

Lecture Notes in Computer Science 6201
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Christian Kreibich Marko Jahnke (Eds.)

Detection of Intrusions
and Malware, and
Vulnerability Assessment

7th International Conference, DIMVA 2010
Bonn, Germany, July 8-9, 2010
Proceedings

13

Volume Editors

Christian Kreibich
International Computer Science Institute
Berkeley, USA
E-mail: christian@icir.org

Marko Jahnke
Fraunhofer FKIE
Wachtberg, Germany
E-mail: jahnke@fgan.de

Library of Congress Control Number: Applied for

CR Subject Classification (1998): C.2, K.6.5, D.4.6, E.3, H.4, K.4.4

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-642-14214-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-14214-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

On behalf of the Program and Steering Committees it is our pleasure to present
to you the proceedings of the 7th GI International Conference on Detection of
Intrusions and Malware and Vulnerability Assessment (DIMVA), documenting
the work presented at the conference this year. As in the past, the conference
brought together international experts from academia, industry, and government
to present and discuss novel security research.

This year the 27 members of the Program Committee received 34 submissions
from 18 countries. The committee, selected to represent a balanced mixture of
both mature and young excellence in the field, honesty, and good judgement,
carefully reviewed and evaluated all submissions at least threefold, according to
scientific novelty, relevance, and technical quality. The final selection took place
on March 29, 2010 at the Technische Universität München, Germany. In the
end, we accepted 12 papers for publication and presentation at the conference,
including two extended abstracts.

DIMVA 2010 took place at the Centre of Sciences in Bonn, Germany, on July
8 and 9. The program featured work from a wide range of topics in security,
grouped into five sessions that are reflected in the chapters of the proceedings
you are now reading. In addition, the conference featured three invited talks
which greatly contributed to the event. We are very grateful to José Nazario
(Arbor Networks), Carel van Straaten (Spamhaus), and Marc Dacier (Syman-
tec/Eurecom) for their insightful and entertaining presentations. Thanks also to
Sven Dietrich (Stevens Institute of Technology) for once again organizing and
hosting the rump session, which contained a diverse range of forthcoming work.

Credit for the quality of a conference is first and foremost due to the au-
thors of all submitted work. Their creativity and hard work was reflected in
the discussions at the meeting in Munich, and we are deeply indebted to their
efforts. Our sincere thanks go to the members of the Program Committee as
well as the external reviewers for working the review tasks and shepherding into
their busy schedules. We likewise thank the Technische Universität München for
kindly providing meeting facilities. Finally, we are truly grateful for our sponsors’
contributions in making DIMVA 2010 possible.

For further information about DIMVA 2010 please visit the conference web-
site at http://www.dimva.org/dimva2010.

July 2010 Christian Kreibich
Marko Jahnke

Organization

Organizing Committee

Rump Session Chair Sven Dietrich, Stevens Institute of Technology,
USA

General Chair Marko Jahnke, Fraunhofer FKIE, Germany
Program Chair Christian Kreibich, International Computer

Science Institute, USA
Sponsor Chair Felix Leder, University of Bonn, Germany
Publicity Chair Sebastian Schmerl, Technical University of

Cottbus, Germany
Local Chair Jens Tölle, Fraunhofer FKIE, Germany
Rump Session Chair Sven Dietrich, Stevens Institute of Technology,

USA

Program Committee

Michael Bailey University of Michigan, USA
Herbert Bos Vrije Universiteit Amsterdam, The Netherlands
Juan Caballero Carnegie Mellon and UC Berkeley, USA
Hervé Debar Télécom SudParis, France
Sven Dietrich Stevens Institute of Technology, USA
Holger Dreger Siemens CERT, Germany
Ulrich Flegel SAP Research, Germany
Chris Grier UC Berkeley, USA
Guofei Gu Texas A&M University, USA
Thorsten Holz Vienna University of Technology, Austria
Piotr Kijewski NASK/CERT, Poland
Engin Kirda Eurecom, France
Christopher Kruegel UC Santa Barbara, USA
Pavel Laskov University of Tübingen, Germany
Wenke Lee Georgia Institute of Technology, USA
Corrado Leita Symantec Research Labs, France
Kirill Levchenko UC San Diego, USA
Michael Meier Technical University of Dortmund, Germany
Tyler Moore Harvard University, USA
Ludovic Mé Supélec, France
Lexi Pimenidis iDev GmbH, Germany
Moheeb Rajab Google/Johns Hopkins University, USA
Sebastian Schmerl Brandenburg University of Technology,

Germany
Robin Sommer ICSI/LBNL, USA

VIII Organization

Henry Stern Cisco/Ironport, USA
Diego Zamboni HP Professional Services, Mexico

External Reviewers

Andreas Moser
Clemens Kolbitsch
Craig Williams
Debmalya Biswas
Eric Totel

Frédéric Tronel
Markus Engelberth
Matthias Neugschwandtner
Valérie Viêt Triêm Tông

Steering Committee

Chairs Ulrich Flegel, SAP Research, Germany
Michael Meier, Technical University of

Dortmund, Germany
Members Roland Büschkes, RWE AG, Germany

Danilo M. Bruschi, Università degli Studi di
Milano, Italy

Hervé Debar, France Telecom R&D, France
Bernhard Haemmerli, Acris GmbH & HSLU

Lucerne, Switzerland
Marc Heuse, Baseline Security Consulting,

Germany
Klaus Julisch, IBM Zurich Research Lab,

Switzerland
Christopher Kruegel, UC Santa Barbara, USA
Pavel Laskov, University of Tuebingen,

Germany
Robin Sommer, ICSI/LBNL, USA
Diego Zamboni, IBM Zurich Research Lab,

Switzerland

DIMVA 2010 was organized by the Special Interest Group Security—Intrusion
Detection and Response (SIDAR)— of the German Informatics Society (GI), in
cooperation with Fraunhofer Institute for Communication, Information Process-
ing and Ergonomics (FKIE) and the Communication and Distributed Systems
Group at Universität Bonn, Germany.

Organization IX

Sponsoring Institutions

We sincerely thank our sponsors Qualys and FGA Global Advisors as well as
our media partner Virus Bulletin for their support of DIMVA 2010.

Table of Contents

Host Security

HookScout: Proactive Binary-Centric Hook Detection 1
Heng Yin, Pongsin Poosankam, Steve Hanna, and Dawn Song

Conqueror: Tamper-Proof Code Execution on Legacy Systems 21
Lorenzo Martignoni, Roberto Paleari, and Danilo Bruschi

dAnubis – Dynamic Device Driver Analysis Based on Virtual Machine
Introspection . 41

Matthias Neugschwandtner, Christian Platzer,
Paolo Milani Comparetti, and Ulrich Bayer

Trends

Evaluating Bluetooth as a Medium for Botnet Command and
Control . 61

Kapil Singh, Samrit Sangal, Nehil Jain, Patrick Traynor, and
Wenke Lee

Take a Deep Breath: A Stealthy, Resilient and Cost-Effective Botnet
Using Skype . 81

Antonio Nappa, Aristide Fattori, Marco Balduzzi,
Matteo Dell’Amico, and Lorenzo Cavallaro

Covertly Probing Underground Economy Marketplaces 101
Hanno Fallmann, Gilbert Wondracek, and Christian Platzer

Vulnerabilities

Why Johnny Can’t Pentest: An Analysis of Black-Box Web
Vulnerability Scanners . 111

Adam Doupé, Marco Cova, and Giovanni Vigna

Organizing Large Scale Hacking Competitions . 132
Nicholas Childers, Bryce Boe, Lorenzo Cavallaro,
Ludovico Cavedon, Marco Cova, Manuel Egele, and Giovanni Vigna

Intrusion Detection

An Online Adaptive Approach to Alert Correlation 153
Hanli Ren, Natalia Stakhanova, and Ali A. Ghorbani

XII Table of Contents

KIDS – Keyed Intrusion Detection System . 173
Sasa Mrdovic and Branislava Drazenovic

Web Security

Modeling and Containment of Search Worms Targeting Web
Applications . 183

Jingyu Hua and Kouichi Sakurai

HProxy: Client-Side Detection of SSL Stripping Attacks 200
Nick Nikiforakis, Yves Younan, and Wouter Joosen

Author Index . 219

HookScout: Proactive Binary-Centric Hook

Detection�

Heng Yin1, Pongsin Poosankam2,3, Steve Hanna2, and Dawn Song2

1 Syracuse University, Syracuse NY 13104
heyin@syr.edu

2 UC Berkeley, Berkeley CA 94720
{sch,dawnsong}@cs.berkeley.edu

3 Carnegie Mellon University, Pittsburgh PA 15213
ppoosank@cs.cmu.edu

Abstract. In order to obtain and maintain control, kernel malware usu-
ally makes persistent control flow modifications (i.e., installing hooks).
To avoid detection, malware developers have started to target function
pointers in kernel data structures, especially those dynamically allocated
from heaps and memory pools. Function pointer modification is stealthy
and the attack surface is large; thus, this type of attacks is appealing to
malware developers. In this paper, we first conduct a systematic study of
this problem, and show that the attack surface is vast, with over 18, 000
function pointers (most of them long-lived) existing within the Win-
dows kernel. Moreover, to demonstrate this threat is realistic for closed-
source operating systems, we implement two new attacks for Windows
by exploiting two function pointers individually. Then, we propose a
new proactive hook detection technique, and develop a prototype, called
HookScout. Our approach is binary-centric, and thus can generate hook
detection policy without access to the OS kernel source code. Our ap-
proach is also context-sensitive, and thus can deal with polymorphic data
structures. We evaluated HookScout with a set of rootkits which use ad-
vanced hooking techniques and show that it detects all of the stealth
techniques utilized (including our new attacks). Additionally, we show
that our approach is easily deployable, has wide coverage and minimal
performance overhead.

� This material is based upon work partially supported by the National Science Foun-
dation under Grants No. 0311808, No. 0448452, No. 0627511, and CCF-0424422, by
the Air Force Office of Scientific Research under MURI Grant No. 22178970-4170,
by the Army Research Office under the Cyber-TA Research Grant No. W911NF-06-
1-0316, and by CyLab at Carnegie Mellon under grant DAAD19-02-1-0389 from the
Army Research Office. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the
views of the National Science Foundation, the Air Force Office of Scientific Research,
or the Army Research Office.

C. Kreibich and M. Jahnke (Eds.): DIMVA 2010, LNCS 6201, pp. 1–20, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 H. Yin et al.

1 Introduction

As malware evolves to be increasingly sophisticated and stealthy the operating
system kernel has become a popular target for attacks [10]. Once the OS kernel
is compromised, attackers control every aspect of the victim’s system: they can
implement illicit functionality directly, hide malicious user-level components, and
make themselves and their components difficult to be detected and removed. To
achieve these malicious goals, malware tends to make persistent control flow
modifications, and in other words, hooks are installed in the victim’s system. A
previous study shows that the 24 out of 25 kernel rootkits in the survey make
persistent control flow modifications [16].

Old-fashioned malware installs hooks by either tampering with certain kernel
code regions or overwriting entries in well-known data regions. These well-known
data regions include SSDT (System Service Descriptor Table), IAT (Import Ad-
dress Table) and IDT (Interrupt Descriptor Table). Current hook detection tools,
such as VICE [3], System Virginity Verifier [23] and IceSword [12], verify the in-
tegrity of all code regions and known data regions, and thus have successfully
defeated these hooking techniques. To evade detection, malware has moved its
target to previously unknown and unexplored data regions. In particular, mal-
ware overwrites function pointers in kernel data structures, which usually reside
on heaps or in dynamically allocated memory pools. These kernel data struc-
tures maintain critical system states and configurations and contain important
function pointers [9]. The number of function pointers in the kernel space can be
large, and without in-depth knowledge of these kernel data structures, it is very
difficult to locate and validate them. Therefore, this new hooking technique is
ideal for attackers to install stealthy hooks.

To tackle this severe security problem, several systems have been proposed.
Systems such as HookFinder [32], K-Tracer [14], and PoKeR [20] take a post-
mortem approach. These systems analyze a new kernel rootkit to extract its
attack mechanism after the rootkit has caused damages and been caught. Then
the extracted hooking mechanisms can be used to update the hook detection
policy for guarding against similar attacks in the future. However, postmortem
analysis is not an effective defense because a large number of kernel objects and
function pointers exist in memory, and the number of potential locations for
placing this kind of hook is enormous. This means that even when a new attack
region is discovered and blocked, attackers can simply locate and exploit another
data structure to achieve the same objective.

Other systems like SBCFI [16], Gibraltar [1], HookSafe [31], and SFPD [4] take
a proactive approach. Instead of dissecting malware to figure out what regions
have been used for placing hooks, these systems examine the operating system
to understand where these function pointers are and how they are used, and
then generate a hook detection policy. This policy can be used to traverse kernel
data structures, locate function pointers in these kernel objects, and determines
if they point to legitimate targets. In order to know how to traverse kernel
data structures, these systems perform static source code analysis, extract type
graphs, and generate traversal templates. However, in many cases, we do not have

HookScout: Proactive Binary-Centric Hook Detection 3

access to the source code of the operating system, such as Microsoft Windows.
Therefore, the requirement of access to source code would impede third-party
security practitioners to deploy these systems. Moreover, since we do not have
source code of third-party device drivers and modules, hooks in these components
will also be overlooked by static source code analysis.

In this paper, we take a proactive approach. We first systematically study
the attack space and nature of this new hooking technique. We perform whole-
system dynamic binary analysis to monitor kernel memory objects and keep
track of function pointers propagating in the kernel space. By directly observing
how the operating system is operating at the binary code level, we conduct a
quantitative measurement study on this attack vector. To further demonstrate
that this new threat is realistic, we implement two keyloggers by exploiting two
different function pointers. Since these two attacks are new, they can successfully
evade all the existing hook detection tools. To effectively defeat this threat, we
propose a novel approach for proactive hook detection. We aim to derive the
hook detection policy directly from the knowledge about kernel memory objects
and function pointers. Compared to previous approaches, our approach is binary-
centric. That is, it performs analysis directly on binary code, without assuming
the access to source code. Therefore, this approach can be widely deployed on
the system with closed-source OS kernel and third-party components.

To demonstrate the efficacy of our approach, we built a prototype, called
HookScout. It consists of two subsystems: analysis subsystem and detection sub-
system. The analysis subsystem performs binary code analysis on the operating
system kernel and automatically generates a policy for hook detection. The de-
tection subsystem residing on the user’s machine enforces the generated policy
and detects hooks in the kernel space.

In summary, this paper makes the following contributions:
– To assess the attack space of function pointer hooking technique, we con-

duct a systematic measurement study. It shows that the space of this new
attack vector is enormous: there are around 18, 000 function pointers in the
Windows kernel space in total, the majority of these function pointers (90%)
are long-lived, and very few (3%) ever change in their lifetime.

– To further demonstrate the severity of this problem, we identify two func-
tion pointers in the keyboard driver, and implement two new keyloggers by
exploiting these two function pointers individually. These two new attacks
can successfully evade the existing hook detection tools.

– We propose a binary-centric approach for generating a hook detection policy.
– We design and implement a prototype called HookScout, to demonstrate the

effectiveness and efficiency of our approach.
– We evaluated HookScout with a popular closed-source operating system,

Windows XP with Service Pack 2. The analysis subsystem can generate the
hook detection policy within a few hours. The generated policy can achieve
very high coverage (over 95%). The detection subsystem was able to detect
all the rootkit samples in our sample set, including the two new synthetic
attacks. We also showed that the performance overhead of this detection
component is negligible.

4 H. Yin et al.

typedef struct {
int type;
char name[512];

} OBJ_HEAD;

typedef struct {
OBJ_HEAD head;
LIST_ENTRY link;
int (*open)(char *n, char *m);
...

} FILE_OBJ;

typedef struct {
OBJ_HEAD head;
LIST_ENTRY link;
int state;
int (*ioctl)(char *buf, int size);
...

} DEVICE_OBJ;

LIST_ENTRY ObjListHead;

CreateFile() {
FILE_OBJ *f = malloc(sizeof(FILE_OBJ));
...
InsertTailList(&f->link, &ObjListHead);
...

}

CreateDevice() {
DEVICE_OBJ *d = malloc(sizeof(DEVICE_OBJ));
...
InsertTailList(&d->link, &ObjListHead);
...

}

Fig. 1. Code snippet that illustrates a polymorphic linked list. The doubly-linked
list starting with ObjListHead contains objects of two different types, FILE OBJ and
DEVICE OBJ. This code snippet is a simplified example inspired by the Windows kernel
hash table for organizing kernel objects.

2 Problem Statement

In this paper, we take a proactive approach to detecting function pointer hooking
attacks. That is, we want to generate a hook detection policy that can be used
to thoroughly locate and validate the function pointers in the kernel space. To
facilitate deployment, we want to directly derive the hook detection policy from
the binary code of OS kernel and device drivers. As a result, our technique can
be widely used to protect closed-source operating systems like Windows and
proprietary device drivers.

Furthermore, we have to cope with type polymorphism. That is, the actual
type of a polymorphic data object is determined by the context under which this
data object is created. Figure 1 illustrates such a case. A linked list ObjListHead
stores objects of two different types, FILE OBJ and DEVICE OBJ. These two types
share a common head structure OBJ HEAD, while the remaining portions in these
two types are different. The function CreateFile creates a FILE OBJ object, and
the function CreateDevice creates a DEVICE OBJ object. If we are not aware of
the different creation contexts of these two types of objects, we will not notice this
type polymorphism, and thus will not locate and traverse the function pointers
in these objects. Indeed, in the Windows kernel, many different types of kernel
objects, such as files, devices, drivers, and processes, are managed in a centralized
hash table [24]. These kernel objects keep important system states and function
pointers. Thus, it becomes critical to traverse and verify the function pointers
in these polymorphic data structures.

HookScout: Proactive Binary-Centric Hook Detection 5

3 Approach Overview

At a high level, our approach consists of two subsystems: analysis subsystem and
detection subsystem. The analysis subsystem performs static and dynamic binary
analysis on a given distribution of an operating system, and generates a policy
for hook detection. The detection subsystem is deployed on users’ machines with
the same distribution of the operating system installed. The detection subsys-
tem enforces the policy generated by the analysis subsystem and actively detects
hooks at runtime. Note that the system protected by the detection subsystem
does not need to be the same as the one analyzed by the analysis subsystem.
These two systems only need to have the same set of binary modules (including
main kernel modules and common device drivers). For instance, if the analysis
subsystem generates a policy for Windows XP Professional SP2, then this policy
can be used for hook detection on any machines with Windows XP Professional
SP2 installed. Of course, when a new kernel update is released, we need to gen-
erate a corresponding policy for it. Since our system can generate the new policy
in a fully automatic manner within a few hours (as demonstrated in Sect.5.2),
we believe our approach is practical for wide deployment. In this section, we give
a description of the analysis subsystem and the detection subsystem.

3.1 Analysis Subsystem

We perform whole-system dynamic binary analysis on the operating system for
which we want to generate the hook detection policy. In other words, we run
the entire installation of an operating system along with common applications,
and observe how the OS kernel behaves. In particular, we are interested in the
kernel’s behaviors in two aspects: (1) because function pointers become the tar-
gets for installing hooks, we want to know how function pointers are created,
distributed, and used; and (2) we want to monitor memory objects that are allo-
cated either statically or dynamically. Then we can have a complete view of the
kernel memory space, in terms of where memory objects are and where function
pointers are located within these memory objects. Such a complete view en-
ables us to quantitatively and qualitatively assess the space and characteristics
of kernel hooking attacks, and helps us determine appropriate detection policies.

Furthermore, we want to generate the hook detection policy by inferring in-
variants from this complete view (or more precisely, a series of views). In partic-
ular, we need to determine the layout of each memory object, in terms of where
the function pointers are located within the memory object and what properties
these function pointers have (e.g. whether they change over time). This process
is essentially analogous to inferring the type of a memory object.

In order to address polymorphic data structures, we propose a context-sensitive
analysis technique for inferring the policy. We take into consideration the execu-
tion context where each memory object is created. We rely on the fact that mem-
ory objects created in the same execution context are of the same or compatible
types. That is, these memory objects should have the same or compatible layouts.

6 H. Yin et al.

For the example in Fig.1, all the memory objects created in CreateFileare of type
FILE OBJ, and all the objects allocated in CreateDevice are of type DEVICE OBJ.

By tracking function pointers and monitoring memory objects, we are able
to obtain the concrete layout for each memory object at a specific moment (i.e.
exactly where the function pointers exist in an object). In order to locate and
validate function pointers in the future, we need to extract a generalized layout
for all the memory objects that are created in the same execution context. To
this end, we devise a generalization process, which produces a generalized layout
for a given execution context by merging concrete layouts of multiple memory
objects created under that context. Such a generalized layout associated with
the execution context is a context-sensitive template in our policy. As a result,
the generated policy consists of a list of context-sensitive templates.

3.2 Detection Subsystem

To enforce the generated policy, the detection subsystem needs to be context-
sensitive as well. That is, the detection subsystem monitors the allocation and
deallocation of memory objects, extracts the execution context when each mem-
ory object is created, and looks up the policy template corresponding to this
execution context. Then according to the template associated with this memory
object, the detection subsystem will periodically verify the validity of function
pointers in this memory object. Continuing with the example given in Fig.1, we
would monitor memory objects created by CreateFile and CreateDevice. The
creation context will be used to look up policy. Therefore, the policy template
applied to the memory objects created by CreateFile will be different than the
one applied to those created by CreateDevice.

4 System Design and Implementation

To demonstrate the feasibility of our approach, we design and implement a sys-
tem, called HookScout. We illustrate the architecture of HookScout in Fig.2.
The analysis subsystem consists of two components: monitor engine and infer-
ence engine. The monitor engine watches the behaviors of the operating system

Detection
Policy

Snapshots

Analysis Subsystem

OS

Emulated
Monitor

Engine

TEMU

Memory

Objects

Function

Pointers

Inference

Engine

Detection

Engine

Detection Subsystem

Fig. 2. Architecture of HookScout

HookScout: Proactive Binary-Centric Hook Detection 7

of interest. More specifically, it monitors memory objects that are created either
statically or dynamically, and keeps track of function pointer propagating in the
kernel memory space. To perform this fine-grained dynamic binary analysis, we
build the monitor engine on top of TEMU [33,28]. TEMU is a dynamic binary
analysis platform based on an open-source whole-system emulator, QEMU [2].
During the dynamic analysis, the emulated operating system is exercised with
common test cases, and the monitor engine periodically records system snap-
shots, including the state of memory objects and function pointers. Taking the
snapshots as inputs, the inference engine performs context-sensitive analysis and
generates the policy for hook detection. In the detection subsystem, the detec-
tion engine, located in the system to be protected, enforces the policy generated
by the analysis subsystem and detects hook in the kernel space at runtime.

4.1 Analysis Subsystem

Monitor Engine. The monitor engine is responsible for: (1) monitoring mem-
ory objects; (2) tracking function pointers; and (3) periodically generating snap-
shots of the OS kernel.

Monitoring Memory Objects. The monitor engine watches memory objects that
are allocated either statically or dynamically. A static memory object is a mem-
ory region statically allocated for a kernel module for storing global variables,
while a dynamic memory object is allocated dynamically from heaps and memory
pools. To monitor kernel memory objects, we need to have basic knowledge about
kernel memory management. For Windows, we know that MmLoadSystemImage
is used to load a kernel module. RtlAllocateHeap and RtlFreeHeap are used
for heap allocation and deallocation. Additionally, ExAllocatePoolWithTag and
ExFreePoolWithTag are the root APIs for allocating and freeing memory pools.
We intercept these kernel functions. When a memory object is newly allocated,
we extract its base address and size and keep this information in the memory ob-
ject state. We maintain the information for static and dynamic memory objects
in an active memory object list. When a memory object is freed, we simply re-
move its information from the active memory object list. Some memory objects
are special and are statically allocated and pointed by system registers. For ex-
ample, IDTR is a register pointing to a static memory region for storing interrupt
descriptor table and FS is a segment register pointing to a static memory region
for storing the current execution context in Windows. Since these special static
memory regions may contain function pointers, we also monitor these objects.

For dynamically allocated memory objects, we also need to obtain the execu-
tion contexts when they are created. The execution contexts are later used by the
inference engine to perform context-sensitive analysis and generate policy. We
will describe how to obtain the creation context while discussing the inference
engine.

Tracking Function Pointers. The monitor engine identifies where each function
pointer is initialized and then keeps track of the function pointer as it propagates
throughout the system.

8 H. Yin et al.

To identify the initial function pointers, we leverage the following fact: in
Windows (or other relocatable OS kernels), all the modules (including the kernel
itself) are generated to be relocatable. All references with absolute addresses to
the statically allocated code and data sections for each kernel module have to
be placed in the relocation table (e.g., .reloc for PE format). In this way, if
the executable loader decides to load a kernel module into a different memory
region than assumed, it can go through this relocation table to update these
references. Due to the fact that a function pointer refers to the absolute address
of a function within a relocatable module, it must appear in the relocation table.
Then to determine initial assignments of function pointers, we can check for
each entry in the relocation table whether it points to a function entry. Function
entries can be determined through standard static binary analysis.

0005ed61: mov [ebp-50h], 00015141h

For example, the instruction shown above moves a constant number into a
memory location. This constant’s location (0005ed64h1) appears in the reloca-
tion table and the actual value (00015141h) of this constant points to the entry
point of a function. Then we can determine that this instruction copies a function
pointer into a memory location on the stack.

Moreover, an instruction may also reference a function from another module
as a function pointer. In this case, this function appears in the import address
table (i.e., IAT).

000146ae: mov eax, ds:[00013464h] ; READ_PORT_UCHAR
000146b3: mov [0001390ch], eax

For example, the two instructions above moves a function
READ PORT UCHAR defined in IAT to a global variable located at
0001390ch. Therefore, we need to check IAT for initial function pointers as well.

We developed a plugin to IDA Pro [13] to perform this static analysis. This
plugin takes a kernel module as input, automatically enumerates the entries in
the relocation table and import address table, identifies the function boundaries,
and determines the locations of initial function pointers. By performing this
analysis on all kernel modules (including device drivers), we have identified all
the initial function pointers in the kernel.

Then, to keep track of function pointers propagating over the system, we
perform whole-system dynamic taint analysis, as many previous systems do [7,
34,32,5,6]. That is, we mark the initial function pointers as tainted, and during
the execution of each instruction, if any source operand is tainted, we mark the
destination operand is tainted by checking data dependency between operands.
In this way, we can track which data structures and locations these function
pointers are copied into. In the implementation, we make use of the taint analysis
functionality in TEMU.

1 The instruction starts at 0005ed61h. The first three bytes are used for opcode and
the first operand. So this immediate operand is located at 0005ed64h.

HookScout: Proactive Binary-Centric Hook Detection 9

Therefore, relying on the relocatable property of initial function pointers and
dynamic taint analysis, we can identify the vast majority of function pointers (if
not all) in the kernel memory space. For the OS kernels that are not relocatable
(e.g., Linux), we cannot use this technique. Alternatively, we can examine the
concrete value for each memory word within a memory object to see if it points
to a kernel function entry.

Inference Engine. The inference engine takes the system snapshots as input,
performs context-sensitive analysis, and infers a policy for hook detection.

Determining Execution Context. In general, we want to know who creates a
memory object. From the binary code point of view, this information can be
obtained from the call stack when the memory allocation routine is invoked. From
the call stack, we obtain the return address of the memory allocation function
call. Considering that the function that invokes the memory allocation routine
is called by another function, we actually obtain a chain of return addresses.
Therefore, we define the execution context to be a chain of return addresses
and the size to be allocated. Taking into account that kernel modules can be
relocated to different locations in different executions and different systems, for
each return address, instead of the absolute address, we keep the relative address
— the offset to the base of the module where this return address is located.

Note that the number of return addresses to be included determines the level of
context sensitivity in our analysis. The more return addresses, the more context-
sensitive our analysis is. For example, if function A and function B call function
C, and function C allocates memory objects for A and B, the analysis with only
one return address will think memory objects created in C are of the same type,
which may not be true. In comparison, the analysis with two return addresses
will treat memory allocated for function A and B differently. Hence, the increase
of context sensitivity results in better analysis precision. However, the increase of
context sensitivity also leads to more complexity in our analysis. First, it means
that we need to perform more thorough test cases to cover more execution con-
texts. Second, it means the number of templates in the policy would increase
drastically. Therefore, we need to determine an appropriate level of context sen-
sitivity. Fortunately, as shown in Sect.5.2, analysis with very small number (1 to
3) of return addresses can already generate high-quality policies with very high
coverage.

Inferring Policy Templates. We merge the layouts of multiple dynamic memory
objects with the same execution context into a generalized layout. Static memory
objects are different because they are not associated with execution contexts so
we uniquely identify them by their names (e.g., module names or register names).
Thus, for static memory objects, we merge them according to their names.

Within a memory object, we classify each field (e.g., 4-byte memory in 32-
bit architecture) into one of the following types: NULL, FP, CFP, and DATA.
NULL is for a field that holds a concrete value 0. FP identifies a function pointer,
which we determine by checking if this field is tainted. CFP indicates a constant
function pointer that has never changed its value in its lifetime. To determine a

10 H. Yin et al.

DATA
|

FP
|

CFP
|

NULL

(a)

� NULL CFP FP DATA
NULL NULL CFP FP DATA

CFP CFP CFP FP DATA
FP FP FP FP DATA

DATA DATA DATA DATA DATA

(b) (c)

Fig. 3. Join operator � used in merging object layouts, shown using a lattice (a), an
operation table (b), and an example (c)

CFP, we check if this field is tainted in the current snapshot, and its concrete
value remains unchanged in previous snapshots since this field is initialized.
Thus, CFP is a subset of FP. DATA specifies a field that holds a data value,
which is not tainted and does not hold a concrete value 0.

To merge a set of observed object layouts into a single generalized layout, we
conservatively infer the most general type for each field, according to the ordering
shown in Fig.3 (a). In the order NULL, CFP, FP, and Data, each type covers
more possibilities than the earlier ones, so we generalize to the most specific
type that includes all observations. This generalization corresponds to the join
operator � in a simple linearly-ordered lattice. A corresponding matrix for this
join operation � is also shown in Fig.3 (b). For instance, if one type is DATA
and the other is a function-pointer type FP or CFP, the field might contain
either a function pointer or data. To be conservative, we mark it as DATA in the
generalized layout. Similarly, if a function-pointer field was sometimes constant
and sometimes not constant, it is conservatively non-constant in the merged
layout: CFP � FP = FP. We illustrate a concrete example how two memory
objects are merged in Fig.3 (c).

As we will show in Sect.5.1, the vast majority of function pointers are con-
stant. In other words, they never change during their whole lifetime. Thus, the
generalized layouts can be directly used as a policy to detect hooks that make
modifications on these constant function pointers. In the current implementation
of HookScout, we employ this simple policy. This policy does not protect non-
constant function pointers. We leave it as our future work to investigate more
sophisticated policies for protecting non-constant function pointers. Note that
so far the generated policy is a raw policy, including all templates. For the final
policy to be enforced on users’ machines, we only need to include the templates
that contain CFP fields, which is only a small portion of all templates, as shown
in Sect.5.2.

4.2 Detection Subsystem

The detection engine resides on a user’s machine to detect violations of the hook
detection policy generated by our analysis subsystem. We are aware that the
detection engine can be implemented in at least two ways. First, it can be im-
plemented as a kernel module inside the protected operating system. Second,

HookScout: Proactive Binary-Centric Hook Detection 11

it can be implemented inside a virtual machine monitor to detect attacks hap-
pening in a virtual machine. While the first approach is easy to implement and
deploy, the second approach is more resilient to various attacks. In the current
implementation of HookScout, we implement a proof-of-concept detection engine
as a kernel module, mainly for demonstrating the effectiveness of our approach.
We realize that malware is able to subvert our detection component, like any
other security products sitting in the same execution environment as malware.
We leave a more secure implementation as future work.

In the kernel module, we intercept the same set of kernel functions for moni-
toring memory objects, as those in the monitor engine. When a memory object
is created, we extract its execution context and determine if there is a policy
template associated with this execution context. If not, we skip this memory
object. For those memory objects that are associated with policy templates, we
periodically check if the constant function pointers within them hold different
values than before. A different value indicates a hooking attack. When a memory
object is freed, we remove it from the active object list.

As the kernel functions to be intercepted are not in the SSDT, SSDT hooking
is not an option to hook these functions. Instead, we hot patch the entry of each
of these functions. That is, we place a jmp instruction into the function entry,
making the execution redirected into the detection engine. The kernel module is
configured to be loaded at the earliest stage of boot time, in order to monitor
the memory objects as early as possible.

Note that this periodical checking approach may still leave room for transient
attacks on function pointers, depending on the frequency of checking. A more
secure approach is to enforce our detection policy with HookSafe [31], where a
shadow memory is maintained for protected function pointers and unauthorized
changes can be detected instantly.

5 Evaluation

In the experiments, we aim to evaluate our system in the following aspects.
In Sect.5.1, we quantitatively assess the attack space and characteristics of
kernel-space hooking attacks. In Sect.5.2, we evaluate the analysis subsystem
of HookScout, with respect to the coverage rate of the generated policy, the
influence of context sensitivity to the quality of the generated policy, and perfor-
mance overhead. In Sect.5.3, we evaluate the detection subsystem of HookScout,
in terms of detecting real-world kernel rootkits, false alarms, and performance
overhead.

Experiment Setup. Our experiments proceeded as follows. We first ran the analy-
sis subsystem of HookScout to monitor and analyze a given operating system. To
demonstrate that HookScout can work with closed-source operating systems, we
chose Windows XP Professional Edition with Service Pack 2, a popular platform
targeted by the majority of malware samples. During the analysis, we exercised
the monitored operating system with a series of test cases that activate various

12 H. Yin et al.

OS subsystems, including filesystem, networking, process and thread manage-
ment, and so on.

It took approximately 25 minutes to boot up the Windows XP with our mon-
itor engine and execute the test cases. Meanwhile, the monitor engine recorded
system snapshots every 15 seconds. The snapshot contains the states of memory
objects and function pointers. Therefore, 100 snapshots were recorded for each
run. In total, we performed 3 different runs, which rendered a total of 300 snap-
shots. Then on these snapshots, we assessed the attack space and characteristics,
and generated policy for hook detection.

We ran the analysis subsystem of HookScout on a Linux machine with a dual-
core 3.0GHz CPU and 4GB RAM. We ran a Windows XP Professional SP2 disk
image inside QEMU with 512MB allocated memory. We installed the detection
subsystem on a machine with a 3.0GHz CPU and 4GB RAM and Windows XP
Professional SP2.

5.1 Attack Space and Characteristics

By monitoring system execution and tracking function pointers in the kernel,
we are able to assess the attack surface and characteristics of potential kernel
hooking attacks.

First of all, we want to know how many function pointers exist in kernel space
during the execution. This indicates the space of this attack vector. To explore
this question, we picked the first run, and for each snapshot in that run, we
counted the total number of function pointers in that snapshot2. Figure 4 shows
the total number of function pointers over the 25-minute execution. We can see
that the total number of function pointers climbs up in the first 5 minutes of
system boot-up, and then fluctuates around 18, 000 during the execution of test
cases. If every function pointer could be potentially exploited, the space of kernel
hooking attacks is enormous. Figure 4 also shows the number of function pointers
in dynamically allocated memory objects. Because these function pointers cannot
be easily located and verified by traditional rootkit detection methods, they are
more attractive to attackers. We can see that the number of function pointers in
dynamically allocated memory objects is fairly high, around 8, 000. Therefore,
there is a large attack surface for attackers to utilize in the OS kernel.

Then, we want to know how long these function pointers live in the kernel space.
Since we aim to detect persistent control flow modifications, attacks would target
at long-lived function pointers instead of transient ones. Therefore, we want to
know how many function pointers are long-lived. We used the last snapshot in the
first run as a starting point, and looked backward at each of previous snapshots. If
we see a function pointer exists in one snapshot but not in the snapshot before it,
we treat this snapshot as the birth time of this function pointer. Figure 5 shows
the cumulative distribution function (CDF) of the function pointers’ lifetime in
the last snapshot of the first run. We can see that around 10% function pointers
only lived less than two minutes, and approximately 90% function pointers lived
longer than 17 minutes, and very few lived in between.
2 Note that all runs had similar characteristics.

HookScout: Proactive Binary-Centric Hook Detection 13

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 5 10 15 20 25

N
um

be
r

of
 F

un
ct

io
n

P
oi

nt
er

s

Time (in Minutes)

Total
Dynamic

Fig. 4. Attack Space

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Lifetime (in Minutes)

Fig. 5. Lifetime Distribution

Moreover, we want to know how frequently these function pointers change
their targets during the execution. To answer this question, we examined all
these snapshots, and for each of function pointers in these snapshots, checked if
its concrete value was different in any of previous snapshots during its lifetime.
We observe that up to 3.63% function pointers have ever changed during their
lifetime. This observation indicates that a simply policy would suffice to validate
the vast majority of function pointers.

Two Synthetic Keyloggers. To further assess the severity and practicality of func-
tion pointer hooking attack, we play on the attacker’s side. We implemented
keystroke sniffing functionality by tampering with function pointers. We per-
formed a combination of dynamic and static binary analyses to reverse engi-
neer a small part of kernel code related to keystroke processing. We sent some
keystrokes into the emulated system and collected an execution trace for the
guest kernel. Through dynamic taint analysis, we tracked how keystrokes propa-
gate in the kernel space. In consequence, we identified several code regions that
are relevant to keystroke processing. Then we statically examined these code
regions using IDA Pro. It took one of the authors only a few hours to identify
two function pointers (one in static memory region allocated in the keyboard
driver i8042prt.sys, and the other in a dynamic memory region) that can be
individually exploited to intercept keystrokes. To confirm that these two func-
tion pointers can be exploited indeed, we implemented two keyloggers, named
keylogger-1 and keylogger-2, to exploit these two function pointer respec-
tively. We are not aware that such attacks have appeared in the literature and
existing malware attacks. As shown in Sect.5.3, these two keyloggers evade the
existing detection tools except HookScout. This experiment demonstrates that
it is absolutely feasible for attackers to implement illicit functionalities by using
this stealthy attack technique.

5.2 Policy Generation

Now we evaluate the analysis subsystem of HookScout. In particular, we are
interested in how context sensitivity affects the coverage of the generated policy.

14 H. Yin et al.

Table 1. The coverage and size of policy influenced by the level of context sensitivity

Level Coverage Templates
AVG STDEV Raw Final

1 94.67% 2.97% 3518 308
2 96.10% 1.92% 4285 405
3 96.74% 1.64% 5270 511

The coverage is measured as a ratio of the number of function pointers identified
by the policy to the total number of function pointers. In addition, we want to
see how context sensitivity affects the size of the generated policy. To measure
the coverage, we used the snapshots from the first two runs to generate policy,
and then applied the generated policy to the snapshots from the third run.

We listed the experimental results in Table 1. We measured the coverage for
each snapshot in the third run. In Table 1, we summarized these results by
calculating the average and standard deviation of the coverage. For the size of
the generated policy, we listed the number of templates in the raw policy and
the number of templates in the final policy respectively. We make the following
observations: (1) the generated policies can achieve very high coverage, even
with 1 level of context sensitivity; (2) with an increase of context sensitivity,
coverage is increased accordingly; and (3) the size of policy (i.e. the number
of templates) is increased considerably with the increase of context sensitivity,
but the absolute number is still fairly small. Considering that 3-level context
sensitivity can achieve the highest coverage and reasonably small policy size, we
chose to generate a policy with 3-level context sensitivity.

It took approximately 70 seconds to process one snapshot, and around 4 hours
in total to generate a policy from 200 snapshots. Due to the fact that we only need
to generate one policy for each version of OS kernel and can distribute it to all
machines with the same OS kernel installed, we believe that this execution time
is acceptable. Moreover, the task of policy generation can be easily partitioned
and parallelized, which would increase the performance significantly.

5.3 Hook Detection

We evaluated three aspects of the detection subsystem of HookScout. First,
we compiled a set of kernel rootkit samples to evaluate the effectiveness of the
detection subsystem. Second, we measured its performance overhead. Third, we
evaluated the occurrence of false alarms.

Detecting Kernel Hooks. We obtained a set of kernel rootkits from public re-
sources [21, 17] and collaborative researchers. We selected the rootkit samples
that are known to install kernel hooks and are able to run in our test envi-
ronment. We also included the two synthetic keyloggers in the experiment to
evaluate how effective the existing detection tools and HookScout are in terms
of detecting new attacks. As a comparison with HookScout, we chose the fol-
lowing hook detection tools: IceSword [12], VICE [3], and RAIDE [19]. System

HookScout: Proactive Binary-Centric Hook Detection 15

Table 2. Detection Results of Four Tools. I stands for IceSword [12]), V for
VICE [3], R for RAIDE [19], and H for HookScout.

Sample Name Hooking Region I V R H

HideProcessHookMDL [21] SSDT � � � �
Sony Rootkit [26] SSDT � � � �
Storm Worm [27] SSDT � � � �
Shadow Walker [21] IDT ? � � �
basic interrupt 3 [21] IDT ? � � �
TCPIRPHOOK [21] Tcp driver object × � � �
Rustock.C [22] Fastfat driver object × × � �
Uay Backdoor [29] NDIS data block × × � �
Keylogger-1 Kbd static data region × × × �
Keylogger-2 Kbd dynamic data region × × × �

Virginity Verifier [23] did not function correctly in our testing environment, so
we did not include this tool in the experiment.

We listed the detection results in Table 2. We can see that all detection tools,
including HookScout, are able to detect SSDT hooks, and all except IceSword
are able to detect IDT hooks. IceSword displays only the content of IDT and re-
quires manual inspection to determine if there is a hook, so we leave a “?” mark
for IceSword. TCPIRPHOOK [21] and Rustock.C [22] hook function pointers in
Tcp and Fastfat device driver objects respectively. IceSword does not inspect
kernel objects, and thus cannot detect these hooks. While RAIDE checks both
Tcp and Fastfat, VICE only checks Fastfat object. Uay Backdoor [29] mod-
ifies function pointers in the NDIS data structure maintained for the TCP/IP
network protocol. IceSword and VICE cannot detect these hooks installed by
Uay Backdoor. However, RAIDE has another special policy for checking the
registered network protocol list, and thus can detect these hooks successfully.
By exploiting new function pointers, our two synthetic keyloggers, keylogger-
1 and keylogger-2, can evade all the detection tools in our experiment, except
HookScout.

As compared to the other three detection tools, HookScout is able to detect all
the samples in this set. The key difference between HookScout and the other tools
is that HookScout is equipped with much more thorough detection policy, which
is automatically generated by the analysis subsystem, whereas the other tools
have very limited policies that are manually defined. Given the high coverage of
our automatically generated policy, HookScout is substantially more difficult to
evade.

It is worth noting that TCPIRPHOOK, and Rustock.C tamper with function
pointers in kernel objects organized in the polymorphic hash table [24]. Even
with access to the source code of Windows kernel, context-insensitive analy-
sis approaches (such as SBCFI [16] and Gibraltar [1]) would not identify these
function pointers. By contrast, with context-sensitive policy inference and hook
detection, HookScout can automatically generate policy and validate these func-
tion pointers successfully. Moreover, Keylogger-1 exploits a function pointer in

16 H. Yin et al.

Table 3. Performance Overhead of the Detection Engine

Workload w/o w/ HookScout Slowdown
HookScout 1s 5s 1s 5s

Boot OS 19.43 s 20.70s 20.43 s 6.5% 5.1%
Copy directories 7.57 s 8.09s 7.68 s 6.9% 1.5%
(De)compress files 23.84 s 24.44s 23.51 s 2.5% -1.4%
Download a file 23.59 s 24.49s 24.42 s 3.8% 3.5%

the keyboard device driver. Without source code of this driver, source code
analysis approaches [16,1,31,4] will be completely unaware of function pointers
defined in this driver.

Performance Overhead. To observe how HookScout affects performance, we per-
formed several workloads and measured their execution times with and without
the detection engine installed. We also measured the performance with two differ-
ent checking intervals: 1 and 5 seconds. The workloads include booting Windows,
copying a directory structure, performing compression and decompression of a
directory structure with 7zip, and downloading a file with wget. The total size
of the directory structure is 75MB. The size of the downloaded file is 100MB.
Table 3 shows the execution time for each workload. Each workload is performed
7 times and the average of 5 non-minimum/maximum runs is reported. In all,
the slowdown caused by HookScout is about 4.9% and 2.1% for the checking
intervals of 1 second and 5 seconds respectively.

False Alarms. To evaluate the occurrence of false alarms, we installed HookScout
detection engine on a healthy system (without rootkits installed), and kept it
running for eight hours. Meanwhile, a user operated on this machine for his
regular computing tasks. We did not observe any false alarms during this period.

6 Discussion

In this section, we discuss the feasibility of potential evasion techniques against
HookScout and our countermeasures.

Exploit Uncovered Function Pointers. Attackers can perform the same analysis
on function pointers, and determine which function pointers would not be located
and verified by HookScout. Then they can target these function pointers to evade
HookScout. First of all, our policy generation technique can achieve over 95%
coverage, so we have substantially reduced the space of this attack (e.g., from
18,000 to 900). In addition, it may be impractical for attackers to take advantage
of many of these uncovered function pointers, because of their mutable nature:
sometimes they are function pointers and sometimes not. Furthermore, for this
small number of uncovered function pointers, defenders can investigate these
cases first and manually define special policies for the plausible attacks.

HookScout: Proactive Binary-Centric Hook Detection 17

Exploit Uncommon Proprietary Device Drivers. QEMU has emulated a set of
common hardware devices. For these common devices, HookScout can generate
policy to validate functions pointers in the corresponding device drivers. For
those devices that are not supported by QEMU, HookScout cannot generate
policy to protect their drivers, since these drivers are not installed and activated
during the analysis phase. This limitation is not specific to HookScout. No previ-
ous solutions are able to address this issue, which requires further investigation.

