list almost
in a lock-step manner. This result assumes that the methods we analyze are
deterministic when run sequentially. Note that the assumption is satisfied by all
the implementations we analyzed.

Second, we show that reachability for a single method automaton is decidable:
given a method automaton, we want to check if there is a way to invoke the
automaton so that it can reach a specified state. We show that the problem can
be reduced to finite state reachability problem. The main idea is that one need
not to remember values in D, but only the equality and order information on
such values.

We implemented a tool CoLT (short for Concurrency using Lockstep Tool)
based on the decidability results. The tool implements only the case of the par-
allel composition of two method automata. We evaluated the tool on a number
of implementations, including one that uses hand-over-hand vertex local lock-
ing, one that uses an optimistic approach called lazy synchronization, and one
that uses lock-free synchronization via compare-and-set. All of these algorithms
are described in [10] and the Java source code was taken from the book’s web-
site. The tool verified that the fine-grained and lazy algorithms are linearizable,
and found a known bug in the remove method of the lock-free algorithm. The
tool allows the user to provide linearization points, which reduces search space
significantly. The experiments show that our techniques scale to real implemen-
tations of concurrent sets. The running times were under a minute for all cases
of fine-grained and lazy methods (even without linearization points), and around
ten minutes for lock-free methods (when the programmer specified linearization
points).

Related Work. Verifying correctness of concurrent data structures has received
a lot of attention recently. A number of machine-checked manual proofs of cor-
rectness exists in the literature [7,19]. We know of two model checking approaches
([14,20]). Both these works consider only a bounded heap, whereas our approach
does not impose any bound on the size of the heap. Static analysis methods based
on shape analysis [3,18] require user-specified linearization points. In contrast,
our approach does not need linearization points. The user has an option to pro-
vide linearization points to improve performance. The experiments show that
this is not necessary at all for e.g. the fine-grained locking, and lazy list imple-
mentations. Furthermore, shape analysis approaches are sound, but not complete
techniques, whereas our algorithm is both sound and complete for a bounded
number of threads. As for the model of the heap, closest to ours is the model
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of [1], but the work in [1] is on abstraction of sequential heap accessing programs.
There is an emerging literature on automata and logics over data words [17,4]
and algorithmic analysis of programs accessing data words [2]. While existing
literature studies acceptors and languages of data words, we want to handle
destructive methods that insert and delete elements.

2 Singly-Linked Data Heaps and Method Automata

Singly-Linked Data Heaps. LetD be anunbounded set of data values equipped
with equality and linear order (D, =, <) and let Σ be a finite set of symbols. A
singly-linked data heap is a tuple (V,next ,flag , data, h), where V is a finite set of
vertices, next is a partial function from V to V , flag is a function from V to Σ, data
is a function from V to D, and h ∈ V denotes the initial vertex.

s1 s2 s3 s4

s5

s6

d1 d2 d3 d4

d5

d6

head

o

p0p1

q

MA

h v2 v3 v4

v5

v6

Fig. 1. Singly-linked data heap and a
method automaton

The structure L can be naturally
viewed as a labeled graph with edge
relation next . L is well-formed if this
graph has no cycles reachable from
h. For each well-formed heap L as
above, we define a finite data word
(over Σ × D) represented by the
list starting at h. Figure 1 shows
a singly-linked data heap with six
vertices that contain values from Σ
and D which define the data word
(s1, d1)(s2, d2)(s3, d3)(s4, d4).

Method automata: Syntax. A method automaton is a tuple (Q, P,DV , T, q0,
F, head , O), where Q is a finite set of states, P is a finite partially-ordered set
of pointer variables, DV is a finite set of data variables, T is a set of transitions
(as explained below), q0 ∈ Q is the initial state, F ⊆ Q is a set of final states,
head is a pointer constant, and O is a set of pointer constants.

A method automaton operates on a singly-linked data heap L =
(V,next ,flag , data, h). The pointer variables range over V ∪ {nil}, where nil
is a special value, and are denoted by e.g. p, p0, p1. Let ≤P be the partial or-
der on P . The partial order is required to have a minimum element, denoted
by p0. The variable p0 is called the current pointer, and the other variables in
P are called lagging pointers. The constant head points to the vertex h and is
shared across method automata. The pointer constants in the set O (denoted by
e.g.o, o0, o1) give method automata input/output capabilities and are referred
to as IO pointers. The set R of pointers (i.e. pointer variables and pointer con-
stants) of a method automaton is defined by R = P ∪ {head} ∪ O. The data
variables in DV range over the unbounded domain D.

The set of transitions T is a set of tuples of the form (q, G, A, q′), where
q, q′ ∈ Q are states, G is a guard, and A is an action. There are no outgoing
transitions from the final states.
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Let succP be the successor relation defined by the partial order ≤P . The
syntax of guards G and actions A are now defined as:

DE ::= v | data(p)
G ::= flag(p) = s (where s ∈ Σ) | DE = DE | DE < DE | p = p′

| p = nil | p = next(p′) | next(p) = nil | G and G | ¬G | true
Act ::= flag(p) := s (where s ∈ Σ) | data(p) := DE

| next(p) := nil | next(p) := p′ (where succP (p′, p))
| values(p) := (s,DE , p′) (where succP (p′, p))
| v := DE | p := p′ (where succP (p′, p))
| p := nil | p0 := next(p0).

where p, p′ are pointer variables, p0 is the current pointer (minimum pointer
variable), and v is a data variable.

The guards include symbol, data and pointer comparison and their boolean
combinations. The restriction succP (p′, p) placed on some actions enforce that
the heap is traversed in a monotonic manner. This necessitates that pointer
variables are statically ordered, and the furthest pointer can be assigned to the
next of its vertex, but lagging pointers can be assigned only to a pointer further
up in this ordering. Fields of vertices, including the next field, corresponding to
lagging pointers can be updated. Also, the three fields of vertices (Σ value, data
value, and the next pointer) can be updated together atomically (this is needed
for encoding some of the Java concurrency primitives).

We require the actions of a method automaton to satisfy a restriction OW,
abbreviation for “One write before move.” This restriction states that there is
at most one action modifying flag(p), at most one action modifying data(p),
and at most one action modifying next(p) performed between two successive
changes of the value of the pointer variable p. The restriction can be enforced
syntactically — we omit the details. We note that the restriction OW holds for
every implementation we have encountered and that we show that without this
restriction, the linearizability problem becomes undecidable.

A method automaton is deterministic iff given a state and a valuation of
variables, at most one guarded action is enabled.

Figure 1 shows a method automaton in state q. Its head pointer points to the
vertex h of the heap. A client of the automaton can store values in the vertex
v6 pointed to by the IO pointer o. The variables p0 and p1 are pointer variables
of the method automaton.

Examples. We illustrate the model by showing how the model captures syn-
chronization primitives and other core features of concurrent data structure al-
gorithms.
– Traversing a list. Let us suppose we want the current pointer p0 to traverse

a list (assumed to be sorted) until it finds a data value equal or larger to the
one stored at a vertex pointed to by an IO pointer o. A method automaton
can achieve this by having a transition such as: (q, data(p0) < data(o), p0 :=
next(p0), q).
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– Inserting a vertex. Assume that the position to insert the vertex has been
found - the new vertex o is to be inserted between p1 and p0. The transition
relation can then include (q, true,next(o) := p0, q1) and (q1, true,next(p1) :=
o, q2).

– Locking individual vertices. We can model locking of vertices using the Σ
value. Let us suppose that Σ = {u, l1, l2, . . .}, for unlocked, locked by
thread 1, locked by thread 2, etc. Locking is captured by the transition:
(q0,flag(p) = u,flag(p) := l1, q1) for thread number 1. Unlocking can be
modeled as follows: (q1,flag(p) = l1,flag(p) := u, q2).

– Modeling compare-and-set. The synchronization operation compare-and-set
is supported by several contemporary architectures as well as Java Concur-
rency library. The operation takes two arguments, an expected value (ev)
and an update value (uv). If the current value of the register (for hardware)
or a reference (in Java) is equal to the expected value, then it is replaced by
the update value. The operation returns a Boolean indicating whether the
value changed. The operation is modeled by the following transition tuples:
(q, data(p) = ev , data(p) := uv , q′) and (q, data(p) �= ev ,−, q′′).

Semantics. An automaton invocation A(L, io) consists of a method au-
tomaton A = (Q, P,DV , T, q0, F, head , O), a singly-linked data heap L =
(V,next ,flag , data, h), and a function io : O → V . The pair (L, io) is the method
input. A method input is well-formed if L is well-formed, and for all variables
o ∈ O, we have that the vertex io(o) is unreachable from h and next(io(o)) is
undefined. A method automaton is initialized by having its head pointer point-
ing to h and its input variables in O initialized by the function io. The output of
a method is also realized via the variables O, which are shared with the client.

The semantics is given by the transition system denoted by [[A(L, io)]] for
a well-formed input (L, io). The definition formalizes the following intuition:
a transition of the method automaton is chosen nondeterministically and ex-
ecuted atomically. Let us use a special value nil to model the null pointer,
and let qerr /∈ Q be a special state reached on null-pointer dereference. Let
L = (V,next ,flag , data, h) and A = (Q, P,DV , T, q0, F, head , O). A configura-
tion s = (L, q, U, dv) of [[A(L, io)]] has four components: a heap L, a state q in
Qerr = Q ∪ {qerr}, a valuation of pointers U : R → V ∪ {nil} and a valuation
of data variables dv : DV → D. A configuration is initial if it is of the form
(L, q0, U, dv), where U sets all pointer variables to h and dv sets all the data
variables to the value data(h). Note that there is a unique initial configuration
in [[A(L, io)]].

The transition relation of [[A(L, io)]] is defined as expected. For example,
if (q, true, p := next(p), q′) is a transition of the method automaton A, then
there is a transition from a configuration (L, q, U, dv) to (L, q′, U ′, dv ), where
U ′(p′) = U(p′) for all p′ ∈ R such that p′ �= p and U ′(p) = U(next(p)). The
relation (L, io) A−→ (L′, io′) is defined to hold if there exists a path from the
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initial configuration of [[A(L, io)]] to a configuration (L′, q, U, dv), where q is a
final state and io′ is a restriction of U to IO pointers.

Composition of method automata. Consider two method automata A1 and
A2. We define the parallel composition A1 ‖ A2 informally by describing the se-
mantics. The state space of the parallel composition of A1 and A2 with IO point-
ers io1 ∪ io2 is the product of the state space of [[A1(L, io1)]] and [[A2(L, io2)]],
with the singly-linked data heap L being shared between the two automata. The
transition function defines interleaving semantics. We omit further details in the
interest of space. We analogously define sequential composition A1 ; A2. Method
expressions compose a finite set of method automata sequentially and in paral-
lel, they are defined by the following grammar rules: E ::= ES | (ES ‖ E)
and ES ::= A | (A ; ES), where A is a method automaton. The semantics is
given by the transition system T (E, L, io) and the relation (L, io) E−→ (L′, io′)
is defined as in the case of single automata. Given a method expression E let
Aut(E) be the set of method automata that are components of E.

3 Verifying Linearizability

Linearizability [11] is the standard correctness condition for concurrent data
structure implementations. In this section, we study the linearizability problem
for method expressions. The proofs omitted here are available in [6].

A history is a sequence of method invocations and method returns (a pair
of method invocation and corresponding return is called a method call). We
say that a history h is a history of a method expression E, if h corresponds
to an execution of E. A sequential history is such that a method invocation is
immediately followed by the corresponding method return. A history is complete
if each method invocation is followed (not necessarily immediately) by a method
return. Intuitively, a sequential history hs is a linearization of a complete history
h, if for all threads, the projection of h to a thread is the same as the projection
hs to the same thread, and the following condition holds: if a method call m0
precedes method call m1 in h, then the same is true in hs. We omit further details
for lack of space, and we refer the reader to [11,10] for a formal definition, as
well as for a definition of linearizations of histories that are not complete.

A method expression is sequential, if it does not contain any parallel com-
position. Note that given a sequential method expression Es, there is a unique
complete history of Es, denoted by hist(Es), which calls all the automata in
Aut(ES). Given a method expression E and a history h of E, let Seq(E, h) be
the set of sequential method expressions Es such that hist(Es) is a lineariza-
tion of h. For example consider the method expression E = E1 ‖ E2 ‖ E3
and an execution h of E where E3 starts only after E2 has finished and
the execution of E1 overlaps with both E2 and E3. The set Seq(E, h) is
{(E1 ; E2 ; E3), (E2 ; E1 ; E3), (E2 ; E3 ; E1)}. Let Seq(E) denote the set
of sequential method expressions Es such that Aut(E) = Aut(ES). Note that
we always have Seq(E, h) ⊆ Seq(E).
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For a method expression E, a history h of E, a well-formed input (L, io), a

heap L′ and a function io′, we write (L, io)
E,h−−→ (L′, io′) if a node corresponding

to (L′, io′) is reached in T (E, L, io) using an execution whose history is h.
We have now defined the notions we need to state the definition of lineariz-

ability. However, it is often useful to specify a condition under which we are
interested in checking linearizability. Such preconditions can be defined using
acceptors — method automata that do not modify the heap. An example pre-
condition is that the data values in the list starting in the initial node are sorted.

A method automaton I is called an acceptor if it does not use the commands
that modify the heap (the first five actions defined by the grammar in Section 2):
Given an acceptor I, and a well-formed input (L, io), I accepts (L, io) (denoted
by I |= (L, io)) if there exists (L′, io′) such that (L, io) I−→ (L′, io′).

We now define an equivalence relation on singly-linked data heaps. Two singly-
linked data heaps are equivalent when they represent the same value of an ab-
stract data type. As an example, we consider sets of elements of the data domain
D as the abstract data type. A list can represent a set containing data values
from unmarked nodes (marking is represented by Σ-values). Two heaps are then
equivalent if the unmarked elements they contain are the same.

A method automaton is an adt-checker if it is a deterministic method au-
tomaton with no IO pointers. Given an adt -checker C, two heaps L1 and L2 are
equivalent (L1 ≡C L2), if there exists a heap L′ such that L1

C−→ L′ and L2
C−→ L′.

The relation ≡C is extended to pairs (L, io) as follows: (L1, io1) ≡C,b (L2, io2)
iff L1 ≡C L2, b is a bijection between the domains of io1 and io2 and we have
io1(o) = io2(b(o)). We omit b if it is clear from the context, for instance when
comparing different compositions of the same automata.

We are now ready to state the central definition of this paper:

Given an acceptor I and an adt -checker C, a method expression E is
(I, C)-linearizable if and only if the following condition holds: for all
L, io, LP , ioP , h such that (L, io) is a well-formed input, I |= (L, io), we

have that if (L, io)
E,h−−→ (LP , ioP ), then there exists a sequential method

expression Es in Seq(E, h) and LS , ioS such that (L, io) Es−−→ (LS , ioS)
and (LP , ioP ) ≡C (LS , ioS).

The definition of method expression linearizability captures the standard defi-
nition of linearizability [11] for the case of composition of a bounded number of
methods. In the standard definition, we have the requirement that all histories
(possibly of unbounded length) are linearizable. Method expression linearizabil-
ity not only checks that all bounded histories of E are linearizable, it also checks
that starting on the same list, every interleaved execution should finish with the
same list as at least one sequential execution whose history is a linearization of
the history of the interleaved execution. Put yet another way, method expres-
sion linearizability checks not only that all histories of E are linearizable, but
also checks that all histories of P1 ; E ; P2 are linearizable, for all sequential
programs P1 and P2. As an example, consider a set data structure with methods
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insert and contains. With these two methods, the requirement is captured by
the history that (starting with the empty list) calls insert at the beginning and
contains at the end of the execution. A formal comparison of the definitions is
deferred to the full version.

Decision problem. We now formulate the decision problem considered in this
paper:

Given a method expression E, an acceptor I and an adt -checker C the
method expression linearizability problem is to decide whether E is (I, C)-
linearizable.

In the remainder of this paper, we assume that the method expressions E are
composed of deterministic method automata. This assumption means that given
an expression E, all sequential method expressions in Seq(E) are deterministic.

3.1 Reachability

In order to show that method expression linearizability is decidable, we will need
the following results. First, we show that the effect of the method expression can
be captured by a single method automaton, which is built using a lockstep con-
struction. Second, we show that reachability is decidable for method automata.

Theorem 1. Given a method expression E, there exists a method automaton
LS (E) such that for all LP , L′

P , ioP , io′P such that (LP , ioP ) is a well-formed

method input, we have (L, io) E−→ (L′, io′) iff (L, io)
LS(E)−−−−→ (L′, io′).

Proof. The idea behind constructing method automaton LS (E) is to update
the current pointers of all the method automata in Aut(E) in lockstep manner
— i.e. that the current pointers of the automata traverse the list at most one
step apart. For example, if the current pointer of A1 is one step ahead of the
current pointers of the other automata, then transitions of the other automata
are scheduled until the current pointers point to the same position. At that
point, a transition of any automaton can be chosen. The lockstep construction
is a partial-order reduction. The construction is complicated by the presence
of lagging pointers. The solution consists of nondeterministically guessing the
interaction of the automata via lagging pointers. In this step the restriction OW
is needed. �

Let A = (Q, P,DV , T, q0, F, head , O) be a method automaton and q ∈ Q. The
method automaton reachability problem is to decide whether there exist a well-
formed method input (L, io), a heap L′, a valuation of pointer variables U , and
a valuation of data variables dv such that in the transition system [[A(L, io)]],
the configuration (L′, q, U, dv) is reachable from the initial configuration.

Theorem 2. The method automaton reachability problem is decidable. The
complexity is polynomial in the number of states of the automaton, and expo-
nential in the number of its pointer and data variables.
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The main insight in the construction is that, as the automaton traverses the
heap monotonically from left to right, the information stored in vertices pointed
to by lagging pointers that is needed for evaluating guards of the transitions
can be encoded in a finite manner. More concretely, one need not to remember
values in D, but only the equality and order information on these values.

3.2 Deciding Linearizability

The following theorem is the main result of the paper.

Theorem 3. The method expression linearizability problem is decidable.

Proof. The proof is by reduction to reachability in method automata, which in
turn reduces (by Theorem 2) to reachability in finite state systems. We show how
method expression linearizability can be reduced to reachability in a method au-
tomaton. Given an acceptor I, a method expression E and an adt -checker C,
the method automaton LinCheck (I, E, C) simulates I followed by E followed by
C, and compares the results to simulation of I followed by Es followed by C for
all Es ∈ Seq(E). LinCheck (I, E, C) reaches an error state if there is an unlin-
earizable execution of E starting from a heap accepted by I. Given a method
expression E, the number of automata LinCheck (I, E, C) simulates grows expo-
nentially with the number of methods in E.

First, we use Theorem 1 to show that instead of simulating (I ; E ; C)
(resp. (I ; Es ; C)), one can simulate the method automaton LS (I ; E ; C)
(resp. LS (I ; Es ; C)). Second, we show how LinCheck (I, E, C) can simulate the
automaton LS(I ; E ; C) and all the automata LS (I ; Es ; C) for ES ∈ Seq(E).
on the same input heap and reach an error state if there is an unlinearizable
execution of LS (E). The key idea is once again that the current pointers of all
the automata can advance in a lockstep manner. The reason is much simpler
in this setting than in the proof of Theorem 1 — here the automata do not
communicate at all (the only reason we are simulating the the automata together
is that they run on the same input heap). LinCheck (I, E, C) reaches an error
state if none of the expressions in Seq(E) can simulate LS (E). This is the case
when for example a particular position in the output list for LS(I ; E ; C) is
different from that position in output lists of LS (I ; ES ; C) for all ES ∈ Seq(E).
Such condition is checkable by a method automaton, so LinCheck (I, E, C) can
take a transition to a particular state u if it occurs. The state u is then reachable
iff E is not (I, C)-linearizable. We have reduced linearizability to reachability in
method automata. We can thus conclude by using Theorem 2. �

Undecidable extensions. The following theorem shows that the restriction
OW is necessary for decidability.

Theorem 4. For method automata without the OW restriction, the method ex-
pression linearizability problem is undecidable.

The proof of this theorem also implies that if we lift the restrictions on how
the pointer variables are updated, the method expression linearizability problem
becomes undecidable as well.
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4 Experimental Evaluation

4.1 Examples

This section presents a range of concurrent set algorithms where the set is im-
plemented as a linked list whose vertices are sorted by their keys. Each key
occurs at most once in the set. The concurrent set provides an interface consist-
ing of three methods: contains, add, and remove. The main difference in the
algorithms comes from the synchronization style they use. The synchronization
techniques we consider in our experiments are fine-grained locking, optimistic
synchronization, lazy synchronization, and lock-free synchronization:
– In the fine-grained locking approach each vertex is locked separately. During

the traversal we use “hand-over-hand” locking, where a vertex is unlocked
only after its successor is locked. When an insertion or a deletion is per-
formed, two successive vertices are kept locked.

– A problem with fine-grained locking is that modifications in disjoint parts
of the list can still block each other. In Optimistic synchronization [10] a
thread does not acquire locks as it traverses the list, but only when it finds
the part it is interested in. Then the thread needs to re-traverse the list to
make sure the locked vertices are still reachable (validation phase).

– The lazy synchronization algorithm [9] improves the optimistic one in two
main aspects. First, the methods do not need re-traversal. Second, contains
(commonly thought to be the most used method), do not use locks anymore.
The most significant change is that the deleted vertices are marked.

– A method is called lock-free if delay in one thread executing the method can-
not delay other threads executing the method. The lock-free algorithms [8,15]
we analyze use the Java compareAndSet operation to overwrite values.

4.2 Implementation

The CoLT tool chain can be seen in Figure 2. The input to the tool is a Java file
and two method names. The Java methods are parsed into method automata.
Then the lockstep scheduler selects the method automata corresponding to the
given method names, and produces a finite-state model using the (simplified)
construction from the proof of Theorem 3. The finite state model is then checked
by the SPIN [12] model checker. If SPIN cannot validate the model, it returns
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a counterexample trace that describes an unlinearizable execution. CoLT then
gives the programmer a visual representation of the trace.

In the rest of this subsection, we summarize the main issues in translating the
Java implementations of concurrent data set algorithms to method automata.
We refer the reader to [6] for further details on implementation.

Acceptors and adt-checkers. We use an acceptor to assert that the input list
is sorted. In the case of the optimistic algorithm we also need an adt -checker
to handle the marked vertices, i.e. vertices removed logically but not physically.
For the other algorithms the adt -checker is the identity function.

Phases approach. We implemented a simplified version of the construction
from the proof of Theorem 3. It relies on the fact that all the examples we
considered work in two phases: in the first phase, a list is traversed without
modification (or with limited modification in the case of the lock-free algorithm)
and in the second phase, the list is modified “arbitrarily”. This simplifies the
implementation by reducing the amount of nondeterministic guessing that is
necessary, but relies on annotations to identify the phases.

Validate. The optimistic algorithm violates the monotonic traversal restric-
tion as it traverses the list twice, once to find the required vertex and lock it
and again to validate that the locked vertex is still accessible from the head
of the list. We implemented a heuristic to extend the scope of our tool to
cover the optimistic algorithm. For this heuristic, we require annotations in the
code that mark the first and the second traversal. Given these annotations, the
tool can decompose each method into two method automata, one that finds
and locks the vertex and one for validation. A construction similar to sequen-
tial composition of these two automata is then used to model an optimistic
method.

Retry. The core traversal of fine-grained, lazy and lock-free algorithms is mono-
tonic. The only caveat is that when an operation such as insertion or deletion fails
the method might abort and “retry” by setting all pointers to the head, which
our restrictions disallows. We emphasize that retry behavior is very different
from the validate behavior of the optimistic algorithm. The aborted executions
in the fine-grained, optimistic, and lazy methods have no effect on the heap. In
the lock-free method, the effect is limited and simply defined. We implemented
a simple heuristic to deal with retry behavior. The heuristic produces a method
automaton that stops simulating an execution if a retry occurs. One can easily
prove for all algorithms we have considered that if the parallel composition of
method automata constructed in this way is linearizable iff the original parallel
composition is linearizable.

Linearization points. Our tool enables programmers to specify linearization
points. Specifying them is not needed, but leads to reduction of the search space,
and thus to improving memory consumption and running time of experiments.
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Table 1. Experimental results

Algorithm Methods M1 M2 Lin. Depth Mem Time Res
loc/pts loc/pts points (MB) (s)

Fine-grained remove ‖ contains 29/2 23/2 No 157 10.2 0.85 Yes
Fine-grained remove ‖ remove 29/2 29/2 No 141 8.3 0.46 Yes
Fine-grained remove ‖ add 29/2 26/2 No 303 18.1 2.4 Yes
Optimistic add ‖ remove 40/3 38/3 No 110 37.6 5.86 Yes
Optimistic contains ‖ contains 30/3 30/3 No 150 37.6 6.9 Yes
Optimistic remove ‖ remove 38/3 38/3 No 130 36.2 6.35 Yes

Lazy remove ‖ remove 36/3 36/3 No 164 20.1 2.68 Yes
Lazy remove ‖ add 36/3 34/3 No 164 26.3 3.51 Yes
Lazy contains ‖ remove 36/3 6/1 No 136 13.2 1.28 Yes
Lazy remove1 ‖ add1 36/3 34/3 No 137 24.2 3.17 No
Lazy remove2 ‖ remove2 34/3 34/3 No 143 17.9 2.18 No

Lock-free contains ‖ contains 9/2 9/2 No 98 6.4 0.25 Yes
Lock-free remove ‖ remove 34/3 34/3 Yes 95 77.6 8.08 No
Lock-free remCorr ‖ remCorr 34/3 34/3 Yes 268 1908.3 605 Yes
Lock-free add ‖ remCorr 35/3 34/3 No ? out ? ?
Lock-free add ‖ remCorr 35/3 34/3 Yes 267 1550.3 577 Yes
Lock-free add ‖ contains 35/3 9/2 No 400 18984.1 5700 Yes

4.3 Experiments

We evaluated the tool on the fine-grained, optimistic, lazy, and lock-free imple-
mentations of the concurrent set data structure. The Java source code was taken
from the companion website to [10]. All the experiments were performed on a
server with an 1.86GHz Intel Xeon processor and 32GB of RAM.

The results of the experiments are presented in Table 1. the third (fourth)
column contains the number of lines of code and the number of pointer variables
of the first (second) method. The fifth column indicates whether linearization
points were used. The sixth column lists the maximum depth reached in the
exploration of the finite state graph. The last column indicates whether the
method expression was linearizable.

First, to evaluate our analysis on implementations of fine-grained locking al-
gorithms, we ran the remove method in parallel with itself, the contains method,
and the add method. The memory consumption was under 20MB and the run-
ning time under 3s in all cases.

Second, we analyzed the optimistic implementations. The Java file was anno-
tated to use the heuristic described in the previous subsection. CoLT validates
the optimistic implementations in under 40MB of memory for every case. The
heuristic influence heavily some of the tool’s components; hence, the resources
consumption of these results are not directly comparable with the others.

Third, we analyzed lazy-synchronization implementations. The tool CoLT ver-
ified linearizability in the same cases as the fine-grained locking algorithm. We
used the tool to analyze modifications of the add and remove methods sug-
gested as exercises in [10]. One exercise suggests simplification of the validation
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check (methods remove1 and add1), the other asks using only one lock (method
remove2). We used the tool on remove1 ‖ add1, and on remove2 ‖ remove2. In
both cases, CoLT reported these compositions not to be linearizable.

Fourth, we considered lock-free implementations. CoLT found that the par-
allel composition of remove with itself is not linearizable. This is a known bug,
reflected in the online errata for [10]. When we corrected the bug according to
the errata (method removeCorr —short for removeCorrected), the tool showed
that the parallel composition of remove with itself is linearizable. We observe
that the memory usage is larger, for example for the parallel composition of the
corrected remove method with the add method, even when the linearization are
provided. The tool runs out of memory without the linearization points. The rea-
son is that, compared to the other algorithms, the input list can contain vertices
marked for deletion, thus increasing the number of inputs to consider.

5 Conclusion

Summarizing, the main contributions of the paper are two-fold: first, we prove
that linearizability is decidable for a model that captures many published concur-
rent list implementations, and second, we showed that the approach is practical
by applying the tool to a representative sample of Java methods implementing
concurrent data sets.
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Abstract. We describe a practical method for reasoning about realistic
concurrent programs. Our method allows global two-state invariants that
restrict update of shared state. We provide simple, sufficient conditions
for checking those global invariants modularly. The method has been im-
plemented in VCC1, an automatic, sound, modular verifier for concurrent
C programs. VCC has been used to verify functional correctness of tens
of thousands of lines of Microsoft’s Hyper-V virtualization platform2 and
of SYSGO’s embedded real-time operating system PikeOS.

1 Introduction

Verifying functional correctness of complex, low-level, shared memory, highly
concurrent programs (e.g., operating system kernels) requires intricate global in-
variants. To scale to large systems, checking these invariants should be modular;
in particular, invariance checking should obey program abstraction boundaries,
so that e.g., low-level code can be checked without having to consider high-level
invariants, and private low-level invariants can be changed without breaking
high-level clients. However, the need for modularity conflicts with the practi-
cal need to have invariants that span multiple objects3; for example, high-level
objects often have invariants that mention (public) fields of low-level objects.

One common approach to this problem is to impose on programs a structural
discipline that syntactically restricts the form of object invariants. Such disci-
plines tend to work well for certain classes of programs but not for others, leading
to a stream of extensions (e.g. the extension of the Spec# discipline [3,13] with
friends [1], or freezing [16]). Another popular approach is based on separation
logic [18] and its combination with rely-guarantee reasoning [11,19,10]. However,
they too make methodological commitments that work well for certain classes of
programs but less well for others (e.g., the choice to use fractional permissions

1 VCC is available in source for academic use at http://vcc.codeplex.com/
2 The Hypervisor verification is part of the Verisoft XT project supported by BMBF

under grant 01IS07008.
3 Objects mean collections of closely related data, e.g., regions of memory interpreted

as structs in C.
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rather than counting permissions [5]). Moreover, resource logics like separation
logic have inherently higher complexity than ordinary state-based logics [6], and
automation for separation logics (in their full generality) is far less developed
than for conventional logics.

We propose a different approach that achieves modularity without going out-
side of ordinary logic: locally checked invariants (LCI). LCI assigns to each ob-
ject (including threads) a two-state invariant, i.e., a predicate over pairs of states
expected to hold for every pair of consecutive states in every execution.4 Veri-
fication of a concurrent program reduces to checking that these invariants hold
for every state update invoked by the program. Rather than syntactically re-
stricting invariants, LCI imposes a semantic condition (i.e., a proof obligation)
on the object invariants; this condition guarantees that local invariant checking
(i.e., checking the invariants of objects actually changed in an update) suffices
to prove preservation of all invariants. Because the restriction is semantic rather
than syntactic, it allows for great deal of flexibility in structuring global invari-
ants. In particular the kind of verification scaffolding that has to be built into
other programming methodologies can be implemented syntactically in LCI at
the program level, using ghost state and ordinary object invariants, allowing
multiple methodologies to be used on a single program. As LCI is based on
ordinary logic, it can be implemented on top of stock theorem provers.

LCI has been implemented in VCC [7], a verifier for concurrent C software
that has verified the functional correctness of tens of thousands of lines of com-
mercial concurrent C code. The use of LCI, rather than a specialized program
logic, allowed VCC to be built on an established verification condition generator
(Boogie [2]) and state-of-the-art theorem prover (Z3 [9]). This paper presents
LCI on the example of a simple type-safe language, with a natural notion of
objects. Applying LCI to C involved developing a type-safe, yet flexible, view
of C memory, which is described separately [8]. Viewing states of execution, for
which the invariants are evaluated, at the granularity of the hardware-atomic
memory updates allowed us to verify fine-grained concurrent algorithms.

The main contributions of the paper are:

– the formulation of an admissibility condition for invariants, which permits
the local checking of global invariants (Sect. 3),

– an encoding of common invariant disciplines as admissible invariants (Sect. 4),
– the introduction of claims, which are objects encapsulating stable, derived

knowledge about system state, often necessary to verify concurrent algo-
rithms (Sect. 5).

2 The Idea: Stable Invariants and Legal Actions

For simplicity of presentation, consider a state to be a heap mapping addresses to
typed object values. By an action, we mean an ordered pair of states, representing
4 States of execution refer to states possibly visible to other threads, e.g., in C every

memory write yields a separate state. This allows for verification of fine-grained
concurrent algorithms.
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a transition from the first state (pre-state) to the second (post-state). Again for
simplicity, we restrict consideration to actions that do not change the type of
object stored at an address, i.e., the set of objects and their addresses are fixed
(but this restriction is easily dropped).

Each object has a two-state invariant, determined by its type. Terms within
object invariants wrapped with old() refer to the pre-state of a transition; terms
not so wrapped refer to the post-state. An action is safe iff it satisfies the in-
variant of every object.

Here are two simple examples of object type definitions:
type Account {

int val, creditLimit;
inv(creditLimit ≤ val)
}

type Counter {
int n;
inv(n = old(n) ∨ n = old(n) + 2)
}

The invariants of these types can be read as follows: after a safe action, in
every Account object, the value of the val field has to be greater or equal than
the creditLimit field, and in every Counter object, the n field is unchanged or
incremented by two. Note that any number of objects can be updated in a single
action.

An object invariant can be interpreted on a single state by interpreting it
over the stuttering action from that state, i.e., the action that goes from that
state to itself. A state is safe if the stuttering action from that state is safe.
We would like to be assured that actions always start from safe states, so we
require program execution to start in a safe state, and require that all object
invariants satisfy the following reflexivity property: if an action 〈ho, h〉 satisfies
the object invariant, then the stuttering action 〈h, h〉 also satisfies the invariant.
If all object invariants are reflexive, then every safe action has a safe post-state.
Invariants of both objects above are reflexive, whereas an invariant n > old(n)

for the Counter, which requires an increment during each safe transition, would
not be reflexive.

The invariants above refer only to fields of their object. If all invariants were
like that, checking safety of an action (starting from a safe state) would require
only checking the invariants of those objects updated by the action. But some
invariants have to span multiple objects. Consider for example the following
types, where % is the modulo operator and fields of object type are object
references (like in Java or C#).
type ParityReading {

Counter cnt;
int parity;
inv(cnt.n % 2 = parity)
}

type Low {
Counter cnt;
int floor;
inv(floor ≤ cnt.n)
}

type High {
Counter cnt;
int ceiling;
inv(cnt.n ≤ ceiling)
}

An action that updates x.cnt.n, where the type of x is any of the types defined
above, might break the invariant of x. However, if the action preserves the invari-
ant of x.cnt (i.e., increments x.cnt.n by two), then it cannot break the invariant
of an x of type ParityReading or Low, but it can break the invariant of an x of type
High. We therefore reject the definition of the type High as inadmissible, whereas
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fields F ≡ {f0, f1, . . . }
types T ≡ {t0, t1, . . . }
integers Z ≡ {0, 1,−1, . . . }
heaps H ≡ Z → (F → Z)
Booleans B ≡ {true, false}

type : Z → T

invτ : H × H × Z → B for τ ∈ T

inv(ho, h, p) ≡ invtype(p)(ho, h, p)
inv1(h, p) ≡ inv(h, h, p)
legal(ho, h) ≡ safe1(ho) ⇒ ∀p. ho[p] = h[p] ∨ inv(ho, h, p)
safe(ho, h) ≡ ∀p. inv(ho, h, p)
safe1(h) ≡ ∀p. inv1(h, p)

stable(τ) ≡ ∀p, ho, h. type(p) = τ ∧ safe1(ho) ∧ legal(ho, h) ⇒ invτ (ho, h, p)
refl(τ) ≡ ∀p, ho, h. type(p) = τ ∧ invτ (ho, h, p) ⇒ invτ (h, h, p)
adm(τ) ≡ stable(τ) ∧ refl(τ)

Fig. 1. Definitions

it will allow the other type definitions. Note that the admissibility of a type can
depend on the definitions of other types; e.g., ParityReading is only admissible
because increments of Counter are always by two.

The essence of LCI is captured in the following (still informal) definitions. An
action is legal iff it preserves the invariants of updated objects. A stable invariant
is one that cannot be broken by legal actions (i.e., holds over legal actions). An
admissible invariant is one that is stable and reflexive. It follows (by Theorem 1
below) that if all invariants are admissible, then every legal action from a safe
pre-state is safe and has a safe post-state. Our methodology involves proving
the admissibility of each invariant, and then proving that each action produced
by the program is legal; this lets us conclude that all actions produced by the
program are safe.

3 Formalization

We now formalize the insight from the last section (Fig. 1). Heaps H map integers
(i.e., addresses) to objects, which are maps from field names to integers. The
invariant function inv(ho, h, p) returns true iff the action changing the state from
ho to h satisfies the invariant of (the object referenced by) p. For simplicity, the
type of an object at a given address (given by the type function) is fixed. The inv
function is constructed from type-specific invariants (invτ ). E.g., the Counter’s
invariant n = old(n) ∨ n = old(n) + 2 translates to:

invCounter(ho, h, p) ≡ h[p][n] = ho[p][n] ∨ h[p][n] = ho[p][n] + 2

Our goal is to conclude the safety of an action while only checking its legality.
We first note that if all invariants are reflexive, then safe actions result in safe

states:

Lemma 1. (∀τ. refl(τ)) ⇒ safe(ho, h) ⇒ safe1(h)

Stability is defined for type τ by stable(τ) (in Fig. 1). Given a legal action
(legal(ho, h)) that starts from a safe state (safe1(ho)), we want to be able to
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conclude that the action is safe, and thus (by Lemma 1) that the post-state is
safe. By syntactic transformations of the definition of stable we get:

Lemma 2. (∀τ. stable(τ)) ⇒ (safe1(ho) ∧ legal(ho, h) ⇒ safe(ho, h))

We call an invariant of type τ admissible (adm(τ)) if its reflexive and stable.
This takes us to our main soundness theorem:

Theorem 1. Let all types be admissible. Then, for a sequence of heaps h0, h1, ...:

safe1(h0) ∧ (∀i. legal(hi, hi+1)) ⇒ (∀i. safe1(hi) ∧ safe(hi, hi+1))

Proof. By combination of Lemmas 1 and 2. �

Thus, any sequence of legal actions starting from a safe state is a sequence of
safe actions. Therefore, the verification system can generate proof obligations for
legality, reflexivity and stability and, by Theorem 1, deduce global correctness.
Reflexivity and stability depend only on invariants of data referenced from the
current invariant; legality depends only on invariants of objects that are updated.
As a consequence all these conditions can be checked modularly.

The proof of Theorem 1 is trivial given the carefully chosen definition of
admissibility. Yet, in the following, we see that this notion is not overly restrictive
and that many interesting invariants can naturally be made admissible.

Dependents and Fix-Points

We have mentioned that the invariant of High is inadmissible. However, if we
actually wanted the Counter to have an external object restricting its changes,
we could have done so by explicitly referring to the invariant of the High bound
from the invariant of the Counter (multiple inv(...) clauses are syntactic sugar for
their conjunction).
type Counter2 {

int n;
object b;
inv(n = old(n) ∨ n = old(n) + 2)
inv(b = old(b))
inv(n = old(n) ∨ inv(b))
}

type High2 {
Counter2 c;
int ceiling;

inv(c.b = this)
inv(c.n ≤ ceiling)
}

The invariant of High2 is now admissible thanks to the back-reference b in the
invariant of the Counter2. Any legal action touching n in a counter has to preserve
invariant of its attached object b. The first-order translation of the Counter2’s
invariant that includes the reference to b’s invariant is:

invCounter2(ho, h, p) ≡ (h[p][n]=ho[p][n] ∨ h[p][n]=ho[p][n] + 2) ∧
h[p][b]=ho[p][b] ∧ (h[p][n]=ho[p][n] ∨ inv(ho, h, h[p][b]))

The definition of inv(. . . ) has become recursive. We thus define the function
inv(. . . ) as any fix-point solution of the set of type-invariant-derived equations
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like the one above. To ensure existence of a fix-point solution, we restrict the
use of inv(...) in invariants to positive polarities.5

4 Structuring Invariants

LCI can be viewed as a “low-level” verification mechanism: admissibility, being
a semantic check, allows for making arbitrary tradeoffs as to what to check
where. In particular, any invariant can be made admissible by referencing it
from the invariants of objects that it depends on (as in the High2 example). This
flexibility allows for encoding more sophisticated methodologies on top of LCI at
the syntactic level, without jeopardizing soundness. Indeed, LCI makes it easy to
soundly add (and mix) different formal methodologies within a single program.

Central to the encoding of methodologies on top of LCI is the use of ghost state
— state added to the program to aid reasoning. An implementation should check
that ghost code (code that references ghost state) does not update non-ghost
state and is total (terminating); these conditions guarantee that the ghost code
and state can be erased without effecting behavior of the program on non-ghost
state. Ghost code is not only used to encoding methodologies; it also provides a
critical tool for program annotation, allowing the programmer to communicate
to the verifier important intuitions as to why the program works. For example,
ghost objects can be used to encode rights and knowledge, and ghost code can
be used to create, destroy, and transfer these objects during program execution.

Here, we describe how some of the methodologies used in VCC are encoded
syntactically on top of LCI (summarized in Fig. 2). We apply a syntactic trans-
formation to every user-defined type, which adds additional fields and invariants,
and which also weakens the user-defined invariant ψ. For every instance of an
user-defined type, we also add an instance of the helper OwnerCtrl type. We first
describe disabling invariants (Sect. 4.1) and ownership trees (Sect. 4.2); these
provide the Concurrent Spec# [13] ownership system. We then describe handles
(Sect. 4.3), a generalized form of read permissions [5].

4.1 Validity

Theorem 1 assumes that the initial state is safe. However, most languages allow
for dynamic creation (and perhaps disposal) of objects, and object’s invariants
usually do not hold prior to completion of initialization nor after the start of
destruction. Additionally, when objects are only accessed sequentially it is conve-
nient to temporarily disable the invariant, perform several updates on an object,
and re-enable its invariant. For those reasons we introduce a valid field, defined

5 Let L be the power set lattice of H× H× Z, let f : L→ L be a function such that
〈ho, h, p〉 ∈ f(I) if and only if invtype(p)(ho, h, p) with inv replaced with characteristic
function of I . Because inv(. . . ) only occurs positively in invtype(p)(. . . ) f is monotonic,
and therefore by Knaster-Tarski theorem f has a fix-point, which we use as inv. An
unconditional cycle in inv definitions might yield an interpretation of false, which is
sound but will prevent successful verification.
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1 type τ {
2 F
3

4 // Validity, Sect. 4.1
5 ghost bool valid;
6 inv((old(valid) ∨ valid) ⇒ ψ)
7

8 // Ownership, Sect. 4.2
9 ghost OwnerCtrl ctrl;

10 inv(unchg(ctrl))
11 inv(ctrl.subject = this)
12 inv(unchg(valid) ∨ inv(ctrl))
13 // for every f ∈ F
14 inv(¬valid ⇒
15 unchg(f) ∨ inv(ctrl.owner))
16 }

17 ghost type OwnerCtrl {
18 object owner, subject;
19 inv(unchg(subject))
20 inv(unchg(owner) ∨ inv(owner))
21 inv(unchg(owner) ∨ inv(old(owner)))
22 inv(unchg(subject.valid) ∨ inv(owner))
23 inv(type(owner) = Thread ∨ subject.valid)
24 inv(subject.ctrl = this)
25 // Handles, Sect. 4.3
26 set<Handle> handles;
27 inv(unchg(handles) ∨ inv(owner))
28 inv(∀(Handle h;
29 h ∈ old(handles) ∧ h /∈ handles
30 ⇒ ¬h.valid))
31 inv(handles = {} ∨ subject.valid)
32 }

Fig. 2. Every user (i.e., not OwnerCtrl) type τ with fields F is transformed by adding
implicit ghost fields and invariants. The user invariant, ψ, is weakened. Additionally an
ownership control type is added (but not transformed). unchg(f) is short for old(f)= f.

for every object type. Line 6 of Fig. 2 says that user invariants have to hold only
when the object is valid in the pre- and/or the post-state. In particular, single-
state user-invariants only have to hold when the object is valid. We define the
valid field to be false in the initial state, so the initial state is safe. An object is
typically made valid at the end of initialization and invalid before its destruction.

4.2 Ownership

How does the introduction of validity effect the admissibility of invariants? Con-
sider, for example, the invariant of an object low of type Low. To make use of the
“counter only goes up” property of low.cnt, low now needs to know that low.cnt

is valid. In a language with explicit destruction, this can be rephrased as: what
prevents somebody from destroying low.cnt? One possible solution is to designate
low as the owner of low.cnt; informally, we can think of this meaning that low.cnt

is “part of” low.
Formally, ownership is expressed by adding a ghost ctrl field to every object

and making it point to an instance of ownership control type (again Fig. 2). Now
the field x.ctrl.owner points to the object that owns x. This encoding allows the
ownership relation to dynamically change during execution, but guarantees that
each object always has a unique owner.

The invariants governing OwnerCtrl say that it always refers to the same subject
(line 19), ownership transfer is allowed, but requires a check of the invariants of
the old and new owner (line 20 and line 21), and only threads can own invalid
objects (line 23; thread invariants will be discussed in Sect. 5.1). Note that the
use of a separate ownership control object means that the invariants of the object
itself do not have to be checked when its owner changes. Note also that these
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type Lock {
bool locked;
ghost object rsc;
inv(unchg(rsc))
inv(¬locked ⇒

rsc.ctrl.owner = this)
}

void Acquire(Lock l, ghost Handle h)
requires(h.ctrl.owner = me ∧ h.valid ∧ h.obj = l)
ensures(l.rsc.ctrl.owner = me)
{

do 〈 prev := l.locked;
if (¬prev) {

l.locked := true;
ghost { l.rsc.ctrl.owner := me; } } 〉

while (prev);
}

Fig. 3. A spin-lock. The semantics of actions (Acquire) is explained in Sect. 5.

invariants allow ownership cycles, but in practice the ownership relation defines
a forest, except that the tree roots (threads) own themselves.

We could now make Low own and thus control validity of its Counter by adding
the user invariant cnt.ctrl.owner = this, which entails cnt.valid. Such an invariant
is admissible: the additional invariant on Counter from line 10 ensures that any
legal action leaves cnt.ctrl unchanged, and an attempt to update cnt.ctrl.owner

needs to conform with both the old and new owner’s invariants (see lines 20 and
21). Thus, Low cannot loose control of its Counter.

Conversely, an invariant of the form type(ctrl.owner)= Low in Counter would not
be admissible: the control type enforces the invariant of owners, not subjects, so
changing the owner of a subject (which only involves changing the owner field in
the OwnerCtrl type and not the subject itself) could break the invariant. This is
intentional: synchronization mechanisms, like spin-locks, should be polymorphic
in the type of the data that they protect, but the implementation of these mech-
anisms needs to manipulate ownership of the protected objects. For example,
acquiring a lock transfers ownership of the lock-protected resource (rsc in Fig. 3)
to the calling thread. Similarly, generic containers (e.g. lists, stacks) should be
polymorphic in the type of the objects they hold.

4.3 Handles

Ownership does not provide for sharing; at most one thread can (transitively)
own an object at any time, and only that thread can deduce (through ownership)
that the object is valid. But sharing is often necessary. For example, the whole
point of a spin-lock is that multiple threads can try to acquire it simultaneously;
all of these threads must know that the lock is valid.

One way to provide sharing is with handles. Consider the following type (on
which we apply the transformation from Fig. 2):

ghost type Handle {
object obj;
inv(unchg(obj) ∧ this in obj.ctrl.handles ∧ obj.valid)
}
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The invariant of Handle is admissible, because the invariants of OwnerCtrl pre-
vent removal of a valid handle from the handles set (line 30) and prevent the
object from being invalidated as long as there are outstanding handles (line 31).
Multiple clients can each own valid handles on the shared object, and each of
these handles guarantees validity of the shared object.

When multiple clients rely on an object, the object’s owner typically keeps
track of the clients, e.g., by maintaining a reference counter. An example of
such scenario is a reader-writer lock. Acquiring a read lock returns to the caller
a handle on the resource. Acquiring a writer lock waits for the reader count
(correlated in the invariant with the cardinality of the handle set) to drop to
zero and transfers the ownership of the resource from the lock to the acquiring
thread. This thread can then invalidate the resource and update its fields.

A handle allows the fields of obj to be changed (subject to checking obj’s
invariant); the validity of obj is needed in the case that obj is owned by another
thread. This allows threads to race in a controlled manner, for example by trying
to acquire a lock. A handle on obj can also be viewed as a read permission on
the fields f of obj for which obj.valid ∧ inv(obj)⇒ unchg(obj.f): as long as the handle
exists, these fields cannot change. This is a counting, rather than fractional,
permission6; but unlike permissions in separation logic, handles are first-class
objects, so one can create handles on handles with similar results to splitting
fractional permissions (cf. [5]).

As a more concrete example consider the following modification of the type
Low:

type Low2 {
Counter cnt;
int floor;
inv(floor ≤ cnt.n)
ghost Handle cntH;
inv(cntH.ctrl.owner = this ∧ cntH.obj = cnt)
}

Adding the handle cntH on cnt makes the invariant of the Low2 admissible,
while being able to share Counter objects between clients. A similar modification
needs to be made to ParityReading and High2.

5 Verifying Actions

LCI treats procedures as sequences of atomic actions performed by a single
thread (denoted by me), with possible interference of safe actions of other threads
in between. To verify a procedure, one needs to check legality of all its actions,
assuming only safety of interfering actions (that is without looking at the code of
other procedures). For example, VCC achieves that by translating the sequence
of actions into a sequential Boogie program, and verifying it using weakest pre-
conditions calculus [2]. After translation of each action, we assert its legality
6 Fractional permissions can also be implemented on top of LCI, but we have not

found them necessary.
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and assign an arbitrary value to the entire heap. We assume this new heap to
represent a safe state (per Theorem 1) and that it was constructed from the old
one by zero or more safe actions of other threads (which has consequences to
thread-local data, see below). As an example, consider the following code, using
〈 ... 〉 to denote atomic actions:

1 void incr(Counter c) {
2 〈 a := c.n; 〉
3 〈 if (c.n = a) c.n := a + 2; 〉
4 〈 b := c.n; assert(a < b); 〉
5 }

We first read the value of the counter into a local variable a. Then, using an
atomic compare-and-swap operation (in-lined here for clarity), we increment the
value of the counter, provided it did not change in between. Finally, we read the
new value of the counter into b and want to statically prove a < b. This should
be provable because the invariant of Counter ensures that the counter can only
grow, and so either the compare-and-swap succeeds in storing the incremented
value, or it fails because somebody else incremented it between lines 2 and 3.

We verify incr as follows. Suppose for a moment that we know c remains valid
throughout execution of incr. We check the legality of the first action; because
it modifies only local variables, this is trivial. Afterwards, we simulate arbitrary,
but safe, interference by other actions by assigning an arbitrary safe value to the
heap. We then check legality of the second action performed on that new heap
and so on. Local variables, remain unchanged between actions of the current
thread. Because locals do not change, and c.n can only grow, from line 2, we
have a ≤ c.n and after line 3 even a < c.n. Thus, the assertion does indeed hold.

This kind of reasoning makes use of the fact that any property ψ of data on the
heap is preserved, provided that it is maintained by safe actions of other threads,
i.e., ∀ho, h. safe(ho, h) ∧ ho[me][state] = h[me][state] ∧ ψ(ho) ⇒ ψ(h), where
h[me][state] is used to encode the local state of the current thread. However, we
cannot expect all such ψ’s to be automatically inferred by the theorem prover as
needed. In the following, we deal with situations where the inference of a suitable
ψ is beyond the capabilities of the theorem prover. Preservation of some common
properties, like behavior of thread-local data, can be proven as lemmas once and
for all (see Sect. 5.1) and then be built into the verifier. Other properties need
to be taken care of by the user (Sect. 5.2), using LCI’s existing machinery.

5.1 Thread-Local Data

We now come back to the fact that we need validity of a Counter c throughout
the execution of incr(c): if some other thread would invalidate c while incr(c) is
executing, c.n could potentially decrease and the assertion from line 4 can no
longer be proven. Simply making the invariant of some other object o guarantee
c.valid, does not help, as it would only defer the validity of c to the validity of
o. The natural place to start validity deduction is me, i.e., the Thread object
representing the current thread of execution.
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The field o.f is thread-local data of thread t iff the invariant of t can admissibly
prevent any other threads from changing it, e.g., by including a formula like
unchg(this.state) ∧ φ ⇒ unchg(o.f), where φ encodes additional conditions, like o.

ctrl.owner = this. The thread invariants are defined to be conjunctions of all such
admissible formulas. Thus, they prevent any interference they possibly can. We
approximate that by assuming inv(me) to be true and leaving other thread in-
variants unspecified when verifying actions. Hence it is sound to assume that
thread-local data does not change between actions of the current thread.

In particular an object invariant unchg(f) ∨ inv(ctrl.owner) makes the field f

local data of the owning thread (provided that ctrl.owner is a thread). Thus
the valid and owner fields are both local to the owning thread. Additionally, per
line 15 of Fig. 2, all fields of invalid objects are local to the owning thread, too.

As a consequence, if me owned c, that would be enough to verify incr(c): the
fields c.ctrl.owner and c.valid would be thread-local. But clearly, incr(c) is designed
so that multiple threads can execute it concurrently on the same c. So instead we
reuse the Handle type: me owns a (initially valid) handle h, therefore h.ctrl.owner,
h.valid, and h.obj are thread-local, and inv(h) implies c.valid.

5.2 Claims

Verification of incr(), in addition to a handle, relied on a lemma that the assertion
a ≤ c.n is preserved by legal updates. To persist such a property ψ between LCI
actions one can use a claim — an object with invariant ψ. The stability of
the invariant (checked by an LCI verifier) implies the lemma. In case of incr()

the existing type Low2 can be used as a claim. A claim is ghost, as it is only
a verification device, and so we can insert updates of its multiple fields in the
middle of the physical atomic actions. In the code below, we pass a pre-allocated,
thread-local Low2 claim object and, for simplicity, ignore its creation. We also
add an invariant making fields of Low2 thread-local.

type Low2 { // ...
inv((unchg(floor) ∧ unchg(cntH) ∧ unchg(cnt)) ∨ inv(ctrl.owner))
}
void incr(Counter c, ghost Handle h, ghost Low2 cl)

requires(h.obj = c ∧ h.ctrl.owner = me ∧ h.valid)
requires(¬cl.valid ∧ cl.ctrl.owner = me)
{
〈 a := c.n ; ghost { cl.cnt = c; cl.cntH = h; h.ctrl.owner := cl;

cl.floor := a; cl.valid := true; } 〉
〈 if (c.n = a) { c.n := a + 2; }

ghost { cl.floor := a + 1; } 〉
〈 b := c.n; assert(a < b); 〉
}

After the first read, we initialize the Low2 claim cl with a as a lower bound for c

according to its invariant. The next action first tries to increment the counter,
and regardless of the result increments the floor field of the claim. This is a legal
action: if we incremented the counter, then a + 2 is a new lower bound. If we did
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not, c.n �= a must hold and Low2’s invariant (which holds just before the action)
additionally entails c.n ≥ a, and thus a + 1 is a lower bound for the counter.
Correctness of last action simply follows from cl’s invariant as we have made
fields of the claim thread-local by requiring changes to satisfy inv(me). Thus, a
claim is used to derive a inductive property of an invariant.

Claims are often needed when verifying programs using LCI. For this reason,
VCC provides a syntax for creating a new claim type and instance, along with
the required handles, in a single statement. The claim object also captures the
values of locals at the point where it is created. Using this syntactic sugar, the
first action in our program could be written without introduction of the type
Low2 as:

〈 a := c.n; ghost { s := claim(h, c.n ≥ a) } 〉
VCC claims are still first-class objects, so it is possible to own them, pass them

around, and store them in other objects. In particular, it allows for proving a
lemma in one context and using it in another.

6 Evaluation and Related Work

The LCI verification methodology was developed for and along with the VCC
verification tool. Our goal for VCC was the sound verification of functional
correctness of industrial-strength concurrent C code, driven by program-level
annotations on the code base. Because we were after a scalable, industrial verifi-
cation process driven by software engineers (rather than verification engineers),
we avoided interactive proof checking and logics that are difficult to automate
efficiently (e.g., higher-order logics and separation logics). Ghost data and code
was used to workaround limitations of first-order logic, e.g., the reachability re-
lation was expressed with a ghost field holding the set of reachable nodes, which
needed to be updated explicitly, using ghost code. We believe that developers
are well equipped to write substantial amounts of code manipulating ghost state
(to manipulate ownership, claims, as well as abstractions like the reachability
above), and we know that such techniques scale to complex problems.

The driving application for VCC development was the verification of the
Microsoft Hyper-V hypervisor. The hypervisor (about 100K lines of C code)
sits directly on multi-processor x64 hardware, and provides a number of virtual
multi-processor x64 machines (with some additional instructions). The hyper-
visor is highly optimized for multi-core hardware, so in addition to typical OS
components (e.g., scheduler and memory allocator) it contains a number of cus-
tom concurrency control mechanisms and algorithms, mostly using fine-grained
concurrency control. For the last two years, the Hyper-V verification project has
focused on annotating the existing code base with invariants and function con-
tracts and checking these annotations, to prove that the Hyper-V simulates (a
model of) the actual x64 hardware. So far, about 1/3 of the code base has been
annotated. VCC is also used to verify PikeOS, an embedded real-time OS [4].
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LCI has proven to be powerful enough to express all required specifications,
ranging from low-level details, like concurrency primitives, to higher-level ab-
stractions like virtual machine partitions. LCI was relatively easy to implement
in VCC; however specifications need to be carefully formulated to stay off of
unfruitful, non-terminating, or very time-consuming proof paths. Still, it was
possible to massage the specifications to the point where the Z3 theorem prover
was accepting them with certain robustness (i.e., small changes in specifications
would not make it fail).

The expressivity of LCI is beyond that of other verification tools and there
are no commonly accepted benchmarks in this area, so we cannot easily compare
run-times. To give you an idea of the performance that we achieve, here are the
times consumed by the verification of the Hyper-V sources on a single 2.33 GHz
Intel Xeon core:

# of checks min max avg median
admissibility 152 0.5s 50s 15s 13.6s
functions 367 0.4s 2581s 50.5s 12.8s

Actual turnaround times on our 8-core machine (multiple admissibility checks
and function verifications can be parallelized trivially) is well below 2 hours. For
most problems, a memory limit of 200MB suffices, while a handful of problems
require more memory but never exceeding 1GB.

The typical VCC work flow starts by running VCC on the initial version of
the code and specification. In case of a verification error either the specification
or the code needs to be fixed, the decision is up to the VCC’s user, who is aided
by a model viewer, showing the counter-example found by the theorem-prover.
The user then runs VCC again and the process repeats, typically multiple times.
From this point of view the most important performance characteristic is the
time it takes to verify a single function.

Many of the ideas of VCC are rooted in the Spec# project [3]. However,
unlike Spec#, VCC is based on a tiny core, namely LCI, allowing users to extend
the methodology at will. In fact, Spec#’s sequential methodology, comprising
reps, peers, visibility, and observers, can be expressed in LCI. Also our thread-
ownership discipline follows Concurrent Spec# [13]. The difference is that in LCI
one can also verify lock implementations (see Fig. 3 and [12]), instead of treating
locks as primitives. Finally, VCC also adopted Spec#’s framing mechanism:
procedures list the objects’ ownership domains that they are allowed to write.