Attack Limited Test Cases. Our hook detection policy is derived mainly using
dynamic analysis. In principle, the quality of dynamic analysis is largely de-
termined by the completeness of test cases. Attackers could potentially exploit
those function pointers that were not initialized and moved around during our
analysis but will be activated in other test cases. Then HookScout would not
detect these attacks. By exercising the analysis subsystem with a more complete
set of test cases that exercises more kernel functionalities, this problem can be
alleviated. Moreover, if attackers only target the function pointers that are only
initialized and moved around in uncommon situations, it means the attacks will
not become effective most of time.

Subvert or mislead HookScout. The detection engine of HookScout is imple-
mented as a kernel module installed in user’s system, and thus is subject to
complete subversion just like any other security tools running in the same privi-
lege as malware. In addition, malware may mislead HookScout by injecting fake
events or changing the existing events that HookScout monitors. In particular,
HookScout relies on proper functionality of kernel memory management rou-
tines and correct call stack information to monitor memory objects. More secure
implementation based on virtual machine techniques can significantly raise the
defense bar against this kind of attacks. For example, Payne et al. systemati-
cally discussed the challenges of secure active monitoring, proposed a series of
solutions and built a framework called Lares [18].

7 Related Work

Postmortem Analysis. Several systems have been proposed to facilitate under-
standing of rootkit’s behaviors. HookFinder [32] can automatically identify and
understand how a rootkit installs hooks. K-Tracer [14] and PoKeR [20] are pro-
filing tools for monitoring rootkit behaviors in general, including hooking be-
haviors, data structure manipulation and others. The better understanding of a
new kernel attack can then be used to harden the security policy against similar
attacks. As our study shows, the attack space for kernel function pointer hooking
is vast. After a function pointer is known to be exploited, attackers may easily
switch to exploit another function pointer.

Proactive Defense. The first line of defense against kernel attacks is to prevent
untrusted code execution in the kernel space. Several systems leveraged the vir-
tual machine based architecture to monitor and enforce the kernel code integrity.

18 H. Yin et al.

Livewire [8] was the first proposal to make use of virtual machine monitor to
monitor system integrity, including verifying the kernel code regions and exam-
ining specific data attacks by querying the system states. SecVisor [25], is a tiny
hypervisor (i.e. virtual machine monitor) that ensures code integrity for com-
modity OS kernels. Patagonix [15], is another system based on hypervisor to
identify covertly executed binaries. This line of defense can be circumvented by
return-oriented rootkits [11], which take advantages of existing kernel code to
build illicit functionalities.

The second line of defense is to enforce control flow integrity. SBCFI [16],
Gibraltar [1], SFPD [4], HookMap [30], HookSafe [31], and HookScout belong
to this category. These system may still catch return-oriented rootkits, as long
as persistent control flow modifications are made. SBCFI [16], Gibraltar [1],
and SFPD [4] perform source code analysis on the OS kernel to derive the se-
curity policy. The requirement of source code would impede their deployment
on closed-source operating systems and proprietary device drivers. SBCFI and
Gibraltar need manual annotations for generic pointers and perform context-
insensitive analysis. Therefore, these two systems cannot deal with type polymor-
phism. SFPD addressed these two limitations by performing more comprehensive
inter-procedural context-sensitive points-to analysis. In comparison, HookScout
performs context-sensitive dynamic binary analysis. In consequence, it is able
to eliminate the requirement for source code and handle type polymorphism.
HookMap [30] analyzes the kernel-side execution of certain security applications
to help identify potential hook sites. Compared to HookMap, HookScout per-
forms more complete analysis by monitoring the full kernel execution and thor-
oughly tracking function pointers. Moreover, HookScout conducts more advanced
context-sensitive type inference, so it can deal with function pointers in complex
data structures and achieve significantly higher coverage than HookMap.

8 Conclusion

In this paper we targeted a class of advanced kernel attacks: function pointer hook-
ing. We assessed the severity of this new threat. First, we conducted a quantitative
measurement study to show the attack surface is vast. Second, we implemented
two new keyloggers using this attack technique, showing that this threat is realis-
tic even on closed-source operating systems like Windows. To effectively combat
this threat, we presented HookScout, a proactive, context-sensitive hook detection
scheme capable of detecting this stealthiest persistent control flow modifications
within the Windows kernel without the need for source code. We demonstrated
HookScout’s ability to generate a context-sensitive policy for detecting persistent
control modifications that can be used on any machine with the same version of the
OS kernel installed. We evaluated our system against real world stealthy rootkits
and malware and showed that we were able to detect all of them (including our
synthesized keyloggers). Additionally, we showed that our approach is easily de-
ployable, has a low overheard and most importantly, our approach is generic and
capable of detecting kernel-wide function pointer changes.

HookScout: Proactive Binary-Centric Hook Detection 19

References

1. Baliga, A., Ganapathy, V., Iftode, L.: Automatic inference and enforcement
of kernel data structure invariants. In: Proceedings of the 24th Annual Com-
puter Security Applications Conference (ACSAC 2008), Anaheim, California, USA
(December 2008)

2. Bellard, F.: Qemu, a fast and portable dynamic translator. In: USENIX Annual
Technical Conference, FREENIX Track (April 2005)

3. Butler, J., Hoglund, G.: VICE–catch the hookers!. In: Black Hat USA (July
2004), http://www.blackhat.com/presentations/bh-usa-04/bh-us-04-butler/
bh-us-04-butler.pdf

4. Carbone, M., Cui, W., Lu, L., Lee, W., Peinado, M., Jiang, X.: Mapping kernel
objects to enable systematic integrity checking. In: Proceedings of the 14th ACM
Conference on Computer and Communications Security (CCS 2009) (November
2009)

5. Chow, J., Pfaff, B., Garfinkel, T., Christopher, K., Rosenblum, M.: Understanding
data lifetime via whole system simulation. In: Proceedings of the 13th USENIX
Security Symposium (Security 2004) (August 2004)

6. Crandall, J.R., Su, Z., Wu, S.F., Chong, F.T.: On deriving unknown vulnerabilities
from zero-day polymorphic and metamorphic worm exploits. In: Proceedings of the
14th ACM Conference on Computer and Communications Security (CCS 2005)
(November 2005)

7. Egele, M., Kruegel, C., Kirda, E., Yin, H., Song, D.: Dynamic Spyware Analysis.
In: Proceedings of the 2007 Usenix Annual Conference (Usenix 2007) (June 2007)

8. Garfinkel, T., Rosenblum, M.: A virtual machine introspection based architecture
for intrusion detection. In: Proceedings of Network and Distributed Systems Secu-
rity Symposium (NDSS 2003) (February 2003)

9. Hoglund, G.: Kernel object hooking rootkits (KOH rootkits),
http://www.rootkit.com/newsthread.php?newsid=501

10. Hultquist, S.: Rootkits: The next big enterprise threat,
http://www.infoworld.com/article/07/04/30/18FErootkit_1.html

11. Hund, R., Holz, T., Freiling, F.C.: Return-oriented rootkits: Bypassing kernel code
integrity protection mechanisms. In: Proceedings of the 18th USENIX Security
Symposium (July 2009)

12. IceSword, http://www.antirootkit.com/software/IceSword.htm
13. The IDA Pro Disassembler and Debugger,

http://www.datarescue.com/idabase/

14. Lanzi, A., Sharif, M., Lee, W.: K-Tracer: A system for extracting kernel malware
behavior. In: Proceedings of the 16th Annual Network and Distributed System
Security Symposium (NDSS 2009) (February 2009)

15. Litty, L., Lagar-Cavilla, H.A., Lie, D.: Hypervisor Support for Identifying Covertly
Executing Binaries. In: Proc. 17th Usenix Security Symposium, San Jose, CA (July
2008)

16. Nick, J., Petroni, L., Hicks, M.: Automated detection of persistent kernel control-
flow attacks. In: Proceedings of the 14th ACM Conference on Computer and Com-
munications Security (CCS 2007) (October 2007)

17. Offensive computing, http://www.offensivecomputing.net/
18. Payne, B.D., Carbone, M., Sharif, M.I., Lee, W.: Lares: An architecture for secure

active monitoring using virtualization. In: Proceedings of the 2008 IEEE Sympo-
sium on Security and Privacy, Oakland 2008 (2008)

http://www.blackhat.com/presentations/bh-usa-04/bh-us-04-butler/bh-us-04-butler.pdf
http://www.blackhat.com/presentations/bh-usa-04/bh-us-04-butler/bh-us-04-butler.pdf
http://www.rootkit.com/newsthread.php?newsid=501
http://www.infoworld.com/article/07/04/30/18FErootkit_1.html
http://www.antirootkit.com/software/IceSword.htm
http://www.datarescue.com/idabase/
http://www.offensivecomputing.net/

20 H. Yin et al.

19. RAIDE, http://www.rootkit.com/vault/petersilberman/RAIDE_BETA_1.zip
20. Riley, R., Jiang, X., Xu, D.: Multi-aspect profiling of kernel rootkit behavior. In:

EuroSys 2009 (April 2009)
21. rootkit.com, http://www.rootkit.com/
22. Rustock, C.: http://www.rootkit.com/newsread.php?newsid=879
23. Rutkowska, J.: System virginity verifier: Defining the roadmap for malware detection

on windows systems. In: Hack In The Box Security Conference (September 2005),
http://www.invisiblethings.org/papers/hitb05_virginity_verifier.ppt

24. Schreiber, S.B.: Undocumented Windows 2000 Secrets. In: Windows 2000 Object
Management, ch. 7 (2007)

25. Seshadri, A., Luk, M., Qu, N., Perrig, A.: Secvisor: a tiny hypervisor to provide
lifetime kernel code integrity for commodity oses. In: Proceedings of the 21st ACM
SIGOPS Symposium on Operating Systems Principles, SOSP 2007 (2007)

26. Sony’s DRM Rootkit: The Real Story,
http://www.schneier.com/blog/archives/2005/11/sonys_drm_rootk.html

27. Storm Worm,
http://news.zdnet.co.uk/security/0,1000000189,39285565,00.htm

28. TEMU: The BitBlaze dynamic analysis component,
http://bitblaze.cs.berkeley.edu/temu.html

29. UAY kernel-mode backdoor,
http://www.xfocus.net/tools/200602/uay_source.rar

30. Wang, Z., Jiang, X.: Countering persistent kernel rootkits through systematic hook
discovery. In: Lippmann, R., Kirda, E., Trachtenberg, A. (eds.) RAID 2008. LNCS,
vol. 5230, pp. 21–38. Springer, Heidelberg (2008)

31. Wang, Z., Jiang, X., Cui, W., Ning, P.: Mapping kernel objects to enable systematic
integrity checking. In: Proceedings of the 14th ACM Conference on Computer and
Communications Security (CCS 2009) (November 2009)

32. Yin, H., Liang, Z., Song, D.: HookFinder: Identifying and understanding malware
hooking behaviors. In: Proceedings of the 15th Annual Network and Distributed
System Security Symposium (NDSS 2008) (February 2008)

33. Yin, H., Song, D.: Temu: Binary code analysis via whole-system layered annotative
execution. Technical Report UCB/EECS-2010-3, EECS Department, University of
California, Berkeley (January 2010)

34. Yin, H., Song, D., Manuel, E., Kruegel, C., Kirda, E.: Panorama: Capturing system-
wide information flow for malware detection and analysis. In: Proceedings of the
14th ACM Conferences on Computer and Communication Security (CCS 2007)
(October 2007)

http://www.rootkit.com/vault/petersilberman/RAIDE_BETA_1.zip
http://www.rootkit.com/
http://www.rootkit.com/newsread.php?newsid=879
http://www.invisiblethings.org/papers/hitb05_virginity_verifier.ppt
http://www.schneier.com/blog/archives/2005/11/sonys_drm_rootk.html
http://news.zdnet.co.uk/security/0,1000000189,39285565,00.htm
http://bitblaze.cs.berkeley.edu/temu.html
http://www.xfocus.net/tools/200602/uay_source.rar

Conqueror: Tamper-Proof Code Execution on
Legacy Systems

Lorenzo Martignoni1, Roberto Paleari2, and Danilo Bruschi2

1 Università degli Studi di Udine
2 Università degli Studi di Milano

lorenzo.martignoni@uniud.it, {roberto,bruschi}@security.dico.unimi.it

Abstract. We present Conqueror, a software-based attestation scheme
for tamper-proof code execution on untrusted legacy systems. Beside pro-
viding load-time attestation of a piece of code, Conqueror also ensures
run-time integrity. Conqueror constitutes a valid alternative to trusted
computing platforms, for systems lacking specialized hardware for attes-
tation. We implemented a prototype, specific for the Intel x86 architec-
ture, and evaluated the proposed scheme. Our evaluation showed that,
compared to competitors, Conqueror is resistant to static and dynamic
attacks and that our scheme represents an important building block for
realizing new security systems.

1 Introduction

Code attestation is the process of verifying the integrity of a piece of code ex-
ecuting in an untrusted system. Besides integrity verification, code attestation
can also be used to execute an arbitrary piece of code in an untrusted system
with the guarantee that the code is run unmodified and in an untampered execu-
tion environment. In the last years, hardware extensions, such as TPM chips [1],
have been proposed for securing computations, including performing attestation.
However, these extensions are not yet available on every computing device. In
such a situation, pure software-based solutions are the only viable alternative.

Several software-based attestation schemes have been proposed in literature [2,
3,4,5,6,7]. All these schemes are based on a challenge-response protocol involving
two parties: an untrusted system and a verifier. The verifier issues a challenge for
the untrusted system, where the challenge consists in computing the checksum
of certain memory locations and properties of the execution environment. The
checksum is computed by executing a particular attestation routine, or checksum
function. Once computed, the checksum is sent back to the verifier. The verifier
relies on the time to determine whether the checksum is genuine or if it could
have been forged. Indeed, attestation routines are constructed such that any
tampering attempt results in a noticeable increase of the execution time. Thus,
a checksum received too late is a symptom of an attack.

The complexity of the attestation routine depends on the hardware character-
istics of the untrusted system on which it has to be executed. Indeed, the output
of the routine is guaranteed to be genuine only if it is executed in a properly

C. Kreibich and M. Jahnke (Eds.): DIMVA 2010, LNCS 6201, pp. 21–40, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

22 L. Martignoni, R. Paleari, and D. Bruschi

configured execution environment. In complex hardware architectures, such as
the ones used in personal computers, there exist several configurations of the
execution environment that can be exploited by an attacker to thwart attesta-
tion. Therefore, the attestation routine must ensure, and prove to the verifier,
that the execution environment in which it executes satisfies all the require-
ments to impede attacks. In other words, the attestation routine must attest its
own code, but also the execution environment. Intuitively, the requirements for
tamper-proof attestation are that the attestation routine must be executed at
the highest level of privilege (i.e., at the same level of the most powerful attacker)
and that its execution must be uninterruptible. Practically speaking, in a legacy
system with no hardware support for virtualization, that means that the routine
must execute in system mode (i.e., the privilege level of the operating system)
and that all interrupts must be disabled, to prevent the attacker to regain the
control of the execution at some point. Unfortunately, even if the requirements
are very well defined, guaranteeing that they are satisfied in a complex execu-
tion environment where attacker and defender have the same privileges is a very
challenging problem.

In this paper we present Conqueror, a software-based scheme for tamper-proof
code execution on untrusted legacy systems. Conqueror provides a security prim-
itive that allows to build applications that require the availability of a trusted
computing base. Pragmatically speaking, Conqueror guarantees that an arbi-
trary piece of code can be executed untampered in an untrusted system, even
in the presence of malicious software. Conqueror has been developed to address
the limitations of Pioneer, the state-of-the-art software-based attestation solu-
tion [6]: Conqueror is immune to all attacks that are known to defeat Pioneer,
and it can also be used on untrusted systems where the attacker could leverage
hardware virtualization extensions to hold control of the execution environment
in which the attestation routine executes. Conqueror adopts a variation of the
challenge-response protocol used in traditional attestation schemes: the chal-
lenge does not consist in a seed to initialize a constant attestation routine, but
instead consists in an entire routine, that is different each time, self-decrypting,
and obfuscated. The intent is to make it impossible for an attacker to reverse
engineer the logic of the checksum computation, and to facilitate the hiding of
the sensitive operations that Conqueror needs to perform to attest that the state
of the environment executing the code impedes any attack. The strength of this
approach is that we are drastically increasing the time needed by an attacker to
forge a checksum.

We experimentally demonstrate our claims about Conqueror’s resistance to at-
tacks.We showthat evenapreliminary low-level analysis of the codeofConqueror’s
one-time attestation routine (i.e., disassembly), which is necessary to perform any
subsequent meaningful analysis for reconstructing the semantics, costs about the
same time required to execute the routine. Moreover, we show that Conqueror is
also resilient to dynamic attacks performed by an attacker leveraging a hardware-
assisted hypervisor. Finally, to demonstrate Conqueror’s potential, we present a
proof-of-concept software-basedprimitive to launch securely a hypervisor in a run-
ning untrusted system, to segregate the system into a restricted guest. This

Conqueror: Tamper-Proof Code Execution on Legacy Systems 23

primitive could be used in place of skinit [8] and senter [1] on untrusted systems
with no hardware support for trusted computing.

2 State-of-the-Art of Attestation on Legacy Systems

This section presents Pioneer, the major Conqueror’s competitor. Both systems
target the same hardware architecture, but they use very different approaches.
Moreover, Conqueror is resistant to attacks that are known to defeat Pioneer.

Pioneer is a software-based attestation scheme that can be used to establish
a trusted computing base, called dynamic root of trust, on an untrusted legacy
system. Pioneer is specific for Intel x86 with EM64T extensions. The code of
the dynamic root of trust is guaranteed to be unmodified and to execute in a
tamper-proof execution environment. The dynamic root of trust measures the
integrity of an arbitrary executable, and then runs the executable in the trusted
execution environment. The dynamic root of trust is established using a ver-
ification function. The verification function is an extension of a conventional
checksum function and additionally includes a hash function to verify the in-
tegrity of an executable. The verification function is self-checking (i.e., it attests
its own code), and it attests the execution environment.

The Pioneer verification function is composed by three components: (i) a
checksum function, (ii) a send function, and (iii) a hash function. The checksum
function is used to compute a checksum over the entire verification function and
to setup the execution environment in which the other functions are guaranteed
to run untampered. Since the sensitive component of Pioneer is the checksum
function, we do not overview the others.

As in the majority of code-attestation schemes, in Pioneer the checksum func-
tion is known a priori and the challenge issued by the verifier consists in a seed
that initializes this function. Therefore, an attacker has complete access to the
checksum function and can analyze it offline to find weaknesses. The checksum
function has been constructed manually to be time-optimal: no adversary func-
tion that can compute the correct checksum without introducing a noticeable
overhead exists. Time-optimality is achieved using operations that prevent par-
allelization, that have a low variance execution time, and by executing these op-
erations iteratively, to maximize the overhead of the attacker. Most importantly,
the checksum function is responsible for initializing the execution environment
and for attesting the correct initialization.

Unfortunately, since the hardware architecture for which Pioneer was devel-
oped is full of subtle details, researchers have found ways to thwart the setup
of the dynamic root of trust without being noticed by the verifier. For example,
it is possible to perform the entire checksum computation in user-space and to
regain the control of the execution through exceptions without corrupting the
checksum. Another attack consists in desynchronizing data and code pointers
and to execute a modified checksum function that computes the checksum of
a pristine function residing elsewhere in memory [9]. Finally, Pioneer’s assump-
tions that the most powerful attacker operates in system mode does not hold on
new commodity hardware with support for virtualization [8, 10].

24 L. Martignoni, R. Paleari, and D. Bruschi

3 Conqueror Overview

In this section we give an overview of Conqueror, our scheme for software-based
code attestation and tamper-proof code execution on untrusted legacy systems
(Intel x86). Conqueror does not suffer the problems that affect the state-of-the-
art attestation scheme for this class of systems.

3.1 Threat Model

Conqueror has been developed to operate in the following adversary scenario.
We assume that the untrusted system has been compromised, and that the
attacker operates at the highest privilege level: system mode (ring 0) if the
system has no support for hardware-based virtualization, hypervisor mode if the
support is available. However, we assume the adversary cannot operate in system
management mode, that he cannot perform hardware-based attacks (e.g., DMA-
based attacks or overclocking), and that he cannot leverage a pristine or a more
powerful system to break the attestation scheme. The final assumption is that
the untrusted system supports a single thread of execution (e.g., no SMP).

3.2 Conqueror Architecture and Protocol

As any other software-based code attestation scheme, Conqueror is based on a
challenge-response protocol, where a verifier challenges the untrusted system.
The central component of Conqueror is the Tamper-Proof Environment Boot-
strapper (TPEB). As the name says, the TPEB is responsible for setting up the
environment in the untrusted system for the tamper-proof execution of an arbi-
trary executable. Figure 1 shows the layout and the protocol of Conqueror (the
numbers in the figure represent the temporal ordering of the events). The TPEB
is composed by a checksum function and a send function. The checksum func-
tion computes the checksum to attest the integrity of the TPEB itself and the
integrity of the executable. The send function transmits the computed checksum
value to the verifier and invokes the executable. The send function is logically
separated from the checksum function because it is hardware dependent (i.e., it
depends on the network card installed on the untrusted system).

In Conqueror the verifier generates the checksum function on demand, such
that each function differs considerably from the others. Differences are both syn-
tactic and semantic. Moreover, functions are obfuscated using multiple obfusca-
tion schemes. The attacker has no access to the checksum function ahead of time
and cannot perform any offline analysis nor optimization [7]. In Conqueror, the
newly generated checksum function is initially sent encrypted to the untrusted
system. Later on, at time t0, the verifier transmits the key for decryption. Since
the verifier knows precisely in which execution environment the function must be
executed and knows the hardware characteristics of the untrusted system, it can
compute the expected checksum value and can estimate the amount of time that
will be required by the untrusted system to decrypt, to execute the function, and
to send back the result. Let t1 = t0+Δt be the time by which the correct checksum
has to be received by the verifier to be considered authentic; Δt is an upper bound,

Conqueror: Tamper-Proof Code Execution on Legacy Systems 25

Executable

Send function

Checksum function

TPEB

Verifier

Executable

Send function

Checksum function

TPEB

Untrusted system

1. Checksum function
2. Decryption key 4

6

3.
C

om
p
u
te

ch
ecksu

m

5. Checksum

7. Output

Fig. 1. Overview of Conqueror

empirically estimated, of the maximum time requested by the untrusted system to
compute the checksum in the absence of an attack. If the verifier does not receive
the correct checksum by t1, then the checksum is considered forged and the execu-
tion environment not tamper-proof. In a traditional checksum function (e.g., that
used in Pioneer), where the function is known a priori and can be analyzed offline,
the attacker has Δt time to execute a malicious function to forge the checksum. In
Conqueror, the attacker has Δt to (i) analyze the checksum function, (ii) generate
a new function capable of forging the checksum, and (iii) execute the generated
function. Alternatively, the attacker would have to emulate the entire execution of
the checksum function. Differently from traditional checksum functions, the ones
in Conqueror are generated automatically; for this reason we cannot guarantee a
low collision rate nor that their implementation is optimal (in terms of execution
time and in code size). Nevertheless, given the small time frame available, there is
no opportunity for the attacker to reverse engineer their semantics, nor to emulate
the execution, and to forge checksums in time.

Since Conqueror targets a very complex hardware architecture, particular at-
tention has to be devoted to prevent checksum forgery, by tampering either
the checksum function or the execution environment. To attest the trustworthi-
ness of the environment, the verifier embeds in the checksum function several
operations whose behavior and execution time depend on the configuration of
the environment (e.g., instructions that raise exceptions when executed without
enough privileges).

An attacker who tampers the execution of the checksum function will cor-
rupt the checksum, or will incur in a time overhead that will cause the overall
checksum computation to exceed the expected time Δt. For these reasons, Con-
queror guarantees that a correct checksum, received by the verifier by t1, is the
proof that the checksum function has been executed unmodified and that the
bootstrap of the tamper-proof execution environment succeeded.

4 Conqueror Implementation

Conqueror current implementation is specific for the Intel x86 architecture and
so are the details of the implementation presented in this section. However, we
believe the same scheme can be used, as is, on the Intel x86-64 architecture.

26 L. Martignoni, R. Paleari, and D. Bruschi

4.1 Tamper-Proof Environment Bootstrapper

The layout in memory of the TPEB is shown in Figure 2. The TPEB consists
of the checksum function, its data, and the send function. For simplicity, the
TPEB is located at a fixed address (BASE) and in consecutive memory pages.
Moreover, the executable follows immediately the TPEB, and the overall buffer
is padded to a multiple of page size (SIZE). We assume that the TPEB is already
initialized on the untrusted system, with the exception of the checksum function.
The checksum function and its data reside in a dedicated memory page (starting
from BASE) and all unused bytes in this page are initialized randomly, to hide
code and data. This page is generated on-demand by the verifier and transmitted
encrypted to the untrusted system. The latter stores in memory, at the BASE
address, the page and waits for the decryption key. Attestation begins when
the verifier sends out the key. The reason for encryption is to exclude from the
measurement the time required to transmit and prepare the TPEB.

4.2 Checksum Function

The checksum function is composed by a prologue, a checksum loop, and an
epilogue (Figure 2). The prologue decrypts the rest of the page containing the
checksum function, initializes the execution environment for the remaining of
the computation, and invokes the checksum loop. The checksum loop (described
in Section 4.2) computes the checksum of the memory pages containing its own
code, the send function, and the executable, (i.e., from BASE to BASE + SIZE),
and invokes the epilogue. The epilogue invokes the send function, which in turn
invokes the executable.

The checksum function computes the checksum by combining multiple check-
sum gadgets. In the current implementation the checksum size is 128 bits. A
gadget (ci) is a small code snippet that receives in input the address of a mem-
ory location and updates the running value of the checksum, according to the
content of the memory. We refer to these gadgets as active, since they are in-
tentionally executed by the checksum function. The purpose of an active gadget
is twofold. First, each gadget contributes to the computation of the checksum
in a different way. Thus, the correct checksum can be computed only if all the
gadgets are executed in the proper order and with the proper arguments. Sec-
ond, certain gadgets perform additional operations to verify the trustworthiness
of the execution environment and, in case the environment has been tampered,
they either corrupt the checksum or introduce a time overhead. Since gadgets
are scattered around the memory, differ syntactically and semantically from one
checksum function to another, and are obfuscated, it becomes very difficult for
the attacker to reconstruct the exact logic of the checksum function.

In addition to active gadgets, the checksum function relays on passive gadgets
(hj), orhandlers, that arenot invokeddirectlyby the checksumfunction, but rather
as the result of anunexpected event that can occur only in a tampered execution en-
vironment. If executed, passive gadgets corrupt the checksum. Passive gadgets are
registered during the prologue, by replacing the Interrupt Descriptor Table (IDT)

Conqueror: Tamper-Proof Code Execution on Legacy Systems 27

Send function

Executable

c0

c1

c2
c3

c4
h0

c6

c7

c8

c9

c10

c11

c12

c13

c14c15
c16

c5

h1

h2h3

Epilogue

Checksum
loop

IDT

Checksum function

Prologue
BASE

BASE + 0xFFF

BASE + SIZE

R
e
g
io

n
o
n

w
h
ich

th
e

ch
e
ck

su
m

is
c
o
m

p
u
te

d

Fig. 2. Overview of the TPEB

withanewone embeddedwithin theTPEB,andcannotbedisabledby theattacker:
an improper configuration of these gadgets will result in a wrong checksum.

Prologue. The prologue (Figure 3) is a small routine that decrypts the rest
of the page and initializes the trusted execution environment. More precisely,
the prologue disables all maskable interrupts (line 2), decrypts the rest of the
page (line 4 and 5), and installs custom interrupts handlers (line 7). Custom
handlers are installed by updating the address of the interrupt descriptor table
(IDT). The new address is set to a location, within the memory page containing
the checksum function, that holds a pre-initialized IDT (Figure 2). The mapping
between interrupts and handlers (the content of the IDT) is chosen by the verifier
and not known to the attacker. The handlers (hi in Figure 2), or passive gadgets,
are a special type of gadget: like normal gadgets they modify the running value
of the checksum, but they terminate their execution with a special instruction to
return to normal execution (i.e., iret). Furthermore, handlers are never invoked
explicitly by the checksum loop but only in response to interrupts or exceptions.

The purpose of the prologue is twofold. First, by disabling maskable interrupts
(pin-based interrupts generated by the peripherals) we inhibit the asynchronous
execution of all handlers. Second, by installing custom interrupt handlers that
update the checksum value, we can tell whether any interrupt or exception oc-
curred during the computation of the checksum. If maskable interrupts are suc-
cessfully disabled, no asynchronous interrupt occurs, and the checksum is not
corrupted because no interrupt handler is fired. Similarly, if the checksum loop
executes privileged instructions, and the checksum function is executed in sys-
tem mode, no exception occurs and no exception handler corrupts the checksum.
On the other hand, any attempt to execute the checksum function in user mode

28 L. Martignoni, R. Paleari, and D. Bruschi

1 // Disable maskable interrupts
2 asm("cli");
3 // Decrypt the remaining of the page
4 for (i = PROLOGUE_SIZE; i < 4096; i++)
5 BASE[i] ^= KEY[i % KEY_SIZE]
6 // Install custom interrupt handlers
7 asm("lidt %0" : : "m" (IDT));

Fig. 3. Overview of the prologue

1 for (i = 0, j = 0; i < ITERATIONS; i++) {
2 x = seed(i) % (SIZE / 4);
3 do {
4 x = (x + (x*x | 5)) % (SIZE / 4);
5 checksum_gadget[j++ % GADGETS](BASE + x*4);
6 } while (x != seed(i) % (SIZE / 4));
7 }

Fig. 4. Overview of the checksum loop
(in C for clarity)

results in an exception, in the execution of the corresponding handler, and in a
corruption of the checksum value.

By positioning the IDT in the same memory page of the checksum function, we
implicitly certify the content of the table. The only opportunity for the attacker
is to intercept and simulate a successful update of the IDT. For example, the
attacker could emulate the execution of the prologue or execute the prologue in
user-space, such that the update of the IDT will raise an exception and will be
intercepted. Then, the attacker could install his own malicious IDT and simulate
a successful disabling of maskable interrupts. We prevent this attack by including
in the checksum loop a special gadget that queries the address of the IDT and
updates the running value of the checksum accordingly. Therefore, attacker’s
attempts to relocate the IDT will result in a corrupted checksum. Further details
about the aforementioned gadget and about why its execution cannot be detected
by the attacker are given in Section 4.2.

In conclusion, a correct value of the checksum, received by the verifiers within
the expected time, certifies that the prologue is executed successfully, that the
checksum function is executed at the maximum privilege level, and that the
attacker cannot interrupt the execution using interrupts or exceptions.

Checksum Loop. The core of the checksum computation is the checksum loop
shown in Figure 4. The checksum loop is composed by two nested loops. The
innermost loop traverses the memory and updates the checksum according to
the content of the memory, invoking a different gadget at each iteration. The
memory is not traversed linearly, but instead in a pseudorandom fashion (line
4), using a T-function [11]. The T-function produces a pseudorandom permu-
tation of all the memory locations to traverse. More precisely, the T-function
returns the memory offset of the next memory location for the checksum com-
putation. At each iteration (line 5), from the offset returned by the T-function,
the checksum loop computes the absolute address of the memory location to pro-
cess, and invokes a specific gadget to update the running value of the checksum
(GADGETS represents the number of gadgets available). Clearly, without an anal-
ysis of the code, the attacker cannot predict which gadgets will process which
memory locations and, even if the checksum function were weak (e.g., it suffers
a high collision rate), the attacker would not have enough time to exploit the
weakness. Finally, it should be noted that the execution of the checksum loop is
deterministic, unless it is tampered.

Conqueror: Tamper-Proof Code Execution on Legacy Systems 29

The outermost loop repeats the memory traversal multiple times (ITERATIONS
denote the number of iterations of the outermost loop). At each iteration, the
T-function used in the innermost loop is initialized with a different seed (line 2).
Therefore, the innermost loop is executed multiple times and at each execution
the running value of the checksum is updated using a different combination of
memory locations and gadgets, and the order in which the checksum is updated
is also different. Since the checksum function is constructed such that any at-
tacker’s attempt to forge the correct checksum will introduce an overhead in
the computation of the checksum, the outermost loop causes a constant time
overhead per iteration and facilitates the detection of the attack. Details about
how we select the optimal number of iterations for the outermost loop are given
in Section 5.

The seeds used by the T-function to generate the addresses are also included
in the memory page containing the checksum function. To avoid wasting precious
bytes of the page, the vector containing the seeds is positioned at a random lo-
cation within the page and is not initialized, to overlap with the existing content
of the page.

Checksum Gadgets. The checksum is computed by executing a sequence of
gadgets, each of which contributes to update the running value of the checksum
in a different way. Certain gadgets also perform additional operations to attest
the trustworthiness of the execution environment. Given that gadgets are very
small in size and that an entire memory page is dedicated to the checksum
function, the checksum function can rely on about a hundred different gadgets
simultaneously. Gadgets are generated on demand by the verifier and change (in
number, position, syntax, and semantics) from challenge to challenge.

The following paragraphs describe in details the gadgets used in the checksum
function to attest the integrity of the TPEB and of the code of the executable.
Figure 5 shows some sample gadgets. For clarity, the gadgets presented are not
optimized and use symbolic names (in uppercase) to refer to absolute memory
locations containing data: CHKSUM and ADDR refer respectively to the memory
locations storing the 128-bit checksum and the address of the next word to
process.

Plain checksum computation. The simplest and most frequently used gadget
is responsible only for updating the running value of the checksum. Different
gadgets update the checksum in different ways, by applying different arithmetical
or logical operations and by modifying different bits of the checksum value.
Figure 5(a) shows a sample gadget. The gadget updates the checksum by adding
the result of a bitwise XOR between the current memory location (ADDR) and a
random key (0xa23bd430). Note that this gadget modifies the second word of
the running 128-bit checksum (CHKSUM+4, at line 4).

IDT attestation. During the prologue, the interrupt descriptor table is replaced
with a custom table, which is provided along with the checksum function. Since
the prologue is executed at the beginning of the checksum function, it is reason-
able to expect the attacker to try to emulate or intercept its execution.

30 L. Martignoni, R. Paleari, and D. Bruschi

1 mov ADDR , %eax
2 mov (%eax), %eax
3 xor $0xa23bd430 , %eax
4 add %eax , CHKSUM +4

1 mov ADDR , %eax
2 mov (%eax), %eax
3 add %eax , CHKSUM +8
4 sidt IDTR
5 mov IDTR+2, %eax
6 xor $0x6127f1 , %eax
7 add %eax , CHKSUM +8

1 mov ADDR , %eax
2 mov (%eax), %eax
3 xor $0x1231d22 , %eax
4 mov %eax , %dr3
5 mov %dr3 , %ebx
6 add %ebx , CHKSUM

1 mov ADDR , %eax
2 mov (%eax), %eax
3 lea l_smc , %ebx
4 roll $0x2 , 0x1(%ebx)
5 l smc :
6 xor $0xdeadbeef , %eax
7 add %eax , CHKSUM +4

1 mov ADDR , %eax
2 mov (%eax), %ebx
3 and $0xfffff000 , %eax
4 add $0x2b8 , %eax
5 movb (%eax), %cl
6 movb $0xc3 , (%eax)
7 call %eax
8 movb %cl, (%eax)
9 xor $0x7b2a63ef , %ebx

10 sub %ebx , CHKSUM +8

1 mov ADDR , %eax
2 mov (%eax), %ebx
3 vmlaunch
4 xor $0x7b2a63ef , %ebx
5 sub %ebx , CHKSUM +8

(a) (b) (c)

(d) (e) (f)

Fig. 5. Sample gadgets for (a) plain checksum computation, (b) IDT attestation, (c)
system mode attestation, (d,e) instruction and data pointers attestation, and (f) hy-
pervisor detection

The content of the IDT is implicitly attested by the normal checksum compu-
tation, but the address of the IDT is not. To attest that the IDT shipped with
the checksum function is actually being used, the checksum function relies on
a specific gadget that queries the CPU to obtain the address of the IDT and
updates the checksum accordingly. Obviously, the checksum will be wrong if a
different IDT is being used. The only opportunity for the attacker to force the
checksum function to behave as if the requested IDT were successfully installed
is to intercept the query and to manipulate its output. To query the address of
the IDT, the gadget uses the sidt instruction. Unfortunately for the attacker,
this instruction is not privileged: it does not trigger an exception when executed
in user mode [12]. Consequently, the only solution for the attacker to detect the
instruction is to analyze the checksum function or to emulate its execution. How-
ever, any analysis or emulation attempt will introduce a noticeable overhead in
the computation of the checksum. Figure 5(b) shows a sample gadget to attest
the IDT. The only difference with a plain gadget (Figure 5(a)) is the addition
of the instructions to query the address of the IDT (lines 4 and 5).

System mode attestation. After the update of the IDT, the attacker cannot regain
the control of the execution, because all interrupts and exceptions will be served
by the handlers installed by the checksum function. Although the previously
described gadget forces the attacker to install our IDT, he could still attempt
to execute the entire checksum function in user mode. If no maskable interrupt
occurred during the execution of the checksum function, the checksum would
not get corrupted, and the attack would not be detected. However, even if we
suppose that the attacker executed the checksum function in user mode and that
he were able to reprogram the interrupt controller to prevent any interrupt, he

Conqueror: Tamper-Proof Code Execution on Legacy Systems 31

would lose any opportunity to regain the control of the system after checksum
computation.

To have the guarantee that the TPEB is operating in system mode, the check-
sum function relies on a specific class of gadgets. These gadgets use a privileged
instruction to update the running value of the checksum. If the function is ex-
ecuted in system mode, all the instructions of the gadgets will be executed
successfully. However, if the function is executed in user mode, the privileged
instruction will raise an exception (because of the lack of privileges), and the ex-
ception handler we installed to handle the exception will corrupt the checksum.
In some cases, the handler could also trigger an endless loop. An example of such
a gadget is shown in Figure 5(c). The gadget uses the CPU register dr3 to store
an intermediate result during the computation of the new checksum value. This
register can be accessed only in system mode and any access originating from
user mode causes a general protection fault exception.

Instruction and data pointers attestation. The checksum function is a self-
checksumming function. A common class of attacks against self-checksumming
functions are memory copy attacks, that allow attackers to forge checksums [6].
Briefly, in a memory copy attack, the attacker modifies the instructions of the
checksum function, or the execution environment, to redirect all memory reads
to memory locations containing a pristine copy of the data to attest. A memory
copy attack can be performed in different ways: (i) by patching the instructions
of the checksum function to read from different locations, (ii) by configuring
segmentation to separate the code from the data segment, and (iii) by desyn-
chronizing the data and the instruction TLBs [9].

To prevent memory copy attacks, the checksum function uses a specific type
of gadget that guarantees that reads, writes, and fetches involving the same
virtual memory location refer to the same physical location. Indeed, data and
instruction physical pointers equivalence is sufficient to guarantee that no mem-
ory copy attacks of type (ii) and (iii) can be performed. We intentionally do not
consider the case of memory copy attacks of type (i), performed by patching or
by emulating the checksum function, because of the noticeable time overhead
the attacker would suffer. To validate the equivalence of data and instruction
pointers we leverage a gadget based on self-modifying code [13]. The gadget
updates the running value of the checksum by performing an operation that
is generated dynamically by modifying the code of the checksum function in
place. If no memory copy attack is being performed, the data pointer (used for
both reads and writes) and the instruction pointer point to the same physical
page. Thus, the memory write executed by the gadget to update its instruc-
tion modifies the physical page that is also being executed. If the attacker were
performing a memory copy attack, the data and the instruction pointer would
point to two different physical pages and the instruction executed to update the
checksum would differ from the ones just created by the gadget. Consequently,
the out-of-date instruction would corrupt the checksum.

Figure 5(d) shows a sample gadget used by Conqueror to prevent memory
copy attacks. The gadget updates the checksum by adding the data read from
the memory (lines 1, 2, and 7). Before the addition, the word read is XORed with

32 L. Martignoni, R. Paleari, and D. Bruschi

an immediate (line 6). The immediate is rotated (by two bits) at each execution
of the gadget, by modifying the operand of the instruction in place (line 3 and
4). In the case of a memory copy attack the checksum would not be updated
correctly because the operand of the xor instruction would remain unmodified.

Note that, in the case of a memory copy attack of type (iii), the attacker
can operate on each page separately. The aforementioned gadget successfully
protects against the desynchronization of data and instruction pointers that
point to the page containing the checksum function, but, as is, it is ineffective
at protecting other pages (containing the send function and the executable).
Indeed, only instructions residing in the page containing the checksum function
are executed during the checksum computation. To address this problem, we use
a variation of the original gadget, that places a temporary small snippet of code
(e.g., a ret instruction) in a random position of the input page, executes the
snippet, and restores the original content of the modified locations. Figure 5(e)
shows an example of this type of gadget. The gadget selects a random location in
the page being attested (lines 1 to 4), saves the content of the location (line 5),
replaces the content with a ret instruction (line 6), executes the newly generated
instruction (line 7), restores the original content of the modified location (line
8), and finally updates the checksum (line 9 and 10).

Hypervisor detection. An attacker operating in hypervisor mode, on a system
with hardware support for virtualization, has complete control of the operat-
ing system: he can intercept the execution of all sensitive instructions, inter-
rupts, exceptions, and, most importantly, the hypervisor and the attacker are
completely transparent to guests. Dai Zovi and Rutkowska et al. have clearly
demonstrated what an attacker can do on systems with hardware support for
virtualization [14,15]. The gadgets presented so far are effective at attesting the
trustworthiness of the execution environment only if we can guarantee that no
attacker can operate in hypervisor mode. Therefore, the checksum function that
attests the existence of a tamper-proof execution environment on the untrusted
system must be adapted to compute the correct checksum value, in the expected
amount of time, only when no hypervisor is running on the system.

There is a rich ongoing debate among researchers about hypervisors detection
and hiding. Although, the hardware has been specifically designed to masquer-
ade the existence of a piece of code running in hypervisor mode, everybody
has become aware that constructing a completely transparent hypervisor is fun-
damentally infeasible and impractical from a computational and engineering
prospective [16]. Indeed, hypervisors introduce several discrepancies, especially
in terms of resources and timings. Our goal is to exploit these discrepancies, in
particular timing discrepancies, to detect when the execution environment could
not guarantee untampered execution. The main advantage we have over attack-
ers is that checksum validation is performed by an external party, the verifier,
that has a real perception of time. We exploit this advantage by including in the
checksum function special gadgets that execute instructions that unconditionally
trap to the hypervisor. Similarly to exceptions, hypervisor traps cause the CPU
to spend several cycles to transition from system (or user) mode to hypervisor
mode, to execute the handler of the hypervisor, and to transition back to system

Conqueror: Tamper-Proof Code Execution on Legacy Systems 33

mode. By periodically executing such instructions, we cause a noticeable time
overhead when a hypervisor is running on the untrusted system.

Figure 5(f) shows a sample gadget we use to detect hypervisors. The gadget
reads a word from the memory (line 1), executes a vmlaunch instruction (line
3), and then updates the checksum (line 4 and 5). Other instructions, such as
cpuid, vmread, and vmcall, can be used for this purpose. The vmlaunch in-
struction is available only on CPUs with hardware support for virtualization.
Furthermore, the instruction can be executed only when virtualization support
has been enabled. If a hypervisor is running on the untrusted system, any at-
tempt to execute the instruction results in a trap to the hypervisor. In any other
situation the CPU refuses to execute the instruction and generates an illegal
operation exception. Recall that, by installing a custom IDT, we register han-
dlers for all exception and that these handlers modify the running value of the
checksum. In particular, the handler for illegal instruction exception we install
additionally updates the address of the faulty instruction for resuming the nor-
mal execution of the checksum function from the next one. That is necessary
to prevent an endless loop. To do not interfere with the correct checksum com-
putation, after the trap, the attacker has to reproduce the situation that would
occur on a system without hypervisor: he has to inject an illegal instruction
exception into the guest to trigger the handler registered during the prologue.
If the attacker mimics exactly the behavior of the CPU in the absence of the
hypervisor, the checksum is computed correctly. However, the cost of the trap,
of the execution of the logic to handle the trap, of the event injection, and of
the exception handling we have on a system controlled by an attacker operating
in hypervisor mode is much higher than the cost of the mere exception handling
that we would have on a system without hypervisor. In conclusion, the gadget
takes much longer to execute in an insecure execution environment. By executing
this type of gadgets multiple times during the checksum loop we have the guar-
antee that, if the checksum computation produces the correct return value and
it does not exceed the expected computation time, the execution environment is
tamper-proof.

It is worth noting that if the attacker attempted to execute the checksum
function directly in hypervisor mode, he would never be able to regain the control
of the execution (this is the same case of an attacker that executes the checksum
function in system mode without any hypervisor).

4.3 Obfuscation

After generation, the checksum function is obfuscated using simple obfuscation
techniques [17]. Particular efforts are devoted to obfuscate the checksum loop
because, by analyzing the loop, the attacker could identify the position of the
various gadgets. The strategy we adopt is to introduce specific gadgets for obfus-
cating the logic of checksum computation. More precisely, these gadgets replace
some of the existing gadgets and interrupt handlers with new ones. Further-
more, we obfuscate gadgets singularly by introducing dead code, overlapping
instructions, and non-trivial pointers computations.

34 L. Martignoni, R. Paleari, and D. Bruschi

The gadgets we used for normal checksum computation give, as a side effect,
an extra advantage for the verifier over the attacker. The presence of aggressive
self-modifying code prevents the attacker from using efficient code emulations
techniques, such as dynamic binary translation and software-based virtualiza-
tion. Indeed, self-modifying code invalidates cached translated code, and forces
the emulator to analyze and translate the code again and again. We have experi-
enced directly this problem during the development of Conqueror: self-modifying
code executed in system mode caused our development system, based on Virtu-
alBox [18], to trash.

5 Evaluation

5.1 Prototype

We implemented a prototype of Conqueror to evaluate the effectiveness of our
proposed solution. The prototype is specific for untrusted 32-bit systems running
Microsoft Windows XP, and it consists in a hybrid user/kernel space component,
implementing the verifier protocol, and a device driver that stays resident on the
untrusted system.