An alternative promising approach to addressing the modular verification
problem of concurrent programs is taken by the separation logic [18] commu-
nity. Concurrent separation logic [17] divides the heap into a thread-local and
a shared part. The shared part is governed by a single-state invariant. Exten-
sions like SAGL [11] and RGSep [19] use two-state rely/guarantee predicates for
the shared part. Finally, LRG [10] introduces the separating conjunction over
two-state predicates. All these approaches require specialized resource logics,
whereas our goal has been to stick to first-order logic to be able to leverage
existing high-performance automated theorem provers.
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The Chalice program verifier [15] also uses a resource logic, but it reasons
about permissions at the syntactic level, and pushes the remaining proof obli-
gations to the theorem prover. While restricted at the permission level, the
specifications can be stronger in their classical parts.

A current disadvantage of LCI is its high annotation overhead: Spec#, some
separation logic tools, and Chalice all have much lower overhead in cases they are
expressive enough. Part of this is intentional; we intended to provide a powerful
“low-level” program verifier, and to later introduce syntactic sugar as we learned
what kinds of abstractions and abbreviations were most effective. In VCC, which
works at slightly higher level of abstraction than the bare-bone LCI presented in
this paper, we have found it to be in the order of one line of annotation per line
of code. As a comparison, the impressive seL4 verification project [14], where
similar properties were verified (but in a much smaller code base of sequential
code), is reporting 2:1 overhead for specifications and 10:1 overhead for the proofs
(in LCI the proofs are automatic, modulo the aforementioned massaging).

7 Conclusion

LCI is a modular verification methodology for concurrent programs. It introduces
semantic admissibility condition on two-state invariants, which guarantees that
updates can be checked locally. LCI has been proven to scale in practice and be
expressive enough for industrial program verification.
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Abstract. Multicore technology has moved concurrent programming to
the forefront of computer science. In this paper, we look at the problem
of reasoning about concurrent systems with infinite data domains and
non-deterministic input, and develop a method for verification and falsi-
fication of safety properties of such systems. Novel characteristics of this
method are (a) constructing under-approximating models via symbolic
execution with abstract matching and (b) proving safety using under-
approximating models.

1 Introduction

Concurrency has moved to the forefront of computer science due to the fact that
future speedups of software rely on exploiting concurrent executions on multi-
ple processor cores. Thus, the problem of creating correct concurrent programs
is now paramount. Reasoning about such programs, i.e., determining whether
properties of interest hold or fail in them, has always been difficult, especially
if we consider “realistic” programs with infinite data domains (i.e., integer vari-
ables) and non-deterministic input. An example of such a program is the simple
two-process mutual exclusion protocol shown in Fig. 1, where integer variables
x and y are set non-deterministically (see Section 2 for more detail).

Approaches to reason about concurrent systems can be split into four cat-
egories. (1) “Classical” model-checking techniques, e.g., [18], were created to
enumerate all reachable states of the program. Such techniques provide both
verification and falsification information and are very effective when the state-
space of the program is finite. However, they do not scale well for programs
with large state-spaces and do not apply to those with infinite state-spaces. (2)
Techniques like [3,16,7] build an over-approximation of program behaviours, via
static analysis. These techniques can handle large/infinite state-spaces, are ef-
fective for verification purposes, but are not particularly well suited for finding
bugs. (3) Techniques like [24,23,4,21] explore an under-approximation of feasible
program behaviours. These techniques are often inexpensive and very effective
for finding bugs; they are, however, often unable to prove correctness of pro-
grams. (4) Recently, researchers have been exploring the combination of under-
and over-approximation by combining dynamic and static analysis techniques,
respectively. Examples of this approach include [23] and the Yogi project [22].
These techniques are effective both for verification and for falsification of safety
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Process 1
t1 : pc1 = 1 −→ b := b+ 1, pc1 := 2
t2 : pc1 = 2 ∧ x ≤ y ∧ b = 2 −→ pc1 := 3
t3 : pc1 = 3 −→ x := nondet, pc1 := 2

Process 2
t4 : pc2 = 1 −→ b := b+ 1, pc2 := 2
t5 : pc2 = 2 ∧ x > y ∧ b = 2 −→ pc2 := 3
t6 : pc2 = 3 −→ y := nondet, pc2 := 2

Fig. 1. A simple two-process mutual exclusion protocol with inputs x and y

properties but, with the exception of [23], have been limited to sequential pro-
grams [26,15,19,13]. Our work fits into this category.

In this paper, we propose a novel approach for automatically checking safety
properties of reactive concurrent programs (over a finite number of threads)
with non-deterministic input and infinite data domains. Handling these features
allows us to target programs with infinite state-spaces, uninitialized variables,
and communication with an external environment (e.g., user interaction). Our
approach combines symbolic execution (to deal with non-deterministic input)
and predicate abstraction (to deal with infinite data domains) in an abstraction-
refinement cycle. Symbolic exploration proceeds along a path until it discovers
two symbolic states that match to the same abstract state – the process is called
abstract matching [17]. It produces an under-approximating abstract model that
is more precise, in terms of feasible program behaviours it captures, than under-
approximation techniques based on must transitions [24], concrete model check-
ing and abstract matching [23], and weak reachability [4]. Since we only explore
feasible program behaviours, all errors we encounter are real. We then analyse
the abstract model to determine if it is also an over-approximation of the reach-
able concrete program states. If so, we conclude safety; otherwise, we refine the
abstraction, adding predicates not to remove spurious counterexamples (as in
the CEGAR framework [8]) but to enable us to explore more feasible program
behaviours. To our knowledge, this is the first software verification algorithm
combining symbolic execution with predicate abstraction and refinement. Our
contributions are thus as follows: (i) a novel method for improving precision of
under-approximating models by constructing them via a combination of sym-
bolic execution and abstract matching; (ii) a novel technique for proving safety
using under-approximating models; (iii) an implementation based on [23] and
an empirical evaluation comparing the two approaches.

The rest of this paper is organized as follows. In Section 2, we give a general
overview of the approach, illustrating it on the example in Fig. 1. We define the
notation and provide background for the remainder of the paper in Section 3.
Section 4 presents our approach in more detail, and Section 5 describes our
implementation and experimental results. Section 6 compares our approach with
related work. We conclude in Section 7 with the summary of our contributions
and suggestions for future work.

2 Overview

In this section, we illustrate our approach on a simple two-process mutex protocol
shown in Fig. 1. The protocol is written in a simple guarded command language.
Initially, variables x and y are undefined (i.e., they can have an arbitrary value),
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Fig. 2. Abstract analysis of symbolic executions

b is 0, pc1 is 1, and pc2 is 1. Process 1 starts at pc1 = 1, increments b, and moves
to pc1 = 2 (transition t1). At pc1 = 2, it waits until b becomes 2 and x is less
than or equal to y and proceeds to its critical section at pc1 = 3 (transition
t2). At pc1 = 3, it sets x non-deterministically (modelling input) and returns to
pc1 = 2 (transition t3). Process 2 behaves analogously but uses process counter
pc2 and resets variable y in its critical section. We aim to show that this protocol
satisfies the mutual exclusion property: a state where pc1 = 3 ∧ pc2 = 3 is not
reachable.

The high-level overview of our approach is shown in Fig. 2. To determine
whether a safety property ψ holds in a program P , we compute an abstract
transition system, Ma, of P w.r.t. some initial set of predicates Φ0 using sym-
bolic execution with abstract matching. The state-space of Ma is an under-
approximation of reachable abstract states of P . If an error is found during
the symbolic execution step, we report P as unsafe and terminate. Otherwise,
Ma |= ψ, and Ma is passed to the analysis phase which checks, via two separate
steps, whether the state-space of Ma is also an over-approximation of P . If so,
we are able to conclude that P is safe. Otherwise, we refine the set of predicates
and repeat the entire process.

Our approach follows an abstraction-refinement loop, but differs from the
standard CEGAR framework [8] in two ways: (1) we compute an under-
approximating abstraction of P (using symbolic execution); (2) we do not rely
on counterexamples to perform the refinement. In the rest of this section, we
discuss each step of our approach in turn.

Symbolic Execution with Abstract Matching. Fig. 3(a) shows a symbolic
execution tree of the program in Fig. 1. The initial set of predicates, Φ0 = {x ≤
y, b = 2}, consists of all the predicates from the guards of the program. A sym-
bolic state consists of the current values of variables conjoined with the path
condition that has to be satisfied in order to reach this state. In Fig. 3(a), each
state is represented as a box, with values of variables in the order (pc1, pc2, x, y, b)
appearing in the top and the path condition – in the bottom. For example, state
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s1 is (pc1 = 1, pc2 = 1, x = x0, y = y0, b = 0) ∧ (x0 ≤ y0), where x0 and y0 are
symbolic constants representing the initial value of x and y, respectively.

We use traditional symbolic execution with one additional constraint: in each
symbolic state, each predicate from Φ0 must be either satisfied or refuted. If
necessary, we split a symbolic state by strengthening its path condition. For
example, the initial state of the program in Fig. 1, s0 = (pc1 = 1, pc2 = 1, x =
x0, y = y0, b = 0), neither satisfies nor refutes the predicate x ≤ y. Thus, it
is split into states s1 and s2 that satisfy and refute x ≤ y, respectively. They
become the new initial states. Similarly, states s5 and s6 are obtained by splitting
a symbolic successor of s4. Our constraint may increase the number of symbolic
states, but it ensures that each symbolic state corresponds to (or matches with)
a unique valuation of all of the predicates in Φ0. We call such a valuation an
abstract state, and define a function α(s) mapping a symbolic state s into an
abstract state.

The symbolic execution proceeds along a path until it discovers two states
s and s′ that match the same abstract state a, i.e., α(s) = α(s′) = a. For
example, the symbolic path starting at s1 and passing through s3 is stopped at
s5. Following [23], we call this process abstract matching. Since the range of α
is finite, symbolic execution with abstract matching is guaranteed to terminate.
Of course, execution also aborts whenever it encounters an error state.

An abstract transition system Ma is obtained from the symbolic execution
tree by adding a transition between two abstract states a and a′ iff there is
a transition between two states s and s′ in the symbolic execution tree, and
α(s) = a and α(s′) = a′. The abstract transition system Ma for the execution
tree in Fig. 3(a) is shown in Fig. 3(b). In the figure, each state is a valuation to
(pc1, pc2, x ≤ y, b = 2). For example, α(s1) = a1 and α(s2) = a2. An error state
is unreachable in Ma, so it is passed to the analysis phase.

Analysis: safe-fragment. This check is based on a notion of an exact transition.
A transition between two abstract states a and b is exact iff every concrete state
corresponding to a can transition to a concrete state corresponding to b. For
example, transition a4 → a5 in Ma is exact (denoted by a solid line) whereas
transition a1 → a3 in Ma is inexact (denoted by a dotted line).

We say that a set of states Q, called a fragment, of an abstract transition
system Ma is exact iff (a) there is no outgoing transition from Q to other states
in Ma, and (b) all internal transitions within Q are exact. Intuitively, all exe-
cutions from concrete states corresponding to an exact fragment Q are trapped
in it. We say that an exact fragment Q is safe iff it does not contain error
states, i.e, it approximates a part of the state-space of P that cannot reach an
error.

safe-fragment determines whether all paths in Ma are eventually trapped in a
safe exact fragment. This is reduced to checking whether the transitions inside
and between all nontrivial strongly connected components of Ma are exact. If
so, Ma is an over-approximation of P (see Section 4.2); therefore, none of the
executions of P can reach error and thus P is safe.
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Fig. 3. (a) Symbolic execution of the program in Fig. 1; (b) its corresponding abstract
transition system Ma; (c) a modified abstract transition system M ′

a

The check succeeds in our example. This is easily verified by looking at
Fig. 3(b), where all paths are trapped in the safe exact fragment consisting
of the states a4, a5, a6, and a7. Thus, the program in Fig. 1 satisfies the mutual
exclusion property.

Analysis: inductive-invariant. This check determines whether the state-space of
Ma is an inductive invariant: i.e., it is closed under applying transitions of P . If
so, the state-space of Ma over-approximates that of P , and thus P is safe. This
check is complimentary to safe-fragment described above (see Section 4.2). If it
fails, we move to the refinement phase.

Refinement. In this phase, we generate new predicates to refine inexact tran-
sitions of Ma. The refinement is based on computing preimage and is similar to
the commonly used weakest precondition-based refinement. Although not needed
in our running example, we illustrate refinement using the inexact transition
a1

t1−→ a3 of Ma in Fig. 3(b). First, we compute the preimage of a3 w.r.t. transi-
tion t1, resulting in (pc2 = 2∧x ≤ y∧ b �= 1). Second, we add only the predicate
b �= 1 to Φ0 since program counter pc2 is represented explicitly, and we already
have x ≤ y.

In the remainder of the paper, we formalize the above notions and evaluate
the efficiency of our approach.
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3 Preliminaries

This section outlines the definitions and notation used in this paper.

Program. We use a guarded command language to specify programs. A program
P is a tuple (V, I, T ), where V is a finite set of integer variables, I(V ) is an
initial condition, and T is a finite set of transitions. Each transition t ∈ T is of
the form gt −→ et, where gt is a Boolean expression over the variables V , and et

is a set of concurrent assignments. Each assignment is of the form x := linExp
or x := nondet, where x is a variable in V , linExp is an expression from linear
arithmetic over variables in V , and nondet is a special expression used to denote
non-deterministic input.

Transition System. A transition system over a finite set of atomic proposi-
tions AP and a set of transition labels T is a tuple (S, R, S0, L), where S is a
(possibly infinite) set of states, R ⊆ S × T ×S is the transition relation, S0 ⊆ S
is the set of initial states, and L : S → 2AP is a labelling function, mapping
each state to the set of atomic propositions that hold in it. For clarity, we write
s

t−→ s′ to denote R(s, t, s′).
The concrete semantics of a program P = (V, I, T ) is a transition system

C(P ) = (S, R, S0, L) over some atomic propositions AP and the set of program
transitions T , where S = 2V →Z, S0 = {s ∈ S | s |= I}, and s

t−→ s′ for some t ∈ T
iff s |= gt and s′ ∈ et(s). By s |= gt, we mean that the valuation of variables in
s satisfies the Boolean expression gt, and et : (V → Z) → 2(V →Z) is a function
which computes all possible states resulting from applying the assignments to
some state. Finally, L(s) = {φ ∈ AP | s |= φ}.
Preimage and Strongest Postcondition. Let φ be a formula over program
variables. The preimage of φ w.r.t. a transition t, pre(φ, t) = ∃s′ · (s t−→ s′ ∧ s′ |=
φ), is a formula describing the set of all states which can reach a state satisfying
φ via t. The strongest postcondition of φ w.r.t. a transition t, sp(φ, t) = ∃s′ ·(s′ t−→
s ∧ s′ |= φ), is a formula describing the set of all states that are reachable via t
from a state satisfying φ.

Predicate Abstraction. Let Φ = {φ1, · · · , φn} be a set of predicates over pro-
gram variables. The predicate abstraction αΦ is a function from concrete states to
Boolean formulae (abstract states) over predicates in Φ. Given a concrete state
s, αΦ(s) =

∧
φ∈Φs

φ ∧
∧

φ∈Φs
¬φ, where Φs = {φ ∈ Φ | s |= φ} and Φs = Φ \ Φs.

A concretization function γΦ takes a Boolean formula over Φ and returns the
set of concrete states satisfying the formula. Given a Boolean formula ψ over
Φ, γΦ(ψ) = {s ∈ S | s |= ψ}. For a set of states X , we write αΦ(X) to mean∨
{αΦ(s) | s ∈ X}.
A transition a1

t−→ a2, where a1 and a2 are abstract states is a must transition
iff ∀s ∈ γΦ(a1) · ∃s′ ∈ γΦ(a2) s.t. s

t−→ s′. A transition is a may transition iff
∃s ∈ γΦ(a1) · ∃s′ ∈ γΦ(a2) s.t. s

t−→ s′. In this paper, we call must transitions
exact, and transitions that are may but not must – inexact. A transition a1

t−→ a2
is exact iff a1 ⇒ pre(a2, t).
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1: function Refine(P,ψ)
2: Φ← predicates from guards in P and ψ
3: while true do
4: inductive← true
5: (fin, inf, A0)← symbolicExec(P,Φ) � symbolic execution
6: if a state in (fin, inf,A0) satisfies ¬ψ then return false

7: if safeFragment(fin, inf) then return true � safe-fragment

8: A← all states in (inf, fin, A0)
9: for all (a1, t, a2) ∈ (fin ∪ inf) do � inductive-invariant

10: if ¬(a1 ⇒ pre(a2, t)) then
11: add predicates in pre(a2, t) to Φ � refinement
12: if ¬(sp(a1, t)⇒ ∨A) then inductive← false

13: if inductive then return true

Fig. 4. Refinement loop (main function)

4 Abstract Analysis of Symbolic Executions

In this section, we describe our algorithm in detail and discuss its properties.

4.1 Algorithm

Our abstraction-refinement based verification algorithm is implemented by the
function Refine (Fig. 4) which does symbolic execution followed by safe-fragment
and inductive-invariant checks and refinement (see Fig. 2). It uses two helper func-
tions: symbolicExec (Fig. 5), to do symbolic execution with abstract match-
ing and to compute the explored abstract transition system, and safeFragment

(Fig. 6), to prove safety of the abstract transition system.
Refine initializes the set Φ with all the predicates in the program’s guards

and in the safety property ψ (line 2), and enters the execute-analyse-refine loop
(lines 3–13). It uses symbolicExec (line 5) to compute the abstract transition
system. It terminates with false if an error state is found (line 6); otherwise, it per-
forms the safe-fragment check (line 7) followed, if needed, by the inductive-invariant
check (lines 9–13). The Boolean variable inductive holds the result of inductive-
invariant. If it is false after inductive-invariant (line 13), then Refine repeats sym-
bolic execution with new predicates added to Φ; otherwise, it returns true.

symbolicExec performs depth-first symbolic execution with abstract match-
ing. It uses the stack symbStack of sets of symbolic states to keep track of the
current path. A symbolic state s over a set of variables V is a tuple (f, PC),
where f is a function mapping each program variable to an integer or sym-
bolic constant, and a path condition PC is a set of constraints over symbolic
and integer constants. A concrete state c is represented by a symbolic state
s = (f, PC) iff c |= ∃Vs ·

∧
y∈V y = f(y) ∧

∧
p∈PC p, where Vs = {z | ∃y · f(y) =

z ∧ z is a symbolic constant}. For example, the state ({x $→ x0, y $→ y0}, {y0 >
0, x0 > y0}) denotes the set of concrete states where y is strictly greater than 0
and x is strictly greater than y.

Let x be a variable in V and s = (f, PC) a symbolic state. The symbolic
execution is done by the function Exec (line 14 of Fig. 5) using the following
rules: if et is x := nondet then the result is the state s′ = (f [x → z], PC),
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1: function symbolicExec(P, Φ)
2: symbStack← empty stack � Each item on the stack is a set of states
3: push splitState(s0, Φ) on symbStack
4: A0 ← {αΦ(s) | s ∈ splitState(s0, Φ)}
5: (fin,inf,trans)← (∅, ∅, ∅)
6: while symbStack is not empty do
7: S ← top of symbStack
8: choose s ∈ S s.t. for some t, s |= gt

9: if no such transition exists or transitions exhausted then
10: fin← fin ∪ allPaths(S, trans)
11: trans← tail of trans
12: pop symbStack
13: continue
14: result← Exec(s, et)
15: S′ ← splitState(result, Φ)
16: for all {s′ ∈ S′ | αΦ(s′) = αΦ(s) or ∃t · (αΦ(s′), t′) ∈ trans} do
17: fin← fin ∪ stem((αΦ(s), t, αΦ(s′)), trans)
18: inf← inf ∪ loop((αΦ(s), t, αΦ(s′)), trans)
19: S′ ← S′ \ {s′}
20: if S′ �= ∅ then
21: push S′ on symbStack
22: trans← prepend (αΦ(s), t) to trans

23: return (fin, inf, A0)

Fig. 5. Symbolic execution with abstract matching

1: function safeFragment(fin,inf )
2: worklist← inf
3: while worklist �= ∅ do
4: (a, t, b)← remove element from worklist
5: if ¬(a⇒ pre(b, t)) then return false

6: T ← {(a′, t′, b′) ∈ fin | a′ ∈ {a, b}}
7: fin← fin \ T
8: worklist← worklist ∪ T
9: return true

function splitState(s)
S ← ∅, X ← αΦ(s)
for all minterms x ∈ X do

S ← S ∪ (f, PC ∪ x[f(v1)/v1, · · · , f(vn)/vn])
return S

Fig. 6. Algorithms for safe-fragment check and splitting symbolic states

where z is fresh symbolic constant (i.e., is not used in any symbolic state so
far) and f [x → z](a) is z if x = a and f(a) otherwise; if et is x := u for
some expression u, then the result is the state s′ = (f [x → z], PC′), where z
is fresh and PC′ = PC ∪ (z = u[f(v1)/v1, · · · , f(vn)/vn]); if et is a concurrent
assignment, the result is obtained by the obvious generalization of the base rules.

Recall that we require that a symbolic state satisfies or refutes each predicate
in Φ. We enforce this using splitState that takes a symbolic state as input and
returns a set of states that satisfy our constraint. The näıve implementation is
to recursively split a state s by taking a predicate from p ∈ Φ that is neither
satisfied nor refuted by s and creating two new states by adding p and ¬p to the
path constraint of s, respectively. This is highly inefficient.

Instead, we reduce the problem to predicate abstraction as shown in Fig. 6.
Basically, we compute a predicate abstraction of a symbolic state s and then
split s using all the minterms in the result1. For example, consider the symbolic
state s = ({x $→ x0, y $→ y0}, {y0 = 0}) over V = {x, y}, and let Φ = {x >

1 A minterm is a conjunction of literals containing all predicates in Φ.
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0, y > 0}. Predicate abstraction of s over Φ has two minterms: {x > 0 ∧ y ≤
0, x < 0∧ y ≤ 0}. This leads to two new symbolic states {(f ′, PC′), (f ′′, PC′′)},
where f ′′ = f ′ = {x $→ x0, y $→ y0}, PC′ = {y0 = 0, x0 > 0, 0 ≤ 0}, and
PC′′ = {y0 = 0, x0 ≤ 0, 0 ≤ 0}. Of course, tautologies like 0 ≤ 0 are discarded
when the expression is simplified. This has the same worst-case complexity as
the näıve approach, but allows us to use recent advances in predicate abstraction
(such an AllSAT SMT solver).

In symbolicExec, the variable trans keeps an abstraction of the path from
the initial state to states at the top of symbStack as a list of tuples (a, t), where
a is an abstract state and t a transition. Whenever symbolicExec reaches a
state whose abstraction has been seen before on the current path (i.e., either
it is the same as a predecessor or it appears in trans – line 16), it stops cur-
rent exploration and backtracks. At this point, trans is a lasso-shaped abstract
path. Functions stem and loop are used to extract the transitions that oc-
cur on the stem of the path, stored in set fin and the loop of the path, stored
in inf. For example, consider the symbolic execution tree shown in Fig. 3(a).
When symbolicExec takes the transition s4

t3−→ s5 (corresponding to the
abstract transition a5

t3−→ a4 in the abstract model in Fig. 3(b)) it discov-
ers a loop. Then, trans = [(a4, t2), (a3, t4), (a1, t1)], stem(trans, (a5, t3, a4)) =
{(a1, t1, a3), (a3, t4, a4)}, and loop(trans, (a5, t3, a4))={(a4, t2, a5), (a5, t3, a4)}.
Note that transitions in the list trans are stored in reverse order from which they
appear on the abstract path.

When symbolicExec reaches a set of symbolic states where no transition can
be taken (line 9), the transitions leading to that set of states are added to fin
using the allPaths function. For example, assume trans = [(a2, t2), (a1, t1)] and
S = {a3, a4}. Then, allPaths(S, trans) = {(a1, t1, a2), (a2, t2, a3), (a2, t2, a4)}.

safeFragment works by locating the fragment of the abstract model that
is reached by all execution paths. This is done by finding all transitions in or
reachable from inf. If all of these transitions are exact, then we conclude safety.
Otherwise, we proceed to inductive-invariant.

In inductive-invariant (lines 9–13 of Refine), for every state which is the source
of an inexact transition t, we check if its strongest postcondition w.r.t. t is a
subset of the set of abstract states explored (line 12). If so, the explored abstract
states over-approximate the set of reachable concrete states, and thus we can
conclude safety. Otherwise, we go back to the symbolic execution stage, but
now with new predicates added from preimages of destination states of inexact
transitions (line 11 of Refine).

4.2 Soundness and Monotonicity

Our algorithm only reports real errors. This is ensured by restricting symbolic
execution to explore only symbolic states with satisfiable path constraints. The-
orem 1 states that the algorithm is also sound for safety properties2. Of course,
since property checking is undecidable, the algorithm is incomplete.
2 Proofs of all theorems can be found in [1].
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In the rest of this section, we represent the abstract state-space explored by
symbolicExec by a transition system Ma = (Sa, Ra, Sa

0 , La), where AP = Φ,
Sa is the set of all states appearing in (fin,inf, A0), Ra is the set of all transitions
appearing in fin ∪ inf, Sa

0 = A0, and for x ∈ Sa, La(x) = {φ ∈ Φ | x |= φ}.

Theorem 1 (Soundness). Let ψ be a safety property, P be a program satis-
fying ψ, and Mc = (S, R, S0, L) be a transition system of P . W.l.o.g., assume
that every state in S is reachable from S0. Let Ma = (Sa, Ra, Sa

0 , La) be the
abstract transition system constructed by symbolicExec in the last iteration of
Refine. Then, (i) if Refine terminates after safe-fragment (line 7), then Ma

simulates Mc; (ii) if Refine terminates after inductive-invariant (line 13), then
Sa over-approximates S (i.e., ∀s ∈ S · αΦ(s) ∈ Sa).

As in Synergy (see Sec. 4 in [15]), when our algorithm terminates with safe-
fragment, the current abstraction simulates, but is not necessarily bisimular to,
the concrete program. Moreover, if it terminates with inductive-invariant then
the abstraction may not even simulate the concrete program.

In contrast with other under-approximating approaches, e.g., [23,4], our algo-
rithm explores more states in each successive iteration than in a previous one.
That is, the exploration is monotonically increasing. This ensures steady progress
towards an error state (if one exists). Intuitively, we get this by keeping an ab-
stract visited table per each path, as opposed to a unique global table as in [23].

Theorem 2 (Monotonicity). Let Φ and Φ′ be two sets of predicates s.t. Φ ⊆
Φ′. Let P be a program, and C and C′ be the concrete states of P explored by
symbolicExec under Φ and Φ′, respectively. Then, C ⊆ C′.

In contrast, our approach is not monotonic for proving safety: adding new pred-
icates may cause an exact transition used by safe-region check to become inex-
act [12,23,4]. In the future, we hope to solve this problem by using an abstract
domain of tri-vectors.

As discussed in Section 2, the two checks, safe-fragment and inductive-invariant,
are incomparable. We prove this below.

Theorem 3. There is an abstract model Ma constructed by symbolicExec

that passes exactly one of safe-fragment and inductive-invariant checks.

Proof. First, we give an example where safe-fragment holds but inductive-invariant
fails. Consider Ma in Fig. 3(b). Recall that it passes safe-fragment check. It fails
inductive-invariant since it is not closed under strongest postcondition: sp(a1, t1) =
(pc1 = 2 ∧ pc2 = 1 ∧ x ≤ y ∧ b �= 2) ∨ (pc1 = 2 ∧ pc2 = 1 ∧ x ≤ y ∧ b = 2); the
second disjunct is not covered by an explored abstract state.

Second, we give an example where inductive-invariant holds but safe-fragment
fails. Consider M ′

a shown in Fig. 3(c). It is obtained from symbolically executing
a program obtained by replacing transition t3 by t3 : pc1 = 3 −→ pc1 := 2, x :=
x + 1 in the protocol in Fig. 1, and assuming that Φ includes predicates b = 0,
b = 1, and predicates from the guards. All transitions of M ′

a, with the exceptions
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Iter Prvr. Qurs. Preds. Time(s) Con/Abs States Check

Program ψ ASE UR ASE UR ASE UR ASE UR ASE UR ASE
bakery2 t 3 4 141 367 8 10 0.347 0.452 52/33 49/36 II
RAX t 1 - 6 - 2 - 0.261 - 81/44 - SF
elev4 t 1 4 418 5789 13 19 1.013 8.146 468/378 468/456 SF
elev5 t 1 5 1169 26252 15 23 3.459 44 1256/910 1253/1204 SF
elev6 t 1 6 3156 105830 17 27 12.275 220.633 3248/2126 3224/3060 SF
elev7 t 1 - 7116 - 19 - 40.867 - 8160/4862 - SF
elev8 t 1 - 15036 - 21 - 185.717 - 15200/9422 - SF
ticket2 t 4 4 135 120 8 8 0.609 0.404 22/9 12 / 9 SF
ticket3 t 5 5 672 661 14 14 1.413 0.923 182/31 41/31 SF
ticket4 t 6 6 4088 4061 23 23 33.51 5.143 5011/129 170/129 SF
mesi t 16 16 6893 12172 47 47 36.61 49.627 18/18 18/18 SF

berkley t 11 11 3113 4623 38 38 15.729 17.605 13/12 13/12 SF

b bakery2-e f 1 2 0 74 2 5 0.178 1.188 80/80 193/193 -
ticket2-e f 1 2 0 11 2 5 0.073 0.155 12 / 9 26 / 17 -
ticket3-5 t 1 3 0 145 3 14 0.058 0.341 14/12 93/81 -
ticket3-10 t 3 8 152 1218 14 21 0.525 2.229 30/27 302/240 -
ticket3-15 t 8 13 1225 2090 21 26 3.107 5.15 47/44 507/395 -
ticket3-20 t 13 18 2500 3918 26 31 6.869 9.501 62/59 712/550 -
ticket3-25 t 18 23 3925 5493 31 36 13.038 15.821 77/74 917/705 -
ticket3-30 t 23 28 5500 7219 36 41 20.762 34.701 92/89 1112/860 -
ticket3-35 t 28 33 7225 9093 41 46 46.379 51.579 107/104 1327/1015 -
ticket3-40 t 33 38 9100 11118 46 51 71.462 82.974 122/119 1532/1170 -

RAX-5 t 5 5 46 123 12 20 0.373 0.363 50/49 170/170 -
RAX-10 t 10 10 146 483 17 35 0.988 1.528 90/89 350/350 -
RAX-15 t 15 15 296 1068 22 50 2.031 4.341 130/129 530/530 -
RAX-20 t 20 20 496 1878 27 65 3.675 9.934 170/169 710/710 -
RAX-25 t 25 25 746 2913 32 80 6.442 19.578 210/209 890/890 -
RAX-30 t 30 30 1046 4173 37 95 9.94 35.03 250/249 1070/1070 -
RAX-35 t 35 35 1396 5658 42 110 15.155 57.315 290/289 1250/1250 -
RAX-40 t 40 40 1796 7368 47 125 22.104 89.332 320/319 1430/1430 -
RAX-45 t 45 45 2246 9303 52 140 30.821 133.063 370/369 1610/1610 -

Fig. 7. Experimental results: ASE vs. UR [23]

of the two transitions from a5, are exact. safe-fragment fails on M ′
a. inductive-

invariant does not: the only interesting case is that sp(a5, t
′
3) = (pc1 = 2∧ pc2 =

2 ∧ b = 2) is covered by explored abstract states. �

We have shown that our algorithm is sound and explores the concrete state-space
monotonically. We have also shown that the two safety checks, safe-fragment and
inductive-invariant, are incomparable. Hence, both are useful.

5 Implementation and Experimental Results

We have implemented our algorithm in OCaml on top of the implementation of
Pasareanu et al. [23]. We used GiNaC [5] for symbolic execution, MathSAT4 [6]
for computing predicate abstraction, Simplify [10] for checking exactness of
transitions and computing inductive invariants, and Bradley’s implementation of
Cooper’s method for quantifier elimination3. In all of our experiments, we added
predicates only from those inexact transitions that are in the set inf (returned
by symbolicExec) or reachable from it.

3 Available at http://theory.stanford.edu/~arbrad/sware.html

http://theory.stanford.edu/~arbrad/sware.html
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Program ψ Iter. Prvr. Qurs. Preds. Symb/Abs States Time(s) Check

ticket2 t 4 523 12 5516/62 281.134 II
peterson2 t 1 24 4 700/38 424 II
bakery2 t 3 301 11 807/50 73.965 II
mesi t 2 260 13 112/14 3.56 II

synapse t 2 62 7 34/9 0.88 II
ticket2-e f 1 0 2 12/10 0.104 -
ticket3-e f 1 0 3 10/10 0.112 -

Fig. 8. Experimental results: programs with unspecified initial states and non-
deterministic input

In Fig. 7, we compare effectiveness of our abstract analysis of symbolic ex-
ecutions approach (referred to as ASE) with that of the under-approximation
refinement algorithm of [23] (referred to as UR). We indicate whether the safety
property of interest (ψ) is true (t) or false (f) and report the number of iterations
(Iter.), the number of theorem prover queries (Prvr. Qurs.), the total number
of predicates used (Preds.), the total amount of time needed, the number of
concrete and abstract states explored in the final iteration, and the check with
which ASE concluded safety (II for inductive-invariant, SF for safe-fragment, and
“–” when a counterexample is returned). In cases where the experiment did not
finish after 15 minutes, the table entries are “–”.

Since UR can onlyhandle a single concrete initial state and nonon-deterministic
input, these are the characteristics of all programs in Fig. 7. We began by check-
ing the mutual exclusion property of the bakery protocol with two processors,
where our performance is a bit better than UR. On the other hand, ASE can prove
that the Remote Agent Experiment (RAX), as presented in [23], is deadlock-free
in a single iteration, while UR refines indefinitely. We then verified the elevator
program, elevi, increasing the number of floors i, against the property that the
elevator cannot be on two separate floors at the same time. We checked mutual
exclusion of the ticketi protocol, increasing the number of processes i, as well as
correctness cache coherence protocols mesi and berkley (these, along with their
correctness properties, are taken from [9], restricting the number of initial states to
one). Our results show that ASE generally outperforms UR in terms of the number
of iterations and time it takes to prove safety. In the case of ticketi where ASE
requires the same number of iterations and predicates, ASE takes more time as it
explores more concrete states per iteration.

To illustrate the power of our approach at finding errors, we analysed de-
fective versions, i.e., not satisfying mutual exclusion, of the bounded bakery
(b bakery2-e) and ticket (ticket2-e) protocols. We also checked whether a
given ticket number X in the ticketi protocol (ticketi-X) and a given counter
value X in the RAX example (RAX-X) are reachable. ASE terminates in fewer
iterations than UR in the former case and in the same number of iterations but
significantly fewer predicates in the latter.

In Fig. 8, we report on the results of ASE for checking properties of programs
with unspecified initial states and/or non-deterministic input. Specifically, we
verified mutual exclusion of ticket, where the initial ticket number is set non-
deterministically, and bakery and peterson protocols, where each process stays
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in the critical section for a non-deterministic amount of time. We also verified
correctness of cache coherence protocols, mesi and synapse, with undefined
initial states.

In summary, ASE can analyse a wide range of programs that manipulate
arbitrary integers and use non-deterministic input. And it can do so in less time,
and considerably fewer iterations or with significantly fewer predicates than UR.

6 Related Work

The work by Pasareanu et al. [23] is the closest to ours. However, there are sev-
eral key differences. First, our approach explores the state-space monotonically.
Second, we use symbolic execution to deal with programs with arbitrary ini-
tial states and non-deterministic input. Third, we use over-approximation much
more aggressively leading to a much faster convergence with fewer predicates.
Comparison with other work is given below.

Over-approximation based techniques (e.g., [3,16,7]) build an abstraction that
has more behaviours than the concrete system and prune infeasible computations
via refinement. In contrast, our refinement is based on extending the frontier of
feasible program behaviours. Most of such techniques, with the exception of [7],
deal with sequential programs only.

Under-approximation based techniques [23,4,20,24] build an abstraction that
has fewer program behaviours than the concrete system. Our approach includes
both reachable must and may transitions making the abstract models more pre-
cise than those that have just must transitions (e.g., [24]) and must and reverse
must transitions (e.g., [4]4). The algorithm in [20] builds a finite bisimiluation
quotient of the program under analysis, but unlike the global refinement em-
ployed by us and [23], uses a local refinement instead. We leave a comparison of
the efficiency of local and global refinements for future work.

Most recent automated software verification techniques that combine dy-
namic analysis for detecting bugs and static analysis for proving correctness
(e.g., [26,15,13,19]) concentrate on analysis of sequential programs, and unlike
our approach which bounds program executions, assume terminating program
executions. For example, [26] uses tests cases to explore an under-approximating
abstract state-space with the hope of exploring all reachable abstract states but
has no notion of refinement and thus the analysis may return false positives. Like
our work, [2] uses abstraction to bound symbolic execution of programs. While
this approach can handle programs with recursive data structures and arrays,
its goal is debugging rather than verification, and it does not involve refinement.

[19] improves error detection capabilities of the CEGAR framework [8] by
using program execution to drive abstraction-refinement. However, it does so by
refining an over-approximation and is restricted to sequential programs.

Directed automated random testing (DART) [14] and its successors, [25,11],
run the program with random input, using path constraints to discover input
that would exercise alternative program paths. The Synergy algorithm [15]
4 see [1] for a detailed comparison with [4].
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combines DART-like testing with over-approximating abstractions, using results
of tests to refine the abstract model and using the abstract model to drive test
case generation. The end result is either a test case that reaches an error state, or
an abstract model that simulates the program. Whereas DART-like approaches
attempt to cover all program paths, our approach and [23,26] attempt to cover all
reachable abstract states. [13] presents a compositional algorithm that combines
DART and over-approximating techniques. DART-like testing is used to create
under-approximating (must) summaries of functions, and techniques based on [3]
are used to create over-approximating (may) summaries. The authors show that
alternating must and may summaries yields better results than must only or may
only summaries. However, these techniques are restricted to sequential programs.

7 Conclusion and Future Work

We presented a novel verification algorithm that combines symbolic execution
and predicate abstraction in an abstraction-refinement cycle. Our approach ap-
plies to concurrent programs with infinite data domain and non-deterministic
input. Given a program and a safety property, our algorithm executes the pro-
gram symbolically, while building an under-approximating abstract model. If an
error is reached by symbolic execution, we terminate and report it. Otherwise,
we check whether the state-space of the abstract model over-approximates all
concretely reachable states. If the analysis fails, we refine with new predicates
and repeat the process. Not only do we handle a much wider range of programs
than related approaches, we also improve on the number of iterations and the
number of predicates used, whether the property of interest is true or false.

Our current implementation is a proof of concept – more work is needed to
turn it into robust verification tool that is applicable to a real programming
language (such as C) with complex features (e.g., structured and recursive data
types, pointers, recursion, etc.). It is also interesting to see whether the ap-
proach extends to termination (and non-termination) properties. A promising
direction is to use the under-approximation to derive either a ranking func-
tion or a counterexample to termination. We leave exploring these for future
work.
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Abstract. We propose a purely implicit solution to the contextual as-
sumption generation problem in assume-guarantee reasoning. Instead of
improving the L∗ algorithm — a learning algorithm for finite automata,
our algorithm computes implicit representations of contextual assump-
tions by the CDNF algorithm — a learning algorithm for Boolean
functions. We report three parametrized test cases where our solution out-
performs the monolithic interpolation-based Model Checking algorithm.

1 Introduction

Assume-guarantee reasoning is a divide-and-conquer technique to alleviate the
state explosion problem in formal verification. Let M be a transition system and
π a predicate on states of M . We write M |= π to denote that all reachable
states of M satisfy the state predicate π. The composition of transition systems
M and M ′ is denoted by M‖M ′. Moreover, M � M ′ means that M is simulated
by M ′. Consider the following assume-guarantee reasoning rule:

M0‖A |= π M1 � A

M0‖M1 |= π

In order to prove that the composition of M0 and M1 satisfies π, it suffices to find
a transition system A such that the composition of M0 and A satisfies the state
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predicate π, and that M1 is simulated by A. Informally, the transition system A
captures necessary assumptions about the context of M0 to guarantee π. We thus
call A a contextual assumption. The contextual assumption generation problem
is to compute a contextual assumption in an assume-guarantee reasoning rule.

We address the contextual assumption generation problem in this paper.
In [11], the problem is formulated as an automata learning problem. The au-
thors apply the L∗ algorithm [1] to generate a deterministic finite automaton
as the contextual assumption. In contrast to previous works [14,13,7,5,23,20,11],
our solution does not rely on the L∗ algorithm. Instead, we use the CDNF algo-
rithm [4] to generate Boolean functions that implicitly represent contextual as-
sumptions in assume-guarantee reasoning. One can think of the relation between
our approach and L∗-based techniques as very similar to the relation between
implicit and explicit Model Checking. Succinct implicit representations give our
algorithm advantages in generating contextual assumptions of a moderate size.
They hence make our solution more scalable and applicable.

Our new technique directly computes implicit representations of contextual
assumptions by applying the CDNF algorithm [4]. The CDNF algorithm is an
exact learning algorithm for arbitrary Boolean functions. It assumes an active
learning model similar to that in the L∗ algorithm [1]. In its learning model, a
membership query asks a teacher if a valuation satisfies the target Boolean func-
tion. An equivalence query asks if a conjecture is equivalent to the target Boolean
function. If not, the teacher should give a counterexample so that the learning
algorithm can refine the conjecture. The CDNF algorithm is a feasible learning
algorithm. It infers any target Boolean function with a polynomial number of
queries in the size of the target function and the number of variables [4].

In [11], all components and the contextual assumption were modeled as finite
automata. The contextual assumption generation problem was solved by learn-
ing a deterministic finite automaton as the contextual assumption. In contrast,
we view the problem as a Boolean function learning problem. In our setting,
transition systems and hence contextual assumptions are implicitly represented
by Boolean functions. The simulation relation M1 � A in the assume-guarantee
reasoning rule gives a simple characterization of the Boolean functions represent-
ing the transition system M1 and a contextual assumption A. We thus exploit the
information to resolve membership queries. Moreover, the premise M0‖A |= π in
the assume-guarantee reasoning rule further characterizes the Boolean functions
representing the transition system M0 and the contextual assumption A. This
allows us to resolve equivalence queries in our algorithm.

It is important to note that our algorithm is not an optimization of the ex-
plicit L∗ algorithm in any way. Instead, our algorithm simply generates con-
textual assumptions implicitly by employing an exact learning algorithm for
Boolean functions. The most significant advantage of our solution is its scalabil-
ity. This can be observed in two aspects. Recall that the L∗ algorithm requires
a polynomial number of queries in the number of states of the target finite au-
tomaton [1,21]. The CDNF algorithm, on the other hand, requires a polynomial
number of queries in the number of Boolean variables of the target Boolean
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function [4]. Since implicit representations obtained in our algorithm can be
exponentially more succinct than explicit ones obtained in automata-theoretic
algorithms, our solution can be exponentially better than explicit algorithms.

Comparing the qualities of generated contextual assumptions, our solution is
also favorable. Most existing automata-theoretic algorithms are based on vari-
ants of the L∗ algorithm [1,21], they inherently generate deterministic finite
automata as contextual assumptions. In contrast, contextual assumptions gen-
erated by our algorithm are represented by general Boolean functions. In general,
they are nondeterministic finite automata in an economic representation. Since
nondeterministic finite automata can be exponentially more succinct than de-
terministic ones, our algorithm can generate contextual assumptions with expo-
nentially less states than those generated by L∗-based algorithms. Even though
implicit representations have been used in optimizing the L∗ algorithm [23,13,20],
our new implicit solution can still outperform these optimizations.

In [17], the CDNF algorithm is used to generate propositional loop invariants
in sequential programs. The idea of using the L∗ algorithm to learn contextual
assumptions for assume-guarantee reasoning was first proposed in [11]. Follow-
ing this work, there have been results for other assume-guarantee rules [2,20],
symbolic implementations [20], various optimization techniques [6,23,15,7], per-
formance evaluation [10], and extension to support liveness properties [12]. The
common theme of these works is that they are all based on the L∗ learning al-
gorithm and hence always generate deterministic finite automata as contextual
assumptions. To the best of our knowledge, the only exception is [3], which is
essentially a modified version of the counterexample guided abstraction refine-
ment technique [9]. Our solution is orthogonal to abstraction refinement; it can
apply abstraction refinement techniques implemented in Model Checkers.

The paper is organized as follows. Section 2 gives the background of our pre-
sentation. We review the exact learning algorithm CDNF for Boolean functions
in Section 3. It is followed by our solution to the contextual assumption gener-
ation problem (Section 4). Section 5 gives our preliminary experimental results.
Finally, we conclude in Section 6.

2 Preliminaries

B = {F, T} is the Boolean domain. Let x be a set of Boolean variables and |x|
the size of x. A Boolean function θ(x) over x is a function from B|x| to B. We
also define x′ to be the set of Boolean variables {x′ : x ∈ x}.

A valuation ν : x → B over x is a function from Boolean variables to truth
values. Let φ(x) be a Boolean function over x and ν a valuation over x. If y ⊆ x
is a set of Boolean variables, ν↓y is the restriction of ν on y. That is, ν↓y: y → B

and ν↓y (y) = ν(y) for all y ∈ y. We write φ[ν] for the result of evaluating φ
by replacing each x ∈ x with ν(x). Moreover, let ψ(x,x′) be a Boolean function
over x and x′. If ν and ν′ are valuations over x, we write ψ[ν, ν′] for the result of
evaluating ψ by replacing each x ∈ x with ν(x) and each x′ ∈ x′ with ν′(x). For
example, assume ν(x) = F and ν′(x) = T. If φ(x) = ¬x, φ[ν] = T and φ[ν′] = F.
If ψ(x, x′) = ¬x ∧ x′, ψ[ν, ν′] = T and ψ[ν′, ν] = F.
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A transition system M = (x, ι(x), τ(x,x′)) consists of its state variables x,
its initial predicate ι(x), and its transition relation τ(x,x′). A trace of M α =
ν0ν1 · · · νt is a finite sequence of valuations where νi is a valuation over x, such
that ι[ν0] = T and τ [νi, νi+1] = T for 0 ≤ i < t. Define Trace(M) = {α :
α is a trace of M}. If α = ν0ν1 · · · νt is a finite sequence of valuations over x
and y ⊆ x, α↓y= ν0↓y ν1↓y · · · νt↓y is the restriction of α on y.

Let M = (x, ιM (x), τM (x,x′)) be a transition system. A state predicate π(x)
is a Boolean function over x. We say M satisfies π (denoted by M |= π) if for any
α = ν0ν1 · · · νt ∈ Trace(M), we have π[νi] = T for 0 ≤ i ≤ t. Given a transition
system M and a state predicate π, the invariant checking problem is to decide
whether M satisfies π. Model Checking is an automatic technique to solve the
invariant checking problem. When deciding whether M |= π, a Model Checking
algorithm returns a witness if M does not satisfy π. A witness to M �|= π is a
trace ν0ν1 · · · νt of M such that π(νi) = T for 0 ≤ i < t but π(νt) = F.

Let N = (x, ιN (x), τN (x,x′)) be a transition system. We say M is simulated
by N or N simulates M (denoted by M � N) if ∀x.ιM (x) =⇒ ιN (x) and
∀xx′.τM (x,x′) =⇒ τN (x,x′) hold. In words, M is simulated by N if the initial
condition of M is more restrictive than that of N and every transition allowed
in M is also allowed in N . Clearly, if M � N , then Trace(M) ⊆ Trace(N).

Let xi be sets of Boolean variables for i = 0, 1 (xi’s are not necessarily dis-
joint). Consider Mi = (xi, ιi(xi), τi(xi,x′i)) for i = 0, 1. The composition of M0
and M1 is the transition system M0‖M1 = (x0 ∪ x1, ι0(x0)∧ ι1(x1), τ0(x0,x′0)∧
τ1(x1,x′1)). Note that for any finite sequence of valuations α over x0 ∪ x1,
α ∈ Trace(M0‖M1) if and only if α↓x0∈ Trace(M0) and α↓x1∈ Trace(M1).

An assume-guarantee reasoning rule is of the form Θ0 · · ·Θm

Δ
where Θ0, . . . ,

Θm are its premises and Δ its conclusion. An assume-guarantee reasoning rule
is sound if its conclusion holds when its premises are fulfilled. A rule is invertible
if its premises can be fulfilled when its conclusion holds. We use the following
assume-guarantee reasoning rule throughout the paper:

Lemma 1. Let Mi = (xi, ιi(xi), τi(xi,x′i)) be transition systems for i = 0, 1,
and π a state predicate over x0 ∪x1. The following rule is sound and invertible:

M0‖A |= π M1 � A

M0‖M1 |= π

where A = (x1, ιA(x1), τA(x1,x′1)) is a transition system.

Let Mi = (xi, ιi(xi), τi(xi,x′i)) be transition systems for i = 0, 1 and π a state
predicate over x0∪x1, a transition system A = (x1, ιA(x1), τA(x1,x′1)) such that
M0‖A |= π and M1 � A is called a contextual assumption of M0.

3 The CDNF Algorithm

For a fixed set of Boolean variables x and a Boolean function λ(x) over x, an
exact learning algorithm for Boolean functions computes a representation of λ(x)
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in a finite number of steps. The CDNF algorithm is an exact learning algorithm
for Boolean functions [4]. Like the L∗ algorithm [1], the CDNF algorithm uses
an active learning model. In the model, it is assumed that a teacher, who knows
the target Boolean formula λ(x), provides the learning algorithm with answers
to the following types of queries:

– Membership query MEM (ν) for the target λ(x), where ν is a valuation over
x. If λ[ν] = T, the teacher answers YES ; and NO , otherwise.

– Equivalence query EQ(θ) for the target λ(x), where θ(x) is a Boolean func-
tion over x. If the conjecture θ(x) is equivalent to the target Boolean function
λ(x), the teacher answers YES . Otherwise, the teacher provides a valuation
ν over x where θ[ν] �= λ[ν]. The valuation ν serves as a counterexample to
the equivalence query EQ(θ).

Consider the following examples. Assume λ(x, y) = (x ∧ ¬y) ∨ (¬x ∧ y) is the
target Boolean function over x and y. The teacher answers NO to the query
MEM (ν) where ν(x) = ν(y) = F (denoted by ν(xy) = FF), since λ(F, F) = F.
For a different valuation ν(xy) = TF, the teacher answers YES . As an example
of equivalence queries, consider EQ(x ∨ y). The teacher provides the valuation
ν(xy) = TT as a counterexample, since T ∨ T = T �= F = λ(T, T). For another
equivalence query EQ((x ∨ ¬y) ∧ (¬x ∨ y)), the teacher answers YES .

Let λ(x) be a Boolean function over x, |λ(x)|DNF and |λ(x)|CNF denote the
sizes of λ(x) in minimal disjunctive and conjunctive normal forms respectively.
Under the aforementioned active learning model, the CDNF algorithm computes
a representation for any target Boolean function λ(x) with a polynomial number
of queries in |λ(x)|DNF , |λ(x)|CNF , and |x| [4].

4 Learning a Contextual Assumption

Recall the following assume-guarantee reasoning rule (Lemma 1):

M0‖A |= π M1 � A

M0‖M1 |= π

Our goal is to generate a contextual assumption A = (x1, ιA(x1), τA(x1,x′1))
such that the premises M0‖A |= π and M1 � A hold. The contextual assumption
consists of two parts: ιA(x1) and τA(x1,x′1) which are Boolean functions over
x1 and x1 ∪ x′1 respectively. We naturally use the CDNF algorithm to learn
both Boolean functions. Precisely, two instances of the CDNF algorithm are
deployed: one for the initial predicate ιA(x1), and the other for the transition
relation τA(x1,x′1). Remember that the CDNF algorithm relies on a teacher,
who knows the target Boolean function already, to answer queries from the
learning algorithm. In this case, the target functions are unknown. We use the
two premises of the assume-guarantee reasoning rule (Lemma 1) to simulate the
role of a teacher. We explain in detail how this is done for the rest of Section 4.

There are four different types of queries (from the two instances of the CDNF
algorithm) that need to be handled:
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– the membership query MEM (μ) for the target ιA(x1);
– the membership query MEM (μ, μ′) for the target τA(x1,x′1);
– the equivalence query EQ(ι) for the target ιA(x1); and
– the equivalence query EQ(τ) for the target τA(x1,x′1).

In order to resolve membership queries, we exploit the fact that any contextual
assumption must simulate M1. The membership query MEM (μ) for the target
ιA(x1) is resolved by checking if μ satisfies ι1(x1). If so, μ must also satisfy ιA(x1)
because M1 is simulated by any contextual assumption A. The membership query
MEM (μ, μ′) is resolved similarly.

For equivalence queries, we answer YES when a contextual assumption is
found. Note that both conjectures ι(x1) and τ(x1,x′1) are needed to decide if
they represent a contextual assumption. The two types of equivalence queries
EQ(ι) and EQ(τ) hence cannot be resolved independently. In contrast to mem-
bership query resolution algorithms, there is only one equivalence query resolu-
tion algorithm for both types of equivalence queries.

EQ(ι)

YES ,NO

MEM (μ)

YES , ceι

YES ,NO

EQ(τ)

YES , ceτ

equivalence

resolution

IsEquivalent(ι, τ)

Algorithm

CDNF ιA

membership

resolution

IsMember ιA(μ)

membership

resolution

IsMember τA
(μ, μ′)

MEM (μ, μ′)

CDNF τA

Algorithm

Fig. 1. Structure of Contextual Assumption Generator

Figure 1 shows the interaction between components in our contextual assump-
tion generation algorithm. In the figure, two instances of the CDNF algorithm
are shown on the sides. The instance CDNF ιA is intended to compute the initial
predicate ιA(x1) of an unknown contextual assumption A; the instance CDNF τA

is to compute the transition relation τA(x1,x′1) of A. The dashed box in the mid-
dle denotes the teachers. We design three query resolution algorithms to simulate
the teachers for the two instances of the CDNF algorithm.

The membership query resolution algorithm IsMember ιA(μ) resolves the
membership query MEM (μ) for the target ιA(x1). It receives queries and sends
answers to the instance CDNF ιA . Similarly, the membership query resolution
algorithm IsMemberτA(μ, μ′) communicates with the instance CDNF τA solely.
The equivalence query resolution algorithm IsEquivalent(ι, τ), however, needs
both conjectures from CDNF ιA and CDNF τA . It hence interacts with both
instances.

4.1 Resolving Membership Queries

Let μ be a valuation over x1. The membership query MEM (μ) asks if μ is a
satisfying valuation for the initial predicate ιA(x1) of an unknown contextual
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assumption A. We exploit the simulation relation in the assume-guarantee rea-
soning rule to resolve membership queries.

Input: MEM (μ) : a membership query for the target ιA(x1)
Output: YES or NO
if ι1[μ] = T then return YES else return NO ;

(a) IsMember ιA(μ)

Input: MEM (μ, μ′) : a membership query for the target τA(x1,x
′
1)

Output: YES or NO
if τ1[μ, μ′] = T then return YES else return NO;

(b) IsMemberτA(μ, μ′)

Algorithm 1. Membership Query Resolution Algorithms

Algorithm 1a shows the membership query resolution algorithm for MEM (μ).
In order to understand the algorithm, recall the premise M1 � A in the assume-
guarantee reasoning rule (Lemma 1). The initial predicate ιA(x1) for any contex-
tual assumption A must satisfy ∀x1.ι1(x1) =⇒ ιA(x1). On the given valuation
μ over x1, we hence check if ι1[μ] = T. If so, we have ιA[μ] = T by M1 � A
and return YES . Otherwise, we simply return NO for the sake of termination.
Observe that the answers to membership queries for the target ιA(x1) are con-
sistent with ι1(x1). Algorithm 1a effectively targets the initial predicate ι1(x1)
of M1. Subsequently, CDNF ιA can infer ι1(x1) of M1 as the initial predicate
ιA(x1) of an unknown contextual assumption eventually. Of course, one expects
that an initial predicate different from ι1(x1) will be learned. Our experiments
show that this is indeed the case in practice.

ResolvingmembershipqueriesMEM (μ, μ′) for the transition relation τA(x1,x′1)
of an unknown contextual assumption is almost identical (Algorithm 1b). Let μ
and μ′ be valuations overx1 and x′1 respectively. Similar to the case of initial predi-
cate, the transition relation τA(x1,x′1) of any contextual assumptionAmust satisfy
∀x1,x′1.τ1(x1,x′1) =⇒ τA(x1,x′1) due to M1 � A. If τ1[μ, μ′] = T, τA[μ, μ′] = T
and hence our membership resolution algorithm returns YES . Otherwise, Algo-
rithm 1b returns NO . As in the membership query resolution algorithm for the
initial predicate, these answers make sure that CDNF τA can infer the transition
relation τ1(x1,x′1) of M1 and terminate eventually.

4.2 Resolving Equivalence Queries

Our equivalence query resolution algorithm answers two different types of equiv-
alence queries from the two instances of the CDNF algorithm. The equivalence
query EQ(ι) from CDNF ιA asks if the Boolean function ι(x1) represents the
initial predicate of an unknown contextual assumption; EQ(τ) from CDNF τA

asks if the Boolean function τ(x1,x′1) represents the transition relation of an
unknown contextual assumption.
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Let ι(x1) and τ(x1,x′1) be conjectures. Consider the transition system C =
(x1, ι(x1), τ(x1,x′1)). Our equivalence query resolution algorithm first checks if
M1 is simulated by C. If M1 is not simulated by C, the equivalence query
resolution algorithm returns a counterexample to either CDNF ιA or CDNF τA .
Otherwise, it continues to check if C is in fact a contextual assumption by
verifying M0‖C |= π with a Model Checking algorithm. If the composition of M0
and C satisfies π, the equivalence query resolution algorithm returns YES . We
conclude that M0‖M1 satisfies π. If the composition of M0 and C does not satisfy
π, the equivalence query resolution algorithm examines the witness returned by
the Model Checking algorithm. If the witness is also a witness to M0‖M1 �|= π,
we conclude that M0‖M1 does not satisfy π. Otherwise, the equivalence query
resolution algorithm returns a counterexample to either CDNF ιA or CDNF τA .

Input: EQ(ι) : an equivalence query for the target ιA(x1); EQ(τ ) : an
equivalence query for the target τA(x1,x

′
1)

Output: YES , a counterexample to EQ(ι), or a counterexample to EQ(τ )
let C be the transition system (x1, ι(x1), τ (x1,x

′
1));

if ι1(x1) ∧ ¬ι(x1) is satisfied by μ then
answer EQ(ι) with the counterexample μ;
receive another equivalence query EQ(ι′);
call IsEquivalent(ι′, τ );

if τ1(x1,x
′
1) ∧ ¬τ (x1,x

′
1) is satisfied by μμ′ then

answer EQ(τ ) with the counterexample μμ′;
receive another equivalence query EQ(τ ′);
call IsEquivalent(ι, τ ′);

if M0‖C |= π then
answer EQ(ι) with YES ;
answer EQ(τ ) with YES ;
report “M0‖M1 |= π”;

else
let α be a witness to M0‖C �|= π;
call IsWitness(α);

end

Algorithm 2. IsEquivalent(ι, τ )

Algorithm 2 gives details of our equivalence query resolution algorithm. Let
C be the transition system (x1, ι(x1), τ(x1,x′1)). To verify that M1 is simulated
by C, the algorithm checks if ι1(x1) ∧ ¬ι(x1) is satisfiable. If ι1(x1) ∧ ¬ι(x1)
is satisfied by a valuation μ, then ∀x1.ι1(x1) =⇒ ι(x1) does not hold and
hence M1 �� C. The valuation μ is returned to CDNF ιA as a counterexam-
ple to the equivalence query EQ(ι). The equivalence query resolution algorithm
then restarts after it receives another conjecture from CDNF ιA . Similarly, if
τ1(x1,x′1) ∧ ¬τ(x1,x′1) is satisfied by μμ′, the valuation μμ′ is returned to
CDNF τA as a counterexample to the equivalence query EQ(τ).

Now assume M1 � C. That is, the second premise of the assume-guarantee
reasoning rule is fulfilled. It remains to verify M0‖C |= π. The equivalence query
resolution algorithm uses Model Checking to verify if M0‖C |= π. If M0‖C |= π,
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both premises of the assume-guarantee reasoning rule are fulfilled. The equiva-
lence resolution algorithm concludes M0‖M1 |= π. Otherwise, the Model Check-
ing algorithm returns a witness α to M0‖C �|= π. Recall that M1 is simulated by
C and hence Trace(M1) ⊆ Trace(C). A witness α to M0‖C �|= π is not necessary
a witness to M0‖M1 �|= π for α↓x1 may not be a trace of M1. We therefore check
whether α↓x1∈ Trace(M1) by the witness analysis algorithm.

Analyzing Witnesses. Given a witness α to M0‖C �|= π, the witness analysis
algorithm IsWitness(α) inspects α to see if α↓x1 is also a trace of M1. If so, α is
a witness to M0‖M1 �|= π. Otherwise, the transition system C deviates from M1
at some point in α↓x1. The deviation is returned to either CDNF ιA or CDNF τA

as a counterexample to EQ(ι) or EQ(τ) respectively (Algorithm 3).

Input: α is a witness to M0‖C �|= π
Output: a counterexample to EQ(ι), or a counterexample to EQ(τ )
let α↓x1= μ0μ1 · · ·μt;
if ι1[μ0] = F then

answer EQ(ι) with the counterexample μ0;
receive another equivalence query EQ(ι′);
call IsEquivalent(ι′, τ );

for i := 1 to t do
if τ1[μi−1, μi] = F then

answer EQ(τ ) with the counterexample μi−1μi;
receive another equivalence query EQ(τ ′);
call IsEquivalent(ι, τ ′);

end
report “M0‖M1 �|= π is witnessed by α”;

Algorithm 3. IsWitness(α)

More concretely, let α↓x1= μ0μ1 · · ·μt be a sequence of valuations over x1.
Algorithm 3 verifies whether μ0 is an initial state of M1. If not, μ0 is a counterex-
ample to the equivalence query EQ(ι). Otherwise, the witness analysis algorithm
checks if each transition of α↓x1 on C is also a transition on M1. If the i-th tran-
sition of α↓x1 is not a transition on M1 (that is, τ1[μi−1, μi] = F), the valuation
μi−1μi is returned as a counterexample to the equivalence query EQ(τ). If a
counterexample to either EQ(ι) or EQ(τ) is found, the equivalence query reso-
lution algorithm waits for a new conjecture and then restarts. Otherwise, every
transition of α↓x1 is also a transition on M1, α is a witness to M0‖M1 �|= π.

4.3 Correctness

The correctness of our assumption generation algorithm is established in three
steps: proving soundness, completeness, and termination. Let Mi = (xi, ιi(xi),
τi(xi,x′i)) be transition systems for i = 0, 1 and π(x) a state predicate over
x = x0 ∪ x1. When the equivalence query resolution algorithm (Algorithm 2)
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reports “M0‖M1 |= π,” it has verified that the composition of M0 and C satisfies
π, where C = (x1, ι(x1), τ(x1,x′1)) is the transition system corresponding to
the conjectures ι(x1) and τ(x1,x′1). Moreover, we have M0 � C because both
ι1(x1)∧¬ι(x1) and τ1(x1,x′1)∧¬τ(x1,x′1) are not satisfiable. By the soundness
of the assume-guarantee reasoning rule (Lemma 1), we have M0‖M1 |= π.

On the other hand, when the witness analysis algorithm (Algorithm 3) reports
“M0‖M1 �|= π is witnessed by α,” it has checked that α↓x1 is a trace of M1.
Moreover, α is a witness to M0‖C �|= π and hence α↓x0 is a trace of M0. Since
α↓xi is a trace of Mi for i = 0, 1, α is a trace of M0‖M1 and thus a witness to
M0‖M1 �|= π as well. Our contextual assumption generation algorithm is sound.

Lemma 2 (soundness). Let Mi = (xi, ιi(xi), τi(xi,x′i)) be transition systems
for i = 0, 1, and π(x) a state predicate over x = x0 ∪ x1.

1. Let ι(x1) and τ(x1,x′1) be Boolean functions over x1 and x1∪x′1 respectively.
If IsEquivalent(ι, τ) reports “M0‖M1 |= π,” then M0‖M1 |= π;

2. Let ι(x1) and τ(x1,x′1) be Boolean functions over x1 and x1∪x′1 respectively.
If IsEquivalent(ι, τ) reports “M0‖M1 �|= π is witnessed by α,” then α is a
witness to M0‖M1 �|= π.

If M0‖M1 |= π, there is a transition system C = (x1, ι(x1), τ(x1,x′1)) such that
M0‖C |= π and M1 � C by the invertibility of the assume-guarantee reasoning
rule. Thus ι1(x1) ∧ ¬ι(x1) and τ1(x1,x′1) ∧ ¬τ(x1,x′1) are not satisfiable. Hence
Algorithm 2 reports “M0‖M1 |= π.” On the other hand, assume α is a witness to
M0‖M1 �|= π. Consider the transition system C = (x1, ιT(x1), τT(x1,x′1)) where
ιT(x1) = T and τT(x1,x′1) = T. Clearly M1 � C and hence α is a witness
to M0‖C �|= π. Algorithm 3 reports “M0‖M1 �|= π is witnessed by α.” Our
contextual assumption generation algorithm is complete.

Lemma 3 (completeness). Let Mi = (xi, ιi(xi), τi(xi,x′i)) be transition sys-
tems for i = 0, 1, and π(x) a state predicate over x = x0 ∪ x1.

1. If M0‖M1 |= π, then IsEquivalent(ι, τ) reports “M0‖M1 |= π” for some
Boolean functions ι(x1) and τ(x1,x′1) over x1 and x1 ∪ x′1 respectively.

2. If α is a witness to M0‖M1 �|= π, then IsEquivalent(ι, τ) reports “M0‖M1 �|=
π is witnessed by α” for some Boolean functions ι(x1) and τ(x1,x′1) over x1
and x1 ∪ x′1 respectively.

It remains to show that our algorithm always reports “M0‖M1 |= π” or “M0‖M1
�|= π is witnessed by α.” Observe that the answers given by our query resolution
algorithms are consistent with ι1(x1) and τ1(x1,x′1). Hence the instance CDNF ιA

will infer ι1(x1) after a polynomial number of queries. Similarly, CDNF τA will
generate τ1(x1,x′1) eventually. At this point, the corresponding transition system
C = (x1, ι1(x1), τ1(x1,x′1)) = M1. The equivalence query resolution algorithm
can always decide whether M0‖M1 |= π or not. Our contextual assumption
generation algorithm therefore always reports to the user after a polynomial
number of queries.



Automated Assume-Guarantee Reasoning through Implicit Learning 521

Lemma 4 (Termination). Let Mi = (xi, ιi(xi), τi(xi,x′i)) be transition sys-
tems for i = 0, 1, and π(x) a state predicate over x = x0 ∪ x1. The contextual
assumption generation algorithm reports “M0‖M1 |= π” or “M0‖M1 �|= π is wit-
nessed by α” within a polynomial number of queries in |ι1(x1)|DNF , |ι1(x1)|CNF ,
|τ1(x1,x′1)|DNF , |τ1(x1,x′1)|CNF , and |x1|.

5 Experiments

We have implemented a prototype of our contextual assumption generation al-
gorithm in OCaml. Our current implementation uses the OCaml thread library
for synchronization purposes. Each instance of the CDNF algorithm (that is,
CDNF ιA or CDNF τA) is executed in a separate thread, and the equivalence
query resolution algorithm is executed in a third thread.

We use MiniSat 2 (version 070721) in the membership query resolution al-
gorithms (Algorithm 1) and the simulation checking in the equivalence query
resolution algorithm (Algorithm 2). For monolithic Model Checking, we imple-
ment the interpolation-based algorithm in [19]. Interpolants are computed by
instrumenting MiniSat 2. The interpolation-based Model Checking algorithm
is also used in the equivalence query resolution algorithm (Algorithm 2).

We report three test cases in this section: the MSI cache coherence proto-
col [16], synchronous bus arbiters [18], and dining philosophers [22]. Each test
case has experiments parametrized by the number of nodes. Let M1, . . . , Mn be
the nodes in an experiment with n nodes, and π a state predicate. We verify
M1‖ · · · ‖Mn |= π in an experiment with n nodes.

Assume-guarantee reasoning is compared with monolithic interpolation-based
Model Checking in each experiment. We explored several different partitions in
each experiment. More precisely, an experiment with n nodes is divided into
different partitions in n trials. In the i-th trial, we apply the following assume-
guarantee reasoning rule:

(M1‖ · · · ‖Mi−1‖Mi+1‖ · · ·Mn)‖A |= π Mi � A

(M1‖ · · · ‖Mi−1‖Mi+1‖ · · ·Mn)‖Mi |= π

Our contextual assumption algorithm generates a contextual assumption A to
verify M1‖ · · · ‖Mn |= π in each trial. Since we do not address the decomposition
problem in this paper, we choose the best result among the n trials and compare
it with monolithic Model Checking. All experimental results are collected on a
3.2GHz Intel Xeon server with 2GB memory running Linux 2.4.20.

MSI Cache Coherence Protocol In the MSI cache coherence protocol, a memory
is shared among n nodes. Each node has a cache. A bus connects the memory
and caches of the nodes. When a node accesses a memory cell, it reads the cell
from the bus and keeps a copy in its cache. Several copies of the same memory
cell can be kept in different nodes. The MSI protocol ensures data coherence by
keeping each cache in one of the three states: Modified, Shared, and Invalid [16].
Two properties are verified on the model derived from NuSMV [8]. We check
that the first two nodes cannot own the bus simultaneously. Then we verify that
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nodes 4 5 6 7 8 9 10 11 12
monolithic (sec) 2.6 4.1 4.9 5.3 6.0 7.9 7.6 9.3 9.6

assume-guarantee (sec) 1.5 1.9 4.0 2.7 3.6 6.3 7.1 7.6 8.6
improvement (%) 42.3 53.6 18.3 49.0 40.0 20.2 6.5 18.2 10.4

nodes 13 14 15 16 17 18 19 20 avg
monolithic (sec) 7.7 6.6 6.8 14.7 8.4 8.7 18.2 18.5 8.6

assume-guarantee (sec) 9.0 7.7 6.5 11.3 8.3 8.4 8.9 9.6 6.6
improvement (%) -16.8 -16.6 4.4 23.1 1.1 3.4 51.0 48.1 20.9

(a) no contention for the first two nodes

nodes 4 5 6 7 8 9 10 11 12
monolithic 5s 15s 30s 42s 48s 1m43s 2m18s 5m8s 5m30s

assume-guarantee 3s 4s 30s 31s 31s 1m5s 42s 1m55s 1m33s
improvement (%) 40.0 73.3 0.0 26.1 35.4 36.8 69.5 62.6 71.8

nodes 13 14 15 16 17 18 19 20 avg
monolithic 2m37s 2m39s 3m14s 1m24s 6m38s 9m26s 9m26s 9m1s 3m36s

assume-guarantee 2m1s 2m20s 2m16s 1m28s 3m14s 4m5s 5m12s 9m11s 2m9s

improvement (%) 22.9 11.9 29.8 -4.7 51.2 56.7 44.8 -1.8 36.8

(b) no contention for all nodes

Fig. 2. Experimental Results for the MSI Protocol

any pair of nodes cannot own the bus at the same time. The former property
involves only two nodes and is easier to verify than the latter. Figure 2 shows
the results of experiments with 4 to 20 nodes.

In the figure, we show the verification time of the monolithic interpolation-
based Model Checking (monolithic), the verification time of assume-guarantee
reasoning (assume-guarantee), and the ratio of improvement (improvement). On
the first property, monolithic Model Checking takes more than 14 seconds in the
experiments with 16, 19, and 20 nodes. Assume-guarantee reasoning, on the other
hand, finishes all but one experiments in 10 seconds. Assume-guarantee reasoning
also performs significantly better than monolithic Model Checking on the second
property. The verification time for assume-guarantee reasoning increases more
stably than monolithic Model Checking (Figure 2b). The generated contextual
assumptions improve assume-guarantee reasoning by 50% in 5 experiments with
no less than 10 nodes. Given an experiment in this test case, one expects assume-
guarantee reasoning to outperform monolithic Model Checking by 20.9% and
36.8% on the two properties respectively.

Synchronous Bus Arbiters. The synchronous bus arbiter is a bus arbitration
protocol for synchronous circuits [18]. In this protocol, n nodes are connected in
a ring. A token is passed around the nodes. A node can request and acknowl-
edge the token from the node next to it. The node having the token has the
exclusive right to access the bus. We generalize the model in NuSMV [8] and
verify two properties in this test case. We check that the first pair of nodes cannot
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nodes 4 5 6 7 8 9 10 11 12
monolithic (sec) 5.1 7.6 11.1 16.6 25.5 42.4 58.9 81.1 123.7

assume-guarantee (sec) 4.2 6.4 10.5 14.5 22.9 36.4 41.3 45.8 108.2
improvement (%) 17.6 15.7 5.4 12.6 10.1 14.1 29.8 43.5 12.6

nodes 13 14 15 16 17 18 19 20 avg
monolithic (sec) 159.3 130.6 314.0 81.3 423.1 548.8 698.3 900.0 213.3

assume-guarantee (sec) 139.6 115.0 188.9 61.1 374.4 463.3 531.9 568.2 160.7
improvement (%) 12.3 11.9 39.8 24.8 11.5 15.5 23.8 36.8 19.8

(a) no simultaneous acknowledgment for the first two nodes

nodes 4 5 6 7 8 9 10 11 12
monolithic 3s 5s 5s 10s 34s 34s 1m45s 1m51s 4m32s

assume-guarantee 3s 5s 5s 10s 34s 50s 1m44s 1m59s 4m33s
improvement (%) 0 0 0 0 0 -47.0 0.9 -7.2 -0.3

nodes 13 14 15 16 17 18 19 20 avg
monolithic 7m9s 10m54s 12m27s 21m2s 30m22s 24m3s 33m38s 45m29s 11m35s

assume-guarantee 7m4s 8m43s 8m43s 12m39s 17m57s 24m0s 33m22s 45m20s 9m43s

improvement (%) 1.1 20.0 29.9 39.8 40.8 0.2 0.7 0.3 4.6

(b) no simultaneous acknowledgment for any pair of nodes

Fig. 3. Experimental Results for Synchronous Bus Arbiters

acknowledge the token simultaneously. Then we check that any pair of nodes
cannot acknowledge the token at the same time. Figure 3 shows the results.

For the first property, assume-guarantee reasoning outperforms monolithic
Model Checking consistently. Our algorithm computes a contextual assumption
that improves the verification time by 19.8% on average. Assume-guarantee rea-
soning decisively outperforms monolithic Model Checking for experiments with
14 to 17 nodes on the second property. Among the experiments in all three
cases, the experiments with 9 nodes is the only one where assume-guarantee
reasoning is outperformed by more than 20%. Subsequently, assume-guarantee
reasoning does not significantly improve the verification time on this property
(4.6%).

Dining Philosophers. The dining philosophers problem illustrates a simple re-
source sharing problem in concurrent programs. In dining philosophers, n nodes
are connected in a ring. Neighboring nodes share a resource. A node requires
both resources shared with its neighbors to enter its working mode [22]. In this
test case, we verify that a fixed pair of neighboring nodes cannot enter their
working modes simultaneously (Figure 4).1

Our experiments show that the verification time of monolithic Model Check-
ing varies drastically in this case. Assume-guarantee reasoning, on the other
hand, performs more stably. Take the experiment with node 17 as an example.

1 In fact, verifying that any neighboring nodes cannot enter the working mode in dining
philosophers takes so much time that both monolithic Model Checking and assume-
guarantee reasoning cannot finish in one hour in a setting with only 4 philosophers.
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nodes 4 5 6 7 8 9 10 11 12
monolithic (sec) 15.8 16.6 823.7 141.1 22.7 56.1 32.0 34.7 64.3

assume-guarantee (sec) 13.1 11.3 33.3 15.1 10.9 19.6 32.2 23.6 32.1
improvement (%) 17.0 21.0 95.9 89.2 51.9 65.0 -0.6 31.9 50.0

nodes 13 14 15 16 17 18 19 20 avg
monolithic (sec) 1109.9 60.6 46.1 32.7 1741.1 91.1 2406.7 63.7 397.5

assume-guarantee (sec) 29.5 34.3 36.8 28.9 58.8 66.4 39.5 67.5 32.5
improvement (%) 97.3 43.3 20.1 11.6 96.6 27.1 98.3 -5.9 47.6

Fig. 4. Experimental Results for Dining Philosophers

Interpolation-based algorithm uses 180MB memory to compute 8 interpolants
to conclude that the property is verified. Assume-guarantee reasoning only uses
104MB memory and 7 interpolants to reach the same conclusion. With our
contextual assumption generation algorithm, assume-guarantee reasoning is ex-
pected to outperform monolithic Model Checking by 47.6% in this test
case.

6 Conclusion

We introduced a new contextual assumption generation algorithm in this paper.
The new algorithm computes implicit representations and is more scalable than
explicit automata-theoretic algorithms. With the contextual assumptions gen-
erated by our algorithm, assume-guarantee reasoning can improve monolithic
interpolation-based Model Checking in three parametrized test cases.

The initial predicate and the transition relation of the generated contextual

assumption are different from those of a node. In all 1020 (= (2+2+1)×
20∑

n=4
n)

trials, each generated contextual assumptions has different initial predicates and
transition relations from those of its target node. Moreover, since the generated
contextual assumption simulates its target, it is in fact an abstraction of the
target node [9,3]. Although our contextual assumption generation algorithm can
apply abstraction refinement techniques implemented in Model Checkers, it will
be interesting to compare these two techniques.

Targeting one node is not the best decomposition we have in our test cases. In
the MSI cache coherence protocol, targeting all nodes allows assume-guarantee
reasoning to verify the experiment with 36 nodes in 4 minutes whereas monolithic
Model Checking uses up all memory in 9 minutes and fails to verify. The chal-
lenge of how to best decompose a problem still remains. In summary, our experi-
ments show that there is always a decomposition to make assume-guarantee rea-
soning outperform monolithic interpolation-based Model Checking in the three
test cases. Finding such a decomposition will certainly be an important future
work.
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Learning Component Interfaces with May and
Must Abstractions
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Abstract. Component interfaces are the essence of modular program
analysis. In this work, a component interface documents correct se-
quences of invocations to the component’s public methods. We present an
automated framework that extracts finite safe, permissive, and minimal
interfaces, from potentially infinite software components. Our proposed
framework uses the L* automata-learning algorithm to learn finite in-
terfaces for an infinite-state component. It is based on the observation
that an interface permissive with respect to the component’s must ab-
straction and safe with respect to its may abstraction provides a precise
characterization of the legal invocations to the methods of the concrete
component. The abstractions are refined automatically from counterex-
amples obtained during the reachability checks performed by our frame-
work. The use of must abstractions enables us to avoid an exponentially
expensive determinization step that is required when working with may
abstractions only, and the use of L* guarantees minimality of the gener-
ated interface. We have implemented the algorithm in the ARMC tool
and report on its application to a number of case studies including several
Java2SDK and J2SEE library classes as well as to NASA flight-software
components.

1 Introduction

Component interfaces are a central concept in component-based software en-
gineering. In current practice, interfaces typically describe the services that a
component provides and requires at a purely syntactic level. However, the need
has been identified for interfaces that document richer aspects of component be-
havior. For example in this work, as in others [1,5,8,11,12,16], interfaces describe
correct sequences of invocations to public methods of a component. Richer in-
terfaces can serve as a documentation aid to application programmers, but can
also be used by verification tools in checking that the components are invoked
correctly within a system. In fact, interfaces are key for modular program analy-
sis [8,11,12]. They reduce the task of verifying a system consisting of a component
and a client, to the more tractable task of verifying that the client satisfies the
component’s interface.
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Given the source-code of a library component C, we address the problem of
extracting a precise component interface in the form of a deterministic finite-
state automaton (DFA)1, labeled with the public method names of C. By precise,
we mean safe and permissive. An interface is safe if it accepts no illegal sequence
of calls to C, and permissive if it includes all the legal sequences of calls to C [16].
In contrast to our previous work [12], we combine interface generation algorithms
with predicate abstraction techniques, that allows us to handle components with
very large or infinite state spaces. The novelty of our proposed algorithms lies
in the fact that we use a combination of under-, and over-approximations of the
component behavior, in the form of must and may abstractions, respectively. Our
approach is based on the observation that an interface that is safe with respect
to the may abstraction and permissive with respective to the must abstraction is
safe and permissive with respect to C itself. We use the L* learning algorithm [4]
to generate safe and permissive interfaces for C, by iteratively checking may and
must abstractions of C. These abstractions are gradually refined during the
learning process, based on counterexamples. If the algorithms terminate, then
the returned interface is the minimal DFA capturing the precise interface for C.

Extended interfaces can be difficult to characterize precisely without the help
of automated tools, making interface generation an area of active research [1,5,16].
The approaches closest to ours are those presented in [1,16]. Both approaches
construct only over-approximations of the component behavior, which may be
non-deterministic. Checking permissiveness when (abstracted) components are
non-deterministic requires a potentially expensive determinization step. Alur et
al. [1] avoid this step by using heuristics, and therefore cannot guarantee per-
missiveness of the generated interfaces. On the other hand, Henzinger et al. [16]
build “abstract regions”, which is equivalent to performing a determinization step.
Their abstractions are subsequently checked for safety and permissiveness. These
steps cannot be combined in an on-the-fly algorithm, so the complete abstract
reachability graph needs to be constructed, even if a counterexample exists early
in the search.

Furthermore, the abstraction mechanisms in [16] cannot guarantee minimal
interfaces. Even if these interfaces were to be minimized, this approach would
suffer from potentially large intermediate interfaces that subsequently get com-
pacted. This latter problem is more pronounced in the presence of the deter-
minization step, which is exponential, in the worst case. In contrast, L*-based
approaches like ours and [1] directly generate minimal interfaces. Note however
that the technique by [1] does not provide criteria to automatically detect the
need for abstraction refinement. Their refinements are based on inspection of
the generated interfaces, and are performed manually.

Contributions. We present a framework for automated generation of mini-
mal, safe and permissive interfaces for large or infinite-state components. The
framework uses L* with automatically generated and refined may and must
abstractions of the component behavior. It guarantees permissiveness without
1 In this work, we assume that component interfaces have a regular language. We

therefore do not consider components methods with recursive invocations.
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requiring determinization, and performs all checks on-the-fly. We present a basic
algorithm and also an optimized version that re-uses results across abstraction-
refinement iterations. We also describe the implementation of our algorithm in
ARMC, and the application to the benchmarks presented in [1,16], as well as
new benchmarks including J2SEE classes and NASA software components.

Other related work. Work on predicate abstraction for modal transition sys-
tems, e.g. [13], similarly distinguishes between may and must transitions. How-
ever, to the best of our knowledge, the use of may and must abstractions for in-
terface generation is novel. Other approaches generate interfaces by using static
analysis [27], or a combination of static and dynamic analyses [28], or by extract-
ing information from sample execution traces [3]. All these techniques generate
approximate interfaces, as opposed to our work that aims at producing precise
interfaces that provide correctness guarantees.

Interface generation is related to assume-guarantee reasoning [2,10,18,23],
since component interfaces can be used as assumptions in this context. Shoham et
al. [26] describe a compositional framework for modal transition systems, based
on techniques taken from the 3-valued game-based model checking for abstract
models [9,14]. Those approaches do not use explicit interfaces (or assumptions).
Finally, recent work [15] uses may and must information in the form of procedure
summaries in a compositional framework that performs program analysis.

2 Example

Our running example, taken from [16], is illustrated in Figure 1. It consists of
a component C with 3 static variables and 6 public library methods. Variable
e defines the error states in the component (e �= 0), variable a denotes the
possession of lock and variable x enables method write. Methods acq/rel and their
variations acqx/relx are used to acquire/release a lock, respectively. Methods read
and write are used to access and update the shared memory, respectively.

It can be observed that C enforces several requirements such as read can only
be called after acq or acqx. Similarly write can be called safely only after calling
acqx. Once acq is called, it can only be called again after calling rel or relx.
The interface A for C should capture all such correct sequences of invocation of
public methods and reject the incorrect ones.

void rel(){
a = NULL;
return;}

void relx(){
a = NULL;
x = 0;
return;}

void acq(){
if(a==NULL)

a=get lock();
else

e=1;

return;}

void read(){
if(a!=NULL)

m read(a);
else

e=1;

return;}

void acqx(){
if(a==NULL){

a=get lock();
x=1;}

else
e=1;

return;}

void write(){
if(x!=0)

m write(a);
else

e=1;

return;}

Fig. 1. Read-write-acq example
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3 Preliminaries
Components and Interfaces. A component C = (Xs, F, s0, Perr, Σ) consists
of: a set Xs of static global variables shared across the methods ([[Xs]] denotes
the valuations of variables in Xs and represents the states of the component); a
set F of library methods; initial state s0 of the component, s0 ∈ [[X ]]; a global
set Perr of error predicates over variables in X ; and a finite alphabet Σ of the
method names. The error predicates denote the error conditions in the library
such as runtime exceptions, assertion violations etc. A component state s ∈ [[Xs]]
is an error state if s satisfies an error predicate.

Example 1. The example component in Figure 1 can be expressed as C =
(X, F, s0, Perr , Σ) where X = {a, x, e}, F is the set of CFAs for methods (de-
scribed below), the start state s0 = {a = NULL, x = 0, e = 0}, the error
predicate Perr = {e �= 0} and alphabet set Σ ={acq,read,rel,write,relx,acqx }.
Every library method f ∈ F is represented as a control-flow automaton (CFA)
f = (Xs, Xl, Q, qs, qr, T ) consisting of a disjoint set of static variables (Xs) and
local variables (Xl), a set Q of control locations ; a start location qs ∈ Q, a return
location qr ∈ Q, and a finite set of method transitions T . Each transition τ ∈ T
is labeled with a from location qfrom ∈ Q, a to location qto ∈ Q and the method
statement operation represented as a guarded command, g(x) $→ x = e(x) where
g(x) is a guard and e(x) are updates to variables in x ∈ (Xs ∪ Xl). We use a
special no-op skip transition to model multiple return locations with one return
location.

CFA and Component Semantics. We give the definition of CFA semantics
in terms of method transitions and of component semantics in terms of method
calls. A state in the CFA is modelled as (q, s) where q ∈ Q is a control location
and s ∈ [[(Xs∪Xl]] represents the valuation of (both global and local) variables in
that state, whereas a state in the component is represented by s where s ∈ [[Xs]]
denotes the valuation of (only global) variables in that state.

A binary transition relation ρτ ⊆ (Q× [[Xs ∪Xl]])2 captures the semantics of
the transitions τ ∈ T in a CFA. ((q, s), (q′, s′)) ∈ ρτ if q = τ.qfrom, q′ = τ.qto,
s |= τ.g and s′ = τ.e(s). We write s

τ−→ s′ for ((τ.qfrom, s), (τ.qto, s
′)) ∈ ρτ .

Let s ◦ t denote the combination of valuations s ∈ [[Xs]] (static variables)
and t ∈ [[Xl]] (local variables). The transition relation for the component δC ⊆
[[Xs]]×Σ × [[Xs]] denotes the successful termination of method f when applied
on some state s ∈ [[Xs]] resulting in state s′ ∈ [[Xs]]. It is defined as follows:
(s, f, s′) ∈ δC if ∃ sequence (q1, (s1 ◦ t1)), (q2, (s2 ◦ t2)), . . . , (qn, (sn ◦ tn)) such
that (qs, s) = (q1, s1) (q1 is the start location of f), (qr, s

′) = (qn, sn) (qn is the
return location of f), and ∀i

1≤i≤n−1
((qi, (si ◦ ti)), (qi+1, (si+1 ◦ ti+1))) ∈ fc.ρτ , si ∈

[[Xs]], ti ∈ [[Xl]] (every transition in the sequence is a valid transition in f.T ). For
simplicity we assume error states have no outgoing method transitions, except
for return. We write s

f−→ s′ for (s, f, s′) ∈ δC .
The semantics of the component C is captured by a (possibly infinite) de-

terministic transition system SC = ([[X ]], Σ, s0, δC). A component sequence
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Seq = f1, f2, . . . , fn is the sequence of method calls corresponding to a com-
putation s0, s1, . . . , sn of SC such that ∀i si ∈ [[X ]], (si−1, fi, si) ∈ δC . An
error sequence is a component sequence that leads the component to an er-
ror state. The language L(SC) ⊆ Σ∗ denotes all the component sequences of C;
LE(SC) ⊆ L(SC) denotes the language of error sequences, and Lsafe(SC) denotes
the language of safe method sequences which is defined to be the complement of
LE(SC), i.e. Lsafe(SC) = LE(SC). Note that while L(SC) and LE(SC) contain
only feasible traces, Lsafe(SC) may contain both feasible and infeasible compo-
nent sequences.

Safe and Permissive Interfaces. An interface for a library component C is
a prefix-closed regular set over the alphabet Σ of library method names. We
represent interfaces as (deterministic) finite state automata A = (Q, Σ, q0, δ)
where: Q is a finite non-empty set of accept states; Σ is a finite alphabet of
method names; q0 ∈ Q is the initial state; and the transition relation δ ⊆ Q ×
Σ×Q (the set of accepting states is Q). L(A) is the set of words accepted by A.
We let LE(A) = L(A) denote the set of error traces of A. LE(A) is the language
accepted by automaton Aerr, representing A completed with an error state which
is the only accepting state, i.e., Aerr = (Q′, Σ, q0, δ

′), where Q′ = Q ∪ {err} and
δ′ = δ ∪ (q, a, err) ∀q, q′ ∈ Q, a ∈ Σ : (q, a, q′) �∈ δ.

Interface A is safe if every word w ∈ L(A) is a safe sequence of method calls in
C, i.e. L(A) ⊆ Lsafe(SC); equivalent to LE(SC) ⊆ LE(A) or L(A)∩LE(SC) = ∅.

Interface A is permissive if it accepts all safe sequences of method calls in C,
i.e. Lsafe(SC) ⊆ L(A); equivalent to LE(A) ⊆ LE(SC) or Lsafe(SC)∩LE(A) = ∅.

From the above definitions, since LE(SC) ⊆ LE(A) and LE(A) ⊆ LE(SC), it
follows that LE(SC) = LE(A).
Example 2. For the component in Figure 1, the string σ1 = (acq,read,rel) ∈
Lsafe(SC) and σ1 ∈ L(SC) as the corresponding method sequence is safe for the
component. The string σ2 = (read,acq,rel) ∈ LE(SC) as the method sequence
causes the component to be in an error state.

Composition. Let SC = ([[X ]], Σ, s0, δC) be the transition system capturing
the semantics of library component C, and A = (Q, Σ, q0, δ) be an interface au-
tomaton. The composite transition system G = SC ‖ A obtained by composing
SC and A is defined as G = (Q×, Σ, q×0 , δ×), where Q× = Q×[[X ]], q×0 = (q0, s0),
and δ× = {((q, s), f, (q′, s′))|(q, f, q′) ∈ δ and (s, f, s′) ∈ δC}.
Abstraction. We build may and must abstractions of software components
using predicate abstraction – a special instance of abstract interpretation [7] that
maps a potentially infinite state transition system into a finite state transition
system via a finite set of predicates Preds = {p1, . . . , pn} over the program
variables. We require Perr ⊆ Preds. An abstract state a ⊆ Preds is an error state
if it satisfies an error predicate.

An abstraction function α maps a concrete program state s to a set of predi-
cates that hold in s: α(s) = {p ∈ Preds | s |= p}. For transition τ ∈ T of method
f , we define may and must transitions; a, a′ denote abstract states, s, s′ denote
concrete states:
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– a
τ−→must a′ iff ∀s s.t. α(s) = a, ∃s′ s.t. α(s′) = a′ and s

τ−→ s′.
a

f−→must a′ iff ∀s s.t. α(s) = a, ∃s′ s.t. α(s′) = a′ and s
f−→ s′.

– a
τ−→may a′ iff ∃s s.t. α(s) = a and ∃s′ s.t. α(s′) = a′ and s

τ−→ s′.
a

f−→may a′ iff ∃s s.t. α(s) = a and ∃s′ s.t. α(s′) = a′ and s
f−→ s′.

Given component C with transition system SC , the must and may abstractions
with respect to the set of abstract predicates Preds are defined as Smust

C,Preds =
(2Preds, Σ, α(s0),−→must) and Smay

C,Preds = (2Preds, Σ, α(s0),−→may), respectively.
We sometimes write Smust

C or Smay
C when Preds is clear from the context.

Algorithms for computing may and must abstractions with the help of a theo-
rem prover are given in e.g. [24]. Note that the set of may transitions is a super-set
of the must transitions. We also note from the above definitions it follows that
the may and must abstractions define simulations [21] between Smust

C and SC ,
and between SC and Smay

C , respectively. Since simulation implies trace inclusion,
we have the following characterization of under- and over- approximations (that
we will use later):

Proposition 1. L(Smust
C ) ⊆ L(SC) ⊆ L(Smay

C ). Furthermore, LE(Smust
C ) ⊆

LE(SC) ⊆ LE(Smay
C ).

Weakest Precondition. For automated abstraction refinement, we use weak-
est precondition calculations over counterexample traces [24]. Let φ be a predi-
cate characterizing a set of states. The weakest precondition of φ with respect to
transition τ is wp(φ, τ) = ∀s′.(s τ→ s′ ⇒ φ(s′)), and it characterizes the largest
set of states whose successors by transition τ satisfy φ.

The L∗ Algorithm. L* was developed by Angluin [4] and later improved
by Rivest and Schapire [25]. L* learns an unknown regular language U over
alphabet Σ and produces a minimal deterministic finite state automaton (DFA)
that accepts it. L* interacts with a Minimally Adequate Teacher that answers
two types of questions from L*. The first type is a membership query asking
whether a string σ ∈ Σ∗ is in U . For the second type, the learning algorithm
generates a conjecture A and asks whether L(A) = U . If L(A) �= U the Teacher
returns a counterexample, which is a string σ in the symmetric difference of
L(A) and U . L* is guaranteed to terminate with a minimal automaton A for U .
If A has n states, L* makes at most n− 1 incorrect conjectures. The number of
membership queries made by L* is O(kn2 + n logm), where k is the size of Σ,
n is the number of states in the minimal DFA for U , and m is the length of the
longest counterexample returned when a conjecture is made.

4 Interface Generation

Let C be a component corresponding to a potentially infinite-state transition
system SC . From now on, for simplicity, we will use C to represent the component
and its transition system. Our proposed interface-generation algorithms operate
by analyzing finite-state abstractions of C. The essence of our approach lies in
the following observation:
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Theorem 1. Let us assume a component C, a may abstraction Cmay for C
and a must abstraction Cmust for C. If an interface A for C is permissive with
respect to Cmust and safe with respect to Cmay, then A is safe and permissive
with respect to C.

Our approach for interface generation is therefore based on constructing may
and must abstractions for a concrete component C (Cmay and Cmust, respec-
tively). We first briefly describe a basic algorithm, followed by an optimized one;
both algorithms use a combination of automated learning and abstraction re-
finement techniques. These algorithms involve procedures for checking whether
an interface is safe and permissive, which we provide first.

CheckSafe. Checking that an interface A is safe for some component abstrac-
tion CAbst (corresponding to Cmay or Cmust), reduces to checking reachability
of a state (sa, sc) in A ‖ CAbst such that sc is an error state in CAbst. A coun-
terexample is returned if such a state is found.

CheckPermissive.The key to our approach is that our algorithms only check
permissiveness for Cmust. Must abstractions are always deterministic since we
assume that our concrete components are also deterministic. As a result, checking
permissiveness reduces to a simple reachability check. The interface A is first
completed with an error state err to get Aerr. Cmust

sink is then built by similarly
completing Cmust with a new state sink, which is an accepting state (see [12]
for explanations of the need for such completions). The permissiveness check
then reduces to checking, in automaton Aerr ‖ Cmust

sink , reachability of some
state (err, sc), where sc is a non-error state in Cmust

sink . If such a state is detected,
A is not permissive, and a counterexample is returned. The counterexample
illustrates a correct sequence of invocations to the component that is rejected
by the interface.

4.1 Algorithms

Algorithm BuildInterface: The high-level steps of our basic approach to gener-
ating interfaces using may and must abstractions is illustrated in Algorithm 1.
Given that Cmust is finite-state, the L* algorithm is used to generate a safe and
permissive interface for Cmust, expressed as a DFA Amust over the alphabet of
the component. The procedure LearnInterface used for this purpose is similar
to the one presented in [12]. The interface Amust produced by LearnInterface
is subsequently checked for safety with respect to Cmay. If safe, then based
on theorem 1, Amust is a safe and permissive interface for C. Otherwise, the
counterexample t obtained from the safety check is used to guide the automatic
refinement of the predicate set used for building the component abstractions,
as described later in this section. Another iteration of the algorithm is then
performed, with the new set of predicates.

Algorithm LearnReuse: Despite its conceptual clarity, the basic algorithm needs
to restart the learning process every time an abstraction is refined. We would
ideally like to reuse information learned by L* across abstraction refinement
iterations. In contrast to the basic algorithm that uses learning on Cmust, the
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Algorithm 1. BuildInterface(C)
1: Amust := LearnInterface(Cmust )
2: t := CheckSafe(Amust,Cmay )
3: if t == null then
4: return Amust

5: else
6: Preds := Preds

⋃
Refine(t)

7: Go to step 1.
8: end if

Algorithm 2. Query(σ, C)
1: if CheckSafe(ts(σ), Cmust )! = null

then
2: return no
3: else
4: t := CheckSafe(ts(σ),Cmay )
5: if t == null then
6: return yes
7: else
8: Preds := Preds

⋃
Refine(t)

9: invoke Query(σ, C) (new Preds)
10: end if
11: end if

Algorithm 3. Oracle 1
1: t := CheckSafe(A,Cmay );
2: if t == null then
3: invoke Oracle 2
4: else
5: σ := project(t)
6: result := Query(σ,C)
7: if result == no then
8: return σ to L*
9: else

10: invoke Oracle 1 (new Preds)
11: end if
12: end if

Algorithm 4. Oracle 2
1: t := CheckPermissive(A,Cmust )
2: if t == null then
3: return A as safe & permissive
4: else
5: σ := project(t)
6: result := Query(σ,C)
7: if result == yes then
8: return σ to L*
9: else

10: invoke Oracle 2 (new Preds)
11: end if
12: end if

optimized algorithm directly learns an interface for component C, meaning that
answers to queries and conjectures represent component C itself. As a result, the
learning process evolves in parallel with the abstraction refinements. Note that
the algorithm never actually uses C itself, but rather its finite-state abstractions
Cmust and Cmay. We use Preds to denote a global set of abstraction predicates.

Queries. The procedure for queries is illustrated by Algorithm 2. At a high
level, a query on σ must return no if σ ∈ LE(C) and yes otherwise. We briefly
explain here how we are able to determine to use Cmust and Cmay instead of C.
From Proposition 1, LE(Cmust ) ⊆ LE(C) ⊆ LE(Cmay ). Therefore, if a coun-
terexample is obtained at line 1, it means that σ ∈ LE(Cmust ), which implies
that σ ∈ LE(C), so the query returns no. If no counterexample is obtained at
line 4, then it means that σ /∈ LE(Cmay ), which implies that σ /∈ LE(C), so
the query returns yes. Otherwise, we know that the counterexample t obtained
belongs to Cmay but not to Cmust (if it did, then the check on line 1 would not
have returned null). t is then used to refine the abstraction.

Conjectures. We use Theorem 1 to answer the conjectures using two oracles,
as illustrated in Algorithms 3 and 4.
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Oracle 1: Is the conjectured assumption A safe with respect to Cmay?
Oracle 2: Is A permissive with respect to Cmust?

Oracle 1 is invoked first. If it finds that A is safe with respect to Cmay, Oracle 2
gets invoked. If Oracle 2 finds that A is also permissive with respect to Cmust,
we conclude from Theorem 1 that A is a safe and permissive interface for C. All
remaining cases require either the refinement of A by L*, or the refinement of
the component abstractions. We use queries to help us determine what needs to
be refined. Our approach is described in detail below.

Oracle 1: If A is not safe with respect to Cmay, we obtain a counterexample
t, which leads to error in Cmay. We subsequently query σ = project(t) on the
component (lines 5 and 6, Algorithm 3); here project(t) denotes the sequence
of method calls corresponding to the sequence of transitions in t, so that σ
is over the interface alphabet that L* is learning. From line 1, we know that
σ ∈ L(A). The querying procedure may involve refinement of the abstraction;
let Cmay′

denote the may abstraction used in the last iteration of the query, when
it returns. If the query returns no, then it means that σ should not be in the
language of A, so σ is returned to L* for A to be refined. Otherwise, we invoke
Oracle 1 again, knowing that Preds have been updated. The reason is that, since
the result of the query is yes, σ is safe in Cmay′

, meaning σ /∈ LE(Cmay′
) (lines

4 and 5, Algorithm 2), but is unsafe in Cmay, meaning σ ∈ LE(Cmay ) (line 1,
Algorithm 3).

Oracle 2: If A is not permissive with respect to Cmust, we obtain a coun-
terexample t, which leads to some state (err, sc) in Aerr ‖ Cmust

sink , where sc is
a non-error state in Cmust

sink . Therefore t does not lead to error in Cmust
sink . More-

over, σ = project(t) is not in L(A). We subsequently query σ on the component
(line 6, Algorithm 4). The querying procedure may involve refinement of the
abstraction; let Cmust′ denote the must abstraction used in the last iteration
of the query, when it returns. If the query returns yes, then it means that σ
should be in the language of A, so it is returned to L*. If the query returns
no, then we invoke Oracle 2 again, knowing that Preds have been updated. The
explanation is as follows. When the query returns no, it means that: 1) σ is
unsafe in Cmust′ (line 1, Algorithm 2); and 2) σ ∈ LE(C). On the other hand, σ
must be safe in Cmust; if σ were unsafe in Cmust, then the permissiveness check
of line 1 could not have returned t as a counterexample, since σ = project(t).
Therefore clearly, Cmust′ is more refined that Cmust. Note that since σ ∈ LE(C)
but σ /∈ LE(Cmust ), t cannot be a trace of Cmust, but is rather a sink trace in
Cmust

sink .

4.2 Abstraction Refinement

In the algorithms BuildInterface and LearnReuse presented above, the abstraction
refinement procedure is applied whenever a violating trace t is discovered that
belongs to Cmay but not to Cmust. Consequently, t must contain a may transition
(ai

τ→may ai+1) that is not a must transition. This means that there exists at least
another abstract state a′i+1 that is a successor of ai by τ via a may transition,
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i.e. ai
τ→may a′i+1. The reason is that ai does not distinguish between concrete

states of two types: those whose successors are abstracted to ai+1 and those
whose successors are abstracted to a′i+1.

Automated abstraction refinement consists in adding new abstraction pred-
icates (based on weakest pre-conditions). As a result, we split ai into two or
more new abstract states, corresponding to predicates in ai ∧ wp(ai+1, τ) and
ai ∧ ¬wp(ai+1, τ) respectively, that separate the concrete states of type (i) and
(ii) above. Note that this results in a finer partition of the concrete states. The
new abstraction will no longer contain τ as a may and non-must transition and
therefore we have the following proposition:

Proposition 2. If trace t has a transition τ that is of type may but not must,
the refined abstraction results in a strictly finer partition and does not contain
transition τ .

In practice, given a sequence of transitions as a counterexample Cex =
{τ1, τ2, . . . , τn}, we compute refinement predicates using wp computations re-
cursively wp(true, Cex) = wp(wp(true, τn), {τ1, τ2, . . . , τn−1}).

Our refinement algorithm uses weakest precondition calculations to compute
new abstraction predicates that are guaranteed to eliminate these may transi-
tions, and returns the newly discovered predicates. We note that unlike standard
approaches to counterexample-based abstraction refinement [6], we do not refine
solely based on “spurious” counterexamples. The counterexamples obtained from
failed safety checks may be feasible, but they may still lead to refinement since
they contain non-must transitions.

q0q1 q2 q3

rel, relx

acq

rel,relxread acqx

relx

read
write

rel

acq,acqx

rel

relx

Fig. 2. Read-Write-Acq Example Interface

Example 3. For the example of Figure 1, our algorithms generate the safe and
permissive interface A shown in Figure 2. The interface captures the enforcements
imposed by the library. Method read can only be called after calling acq (q1) or
acqx (q2). However, method write can only be called after calling acqx (q2).
Consecutive calls of acq or acqx are inhibited and acq once called can be called
again only after calling rel or relx.

The generated interface has one state more than the interface presented in [16]
for the same example. On closer inspection, we see that the automaton accepts
the string σ = acqx,write,rel,acq,write which is not accepted by their interface. Af-
ter calling the method acqx from the start state s0 = {x = 0, a = NULL, e = 0},



Learning Component Interfaces with May and Must Abstractions 537

the variable a becomes non-null and x is set to 1. The method write does not
modify a or x. The next method call rel only sets a to NULL but leaves x un-
changed (which remains 1). Now after the acq method a is again set to non-null.
Since a �= NULL and x = 1, the write method can now be called safely. When we
contacted the authors of [16], they observed a discrepancy between the example
as it appeared in their paper and their implemented case study, which explains
the difference in our respective results.

4.3 Correctness and Termination

In this section we argue the correctness and termination of our algorithms. We
will be using Alg to represent either BuildInterface or LearnReuse, when our
presented arguments hold for both algorithms.

Theorem 2 (Correctness). If algorithm Alg terminates (with final abstrac-
tions Cmust and Cmay), then the constructed interface A is safe and permissive
for C. Furthermore, LE(Cmust) = LE(Cmay) = LE(C).

Termination. For infinite-state components, the predicate abstraction refine-
ment used in Alg may not always terminate. However, we can make the following
termination argument:

Theorem 3. If Alg computes an abstraction such that LE(Cmust)
= LE(Cmay) = LE(C), then the Alg terminates.

Furthermore, from previous work on automatic abstraction refinement [22,19],
we know that if the component C has a finite bisimulation quotient [20], then the
refinement based on weakest precondition calculations is guaranteed to converge
to that finite quotient.

Theorem 4 (Bisimulation Completeness [22,19]). If the component C has
a finite bisimulation quotient, then there exists a refinement iteration bound such
that the abstraction Cmay is bisimilar to C.

Since bisimulation implies trace equivalence [21] and from Proposition 1, it fol-
lows that if C has a finite bisimulation quotient, then there exists a refine-
ment iteration bound such that for the obtained set of abstraction predicates,
LE(Cmust) = LE(Cmay) = LE(C). Therefore, together with Theorem 4 we
conclude the following:

Theorem 5 (Termination). If the component C has a finite bisimulation quo-
tient then Alg terminates.

We observe that this termination condition is not very tight as our algorithms
also terminate for systems for which predicate abstraction with refinement results
in an abstraction such as LE(Cmust) = LE(Cmay) = LE(C), which is a weaker
condition than the existence of a finite bisimulation quotient (see Theorem 3).

Let us finally note that although in general our algorithms may not terminate,
they can be made to return results “any time”. At any stage, we may use L*
to compute interfaces for Amay for Cmay and Amust for Cmust. The language of
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the safe and most permissive interface A for component C is bounded between
the languages of Amay and Amust.

5 Implementation and Experiments

Implementation. We have implemented the algorithms presented in Section 4
in the ARMC tool [24]. ARMC already had support for may abstractions; we
extended it with support for must abstractions. Furthermore, ARMC provides
abstraction refinement algorithms based on Craig interpolation [17]. We have
integrated these algorithms in our approach, as an alternative to refinement
based on weakest preconditions.

We note that the algorithms presented previously use the explicit composition
of the abstraction with the interface. Instead of performing this explicit composi-
tion, our implementation builds the abstract graph of the composite automaton
implicitly, by method inlining. This helps us avoid un-necessary computation
and only constructs a part of component abstractions which are sufficient to
prove (or disprove) the safety and permissive checks.

We observe that in the basic algorithm, only feasible counterexample traces
can add error behaviors to the must abstraction Cmust. The spurious counterex-
amples only remove error behaviors from the may abstraction Cmay. Therefore
it suffices to restart learning only after refining feasible counterexamples. In the
case of spurious counterexamples, the CheckSafe algorithm is restarted after the
may abstraction is refined; it terminates when either a feasible counterexample
is found or the interface is discovered to be safe.

Experiments. We evaluate our interface generation algorithm on several sam-
ple Java2SDK library classes presented in [1,17] as well as some benchmarks
from J2SEE and the NASA CEV 1.5 EOR-LOR mission profile case study [12].
A brief description about the modelling and generated interfaces follows. The
experiments were run on a dual core 1.80 GHz Intel Pentium processor with
3 GB of RAM. Table 1 presents the empirical results obtained from follow-
ing different algorithmic schemes: wp: BuildInterface with weakest precondition
refinement; wp+craig: BuildInterface with craig interpolation refinement for in-
feasible counterexamples (wp+craig); refine-may: BuildInterface with refining
only may abstraction for infeasible counterexamples (refine-may + craig); learn-
reuse: LearnReuse with craig. The table also presents the number of predicates
(#Preds) discovered, the number of learning iterations (#Iterations), the num-
ber of states in the final interface (#States) and the running times.

The primary purpose of our experiments is to assess the feasibility of our ap-
proach. We additionally provide, with a smaller emphasis, a comparison between
algorithms BuildInterface and LearnReuse. Our results show that the proposed
approach is feasible, and also quantify the expected improvement achieved by
LearnReuse. We can additionally use our experimental results as approximate
indications of the practical savings achieved by LearnReuse over previous ap-
proaches that perform learning and abstraction separately [1]. These approaches
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are based on manual refinement, but if automated, their performance would be
similar to BuildInterface since they do not perform abstraction on demand during
the learning process.

For the Signature class we selected five methods as the alphabet Σ = {initSign,
initVerify, sign, update, verify}. The exception SignatureException was modelled
as the error predicate. The states in the generated interface correspond to the la-
bellings of uninitialized, sign and verify respectively. The ServerTableEntry class
is taken from the package com.sun.corba.se.internal.Activation. We selected six
methods as the alphabet Σ ={activate, register, registerPorts, install, uninstall,
holdDown} and modelled the exception INTERNAL as the error condition. The
generated interface only keeps track of three states: activated(register), run-
ning(install/uninstall) and other states as one state. The ListItr class is an inner
class of AbstractList from the package java.util. We selected five methods as the
alphabet Σ ={next, remove, previous, set, add} and the exception IllegalStateEx-
ception was modelled as the error predicate. The interface captures the inhibition
of calls of methods set and remove after calling methods remove or add.

The PipedOutputStream class is taken from the package java.io and is an
implementation of an abstract class OutputStream. We selected five methods
as the alphabet Σ ={close, (connect,0), (connect,1), flush, write }, where we
model invocations of connect method returning different values (0 or 1) as
different methods ((connect,0) or (connect,1)) similar to the approach taken
in [5]. The exception NullPointerException was modelled as the error predi-
cate. The interface captures precisely two states where sink = null and sink �=
null. Only a successful connect call can enable flush and write methods. The
Socket class is part of java.net package which implements client sockets. We
considered seven methods as the alphabet Σ = {close, bind, getInputStream,
getOutputStream, shutdownInput, shutdownOutput } and the exception Socke-
tException was modelled as the error predicate. The interface enforces the re-
quirement that bind cannot be called after connect, shutdownInput can only be
called after calling connect, getInputStream can only be called after the con-
nect call and not after close or shutdownInput has been called. After calling
close no other method calls are allowed. The class TransactionManager is taken
from the package javax.transaction, and we selected six methods as the alphabet
Σ = {begin, suspend, resume, commit, rollback, setrollbackonly}. The exception
IllegalStateException was modelled as the error predicate. The generated inter-
face captures the precise sequence of method calls for performing a transaction
with appropriate handling of commit and rollback actions.

We also applied our technique to obtain the interface for the simplified state
machine for NASA CEV 1.5 EOR-LOR mission profile case study. It models
the Ascent,EarthOrbit,TransitEarthMoon and Entry phases of the space-craft, the
events (like srbIgnition,stage1separation etc.), the vehicle configuration and var-
ious failure modes. The Java model is avaiable with the JPF distribution un-
der examples/jpfESAS. We modelled the 22 events as the alphabet set for the
interface and the error predicate was modelled as the failure modes and the
event calls from inappropriate states. Events with parameters like abort(boolean



540 R. Singh, D. Giannakopoulou, and C. Păsăreanu

Table 1. Experiment results on benchmark case studies

Class name Algorithm #Preds #Iterations #States Running Time

wp 12 5 2 40.6s
ListItr wp+craig 7 6 2 42.2s

refine-may 8 4 2 39.3s
learn-reuse 6 1 2 12.7

wp 8 9 3 72.7s
Signature wp+craig 5 6 3 42.9s

refine-may 7 4 3 33.2s
learn-reuse 5 1 3 16.6s

wp 10 10 3 98.1s
ServerTableEntry wp+craig 6 7 3 64.9s

refine-may 10 5 3 51.3s
learn-reuse 7 1 3 19.2

wp 4 5 2 16.4s
PipedOutputStream wp+craig 2 3 2 11.4s

refine-may 2 3 2 11.6s
learn-reuse 2 1 2 7.4s

wp 6 6 4 122.8s
read-write-acq wp+craig 4 5 4 75.4s

refine-may 7 5 4 74.3s
learn-reuse 6 1 4 31.1

wp 25 5 6 468.5s
Socket wp+craig 13 5 6 272.9s

refine-may 13 5 6 228.0s
learn-reuse 12 1 6 65.8

wp 15 8 4 138.6s
TransactionManager wp+craig 9 7 4 103.5s

refine-may 9 4 4 76.9s
learn-reuse 9 1 4 30.4s

wp 34 14 5 1685.6s
NASA-Ascent wp+craig 20 14 5 1433.9s

refine-may 20 6 5 712.4s
learn-reuse 20 1 5 75.6s

NASA-Complete learn-reuse 74 1 14 3115.6s

controlMotorField) were modelled as two events one with controlMotorField pa-
rameter true (abortctr) and the other with controlMotorField parameter false
(abortnctr) which increased the alphabet size to 26. The interface has 14 states
and required 74 predicates. For such large interfaces, only the LearnReuse algo-
rithm finished in reasonable time. Table 1 also documents the results for NASA-
Ascent interface where only the Ascent phase of the space-craft was modelled.
These interfaces in addition to being helpful in verifying the space-craft code are
also a useful tool to help debug the system early in the designing process of such
critical software.
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Abstract. Proofs of progress properties often require fairness assumptions. Di-
rectly incorporating global fairness assumptions in a compositional method is
difficult, given the local flavor of such reasoning. We present a fully automated
local reasoning algorithm which handles fairness assumptions through a process
of iterative refinement. Refinement strengthens local proofs by the addition of
auxiliary shared variables which expose internal process state; it is needed as
local reasoning is inherently incomplete. Experiments demonstrate that the new
algorithm shows significant improvement over standard model checking.

1 Introduction

Model checking is fundamentally constrained by state explosion [6]: for concurrent pro-
grams, the state space can grow exponentially with the number of processes. A promis-
ing approach to ameliorating state explosion is to decompose a verification task so that
the reasoning is as localized as possible. In this work, we propose and evaluate a new al-
gorithm which carries out compositional reasoning for temporal properties which hold
only under global fairness assumptions.

Fairness assumptions are often needed for proofs of progress properties. It has long
been understood how to incorporate fairness in standard model checking [5,14], but
doing so is a challenge for compositional methods. The difficulty is that fairness as-
sumptions commonly refer to local state from a number of processes. For example, a
common (strong) fairness constraint is that “for every process: if the process is enabled
infinitely often, it is infinitely often executed”. As “enabledness” depends on local state,
this assumption refers to the local state of every process. Since compositional reason-
ing is based on a per-process view, the presence of such global assumptions can be
problematic.

This work develops a new algorithm for compositional model checking with fairness
assumptions, which tackles this problem with a successive refinement method. It also
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presents a new compositional proof rule for verification under fairness. Moreover, the
model checking algorithm can be instrumented to generate a valid instantiation of the
proof rule upon success.

The new algorithm is the continuation of a line of research on mechanizing asser-
tional (i.e., state-predicate based) compositional verification. The starting point is an
algorithm from [22] which computes the strongest split invariant. A split invariant
is a vector of interference-free, per-process invariants. (A set of per-process invari-
ants is free of interference [24,19] if the action of one process does not invalidate
the invariant of another process.) The term “split invariant” is used as the conjunc-
tion of the local invariants forms a inductive invariant for the program as a whole.
The strongest split invariant may be weaker than the set of reachable states, and there-
fore not strong enough to prove a safety property. In [8], we solve this problem by
formulating an complete verification procedure which strengthens the split invariant
by discovering and adding auxiliary shared variables to track local predicates. In [9],
we use split invariance as the basis for a new compositional algorithm for check-
ing LTL properties. Experiments reported in these papers show that assertional local
reasoning can be significantly faster than monolithic (i.e., non-compositional) model
checking.

The local liveness method of [9] does not directly apply to fairness constraints. This
is because the method is sound only for properties expressed over shared variables.
Incorporating fairness into the specification, through the identity M |= AFair(Spec) ≡
M |= A(Fair ⇒ Spec), results in a new specification which names a number of
local variables (due to Fair). One can, of course, turn all the local variables in Fair
into shared variables, but this defeats the purpose of local reasoning.

The new algorithm gets around this difficulty by a process of iterative refinement.
The fairness constraint is replaced with a weaker form, which depends monotonically
on the current split invariant, and is expressed over only the shared variables. This
allows using the compositional algorithm from [9], with slight modifications. If veri-
fication succeeds with the weaker fairness assumption, the property is proved. If not,
a bogus counter-example is produced, and analyzed to discover new local predicates
which are then exposed as auxiliary shared variables. Exposing local state strength-
ens the split invariant in the next round of computation, which strengthens the ab-
stracted fairness assumption by monotonicity. This is repeated until a decisive result (ei-
ther success or a real counter-example) is obtained. The iterative process terminates—
and is thus complete—for finite-state programs: eventually, enough of the local state
is exposed to either prove a correct property or to disprove an incorrect one. More-
over, it is possible to disprove a property without building up the entire state
space.

The algorithm, being predicate-based, has a simple implementation using BDDs. We
carry out an evaluation with several parameterized protocols, where each instance of
the protocol is finite-state. The experimental results show promise: the compositional
verification is faster in almost all cases, sometimes by one or two orders of magni-
tude. Exposing a limited amount of local state suffices for both proofs and disproofs of
properties, validating the basic premise behind compositional reasoning.
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2 Related Work

The question of handling fairness in compositional verification is a natural and impor-
tant one. The comprehensive book on compositional methods by de Roever et. al. [11],
however, does not mention a compositional proof rule directly incorporating fairness.
Compositional proof rules for general LTL properties (e.g., [1,20,21,23]) can handle
fairness only by compiling it into the specification. To the best of our knowledge, this
is the first compositional algorithm and proof rule to directly incorporate fairness.