When the verifier wants to bootstrap a tamper-proof execution environment
on the untrusted system, it generates a new checksum function and encrypts
it. Checksum functions are generated by leveraging a code generation module,
currently written in Python. The verifier uses a kernel component to precisely
measure packets transmission and arrival times. The kernel component running
on the untrusted system passively waits for challenges. When challenged, it fills
the TPEB with the encrypted checksum function; when the key is received, the
attestation begins. To minimize network latency, both parties intercept challenge
requests and responses through a hook installed in the network driver.

To experiment the feasibility of attacks based on hardware-assisted virtualiza-
tion and their cost we also implemented a minimalistic hypervisor, inspired by the
Blue Pill hypervisor [15], that simply resumes normal execution after traps. Ob-
viously, any meaningful hypervisor must be much more sophisticated than this.

5.2 Experimental Setup

For our experiments we employed three laptops with the following characteris-
tics: Intel Core2 Duo 2.1GHz, with 4GB RAM, and a Broadcom BCM5906M
network card, connected on the same 100Mbps local network. The first laptop
was used as a verifier, the second one as the untrusted system, and the third
one as a trusted system. Since our current implementation does not support
SMP, on the laptops we used as trusted and untrusted systems we disabled the
secondary core of the CPU. In our experiments, the total size of the TPEB and
the executable was fixed to six 4Kb pages.

5.3 Estimating the Parameters of the Challenge

To estimate the various parameters involved in the attestation scheme, we con-
sidered two attack scenarios: a dynamic hypervisor-based attack, and a static
attack aiming to reverse engineer the checksum function.

Conqueror: Tamper-Proof Code Execution on Legacy Systems 35

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 1 2 3 4 5 6 7 8 9 10

T
im

e
(m

s)

of iterations

Upper bound on network RTT

Fig. 6. Time overhead in a hypervisor-based attack

To understand how the various parameters of the challenge influenced the
overall time to compute the checksum and to understand the opportunities of
the attackers, we generated multiple checksum functions, varying the number
and type of gadgets and the number of iterations of the checksum loop. After
several experiments we decided to fix a minimum for the number of gadgets
for “hypervisor detection”. In each of the checksum functions we subsequently
generated, at least 5% of the total of gadgets performed hypervisor detection.

To estimate the maximum checksum computation time and the network round-
trip time (RTT), the verifier relies on a third-party trusted system, with the same
hardware characteristics of the untrusted system. It is worth noting that check-
sum functions can be generated ahead of time and their execution time can be
precomputed. Indeed, the running time depends only on the checksum function,
on the CPU, and on the amount of data to attest. Given multiple measurements of
the checksum computation time, we estimate the maximum computation time us-
ing Chebyshev’s inequality, that states that for a random variable X , with mean
value μ and standard deviation σ, Pr(μ − σ ≤ X ≤ μ + σ) ≥ 1 − 1

λ2 , where
λ ∈ R. In our context, X is the computation time, including the network RTT1.
Therefore, the upper bound on checksum computation time is Δt = μ + λσ, with
confidence 1

λ2 . Similarly, the minimum checksum computation time of the most
powerful attacker (i.e., an attacker operating in hypervisor mode) is μ − λσ; in
the calculation of the minimum computation time of the attacker we assumed the
adversary to have a null network overhead.

The number of iterations of the checksum loop must be selected to force the
time overhead suffered by the attacker to skyrocket. On the other hand, an
excessive number of iterations would increase attacker’s opportunities to reverse
engineer the checksum function. The challenge is to find the best balance between
the two. The approach we used was to generate multiple checksum functions, and

1 Clearly attestation requires RTT to be minimal. The verifier can measure the RTT
and wait to start the challenge if the RTT is too high.

36 L. Martignoni, R. Paleari, and D. Bruschi

to compare the time to compute the checksum in the trusted environment and
in the environment controlled by the most powerful attacker. Figure 6 depicts
the time overhead suffered by the attacker during our simulations, performed
using five different checksum functions. More precisely, the figure shows the
difference between the time to compute the checksum on the simulated untrusted
system and on the trusted one. The simulation confirmed our hypothesis: the
time overhead suffered by the attacker increases with the number of iterations of
the checksum loop. According to our simulation two iterations are sufficient to
detect an attack in our experimental scenario (attestation of six memory pages).
However, to prevent false negatives, we doubled the number of iterations. Note
that the number of iterations to detect a forgery is inversely proportional to the
amount of memory to attest; thus, the number of iterations performed by the
checksum loop can be tuned accordingly.

5.4 Experimental Results

Using the approaches described in the previous paragraphs we generated multi-
ple challenges and used them to verify the effectiveness of Conqueror at detecting
authentic checksum computations from forgeries. For clarity we refer to Δt, the
upper bound of the checksum computation time estimated using Chebyshev’s in-
equality, as the attacker detection threshold. In our experiments we chose λ = 11
to obtain an attacker detection rate with 99% confidence. For each challenge we
estimated the attacker detection rate by challenging multiple times the trusted
host. Subsequently we challenged the untrusted system twice: once the untrusted
host simulated a genuine system (i.e., with no attacker), and once the host sim-
ulated the presence of the most powerful dynamic attacker (i.e., an attacker
attempting to forge the checksum using a hypervisor-based attack). In all the
challenges the untrusted system computed the correct checksum without ex-
ceeding the attacker detection rate. Similarly, in all the challenges the untrusted
system under the control of the attacker did not compute the correct checksum
in time to be considered authentic.

Figure 7 shows the details of one of the challenge we used during the experi-
ment. The figure compares the time the untrusted system took to compute the
checksum in the two aforementioned scenarios (the same challenge was repeated
more than 50 times). Moreover, the figure shows the attacker detection thresh-
old (Δt), and the lower bound for the most powerful attacker (μhvm − 11σhvm).
For the challenges in the figure, the average network RTT was less than 0.32ms,
and the attacker detection rate was 112.44ms. Similarly, the lower bound for
the computation of forged checksum was 115.56ms. The four ms difference and
the very small variance between the two clearly indicate that false negatives
are practically impossible. The data in the figure confirms the claim: no check-
sum was forged in time to be considered valid and no authentic checksum was
considered forged.

The figure also compares the time requested to compute genuine checksums
with the time the attacker would require to perform a preliminary static analy-
sis (i.e., a recursive disassembly) of the checksum function. To measure to cost
of the analysis, we loaded in Ida Pro [19], a widely used and well recognized

Conqueror: Tamper-Proof Code Execution on Legacy Systems 37

 104

 106

 108

 110

 112

 114

 116

 118

 0 10 20 30 40 50 60

T
im

e
(m

s)

measurements

Δt

μhvm - 11 σhvm

Preliminary static analysis (disassembly)

No attack
Hypervisor-based attack

Fig. 7. Checksums computation time in different scenarios

disassembler, the checksum function and then measured the analysis time. Note
that the checksum analyzed through Ida Pro was generated without employing
any obfuscation technique because the disassembler would not have been able
to analyze the code otherwise. The preliminary analysis took about 105ms, just
four ms less than the attacker detection rate. Considering that disassembly is
fundamental for any static analysis, and that any meaningful analysis to recon-
struct the semantic of the checksum function costs much more, it is practically
impossible for an attacker to forge a checksum without being detected.

5.5 A Real Application of Conqueror

Conqueror has been developed to build security applications that must be in-
stalled and executed on an untrusted system. All the aforementioned experi-
ments were performed using dummy executables. Nevertheless, to demonstrate
the versatility of Conqueror we have developed a special application intended
to be run in the tamper-proof execution environment established by Conqueror.
The application was a loader for a hypervisor. The goal was use this loader to
install a measured hypervisor on an untrusted system [1], on-the-fly, and to seg-
regate the untrusted system in a guest virtual machine. We successfully installed
the hypervisor on our test untrusted system and then resumed the normal, but
controlled, execution of the system. In conclusion, Conqueror represents a pure
software alternative to the senter and skinit operations available in the In-
tel LaGrande [1] and AMD Pacifica [8] technologies for hypervisors secure late
launch.

6 Discussion

Conqueror conservatively assumes that if a hypervisor is installed on the system,
the hypervisor is malicious. It would be worthless to use Conqueror in a system

38 L. Martignoni, R. Paleari, and D. Bruschi

that runs as a guest of a benign hypervisor: the dynamic root of trust could be
established directly by the hypervisor.

The major limitation of Conqueror is the impossibility to bootstrap a tamper-
proof environment on SMP and SMT systems. Most modern systems support
symmetric flow of executions. An attacker could use the secondary computa-
tional resources to forge checksums or to regain control of the execution after
attestation. Although we have not addressed the problem in detail, we would
like to sketch a possible solution. The verifier can challenge the untrusted SMP
(or SMT) system with multiple challenges simultaneously. More precisely, each
processor is given a different checksum function to execute. To solve the chal-
lenge, the untrusted system has to compute all the checksums and send them
back to the verifier, within the given time frame. Thus, the attacker is left with
no spare computational resource to use.

7 Related Work

The majority of the research work on software-based attestation and verifiable
code execution is specific for embedded devices and sensor networks. Most of the
schemes are based on the same type of challenge and response protocol [3,4,5,6];
they have been thoroughly presented in Section 2. The strength and weaknesses
of these schemes have been studied by Castelluccia et al. [20]. The approach used
in Conqueror is instead inspired by the work done Shaneck et al. and by Garay
et al. [2,7]. However, the two attestation schemes are also specific for embedded
devices and not suited at all for attestation on legacy systems, the target of
our work. Genuinity and Pioneer are two schemes, for environment attestation
and verifiable code execution respectively, specific for legacy systems [21, 6].
Unfortunately, both schemes are vulnerable to attacks. The vulnerabilities of
the former have been studied by Shankar et al. [22]. The vulnerabilities of the
latter have been introduced in Section 2.

The alternative approach to software-based attestation is hardware-based at-
testation. The research community spent a lot of efforts in developing hardware
technology equipped with special trusted components to make hardware-based
attestation practical. Examples of hardware technology with such capabilities
are Cerium [23], BIND [24], Intel LaGrande Technology [1], and AMD Pacifica
Technology [8]. In particular, thanks to the efforts of the Trusted Computing
Group and the standardization of the TPM chip [25], Intel LaGrande and AMD
Pacifica technologies are slowly becoming mainstream. They have been used
as ground to develop various hardware-based attestation schemes. Examples of
these schemes are the IBM Integrity measurements Architecture [26], the Open
Source Loader [27], Terra [28], and Flicker [29]. Similarly to Conqueror and Pi-
oneer, Flicker’s goal is to achieve tamper-proof execution of code on untrusted
systems. However, while Conqueror and Pioneer are entirely software-based so-
lutions, Flicker leverages the TPM, available on modern commodity hardware,
to accomplish the same goal. In particular Flicker relies on a feature introduced
in the CPU that allows the secure late launch of virtual machine monitors.

Conqueror: Tamper-Proof Code Execution on Legacy Systems 39

8 Conclusions

We presented Conqueror, a software-based code attestation scheme for tamper-
proof code execution on untrusted legacy systems. Conqueror allows to exe-
cute an arbitrary piece of code with the guarantee that it is run untampered,
even when no specific hardware for trusted computing is available. We devel-
oped an experimental prototype of Conqueror, to evaluate its resilience against
hypervisor-based attacks, the most powerful type of dynamic attack, and against
attacks based on static analysis of the code. By leveraging Conqueror, we also
developed a proof-of-concept pure software-based primitive to launch securely a
hypervisor in a running untrusted system.

References

1. Grawrock, D.: Dynamics of a Trusted Platform: A Building Block Approach. Intel
Press, Hillsboro (2009)

2. Garay, J.A., Huelsbergen, L.: Software integrity protection using timed executable
agents. In: Proceedings of the 2006 ACM Symposium on Information, computer
and communications security, ASIACCS (2006)

3. Seshadri, A., Perrig, A., van Doorn, L., Khosla, P.: Swatt: Software-based attes-
tation for embedded devices. In: Proceedings of the IEEE Symposium on Security
and Privacy (2004)

4. Seshadri, A., Luk, M., Perrig, A., van Doorn, L., Khosla, P.: Scuba: Secure code
update by attestation in sensor networks. In: Proceedings of the ACM Workshop
on Wireless Security, WiSe (2006)

5. Seshadri, A., Luk, M., Perrig, A.: SAKE: Software attestation for key estab-
lishment in sensor networks. In: Nikoletseas, S.E., Chlebus, B.S., Johnson, D.B.,
Krishnamachari, B. (eds.) DCOSS 2008. LNCS, vol. 5067, pp. 372–385. Springer,
Heidelberg (2008)

6. Seshadri, A., Luk, M., Shi, E., Perrig, A., van Doorn, L., Khosla, P.: Pioneer:
Verifying integrity and guaranteeing execution of code on legacy platforms. In:
Proceedings of ACM Symposium on Operating Systems Principles, SOSP (2005),
http://www.cs.cmu.edu/~arvinds/pioneer.html

7. Shaneck, M., Mahadevan, K., Kher, V., Kim, Y.: Remote software-based attesta-
tion for wireless sensors. In: Molva, R., Tsudik, G., Westhoff, D. (eds.) ESAS 2005.
LNCS, vol. 3813, pp. 27–41. Springer, Heidelberg (2005)

8. AMD, Inc.: AMD Virtualization, http://www.amd.com/virtualization
9. Wurster, G., van Oorschot, P.C., Somayaji, A.: A Generic Attack on

Checksumming-Based Software Tamper Resistance. In: Proceedings of the 2005
IEEE Symposium on Security and Privacy (2005)

10. Intel, Inc.: Intel Virtualization Technology,
http://www.intel.com/technology/virtualization/

11. Klimov, A., Shamir, A.: A New Class of Invertible Mappings. In: Proceedings of the
4th International Workshop on Cryptographic Hardware and Embedded Systems
(2003)

12. Robin, J.S., Irvine, C.E.: Analysis of the Intel Pentium’s Ability to Support a
Secure Virtual Machine monitor. In: Proceedings of the 9th USENIX Security
Symposium (2000)

http://www.cs.cmu.edu/~arvinds/pioneer.html
http://www.amd.com/virtualization
http://www.intel.com/technology/virtualization/

40 L. Martignoni, R. Paleari, and D. Bruschi

13. Giffin, J., Christodorescu, M., Kruger, L.: Strengthening software self-
checksumming via self-modifying code. In: Proceedings of the 21st Annual Com-
puter Security Applications Conference, ACSAC (2005)

14. Dai Zovi, D.: Hardware Virtualization Based Rootkits. Black Hat USA (2006),
http://blackhat.com/presentations/bh-usa-06/BH-US-06-Zovi.pdf

15. Rutkowska, J.: Subverting Vista Kernel For Fun And Profit. Black Hat USA,
http://www.blackhat.com/presentations/bh-usa-06/

BH-US-06-Rutkowska.pdf

16. Garfinkel, T., Adams, K., Warfield, A., Franklin, J.: Compatibility is Not Trans-
parency: VMM Detection Myths and Realities. In: Proceedings of the 11th Work-
shop on Hot Topics in Operating Systems (HotOS-XI) (2007)

17. Linn, C., Debray, S.: Obfuscation of Executable Code to Improve Resistance to
Static Disassembly. In: Proceedings of the 10th ACM conference on Computer and
communications security, CCS (2003)

18. Sun Microsystems, Inc.: Sun xVM VirtualBox, http://www.virtualbox.org/
19. Hex-Rays: IDA Pro., http://www.hex-rays.com/idapro/
20. Castelluccia, C., Francillon, A., Perito, D., Soriente, C.: On the Difficulty of

Software-Based Attestation of Embedded Devices. In: Proceedings of the 16th
ACM conference on Computer and Communications Security, CCS (2009)

21. Kennell, R., Jamieson, L.H.: Establishing the genuinity of remote computer sys-
tems. In: Proceedings of the 12th USENIX Security Symposium (2003)

22. Shankar, U., Chew, M., Tygar, J.: Side effects are not sufficient to authenticate
software. In: Proceedings of the 13th USENIX Security Symposium (2004)

23. Chen, B., Morris, R.: Certifying Program Execution with Secure Processors. In:
Proceedings of the 9th conference on Hot Topics in Operating Systems (2003)

24. Shi, E., Perrig, A., Van Doorn, L.: BIND: A Fine-Grained Attestation Service
for Secure Distributed Systems. In: Proceedings of the 2005 IEEE Symposium on
Security and Privacy (2005)

25. Trusted Computing Group: http://www.trustedcomputinggroup.org/
26. Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and Implementation of

a TCG-based Integrity Measurement Architecture. In: Proceedings of the 13th
USENIX Security Symposium (2004)

27. Kauer, B.: OSLO: Improving the Security of Trusted Computing. In: Proceedings
of 16th USENIX Security Symposium (2007)

28. Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., Boneh, D.: Terra: a Virtual
Machine-based Platform for Trusted Computing. In: Proceedings of the nineteenth
ACM symposium on Operating systems principles (2003)

29. McCune, J.M., Parno, B., Perrig, A., Reiter, M.K., Isozaki, H.: Flicker: An exe-
cution infrastructure for tcb minimization. In: Proceedings of the ACM European
Conference in Computer Systems, EuroSys (2008)

http://blackhat.com/presentations/bh-usa-06/BH-US-06-Zovi.pdf
http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Rutkowska.pdf
http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Rutkowska.pdf
http://www.virtualbox.org/
http://www.hex-rays.com/idapro/
http://www.trustedcomputinggroup.org/

dAnubis – Dynamic Device Driver Analysis

Based on Virtual Machine Introspection

Matthias Neugschwandtner, Christian Platzer, Paolo Milani Comparetti,
and Ulrich Bayer

Secure Systems Lab, Vienna University of Technology
{mneug,cplatzer,pmilani,ulli}@seclab.tuwien.ac.at

Abstract. In the escalating arms race between malicious code and secu-
rity tools designed to analyze it, detect it or mitigate its impact, malicious
code running inside the operating system kernel provides an extremely
powerful tool. Kernel-level code can introduce hard to detect backdoors,
provide stealth by hiding files, processes or other resources and in general
tamper with operating system code and data in arbitrary ways.

Under Windows, kernel-level malicious code typically takes the form
of a device driver. In this work, we present dAnubis, a system for the real-
time, dynamic analysis of malicious Windows device drivers. dAnubis can
automatically provide a high-level, human-readable report of a driver’s
behavior on the system. We applied our system to a dataset of over 400
malware samples. The results of this analysis shed some light on the
behavior of kernel-level malicious code that is in the wild today.

1 Introduction

Malicious code, or malware, is at the root of many security problems on the
internet. Compromised computers running malware join botnets and participate
in harmful activities such as spam, identity theft and distributed denial of service
attacks. It is therefore no surprise that a large body of previous research has
focused on collecting, detecting, analysing and mitigating the impact of malicious
code.

The analysis of malicious code is an important element of current efforts to
protect computer users and systems from malware. Understanding the impact of
a malware sample allows to evaluate the risk it poses and helps develop detection
signatures, removal tools and mitigation strategies. Because of the large number
of new malware samples that appear in the wild each day, malware analysis
needs to be a largely automated process.

The automatic analysis of malicious programs is complicated by the fact that
malware authors can use off-the-shelf packers to make their samples extremely
resistant to static code-analysis techniques. According to a recent large-scale
study of current malware [1], over 40% of malware samples are packed using
a known packer. Clearly, this is a lower bound to the amount of malware that
is packed because malware authors may be using other, yet-unknown packers
or implement their own custom solutions. While many current packers can be

C. Kreibich and M. Jahnke (Eds.): DIMVA 2010, LNCS 6201, pp. 41–60, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

42 M. Neugschwandtner et al.

defeated by generic unpacking tools [2,3], packers that use emulation-based pack-
ing can currently be fully defeated only after manually reverse-engineering their
emulator [4]. Furthermore, packers based on opaque constants [5], while not yet
available in the wild, can generate binaries that are provably hard to analyze for
any static code analyzer.

Because of these limitations, automatic malware analysis is mostly based on
a dynamic approach: Malware samples are executed in an instrumented sandbox
environment, and their behavior is observed and recorded. A number of dynamic
malware analysis systems are currently available that can provide a human-
readable report on the malware’s activities [6,7]. The output of these tools can
further be used to find clusters of samples with similar behavior [8,9,10], or to
detect specific classes of malicious activity [11].

These systems are able to analyse the behavior of malicious code running in
user-mode. The analysis of kernel-side malicious code, however, poses additional
challenges. First of all, kernel-level malicious code cannot be reliably detected
or analyzed unless the analysis is performed at a higher privilege level than the
kernel itself. Otherwise, kernel-level malware would be able to tamper with or
disable the analysis engine, in a never-ending arms race. This challenge can be
overcome by using out-of-the-box, Virtual Machine Introspection techniques [12],
or with more recent in-the-box monitoring techniques that leverage modern CPU
features to protect the analysis engine [13]. Using such techniques, the injection
and execution of code into kernel-space can be reliably detected [14,15].

Beyond detection, however, understanding the purpose and capabilities of ma-
licious kernel code is also useful. This is challenging because, in contrast to a
user-mode process, kernel code is not restricted to its own address space and to
interacting with the rest of the system through a well-defined system call inter-
face. When monitoring the behavior of a system infected by kernel-side malicious
code, it is not trivial to reliably (a) attribute an observed event to the malicious
code or to the benign kernel and (b) understand the high-level semantics of an
observed event. In the limit, kernel-level malware could replace the entire op-
erating system kernel with its own implementation, making understanding the
differences between the behavior of a clean system and an infected one extremely
challenging. In practice, malware authors prefer to perform targeted manipula-
tions of the operating system’s behavior using hooking techniques, and to make
use of functions offered by the kernel rather than re-implement existing func-
tionality. Therefore, detecting malware hooking behavior has been the focus of
a significant body of recent research [16,17,18,19].

One aspect of malicious kernel code that has received less attention is device
driver behavior. That is, the malware’s interaction with the system’s IO driver
stacks, and the interface and functionality it offers to userland processes. In this
work, we attempt to provide a more complete picture of the behavior of malicious
kernel code. We introduce dAnubis, an extension to the Anubis dynamic mal-
ware analysis system[20] for the analysis of malicious Windows device drivers.
dAnubis can automatically generate a human-readable report of the behavior
of kernel malware. In addition to providing information on the use of common

dAnubis – Dynamic Device Driver Analysis Based on VMI 43

rootkit techniques such as call hooking, kernel patching and Direct Kernel Ob-
ject Manipulation (DKOM), dAnubis provides information about a malicious
driver’s interaction with other drivers and the interface it offers to userspace. To
improve the coverage of its dynamic analysis, dAnubis also includes a stimula-
tion engine that attempts to trigger rootkit functionality. Running dAnubis on
over 400 malware samples that include kernel components allows us not only to
validate our tool, but also to perform the largest study of kernel-level malware
to date.

In summary, our contributions are the following.

1. We present dAnubis, a system for the real-time dynamic analysis of malicious
Windows device drivers.

2. Using dAnubis, we analyzed over 400 hundred samples and present the results
of the first large-scale study of Windows kernel malware. These results give
insight into current kernel malware and provide directions for future research.

3. dAnubis will be integrated into the Anubis malware analysis service, making
it available to researchers and security professionals worldwide.

2 Overview

Rootkits provide malware authors with one of their most flexible and powerful
tools. The term “rootkit” derives from their original purpose of maintaining
root access after exploiting a system, being a “kit” of pieces of technology with
the purpose to hide the attacker’s presence in the system [21]. This can include
hiding files, processes, registry keys and network ports that could reveal an
intruder’s access to the system. Early rootkits ran entirely in user space and
operated by replacing system utilities such as ls, ps and netstat with versions
modified to hide the activities of an unauthorized user. Later rootkits included
kernel-level code, enabling the attacker to do virtually anything on the target
machine, including directly tampering with control flow and data structures of
the operating system. Today, the boundaries between different classes of malware
have become indistinct; many techniques originally used in rootkits are now
employed in other types of malware, such as bots, worms or Trojan horses. In
this paper, we will use the term rootkit to refer to malware that uses kernel-level
code to carry out its operations.

To inject malicious code into the kernel, the attacker can either use an un-
detected, unpatched kernel exploit, such as a buffer overflow, or – much more
convenient – load and install a device driver. The latter method has the disad-
vantage that it depends on hijacking an administrator account. This is in practice
not much of a problem since most Windows machines are operated with Admin-
istrator privileges out of convenience for the user. While Windows Vista or 7 at
least require the user to confirm administrative actions such as driver loading,
Windows XP provides APIs that allow loading an unsigned driver without any
user interaction. As a result, a rootkit usually comes as a user-mode executable
that loads a device driver, which in turn provides all the powerful functionality.

44 M. Neugschwandtner et al.

The goal of dAnubis is to provide a human-readable report of a device driver’s
behavior. Note that detection, that is, distinguishing malicious device drivers
from benign ones, is outside the scope of this work. Some behavior, such as
directly patching kernel code, may give a clear indication that a sample is ma-
licious. Many types of suspicious behavior, however, may also be exhibited by
benign code, especially security tools such as antivirus or personal firewall soft-
ware. The reason is that these tools may attempt to “outsmart” malware by
running deep inside the operating system.

dAnubis analyses a driver’s behavior from outside the box, using a Virtual Ma-
chine Introspection (VMI) approach [12,22]. Our implementation is an extension
of the Anubis malware analysis system, and is based on the Qemu [23] emulator.
By instrumenting the emulator, we can monitor the execution of code in the
guest OS, to observe events such as the execution of the malicious driver’s code,
invocation of kernel functions, or access to the guest’s virtual hardware. Fur-
thermore, by instrumenting the emulator’s Memory Management Unit (MMU),
we can observe the manipulation of kernel memory performed by the rootkit.
dAnubis attempts to reconstruct the high level semantics of the observed events.

One focus of our analysis is to monitor all the “legitimate” communication
channels between the rootkit and the rest of the system. That is, all channels
provided by the OS for the driver to interact with the kernel, with other drivers
and with user-space. This includes the invocation of kernel functions as well
as the use of devices to participate in Windows I/O communication and to
receive commands from user-space. Additionally, dAnubis can detect the use
of a number of rootkit techniques such as hooking and runtime patching of
kernel routines, and provide precise information on which routines are patched
or hijacked. Overall, our tool can thus provide a comprehensive picture of the
behavior of malicious kernel code.

3 System Implementation

A major drawback of any VMI-based approach is the loss of semantic informa-
tion about the guest operating system. Instead of objects and well-defined data
structures, only a heap of bytes is visible from the host system’s point of view.
To reconstruct the necessary information we extract all exported symbols and
data structure layouts from the Windows OS as a preliminary step. During anal-
ysis, we utilize guest view casting of the virtual machine memory as proposed
by Jiang et al. [22].

A further problem arises when comparing process-based dynamic analysis, as it
is implemented in Anubis or comparable sandboxes, and driver-aware approaches.
For userland processes, it is sufficient to watch and trace instructions belonging to
the process in question, whose execution context is easily identifiable. Kernel-level
code, however, can be triggered by multiple means, like interrupts or system calls,
thus possibly running in the context of an arbitrary user-mode process. Therefore,
we use the instruction pointer to determine whether the code being executed be-
longs to the malicious driver.

dAnubis – Dynamic Device Driver Analysis Based on VMI 45

Analyzers

Driver State
Analyzer

Device Handling
Analyzer

Qemu
Emulator

Virtual System
Introspection

Analysis Coordinator
Manage tracked drivers, forward instruction / memory hooks

Memory Coordinator
Memory access checks

Device Driver Coordinator
(Un)Loading supervision, Instruction hooks

Function Coordinator
System call detection

SSDT Integrity
Analyzer

String Analyzer

DKOM Process
Analyzer

Various function call
analyzers

dAnubis extension

Driver Activity
Analyzer

Register Analyzer
DKOM Driver Analyzer

IRP Function Table
AnalyzerKernel Module

Integrity Analyzer

Fig. 1. Architectural overview

Our system consists of two major parts. The Device Driver Coordinator han-
dles device driver-related operations while the Memory Coordinator is respon-
sible for rootkit activity. Specific analysis tasks are carried out by a number of
Analyzers. Figure 1 provides an overview of our system’s architecture.

3.1 Device Driver Analysis

To analyze the behavior of device drivers, we monitor all available interfaces
through which the driver can interact with the rest of the kernel, with other
drivers and with userland processes [24]. The first thing to do in this respect
is intercepting the low-level load- and unload mechanisms. The Windows kernel
objects involved in the loading procedure provide us with import information,
above all the codebase location of the driver, which allows us to track instruc-
tions belonging to the driver. Furthermore, the function addresses of the driver’s
entry routine (comparable to the main function of a normal program), its unload
routine and its I/O dispatch routines can be gathered. Among the latter are the
major functions, a set of well-defined functions a driver has to provide in order
to participate in Windows I/O device communication. Knowing the function ad-
dresses allows us to implement a basic state supervision and relate later analysis
events to the context in which they occurred.

46 M. Neugschwandtner et al.

Driver communication. The communication endpoint of a driver is the device.
To receive I/O requests, a driver has to create a device and provide the afore-
mentioned major functions to handle the requests. If requests require complex
processing that can be subdivided in different parts, devices can be arranged in
a stack. For example this could be the case for an encrypted file system, where
the encryption is handled by the topmost driver in the stack and actual hard-
ware access by the lowest driver. Driver stacking can be exploited for malicious
purposes. For example, a rootkit may attach to the filesystem device stack to
filter the results of file listings before forwarding them up the stack, while a key-
logger can attach to the keyboard device to monitor all keystrokes. Therefore,
we monitor whether a driver creates or attaches to a device.

Actual communication between devices and user- or kernel-mode code hap-
pens by encapsulating the request parameters in an I/O request packet (IRP)
by the Windows I/O manager, which invokes the corresponding major func-
tion of the topmost driver in the stack. The IRP is then passed down and up
its destined device stack. We intercept calls to attached devices, analyze these
IRPs and watch for completion routines, which are invoked upon completion of
a request, allowing them to filter results. Larger data amounts are not directly
passed within the IRP, rather the way how it can be done – buffered I/O, direct
I/O or neither of them – is specified. We also parse this information and detect
strings in the data to be able to track further references to them during execu-
tion. This is accomplished using dynamic data tainting [25]. Specifically, we use
techniques from [9] to detect the use of these tainted bytes in string comparison
operations. This can in some cases reveal triggers for conditional behavior of the
analyzed binary.

Driver activity. To get a picture of what the driver actually does when one of its
functions is executed, we log calls to all exported Windows kernel functions. We
expect that rootkit developers will not develop everything from scratch but make
use of existing functionality. In our evaluation, we show that this assumption
proves correct for most real-world samples.

We also scan the complete driver image for string occurrences and taint them
to be able to log any subsequent access to such strings. As we will show in the
evaluation, this simple mechanism can in practice reveal trigger conditions in the
malicious code, such as the names of files and processes that are to be hidden.

3.2 Memory Analysis

Taking a look at the “standard” rootkit techniques, one similarity is obvious:
they all somehow tamper with kernel memory. We achieve the goal of detecting
malicious kernel memory manipulation by hooking the memory management
unit (MMU) of Qemu. This allows us to detect write access independently of
the instruction used so that we can put specific memory regions of the guest OS
under supervision and analyse malicious changes.

Since some kernel regions are flagged read-only, rootkits often use memory
descriptor lists (MDLs) to re-map a desired memory region to a new virtual

dAnubis – Dynamic Device Driver Analysis Based on VMI 47

address and bypass write protection. Therefore dAnubis also needs to analyze
MDL usage.
Call table hooking. The first interesting memory region is represented by the
system service dispatch table (SSDT). This table keeps a list of Windows system
call handlers that can be invoked by usermode processes by issuing an interrupt
or using the sysenter instruction. In a healthy system, the called table entry
points to the beginning of the desired service routine. Malicious drivers, however,
can overwrite the SSDT entry to point to arbitrary code. When called, this
code typically forwards the request to the original service function, receives the
response and alters it before passing it to the original caller. Again, this method
provides the possibility to exclude rootkit-related information from queries like
directory listings or process lists.

The same principle applies to hooks of other call tables, such as the major
function dispatch table of device drivers. For incoming IRPs the Windows I/O
manager normally looks up the proper handling routine in this table before
invoking it. Again, the control flow can be re-routed by changing an entry in
this table.

To monitor call table hooking behavior, we watch the complete memory region
where a call table resides. If a manipulation occurs in one of the watched memory
regions, we will know exactly which system service or major function has been
hooked and monitor following calls to the hook.
DKOM. Direct kernel object manipulation (DKOM) modifies important data
objects residing in Windows kernel memory. This way it can alter system be-
havior without changing the control flow. To hide a certain process from the
process list, for example, the EPROCESS structure has to be altered such, that
the forward and backward pointers are directed around the target entry, effec-
tively excluding it. Although this method is more powerful and harder to detect
than hooking, it has its shortcomings. It is, for instance, not feasible to mask a
file from a directory listing this way.

To detect and understand DKOM activity, it is necessary to know the exact
location of the kernel objects as well as their data structure and meaning. In our
current implementation, DKOM detection is limited to the process and driver
lists, that are frequently targeted by rootkits for the purpose of stealth.
Runtime patching. Rootkits can also affect the system by directly patching
existing kernel code in memory. Usually the patch jumps to a detour containing
malicious code and then back again to the original code.

To detect runtime patching, we walk through the PsLoadedModuleList to
get the information on the codebase of the kernel modules and put them under
supervision. On an integrity breach we determine exactly which kernel func-
tion has been patched by matching the patched addresses against information
automatically obtained from the Windows debugging symbols.
Hardware access. In addition to manipulating kernel memory, rootkits can
affect the system by directly accessing the underlying hardware. dAnubis moni-
toring of hardware access is currently limited to detecting writes to the
IA32 SYSENTER EIP model specific register. This register points to the system

48 M. Neugschwandtner et al.

service dispatcher routine. Making this register point to malicious code places
rootkit code in the execution path of all system calls.

3.3 Stimulation

Rootkit functionality often depends on external stimuli. While the entry routine
may already perform some malicious activity such as hooking or patching, many
types of behavior may only be performed when triggered by specific user be-
havior. Without the required stimuli, such as keyboard events for keyloggers or
process enumeration for process-hiding rootkits, the results of dynamic analysis
are bound to be incomplete.

Our goal is to improve code coverage by simulating user activity with a stimu-
lation engine placed in the virtual machine. To this end, we implemented a stim-
ulator that repeatedly issues a number of Windows API calls. For example, the
stimulator issues the EnumProcessesAPI call, that lists all currently running pro-
cesses, triggering process hiding behavior. Similarly, it issues the RegEnumKeyEx
call, revealing register hiding. The FindFirstFile and FindNextFile API calls
are used as well to reveal file hiding behavior. Note that although the directory we
are querying with these calls might not contain files to be hidden, hook code will
nevertheless be executed. To trigger network hiding behavior, the GetUdpTable
and GetTcpTable calls are used. Furthermore, random keypresses and mouse ac-
tions are injected to simulate user input.

4 Evaluation

To evaluate our prototype, we first verified its functionality on a set of rootk-
its with known behavior. For this, we chose a representative suite of six well-
known rootkits that employ the popular techniques described in the previous
sections and can be obtained from www.rootkit.com. For each of the six rootk-
its, dAnubis was able to correctly identify its characteristic behavior and present
it in the human-readable report. Table 1 shows which dAnubis components were
involved in providing information on each of the rootkits.

The first sample we selected is TCPIRPHook. This malware modifies the
address of DEVICE CONTROL in the major function table of Tcpip.sys, rerouting
it to a hooking function. This allows the rootkit to hide open network ports.
This hooking behavior was detected by the IRP function table analyzer.

We then selected the HideProcessMDL rootkit as a straightforward exam-
ple of process hiding by SSDT hooking. This rootkit first creates an MDL in order
to gain write access to the SSDT. This is recognized by the memory coordinator,
that can thus apply the mapping upon write access to the watched memory re-
gion. This enables the SSDT integrity analyzer to report the rootkit’s hooking of
NtQuerySystemInformation as soon as the hook is placed. Once the stimulator
queries for the running processes, the driver state analyzer detects the call to the
hooking routine, which in turn invokes the original NtQuerySystemInformation
function. Furthermore, The string analyzer reveals that the hooking routine ac-
cesses the string “ root ” indicating the name of the process that is to be hidden.

www.rootkit.com

dAnubis – Dynamic Device Driver Analysis Based on VMI 49

Klog is a key-logger based on layered filter drivers. During driver initialization
it creates a log file and a virtual device, which it uses to attach to the keyboard
device stack. This behavior, along with name and location of the log file, is revealed
by the device handling, driver activity and string analyzer. Upon stimulation of
keystrokes, the device handling analyzer further detects that the driver Kbdclass
is called by Klog and dynamically adds the completion routine to the state analysis
and so execution of the completion routine is subsequently logged.

Migbot uses run-time patching to modify the kernel functions SeAccessCheck
and NtDeviceIoControlFile. The integrity breach along with the names of the
functions is immediately reported by the kernel integrity analyzer.

The FU rootkit uses DKOM for process and driver hiding. However, it only
performs this hiding function when it receives commands from a user-mode pro-
gram through device communication. To test the DKOM analyzers we manually
ordered FU to hide certain processes and drivers. These manipulations along with
the corresponding filenames were immediately reported by the DKOM analyzers.
Furthermore, the device handling analyzer revealed the string “msdirectx.sys” in
the communication with the user-mode program. This is the name of the driver
we ordered FU to hide.

Finally, we tested the sysenter rootkit to verify that sysenter hooks are cor-
rectly recognized.

Table 1. dAnubis Testing results

Analyzer TCPIRPHook HideProcessMDL Migbot Klog FU sysenter

Device driver coordinator
√ √ √ √ √ √

Memory coordinator -
√

- - - -
Driver state analyzer

√ √ √ √ √ √
Driver activity analyzer

√ √ √ √ √
-

IRP function table analyzer
√

- - - - -
SSDT analyzer -

√
- - - -

String analyzer -
√

-
√ √

-
Integrity analyzer - -

√
- - -

Device handling analyzer - - -
√ √

-
DKOM process analyzer - - - -

√
-

DKOM driver analyzer - - - -
√

-
Register analyzer - - - - -

√

During the analyis of these six rootkits, we also measured the impact of
dAnubis on the performance of the Anubis sandbox. The overhead added by
dAnubis was between 14% and 33%. These results are consistent with our goal
of integrating driver analyis into a large-scale dynamic analysis framework, be-
cause the entire analysis of a malware sample can still be performed in real time,
within the six minute timeslot that Anubis typically allocates to an analysis run.
This is in contrast to some previous systems, such as K-Tracer [18], that need
to perform a heavyweight analysis of detailed execution traces. For instance,
K-Tracer needed over two hours to analyze the HideProcessMDL rootkit.

50 M. Neugschwandtner et al.

4.1 Quantitative Results

We used dAnubis to conduct a large-scale study of kernel malware behavior. To
obtain malware samples for this study, we leveraged the analysis results of the
existing Anubis system. We first considered 64733 malware samples successfully
analysed by Anubis in the month of August 2009. Among those, we selected
the 463 samples (0.72%) that loaded a device driver during Anubis analysis.
More precisely, we selected samples that performed the NtLoadDeviceDriver
system call. We then repeated the analysis of these samples using dAnubis. Note
that some malware may use different mechanisms to load kernel code, such as
the undocumented NtSetSystemInformation system call. Therefore, the actual
number of rootkit samples in the dataset may have been higher than 463. While
dAnubis is capable of correctly analysing rootkits loaded using such methods,
the legacy Anubis system does not detect and log this behavior.

All samples were automatically processed by our implementation and correctly
recognized as drivers. For each test run, we defined a timeout of six minutes,
during which the driver had time to carry out its operations. During the entire
analysis stimuli where provided by our stimulation engine. Table 2 shows which
high-level activity of the samples could be observed by dAnubis. Three quarters
of the samples performed device I/O activity. Among the typical rootkit tech-
niques, MDL-enabled call table hooks and runtime patching seem to be very
popular compared to DKOM.

Table 3 shows an overview of device-related activity. The majority of the
samples – 339 – created at least one device. In 110 cases the device was actively
used for communication by a user mode program: It was at least opened, as
indicated by the calls to the CREATE major function. Out of these, 86 samples
carried out further communication using the device control interface. In the data
buffers passed along with the IRPs, meaningful communication strings could be
found in 24 cases (an example is shown in Table 7). Only two samples attached to
a device stack and registered completion routines. These results allow us to draw
the conclusion that devices are primarily used for communication with user mode
programs whereas hijacking device stacks seems to be far less popular. However,
a significant amount of samples – 229 – register a device, but this device is never
put to any use during the entire analysis run. The most likely explaination for

Table 2. Global analysis statistics

Driver activity number of samples exhibiting behavior

Device driver loaded 463
Windows kernel functions used 360
Windows device I/O used 339
Strings accessed 300
Kernel code patched 76
Kernel call tables manipulated 37
MDL allocated 34
Kernel object manipulated 3

dAnubis – Dynamic Device Driver Analysis Based on VMI 51

Table 3. Device analysis statistics

Device activity number of samples

Device created 339
Driver’s device accessed from user mode 110
Strings detected during communication 24
Attaches to device stack 2
Registers completion routine 2

Table 4. Hiding statistics: subject vs. technique

SSDT hook runtime patching DKOM IRP hook Filter driver total

Registry 5 45 0 0 0 50
File 8 2 0 0 2 12
Process 3 2 3 0 0 8
Driver 0 0 3 0 0 3
Network port 5 0 0 1 0 6

this discrepancy is that the associated executables are merely launchers for the
drivers, that in turn wait for further commands to be manually issued by the
human attacker. This is the case of the FU rootkit we previously discussed. This
means that some of the malicious functionality of these rootkits lies dormant,
waiting for activation, and is therefore not covered by the dynamic analysis. This
result highlights the need for further research in rootkit analysis. Future analysis
systems might be able to automatically trigger rootkits’ dormant functionality,
although the problem of finding trigger conditions in arbitary code cannot be
solved in general [26].

Overall, only 15% percent of the samples carried out rootkit activities. Table
4 shows the amount of samples that provided stealth broken down by the tech-
niques employed as well as the type of object being hidden. Clearly, call table
hooking and runtime patching are the more widespread techniques: only three
samples used DKOM for process hiding. The same samples also used DKOM to
hide their device drivers from the list of kernel modules.

Of the 19 samples that employed SSDT hooking, most hooked more than
one system call. Table 5 shows the most popular system calls hooked. The idea
that rootkits strive to provide stealth is confirmed by the fact that the sys-
tem calls to list files, registry keys and processes are clearly favored by the
attackers. In addition to stealth, another common goal of rootkits is to disable
antivirus protection. Samples hooking the NtCreateProcessEx use this to pre-
vent the launch of anti-malware programs. IRP function table hooks were only
employed by one sample, that hooked the DEVICE CONTROL major function of
Tcpip.sys. Rerouting the device control interface, that is the main communica-
tion access point to the driver, allows this rootkit to hide open network ports.
A less subtle method of hijacking the device control interface is to directly hook
the NtDeviceIoControlFile system call. This technique is used by five sam-
ples, also for the purpose of port hiding. None of the samples used sysenter

52 M. Neugschwandtner et al.

Table 5. Hooked system calls

System service samples

NtQueryDirectoryFile 8
NtCreateProcessEx 8

NtDeviceIoControlFile 5
NtEnumerateKey 3

NtQuerySystemInformation 3
NtEnumerateValueKey 2

NtOpenKey 2
NtClose 1

NtCreateKey 1
NtSetInformationFile 1

NtSystemDebugControl 1
NtOpenProcess 1
NtOpenThread 1
NtCreateFile 1

NtOpenIoCompletion 1
NtSetValueKey 1

NtDeleteValueKey 1
NtMapViewOfSection 1

Table 6. Patched kernel functions

Kernel function samples

NtQueryValueKey 42
NtSetValueKey 2

PsActiveProcessHead 2
NtEnumerateKey 1

IoCreateFile 1
NtQueryDirectoryFile 1

NtOpenKey 1
NtCreateKey 1
pIofCallDriver 1

KiFastCallEntry 1
ObReferenceObjectByHandle 1

KiDoubleFaultStack 1

hooks. The StringAnalyzer, that was mainly introduced to reveal trigger con-
ditions, shows its full potential with SSDT hooks. For example in more than
half of the cases where NtQueryDirectoryFile or NtQuerySystemInformation
has been hooked, the filenames to be hidden showed up in the analysis. This
also demonstrates the importance of event stimulation and the effectiveness of
our stimulation engine, as the strings were mainly detected during execution of
hooking routines that would not have been called without stimulation.

dAnubis – Dynamic Device Driver Analysis Based on VMI 53

About ten percent of the samples used runtime patching. In these cases
dAnubis took advantage of kernel debugging symbols to automatically identify
the patched kernel functions.

Table 6 shows that, as is the case for SSDT hooks, functions that take part
in processing file, process and registry key queries are among the most popular
kernel functions to be manipulated. The pIofCallDriver pointer points to the
low-level kernel code implementation that invokes the major functions of a driver.
Rerouting its control flow allows a rootkit to intercept and manipulate IRPs. The
KiFastCallEntry function is the default handler of the sysenter instruction.
By patching this function, a rootkit inserts malicious code into the code path of
every system call. In this case the automatic analysis cannot tell us what types
of objects are actually being hidden by this rootkit.

4.2 Qualitative Results

To provide a clearer picture of the types of behavior that can be revealed by the
analysis of a kernel malware sample using dAnubis, we selected three interesting
samples out of the dataset discussed in the previous section. For matters of space
and readability the relevant information from the reports has been condensed
into tables.

In Table 7 a selection of analysis results of Sample A are shown. This rootkit
hooks various system calls, among them functions suitable for file and registry
key hiding. Process hiding is performed using DKOM. As the hooking functions
are very similarly structured, the hook of NtEnumerateKey has been chosen
as an example. After calling the original function it queries an object and its
name. It then performs some string operations, which is usually necessary for
filtering information. Furthermore, in the course of the driver’s entry function
a device is created. This device is then used for user mode communication:
DEVICE CONTROL is called from user mode several times and both a registry
key and a file name could be intercepted, that the driver is presumably ordered
to hide. DEVICE CONTROL itself looks up objects according to their name or
ID using ObReferenceObjectByName and PsLookupProcessByProcessId – again
an indication that these objects are to be hidden.