The methods used here are assertional; i.e., they are based on computing state pred-
icates. The “thread-modular” reasoning method [16] computes a split invariant using
explicit-state representations, but is limited to safety properties. An alternative line of
work on automated compositional reasoning is based on representing interface behav-
ior, and is thus behavioral in nature. One instance of this method uses the following
complete proof rule: to show M1//M2 |= Spec, find an interface automaton A such
that M1 |= A and M2//A |= Spec. (Here, |= is read as language inclusion.) The
procedures developed in [17,27] employ a combination of model checking and finite-
automaton learning via variants of the L∗ method [2] to construct an appropriate au-
tomaton A. Standard learning algorithms compute automata on finite words, and hence
can be used only for proofs of safety properties. An algorithm is developed in [15] for
learning a Büchi automaton, but it has not yet been applied to verification of progress
properties. Although an automaton is a powerful and compact representation object,
current implementations of behavioral methods have difficulty showing a significant
improvement over non-compositional model checking [7].

3 Background: Local Reasoning and Liveness Properties

This section defines the system model and split invariance, and gives a short summary
of the method for local liveness checking. Part of this material is taken from [22,8,9],
and is repeated here for convenience.

A Note on Notation. Throughout the paper, we use notation based on that of Dijkstra
and Scholten [12]. Sets of program states are represented by first-order formula on
program variables. Existential quantification of formula ξ by a set of variables X is
written as (∃X : ξ). The notation [ξ] stands for “ξ is valid”. The successor operation
is denoted by sp (for strongest post-condition): sp(τ, ξ) represents the set of states
reachable from states satisfying ξ in one τ -transition. The notation spi(τ, ξ) is used for
successors computed within the state space of process Pi.

3.1 Model: Asynchronous, Shared-Memory Composition

A process is given by a tuple (V, I, T ), where V is a set of (typed) variables, I(V ) is
a predicate over V defining an initial condition, and T (V, V ′) is a predicate defining a
transition condition, where V ′ is a fresh set of variables in 1-1 correspondence with V .
The semantics of a process is given by a transition system in the standard way.

The asynchronous composition of processes {Pi} is written as iPi. For conve-
nience, we suppose that there is a set of variables, X , called the shared variables, and
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sets of variables, {Li}, called the local variables, such that Vi = X ∪ Li for each i,
and Li is disjoint from Lj , for i �= j, and Li is also disjoint from X . The components
of the composition are defined as follows. Let V =

⋃
i Vi and I =

∧
i Ii. The set

of local variables is L =
⋃

i Li. Let T̂i = Ti(Vi, V
′
i ) ∧ (∀j : j �= i ⇒ unch(Lj)),

where unch(W ) is short for
∧

w∈W (w′ = w). Thus, T̂i behaves like Ti, but leaves local
variables of other processes unchanged. The transition relation of the composition, T ,
is defined as

∨
i T̂i.

3.2 Split-Invariance: Definition and Calculation

Let P = kPk be an N -process composition. For localized reasoning about invariance,
the shape of invariance assertions is restricted to a conjunction of local (i.e., per-process)
assertions. A local assertion is one that is based on the variables of a single process.
A split assertion is a vector of local assertions, θ = (θ1, θ2, . . . , θN ), one for each
process, so that θi is defined on Vi (equivalently, on X and Li). Split assertion θ is a
split invariant if the conjunction of its components, i.e.,

∧
k θk, is an inductive invariant

for the full program P . Split-invariance can equivalently be defined as in Figure 1.

Definition 1. The notation T θ
k (X, X ′) denotes (∃Lk, L′

k : Tk ∧ θk). This is a “sum-
mary transition”, representing the effect that a move of Pk from a state satisfying its
local invariant has on the shared variables.

For each process index i:

1. [initiality] θi includes all initial states of process Pi. I.e., [(∃L \Li : I) ⇒ θi]
2. [step] θi is closed under transitions of Pi. I.e., [spi(Ti, θi) ⇒ θi]
3. [non-interference] θi is closed under transitions (interference) by processes other than Pi.

I.e., for all k different from i, [spi(T
θ
k ∧ unch(Li), θi) ⇒ θi]

Fig. 1. Split Invariance Conditions

These conditions are a simple instance of (syntactically circular) assume-guarantee rea-
soning: θi is the invariance guarantee provided by process i, based on assumptions
{θj : j �= i} about the other processes. The constraints can be gathered into the set of
simultaneous implications: for each i,

[(∃L \Li : I) ∨ spi(Ti, θi) ∨ (∨ k : k �= i : spi(T
θ
k ∧ unch(Li), θi)) ⇒ θi] (1)

Theorem 1. (Namjoshi [22]) The simultaneous least fixpoint of equations (1) exists by
the Knaster-Tarski fixpoint theorem. This defines the strongest split invariant.

3.3 Incompleteness and Auxiliary Variables

Local reasoning is inherently incomplete. This is illustrated by the mutual exclusion
protocol from Figure 2. The strongest split invariant for 2 processes is (true, true),
which is too weak to prove mutual exclusion. A general mechanism for overcoming
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x : boolean initially x = 1

N

‖
i=1

P [i] ::

⎡⎢⎢⎢⎢⎣
loop forever do⎡⎢⎢⎣
l0 : Non-Critical
l1 : request x
l2 : Critical
l3 : release x

⎤⎥⎥⎦
⎤⎥⎥⎥⎥⎦

Fig. 2. MUXSEM

last : 0..N initially last = 0
x : boolean initially x = 1

N

‖
i=1

P [i] ::

⎡⎢⎢⎢⎢⎣
loop forever do⎡⎢⎢⎣
l0 : Non-Critical
l1 : 〈request x; last := i〉
l2 : Critical
l3 : release x

⎤⎥⎥⎦
⎤⎥⎥⎥⎥⎦

Fig. 3. MUXSEM with auxiliary variable

Local Liveness (LL) Algorithm

1. Compute the strongest split invariant, θ.
2. For each i: build an abstract form of process i, called P θ

i , with initial states given by
(∃L \Li : I), and two kinds of transitions:

– the transition Ti of process i, and
– summary transitions T θ

j (see Defn. 1) for all other processes Pj (j �= i)
3. Form a Büchi automaton for the negated specification. For each i, form the synchronous

product of this automaton with P θ
i and check that there is no computation where infinitely

often there is a process i transition from a Büchi accepting state
4. Declare success if the check succeeds for each abstract process

Fig. 4. Local Liveness (LL) Algorithm

incompleteness, proposed by Owicki-Gries and Lamport [19], is to add auxiliary shared
variables which expose portions of the local state or execution history. In Figure 3, an
auxiliary variable records the last process to enter the critical section. The strongest split
invariant for the augmented protocol is given by θi ≡ (l2(i) ≡ (x = 0) ∧ (last =
i)), which suffices to prove mutual exclusion as [θi ∧ θj ∧ (i �= j) ⇒ ¬(l2(i)∧ l2(j))].
The discovery of auxiliary predicates can be effectively automated [8].

3.4 Local Verification of Liveness Properties

Owicki and Gries also developed compositional proof rules for termination. In [9], a
related proof rule is turned into a compositional algorithm for checking general linear-
time temporal properties. This “local liveness” method, referred to subsequently as the
LL algorithm, is shown in Figure 4. We give a sketch of its soundness proof, as this is
important for the extension to fairness. The LL algorithm requires that the LTL property
is expressed by shared variables. With this method, one can show that the property
“infinitely often (x = 0)” holds for the protocol in Figure 2—i.e., that some process is
in the critical section infinitely often. Starvation freedom, however, holds only under a
strong fairness assumption, and its compositional proof requires the new method.

Theorem 2. (Cohen-Namjoshi [9]) The LL method is sound.

Proof Sketch. The soundness proof shows the following: if a property does not hold,
any global counter-example can be projected to a counter-example for some abstract
process. Let σ be a global counter-example. Then (1) each state of σ must satisfy the
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split invariant and (2) the Büchi automaton must accept infinitely often along σ. As
there is a fixed number of processes, by (2), there is a process, say Pi, whose tran-
sition is executed infinitely often from a Büchi accepting state along σ. Consider the
abstract process P θ

i formed out of Pi. The computation σ can be projected, transition-
by-transition, to an execution of P θ

i . A transition by process Pi is kept as is; a transition
by another process, say Pk , is replaced by its summary transition, T θ

k (detailed proof
is in [9]). Any summary transition preserves the change to shared variables made by
the original; hence, the sequence of shared-variable values is identical in the original
and the projected computations. As the automaton checks properties defined only over
shared variables, its accepting run carries over to the projected computation. In the pro-
jected computation, there are infinitely many positions where there is a transition by Pi

from an accepting automaton state. Hence, the check in Step 3 fails for process P θ
i . �

4 Fairness

We describe the modifications necessary to incorporate fairness assumptions into the
local liveness method. We begin with a simple but useful kind of fairness, called uncon-
ditional fairness.

4.1 Unconditional Fairness

This fairness notion is a foundational concept in the UNITY programming language
and proof system [3], and it suffices for many interesting distributed protocols. Under
unconditional fairness, every process is scheduled infinitely often in an infinite com-
putation. The statement uses “scheduled” rather than “executed”—a process may be
scheduled but do nothing (i.e., behave as skip) because its transition is not enabled. To
analyze a protocol under unconditional fairness, Step 3 of the local liveness method is
modified to check that, for each P θ

i , there is no unconditionally fair computation where
infinitely often there is a process i transition from a Büchi accepting state.

Theorem 3. The LL method modified for unconditional fairness is sound.

Proof Sketch. The proof sketch for Theorem 2 shows that the sequence of process iden-
tifiers associated with the transitions is identical in the original and the projected com-
putations. As the original error computation is unconditionally fair by assumption, the
projected error computation must also be unconditionally fair. This argument shows
that the modified check is sound. �

4.2 Strong Fairness

The strong fairness algorithm is based on iterated refinement. The idea is to start with
a weakened form of the strong fairness assumption, and use the refinement mechanism
which adds auxiliary variables to strengthen this assumption with each iteration, until
a conclusive result is obtained. To keep the notation simple, we consider a common
form of strong fairness, given as Φ ≡ (

∧
i : FG(pi) ∨ GF(qi)), where pi and qi

are assertions over the variables of process Pi. Recall that the proof of soundness of the
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local liveness method projects a global counter-example, σ, on to a local computation of
abstract process P θ

k , for some k. In the presence of fairness, there are two key properties
of σ:

1. Every state on σ satisfies
∧

i θi, as θ is a split invariant, and
2. σ satisfies the fairness assumption Φ

Taken together, this implies—crucially—that σ must also satisfy the stronger fairness
assertion, Φ∗, given by (

∧
i : FG(θi ∧ pi) ∨ GF(θi ∧ qi)). The fact that Φ∗ is stronger

than Φ for any θ follows from the monotonicity of G and F. The fact that Φ∗ holds
for σ follows by the first property: as every state on σ satisfies (

∧
j : θj), assertions

FG(θi ∧ pi) and FG(pi) are equivalent on σ, as are assertions GF(θi ∧ qi) and GF(qi).
The abstract fairness property is formed by quantifying out local variables from Φ∗,

as follows.

Φθ = (
∧

i : FG((∃Li : θi ∧ pi)) ∨ GF((∃Li : θi ∧ qi)))

Subsequently, we refer to the term (∃Li : θi ∧ pi) as pθ
i and to (∃Li : θi ∧ qi) as qθ

i .
The transformed fairness property is weaker than Φ∗, but not necessarily weaker than
Φ, and it is defined over the shared variables only.

It is important that Φθ depends on θ, and does so in a monotonic manner. This en-
ables refinement: as the split invariant is strengthened by adding auxiliary variables, the
abstract fairness assumption also becomes stronger. The new method is shown in Figure
5; other than a modified check at Step 3, it is identical to the LL method from Figure 4.

Theorem 4. The FLL method is sound.

Proof. This proof is an extension of the proof of Theorem 2. Consider a global counter-
example σ which is fair according to Φ. By the proof of Theorem 2, the projection of
σ on P θ

i satisfies the second part of the condition of Step 3: i.e., infinitely often there
is a process i transition from a Büchi accepting state. It remains to be shown that the
projected computation also satisfies Φθ.

As σ is a counter-example based on the fairness assumption, it satisfies Φ; as it is a
program computation, it satisfies the split invariant, θ. Hence, by the reasoning above, it
satisfies Φ∗ and therefore the weaker property Φθ. As Φθ is a property over shared state
only, and the sequence of values for shared variables is preserved by the projection, Φθ

holds also of the projected computation. �

Fair Local Liveness (FLL) Algorithm

1. Compute the strongest split invariant, θ.
2. For each i: build an abstract form of process i, P θ

i , as defined in Figure 4
3. Form a Büchi automaton for the negation of the specification. For each i, form the syn-

chronous product of this automaton with P θ
i and check that there is no computation which

is strongly fair according to Φθ and on which infinitely often there is a process i transition
from a Büchi accepting state

4. Declare success if the check succeeds for each abstract process

Fig. 5. Fair Local Liveness (FLL) Algorithm
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Refinement for Fair Local Liveness

1. Check if every summary transition in the abstract counter-example σ is a MUST transition
for the process which makes it. If not, expose a local predicate for the MUST condition, as
defined in [9] for the LL method, and REPEAT the full verification.

2. Inductively construct a global computation δ which matches σ
3. Check if δ satisfies the original fairness condition, Φ. If so, HALT with δ as the valid global

counter-example.
4. Use a fairness term (FG(pj) ∨ GF(qj)) which is not satisfied by δ to discover and expose a

local predicate, and REPEAT full verification.

Fig. 6. Refinement for the FLL method, given a counter-example σ in the abstract process P θ
i

Remark 1. Our implementation uses a stronger abstraction of the fairness property. In
Step 3 of the FLL algorithm, instead of the uniform assumption Φθ , the implementation
uses a fairness assumption for P θ

i where all terms from Φ are abstracted relative to θ as
described above, except the term (FG(pi) ∨ GF(qi)), which is used as is, since it refers
only to variables of process Pi.

4.3 FLL Algorithm Variant

The basic FLL algorithm can be varied by changing Steps (2)-(4) as follows. The new
combination checks whether for some i, the abstract process P θ

i satisfies the specifica-
tion, assuming strong fairness according to Φθ . We call this algorithm the B-variant of
the FLL algorithm; the original is called the A-variant. Note that the correctness condi-
tion in FLL (B) is stricter than that for FLL (A); on the other hand, it suffices that one
of the abstract processes satisfies the test. The justification is based on a proof similar
to that of Theorem 4: if a global counter-example exists, its projection in P θ

i fails the
FLL (B) requirement, for every i. The contra-positive shows that it suffices for some i
to satisfy the FLL (B) requirement for the program to be correct.

The two algorithms offer a trade-off. Due to the weaker correctness condition of
FLL (A), this algorithm may prove correctness while FLL (B) does not, leading to extra
refinements in the B-variant. On the other hand, for FLL (B), it suffices to check a single,
fixed process (say, P θ

0 ); this is potentially faster for programs with a large number of
components.

4.4 Refinement for Fairness

As local reasoning is approximate, it is possible for the FLL method to fail even though
the property is true of the whole program. One can analyze the failure, though, to sug-
gest auxiliary Boolean variables which expose local state predicates, as shown in Figure
6, which extends the refinement procedure used for the LL method.

Step 1 is the refinement step for LL. Recall that a transition of σ in P θ
i by a process

Pk other than Pi can modify only the shared variables. A change of shared state from
X = a to X ′ = b is considered a MUST transition if this change is possible no mat-
ter what the local state of process Pk may be, so long as it is consistent with θk. The
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predicate m(Lk) ≡ θk(a, Lk) ∧ ¬(∃L′
k : Tk(a, Lk, b, L′

k)) expresses this succinctly:
the transition from X = a to X ′ = b is a MUST transition if, and only if, m is
unsatisfiable. If m is satisfiable, it is “exposed” by adding an auxiliary shared variable
xm. The constraint x′m ≡ m(L′

k) is added to the transition relation of Pk, and the
constraint x′m ≡ xm to that for all other processes. Together with the initialization of
xm to m(Lk), these constraints maintain the global invariant (xm ≡ m).

Regarding Step 2, if each summary transition in σ is a MUST transition, it is possible
to inductively construct a global computation δ which matches σ. The initial values
for the local variables for processes other than Pi can be chosen arbitrarily, consistent
with the initial condition. Inductively, the MUST property guarantees that a concrete
transition can be found for each process making a summary move such that the change
to the shared state is preserved. Although σ satisfies Φθ , it need not be the case that δ
satisfies Φ. If Φ fails to hold on the computed δ (Step 3), the proof of Theorem 6 shows
how a new predicate can be derived by analyzing this failure.

Theorem 5. (Soundness for failures) If the FLL refinement procedure halts with failure,
the trace is a valid counter-example under strong fairness.

Proof. Follows from the reasoning given for Steps 2 and 3. �
Theorem 6. (Finitary Completeness) The FLL procedure with refinement terminates
for finite-state programs.

Proof. It suffices to show that a new predicate—one that is not a Boolean combination
of existing predicates—is added at each refinement step. Termination follows, as there
is a finite number of distinct predicates. Theorems 4 and 5 show that each termination
outcome is correct; thus, the method is complete. For Step 1, the fact that a new predi-
cate is added was shown for the LL method in [9]. For the predicate added at Step 4, it
can be shown as follows.

If the check at Step 3 fails, there is a term, (FG(pj) ∨GF(qj)), for some j, which fails
to hold for δ. Thus, from some point on, all states on δ fail qj , and infinitely often, there
is a state failing pj . Depending on which sub-term is used to satisfy (FG(pθ

j ) ∨ GF(qθ
j ))

on σ, there is a state s that is on σ and its corresponding state t on δ such that either (i)
s satisfies pθ

j and t does not satisfy pj or (ii) s satisfies qθ
j while t does not satisfy qj .

Consider the first case, the proof of the second is similar. By the definition of pθ
j as

(∃Lj : θj ∧ pj), there is a valuation c for Lj such that for u = (s(X), c) it is the case
that θj(u) and pj(u) both hold. On the other hand, while θj(t) holds by the invariance
of θ for the concrete computation δ, pj(t) does not hold by the assumption. By the
correspondence of s and t, states u and t differ only on the valuation of Lj . Let q be
a predicate expressing this difference (e.g., q(Lj) = (Lj = c)). We have to show that
q is a new predicate; i.e., it cannot be expressed as a function of the already exposed
predicates.

A property of the split invariant, which can be shown by induction, is that [θj ⇒
(xm ≡ m)] for each shared refinement variable xm that is added for a predicate m
exposed for process Pj . As u and t agree on all shared variables, including refinement
variables, and as both satisfy θj , it follows that all prior predicates exposed for Pj have
identical values on u and t. As this is not true for q, it cannot be expressed as a function
of the already exposed predicates. �
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4.5 Weak and Generalized Fairness

Weak Fairness, also called “justice”, has the normal form GF(p) (“infinitely often p”).
It is often used to express the constraint that a continuously enabled transition cannot be
forever ignored; i.e., FG(enabled) ⇒ GF(executed). As its normal form is a special
case of strong fairness, the algorithm developed for strong fairness can be applied to
it. Thus, the common weak fairness specification Φ ≡ (

∧
i : GF(pi)), where pi is

an assertion over the variables of process Pi, is abstracted to Φθ ≡ (
∧

i : GF(∃Li :
θi ∧ pi)) for use in the FLL algorithm.

Emerson and Lei consider a general fairness criterion in [13], which is a disjunction
of strong fairness conditions. This can be handled by abstracting each disjunct sepa-
rately and re-forming the disjunction.

For simplicity, the development of the algorithm considered fairness assertions (
∧

i :
FG(pi) ∨ GF(qi)) where pi and qi are expressed in terms of the variables of process
Pi. In a more general setting, these predicates may be expressed over the local state of
more than one process. The analysis method extends easily, with each predicate being
abstracted by quantifying out the relevant local variables. Thus, the general abstraction
function is pθ ≡ (∃L : (

∧
i : θi) ∧ p).

5 Experimental Results

We implemented our method as part of SPLIT [10] – a compositional LTL verifier, and
tested it on several parameterized examples which require fairness assumptions. We
also compared it with the LTL model checker implemented on top of JTLV [26], and
with the model checker NUSMV [4]. The latter, however, is optimized for verifying
synchronous systems and even after disabling the conjunctive partitioning the results
obtained by it were considerably inferior to those obtained by JTLV and SPLIT. We
therefore do not include in this paper the results obtained by NUSMV. The experiments
were conducted on a Intel Core 2 Duo 2.4 GHz with 4 GB RAM running 64-bit Linux.
Both SPLIT and JTLV were configured to use the CUDD BDD library. We set a timeout
of 20 minutes for the experiments.

The experiments test the method on a number of well-known parameterized proto-
cols. These protocols form a good set of benchmarks: they represent succinct models
of standard synchronization patterns found in concurrent software; their characteristics
(e.g., proof structure and complexity) are well known, making comparisons with other
methods easy for the reader. While the descriptions are short, standard model checking

Table 1. Experimental results when assuming only unconditional fairness

Example Property N JTLV SPLIT (A) SPLIT (B)
Nodes Time Ref. Nodes Time Ref. Nodes Time

1 BAKERY no-starvation 3 300K 0.3 2 1.2M 2.5 2 0.9M 1.5
– Valid – 4 11.6M 93 2 14.6M 52 2 7.4M 17.4

2 MUXSEM no-starvation 5 58K 0.2 1 48K 0.3 1 44K 0.3
– Invalid – 10 21M 24 2 371K 1.1 2 330K 1

20 over 20 minutes 2 2.1M 9 2 1.9M 8.3
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Table 2. Experimental results when assuming only strong fairness only over P[0]

Example Property N JTLV SPLIT (A) SPLIT (B)
Nodes Time Ref. Nodes Time Ref. Nodes Time

3 MUXSEM no-starvation 5 24K 0 1 61K 0.2 1 38K 0.2
– Valid – 10 1.2M 3.8 1 259K 0.7 1 142K 0.5

20 over 20 minutes 1 1.2M 3 1 697K 1.5

f : array [0..N ] of boolean initially f = 1

P [1] ::

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

loop forever do⎡⎢⎢⎢⎢⎢⎢⎣
l0 : Non-Critical
l1 : request f [2]
l2 : request f [1]
l3 : Critical
l4 : release f [1]
l5 : release f [2]

⎤⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
N

‖
i=2

P [i] ::

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

loop forever do⎡⎢⎢⎢⎢⎢⎢⎣
l0 : Non-Critical
l1 : request f [i]
l2 : request f [i⊕N 1]
l3 : Critical
l4 : release f [i ⊕N 1]
l5 : release f [i]

⎤⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Fig. 7. Program DINING-PHIL: the dining philosophers

is by no means proportionally easy, as shown by the time-outs in experiments. Both
variants (A and B) of the FLL compositional algorithm are examined. In our experi-
ments, variant B has the better performance.

As mentioned in Subsection 4.1, unconditional fairness is sufficient to guarantee
various properties in selected protocols. For example, in algorithm BAKERY [18] en-
suring individual starvation-freedom, i.e., ∀i : G(wait(i) ⇒ F(crit(i))), does not re-
quire to assume any weak or strong fairness conditions. For other protocols, such as
MUXSEM, the same property is not valid when assuming only unconditional fairness,
and both JTLV and SPLIT generate valid counter examples when attempting to verify
it. The results for checking the eventual access property of P [1] for the two protocols
are provided in Table 1. Note that since the property should be over global variables,
the location variable of P [1] was exposed to all processes. “N” is the number of pro-
cesses, “Nodes” is the peak number of BDD nodes generated, “Time” is the run time
in seconds, and ”Ref.” is number of refinements had to be executed by SPLIT. For both
examples the run-times are better for SPLIT; for MUXSEM, where counter examples
had to be constructed, they are better by several orders of magnitude. Both SPLIT and
JTLV required more than 20 minutes for verifying BAKERY for N = 5.

Assuming the strong fairness GF(P [1].at loc1 ∧ x) ⇒ GF(P [1].at loc2) only for
P [1] is sufficient to prove the correctness of G(wait(1) ⇒ F(crit(1))) for MUXSEM.
Both model checkers indeed validated the property under this condition and the re-
sults are provided in Table 2; they are again in favor of our method by a few orders of
magnitude.

Most interesting and challenging test cases with respect to fairness are those that
require to assume weak or strong fairness conditions for all the processes. The first
such example is DINING-PHIL (a simple solution to the dining philosophers problem
using semaphores), presented in Fig. 7. The eventual access property is valid only when
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Table 3. Results for properties that require to assume general fairness over all processes

Example Property N JTLV SPLIT (A) SPLIT (B)
Nodes Time Ref. Nodes Time Ref. Nodes Time

4 DINING- no-starvation 8 3M 13 0 1.9M 4 0 1.2M 1.8
PHIL – Valid – 9 9.1M 63 0 4.1M 8.6 0 2.4M 4.3

10 25M 421 0 8.6M 18 0 5.3M 9.9
5 COND- termination 4 91K 0.4 3 389K 1 2 299K 0.8

TERM – Valid – 6 537K 1.6 3 2.1M 6.7 2 1.6M 5.1
8 4M 10 3 19M 101 2 11M 75.4

6 MUXSEM- no-starvation 8 262K 0.6 1 172K 0.5 1 96K 0.4
NON-DET – Valid – 12 5.3M 32.6 1 393K 1 1 210K 0.5

16 over 20 minutes 1 720K 1.8 1 385K 0.9

assuming that GF(P [i].at loc1 ∧ f [i]) ⇒ GF(P [i].at loc2) and GF(P [i].at loc2 ∧
f [i ⊕N 1]) ⇒ GF(P [i].at loc3) for 1 < i ≤ N and assuming the symmetric con-
ditions for i = 1. Namely, for each philosopher, if she can (enabled) infinitely often
pick the first fork and subsequently pick the second fork then she should eat Spaghetti
infinitely often. Example 4 in Table 3 presents the run-time results for verifying this
example, that are again in favor of our method.

y : 0..M where y = M

N

‖
i=1

P [i] ::

⎡⎢⎢⎢⎢⎣
l0 : while y �= 0 do

l1 :

⎡⎣ l2 : y := y − 1
or

l3 : y := min(y + 1,M)

⎤⎦
: l4

⎤⎥⎥⎥⎥⎦
Fig. 8. COND-TERM

The second example is proving termination of COND-TERM. The protocol is pre-
sented in Fig. 8. A process terminates only if the strong fairness condition GF(P [i].at l3)
⇒ GF(false) is assumed over all processes. This condition permits only computations
where y is increased a finite number of times. We verified the termination of COND-
TERM for M = 15. The results are provided as example 5 in Table 3. This time they are
in favor of the monolithic model checking as SPLIT requires a number of refinements
to prove the property.

The last example that requires to assume general fairness over all the processes
is MUX-SEM-NON-DET, presented in figure Fig. 9. This example is a variation of
MUXSEM that allows each of the processes to stay non-deterministically, possibly for-
ever, in the critical section. Thus, G(wait(1) ⇒ F(crit(1))) is valid only when as-
suming

∧
i : GF(P [i].at l2) ⇒ GF(P [i].at l3). Namely, for each process, if it can

(enabled) infinitely often leave the critical section then it should leave it infinitely often.
Example 6 in Table 3 presents the run-time results for verifying this example, that are
again in favor of our method.
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x : boolean where x = 1

N

‖
i=1

P [i] ::

⎡⎢⎢⎢⎢⎣
loop forever do⎡⎢⎢⎣
l0 : Non-Critical
l1 : request x
l2 : 〈Critical; await (false) or skip〉
l3 : release x

⎤⎥⎥⎦
⎤⎥⎥⎥⎥⎦

Fig. 9. MUX-SEM-NON-DET: mutual exclusion with a non-deterministic stay in critical section

1. Find a vector of local assertions, θ = (θ1, . . . , θN), which meets the split invariance condi-
tions from Figure 1

2. Form a fairness assertion,Ξ , out of the abstract assertions inΦθ and the acceptance condition
of the Büchi automaton for the negated property. For each i, instantiate the strong fairness
proof rule of [25] for the synchronous composition of the automaton and the abstract process
P θ

i , with the fairness assertion Ξ and specification G(true ⇒ Ffalse).

Fig. 10. Local Proof Rule for LTL properties

6 Deductive Compositional Proofs under Fairness

The LL method was derived in [9] from a proof rule for verifying linear-time properties
expressed by a Büchi automaton for their negation. That proof rule has two parts: the
first part expresses that θ is a split invariant, while the second part shows that a Büchi
accepting state occurs only finitely often on any joint computation of the program and
the automaton, using rank functions which are local to each process.

This structure can be modified to accommodate fairness, as shown in Figure 10.
The proof rule of [25] is used with the conclusion being false . A valid proof shows the
absence of any joint computation which is fair and is an accepting Büchi automaton run.
All assertions and rank functions are local by definition. Moreover, as shown in [25],
one can generate these components by instrumenting the model checking algorithms
used in FLL.

7 Conclusions and Future Work

The algorithm presented here enables fully automated and compositional verification
of progress properties under fairness and is, we believe, the first algorithm to do so. It
deals with the main difficulty, that of handling the global nature of fairness, by a process
of refinement: the fairness assumption is initially weakened relative to a split invariant,
and is then strengthened in subsequent iterations until a decisive result is obtained.
The algorithm has a simple implementation. Experiments with several parameterized
protocols show a clear advantage for the compositional method over the standard non-
compositional one.

One aspect that merits further exploration is the choice of counter-example trace
for refinement; currently, the algorithm uses whichever trace is provided by the model
checking procedure. It would help, for instance, if the trace generation is biased to
generate a trace which satisfies as many MUST requirements as possible.
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Abstract. This paper describes SPLIT, a compositional verifier for safety and gen-
eral LTL properties of shared-variable, multi-threaded programs. The foundation is
a computation of compact local invariants, one for each process, which are used for
constructing a proof for the property. An automatic refinement procedure gradually
exposes more local information, until a decisive result (proof/disproof) is obtained.

1 Introduction

Standard model checking algorithms prove safety properties through a reachability
computation, computing an inductive assertion (the reachable states) that is defined
over the full state vector. They often suffer from the state explosion problem [2]; for
concurrent programs, this is manifested as an exponential growth of the state space
with increasing number of components.

SPLIT is a new tool for the verification of shared-variable, asynchronous concur-
rent programs, which ameliorates state explosion through assertional (i.e., state-based)
compositional reasoning, based on the classical Owicki-Gries method [13]. The foun-
dation is a construction of a vector of local (i.e., per-process) inductive invariants, θ =
(θ1, θ2, . . . , θN ). The invariants are mutually interference-free—i.e., a move by one
process does not violate the local invariant of another. Such a vector is called a split-
invariant, as the conjunction of its components, (

∧
i θi), is always a globally inductive

invariant. Locality is enforced by syntactically limiting each process assertion to the
variables visible to that process—i.e., the globally shared and process-local variables.

SPLIT implements a number of algorithms; together, they result in a fully automatic
compositional model checker for general LTL properties.
1. A simultaneous least fixpoint algorithm [12], which computes the strongest split

invariant vector (A split invariant is usually weaker than the set of reachable states.)
2. A safety refinement method [4], which achieves completeness by gradually “expos-

ing” local predicates (i.e., encoding them as shared variables)
3. A compositional algorithm which verifies arbitrary LTL properties [5], based on a

split invariance computation and a counter-example based refinement scheme
� This research was supported by the John von Neumann Minerva Center for the Development

of Reactive Systems at the Weizmann Institute of Science, and by an Advanced Research
Grant awarded to David Harel from the European Research Council (ERC) under the European
Community’s 7th Framework Programme (FP7/2007-2013).

T. Touili, B. Cook, and P. Jackson (Eds.): CAV 2010, LNCS 6174, pp. 558–561, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



SPLIT: A Compositional LTL Verifier 559

Checker

Configuration

SMV Editor

Specification

Editor

Split Invariant Generator

Incorrect

“Valid”

Counter ExampleRefine

LTL

Fig. 1. The architecture of SPLIT

4. A recently developed compositional algorithm [6], for the verification of progress
properties under general fairness assumptions

Experimental results support the hypothesis that local reasoning allows verifying signif-
icantly larger systems without running into state explosion, and can result in order-of-
magnitude improvements in run-time over monolithic model checking. It is interesting
that basic local reasoning suffices for the proofs for many protocols, without a need
for refinement. In many other cases, a proof/disproof is obtained by exposing a lim-
ited amount of local state, validating the basic argument for compositional verification.
SPLIT has been used to verify protocols for cache coherence and mutual exclusion. To
the best of our knowledge, this is the first tool to implement a fully automated compo-
sitional method for both safety and liveness properties.

2 Architecture and Selected Features

SPLIT is built using JTLV [14] – a BDD-based framework for developing temporal ver-
ification algorithms. Fig. 1 sketches the architecture of SPLIT. It takes three inputs: an
SMV [11] program, an LTL specification, and a configuration. The main part of SPLIT

is built up from three components: a unit that generates the split invariant, a verifier for
LTL properties, and a unit to compute refinements.

Verification is implemented differently for safety and liveness properties. For a safety
property, the algorithm (from [12,4]) first checks if the split invariant implies the prop-
erty. If it does, then the property is valid; otherwise, the refinement unit heuristically
selects local predicates and “exposes” them. (A local predicate p is exposed by adding
an auxiliary shared variable, say xp, in such a manner that the invariant (xp ≡ p)
is maintained.) Exposing local state strengthens the split invariant in the next iteration;
the process is repeated until the property is proved or no additional refinements can be
performed. In the latter case, SPLIT generates a valid counter-example trace.

For a liveness property, the algorithm (from [5,6]) uses the computed split invariant to
construct abstract forms of each process. It checks if the liveness property is satisfied by
all abstract processes, using a standard LTL checker from JTLV. If all checks succeed,
the property is valid; otherwise, a counter example trace is extracted. If the trace is
spurious, it is used by a refinement procedure to expose local predicates. This process
is repeated until either the property is proved or a valid counter-example trace is found.

The user interface for SPLIT allows the user to expose local variables, which can help
reduce the number of refinement steps. The counter-examples produced are augmented
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Table 1. Characteristic experimental results. (More results are on the tool web page.)

Example Property N JTLV SPLIT

Nodes Time Nodes Time

SEMAPHORE (+COUNT) mutual exclusion 10 1.2M 10.4 160k 0.3
– valid – 12 1.8M 440 252k 0.5

PETERSON’s mutual exclusion 5 6.9M 16 3.7M 8.1
– valid – 6 91M 509 43.8M 172

BAKERY mutual exclusion 7 2.9M 65 7.8M 20
– valid – 8 11M 844 27M 97

SZYMANSKI mutual exclusion 3 68k 0.1 788k 2.4
– valid – 4 395k 0.6 3.8M 10

SEMAPHORE individual starvation-freedom 10 21M 24 371k 1.1
– Counter example – 20 over 20 minutes 2.1M 9

BAKERY individual starvation-freedom 3 300k 0.3 1.2M 2.5
– Valid – 4 11.6M 93 14.6M 52

DINING-PHIL individual starvation-freedom 9 9.1M 63 4.1M 8.6
– Valid – 10 25M 421 8.6M 18

with refinement predicates that express the changes to the state. SPLIT is implemented
in about 9000 lines of Java, of which at least half is for the user interface. It relies on
standard BDD libraries written in C and Java. More information, including a collection
of examples, can be found at http://split.ysaar.net/.

3 Experimental Results

We have used SPLIT to verify safety and liveness properties for a number of multi-
threaded protocols for mutual exclusion and cache coherence. Table 1 presents charac-
teristic results of comparing SPLIT with the (monolithic) LTL model checker in JTLV.
Both were configured to use the CUDD BDD library. In the table, “N” is the number
of processes, “Nodes” is the peak number of BDD nodes generated, and “Time” is the
runtime in seconds.

In nearly all cases (SZYMANSKI being the exception) SPLIT obtained better run-
times, sometimes showing as much as one or two orders of magnitude improvement.
Improvement in memory consumption, which is proportional to the number of peak
BDD nodes, is not as clear-cut: for BAKERY, for which it obtains better run-times,
SPLIT requires more memory. SPLIT was also able to verify much larger systems than
the monolithic model checker; for instance, it proves SEMAPHORE for N = 64 where
JTLV ran out of memory already for N = 24. The performance of NUSMV [1] on
most of these examples was inferior to that of JTLV and SPLIT even after disabling the
conjunctive partitioning. This appears to be because NUSMV is optimized for verifying
synchronous systems and we therefore do not include the results obtained by it.

4 Related Work and Conclusions

SPLIT mechanizes assertional (i.e., state-predicate based) compositional reasoning in
the style of the seminal Owicki-Gries proof method. Thread-modular reasoning [8]

http://split.ysaar.net/
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computes the strongest split invariant with an explicit-state algorithm, but it does not
include a refinement step and is therefore incomplete. An alternative automated com-
positional method is based on behavioral (i.e., path-based) reasoning, and uses automa-
ton learning algorithms [10,9]. Experimental results with this method have been mixed
[3]: in many cases, monolithic verification is faster; mostly due to exponential (on the
number of variables) alphabet complexity, and partly due to aiming for a deterministic
representation of the assumption. Assertional reasoning has a simple implementation,
even for the analysis of general LTL properties, and the experiments with SPLIT show
a clear advantage over monolithic verification on a number of protocols.

There are several potential improvements and extensions being investigated in cur-
rent work. One focus is on coupling counter-example generation with refinement; the
current implementation uses whichever trace is provided by the JTLV model checker.
Another focus is on parallel and distributed implementations [7], as the compositional
reasoning calculations can be easily parallelized.
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Abstract. We present a graphical toolset for verifying AADL models, which are
gaining widespread acceptance in aerospace, automobile and avionics industries
for comprehensively specifying safety-critical systems by capturing functional,
probabilistic and hybrid aspects. Analyses are implemented on top of mature
model checking tools and range from requirements validation to functional veri-
fication, safety assessment via automatic derivation of FMEA tables and dynamic
fault trees, to performability evaluation, and diagnosability analysis. The toolset
is currently being applied to several case studies by a major industrial developer
of aerospace systems.

1 Introduction

System-level languages like Architecture Analysis and Design Language (AADL) and
SysML are increasingly adopted by industry for designing new safety-critical systems.
Their added advantage is that they enable the system designer to capture the elusive
interaction between hardware and software. In particular nominal and degraded modes
of operation, the propagation of faults between subsystems, and the mechanisms for the
system to recover from them are essential to a comprehensive system-level design.

As part of the COMPASS project [1] (Correctness, Modelling and Performance of
Aerospace Systems) we developed a formal semantics for AADL (briefly discussed
in Sect. 2) that incorporates functional, probabilistic and hybrid aspects [5]. This is
fundamental for tool-supported formal verification. Over the past two years we have
built a graphical toolset, called the COMPASS platform (see Sect. 3), supporting AADL
and based on model checking techniques to verify them. The tool is currently being
applied to several case studies by a major industrial developer of aerospace systems [4].

2 Specification Language

To make AADL amenable to formal verification, we have cut out its superfluous fea-
tures and added support for hybrid aspects. The tool’s resulting input language thus
follows the component-based paradigm. It supports both software (e.g., processes and
threads) and hardware components (e.g., memories and processors) as first-class ob-
jects. Each component is given by its type, describing the interface, and its imple-
mentation, describing the interactions via a finite state automaton. Sets of interacting

� Funded by ESA/ESTEC under Contract No. 21171/07/NL/JD.
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components can be grouped into composite components, enabling the modeler to man-
age the system’s complexity by introducing a component hierarchy. Communication
is achieved via exchange of messages on event ports, in a rendez-vous manner. More-
over, components may exchange data through typed data ports (e.g., bool, integer and
real data types). Timed and hybrid behavior can be expressed by means of real-valued
variables with (linear) time-dependent dynamics.

The resulting hierarchical system model, also referred to as nominal model, describes
the system behavior under normal operation. This is complemented by an error model
which expresses how the system can fail. Moreover, a subset of the nominal compo-
nents may be designated as dealing with error diagnosis and recovery; they are referred
to as FDIR (Fault Detection, Identification and Recovery). The error model expresses
how faults may affect normal operation and may lead the system into a degraded mode
of operation. It is modeled as a (probabilistic) finite state automaton, where transitions
may occur due to error events which may be annotated with a rate that indicates the ex-
pected number of occurrences per time unit. Transitions can also occur because of error
propagations from other components. The nominal and error models are linked through
a so-called fault injection. A fault injection expresses the effect of the occurrence of the
corresponding error on the nominal model. Multiple fault injections are possible. The
process of integrating the nominal models with the error models and the fault injections,
is called model extension [8]. Finally, in order to enable modeling of partial observabil-
ity and analysis of FDIR components, our language allows the modeler to explicitly
define a set of observables.

We refer to [5,6,7] for a more detailed description of the tool’s input language, a dis-
cussion of the similarities and extensions with respect to AADL, and a simple example
(a processor failover system). In particular, [5] presents a formal semantics for all the
language constructs, based on networks of event-data automata (NEDA).

3 Toolset

The COMPASS platform [7] is an integrated toolchain, based on state-of-the-art tools
and symbolic model checking techniques, for verification and validation of AADL mod-
els. It builds upon the NuSMV [16] symbolic model checker, the MRMC [15] proba-
bilistic model checker, the Sigref [18] bisimulation minimization tool, and the RAT [17]
requirements analysis tool. The architecture of the tool is sketched in Figure 1. It refers
to two inputs, namely the SLIM model (our extended variant of AADL) and prop-
erty patterns. The latter describe properties, expressed in the user-friendly patterns by
Grunske [14] and Dwyer [12], which are converted to respectively CSL [3], LTL and
CTL formulae. These inputs are processed into the lower-level formalisms of NuSMV
and MRMC. A set of visualizers transforms the output (like counterexample traces and
fault trees) back to the user. Feature-wise, the toolset supports the following analyses.

Requirements Validation, implemented by RAT, focuses on assessing the quality of a
set of requirements with respect to the user expectations, before a model of the actual
system is built. It is possible to check that a set of properties is logically consistent,
and that it is strict enough but not too strict, by checking for compatibility with a set of
possibilities, and for logical consequence of a set of assertions.
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Functional Verification comprises random and user-guided simulation, deadlock de-
tection, and verification of functional properties via model checking. The result can
be a statement that a property holds, or a counterexample or witness trace, in case the
property is refuted or for simulation. This analysis is based on NuSMV, which supports
BDD-based, SAT-based, and (for hybrid systems) SMT-based model checking.

− FMEA Tables
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− Dynamic Fault Trees
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Fig. 1. Architecture of the toolset

Safety Analysis com-
prises traditional tech-
niques for hazard anal-
ysis, such as (Dynamic)
Fault Tree Analysis (FTA)
and Failure Mode and
Effects Analysis (FMEA),
that are used to as-
sess system behavior in
presence of faults. FTA
constructs all possible
chains of basic faults,
represented as a tree,
that may be responsi-
ble for an undesired be-
havior. FMEA is simi-
lar, but starts from a set
of faults and analyzes
the impact on a set of
properties.

Diagnosability Analysis checks whether a system is diagnosable with respect to a user-
specified property, that is, whether an ideal diagnoser has enough observations to iden-
tify the set of causes of a specific faulty behavior.

Fault Detection, Isolation and Recovery (FDIR) focus on, respectively, verifying
whether a given fault can be properly detected, isolated and recovered.

Performance Evaluation computes, using a probabilistic property, system performance
under degraded operations. It furthermore includes the evaluation of fault trees by com-
puting the probability of the top event. These analyses are based on MRMC.

The toolset is being extensively evaluated on a set of industrial-size case-studies [4].
Moreover, it is being tuned to achieve optimal performance. Preliminary experiments
indicate that the choice of the verification technique (e.g., BDD-based versus SAT-based)
may be important to achieve a good performance and scalability for the different types
of analyses. The details of those experiments can be found on the project’s website [1].

4 Related Work and Conclusions

In this paper we have presented a comprehensive toolset for the verification and valida-
tion of AADL models. The toolset supports several analyses ranging from requirements
validation to functional verification, safety analysis, diagnosability and performance
evaluation. It is available under an open source license via the COMPASS website [1].
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Several tools have been developed to analyse AADL specifications, however none of
them provides support for all analysis described in this paper. We mention AADL2BIP
[11], which translates AADL models into a formalism called BIP, and is able to per-
form simulation and deadlock detection. ADeS [2] is a software tool to simulate the
behaviour of system architectures described in AADL. This tool is mainly a simulator
that allows for the evaluation and analysis of system behavior, with no formal anal-
ysis underneath. Finally, Cheddar [10] and the FurnessTM Toolset [13] support only
schedulability analysis.

Due to constraints on paper-length, this paper only describes an overview of the
COMPASS toolset. An in-depth discussion of the toolset, the formal semantics of AADL
and the relation to other works can be found in our journal paper [9].
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Abstract. In this paper we present Pessoa, a tool for the synthesis
of correct-by-design embedded control software. Pessoa relies on recent
results on approximate abstractions of control systems to reduce the
synthesis of control software to the synthesis of reactive controllers for
finite-state models. We describe the capabilities of Pessoa and illustrate
them through an example.

1 Introduction

The synthesis of embedded control software is a challenging task due to the com-
plex interactions between the physical and computational processes involved in
embedded applications. The tool introduced in this paper, named Pessoa1, au-
tomatically synthesizes embedded controllers enforcing several temporal logic
specifications on physical systems. The controllers synthesized by Pessoa are de-
scribed by Binary Decision Diagrams (BDD’s) [Weg00], which have been shown
to be adequate for the automatic generation of hardware [bloem07] or soft-
ware [Be99] implementations. The tool Pessoa illustrates the correct-by-design
approach to the synthesis of embedded control software by generating BDDs,
describing the control software, from a formal specification.

Most of the tools available for hybrid systems such as Ariadne [Ari], PHAVer
[PHA], KeYmaera [KeY], Checkmate [Che], and HybridSAL [Hyba], focus on
verification problems. Tools for the synthesis of controllers are more recent and
include LTLCon [LTL] for linear control systems and the Hybrid Toolbox [Hybb]
for piece-wise affine hybrid systems. What sets Pessoa apart from the existing
synthesis tools is the nature of the abstractions (approximate simulations and
bisimulations) and the classes of systems admitting such abstractions (linear,
nonlinear, and switched [Tab09]). Although Pessoa does not support nonlinear
and switched systems natively, they can already be handled as illustrated in the
examples in [Pes10].

� This work was partially supported by the NSF awards 0717188, 0820061, and
0834771.

1 Pessoa Version 1.0 can be freely downloaded from
http://www.cyphylab.ee.ucla.edu/pessoa/

T. Touili, B. Cook, and P. Jackson (Eds.): CAV 2010, LNCS 6174, pp. 566–569, 2010.
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2 Formal Models for Software and Control

Pessoa uses the following notion of system allowing to describe both software
and control systems under the same paradigm.

Definition 1. A system S = (X, X0, U, � ) is a tuple consisting of:

– a set of states X;
– a set of initial states X0 ⊆ X;
– a set of inputs U ;
– a transition relation � ⊆ X × U × X;

System S is said to be finite when X has finite cardinality and metric when X
is equipped with a metric d : X × X → R

+
0 .

The “dynamics” of a system is described by the transition relation: existence
of a transition (x, u, x′) ∈ � entails that upon the reception of input u
at state x, system S evolves to state x′. In [Tab09] it is shown how systems
of this form can represent both software and control systems modeling physi-
cal processes. While software models naturally lead to finite systems, obtaining
models for control systems leading to finite systems requires of some abstraction
techniques. Informally, a control system Σ is a differential equation of the form
ξ̇ = f(ξ, υ), where ξ(t) denotes the state of the system at time t, υ(t) the con-
trolled input, and ξ̇ denotes the time derivative of ξ. By adequately discretizing
the state space of the differential equation and the input space, with discretiza-
tion steps η and μ respectively, and by selecting an adequate sampling time τ ,
it has been shown in [Tab09] and references therein, that useful finite abstrac-
tions S(Σ) for Σ can be obtained. Such finite abstractions can be related to the
control system through a generalization of the notion of alternating simulation
relation named alternating approximate simulation relation [Tab09]. The exis-
tence of such relations reduces the synthesis of controllers for Σ to the synthesis
of reactive controllers for the finite abstraction S(Σ).

3 Pessoa Functionalities

Pessoa is a Matlab Toolbox. Although the core algorithms have been coded in
C, the main functionalities are available through the Matlab command line.
All the systems and sets manipulated by Pessoa are represented symbolically
using Reduced Ordered Binary Decision Diagrams (ROBDDs) supported by the
CUDD library [CUD]. Pessoa Version 1.0 offers three main functionalities:

1. the construction of finite abstractions of linear control systems;
2. the synthesis of reactive controllers for simple temporal logic specifications;
3. refinement of reactive controllers to a ROBDD description of the control

software used to simulate the closed-loop behavior in Simulink.

Pessoa currently supports the synthesis of controllers enforcing four kinds of
linear temporal logic specifications defined using a target set Z ⊆ X and a
constraint set W ⊆ X :
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1. Stay: �ϕZ where ϕZ is the predicate defining the set Z;
2. Reach: �ϕZ ;
3. Reach and Stay: ��ϕZ ;
4. Reach and Stay (in Z) while Stay (in W): ��ϕZ ∧ �ϕW where ϕW is

the predicate defining the set W .

For lack of space it is not possible to provide further details on how the abstraction
and synthesis algorithms are implemented. Such details can be found in [Pes10].

4 Example

The example that we consider consists in regulating the velocity of a DC motor.
The electric circuit driving the DC motor and the two linear differential equations
defining the dynamics Σ of this system are shown in Figure 1. The variable
x1 describes the angular velocity of the motor, the variable x2 describes the
current i through the inductor, and the variable u represents the source voltage
v that is treated as an input. The model parameters take the following values
in international system units: R = 500 × 10−3 (resistance), L = 1500 × 10−6

(inductance), J = 250 × 10−6 (moment of inertia), B = 100 × 10−6 (viscous
friction coefficient) and k = 50 × 10−3 (torque constant).

R L

v e
+ +

- -

i

ẋ1 = −B
J
x1 +

k

J
x2 (1)

ẋ2 = − k
L
x1 − R

L
x2 +

1
L
u. (2)

Fig. 1. DC motor circuit and equations describing its dynamics

The control objective is to regulate the velocity around 20 rad/s. In practical
implementations the DC motor is connected to a constant voltage source through
an H-bridge. By opening and closing the switches in the H-bridge we can only
choose three different values for the voltage: −10V, 0V, and 10V. In order to
synthesize a controller under these input constraints we define the input space to
be U = [−10, 10] and set the input quantization to μ = 10. The time quantization
is set to τ = 0.0001 and the space quantization to η = 0.05. The resulting
abstraction is computed in 17 minutes on a MacBook Pro with a 2.26 GHz Intel
Core 2 Duo processor and 2GB of memory.

The target set is selected to be Z = [19.5, 20.5]× [−0.7, 0.7] so as to obtain a
current ripple no larger than 0.7 Amperes around 0 while reaching the desired an-
gular velocity. Moreover, by introducing the constraint set W = [−1, 30]× [−3, 3]
the peak current is limited to 3 Amperes. We synthesize a controller enforcing
the “reach and stay while stay” specification in 108 seconds. The closed-loop
simulation results in Figure 2 show that the target set is reached while the cur-
rent ripple and peak values limitations are respected. For a more detailed version
of this example and other illustrative examples of Pessoa capabilities we refer
the reader to [Pes10].
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Fig. 2. Evolution of velocity (left) and current (right)

5 Conclusions and Future Work

Pessoa can be used to compute finite abstractions of continuous control sys-
tems, synthesize reactive controllers, and refine the synthesized controllers to
Simulink blocks. Pessoa is currently being improved by extending its scope to
natively support the abstraction of non-linear and switched continuous dynam-
ics, allow full LTL specifications, multi-resolution quantization of the input and
state spaces of the control system, support quantitative control objectives, and
provide automatic code generation.
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Abstract. We investigate a first-order array theory of bounded elements.
By reducing to weak second-order logic with one successor (WS1S), we
show that the proposed array theory is decidable. Finally, two natural ex-
tensions to the new theory are shown to be undecidable.

1 Introduction

Consider the following pseudo code for simplified bucket sort:

Input a : array of [0..255]
for i ← 0 to 255 do b[i] ← 0;
for i ← 0 to |a| − 1 do b[a[i]] ← b[a[i]] + 1;
k ← 0;
for i ← 0 to 255 do

for j ← 1 to b[i] do
a[k] ← i; k ← k + 1;

In the pseudo code, a is an array of bytes and |a| denotes the size of the array.
The array b consists of buckets. The v-th bucket records the number of elements
in a with value v. Essentially, the pseudo code sorts the input by counting.
Since each element of the array a is accessed a constant number of times, the
complexity of bucket sort algorithm is linear in the size of the input array.

Suppose we would like to specify properties about the pseudo code. After
examining the algorithm, we see that the v-th bucket is positive if and only if
there is an index i such that a[i] = v. Or, more formally,

∀v∃i.(b[v] > 0 ↔ a[i] = v)

must hold at the end of the program. This gives a formula in the array logic.

� This work was supported in part by the Chinese National 973 Plan under grant
No. 2010CB328003, the NSF of China under grants No. 60635020, 60903030 and
90718039, the National Science Council of Taiwan projects No. NSC97-2221-E-001-
003-MY3, NSC97-2221-E-001-006-MY3, the FORMES Project within LIAMA Con-
sortium, and the French ANR project SIVES ANR-08-BLAN-0326-01.

T. Touili, B. Cook, and P. Jackson (Eds.): CAV 2010, LNCS 6174, pp. 570–584, 2010.
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Array theory in its most general form is undecidable. Several authors have in-
vestigated various decidable fragments of the theory. In [12,2,13], arrays are mod-
eled as uninterpreted functions. Existing decision procedures for uninterpreted
functions can decide the satisfiability of formulae in array theory. In [4,1], counter
automata are used. Satisfiability of array formulae is reduced to the reachabil-
ity problem of counter automata. In both approaches, their decidable fragments
are very restrictive. Arbitrary quantification induces undecidability, and few of
the theory fragments above allow nested reads. Particularly, the sample formula
given above does not belong to the decidable fragments of these theories.

We consider the theory of arrays with bounded elements in this paper. In
our theory, an array can have an arbitrary but finite size. Its elements, however,
must be bounded. Quantification is allowed in our first-order theory. Indices, for
instance, can be quantified arbitrarily. We show that the first-order theory of
arrays with bounded elements is decidable. With this theory, programmers can
specify many program properties which cannot be verified by existing fragments.
Particularly, the sample formula given above can be solved.

In our theory, bounded elements reflect data storage format in physical world.
Arrays with bounded elements can express most program properties naturally.
Due to memory limitation, all data types are actually stored in the physical world
with a bounded size. For example, variables of the int type are actually stored
in most of systems as 32-bit integers. Our array theory of bounded elements is
surely a realistic abstraction of the array data type.

Adopting bounded elements moreover relieve us from the imposed restriction
of decidable fragments in previous theories. In the array theory of bounded
elements, arbitrarily quantified first-order formulae are decidable. Nested reads
do not induce undecidability either. Both can be freely used in array formulae
without incurring computability issues.

In addition to its generality, another significant advantage of adopting the
array theory of bounded elements is its simplicity. It is almost standard to es-
tablish the decidability result by reducing it to WS1S. Since decision procedures
for WS1S are publicly available (for example, Mona [8]), our reduction imme-
diately gives a decision procedure for the array theory of bounded elements.

We also discuss two natural extensions to the array theory of bounded ele-
ments. Either unbounded elements or linear arithmetic on indices would intro-
duce undecidability to our theory. Arrays with unbounded elements subsume
previous array theories and hence are undecidable. For arrays of bounded ele-
ments, the undecidability result of linear arithmetic on array indices is somewhat
surprising. We show that multiplication is expressible with linear arithmetic and
arrays of bounded elements. Hence linear arithmetic would make the array the-
ory of bounded elements undecidable.

Related Works. In [13], a quantifier-free extensional multi-dimensional array
theory is considered. The author employs a variant of congruence closure algo-
rithm to check the satisfiability. Other quantifier-free array theory fragments are
considered in [12] and [14].
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In [2], a more expressive logic is presented. The author defined a ∃∗∀∗ frag-
ment of array theory. The index theory is alike to Presburger arithmetic, but
addition is only allowed on the existential quantified index variables. The authors
present a mechanism to instantiate universal quantifiers by replacing the quan-
tified index variables with each term in the index set. Then arrays are treated as
uninterpreted functions. It is shown that allowing nested reads or general Pres-
burger arithmetic over universally quantified index variables (even just i + 1)
induces undecidability.

An automata based approach is presented in [4]. The authors define an spe-
cialized array theory SIL which allows formulas like ∀i.φ(i) → γ(i) where i is
the only index variable in γ(i), and disjunction is forbidden in γ(i). The same
as in [2], quantifiers can be used only in the form of ∃∗∀∗. An SIL formula is
translated into a flatten counter automaton, then the satisfiability is checked
by testing if the language of automaton is empty. Furthermore, in [1], they en-
code pieces of program into counter automata. Although SIL is expressive, some
restrictions on the structure of formulas are unnatural. Nested reads are not
allowed, neither.

WS1S is a simple but expressive logic. An example where integer arrays are
broken to bits and expressed as finite sets in WS1S is known in [7]. We employ
and further develop this idea in this paper. Furthermore, solving decidability
problem by reducing to WS1S is not uncommon. In [11], a decision procedure
for bit-vectors by mapping a bit-vector to a set in WS1S is presented.

This paper is organized as follows: First, we give the preliminaries in Sect.
2. Then in Sect. 3, the array theory UABE is presented. In Sect. 4, we show
UABE is decidable by a reduction to WS1S. In Sect. 5 we show that extend-
ing UABE with unbounded integer element theory or with addition on in-
dex variables incurs undecidability. Examples are given in Sect. 6, followed by
conclusion.

2 Preliminaries

2.1 WS1S

WS1S [3] is short for Weak Second-order logic with One Successor. It is a second
order logic with the signature {=,∈,S}. There are both first- and second-order
variables in WS1S. Use V1,V2 to represent them respectively. The syntax is
defined as:

φ ::= (p = S(q)) | p ∈ X | ¬φ | φ ∨ φ | ∃p.φ | ∃X.φ, p, q ∈ V1, X ∈ V2

An interpretation is an assignment on variables. First-order variables are inter-
preted over N while second-order variables are interpreted over finite sets of N.
S is the successor function on N. ∈ is the membership relation on N × P(N).
Given an interpretation σ, the semantics of WS1S is defined as:
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σ |= (p = S(q)) ⇐⇒ σ(p) = σ(q) + 1
σ |= p ∈ X ⇐⇒ σ(p) ∈ σ(X)
σ |= ¬φ ⇐⇒ σ � φ
σ |= φ1 ∨ φ2 ⇐⇒ σ |= φ1 or σ |= φ2
σ |= ∃p.φ ⇐⇒ σ[p ← i] |= φ, for some i ∈ N

σ |= ∃X.φ ⇐⇒ σ[X ← M ] |= φ, for some finite set M ⊆ N

Based on the syntax declared above, other predicates such as “<”, “⊆” can be
defined as: (p < q) ⇐⇒ ∀X.(q ∈ X ∧ ∀r.(S(r) ∈ X → r ∈ X) → p ∈ X) and
(X ⊆ Y ) ⇐⇒ ∀p.(p ∈ X → p ∈ Y ).

There is a correspondence betweenWS1S formulas and regular languages. Based
on this fact, someverification tools suchasMona[8,6]aredeveloped.GivenaWS1S
formula, Mona is able to give a valid, satisfiableor unsatisfiableanswer as
well as a satisfying example or a counter-example if any.

We mention another decidable logic named S1S. The difference between S1S
and WS1S is: in S1S, second order variables are interpreted as infinite sets while
in WS1S are interpreted as finite sets. S1S corresponds to Büchi Automata.
Büchi proved in 1960 and 1961 that both WS1S and S1S are decidable[3].

2.2 Terminology

In this paper, the domains of arrays, array indices and array elements are de-
noted by A, N, and Zn respectively, where A = Z∗

n, N = {0, 1, 2, . . .} and
Zn = {0, 1, . . . , 2n − 1}. To simplify the discussion, we assume Zn contains only
non-negative values. This is not a limitation of our theory, we will show it is
intuitive to extend Zn to a more general domain.

We use V ar(λ) to denote the set of variables whose type is λ, where λ can be
N, Zn or A. We use V ar to denote the set of all variables, i.e. V ar = V ar(N) ∪
V ar(Zn) ∪ V ar(A). Throughout the paper, i, j, k ∈ V ar(N); x, y, z ∈ V ar(Zn);
a, b ∈ V ar(A); c a constant in N; and l a constant in Zn. Boolean values are
expressed as 0 and 1.

Given an array variable a, we use a[i] to denote the array read which returns
the i-th element of a, and a{i ← x} the array write which returns a new array
that is obtained by replacing the i-th element in a with x.

3 The Theory of UABE

In our array theory, the index type is not bounded while the element type is
bounded, so we call it Unbounded Array with Bounded Element (UABE). It
consists of:

– the index theory TN: with domain of N, and signature of {S, <, =};
– the element theory TZn : with domain of Zn, and signature of {+n, <n, =n};
– and one-dimensional extensional array theory with the “read-over-write”

axiom [10]:
∀a, i, j, x. (i = j) → a{i ← x}[j] = x

∧ (i �= j) → a{i ← x}[j] = a[j]
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Table 1. Syntax of UABE

Identifier Definition Remarks
∼ ∈ {=, <} comparisons on N

∼n ∈ {=n, <n} comparisons on Zn

P :=x ∼n y | x ∼n l | x =n y +n z | x =n a[i] atomic formulas
i ∼ j | i ∼ c | i = j + c | i = |a|
i  x | a = b | a = b{i← x}

F := P | ¬F | F1 ∧ F2 | ∃v.F [v] v ∈ V ar

Our array theory is extensional, that is, for a, b ∈ A, we have (a = b) ⇔
(∀i.a[i] = b[i]). Hence the notion of equality is extended to arrays.

3.1 Syntax

The syntax of UABE formulas is shown in Table 1. Note the comparison pred-
icates on Zn are different from those on N by the subscript n. Predicate � is
defined on N × Zn, which establishes the equality between N and Zn.

In the index theory TN, addition of a variable and a constant, such as i + 3,
is allowed, while addition of two variables, such as i + j, is forbidden. We will
show later that addition of index variables leads to undecidability. In the element
theory TZn , arbitrary arithmetic operators are allowed. Quantifiers can be freely
used.

3.2 Semantics

A valuation1 for UABE is a triple V = (μ, ν, τ), where

– μ : V ar(Zn) $→ Zn assigns each element variable an integer in Zn,
– ν : V ar(N) $→ N assigns each index variable a non-negative integer,
– τ : V ar(A) $→ Z∗

n assigns each array variable a a finite sequence of Zn, i.e.
τ(a) = a0, a1, . . . , a|a|−1.

The size of array a is denoted by |a|. Array index should not exceed the array
size. This condition is checked in all array reads. Although the size of an array
is considered and checked here, it need not be given a concrete value. In other
words, the size of an array is finite but can be arbitrarily large (we say it un-
bounded). For example, the proposition “for all integer m, there is an array a
whose length is no less than m and all elements in a are identically 0” can be
expressed in UABE as: ∀m.∃a.(|a| ≥ m ∧ (∀i < |a|.a[i] = 0)).

Given a variable v, the value of v under valuation V is denoted as V (v). Given
a finite sequence τ(a), we denote |τ(a)| the length of it, τ(a)p the p-th element
of it, and τ(a){p ← v} a new sequence by replacing the p-th element of τ(a)
with v.

1 For UABE we say valuation to distinguish from interpretation of WS1S.
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Table 2. Semantics of UABE

(1) V |= (x ∼n y) ⇐⇒ μ(x) ∼ μ(y)
(2) V |= (x ∼n l) ⇐⇒ μ(x) ∼ l
(3) V |= (x =n y +n z) ⇐⇒ μ(x) = μ(y) + μ(z)
(4) V |= (x =n a[i]) ⇐⇒ (ν(i) < |τ (a)|) ∧ (μ(x) = τ (a)ν(i))
(5) V |= (i ∼ j) ⇐⇒ ν(i) ∼ ν(j)
(6) V |= (i ∼ c) ⇐⇒ ν(i) ∼ c
(7) V |= (i = j + c) ⇐⇒ ν(i) = ν(j) + c
(8) V |= (i = |a|) ⇐⇒ ν(i) = |τ (a)|
(9) V |= (i  x) ⇐⇒ ν(i) = μ(x)
(10) V |= (a = b) ⇐⇒ τ (a) = τ (b)
(11) V |= (a = b{i← x}) ⇐⇒ τ (a) = τ (b){ν(i)← μ(x)}
(12) V |= ∃v.F [v] ⇐⇒ V |= F [v ← p], p is type consistent with v
(13) V |= ¬F ⇐⇒ V � F
(14) V |= F1 ∧ F2 ⇐⇒ (V |= F1) ∧ (V |= F2)

The semantics of UABE is listed in Table 2. Note that Zn ⊆ N, hence the
semantics of comparisons in (1) and (2) are comparisons between integer values.
The semantics of addition of two variables in Zn is defined in (3). Note that x, y, z
are all n-bit integers, as a sanity condition we need to check the sum of y +n z
does not exceed the range of n-bit integer. Since μ(x) < 2n is already satisfied
by the definition of μ, so is μ(y)+μ(z) < 2n (provided the equality holds). With
rule (9), a variable in N and a variable in Zn can be compared. Hence, the index
theory and the element theory are related. As a result, the value of an element
can be used as an index. In rule (10), a = b means the sequences of τ(a) and
τ(b) are identical, which implies |a| = |b|. The semantics of existential quantifier
is defined in (12). We say p, v are type consistent, if p ∈ N and v ∈ V ar(N), or
p ∈ Zn and v ∈ V ar(Zn), or p ∈ A and v ∈ V ar(A).

3.3 Expressive Power

With the syntax in Table 1, many array formulas can be expressed. For example,
any Boolean combinations of atomic formulas are expressible since {¬,∧} is suffi-
cient to express {∨,→,↔}; universal quantifier is expressible since ∀v.F [v] ⇐⇒
¬(∃v.¬F [v]); minus function − is expressible since it can be converted to +
by transposing the negative terms; comparison operations {≤, >,≥} on index
theory are expressible by using {¬, <, +}; comparison operations {≤n, >n,≥n}
on element theory are expressible by using {¬, <n, +n}. Moreover, consecutive
additions on elements, such as x1 +n x2 +n x3, is also expressible, since one can
replace x2 +n x3 with a single variable y2.

Although index and element terms are of different types, nested reads are
allowed in UABE. When one want to use an Zn term t as an index, one need
to declare an existential-quantified variable t′ in V ar(N), and then assert t and
t′ are equal. For example, the formula z =n a[a[i]] can be written in UABE as:
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∃j.(z =n a[j] ∧ j � a[i]). The property ∀v∃i.(b[v] > 0 ↔ a[i] = v) specified in
the bucket sort algorithm can be expressed in UABE as

∀v∃i. ((∃v′.v′ � v ∧ 0 <n b[v′]) ↔ (v =n a[i])) ,

where v′ ∈ V ar(N) is a fresh variable.

4 Decidability

In this section, we show the satisfiability and validity of formulas in UABE are
decidable by giving a reduction to WS1S.

4.1 Representation of Zn and Arrays in WS1S

Note a value in Zn can be viewed as an n-bit integer. Given a term t of type Zn,
t can be either a constant, a variable or an array read. We represent it as a bit
vector t = t[n−1]t[n−2] · · · t[0], where t[d] is the d-th bit of t, d = 0, 1, . . . , n − 1,
and t[n−1] is the most significant bit. If t is a constant or a variable, we encode
the value of t as a single set St = {i|t[i] = 1} in WS1S. St is a subset of
{0, 1, 2, . . . , n−1}, and d ∈ St iff t[d] = 1. If t is an array read a[i], since an array
is actually a sequence of Zn elements, we encode the array a as n finite sets
a(0), a(1), . . . , a(n−1), where a(d) = {i|a[i][d] = 1}. Note here we do not encode
each element of array as a single set, but the bit values of all elements in the
same position as a single set. i.e a[i][d] = 1 iff i ∈ a(d).

For example, suppose n = 4, and all Zn integers range over {0, 1, . . . , 15}.
Then the value x = 5 (in binary, 0101) can be encoded as Sx = {0, 2}, and
the array a which is initialized with a[0] = 1 and a[1] = 5 can be encoded as
a(0) = {0, 1}, a(1) = ∅, a(2) = {1} and a(3) = ∅.

From above definitions, we can conclude that given any term t of type Zn,
t[d] is a well-formed WS1S formula. Furthermore, the comparison and addition
of Zn values can be encoded in WS1S based on the bit-wise representations.

Lemma 1. Equality relation P=(s, t) on Zn can be encoded in WS1S.

Proof. P=(s, t) ≡
∧n−1

d=0

(
s[d] ↔ t[d]

)
�

Lemma 2. Order relation P<(s, t) on Zn can be encoded in WS1S.

Proof. P<(s, t) ≡
∨n−1

d=0

(
(¬s[d] ∧ t[d]) ∧

(∧n−1
d′=d+1 (s[d′] ↔ t[d

′])
))

�

Lemma 3. Addition on Zn can be encoded in WS1S.

Proof. Addition can be encoded as:

P+(s, t, u) ≡ ∃C.( C ⊆ {1, . . . , n − 1}∧n−1
d=0 ((d + 1) ∈ C ↔ (d ∈ C ∧ t[d] ∨ d ∈ C ∧ u[d] ∨ t[d] ∧ u[d]))∧n−1
d=0 (s[d] ↔ ¬((d ∈ C) ↔ ¬(t[d] ↔ u[d]))))
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In the definition of P+(s, t, u), C is the add-carry. The first line restricts the sum
not to exceed 2n − 1. The second line constraints C [d+1] = 1 whenever at least
two of t[d], u[d], C[d] is 1. The third line constraints s[d] = (t[d] xor u[d] xor C [d]).
It is guaranteed that P+(s, t, u) ⇐⇒ s =n t +n u. �

The domain of element theory can be generalized. If negative numbers are al-
lowed in Zn, then a sign bit is needed. P=, P< and P+ can also be defined,
although in a more complex form. Actually, a much richer set of operators can
be supported. We can even replace the element domain Zn with fixed size bit
vectors. Bit-vector operations such as multiplication, division, modulo, etc, can
be supported since they can also be encoded in WS1S.

4.2 Translation

A translation rule is denoted by a horizontal line which separates the original
and translated formula. Above the line is the original formula in UABE, while
the translated formula in WS1S is shown below the line.

In the translation, each index variable i in UABE is translated to a variable
i in WS1S; each element variable x is translated to a set Sx and each array
variable a corresponds to a variable |a| and n sets: a(0), . . . , a(n−1).

A special array A� is used in the translation to establish the connection
between N and Zn. We require A� to be (0, 1, . . . , 2n − 1). Notice that Zn ⊆ N.
A� is defined such that for indices i < 2n, i and A�[i] are equal in value. It
is not a good idea to encode A� one by one in WS1S. By observation, A

(d)
� is

a set which does not contain {0, . . . , 2d − 1} but contains {2d, . . . , 2d+1 − 1}.
Furthermore, for numbers i ≥ 2d+1, i ∈ A

(d)
� ⇐⇒ (i − 2d+1) ∈ A

(d)
� . For

example, A
(0)
� contains all the 0-th (lowest) bit of array (0, 1, 2, . . . , 2n − 1), i.e.

A
(0)
� = {1, 3, 5, 7, . . .}. Thus A(d) is defined directly in WS1S:

∀i.
(
(i < 2d → i /∈ A

(d)
� ) ∧ (2d ≤ i ∧ i < 2d+1 → i ∈ A

(d)
� )
)

∧
∀i.
(
i + 2(d+1) < 2n → ((i ∈ A

(d)
� ) ↔ (i + 2(d+1) ∈ A

(d)
� ))
)

∧
∀i.
(
i ≥ 2n → i /∈ A

(d)
�
)

Use Θ to denote the conjunction of |A�| = 2n and all the definition of A(d)

(d = 0, 1, . . . , n − 1). Thus, Θ is a WS1S formula which encodes A�. A� is
shared and reused during the translation.

Lemma 4. Formula Θ is satisfiable.

Proof. A� = (0, 1, . . . , 2n − 1), an interpretation which satisfies Θ can be ob-
tained by encoding A� into WS1S. �

Given a UABE formula, one can exhaustively apply the following translation
rules until it is rewritten into WS1S. We will focus on the translation of atomic
formulas, since both of UABE and WS1S do not have any restriction on quan-
tifiers.
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Table 3. Translation Rules for Atomic Formulas

(1.1)
x =n y

P=(x, y)
(1.2)

x <n y

P<(x, y)
(2.1)

x =n l

P=(x, l)
(2.2)

x <n l

P<(x, l)
(3)

x =n y +n z

P+(x, y, z)

(4)
x =n a[i]

(i < |a|) ∧ P=(x, a[i])
(5)

i ∼ j
i ∼ j (6)

i ∼ c
i ∼ c (7)

i = j + c

i = j + c
(8)

i = |a|
i = |a|

(9)
i  x

i < 2n ∧ P=(A�[i], x)
(10)

a = b

(|a| = |b|) ∧ (∀i.(i < |a|)→ P=(a[i], b[i]))

(11)
a = b{i← x}

(i < |a|) ∧ P=(a[i], x) ∧ |a| = |b| ∧ (∀j.(j �= i ∧ j < |a|)→ P=(a[j], b[j]))

Translation rules for atomic formulas are listed in Table 3. Each rule is tagged
with a number. Rule (x.y) in this table corresponds to item (x) in Table 2.
Among these rules, (1.1), (1.2), (2.1), (2.2), (3), (4) are comparisons or addi-
tion on Zn, defined with the help of predefined shortcuts P=, P< and P+. In
(4), we added the sanity condition for array read, i < |a|. (5), (6), (7), (8) are
translated without any modification since they are already well-formed in WS1S.
For (9), to translate atomic formula i � x, the difficulty is type inconsistency
between i and x: i ∈ V ar(N) but x ∈ V ar(Zn). With the help of A�, our
method is replacing the original formula with x =n A�[i]. In (10), a = b implies
the length of a, b are identical. In (11), array a and b are identical except at
index i.

To handle quantifiers and Boolean combination of formulas, we add more
rules, shown in Table 4. Denote Δ(·) the translation procedure on atomic for-
mulas which is defined in Table 3. In Table 4, (12.1), (12.2) and (12.3) handles
quantifiers and (13), (14) handles Boolean combination of formulas. Boundary
constraints Γ1, Γ2 are used. Γ1(x) ≡ Sx ⊆ {0, 1, . . . , n−1}, in (12.1) it is required
because x should has at most n-bits. Γ2(a) ≡

∧n−1
d=0 (a(d) ⊆ {0, 1, . . . , |a| − 1}), it

is used in (12.3) to restrict the array size to |a|.

Table 4. Translation Rule for Complex Formulas

(12.1)
∃x.F

∃Sx.Γ1(x) ∧Δ(F )
(12.2)

∃i.F
∃i.Δ(F )

(12.3)
∃a.F

∃ (|a|, a(0), . . . , a(n−1)) .Γ2(a) ∧Δ(F )

(13)
¬F
¬Δ(F )

(14)
F1 ∧ F2

Δ(F1) ∧Δ(F2)

Following the procedure above, these properties hold.

Theorem 1. Given any UABE formula f and any valuation V , there is a cor-
responding interpretation σV for Δ(f), such that σV |= Θ and V |= f ⇐⇒
σV |= Δ(f).
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Theorem 2. Given any UABE formula f and any interpretation σV for Δ(f),
if σV |= Θ, then there is a valuation V for f such that V |= f ⇐⇒ σV |= Δ(f).

Theorem 1 and 2 actually show the fact that for each UABE formula f , there
is a bijection between all valuations for f and all interpretations for Δ(f) that
satisfies Θ. We give the idea how the connection between V and σV is established:

– ∀i ∈ V ar(N). σV (i) = V (i),
– ∀x ∈ V ar(Zn).∀d.(d ∈ σV (Sx) ⇐⇒ V (x)[d] = 1),
– ∀a ∈ V ar(A). σV (|a|) = |V (a)|,
– ∀0 ≤ d < n.∀a ∈ V ar(A).∀i.(i ∈ σV (a(d)) ⇐⇒ V (a)[d]

V (i) = 1.

If σV |= Θ, the above formulas already informally defined the bijection.

Theorem 3. Given any UABE formula f , f is satisfiable if and only if Θ∧Δ(f)
is, f is valid if and only if Θ → Δ(f) is.

Theorem 4. The satisfiability for UABE is decidable.

Proof. Our theory of UABE is decidable because WS1S is. �

Compared with other fragments of array theory, UABE has following charac-
teristics: quantifiers can be freely used; nested reads of array are allowed; and
there is no restriction on the structure of formula. Many array properties can be
expressed in UABE, such as:

– Sorted: ∀i, j. ((i < j < |a|) → (a[i] ≤n a[j]));
– Periodical: ∀i. (i + T < |a| → a[i] =n a[i + T ]);
– Partitioned: elements with indices less than p are no larger than those with

indices greater or equal to p:
∀i, j. (i < p ≤ j < |a| → a[i] ≤n a[j]);

– Fibonacci array:
(a[0] =n 1) ∧ (a[1] =n 1) ∧ ∀i. (i + 2 < |a| → a[i + 2] =n a[i] +n a[i + 1]);

– an array monotonically increasing by 1 each step:
∀i.(i < |a| → a[i + 1] =n a[i] +n 1);

4.3 Infinite Arrays with Bounded Elements

In Sect. 3.2, the semantics of an array is referred as a finite sequence. We note
that the semantics of an array can be extended to infinite sequence by a similar
reduction to S1S without sacrificing decidability.

In the new theory, the semantics of arrays is changed to infinite sequence over
Zn. |a| is no longer needed because the size of an array can be infinite. In the
translation, a = b need not imply |a| = |b| and the boundary constraint Γ2 is no
longer required. Then everything can work through. Nevertheless, in practice, if
the target model is S1S, both finite and infinite interpretation of array can be
mixed.
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5 Extensions

In this section, we show that either extending the element theory to unbounded
domain or allow addition of variables in the index theory such as k = i + j will
cause undecidability. In both cases, we show that the Hilbert’s tenth problem [9]
is reducible to the extended version of UABE. What we need to do is to define
a formula ϕ+(k, i, j) which is satisfiable if and only if k = i + j, and a formula
ϕ×(k, i, j) which is satisfiable if and only if k = i × j.

5.1 Extend Array Element to N

We call this extended theory UAUE (Unbounded Array with Unbounded Ele-
ments). In this case, such ϕ+(k, i, j) and ϕ×(k, i, j) can be defined in the same
way as [4]. In particular, the ∀∗∃∗∀∗∃∗-SIL logic fragment is then contained in
UAUE. Undecidability of UAUE follows from [4].

5.2 Allow Addition on N Variables

We call this extended theory UABE+. If we extend the theory of index to allow
additions, ϕ+(k, i, j) can be defined as k = i+ j. It remains to define ϕ×(k, i, j).
At first, assume i, j are both no less than 2.

The proof in [4] can not be applied because it relies on the fact that elements of
an array can be arbitrarily large while the element theory is bounded in UABE+.
However, in UABE+, we can assume the domain of array element contains at
least two values, say {0, 1}. Then an array a can be treated as a finite set of
integers which consists of all the indices where the corresponding array element
is 1. Use â to denote the set represented by the array a. i.e: â = {i ∈ N|a[i] = 1}.

In this section, we also use:

– [x, y] to denote the Least Common Multiple of x and y;
– 〈x〉 to denote the set {α · x|α ∈ N}, i.e, all multiple of x;
– 〈x, y〉 to denote the set {α · [x, y]|α ∈ N}, i.e, all multiple of [x, y];

One can check immediately: ∀x, y.〈x, y〉 = 〈[x, y]〉 = 〈x〉 ∩ 〈y〉
A finite set P is a prefix of some set Q (finite or infinite) if there is an integer

r such that P = {0, 1, 2, . . . , r} ∩ Q. denoted by P � Q. If P is a set, c is an
integer, then P + c = {α + c|α ∈ P} is the set obtained by adding c to each
element in P .

The idea beyond the construction is expressed as a theorem:

Lemma 5. Use Π(i, j) to denote the set = 〈i, j〉 ∩ (〈i − 1, j − 1〉 + i + j − 1),
if i, j are two positive integers and both are no less than 2, then the smallest
number in Π(i, j) is i × j.

Proof. Firstly, ij− i− j +1 = (i−1)(j−1), so ij− i− j +1 ∈ 〈i−1, j−1〉, Thus
ij ∈ (〈i − 1, j − 1〉 + i + j − 1). Moreover, ij ∈ 〈i, j〉. Therefore ij ∈ Π(i, j).
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By contradiction, suppose there is an integer p ∈ Π(i, j) and p < ij. Then
p ∈ 〈i, j〉 and p − i − j + 1 ∈ 〈i − 1, j − 1〉 both hold, which implies i|p, j|p,
(i − 1)|(p − i − j + 1) and (j − 1)|(p − i − j + 1).

Suppose [i, j] = ij/b where b is the Greatest Common Divisor of i and j. then
p = t[i, j] = t · (ij/b) where 1 ≤ t < b. Since (i − 1)|(p − i − j + 1), we know:

(i − 1)|(p − j) ⇐⇒ (i − 1)|
(

tij
b − j

)
⇐⇒ (i − 1)|

(
((i − 1) + 1) tj

b − j
)
⇐⇒ (i − 1)|

(
(i − 1) tj

b + tj
b − j

)
⇐⇒ (i − 1)|

(
tj
b − j

)
⇐⇒ (i − 1)|(t − b)j/b

Symmetrically, (j − 1)|(t − b)i/b. Hence (i − 1)(j − 1)|(b − t)2 × j/b × i/b.
We assert that (i − 1) > (b − t) × i/b, it suffices to show ti > b: since p ∈

Π(i, j), it is a necessary condition that p ≥ i+ j− 1. i.e: (tij/b ≥ i + j − 1) ⇐⇒
(tij/b > j) ⇐⇒ (ti > b). Symmetrically, we know (j − 1) > (b − t) × j/b. Hence
(i − 1)(j − 1) > (b − t)2 × j/b × i/b holds. Combined with the fact (i − 1)(j −
1)|(b − t)2 × j/b × i/b, we know (b − t)2 × j/b × i/b = 0 must hold. But this is
impossible because t < b and i, j ≥ 2. A contradiction. �

Following the idea presented in the previous lemma, we are willing to construct
such ϕ×(k, i, j). But the problem is, sets such as 〈i, j〉 are infinite. However,
arrays should be finite in UABE+. Good news is the finite prefixes of these
infinite sets are sufficient to define ϕ×(k, i, j), Because we can use a variable γ
to bound the size of arrays, then quantify γ with an existential quantifier. For
sufficiently large γ (larger than i× j), everything works through. Detailed steps
are:

– construct a set M̂i � 〈i〉, by:

(Mi[0]=n 1)∧(∀p.(0 < p < i) → Mi[p]=n 0)∧(∀p.p < γ →Mi[p]=n Mi[p+i])

– construct a set M̂j � 〈j〉 in the same way;
– construct a set M̂i,j � M̂i ∩ M̂j, i.e: M̂i,j � 〈i, j〉 by:

∀p < γ.((Mi,j [p] =n 1) ↔ (Mi[p] =n 1 ∧ Mj [p] =n 1))

– construct M̂i−1,j−1 in the same way;
– shift every element in M̂i−1,j−1 by i + j − 1, result in M̂ ′

i−1,j−1:

∀p.((p < i + j − 1) → M ′
i−1,j−1[p] =n 0)

∧ ∀p < γ.Mi−1,j−1[p] =n M ′
i−1,j−1[p + i + j − 1]

– find the minimal number in the intersection of Mi,j and M ′
i−1,j−1, say it k;

(Mi,j [k]= 1∧M ′
i−1,j−1[k]=n 1)∧(∀p.(Mi,j [p]=n 1∧M ′

i−1,j−1[p]=1) → k ≤ p)

Let ψ(k, i, j) be the conjunction of all the formulas where γ, Mi, Mj , Mi,j , Mi−1,
Mj−1, Mi−1,j−1, M ′

i−1,j−1 are existentially quantified. Because when γ is suffi-
ciently large, such k will exists in the intersection of Mi,j and M ′

i−1,j−1. Then
ψ(k, i, j) is satisfiable if and only if k = i × j.
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When one of i, j is less than 2, trivial. Hence ϕ×(k, i, j) can be defined as:

((i = 0 ∨ j = 0) → k = 0)
∧ (i = 1 → k = j) ∧ (j = 1 → k = i)
∧ (i ≥ 2 ∧ j ≥ 2 → ψ(k, i, j))

Theorem 5. The satisfiability for UABE+ is undecidable.

We mention the fact that “Presburger Arithmetic with Predicate is undecidable”
is already proved in [5]. However it can not be used directly because array is
finite, and finite arrays can not be used to represent predicates of Presburger
arithmetic.

6 Example

As an illustrating example, we assume integers are 4-bit integers. Consider the
formula F :

∃a.(|a| = 10 ∧ ∀i.(i < |a| → a[i + 1] =n a[i] +n 1))

This formula states: there exists an array a which increases by 1 each step, and
the size of a is 10. Following the steps in Section 3.1, F is rewritten to UABE
syntax, say F ′:

∃a.(|a| = 10 ∧ ¬∃i.((i < |a|)∧
¬(∃x, y, z, j.j = i + 1 ∧ z =n 1 ∧ y =n a[i] ∧ x =n a[j] ∧ x =n y +n z)))

Then F ′ is translated into Δ(F ′):

∃|a|, a(0), a(1), a(2), a(3).Γ2(a) ∧ (P=(|a|, 10) ∧ ¬∃i.(P<(i < |a|)∧
¬(∃Sx, Sy, Sz, j.j = i + 1 ∧ P=(z, 1) ∧ P=(y, a[i]) ∧ P=(x, a[j]) ∧ P+(x, y, z))))

Mona is used to check Θ ∧ Δ(F ′). In a second, the result shows “satisfiable”,
and an example is given: a = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9).

Many other formulas can be checked, such as:

– Fibonacci array is sorted: Because Fibonacci array increases exponentially.
For a 4-bit element domain, we have to restrict |a| < 7 so that the value
does not exceed 24 − 1 = 15. The formula is given as:

(|a| < 7) ∧ (a[0] =n 1) ∧ (a[1] =n 1)
∧∀i.i + 2 < |a| → (a[i + 2] =n a[i + 1] +n a[i])

→ (∀i, j.i < j < |a| → a[i] ≤n a[j])

In a second, the result shows “valid”, i.e. all Fibonacci array with length less
than 7 is sorted.
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– all values stored in array a are distinct:

∀i, j.(i < |a| ∧ j < |a| ∧ (a[i] =n a[j]) → (j = i))

Check this formula, result is “satisfiable”, and an example where all elements
are distinct is given.

– other properties such as: if a[i] < i for all indices then a[a[i]] < i for all indices
can be expressed as:

∀i.(i < |a| → a[i] < i) → ∀i.(i < |a| ∧ a[i] < |a| → a[a[i]] < i)

This formula is “valid”.

As we can see, UABE has good expressive power. Many formulas that are not
expressible in other logic fragments can be expressed and checked.

7 Conclusion

In this paper, we investigated a new array theory UABE. It is quite expressive
but decidable. A decision procedure is given by translating UABE into WS1S.
Two extensions of UABE are shown to be undecidable. Some examples of UABE
formulas and their verification results are given. In the future, we want to im-
plement the translation and do more experiments. We also want to see how it
performs in program verification.
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Quantifier Elimination by Lazy Model
Enumeration�

David Monniaux

CNRS/VERIMAG��

Abstract. We propose a quantifier elimination scheme based on nested
lazy model enumeration through SMT-solving, and projections. This
scheme may be applied to any logic that fulfills certain conditions; we il-
lustrate it for linear real arithmetic. The quantifier elimination problem
for linear real arithmetic is doubly exponential in the worst case, and
so is our method. We have implemented it and benchmarked it against
other methods from the literature.

1 Introduction

Quantifier elimination consists in transforming a quantified formula into an
equivalent quantifier-free formula. For instance, the formulas ∀y (y − z ≥ x ⇒
x + z ≥ 1) and x ≥ 1 − z are equivalent (they have the same models for (x, z)),
whether considered over the reals or integers. Quantifier elimination subsumes
both satisfiability testing for quantifier-free formulas, and the decision of quanti-
fied formulas without free variables. In program analysis, quantifier elimination
has been applied to obtain optimal invariants and optimal abstract transformers
[1,2], and to obtain preconditions for modular assertion checking [3].

Unfortunately, quantifier elimination tends to be slow; as recalled in §4, worst-
case complexities for useful theories tend to be towers of exponentials. Yet, high
worst-case complexity does not preclude exploring procedures that perform fast
on most examples, as shown by the high success of SAT solving. This motivates
our work on new quantifier elimination algorithms.

Many interesting mathematical theories admit quantifier elimination. In order
to introduce better elimination schemes, we shall first describe a naive, but inef-
ficient algorithm (§2.2) which works by calling a projection operator, that is, an
algorithm taking as an input a conjunction C of literals of the theory, and a list
of variables x1, . . . , xn, and outputting a formula equivalent to ∃x1, . . . , xn C.
Examples of theories with projection operators include nonlinear complex arith-
metic (also known as the theory of algebraically closed fields), using Gröbner
bases [4]; linear real arithmetic, using Fourier-Motzkin elimination [5, §5.4] or
more advanced polyhedral projection techniques; and linear integer arithmetic,
also known as Presburger arithmetic, using the Omega test [6].
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Nonlinear integer arithmetic, also known as Peano arithmetic, is undecidable.
However, nonlinear (polynomial) real arithmetic1 admits quantifier elimination.
The best known general algorithms construct a cylindrical algebraic decompo-
sition of the polynomials present in the atoms of the formula; once this costly
decomposition is obtained, the quantifier elimination is trivial [7,8]. We therefore
exclude these two theories from our study.

This article provides two contributions. First, it describe an algorithm that
uses both projection and satisfiability testing modulo the chosen theory, and
illustrate it with linear real arithmetic. This algorithm performs nested satisfia-
bility tests, with lazy generation of constraints. Second, we improve on the worst
case complexity bounds for an earlier algorithm [9], which are also valid for the
new one.

In §2, we give a short introduction to quantifier elimination techniques over lin-
ear real arithmetic, and the idea of lazy constraint generation. In §3, we describe
our algorithm, and we prove that its complexity is at most doubly exponential
in §4. Finally, in §5 we provide benchmarks.

2 Previous State of the Art

Let us first recall some vocabulary on formulas. We shall then summarize pre-
vious work on quantifier elimination on linear real arithmetic, most notably our
eager projection method (§2.2). We propose a lazy projection method using ideas
of lazy constraint generation; §2.3 gives examples of such techniques in other ap-
plications.

2.1 Formulas

We consider quantifier-free formulas written using ∧, ∨ and ¬ connectors, as
well as literals (atoms or negation thereof). A formula written without ¬ except
just around an atom is said to be in negation normal form (NNF), a formula
consisting in a disjunction of conjunctions of literals is in disjunctive normal
form (DNF), a formula consisting in a conjunction of disjunctions of literals is
in conjunctive normal form (CNF).

We shall mostly focus on the case where the atoms are of the form
∑

i aixi ≤ b
where the ai and b are constant rational numbers and the xi are real variables.
A model of a formula F is an assignment to the xi such that the formula is
satisfied; we then note (x1, . . . , xn) � F . We say that two formulas F and G are
equivalent, noted F ≡ G, if they have the same models. We say that F implies
G, noted F � G, if all models of F are models of G. Formulas without free
variables are equivalent to true or false. A decision procedure provides this truth
value given such a formula. Obviously, a quantifier elimination procedure may
be used as a decision procedure, since it will turn any formula into an equivalent
formula without quantifiers or variables, thus trivially checkable.

1 Also known as the theory of real closed fields.
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We add to this language the ∀ and ∃ quantifiers. The definitions for models,
equivalence and implication are the same as above, except that models only
assign values to the free variables of the formula. Quantifier elimination consists
in obtaining an equivalent quantifier-free formula from a quantified formula.

There exist two major classes of algorithms for quantifier elimination over
arithmetic. One is based on substitution: an infinite disjunction ∃x F is shown
to be equivalent to a finite disjunction F [x1/x] ∨ · · · ∨ F [xn/x] where the xi

are functions of the free variables in F constructed by examination of the atoms
in F . For linear real arithmetic, Ferrante and Rackoff’s method [10] and Loos and
Weispfenning’s method [11] belong to this class, and so does Cooper’s method
for Presburger arithmetic [12]. Other methods, more geometrical in kind, project
conjunctions of atoms and thus need some form of conversion to DNF; such is
the case of Fourier-Mozkin elimination for linear real arithmetic, and of Pugh’s
Omega test for Presburger arithmetic [6]. Our methods belong to that latter
class.

2.2 Eager Model Enumeration Algorithm

It is easy to see that if there is an algorithm π for eliminating quantifiers from
formulas of the form ∃x1, . . . , xn F where C is a quantifier-free conjunction
of literals, then there is an algorithm, albeit an inefficient one, for eliminating
quantifiers from any formula.

We reduce ourselves to the case of eliminating the existential quantifier from
∃x1, . . . , xn F where F is quantifier-free. We handle an existentially quantified
formula ∃x1, . . . , xn F as follows: convert F to DNF F1 ∨ · · · ∨ Fm; the formula
is then equivalent to (∃x1, . . . , xn F1) ∨ · · · ∨ (∃x1, . . . , xn Fm), and thus to
π(∃x1, . . . , xn F1) ∨ · · · ∨ π(∃x1, . . . , xn Fm). In the simplest form, π can be
performed by the Fourier-Motzkin algorithm, and conversion to DNF by repeat
application of the distributivity of ∧ over ∨.

Can we do better? A more efficient way to convert to DNF is to use an
“all-SAT” approach within a satisfiability modulo theory (SMT) solver. Given a
quantifier-free formula F over linear real arithmetic, an SMT-solver will either
answer “unsat”, in which case F is unsatisfiable, or provide a model for F — that
is, a valuation for all the free variables such that F is satisfied. Equivalently, an
SMT-solver may provide truth values for all atoms in F such that all valuations
of the free variables of F for which the atoms in F have these truth values are
models; in other words, it provides a conjunction C of literals from the atoms of
F such that C implies F .

In order to convert a formula F to DNF, we run an SMT-solver over it. If it
answers “unsat”, we are done. Otherwise, it provides a conjunction of literals C1
such that C1 ⇒ F . Run the SMT-solver over F ∧ ¬C1. If it answers “unsat”, we
are done. Otherwise, it provides a conjunction of literals C2 such that C2 ⇒ F .
Run the SMT-solver over F ∧¬C1∧¬C2, etc. This algorithm terminates, because
there is a finite number of atoms and thus a finite number of conjunctions Ci

that can be built out of them, and the same conjunction cannot occur twice. At
the end C1 ∨ C2 ∨ . . . is a DNF form for F .
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There is still room for improvement. Consider the formula defining the vertices
of a n-dimensional hypercube F

�= (x1 = 0 ∨ x1 = 1) ∧ · · · ∧ (xn = 0 ∨ xn = 1)
and compare with the result of the quantifier elimination ∃x2, . . . , xn F ≡ x1 =
0 ∨ x1 = 1. Certainly it seems excessive to enumerate the 2n−1 disjuncts of the
DNF of F whereas the final result only has 2 disjuncts.

We therefore suggested another improvement [9]. Instead of adding ¬Ci to
the constraints of the system, we add ¬π(Ci). With this method, the number of
calls to the SMT-solver is not the size of the DNF of F , but the size of the DNF
for the eliminated form of ∃v1, . . . , vm F .

This algorithm has a weakness: when applied to nested quantifiers, for in-
stance, ∃x1∀x2∃x3 F , it will compute a full DNF for ∃x3 F , then a full CNF
for ∀x2∃x3 F , prior to computing the DNF for the full formula, and it will do
so even if most conjuncts or disjuncts are actually useless. Consider for instance
the following example:

F
�= ∃x∀y∃z z ≥ 0 ∧ (x ≥ z ∧ y ≥ z ∨ y ≤ 1 − z) (1)

This formula was produced by adding an extra z to (x ≥ 0 ∧ y ≥ 0) ∨ y ≤ 1,
which is equivalent to x ≥ 0 ∨ y ≤ 1.

Let us see how the eager algorithm performs on F . First, ∃z z ≥ 0(x ≥ z∧y ≥
z ∨ x ≥ z − 1 ∧ y ≥ 1 − z) is turned to DNF: F2

�= (x ≥ 0 ∧ y ≥ 0) ∨ y ≤ 1
or, perhaps with some better algorithm, x ≥ 0 ∨ y ≤ 1. Then, ∀y F2 is turned
to CNF, that is, F1

�= x ≥ 0, and then ∃x F1 is turned into true. Now consider
that instead of F2, we had taken F ′

2
�= x ≥ 0; clearly F ′

2 � F2. ∀y F ′
2 is then

x ≥ 0. In short, instead of computing a full DNF for F ′
2 we could have simply

computed one term of it. This motivates our lazy algorithm.

2.3 Lazy Constraint Generation in Other Contexts

In short, when looking for a model for variable x of ∀y∃z F , each disjunct in the
DNF of ∃z F is an additional constraint over x, but we do not wish to generate
the full list of these constraints because some of them may not be actually needed.
The idea of our algorithm is to try to solve the already known constraints, find a
tentative solution, and find if this solution violates some yet unknown constraint;
if so, we add this constraint to the system and resume our search for a solution.
Before describing a formal version of the algorithm, we wish to note that lazy
constraint generation approaches are already used in other contexts, in order to
better convey the intuition of the method.

In operational research, it is not uncommon for constrained optimization prob-
lems to be specified using a very large number of constraints, so large that explic-
itly taking them all into account at once would be impractical. New constraints
are “discovered” when the proposed solution violates them. In linear program-
ming, such technique is known as delayed column generation. As early as 1954, it
was observed that it was possible to solve large instances of the traveling sales-
man problem by dynamically generating the inequalities that a solution should
satisfy, the full set of inequalities being “astronomically” large [13].
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Almost all SMT-solving systems proceed by Boolean relaxation: in order to
decide whether a formula F is satisfiable, they first replace all non-propositional
atoms by propositional variables, using a dictionary, then solve the resulting
system using SAT. If the resulting propositional system is unsatisfiable, then
so is the original problem. If it is satisfiable, it is possible that the Boolean
solution is absurd with respect to the theory: for instance, if it assigns true to the
propositional variables corresponding to the atoms x > 1, y > 3, and x + y < 0.
If this is the case, an additional Boolean constraint is added to the problem,
excluding this inconsistent assignment (or, for better efficiency, an inconsistent
generalization of this assignment). In short, we generate on demand, or lazily,
the theory of the atoms of F (the absurd conjunctions of atoms of F ), because
an eager approach would generate an exponential number of Boolean constraints
[5, §11.2].

Some recent proposals for SMT-solving over linear real arithmetic [14,15] do
not use Boolean relaxation. Instead, they try solving the formula directly for the
real variables: for a problem over x, y and z, if they realize that after choosing
x = x0 and y = y0, there is no suitable z (once x and y are chosen, the solution
set for z can be computed as a intervals), they deduce a constraint on x and y
that excludes (x0, y0). When solving for x, y, constraints on x may be obtained.
This approach has similarities to what we would obtain by applying the ideas of
§3 to a ∃x1∃x2 . . . ∃xn F formula.

In quantified Boolean solving for formulas of the form ∀b1, . . . , bm∃c1, . . . , cn F
(2QBF), some proposed approaches [16, Alg. I] use two successive layers of SAT
solvers, with the inner solver solving for b1, . . . , bm, c1, . . . , cn, initially for for-
mula F , and the outer solver for c1, . . . , cn, initially for formula true, with new
constraints being lazily generated and accumulated into the outer solver. The al-
gorithm we present in §3 can be understood as a generalization of this algorithm
to arbitrary theories and arbitrary quantification depths.

3 Lazy Model Enumeration Algorithm

We shall now describe our lazy algorithm, instantiated on linear real arithmetic
(first, the generalization sub-algorithm, then the main algorithm), and prove its
correctness. Then we shall briefly investigate possibilities of extension.

3.1 Generalization Algorithm

At some point during the course of the main algorithm, we shall generate a
conjunction C1 ∧ · · · ∧ Cn that implies a formula F , but for efficiency we would
prefer a conjunction of fewer terms Ci1 ∧ · · · ∧ Cin that still implies F . In other
words, we wish to generalize the conjunction C1 ∧ · · · ∧ Cn under the condition
that C1∧· · ·∧Cn � F . Ideally, we wish the subset {Ci1 , . . . , Cin} to be minimal.

Our condition is equivalent to C1 ∧ · · · ∧Cn ∧¬F being a contradiction; thus,
from a set of constraints {C1, . . . , Cn,¬F} we wish to extract a minimal contra-
dictory set, or, in the terminology of operation research, a irreducible infeasible
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Algorithm 1. Generalize(C0, test): given a set S0 and a monotonic Boolean
function test such that test(S0) is true, return S ⊆ S0 such that test(S) is true
and S is minimal.
Require: (S0, test)
Require: test is a function that takes as input a set S of literals and answers true

or false. It is required to be monotonic: if S1 ⊆ S2, and test(S1) is true, then so is
test(S2).

Require: S0 is a set of literals such that test(S0) is true.
S := S0

while S �= ∅ do
Choose a literal c in S
if test(S \ {c}) is true then
S := S \ {c}

end if
end while

Ensure: test(S) is true
Ensure: S ⊆ S0

This description intentionally omits a precise criterion for the choice of c, since the
algorithm is correct regardless.

subset. The simplest algorithm for doing so is the deletion filter [17,18]. A differ-
ence is that in operation research contexts, all constraints are inequalities, while
in our case, formula F is in general complex, with disjunctions. In fact, we do
not even want to explicitly write formula F — this is the difference with our
earlier eager algorithm. Instead, we use a function test that takes as input a set
S

�= {C1, . . . , Cn} of literals, and answers “true” if and only if ¬F ∧C1 ∧· · · ∧Cn

is unsatisfiable, thus leading to Alg. 1. This procedure merely relies on test being
monotonic as a function from the sets of literals, ordered by inclusion, to the
Booleans.

Procedure Generalize can be replaced by a more clever, “divide-and-con-
quer” approach, as in the min function in [19] (or the equivalent QuickXPlain
from [20]). While this procedure is theoretically better, making fewer calls to
test, it performs worse in practice (§5). In our case, test is a complex procedure,
possibly making use of multiple layers of quantifier elimination and SMT-solving,
all of which use caches; thus, the cost of multiple calls does not depend solely
on the number of calls but also on the relationships between the calls.

3.2 Main Algorithm

If B is a set {v1, . . . , vn} of variables, we denote by ∀BF the formula ∀v1 . . . ∀vn F
(and respectively for ∃BF ). In all our algorithms and reasoning, the order of the
bound variables inside these “block quantifiers” will not matter, thus the notation
is justified. For technical reasons, we allow empty quantifier blocks (∀∅ and ∃∅).
We note ¬nF the formula F if n is even, ¬F if n is odd. We note FV(F ) the set
of free variables of formula F .
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We consider a formula F0 in prenex form, with alternating quantifier blocks:
∀B0∃B1∀B2 . . .¬nFn. Without loss of generality, we can suppose that the Bi

have pairwise empty intersection. Any quantified formula can be converted to
this form with ∀i > 0 Bi �= ∅, but possibly with B0 = ∅. More precisely, we note,
for 0 ≤ i < n, Fi = ∀Bi¬Fi+1.

πi is a quantifier elimination procedure for conjunctions: from a conjunction C
it returns another conjunction C′ such that C′ ≡ ∃BiC; for linear real arithmetic,
Fourier-Motzkin elimination or more clever methods of polyhedral projection are
suitable.2 It is not necessary that C′ be a conjunction for most of our algorithm,
except for the Generalize procedure (this restriction will be lifted in §3.5).

The main algorithm is the function Q-Test(i, C). It tests whether Fi ∧ C is
satisfiable, and if it is, it proposes a conjunction C′ of literals such that FV(C′) ⊆
FV(Fi), C′ � Fi, and C ∧ C′ is satisfiable. It is defined by induction over n − i
for 0 ≤ i ≤ n.

The case i = n corresponds to is merely SMT-solving and generalization.
We note SMT-Test(C, F ) the SMT-solver function, which takes as inputs two
formulas C and F and returns a couple (b, C′). b is a Boolean, which states
whether C∧F is satisfiable. If b is true, C′ is an “extended model”: a conjunction
of literals of F such that C′ � F and C∧C′ is satisfiable. Such a function can be
obtained from an ordinary SMT-solver providing satisfiability models as follows:
get a model M � C ∧ F , then set C′ as the conjunction of all the atoms a of F
such that M � a and of the negation of all the atoms a of F such that M � a;
alternatively, some SMT-solvers directly output such a conjunction.

The recursive case for i < n is defined by calling the recursive case for i + 1.
Let us begin by some intuition of the workings of the algorithm. Recall that
Fi

�= ∀Bi¬Fi+1; thus, if we had a DNF D1 ∨ · · · ∨ Dl of Fi+1, we could turn
it immediately into a CNF of Fi: (¬πi(D1)) ∧ · · · ∧ (¬π1(Dl)). Our goal is to
test whether C ∧ Fi is satisfiable, which is equivalent to testing whether the set
of constraints {C,¬πi(D1), . . . ,¬π1(Dl)} is satisfiable. Instead of computing all
these constraints, then solving them, which is what our eager algorithm does,
we wish to compute them “as needed”.

The constraints that have already been computed at level i are stored as a
current formula Mi (in practice, the current constraint state of an SMT-solver),
initialized to true. Each of these formulas, for 0 < i < n, satisfies two invariants:
FV(Mi) ⊆ FV(Fi) and Fi � Mi. Intuitively, if the output of πi is always a

2 Fourier-Motzkin elimination directly obtains a set of inequalities defining the pro-
jected polyhedron, but it may create many unnecessary ones and it is thus often
necessary to run tests for removing useless ones. Such tests are emptyness tests
for polyhedra defined by constraints; these can be performed using the simplex algo-
rithm implemented in exact rational arithmetic. Alternatively, methods based on the
“double representation” of polyhedra first compute the set of vertices of the polyhe-
dron (which may be exponential, for instance for a hypercube [0, 1]n), project them
(a trivial operation) then compute the facets of the resulting polyhedron. See [21]
for a bibliography on polyhedral algorithms. Our implementation uses an off-the-
shelf polyhedron library based on double representation; profiling has shown that
the choice of the projection algorithm did not matter much [9].
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Algorithm 2. Q-Test(i, C): satisfiability testing for Fi ∧ C

Require: (i, C) such that 0 ≤ i ≤ n, FV(C) ⊆ FV(Fi)
if i = n then

(b′, C′) := SMT-Test(C,Fn)
if b′ is false then

return (false, false)
else

return (true,Generalize(C′,K �→ ¬first(SMT-Test(K,Fn))))
end if

else
while true do

(b′, C′) := SMT-Test(C,Mi)
if b′ is false then

return (false, false) {Since Fi � Mi, then C ∧ Fi is unsatisfiable too}
else

(b′′, C′′) := Q-Test(i+ 1, C′)
if b′′ is false then

{C′ ∧ Fi+1 is unsatisfiable}
return (true,Generalize(C′,K �→ ¬first(Q-Test(i+ 1,K))))

else
{C′′ is such that FV(C′′) ⊆ FV(Fi+1), C′′ � Fi+1 and C′∧C′′ satisfiable.
Thus ∃BiC

′′ � ∃BiFi+1, whence Fi = ∀Bi¬Fi+1 � ¬∃BiC
′′ ≡ ¬πi(C′′)}

Mi := Mi ∧ ¬πi(C′′)
end if

end if
end while

end if
Ensure: The return value is a pair (b, C′). b is a Boolean stating whether Fi ∧ C is

satisfiable. If b is true, then C′ is a conjunction of literals such that FV(C′) ⊆ FV(Fi),
C′ � Fi, and C ∧ C′ is satisfiable.

x �→ v denotes the function mapping x to v; first denotes the function mapping a couple
to its first element.

conjunction, Mi is a “partial CNF” for Fi. At worst, the algorithm completes it
into a full CNF for Fi.

The algorithm at level i < n works as follows. It first tests satisfiability with
respect to the already computed constraints: whether C ∧ Mi is satisfiable; if it
is not, then a fortiori C ∧Fi is not and the answer is immediate. Otherwise, we
obtain an extended model C′ of C ∧ Mi. We however do not know yet whether
it is an extended model of C ∧ Fi; this is the case if and only if C′ ∧ Fi+1 is
unsatisfiable. We thus perform a recursive call to Q-Test at level i + 1:

– If this call answers that C′ ∧ Fi+1 is unsatisfiable, we could immediately re-
turn C′ as a correct generalized model. Yet, C′ might not be general enough:
we would prefer to extract from it a minimal conjunction C′

min such that
C′

min ∧Fi+1 is still unsatisfiable; thus the call to Generalize. Generalize
has to test the satisfiability of various formulas of the form C′

s ∧ Fi+1; we
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therefore supply it with the K $→ ¬first(Q-Test(i + 1, K)) function, which
answers whether K ∧ Fi+1 is unsatisfiable.

– If C′ ∧Fi+1 is satisfiable, we obtain an extended model C′′: C′′ � Fi+1. We
therefore add ¬πi(C′′) as a new constraint in Mi and retry solving.

3.3 Correctness

The correctness of Generalize is obvious. The partial correctness of Q-Test
algorithm is proved by induction over n− i: we show it is correct for levels i = n
down to i = 0. For i = n, its correctness reduces to that of SMT-solving and
Generalize. The interesting case is i < n.

As noted in the algorithm description, we maintain the invariant Fi � Mi. If
C ∧Mi is unsatisfiable, then a fortiori C ∧Fi is unsatisfiable and the (false, false)
answer is correct. Assume now the induction hypothesis: the correctness of
Q-Test(i + 1, C), which answers whether C′ ∧ Fi+1 is unsatisfiable. If it is
so, then C′ � ∀Bi¬Fi+1; we then generalize C′ and answer the generalized ver-
sion. Otherwise, we obtain C′′ � Fi+1; therefore Fi � ¬πi(C′′) and we can add
¬πi(C′′) as a constraint in Mi.

Total correctness is ensured by the fact that the number of C′ that can be gener-
ated at a given level i is finite, which is proved, again, by induction from i = n− 1
down to i = 0. At level n− 1, all the C′ that we obtain are conjunctions of literals
built from atoms of Mi. Mi is a conjunction of negations of projections of conjunc-
tions of atoms of Mi+1. By the induction hypothesis, only a finite number of atoms
can accumulate into Mi+1, thus only a finite number of constraints can accumulate
into Mi, and the induction is proved. §4.2 provides complexity bounds.

3.4 Example

Recall the formula from Eq. 1: ∃x∀y∃z z ≥ 0 ∧ (x ≥ z ∧ y ≥ z ∨ y ≤ 1 − z). Its
truth value is equivalent to the satisfiability of F0: We therefore have

F0
�= ∀y∃z z ≥ 0 ∧ (x ≥ z ∧ y ≥ z ∨ y ≤ 1 − z) (2)

F1
�= ∀z ¬(z ≥ 0 ∧ (x ≥ z ∧ y ≥ z ∨ y ≤ 1 − z)) (3)

F2
�= z ≥ 0 ∧ (x ≥ z ∧ y ≥ z ∨ y ≤ 1 − z) (4)

We initialize M0 = M1 = true. Consider the call Q-Test(0, true). SMT-Test
(true, M0) returns (true, true). Q-Test(1, true) is then called.

SMT-Test(true, M1) returns (true, true). Q-Test(2, true) is then called. This
results in SMT-Test(F2, true) being called. SMT-solving of F2 results in a
“satisfiable” answer with a solution, for instance, (x = 0, y = 0, z = 0); thus
SMT-Test(F2, true) is (true, z ≥ 0 ∧ x ≥ z ∧ y ≥ z ∧ y ≤ 1 − z). Gener-
alize yields the simpler conjunction z ≥ 0 ∧ x ≥ z ∧ y ≥ z, which still im-
plies F2. The projection of this conjunction parallel to z is x ≥ 0 ∧ y ≥ 0; we
add its negation x < 0 ∨ y < 0 to M1. We again run SMT-Test(true, M1),
which returns (true, x < 0). Q-Test(2, x < 0) is then called. This results in
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SMT-Test(F2, x < 0) being called. SMT-solving of F2 ∧ x < 0 results in a
“satisfiable” answer with a solution, for instance, (x = −1, y = 0, z = 0); thus
SMT-Test(F2, x < 0) is (true, z ≥ 0∧y ≤ 1−z). Generalize does not simplify
this conjunction. The projection of this conjunction parallel to z is y ≤ 1; we add
its negation y > 1 to M1, which is then y > 1 ∧ (x < 0 ∨ y < 0). We again run
SMT-Test(true, M1), which returns (true, x < 0∧y > 1). Q-Test(2, x < 0∧y >
1) is then called. This results in SMT-Test(F2, x < 0∧y > 1) being called, with
answer (false, false). We then know that x < 0 ∧ y > 1 � F1. Q-Test(1, true)
then returns (true, x < 0 ∧ y > 1).

The projection of this conjunction parallel to y is x < 0; we add its negation
x ≥ 0 to M0. SMT-Test(true, M0) returns (true, x ≥ 0). Q-Test(1, x ≥ 0) is
then called. SMT-Test(x ≥ 0, M1) then returns (false, false). Q-Test(0, true)
then returns (true, x ≥ 0).

3.5 Generalizations

The above algorithm tests the satisfiability of a quantified formula and provides
a generalized model if there is one. It can be turned into a quantifier elimination
procedure by model enumeration: run Q-Test(0, true), obtain a model C1 � F ,
run Q-Test(0,¬C1), obtain a model C2 � F , run Q-Test(0,¬V1 ∧ ¬C2) etc.
until Q-Test returns (false, false), then C1 ∨ C2 is a DNF for F . This loop ter-
minates for the same reason as Q-Test: the number of C that can be generated
is less than the 2a where a is the number of possible atoms for M0.

The algorithm can be generalized to any theory for which there are an SMT-
solving algorithm and a projection operator. Obviously, propositional logic is
suitable, though specialized QBF solvers are likely to be more efficient. Suitable
theories include Presburger arithmetic: current SMT solvers implement integer
arithmetic by relaxation to real numbers and branch’n’cut or Gomory cuts, and
projection can be done using Omega [6].

One problem is that Omega outputs a disjunction: the results from the “dark
shadow”, plus a finite number of results from the “gray shadow”. The simple gen-
eralization scheme in Generalize is then unsuitable. Recall that this algorithm
attempts generalizing a conjunction C by removing each conjunct and check-
ing whether the resulting conjunction is still suitable (using the test oracle for
suitability). Alternatively, one may see this method as replacing atoms by true
inside the formula and checking whether the resulting formula is still suitable —
which is a correct method for generalizing any formula in negation normal form.

For the sake of simplicity, we have required that the formula be in prenex
form. It is possible to generalize the algorithm as follows: given formulas F and
C, answer whether C ∧F is satisfiable and, if so, provide C′ such that C ∧C′ is
satisfiable and C′ � F . Such an algorithm can be defined by induction over F :
our Q-Test algorithm implements the case where F contains no quantifier, or
is of the form ∀¬F . The case for ∃F is just the case for F followed by projection.
The case for F1 ∨ F2 first tests F1 then, if unsuccessful, F2. The case for (F1 ∧
F2, C) where F1 has no quantifier (if necessary, eliminate them) reduces to that
of (F2, F1 ∧ C).
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4 Complexity

We shall now prove that the algorithms of §2.2 and §3.2 are at most doubly
exponential.

4.1 Number of Faces in Projected Polyhedra

A polytope in dimension d is the convex hull of a finite number of points of Rd.
We recall the usual definitions of faces [22, §2.1, p. 39]: a vertex is a 0-face, an
edge a 1-face,a facet a (d − 1)-face. If one considers conventional tridimensional
geometry, then these definitions fit the usual ones for vertices, edges and sides
respectively.

The number of k-faces of a polytope with v vertices in a d-dimensional space
can be bounded [22, ch. 4, 5]:

Theorem 1 (McMullen). The maximal number of k-faces for a polytope with
v vertices in a d-dimensional space is obtained for cyclic polytopes and thus is
fk(v, d).

The number of k-faces in a cyclic polytope (a particular kind of polytope whose
definition [22, p. 82] is unimportant for our purposes) can be explicitly computed
[22, Prop. 19, p. 86]:

Proposition 1. The number fk(v, d) of k-faces of a cyclic polytope with v ver-
tices in a d-dimensional space (k < d) is given by:

fk(v, 2n) =
n∑

j=1

v

v − j

(
v − j

j

)(
j

k + 1 − j

)
(5)

fk(v, 2n + 1) =
n∑

j=0

k + 2
v − j

(
v − j

j + 1

)(
j + 1

k + 1 − j

)
(6)

Observe that fk(v, 2n), as a polynomial in v, has at most degree n, and that
its coefficient of degree n, if k + 1 ≥ n, is

(
n

k+1−n

)
. 1
n! = 1

(k+1−n)!(2n−k−1)! ≤ 1.
fk(v, 2n + 1), as a polynomial in v, also has at most degree n, and its coefficient
of degree n, if k + 1 ≥ n, is k+2

(n+1)!

(
n+1

k+1−n

)
= k+2

(k−n+1)!(2n−k)! ≤ 3. It follows that
when v → ∞, fk(v, d) = O

(
v�d/2�). Furthermore, if k + 1 < �d/2�, then fk(v, d)

has leading monomial vk+1/(k + 1)!.
Note that a facet of the projection of a polytope P along p coordinates nec-

essarily corresponds to a (d − 1 − p)-face of P (as an example, the edges of a
polygon obtained by projecting a tridimensional polyhedron correspond to some
of the edges of the original polyhedron). By polytope duality [22, §2.2, p. 61],
they correspond to p-faces of the dual polytope of P , whose vertices are the
facets of P . Therefore:

Lemma 1. The number of facets of the projection of a polytope with f facets in
R

d into R
d−p, along p coordinates, is at most fp(f, d).
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The results above are valid for bounded polytopes, whereas our algorithms op-
erate on unbounded polyhedra. By adding at most 2n constraints of the form
xi ≤ ±C with C a large enough constant, we can obtain a bounded polytope P ′

out of an unbounded polyhedron P . The facets of the projection of P are found
among the facets of the projection of P ′. From the above results we deduce:

Lemma 2. The number of facets of the projection of a polyhedron with f facets
in Rd into Rd−p, along p coordinates, is O(f �d/2�) as f → ∞. Furthermore, if
p + 1 < �d�2, then it is O(fp+1).