In Table 8 selected analysis results of Sample B are shown. During driver
entry, this sample creates a named device (FILEMON701) for communication
with user mode. This device is then used to issue commands to the driver via
FastIoDeviceControl to install filter drivers for sr.sys and mrxsmb.sys. To this
end, two unnamed devices are created and attached to the associated device
stacks.

The sr.sys driver is the Windows restore filesystem filter driver, that tracks
and copies system files before changes. The mrxsmb.sys is the Windows SMB
Redirector, a filesystem driver that provides access to remote folders shared over
the SMB/CIFS protocol. Our stimulation engine, however, does not perform
operations on network shares, nor does it modify system files. Therefore, during
anlysis we only observed interception of QUERY VOLUME INFORMATION of sr.sys,
that is used to query free disk space or file types. This highlights the challenge of

54 M. Neugschwandtner et al.

Table 7. Analysis report, Sample A

Driver name syssrv

Created devices \Device\MyDriver

Rootkit activity NtOpenProcess hooked SSDT Hook
NtOpenThread hooked SSDT Hook
NtCreateFile hooked SSDT Hook
NtOpenIoCompletion hooked SSDT Hook
NtQueryDirectoryFile hooked SSDT Hook
NtOpenKey hooked SSDT Hook
NtEnumerateKey hooked SSDT Hook
NtEnumerateValueKey hooked SSDT Hook
NtSetValueKey hooked SSDT Hook
NtDeleteValueKey hooked SSDT Hook
svchost.exe hidden DKOM process hiding
ntoskrnl.exe: PsActiveProcessHead Runtime patching

Invoked major functions CREATE called 5x from user mode
DEVICE CONTROL called 5x from user mode
CLOSE called 5x from kernel mode

Detected strings syssrv in DEVICE CONTROL IRP
\Device\HarddiskVolume1 in DEVICE CONTROL IRP
\WINDOWS\system32\mssrv32.exe
SOFTWARE\Microsoft\Windows in DEVICE CONTROL IRP
\CurrentVersion\Run\mssrv32
\Device\%s during entry
MyDriver during entry

Used kernel functions IoCreateDevice during entry
KeInitializeMutex during entry
ObReferenceObjectByName during DEVICE CONTROL
ObReferenceObjectByHandle during DEVICE CONTROL
ObQueryNameString during DEVICE CONTROL
KeWaitForSingleObject during DEVICE CONTROL
KeReleaseMutex during DEVICE CONTROL
PsLookupProcessByProcessId during DEVICE CONTROL
NtEnumerateKey during NtEnumerateKey Hook
ObReferenceObjectByHandle during NtEnumerateKey Hook
ObQueryNameString during NtEnumerateKey Hook
wcslen, wcscpy, wcscat during NtEnumerateKey Hook
KeWaitForSingleObject during NtEnumerateKey Hook
KeReleaseMutex during NtEnumerateKey Hook

implementing a stimulation engine that is capable of activating all hooks inserted
by a rootkit. Note that generic hook-detection tecniques such as Hookfinder [17]
and KTracer [18] cannot detect hooks that are never activated.

The Windows system restore functionality can be used to perform a system
rollback based on the information gathered by the sr.sys driver. By attaching to
sr.sys, the rootkit can prevent system restore from obtaining the necesary infor-
mation on system file changes and ensure that the rootkit will not be removed
by a rollback. The device name and symbols included in the rootkit’s executable
suggest that the publicly available sources of the Filemon tool [27] were used as
a basis for this rootkit.

dAnubis – Dynamic Device Driver Analysis Based on VMI 55

Table 8. Analysis report, Sample B

Driver name FILEMON701

Created devices \Device\Filemon701
unnamed device 1
unnamed device 2

Attached to devices sr
MRxSmb

Completion routine QUERY VOLUME INFORMATION for device ”sr”

Invoked I/O functions CREATE from user mode
QUERY VOLUME INFORMATION from kernel mode
CLEANUP from kernel mode
CLOSE from kernel mode
READ from kernel mode
FastIoDeviceControl

Used kernel functions IoCreateDevice during entry
IoCreateSymbolicLink during entry
IoGetCurrentProcess during entry
ZwCreateFile during FastIoDeviceControl
IoCreateDevice during FastIoDeviceControl
IoAttachDeviceByPointer during FastIoDeviceControl

Table 9. Processes targeted by Sample C

vsdatant.sys watchdog.sys zclient.exe bcfilter.sys bcftdi.sys
bc hassh f.sys bc ip f.sys bc ngn.sys bc pat f.sys bc prt f.sys
bc tdi f.sys filtnt.sys sandbox.sys mpfirewall.sys msssrv.exe
mcshield.exe fsbl.exe avz.exe avp.exe avpm.exe
kavsvc.exe klswd.exe ccapp.exe ccevtmgr.exe ccpxysvc.exe
issvc.exe rtvscan.exe savscan.exe bdss.exe bdmcon.exe
cclaw.exe fsav32.exe fsm32.exe gcasserv.exe icmon.exe
nod32krn.exe nod32ra.exe pavfnsvr.exe kav.exe kavss.exe
inetupd.exe livesrv.exe iao.exe Windows-KB890830-V1.32.exe

Sample C performs SSDT hooking on the NtQueryDirectoryFile and NtEn-
umerateValueKey system calls to provide stealth. Furthermore, this sample calls
the PsSetLoadImageNotifyRoutine to receive a callback whenever a process or
driver image is loaded. The string analyzer reveals that this callback accesses a
number of strings hardcoded in the rootkit image, that are shown in Table 9.
These strings are clearly filenames, most of them related to antivirus software
or other security tools. The most logical explanation for these observations is
that the rootkit uses this technique to interfere with the loading and execution
of anti-malware programs. Manual analysis confirms that the callback uses the
ZwTerminateProcess function to kill these processes. We could not directly
observe this behavior during analysis because none of the listed processes are
executed in our analysis environment. This attack on security software highlights
the need for a secure execution context for analysis software. The watchdog.sys
file that is among those targeted by the rootkit is a driver that is also used by

56 M. Neugschwandtner et al.

CWSandbox [7], a malware analysis system that is not based on VMI but on
in-the-box monitoring using a kernel driver.

5 Related Work

In this section we will discuss related research in the area of detection and
analysis of malicious kernel code.
Integrity checking. In [14] the authors implement a tamper-resistant rootkit
detector for Linux systems that uses VMI. To detect runtime patching, this
system verifies the integrity of the kernel by hashing portions of clean memory
considered critical and regularly comparing the hashes with their up-to-date
counterparts. A limitation of this approach lies in the need to balance security
with performance in selecting how often to perform hashing. In any case, such a
system cannot guarantee that no injected code will ever be executed. To protect
kernel code, an improved solution is offered by Nickle [15]. Nickle instruments the
memory management unit of an emulator to redirect code fetches performed in
kernel mode to a protected memory region. This way, it can detect code injected
into the kernel as soon as its first instruction is executed.
Cross-view detection. Hiding an intruder’s presence on a compromised system
is a widespread goal of rootkits. This very behavior, however, can be exploited
to detect kernel compromise. For this, cross-view detection approaches [12,28]
compare system information obtained from a high-level abstract view, e.g. the
Windows API, with information extracted from a lower level view, in order to
reveal hiding. [14] uses a cross-view approach to detect process, kernel module
and network port hiding. To detect process hiding, the authors of [29] use Ant-
farm [30] to determine implicit process information, without prior knowledge of
the monitored guest’s OS. They then perform cross-view comparison, detect-
ing process hiding. While OS-independence is an attractive advantage of this
approach, the technique employed cannot be easily extended to other types of
stealth behavior. A drawback of cross-view is that it can detect the fact that
something has been hidden, but cannot provide any information on how this has
been done. Moreover, for information arranged in more complex data structures
cross-view soon becomes impractical. For example, it can only detect file hiding
if the contents of every directory on the system are compared.
Hooking detection. Hooking is another characteristic aspect of rootkit behav-
ior that can be exploited for detection purposes. In [16], the authors present
Hookmap, a system that can systematically discover possible hooking points in
the execution path of system calls, enabling detection of rootkits that use these
hooking points. Hookfinder [17] uses dynamic taint propagation to monitor the
impact of a rootkit on the kernel. It detects a hook when a tainted value is loaded
to the instruction pointer. In [18], the authors introduce k-tracer, a system that
performs a sophisticated analysis of malware hooking behavior. For this, k-tracer
first records an execution trace for a system call, reaching from the sysenter
to the sysexit instruction. Then, an offline analysis is applied to the trace, by
performing forward slicing to identify read access and backward slicing to reveal

dAnubis – Dynamic Device Driver Analysis Based on VMI 57

manipulation of sensitive data. This approach is however not compatible with
our performance requirements for large-scale malware analysis, since k-tracer
may require hours to analyze a single rootkit.

Rootkit analysis. Closely related to dAnubis is recent work on the dynamic
analysis of rootkit behavior. In [31], the authors present rkprofiler, a system
for the analysis of Windows kernel malware that is also based on VMI using
Qemu. This system can reveal which system calls have had their execution paths
modified to include injected code. Both [31] and [19] address the problem of
understanding the semantics of rootkit modifications to dynamically allocated
kernel memory. For this, they introduce techniques to recursively infer the type
of an object in memory based on the type of the pointers that are used to
access it, starting from the known structure of static kernel objects and function
parameters.

6 Limitations

Our evaluation demonstrates that dAnubis can provide a substantial amount of
information on malicious drivers. Nonetheless, our system suffers from a number
of limitations.

Rootkit detection. To be able to analyze a rootkit’s behavior, dAnubis must
first detect the rootkit’s presence in the analysed system. That is, it must be
aware that extraneous code has been inserted into kernel space. For this, dAnubis
relies on hooking system calls used for loading drivers. Therefore, we are unable
to analyse rootkits injected through kernel or device driver exploits. This is a de-
sign choice, because it allows most dAnubis instrumentation to remain disabled
until a driver is loaded, improving performance on the majority of analysed sam-
ples that do not load a driver. At the cost of some performance, this limitation
could be addressed by integrating techniques from [15], that can reliably detect
the execution of injected code. The detection of return-oriented rootkits [32],
however, remains an open problem, since these rootkits do not inject any code
into kernel space.

Dynamic analysis coverage. A general limitation of dynamic approaches to
code analysis is that only code that is actually executed can be analyzed. In order
to cover as many code paths as possible, we strive to stimulate typical rootkit
functionality. Behavior that is triggered by benign user activity can be emulated
to a certain extent by our stimulator. However, our large scale study has shown
that many samples waits for commands to be issued from userspace through
a device interface and never receive any such commands during analysis. The
rootkit behavior associated with these commands is therefore not covered by our
analysis. Related work in this field [19,18,31] does not specifically address this
issue. Future research in rootkit analysis could attempt to design a stimulator
capable of automatically issuing valid commands to malicious device drivers.

Related to the problem of coverage is the issue of detection of virtual environ-
ments and of analysis environments in general. If malware can detect our analysis

58 M. Neugschwandtner et al.

environment it can thwart analyis by simply refusing to run. Unfortunately, im-
plementing an undetectable virtual environment is infeasable in practice [33],
although attackers may be reluctant to make their malware not function on
widely deployed virtual environments. Defeating VM detection is largely a re-
active, manual process. However, recent research [34,35] has shown that it may
be possible to automatically detect previously unknown virtualization detection
techniques.
Event attribution. In order to differentiate between legitimate and malicious
actions, the origin of these actions has to be determined. To attribute a write
access to a monitored driver we take the program counter of the instruction that
carried out the manipulation and compare it with the codebase of the driver.
While this technique works in practice, it can easily be fooled if the malicious
driver uses a legitimate kernel function to manipulate the desired memory region.
[36] introduces secure control attribution techniques based on taint tracking to
tackle a similar problem in the context of (malicious) shared-memory browser
extensions. Since Anubis provides tainting support, these techniques could also
be adapted for integration in dAnubis.

7 Conclusions

The analysis of malicious code faces additional challenges when the code to
be analyzed executes in kernel space. In this work, we discussed the design
and implementation of dAnubis, a system for the dynamic analysis of Windows
kernel malware. dAnubis can provide a comprehensive picture of a device driver’s
behavior and its interaction with the operating system, with other drivers and
with userland processes.

We used dAnubis to conduct a large-scale study of kernel malware behav-
ior that provides novel insight into current kernel-level threats. In this study,
we analysed more than 400 recent rootkit samples to reveal the techniques em-
ployed to subvert the Windows kernel and, in most cases, the nefarious goals
attained with these techniques. These results demonstrate that dAnubis can be
an effective tool for security researchers and practitioners. We therefore plan to
make it publicly available as part of the Anubis malware analysis service.

Acknowledgments

This work has been partially supported by the European Commission through
project ICT-216026-WOMBAT funded under the 7th framework program.

References

1. Bayer, U., Habibi, I., Balzarotti, D., Kirda, E., Kruegel, C.: Insights into current
malware behavior. In: 2nd USENIX Workshop on Large-Scale Exploits and Emer-
gent Threats, LEET (2009)

dAnubis – Dynamic Device Driver Analysis Based on VMI 59

2. Royal, P., Halpin, M., Dagon, D., Edmonds, R., Lee, W.: Polyunpack: Automating
the hidden-code extraction of unpack-executing malware. In: 22nd Annual Com-
puter Security Applications Conf., ACSAC (2006)

3. Kang, M.G., Poosankam, P., Yin, H.: Renovo: a hidden code extractor for packed
executables. In: ACM Workshop on Recurring malcode, WORM (2007)

4. Rolles, R.: Unpacking virtualization obfuscators. In: 3rd USENIX Workshop on
Offensive Technologies, WOOT (2009)

5. Moser, A., Kruegel, C., Kirda, E.: Limits of Static Analysis for Malware Detection.
In: 23rd Annual Computer Security Applications Conference, ACSAC (2007)

6. Bayer, U.: Ttanalyze a tool for analyzing malware. Master’s thesis, Vienna Uni-
versity of Technology (2005)

7. Willems, C., Holz, T., Freiling, F.: Toward Automated Dynamic Malware Analysis
Using CWSandbox. IEEE Security and Privacy 2(5) (2007)

8. Bailey, M., Oberheide, J., Andersen, J., Mao, Z., Jahanian, F., Nazario, J.: Auto-
mated Classification and Analysis of Internet Malware. In: Kruegel, C., Lippmann,
R., Clark, A. (eds.) RAID 2007. LNCS, vol. 4637, pp. 178–197. Springer, Heidelberg
(2007)

9. Bayer, U., Milani Comparetti, P., Hlauschek, C., Kruegel, C., Kirda, E.: Scalable,
Behavior-Based Malware Clustering. In: Network and Distributed System Security
Symposium, NDSS (2009)

10. Rieck, K., Holz, T., Willems, C., Duessel, P., Laskov, P.: Learning and classification
of malware behavior. In: Zamboni, D. (ed.) DIMVA 2008. LNCS, vol. 5137, pp.
108–125. Springer, Heidelberg (2008)

11. Jacob, G., Debar, H., Filiol, E.: Malware behavioral detection by attribute-
automata using abstraction from platform and language. In: Recent Advances in
Intrusion Detection, RAID (2009)

12. Garfinkel, T., Rosenblum, M.: A virtual machine introspection based architecture
for intrusion detection. In: Network and Distributed Systems Security Symposium,
NDSS (2003)

13. Sharif, M.I., Lee, W., Cui, W., Lanzi, A.: Secure in-vm monitoring using hardware
virtualization. In: ACM conference on Computer and communications security,
CCS (2009)

14. Quynh, N.A., Takefuji, Y.: Towards a tamper-resistant kernel rootkit detector. In:
SAC 2007: Proceedings of the 2007 ACM symposium on Applied computing, pp.
276–283. ACM, New York (2007)

15. Riley, R., Jiang, X., Xu, D.: Guest-transparent prevention of kernel rootkits with
vmm-based memory shadowing. In: Lippmann, R., Kirda, E., Trachtenberg, A.
(eds.) RAID 2008. LNCS, vol. 5230, pp. 1–20. Springer, Heidelberg (2008)

16. Wang, Z., Jiang, X., Cui, W., Wang, X.: Countering persistent kernel rootkits
through systematic hook discovery. In: Lippmann, R., Kirda, E., Trachtenberg, A.
(eds.) RAID 2008. LNCS, vol. 5230, pp. 21–38. Springer, Heidelberg (2008)

17. Yin, H., Liang, Z., Song, D.: Hookfinder: Identifying and understanding malware
hooking behaviors. In: Network and Distributed Systems Security Symposium,
NDSS (2008)

18. Lanzi, A., Sharif, M., Lee, W.: K-tracer: A system for extracting kernel malware
behavior. In: Proceedings of the 16th Annual Network and Distributed System
Security Symposium (2009)

19. Riley, R., Jiang, X., Xu, D.: Multi-aspect profiling of kernel rootkit behavior. In:
EuroSys 2009: Proceedings of the 4th ACM European conference on Computer
systems, pp. 47–60. ACM, New York (2009)

60 M. Neugschwandtner et al.

20. Bayer, U., Moser, A., Kruegel, C., Kirda, E.: Dynamic analysis of malicious code.
Journal in Computer Virology 2(1), 67–77 (2006)

21. Hoglund, G., Butler, J.: Rootkits: Subverting the Windows Kernel. Addison-Wesley
Professional, Reading (2005)

22. Jiang, X., Wang, X., Xu, D.: Stealthy malware detection through vmm-based “out-
of-the-box” semantic view reconstruction. In: Proceedings of the 14th ACM Con-
ference on Computer and Communications Security (2007)

23. Bellard, F.: Qemu, a fast and portable dynamic translator. In: Proceedings of
the annual conference on USENIX Annual Technical Conference, p. 41. USENIX
Association (2005)

24. Orwick, P., Smith, G.: Developing Drivers with the Microsoft Windows Driver
Foundation. Microsoft Press, Redmond (2007)

25. Newsome, J., Song, D.: Dynamic taint analysis for automatic detection, analy-
sis, and signature generation of exploits on commodity software. In: Network and
Distributed Systems Security Symposium, NDSS (2005)

26. Sharif, M.I., Lanzi, A., Giffin, J.T., Lee, W.: Impeding malware analysis using
conditional code obfuscation. In: Network and Distributed System Security, NDSS
(2008)

27. Russinovich, M.: Filemon (2010),
http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx

28. Beck, D., Vo, B., Verbowski, C.: Detecting stealth software with strider ghost-
buster. In: Proceedings of the 2005 International Conference on Dependable Sys-
tems and Networks, pp. 368–377 (2005)

29. Jones, S.T., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.: Vmm-based hidden pro-
cess detection and identification using lycosid. In: VEE 2008: Proceedings of the
fourth ACM SIGPLAN/SIGOPS international conference on Virtual execution en-
vironments, pp. 91–100. ACM, New York (2007)

30. Jones, S.T., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.: Antfarm: tracking pro-
cesses in a virtual machine environment. In: ATEC 2006: Proceedings of the annual
conference on USENIX 2006 Annual Technical Conference (2006)

31. Xuan, C., Copeland, J., Beyah, R.: Toward revealing kernel malware behavior in
virtual execution environments. In: Proceedings of the 12th International Sympo-
sium on Recent Advances in Intrusion Detection (2009)

32. Hund, R., Holz, T., Freiling, F.C.: Return-oriented rootkits: Bypassing kernel code
integrity protection mechanisms. In: Proceedings of the 18th USENIX Security
Symposium (2009)

33. Garfinkel, T., Adams, K., Warfield, A., Franklin, J.: Compatibility is not trans-
parency: Vmm detection myths and realities. In: Proceedings of the 11th Workshop
on Hot Topics in Operating Systems (2007)

34. Paleari, R., Martignoni, L., Roglia, G.F., Bruschi, D.: A fistful of red-pills: How to
automatically generate procedures to detect CPU emulators. In: USENIX Work-
shop on Offensive Technologies, WOOT (2009)

35. Balzarotti, D., Cova, M., Karlberger, C., Kruegel, C., Kirda, E., Vigna, G.: Efficient
detection of split personalities in malware. In: Network and Distributed System
Security, NDSS (2010)

36. Saxena, P., Sekar, R., Iyer, M.R., Puranik, V.: A practical technique for contain-
ment of untrusted plug-ins. Technical Report SECLAB08-01, Stony Brook Univer-
sity (2008)

http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx

Evaluating Bluetooth as a Medium for
Botnet Command and Control

Kapil Singh, Samrit Sangal, Nehil Jain, Patrick Traynor, and Wenke Lee

School of Computer Science, Georgia Institute of Technology
{ksingh,samrit,nehjain,traynor,wenke}@cc.gatech.edu

Abstract. Malware targeting mobile phones is being studied with increasing in-
terest by the research community. While such attention has previously focused
on viruses and worms, many of which use near-field communications in order to
propagate, none have investigated whether more complex malware such as bot-
nets can effectively operate in this environment. In this paper, we investigate the
challenges of constructing and maintaining mobile phone-based botnets commu-
nicating nearly exclusively via Bluetooth. Through extensive large-scale simu-
lation based on publicly available Bluetooth traces, we demonstrate that such a
malicious infrastructure is possible in many areas due to the largely repetitive
nature of human daily routines. In particular, we demonstrate that command and
control messages can propagate to approximately 2/3 of infected nodes within
24 hours of being issued by the botmaster. We then explore how traditional de-
fense mechanisms can be modified to take advantage of the same information to
more effectively mitigate such systems. In so doing, we demonstrate that mobile
phone-based botnets are a realistic threat and that defensive strategies should be
modified to consider them.

1 Introduction

Mobile phones are being increasingly tasked with sophisticated duties. From trading on
financial markets and mobile banking to carrying medical records [29], these devices
are beginning to be trusted with some of our most sensitive information. Unfortunately,
because the majority of mobile phones lack even basic security mechanisms (e.g., mem-
ory protection), they are becoming increasingly attractive targets for malware writers.
The widespread usage of such devices and the sensitivity of cellular networks to even
small amounts of malicious traffic make this actuality a significant threat.

A wide range of malware targeting mobile phones has already been documented.
Whether arriving via MMS [22], a downloaded executable [35] or over a Bluetooth
link [14], both viruses and worms are being extensively explored in this environment.
Botnets, however, have not yet been studied in depth in this setting. Representing one
of the most significant threats to the Internet, mobile botnets could use compromised
phones to execute regularly updated mission requests (e.g., Denial of Service, premium
number dialing, password/credential theft, etc). Like their Internet-based counterparts,
mobile botnets can only achieve such flexibility given the presence of a robust command
and control (C&C) infrastructure. Unlike traditional botnets however, we argue that
such an infrastructure can be successfully maintained outside of the purview of cellular
providers, making detection and mitigation challenging given current strategies.

C. Kreibich and M. Jahnke (Eds.): DIMVA 2010, LNCS 6201, pp. 61–80, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

62 K. Singh et al.

In this paper, we evaluate the potential for mobile phone-based botnets to commu-
nicate and coordinate predominantly via Bluetooth. Unlike previous work that inves-
tigates whether malware can spread over such links, we instead investigate whether a
command and control infrastructure can be maintained in an environment with almost
entirely transient links. We develop an understanding of the long term interaction of
infected devices through the use of two large-scale datasets and, through simulation,
demonstrate that the repetitive nature of the daily routines of human beings allows mes-
sages to be propagated to over 66% of infected nodes within a day. We then compare
the impact of varying parameters including device popularity and polling interval to
allow a botmaster to tradeoff the speed of propagation with their ability to remain hid-
den from a network provider. Finally, we conduct large-scale simulations to attempt to
better model the dynamics of such botnets in a realistic setting - public transit.

In so doing, we make the following contributions:

– Develop the first characterization of Bluetooth-based C&C for mobile devices:
Using publicly available data on mobile device interaction, we develop the first
characterization of command and control operations in this setting. In particular,
we show that mobile botnets are possible, but that instruction propagation latency
can be significant. In exchange for such latency, botmasters are able to notably
reduce the amount of traffic observable by the provider.

– Create a new C&C architecture based on node popularity: We develop a frame-
work in which bots selectively communicate with the botmaster based on their pop-
ularity. In particular, only a small subset of bots with the highest degree ever speak
directly to the botmaster. This mechanism helps to improve the speed of propaga-
tion without exposing all infected nodes to a network provider.

– Develop countermeasures leveraging communication patterns: From the infor-
mation learned above, we develop patching and mitigation strategies that signifi-
cantly reduce a mobile botnet’s ability to defend against our countermeasures and
remain hidden.

Note that traditional botnet C&C infrastructures are likely to be easily detected in these
networks as providers are more likely to have a more complete global view.1 This means
that bots are unlikely to be successful in these networks unless they adopt a strategy
similar to the one presented in this work.

The remainder of this paper is organized as follows: Section 2 provides an overview
related work in the area of mobile malware; Section 3 discusses how mobile phones
can and are likely to be infected and explores a number of possible mechanisms for
command and control; Section 4 explains our data and simulator that we use to model
Bluetooth-based botnets; Section 5 simulates such networks using well-known pub-
lic data sets; Section 6 models a large-scale botnet in a public-transportation setting;
Section 7 discusses how the above observations can be leveraged to combat such bot-
nets; Section 8 offers concluding remarks.

1 This is also true because associating messages with their origin given that each device authen-
ticates to the network.

Evaluating Bluetooth as a Medium for Botnet Command and Control 63

2 Related Work

Botnets [26, 10] represent the major source of malicious activity on the Internet – they
send spam [27], perform DDoS attacks [16] and host phishing web sites [7]. Significant
attempts have been made by the research community to both categorize [10, 6] and
mitigate [19, 27, 18, 17] such threats. Unfortunately, understanding such threats in the
context of cellular networks is still very limited [33, 34].

The transformation of mobile devices from simplevoice terminals into highly-capable,
general purpose computing platforms makes the possibility of attacks originating from
within the network a reality. The tremendous increase of cell phone adoption and the
lack of widely implemented security mechanisms makes such platforms attractive tar-
gets to botmasters. Research has previously shown cellular infrastructure as a potential
target of botnet attacks [33]; however, such botnets are composed entirely of compro-
mised machines across the Internet. Previous work has not considered whether or not
such a malicious overlay can be created and maintained exclusively on mobile phones.

Bluetooth-based malware has been extensively explored. Su et. al highlighted the
presence of a diverse set of known security vulnerabilities in the Bluetooth protocol’s
implementation [31]. They argued that the presence of such vulnerabilities coupled
with the complexity of the Bluetooth specification and its large codebase will likely
lead to more complex attacks using the Bluetooth channel. Worms including Cabir [8],
Mabir [9] and CommWarrior [21] have already successfully exploited this channel.
Previous efforts to model the propagation behavior of Bluetooth-based malware have
focused entirely on the analysis of Bluetooth worms. Yan et. al studied the effect of
mobility on worm propagation by restricting the devices in an area with sides of length
150 meters [39,37]. The same authors later provided a comprehensive analytical model
for such Bluetooth worm propagation [38]. Other studies have investigated the effect of
population characteristics and device behavior on the outbreak dynamics of Bluetooth
worms [28, 23]. Such characteristics have been previously exploited for peer-to-peer
(P2P) content distribution [20] and for studying human social behavior [12].

Mobile phone-based botnets using Bluetooth to propagate control messages bear a
striking resemblance to Internet-based P2P botnets [13, 5]. In particular, even if de-
fenders identify a subset of the bots in a botnet, communication among the remaining
bots will not be disrupted. Second, in contrast to other centralized approaches (such as
IRC [6]), there is no fixed endpoint from which the botmaster must transmit commands.
For Bluetooth botnets, the botmaster can send messages from any Bluetooth-enabled
device, and he can frequently change these source devices to evade detection. Bluetooth
communication has other additional, attractive properties that benefits botnet creators.
Unlike the Internet-based P2P channels, Bluetooth by principle is proximity based: this
gives the defenders limited scope to observe the communication between two bot de-
vices. Additionally, P2P botnets suffer from the problem of losing bots whenever those
bots change their dynamic IP addresses. Bluetooth channels are resilient to such changes.

3 Bluetooth-Based Botnets

Our goal is to evaluate the suitability of Bluetooth as a command and control chan-
nel. In particular, we focus on the challenges facing a botmaster trying to coordinate

64 K. Singh et al.

a large number of infected devices over a transient, near-field communication channel
that cannot be easily identified or blocked by cellular providers. In this section, we dis-
cuss how mobile phones can be compromised, detail our threat model and assumptions,
and discuss the C&C architecture of mobile phone-based botnets.

3.1 Infecting Devices

Mobile devices have rapidly transformed from limited embedded systems to highly
capable general purpose computing platforms. While such devices have long enjoyed
significant diversity in hardware and operating systems, the rising popularity of smart-
phones and the ability to sell applications to users is leading to the establishment of
standardized mobile software platforms and operating systems, such as Microsoft’s
Windows Mobile, Google’s Android and Apple’s Mobile OS X. Unfortunately, many
devices are only now beginning to implement basic security mechanisms including
memory protection and separation of privilege. Accordingly, such systems are expected
to be increasingly targeted by malware. Malware targeting mobile devices may come
from any of a number of sources. Given that 10% of cellular users downloaded games
to their mobile devices at least once a month in 2007 [24] and the wide availability of
free ringtones, downloadable content and executables are one of the more likely ori-
gins. Like their desktop counterparts, mobile devices are also likely to be susceptible to
a range of browser exploits including drive-by downloads [25]. Finally, the presence of
multiple communications interfaces makes mobile devices susceptible to malware that
propagates not only through the cellular network itself [15], but also potentially through
WiFi and Bluetooth [8,9,21]. Accordingly, the breadth of infection vectors exceeds that
of many traditional networked systems.

3.2 Threat Model and Reasoning

Given the above, we assume that bots have already been installed on a subset of mobile
phones within a network but that the C&C infrastructure remains unestablished.

We expect that powerful defenses exist to detect and disrupt botnets. In our threat
model, we assume that defenders have access to malicious binaries and are able to learn
the bot’s entire execution behavior through forensic analysis techniques. This allows
defenders to identify the command list and the algorithms used by the bot to extract
commands from Bluetooth messages. Simply stated: the threat model allows defenders
to know everything that is known to the bot.

Botmasters logically aim to sustain their networks for as long as possible. Stealth is
therefore one of the most critical characteristics of such a botnet. The short range and
ad-hoc nature of communications via Bluetooth potentially provides such an opportu-
nity: defenders need to be within range of the communicating infected devices at the
time of communication, which might not be practical considering the changing network
topology of the ad-hoc network. Given that providers are not able to observe the vast
majority of messages between infected devices, this means of communication appears
attractive.

Reliance upon near-field communications also makes commanding bots more chal-
lenging. Specifically, a botmaster must rely on infected nodes being within range of

Evaluating Bluetooth as a Medium for Botnet Command and Control 65

0

1 2 3

Fig. 1. Only nodes with the highest exposure to other bots (shown here by the darkness of the
circle) contact the botmaster directly. All other nodes receive commands and updates when they
are within Bluetooth range of an updated node.

each other on a regular basis in order to successfully propagate commands. We lever-
age the fact that a large portion of the population follows regular patterns of behavior.
For instance, person A gets up every day at 7 am and goes to his office using the sub-
way. In the process, he will encounter a large subset of the same people every day (who
also take the train at roughly the same time everyday). He will also interact with a
large subset of the same people everyday in the office. The highly regular nature of this
routine provides structure in an unstructured environment. Specifically, while the bot-
master may not know the exact topology of the network at any particular moment, he
or she will know with some assurance the subset of devices with which a user is likely
to interact with during a period of time.

3.3 Botnet Construction and Message Passing

We now explore the construction and operation of mobile phone-based botnets based
on our threat model. While traditional strategies such as having all nodes use cellular
data connections to reach Internet-based centralized or P2P designs are possible, large
volumes of such communication are easily detectable by a provider. Accordingly, we
aim to develop a mechanism that avoids such detection while overcoming a number of
challenges. For instance, the botmaster must be able to learn the identities of all of the
phones under his control so as to be able to accurately portray the size of the botnet
when renting it. This task must be accomplished without these devices contacting the
botmaster directly. Additionally, the botmaster needs to ensure that he can contact the
largest possible number of infected phones within a short period of time. Unfortunately,
a Bluetooth-only solution is unlikely to be sufficient in this context. In particular, an
adversary would need to physically place himself near as many nodes as possible, which
is more likely to be a burdensome task.

We instead propose a hybrid approach designed to maximize the speed of distribution
while only minimally reducing stealth. In particular, we allow a botmaster to communi-
cate with a very small number of infected nodes through cellular channels (e.g., SMS,
cellular data). These nodes are selected via their relative frequency of contact with other

66 K. Singh et al.

infected devices. Specifically, as infected devices pass within range of each other, they
record the identity of the other device. After reaching some threshold set by the bot-
master, those nodes with a high degree of connectivity over time contact the botmaster
and provide their contact log. In so doing, these devices not only provide the botmaster
with knowledge of the devices under his control, but also inform him of which nodes
are most likely to be able to help rapidly disseminate commands.

Figure 1 represents one such typical scenario, where the darkness of the circle around
the phone reflects the popularity of that device. As we can determine from the figure,
phone 0 is the most popular and therefore act the seed for communication with the
botmaster. If phone 0 is disinfected, phone 3 would likely report back to the botmaster
(potentially after the expiration of some long-term timeout value).

The botmaster also disseminates commands through this hierarchical structure. When
a new task arises, the botmaster simply contacts the seed nodes in a particular area and
provides an updated mission/payload to be distributed to other infected nodes. These
nodes are most likely to be able to deliver such a payload to the largest possible number
of infected nodes without requiring them to directly interact with the botmaster because
of their high degree of connectivity over time.

Seed nodes logically present attractive targets to defenders. Those nodes reporting
back to some centralized point are more likely to be singled out by the provider. Naı̈vely
constructed, such a strategy would allow a provider to cripple the communications of
these systems. If the very low volume of traffic is not sufficient for avoiding detection,
such bots can further obfuscate their activities through a number of anonymizing tech-
niques ranging from Tor [11] and Publius [36] to the use of a free temporary email
address. Such communication could be further obscured through the use of the WiFi
connection available to many smart phones. Communications from the botmaster can
avoid detection by spoofing the source address of a communication from the Inter-
net, including text messages claiming to be from within a target node’s community of
interest [33].

4 Experimental Setup

Given a proposed communications architecture and our threat model, we now seek to
determine whether or not mobile phone-based botnets can effectively communicate us-
ing Bluetooth. In this section, we discuss a number of details related to our experimental
design and testing. This infrastructure is used throughout the remainder of the paper.

4.1 Prototype Bot

Rather than running a simulation with nodes simply exchanging meaningless messages,
we implemented a proof of concept mobile phone-based bot. Our prototype bot is coded
in Java and deployed on the Sun Wireless Toolkit that emulates infected mobile devices.
Each bot instance acts as a peer in the bot network, listening for new commands and si-
multaneously sending commands to other discovered bots. At the initial infection stage,
the bot registers itself with a Universally Unique Identifier (UUID) in the service regis-
ter present in the mobile device, thus allowing it to be discovered by other bots. It then

Evaluating Bluetooth as a Medium for Botnet Command and Control 67

waits for new incoming connections. A two-way Bluetooth connection is established
with other bots when they come within range. As part of our protocol for information
exchange among bots, the bot is updated with the latest version of the command, which
also includes the updated parameters of the command.

As a proof-of-concept, we implemented a botnet command that directs bots to send
an SMS to a specified mobile number without being noticed by the sender. Such a
command can launch a denial-of-service attack on a targeted area [33] should enough
devices participate. Because most service providers also charge for incoming messages,
such attacks can also incur substantial costs for the targeted victim. These initial exper-
iments demonstrate that Bluetooth can successfully be used to pass commands between
infected nodes with relative ease.

4.2 Experimental Goals

We use our proof-of-concept bot to evaluate various parameters that directly or indi-
rectly impact command propagation in a mobile phone-based botnet. While some of
these parameters, such as the device polling interval, can be controlled by the botmas-
ter, other parameters are influenced by the inherent characteristics of near-field com-
munications and the human movement patterns. We enumerate these parameters and
evaluate their impact using a range of simulations that model a range of settings and
scenarios.

Our simulations are categorized into two experimental sets. The first set of simula-
tions are performed based on two trace logs, one each from MIT [12] and NUS [30],
that are collected using real devices carried by individuals for their day-to-day activi-
ties. By means of these experiments, we evaluate various operational parameters of the
proposed botnet C&C mechanism, which are useful in determining the correctness of
our hypothesis.

In our second set of experiments, we use publicly-available information to create a
large scale simulation model of New York City’s subway system and thereafter, use this
model to demonstrate command propagation in a typical scenario of public transporta-
tion. The goal of these simulations is to expand our evaluation beyond the boundaries
imposed by the limited traces, and demonstrate the viability of a large-scale mobile
phone-based botnet.

In order to run the simulation, one initial node is selected and subsequently all the
nodes encountered by the selected node are enumerated in time stamp order. If the pe-
riod of contact shown by the traces is equal to or more than 5 minutes (this is the least
time granularity for the MIT data set), we assume that the other node successfully re-
ceived the command. This is a conservative assumption given that botnet commands
are generally negligible in size (on the order of tens of bytes) and Bluetooth can trans-
fer data at a rate of approximately 1Mbps. In our experiments, we examine various
factors and environmental variables that have an effect on the latency of the command
propagation in the proposed Bluetooth-based botnet.

We do not consider device heterogeneity in our experiments because we view in-
fection and command propagation as two separate tasks. In particular, because devices
can be infected through any number of different vectors (e.g., drive-by downloads, ma-
licious executables, browser bugs, etc), phones of all varieties can be forced to run

68 K. Singh et al.

9A
M

N
oon

3PM

6PM

9PM

M
idnight

3A
M

6A
M

9A
M

N
oon

3PM

Time of Day

0

20

40

60

80

100

B
ot

s
R

es
po

nd
ed

 (
%

)

Fig. 2. Command Propagation Rate

9A
M

N
oon

3PM

6PM

9PM

M
idnight

3A
M

6A
M

9A
M

N
oon

3PM

Time of Day

0

20

40

60

80

100

Sa
m

e
B

ot
s

R
es

po
nd

ed
 (

%
)

Nov 15, 2004
Nov 22, 2004
Nov 29, 2004

Fig. 3. Recurrent bot connections over differ-
ent days

bot software. Our evaluation focuses not on how infection happens but how messages
spread after infection has occurred.

5 Trace Based Simulations

We use the architecture and assumptions detailed in the previous two sections to develop
simulations of mobile phone-based botnets. In this section, we use publicly available
Bluetooth traces to perform a number of simulations. These experiments characterize
the impact of various factors on effective botnet communication.

5.1 Description of Datasets

Reality Mining Dataset (MIT). The Reality Mining project is a collection of envi-
ronmental data gathered by one hundred mobile phones over a course of six months.
Polling by each of these phones was used to determine the presence and identity of
other Bluetooth-capable devices in their proximity. This data was initially used to pro-
vide insight into the dynamics of the social behavior of both individuals and groups [12].
While one of the more extensive available datasets, the major limitation of this study is
that the time between subsequent polling for devices is five minutes and as a result, our
evaluations miss interaction of devices that were in contact for less time. The proposed
message dissemination techniques are therefore likely to perform even better than the
results we present. We attempt to overcome this limitation with a large-scale simulation
in Section 6.

Bluetooth Dataset (NUS). We use a second collection of logs known as the the National
University of Singapore (NUS) Bluetooth [30] dataset that contains traces of Bluetooth
sightings by 12 devices over a period of 7 months. Each device polled for other devices
every 30 seconds and recorded device identifiers of all the Bluetooth enabled devices in
its range, providing significantly finer granularity of interaction than the MIT dataset.
Out of the 12 experimental devices, 3 were static devices placed near lecture halls on

Evaluating Bluetooth as a Medium for Botnet Command and Control 69

the NUS campus and the rest were given to the faculty and students. This dataset makes
it possible for us to evaluate the effect of varying polling interval on the characteristics
of the Bluetooth-based botnet, and also demonstrate how mobility of the commanding
device can influence the command propagation rate in the botnet.

5.2 Simulation Results

Command Propagation Rate. Figure 2 provides a single but representative view of
command dissemination by the most popular node. Note that the command is rapidly
dispersed during the morning hours, plateaus in the evening and the increases again
slightly the next morning. Note that because of the regularity of regularity of human
behavior, the increase on the second day is relatively low given that few different nodes
are observed between any two given days. Our experiments demonstrate that messages
are consistently delivered to greater than 2/3 of all infected nodes within 24 hours of
the botmaster contacting the seed node.

We define Probability of Delivery (PoD) as the percentage of bots responding within
a predefined time period. The desired time represents the maximum acceptable latency
for a botmaster to successfully distribute a command to some portion of the nodes under
his control. Given Figure 2, a realistic value for such a response time is approximately
24 hours; however, the nature of the command may offer the botmaster additional flexi-
bility. For instance, the botmaster may not require that a spam campaign be coordinated,
allowing nodes to being their job immediately after receiving the command. Alterna-
tively, denial of service attacks are likely to require greater coordination, meaning that
such attacks may need to be planned further in advance in order to be successful. When
sent at optimal times (i.e, the morning), PoD values rise relatively quickly, with 40% of
nodes having received commands within five hours (Figure 2). Mission and command
launch time must therefore be carefully considered by the botmaster.

Note that our experiments assume the use of only a single seed node. A botmaster
could potentially seed multiple nodes with commands in order to compensate for known
geographic barriers or increase the speed of command dissemination. However, such a
strategy must be carefully balanced against the botnet’s need for stealth.

Long-Term Communications. The results thus far demonstrate that Bluetooth-based
mobile botnets are capable of passing commands on a single day. However, the ability
to re-establish connections across long periods of time is necessary for such a network
to be worth the effort to construct. For this analysis, we take the traces from November
1, 2004 as the initial list of infected bots. We then evaluate how many of these infected
nodes come in contact with a command-carrying node over subsequent days. The same
node is chosen as the initial node for iterations repeated over different days. Note that
the experiments were conducted over the closed set of 100 nodes in the MIT data set;
other datasets show similar behavior (Section 6).

Figure 3 shows the percentage of infected nodes that repeatedly come in contact with
a command-carrying node over different days. In other words, it represents the number
of bot nodes that would successfully receive a botnet command. Our results show that
bots tend to come in contact with a large subset of the same nodes repeatedly over

70 K. Singh et al.

0 2000 4000 6000
Time (min)

0

20

40

60

80

100
B

ot
s

R
es

po
nd

ed
 (

%
)

low
medium
high

Fig. 4. Effect of the node popularity on com-
mand propagation

30 50 70

High Popularity Node 5hrs 8hrs 13hrs

Medium Popularity Node 5.5hrs 25hrs 31hrs

Low Popularity Node 80hrs 86hrs 102hrs

Fig. 5. Propagation Times for various nodes

different days. This number is on an average about 50% within the first 8 hours of a
day’s schedule and goes up to more than 80% after a day.

As seen in Figure 3, the pattern does not vary significantly across different days,
which shows that a command issued at a particular node will follow a generally pre-
dictable spread for that node on any given day. While we observed a maximum variance
of about 18% at any particular time, eventually this variance becomes negligible with
more than 80% of the same infected nodes are consistently seen on any given day.

Device Popularity. Figure 4 shows the command propagation rate for seed nodes of
high, medium and low popularity. In order to determine the popularity of the nodes, we
sort all nodes based on the number of contacts they have with other nodes. High and
low popular nodes have the maximum and minimum contacts respectively; node with
medium popularity is chosen as the median of the sorted data set. The patterns in this
figure are representative of all days.

The popularity of a seed node intuitively has an effect on the time it takes for the com-
mand to propagate. However, this difference is negligible for some cases for nodes of
medium and high popularity. Nodes with very low popularity take significantly longer
to reach a desired PoD but eventually exhibit the same saturation. A likely explanation
for this behavior is that such nodes eventually encounter more popular nodes, thereby
increasing the rate of message dissemination. Accordingly, regardless of which node is
selected, commands are eventually propagated. This results may not always hold true
for larger datasets, which may have much more significant outliers than the MIT and
NUS datasets; however, most nodes will encounter a large enough number of other
nodes that message delivery can occur within a reasonable timeframe.

Figure 5 provides numerical results corresponding to the range of popular nodes.
Note that while reaching 70% requires a significant amount of time in all but the most
popular case, such widespread distribution may not be required. In particular, given a
large number of nodes, a botmaster may only want to dedicate a subset of their bot-
net to a specific task. Accordingly, a botmaster may wish to select nodes of differing
popularity to best meet their mission.

Polling Interval. We define polling interval as the time between two consecutive polls
conducted by a Bluetooth device looking for other devices in its proximity. Figures 6

Evaluating Bluetooth as a Medium for Botnet Command and Control 71

30s

1m
in

2m
in

4m
in

5m
in

10m
in

15m
in

20m
in

30m
in

45m
in

60m
in

Polling Interval

0

20

40

60

80

100

B
ot

s
R

es
po

nd
ed

 (
%

)

Fig. 6. Effect of varying polling intervals on
static seed nodes

30s

1m
in

2m
in

4m
in

5m
in

10m
in

15m
in

20m
in

30m
in

45m
in

60m
in

Polling Interval

0

20

40

60

80

100

B
ot

s
R

es
po

nd
ed

 (
%

)

Fig. 7. Effect of varying polling intervals on
mobile seed nodes

and 7 show the effect of the variation in polling interval on the PoD. The experiment
is performed on the NUS data set, which has a base polling interval of 30 seconds,
as the polling granularity of the MIT dataset is too coarse to offer interesting results.
The results are presented with polling interval of 30 seconds as the base reference; all
other results are shown relative to this case. The botmaster is able to control the polling
interval at each bot. A low polling interval would diminish stealthiness as the bot may
become visible to the user of the victim devices: more frequently probing by the device
has an adverse effect on the battery life of the device. This observable behavior might
alert the user about the presence of a malicious bot on the device, thus exposing the
botnet. On the other hand, increasing the polling interval improves the stealth of the
botnet, but reduces the number of devices the botmaster can spread his command to in
the desired time.

We repeated the experiment both for the static nodes placed at strategic points on
the NUS campus and for the mobile nodes that were free to roam around. As shown
by the graphs in Figure 6 and 7, there is a clear decrease in the PoD with increasing
polling interval. This result is expected because with longer polling interval, there is
greater possibility of missing devices that come in the proximity of the polling device
at a time between two subsequent polls when the device is not polling. Moreover, the
percentage drop in the PoD is less for static nodes as compared to the mobile nodes: both
static and mobile nodes show the highest PoD for the base case with polling interval
of 30 seconds; for polling interval of 1 minute, this goes down to 85% for static nodes
and much lower 65% for mobile nodes. One possible reasoning behind a much lower
drop for the case of static nodes is that people traverse popular spots multiple times
and spend relatively longer time at such locations, hence there is a stronger possibility
of a successful command transfer to the corresponding devices carried by these people.
However, for mobile nodes, since even the polling device is in motion, this phenomenon
of repeatedly coming in contact may not occur.

The graphs also show that even with a higher polling interval, a considerable per-
centage of the devices can still receive the botnet command. For example, even for a
polling interval as high as 60 minutes, the PoD values are still significant – 26% for
static nodes and 9% for dynamic nodes.

72 K. Singh et al.

Sa Su M T W Th F Sa Su M T W Th F Sa Su M T W Th F Sa Su M T W Th F

Day of the week

0

20

40

60

B
ot

s
R

es
po

nd
ed

 (
%

)

Fig. 8. Weekday Effect: Static nodes

Sa Su M T W Th F Sa Su M T W Th F Sa Su M T W Th F Sa Su M T W Th F

Day of the week

0

20

40

60

B
ot

s
R

es
po

nd
ed

 (
%

) low
medium
high

Thanksgiving
End of

academic term

Fig. 9. Weekday Effect: Dynamic nodes

In essence, by choosing the polling interval for his bot victims and carefully placing
Bluetooth devices at strategic locations, the botmaster can achieve a balance between
the PoD and stealthiness for his desired use of the botnet. Additionally, the botmaster
can direct his bots to use adaptive polling to attain such a balance: a bot would ag-
gressively search for other devices by lower its polling interval when the bot device is
in motion (possibly during morning and evening hours) and would switch to a higher
polling interval at other times of the day when the device is static.

Weekday Patterns. Humans follow daily and weekly patterns that also greatly influ-
ence the command propagation rate. Figure 8 presents the number of daily encounters
broken down by the day of the week when they occur. This graph confirms the intuition
that more encounters occur on week days than on weekend days. We observed similar
behavior for both MIT and NUS data sets, and also for both static and mobile seed
nodes (Figure 8 and 9). Additionally, such behavior is independent of the popularity of
the node (Figure 9).

These observations support our argument that repetitive nature of human routines can
be leveraged by mobile phone-based botnets. With a better understanding of such week-
day patterns of the targeted devices, the botmaster can be more effective in propagating

Evaluating Bluetooth as a Medium for Botnet Command and Control 73

the commands faster. For example, it would be beneficial to issue a command on a week-
day rather than a weekend. Special considerations should also be made for days such as
Thanksgiving and the end of an academic term (Figure 9)2.

Each set of contacted nodes generated for different weeks for one particular node
has 70% of the nodes as common in all result sets. That means around 50 nodes were
contacted every time the command was issued to a particular node, out of the 70 nodes
contacted each time. Out of the remaining 30%, most of the nodes were present in more
than one result set but not in all. This shows that there is low weekly fluctuations and
that a botmaster can control most of the botnet effectively over any given week.

6 Modeling the Public Transport System

In this section, we perform a large-scale simulation to demonstrate the viability of a
mobile phone-based botnet in a larger real-world setting. Our tests demonstrate that
communication in such a botnet maintaining the previously discussed characteristics
even in a large-scale environment and provides the botmaster with reasonable tradeoffs
between botnet response time and stealthiness.

We simulate the rush hour period on a typical weekday at New York City’s Grand
Central Terminal [1]. Grand Central is one of the busiest stations in the city – it not only
serves the second busiest subway station in the city, but also serves the Metro North
trains from upstate New York. Consequently, the subway station receives passenger
traffic both from people coming to NYC using the Metro North trains and from local
commuters. We use this setting to simulate bots that reside on the cellular phones of
individuals traversing the station as per their daily routines.

We use publicly available data sources for our simulations to model the station and
to estimate the mobility patterns of the commuters. We also use probabilistic distribu-
tions for various parameters to allow variation in the individual behavior of bots. We
acknowledge that accurately predicting patterns in human movement is difficult, how-
ever, approximations can be made by carefully analyzing different sources of publicly
available data and statistics. When certain statistics are not available, we make conser-
vative estimates.

A person arriving at Grand Central Terminal will typically have the following move-
ment pattern: he or she arrives at Grand Central either by taking a Metro North train
or by entering the station through one of the entrances. He or she traverses the station
to reach the desired subway platform and then waits for a random time at the platform
before the train arrives. He or she boards one of the train cars and therein remains in a
static position till the train reaches his desired destination.

6.1 Simulation Setup

Train Station: Grand Central Terminal is modeled as a square, with entrances and train
tracks placed along its edges. The size of the station and the number of entrances used
in our model are the same as those existing in the real structure [1]. We uniformly place
entrances along two sides of the square. Metro North tracks (44 in total) are placed

2 Verified against MIT’s 2004 academic calendar.

74 K. Singh et al.

along the third side, and the fourth side has the 3 subway tracks. This design is a close
approximation of the architecture of the actual terminal [1].

Train Cars: We again used publicly available information about the size of New York
City’s transit trains to model the trains in our simulation [3]. The number of cars are
fixed and identical for all trains arriving at the subway station. While boarding a train,
a person chooses one car at random. For simplicity, we assume that the commands
propagate from one device to another only within one car. The train arrival times are
simulated according to the known subway time schedule.

Commuter Traffic Estimates: The Metro North trains at Grand Central serve approx-
imately 125K commuters per day [1]; approximately 150K for the subway station [2].
We assume that Metro North passengers constitute about 50% of the subway com-
muters. We also assume that 50% of the daily commuters take the subway during rush
hours. The arrival of commuters at Grand Central is distributed over the complete rush
time interval (6:30AM–9:30AM) based on a gaussian distribution with mean at 8:00AM
and variance of 33%.

Phone Infections: We only consider devices that have been previously infected and a
currently carried by the commuters in the terminal during these simulations. In order
to estimate the number of bot victims, we consider some known statistics on cellular
phones usage: about 80% of commuters in New York City carry phones according to a
MNRR survey [4]. We assume that approximately 30% of these phones can be (and are)
infected. We believe that this is a safe assumption based on our earlier premise that mo-
bile software platforms and operating systems are being standardized without adequate
focus on security, leaving such mobile devices vulnerable to malware infections.

Command Transfer: The time required to transfer a command from one bot-infected
device to another via the Bluetooth channel is the total time taken for the four stages of
the protocol, namely inquiry, connection establishment, probing and command trans-
fer. The corresponding timeouts for the four stages are set to 10.24 (from Bluetooth
specification), 5.12 (from Bluetooth specification), 0.1 and 1 seconds, respectively. We
model the time for all four stages as a gaussian distribution with mean set to half of the
corresponding timeout value.

Simulating Human Movement: We use a modified form of Random Landmark
Model [39] to simulate the movement pattern of humans. In our simulation, the ini-
tial starting position is either one of the entrances of the train station or any track of
the Metro North, and the destination is set to one of the subway tracks. These starting
and ending points are randomly chosen for each individual. The speed of movement is
fixed at typical walking speeds of 1, 2 and 3 meters/s. After arriving at a particular train
station, a person waits at a fixed point before boarding the next arriving train. Once the
entry time of an individual is determined during the initial cycle of our simulation (a
cycle represents a rush hour period on any given day), we use gaussian distribution to
calculate the entry time for all subsequent cycles. We limit the distribution to within
10 minutes of the entry time of the initial cycle. It effectively represents a regular daily
commute for an individual, who boards a train almost at the same time every day.

Evaluating Bluetooth as a Medium for Botnet Command and Control 75

(a) (b)

0 50 100 150
Time (min)

0

2000

4000

6000

8000

N
um

be
r

of
 B

ot
s

R
es

po
nd

ed

100
200
300
400
500

0 50 100 150
Time (min)

0

20

40

60

80

100

Sa
m

e
B

ot
s

R
es

po
nd

ed
 (

%
)

(c)

10s 30s 1min 2min 5min 10min
Polling Interval

0

2000

4000

6000

N
um

be
r

of
 B

ot
s

R
es

po
nd

ed

Fig. 10. Simulation results for the transport model: (a) Effect of the initial number of seeds on the
number of bots receiving the command, (b) number of bot encountered repeatedly over multiple
runs simulating different days, and (c) effect of varying polling interval on command propaga-
tion rate. During the rush hour commute, 30% of the total population or around 17K nodes are
vulnerable. In (a), the initial seeds are chosen using the same Gaussian distribution used for the
station entry time of nodes. These initial seeds are not counted in the results.

6.2 Simulation Results

Our results show that public transportation can act as an ideal environment for a bot-
master to effectively pass commands to a large bot population. With a relatively small
initial seed of command-carrying nodes, the botnet commands can reach a considerable
number of bots (Figure 10a). Such seeds can be created by the botmaster using other
alternate mechanisms, for example, by planting static nodes at popular spots near the
station or by dropping commands at the nodes traveling to Grand Central in the Metro
North trains. We observe that more seeds allow commands to propagate faster, although
the propagation rate speedup is modest beyond a threshold. This suggests that the bot-
master can achieve considerable coverage even when the number of seeding bots is low:
for a initial seed of 200, the command can be transferred to about 6500 nodes within
the rush hour, which forms more than 35% of the population that can be infected. Note
that these numbers correspond to only nodes that receive commands at Grand Central
Terminal; these nodes will further propagate the commands to other nodes when they
visit their work, school, homes, etc. Such results are out of scope for this simulation.

Our transport simulation model reinforces our premise that humans follow routines
in their day-to-day movements, which can be exploited for botnet C&C. Figure 10b

76 K. Singh et al.

shows that a command propagation cycle typically encounters more than 70% of the
same nodes every day at rush hour. These numbers would be much higher in a more
closed setting like offices where the movement of employees is typical more restricted
and as a result, the Bluetooth devices come in constant contact with each other for
longer periods of time.

Our results also demonstrate that by carefully specifying the polling interval for the
bots, a botmaster can balance the latency experienced by the botnet and stealthiness of
the bots (Figure 10c). Keeping the interval to a lower value results in higher propagation
rates: for a polling interval of 10 seconds, the command propagates to about 6500 bots,
which constitutes about 36% of the total vulnerable machines. With an increased polling
interval, the propagation rate drops substantially with only 14% of the bots receiving
command for a polling interval of 1 minute; this value drops drastically to about 1%
for 5 minutes. One reasoning behind such a drastic drop is the dynamic nature of the
transportation system: individuals come in contact with each other for much shorter
intervals of time (as compared to the academic environment represented by the MIT
dataset). Therefore, for larger polling interval, higher number of victims are missed
between subsequent polls.

The transport model and simulation results reiterate and reinforce the trace-based
analysis discussed in the previous section. These results show that public networks ful-
fill the requirements and the premises underlying the creation of a mobile phone-based
botnet using Bluetooth as its communication channel. They also demonstrate that com-
mand propagation numbers would be much higher if botmasters target such large-scale
public networks.

Note that our observations are necessarily conservative. A more in depth approach
could model the movement of people throughout a city throughout an entire day. Such
a model would demonstrate that there would be other opportunities for messages to
be passed. However, realistically modelling the movements of every person in a city
is extremely difficult. By focusing on transportation hubs, we are able to demonstrate
that these kinds of botnets are possible and simply note that improvements to the prop-
agation of command and control messages can be expected given other repetitive daily
interactions.

7 Defensive Strategies

The modeling and simulation in the previous sections have shown that mobile phone-
based botnets can plausibly use Bluetooth as a communications channel. While increas-
ing the latency of C&C messages, this approach significantly reduces the probability
that defenders can observe or disrupt these networks. The use of traditional intervention
techniques is unlikely to help protect cellular providers against such activity. Careful
modifications that consider the patterns of interaction discussed in this paper, however,
are likely to prove highly effective.

Like the move towards heterogeneity in platform architectures and operating sys-
tems, we argue that software patching mechanisms in this space will begin to mirror the
desktop world. In particular, providers will likely be able to help push critical patches to
devices. Such a mechanism would provide a number of benefits. For instance, whereas

Evaluating Bluetooth as a Medium for Botnet Command and Control 77

the majority of phone users have never installed software updates, the provider could
help them do so with minimal interaction. Such improvements could not only reduce
vulnerability to infection, but also improve the services available to users.

Our propagation analysis of mobile phone-based botnet behavior provides some key
insights into developing effective remediation strategies. Our results show that botnet
command propagation is at its peak when infected devices have a high probability of
being in proximity of each other – weekday mornings. Bots are logically less likely to
encounter each other later at night and during weekends. Achieving the widest prop-
agation of commands, even if for a time delayed event (one launched later using the
loosely synchronized clock provided by the network), therefore requires the botmaster
to send messages at specific times of the day. If this brief time window is missed, bots
will be forced to communicate with each other over the network.

Remediation can therefore be most successful if launched when bots are least able to
coordinate and defend against such efforts. In particular, evenings and weekends pro-
vide the most significant periods in which bots are unlikely to communicate via Blue-
tooth. Such periods also represent the ideal time periods for providers to push updates.
In particular, a high density of mobile users in a single location significantly limits the
rate with which such updates can be disseminated – previous work has shown the lim-
itations of cellular resources and how attempts to communicate with a large number of
users in a single cell can accidentally [32] or intentionally [33] deny service. Accord-
ingly, by pushing patches when customers are least likely to be using their phones and
bots are least likely to be able to warn each other without using the provider’s network,
the provider can more effectively combat such botnets.

Detection mechanisms in this space also hold interesting possibilities. Whereas desk-
top systems generally rely on installed scanning tools (e.g., antivirus) or network-based
IDSs to identify infection, mobile phones have the potential to leverage exciting new
mechanisms. In particular, devices plugged into desktops to synchronize information
can also be put through a more rigorous set of tests to determine whether or not mal-
ware is present. This process can include up-to-the-minute updates from the provider,
which can help the more powerful desktop-based software tailor its investigation.

Knowledge of the limitations of a mobile phone-based botnet using Bluetooth helps
to mitigate the advantages near-field communications affords in these systems. When
used in conjunction with the proposed mitigation infrastructure, such systems are more
combatable than initially supposed.

8 Conclusion

Mobile phones are becoming increasingly able to perform critical tasks. However, such
devices are also becoming increasing susceptible to infection. Whereas a number of
other researchers have investigated the characteristics of such infection, this paper in-
stead attempts to determine whether such devices can be used to support a botnet. In
particular, this work tests whether or not such a botnet can effectively communicate
using near-field communications to avoid traditional detection mechanisms. In this pa-
per, we demonstrate that such a botnet is possible due to the largely repetitive mobility
patterns found in human behavior. Over the course of a day, we show that commands

78 K. Singh et al.

can be consistently disseminated to over 66% of infected nodes. We then leverage such
observations to develop more effective patching and mitigation strategies used to either
isolate infected devices or force those whose infection is unknown to reveal themselves.
While such botnets have not been observed yet in the wild, this work demonstrates that
their eventual existence should be anticipated.

References

1. Grand Central Terminal,
http://en.wikipedia.org/wiki/Grand_Central_Terminal (last accessed
Feburary 2, 2010)

2. MTA NYC Transit: 2007 Ridership by Subway Station (2007),
http://www.mta.info/nyct/facts/ridership/ridership_sub.htm (last
accessed Feburary 2, 2010)

3. New York City Subway Rolling Stock,
http://www.nycsubway.org/cars/index.html (last accessed Feburary 2,
2010)

4. Rail commuters still bothered by cell phone abuse,
http://www.trainweb.org/ct/cellsurvey.htm (last accessed Feburary 2,
2010)

5. Sinit P2P Trojan Analysis, http://www.lurhq.com/sinit.html (last accessed
Feburary 2, 2010)

6. Barford, P., Yegneswaran, V.: An Inside Look at Botnets. Advances in Information Security
(2006)

7. Cooke, E., Jahanian, F., Mcpherson, D.: The Zombie Roundup: Understanding, Detecting,
and Disrupting Botnets. In: Workshop on Steps to Reducing Unwanted Traffic on the Internet
(SRUTI), Cambridge, MA (June 2005)

8. F.-S. Corporation: F-Secure Computer Virus Descriptions: Cabir (December 2004),
http://www.f-secure.com/v-descs/cabir.shtml (last accessed Feburary 2,
2010)

9. F.-S. Corporation: F-Secure Computer Virus Descriptions: Mabir.A (April 2005),
http://www.f-secure.com/v-descs/mabir.shtml (last accessed Feburary 2,
2010)

10. Dagon, D., Gu, G., Lee, C., Lee, W.: A Taxonomy of Botnet Structures. In: Proceedings of the
23rd Annual Computer Security Applications Conference (ACSAC), Miami, FL (December
2007)

11. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The Second-Generation Onion Router.
In: Proceedings of the 13th USENIX Security Symposium (SECURITY), San Diego, CA
(August 2004)

12. Eagle, N., Pentland, A.: Reality Mining: Sensing Complex Social Systems. Journal of Per-
sonal and Ubiquitous Computing (2005)

13. Eckman, B.:
http://lists.sans.org/pipermail/unisog/2006-April/026261.html
(last accessed Feburary 2, 2010)

14. Ferrie, P., Szor, P., Stanev, R., Mouritzen, R.: Security Response: SymbOS.Cabir. Symantec
Corporation (2007)

15. Fleizach, C., Liljenstam, M., Johansson, P., Voelker, G.M., Mehes, A.: Can You Infect Me
Now?: Malware Propagation in Mobile Phone Networks. In: ACM Workshop on Recurring
Malcode (WORM), Alexandria, Virginia, USA (November 2007)

http://en.wikipedia.org/wiki/Grand_Central_Terminal
http://www.mta.info/nyct/facts/ridership/ridership_sub.htm
http://www.nycsubway.org/cars/index.html
http://www.trainweb.org/ct/cellsurvey.htm
http://www.lurhq.com/sinit.html
http://www.f-secure.com/v-descs/cabir.shtml
http://www.f-secure.com/v-descs/mabir.shtml
http://lists.sans.org/pipermail/unisog/2006-April/026261.html

Evaluating Bluetooth as a Medium for Botnet Command and Control 79

16. Freiling, F.C., Holz, T., Wicherski, G.: Botnet Tracking: Exploring a Root-Cause Methodol-
ogy to Prevent Distributed Denial-of-Service Attacks. In: di Vimercati, S.d.C., Syverson, P.F.,
Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 319–335. Springer, Heidelberg
(2005)

17. Gu, G., Perdisci, R., Zhang, J., Lee, W.: BotMiner: Clustering Analysis of Network Traffic for
Protocol- and Structure-Independent Botnet Detection. In: Proceedings of the 17th USENIX
Security Symposium (SECURITY), San Jose, CA (July 2008)

18. Gu, G., Porras, P., Yegneswaran, V., Fong, M., Lee, W.: BotHunter: Detecting Malware Infec-
tion Through IDS-Driven Dialog Correlation. In: Proceedings of the 16th USENIX Security
Symposium (SECURITY), Boston, MA (August 2007)

19. John, J.P., Moshchuk, A., Gribble, S.D., Krishnamurthy, A.: Studying Spamming Botnets
Using Botlab. In: Proceedings of the 6th Symposium on Networked Systems Design and
Implementation (NSDI), Boston, MA (April 2009)

20. Jung, S., Lee, U., Chang, A., Cho, D.-K., Gerla, M.: BlueTorrent: Cooperative Content Shar-
ing for Bluetooth Users. In: Proceedings of the 5th IEEE International Conference on Perva-
sive Computing and Communications (PerCom), White Plains, NY (March 2007)

21. Lactaotao, M.: Security Information: Virus Encyclopedia: Symbos comwar.a: Technical De-
tails. Trend Micro Incorporated (2005)

22. Mulliner, C., Vigna, G.: Vulnerability Analysis of MMS User Agents. In: Proceedings of
the 22rd Annual Computer Security Applications Conference (ACSAC), Miami Beach, FL
(December 2006)

23. Nekovee, M.: Worm Epidemics in Wireless Adhoc Networks. Journal of Physics 9, 189
(2007)

24. Pettey, C.: Gartner Says Worldwide Mobile Gaming Revenue to Grow 50 Percent in 2007
(June 2007),
http://www.gartner.com/it/page.jsp?id=507467 (last accessed Feburary 2,
2010)

25. Provos, N., Mavrommatis, P., Rajab, M.A., Monrose, F.: All Your iFRAMEs Point to Us. In:
Proceedings of the 17th USENIX Security Symposium (SECURITY), San Jose, CA (July
2008)

26. Rajab, M., Zarfoss, J., Monrose, F., Terzis, A.: My Botnet is Bigger than Yours (Maybe,
Better than Yours): Why Size Estimates Remain Challenging. In: Proceedings of the 1st

Workshop on Hot Topics in Understanding Botnets (HotBots), Cambridge, MA (April 2007)
27. Ramachandran, A., Feamster, N.: Understanding the Network-Level Behavior of Spammers.

In: Proceedings of the ACM Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications (SIGCOMM), Pisa, Italy (September 2006)

28. Rhodes, C.J., Nekovee, M.: The Opportunistic Transmission of Wireless Worms between
Mobile Devices (2008),
http://arxiv.org/abs/0802.2685 (last accessed Feburary 2, 2010)

29. Science Daily. Medical Records on Your Cell Phone: Computer Scientists Turn Cell Phones
into Health Care Resource (2006),
http://www.sciencedaily.com/videos/2006/
0306-medical records on your cell phone.htm
(last accessed Feburary 2, 2010)

30. Srinivasan, V., Natarajan, A., Motani, M.: CRAWDAD data set nus/bluetooth (v. 2007-09-
03) (September 2007),
http://crawdad.cs.dartmouth.edu/nus/bluetooth (last accessed Feburary
2, 2010)

31. Su, J., Chan, K., Miklas, A., Po, K., Akhavan, A., Saroiu, S., Lara, E., Goel, A.: A Prelim-
inary Investigation of Worm Infections in a Bluetooth Environment. In: ACM Workshop on
Recurring Malcode (WORM), Alexandria, VA (November 2006)

http://www.gartner.com/it/page.jsp?id=507467
http://arxiv.org/abs/0802.2685
http://www.sciencedaily.com/videos/2006/0306-medical_records_on_your_cell_phone.htm
http://www.sciencedaily.com/videos/2006/0306-medical_records_on_your_cell_phone.htm
http://crawdad.cs.dartmouth.edu/nus/bluetooth

80 K. Singh et al.

32. Traynor, P.: Characterizing the Limitations of Third-Party EAS Over Cellular Text Messag-
ing Services. 3G Americas Whitepaper (2008)

33. Traynor, P., Enck, W., McDaniel, P., Porta, T.L.: Exploiting Open Functionality in SMS-
Capable Cellular Networks. Journal of Computer Security (JCS) (2008)

34. Traynor, P., Lin, M., Ongtang, M., Rao, V., Jaeger, T., La Porta, T., McDaniel, P.: On Cel-
lular Botnets: Measuring the Impact of Malicious Devices on a Cellular Network Core. In:
Proceedings of the ACM Conference on Computer and Communications Security (CCS),
Chicago, IL (November 2009)

35. Vamosi, R.: Mobile phone malware in our future (2008),
http://news.cnet.com/8301-10789_3-10071982-57.html (Last accessed
February 2, 2010)

36. Waldman, M., Rubin, A.D., Cranor, L.F.: Publius: A Robust, Tamper-Evident, Censorship-
Resistant Web Publishing System. In: Proceedings of the 9th USENIX Security Symposium
(SECURITY), Denver, CO (August 2000)

37. Yan, G., Eidenbenz, S.: Bluetooth Worms: Models, Dynamics, and Defense Implications.
In: Proceedings of the 22rd Annual Computer Security Applications Conference (ACSAC),
Miami Beach, FL (December 2006)

38. Yan, G., Eidenbenz, S.: Modeling Propagation Dynamics of Bluetooth Worms. In: Pro-
ceedings of the 27th International Conference on Distributed Computing Systems (ICDCS),
Toronto, Canada (June 2007)

39. Yan, G., Flores, H.D., Cuellar, L., Hengartner, N., Eidenbenz, S., Vu, V.: Bluetooth Worm
Propagation: Mobility Pattern Matters! In: Proceedings of the 2nd ACM Symposium on In-
formation, Computer and Communications Security (ASIACCS), Singapore (March 2007)

http://news.cnet.com/8301-10789_3-10071982-57.html

Take a Deep Breath:

A Stealthy, Resilient and Cost-Effective Botnet
Using Skype

Antonio Nappa1, Aristide Fattori1, Marco Balduzzi2

Matteo Dell’Amico2, and Lorenzo Cavallaro3

1 DICo, Università degli Studi di Milano, Italy
{nappa,joystick}@security.dico.unimi.it

2 Eurecom, Sophia-Antipolis, France
{marco.balduzzi,matteo.dell-amico}@eurecom.fr

3 Faculty of Sciences, Vrije Universiteit Amsterdam, The Netherlands
sullivan@few.vu.nl

Abstract. Skype is one of the most used P2P applications on the Inter-
net: VoIP calls, instant messaging, SMS and other features are provided
at a low cost to millions of users. Although Skype is a closed source appli-
cation, an API allows developers to build custom plugins which interact
over the Skype network, taking advantage of its reliability and capabil-
ity to easily bypass firewalls and NAT devices. Since the protocol is com-
pletely undocumented, Skype traffic is particularly hard to analyze and to
reverse engineer. We propose a novel botnet model that exploits an overlay
network such as Skype to build a parasitic overlay, making it extremely
difficult to track the botmaster and disrupt the botnet without damag-
ing legitimate Skype users. While Skype is particularly valid for this pur-
pose due to its abundance of features and its widespread installed base,
our model is generically applicable to distributed applications that employ
overlay networks to send direct messages between nodes (e.g., peer-to-peer
software with messaging capabilities). We are convinced that similar bot-
net models are likely to appear into the wild in the near future and that the
threats they pose should not be underestimated. Our contribution strives
to provide the tools to correctly evaluate and understand the possible evo-
lution and deployment of this phenomenon.

1 Introduction

Botnets are a major plague of the Internet: miscreants have the possibility to hire
and control armies of several thousands of infected PCs to fulfill their malicious
intents. Theft of sensitive information, sending unsolicited commercial email
(SPAM), launching distributed denial of service (DDoS) attacks, and scanning
activities are among the most nefarious actions attributable to botnets.

The threat posed by bots and their constant and relevant position in the
underground economy made them one of the most discussed topics by security
experts and researchers [27,20]. A plethora of techniques have been proposed and

C. Kreibich and M. Jahnke (Eds.): DIMVA 2010, LNCS 6201, pp. 81–100, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

82 A. Nappa et al.

deployed to address such a phenomenon [24,37,9,50,51,31]. Some of them aim
to understand botnets’ modus operandi [45,29,44], while others aim to detect
patterns typically exhibited by bot-infected machines [24,9,50,51].

Unfortunately, despite the efforts spent by the research community in fighting
botnets, they remain an omnipresent menace to the safety, confidentiality, and
integrity of Internet users’ data. On the one hand, bots authors, increasingly
motivated by financial profits [12,45], are constantly looking for the most ap-
pealing features a botnet should have: stealthiness (i.e., non-noisy, low-pace, en-
crypted and distributed communications), resiliency (to nodes shutdown), and
cost-effectiveness (i.e., easy to infect/spread to new machines). On the other
hand, defense strategies must cope with such ever evolving malware, while being,
at the same time, easy-to-deploy exhibiting a contained rate of false positives.

Skype is the de-facto standard when it comes to VoIP and related commu-
nications. It has a number of ancillary features that make it the ideal platform
for a solid communication infrastructure. In fact, it protects the confidential-
ity of its users by encrypting all their communications, it is fault-tolerant by
adopting a de-centralized communication infrastructure, and it is firewall- and
NAT-agnostic, meaning that it generally works transparently with no particular
network configuration. Therefore, despite its closed-source nature, it is not sur-
prising how Skype has rapidly gained a huge consensus among the millions of
Internet users that use it on a daily basis.

Despite some efforts tailored to understanding Skype’s code and network pat-
terns [6,17], such a closed infrastructure remains almost obscure, nowadays.
Skype-generated network traffic is thus extremely difficult to filter and ardu-
ous to analyze with common network-based intrusion detection systems [3]. As
an unavoidable consequence, criminals have soon realized how Skype’s encrypted
communications could then protect the confidentiality of their (illegal) business,
hampering the activities of law enforcement agencies [1,2,4,33]. Even worse, the
whole Skype infrastructure meets perfectly all the aforementioned features for a
stealth, resilient, and cost-effective botnet. A plethora of Skype users can poten-
tially become unwitting victims of a powerful skype-based botnet: the year 2009
alone counted for 443 millions of active Skype accounts, with an average num-
ber of 42.2 millions of active users per day [18]. These numbers would certainly
attract cyber-criminals soon, and such network and communication character-
istics would definitely make the traffic generated by a Skype-based botnet an
especially difficult needle to find within the haystack of regular Skype traffic.

In this paper, we show how to take advantage of the features and protec-
tion mechanisms offered by Skype to create a botnet that is, at the same time,
resilient, easy to deploy and difficult to analyze. Using existing infrastructures
for botnet command and control is not a new idea, since many botnets nowa-
days adopt IRC servers; however, a parasitic peer-to-peer overlay built on top
of another decentralized overlay allows for many new and interesting features1:

1 We point out that Skype is not the only network that can be exploited by a parasitic
overlay: any de-centralized overlay network providing direct messaging capabilities
between the nodes can be a suitable target.

Take a Deep Breath: A Stealthy, Resilient and Cost-Effective Botnet 83

– it is hard to set bots and regular Skype traffic apart, as our parasitic overlay
network sits on top of the regular Skype network;

– the malicious network so obtained has no bottlenecks nor single point of
failure, and this is achieved by deploying an unstructured network with no
hierarchical differences among the nodes;

– the lack of a hierarchical structure allows also to use any controlled node as
an entry point for the botmaster;

– our parasitic overlay network tolerates the loss of bots: each node/bot con-
tains only a small set of neighbors used for message passing and no informa-
tion about the botmaster;

– dynamic transparent routing strategies are in charge of routing messages
through alternative routes, should one or more bots become unavailable (e.g.,
shut down);

– the policy adopted for registering new nodes makes it cost-unattractive to
obtain a comprehensive list of all the bots.

Simulation experiments we performed show that our model is indeed practical
and guarantees a strong resilience to the botnet, ensuring that messages are
delivered even when many bots are offline.

It is worth noting that exploring emergent threats is a problem with important
practical consequences, as already acknowledged by the research community [49]:
emerging botnets have already begun to adopt stealthy communications [45] and
de-centralized network infrastructures [29,44] as a mean to become more resilient
and hard to track down to keep contributing to the flourishing cyber-criminal
business. Thus, a necessary first step for developing robust defenses is that to
study about emergent threats. This is the motivation of our work: to show that
it is easy, feasible, and practical to deploy a stealth, resilient, and cost-effective
botnet. We finally conclude the paper by sketching the design and implementa-
tion of a host-based countermeasure that aims to classify Skype plugins as good
or malicious by monitoring their interactions with the core application. Although
our results are preliminary, they look promising to tackle such a nefarious threat
at the end-host systems.

2 Skype Overview

Skype is a widely used application, which features VoIP and calls to land-line
phones, audio and video conferencing, SMS and instant messaging, and more.
It is organized as a hybrid peer-to-peer (P2P) network with central servers,
supernodes, and ordinary clients [3].

Supernodes play an important role in the whole network. In fact, a set of
supernodes is responsible for bootstrapping the network. Thus, they act as the
point of entrance in the overlay infrastructure, and messages sent by a node are
routed through them. They are elected by considering different criteria, such as
the availability of a public IP, and the bandwidth/computational resources avail-
able on the client. Thus, every host with such features can become a supernode.

84 A. Nappa et al.

The security of Skype is so strong that Governments of some Countries have
reported that criminals and mobs started using Skype for their communications
in order to avoid eavesdropping by the police forces [1,4,33]. The only effective
countermeasures seem to be devoted at attacking the end-hosts system [41].

On the one hand, software that comes with valid security and privacy policies
creates positive sensations of trust and safeness to its users, encouraging the
enlargement of the installed base. On the other hand, the presence of possible
weaknesses in its architecture gives to attackers a means to take advantage of
its features for purposes beyond the original design of the application. Indeed,
miscreants have already started to misuse the API to deploy malware. For in-
stance, Peskyspy2 is a trojan that records Skype conversations and provides a
backdoor to download them, while Pykspa2 and Chatosky2 are two worms that
spread using the Skype chat. Skype malware benefit from the fact of being de-
ployed as Skype plugins. In fact, whenever a plugin issues a command (e.g., to
create a chat or to send a message), Skype behaves exactly as if the command
was invoked by the real user. For example, all the Skype plugins’ traffic that
leave an host is automatically encrypted. Malware can take advantage of these
features to hide themselves and their actions, thus becoming very hard to detect.
All these features make the API appetizing to miscreants that look for new and
powerful means to create and control a botnet [7,15].

Fortunately, to the best of our knowledge, Skype-based botnets are still ex-
clusively theoretical. Nonetheless, it is interesting to ask ourselves whether such
an emerging threat could potentially be a serious menace to the (Internet) soci-
ety, in the near future. In the following, we show that it is indeed practical and
feasible to build a cost-effective botnet by exploiting the features offered by a
pre-existent overlay networks such as, in our case, Skype.

2.1 The Skype API

The Skype API allows developers to write applications using features such as
sending chat or SMS messages, starting or redirecting calls, or searching for
friends. Unfortunately, this API mechanism is far from being as secure as the
core of Skype is [17].

A weakness of the API is that there is no control over the number of mes-
sages that a plugin is allowed to send. Basically, all the possible activities that a
human user can perform through the client (calls, SMSs and chats) can be au-
tomated by a plugin, without any flooding control that would limit spamming.
For instance, Pykspa, is a Skype-based malware that spreads by spamming mes-
sages with links throughout the Skype chat without any rate-limiting threshold.
Furthermore, a Skype plugin can directly have access to the search routine and
easily harvest many addresses of Skype-registered contacts. This information is
fundamental since the access to the search routine gives the possibility to find
formerly unknown peers.

Every time a third party applicationwants to interactwith Skype, a check is per-
formed to determine if this software is allowed to access the API. The mechanism
2 Symantec names.

Take a Deep Breath: A Stealthy, Resilient and Cost-Effective Botnet 85

used by Skype to accomplish this control is based on white/blacklisting. There are
two levels of white/blacklists: local and global. The former is stored in the Skype
configuration file using a hash value: when a new plugin wants to interact with
Skype, at the first execution, Skype comes up with a dialog box that prompts for
the user acknowledgment. When the user selects to authorize or block the plugin,
her decision is stored in the configuration file along with its hash value. This hash
value is the checksum of the plugin binary and is used by Skype to check for changes
in an already authorized plugin. Instead, the latter list is determined centrally by
Skype authorities and then propagated to its users throughout the P2P network.

Unfortunately, there are two inherent limitations of such an approach. On
the one hand, the existence of API bindings for interpreted languages, make it
hard to white/blacklist a single plugin as the interpreter program is the one that
interacts with the core. On the other hand, hackers were able to reverse engineer
the hash function used to calculate the plugin signatures, and published their
results on the Internet giving to malware authors the possibility to develop their
own extensions [17]. As such a vulnerability can be fixed in the next releases
of Skype, we opt for a different strategy: silently waiting for the authorization
dialog to appear, and then performing a fake click to authorize the malware
without user consent. We implemented this technique in our bot prototype (see
Section 3.2).

3 System Description

In this Section we present our parasitic overlay, a network of non-structured
peers that exchange messages over a pre-existent P2P overlay network such as,
in our case, Skype.

In our botnet, messages exchanged between bots and the master flow through
the network exactly as legitimate messages of the application. This makes the
botnet traffic unrecognizable with respect to the legitimate Skype traffic: par-
asitic overlay nodes behave as ordinary peers of the underlying “host” overlay
network. Fig. 1 shows how nodes communicate in the parasitic overlay: botnet
nodes (in black, on the above layer, linked to the corresponding infected skype
node through a dashed line) send messages to each other directly, without being
aware of how routing is performed in the underlying Skype network.

3.1 Botnet Protocol

The communication between the bots and the master is protected by using
an ad-hoc encryption scheme in addition to the encryption already performed
by Skype. This preserves the confidentiality of the messages exchanged by the
bots, even if Skype disclosed, to law enforcement authorities, the encryption
key of a particular bot-engaged communication. Messages are sent through the
Skype chat as common conversations between users. To accurately replicate the
behavior of botnets present in the wild, we designed the architecture in order
to provide unicast, multicast and broadcast communication between the master
and the bots.

86 A. Nappa et al.

SN

SN

SN

SN

SN

SC SC

SC

SC

SC

SC

SC
SC

SC

SC

SC
SC

SN

SC SC

SC

SN

SN

SC
SC

SC

SC

SC

Fig. 1. The parasitic overlay network over Skype. While all the messages are routed
from Skype clients (SCs) through supernodes (SNs), the parasitic overlay network
makes no hierarchical difference between supernodes and regular clients.

Message Encryption. Bots can receive single commands, group commands
and global commands, respectively useful for well targeted attacks, botnet rental
or for updates or massive attacks. This is possible by using different encryption
mechanisms between the master and the bots. Each node owns a set of symmetric
keys: a node key, used to receive unicast messages from the master, and any
number of group keys, to receive multicast messages. Group keys are sent to
nodes via new messages from the master. All messages from nodes to the master
are encrypted using the master’s public key (shipped with the malware binary),
while messages from the master to nodes are encrypted with the appropriate
symmetric key and signed by the master. All nodes try to decrypt the messages
they receive with the keys they possess. All encrypted messages are prepended
by a random string to avoid that messages containing the same clear-text result
in the same ciphertext.

Message Passing. The message-passing procedure broadcasts every message
to all participating peers in the network, using a flooding algorithm similar to
the one used in unstructured peer-to-peer networks such as Gnutella [22]: when
a peer receives a new message, it forwards it to all neighbors. By doing so,
no routing information to reach the botmaster is disclosed. A set of hashes of
all received messages is locally kept by nodes to avoid forwarding again old
messages. Algorithm 1 shows the details of a bot behavior upon reception of
a message. If the received message has not been processed yet, and if the bot

Take a Deep Breath: A Stealthy, Resilient and Cost-Effective Botnet 87

is able to decrypt the message, it means the new message is directed to him,
thus it verifies if the master’s signature is valid. If this condition holds, the bot
executes the command received in the message. In the end, regardless whether
the message is directed to the bot or not, it stores the hash of the message
and forwards it to its neighbors. Overhead and performances of the flooding
mechanism will be discussed in Section 4.

Input:

– Received message M
– List of neighbors N
– Set of received message hashes H
– List of symmetric keys (node key and group keys) K

Output:

– Commands to execute execute(C)
– Messages to forward forward(F , N)

foreach message M do
if hash(M) ∈ H then

drop(M);
end
else

if M can be decrypted with a key k ∈ K then
C ← decrypt(M , k);
if signature of M is verified then

execute(C);
end

end
add(hash(M), H);
forward(M , N);

end

end

Algorithm 1. Message-passing algorithm

Botnet Bootstrap. When new nodes join the botnet, they bootstrap their
connection by generating a node key and by connecting to a set of pre-defined
gate nodes (GNs), shipped with the binary, that serve as temporary neighbors
for the network bootstrap. Gate nodes are ordinary nodes connected to the
network, and they are used to reach the botmaster via the message passing
protocol described in Section 3.1. The new node announcement contains its
Skype username, the newly-generated node key and, as any communications
sent from nodes to the botmaster, it is encrypted with the botmaster public
key. Again using the message passing protocol, the botmaster responds with a
list of l nodes that will be, from that moment on, the neighbors of the new
node. This message is encrypted with the node’s symmetric key that was sent

88 A. Nappa et al.

to the botmaster. Appropriate values for the l parameter will be discussed in
Section 4.1. Since the GNs set guarantees to new infected bots the possibility
of joining the network, they may appear as a particularly vulnerable point: if
the GNs are excluded from the Skype network or the malware gets uninstalled
from them, no new nodes can join the botnet. However, it is important to point
out that these gate nodes are ordinary nodes, exactly as the other nodes in the
network, and therefore the list of GNs shipped with the binary can be updated
at will by the botmaster if the GNs are unreachable. Moreover, the gate nodes
do not have any special routing information, and therefore they will not disclose
any information about the identity of the botmaster even if they fall under the
control of an authority and are inspected.

Bootstrap Fail-Over. In the unlikely case the GNs are not available, because
they have been dismissed already, the bot cannot receive any bootstrap list
from the master. As a fallback measure, the bot issues a Skype search based
on a criterion generated from a seed S that is common to all bots. This seed
is obtained by an external source that is completely independent and easily
accessible by every bot, e.g., by following a strategy similar to the Twitter-seeded
domain-flux adopted recently by the Torpig botnet [45]. The master registers one
or more Skype users with usernames generated starting from S and sets in their
public fields, e.g. the status message, the list of the active GNs that the new bots
have to use for their bootstrap phase. As the approach relies on dynamic and
daily updated external sources, it seems unfeasible, for a defense mechanism,
to predict and shut all the soon-to-be-registered users off in a timely, effective,
and cost-effective manner. Moreover, this fallback measure does not expose more
information about the parasitic overlay than the normal bootstrap phase.

3.2 Implementation

The proof-of-concept bot has been entirely developed in Python, exploiting the
capabilities of the Skype4Py library. The library is cross-platform and the bot
developed on Linux runs also on Windows and Mac OS X operating systems.

As discussed earlier, Skype comes with an access control mechanism that pre-
vents to load a plugin without an explicit user acknowledgment. At the first
execution of a plugin, Skype prompts the user with an authorization request
that blocks the program execution until an answer is given. Subsequently, Skype
calculates a signature for the plugin and updates its configuration file. There
are basically two ways to circumvent this Skype-enforced access control mecha-
nism. One would require to reverse the underlying hashing algorithm, while the
other would require to mimic users’ interactions. The first approach, described
in [17], suffers from updates of the hashing algorithm that would require to be
understood and reversed again. On the other hand, the second approach is more
generic and is the one we have thus implemented.

From a malware author’s perspective, such an access control poses a problem
to the automated registration of malicious applications and can decrease the
success rate of an infection. To cope with this issue, we integrated in our bot

Take a Deep Breath: A Stealthy, Resilient and Cost-Effective Botnet 89

an X11 tool [42] that, simulating keyboard and mouse inputs, automatically
validates our plugin registration. We have instructed the prototype to listen and
to react immediately at the Skype authorization dialog, authorizing the plugin in
a concealed fashion. Our implementation bypasses the Skype security protection
mechanism and allows an automated and hidden registration of the bot. The
same approach is practical on Microsoft Windows through the use of standard
libraries (e.g., FindWindow(), GetCurPos(), and MouseEvent() functions [36]),
without the need of external tools.

4 Experiments

We performed two different sets of experiments on our botnet prototype. In
Section 4.1, we describe a simulation of our message-passing algorithm that
aims at evaluating the trade-offs between the overhead due to the message-
passing algorithm and the percentage of bots that are reached by every message.
In Section 4.2, we show the empirical observations made while deploying and
running our bot prototypes on real systems.

4.1 Network Traffic Simulation

To test the effectiveness of message delivery and the overhead it involves, we
wrote a custom simulator that emulates the dynamics of message spreading of
Algorithm 1. Since our message-passing protocol floods messages to all nodes,
relying on cryptography to ensure that only the intended recipients can decrypt
it, we measure the effectiveness of the algorithm with two quantities: coverage,
that is the percentage of nodes that are reached by a message sent from a given
starting node, and the overhead, expressed as the ration between number of
messages sent in the whole system and the number of nodes in it. A perfect
algorithm would have a coverage of 100% (all bots are reached) and an overhead
of 1 (each peer receives exactly one message).

In our simulator, we generate a network topology with n nodes and l links
per node. We start with a completely connected topology of l nodes, and then
we iteratively add new nodes connecting them with a random subset of l pre-
existing ones, until we reach the desired size of n nodes. Before simulating the
propagation of each message, we consider each node and randomly shut it off or
leave it on according to a uniform probability a, representing the average peer
online availability. Table 1 gives an overview of the simulation parameters.

If we consider our network with the tools of graph theory, it is important to
evaluate the size of connected components in the subgraph that we obtain by
considering only online nodes. In fact, when a message gets propagated starting
from a given node, it will reach all nodes that belong to the same connected
component. For Erdös-Rényi (ER) random graphs, a key value is the number of
edges in the network, which in our case–considering the probability that nodes
are online–corresponds to the value of l · a · n, where n � n · a is the number of
online nodes. In an ER graph [8], for a large number of nodes n, a giant compo-
nent (i.e., a connected component having size proportional to n) appears when

90 A. Nappa et al.

Table 1. Parameters for the network traffic simulation

Parameter Description Default

n number of nodes 10,000
l links added by each new peer 100
m number of messages sent in the simulation 100
a probability that a node is online 0.05

number of edges is greater than 0.5n, and the whole graph becomes connected
with high probability when this value reaches (ln n/2)n.

While in our case, due to the way we build the network, we do not have a
perfect ER graph, we experimentally observe in Table 2 a similar behavior with
respect to coverage, and a clear trade-off between network coverage and overhead
due to sending redundant messages. In particular, a choice of l = 40, entailing
l · a · n = 2n reaches around 90% of the nodes imposing a cost of 1.88 messages
per node, while a value of l = 92 resulting in l · a · n � (ln n/2)n reaches 99.84%
of the nodes that are online, but it involves sending 4.57 messages per node.

Figure 2(a) shows the number of hops separating, on average, each node from
the botmaster with growing network size n. This number of steps, and therefore
latencies in message delivery, have a slow logarithmic growth with respect to
the network size. Instead, Figure 2(b) shows the number of online neighbors per
node (n = 100, 000 in this case). Nodes that joined the network earlier are more

Table 2. Coverage and overhead for various values of the number of links l

Links per node (l) Number of edges (l · a · n) Coverage Overhead

10 0.5 · n 8.69% 0.08
20 1 · n 55.23% 0.71
40 2 · n 90.29% 1.88
60 3 · n 96.76% 2.88
92 4.60 · n (� (ln n/2)n) 99.84% 4.57

102 103 104 105

Network size n

1.0

1.5

2.0

2.5

3.0

3.5

A
ve

ra
ge

di
st

an
ce

fro
m

bo
tm

as
te

r

(a) Number of hops.