4.2 Application to our Algorithms

Consider a formula F in prenex form with n atoms and m variables, from which
p are quantified. We can immediately exclude trivial atoms (those equivalent to
true or false) and simplify the formula accordingly. In the remaining formula,
each atom delimits a half-space. The number of distinct polyhedra that can be
constructed from these half-space is at most 2n. At all levels of our algorithms,
we work with facets from projections of these polyhedra. Applying Lemma 2,
the number of projections along p given coordinates of these facets is O(2n(p+1))
as n → ∞. The model enumeration algorithm, at a given level, can enumerate at
most 2a choices of truth values for a = O(2n(m+1)) atoms. Each choice represents
one run of SMT-solving, whose cost is O(2a+m). To summarize, the overall costs
are in O

(
22cnm)

for some constant c, thus O
(
22c|F |2

)
where |F | is the size of

the formula.
In comparison, the substitution-based elimination procedures have complexity

22c|F |
[10,11], and this is a lower bound for real quantifier elimination [23]. Also,

any nondeterministic decision procedure for quantified real arithmetic has at
least exponential complexity in the worst case [24]; so restricting ourselves to
decision problems in lieu of quantifier elimination in general is not likely to help
much.

However, when it comes to doubly exponential complexities, all that matters
from practical purposes is practical complexity: an algorithm that performs well
in practice is preferrable to an algorithm with better theoretical bounds, but
that tends to reach its theoretical complexity. This is why we implemented the
various methods and performed benchmarks, as seen in the next section.

5 Implementation and Benchmarks

We implemented the algorithms of Ferrante and Rackoff [10], Loos and Weispfen-
ning [11], our eager algorithm [9], and our lazy algorithm for linear real arithmetic
(§3.2) into our Mjollnir tool.3

3 The current version of Mjollnir is available from
http://www-verimag.imag.fr/~monniaux/download/, as well as the benchmarks
formulas.

http://www-verimag.imag.fr/~monniaux/download/
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Table 1. Number of decision problems solved. Each block of 300 formulas B1, . . . , B6

was randomly generated; we provide the number of formulas that at least one of the
methods proved to be true or false. Maximal memory allowed was 1 GiB and maximal
time 300 s.

B1 B2 B3 B4 B5 B6

True formulas 115 80 220 285 219 230
False formulas 159 134 23 0 32 4
Ferrante-Rackoff (FR) solves 199 150 203 53 178 185
Loos-Weispfenning (LW) solves 250 220 244 80 247 249
Monniaux eager (M1) solves 241 128 218 260 231 112
Monniaux lazy (M2) solves 276 187 238 285 248 143
M2 solves but LW does not 32 9 26 209 28 1
LW solves but M2 does not 6 42 32 4 27 107
M2 solves but M1 does not 35 59 26 25 23 33
M1 solves but M2 does not 0 0 6 0 6 2
FR solves but LW does not 11 11 8 34 7 6
LW solves but FR does not 62 81 49 61 76 70

Since algorithmic costs are sensitive to the kind of formula output (CNF,
DNF or unconstrained), we preferred to test these procedures only on decision
problems — those without free variables, for which the output is true or false.
We generated random benchmarks in blocks of 300, of various kinds:

1. B1 consists in formulas with 10 variables, with sparse atoms, of the form
∀v9∃v8∀v7∃v6∀v5∃v4∀v3∃v2∀v1∃v0 F .

2. B2 consists in formulas with 12 variables, with sparse atoms, of the form
∀v11∃v10∀v9∃v8∀v7∃v6∀v5∃v4∀v3∃v2∀v1∃v0 F .

3. B3 consists in formulas with 12 variables, with sparse atoms, of the form
∀v11, v10, v9, v8∃v7, v6, v5, v4∀v3, v2, v1, v0 F .

4. B4 consists in formula of the same form as B3 but with a more complex
Boolean structure in F .

5. B5 consists in formulas with 18 variables, with sparse atoms, of the form
∀v17, v16, v15, v14, v13, v12∃v11, v10, v9, v8, v7, v6∀v5, v4, v3, v2, v1, v0 F .

6. B6 consists in formula of the same form as B5 but with a more complex
Boolean structure in F and denser atoms.

Results are provided in Tab.1. Generally speaking, our model enumeration algo-
rithms fail due to timeout (set at 300 s) while the substitution methods fail to
out-of-memory (maximal memory 1 GiB); also, the lazy model enumeration algo-
rithm tends to perform better than the eager algorithm, and Loos and Weispfen-
ning’s algorithm better than Ferrante and Rackoff’s. Comparing the substitution
methods to the model enumeration algorithms is difficult: depending on how the
benchmarks are generated, one class of algorithms may perform significantly
better than the other.

On some ∀∃ formulas produced by the minimization step of [2], the lazy pro-
cedure performs somewhat more slowly (10–40%) than the eager procedure. This
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seems to indicate that on examples where it is actually necessary to enumerate
all items of the eliminated form of the subformulas, it is faster to do it eagerly
rather than do it lazily — which tends to apply to any comparison of eager and
lazy approaches.

In the model enumeration algorithms, most of the time is spent in the SMT-
solver, not in the polyhedral projection.

We investigated alternatives to the Generalize function: the min function
from [19], and variants of the order that Generalize and min follow when
considering atoms (randomly shuffled, atoms with the variables quantified at
the innermost level first, same with outermost level). Surprisingly, min tended
to perform worse.

6 Conclusion

We have described a quantifier elimination algorithm for linear real arithmetic
that uses nested SMT-solver calls and polyhedral projection, in order to lazily
enumerate models. This algorithm is different from those commonly applied for
this problem, which are based on replacing existential quantification by a finite
disjunction, substituting well-chosen witnesses for the value of the quantified
variable. Both kinds of algorithms have doubly exponential complexity in the
worst case, which is unavoidable for this problem.

For practical purposes, these two kinds of algorithms behave differently: sub-
stitution methods occasionally attempt to construct very large intermediate for-
mulas and finish with out-of-memory, while model enumeration methods occa-
sionally run into high computation times. We have experimented both kinds of
methods on various classes of formulas, and, depending on the quantification
and Boolean structures of the formulas, one method is favored over the other.
There is therefore no clear winner.

Acknowledgments. We wish to thank Scott Cotton and Goran Frehse as well as
the anonymous referees for helpful comments and suggestions.
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Abstract. We show a new and constructive proof of the following
language-theoretic result: for every context-free language L, there is a
bounded context-free language L′ ⊆ L which has the same Parikh (com-
mutative) image as L. Bounded languages, introduced by Ginsburg and
Spanier, are subsets of regular languages of the form w∗

1w
∗
2 · · ·w∗

k for some
w1, . . . , wk ∈ Σ∗. In particular bounded context-free languages have nice
structural and decidability properties. Our proof proceeds in two parts.
First, using Newton’s iterations on the language semiring, we construct
a context-free subset LN of L that can be represented as a sequence of
substitutions on a linear language and has the same Parikh image as L.
Second, we inductively construct a Parikh-equivalent bounded context-
free subset of LN .

As an application of this result in model checking, we show how to
underapproximate the reachable state space of multithreaded procedural
programs. The bounded language constructed above provides a decidable
underapproximation for the original problem. By iterating the construc-
tion, we get a semi-algorithm for the original problems that constructs a
sequence of underapproximations such that no two underapproximations
of the sequence can be compared. This provides a progress guarantee:
every word w ∈ L is in some underapproximation of the sequence, and
hence, a program bug is guaranteed to be found. In particular, we show
that verification with bounded languages generalizes context-bounded
reachability for multithreaded programs.

1 Introduction

Many problems in program analysis reduce to undecidable problems about
context-free languages. For example, checking safety properties of multithreaded
recursive programs reduces to checking emptiness of the intersection of context-
free languages [16,2].

We study underapproximations of these problems, with the intent of building
tools to find bugs in systems. In particular, we study underapproximations in
which one or more context-free languages arising in the analysis are replaced by
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their subsets in a way that (P1) the resulting problem after the replacement be-
comes decidable and (P2) the subset preserves “many” strings from the original
language. Condition (P1) ensures that we have an algorithmic check for the un-
derapproximation. Condition (P2) ensures that we are likely to retain behaviors
that would cause a bug in the original analysis.

We show in this paper an underapproximation scheme using bounded lan-
guages [9,8]. A language L is bounded if there exist k ∈ N and finite words
w1, w2, . . . , wk such that L is a subset of the regular language w∗

1 · · ·w∗
k. In par-

ticular, context-free bounded languages (hereunder bounded languages for short)
have stronger properties than general context-free languages: for example, it is
decidable to check if the intersection of a context-free language and a bounded
language is non-empty [9]. For our application to verification, these decidability
results ensure condition (P1) above.

The key to condition (P2) is the following Parikh-boundedness property: for
every context-free language L, there is a bounded language L′ ⊆ L such that
the Parikh images of L and L′ coincide. (The Parikh image of a word w maps
each symbol of the alphabet to the number of times it appears in w, the Parikh
image of a language is the set of Parikh images of all words in the language.) A
language L′ meeting the above conditions is called a Parikh-equivalent bounded
subset of L. Intuitively, L′ preserves “many” behaviors as for every string in L,
there is a permutation of its symbols that matches a string in L′.

The Parikh-boundedness property was first proved in [13,1], however, the
chain of reasoning used in these papers made it difficult to see how to explicitly
construct the Parikh-equivalent bounded subset. Our paper gives a direct and
constructive proof of the theorem. We identify two contributions in this paper.

Explicit construction of Parikh-equivalent bounded subsets. Our con-
structive proof has two parts. First, using Newton’s iteration [5] on the semiring
of languages, we construct, for a given context-free language L, a finite sequence
of linear substitutions which denotes a Parikh-equivalent (but not necessarily
bounded) subset of L. (A linear substitution maps a symbol to a language de-
fined by a linear grammar, that is, a context-free grammar where each rule has at
most one non-terminal on the right-hand side.) The Parikh equivalence follows
from a convergence property of Newton’s iteration on the related commutative
semiring.

Second, we provide a direct constructive proof that takes as input such a
sequence of linear substitutions, and constructs by induction a Parikh-equivalent
bounded subset of the language denoted by the sequence.

Reachability analysis of multithreaded programs with procedures. Us-
ing the above construction, we obtain a semi-algorithm for reachability analysis
of multithreaded programs with the intent of finding bugs. To check if configu-
ration (c1, c2) of a recursive 2-threaded program is reachable, we construct the
context-free languages L0

1 = L(c1) and L0
2 = L(c2) respectively given by the ex-

ecution paths whose last configurations are c1 and c2, and check if either L′
1∩L0

2
or L0

1 ∩ L′
2 is non-empty, where L′

1 = L0
1 ∩ w∗

1 · · ·w∗
k and L′

2 = L0
2 ∩ v∗1 · · · v∗l



602 P. Ganty, R. Majumdar, and B. Monmege

are two Parikh-equivalent bounded subsets of L0
1 and L0

2, respectively. If either
intersection is non-empty, we have found a witness trace. Otherwise, we con-
struct L1

1 = L0
1 ∩w∗

1 · · ·w∗
k and L1

2 = L0
2 ∩ v∗1 · · · v∗l in order to exclude, from the

subsequent analyses, the execution paths we already inspected. We continue by
rerunning the above analysis on L1

1 and L1
2. If (c1, c2) is reachable, the iteration

is guaranteed to terminate; if not, it could potentially run forever. Moreover, we
show our technique subsumes and generalizes context-bounded reachability [15].

We omit proofs for space reasons. Detailed proofs, as well as one more appli-
cation of our result, can be found in [7].

Related Work. Bounded languages were introduced and studied by Ginsburg
and Spanier [9] (see also [8]). The existence of a bounded, Parikh-equivalent
subset for a context-free language was shown in [1] using previous results on
languages in the Greibach hierarchy [13]. The existence of a language repre-
sentable as a sequence of linear transformations of a linear language which is
Parikh-equivalent to a context-free language was independently shown in [6].

Bounded languages have been recently proposed by Kahlon for tractable
reachability analysis of multithreaded programs [11]. His observation is that in
many practical instances of multithreaded reachability, the languages are actu-
ally bounded. If this is true, his algorithm checks the emptiness of the intersection
(using the algorithm in [9]). In contrast, our results are applicable even if the
boundedness property does not hold.

For multithreaded reachability, context-bounded reachability [15,17] is a pop-
ular underapproximation technique which tackles the undecidability by limiting
the search to those runs where the active thread changes at most k times. Our
algorithm using bounded languages subsumes context-bounded reachability, and
can capture unboundedly many synchronizations in one analysis. We leave the
empirical evaluation of our algorithms for future work.

2 Preliminaries

We assume the reader is familiar with the basics of language theory (see [10]).
An alphabet Σ is a finite non-empty set of symbols. The concatenation L · L′

of two languages L, L′ ⊆ Σ∗ is defined using word concatenation as L · L′ =
{l · l′ | l ∈ L ∧ l′ ∈ L′}.

An elementary bounded language over Σ is a language of the form w∗
1 · · ·w∗

k

for some fixed w1, . . . , wk ∈ Σ∗.

Vectors. For p ∈ N, we write Zp and Np for the set of p-dim vectors (or
simply vectors) of integers and naturals, respectively. We write 0 for the
vector (0, . . . , 0) and ei the vector (z1, . . . , zp) ∈ Np such that zj = 1 if
j = i and zj = 0 otherwise. Addition on p-dim vectors is the componentwise
extension of its scalar counterpart, that is, given (x1, . . . , xp), (y1, . . . , yp) ∈ Zp

(x1, . . . , xp) + (y1, . . . , yp) = (x1 + y1, . . . , xp + yp). Using vector addition, we
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define the operation � on sets of vectors as follows: given Z, Z ′ ⊆ Np, let Z�Z ′ =
{z + z′ | z ∈ Z ∧ z′ ∈ Z ′}.
Parikh Image. Give Σ a fixed linear order: Σ = {a1, . . . , ap}. The Parikh
image of a symbol ai ∈ Σ, written ΠΣ(ai), is ei. The Parikh image is extended
to words of Σ∗ as follows: ΠΣ(ε) = 0 and ΠΣ(u · v) = ΠΣ(u) + ΠΣ(v). Finally,
the Parikh image of a language on Σ∗ is the set of Parikh images of its words.
Thus, the Parikh image maps 2Σ∗

to 2N
p

. We also define the inverse of the Parikh
image Π−1

Σ : 2N
p → 2Σ∗

as follows: given a subset M of Np, Π−1
Σ (M) is the set

{y ∈ Σ∗ | ∃m ∈ M : m = ΠΣ(y)}. When it is clear from the context we generally
omit the subscript in ΠΣ and Π−1

Σ .

Context-free Languages. A context-free grammar G is a tuple (X , Σ, δ) where
X is a finite non-empty set of variables (non-terminal letters), Σ is an alphabet of
terminal letters and δ ⊆ X ×(Σ∪X )∗ a finite set of productions (the production
(X, w) may also be noted X → w). Given two strings u, v ∈ (Σ ∪X )∗ we define
the relation u ⇒ v, if there exists a production (X, w) ∈ δ and some words
y, z ∈ (Σ ∪ X )∗ such that u = yXz and v = ywz. We use ⇒∗ for the reflexive
transitive closure of ⇒. A word w ∈ Σ∗ is recognized by the grammar G from
the state X ∈ X if X ⇒∗ w. Given X ∈ X , the language LX(G) is given by
{w ∈ Σ∗ | X ⇒∗ w}. A language L is context-free (written CFL) if there exists
a context-free grammar G = (X , Σ, δ) and an initial variable X ∈ X such that
is L = LX(G). A linear grammar G is a context-free grammar where each
production is in X × Σ∗(X ∪ {ε})Σ∗. A language L is linear if L = LX(G) for
some linear grammar G and initial variable X of G. A CFL L is bounded if it is
a subset of some elementary bounded language.

Proof Plan. The main result of the paper is the following.

Theorem 1. For every CFL L, there is an effectively computable CFL L′ such
that (i) L′ ⊆ L, (ii) Π(L) = Π(L′), and (iii) L′ is bounded.

We actually solve the following related problem in our proof.

Problem 1. Given a CFL L, compute an elementary bounded language B such
that Π(L ∩ B) = Π(L).

If we can compute such a B, then we can compute the CFL L′ = B ∩ L which
satisfies conditions (i) to (iii) of the Th. 1. Thus, solving Pb. 1 proves the
theorem constructively.

We solve Pb. 1 for a language L as follows: (1) we find an L′ such that L′ ⊆ L,
Π(L′) = Π(L), and L′ has a “simple” structure (Sect. 3) and (2) then show
how to find an elementary bounded B with Π(L′ ∩ B) = Π(L′), assuming this
structure (Sect. 4). Observe that if L′ ⊆ L and Π(L) = Π(L′), then for every
elementary bounded B, we have Π(L′ ∩ B) = Π(L′) implies Π(L ∩ B) = Π(L)
as well. So the solution B for L′ in step (2) is a solution for L as well. Section 5
provides an application of the result for multithreaded program analysis and
compares it with an existing technique.



604 P. Ganty, R. Majumdar, and B. Monmege

3 A Parikh-Equivalent Representation

Our proof to compute the above L′ relies on a fixpoint characterization of CFLs
and their Parikh image. Accordingly, we introduce the necessary mathematical
notions to define and study properties of those fixpoints.
Semiring. A semiring S is a tuple 〈S,⊕,., 0̄, 1̄〉, where S is a set with 0̄, 1̄ ∈ S,
〈S,⊕, 0̄〉 is a commutative monoid with neutral element 0̄, 〈S,., 1̄〉 is a monoid
with neutral element 1̄, 0̄ is an annihilator w.r.t. ., i.e. 0̄ . a = a . 0̄ = 0̄ for
all a ∈ S, and . distributes over ⊕, i.e. a . (b ⊕ c) = (a . b) ⊕ (a . c), and
(a ⊕ b) . c = (a . c) ⊕ (b . c). We call ⊕ the combine operation and . the
extend operation. The natural order relation � on a semiring S is defined by
a � b ⇔ ∃d ∈ S : a⊕ d = b. The semiring S is naturally ordered if � is a partial
order on S. The semiring S is commutative if a . b = b . a for all a, b ∈ S,
idempotent if a⊕ a = a for all a ∈ S, complete if it is naturally ordered and � is
such that ω-chains a0 � a1 � · · · � an � · · · have least upper bounds. Finally,
the semiring S is ω-continuous if it is naturally ordered, complete and for all
sequences (ai)i∈N with ai ∈ S, sup {

⊕n
i=0 ai | n ∈ N} =

⊕
i∈N

ai. We define two
semirings we shall use subsequently.

Language Semiring. Let L =
〈
2Σ∗

,∪, ·, ∅, {ε}
〉

denote the idempotent ω-
continuous semiring of languages. The natural order on L is given by set
inclusion (viz. ⊆).

Parikh Semiring. The tuple P =
〈
2N

p

,∪, �, ∅, {0}
〉

is the idempotent ω-
continuous commutative semiring of Parikh vectors. The natural order is
again given by ⊆.

Valuation, polynomial. In what follows, let X be a finite set of variables and
S = 〈S,⊕,., 0̄, 1̄〉 be an ω-continuous semiring.

A valuation v is a mapping X → S. We denote by SX the set of all valuations
and by 0̈ the valuation which maps each variable to 0̄. We define

.
� ⊆ SX ×SX

as the order given by v
.
� v′ if and only if v(X) � v′(X) for every X ∈ X . A

monomial is a mapping SX → S given by a finite expression m = a1 . X1 .
a2 · · · ak . Xk . ak+1 where k ≥ 0, a1, . . . , ak+1 ∈ S and X1, . . . , Xk ∈ X such
that m(v) = a1 . v(X1) . a2 · · ·ak . v(Xk) . ak+1 for v ∈ SX .
A polynomial is a finite combination of monomials: f = m1 ⊕ · · · ⊕ mk where
k ≥ 0 and m1, . . . , mk are monomials. The set of polynomials w.r.t. S and X
will be denoted by S[X ]. Finally, a polynomial transformation F is a mapping
SX → SX described by the set {FX ∈ S[X ] | X ∈ X} of polynomials: hence, for
every vector v ∈ SX , F (v) is a valuation of each variable X ∈ X to FX(v).
Least Fixpoint. Recall that a mapping f : S → S is monotone if a � b im-
plies f(a) � f(b), and continuous if for any infinite chain a0, a1, a2, . . . we
have sup{f(ai)} = f(sup{ai}). The definition can be extended to mappings
F : SX → SX in the obvious way (using

.
�). Then we may formulate the follow-

ing proposition (cf. [12]).

Proposition 1. Let F be a polynomial transformation. The mapping induced
by F is monotone and continuous and F has a unique least fixpoint μF .
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Fixpoints of polynomial transformations relates to CFLs as follows. Given a
grammar G = (X , Σ, δ), let L(G) be the valuation which maps each variable
X ∈ X to the language LX(G). We first characterize the valuation L(G) as the
least fixpoint of a polynomial transformation F defined as follows: each FX of
F is given by the combination of α’s for (X, α) ∈ δ where α is interpreted as a
monomial on the semiring L. From [3] we know that L(G) = μF .

Example 1. Let G = ({X0, X1}, {a, b}, δ) where δ = {(X0 → aX1|a), (X1 →
X0b|aX1bX0)}. It defines the polynomial transformation F on LX such that
FX0 = a ·X1 ∪ a and FX1 = X0 · b∪ a ·X1 · b ·X0, and L(G) is the least fixpoint
of F in the language semiring. �

3.1 Relating the Language and Parikh Semirings

Given a polynomial transformation F , we now characterize the relationship be-
tween the least fixpoints μF taken over the language and the Parikh semiring,
respectively. Either fixpoint is given by the limit of a sequence of iterates which
is defined by Newton’s iteration scheme [4,5]. Our characterization operates at
the level of those iterates: we inductively relate the iterates of each iteration
sequence (over the Parikh and language semirings). We use Newton’s iteration
instead of the usual Kleene’s iteration sequence because Newton’s iteration is
guaranteed to converge on the Parikh semiring in a finite number of steps, a
property that we shall exploit. Kleene’s iteration sequence, on the other hand,
may not converge. Due to lack of space, we refer the reader to [4,5] for the
definition of Newton’s iteration scheme.

We first extend the definition of the Parikh image to a valuation v ∈ LX

as the valuation of PX defined for each variable X by: Π(v)(X) = Π(v(X)).
Then, given FL : LX → LX , a polynomial transformation, we define a polynomial
transformation FP : PX → PX such that: for every X ∈ X we have FPX = Π ◦
FLX ◦ Π−1. Lemma. 1 relates the iterates for μFL and μFP using the Parikh
image mapping.

Lemma 1. Let (νi)i∈N and (κi)i∈N be Newton’s iteration sequences associated
with FL and FP , respectively. For every i ∈ N, we have Π(νi) = κi.

In [5], the authors show that Newton’s iterates converges after a finite number
of steps when defined over a commutative ω-continuous semiring. This shows, in
our setting, that (κi)i∈N stabilizes after a finite number of steps.

Lemma 2. Let (κi)i∈N be Newton’s iteration sequence associated to FP and let
n be the number of variables in X . For every k ≥ n, we have κk = Π(μFL).
Hence, for every k ≥ n, Π(νk) = Π(μFL).

We know Newton’s iteration sequence (νi)i∈N, whose limit is μFL, may not
converge after a finite number of iterations. However, using Lem. 2, we know
that the Parikh image of the iterates stabilizes after a finite number of steps.
Precisely, if n is the number of variables in X , then the language given by νn is
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such that Π(νn) = Π(L(G)). Moreover because (νi)i∈N is an ascending chain,
for each variable X ∈ X , we have that νn(X) is a sublanguage of LX(G) such
that Π(νn(X)) = Π(LX(G)).

3.2 Representation of Iterates

We now show that Newton’s iterates can be effectively represented as a combi-
nation of linear grammars and homomorphisms.

A substitution σ from alphabet Σ1 to alphabet Σ2 is a function which maps
every word over Σ1 to a set of words of Σ∗

2 such that σ(ε) = {ε} and σ(u · v) =
σ(u) ·σ(v). A homomorphism h is a substitution such that for each word u, h(u)
is a singleton. We define the substitution σ[a/b] : Σ1 ∪ {a} → Σ1 ∪ {b} which
maps a to b and leaves all other symbols unchanged.

We show below that the iterates (νk)k≤n have a “nice” representation.

k-fold composition. We effectively compute and represent each iterate as the
valuation which maps each variable X to the language generated by a k-fold
composition of a substitution. Since the substitution maps each symbol onto
a language which is linear, it is effectively represented and manipulated as a
linear grammar. To formally define the representation we need to introduce the
following definitions.

Let G̃ = (X , Σ ∪ {vX | X ∈ X}, δ̃) be a linear grammar and let k ∈ N, define
vk
X to be the set of symbols

{
vk

X | X ∈ X
}
. Given a language L on alphabet

Σ ∪ {vX | X ∈ X}, we define L[vk
X ] to be σ[vX/vk

X ]X∈X (L) that is the language
where each occurence of vX is replaced by vk

X .
For k ∈ {1, . . . , n}, we define σk : Σ ∪ vk

X → Σ ∪ vk−1
X as the substitution

which maps each vk
X onto LX(G̃)[vk−1

X ] and leaves Σ unchanged. For k = 0 the
substitution σ0 maps each v0

X on F (0̈)(X) and leaves Σ unchanged. σ0 basically
applies the terminal rules of the grammar. Let k, � be such that 0 ≤ k ≤ � ≤ n
we define σ�

k to be σk ◦ · · · ◦ σ�. Hence, σk
0 is such that: (Σ ∪ vk

X )∗ σk−→ (Σ ∪
vk−1
X )∗ · · · (Σ ∪ v1

X )∗ σ1−→ (Σ ∪ v0
X )∗ σ0−→ Σ∗.

Finally, the k-fold composition of a linear grammar G̃ and initial variable X is
given by σk

0 (vk
X). Lemma 3 relates k-fold compositions with (νk)k∈N. Moreover

we characterize the complexity of computing G̃ given a polynomial transforma-
tion F the size of which is defined to be the number of bits needed to write the
set {FX}X∈X where each FX is a string of symbols.

Lemma 3. Given a polynomial transformation F , there is a polynomial time
algorithm to compute a linear grammar G̃ such that for every k ≥ 0, every
X ∈ X we have νk(X) = σk

0 (vk
X).

We refer the reader to our technical report [7] for the polynomial time construc-
tion of G̃ given F . However, let us give a sample output of the construction.

Example 2. Let F be a polynomial transformation on LX where FX0 =
aX1 ∪ a and FX1 = X0b ∪ aX1bX0. The construction outputs G̃ =
({X0, X1}, {a, b, vX0 , vX1}, δ̃) where δ̃ is given by:
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X0 → aX1 | avX1 | a

X1 → X0b | aX1bvX0 | avX1bX0 | vX0b | avX1bvX0 .

We have that ν1(X0) = σ0 ◦ σ1(v1
X0

) and ν1(X1) = σ0 ◦ σ1(v1
X1

).

Lem. 3 completes our goal to define a procedure to effectively compute and
represent the iterates (νk)k∈N. This sequence is of interest since, given a CFL L
and νn the n-th iterate (where n equals the number of variables in the grammar
of L so that Π(νn) = Π(L)), if B is a solution to Pb. 1 for the instance νn, B is
also a solution to Pb. 1 for L. Notice that k-fold compositions relate to indexed
grammars used to represent Newton iterates in [6].

4 Constructing a Parikh Equivalent Bounded Subset

We now show how, given a k-fold composition L′, to compute an elementary
bounded language B such that Π(L′ ∩ B) = Π(B), that is we give an effective
procedure to solve Pb. 1 for the instance L′. This will complete the solution to
Pb. 1, hence the proof of Th. 1. In this section, we give an effective construction
of elementary bounded languages that solve Pb. 1 first for regular languages,
then for linear languages, and finally for a linear substitution.

First we need to introduce the notion of semilinear sets. A set A ⊆ Nn

is a linear set if there exist c ∈ Nn and p1, . . . , pk ∈ Nn such that A ={
c +
∑k

i=1 λjpj | λj ∈ N

}
: c is called the constant of A and p1, . . . , pk the peri-

ods of A. A semilinear set S is a finite union of linear sets: S =
⋃�

i=1 Ai where
each Ai is a linear set. Parikh’s theorem (cf. [8]) shows that the Parikh image of
every CFL is a semilinear set that is effectively computable.

Lemma 4. Let L and B be respectively a CFL and an elementary bounded lan-
guage over Σ such that Π(L ∩ B) = Π(L). There is an effectively computable
elementary bounded language B′ such that Π(Lt ∩ B′) = Π(Lt) for all t ∈ N.

Proof. By Parikh’s theorem, we know that ΠΣ(L) is a computable semilinear
set. Let us consider u1, . . . , u� ∈ L such that ΠΣ(ui) = ci for i ∈ {1, . . . , �}.

Let B′ = u∗1 · · ·u∗�B�, we see that B′ is an elementary bounded language. Let
t > 0 be a natural integer. We have to prove that Π(Lt) ⊆ Π(Lt ∩ B′).
case t ≤ 	. By property of Π and Π(L) = Π(L ∩ B) we find that:

Π(Lt) = Π((L ∩ B)t)

⊆ Π(Lt ∩ Bt) monotonicity of Π

⊆ Π(Lt ∩ B�) Bt ⊆ B� since ε ∈ B

⊆ Π(Lt ∩ B′) def. of B′

case t > 	. Let us consider w ∈ Lt. For every i ∈ {1, . . . , �} and j ∈ {1, . . . , ki},
there exist some positive integers λij and μi, with

∑�
i=1 μi = t such that

Π(w) =
�∑

i=1

μici +
�∑

i=1

ki∑
j=1

λijpij .
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We define a new variable for each i ∈ {1, . . . , �}: αi =

{
μi − 1 if μi > 0
0 otherwise.

.

For each i ∈ {1, . . . , �}, we also consider zi a word of L ∪ {ε} such that zi = ε if
μi = 0 and Π(zi) = ci +

∑ki

j=1 λijpij else.
Let w′ = uα1

1 . . . uα�

� z1 . . . z�. Clearly, Π(w′) = Π(w) and w′ ∈ u∗1 · · ·u∗�(L ∪
{ε})�. For each i ∈ {1, . . . , �}, Π(L ∩ B) = Π(L) shows that there is z′i ∈
(L ∩ B) ∪ {ε} such that Π(z′i) = Π(zi). Let w′′ = uα1

1 . . . uα�

� z′1 . . . z′�. We find
that Π(w′′) = Π(w), w′′ ∈ B′ and we can easily verify that w′′ ∈ Lt. �

Regular Languages. The construction of an elementary bounded language
that solves Pb. 1 for a regular language L is known from [13] (see also [14],
Lem. 4.1). The construction is carried out by induction on the structure of a
regular expression for L. Assuming L �= ∅, the base case (i.e. a symbol or ε) is
trivially solved. Note that if L = ∅ then every elementary bounded language B
is such that Π(L ∩ B) = Π(L) = ∅.

The inductive case decomposes into three constructs. Let R1 and R2 be reg-
ular languages, and B1 and B2 the inductively constructed elementary bounded
languages such that Π(R1 ∩ B1) = Π(R1) and Π(R2 ∩ B2) = Π(R2).

concatenation. For the instance R1 · R2, the elementary bounded language
B1 · B2 is such that Π((R1 · R2) ∩ (B1 · B2)) = Π(R1 · R2);

union. For R1 ∪ R2, the elementary bounded language B1 · B2 suffices;
Kleene star. Let us consider R1 and B1, Lem. 4 shows how to effectively

compute an elementary bounded language B′ such that for every t ∈ N,
Π(Rt

1 ∩B′) = Π(Rt
1). Let us prove that B′ solves Pb. 1 for the instance R∗

1.
In fact, if w is a word of R∗

1, there exists a t ∈ N such that w ∈ Rt
1. Then,

we can find a word w′ in Rt
1 ∩ B′ with the same Parikh image as w. This

proves that Π(R∗
1) ⊆ Π(R∗

1 ∩ B′). The other inclusion holds trivially.

Proposition 2. For every regular language R, there is an effective procedure to
compute an elementary bounded language B such that Π(R ∩ B) = Π(R).

Linear Languages. We now extend the previous construction to the case of
linear languages. Recall that linear languages are used to represent the iterates
(νk)k∈N. Lemma 5 gives a characterization of linear languages based on regular
languages, homomorphism, and some additional structures.

Lemma 5. (from [10]) For every linear language L over Σ, there exist an al-
phabet A and its distinct copy Ã, an homomorphism h : (A ∪ Ã)∗ → Σ∗ and a
regular language R over A such that L = h(RÃ∗∩S) where S = {ww̃r | w ∈ A∗}
and wr denotes the reverse image of the word w. Moreover there is an effective
procedure to construct h, A, and R.

The next result shows that an elementary bounded language that solves Pb. 1
can be effectively constructed for every linear language L that is given by h and
R such that L = h(RÃ∗ ∩ S).
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Proposition 3. For every linear language L = h(RÃ∗ ∩ S) where h and R are
given, there is an effective procedure which solves Pb. 1 for the instance L, that
is a procedure returning an elementary bounded B such that Π(L∩B) = Π(L).

Linear languages with Substitutions. Our goal is to solve Pb. 1 for k-fold
compositions, i.e. for languages of the form σk

j (vk
X). Prop. 3 gives an effective

procedure for the case j = k since σk
k(vk

X) is a linear language. Prop. 4 generalizes
to the case j < k: given a solution to Pb. 1 for the instance σk

j+1(v
k
X), there is

an effective procedure for Pb. 1 for the instance σj ◦ σk
j+1(v

k
X) = σk

j (vk
X).

Proposition 4. Let

1. L be a CFL over Σ;
2. B an elementary bounded language such that Π(L ∩ B) = Π(L);
3. σ and τ be two substitutions over Σ such that for each a ∈ Σ, (i) σ(a) and

τ(a) are respectively a CFL and an elementary bounded and (ii) Π(σ(a) ∩
τ(a)) = Π(σ(a)).

Then, there is an effective procedure that solves Pb. 1 for the instance σ(L), by
returning an elementary bounded language B′ such that Π(σ(L)∩B′) = Π(σ(L)).

We use the above result inductively to solve Pb. 1 for k-fold composition as
follows: fix L to be σk

j+1(v
k
X), B to be the solution of Pb. 1 for the instance L, σ

to be σj and τ a substitution which maps every vj
X to the solution of Pb. 1 for

the instance σj(v
j
X). Then B′ is the solution of Pb. 1 for the instance σk

j (vk
X).

Due to lack of space we refer to reader to [7] for details.
We thus have an effective construction of an elementary bounded language

that solves Pb. 1 for k-fold composition, hence a constructive proof for Th. 1.

Iterative Algorithm. We conclude this section by showing a result related to
the notion of progress if the result of Th. 1 is applied repeatedly.

Lemma 6. Given a CFL L, define two sequences (Li)i∈N, (Bi)i∈N such that (1)
L0 = L, (2) Bi is elementary bounded and Π(Li ∩ Bi) = Π(Li), (3) Li+1 =
Li ∩ Bi. For every w ∈ L, there exists i ∈ N such that w /∈ Li. Moreover, given
L0, there is an effective procedure to compute Li for every i > 0.

Proof. Let w ∈ L and let v = Π(w) be its Parikh image. We conclude from
Π(L0∩B0) = Π(L0) that there exists a word w′ ∈ B0 such that Π(w′) = v. Two
cases arise: either w′ = w and we are done; or w′ �= w. In that case L1 = L0∩B0
shows that w′ /∈ L1. Intuitively, at least one word with the same Parikh image
as w has been selected by B0 and then removed from L0 by definition of L1.
Repeatedly applying the above reasoning shows that at each iteration there exists
a word w′′ such that Π(w′′) = v, w′′ ∈ Bi and w′′ /∈ Li+1 since Li+1 = Li ∩ Bi.
Because there are only finitely many words with Parikh image v we conclude that
there exists j ∈ N, such that w /∈ Lj . The effectiveness result follows from the
following arguments: (1) as we have shown above (our solution to Pb. 1), given
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a CFL L there is an effective procedure that computes an elementary bounded
language B such that Π(L ∩ B) = Π(L); (2) the complement of B is a regular
language effectively computable; and (3) the intersection of a CFL with a regular
language is again a CFL that can be effectively constructed (see [10]). �

Intuitively this result shows that given a context-free language L, if we repeatedly
compute and remove a Parikh-equivalent bounded subset of L (L∩B is effectively
computable since B is a regular language), then each word w of L is eventually
removed from it.

5 Application to Multithreaded Procedural Programs

We now give an application of our construction that gives a semi-algorithm for
checking reachability of multithreaded procedural programs [16,11,2]. A common
programming model consists of multiple recursive threads communicating via
shared memory. Formally, we model such systems as pushdown networks [17].
Let k be a positive integer, a pushdown network is a triple N = (G, Γ, (Δi)1≤i≤k)
where G is a finite non-empty set of globals, Γ is the stack alphabet, and for each
1 ≤ i ≤ k, Δi is a finite set of transition rules of the form 〈g, γ〉 ↪→ 〈g′, α〉 for
g, g′ ∈ G, γ ∈ Γ , α ∈ Γ ∗.

A local configuration of N is a pair (g, α) ∈ G×Γ ∗ and a global configuration
of N is a tuple (g, α1, . . . , αk), where g ∈ G and α1, . . . , αk ∈ Γ ∗ are individual
stack content for each thread. Intuitively, the system consists of k threads, each
of which with its own stack, and the threads can communicate by reading and
manipulating the global storage represented by g.

We define the local transition relation of the i-th thread, written →i, as fol-
lows: (g, γβ) →i (g′, αβ) iff 〈g, γ〉 ↪→ 〈g′, α〉 in Δi and β ∈ Γ ∗. The transi-
tion relation of N , denoted →, is defined as follows: (g, α1, . . . , αi, . . . , αk) →
(g′, α1, . . . , α

′
i, . . . , αk) iff (g, αi) →i (g′, α′

i) for some i ∈ {1, . . . , k}. By →∗
i , →∗,

we denote the reflexive and transitive closure of these relations. Let C0 and C
be two global configurations, the reachability problem asks whether C0 →∗ C
holds. An instance of the reachability problem is denoted by a triple (N , C0, C).

A pushdown system is a pushdown network where k = 1, namely (G, Γ, Δ). A
pushdown acceptor is a pushdown system extended with an initial configuration

c0 ∈ G × Γ ∗, labeled transition rules of the form 〈g, γ〉 λ
↪→ 〈g′α〉 for g, g′, γ, α

defined as above and λ ∈ Σ ∪ {ε}. A pushdown acceptor is given by a tuple
(G, Γ, Σ, Δ, c0). The language of a pushdown acceptor is defined as expected
where the acceptance condition is given by the empty stack.

In what follows, we reduce the reachability problem for a pushdown network
of k threads to a language problem for k pushdown acceptors. The pushdown
acceptors obtained by reduction from the pushdown network settings have a
special global ⊥ that intuitively models an inactive state. The reduction also
turns the globals into input symbols which label transitions. The firing of a
transition labeled with a global models a context switch. When such transi-
tion fires, every pushdown acceptor synchronizes on the label. The effect of such a
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synchronization is that exactly one acceptor will change its state from inactive
to active by updating the value of its global (i.e. from ⊥ to some g ∈ G) and
exactly one acceptor will change from active to inactive by updating its global
from some g to ⊥. All the others acceptors will synchronize and stay inactive.

Given an instance of the reachability problem, that is a pushdown network
(G, Γ, (Δi)1≤i≤k) with k threads, two global configurations C0 and C (assume
wlog that C is of the form (g, ε, . . . , ε)), we define a family of pushdown acceptors{
(G′, Γ, Σ, Δ′

i, c
i
0)
}

1≤i≤k
, where:

– G′ = G ∪ {⊥}, Γ is given as above, and Σ = G × {1, . . . , k},
– Δ′

i is the smallest set such that:
• 〈g, γ〉 ε

↪→ 〈g′, α〉 in Δ′
i if 〈g, γ〉 ↪→ 〈g′, α〉 in Δi;

• 〈g, γ〉
(g,j)
↪→ 〈⊥, γ〉 for j ∈ {1, . . . , k} \ {i}, g ∈ G, γ ∈ Γ ;

• 〈⊥, γ〉
(g,j)
↪→ 〈⊥, γ〉 for j ∈ {1, . . . , k} \ {i}, g ∈ G, γ ∈ Γ ;

• 〈⊥, γ〉
(g,i)
↪→ 〈g, γ〉 for g ∈ G, γ ∈ Γ .

– let C0 = (g, α1, . . . , αi, . . . , αk), ci
0 is given by (⊥, αi) if i > 1; (g, α1) else.

Proposition 5. Let k be a positive integer, and (N , C0, C) be an instance
of the reachability problem with k threads, one can effectively construct CFLs
(L1, . . . , Lk) (as pushdown acceptors) such that C0 →∗ C iff L1 ∩ · · · ∩ Lk �= ∅.

The converse of the proposition is also true, and since the emptiness problem
for intersection of CFLs is undecidable [10], so is the reachability problem. We
will now compare two underapproximation techniques for the reachability prob-
lem: context-bounded switches [15] and bounded languages, which we first detail
below.

Let L1, . . . , Lk be context-free languages, and consider the problem to decide
if
⋂

1≤i≤k Li �= ∅. We give a decidable sufficient condition: given an elementary
bounded language B, we define the intersection modulo B of the languages {Li}i

as
⋂(B)

i Li =
(⋂

i Li

)
∩B. Clearly,

⋂(B)
i Li �= ∅ implies

⋂
i Li �= ∅. Below we show

that the problem
⋂(B)

i Li �= ∅ is decidable .

Lemma 7. Given an elementary bounded language B = w∗
1 · · ·w∗

n and CFLs
L1, . . . , Lk, it is decidable to check if

⋂(B)
1≤i≤k Li �= ∅.

Proof. Define the alphabet A = {a1, . . . , an} disjoint from Σ. Let h be the ho-
momorphism that maps the symbols a1, . . . , an to the words w1, . . . , wn, respec-
tively. We show that

⋂
1≤i≤k ΠA

(
h−1(Li ∩B)∩ a∗1 · · ·a∗n

)
�= ∅ iff

⋂(B)
1≤i≤k Li �= ∅.

We conclude from w ∈
⋂(B)

1≤i≤k Li that w ∈ B and w ∈ Li for every 1 ≤ i ≤ k,
hence there exist t1, . . . , tn ∈ N such that w = wt1

1 . . . wtn
n by definition of B.

Then, we find that (t1, . . . , tn) ∈ ΠA(h−1(w)∩a∗1 · · · a∗n), hence that (t1, . . . , tn) ∈
ΠA(h−1(Li ∩ B) ∩ a∗1 · · · a∗n) for every 1 ≤ i ≤ k by above and finally that
(t1, . . . , tn) ∈

⋂
1≤i≤k ΠA

(
h−1(Li ∩ B) ∩ a∗1 · · · a∗n

)
.

For the other implication, consider (t1, . . . , tn) a vector of⋂
1≤i≤k ΠA

(
h−1(Li∩B)∩a∗1 · · ·a∗n

)
and let w = wt1

1 . . . wtn
n . For every 1 ≤ i ≤ k,
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we will show that w ∈ Li∩B. As (t1, . . . , tn) ∈ ΠA

(
h−1(Li∩B)∩a∗1 · · · a∗n

)
, there

exists a word w′ ∈ a∗1 · · · a∗n such that ΠA(w′) = (t1, . . . , tn) and h(w′) ∈ Li ∩B.
We conclude from ΠA(w′) = (t1, . . . , tn), that w′ = at1

1 . . . atn
n and finally that,

h(w′) = w belongs to Li ∩ B.
The class of CFLs is effectively closed under inverse homomorphism and in-

tersection with a regular language [10]. Moreover, given a CFL, we can compute
its Parikh image which is a semilinear set. Finally, we can compute the semi-
linear sets ΠA

(
h−1(Li ∩B) ∩ a∗1 · · · a∗n

)
and the emptiness of the intersection of

semilinear sets is decidable [8]. �

While Lem. 7 shows decidability for every elementary bounded language, in
practice, we want to select B “as large as possible”. We select B using Th. 1.
We first compute for each language Li the elementary bounded language Bi =
w

(i)
1

∗
· · ·w(i)

ni

∗
such that Π(Li ∩ Bi) = Π(Li). Finally, we choose B = B1 · · ·Bk.

By repeatedly selecting and removing a bounded language B from each Li

where 1 ≤ i ≤ k we obtain a sequence {Lj
i}j≥0 of languages such that Li =

L0
i ⊇ L1

i ⊇ . . . The result of Lem. 6 shows that for each word w ∈ Li, there is
some j such that w /∈ Lj

i , hence that the above sequence is strictly decreasing,
that is Li = L0

i � L1
i � . . . , and finally that if

⋂
1≤i≤k Li �= ∅ then the iteration

is guaranteed to terminate.

Comparison with Context-Bounded Reachability. A well-studied
under-approximation for multithreaded reachability is given by context-bounded
reachability [15]. We need a few preliminary definitions. We define the global
reachability relation � as a reachability relation where all the moves are
made by a single thread: (g, α1, . . . , αi, . . . , αn) � (g′, α1, . . . , α

′
i, . . . , αn) iff

(g, αi) →∗
i (g′, α′

i) for some 1 ≤ i ≤ n. The relation � holds between global
configurations reachable from each other in a single context. Furthermore we
denote by �j , where j ≥ 0, the reachability relation within j contexts: �0 is
the identity relation on global configurations, and �i+1= �i ◦ �.

Given a pushdown network, global configurations C0 and C, and a number
k ≥ 1, the context-bounded reachability problem asks whether C0 �k C holds,
i.e. if C can be reached from C0 in k context switches. This problem is decidable
[15]. Context-bounded reachability has been successfully used in practice for bug
finding. We show that underapproximations using bounded languages (Lem. 7)
subsumes the technique of context-bounded reachability in the following sense.

Proposition 6. Let N be a pushdown network, C0, C global configurations of
N , and (L1, . . . , Ln) CFLs over alphabet Σ such that C0 →∗ C iff ∩iLi �= ∅.
For each k ≥ 1, there is an elementary bounded language Bk such that C0 �k C

only if
⋂(Bk)

i Li �= ∅. Also,
⋂(Bk)

i Li �= ∅ only if C0 →∗ C.

Proof. Consider all sequences C0 � C1 · · ·Ck−1 � Ck of k or fewer switches.
By the CFL encoding (Prop. 5) each of these sequences corresponds to a word
in Σk. If C0 �k C, then there is a word w ∈

⋂
i Li and w ∈ Σk. Define Bk to be

w∗
1 · · ·w∗

m where w1, . . . , wm is an enumeration of all strings in Σk. We conclude
from w ∈ Σk and the definition of Bk that w ∈ Bk, hence that

⋂(Bk)
i Li �= ∅
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thread p1() {

int c=0;

L:bit=true;

if bit == false { ++c; }

if c<k { goto L; }

}

thread p2() {

L1:bit = false;

goto L1;

}

Fig. 1. The family of pushdown network with global bit

since w ∈
⋂

i Li. For the other direction we conclude from
⋂(Bk)

i Li �= ∅ that⋂
i Li �= ∅, hence that C0 →∗ C. �

However, underapproximation using bounded languages can be more power-
ful than context-bounded reachability in the following sense. There is a fam-
ily {(Nk, C0k, Ck)}k∈N

of pushdown network reachability problems such that
C0k �k Ck but C0k ��k−1 Ck for each k, but there is a single elementary
bounded B such that

⋂(B)
i Lik �= ∅ for each k, where again (L1k, . . . , Lnk) are

CFLs such that C0k � Ck iff ∩iLik �= ∅ (as in Prop. 5).
For clarity, we describe the family of pushdown networks as a family of two-

threaded programs whose code is shown in Fig. 1. The programs in the family
differs from each other by the value to which k is instantiated: k = 0, 1, . . . Each
program has two threads. Thread one maintains a local counter c starting at 0.
Before each increment to c, thread one sets a global bit. Thread two resets bit.
The target configuration Ck is given by the exit point of p1. We conclude from
the program code that hitting the exit point of p1 requires c ≥ k to hold. For
every instance, Ck is reachable, but it requires at least k context switches. Thus,
there is no fixed context bound that is sufficient to check reachability for every
instance in the family. In contrast, the elementary bounded language given by(
(bit == true, 2) · (bit == false, 1)

)∗ is sufficient to show reachability of the
target for every instance in the family.

Acknowledgment. We thank Ahmed Bouajjani for pointing that the bounded
languages approach subsumes the context-bounded switches one.
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LNCS, vol. 4588, pp. 157–168. Springer, Heidelberg (2007)



614 P. Ganty, R. Majumdar, and B. Monmege

5. Esparza, J., Kiefer, S., Luttenberger, M.: On fixed point equations over commuta-
tive semirings. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp.
296–307. Springer, Heidelberg (2007)

6. Esparza, J., Kiefer, S., Luttenberger, M.: Newton’s Method for ω-Continuous
Semirings. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
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Abstract. Bounded phase multi-stack pushdown systems (mpds) have
been studied recently. Given a set C of configurations of a mpds M, let
pre∗M(C, k) be the set of configurations of M from which M can reach
an element of C in at most k phases. In this paper, we show that for any
mpdsM, any regular set C of configurations ofM and any number k, the
set pre∗M(C, k), is regular. We use saturation like method to construct a
non-deterministic finite multi-automaton recognizing pre∗M(C, k). Size of
the automaton constructed is double exponential in k which is optimal
as the worst case complexity measure.

1 Introduction

Model checking of programs with threads is an important problem that has
been considered in several recent works, see [11,7,8,13]. Boolean valued programs
with recursion and a fixed number of threads can be modeled as a multi-stack
pushdown system (mpds). A mpds has a finite set of control states and a fixed
number of stacks. The transition function of a mpds may (nondeterministically)
do a push or a pop operation on any stack along with a possible change in
control state of mpds. Each thread has its own stack for its procedures calls and
communication among threads is through the common finite states of mpds.

It is well known that even a two stack pds can simulate universal models of
computation. Therefore to get effectively checkable properties of the model, a
restriction called bounded context switching was introduced on mpds in [11]. In
a k context switching mpds, we consider only those runs of mpds which can be
divided into k stages, where each stage is a consecutive sequence of moves from
the run in which push and pop operations are performed only in one stack. In [11],
reachability between configurations of k context switching mpds is shown to be
decidable. In fact [11], extends the techniques of [4] to show that bounded context
switching mpds admit effective global reachability analysis also. More precisely,
[11] shows that for any mpds M and any regular set C of configurations of M ,
pre∗(C, k), the set of configurations of M from which a configuration in C can
be reached by M in at most k context switches, is regular. Similarly post∗(C, k),
the set of configurations to which M can reach from some configuration in C, in
at most k context switches, is also shown to be regular in [11]. Bounded context

T. Touili, B. Cook, and P. Jackson (Eds.): CAV 2010, LNCS 6174, pp. 615–628, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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switching model checking has been fruitful in uncovering some errors in software
and has received some attention in theory also, see [3,10].

In [7], a generalization of bounded context switching mpds, called bounded
phase mpds have been considered. In a k−phase bounded mpds also a run is
divided into k stages but now in one stage while pop operations are performed
only in one stack, push operations can be performed on any stack. A stage is
called a phase in this case. Bounded phase mpds capture a strictly larger class
of systems than bounded context switching mpds. In [7] emptiness problem of
bounded phase multi-stack automata (mpda) is shown to be decidable. Apart
from being interesting in their own right, bounded phase mpds can simulate
some other interesting systems also. For example, in [8] networks of finite state
processes, where processes can send messages to each other via FIFO queues, are
studied. There network architectures are presented where (unbounded) reacha-
bility between configurations can be reduced to bounded phase reachability. As a
more theoretical result, bounded phase multi-stack pushdown transducers have
been used to give an infinite automaton characterization of the complexity class
of problems solvable in double exponential time, 2ETIME [9]. In [1], a little
more general automata model than mpda has been presented and its emptiness
problem is shown to be decidable.

In this paper we are interested in global model checking of reachability over
bounded phase mpds. Let C be a regular set of configurations of an mpds. As
mentioned above pre∗(C, k), and post∗(C, k) are regular if k is the number of
context switches. However, if k is the number of phases of mpds then post∗(C, k),
is not always regular even for k = 1. We present an example, modified from an
example mentioned at the end of [7], showing this in section 2.3. This leaves the
question if pre∗(C, k) is regular for a regular set C. By results of [1], reachability
in a k phase mpds can be simulated by reachability in an order-2k higher order
pushdown system. This suggests, by the results of [5], that pre∗(C, k) for a k
phase mpds can be constructed in time exp2k(|Q|), where expn denotes tower of
exponents of height n and |Q| is the number of states in the mpds. This seems to
be the only known method for constructing pre∗(C, k). In contrast in this paper,
we show that pre∗(C, k) for a k phase mpds can be constructed in time |Q|(c.l)k

,
where c is a constant and l is the number of stacks of the mpds. This complexity
is only double exponential in k. It is also the optimal worst case complexity
bound as the emptiness problem of k-phase mpda, which has a lower bound of
double exponential in k [9], can be easily reduced to the problem of constructing
an automaton recognizing pre∗ for a k phase bounded system. The basic idea of
our proof is to construct an automaton recognizing pre∗ for a single phase and
then iterate this construction k-times to get an automaton recognizing pre∗ for
a k phase bounded system. The construction for single phase uses a modification
of saturation technique of [4] and some ideas from [12].

Let Apre,k be the finite automaton constructed to accept pre∗(C, k) for a given
mpds M and regular set C. We also give an algorithm which from any accepting
run of Apre,k on configuration d constructs a witnessing execution sequence s of
transitions of M starting at d and ending at some e ∈ C.
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2 Preliminaries

2.1 Multi-stack Pushdown System

Definition 1. A multi-stack pushdown system (mpds) is given as a tuple
(Q, Γ, l, δ, q0), where Q is a finite set of states, l is the number of stacks, Γ is
the stack alphabet and q0 is the initial state. The transition function δ is given
as δ = δins ∪ δrem ∪ δexch, where

– δexch ⊆ Q × Γ × Q × [1 . . . l] × Γ ,
– δins ⊆ Q × Γ × Q × [1 . . . l] × Γ ,
– δrem ⊆ Q × Γ × Q × [1 . . . l]

(δexch, δins, δrem represent exchange, push and pop operations respectively). An
mpds operation depends on its control state and topmost symbol of the stack on
which the operation is done.

Definition 2. A configuration of multi-stack pushdown system (Q, Γ, l, δ) is a
tuple (q, s1, . . . , sl), where q ∈ Q and si ∈ Γ ∗, for 1 ≤ i ≤ l. One step transition
t→ on configurations of mpds is defined as below.

– (q, s1, . . . , sl)
t→ (q′, s′1, . . . , s

′
l) if t = (q, γ, q′, i, γ′) ∈ δexch, si = γ.zi,

s′i = γ′.zi for some zi ∈ Γ ∗ and s′j = sj for j �= i, 1 ≤ j ≤ l .

– (q, s1, . . . , sl)
t→ (q′, s′1, . . . , s′l) if t = (q, γ, q′, i, γ′) ∈ δins, si = γ.zi,

s′i = γ′.γ.zi for some zi ∈ Γ ∗ and s′j = sj for j �= i, 1 ≤ j ≤ l .

– (q, s1, . . . , sl)
t→ (q′, s′1, . . . , s

′
l) if t = (q, γ, q′, i) ∈ δrem, si = γ.s′i and s′j = sj

for j �= i, 1 ≤ j ≤ l .

Our stacks grow from right to left. In the above definition of mpds, we do not
provide for bottom markers of the stacks explicitly. In fact, we allow a stack to
be empty. If stack-i is empty, we represent it by ε (the empty string). There is
no top of the stack symbol in empty stack-i, we use the convention that γi = ε
in this case. It should be clear from the transition function definition the no
push or pop operation is permitted on an empty stack. However, push and pop
operations on other (non-empty) stacks may still take place.

If a bottom marker is needed, it can be taken as any symbol in Γ with some
restriction on transitions involving it.

Definition 3. A multi-step transition between configurations of mpds, on say
sequence t1t2 . . . tn of mpds moves, c

t1t2...tn−−−−−→ d is defined as follows. c
t1t2...tn−−−−−→ d

iff either n = 0 and c = d or there is a c′ s.t. c
t1→ c′ and c′ t2...tn−−−−→ d. We write

c � d for a multi-step transition from c to d when the sequence of mpds moves
is not relevant.

Definition 4. A configuration d of multi-stack pushdown system (Q, Γ, l, δ) is
reachable from configuration c in m-phases if there are α1, . . . , αm where each
αi is a sequence of mpds moves with pop moves from at most one stack and
c

α1� c1
α2� c2 . . .

αm� cm = d.
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Definition 5. Let M be an mpds (Q, Γ, l, δ). Let C be a set of stack configura-
tions of M. We define the following.

• pre∗M(C) = {c | ∃c′ ∈ C[c � c′]}.

• pre∗M(C, k) = {c | ∃c′ ∈ C[c′is reachable from c in at most k phases]}

The set pre∗M(C) of configurations may be uncomputable even for a fixed M
and a fixed finite set C. Therefore we defined above pre∗M(C, k). It is further
useful to identify a subset of pre∗M(C, 1), which consists of configurations of M
from where an element of C may be reached by pop operations on stack-i and
push operations on any stack of M.

Definition 6. Let M be an mpds (Q, Γ, l, δ). We define c −→i c′ iff there is a
sequence t of transition of M in which pop operations occur only on stack-i and

c
t−→ c′. Let C be a set of configurations of M.

We define pre∗i (C) = {c | ∃c′ ∈ C[c −→i c′]}.

2.2 Regular Sets of MPDS Configurations

Definition 7. Let M be an mpds (Q, Γ, l, δ) and let c = (q, s1, . . . , sl) be a
configuration of M. We define #(c) = #1s1#2s2#3 . . . #lsl#l+1.

Expression #(c) denotes a representation of contents of stacks in c as a string
over alphabet Γ# = Γ ∪ {#1, . . . , #l+1}.

We define regular sets of mpds configurations using finite Multi-automata which
were introduced in [4] for defining regular sets of configurations of (single stack)
pushdown systems. Let M be an mpds (Q, Γ, l, δ). A finite (multi)automaton for
recognizing configurations of M is given as A = (QA, Γ#, Q, δ, F ), where QA is
the set of states of A, δ is the transition relation of A, Q ⊆ QA is the set of its
initial states and F is the set of final states of A.

For any automaton B and a state q of it, we let L(B, q) denote the set of
strings accepted by B when started in state q. The set of configurations CA,
accepted by multi-automaton A above is given as
CA = L(A) = {(q, s1, s2, . . . , sl) | #1s1#2s2#3 . . . #lsl#l+1 ∈ L(A, q), q ∈ Q}.

Definition 8. A set C of configurations of M is regular if there is a finite multi-
automaton which accepts C.

In [11], a regular set C of mpds configurations is defined as a finite union of
pairs of the form (q,

∏
1≤i≤l Ri), where q ∈ Q and Ri’s are regular sets over Γ .

A configuration c = (q, s1, . . . , sl) belongs to (q′,
∏

1≤i≤l Ri) iff q = q′ and for
1 ≤ i ≤ l, si ∈ Ri.

It is not difficult to see that the notion of regularity in [11] and the one
introduced in the definition 8 above using multi-automata are equivalent, i.e.
they define the same class of sets of mpds configurations. This is stated in lemma
below.
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Lemma 1. Let M be an mpds (Q, Γ, l, δ).

1. Let C =
⋃

(q,
∏

1≤i≤l Ri) be a set of configurations of M, where q ∈ Q, Ri’s
are regular sets over Γ and the union is over finitely many pairs. We can
design a multi- automaton A s.t. L(A) = C.