0 10 20 30 40 50 60
Active links

0

100

200

300

400

500

N
um

be
ro

fn
od

es

(b) Number of online neighbors.

Fig. 2. Informations on network topology

Take a Deep Breath: A Stealthy, Resilient and Cost-Effective Botnet 91

0 5 10 15 20
Overhead (traffic / messages)

0.0

0.2

0.4

0.6

0.8

1.0
E

m
pi

ric
al

C
D

F
sent
received

(a) l = 40.

0 5 10 15 20
Overhead (traffic / messages)

0.0

0.2

0.4

0.6

0.8

1.0

E
m

pi
ric

al
C

D
F

sent
received

(b) l = 92.

Fig. 3. Number of sent and received messages per node

likely to have more connections, since they had more opportunities of getting
chosen as new neighbors of nodes that just joined the network.

Another important issue is load balancing between peers: in Figure 3, we an-
alyze the empirical CDF with the average number of sent/received messages per
node. We observe that there is no strong deviation from the average for received
messages, while this phenomenon is more strongly perceivable for sent messages.
We attribute this to the fact that the older nodes, being more well-connected
and closer to the “center” of the network, receive their messages generally earlier
than their neighbors and they are thus more often responsible for propagating
them.

4.2 Bot Deployment

We tested our Skype botnet infrastructure on a testbed network of several hosts
that we “infected” with our bot prototype. We simulate the infection by injecting
the bot execution code in the start-up scripts of the infected machine’s users.
In a real scenario, attackers can infect their victims in several different ways,
e.g. by setting-up a drive-by-download site that exploits the visitors’ browser
vulnerabilities or by sending SPAM email embedding the malicious code.

We deployed our bot on 37 hosts, geographically distributed between France
and Italy. In one of them we included the code to support the botmaster op-
erations, such as listing the botnet’s bots, managing the network, and sending
commands.

In a first experiment, we confirmed the capacity of the bot to discover an
active Skype session and to silently register itself as a trusted plugin without
explicit user authorization, as outlined in Section 3.2. Then, once given to each
bot a single gate node (chosen among the botnet nodes), we verified that all bots
correctly joined the botnet, by registering with l = 2 neighbors nodes. By doing
so, we validated the implementation of the botnet bootstrap protocol formulated
in Section 3.1. Table 3 details the timings of bootstrapping steps; bots were able
to complete their bootstrapping procedure, on average, within 12 seconds.

92 A. Nappa et al.

Table 3. Bootstrap timing

Bootstrap action Time (s)

Attaching to Skype 1.55
Contacting the Botmaster 4.40
Linking to the Network 6.03

Total 11.98

In a second experiment, we booted every bot and made the botnet run for
about 14 hours. We used an ad-hoc fuzzer to instruct commands to the bots at
random time intervals, registering 1,373 total issued orders. The average time for
the master to obtain an answer from a bot that executed a command ranged from
5.25 to 15.75 seconds. We noticed that the variability in this measure depends
mainly on the network topology of our parasitic overlay: older nodes, which are
usually placed closer to the botmaster, receive their messages first regardless of
Internet-level proximity with their neighbors.

With this botnet topology, the bots’ answers were reaching the botmaster
with an average hop count of 3.62 (see Figure 4). This count is higher than the
numbers presented in Figure 2(a), due to a lower value l = 2 chosen in this
setting. However, only a slow logarithmic growth of this value (and of message
delivery latencies) is to be expected with the growth of the network size.

To estimate the amount of traffic generated from our overlay botnet to keep
the botmaster concealed, we picked two random nodes, where we measured and
classified the number of incoming and outgoing messages. The number of dupli-
cates between all received messages ranged between 74% and 83%. This added
cost in network traffic is the price to pay in order to obtain the resilience prop-
erties described in Section 4.1.

Finally, to evaluate the resources consumed by our prototype, we installed the
HotSanic analysis tool [38] on all bots to monitor network, CPU, and memory
used by the prototype. Our bandwidth consumption was below 1KB/s even if
during the bootstrap phase it was possible to notice some peaks around 6KB/s
caused by the messages employed for bootstrapping. We can easily assume that
the bandwidth consumption is very low. We did not observe noticeable variations
on the use of CPU and memory.

1 2 3 4 5 6 7 8 9
Hops

0

50

100

150

200

250

300

350

400

P
ac

ke
ts

Fig. 4. Number of hops

Take a Deep Breath: A Stealthy, Resilient and Cost-Effective Botnet 93

5 Security Analysis

In this Section, we discuss possible attacks and countermeasures against our
botnet model, focusing on each different part of the botnet lifecycle. In the
following we refer to “attacker” as a security analyst that is trying to compromise
the botnet model. We assume that the attacker is able to reverse engineer the
malware and collect traffic dumps of known bots.

First, it is extremely difficult to obtain information about the network topol-
ogy by observing the traffic sent and received by bots: all traffic undergoes two
levels of encryption (one provided by Skype, the other by our scheme); the bot-
master can manage the network using any infected node as entry point and
change it at will; the routing behavior adopted by the botmaster’s node is ex-
actly the same as any other node. To make the job of the attacker even more
difficult, nodes can be instructed to add random delays to message forwarding
and to randomly generate “garbage” messages that will be delivered to the whole
network even if they cannot be decrypted by any peer.

Second, an attacker that takes control of an infected machine gains access to
the list of neighbors’ Skype usernames and to the messages addressed from the
master to that bot. This data can be used to detect what the botnet, or part of
it, is currently up to (e.g. which SPAM campaigns it is currently perpetrating),
but not very much can be said about the overall botnet infrastructure. Nodes
can change Skype identifiers if the botmaster instructs them to do so, making
information about neighbors short-lived. The botmaster is still very difficult to
track since, when seen from a neighbor’s point of view, it is not distinguishable
from any other infected host.

Third, if an attacker can successfully reverse-engineer the malware, she is able
to discover the hard-coded GNs and to collect the announce sent during boot-
strap. With this information, she can perpetrate a replay attack on the botnet.
This attack is done by repeatedly delivering announce messages to progressively
gather neighbor nodes received during the bootstrap phase. In order to mitigate
this attack, it is possible to limit the number of neighbor nodes sent to new bots
within any defined temporal window.

Finally, since in our model messages are flooded to the whole network, an
attacker can try to overburden the botnet nodes by sending a large number
of meaningless messages to the network; to mitigate this effect, we propose to
adopt a rate-limiting approach on incoming messages [28]: in this way, only a
given maximum number of messages from each neighbor is routed to the rest of
the network; thus, only the closest neighbors of each attacker will be likely to
suffer from the attack.

6 A Host-Based Skype Malware Detector

We have so far discussed how a hideous Skype plugin can infect a victim to make
it part of a botnet. In the following, we describe an approach that allows for a
deep analysis of Skype plugins, possibly leading to the detection of the evil ones.

94 A. Nappa et al.

As mentioned earlier, Skype’s network traffic is encrypted with strong cryptog-
raphy algorithms and its binary is protected by anti-debugging and obfuscation
techniques [3,17]. While these functionalities create a very good protection sys-
tem for common users, they also constitute a limit as it is almost impossible for
an external entity to investigate Skype’s internals and its network traffic. Our
idea leverages the fact that, while all the network traffic is encrypted, the mes-
sages exchanged on the API communication channel established between Skype
and a plugin, as seen in Section 2.1, are completely in clear text. It is therefore
possible to analyze the actions performed by a plugin before they are delivered
to the Skype core to infer a model that describe the plugin’s behaviors at best.

We propose a behavior-based analysis of the command protocol layer (CPL) of
the Skype API, for the purpose of detecting whether an application is performing
malicious actions through Skype. The set of Skype’s API commands is quite
small and therefore behavior-based analysis can be very effective when applied
to the CPL.

The command protocol layer API is based on messaging between Skype and
a plugin. This messaging is performed by leveraging the system’s standard func-
tions. In a first setup phase, known as attach phase, a plugin establish a channel
between itself and Skype, known as the communication layer. Messages are then
exchanged over this layer between the two applications, using a plain-text com-
mand protocol.

To perform our analysis, we hijack the attach phase. The hijacking is done
through a two-part system: the first component is a Skype plugin of its own,
known as proxy, while the second one is WUSSTrace, a Windows user-space sys-
tem call tracer [34]. When the proxy receives messages from the target plugin,
it simulates the corresponding Skype behavior and replies, thus establishing a
communication layer between itself and the plugin. From now on, the proxy acts
as a relay and forwards commands sent over the channel from the target plu-
gin to Skype, and viceversa. The plugin is unaware of not being communicating
directly with Skype and it consequently behaves normally.

The proxy component includes an analysis engine and several models of mali-
cious behaviors that we created observing the API calls issued by existing Skype
malware. By matching the behavior of the attached plugins with the malicious
models at our disposal, it is possible to give an preliminary evaluation of the
plugin behavior.

Our behavior-based approach is similar to the ones proposed by other malware
detection and analysis systems [10,35]. The main difference lies in the fact that
we apply it to a different (and higher) level, i.e. the API CPL. By keeping our
analysis at the higher CPL level, we avoid all the fine-grained details that other
techniques must cope with. These details include, for example, syscall analysis
and system API analysis, that are often greatly complex and costly. At the same
time, we are able to extract the behavioral semantic of a Skype plugin, exactly
as similar techniques.

The first set of results we obtained shows a high rate of false-positive during
analyses performed on a certain temporal window. We plan to overcome this

Take a Deep Breath: A Stealthy, Resilient and Cost-Effective Botnet 95

limitation by appropriately throttling the temporal window size and inserting
an API message rate limiting. This limit should be tailored on the number of
interesting API actions performed by plugin in a certain amount of time. We
have defined a small set of “interesting” actions and we plan, as a future work, to
refine this set by observing the behavior of benign and malign plugins. Through
these observations and experiments, we also plan to better refine the temporal
window parameter used so far. Although the classification technique is still in an
early development stage we are convinced that our approach is a good starting
point.

7 Related Work

The botnet phenomenon has quickly become a major security concern for In-
ternet users. As such, it has rapidly gained popularity among the mass media
and the attention of the research community interested in understanding, ana-
lyzing, and detecting bot-infected machines [29,44,45]. Even worse, such a threat
is nowadays exacerbated by the fact that malware authors are willing to give
up their fame for an economic profit [12,45]: a reason that motivates by itself
miscreants, more than ever, to constantly work towards stealth, high-resilient,
and low-cost botnets.

Storm [29] and Waledac [44] are probably the two most famous P2P-based
botnets present in the wild. Although these botnets are hard to track down due
to their decentralized infrastructure, researchers have shown how it is possible to
infiltrate them, disrupt their communications, and acquire detailed information
about the botnets’ modus operandi (e.g., spreading/infection mechanisms, type
of threats, corpus of infected hosts).

To overcome such drawbacks, Starnberger et al. presented Overbot in [43].
Overbot uses an existing P2P protocol, Kademlia, to provide a stealth command
and control channel while guaranteeing the anonymity of the participating nodes
and the integrity of the messages exchanged among them. Overbot is the closest
work to ours; although we share a similar underlying decentralized structure,
there are a number of salient properties that set the two approaches apart. In our
approach, the communication bootstrap of a node starts by sending messages
using a set of pre-defined nodes–gate nodes (GNs)–that are shipped with the
malware. Gate nodes are ordinary bot-infected nodes, and, as such, they perform
message routing exactly as any other node. They are just used during the initial
bootstrap phase every time a new infected node wants to join the network, but,
after that, they do not need to continuously receive communication. On the other
hand, sensor nodes in Overbot are a resident part of the botnet: an observer may
perform statistical analysis and inferences on the traffic that such nodes generate
and receive. Furthermore, Overbot’s sensor nodes are equipped with the private
key of the botmaster. This means that once a node is compromised, it becomes
possible to decrypt all the traffic sent to the botmaster. On the other hand, a
compromised node in our approach exposes only its symmetric key, which gives
the chance to disclose the traffic sent only by that node.

96 A. Nappa et al.

Research in the analysis and detection of bot-infected machines has been quite
prolific in the past years [14,21,39,5,23,25,26,24,31,51,46,50,9].

Original signature-based systems, focused on the detection of syntactic arti-
facts of the malware, are vulnerable to obfuscation techniques and have thus been
superseded by approaches that aim to characterize the behavior of a malicious
samples on end-user systems [32,35,52,19,10]. These approaches are usually ef-
fective in analyzing, detecting and describing malware behaviors. Unfortunately,
the ability of the malware to mimic legitimate process behaviors may trick such
systems to produce too many false alarms. Moreover, the computational re-
sources required to perform the analysis are non-negligible, and, even worse,
users are required to install the analysis platform on their machines. Therefore,
it is desirable to have complementary solutions that monitor network events to
spot malware-infected machines.

From a different perspective, research in the detection of bots based on the
analysis of network events has proceeded by following two main directions. One
line of research revolves around the concept of vertical correlation. Basically,
network events and traffic are inspected, looking for typical evidence of bot in-
fections (such as scanning) or command and control communications [25,23,5].
Unfortunately, some of these techniques are tailored to a specific botnet struc-
ture [23,5], while others rely on the presence of a specific bot-infection life-
cycle [25]. Others are not immune to encoding or encryption schema as they
require to analyze the packets’ payload [50], and others again are sensible to
perturbation in the network or timing features of the observed connections [9].

The second line of botnet detection research, instead, focuses mainly on hori-
zontal correlation, where network events are correlated to identify cases in which
two or more hosts are involved in similar, malicious communication. Interesting
approaches are represented by BotSniffer [26], BotMiner [24], TAMD [51], and
the work proposed in [46]. Except for [46], which detects IRC-based botnets by
analyzing aggregated flows, the main strength of the these systems is that they
are independent on the underlying botnet structure, and thus, they have shown
to be effective in detecting pull-, push-, and P2P-based botnets. On the other
hand, correlating actions performed by different hosts requires that at least two
hosts in the monitored network are infected by the same bot. As a consequence,
these techniques cannot detect single bot-infected hosts. This is a significant
limitation, especially when considering the trend toward smaller botnets [14].

Even worse, state-of-the-art techniques [24] are generally triggered upon the
observation of malicious and noisy behavioral patterns, where scan, SPAM, and
DDoS activities are probably the most representative actions. Unfortunately,
in their quest to an ever increasing illegal financial gain [20,27] and to avoid
being easily detected by making much ado for nothing, bots engage in low-
pace, legitimate-resembling activities [45]. Spotting such communications be-
comes then a very hard task, which, in the end, hampers the detection of the
infected machines.

The parasitic overlay network presented in this paper has all the features re-
quired to thwart the current state-of-the-art botnet detection approaches. Mes-

Take a Deep Breath: A Stealthy, Resilient and Cost-Effective Botnet 97

sage encryption hampers the creation of content-based network signatures, while
unknown routing strategies make it difficult to track down IP addresses. In ad-
dition, Skype itself makes the network highly resilient to failure and provide a
massive user corpus, which gives the chance to rely on a non-negligible number
of bots. It is worth noting that speculations on using Skype as a vehicle to build
a powerful botnet infrastructure have been around for a while [7,15,30,47,48,13].
Fortunately, to the best of our knowledge, such rumors have never evolved into
a full-fledged Skype-based botnet in the wild. We have nonetheless shown that
such a botnet can be easily designed and implemented. In addition, our simula-
tion and deployment experiments have shown that building a stealthy, resilient
and low-cost botnet is indeed possible and practical. Research in botnet de-
tection must thus be refined to deal with the threats posed by such advanced
malicious networks that are likely to appear in the near future.

8 Conclusion

In this paper we have described that the design and implementation of a stealth,
resilient, and cost-effective botnet based on a general overlay network, such as
the one offered by Skype, is not a chimera. It is indeed a practical and realistic
threat that may emerge in the near future. The unstructured parasitic overlay
network proposed, effectively propagates messages leaving to each node only a
limited knowledge of the whole network topology, making the botmaster difficult
to track down and making the network difficult to map.

In the parasitic overlay, messages are flooded through the network to avoid
propagating information about how to reach the botmaster, relying on cryptog-
raphy to ensure that the messages can be only be read by the intended recipients.
In future work, taking inspiration from routing strategies in anonymous peer-to-
peer networks [40,11,16], we intend to explore more efficient routing strategies
for messages, making sure that the information given to each node makes it still
difficult to track down the botmaster.

Since we believe that the menace posed by the model of botnet presented in
this paper will soon emerge, our future works will focus also on the improvement
of the host-based detection technique we briefly outlined.

References

1. Adnkronos International. Italy: Govt probes suspected mafia use of Skype (Febru-
ary 2009),
http://www.adnkronos.com/AKI/English/Security/?id=3.0.3031811578

2. Anderson, N.: Is Skype a haven for criminals? (February 2006),
http://arstechnica.com/old/content/2006/02/6206.ars

3. Baset, S., Schulzrinne, H.: An analysis of the Skype peer-to-peer internet telephony
protocol. In: CoRR (2004)

4. BBC. Italy police warn of Skype threat (February 2009),
http://news.bbc.co.uk/2/hi/europe/7890443.stm

http://www.adnkronos.com/AKI/English/Security/?id=3.0.3031811578
http://arstechnica.com/old/content/2006/02/6206.ars
http://news.bbc.co.uk/2/hi/europe/7890443.stm

98 A. Nappa et al.

5. Binkley, J.R.: An algorithm for anomaly-based botnet detection. In: SRUTI 2006
(2006)

6. Biondi, P., Desclaux, F.: Silver Needle in the Skype (March 2006)
7. Blancher, C.: Fire in the Skype–Skype powered botnets (October 2006),

http://sid.rstack.org/pres/0606_Recon_Skype_Botnet.pdf

8. Bollobás, B.: Random Graphs. Cambridge University Press, Cambridge (January
2001)

9. Cavallaro, L., Kruegel, C., Vigna, G.: Mining the network behavior of bots. Tech.
Rep. 2009-12, Department of Computer Science, University of California at Santa
Barbara (UCSB), CA, USA (July 2009)

10. Christodorescu, M., Jha, S., Seshia, S.A., Song, D., Bryant, R.E.: Semantics-aware
malware detection. In: Proceedings of the 2005 IEEE Symposium on Security and
Privacy, Oakland 2005 (2005)

11. Ciaccio, G.: Improving sender anonymity in a structured overlay with imprecise
routing. LNCS. Springer, Heidelberg (2006)

12. CNET News. Hacking for dollars (July 2005),
http://news.cnet.com/Hacking-for-dollars/2100-7349_3-5772238.html

13. CNET News. Skype could provide botnet controls (January 2006),
http://news.cnet.com/2100-7349_3-6031306.html

14. Cooke, E., Jahanian, F., McPherson, D.: The zombie roundup: understanding,
detecting, and disrupting botnets. In: SRUTI 2005: Proceedings of the Workshop
on Steps to Reducing Unwanted Traffic on the Internet (2005)

15. Danchev, D.: Skype to control botnets?! (January 2006),
http://ddanchev.blogspot.com/2006/01/skype-to-control-botnets.html

16. Dell’Amico, M.: Mapping small worlds. In: IEEE P2P 2007 (2007)
17. Desclaux, F., Kortchinsky, K.: Vanilla Skype part 2 (June 2006)
18. Ebay. Ebay, Paypak, Skype 2009, Q1 financial report (2009),

http://ebayinkblog.com/wp-content/uploads/2009/04/ebay-q1-09-earnings-

release.pdf

19. Egele, M., Kruegel, C., Kirda, E., Yin, H.: Dynamic Spyware Analysis. In: Pro-
ceedings of the 2007 Usenix Annual Conference, Usenix 2007 (2007)

20. Franklin, J., Paxson, V., Perrig, A., Savage, S.: An Inquiry into the Nature and
Causes of the Wealth of Internet Miscreants. In: CCS 2007: Proceedings of the
14th ACM Conference on Computer and Communications Security (2007)

21. Freiling, F.C., Holz, T., Wicherski, G.: Botnet tracking: Exploring a root-cause
methodology to prevent distributed denial-of-service attacks. In: Proceedings of 10
th European Symposium on Research in Computer Security, ESORICS (2005)

22. Gnutella Development Forum. Gnutella protocol specification,
http://wiki.limewire.org/index.php?title=GDF

23. Goebel, J., Holz, T.: Rishi: Identify Bot Contaminated Hosts by IRC Nickname
Evaluation. In: HotBots 2007: Proceedings of the First Workshop on Hot Topics
in Understanding Botnets (2007)

24. Gu, G., Perdisci, R., Zhang, J., Lee, W.: BotMiner: Clustering Analysis of Network
Traffic for Protocol- and Structure-Independent Botnet Detection. In: Proceedings
of the 17th USENIX Security Symposium (2008)

25. Gu, G., Porras, P., Yegneswaran, V., Fong, M., Lee, W.: BotHunter: Detecting
Malware Infection Through IDS-Driven Dialog Correlation. In: Proceedings of the
16th USENIX Security Symposium (2007)

26. Gu, G., Zhang, J., Lee, W.: BotSniffer: Detecting Botnet Command and Control
Channels in Network Traffic. In: Proceedings of the 15th Annual Network and
Distributed System Security Symposium, NDSS 2008 (2008)

http://sid.rstack.org/pres/0606_Recon_Skype_Botnet.pdf
http://news.cnet.com/Hacking-for-dollars/2100-7349_3-5772238.html
http://news.cnet.com/2100-7349_3-6031306.html
http://ddanchev.blogspot.com/2006/01/skype-to-control-botnets.html
http://ebayinkblog.com/wp-content/uploads/2009/04/ebay-q1-09-earnings-release.pdf
http://ebayinkblog.com/wp-content/uploads/2009/04/ebay-q1-09-earnings-release.pdf
http://wiki.limewire.org/index.php?title=GDF

Take a Deep Breath: A Stealthy, Resilient and Cost-Effective Botnet 99

27. Gutmann, P.: The Commercial Malware Industry. In: Proceedings of the DEFCON
conference (2007)

28. He, Q., Ammar, M.: Congestion control and message loss in Gnutella networks. In:
Proceedings of SPIE (2003)

29. Holz, T., Steiner, M., Dahl, F., Biersack, E., Freiling, F.: Measurements and Miti-
gation of Peer-to-Peer-based Botnets:A Case study on Storm Worm. In: USENIX
Workshop on Large Scale Exploits and Emerging Threats (2008)

30. IT World: Making a PBX ’botnet’ out of Skype or Google Voice? (April 2009),
http://www.itworld.com/internet/66280/making-pbx-botnet-out-skype-

or-google-voice

31. Karasaridis, A., Rexroad, B., Hoeflin, D.: Wide-scale Botnet Detection and Char-
acterization. In: HotBots 2007: Proceedings of the First Workshop on Hot Topics
in Understanding Botnets (2007)

32. Lanzi, A., Sharif, M., Lee, W.: K-Tracer: A System for Extracting Kernel Mal-
ware Behavior. In: The 16th Annual Network and Distributed System Security
Symposium, NDSS 2009 (2009)

33. Leiden, J.: Anti-mafia cops want Skype tapping (Feburary 2009),
http://www.theregister.co.uk/2009/02/24/eurojust_voip_wiretap_probe/

34. Martignoni, L., Paleari, R.: WUSSTrace - a user-space syscall tracer for Microsoft
Windows,
http://security.dico.unimi.it/projects.shtml

35. Martignoni, L., Stinson, E., Fredrikson, M., Jha, S., Mitchell, J.C.: A Layered
Architecture for Detecting Malicious Behaviors. In: Lippmann, R., Kirda, E., Tra-
chtenberg, A. (eds.) RAID 2008. LNCS, vol. 5230, pp. 78–97. Springer, Heidelberg
(2008)

36. Microsoft. MSDN Library on developing Windows User Interfaces,
http://msdn.microsoft.com/en-us/library/ms632587.VS.85.aspx

37. Passerini, E., Paleari, R., Martignoni, L., Bruschi, D.: FLuXOR: Detecting and
Monitoring Fast-Flux Service Networks. LNCS. Springer, Heidelberg (2008)

38. Pissny, B.: HotSanic, HTML overview to System and Network Information Center
(July 2004),
http://hotsanic.sourceforge.net

39. Rajab, M.A., Zarfoss, J., Monrose, F., Terzis, A.: A Multifaceted Approach to
Understanding the Botnet Phenomenon. In: IMC 2006: Proceedings of the 6th
ACM SIGCOMM on Internet measurement (2006)

40. Sandberg, O.: Distributed routing in small-world networks. In: ALENEX 2006
(2006)

41. Schneier, B.: Bavarian government wants to intercept Skype calls,
http://www.schneier.com/blog/archives/2008/02/bavarian_govern.html

42. Sissel, J.: xdotool, http://www.semicomplete.com/projects/xdotool/
43. Starnberger, G., Kruegel, C., Kirda, E.: Overbot - A botnet protocol based on

Kademlia. In: Proceedings of the International on Security and Privacy in Com-
munication Networks, SecureComm., Istambul, Turkey (2008)

44. Stock, B., Goebel, J., Engelberth, M., Freiling, F., Holz, T.: Walowdac - Analysis
of a Peer-to-Peer Botnet. In: European Conference on Computer Network Defense
(EC2ND) (November 2009)

45. Stone-Gross, B., Cova, M., Cavallaro, L., Gilbert, B., Szydlowski, M., Kemmerer,
R., Kruegel, C., Vigna, G.: Your Botnet is My Botnet: Analysis of a Botnet
Takeover. In: Proceedings of the 16th ACM conference on Computer and Com-
munications Security, CCS 2009 (2009)

http://www.itworld.com/internet/66280/making-pbx-botnet-out-skype-or-google-voice
http://www.itworld.com/internet/66280/making-pbx-botnet-out-skype-or-google-voice
http://www.theregister.co.uk/2009/02/24/eurojust_voip_wiretap_probe/
http://security.dico.unimi.it/projects.shtml
http://msdn.microsoft.com/en-us/library/ms632587.VS.85.aspx
http://hotsanic.sourceforge.net
http://www.schneier.com/blog/archives/2008/02/bavarian_govern.html
http://www.semicomplete.com/projects/xdotool/

100 A. Nappa et al.

46. Strayer, W.T., Walsh, R., Livadas, C., Lapsley, D.: Detecting botnets with tight
command and control. In: Proceedings of the 31st IEEE Conference on Local Com-
puter Networks (2006)

47. TechWorld. Cambridge prof. warns of Skype botnet threat. VoIP traffic can cover
a multitude of sins (January 2006),
http://news.techworld.com/security/5232/cambridge-prof-warns-of-skype-

botnet-threat/

48. TechWorld. How bad is the Skype botnet threat? Skype’s sneakiness leads to a
security risk (January 2006),
http://features.techworld.com/security/2199/how-bad-is-the-skype-

botnet-threat/

49. EU Forward. Forward: Managing Emerging Threats in ICT Infrastructures (2008),
http://www.ict-forward.eu

50. Wurzinger, P., Bilge, L., Holz, T., Goebel, J., Kruegel, C., Kirda, E.: Automatically
Generating Models for Botnet Detection. In: Backes, M., Ning, P. (eds.) ESORICS
2009. LNCS, vol. 5789, pp. 232–249. Springer, Heidelberg (2009)

51. Yen, T.-F., Reiter, M.K.: Traffic Aggregation for Malware Detection. In: Zamboni,
D. (ed.) DIMVA 2008. LNCS, vol. 5137, pp. 207–227. Springer, Heidelberg (2008)

52. Yin, H., Song, D., Egele, D.M., Kruegel, C., Kirda, E.: Panorama: Capturing
System-wide Information Flow for Malware Detection and Analysis. In: CCS 2007:
Proceedings of the 14th ACM Conference on Computer and Communications Se-
curity (2007)

http://news.techworld.com/security/5232/cambridge-prof-warns-of-skype-botnet-threat/
http://news.techworld.com/security/5232/cambridge-prof-warns-of-skype-botnet-threat/
http://features.techworld.com/security/2199/how-bad-is-the-skype-botnet-threat/
http://features.techworld.com/security/2199/how-bad-is-the-skype-botnet-threat/
http://www.ict-forward.eu

Covertly Probing Underground Economy

Marketplaces

Hanno Fallmann, Gilbert Wondracek, and Christian Platzer

Vienna University of Technology
Secure Systems Lab

{fallmann,gilbert,cplatzer}@iseclab.org

Abstract. Cyber-criminals around the world are using Internet-based
communication channels to establish trade relationships and complete
fraudulent transactions. Furthermore, they control and operate publicly
accessible information channels that serve as marketplaces for the under-
ground economy. In this work, we present a novel system for automat-
ically monitoring these channels and their participants. Our approach
is focused on creating a stealthy system, which allows it to stay largely
undetected by both marketplace operators and participants. We imple-
mented a prototype that is capable of monitoring IRC (Internet Relay
Chat) and web forum marketplaces, and successfully performed an ex-
perimental evaluation over a period of 11 months. In our experimental
evaluation we present the findings about the captured underground in-
formation channels and their characteristics.

1 Introduction

In recent years, there has been a significant rise in dubious or even outright
criminal activity performed via the Internet [1,2]. For example, cyber-criminals
conduct credit card fraud, trade compromised user accounts, or openly sell stolen
banking credentials online. To communicate with each other and to coordinate
themselves, cyber-criminals make use of online communication channels, such as
chat rooms, instant messaging, e-mail or web forums. In particular, media like
IRC (Internet Relay Chat) chatrooms or Internet forums are frequently used
as underground marketplaces, virtual places where goods and services that are
related to cyber-crime are being offered and traded. These marketplaces appear
to be popular among criminals, as they are easily accessible, highly frequented
and typically offer a high degree of anonymity to their participants. Clearly,
the ability to monitor such underground economy marketplaces would allow
researchers and law enforcement to gain new insights into the internals of the
existing underground economy and to more efficiently predict or counter cyber-
crime. The main contributions presented in this work are the following:

1. We present a novel system for covertly and automatically identifying and
monitoring a large number of underground marketplaces simultaneously.

C. Kreibich and M. Jahnke (Eds.): DIMVA 2010, LNCS 6201, pp. 101–110, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

102 H. Fallmann, G. Wondracek, and C. Platzer

2. We performed an experimental evaluation of our implementation to prove
the usability of the developed system.

3. Based on a dataset which spans a period of approximately one year, we
present a comprehensive overview on currently established communication
methods and channels within the underground community.

In the following section, we give an overview of existing work related to auto-
matically monitoring the underground economy.

2 Related Work

Observing the underground economy is not a new topic, and several related
studies have been previously published.

For example, in their study on the underground economy, Thomas and Mar-
tin [3] examine IRC based marketplaces. However, as the authors focus on a
high-level analysis of the underground economy’s structure and actors, they col-
lected relatively little data from these marketplaces.

A more extensive study was conducted by Franklin et al. [1]. In their work, the
authors present findings on the underground economy that they derived from
the message data of an IRC channel. While a significant amount of data was
collected, the scope of the marketplace observation is limited to a single data
source.

Interestingly, Herley and Florencio recently published work [4] that claims
that the underground economy trading places are classic examples of lemon
markets [5], i.e. prices in the underground economy do not necessarily reflect the
quality of the offered goods. Furthermore, the authors claim that IRC is mainly
used by lesser-skilled cyber-criminals.

In a study [6] by the security company Symantec, both IRC and web forums
were covered. The authors claim to have collected 44 million messages over one
year in IRC and web forums. Unfortunately, no details on the methods and
techniques used for collecting the data are given.

A different approach to underground marketplace monitoring is presented by
Holz et al. [2]. Instead of observing the marketplaces directly, the authors analyze
data that they have extracted from “dropzones”, i.e. places where criminals
collect stolen user data.

In the work of Zhuge et al. [7], aspects related to the Chinese underground
market are described. The authors’ focus deals primarily with the impact of
malicious websites. To estimate the volume of criminal activity, they crawl a
single black market forum and only one business platform.

3 Underground Marketplaces

To be able to determine the design criteria for an efficient system for monitoring
the underground economy, it is necessary to first understand the characteristics
of underground marketplaces. While, in theory, it is possible to use arbitrary

Covertly Probing Underground Economy Marketplaces 103

communication channels (such as e-mail lists) as underground marketplaces, our
real-world observations indicate that only two specific types are widely used by
cyber-criminals, IRC rooms and web forums.

3.1 IRC Rooms

IRC (Internet Relay Chat) is a well-known, popular, text-based chat protocol
that is specified in an RFC document [8]. However, in order that IRC networks
can develop new features as well as protect their users from spammers and au-
tomated malicious users, they extend the original RFC specification and create
their own protocol rules. Unfortunately, these additions complicate an automated
aggregation of messages for our monitoring system since our probes are auto-
mated as well. Furthermore, underground related IRC channels (i.e. chat rooms)
are actively policed by the channel operator to get rid of unwanted participants,
e.g. rippers who are fraudulent traders and who scam vendors and buyers alike.
In order to solve these challenges, we mimic human behavior and aim at creating
as little annoyance as possible to chat participants, while preventing our system
from causing excessive resource usage for server operators.

3.2 Web Forums

Web-based forums are the second dominant medium used for underground mar-
ketplaces. They are often based on popular off-the-shelf software (e.g., phpBB [9],
vBulletin [10]) that is commonly used for benign forums and message boards. In
contrast to IRC rooms, forums exhibit a more restricted access policy. Typically,
users who wish to participate have to first create user accounts and authenticate
themselves via credentials (nickname and password), before they can write or
sometimes even read messages. Communication is structured in forum threads,
which represent a communication topic and consist of a list of messages posted
by users, i.e. each new message in a thread is attached to the end of the list.

4 System Design

The overall aim of our system is to observe a large number of underground
economy related communication channels. To this end, we deploy a number of
sensors for distinct types of communication media. Furthermore, we aim at a
system that can be easily extended (i.e., adding sensors should require little
effort). In the scope of this document, a probe is a software agent within our
system that executes surveillance tasks on a specific type of communication
medium and that is managed by a probe pool. Moreover, the probes are able
to collaborate on a given task in a coordinated manner. To this end, probes
have the ability to communicate with the main system. For example, a probe
can notify the main system if it is unable to continue its task, thus activating
a replacement probe. Additionally, our system can incorporate many different
network interfaces, making it more stealthy and flexible.

104 H. Fallmann, G. Wondracek, and C. Platzer

4.1 IRC Sensor

Our general aim in observing IRC networks is to covertly detect underground
trading channels and to retrieve a maximum amount of information from them.
To this end, it is necessary to observe these channels for longer periods of time
(i.e. at least several days), while capturing all public messages during this time
frame. In practice, this is a non-trivial task, as it requires our system to be re-
silient against being intentionally blocked or banned from communication chan-
nels by administrators. At the same time, our system should be able to collect
user data from individual participants within a channel, while appearing as a
genuine user itself.

Information Gathering Methods. Besides recording messages from IRC
channels, the IRC sensor probes have the ability to retrieve information about
users directly. To this end we developed several methods that differ in the re-
turned information and their “visibility”, i.e. some can be regarded as common
IRC operations while others might appear more suspicious to a channel operator.

For example, by sending an IRC whois request we retrieve, amongst other val-
ues, information about the “real” name (designated by the user), the IP address,
the channels the user has currently joined, as well as the information if the user
has IRC operator privileges. Additionally, we can make use of protocols built on
top of the IRC infrastructure (e.g. CTCP (Client To Client Protocol) [11] and
DCC (Direct Client to Client) [12] protocol) to learn more about the adversaries
and the IRC clients they are using. Moreover, if we collect the IP address of a
user, we can apply tools like the geolocation database GeoIP [13] (to pinpoint
the IP address to a geographical location), or Nmap [14] (to acquire specific
information about the computer of the adversary).

Observation Strategies. To control the behavior of individual probes, the
system assigns an observation strategy to each probe instance. Each strategy
determines which information gathering techniques are used by the probes, and
how “aggressive” they are in pursuing their goals.

Chain Strategy. The chain strategy aims at automatically extending the original
observation scope (defined by the probe’s initial list of channels) by finding
additional, interesting channels. To this end, probes following the chain strategy
periodically request the list of joined channels from each user in the currently
observed channels by sending IRC whois requests. For each newly found channel,
the size of the intersection set with users in the already observed channels is
computed. The channel with the largest intersection set is regarded as the most
“popular” channel, and will be added to the probe’s target list.

Swap Strategy. We found that IRC users who are too passive, i.e. who do not
participate in conversation at all, are frequently removed from IRC channels (e.g.
to prevent resource waste or to get rid of “zombie” peers who did not log out
properly). To prevent this from happening to our observation probes, the swap
strategy adds additional probes to observed channels after a certain amount

Covertly Probing Underground Economy Marketplaces 105

of time. Before the original probe leaves the channel, it waits for a random,
intentional overlap time to obscure the “swap”.

Chat Strategy. A considerably large proportion of underground economy chan-
nel messages are from announcement-bots that advertisers use to draw atten-
tion to their offers and requests. Typically, users are asked to send a private
message to learn about details of these business offers. As soon as the strategy
encounters this type of message, the promoter will be directly engaged using the
A.I.M.L. [15] chat system. This chat system locates proper responses to incom-
ing messages using a library consisting of entries written in a XML dialect called
Artificial Intelligence Markup Language.

Sensor Strategy. The purpose of this strategy is to cover channels with names
and topics that match denoted patterns. To this end, the strategy dispatches
an IRC list command to retrieve the channels of the network and assigns one
probe for each matched channel.

Combinations. Various compositions of strategies can be constructed with dif-
ferent grades of observation behavior, ranging from passive to aggressive. For
example, the combination of a chain strategy with a swap strategy with an ag-
gressive observation attitude using whois and DCC requests to concentrate on
users, leads to a more adaptive strategy that rotates the probes between channels
and expands the observation coverage.

Supervising Information Accumulation - The Right Strategy for the
Right Job. To probe underground communication channels in an IRC network
they must be discovered first. For each network a network supervisor is initiated
that starts the sensor strategy with include and exclude patterns specifically
designed for the purpose of recognizing fraudulent trade channels. Our aim is to
quickly find these channels in the beginning and then expand the observation
with additional methods. If, for example, a credit card trading channel is masked
as a sports channel, it will be initially ignored with this method, but will be
discovered by another technique.

As soon as a new channel has entered our observation scope a channel su-
pervisor is loaded. Since the intention is not to annoy innocent users and cause
needless traffic, the channel supervisor starts the surveillance in a passive man-
ner. After a designated time, all the messages belonging to the channel are
automatically assessed on the relation to underground economy context. An
SVM (Support Vector Machine) [16], with a training set tailored to recognize
fraudulent content, makes the classification possible. Based on the affinity of a
channel to underground economy, the channel supervisor adapts its observation
strategies and mechanisms.

Besides using the pattern matching approach to broaden the observation
scope, the channel supervisor applies the chain strategy on fraudulent chan-
nels to observe other popular channels of the current users. Additionally, if a
designated quota of maximum channels is not reached, random channels are be-
ing joined and dismissed as soon as the SVM reasoner classified them as being
benign to make room for new random channels.

106 H. Fallmann, G. Wondracek, and C. Platzer

4.2 Web Forum Sensor

According to Guo et al. [17], web forums exhibit a number of characteristics that
make it non-trivial to extract structured data with standard web crawlers. The
major problem is that the same content of a forum can have a multitude of URIs
addressing it. One reason, is the dynamic nature of a web forum. For example,
two requests, that differ in the URI, can lead the forum engine into generating
the same content. Another reason is the existence of “noisy links”, i.e. URIs
that contain functions like ordering posts or searching content. This problem
can lead a standard web crawler to be redirected in a circular way (so-called
spider-traps). A further intricacy we faced is the diversity of different forum
engines and versions that require a general solution. Taking these challenges
into consideration, we decided to use the approach described by Yang et al. [18].

Crawling Underground Economy Forums. Unlike benign forums (i.e. non-
underground), most underground economy related forums employ some sort of
additional authentication measures or counter-measures that prevent automatic
crawling. The following list highlights the most frequently employed mechanisms,
and how we address them in our implementation.

1. The content is only viewable for registered users. Since we enhanced the
crawler with login functionality, we only have to manually register users to
the forum one time.

2. Reputation-based trust systems that allow only users who gained a high
enough status to view the content. An example are escrow services, i.e. forum
administrators charge a fee to verify the integrity and quality of trade offers
and monetary transactions before any goods are exchanged. We are not able
to automatically gain these privileges for a user, but if the content seems to
be valuable for analysis, this can be done manually.

3. Individual users can only view a certain amount of pages per time unit,
sometimes coupled with a limitation of recovered pages per network ad-
dress. The solution to evade these restriction of viewable pages is similar to
the IRC swap strategy: Each registered probe has a dedicated IP address
assigned. During the crawl of the forum the probes are being changed (logoff
old probe, login new probe) after a random amount of acquired pages.

5 Experimental Evaluation

We started an observation of underground economy marketplaces in March 2009
and collected data for the following 11 months.

5.1 Coverage and Proportion of IRC Networks

To find interesting IRC networks for our experiment, we initially extracted known
server addresses from the server list of mIRC [19], a popular IRC client, and from

Covertly Probing Underground Economy Marketplaces 107

a website [20] that is dedicated to finding IRC networks. Additionally, we com-
plemented this list with servers that we manually extracted from announcements
in underground economy IRC channels.

In our crawling experiments, we examined a total of 26,207 distinct IRC chan-
nels from 291 networks. Of these, 2,677 channels contained chat messages and
4.7% of them have been recognized to be related to underground economy con-
tent. A chat message is a public channel message that excludes server notifica-
tions such as join (i.e. entering a channel), part (i.e. leaving a channel) or kick
(i.e. expel a user from a channel). The content identification has been done with
an SVM (Support Vector Machine) [16]. The categorization results were manu-
ally checked and we found zero false positive recognized channels and 67 false
negative recognized channels. However, the SVM module is exchangeable and
an improved version can be effortless integrated. We found 23,530 channels to
contain no chat messages.

In Sect. 4.1 we have described three different basic methods to provide a rea-
sonable coverage of fraudulent channels in the search space. The pattern match-
ing approach retrieves the obvious channels and has the biggest hit rate with
nearly 58% of all covered fraudulent channels. The chain strategy provides all the
popular channels we missed and constitutes with a scope of over 40% together
with the pattern matching approach, 98% of all exposed channels. Only two
channels have been detected with the joining of random channels. However, this
method allowed us to exclude over 22,000 channels not being used for criminal
activities.

5.2 IRC Observation Results

In 291 IRC Networks 495,939 distinct user names have been accumulated. Using
14,526 probes we gathered 15GB of data for which the statistic is listed in
Table 1. Kicks denotes the number of received expulsion over all users where as
Kicks of Probes only takes our observing users into account and Distinct Kicks of
Probes counts manifold expulsions of a probe in a channel as one. Channel Bans
consists of the number of distinct channels we were banned from. Comparing the
total value of the kick rate with the rate that affected only our probes, it is clearly
visible that our strategies significantly reduced the potential of being expelled
from a channel. Because traders advertise their goods with a high message rate,
they are responsible for a big fraction of all the messages we collected. We can
clearly confirm the presence of these traders and the extension of their actions
in IRC.

5.3 Web Forum Observation Results

First of all, before the observation can start, we have to locate addresses of web
forums in which illicit trade is taking place. To this end, we initially gather URIs
via keywords entered in web search engines. After underground economy related
forums have been crawled, it is possible to derive forum addresses from them.
Additionally the sensor system provides a global search on all communication

108 H. Fallmann, G. Wondracek, and C. Platzer

Table 1. Statistics of the IRC observation regarding the user behavior

Malignant Per Channel Benign Per Channel

Channels 126 - 2,551 -

Chat Messages 43,148,421 342,447.79 2,950,208 1,156.49

Joins 550,685 4,370.52 562,002 220.31

Parts 100,354 796.46 169,670 66.51

Kicks 25,298 200.78 2,792 1.09

Kicks of probes 79 0.63 1,996 0.78

Distinct Kicks of probes 42 0.33 1,105 0.43

Channel Bans 26 0.21 681 0.27

channels: if a forum address is posted in an IRC channel, an observation can
be started immediately on it and vice versa. To test the web forum sensor, we
crawled eleven different forums multiple times. All in all we gathered from 11
web forums over 127GB of pages that contain over one million forum posts.

5.4 Classification and Analysis of Web Forums Related to
Underground Economy

Web forums are being used differently by miscreants: Advertisers use spamming
tools on mostly innocent forums to promote messages similar to those on IRC
channels. Some forums are only used to exchange knowledge, to provide tutorials
for beginners or to find new contacts. Other forums include trading sections as
well, including auctions of stolen goods.

Table 2 shows examples for different usages of such forums are listed. A low
value of Posts per User is an indication for a high proportion of different users
with a low post count. This can be, either due to the fact that a forum is fairly
new, or if it is being abused by spammers. Depending on the vigilance of the
forum admins, these newly created users and posts have a short life-time. Since

Table 2. Examples of different forums and how they are being used in the underground
economy. (The letter d stand for discussion of underground economy, t for the trading
of goods, and s for a spammed forum).

Forum Boards Threads Posts Users Posts/User 1 Post/Thread d t s

blackhatpalace.com 22 424 1,323 160 8.27 49.92% �

forum.rorta.net 21 2,643 53,731 843 63.74 5.60% �

www.carders.cc 67 6,290 65,312 2,411 27.09 16.96% � �

www.hack-info.ru 47 27,221 207,020 9,891 20.93 34.80% � �

www.clicks.ws 26 9,463 19,975 2,681 7.45 76.71% �

www.hotsurfs.com 62 39,297 61,287 2,161 28.36 88.78% �

www.talk-hyip.com 9 3,884 5,966 2,166 2.75 94.00% �

www.wifi-forum.com 22 109,221 610,658 32,084 19.03 59.00% �

Covertly Probing Underground Economy Marketplaces 109

the majority of the spamming tools create a new thread and post one spam
message into it, the percentage of threads with only one post can additionally
be used to figure out the current state of the forum regarding spam. The forum
www.talk-hyip.comwith an average rate of 2.75 posts per user and a proportion
of 94% of threads containing only one post, is an example of a lost battle against
spammers.

The time span of the forums, from the date of the first post till the date
of the last post, reflects on the forum type as well. In our data, the lifetime of
fraudulent forums with trading and discussion sections is shorter when compared
to spammed forums. To get the data of underground economy forums with an
active community we visited some of the sites more than once, to find out how
many new posts have been committed. Occasionally it happened that a site was
offline, either because they were completely shut down, or because they were
just not reachable for a few months.

6 Conclusion

In this work, we presented a novel system for automatically monitoring adver-
sary information channels. For example, in the domain of the online underground
economy, researchers who study online crime or law enforcement agencies have
a vital interest in acquiring data from related sources, such as underground
marketplaces or chatrooms used by criminals. To the best of our knowledge, our
system is the first to include specific features to monitor information channels re-
lated to the underground economy. Furthermore, our system can mimic (human)
user behavior to remain stealthy, i.e. avoid being detected by administrators.

For an experimental evaluation we have implemented a prototype that can
observe IRC channels and web forums, the most widely spread information media
used by cyber criminals. During a period of 11 months, our system has managed
to collect a dataset of more than 43 million chat messages and approximately
one million forum entries from underground sources without experiencing any
problems. This demonstrates that our system can be effectively used in a real-
world setting to acquire vital information on cybercrime, which can be used for
investigations or research in the area.

Acknowledgements

This work has been supported by the Austrian Research Promotion Agency
(FFG) under grant 820854. We also thank our shepherd Kirill Levchenko and
the anonymous reviewers for their valuable insights and comments.

References

1. Franklin, J., Paxson, V., Savage, S., Perrig, A.: An Inquiry into the Nature and
Causes of the Wealth of Internet Miscreants. In: ACM Conference on Computer
and Communications Security (CCS), November 2007. ACM, New York (2007)

110 H. Fallmann, G. Wondracek, and C. Platzer

2. Holz, T., Engelberth, M., Freiling, F.C.: Learning More about the Underground
Economy: A Case-Study of Keyloggers and Dropzones. In: Backes, M., Ning, P.
(eds.) ESORICS 2009. LNCS, vol. 5789, pp. 1–18. Springer, Heidelberg (2009)

3. Thomas, R., Martin, J.: The Underground Economy: Priceless. In: USENIX; LO-
GIN (2006)

4. Herley, C., Florencio, D.: Nobody Sells Gold for the Price of Silver: Dishonesty,
Uncertainty and the Underground Economy. Technical report, Microsoft Research
(2009)

5. Akerlof, G.A.: The Market for ”Lemons”: Quality Uncertainty and the Market
Mechanism. The Quarterly Journal of Economics (3) (1970)

6. Symantec: Symantec Report on the Underground Economy (2008),
http://eval.symantec.com/mktginfo/enterprise/white papers/

b-whitepaper underground economy report 11-2008-14525717.en-us.pdf

7. Zhuge, J., Holz, T., Song, C., Guo, J., Han, X., Zou, W.: Studying Malicious
Websites and the Underground Economy on the Chinese Web. Technical report
(2008)

8. Oikarinen, J., Reed, D.: RFC 1459: Internet Relay Chat Protocol. Technical report
(May 1993)

9. Online: phpBB, http://www.phpbb.com/ (accessed: April 2010)
10. Online: vBulletin, http://www.vbulletin.com/ (accessed: April 2010)
11. Zeuge, K., Rollo, T., Mesander, B.: Client To Client Protocol (CTCP),

http://www.irchelp.org/irchelp/rfc/ctcpspec.html

12. Zeuge, K., Rollo, T., Mesander, B.: Direct Client Connection (DCC),
http://www.irchelp.org/irchelp/rfc/dccspec.html

13. Online: GeoIP, http://www.maxmind.com/ (accessed: April 2010)
14. Online: Network Tool Nmap, http://nmap.org/ (accessed: April 2010)
15. Wallace, R.: The Elements of AIML Style. Technical report, ALICE A.I. Founda-

tion (2003)
16. Joachims, T.: Text Categorization with Support Vector Machines: Learning with

Many Relevant Features. In: European Conference on Machine Learning (ECML),
pp. 137–142. Springer, Berlin (1998)

17. Guo, Y., Li, K., Zhang, K., Zhang, G.: Board Forum Crawling: A Web Crawling
Method for Web Forum. In: WI 2006: Proceedings of the 2006 IEEE/WIC/ACM
International Conference on Web Intelligence, Washington, DC, USA, pp. 745–748.
IEEE Computer Society, Los Alamitos (2006)

18. Yang, J.M., Cai, R., Wang, Y., Zhu, J., Zhang, L., Ma, W.Y.: Incorporating site-
level knowledge to extract structured data from web forums. In: WWW 2009:
Proceedings of the 18th international conference on World wide web, pp. 181–190.
ACM, New York (2009)

19. Online: mIRC server list, http://www.mirc.com/servers.ini (accessed: April
2010)

20. Online: IRC netsplit, http://irc.netsplit.de/ (accessed: April 2010)

http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_underground_economy_report_11-2008-14525717.en-us.pdf
http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_underground_economy_report_11-2008-14525717.en-us.pdf
http://www.phpbb.com/
http://www.vbulletin.com/
http://www.irchelp.org/irchelp/rfc/ctcpspec.html
http://www.irchelp.org/irchelp/rfc/dccspec.html
http://www.maxmind.com/
http://nmap.org/
http://www.mirc.com/servers.ini
http://irc.netsplit.de/

Why Johnny Can’t Pentest:
An Analysis of Black-Box Web Vulnerability Scanners

Adam Doupé, Marco Cova, and Giovanni Vigna

University of California, Santa Barbara
{adoupe,marco,vigna}@cs.ucsb.edu

Abstract. Black-box web vulnerability scanners are a class of tools that can be
used to identify security issues in web applications. These tools are often mar-
keted as “point-and-click pentesting” tools that automatically evaluate the secu-
rity of web applications with little or no human support. These tools access a web
application in the same way users do, and, therefore, have the advantage of being
independent of the particular technology used to implement the web application.
However, these tools need to be able to access and test the application’s various
components, which are often hidden behind forms, JavaScript-generated links,
and Flash applications.

This paper presents an evaluation of eleven black-box web vulnerability scan-
ners, both commercial and open-source. The evaluation composes different types
of vulnerabilities with different challenges to the crawling capabilities of the
tools. These tests are integrated in a realistic web application. The results of the
evaluation show that crawling is a task that is as critical and challenging to the
overall ability to detect vulnerabilities as the vulnerability detection techniques
themselves, and that many classes of vulnerabilities are completely overlooked
by these tools, and thus research is required to improve the automated detection
of these flaws.

1 Introduction

Web application vulnerabilities, such as cross-site scripting and SQL injection, are one
of the most pressing security problems on the Internet today. In fact, web application
vulnerabilities are widespread, accounting for the majority of the vulnerabilities re-
ported in the Common Vulnerabilities and Exposures database [4]; they are frequent
targets of automated attacks [20]; and, if exploited successfully, they enable serious at-
tacks, such as data breaches [9] and drive-by-download attacks [17]. In this scenario,
security testing of web applications is clearly essential.

A common approach to the security testing of web applications consists of using
black-box web vulnerability scanners. These are tools that crawl a web application to
enumerate all the reachable pages and the associated input vectors (e.g., HTML form
fields and HTTP GET parameters), generate specially-crafted input values that are sub-
mitted to the application, and observe the application’s behavior (e.g., its HTTP re-
sponses) to determine if a vulnerability has been triggered.

Web application scanners have gained popularity, due to their independence from
the specific web application’s technology, ease of use, and high level of automation.

C. Kreibich and M. Jahnke (Eds.): DIMVA 2010, LNCS 6201, pp. 111–131, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

112 A. Doupé, M. Cova, and G. Vigna

(In fact, web application scanners are often marketed as “point-and-click” pentesting
tools.) In the past few years, they have also become a requirement in several standards,
most notably, in the Payment Card Industry Data Security Standard [15].

Nevertheless, web application scanners have limitations. Primarily, as most testing
tools, they provide no guarantee of soundness. Indeed, in the last few years, several
reports have shown that state-of-the-art web application scanners fail to detect a sig-
nificant number of vulnerabilities in test applications [21, 22, 24, 16, 1]. These reports
are valuable, as they warn against the naive use of web application scanners (and the
false sense of security that derives from it), enable more informed buying decisions,
and prompt to rethink security compliance standards.

However, knowing that web application scanners miss vulnerabilities (or that, con-
versely, they may raise false alerts) is only part of the question. Understanding why these
tools have poor detection performance is critical to gain insights into how current tools
work and to identify open problems that require further research. More concretely, we
seek to determine the root causes of the errors that web application scanners make, by
considering all the phases of their testing cycle, from crawling, to input selection, to re-
sponse analysis. For example, some of the questions that we want to answer are: Do web
application scanners correctly handle JavaScript code? Can they detect vulnerabilities
that are “deep” in the application (e.g., that are reachable only after correctly submitting
complex forms)? Can they precisely keep track of the state of the application?

To do this, we built a realistic web application, called WackoPicko, and used it to
evaluate eleven web application scanners on their ability to crawl complex web appli-
cations and to identify the associated vulnerabilities. More precisely, the WackoPicko
application uses features that are commonly found in modern web applications and that
make their crawling difficult, such as complex HTML forms, extensive JavaScript and
Flash code, and dynamically-created pages. Furthermore, we introduced in the applica-
tion’s source code a number of vulnerabilities that are representative of the bugs com-
monly found in real-world applications. The eleven web application scanners that we
tested include both commercial and open-source tools. We evaluated each of them un-
der three different configuration settings, corresponding to increasing levels of manual
intervention. We then analyzed the results produced by the tools in order to understand
how the tools work, how effective they are, and what makes them fail. The ultimate
goal of this effort is to identify which tasks are the most challenging for black-box
vulnerability scanners and may require novel approaches to be tackled successfully.

The main contributions of this paper are the following:

– We performed the most extensive and thorough evaluation of black-box web appli-
cation vulnerability scanners so far.

– We identify a number of challenges that scanners need to overcome to success-
fully test modern web applications both in terms of crawling and attack analysis
capabilities.

– We describe the design of a testing web site for web application scanners that com-
poses crawling challenges with vulnerability instances. This site has been made
available to the public and can be used by other researchers in the field.

– We analyze in detail why the web application vulnerability scanners succeed or fail
and we identify areas that need further research.

Why Johnny Can’t Pentest: An Analysis of Black-Box Web Vulnerability Scanners 113

2 Background

Before discussing the design of our tests, it is useful to briefly discuss the vulnerabilities
that web application scanners try to identify and to present an abstract model of a typical
scanner.

2.1 Web Application Vulnerabilities

Web applications contain a mix of traditional flaws (e.g., ineffective authentication and
authorization mechanisms) and web-specific vulnerabilities (e.g., using user-provided
inputs in SQL queries without proper sanitization). Here, we will briefly describe some
of the most common vulnerabilities in web applications (for further details, the inter-
ested reader can refer to the OWASP Top 10 List, which tracks the most critical vulner-
abilities in web applications [13]):

– Cross-Site Scripting (XSS): XSS vulnerabilities allow an attacker to execute ma-
licious JavaScript code as if the application sent that code to the user. This is the
first most serious vulnerability of the OWASP Top 10 List, and WackoPicko in-
cludes five different XSS vulnerabilities, both reflected and stored.

– SQL Injection: SQL injection vulnerabilities allow one to manipulate, create or
execute arbitrary SQL queries. This is the second most serious vulnerability on the
OWASP Top 10 List, and the WackoPicko web application contains both a reflected
and a stored SQL injection vulnerability.

– Code Injection: Code injection vulnerabilities allow an attacker to execute arbi-
trary commands or execute arbitrary code. This is the third most serious vulnera-
bility on the OWASP Top 10 List, and WackoPicko includes both a command line
injection and a file inclusion vulnerability (which might result in the execution of
code).

– Broken Access Controls: A web application with broken access controls fails to
properly define or enforce access to some of its resources. This is the tenth most
serious vulnerability on the OWASP Top 10 List, and WackoPicko has an instance
of this kind of vulnerability.

2.2 Web Application Scanners

In abstract, web application scanners can be seen as consisting of three main modules: a
crawler module, an attacker module, and an analysis module. The crawling component
is seeded with a set of URLs, retrieves the corresponding pages, and follows links and
redirects to identify all the reachable pages in the application. In addition, the crawler
identifies all the input points to the application, such as the parameters of GET requests,
the input fields of HTML forms, and the controls that allow one to upload files.

The attacker module analyzes the URLs discovered by the crawler and the corre-
sponding input points. Then, for each input and for each vulnerability type for which
the web application vulnerability scanner tests, the attacker module generates values
that are likely to trigger a vulnerability. For example, the attacker module would at-
tempt to inject JavaScript code when testing for XSS vulnerabilities, or strings that have
a special meaning in the SQL language, such as ticks and SQL operators, when testing

114 A. Doupé, M. Cova, and G. Vigna

for SQL injection vulnerabilities. Input values are usually generated using heuristics or
using predefined values, such as those contained in one of the many available XSS and
SQL injection cheat-sheets [18, 19].

The analysis module analyzes the pages returned by the web application in response
to the attacks launched by the attacker module to detect possible vulnerabilities and to
provide feedback to the other modules. For example, if the page returned in response to
input testing for SQL injection contains a database error message, the analysis module
may infer the existence of a SQL injection vulnerability.

3 The WackoPicko Web Site

A preliminary step for assessing web application scanners consists of choosing a web
application to be tested. We have three requirements for such an application: it must
have clearly defined vulnerabilities (to assess the scanner’s detection performance), it
must be easily customizable (to add crawling challenges and experiment with different
types of vulnerabilities), and it must be representative of the web applications in use
today (in terms of functionality and of technologies used).

We found that existing applications did not satisfy our requirements. Applications
that deliberately contain vulnerabilities, such as HacmeBank [5] and WebGoat [11], are
often designed to be educational tools rather than realistic testbeds for scanners. Others,
such as SiteGenerator [10], are well-known, and certain scanners may be optimized to
perform well on them. An alternative then is to use an older version of an open-source
application that has known vulnerabilities. In this case, however, we would not be able
to control and test the crawling capabilities of the scanners, and there would be no way
to establish a false negative rate.

Therefore, we decided to create our own test application, called WackoPicko. It
is important to note that WackoPicko is a realistic, fully functional web application.
As opposed to a simple test application that contains just vulnerabilities, WackoPicko
tests the scanners under realistic conditions. To test the scanners’ support for client-
side JavaScript code, we also used the open source Web Input Vector Extractor Teaser
(WIVET). WIVET is a synthetic benchmark that measures how well a crawler is able
to discover and follow links in a variety of formats, such as JavaScript, Flash, and form
submissions.

3.1 Design

WackoPicko is a photo sharing and photo-purchasing site. A typical user of WackoPicko
is able to upload photos, browse other user’s photos, comment on photos, and purchase
the rights to a high-quality version of a photo.

Authentication. WackoPicko provides personalized content to registered users. Despite
recent efforts for a unified login across web sites [14], most web applications require
a user to create an account in order to utilize the services offered. Thus, WackoPicko
has a user registration system. Once a user has created an account, he/she can log in to
access WackoPicko’s restricted features.

Upload Pictures. When a photo is uploaded to WackoPicko by a registered user, other
users can comment on it, as well as purchase the right to a high-quality version.

Why Johnny Can’t Pentest: An Analysis of Black-Box Web Vulnerability Scanners 115

Comment On Pictures. Once a picture is uploaded into WackoPicko, all registered
users can comment on the photo by filling out a form. Once created, the comment
is displayed, along with the picture, with all the other comments associated with the
picture.

Purchase Pictures. A registered user on WackoPicko can purchase the high-quality
version of a picture. The purchase follows a multi-step process in which a shopping
cart is filled with the items to be purchased, similar to the process used in e-commerce
sites. After pictures are added to the cart, the total price of the cart is reviewed, discount
coupons may be applied, and the order is placed. Once the pictures are purchased, the
user is provided with links to the high-quality version of the pictures.

Search. To enable users to easily search for various pictures, WackoPicko provides a
search toolbar at the top of every page. The search functionality utilizes the tag field
that was filled out when the picture was uploaded. After a query is issued, the user is
presented with a list of all the pictures that have tags that match the query.

Guestbook. A guestbook page provides a way to receive feedback from all visitors to
the WackoPicko web site. The form used to submit feedback contains a “name” field
and a “comment” field.

Admin Area. WackoPicko has a special area for administrators only, which has a dif-
ferent login mechanism than regular users. Administrators can perform special actions,
such as deleting user accounts, or changing the tags of a picture.

3.2 Vulnerabilities

The WackoPicko web site contains sixteen vulnerabilities that are representative of vul-
nerabilities found in the wild, as reported by the OWASP Top 10 Project [13]. In the
following we provide a brief description of each vulnerability.

3.2.1 Publicly Accessible Vulnerabilities
A number of vulnerabilities in WackoPicko can be exploited without first logging into
the web site.

Reflected XSS3. There is a XSS vulnerability on the search page, which is accessible
without having to log into the application. In fact, the query parameter is not sanitized
before being echoed to the user. The presence of the vulnerability can be tested by
setting the query parameter to <script>alert(’xss’)</script>. When this
string is reflected to the user, it will cause the browser to display an alert message. (Of
course, an attacker would leverage the vulnerability to perform some malicious activity
rather than alerting the victim.)

Stored XSS. There is a stored XSS vulnerability in the guestbook page. The comment
field is not properly escaped, and therefore, an attacker can exploit this vulnerability by
creating a comment containing JavaScript code. Whenever a user visits the guestbook
page, the attack will be triggered and the (possibly malicious) JavaScript code executed.

Session ID. The session information associated with administrative accounts is han-
dled differently than the information associated with the sessions of normal users. The
functionality associated with normal users uses PHP’s session handling capabilities,
which is assumed to be free of any session-related vulnerabilities (e.g., session fixation,

116 A. Doupé, M. Cova, and G. Vigna

easily-guessable session IDs). However the admin section uses a custom session cookie
to keep track of sessions. The value used in the cookie is a non-random value that is
incremented when a new session is created. Therefore, an attacker can easily guess the
session id and access the application with administrative rights.

Weak password. The administrative account page has an easily-guessable username
and password combination: admin/admin.

Reflected SQL Injection. WackoPicko contains a reflected SQL injection in theuser-
name field of the login form. By introducing a tick into the username field it is possi-
ble to perform arbitrary queries in the database and obtain, for example, the usernames
and passwords of all the users in the system.

Command Line Injection. WackoPicko provides a simple service that checks to see
if a user’s password can be found in the dictionary. The password parameter of the
form used to request the check is used without sanitization in the shell command: grep
ˆ<password>$ /etc/dictionaries-common/words. This can be exploited
by providing as the password value a dollar sign (to close grep’s regular expression),
followed by a semicolon (to terminate the grep command), followed by extra commands.

File Inclusion. The admin interface is accessed through a main page, called index.php.
The index page acts as a portal; any value that is passed as its page parameter will be
concatenated with the string “.php”, and then the resulting PHP script will be run. For
instance, the URL for the admin login page is /admin/index.php?page=login.
On the server side, index.php will execute login.php which displays the form. This de-
sign is inherently flawed, because it introduces a file inclusion vulnerability. An attacker
can exploit this vulnerability and execute remote PHP code by supplying, for example,
http://hacker/blah.php%00 as the page parameter to index.php. The %00 at
the end of the string causes PHP to ignore the “.php” that is appended to the page pa-
rameter. Thus index.php will download and execute the code at http://hacker/
blah.php.

Unauthorized File Exposure. In addition to executing remote code, the file inclusion
vulnerability can also be exploited to expose local files. Passing /etc/passwd%00
as the “page” GET parameter to index.php of the admin section will cause the contents
of the /etc/passwd file to be disclosed.

Reflected XSS Behind JavaScript. On WackoPicko’s home page there is a form that
checks if a file is in the proper format for WackoPicko to process. This form has two
parameters, a file parameter and a name parameter. Upon a successful upload, the name
is echoed back to the user unsanitized, and therefore, this represents a reflected vulner-
ability. However, the form is dynamically generated using JavaScript, and the target of
the form is dynamically created by concatenating strings. This prevents a crawler from
using simple pattern matching to discover the URL used by the form.

Parameter Manipulation. The WackoPicko home page provides a link to a sample
profile page. The link uses the “userid” GET parameter to view the sample user (who
has id of 1). An attacker can manipulate this variable to view any profile page without
having a valid user account.

http://hacker/
blah.php

Why Johnny Can’t Pentest: An Analysis of Black-Box Web Vulnerability Scanners 117

3.2.2 Vulnerabilities Requiring Authentication
A second class of vulnerabilities in WackoPicko can be exploited only after logging
into the web site.

Stored SQL Injection. When users create an account, they are asked to supply their
first name. This supplied value is then used unsanitized on a page that shows other users
who have a similar first name. An attacker can exploit this vulnerability by creating a
user with the name “’ ; DROP users;#” then visiting the similar users page.

Directory Traversal. When uploading a picture, WackoPicko copies the file uploaded
by the user to a subdirectory of the upload directory. The name of the subdirectory
is the user-supplied tag of the uploaded picture. A malicious user can manipulate the
tag parameter to perform a directory traversal attack. More precisely, by pre-pending
“../../” to the tag parameter the attacker can reference files outside the upload di-
rectory and overwrite them.

Multi-Step Stored XSS. Similar to the stored XSS attack that exists on the guestbook,
comments on pictures are susceptible to a stored XSS attack. However, this vulnerabil-
ity is more difficult to exploit because the user must be logged in and must confirm the
preview of the comment before the attack is actually triggered.

Forceful Browsing. One of the central ideas behind WackoPicko is the ability of users
to purchase the rights to high-quality versions of pictures. However, the access to the
links to the high-quality version of the picture is not checked, and an attacker who
acquires the URL of a high-quality picture can access it without creating an account,
thus bypassing the authentication logic.

Logic Flaw. The coupon system suffers from a logic flaw, as a coupon can be applied
multiple times to the same order reducing the final price of an order to zero.

Reflected XSS Behind Flash. On the user’s home page there is a Flash form that asks
the user for his/her favorite color. The resulting page is vulnerable to a reflected XSS
attack, where the “value” parameter is echoed back to the user without being sanitized.

3.3 Crawling Challenges

Crawling is arguably the most important part of a web application vulnerability scanner;
if the scanner’s attack engine is poor, it might miss a vulnerability, but if its crawling en-
gine is poor and cannot reach the vulnerability, then it will surely miss the vulnerability.
Because of the critical nature of crawling, we have included several types of crawling
challenges in WackoPicko, some of which hide vulnerabilities.

HTML Parsing. Malformed HTML makes it difficult for web application scanners to
crawl web sites. For instance, a crawler must be able to navigate HTML frames and be
able to upload a file. Even though these tasks are straightforward for a human user with
a regular browser, they represent a challenge for crawlers.

Multi-Step Process. Even though most web sites are built on top of the stateless HTTP
protocol, a variety of techniques are utilized to introduce state into web applications.
In order to properly analyze a web site, web application vulnerability scanners must be
able to understand the state-based transactions that take place. In WackoPicko, there are
several state-based interactions.

118 A. Doupé, M. Cova, and G. Vigna

Table 1. Characteristics of the scanners evaluated

Name Version Used License Type Price
Acunetix 6.1 Build 20090318 Commercial Standalone $4,995-$6,350
AppScan 7.8.0.0 iFix001 Build: 570 Security

Rules Version 647
Commercial Standalone $17,550-$32,500

Burp 1.2 Commercial Proxy £125 ($190.82)
Grendel-Scan 1.0 GPLv3 Standalone N/A
Hailstorm 5.7 Build 3926 Commercial Standalone $10,000
Milescan 1.4 Commercial Proxy $495-$1,495
N-Stalker 2009 - Build 7.0.0.207 Commercial Standalone $899-$6,299
NTOSpider 3.2.067 Commercial Standalone $10,000
Paros 3.2.13 Clarified Artistic License Proxy N/A
w3af 1.0-rc2 GPLv2 Standalone N/A
Webinspect 7.7.869.0 Commercial Standalone $6,000-$30,000

Infinite Web Site. It is often the case that some dynamically-generated content will
create a very large (possibly infinite) crawling space. For example, WackoPicko has the
ability to display a daily calendar. Each page of the calendar displays the agenda for a
given day and links to the page for the following day. A crawler that naively followed
the links in the WackoPicko’s calendar would end up trying to visit an infinite sequence
of pages, all generated dynamically by the same component.

Authentication. One feature that is common to most web sites is an authentication
mechanism. Because this is so prevalent, scanners must properly handle authentication,
possibly by creating accounts, logging in with valid credentials, and recognizing actions
that log the crawler out. WackoPicko includes a registration and login system to test the
scanner’s crawlers ability to handle the authentication process correctly.

Client-side Code. Being able to parse and understand client-side technologies presents
a major challenge for web application vulnerability scanners. WackoPicko includes vul-
nerabilities behind a JavaScript-created form, as well as behind a Flash application.

Link Extraction. We also tested the scanners on WIVET, an open-source benchmark
for web link extractors [12]. WIVET contains 54 tests and assigns a final score to a
crawler based on the percent of tests that it passes. The tests require scanners to analyze
simple links, multi-page forms, links in comments and JavaScript actions on a variety
of HTML elements. There are also AJAX-based tests as well as Flash-based tests. In
our tests, we used WIVET version number 129.

4 Experimental Evaluation

We tested 11 web application scanners by running them on our WackoPicko web site.
The tested scanners included 8 proprietary tools and 3 open source programs. Their cost
ranges from free to tens of thousands of dollars. We used evaluation versions of each
software, however they were fully functional. A summary of the characteristics of the
scanners we evaluated is given in Table 1.

We ran the WackoPicko web application on a typical LAMP machine, with Apache
2.2.9, PHP 5.2.6, and MySQL 5.0.67. We enabled the allow url fopen PHP op-
tion and disabled the allow url include and magic quotes options. We ran

Why Johnny Can’t Pentest: An Analysis of Black-Box Web Vulnerability Scanners 119

Table 2. Detection results. For each scanner, the simplest configuration that detected a vulnera-
bility is given. Empty cells indicate no detection in any mode.

Name Reflected
XSS

Stored XSS Reflected
SQL
Injection

Command-
line
Injection

File
Inclusion

File
Exposure

XSS via
JavaScript

XSS via
Flash

Acunetix INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL
AppScan INITIAL INITIAL INITIAL INITIAL INITIAL
Burp INITIAL MANUAL INITIAL INITIAL INITIAL MANUAL
Grendel-Scan MANUAL CONFIG
Hailstorm INITIAL CONFIG CONFIG MANUAL
Milescan INITIAL MANUAL CONFIG
N-Stalker INITIAL MANUAL MANUAL INITIAL INITIAL MANUAL
NTOSpider INITIAL INITIAL INITIAL
Paros INITIAL INITIAL CONFIG MANUAL
w3af INITIAL MANUAL INITIAL INITIAL MANUAL
Webinspect INITIAL INITIAL INITIAL INITIAL INITIAL MANUAL

the scanners on a machine with a Pentium 4 3.6GHz CPU, 1024 MB of RAM, and
Microsoft Windows XP, Service Pack 2.

4.1 Setup

The WackoPicko server used in testing the web vulnerability scanners was run in a virtual
machine, so that before each test run the server could be put in an identical initial state.
This state included ten regular users, nine pictures, and five administrator users.

Each scanner was run in three different configuration modes against WackoPicko,
with each configuration requiring more setup on the part of the user. In all configuration
styles, the default values for configuration parameters were used, and when choices
were required, sensible values were chosen. In the INITIAL configuration mode, the
scanner was directed to the initial page of WackoPicko and told to scan for all vulnera-
bilities. In the CONFIG setup, the scanner was given a valid username/password com-
bination or login macro before scanning. MANUAL configuration required the most
work on the part of the user; each scanner was put into a “proxy” mode and then the
user browsed to each vulnerable page accessible without credentials; then, the user
logged in and visited each vulnerability that required a login. Additionally a picture
was uploaded, the rights to a high-quality version of a picture were purchased, and a
coupon was applied to the order. The scanner was then asked to scan the WackoPicko
web site.

4.2 Detection Results

The results of running the scanners against the WackoPicko site are shown in Table 2
and, graphically, in Figure 1. The values in the table correspond to the simplest config-
uration that discovered the vulnerability. An empty cell indicates that the given scanner
did not discover the vulnerability in any mode. The table only reports the vulnerabilities
that were detected by at least one scanner. Further analysis of why the scanners missed
certain vulnerabilities is contained in Sections 4.3 and 4.4.

The running time of the scanners is shown in Figure 3. These times range from 74
seconds for the fastest tool (Burp) to 6 hours (N-Stalker). The majority of the scanners
completed the scan within a half hour, which is acceptable for an automated tool.

120 A. Doupé, M. Cova, and G. Vigna

4.2.1 False Negatives
One of the benefits of developing the WackoPicko web application to test the scanners
is the ability for us to measure the false negatives of the scanners. An ideal scanner
would be able to detect all vulnerabilities. In fact, we had a group composed of students
with average security skills analyze WackoPicko. The students found all vulnerabilities
except for the forceful browsing vulnerability. The automated scanners did not do as
well; there were a number of vulnerabilities that were not detected by any scanner.
These vulnerabilities are discussed hereinafter.

Session ID. No scanner was able to detect the session ID vulnerability on the admin
login page. The vulnerability was not detected because the scanners were not given a
valid username/password combination for the admin interface. This is consistent with
what would happen when scanning a typical application, as the administration interface
would include powerful functionality that the scanner should not invoke, like view,
create, edit or delete sensitive user data. The session ID was only set on a successful
login, which is why this vulnerability was not detected by any scanner.

Weak Password. Even though the scanners were not given a valid username/password
combination for the administrator web site, an administrator account with the combina-
tion of admin/admin was present on the system. NTOSpider was the only scanner that
successfully logged in with the admin/admin combination. However, it did not report
it as an error, which suggests that it was unable to detect that the login was successful,
even though the response that was returned for this request was different from every
other login attempt.

Parameter Manipulation. The parameter manipulation vulnerability was not discov-
ered by any scanner. There were two causes for this: first, only three of the scanners
(AppScan, NTOSpider, and w3af) input a different number than the default value “1”
to the userid parameter. Of the three, only NTOSpider used a value that successfully
manipulated the userid parameter. The other reason was that in order to successfully
detect a parameter manipulation vulnerability, the scanner needs to determine which
pages require a valid username/password to access and which ones do not and it is clear
that none of the scanners make this determination.

Stored SQL Injection. The stored SQL injection was also not discovered by any scan-
ners, due to the fact that a scanner must create an account to discover the stored SQL
injection. The reasons for this are discussed in more detail in Section 4.4.4.

Directory Traversal. The directory traversal vulnerability was also not discovered by
any of the scanners. This failure is caused by the scanners being unable to upload a pic-
ture. We discuss this issue in Section 4.4.2, when we analyze how each of the scanners
behaved when they had to upload a picture.

Multi-Step Stored XSS. The stored XSS vulnerability that required a confirmation
step was also missed by every scanner. In Section 4.4.5, we analyze how many of the
scanners were able to successfully create a comment on a picture.

Forceful Browsing. No scanner found the forceful browsing vulnerability, which is
not surprising since it is an application-specific vulnerability. These vulnerabilities are
difficult to identify without access to the source code of the application [2].

Why Johnny Can’t Pentest: An Analysis of Black-Box Web Vulnerability Scanners 121

 0%

 20%

 40%

 60%

 80%

 100%

A
cu

ne
tix

A
pp

sc
an

B
ur

p

G
re

nd
el

−
Sc

an

H
ai

ls
to

rm

M
ile

sc
an

N
−

St
al

ke
r

N
T

O
Sp

id
er

Pa
ro

s

w
3a

f

W
eb

in
sp

ec
t

False negatives
Detection in MANUAL mode
Detection in CONFIG mode
Detection in INITIAL mode

Fig. 1. Detection performance (true positives and false negatives) of the evaluated scanners

Table 3. False positives

Name INITIAL CONFIG MANUAL
Acunetix 1 7 4
AppScan 11 20 26
Burp 1 2 6
Grendel-Scan 15 16 16
Hailstorm 3 11 3
Milescan 0 0 0
N-Stalker 5 0 0
NTOSpider 3 1 3
Paros 1 1 1
w3af 1 1 9
Webinspect 215 317 297

Logic Flaw. Another vulnerability that none of the scanners uncovered was the logic
flaw that existed in the coupon management functionality. Also in this case, some do-
main knowledge about the application is needed to find the vulnerability.

4.2.2 False Positives
The total number of false positives for each of the scanning configurations are show
in Table 3. The number of false positives that each scanner generates is an important
metric, because the greater the number of false positives, the less useful the tool is to
the end user, who has to figure out which of the vulnerabilities reported are actual flaws
and which are spurious results of the analysis.

The majority of the false positives across all scanners were due to a supposed “Server
Path Disclosure.” This is an information leakage vulnerability where the server leaks
the paths of local files, which might give an attacker hints about the structure of the file
system.

An analysis of the results identified two main reasons why these false positives
were generated. The first is that while testing the application for file traversal or file
injection vulnerabilities, some of the scanners passed parameters with values of file
names, which, on some pages (e.g., the guestbook page), caused the file name to be

122 A. Doupé, M. Cova, and G. Vigna

Milescan

Grendel-Scan

Webinspect

NTOSpider

w3afParos

Hailstorm

Acunetix

AppScan

Burp N-Stalker

Fig. 2. Dominates graph

 0

 2,000

 4,000

 6,000

 8,000

 10,000

A
cu

ne
tix

A
pp

sc
an

B
ur

p

G
re

nd
el

−
Sc

an

H
ai

ls
to

rm

M
ile

sc
an

N
−

St
al

ke
r

N
T

O
Sp

id
er

Pa
ro

s

w
3a

f

W
eb

in
sp

ec
t

R
un

ni
ng

 T
im

e
(S

ec
on

ds
)

27,103

INITIAL
CONFIG

Fig. 3. Scanner Running Times

included in that page’s contents. When the scanner then tested the page for a Server
Path Disclosure, it found the injected values in the page content, and generated a Server
Path Disclosure vulnerability report. The other reason for the generation of false pos-
itives is that WackoPicko uses absolute paths in the href attribute of anchors (e.g.,
/users/home.php), which the scanner mistook for the disclosure of paths in the
local system. Webinspect generated false positives because of both the above reasons,
which explains the large amount of false positives produced by the tool.

Some scanners reported genuine false positives: Hailstorm reported a false XSS vul-
nerability and two false PHP code injection vulnerabilities, NTOSpider reported three
false XSS vulnerabilities and w3af reported a false PHP eval() input injection vul-
nerability.

4.2.3 Measuring and Comparing Detection Capabilities
Comparing the scanners using a single benchmark like WackoPicko does not represent
an exhaustive evaluation. However, we believe that the results provide insights about
the current state of black-box web application vulnerability scanners.

One possible way of comparing the results of the scanners is arranging them in a
lattice. This lattice is ordered on the basis of strict dominance. Scanner A strictly domi-
nates Scanner B if and only if for every vulnerability discovered by Scanner B, Scanner
A discovered that vulnerability with the same configuration level or simpler, and Scan-
ner A either discovered a vulnerability that Scanner B did not discover or Scanner A
discovered a vulnerability that Scanner B discovered, but with a simpler configuration.
Strictly dominates has the property that any assignment of scores to vulnerabilities must
preserve the strictly dominates relationship.

Figure 2 shows the strictly dominates graph for the scanners, where a directed edge
from Scanner A to Scanner B means that Scanner A strictly dominates Scanner B.
Because strictly dominates is transitive, if one scanner strictly dominates another it also
strictly dominates all the scanners that the dominated scanner dominates, therefore, all
redundant edges are not included. Figure 2 is organized so that the scanners in the top
level are those that are not strictly dominated by any scanners. Those in the second level
are strictly dominated by only one scanner and so on, until the last level, which contains
those scanners that strictly dominate no other scanner.

Why Johnny Can’t Pentest: An Analysis of Black-Box Web Vulnerability Scanners 123

Table 4. Vulnerability scores

Name Detection INITIAL
Reachability

CONFIG
Reachability

MANUAL
Reachability

XSS Reflected 1 0 0 0
XSS Stored 2 0 0 0
SessionID 4 0 0 0
SQL Injection Reflected 1 0 0 0
Commandline Injection 4 0 0 0
File Inclusion 3 0 0 0
File Exposure 3 0 0 0
XSS Reflected behind
JavaScript

1 3 3 0

Parameter Manipulation 8 0 0 0
Weak password 3 0 0 0
SQL Injection Stored Login 7 7 3 3
Directory Traversal Login 8 8 6 4
XSS Stored Login 2 8 7 6
Forceful Browsing Login 8 7 6 3
Logic Flaws - Coupon 9 9 8 6
XSS Reflected behind flash 1 9 7 1

Table 5. Final ranking

Name Score
Acunetix 14
Webinspect 13
Burp 13
N-Stalker 13
AppScan 10
w3af 9
Paros 6
Hailstorm 6
NTOSpider 4
Milescan 4
Grendel-Scan 3

Some interesting observations arise from Figure 2. N-Stalker does not strictly domi-
nate any scanner and no scanner strictly dominates it. This is due to the unique combina-
tion of vulnerabilities that N-Stalker discovered and missed. Burp is also interesting due
to the fact that it only dominates two scanners but no scanner dominates Burp because
it was the only scanner to discover the command-line injection vulnerability.

While Figure 2 is interesting, it does not give a way to compare two scanners where
one does not strictly dominate the other. In order to compare the scanners, we assigned
scores to each vulnerability present in WackoPicko. The scores are displayed in Table 4.
The “Detection” score column in Table 4 is how many points a scanner is awarded based
on how difficult it is for an automated tool to detect the existence of the vulnerability. In
addition to the “Detection” score, each vulnerability is assigned a “Reachability” score,
which indicates how difficult the vulnerability is to reach (i.e., it reflects the difficulty
of crawling to the page that contains the vulnerability). There are three “Reachabil-
ity” scores for each vulnerability, corresponding to how difficult it is for a scanner to
reach the vulnerability when run in INITIAL, CONFIG, or MANUAL mode. Of course,
these vulnerability scores are subjective and depend on the specific characteristics of
our WackoPicko application. However, their values try to estimate the crawling and
detection difficulty of each vulnerability in this context.

The final score for each scanner is calculated by adding up the “Detection” score
for each vulnerability the scanner detected and the “Reachability” score for the con-
figuration (INITIAL, CONFIG and MANUAL) used when running the scanner. In the
case of a tie, the scanners were ranked by how many vulnerabilities were discovered in
INITIAL mode, which was enough to break all ties. Table 5 shows the final ranking of
the scanners.

4.3 Attack and Analysis Capabilities

Analyzing how each scanner attempted to detect vulnerabilities gives us insight into
how these programs work and illuminates areas for further research. First, the scanner

124 A. Doupé, M. Cova, and G. Vigna

would crawl the site looking for injection points, typically in the form of GET or POST
parameters. Once the scanner identifies all the inputs on a page, it then attempts to
inject values for each parameter and observes the response. When a page has more
than one input, each parameter is injected in turn, and generally no two parameters are
injected in the same request. However, scanners differ in what they supply as values of
the non-injected parameters: some have a default value like 1234 or Peter Wiener,
while others leave the fields blank. This has an impact on the results of the scanner, for
example the WackoPicko guestbook requires that both the name and comment fields
are present before making a comment, and thus the strategy employed by each scanner
can affect the effectiveness of the vulnerability scanning process.

When detecting XSS attacks, most scanners employed similar techniques, some with
a more sophisticated attempt to evade possible filters than others. One particularly ef-
fective strategy employed was to first input random data with various combinations of
dangerous characters, such as / ,",’,<, and >, and then, if one of these combina-
tions was found unchanged in the response, to attempt the injection of the full range of
XSS attacks. This technique speeds up the analysis significantly, because the full XSS
attack is not attempted against every input vector. Differently, some of the scanners took
an exhaustive approach, attempting the full gamut of attacks on every combination of
inputs.

When attempting a XSS attack, the thorough scanners would inject the typical
<script> alert(’xss’) </script> as well as a whole range of XSS attack
strings, such as JavaScript in a tag with the onmouseover attribute, in an img, div
or meta tag, or iframe. Other scanners attempted to evade filters by using a different
JavaScript function other than alert, or by using a different casing of script, such
as ScRiPt.

Unlike with XSS, scanners could not perform an easy test to exclude a parameter
from thorough testing for other Unsanitized Input vulnerabilities because the results of
a successful exploit might not be readily evident in the response. This is true for the
command-line injection on the WackoPicko site, because the output of the injectable
command was not used in the response. Burp, the only scanner that was able to suc-
cessfully detect the command line injection vulnerability, did so by injecting ‘ping
-c 100 localhost‘ and noticing that the response time for the page was much
slower than when nothing was injected.

This pattern of measuring the difference in response times was also seen in detecting
SQL injections. In addition to injecting something with a SQL control character, such
as tick or quote and seeing if an error is generated, the scanners also used a time-delay
SQL injection, inputting waitfor delay ’0:0:20’ and seeing if the execution
was delayed. This is a variation of the technique of using time-delay SQL injection to
extract database information from a blind SQL vulnerability.

When testing for File Exposure, the scanners were typically the same; however one
aspect caused them to miss the WackoPicko vulnerability. Each scanner that was look-
ing for this vulnerability input the name of a file that they knew existed on the system,
such as /etc/passwd on UNIX-like systems or C:\boot.ini for Windows. The
scanners then looked for known strings in the response. The difficulty in exploiting the
WackoPicko file exposure was including the null-terminating character (%00) at the

Why Johnny Can’t Pentest: An Analysis of Black-Box Web Vulnerability Scanners 125

Table 6. Number of accesses to vulnerable web pages in INITIAL, CONFIG, and MANUAL
modes

Name Reflected XSS Stored XSS Reflected SQL
Injection

Command-line
Injection

File Inclusion /
File Exposure /
Weak password

XSS Reflected
- JavaScript

INITIAL CONFIG MANUAL
Acunetix 496 638 498 613 779 724 544 709 546 495 637 497 198 244 200 670 860 671
AppScan 581 575 817 381 352 492 274 933 628 189 191 288 267 258 430 0 0 442
Burp 256 256 207 192 192 262 68 222 221 68 68 200 125 316 320 0 0 178
Grendel-Scan 0 0 44 1 1 3 14 34 44 1 1 3 2 2 5 0 0 2
Hailstorm 232 229 233 10 205 209 45 224 231 180 160 162 8 204 216 153 147 148
Milescan 104 0 208 50 0 170 75 272 1237 0 0 131 80 0 246 0 0 163
N-Stalker 1738 1162 2689 2484 2100 3475 2764 1022 2110 2005 1894 1987 1437 2063 1824 1409 1292 1335
NTOSpider 856 679 692 252 370 370 184 5 5 105 9 9 243 614 614 11 13 13
Paros 68 68 58 126 126 110 151 299 97 28 28 72 146 146 185 0 0 56
w3af 157 157 563 259 257 464 1377 1411 2634 140 142 253 263 262 470 0 0 34
Webinspect 108 108 105 631 631 630 297 403 346 164 164 164 239 237 234 909 909 0
Name Parameter Manipulation Directory

Traversal
Logic Flaw Forceful

Browsing
XSS Reflected
behind flash

Acunetix 2 0 2 35 1149 37 0 0 5 0 0 206 1 34 458
AppScan 221 210 222 80 70 941 0 0 329 0 0 71 0 0 243
Burp 192 194 124 68 68 394 0 0 314 0 0 151 0 0 125
Grendel-Scan 3 3 6 1 1 3 0 0 6 0 0 1 0 0 3
Hailstorm 3 143 146 336 329 344 131 132 5 102 102 105 0 0 143
Milescan 105 0 103 8 0 163 0 0 1 0 0 60 0 0 68
N-Stalker 1291 1270 1302 22 2079 4704 0 0 3 0 0 2 0 0 1315
NTOSpider 107 115 115 11 572 572 0 11 11 0 0 0 0 11 11
Paros 72 72 72 14 14 0 0 0 114 0 0 70 0 0 60
w3af 128 128 124 31 30 783 0 0 235 0 0 270 0 0 119
Webinspect 102 102 102 29 29 690 0 8 3 0 118 82 0 0 97

end of the string, which caused PHP to ignore anything added by the application after
the /etc/passwd part. The results show that only 4 scanners successfully discovered
this vulnerability.

The remote code execution vulnerability in WackoPicko is similar to the file ex-
posure vulnerability. However, instead of injecting known files, the scanners injected
known web site addresses. This was typically from a domain the scanner’s developers
owned, and thus when successfully exploited, the injected page appeared instead of the
regular page. The same difficulty in a successful exploitation existed in the File Ex-
posure vulnerability, so a scanner had to add %00 after the injected web site. Only 3
scanners were able to successfully identify this vulnerability.

4.4 Crawling Capabilities

The number of URLs requested and accessed varies considerably among scanners, de-
pending on the capability and strategies implemented in the crawler and attack compo-
nents. Table 6 shows the number of times each scanner made a POST or GET request to
a vulnerable URL when the scanners were run in INITIAL, CONFIG, and MANUAL
mode. For instance, from Table 6 we can see that Hailstorm was able to access many
of the vulnerable pages that required a valid username/password when run in INITIAL
mode. It can also be seen that N-Stalker takes a shotgun-like approach to scanning; it
has over 1,000 accesses for each vulnerable URL, while in contrast Grendel-Scan never
had over 50 accesses to a vulnerable URL.

In the following, we discuss the main challenges that the crawler components of the
web application scanners under test faced.

126 A. Doupé, M. Cova, and G. Vigna

4.4.1 HTML
The results for the stored XSS attack reveal some interesting characteristics of the anal-
ysis performed by the various scanners. For instance, Burp, Grendel-Scan, Hailstorm,
Milescan, N-Stalker, and w3af were unable to discover the stored XSS vulnerability in
INITIAL configuration mode. Burp and N-Stalker failed because of defective HTML
parsing. Neither of the scanners correctly interpreted the <textarea> tag as an input
to the HTML form. This was evident because both scanners only sent the name param-
eter when attempting to leave a comment on the guestbook. When run in MANUAL
mode, however, the scanners discovered the vulnerability, because the user provided
values for all these fields. Grendel-Scan and Milescan missed the stored XSS vulnera-
bility for the same reason: they did not attempt a POST request unless the user used the
proxy to make the request.