2. Given a multi- automaton A accepting a set of configurations of M, we can
write L(A) as a finite union of sets of the form (q,

∏
1≤i≤l Ri), where q ∈ Q

and each Ri is a regular set over Γ .

Proof. An easy proof is given in the full version. �
It is possible to consider other notions of regularity for mpds configurations, for
example by reading contents of all stacks simultaneously rather than sequen-
tially. This will be similar to l-ary synchronized rational relations of [14], where
l is the number of stacks in the mpds. However, in this paper we stick to the
notion of regularity presented in definition 8 and work with the multi-automaton
formulation only.

For a finite automaton A, we use notations q ∈ δ∗A(p, w), (p, w, q) ∈ δ∗A or
w

p −→ q
A

to mean that on string w there is a run of A starting in state p and

ending in state q.

2.3 An Example for Post∗(C, 1)

Let C be a set of configurations of a mpds. Analogous to pre∗(C) and pre∗(C, k),
the sets post∗(C) and post∗(C, k) are defined based on the set of configurations
that can be reached from elements of C.

– post∗(C) = {d | ∃c ∈ C[c � d]}.
– post∗(C, k) = {d | ∃c ∈ C[d is reachable from c in at most k phases]}

We now present an example, modified from [7], in which post∗(C, 1) is not regular
for a regular set C.

Let M = ({q1, q2, q3}, {a, b, c}, 3, δ = δins ∪ δrem) be an mpds,
where δins = {(q2, b, q3, 2, b), (q3, c, q1, 3, c)} and δrem = {(q1, a, q2, 1)}.

Mpds M has three stacks, it pops an a from stack-1 and pushes a b on stack-2
and a c on stack-3. This is repeated till stack-1 becomes empty.

Let C = {(q1, #1a
m#2b#3c#4) | m ≥ 0}. Clearly, C is a regular set. The set

of configurations of post∗(C) in control state q1 is
D = {(q1, #1a

∗#2b
m#3c

m#4) | m ≥ 1}. The set post∗(C) can not be repre-
sented as any multi-automation B because B when started in state q1 is expected
to accept set {#1a

∗#2b
m#3c

m#4 | m ≥ 0}, which is not a regular set.
Since M has only one phase (it pops from stack 1 only), post∗(C) = post∗(C, 1)

for M . Therefore post∗(C, 1) is not regular for M .

3 Intuitive Idea for Regularity of Pre∗
i (C)

The main step in our proof of showing pre∗(C, k) regular is to show that pre∗i (C)
is regular. In this section we explain why we may expect that pre∗i (C) is regular.
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In the next few sections we develop these ideas formally to construct a multi-
automaton recognizing pre∗i (C).

Let M = (Q, Γ, l, δ) be an mpds and let A = (QA, Γ#, Q, δA,F) be a nonde-
terministic finite multi-automaton accepting a set CA of configurations of M.

Consider a run of M in a phase where pop operation is allowed in stack-i only.
In this phase contents of the other stacks change in a certain simple way. For
example, if stack-j, j �= i, is γj .xj at some point in this phase then later during
this phase any symbol below γj (the topmost symbol) remains unchanged. The
symbol γj also can’t be popped but may change into another symbol because
of the exchange move. A push instruction may push γ′ on stack-j so that its
contents become γ′.γj .xj , now γj .xj can’t change during the rest of this phase.
So if at the beginning of the phase, stack-j, j �= i is γj .xj then at any time
during this phase it will be αjujxj , for some αj ∈ Γ and uj ∈ Γ ∗.

We need uj to decide if after the current phase the resulting configuration is
in CA. The string uj is not needed in any other way as we are working for a single
phase. For this purpose, the relevant information about uj, is how automaton A
acts on string uj. This is captured in the pairs (qj , q

′
j) s.t. q′j ∈ δ∗A(qj , uj). This

information is finitary. This suggests an automaton, Ti whose states store, apart
from a state of M, also for each j, j �= i, αj and a pair (qj , q

′
j) corresponding to

uj. Automaton Ti will have transitions added corresponding to M’s operations
on stack-i in the same ways as saturation procedure does. In addition Ti will
also have transitions corresponding to operations of M on stack-j, j �= i, these
transitions will update the triple (αj , qj , q

′
j) and the current state of M stored

in a state of Ti.
Using nondeterminism it suffices for Ti to keep in it’s state for each j, j �= i,

only one pair (qj , q
′
j) of states for stack-j, rather than all such pairs for stack-j.

Different runs of Ti may keep different pairs (qj , q
′
j) for stack-j, (even for same

uj), and on some run of Ti desired combination of pairs for all stacks will get
guessed.

We describe the automaton Ti formally in the next section. In section 5, using
Ti we complete the construction of automaton recognizing pre∗i (CA).

4 The Automaton Ti

For 1 ≤ i ≤ l, we define automaton Ti which is the main component in designing
automaton to accept pre∗i (C). Let

– S = Γ × QA × QA
– Qi1 = {(a1, . . . , ai−1, b, ai+1, . . . , al) | aj ∈ S, for j �= i, b ∈ Q}
– Qi2 = {(a1, . . . , ai−1, b, ai+1, . . . , al) | aj ∈ S, for j �= i, b ∈ Q ×QA ×QA}
– Qi = Qi1 ∪ Qi2

State set of Ti is Qi. As mentioned above each aj, j �= i, keeps information
(αj , qj , q

′
j), where q′j ∈ δ∗A(qj , uj), about contents of stack-j. Ti takes as it’s

input the contents of stack-i, it is designed using saturation with respect to
operations of stack-i. States in Qi1 allow Ti to keep current state of M in its
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ith component. The states in Qi2 with triple (q, z1, z2) in their ith component
indicate that M after applying some transitions can reach a configuration c′ in
state q with contents of stack-i being x and z2 ∈ δ∗A(z1, x). The components aj ,
j �= i, of such a Qi2 state correspond to contents of stack-j in c′.

We define Ti = (Qi, Γ
#, δTi). The transition function δTi is defined as

⋃
j≥0 δj ,

where δj , j = 0, 1, 2, . . . are defined below iteratively. The sequence δj , j =
0, 1, 2, . . . is monotone when viewed as a relation on Qi × Γ# ×Qi. This part of
the construction is called saturation procedure [4]. Each triple in δj corresponds
to a transition of M or A, so we group triples in δj according to transition of
M or A, shown in boldface.

We use notation like c = (cj |1 ≤ j ≤ l), for a sequence and use c[x/i] to mean
the sequence which is same as c except at index i where it is x. To keep the
notation compact we write a state (a1, . . . , ai−1, b, ai+1, . . . , al) as a[b/i]. In the
following we assume that variable r ranges over integers in [1, l] − {i}, without
explicitly repeating its range in each use. We let ar = (γr, qr, q

′
r) in the following

transitions.

– δ0 = ∅, For h ≥ 0, δh+1 = δh ∪ {triples given by the following rules} .

1 (q, γj,q′, j, γ′) ∈ δexch, j �= i.
(a[q/i], ε, a′[q′/i]) ∈ δh+1

where a′j = (γ′, qj , q
′
j) and a′m = am for m ∈ [1, l]− {j}.

2 (q, γj,q′, j, γ′) ∈ δins, j �= i.

(a[q/i], ε, a′[q′/i]) ∈ δh+1

where a′j = (γ′, q′′j , q′j), a′m = am for m ∈ [1, l]− {j} and (q′′j , γj , qj) ∈ δ∗A.
3 (q, γi,q′, i) ∈ δrem

(a[q/i], γi, a[q′/i]) ∈ δh+1

4 (q, γi,q′, i, γ′) ∈ δexch

(a[q/i], γi, g) ∈ δh+1 where (a[q′/i], γ′, g) ∈ δ∗h
5 (q, γi,q′, i, γ′) ∈ δins

(a[q/i], γi, g) ∈ δh+1 where (a[q′/i], γ′γi, g) ∈ δ∗h
6 (p, γi,p′) ∈ δA, γi ∈ Γ ∪ {ε}

(a) (a[q/i], ε, a[(q, p1, p1)/i]) ∈ δh+1 for all p1 ∈ QA.
(b) (a[(q, p1, p)/i], γi, a[(q, p1, p

′)/i]) ∈ δh+1 for all p1 ∈ QA.

– δTi =
⋃

j≥0 δj ,

The automaton Ti simulates transitions of M and A on its states. Transitions
of Ti can be divided in three groups.

The first group consists of transitions (1) and (2). These transitions are for
operations on stack-j, j �= i. Since, Ti does not read contents of stack-j, j �= i,
these transitions are ε transitions. Let us explain transition (2). In this transition
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stack-j becomes γ′γjuj and we have q′′j
γj−→
A

qj
uj−→
A

q′j . We use notation δ∗A instead

of δA to account for ε transitions in A.
The second group consists of the transitions (3), (4) and (5). These are usual

saturation operations. These relate to M’s operations of stack-i and consume as
input, a symbol of stack-i. The automaton Ti after reading a symbol from stack-i
keeps track of the states which M can reach after this symbol has been popped.
For exchange and push on stack-i this is kept track of by new transitions added
iteratively, by saturation procedure. Note that the transitions added iteratively
include the influence of transitions in all groups.

The third group consists of transitions (6a) and (6b). The automaton Ti uses
an approach similar to that in [12], at any point (that is after any number of
transitions of M), Ti may choose to simulate A on contents of stack-i. Transition
(6a) starts simulating A from state p on contents of stack-i in the current config-
uration. Transition (6b) continues the simulation of A in the last component of
triple (q, p1, p). Note that after applying a transition from this group, Ti can not
apply transitions of any other group. Transitions of this group also participate
in saturation procedure.

Note that only transitions in step (4), (5) depend on transitions present in
the previous stage. Other transitions are in δh for all h > 0.

Ti does not have any initial or final state. It’s purpose is not to recognize
any language instead it is used as a component in the automaton to recognize
pre∗i (CA). In the next section we prove some crucial properties of automaton Ti.

4.1 Properties of Ti

States of Ti abstract configurations of c. The relations between the two is de-
scribed in the definitions below.

Definition 9. Let c = (q, γv) be an mpds configuration, where
γv = γ1v1, . . . , γlvl. Let e = a[q/i] be a state of Ti, where ar = (γr, qr, q

′
r) for

r ∈ [1, l] − i. We define c ≈ e (read as c is compatible with e) if q′r ∈ δ∗A(qr , vr)
for r ∈ [1, l]− i.

Definition 10. Let c = (q, γv[w/i]) be an mpds configuration, where
γv = γ1v1, . . . , γlvl. Let e = a[(q, z1, z2)/i] be a state of Ti. We define c ≈1 e
(read as c is compatible with e) if c ≈ e and z2 ∈ δ∗A(z1, w).

In relationship c ≈ e contents of stacks [1, l]− {i} are abstracted by a run of A.
As for a given v ∈ Γ ∗, there can be many pairs (q, q′) s.t. q′ ∈ δ∗A(q, v), there
are many e for a given c s.t. c ≈ e. Relation c ≈ e is independent of contents of
stack-i. In c ≈1 e contents of stack-i are also abstracted by a run of A.

The lemma below shows that transition rules of Ti capture the effect of transi-
tions of M and transitions of A on actual configurations, in sound and complete
way, on abstracted states of Ti.

Lemma 2. Let c = (q, γv[w/i]) be an mpds configuration. Then the following
hold.
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1. If c −→i c′, c′ ≈1 e′ then there is an e, c ≈ e and (e, w, e′) ∈ δ∗Ti
.

2. If c ≈ e, (e, w, e′) ∈ δ∗Ti
where e′ ∈ Qi2 then there is a c′ s.t. c −→i c′ and

c′ ≈1 e′.

Proof. The proof is a bit tedious but works out as expected. We use induction
and case analysis in same way as in saturation proofs of [12]. Details are in full
version. �

5 Regularity of Pre∗
i (CA)

In this section we construct an automaton Pi, using Ti of the previous section,
to accept pre∗i (CA).

Let A be a multi-automaton, γ = γ1 . . . γl and e = a[(q, z1, z2)/i],
where ar = (αr, pr, qr). We know that e encodes information related to some
run of A, on stack contents modified during phase-i (where pop on stack-i only
is allowed). Definition 11 below, refines the acceptance by A to acceptance via
a run which is consistent with the information in e.

First some notation, given a run ρ of A on input y, if x has unique occurrence
in y then we let ρ(x) be the state reached in run ρ at the end of x.

Definition 11. Let (q, αu[w′/i]) ≈1 e. We say that (q, αuv[w′/i]) ∈ L(A) via
e if there is an accepting run ρ of A on input #(q, αuv[w′/i]), starting at state
q s.t. ρ(#rαr) = pr, ρ(#rαrur) = qr, for r �= i, and ρ(#i) = z1, ρ(#iw

′) = z2.

The definition above can be seen as stating that a configuration is accepted by A
using a run that is in some specified states at some specific points in the input.

Let e be as above, we wish to design an automaton which accepts a configura-
tion c such that if in phase-i, c is transformed according to information in e then
the resulting configuration is accepted by A via e. We call this multi-automaton
Aγ

e which works as follows. Automaton Aγ
e on input #(p, γv[w/i]), simulates A

from start state q with the following modifications.
On reading #jγj , j �= i, Aγ

e simulates A on #jαj instead of on #jγj . If after
having been simulated on #jαj state of A is not pj then Aγ

e aborts otherwise
Aγ

e changes the state of A in simulation to qj and continues the simulation of A
on the input following #jγj . (This ensures that on #jγj , Aγ

e simulates A on all
#jαjuj , s.t. pj

uj→
A

qj .)

On reading #iγi, if state of the simulated A is not z1 then Aγ
e aborts otherwise

Aγ
e changes the state of A to z2 and A ignores the input till it sees #i+1. (This

ensures that on #iw#i+1, Aγ
e simulates A on all #iw

′#i+1, where z1
w′
→
A

z2.)

Finally, Aγ
e accepts if it reaches accepting state of A in the simulation at the

end of the given input.
The following Lemma is clear from the construction of Aγ

e .

Lemma 3. For any (q, αu[w′/i]) ≈1 e, (p, γv[w/i]) ∈ L(Aγ
e ) iff (q, αuv[w′/i]) ∈

L(A) via e.
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Following lemma justifies the construction of Aγ
e as it gives a criteria for a

configuration c to be in pre∗i (CA) using Aγ
e .

Lemma 4. Let A be a multi-automaton accepting a set CA of configurations of
M. Then c = (p, γv[w/i]) ∈ pre∗i (CA) iff there are e ∈ Qi1 and e′ ∈ Qi2 s.t.
(p, γ[w/i]) ≈ e, (e, w, e′) ∈ δ∗Ti

and c ∈ L(Aγ
e′).

Proof. Proof is given in full version of this paper. �
Using the characterization in Lemma 4, we design a multi-automaton Pi to
accept pre∗i (C) in the following lemma.

Lemma 5. Let A be a multi-automaton accepting a set CA of configurations of
M. There is a multi-automaton Pi which accepts pre∗i (CA).

Proof. We design Pi to accept pre∗i (C) using the criteria in Lemma 4. Automaton
Pi on input c = (q, γv[w/i]), non-deterministically guesses e ∈ Qi1 and e′ ∈
Qi2 and separately verifies each of the three conditions (i) (q, γ[w/i]) ≈ e (ii)
(e, w, e′) ∈ δ∗Ti

(iii) c ∈ L(Aγ
e′) as it scans the input.

In more detail, Pi when started from state q, guesses e = a[q/i], where ar =
(βr, pr, qr), pr

ε→
A

qr for r �= i. This is hardwired in Pi as guessing of e and e′

is hardwired in Pi. Condition (i) is now verified by an automaton which checks
that for each r �= i the symbol just after #r is βr. Condition (ii) is verified by
running automaton Ti from state e on the string enclosed between #i and #i+1
and accepting if it reaches e′. Condition (iii) is verified by running automaton
Aγ

e′ , from state q on #c.

The verification phase consists of running these three automata simultaneously
and accepting if each of them accepts. �

6 Regularity of Pre∗(C, k)

From the previous section, for each i, 1 ≤ i ≤ l, we have multi-automaton
Pi(A) = (Qi, Γ

#, δi, Q, Fi) which accepts pre∗i (CA). Consider a multi-automaton
P (A) = ((⊕l

i=1Qi)⊕Q, Γ#, (⊕l
i=1δi)∪{(q, ε, qi)|q ∈ Q}, Q,∪l

i=1Fi), where sym-
bol ⊕ stands for a disjoint union.

P (A) is obtained by adding a new copy of states Q as initial states of P (A)
and ε transitions from each initial state q ∈ Q to corresponding initial state of
each multi-automaton Pi(A). The other transitions in P (A) are the transitions
present in each Pi(A).

In state q ∈ Q, on input #(c), P (A) nondeterministically chooses i and simu-
lates Pi(A) on #(c). Thus the language accepted by P (A) is

⋃
i pre∗i (CA). That

is P (A) accepts the set of configurations of M from which M can reach an
element of CA in a single phase.

Finally, we define P 0 = A and P j+1(A) = P (P j(A)), for j ≥ 0. The automa-
ton P k(A), which is defined by iterating the operator P , k-times, accepts the
set of configurations of M from which M can reach an element of CA in at most
k phases. That is P k(A) accepts pre∗(CA, k).
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6.1 Complexity

Let the number of states in multi-automaton A be |QA| and the number of states
in mpds M be |Q|. It is clear that |Q| ≤ |QA|, as Q ⊆ QA. A simple counting
shows the following.

Number of states in Ti is O(|Γ |l.|QA|2l+1).
Number of states in Aγ

e′ is O(|QA|).
Number of states in Pi(A) is O((|Γ |l · |QA|2l+1)2 · (|Γ |l · |QA|2l+1 · |QA|)) =

O(|Γ |3l · |QA|7l).
(The number of different e, e′ pairs is O((|Γ |l.|QA|2l+1)2). For each guess of

e, e′ pair, Pi(A) has a copy of Ti and Aγ
e′ to simulate these automata on the

input.)
Number of states in P (A) is O(l.|Γ |3l.|QA|7l).
This can be taken as O(|QA|c.l), for some constant c, if |Γ | is taken as constant

or |QA| ≥ |Γ |.
The number of states in P k(A) is therefore O(|QA|(c.l)k

).
We sum all this up in the main theorem below.

Theorem 1. Let A be a multi-automaton with |QA| many states recognizing
a set CA of configurations of a l stack mpds M. There is a multi-automaton
with O(|QA|(c.l)k

) states (where c is a constant independent of A and M), which
recognizes pre∗M(CA, k) and can be constructed in O(|QA|(c.l)k

) time.

Note that the automaton constructed permits incremental construction as the
number of phases is increased. Suppose we have the automaton P k(A) to rec-
ognize pre∗(CA, k), now to construct the automaton P k+1(A) to recognize pre∗

(CA, k + 1), we do not need to the start the construction from scratch instead
we may just apply operator P to P k(A). This feature may be useful in practice.

7 Extracting a Witness Sequence of Transitions

Given an accepting run R of P k(A) on c = (q, γv), we show how to effectively

construct a sequence t of transitions of M, s.t. c
t−→ c′ for a c′ ∈ A.

We begin by observing that Lemma 2 part (2) and Lemma 3 are constructive
in the following sense.

Lemma 6. Let c = (q, γv) be an mpds configuration and let e = a[q/i] ∈ Qi1

where ar = (γr, pr, qr). Let c ≈ e. Further a run e
γivi−−−−→

Ti(A)
e′ of Ti(A) be given

for some e′ = a′[(q′, z1, z2)/i] ∈ Qi2, where a′r = (αr, p
′
r, q

′
r).

Then we can effectively construct t and c′ s.t. c
t→i c′ = (q′, αuv)[w/i]. Fur-

ther, we can effectively construct runs p′r
urvr−−−→
A

q′r and z1
w−→
A

z2.

Proof. Easily follows from the proof of Lemma 2, part (2). Details are given in
full version. �
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Following lemma is immediate from the construction of Aγ
e′ in section 5. Instead

of A, we consider an arbitrary multi-automaton B accepting configurations of a
mpds.

Lemma 7. Let e′ = a′[(q, z1, z2)/i] ∈ Qi2 where a′r = (αr, p
′
r, q

′
r). Also let

(q, αu[w/i]) ≈1 e′. From an accepting run of Bγ
e′ on c = (p, γv) and runs

p′r
ur−→
B

q′r and z1
w−→
B

z2 we can easily construct an accepting run of B on

(q, αuv)[w/i]).

Proof. Let an accepting run of Bγ
e′ on #(p, γv) be given. From this we can

extract a run R of B on c with modifications introduced by Bγ
e′ . In the transitions

between p′r and q′r in R, we insert the run p′r
ur−→
B

q′r and in transition between

z1 and z2 in R, we insert the run z1
w−→
B

z2. This gives an accepting run of B on

#((q, αuv)[w/i]). �

Equipped with the two Lemma above, we can extract the witness run as follows.
Let an accepting run R of P k(A) on c = (p, γy) be given. By definition of P k(A),
we have a run R of P (B) on c = (p, γy), where B = P k−1(A). By examining the
first transition in R, we get an i s.t. there is an accepting run Ri of Pi(B) on c.
By examining Ri we get

1. e = a[p/i], where ar = (γr, pr, qr) and pr
ε−→
B

qr for r �= i.

2. e′ = a′[(q, z1, z2)/i], where a′r = (αr, p
′
r, q

′
r).

3. Run e
γiyi−−−−→

Ti(B)
e′ of Ti(B).

4. Accepting run of Bγ
e′ on c = (p, γy).

By Lemma 6 (taking vr = ε), we can effectively get tk, c′k s.t. (p, γ) tk−→i c′k =
(q, αu)[w/i] and (q, αu[w/i]) ≈1 e′, and also runs p′r

ur−→
B

q′r and z1
w−→
B

z2. It

follows that c
tk−→i ck = (q, αuy)[w/i]. As c = (p, γy) ∈ L(Bγ

e′), by Lemma 7, we

can effectively get an accepting run of B on ck = (q, αuy[w/i]). As c
tk−→i ck and

B = P k−1(A) has an accepting run on ck, we can repeat the reasoning to get

ck
tk−1−−−→i′ ck−1, for some i′ and an accepting run of P k−2(A) on ck−1. Continuing

the process, finally we get t1 s.t. c2
t1−→j c1, for some j, and c1 ∈ A. The desired

witness sequence is t = tk, . . . , t1. This gives us the theorem below.

Theorem 2. Let A, CA and M be as in theorem 1. Let P k(A) be the multi-
automaton constructed in the proof of theorem 1 to recognize pre∗M(CA, k). Given
an accepting run R of P k(A) on configuration d, a sequence t of transitions of

M can be effectively constructed, s.t. d
t−−→

M
d′ for some d′ ∈ A.

Preliminary analysis of complexity of the above procedure for extracting a wit-
ness sequence, indicates that it is linear in length of the run R but triple expo-
nential in the number of phases for fixed M and A.
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8 Conclusion

We have shown that the set pre∗(C, k), for a k phase bounded mpds is regular
and an automaton representation of this set can be constructed efficiently. We
have also given a procedure to extract from any accepting run of this automaton
on a configuration d, a witness sequence of transitions of mpds to show that
d ∈ pre∗(C, k). Note that these results also apply to systems which can be
simulated by phase bounded mpds. As an example, these results apply of message
passing systems in [8]. Representation of configurations of these systems involves
representing contents of message queues between processes, each such queue can
be represented by two stacks as in the simulation of [8].

We note that the construction of pre∗ also gives a new proof for checking
emptiness of a bounded phase mpda. Let M = (Q, Σ, Γ, l, q0, δ, qf) be a l stack
mpda, where q0 is the initial state, acceptance is by final state qf and other
symbols have the usual meaning. We obtain a mpds M1 from M by erasing
input symbols from transitions in δ. Let L(M, k) be the language of words
recognized by M in k-phases. Now, L(M, k) = ∅ iff I ∈ pre∗M1(Cf , k), where
Cf = (qf , #1Γ

∗#2 . . . #lΓ
∗#l+1) is the set of final configurations of M and

I = (q0, #1#2 . . . #l#l+1) is the initial configuration M . Therefore emptiness
of L(M, k) can be determined by checking membership of I in finite multi-
automaton for pre∗M1(Cf , k). This algorithm is very different from the other
known methods [7,13], for checking emptiness of a mpda.

It may be interesting to see if results similar to ours can also be shown for a
little more general model, the multi-pushdown systems of [1], where stacks are
ordered and a pop operation is always on the first non-empty stack. There is no
bound on the number of phases in that system.

Another natural question is to extend these results to the setting of two play-
ers. The present approach, if extended successfully, will give a effective history
free strategy in two player reachability games over bounded phase mpds whereas
techniques of [13] can give only a strategy computable by a multi-stack pushdown
automaton.

Recently, a saturation based proof has been given in [6] for constructing win-
ning regions in parity games over a single stack pushdown system. It may be
natural to see if method of [6] combined with ideas of this paper can give a satu-
ration based construction for representation of winning regions in parity games
over bounded phase mpds.

While the worst case complexity of our construction is optimal, it may be pos-
sible to improve this construction so that it works more efficiently on some inputs.
In this direction, it will be interesting to see if automata constructions of sections
4,5 and 6 can be combined into a single construction where we start with a small
number of states and new states are added only whenever they are needed.

Another way to control size of the automaton constructed may be to consider
approximations of bounded phase reachability. The construction for a single
phase is single exponential. It may be combined with usual bounded context
switching construction. That is, for the first few iterations we do the phase
switching construction and then on the automaton so obtained we do the usual
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construction for bounded context switching. This will keep the double exponen-
tial growth in check. For improving the complexity in a single phase we may
restrict push in a single phase to some small number of stacks rather than allow-
ing it on all stacks. Size of the automaton constructed for pre∗i (C) is exponential
in the number of stacks on which push operations are allowed in phase-i.
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Abstract. We consider the verification of parameterized Boolean pro-
grams— abstractions of shared-memory concurrent programs with an
unbounded number of threads. We propose that such programs can be
model-checked by iteratively considering the program under k-round
schedules, for increasing values of k, using a novel compositional con-
struct called linear interfaces that summarize the effect of a block of
threads in a k-round schedule. We also develop a game-theoretic sound
technique to show that k rounds of schedule suffice to explore the entire
search-space, which allows us to prove a parameterized program entirely
correct. We implement a symbolic model-checker, and report on exper-
iments verifying parameterized predicate abstractions of Linux device
drivers interacting with a kernel to show the efficacy of our technique.

We dedicate this paper to the memory of Amir Pnueli.

1 Introduction

Parameterized concurrent programs are concurrent programs with an unbounded
number of threads, executing similar code (or code chosen from a finite set of
programs). In the model-checking literature, parameterized programs have been
heavily investigated (see section of related work), as they are a natural extension
of concurrent systems, and a very relevant model for communication protocols
and distributed systems. Model-checking parameterized programs, even when
the data domain is finite, is, in general, undecidable.

In this paper, we propose a new technique to verify parameterized finite-
data-domain programs, or parameterized Boolean programs. The primary idea
is to iterate over k-round schedules of the parameterized program, for increasing
values of k, and detect termination by proving that all reachable configurations
have been reached at the k-th round, for some k.

More precisely, we work through phases, each phase for an increasing value
of k, and model-check if the parameterized program can reach the error state,
for some instantiation of n threads and in some k-round schedule. A k-round
schedules consists of k rounds, where in each round every thread gets scheduled
� This work was partially funded by the MIUR grants FARB 2008-2009 Univer-
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once in some fixed order, and where each thread gets scheduled for an arbitrary
number of events. This task, though an under-approximation of the reachable
state-space, is challenging, as the number of threads is not fixed. We develop a
novel construct, called linear interfaces, that summarizes the effect of an arbi-
trary block of threads in a k-round schedule. Linear-interfaces (as opposed to
general interfaces), capture the effect of a block of threads along a single run
that context-switches into and out of the block.

The lack of branching information and the finite description of linear inter-
faces helps us to build a compositional framework to search the state space, that
combines linear interfaces without blow-up. We develop a fairly intricate algo-
rithm that uses linear interfaces for blocks of threads scheduled at the right end
of each round (right-blocks), to ensure that we never leave the set of reachable
states in constructing linear interfaces. Further, the algorithm can be captured
as a fixed-point computation over an appropriate signature, and hence naturally
yields to symbolic BDD-based methods.

Our second contribution is an adequacy check that tries to prove that all
reachable states of a parameterized program are already reached under some
k-round schedule. This check, which is sound but not complete, is formulated as
a two-player reachability game on an (implicitly defined) graph. Intuitively, Eve
(player 0) aims to show that there is a global state reachable in the (k + 1)-th
round that is not reachable in the k-th round, and Adam (player 1) aims to
disprove this. The game works by Eve declaring a global state, by declaring one
at a time the local states on each thread, and Adam responds by reaching the
same states using only k rounds. If Adam has a winning strategy (and hence Eve
has none), then this proves that every global state reachable in the (k + 1)-th
round is already reachable in the k-th round. Thus, we can stop computing for
higher values of k and declare the program correct. The idea of formulating the
check as a game is a technical novelty, and is used to declare a state that involves
an arbitrary large number of threads step by step (she cannot very well declare
the global state in one stroke as then the game-graph will no longer be finite).
However, the fact that Eve declares the global state one thread at a time can
give her an advantage in the game, and if Eve has a winning strategy, we cannot
conclude that a configuration is reachable in the (k +1)-th round and not in the
k-th round. Hence our adequacy check is sound but incomplete. The game, and
finding whether Adam has a winning strategy (i.e. solving the game), can also
be formulated and computed symbolically.

The idea of slicing the reachable state-space in terms of the number of rounds
is non-traditional (classic approaches would induct over the number of threads)
and is motivated by recent work on slicing the state-spaces of concurrent pro-
grams using a bounded number of context switches. Bounded context-switching
is motivated by the belief that most errors (and, in fact, most reachable states)
will be already reachable in a few number of rounds [21]. Also, from an algorith-
mic perspective, model-checking under k-round schedules is decidable and can
be achieved using, at any point, only one copy of the local state of a thread, and
O(k) copies of the shared variables.
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Our work argues that the above can be exploited also for parameterized sys-
tems, thus obtaining an effective decidable way of exploring search spaces. More-
over, our adequacy check, which is entirely novel, can verify (soundly) that search-
ing beyond k-round schedules is useless, and hence terminate the search, proving
the parameterized program correct for any number of threads and any sched-
ule. We emphasize that the completeness check closely follows and relies on the
bounded-round schedule reachability algorithm.

While several approaches in the literature have explored bounded context-
switching as an under-approximation to find errors, to our knowledge ours is
the first to use this under-approximation to prove that the program is in fact
entirely correct. Our adequacy check works for parameterized programs, but no
similar check is known even for concurrent programs with finitely many threads.
We thus believe that the analysis of such programs would benefit from using it.

We report on a symbolic BDD-based implementation of both the k-round
model-checking for parameterized programs as well as the k-round adequacy
check. Our implementation is a succinct formulation of the algorithms using
fixed-points, and we use the Getafix framework [13] that we have developed
recently, to implement our algorithm by simply writing fixed-point equations.

We report on using our model-checker to verify a large suite of Boolean pa-
rameterized programs obtained from the DDVerify tool, that extracts Boolean
models of Linux device drivers and the OS kernel, using predicate abstraction, in
order to check them against rules of kernel API usage (similar to SLAM, which
is for Windows drivers). Our parameterized setting models an arbitrary number
of these drivers working with the OS. We report on experiments performed on
about 8000 programs and properties, and show that our tool can effectively find
reachable error-states, and furthermore prove that more than 80% of them are
entirely correct, using the adequacy check.

In summary, our theoretical and experimental results suggest a new technique
for verifying parameterized programs: to effectively under-approximate them
using a few round schedules (but with arbitrary number of threads), summarized
and analyzed using linear interfaces, and build effective techniques to prove a
few rounds suffice to reach the entire reachable state-space.

Due to lack of space, detailed proofs are omitted in the paper, but can be found
in [15]. Moreover, details of the implementation of the idea presented in this
paper is at the Getafix website: http://www.cs.uiuc.edu/∼madhu/getafix.

Related work. Compositional verification using interfaces for modules has been
investigated before: e.g. the work in [4] computes interfaces for modules using
learning for compositional verification. However, these interfaces are modeled
as finite transition systems, and will not help in verifying unboundedly many
threads as the interfaces, when composed, will keep increasing in size.

The idea of exploring search-spaces of concurrent programs with finitely many
threads, using a small number of context-switches for finding bugs has been well
studied recently [21,18,20,22,17,13,14]. The Chess tool from Microsoft espouses
this philosophy by testing concurrent programs by systematically choosing sched-
ules with a small number of context-switches/pre-emptions.
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A recent paper [1] proposes a (theoretical) solution to the model-checking
problem of reachability in concurrent programs with dynamic creation of threads,
where a thread is context-switched into only a bounded number of times. This
dynamic thread creation can model the unboundedly many threads in our set-
ting. However, dynamic thread creation requires keeping track of the number of
threads that are in a local state, even under bounded switching. The paper in
fact shows reductions between this reachability problem and Petri-net coverabil-
ity, establishing Expspace-hardness. In contrast, it follows from our fixed-point
formulation that the model-checking problem in our setting is Pspace-complete.
More importantly, our fixed-point formulation actually yields a practical sym-
bolic BDD-based solution, while it is not clear how to build a symbolic model-
checker using the Petri-net reduction given in [1] (the paper does not report any
implementation or experiments).

There is a rich history of verifying parameterized asynchronously communicat-
ing concurrent programs, especially motivated by the verification of distributed
protocols: sample research includes network invariants (see [12] and references
therein) and its abstractions [3,10,6]; regular model-checking [11], using small-
model theorems [7]; split invariants followed by abstractions based on this in-
variant and model-checking [5]. Symmetry in replicated concurrent processes [8]
has been exploited in the Murϕ tool [10].

Approaches for verifying several replicated components (though finite) have
used counter abstraction [19], and recent work has used counter abstraction
combined with cartesian representations of local and global state in order to
verify a fixed number of Linux device drivers working in parallel [2]. The model-
checking work we report in this paper handles the same device drivers but with
an unbounded number of them working in parallel and restricted to a bounded
number of round schedules.

Abstraction for parameterized systems have also been investigated: using
predicate abstraction [16] as well as abstract-interpretation over standard ab-
straction domains [9].

2 Parameterized Boolean programs

We are interested in concurrent programs composed of several concurrent pro-
cesses, each executing on possibly unboundedly many threads, with variables
ranging only over the Boolean domain (parameterized programs). All threads
run in parallel and share a fixed number of variables.

Each parameterized program consists of a sequential block of statements init,
where the shared variables are initialized, and a list of concurrent processes.
Each process is essentially a sequential program (namely, a Boolean program)
with explicit syntax for nondeterminism and (recursive) function calls, along
with the possibility of declaring sets of statements to be executed atomically.
Functions are all call-by-value. Variables can be scoped locally to a function,
globally to a process in a thread or shared amongst all processes in all threads.
The statements in a parameterized program can refer to all variables in scope.
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A parameterized program is initialized with an arbitrary finite number of
threads, each thread running a copy of one process. Dynamic creation of threads
is not allowed, but it can be modeled by having the threads in a “dormant” state
until a message from the parent thread is received.1

An execution of a parameterized program is obtained by interleaving the be-
haviors of the threads which are involved in it. For a concurrent process we
assume the standard semantics of sequential programs (the request of execut-
ing atomically a block of statements has no meaning when executing a single
thread). Formally, let P = (S, init, {Pi}n

i=1) be a parameterized program where
S is the set of shared variables and Pi is a process, i ∈ [1, n]. We assume that each
statement of the program has a unique program counter labeling it. A thread T
of P is a copy (instance) of some Pi, i ∈ [1, n]. At any point, only one thread is
active. For any m > 0, a state of P is denoted by a tuple (map, i, s, σ1, . . . , σm)
where: (1) map : [1, m] → P is a mapping from threads T1, . . . Tm to processes,
(2) the currently active thread is Ti, i ∈ [1, m], (3) s is a valuation of the shared
variables, and (4) for each j ∈ [1, m], σj is a local state of Tj . Observe that each
such σj is composed of a valuation of the program counter, and of the local and
global variables of the corresponding process, along with a call-stack of local
variable valuations and program counters to model function calls.

At any state (map, i, s, σ1, . . . , σm), the valuation of the shared variables s is
referred to as the shared state. A localized state is the view of the state by the
current process, i.e. it is (σ̂i, s), where σ̂i is the component of σi that defines the
valuation of local and global variables, and the local pc (but not the call-stack),
and s is the valuation of the shared variables in scope. Note that when a thread
is not scheduled, its local state does not change.

The interleaved semantics of parameterized programs is given in the obvious
way. We start with an arbitrary state, and execute the statements of init to
prepare the initial shared state of the program, after which the threads become
active. Given a state (map, i, ν, σ1, . . . , σm), it can either fire a transition of
the process at thread Ti (i.e., of process map(i)), updating its local state and
shared variables, or context-switch to a different active thread by changing i to
a different thread-index, provided that in Ti we are not in a block of sequential
statements to be executed atomically.

Reachability. Given a parameterized program P = (S, init, {Pi}n
i=1) and a

target program counter pc, the reachability problem asks whether there exist an
integer m > 0 and an execution of P that reaches a state (map, i, ν, σ1, . . . , σm)
such that pc is the program counter of σi for some i ∈ [1, m]. Since two threads
communicating through a finite shared memory suffice to simulate a Turing ma-
chine, this problem is clearly undecidable. Here we also consider the reachability
under bounded-round schedules. For threads T1, . . . , Tm, a k-round schedule of
T1, . . . , Tm is a schedule that, for some ordering of such threads, activates them
in k rounds, where in each round each thread is scheduled (for any number of
events) according to this order. Observe that, restricting to executions under any

1 Note: in this scheme, each thread creation causes a context-switch; true thread cre-
ation, without paying such cost (like in [1]), cannot be modeled in our framework.
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k-round schedule does not place any bound on the number of threads which are
involved. Given a k ∈ N, the reachability problem under bounded-round schedules
is the reachability problem restricted to consider only executions under k-round
schedules.

3 Linear Interfaces

We now introduce the concept of linear interface, that captures the effect a
block of threads has on the shared state, when involved in an execution of a
k-round schedule. For the rest of the paper, we fix a parameterized program
P = (S, init, {Pi}n

i=1) and a bound k > 0 on the number of rounds. We also
use the notation u to refer to a tuple (u1, . . . , uk) of shared states of P .

A pair of k-tuples of shared variables (u, v) is a linear interface of length k
(see Figure 1) if: (a) there is an ordered block of threads T1, . . . , Tm (running
processes of P), (b) there are k rounds of execution, where each execution starts
from shared state ui, exercises the threads in the block one by one, and ends
with shared state vi (for example, in Figure 1, the first round takes u1 through
s1
1, t11, s1

2, t12, . . . to t1m where the shared state is v1), and (c) the local state of
threads is preserved between consecutive rounds in these executions (in Figure 1,
for example, t11 and s2

1 have the same local state). Informally, a linear interface is
the effect a block of threads can have on the shared state in a k-round execution,
in that they transform u to v across the block. Formally, we have the following
definition (illustrated by Figure 1).

Definition 1. (Linear interface) Let u = (u1, . . . , uk) and v = (v1, . . . , vk)
be tuples of k shared states of a parameterized program P (with processes P ).
The pair (u, v) is a linear interface of P of length k if there is some number of
threads m ∈ N, an assignment of threads to processes map : [1, m] → P and
states sj

i = (map, i, xj
i , σ

i,j
1 , . . . , σi,j

m ) and tji = (map, i, yj
i , γ

i,j
1 , . . . , γi,j

m ) of P for
i ∈ [1, m] and j ∈ [1, k], such that, for each i ∈ [1, m] and j ∈ [1, k]:

– xj
1 = uj and yj

m = vj ;
– tji is reachable from sj

i using only local transitions of process map(i);
– σi,1

i is an initial local state for process map(i);
– σi,j+1

i = γi,j
i except when j = k (local states are preserved across rounds);

– xj
i+1 = yj

i , except when i = k (shared states are preserved across context-
switches of a single round);

– (tji , s
j
i+1), except when i = k, is a context-switch.

When m = 1, (u, v) is also called a thread linear interface. �
Note that the definition of a linear interface (u, v) places no restriction on the
relation between vj and uj+1— all that we require is that the block of threads
must take u as input and compute v in the k rounds, preserving the local con-
figuration of threads between rounds.

Linear interfaces compose. Let I = (u, v) and I ′ = (u′, v′) be two linear
interfaces of length k. If the output of I matches the input of I ′, i.e., v = u′

holds, then the composition of I and I ′ is the pair (u, v′).
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Fig. 1. A linear interface

Lemma 1. The composition of linear interfaces of length k is a linear interface
of length k. Moreover, each linear interface is either a thread linear interface or
a composition of two or more thread linear interfaces. �

An execution of a parameterized program under a k-round schedule can always
be seen as a composition of thread linear interfaces that form a unique linear
interface that have the following properties.

A linear interface (u, v) of length k is wrapped if vi = ui+1 for each i ∈ [1, k−1].
A linear interface (u, v) is initial if u1, the first component of u, is an initial shared
state of P . Thus, an execution of a parameterized program under a k-round
schedule always corresponds to a wrapped initial linear interface (u, v). Such an
execution is said to conform to (u, v). The following lemma is straightforward:

Lemma 2. Let P be a parameterized program. An execution of P is under a
k-round schedule iff it conforms to some wrapped initial linear interface of P of
length k. �

4 Reachability under Bounded-Round Schedules

In this section we give a fixed-point algorithm to solve the reachability problem
under a bounded-round schedule for a parameterized program. From Lemma 2, it
follows that all that is required is to compute, for a given parameterized program,
all possible linear interfaces of size k, and then check among those that are both
initial and wrapped. Since for a fixed k the number of linear interfaces of a program
is finite, this can be computed as suggestedby Lemma 1, startingwith thread linear
interfaces, and then composing them till a fixed-point is reached. However, it turns
out that this does not work well in practice, as the computation of thread linear
interfaces starts from arbitrary tuples of k shared states and then determines all
the states reachable from them, and hence unreachable parts of the state-space can
be explored. Early implementation results of this algorithm in fact failed miserably
on our benchmarks. We now propose a more intricate algorithm that ensures that
linear interfaces are computed and explored only on reachable states.
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Fig. 2. Graphical representation of the update rules of the algorithm

Notation: Let π be an execution of P under a k-round schedule and T1, . . . , Tm

denote a block of threads scheduled consecutively in π. We say that π covers a
linear interface (u, v) on T1, . . . , Tm if along π, ui matches the shared state on
context-switching into T1 and vi matches the shared state on context-switching
out of Tm in round i, for i ∈ [1, k]. Moreover, the localized state (σ, vk) of Tm,
which is visited along π when context-switching out of Tm in round k, is called
a final localized state of (u, v) in π. A right block is a block of threads scheduled
consecutively in the end of each round.

Description of the algorithm. The algorithm proceeds by computing for the
input program, linear interfaces of size 1, 2, . . . k, ensuring that each is computed
on reachable states only. In every iteration, we also compute the precise set of
linear interfaces for right blocks (right linear interfaces).

Let us now describe, intuitively, how the i-th round is explored and how
interfaces of length i are built when i > 1. We refer the reader to the diagrams
in Fig. 2. In these diagrams, boxes drawn with solid lines denote interfaces that
exist, while those with dotted lines denote new blocks that get created. Moreover,
TLI, RLI, and WRLI refer to thread-linear interfaces, right linear interfaces, and
“want blocks”. Arrows denote equality of the shared states at the endpoints.

We start the i-th round with the first thread (see Fig. 2.a). We take an initial
thread linear interface (TLI ) of length i − 1 and a right linear interface (RLI ),
still of length i− 1, which composes with TLI and such that the resulting linear
interface is both initial and wrapped. We then compute a localized state (σ, ui),
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where σ is from the final localized state of TLI and ui is the shared state from
the end of the (i − 1)-th round in RLI. Using this, we can compute all possible
states which are reachable by the thread in round i, and hence compute all the
thread linear interfaces of length i covered by a run on the first thread (Fig. 2.a).
Now the computation progresses on the second thread (see Fig. 2.b). For all the
newly reached shared states ui, we then create a want block (WRLI ′) with the
RLI ’s input, the new input ui, and the RLI ’s output, which captures our desire
that we want to continue the rest of the threads with this new input. Want
blocks are not quite linear interfaces, as they have i inputs and i − 1 outputs,
but are crucial in guiding the computation.

Next, we enter the forward phase (Fig. 2.c and 2.d), where a want-block
WRLI, a thread linear interface TLI, and a right linear interface RLI exist, and
where the inputs of WRLI and TLI match, the outputs of TLI match the input
of RLI, and the outputs of WRLI and RLI match. In this scenario, a new thread
linear interface of size i is formed from TLI (inheriting the shared state from
WRLI and the local state from TLI ) and explored locally to form new thread
linear interfaces of size i (Fig. 2.c). Further, these new thread linear interfaces
create further want blocks to further the computation (Fig. 2.d).

Want blocks can also (non-deterministically) stop when the inputs precisely
match the outputs, and create right linear interfaces (Fig. 2.e). This is the base
case of the induction capturing the formation of right linear interfaces (starting
from the last scheduled thread in each round) and starts the backward phase.
This computation takes a right linear interface RLI, combines it with a thread
linear interface TLI to the left of it, and provided a matching want block exists,
combines them to form a larger right linear interface (Fig. 2.f). These computed
right linear interfaces correspond to reachable blocks of computation (because
we have checked them against want blocks, which were in turn reachable), and
is used in the next iteration to ensure that only reachable states are explored.

Of course, the above three phases are not regulated sequentially, and are
explored arbitrarily by fixed-point computations.

Fixed-point formulation. We formally describe our algorithm as a system
of equations of the form R = Exp where Exp is a positive boolean expression
with first order quantification over relations and R is a relation which may also
appear within Exp (recursive definition of relations is admitted).

In such equations, we will use the following base relations. LocInit and ShInit
denote respectively the initial local states for each thread and the initial shared
states (computed by executing the init block). Wrap(u, v) holds true if and
only if vi = ui+1, for all i ∈ [1, k − 1]. We also use 〈 local reachability 〉 to denote
a formula expressing the clauses of a fixed-point formulation of the states that
are forward reachable using only transitions of a process. We omit the details on
this formula since it is essentially the same as for sequential programs (see [13]).

Denote with S the following system of equations:
1. TLI(i, σ, u, v) =

(i = 1 ∧ LocInit(σ) ∧ u1 = v1 ∧ (ShInit(u1) ∨ ∃w, σ′.TLI(1, σ′, w, u))) (1.1)
∨ (i > 1 ∧ ui = vi ∧TLI(i − 1, σ, u, v) ∧ ∃w. (RLI(i − 1, v, w)
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∧ ( (ShInit(u1) ∧ Wrap(u, w)) ∨ WRLI(i, u, w)))) (1.2)
∨ 〈 local reachability 〉 (1.3)

2. WRLI(i, u, v) = i > 1 ∧ ∃σ, w.
(TLI(i, σ, w, u)∧RLI(i−1, u, v)∧(WRLI(i, w, v)∨(ShInit(w1)∧Wrap(w, v))))

3. RLI(i, u, v) = (i = 1 ∨ WRLI(i, u, v))
∧ ∃σ.(TLI(i, σ, u, v) ∨ (∃w. (TLI(i, σ, u, w) ∧RLI(i, w, v)))

Observe that S is a system of positive equations. Thus by Tarski’s fixed-point
theorem, it has a unique least fixed-point, and the relations are well defined. The
evaluation of S is graphically described in Fig. 2. After computing the above
relations, the last step of our algorithm consists of evaluating the formula:

ϕ ::= ∃i, σ, u, v.(1 ≤ i ≤ k) ∧ TLI(i, σ, u, v) ∧ Target(σ),
where the predicate Target(σ) holds if and only if σ corresponds to a target
program counter in the reachability query.

Correctness of the algorithm. The following lemma is crucial to prove our
algorithm correct.

Lemma 3. Let u = (u1, . . . , uk), v = (v1, . . . , vk), σ such that (σ, vi) is a local-
ized state of P, k ∈ N, and i ≤ k.

1. TLI(i, σ, u, v) holds iff there is an execution π of P under a k-round schedule
such that (ui, vi) is a thread linear interface covered by π and (σ, vi) is a final
localized state of (ui, vi).

2. RLI(i, u, v) holds iff there is an execution π of P under a k-round schedule
such that (ui, vi) is a right linear interface covered by π.

3. WRLI(i, u, v) holds iff there is an execution π of P under a k-round schedule
such that T1, . . . , Tm are scheduled at the end of each round, ui is the shared
state on context-switching to T1 along π in round i, i > 1, and (ui−1, vi−1)
is a right linear interface covered by π on T1, . . . , Tm. �

Note that, when computing the fixed point of S, the relations TLI, RLI and
WRLI grow monotonically, and once a tuple is added, it is never removed from
the set. Thus, from the lemma, we get that in our computation, we only explore
the reachable state space of the parameterized program. Therefore, we have:

Theorem 1. Given an integer k ≥ 0, a parameterized program P and a program
counter pc, pc is reachable in P under k-round schedules if and only if the formula
ϕ is satisfiable. Moreover, while computing the least fixed-point of system S, only
reachable localized states of P are explored. �

5 An Adequacy Check: Proving Program Correct

The algorithm to solve the reachability problem under a k-round scheduling,
given in the previous section, can be used to show a parameterized program
incorrect (when an error state is reached). However, when the algorithm’s answer
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is negative (i.e., an error state is not reachable) nothing can be inferred on the
correctness of the input program. In this section, we present an adequacy check
that attempts to make our verification scheme complete. In particular, for a
parameterized program without recursive function calls, we design a test that
gives a sufficient condition to show that the reachable states of the program under
a k-round schedule are indeed all its reachable states. Though the proposed test
is sound but incomplete, in next section, we show by reporting our experimental
results that it is indeed quite effective in practice.

Fix a parameterized program P and k ∈ N. We wish to ensure the following:
“For any state s of P , if s is reachable under a (k + 1)-round schedule then it is
also reachable under a k-round schedule” (k-rounds-suffice condition).

Note that checking this condition may be computationally hard, and hardness
mostly resides in the fact that the number of threads in the executions under k-
round schedules is a priori unbounded (and thus handling entire program states
is by itself a problem). We propose a game-theoretic algorithm that refers to
portions of states that are local to threads (localized states) and keeps summaries
of the performed computation (linear interfaces), and thus avoids the need to
refer to the entire state of the program, and parses it thread-by-thread.

In particular, we wish to define a two-player game Gk where player 0 (Eve)
selects a state of P by revealing with each move a localized state which is visited
along an execution under a (k + 1)-round schedule in round k + 1, and player
1 (Adam) attempts to match every move of Eve along an execution under the
same schedule but in round k. A typical play in Gk is as follows.

Eve starts selecting a localized state λ1 which is final for an initial thread
linear interface I1 of length k + 1 (we recall that this means that there exists a
program execution under a k-round schedule which covers I1 and context-switch
out of the first thread in round k + 1 at λ1). Then, Adam matches this move by
showing that λ1 is a final localized state of an initial thread linear interface L1
of length k. The play continues with Eve selecting a final localized state λ2 of a
thread linear interface I2 of length k + 1 such that the output of I1 matches the
input of I2. Then, Adam reacts by showing that λ2 is also a final localized state
of a thread linear interface L2 of length k such that the output of L1 matches the
input of L2. Let I ′2 be the composition of I1 and I2, and L′

2 be the composition
of L1 and L2. In the next iteration, Eve makes a selection expanding over the
next thread in the schedule the linear interface I ′2, and similarly, Adam tries to
matches this selection by expanding L′

2, and so on until Adam cannot match a
move of Eve. Then starting from this point till the end, only Eve is allowed to
move and she will keep expanding the constructed linear interface as above.

A play is winning for Eve if she can select a sequence of moves that cannot be
matched by Adam and doing so she can construct a wrapped and initial linear
interface, thus proving that the selected localized states are indeed visited in the
(k+1)-th round of an execution under a (k+1)-round schedule. Eve also wins if
Adam matches all her moves, but the linear interface she constructs is wrapped
while that by Adam is not. In all the other cases, Adam wins.
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Technically, we can store in the states of the game the interfaces which are
constructed by the two players and thus express such winning conditions as
reachability goals. Also note, that fixing k, the size of Gk is bounded.

We can formally describe a decision algorithm to solve such a game using
equations as in Section 4. In our formulation, we model a state of the game as a
tuple of the form s = (pl , in, al , u, v, σ, x, y) where pl denotes the player which
is in control of the state (0 for Eve and 1 for Adam), in = 1 iff player pl has
not moved yet in the current play, al = 1 iff Adam is still in the play (i.e., he
has matched all Eve’s moves so far), (u, v) is the linear interface of length k + 1
constructed by Eve in the play, (σ, vk+1) is a final localized state of (u, v), and
(x, y) is the linear interface of length k constructed by Adam.

The winning conditions can be captured with a predicate characterizing the
winning states. To solve the game, the attractor-set based algorithm can be
expressed using fixed points and therefore we can directly implement it in our
formalism. Due to the lack of space, we only give here the details of the relation
E -move which captures the moves of Eve (the relation for Adam being similar).

E -move(s, s′) = ( pl = 0 ∧ x′ = x ∧ y′ = y ∧ (
(al = 1 ∧ pl ′ = 1 ∧ al ′ = 1∧

((in = 1 ∧ in ′ = 1 ∧ TLI(k + 1, σ, u′, v′) ∧ ShInit(u1)) (1)
∨ (in = 0 ∧ in ′ = 0 ∧ u′ = u ∧TLI(k + 1, σ′, v, v′)))) (2)

∨ (al = 0 ∧ pl ′ = 0 ∧ al ′ = 0 ∧ in = 0 ∧ u′ = u ∧ TLI(k + 1, σ′, v, v′)))) (3)

In the above formula, (1) corresponds to the first move of Eve in a play, (2) to
her moves as long as Adam has matched all her previous moves, and (3) to her
moves in the remaining cases (i.e., Adam has failed to match a move by Eve).

Observe that, if we restrict to parameterizedprogramswhere only non-recursive
function calls are allowed, we can prove that if there is a winning strategy of Adam
then the k-rounds-suffice condition holds, and therefore, there are no more reach-
able states to explore. However, the converse does not hold: if Eve has a winning
strategy, we cannot conclude that considering executions under (k + 1)-round
schedules will allow us to discover new reachable states of the program. In fact,
Eve could cheat by changing her selections depending on Adam’s moves, and thus,
even if a selected state is reachable within k rounds, Adam could fail to prove it.
Thus, we have the following theorem:

Theorem 2. Let P a parameterized program without recursive function calls.
For all k ∈ N, if the adequacy check holds then the k-rounds-suffice condition
holds, and therefore all reachable states of P are visited in executions under
k-round schedules. �

6 Implementation and Experiments

Symbolic model-checker: We implemented a symbolic BDD-based model-
checker for reachability in parameterized programs in a bounded number of
rounds, as well as a symbolic adequacy checker that checks (soundly) whether k-
round schedules reach all reachable states, using the tool framework Getafix [13]
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Table 1. Experimental results

2 thread Parameterized Analysis Parameterized Analysis
Analysis 4 rounds unbounded rounds

Proved Not proved
#Bool. Reach- Unreach- Reachable Unreach- Time- Unreach- unreachable Time-
pgms. able able able out able (Pl.0 wins) out

i8xx tco 765 460 305 314 (+13) 218 220 204 0 14
ib700wdt 492 330 162 208 (+13) 112 159 106 0 6
machzwd 568 341 227 274 (+23) 158 113 56 87 15
mixcomwd 429 276 153 213 (+23) 102 91 100 0 2
pcwd 256 171 85 171 ( +0) 85 0 81 0 4
sbc60xxwdt 425 276 149 174 (+23) 94 134 92 0 2
sc1200wdt 491 299 192 200 (+13) 135 143 135 0 0
sc520 wdt 438 272 166 173 (+23) 104 138 15 89 0
smsc37b787 wdt 719 428 291 280 (+13) 140 286 140 0 0
w83877f wdt 558 362 196 219 (+23) 103 213 15 88 0
w83977f wdt 850 495 355 366 (+13) 126 345 125 0 1
wdt977 799 486 313 338 (+13) 127 321 125 0 2
wdt 533 348 185 221 (+17) 107 188 105 0 2
wdt pci 892 800 92 378 (+23) 13 478 10 3 0

Total 8215 5344 2871 3529 (+233) 1624 2829 1309 267 48

that we have recently developed. Getafix allows writing BDD-based model-
checkers using a high-level fixed-point calculus, without having to write low-level
code. Getafix translates Boolean programs to logical formulas, implements
heuristics for BDD orderings, and furnishes the model-checker designer with
templates that capture the semantics of the program. High-level model-checking
algorithms written in a fixed-point calculus get implemented by Getafix using
the symbolic fixed-point model-checker called Mucke (see [13]).

We adapted Getafix to translate parameterized Boolean programs and han-
dle DDVerify benchmarks. The algorithms for reachability in k rounds were
implemented using the fixed-point formulas outlined in this paper. The adequacy
check was also implemented using fixed-points: we captured the moves of player 0
and player 1 symbolically, and wrote a fixed-point backward attractor-based al-
gorithm to solve the reachability game.

Experiments on device drivers: We subject our model-checker to a suite
of Boolean programs derived from the Lwatchdog suite of drivers using the
DDVerify tool [23], which abstracts Boolean programs from Linux device
drivers, and also provides a fairly accurate Boolean model of the OS kernel.
The model of the driver is obtained using predicate abstraction, and appropri-
ate translations of Spinlocks, timer functions, and service routines that it may
use. The kernel program models kernel code as well as other OS related behavior
such as interrupts, etc. using non-determinism.

Each DDVerify benchmark consists of an OS kernel that interacts with a
device driver. We obtained our concurrent models by taking one copy of the
kernel module along with an unbounded number of copies of the device driver
module. We subject our tool to about 8000 Boolean abstractions of 14 device
drivers, abstracted to verify several (hundreds of) safety properties, at various
levels of refinement.
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The results are summarized in Table 1. The “2-thread analysis” columns re-
port the number of Boolean programs that had an error-state reachable and
those that did not, when considering just two threads, one modeling the OS and
one modeling the driver (these results are identical to DDVerify).

We analyzed the programs using our parameterized analysis tool and searched
the space reached within 4-round schedules for errors; the results are reported in
the second set of columns. Note that even when an error state is reachable in the
2-thread analysis, it may not be reachable in the parameterized analysis (as the
latter considers only a limited number of rounds); however this never occurred
in our experiments. Similarly, note that when an error state is unreachable in
the 2-thread analysis, it may be reachable in the parameterized analysis (as the
latter considers an unbounded number of threads); this did happen in several
examples, and is noted in parenthesis with a +-sign in the “Reach” column of
the parameterized analysis (e.g., for the first set of drivers, the error state was
reachable in 13 programs in the parameterized setting within 4 rounds, but not
in the 2-thread setting). The parameterized analysis is computationally more
expensive, and the model-checker ran out of resources (memory or time-out at
30sec) for the programs reported in the “Timeout” column.

The final set of columns report results for the adequacy check based on the
reachability game on those programs that were unreachable in 4 rounds. The
first column reports the number of programs our tool was able to prove entirely
correct (any number of rounds and threads); the second column reports the
number of programs that were not proved unreachable (this does not mean that
the error state is reachable, as our adequacy check is not complete); and the last
column gives the programs on which the tool ran out of resources (out of memory
or reached time-out at 30sec). For example, in the first set of drivers, out of the
218 programs in which the error state was not reachable in 4 rounds, our tool
was able to prove 204 of them completely correct, and 14 of them timed-out.

Observations from experiments: Several observations are in order:

– All error-states reachable in the 2-thread instantiation were found within
4 rounds in the parameterized system. This experimentally supports the
conjecture that error-states are often reachable within a few rounds, even on
Boolean program abstractions.

– There are several programs (∼ 225) where a predicate abstraction that can
prove a driver correct when working alone with the OS is not sufficient to
prove it correct in the parameterized setting.

– Most interestingly, most programs (∼ 1300 out of 1600, or ∼ 80%), when
the error state was not reachable in 4 rounds, were proved entirely correct
by our technique. In fact, our adequacy check was extremely effective in 11
of the 14 suites; 3 suites however have a significant percentage of programs
that we were unable to prove entirely correct.

Note that a sound predicate abstraction followed by a successful parameterized
verification proves the original driver correct for any number of threads and
schedule; our tool achieves this for about 1300 instances.
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Abstract. We consider the class of finite-state programs executed by
an unbounded number of replicated threads communicating via shared
variables. The thread-state reachability problem for this class is essential
in software verification using predicate abstraction. While this problem
is decidable via Petri net coverability analysis, techniques solely based
on coverability suffer from the problem’s exponential-space complexity.
In this paper, we present an alternative method based on a thread-state
cutoff : a number n of threads that suffice to generate all reachable thread
states. We give a condition, verifiable dynamically during reachability
analysis for increasing n, that is sufficient to conclude that n is a cutoff.
We then make the method complete, via a coverability query that is
of low cost in practice. We demonstrate the efficiency of the approach
on Petri net encodings of communication protocols, as well as on non-
recursive Boolean programs run by arbitrarily many parallel threads.

1 Introduction

Concurrent software is gaining tremendous importance due to the shift towards
multi-core computing architectures. The software is executed by parallel threads,
in an asynchronous interleaving fashion. The most prominent and flexible model
of communication between the threads is the use of fully shared variables. This
model is supported by well-known programming APIs, e.g. the POSIX pthread
model and Windows’ WIN32 API. Bugs in programs written for such environ-
ments tend to be subtle and hard to detect by means of testing, strongly moti-
vating formal analysis techniques.

In this paper, we consider the case in which no a-priori bound on the number
n of concurrent threads is known. This scenario is most relevant in practice;
it applies, for example, to a server that spawns additional worker threads in
response to a high work load. We focus here on replicated finite-state programs:
the program itself only allows finitely many configurations, but is executed by
an unknown number of threads, thus generating an unbounded state space. An
important practical instance of this scenario is given by non-recursive concurrent
Boolean programs. Boolean program verification is a bottleneck in the widely-
used predicate abstraction-refinement framework.

We tackle in this paper the thread-state reachability problem. A thread state
is defined as a valuation of the shared program variables, plus the local state
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of one thread. Thread-state reachability is routinely used to encode multi-
index safety properties of systems, such as mutually exclusive access to some
resource.

The thread-state reachability problem for replicated finite-state programs is
equivalent in complexity to the coverability problem for Petri nets. The latter
problem is decidable [18], but has an exponential lower space bound [7]. In or-
der to not fall victim to this complexity, the approach presented in this paper
takes advantage of widely accepted empirical evidence that often a small num-
ber of threads suffice to exhibit all relevant behavior that may lead to a bug.
If this number is efficiently computable, the unbounded thread-state reachability
problem reduces to a finite-state exploration problem, for which quite efficient
engines have recently emerged [3].

To be more precise, for every finite-state program P, there is a number c
such that any thread state reachable for some number of threads running P can
in fact be reached given c threads. We call such a number a thread-state cutoff
of P. Previous results on computing cutoffs of a program P tend to either restrict
the communication scheme [12,17], or yield cutoffs that are polynomial in the
number of states of P [11]. Both types are inapplicable to Boolean program
verification, since concurrent programming APIs rely on very liberal shared-
variable communication, while a Boolean program P typically has millions of
states, rendering even linear-size cutoffs useless.

In contrast to previous solutions, we give in this paper a condition on a number
n whose satisfaction allows us to conclude that n is the cutoff of a program P. To
obtain such a condition, we first show that, if n is not the cutoff, then there exists
a number n′ > n and a thread state reachable in the n′-thread system Pn′ whose
reachability requires a particular conducive constellation of several threads in
Pn. If the reachable states in Pn do not permit such a constellation, then n is
indeed the cutoff of P.

We then turn this idea into a complete and tight cutoff detection algorithm.
Completeness is achieved using backward coverability analysis to rule out the
reachability of the thread states identified as candidates for the constellation
mentioned above. We argue that these candidate state are benign, in that back-
ward coverability analysis on them is efficient and does not defeat the origi-
nal purpose of avoiding such analysis. Minimality of the cutoff is ensured by
applying the cutoff detection method iteratively to the values n = 1, 2, . . ..
Since our method uses reachability information, we speak of dynamic cutoff
detection.

We experimentally investigate the cutoffs of a large number of Petri net and
Boolean program examples, modeling concurrent systems of various types. We
demonstrate the superiority of our cutoff method over several earlier algorithms
based solely on Petri net coverability. Our experiments showcase the method as
a very promising algorithmic solution to coverability problems for Petri nets,
and as an efficient technique for thread-state reachability analysis in realistic,
if non-recursive, Boolean programs run by arbitrarily many threads.
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2 Basic Definitions

Let P be a program that permits only finitely many configurations. In particular,
P’s variables are of finite range, and the function call graph, if any, of P is
acyclic. An instance of the class of programs P is given by non-recursive Boolean
programs, which are obtained from C programs using predicate abstraction. The
use of Boolean programs as abstractions of C programs was promoted by the
success of the Slam project [1]. We use concurrent Boolean programs in the
experimental evaluation of our approach and refer the reader to [8] for a detailed
description.

Program P gives rise to a family (Mn)∞n=1 of replicated finite-state system
models as follows. P’s variables are declared to be either shared or local. A val-
uation of the shared variables is called a shared state, a valuation of the local
variables is called a local state. Mn is a Kripke structure modeling an n-thread
concurrent program. The states of Mn have the form (s, l1, . . . , ln), where s is a
shared state and li is a local state; we say li is the local state of thread i. Mn’s
execution model is that of interleaved asynchrony. That is, the set of transitions
of Mn is the set of pairs of the form

( (s, l1, . . . , li−1, li, li+1, . . . , ln) , (s′, l1, . . . , li−1, l
′
i, li+1, . . . , ln) ) (1)

such that (s, li) → (s′, l′i) corresponds to a statement in P. Only one thread, i,
can make a step at a time. A step may change the local state of that thread
and the shared state; we call thread i active in the transition. The pair (s, li)
is called the thread state of thread i in global state (s, l1, . . . , ln); a thread state
summarizes the part of the global state that is accessible to a thread. A thread
has neither read nor write access to local variables of other threads. Note that if
a transition changes the shared state of Mn (i.e., s �= s′), it changes the thread
state of every thread of Mn. Such transitions capture thread communication.

In order to define the thread-state reachability problem considered in this
paper, let T be the (finite) universe of thread states, i.e., pairs of shared and
local variable valuations, irrespective of n. A state (h, l1, . . . , ln) of Mn contains
thread state (s, l) if h = s and, for some i, li = l. Thread state t is reachable in
Mn if there exists a reachable global state of Mn that contains t; reachability of
global states in Mn is defined with respect to some set of initial states as usual.
We denote the set of thread states reachable in Mn by Rn, and the set ∪∞

n=1Rn of
thread states reachable for some number of threads by R. Note that, for any n,
Rn ⊆ R ⊆ T ; in particular, these reachability sets are finite. The thread-state
reachability problem is now defined as follows: given P, determine R.

Our model of replicated finite-state system families (Mn)∞n=1 formalizes clas-
sical parameterized systems, where the number of running threads is fixed up-
front but unknown. Our techniques apply equally to systems where the number
of threads can change at runtime. It is quite easy to show that the two models
are equivalent for reachability properties. Further, our techniques extend to the
case of multiple program templates, as in a heterogeneous synchronization prob-
lem with arbitrarily many readers and writers. For simplicity, we focus in the
rest of this paper on the single-template parameterized case formalized above.
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3 Background: Decidability of Thread-State Reachability

The thread-state reachability problem as defined in the previous section is de-
cidable, via a reduction to the coverability problem for vector addition systems
with states (VASS), as follows. A VASS is a finite-state machine whose edges are
labelled with integer vectors of some fixed dimension. A configuration of a VASS
is a pair (q, x) where q is a state and x is a vector of non-negative integers.
There is a transition (q, x) → (q′, x′) if there is an edge q

v→ q′ in the VASS such
that x′ = x + v; symbol + denotes pointwise addition. Given an initial config-
uration (q0, x0), a configuration (q, x) is reachable if there exists a sequence of
transitions starting at (q0, x0) and ending at (q, x). The coverability problem asks
whether a given configuration (q, x) is covered by the reachable configurations
of the VASS, i.e., whether a configuration (q, x′) is reachable such that x′ ≥ x,
where ≥ is defined pointwise.

Theorem 1 ([18]). The coverability problem for VASS is decidable.

The decision procedure by Karp and Miller [18] builds a rooted tree that repre-
sents the set of covered configurations of a vector addition system. Unfortunately,
it operates not even in primitive-recursive space. In response to this daunting
complexity, alternative algorithms exploring well-structured transition systems
(WSTS), of which VASS are an example, have been developed [13,15]. Their
efficiency is handicapped by the EXPSPACE lower bound of the coverability
problem, the proof of which is attributed to Cardoza, Lipton and Meyer [7].

Replicated finite-state systems as vector addition systems. Using the components
of a vector to count the number of threads in each of the possible local states,
a VASS can simulate a replicated finite-state system: a thread transition (s, l) →
(s′, l′) is represented by a VASS edge s

v→ s′ such that the l-th component of
v is −1, the l′-th component is 1, and all others are 0. A thread state (s, l) of
the program is reachable in the program’s concurrent execution exactly if there
is a reachable VASS configuration (s, x) such that the l-th component of x is at
least 1. By definition, this is the case exactly if the VASS configuration (s, x0)
is covered, where x0 is all-zero except the entry at position l, which is 1. The
latter problem is decidable by Theorem 1. We obtain:

Corollary 2. The thread-state reachability problem for replicated finite-state
programs is decidable.

It can be shown that the VASS coverability problem is, conversely, reducible
to the thread-state reachability problem, in a way that makes the thread state
reachability problem EXPSPACE complete as well. We remark that all reduction
results sketched in this section hold equivalently for Petri nets in place of vector
addition systems. Since the former are of a somewhat greater practical appeal,
we will use Petri nets and their tools as a reference point in the experimental
Section 6 later in this paper.
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4 Thread-State Reachability via Cutoffs

Our computational model, according to which the possible transitions of a thread
are determined only by its local state and the shared state, guarantees the fol-
lowing monotonicity property:

Property 3. Sequence (Rn)∞n=1 is monotone in n: n1 ≤ n2 implies Rn1 ⊆ Rn2 .

This property holds since every path in Mn1 can be extended to a path in Mn2

of the same length by adding n2−n1 thread components to each state along the
path and letting the new threads idle in their initial state.

Sequence (Rn)∞n=1 thus never decreases. Since, on the other hand, the set R
of reachable thread states is finite and Rn ⊆ R for every n, the sequence can
increase only a finite number of times. This implies that, for every finite-state
program P, there is a number c such that any reachable thread state can in fact
be reached given c threads. Such a number is called a (thread-state) cutoff.

Definition 4. A thread-state cutoff (or cutoff for short) for family (Mn)∞n=1
is a number c ∈ � such that, for all n ≥ c, Rn = Rc.

In particular, we have Rc = R. Knowing the cutoff would therefore allow us to
compute the set of reachable thread states using an efficient finite-state model
checker. In order to turn this possibility into a viable alternative to coverability
methods, we not only have to find means of computing the cutoff efficiently. We
also need the minimum cutoff c0 to be small enough that a model checker can
compute Rc0 with reasonable resources.

The minimum cutoff of a finite-state program can in principle be arbitrarily
large: given a number c, consider the following program with a shared variable
s ∈ {0, . . . , c}, initially 0.

0: s := s + 1 (mod c+1)
1: if s = c: error

This program has a minimum cutoff of c. There is, however, widely accepted
(although, to our knowledge, rarely documented) empirical evidence that, in
“typical” parameterized programs, a small number of threads suffice to exhibit
all relevant behavior that may lead to a bug. We will be able to gauge the
precision of this claim in the experimental Section 6 at the end of the paper. For
now, we return to our main objective: determining cutoffs efficiently in practice.

5 Determining Thread-State Cutoffs

Emerson and Kahlon present several results for statically obtained cutoffs that
are linear in the size of the program template (such as a Kripke model of a
Boolean program) [11]. While valuable in establishing the decidability of certain
fragments of the parameterized model checking problem, such cutoffs are unlikely
to be of practical value in our context, since they are often not tight and in fact



650 A. Kaiser, D. Kroening, and T. Wahl
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Fig. 1. (a) An intermediate plateau; (b) a strictly monotone thread state sequence

vastly overapproximate the minimum number of threads needed to reach all
reachable thread states.

We propose in this paper a dynamic method to determine the cutoff. That is,
instead of pre-computing the cutoff for the family, we detect it during the reach-
ability analysis on the systems Mn, for increasing values of n. Our first contribu-
tion will be a condition that, based on certain observations on the reachability
result obtained for Mn, allows us to conclude that we do not need to increase
n further. Such a method has the potential of finding cutoffs that are orders of
magnitude smaller than those computed by the static techniques.

5.1 Thread-State Sequences with Plateaus

Consider the thread-state sequence (Rn)∞n=1 and a value m at which the sequence
plateaus, i.e. Rm = Rm−1. It is tempting to conclude that a cutoff has been found
when this happens. This temptation is fallacious, however, as the sequence of
reached thread states may resume growth for thread counts exceeding m, even
after several steps of plateauing.

Definition 5. Value m is a plateau endpoint of (Rn) if Rm−1 = Rm � Rm+1.

This situation is depicted in Figure 1 (a). The fallacious argument mentioned
above would only be valid if every thread-state sequence was strictly monotone
up to the minimum cutoff c, as shown in Figure 1 (b). A system with an inter-
mediate plateau is induced by the finite-state program given in Figure 2. It can
be synthesized into a four-line Boolean program with three shared variables.

Let us investigate the somewhat unintuitive phenomenon of intermediate
plateaus more closely. Recall that if a transition changes the shared state of
the program, the thread state of every thread is affected. As a result, a thread
that is not itself active in the transition may reach a new thread state. We say
that such a thread state is reached passively.

This situation is shown in Figure 3 (a). Thread i is active and changes, in
addition to its local state, the shared state from r to s (solid line). As a side
effect, thread state (s, hj) is reached passively (dashed line). Note that the local
state of thread j remains at hj . Figure 3 (b) is a special case of (a) where threads
i and j happen to reside in the same local state hi = hj before i executes.

Returning to the issue of intermediate plateaus: one can show that, if m is
a plateau endpoint, there exists a thread state in Rm+1 \ Rm that is reached
passively. We will see next that in fact a much stronger statement holds.
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(a)

�

s

(0, 0) (0, 1) (0, 2) (0, 3)

(1, 0) (1, 1) (1, 2) (1, 3)

(2, 0) (2, 1) (2, 2) (2, 3)

(3, 0) (3, 1) (3, 2) (3, 3)

(4, 0) (4, 1) (4, 2) (4, 3)

(b)

n Rn

1 {(0, 0), (1, 1)}
2 R1 ∪ {(1, 0), (2, 1)}
3 R2 ∪ {(0, 1), (0, 2), (2, 0), (3, 1)}
4 R3 ∪ {(1, 2), (3, 0)}
5 R4 ∪ {(2, 2)}
6 R5 ∪ {(3, 2), (4, 1), (4, 3)}
7 R6 ∪ {(4, 0)}
8 R7 → plateau endpoint
9 R8 ∪ {(4, 2)} → cutoff

Fig. 2. (a) A finite-state program over variables (s, �) with initial state (0, 0);
(b) the thread-state sequence induced by (a), exhibiting a plateau of length 1

5.2 A Sufficient Cutoff Condition

Equipped with the considerations from Section 5.1, we can now derive a suffi-
cient cutoff condition for thread-state reachability. Technically, we will establish
instead a necessary condition for m not being a cutoff. The following lemma is
the crucial insight.

Lemma 6. Suppose m is not a cutoff for family (Mn)∞n=1. Let m′ = min{n :
Rn � Rm}, and let t be a thread state in Rm′ \Rm with minimum distance from
the initial state set. Then t is reached passively.

Proof . Let i be the thread active during the global transition of Mm′ when t is
first reached. We have to show that t is not reached by thread i.

To this end, let t1 → t2 be the thread transition executed by thread i that
causes t to be reached by some thread; we prove t �= t2. Transition t1 → t2
happens in Mm′ , so t1 ∈ Rm′ . Since t1 has shorter distance to the initial state
set than t2 and thus than t, we conclude t1 �∈ Rm′ \ Rm, thus t1 ∈ Rm. This in
turn implies t2 ∈ Rm, since the set Rm is closed under thread transitions: any
path in Mm to a state containing t1 can be extended, via t1 → t2, to a path in
Mm to a state containing t2. Since t �∈ Rm, it follows t2 �= t. �

(a) ji

(r, hi) (r, hj)

(s, li) (s, hj)

(b)

(r, hj)

(s, li)

ji

(s, hj)

Fig. 3. (a) The general and (b) a special case of reaching thread state (s, hj) passively
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We can exploit this lemma as follows to derive a necessary is-not-the-cutoff
condition. If m is not the cutoff, then the first new thread state encountered for
n > m is in fact reached passively. The ability to reach a thread state passively
requires a constellation of reachable thread states as shown in Figure 3 (a),
where the new thread state is denoted (s, hj). We now observe that the thread
states (r, hi), (r, hj) and (s, li) mentioned in the figure are all members of the
current reachability set Rm. To see this, note that (r, hi) and (r, hj) are reached
before (s, hj). Since (s, hj) has minimum distance, among all new thread states,
we conclude that (r, hi) and (r, hj) are not new and are thus elements of Rm.
Thread state (s, li) is an element of Rm since it is a direct successor of (r, hi). We
summarize: if m is not the cutoff, there exist three thread states (r, hi), (r, hj)
and (s, li) in Rm such that

• (r, hi) → (s, li) is a valid thread transition according to P, and (2)
• (s, hj) �∈ Rm . (3)

We call thread states (r, hi), (r, hj) and (s, li) in Rm with these properties a
candidate triple. If no candidate triple can be found, no thread state can possibly
be reached passively in the future. Together with Lemma 6, we obtain:

Corollary 7. Suppose no candidate triple exists in Rm. Then m is a cutoff for
family (Mn)∞n=1.

We refer to the check of absence of candidates as the cutoff test. Unlike Lemma 6,
the test conditions depend only on the program P and on Mm. The downside is
that the cutoff test is incomplete for cutoff detection. To see this, consider the
finite-state program over the state space {0, 1, 2}×{0, 1} with initial state (0, 0)
and the two transitions

(0, 0) → (1, 1) and (1, 1) → (2, 0) .

This program induces a parameterized family (Mn)∞n=1 where the cutoff test fails
for every n: the candidate triple (1, 1), (1, 1), (2, 0) never vanishes. (The triple
happens to be of the special form of Figure 3 (b).) We will fix this problem in
the following section.

5.3 Sound, Complete and Tight Cutoff Detection

The cutoff test ignores that, in order to give rise to the new thread state (s, hj),
the candidate triple must be realizable: there must exist an n and a global
state reachable in Mn that contains both (r, hi) and (r, hj). In the example
in Section 5.2, no two threads can simultaneously enter a state of the form
(−, 1). It turns out that realizability of candidate triples precisely characterizes
cutoffs:

Theorem 8. Thread count m is a cutoff for family (Mn)∞n=1 exactly if Rm

contains no realizable candidate triples.
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Proof. (i) If m is a cutoff and the candidate thread states (r, hi) and (r, hj) are,
for some n ≥ m, simultaneously reachable, then thread state (s, lj) becomes
reachable when Mn is analyzed. Since (s, lj) �∈ Rm by equation (3), (s, lj) is
new, contradicting the stipulation that m is a cutoff.

(ii) If m is not a cutoff, then, by Lemma 6, there exists a passive thread
transition that reaches a thread state unreachable in Mm. As shown in the proof
of that lemma, the three thread states participating in the reaching of the new
thread state all belong to Rm and thus form a candidate triple. For the passive
transition to actually happen (the lemma proves that it does), the thread states
(r, hi) and (r, hj) must be simultaneously reachable. So there exists at least one
realizable candidate triple. �

Simultaneous reachability of (r, hi) and (r, hj) in the family (Mn)∞n=1 cannot
be checked by looking only at Rm. We will use backward coverability analysis
for this step. The candidates represent a minimal set of thread states whose
unrealizability guarantees the cutoff property. This minimality gives rise to the
hope that candidates can be reachability-checked more efficiently than arbitrary
thread states. We measure the cost of this check in detail in Section 6, using the
Mist tool set [13] as the coverability engine.

Putting the cutoff test and this analysis together, we obtain Algorithm 1 for
cutoff detection. The algorithm maintains the invariant that, at entry to the loop
in Line 2, the reachability set Rn is guaranteed to have been computed, for the
current value of n. In Line 2, the algorithm starts two computational threads
in parallel. The first, A, computes the candidate triples for Rn. If any of them
is realizable, which is checked using backward coverability analysis, we know by
Theorem 8 that n is not a cutoff. The thread aborts, and control proceeds to
Line 3. If no triple is realizable (or there are no candidates), we return that n is
the cutoff; this terminates the algorithm.

The second thread, B, computes the next reachability set Rn+1, using a finite-
state forward search. This is done in parallel with the candidate check since, as
soon as we know that Rn+1 � Rn, we can abort the candidate check in thread A:
we know that n is not the cutoff. If Rn+1 = Rn, thread B terminates normally.

In Line 3, the main thread synchronizes the computation by waiting for the
termination (or abortion) of A and B. This is crucial since the set Rn+1 needs
to be available in the next round. We then increase n and re-enter the loop. Note
that if the backward analysis in round n reveals that some triple T is realizable,
we do not know for which value n′ > n this will happen. As a result, intermediate
plateaus of the sequence (Rn)∞n=1 cannot be short-circuited.

Correctness. Termination of the algorithm follows immediately from Theorem 8:
Suppose n is the cutoff. Then any candidate triples in Rn are not realizable, so
thread A returns “cutoff n”. Note that Rn+1 = Rn, so thread B does not
abort A. Theorem 8 similarly guarantees partial correctness. The combination
of termination and partial correctness guarantees that Algorithm 1 returns in
fact the minimum cutoff c0: it does not terminate for n < c0, by the partial
correctness. It never reaches n > c0, since it terminates for n = c0.
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Algorithm 1. Cutoff detection
Input: system family (Mn)∞n=1

1: n := 1; compute R1 // finite-state

2: A:

compute set Cn of cand. triples
if ∃T ∈ Cn: T realizable

abort A
return “cutoff n”

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ B:

compute Rn+1 // finite-state
if Rn+1 � Rn

abort A

3: sync(A,B)
4: n := n+ 1; goto 2

Implementation. We illustrate how to compute candidate triples (first step of
thread A in Algorithm 1). First note that conditions (2) and (3) on the candi-
dates (r, hi), (r, hj) and (s, li) imply all of the following:

– r �= s (since (r, hj) ∈ Rm, but (s, hj) �∈ Rm)
– li �= hj (since (s, li) ∈ Rm, but (s, hj) �∈ Rm)
– (r, hi), (r, hj) are not simultaneously reachable in Mm

(since otherwise (s, hj) ∈ Rm, passively)

To compute the candidates, we iterate over pairs of thread states (r, hi), (r, hj)
in Rm that are not simultaneously reachable in Mm (this information is taken
from the reachable global states set of Mm), and select successor thread state
(s, li) by consulting the program text under the additional constraints that r �= s
and li �= hj . The remaining condition (s, hj) �∈ Rm can be tested efficiently, say
by storing Rm in a sorted container or a hash table.

6 Experimental Evaluation

We implemented two variants of Algorithm 1. The first is our Petri net coverabil-
ity checker, eCUT, which we tested on 23 Petri nets examples from diverse pro-
gramming domains. The second is our symbolic thread-state reachability checker
for Boolean programs, sCUT, which we tested on 852 Boolean programs, gener-
ated from Linux device driver code. The Petri nets induce relatively small state
spaces, but exhibit challenging concurrent behavior. In contrast, the Boolean
programs induce huge state spaces, but exhibit rather simple concurrency. All
experiments were performed on a 16GB/3GHz Intel Xeon machine running the
64-bit variant of Linux 2.6 with a 45min timeout.

6.1 Petri Net Coverability

Our coverability checker eCUT forward-computes an explicit-state representa-
tion of the sets Rn, and uses the backward search engine of the Mist toolset
to check candidates for reachability. We evaluate eCUT using 5 bounded and
18 unbounded Petri nets, ranging from concurrent production systems and com-
munication protocols to broadcast protocols. Each net is transformed into a



Dynamic Cutoff Detection in Parameterized Concurrent Programs 655

Table 1. Results of eCUT on Petri net benchmarks. S, L, T : # shared states, local
states, thread transitions;

∑
fw ,
∑

bw , eCUT: time for forward searches, backward
searches, total eCUT runtime in seconds; c: cutoff (if unsafe: #threads until error);
|Rc|/|Cc|: # reachable thread states/# candidate triples at bound c.

Benchmark S L T
∑

fw
∑

bw eCUT c |Rc| |Cc| Result

Readwrite 24 14 33 0.01 0.2 0.2 9 198 29 safe

Mesh2x2 35 33 71 0.6 0.01 0.8 9 844 40 safe

Multip. 20 19 45 0.1 0.8 0.9 8 257 10 safe

Pncsa 37 32 73 1.4 0.1 1.5 7 860 122 unsafe

Fms 26 23 49 0.6 1.2 1.6 12 361 5 safe

Bh250 507 254 1,009 0.6 6.0 6.7 3 1,768 31,875 safe

Mesh3x2 55 53 115 277.4 1.2 278.6 13 2,228 67 safe

Kanban 29 17 49 – – – – – – mem-out

replicated finite-state system. Transitions are split into sequences of thread tran-
sitions using fresh intermediate shared states. Given p places and t transitions,
this required p + 1 local states, 1.2t shared states and 2.2t thread transitions
on average. The original coverability property translates into the reachability of
a suitable thread state. All examples and correctness properties are from [13]
and [4].

Within 5min or much less, eCUT succeeds on 22 examples (21 safe, 1 un-
safe), and memory-outs on 1. Table 1 shows details of the analysis; we omit
instances with runtimes below 0.2s and only show the most challenging from [4],
namely Bh250. The Kanban example has a cutoff beyond 20; our implementation
reaches the memory limit after 10min and more than 6 · 107 explored states in
round n = 15. In these examples, neither the finite-state forward nor the back-
ward search dominate the overall runtime, advocating the use of a combination
of both.

Comparison with other algorithms. We compare our implementation with four
algorithms implemented in the Petri net coverability tool set Mist [13]: a pure
backward search (BW) (the same we use to check candidates), and three abstrac-
tion refinement schemes. The latter combine infinite-state forward and backward
search, using abstractions that minimize the number of predicates used to encode
places (TSI, EEC) or the dimensionality of the Petri net (IC4PN).

Figure 4 shows the number of instances the different algorithms can solve
within 45min/16GB: eCUT performs best, solving 22 instances, followed by
EEC (20), BW (17), TSI (15) and IC4PN (12). Besides solving most instances,
eCUT does so fastest in most cases (one exception is Kanban, which only BW
and TSI can handle), proving it generally more robust than the other tools.
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Fig. 4. Comparison of eCUT and the algorithms EEC, BW, TSI and IC4PN for the
23 Petri net benchmarks. Entry (n, t), for a number n and a time t, indicates that it
took time t to solve the n easiest instances for the algorithm indicated by the curve.

6.2 Boolean Program Reachability

Our reachability checker sCUT computes the sets Rn using the symbolic model
checker Boom [3]. Since there is no symbolic backward search engine able to han-
dle Boolean programs of the size we consider, we simplify Algorithm 1: thread A
merely checks whether there are any candidates; if they don’t (seem to) vanish
for any n, we consider the run a timeout.

We evaluate our implementation of sCUT using 852 Boolean programs. The
programs stem from Linux device driver code and were embedded into a concur-
rent test environment using the DDVerify tool [19]. The programs feature on
average about 1000 program locations and 9 shared and 18 local variables. We
are not aware of any other tool that can perform even finite-state reachability
of concurrent Boolean programs of this size. We therefore only present results
obtained with our tool.

Table 2 shows analysis results grouped by their cutoff. sCUT succeeds in
798 of the cases (94%); the remaining 54 examples time out (6%). In all safe
examples, the cutoff test alone is sufficient: all candidates disappear eventually.
We see that for a vast majority of the examples, the cutoffs are indeed very small
and easily within the performance limits of Boom.

7 Related Work

There is a vast amount of literature on tackling reachability analysis for concur-
rent software, with or without recursion. We focus on work related to the use of
cutoffs, and work related to Petri nets. We believe our work to be the first to
combine finite-state forward search, cutoff detection and infinite-state backward
coverability analysis in a symbiotic manner.
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Table 2. Results of sCUT for the Boolean program benchmarks, grouped by cutoffs.
#P: # of programs in group; Sh, Lcs, Loc: avg. # shared variables, local variables,
program locations; sCUT: avg. sCUT runtime; c: cutoff/#threads until error (? =
unknown); t/o: # timeouts.

#P Sh Lcs Loc sCUT c Safe Unsafe t/o

773 17 8 1170 0.1 1 407 366 0
17 21 22 1139 0.8 2 3 14 0
8 13 26 1131 72.3 3 8 0 0

54 18 31 1267 874.0 ? – – 54

Cutoffs: Much of the work on verifying concurrent programs using cutoffs re-
stricts communication [6,12]. For example, small constant-size cutoffs are known
for ring networks communicating only by token passing [12], and for multi-
threaded programs communicating only using locks [17]. These results fail to
hold, however, with general shared-variable concurrency, as we consider it. On
the other hand, [11] permits communication via guards over shared local vari-
ables, but gives rise to cutoffs that are linear in the number of states of the
program P being replicated. Such cutoffs are unacceptable for us, as P may have
millions of states.

Bingham presents a technique for coverability that seems closest to our work
[4,5]. Standard finite-state BDD techniques are used to compute, for an instance
of size n and in a backward fashion, the set of states that have a path to some
set U of “bad” states. If the initial state set is intersected, we have encoun-
tered an error. Otherwise, n is increased until some convergence criterion is met.
Unfortunately, the method is applied to only one (parametric) Petri net. Also,
Bingham does not disclose the experimental values of n at which his algorithm
terminates, which might give a clue as to the general scalability of the approach
— we have found the cutoff of Bingham’s Petri net Bh250 to be very small (see
Table 1).

Petri nets: Many data structures and algorithms have been proposed for their
efficient analysis and coverability checking [15,10]. Most of these algorithms suf-
fer, however, from an intractable number of vector elements after the transla-
tion from (Boolean) programs: one per local program state. Recent work by
Raskin et al. has attempted to address the dimensionality problem using an
abstraction refinement loop [14], where abstract models of the Petri net under
investigation are of lower dimension than the original.

Tools: There are several tools available for the analysis of Petri nets [16]. The
Mist tool set [13] implements the Expand, Enlarge and Check algorithms due to
Geeraerts et al. [15]. Furthermore, Petri net/VASS analysis has been applied to
Java programs [9] and Boolean programs [2]. These tools compile their input into
an explicit-state representation of the underlying program, which may result in
a net with a high number of places. Our experiments indicate that, for the case
of Boolean program verification, a symbolic representation is essential.
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8 Conclusion

We set out to solve the thread-state reachability problem for replicated finite-
state programs efficiently. Our proposal is to exploit the (guaranteed) existence of
thread-state cutoffs, by analyzing the programs for increasing numbers of thread
counts. We have presented a sufficient (but not necessary) condition under which
the current thread count is a cutoff, so that no larger thread counts need to
be considered. We have shown how to make the algorithm complete, using a
backward coverability analysis to rule out the reachability of certain candidate
thread states that were identified to potentially lead to new thread states. The
algorithm returns the set of reachable thread state and the minimum cutoff of
the given parameterized family.

We have empirically demonstrated, on a large selection of benchmarks, that
cutoffs tend to be small enough in practice to allow our incremental technique to
beat various methods based solely on coverability algorithms. Our technique is
useful both for general Petri net coverability analysis, and specifically for thread-
state reachability analysis in non-recursive Boolean programs run by arbitrarily
many threads.

Our method can be seen as an opportunity to shift the burden in solving
the parameterized verification problem from heavy-weight unbounded tools to
lighter-weight bounded concurrency model checkers. This is of utmost value, since
efficient bounded tools have recently become available, such as Boom, that can
solve reachability queries for non-trivial thread counts.

Future work includes the application of our method to extended types of Petri
nets, such as transfer nets, which allow richer inter-thread communication, such
as broadcasts (an example is S. German’s protocol used in [5]).
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Abstract. We present PARAM 1.0, a model checker for parametric dis-
crete-time Markov chains (PMCs). PARAM can evaluate temporal prop-
erties of PMCs and certain extensions of this class. Due to parametricity,
evaluation results are polynomials or rational functions. By instantiating
the parameters in the result function, one can cheaply obtain results for
multiple individual instantiations, based on only a single more expensive
analysis. In addition, it is possible to post-process the result function
symbolically using for instance computer algebra packages, to derive op-
timum parameters or to identify worst cases.

1 Introducing PARAM

Fig. 1. Crowds Reliability

Markov processes are applied in computer sci-
ence, engineering, mathematics, and biology.
In the early design phase of a system or for
the sake of robust modelling, it can be ad-
vantageous to leave certain aspects unspeci-
fied and use symbolic parameters rather than
fixed values. We consider parametric Markov
chains (PMCs) [1], where e.g., certain transi-
tion probabilities are symbolic parameters. As
a result, the analysis of properties, such as the
probability of reaching a set of goal states, yields symbolic expressions [2,3] rather
than concrete values. These symbolic expressions are represented by multivariate
rational functions, i.e. fractions where numerator and denominator are polyno-
mials in the model parameters. To arrive at these results, PARAM uses efficient
techniques to manipulate and represent polynomials combined with dedicated
state-lumping techniques. The basic analysis provided by PARAM is the compu-
tation of step-bounded and unbounded reachability probabilities for PMCs, but
it also can handle several extensions of this analysis, as we will explain below.

Consider the Crowds protocol [4,5] where communication is hidden via ran-
dom routing to protect the anonymity of Internet users. Assume we have n honest
Crowd members and m dishonest members. Further, assume that a Crowd mem-
ber is untrustworthy with probability b = m/(m+n) and denote the probability
for random routing (instead of sending directly to the final receiver) by p. We

T. Touili, B. Cook, and P. Jackson (Eds.): CAV 2010, LNCS 6174, pp. 660–664, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



PARAM: A Model Checker for Parametric Markov Models 661

are interested in the probability q that the untrustworthy members observe the
original sender more often than any other participant. In practical applications,
the Crowds protocol is deployed with many different parameter instantiations,
so it is beneficial to explore the resulting range of behaviours with PARAM.

The Crowds protocol can be conveniently modelled in the input language of
PARAM, a variation of the language of the PRISM [6] model checker. From the
PMC model, PARAM automatically computes a rational function in the param-
eters of the model. Assume we have n = 5 honest members and r = 7 rounds of
the protocol. Then, the result is a rational function involving multivariate poly-
nomials of degree 21. We can export this function to a computer algebra package
for post-processing, e.g. to find optimum parameter settings. In Fig. 1, we plot
the dependency of q from the probability b of untrustworthiness of a member
and the forwarding probability p. To arrive at this plot, we have evaluated the
rational function at 50*60 parameter instances. We could, of course, have solved
a total of 3000 non-parametric model checking problems instead to arrive at the
same plot (which takes more time). For n = r = 2 the formula is:

q(p, b) =
p2b4 + 2p2b3 − 7p2b2 + 4p2b + 12pb2 − 12pb − 4b2 + 8b

4p2b2 − 8p2b + 4p2 + 8pb − 8p + 4

PARAM can handle the Crowds model up to roughly n = 10, r = 8, leading to a
state-space of about 2.5 million states.

The method of computing rational functions is inspired by Daws [7], who
treats a PMC as a finite automaton and computes the regular expression of
its accepted language [8], from which the rational function is obtained. Our
method instead works directly on rational functions, and simplifies them on-the-
fly. In doing so, we can exploit symmetries, cancellations and simplifications of
arithmetic expressions, especially if most of the transition probabilities of the
input model are constants. Experimental evidence shows that this results in
drastically smaller rational functions during intermediate computations.

2 Architecture

State-space exploration

lumping?

Lumping

Strong Weak

PropertyModel

DOT exportelimination

no lumping?

Result File

AnalysisPMC
bounded

unbounded unboundedreach reward
PMRM PMDP

State

Fig. 2. PARAM Architecture

The architecture and components
of PARAM are depicted in Fig. 2.

First, the state-space explo-
ration component generates an ex-
plicit graph representation from
the symbolic description of the
model and property. Thereby it
leverages property-dependent op-
timisations to reduce the number
of states, in order to accelerate
subsequent steps.

The lumping [9,10] component
leverages bisimulation equivalence to minimise the model. It selects the ad-
equate property-preserving bisimulation relation. The lumping component is
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modular and can easily be adapted. It can lead to dramatic speed-ups. For para-
metric Markov decision processes (PMDPs), lumping maintains only maximal
reachability [2,3].

To produce the final result in the form of a rational function, the analysis
component uses a variant of state elimination and operations on polynomials.
Three dedicated engines cater to specific variants of parametric models: PMCs
and extended models with rewards or non-determinism.

3 Selected Features

The algorithmic basis for our tool has been laid out in a previous publication [2]
together with a prototypical implementation. PARAM 1.0 [3] improves and en-
hances this prototype in many aspects. We give an overview of important dis-
tinguishing features below.

SPIN-like model exploration. Our prototype suffered from a rather inefficient
low-level state-space generation. Using a SPIN-like [11] precompilation tech-
nique, we improved the speed of the state-space generation by a factor of about
ten. To this end, we first convert the PRISM model into a C++ library, compile
it and generate the state-space using the library.

Reward models. In addition to PMCs, PARAM 1.0 can also handle parametric
Markov reward models (PMRMs) in which states and transitions are additionally
equipped with reward structures, and these reward structures can be specified
as parameters. For PMRMs, we consider reachability rewards, that is, the accu-
mulated rewards till a certain set of target states is reached.

Nondeterministic models. PARAM 1.0 supports PMDPs, which involve both
parametric probabilistic choice and nondeterminism. We are interested in the
maximum probability of reaching a given set of target states. PARAM first re-
duces the problem to reachability over PMCs, by encoding the nondeterministic
choices as additional parameters, and then submits the problem to the engine for
PMCs. Admittedly, this approach does not scale, since the analysis is exponential
in the number of nondeterministic states.

Improved data structures. The prototype of PARAM relied on data structures
provided by the arithmetic library CoCoALib [12]. PARAM 1.0 instead uses
dedicated data structures and a novel, memory-efficient implementation of ra-
tional functions, to avoid costly conversions between PARAM and CoCoALib.
CoCoALib is still used to cancel rational functions, as algorithms to do so are
very complicated to implement in an efficient manner. PARAM 1.0 tries to call
the cancellation routine only if cancellation is detected to be possible.

Sharing. PARAM 1.0 uses a global table of rational functions. The same ratio-
nal function is only stored once. Rational functions attached to state transitions
are references into this table. This is advantageous, because experiments show
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that rational functions have a tendency of becoming quite large during the state
elimination. At the same time, intermediate computations often result in iden-
tical rational functions. To exploit sharing, we use a fast hashing mechanism to
find such rational functions in the table. This is important, as table lookups are
frequent. In the prototype, this feature was not yet implemented.

Value Cache. Arithmetic operations on rational functions are much more costly
than for floating-point values. To avoid redundant re-computation, we have im-
plemented a value cache which stores operands and results of operations. Our ex-
periments have shown that, for our current implementation of state elimination,
the value cache is only useful during lumping. Because of this, our implementa-
tion of rational functions allows to toggle this feature, for different parts of the
analysis. This feature existed in the prototype, but is improved in release 1.0.

Lumping Bisimulation. PARAM 1.0 features an efficient implementation of lump-
ing algorithms. Using signature-based lumping [13] is the key to an efficient
implementation. Currently, weak and strong bisimulation for PMCs are imple-
mented. The mechanism is written in a modular way, allowing future integration
of other lumping techniques into the framework. Since operations on rational
functions are rather expensive, this feature is very important in practice. In
certain cases, this component can be used for PMDPs.

4 Concluding Remarks

PARAM 1.0 consists of approximately 5000 lines of C++ code, and has been
tested on a large number of case studies. It is available for Linux with libc6. The
source code is published under the GPL license. The source code and several case
studies can be downloaded from http://depend.cs.uni-sb.de/tools/param
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Abstract. Gist is a tool that (a) solves the qualitative analysis problem
of turn-based probabilistic games with ω-regular objectives; and (b) syn-
thesizes reasonable environment assumptions for synthesis of unrealizable
specifications. Our tool provides the first and efficient implementations
of several reduction-based techniques to solve turn-based probabilistic
games, and uses the analysis of turn-based probabilistic games for syn-
thesizing environment assumptions for unrealizable specifications.

1 Introduction

Gist (Game solver from IST) is a tool for (a) qualitative analysis of turn-
based probabilistic games (21/2-player games) with ω-regular objectives, and
(b) computing environment assumptions for synthesis of unrealizable specifi-
cations. The class of 21/2-player games arise in several important applications
related to verification and synthesis of reactive systems. Some key applications
are: (a) synthesis of stochastic reactive systems; (b) verification of probabilistic
systems; and (c) synthesis of unrealizable specifications. We believe that our
tool will be useful for the above applications. Gist is available for download at
http://pub.ist.ac.at/gist.

2 1/2-player games. 21/2-player games are played on a graph by two players
along with probabilistic transitions. We consider ω-regular objectives over infi-
nite paths specified by parity, Rabin and Streett (strong fairness) conditions that
can express all ω-regular properties such as safety, reachability, liveness, fairness,
and most properties commonly used in verification. Given a game and an objec-
tive, our tool determines whether the first player has a strategy to ensure that
the objective is satisfied with probability 1, and if so, it constructs such a wit-
ness strategy. Our tool provides the first implementation of qualitative analysis
(probability 1 winning) of 21/2-player games with ω-regular objectives.

Synthesis of environment assumptions. The synthesis problem asks to con-
struct a finite-state reactive system from an ω-regular specification. In practice,
initial specifications are often unrealizable, which means that there is no system
that implements the specification. A common reason for unrealizability is that

� This research was supported by the European Union project COMBEST and the
European Network of Excellence ArtistDesign.
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assumptions on the environment of the system are incomplete. The problem of
correcting an unrealizable specification Ψ by computing an environment assump-
tion Φ such that the new specification Φ → Ψ is realizable was studied in [2].
The work [2] constructs an assumption Φ that constrains only the environment
and is as weak as possible. Our tool implements the algorithms of [2]. We believe
our implementation will be useful in analysis of realizability of specifications and
computation of assumptions for unrealizable specifications.

2 Definitions

Game graphs. A turn-based probabilistic game graph (21/2-player game graph)
G = ((S, E), (S0, S1, SP ), δ) consists of a directed graph (S, E), a partition (S0,
S1,SP ) of the finite set S of states, and a probabilistic transition function δ:
SP → D(S), where D(S) denotes the set of probability distributions over the
state space S. The states in S0 are the player-0 states, where player 0 decides the
successor state; the states in S1 are the player-1 states, where player 1 decides
the successor state; and the states in SP are the probabilistic states, where the
successor state is chosen according to the probabilistic transition function δ.
2-player game graphs are a special case where SP = ∅.
Objectives. We consider the three canonical forms of ω-regular objectives:
Streett and its dual Rabin objectives; and parity objectives. The Streett ob-
jective consists of d request-response pairs { (Q1, R1), (Q2, R2), . . . , (Qd, Rd) }
where Qi denotes a request and Ri denotes the corresponding response (each Qi

and Ri are subsets of the state space). The objective requires that if a request Qi

happens infinitely often, then the corresponding response must happen infinitely
often. The Rabin objective is its dual. The parity objective is a special case of
Streett objectives where Q1 ⊂ R1 ⊂ Q2 ⊂ R2 ⊂ Q3 ⊂ · · · ⊂ Qd ⊂ Rd.

Qualitative analysis. The qualitative analysis for 21/2-player games is as fol-
lows: the input is a 21/2-player game graph, and an objective Φ (Streett, Rabin or
parity objective), and the output is the set of states such that player 0 can ensure
Φ with probability 1. For detailed description of game graphs, plays, strategies,
objectives and notion of winning see [1]. We focus on qualitative analysis because:
a) In applications like synthesis qualitative analysis is more relevant: the goal is
to synthesize a system that behaves correctly with probability 1; (b) Qualita-
tive analysis for probabilistic games is independent of the precise probabilities,
and thus robust with imprecision in the exact probabilities (hence resilient to
probabilistic modeling errors). The qualitative analysis can be done with dis-
crete graph theoretic algorithms. Thus, qualitative analysis is more robust and
efficient, and our tools implements these efficient algorithms.

3 Tool Implementation

Qualitative analysis of 2 1/2-player games. Our tool presents the first im-
plementation for the qualitative analysis of 21/2-player games with Streett, Rabin
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and parity objectives. We have implemented the linear-time reduction for qual-
itative analysis of 21/2-player Rabin and Streett games to 2-player Rabin and
Streett games of [1], and the linear-time reduction for 21/2-player parity games
to 2-player parity games of [4]. The 2-player Rabin and Streett games are solved
by reducing them to the 2-player parity games using the LAR construction [5].
The 2-player parity games are solved using the tool PGSolver [6].

Environment assumptions for synthesis. Our tool implements a two-step
algorithm for computing the environment assumptions as presented in [2]. The
algorithm operates on the game graph that is used to answer the realizability
question. First, a safety assumption that removes a minimal set of environment
edges from the graph is computed. Second, a fairness assumption that puts
fairness conditions on some of the remaining environment edges is computed. The
problem of finding a minimal set of fair edges is computationally hard [2], and a
reduction to 21/2-player games was presented in [2] to compute a locally minimal
fairness assumption. The details of the implementation are as follows: given an
LTL formula φ, the conversion to an equivalent deterministic parity automaton is
achieved through GOAL [7]. Our tool then converts the parity automaton into
a 2-player parity game by splitting the states and transitions based on input
and output symbols. Our tool then computes the safety assumption by solving
a safety model-checking problem. The computation of the fairness assumption
is achieved in the following steps:

– Convert the parity game with fairness assumption into a 21/2-player game.
– Solve the 21/2-player game (using our tool) to check whether the assumption

is sufficient (if so, go to the previous step with a weaker fairness assumption).

The synthesized system is obtained from a witness strategy of the parity game.
The flow is illustrated in Figure 1.

We illustrate, how our tool works, on a simple example. Consider the LTL
formula Φ = GF (g)∧G(c → ¬g), where G and F denote globally and eventually,
respectively. The specification says that we want to see infinitely many grants (g),
but when we receive a cancel (c) we are not allowed to give a grant. From
Φ our tool constructs a deterministic parity automaton that accepts exactly
the words that satisfies Φ. The parity automaton is then converted into the
parity game shown in Figure 2(a). We use � to represent player-0 states and
� to represent player-1 states. environment cannot force the play outside the

LTL formula Det. Par. Aut. Synthesis Game

Synthesized System 21/2-player game Safe Synth. Game

GOAL

Assumption not locally minimal

Fig. 1. The flow of the tool for computation of environment assumptions
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Fig. 2. (a) Parity game with fairness assumption (b) Equivalent 21/2-player game

cooperative winning region. Now, we are searching for a locally minimal fairness
assumption by reducing a game with fairness assumptions on edges to a 21/2-
player parity game (see [2]). If the initial state in the 21/2-player game is winning
with probability 1 for player 0, then the assumption is sufficient. Figure 2(b)
illustrates the 21/2-player game obtained with a fairness assumption on the edge
(0, 4). The © state is a probabilistic state with uniform distribution over its
successors. The assumption on edge (0, 4) is the minimal fairness assumption
for the example. From this, our tool extract an automaton representing the
environment assumption. For the example, we obtain an automaton equivalent
to G(c → ¬g) → GF (¬c). The tool also constructs a system that implements
the specification under this assumption. The constructed system sets g high
whenever c is low and vice-versa.

Performance of Gist. Our implementation of reduction of 21/2-player games
to 2-player games is linear time and efficient, and the computationally expensive
step is solving 2-player games. For qualitative analysis of 21/2-player games, Gist

can handle game graphs of size that can be typically handled by tools solving
2-player games. Typical run-times for qualitative analysis of 21/2-player parity
games of various sizes are summarized in Table 1. The games used were gener-
ated using the benchmark tools of PGSolver and converting one-tenth fraction
of the states into probabilistic states (further experimental results in [3]). For
synthesis of environment assumptions, the expensive step is the reduction of LTL
formula to deterministic parity automata. Our tool can handle formulas that are
handled by classical tools for translation of LTL formula to deterministic parity
automata.

Other features of Gist. Our tool is compatible with several other game solving
and synthesis tools: Gist is compatible with PGSolver and GOAL. Our tool
provides a graphical interface to describe games and automata, and thus can
also be used as a front-end to PGSolver to graphically describe games.

Table 1. Runtimes for solving 21/2-player parity games

States Edges Runtime (sec.)
Avg. Best Worst

1000 5000 1.17 0.63 1.59
10000 50000 51.43 39.38 62.61
50000 250000 2513.18 2063.40 2711.23
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4. Chatterjee, K., Jurdziński, M., Henzinger, T.A.: Quantitative stochastic parity
games. In: Ian Munro, J. (ed.) Proceedings of the Fifteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2004, New Orleans, Louisiana, USA,
January 11-14. SIAM, Philadelphia (2004)

5. Gurevich, Y., Harrington, L.: Trees, automata, and games. In: STOC ’82: Pro-
ceedings of the fourteenth annual ACM symposium on Theory of computing,
San Francisco, California, United States, pp. 60–65. ACM Press, New York (1982)
ISBN: 0-89791-070-2, http://doi.acm.org/10.1145/800070.802177

6. Lange, M., Friedmann, O.: The pgsolver collection of parity game solvers. Technical
report, Institut für Informatik, Ludwig-Maximilians-Universität (2009)

7. Tsay, Y., Chen, Y., Tsai, M., Chan, W., Luo, C.: Goal extended: Towards a research
tool for omega automata and temporal logic. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 346–350. Springer, Heidelberg (2008)

http://doi.acm.org/10.1145/800070.802177


A NuSMV Extension for Graded-CTL Model
Checking

Alessandro Ferrante1, Maurizio Memoli2, Margherita Napoli2,
Mimmo Parente2, and Francesco Sorrentino3

1 Embedded Systems Research Unit, Fondazione Bruno Kessler
ferrante@fbk.eu

2 Dipartimento di Informatica ed Applicazioni, Università degli Studi di Salerno
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Abstract. Graded-CTL is an extension of CTL with graded quantifiers
which allow to reason about either at least or all but any number of
possible futures. In this paper we show an extension of the NuSMV
model-checker implementing symbolic algorithms for graded-CTL model
checking. The implementation is based on the CUDD library, for BDDs
and ADDs manipulation, and includes also an efficient algorithm for
multiple counterexamples generation.

1 Description and Architecture

In this paper we introduce a new model-checker which is an extension of NuSMV
[CCG+02], an efficient and easy to extend re-implementation and integration
of the SMV model-checker [McM93, CMCH96]. Our tool implements symbolic
algorithms for graded-CTL model checking1. Graded-CTL [FNP08, FNP09a] is
an extension of CTL with graded quantifiers that allow to reason about either
at least or all but any number of possible futures. For example, the formula
E>kF(critic1 ∧ critic2) expresses that there are more than k possibilities (i.e.
k different paths in the Kripke structure modeling the system) to violate the
mutual exclusion property. Formulas of these types cannot be expressed in CTL

and not even in μ-calculus (though they can be easily reduced, in exponential
time, to equivalent graded μ-calculus formulas, [KSV02]). Graded-CTL formulas
can be used to determine whether there are more than a given number of bad
behaviors of a system: this, in the model-checking framework, means that one
can verify the existence of a user-defined number of counterexamples for a given
specification and can generate them, in a unique run of the model-checker.

Symbolic Model Checking [BCM+90] applied to CTL is known to behave
efficiently, especially in hardware verification, and has been widely studied and
implemented in a lot of well known model-checkers. In [FNP09b] symbolic algo-
rithms to solve the graded-CTL model checking problem are shown. Graded-
CTL NuSMV includes a smart implementation of these algorithms based on
1 For better readability, we call this extension Graded-CTL NuSMV.
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Fig. 1. The architecture of Graded-CTL NuSMV. Light-gray and dark-gray modules
are NuSMV modules with some minor and major modifications, respectively. Modules
with bold borders are new modules added to support graded-CTL model checking.

the CUDD library [Som05], which is used for an efficient manipulation of sets
and multi-sets via Binary Decision Diagrams (BDDs) and Algebraic Decision
Diagrams (ADDs).

NuSMV is a versatile tool, implementing BDD-based and SAT-based model
checking, and processing files written in an extension of the SMV language. With
this language it is possible to describe finite-state machines (declaration and in-
stantiation of modules and processes are used to describe synchronous and asyn-
chronous composition) and to express specifications in CTL and LTL. NuSMV
works either in batch or in interactive mode, with a textual interactive shell.

Our tool preserves the structure and the modularity of NuSMV: each module
implements a set of functionalities and communicates with the others via a pre-
cisely defined interface. Fig. 1 shows the architecture of Graded-CTL NuSMV
pointing out the modified and the completely new modules. The Interactive Shell,
the Parser and the Compiler modules are responsible for processing command
lines and input files (including syntactic correctness check) and also for building
the resulting parse tree and the BDD representation. They have been integrated
with the functions and the commands to handle and represent graded-CTL for-
mulas, as well. The Kernel module provides the low level functionalities to handle
data structures (BDDs, etc.) and memory allocation. It has been modified with a
re-implementation and an extension of the cache to store the grading values. The
Model Checking module is the core of the NuSMV tool: it provides all the func-
tionalities to solve the verification problem. We chose to preserve the structure
of NuSMV, and thus we only modified the functions responsible for the invoca-
tion of the low level model checking routines, and implemented the graded-CTL

model checking algorithms in a new module called Graded-CTL Model Checking.
The implementation of these algorithms required also modifications to the basic
operators of the CUDD package. In particular, an implementation of the AddAnd-
Abstract operation on ADDs and a bounded leaf-value implementation of the other



672 A. Ferrante et al.

operations on ADDs have been included in the package. The latter has led to a
considerable improvement in terms of speed and space.

A remarkable feature of the symbolic algorithms we implemented is that they
have been explicitly designed to efficiently derive multiple counterexamples for
a given path formula, see [FNP09b] for other deeper arguments. In our imple-
mentation, we fully exploit this characteristic by using the partial results of
the verification phase to derive the needed counterexamples. To do that, the
Graded-CTL Model Checking module works interacting with the other new
module, Graded-CTL Explain, responsible for the generation of the counterex-
amples (see Sect. 2).

Although no absolute criteria are available to evaluate our tool (since, at the
best of our knowledge, no tools for similar computations are currently available),
the experimental results are very promising. Indeed, our experiments evidenced
that no substantial overhead, both in the time and in the number of BDDs, is
required to process graded-CTL formulas, with respect to the classical CTL

ones, even by increasing the values of the grading constants in the formulas.
We are also collaborating with the NuSMV development team to include our
extension in the official release. The list of our experiments and the package for
graded-CTL can be found at http://gradedctl.dia.unisa.it.

2 Counterexamples

A really important feature of Graded-CTL NuSMV is the multiple counterexam-
ples generation. To provide this functionality, the tool has been designed to store
the counterexamples in a tree in which each root-to-leaf path represents a dis-
tinct counterexample. The computation of this tree is based on three different al-
gorithms used for the evidences generation of E>kX , E>kG, E>kU respectively.
The E>kXψ1 case is trivial, so we focus on the others two cases. How to pick the
successors and the number of paths to consider are crucial decisions in order to
correctly compute the evidences. To compute an evidence-tree for a formula E>kθ
(with either θ = Gψ1 or θ = ψ1Uψ2) starting from a state s, our algorithm uses
the sets [E>iθ] \ [E>i+1θ]2 (0 ≤ i ≤ k) computed during the verification phase.
The algorithm starts with i=0 and computes the set POST of the successors of the
state s that are in [E>iθ] \ [E>i+1θ]. Then, recursively generates i + 1 evidences
from each state of POST and store them in a tree rooted in s. At this point, the
algorithm halts if k + 1 evidences have been generated. Otherwise the procedure
is repeated for i + 1. Notice that the evidences are pairwise distinct because the
algorithm uses the sets [E>iθ]\ [E>i+1θ] that are pairwise disjoint. The decision to
start with i = 0 is motivated by the fact that, in this way, the algorithm generates
a wide evidence-tree (in opposition to a tall evidence-tree that can be obtained by
starting with i = k) by distinguishing the evidences “as soon as possible”. Indeed,
in some cases a tall evidence-tree may be constituted by paths which differ only for
the number of times that they traverse a self-loop, while a wide tree includes more
significative evidences (see [FNP09b] for a deeper discussion).
2 For a graded-CTL formula ϕ we denote with [ϕ] the set of states where ϕ holds. For

better readability, we assume [E>k+1θ] = ∅.

http://gradedctl.dia.unisa.it
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After that the evidence-tree has been generated, the occurrence of cycles in
the paths should be detected and the wrong behaviors should be printed in
an intelligible way for the user. In order to detect cycles, a DFS on the tree
is performed. The next step is to verify whether the cycle is sink or not: we
compute the evidence-tree so that the node exposing the existence of a cycle
has a successor iff the cycle is non-sink. Finally, the printing phase starts. This
phase is important because the counterexamples need to be exposed in such a
way that the user can get benefits from the graded logic. In order to have a good
balance between information completeness and representation compactness, the
tool outputs, for each trace and for each state, a sequential number that identifies
the trace and the position within it. Then, for each state, only the differences
between the previous state are printed. The only exception is for the root of
the tree and for those states starting a new branch in the tree. If a group of
traces share the same prefix, then it is printed only once and for each new trace
only the path from the branch to the leaf is printed. Moreover, the first state
of a cycle and the last state of a non-sink cycle are marked with the labels loop
starts here and end loop, respectively. Finally, when a non-sink cycle is found,
the trace traversing it only once, is printed, while the traces traversing the cycle
more than once are ignored.
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Drăgoi, Cezara 72

Ehlers, Rüdiger 365
Elder, Matt 288
Enea, Constantin 72

Farzan, Azadeh 511
Ferrante, Alessandro 670

Ganai, Malay K. 127
Ganty, Pierre 600
Ghorbal, Khalil 212
Giannakopoulou, Dimitra 527
Goubault, Eric 212
Graf, Susanne 396
Greimel, Karin 410, 425
Gu, Ming 570
Gurfinkel, Arie 495

Hahn, Ernst Moritz 196, 660
He, Fei 570
Henzinger, Thomas A. 380, 410, 665
Herbreteau, Frédéric 148
Hermanns, Holger 196, 660
Hofferek, Georg 425
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