Hailstorm did not try to inject any values to the guestbook when in INITIAL mode,
and, instead, used testval as the name parameter and Default text as the
comment parameter. One explanation for this could be that Hailstorm was run in the
default “turbo” mode, which Cenzic claims catches 95% of vulnerabilities, and chose
not to fuzz the form to improve speed.

Finally, w3af missed the stored XSS vulnerability due to leaving one parameter blank
while attempting to inject the other parameter. It was unable to create a guestbook entry,
because both parameters are required.

4.4.2 Uploading a Picture
Being able to upload a picture is critical to discover the Directory Traversal vulnera-
bility, as a properly crafted tag parameter can overwrite any file the web server can
access. It was very difficult for the scanners to successfully upload a file: no scanner
was able to upload a picture in INITIAL and CONFIG modes, and only AppScan and
Webinspect were able to upload a picture after being showed how to do it in MAN-
UAL configuration, with AppScan and Webinspect uploading 324 and 166 pictures
respectively. Interestingly, Hailstorm, N-Stalker and NTOSpider never successfully up-
loaded a picture, even in MANUAL configuration. This surprising result is due to poor
proxies or poor in-application browsers. For instance, Hailstorm includes an embed-
ded Mozilla browser for the user to browse the site when they want to do so manually,
and after repeated attempts the embedded browser was never able to upload a file. The
other scanners that failed, N-Stalker and NTOSpider, had faulty HTTP proxies that did
not know how to properly forward the file uploaded, thus the request never completed
successfully.

4.4.3 Client-Side Code
The results of the WIVET tests are shown in Figure 4. Analyzing the WIVET results
gives a very good idea of the JavaScript capabilities of each scanner. Of all the 54
WIVET tests, 24 required actually executing or understand JavaScript code; that is,
the test could not be passed simply by using a regular expression to extract the links
on the page. Webinspect was the only scanner able to complete all of the dynamic
JavaScript challenges. Of the rest of the scanners, Acunetix and NTOSpider only missed
one of the dynamic JavaScript tests. Even though Hailstorm missed 12 of the dynamic
JavaScript tests, we believe that this is because of a bug in the JavaScript analysis en-
gine and not a general limitation of the tool. In fact, Hailstorm was able to correctly

Why Johnny Can’t Pentest: An Analysis of Black-Box Web Vulnerability Scanners 127

handle JavaScript on the onmouseup and onclick parametrized functions. These
tests were on parametrized onmouseout and onmousedown functions, but since
Hailstorm was able to correctly handle the onmouseup and onclick parametrized
functions, this can be considered a bug in Hailstorm’s JavaScript parsing. From this,
it can also be concluded that AppScan, Grendel-Scan, Milescan, and w3af perform no
dynamic JavaScript parsing. Thus, Webinspect, Acunetix, NTOSpider, and Hailstorm
can be claimed to have the best JavaScript parsing. The fact that N-Stalker found the
reflected XSS vulnerability behind a JavaScript form in WackoPicko suggests that it
can execute JavaScript, however it failed the WIVET benchmark so we cannot evaluate
the extent of the parsing performed.

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

 100%

W
eb

in
sp

ec
t

A
cu

ne
tix

N
T

O
Sp

id
er

H
ai

ls
to

rm

w
3a

f

A
pp

sc
an

M
ile

sc
an

G
re

nd
el

−
Sc

an

B
ur

p

Pa
ro

s

N
−

St
al

ke
r

%
 o

f
W

IV
E

T
 T

es
ts

 P
as

se
d

Fig. 4. WIVET results

In looking at the WIVET results, there
was one benchmark that no scanner was
able to reach, which was behind a Flash
application. The application had a link
on a button’s onclick event, however
this link was dynamically created at run
time. This failure shows that none of the
current scanners processes Flash content
with the same level of sophistication as
JavaScript. This conclusion is supported
by none of the scanners discovering the XSS vulnerability behind a Flash application
in WackoPicko when in INITIAL or CONFIG mode.

Table 7. Account creation

Name Successful Error
Acunetix 0 431
AppScan 1 297
Burp 0 0
Grendel-Scan 0 0
Hailstorm 107 276
Milescan 0 0
N-Stalker 74 1389
NTOSpider 74 330
Paros 0 176
w3af 0 538
Webinspect 127 267

4.4.4 Authentication
Table 7 shows the attempts that were made to cre-
ate an account on the WackoPicko site. The Name
column is the name of the scanner, “Successful” is
the number of accounts successfully created, and
“Error” is the number of account creation attempts
that were unsuccessful. Note that Table 7 reports
the results of the scanners when run in INITIAL
mode only, because the results for the other con-
figurations were almost identical.

Table 7 shows the capability of the scanners to
handle user registration functionality. As can be
seen from Table 7, only five of the scanners were able to successfully create an account.
Of these, Hailstorm was the only one to leverage this ability to visit vulnerable URLs
that required a login in its INITIAL run.

Creating an account is important in discovering the stored SQL injection that no
scanner successfully detected. It is fairly telling that even though five scanners were
able to create an account, none of them detected the vulnerability. It is entirely possible
that none of the scanners actively searched for stored SQL injections, which is much
harder to detect than stored XSS injections.

In addition to being critically important to the WackoPicko benchmark, being able
to create an account is an important skill for a scanner to have when analyzing any web
site, especially if that scanner wishes to be a point-and-click web application vulnera-
bility scanner.

128 A. Doupé, M. Cova, and G. Vigna

4.4.5 Multi-step Processes
In the WackoPicko web site there is a vulnerability that is triggered by going through
a multi-step process. This vulnerability is the stored XSS on pictures, which requires
an attacker to confirm a comment posting for the attack to be successful. Hailstorm
and NTOSpider were the only scanners to successfully create a comment on the INI-
TIAL run (creating 25 and 1 comment, respectively). This is important for two reasons:
first, to be able to create a comment in the INITIAL run, the scanner had to create an
account and log in with that account, which is consistent with Table 7. Also, all 25
of the comments successfully created by Hailstorm only contained the text Default
text, which means that Hailstorm was not able to create a comment that exploited the
vulnerability.

All scanners were able to create a comment when run in MANUAL configuration,
since they were shown by the user how to carry out this task. However, only AppScan,
Hailstorm, NTOSpider, and Webinspect (creating 6, 21, 7, and 2 comments respec-
tively) were able to create a comment that was different than the one provided by the
user. Of these scanners only Webinspect was able to create a comment that exploited the
vulnerability, <iFrAmE sRc=hTtP://xSrFtEsT .sPi/> </iFrAmE>, how-
ever Webinspect failed to report this vulnerability. One plausible explanation for not
detecting would be the scanners’ XSS strategy discussed in Section 4.3. While test-
ing the text parameter for a vulnerability, most of the scanners realized that it was
properly escaped on the preview page, and thus stopped trying to inject XSS attacks.
This would explain the directory traversal attack comment that AppScan successfully
created and why Hailstorm did not attempt any injection. This is an example where the
performance optimization of the vulnerability analysis can lead to false negatives.

4.4.6 Infinite Web Sites
One of the scanners attempted to visit all of the pages of the infinite calendar. When
running Grendel-Scan, the calendar portion of WackoPicko had to be removed because
the scanner ran out of memory attempting to access every page. Acunetix, Burp, N-
Stalker and w3af had the largest accesses (474, 691, 1780 and 3094 respectively), due
to their attempts to exploit the calendar page. The other scanners used less accesses
(between 27 and 243) because they were able to determine that no error was present.

5 Lessons Learned

We found that the crawling of modern web applications can be a serious challenge for
today’s web vulnerability scanners. A first class of problems we encountered consisted
of implementation errors and the lack of support for commonly-used technologies. For
example, handling of multimedia data (image uploads) exposed bugs in certain proxy-
based scanners, which prevented the tools from delivering attacks to the application
under test. Incomplete or incorrect HTML parsers caused scanners to ignore input vec-
tors that would have exposed vulnerabilities. The lack of support for JavaScript (and
Flash) prevented tools from reaching vulnerable pages altogether. Support for well-
known, pervasive technology should be improved.

The second class of problems that hindered crawling is related to the design of mod-
ern web applications. In particular, applications with complex forms and aggressive

Why Johnny Can’t Pentest: An Analysis of Black-Box Web Vulnerability Scanners 129

checking of input values can effectively block a scanner, preventing it from crawling
the pages “deep” in the web site structure. Handling this problem could be done, for
example, by using heuristics to identify acceptable inputs or by reverse engineering the
input filters. Furthermore, the behavior of an application can be wildly different de-
pending on its internal “state,” i.e., the values of internal variables that are not explicitly
exposed to the scanner. The classic example of application state is whether the current
user is logged in or not. A scanner that does not correctly model and track the state of an
application (e.g., it does not realize that it has been automatically logged out) will fail
to crawl all relevant parts of the application. More sophisticated algorithms are needed
to perform “deep” crawling and track the state of the application under test.

Current scanners fail to detect (or even check for) application-specific (or “logic”)
vulnerabilities. Unfortunately, as applications become more complex, this type of vul-
nerabilities will also become more prevalent. More research is warranted to automate
the detection of application logic vulnerabilities.

In conclusion, far from being point-and-click tools to be used by anybody, web ap-
plication black-box security scanners require a sophisticated understanding of the ap-
plication under test and of the limitations of the tool, in order to be effective.

6 Related Work

Our work is related to two main areas of research: the design of web applications for
assessing vulnerability analysis tools and the evaluation of web scanners.

Designing test web applications. Vulnerable test applications are required to assess
web vulnerability scanners. Unfortunately, no standard test suite is currently available
or accepted by the industry. HacmeBank [5] and WebGoat [11] are two well-known,
publicly-available, vulnerable web applications, but their design is focused more on
teaching web application security rather than testing automated scanners. SiteGenera-
tor [10] is a tool to generate sites with certain characteristics (e.g., classes of vulnerabili-
ties) according to its input configuration. While SiteGenerator is useful to automatically
produce different vulnerable sites, we found it easier to manually introduce in Wacko-
Picko the vulnerabilities with the characteristics that we wanted to test.

Evaluating web vulnerability scanners. There exists a growing body of literature on
the evaluation of web vulnerability scanners. For example, Suto compared three scan-
ners against three different applications and used code coverage, among other metrics,
as a measure of the effectiveness of each scanner [21]. In a recent follow-up study,
Suto [22] assessed seven scanners and compared their detection capabilities and the
time required to run them. Wiegenstein et al. ran five unnamed scanners against a cus-
tom benchmark [24]. Unfortunately, the authors do not discuss in detail the reasons for
detections or spidering failures. In their survey of web security assessment tools, Cur-
phey and Araujo reported that black-box scanners perform poorly [3]. Peine examined
in depth the functionality and user interfaces of seven scanners (three commercial) that
were run against WebGoat and one real-world application [16]. Kals et al. developed a
new web vulnerability scanner and tested it on about 25,000 live web pages [7]. Since
no ground truth is available for these sites, the authors cannot discuss false negative
rate or failures of their tool. More recently, AnantaSec released an evaluation of three

130 A. Doupé, M. Cova, and G. Vigna

scanners against 13 real-world applications, three web applications provided by the
scanners vendors, and a series of JavaScript tests [1]. While this experiment assesses a
large number of real-world applications, only a limited number of scanners are tested
and no explanation is given for the results. In addition, Vieira et al. tested four web
scanners on 300 web services [23]. They also report high rates of false positives and
false negatives.

In comparison, our work, to the best of our knowledge, performs the largest evalu-
ation of web application scanners in terms of the number of tested tools (eleven, both
commercial and open-source), and the class of vulnerabilities analyzed. In addition, we
discuss the effectiveness of different configurations and levels of manual intervention,
and examine in detail the reasons for a scanner’s success or failure.

Furthermore, we provide a discussion of challenges (i.e., critical limitations) of cur-
rent web vulnerability scanners. While some of these problem areas were discussed
before [6, 8], we provide quantitative evidence that these issues are actually limiting
the performance of today’s tools. We believe that this discussion will provide useful
insight into how to improve state-of-the-art of black-box web vulnerability scanners.

7 Conclusions

This paper presented the evaluation of eleven black-box web vulnerability scanners.
The results of the evaluation clearly show that the ability to crawl a web application and
reach “deep” into the application’s resources is as important as the ability to detect the
vulnerabilities themselves.

It is also clear that although techniques to detect certain kinds of vulnerabilities are
well-established and seem to work reliably, there are whole classes of vulnerabilities
that are not well-understood and cannot be detected by the state-of-the-art scanners. We
found that eight out of sixteen vulnerabilities were not detected by any of the scanners.

We have also found areas that require further research so that web application vulner-
ability scanners can improve their detection of vulnerabilities. Deep crawling is vital to
discover all vulnerabilities in an application. Improved reverse engineering is necessary
to keep track of the state of the application, which can enable automated detection of
complex vulnerabilities.

Finally, we found that there is no strong correlation between cost of the scanner and
functionality provided as some of the free or very cost-effective scanners performed as
well as scanners that cost thousands of dollars.

Acknowledgments

This work has been supported by the National Science Foundation, under grants CCR-
0524853, CCR-0716095, CCR-0831408, CNS-0845559 and CNS-0905537, and by the
ONR under grant N000140911042.

References

1. AnantaSec: Web Vulnerability Scanners Evaluation (January 2009),
http://anantasec.blogspot.com/2009/01/web-vulnerability-
scanners-comparison.html

http://anantasec.blogspot.com/2009/01/web-vulnerability-scanners-comparison.html
http://anantasec.blogspot.com/2009/01/web-vulnerability-scanners-comparison.html

Why Johnny Can’t Pentest: An Analysis of Black-Box Web Vulnerability Scanners 131

2. Balzarotti, D., Cova, M., Felmetsger, V., Vigna, G.: Multi-module Vulnerability Analysis of
Web-based Applications. In: Proceedings of the ACM conference on Computer and Com-
munications Security (CCS), pp. 25–35 (2007)

3. Curphey, M., Araujo, R.: Web Application Security Assessment Tools. IEEE Security and
Privacy 4(4), 32–41 (2006)

4. CVE: Common Vulnerabilities and Exposures, http://www.cve.mitre.org
5. Foundstone: Hacme Bank v2.0 (May 2006),

http://www.foundstone.com/us/resources/proddesc/hacmebank.htm
6. Grossman, J.: Challenges of Automated Web Application Scanning. In: BlackHat Windows

Security Conference (2004)
7. Kals, S., Kirda, E., Kruegel, C., Jovanovic, N.: SecuBat: A Web Vulnerability Scanner. In:

Proceedings of the International World Wide Web Conference (2006)
8. McAllister, S., Kruegel, C., Kirda, E.: Leveraging User Interactions for In-Depth Testing

of Web Applications. In: Proceedings of the Symposium on Recent Advances in Intrusion
Detection (2008)

9. Open Security Foundation: OSF DataLossDB: Data Loss News, Statistics, and Research,
http://datalossdb.org/

10. Open Web Application Security Project (OWASP): OWASP SiteGenerator,
http://www.owasp.org/index.php/OWASP_SiteGenerator

11. Open Web Application Security Project (OWASP): OWASP WebGoat Project,
http://www.owasp.org/index.php/Category:OWASP_WebGoat_Project

12. Open Web Application Security Project (OWASP): Web Input Vector Extractor Teaser,
http://code.google.com/p/wivet/

13. Open Web Application Security Project (OWASP): OWASP Top Ten Project (2010),
http://www.owasp.org/index.php/Top_10

14. OpenID Foundation: OpenID, http://openid.net/
15. PCI Security Standards Council: PCI DDS Requirements and Security Assessment Proce-

dures, v1.2 (October 2008)
16. Peine, H.: Security Test Tools for Web Applications. Tech. Rep. 048.06, Fraunhofer IESE

(January 2006)
17. Provos, N., Mavrommatis, P., Rajab, M., Monrose, F.: All Your iFRAMEs Point to Us. In:

Proceedings of the USENIX Security Symposium, pp. 1–16 (2008)
18. RSnake: Sql injection cheat sheet, http://ha.ckers.org/sqlinjection/
19. RSnake: XSS (Cross Site Scripting) Cheat Sheet, http://ha.ckers.org/xss.html
20. Small, S., Mason, J., Monrose, F., Provos, N., Stubblefield, A.: To Catch a Predator: A Nat-

ural Language Approach for Eliciting Malicious Payloads. In: Proceedings of the USENIX
Security Symposium (2008)

21. Suto, L.: Analyzing the Effectiveness and Coverage of Web Application Security Scanners
(October 2007) (case Study)

22. Suto, L.: Analyzing the Accuracy and Time Costs of Web Application Security Scanners
(Feburary 2010)

23. Vieira, M., Antunes, N., Madeira, H.: Using Web Security Scanners to Detect Vulnerabilities
in Web Services. In: Proceedings of the Conference on Dependable Systems and Networks
(2009)

24. Wiegenstein, A., Weidemann, F., Schumacher, M., Schinzel, S.: Web Application Vulnera-
bility Scanners—a Benchmark. Tech. rep., Virtual Forge GmbH (October 2006)

http://www.cve.mitre.org
http://www.foundstone.com/us/resources/proddesc/hacmebank.htm
http://datalossdb.org/
http://www.owasp.org/index.php/OWASP_SiteGenerator
http://www.owasp.org/index.php/Category:OWASP_WebGoat_Project
http://code.google.com/p/wivet/
http://www.owasp.org/index.php/Top_10
http://openid.net/
http://ha.ckers.org/sqlinjection/
http://ha.ckers.org/xss.html

Organizing Large Scale Hacking Competitions

Nicholas Childers, Bryce Boe, Lorenzo Cavallaro, Ludovico Cavedon,
Marco Cova, Manuel Egele, and Giovanni Vigna

Security Group
Department of Computer Science

University of California, Santa Barbara
{voltaire,bboe,sullivan,cavedon,marco,manuel,vigna}@cs.ucsb.edu

Abstract. Computer security competitions and challenges are a way to
foster innovation and educate students in a highly-motivating setting. In
recent years, a number of different security competitions and challenges
were carried out, each with different characteristics, configurations, and
goals. From 2003 to 2007, we carried out a number of live security ex-
ercises involving dozens of universities from around the world. These
exercises were designed as “traditional” Capture The Flag competitions,
where teams both attacked and defended a virtualized host, which pro-
vided several vulnerable services. In 2008 and 2009, we introduced two
completely new types of competition: a security “treasure hunt” and a
botnet-inspired competition. These two competitions, to date, represent
the largest live security exercises ever attempted and involved hundreds
of students across the globe. In this paper, we describe these two new
competition designs, the challenges overcome, and the lessons learned,
with the goal of providing useful guidelines to other educators who want
to pursue the organization of similar events.

1 Introduction

Computer security has become a major aspect of our everyday experience with
the Internet. To some degree, every user of the Internet is aware of the potential
harm that can come from its use. Therefore, it is unsurprising to see that com-
puter security education has also improved substantially in the past decade, in
terms of both the number of university undergraduate and graduate level courses
offered and the type of educational tools used to teach security concepts. This
increase in the importance of computer security is also reflected by the offerings
of the job market. For example, at www.computermajors.com it is stated that
while entry-level salaries for computer science professionals specializing in web
development start at around $75,000, “those who specialize in computer and
online security can earn up to $93,000.” [2]

An important aspect of computer security education is hands-on experience.
Despite the importance of foundational security classes that focus on more ab-
stract concepts in security, such as cryptography and information theory models,
Internet security issues often require substantial hands-on training in order to be
understood and mastered. Thus, it is important to improve security training by

C. Kreibich and M. Jahnke (Eds.): DIMVA 2010, LNCS 6201, pp. 132–152, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

www.computermajors.com

Organizing Large Scale Hacking Competitions 133

providing novel approaches, which complement the existing, more traditional edu-
cational tools normally used in graduate and undergraduate courses on computer
security.

A class of these tools is represented by security competitions. In these compe-
titions, a number of teams (or individuals) compete against each other in some
security-related challenge. As an educational tool, these competitions have both
advantages and disadvantages. A notable advantage (and the main reason why
these events are organized) is that competition motivates students to go beyond
the normal “call of duty” and explore original approaches, sometimes requir-
ing the development of novel tools. Another advantage is that students usually
operate against a determined opponent while under strict time constraints and
with limited resources thus mimicking a more realistic situation than one can re-
produce using paper-and-pencil Gedanken experiments. Unfortunately, security
competitions have one major disadvantage: they usually require a large amount
of resources to design, develop, and run [10,11].

Designing security competitions is hard, as they need to be at the right level of
difficulty with respect to the target audience. If a competition is too difficult, the
participants become frustrated; if a competition is too easy, the participants are
not challenged and will lose interest. Ideally, a competition will provide a variety
of challenges of differing difficulties such that all participants of various skill levels
are both challenged by the tasks and gratified by success. An additional design
challenge is how to evaluate the participants and score their actions. Ideally, a
scoring system is fair, relevant, and automated allowing the best participant to be
clearly identified beyond any reasonable doubt. However, scoring systems must
be hard to reverse-engineer and cheat, as it would be ironic to have a security
competition requiring “adversarial” approaches and “oblique” reasoning that
utilizes a scoring system reliant on the “good behavior” of the participants.

Developing security competitions is time consuming since a specific competi-
tion can seldom be reused. For example, consider a competition where the flaws
of vulnerable applications have to be identified by the participants. Once a com-
petition ends, it is likely that the vulnerabilities discovered will be discussed in
blogs and “walk-through” pages.1 After the disclosure of vulnerability details,
these services cannot be reused and new ones must be developed.

Running a security competition is challenging, because the competition’s ex-
ecution environment is often hostile and thus difficult to monitor and control.
Therefore, it is of paramount importance to have mechanisms and policies allow-
ing for the containment of the participants and for the easy diagnosis of possible
problems. In addition, security competitions are often limited in time, thus un-
expected execution problems might make the competition unplayable, wasting
weeks of preparation.

Annually, since 2003, we organized an international, wide-area security com-
petition involving dozens of teams throughout the world. The goal of these live
exercises was to test the participant’s security skills in a time-constrained setting.

1 See for example, the walk-through for the 2008 DefCon qualification challenge at
http://nopsr.us/ctf2008qual

http://nopsr.us/ctf2008qual

134 N. Childers et al.

Our competitions were designed as educational tools, and were open to educa-
tional institutions only.

From 2003 to 2007, each edition of the competition was structured as a Cap-
ture The Flag hacking challenge, called the iCTF (further described in Section 2),
where remote teams connected to a VPN and competed independently against
each other, leveraging both attack and defense techniques. In this “traditional”
design, borrowed from the DefCon Capture The Flag competition (CTF), teams
received identical copies of a virtualized host containing a number of vulnerable
services. Each team’s goal was to keep the services running uncompromised while
breaking the security of other teams’ services. Subsequent editions of the compe-
tition grew in the number of teams participating and in the sophistication of the
exploitable services. The design, however, remained substantially unchanged.

In both 2008 and 2009, we introduced completely new designs for the com-
petition. In 2008, we created a security “treasure hunt” where 39 teams from
around the world had to compromise the security of 39 dedicated, identical tar-
get networks within a limited time frame. In 2009, 56 teams participated in a
competition where each team had to compromise the browsers of thousands of
simulated users, compromise the users’ banking accounts, and finally make the
users’ computers part of a botnet.

In addition to this paper’s content, we provide scoring software, virtual ma-
chines and network traces from each of our previous iCTFs.2 The software and
virtual machines are useful for the creation similar competitions and the network
traces are useful for researchers working on intrusion detection and correlation
techniques.

This paper describes these new competition designs, how they were imple-
mented and executed, and what lessons were learned from running them. By
providing a detailed discussion of the issues and challenges overcome, as well
as the mistakes made, we hope to provide guidance to other educators in the
security field who want to pursue the organization of similar competitions. In
summary, the contributions of this paper are the following:

– We present two novel designs for large-scale live security exercises. To the
best of our knowledge, these are the largest educational security exercises
carried out to date. Their design, implementation, and execution required a
substantial research and engineering effort.

– We discuss the lessons learned from running these competitions. Given the
amount of work necessary to organize and the current lack of documenta-
tion and analysis of such events, we think this paper provides a valuable
contribution.

This paper is structured as follows. In Section 2, we present background infor-
mation on both security competitions in general, and on the iCTF in particular.
Section 3 presents the design of the 2008 competition and its characteristics.
Section 4 describes the competition held in 2009. In Section 5, we describe the

2 All files can be obtained at http://ictf.cs.ucsb.edu/

http://ictf.cs.ucsb.edu/

Organizing Large Scale Hacking Competitions 135

lessons learned in designing, implementing, and running these competitions. Fi-
nally, Section 6 briefly concludes.

2 Background and History

The best-known online security challenge is the DefCon CTF, which is held
annually at the DefCon convention. At DefCon 2009, eight teams received an
identical copy of a virtualized system containing a number of vulnerable services.
Each team ran their virtual machine on a virtual private network, with the goal
of maintaining uptime on and securing a set of services throughout the contest
whilst concurrently compromising the other teams’ services. Compromising and
securing services required teams to leverage their knowledge of vulnerability
detection. Compromising another team’s service allowed teams to “capture the
flag” thus accumulating attack points, whereas securing services allowed teams
to retain flags and acquire defensive points. Several of the former DefCon CTFs
followed a similar design [3].

Despite DefCon’s nonspecific focus on security education, it inspired several
editions of the UCSB International Capture The Flag (iCTF). One of the major
differences between UCSB’s iCTF and DefCon’s CTF is that the iCTF involves
educational institutions spread across the world, whereas the DefCon CTF allows
only locally-connected teams. DefCon therefore requires the physical co-location
of the contestants thus constraining participation to a limited number of teams. By
not requiring contestants to be physically present, the UCSB iCTF additionally
allows dozens of remotely located teams to connect to the competition network.

The UCSB iCTF editions from 2003 to 2007 were similar to the DefCon CTF
in that the participants had to protect and attack a virtualized system con-
taining a number of vulnerable services. A scoring system actively checked the
state of these services, ensuring their availability. In addition, the scoring sys-
tem periodically set short identification tokens, termed “flags” for each team..
Teams competed by securing their system and breaking into their competitors’
systems to discover flags. The successful compromise of another team’s service
was demonstrated through the submission of a flag to the scoring system. Teams
periodically earned defensive points for each service that retained its flags during
the particular period. The team with the most points at the end of the com-
petition won. These UCSB iCTFs in turn inspired other educational hacking
competitions, such as CIPHER [6] and RuCTF [4].

Recently, a different type of competition has received a significant amount of
attention. In the Pwn2Own hacking challenge [7] participants try to compromise
the security of various up-to-date computer devices such as laptops, and smart
phones. Whoever successfully compromises a device, wins the device itself as a
prize. This competition is solely focused on attack, does not have an educational
focus, and does not allow any real interaction amongst the participants who
attack a single target in parallel.3

3 Note that this type of design is very similar to early editions of the DefCon CTF,
where participants competed in breaking into a shared target system.

136 N. Childers et al.

Another interesting competition is the Cyber Defense Exercise (CDX) [1,5,8],
in which a number of military schools compete in protecting their networks from
external attackers. This competition differs from the UCSB iCTF in a number
of ways. First, the competition’s sole focus is defense. Second, the competition
is scored in person by human evaluators who observe the activity of the par-
ticipants, and score them according to their ability to react to attacks. This
evaluation method is subjective and requires a human judge for each team thus
yielding it impractical in a large-scale online security competition.

In both 2008 and 2009, we introduced two new designs, which, to the best
of our knowledge, were never previously implemented in large-scale educational
security exercises. These new designs are the focus of the remainder of the paper.

3 The 2008 iCTF — A Security “Treasure Hunt”
Scenario

“It is the early morning and someone is frantically knocking at your door. Shock-
ingly, this person turns out to be a high-profile counter-terrorist agent from a
popular television series demanding that you help him. It comes to light that an
evil organization known only as ‘Softerror.com’ has set up an explosive device
set to detonate in seven hours. Only you and your small group of elite hackers
have the necessary skills to infiltrate the Softerror network, find the bomb, and
disarm it before it is too late.”

This introductory scenario was given to the teams participating in the 2008
UCSB iCTF, which ran Friday, December 5, from 9am to 5pm, PST. 39 teams,
averaging 15 students each, competed from educational institutions spread across
several continents. Unlike former iCTFs where each team setup a vulnerable
virtual server, in the 2008 iCTF we created 39 identical, yet independent copies
of a small network with the topology depicted in Figure 1. The network was
allegedly run by a terrorist organization called Softerror.com and was composed
of four hosts, each of which belonged to a separate subnetwork and had to be
compromised in a specific sequence. The final host contained a virtual bomb that
had to be defused to complete the competition. A more detailed description of
the four hosts comprising the Softerror.com network is included in Section 3.1.

The creation of 39 replicated networks, required a completely different soft-
ware and hardware infrastructure from what was used in previous iCTFs. A total
of 160 virtual machines needed to be hosted for each of the teams’ networks and
our test network. Furthermore, machines had to be isolated so that the teams
could not interfere with each other. In addition, the network had to be set up in
such a way that one network was only made available following the compromise
of a previous network. This task was accomplished using a complex routing sys-
tem that created the illusion of a separate dedicated network for each team. The
details of the network setup are described in Section 3.2.

In addition to the new network topology, another significant difference be-
tween this competition and classic CTFs was that the teams did not directly
attack each other. Instead, this competition modeled a more “real world” situa-
tion where the teams had to penetrate a remote network. Given only a single IP

Organizing Large Scale Hacking Competitions 137

Fig. 1. The 2008 iCTF Network Topology

address, the teams needed to map out the network, discern what services were
running, and then exploit these services to gain access to the various servers.
Then, they could use the compromised host as a starting point to penetrate
deeper into the network and repeat the process, discovering new machines and
crafting the corresponding exploits.

Although this competition could have been presented as a “race” where the
winner was the team to deactivate the bomb the quickest, we wanted to score
the competition at a finer granularity, allowing us to easily monitor the progress
of each team. Therefore, we decided to assign a score to each service and award
points when the service was compromised. The teams were instructed to submit
a report about each compromised service through a web site. The reports were
manually examined and the points awarded by a judge. Although we had wanted
to automate this process, it was decided that we wanted to know how each team
broke into each server. Thus, because teams did not have to directly attack
each other, and could make progress immediately after compromising a service,
independent of the judge, we predicted to have sufficient time to manually judge
each exploit. Unfortunately, as described in Section 3.3, this manual process had
its share of problems.

Further differentiating from former CTFs, this competition had the notion of
a “mole,” which was a fictitious character who provided valuable clues. In order
to gain access to clues, teams spent points earned from compromising services.
Thus each team was faced with the choice to use points to potentially speed up
service compromise. At the end of the event, the overall winner was the team
who had the most points and defused the bomb.

3.1 Vulnerable Applications

The competition was divided into three major stages. The stages were arranged
by increasing difficulty. The first stage was a web server with relatively sim-
ple vulnerabilities, which successfully compromising led to two possible paths: a

138 N. Childers et al.

team could attack either the financial server or the development server. Exploit-
ing either of these servers, opened access to the final stage, the bomb challenge.
The network partitioning was accomplished by setting up a firewall within the
second stage machines that blocked traffic to the bomb server. Thus, in order to
gain access to the final stage, the teams had to gain root access on one of the
second stage machines and disable the firewall.
The Web Server. The web server was the first stage of the “Softerror network”
on which a simple PHP-based web site ran. Successful compromise required
each team to discover a command injection vulnerability. While a simple code
inspection of the site would reveal the vulnerability, teams were not given the
source code. However, another vulnerability was introduced that allowed the
reading of an arbitrary file. This vulnerability could be discovered by inspecting
the normal operation of the site and noticing that a user-generated link actually
contained a base64 encoded file system path. By exploiting this vulnerability,
a team could then download the source PHP code and discover the command
injection vulnerability.
The Financial Server. The Financial server hosted the Softerror “financial”
information. This server was set up as a series of four stages that had to be
completed in order. The primary focus of the financial stages was passwords
and password management. The first stage required breaking a weak password
given its hash, which could be easily accomplished by performing a web search
of the hash. The other three stages contained various examples of poor password
management. Stage 2 was a service with weak authentication, stage 3 stored the
passwords in a plain-text file that was readable from a vulnerable application,
and stage 4 contained an SQL injection vulnerability that could be used to reveal
the final password.
The Development Server. The development server challenge required binary
reversal. The service itself was accessible on a remote port and contained a
format string vulnerability allowing arbitrary code execution. In reality, remote
exploits can be very complicated to successfully exploit, as they often require
detailed understanding of the target machine’s underlying memory layout. To
simplify matters, the application leaked a significant amount of information, thus
easing the process of developing an exploit. Our intent was to make exploiting
this vulnerability approximately as hard as breaking into the financial server.
The Bomb Host. The bomb was implemented as an Elf x86 “firmware” binary
that could be downloaded, modified, and then uploaded back to the server. The
bomb was also a binary reversing challenge, as no source code was made available.
In order to successfully complete this challenge, a disarm function of the library
had to be written by the teams. After writing, uploading, and successfully calling
the function, the firmware deactivated the bomb thus completing the competition
for the team.

3.2 Infrastructure

The most prominent difference between the 2008 iCTF compared to the clas-
sic CTF is the network topology. Normally, each competitor is responsible for

Organizing Large Scale Hacking Competitions 139

providing hardware to host the vulnerable virtual server. With this competition,
a motivating goal was to mimic a real-world remote network penetration, includ-
ing reconnaissance and multi-step attacks. To facilitate our goal, we decided to
host all the machines ourselves, guaranteeing a level playing field and a network
topology that we directly controlled. Even though the network given to each
team consisted of only four machines, the number of teams required us to host
160 virtual machines.

It was readily apparent that we did not have enough physical hardware to sup-
port the required number of virtual machines if we were to use “heavy weight”
virtualization platforms such as VMware or Xen. Although there are many rea-
sons why we may have wanted to use these suites, the amount of hardware
resources they require per guest made them unsuitable. In order to meet our
virtual machine requirements within our hardware budget, we chose OpenVZ, a
modified Linux kernel that provides a mechanism to elegantly solve this issue.

The advantage of using OpenVZ is that it allows for a very lightweight style of
virtualization in a Unix environment. Instead of virtualizing an entire hardware
stack, OpenVZ is a kernel modification that creates a sort of “super” root user
on the host machine. This super user can then spawn guest machines that have
their own operating environment, including the notion of a regular root user. This
concept of kernel-level virtualization has existed for quite some time, especially on
the BSD family of operating systems, where it is known as a “jail.” One downside
to this kernel-based approach is that the range of guest operating systems is very
limited. Only Unix-like operating systems with a similarly patched kernel can be
used as guests. The benefit of taking this approach is that the kernel itself is now
shared among all the guests thus making resource sharing much simpler and very
efficient. Once we decided on using OpenVZ, scaling our limited resources to the
required number of machines turned out to be fairly simple.

Our operating system of choice was Ubuntu 8.10 with the aforementioned
OpenVZ modified kernel. Each guest was created using the default OpenVZ
Ubuntu template. We had six physical machines based on a Core2 quad core
CPU with 4 Gigabytes of RAM and 1 Terabyte of disk space each. With some
basic testing, it was determined that we could host a little over 40 guests on each
individual machine using the default configuration settings. Although OpenVZ
has a plethora of parameters that can be tweaked and adjusted to provide even
greater scalability, we hit our target number with the default settings. Of those
machines, four of them were selected to be our server “stacks.” That is, on
one machine we brought up 40 OpenVZ guests responsible for running identical
copies of the “web server” service. Likewise, one machine was dedicated to each of
the other three servers. Although this setup has merit based just on its simplicity,
the primary reason for hosting identical services on the same physical machine
is that it is trivial to write directly to the file system of OpenVZ guests from the
host OS. In addition, OpenVZ supports executing commands from the host OS
as a root user on the guest. With these two features, keeping all identical guests
on the same machine greatly simplified management, as updating configuration
files and sharing resources is made vastly simpler.

140 N. Childers et al.

With the configuration of individual machines done, it was decided that they
should be arranged around a single “firewall” host. This host had eight physical
Ethernet ports, making it ideal to act as both a central location to record traffic
and also help enforce routing rules. One requirement was that each team should
see an isolated view of their network. To accomplish this, a basic iptables-based
firewall was used to restrict traffic based on the IP address and virtual Ethernet
device of the OpenVZ guest. That is, traffic coming from a virtual Ethernet device
associated with one team would only be forwarded to the IP ranges also associated
with that team. Furthermore, these firewall rules ran on the host machine, which
was inaccessible from the guest machines. This setup gave us the unique ability
to have both mandatory iptables rules to enforce game rules and iptables rules on
the guest itself to simulate an internal firewall that could be modified. Thus we
could ensure the order in which each stage had to be broken. Moreover, even if
teams were to spoof traffic, they could not interfere with each other.

3.3 Overview of the Live Exercise

The competition took place on December 5th, 2008, from 9am to 5pm, PST. Even
though we did not disclose the nature of this competition until the day of the
event, we were able to get the network up and running beforehand by distributing
a test virtual machine to test network connectivity, much like we would have
done had we run a more traditional CTF. Although we had not stress-tested
our OpenVZ-based network against the oncoming onslaught of connections, the
network was stable. The largest connectivity issues came from a few teams that
accidentally wrecked one of their OpenVZ guests. We had explicitly set it up
so that all traffic had to go through the initial web server and the teams had
to be very careful not to sever this connection. Even though we were explicit
about being careful due to this very problem, we did attempt to help teams that
had not heeded this warning. However, we also had to exercise great care while
helping as a misconfigured firewall or an improper command could easily have
taken the entire competition offline.

Another issue we overlooked was the name of our fictitious terrorist group.
Clearly, the name Softerror was supposed to invoke the idea of an evil software
group doing evil software things. We had not considered that there might actually
be a Softerror group that would supply friendly services such as consulting and
development to their entirely benign customer base. Unfortunately, we did not
think to check for similar names until after the competition began. Thus, when
we received an email from a team asking if they were supposed to attack the real
domain www.softerror.com, we were quite surprised. However, since the traffic
of the whole competition was confined to a VPN with non-routable IP addresses,
no actual attacks were carried out against external targets.

Initially we had hoped to augment the process of scoring exploits through the
use of automated tools. Unfortunately, these tools were untested by the time
the competition started and issues quickly developed. We were then faced with
the decision of trying to hot fix them as the competition progressed or take a
manual approach. With the competition running along, it was decided that we

Organizing Large Scale Hacking Competitions 141

should take the latter approach and that the teams would have to submit their
exploits by email to be manually judged. When decided, the number of emails
started to grow very rapidly as teams raced to submit their exploits. Given that
we had about ten people involved as organizers, we were quickly overwhelmed
with the torrent of emails and the competition suffered because of it. While we
attempted to maintain fairness by giving emails that detailed successful breaks
for a particular level to the same judge, the response time could be fairly long,
which prompted teams to send additional emails, exacerbating the problem.
Moreover, trying to work through all the issues related to scoring took us away
from dealing with other issues that came up, such as the occasional connection
issues mentioned above.

At the end of the competition, with minutes to spare, Team ENOFLAG man-
aged to upload a modified version of the bomb firmware that successfully de-
activated their bomb. Embroiled with the controversy surrounding our scoring
procedures, we were at least relived that we could unequivocally decide the win-
ner of the 2008 iCTF.

4 The 2009 iCTF — A Botnet Attack Scenario

The theme for the 2009 iCTF was “Know Thy Enemy!” For this competition,
we decided to mimic the world of malware and design a competition that in-
corporated many features unique to the physiology of modern botnets. In this
iCTF edition, each team played the role of an evil botmaster, competing against
other botmasters for the control of a large number of simulated users. The 2009
iCTF was the largest security competition to date, with 56 teams representing
more than 800 participants.

Scripts simulated users that were to be compromised and controlled by the
participants. Each simulated user followed a cyclical pattern: First the user vis-
ited a bank (called Robabank, a pun on the real Rabobank) using a browser, and
logged in using her credentials. The bank set a cookie in the user’s browser to
authenticate further requests. Then the user visited a news site (called PayPer-
News) and randomly extracted a word from the content of the news. Teams
could publish news on this site by paying with money from their bank account.

The word chosen by the user was then submitted to a search engine called
Goollable. Goollable routinely crawled each team’s editable webpage. One of the
links returned by the search engine was chosen by the simulated user using a
Pareto distribution that gave higher probability to the top links. The user di-
rected the browser to this page, controlled by one of the teams, and was possibly
compromised by a drive-by-download attack. Finally, the user returned to the
bank web site and checked the balance of her account. Even though the user
script was identical for all 1,024 users, the users browsed with different browsers
each having multiple versions with unique vulnerabilities.

The goal of the participants was to lure a user to a web site under the partic-
ipant’s control, perform a drive-by-download attack against the user’s browser,
and take complete control of the user. Once the user was compromised, a team

142 N. Childers et al.

had to do two things: i) transfer the money from the user’s Robabank account
to their own account thus accumulating “money points,” and ii) establish a
connection from the user to a remote host, called the Mothership, on which to
send information identifying the compromising team. A team gained “botnet
points” by performing this action. This last step was introduced to generate
traffic patterns resembling the interaction of bots with Command-and-Control
(C&C) hosts in real botnets.

Solving side challenges offered teams a third way to gather points. Challenges
varied in type (e.g., binary reversing, trivia, forensics) and difficulty. Teams were
awarded “leetness points” for solving a challenge.4

At the end of the game, the final score was determined by calculating the
percentage of each team with respect to each type of points and computing a
weighted sum of the percentages, where botnet points had a weight that was
twice the weight of leetness points and money points. More precisely, given the
maximum money point value across all teams, M , the maximum botnet point
value, B, the maximum leetness point value, L, and the score in each of these
categories for a specific team, m, b, and l, the total score for a team was computed
as 25m/M + 50b/B + 25l/L. Note that during the game, teams could exchange
leetness points and botnet points into money points using the Madoffunds web
site. The exchange rates varied dynamically throughout the competition.

This rather complex system of inter-operating components was a central aspect
of the 2009 iCTF. That is, instead of just concentrating on single services or single
aspects of the game, the participants were forced to understand the system as a
whole. Even though this aspect generated some frustration with the participants,
who were used to the straightforward designs of previous competitions, the pur-
pose of the complexity was to educate the students on understanding security as
a property of complex systems and not just as a property of single components.

We expected the teams to first solve a few challenges in order to gain leetness
points. These points would then be converted into money points using the Mad-
offunds site and used to pay for the publishing of news on the PayPerNews web
site. At the same time, a team had to set up a web page with content “related”
to the published news. The idea was that a user would eventually choose a term
in a news item published by a team, whose web site would score “high” in associ-
ation with that term. This scheme is similar to the Search Engine Optimization
(SEO) techniques used by Internet criminals to deliver drive-by-download at-
tacks. Once the user was lured to visit the team’s web site, the team had to
fingerprint the user’s browser and deliver an attack that would allow the team
to take control of the user. The first team to compromise a user could transfer
all the user’s money to their account. Additionally, all teams that compromised
a user could gather botnet points by setting up a bot that connected to the
Mothership host.

The Robabank, Madoffunds, PayPerNews, Goollable, and Mothership sites had
no (intended) vulnerabilities. The only vulnerable software components were the

4 A discussion of some iCTF09 challenges can be found at
http://www.cs.ucsb.edu/~bboe/r/ictf09

http://www.cs.ucsb.edu/~bboe/r/ictf09

Organizing Large Scale Hacking Competitions 143

browsers used by the simulated users. In the following, we provide more details
about the search engine behavior and the browsers whose vulnerabilities had to
be exploited.

4.1 The Crawler and Search Engine

A crucial goal of each team was driving the vulnerable browsers to their web
server. In order to do so, teams needed to perform SEO to boost their search
results for desired keywords thus driving traffic to their web server. Each team
was allowed to host a single web page accessible by the root path. A sequential
web crawler visited the teams’ web pages once a minute in random order. In order
to be indexed, web servers needed to respond to requests within one second, and
responses over 10KB were ignored.

Once a page was crawled, keywords were extracted from title, h1 and p HTML
tags, and a base score was assigned to each keyword based on the number of
times the particular keyword appeared in the text relative to the total number
of keywords. For instance, in the text, “the quick brown fox jumps over the lazy
ground hog” there are a total of ten keywords with the appearing twice thus
having a density of 0.2. All other keywords have a density of 0.1.

To prevent teams from using näıve techniques, such as having a page with
only a single keyword or alternatively containing every word in the dictionary,
only keywords with densities between 0.01 and 0.03 were assigned base scores.
However, keywords appearing in either the title or h1 tags were guaranteed a
base score of at least 0.008. In addition to the base score, a bonus multiplier
was applied to keywords appearing in the title or h1 tags according to a linearly
decreasing function that favored sooner appearing keywords. For example, in
the title “iCTF 2009 was Super Awesome!” the keyword iCTF would receive a
0.3 fraction of the title multiplier and the remaining words would respectively
receive a 0.25, 0.2, 0.15, and 0.1 fraction of the multiplier.

On the other end of this system was the Goollable search site. Goollable was
accessible both by the simulated users and to each team through a standard
HTML interface. The simulated users performed single keyword searches to de-
termine which team’s web server to visit and the teams accessed Goollable to see
their relative search ranking for particular keywords. When designing this sys-
tem, it was our hope that teams would reverse-engineer the scoring function in
attempt to achieve the maximum possible score for desired keywords. Our hope,
however, fell short and we decided to release the crawler and search engine source
code midway through the competition.5

4.2 The Vulnerable Browsers

The overall goal of a team was to compromise as many users as possible. Users
had to be lured to a web site under the control of the attacker that would
5 The crawler and search engine source code is available at
http://www.cs.ucsb.edu/~bboe/public/ictf09/search_engine.tar.gz

http://www.cs.ucsb.edu/~bboe/public/ictf09/search_engine.tar.gz

144 N. Childers et al.

deliver a drive-by-download attack, in a way similar to what happens with attack
“campaigns” in the wild. In the following, we describe the characteristics of the
various browsers that were used by the simulated users in the competition.

Operla. As the name suggests, Operla was a browser written in Perl that relies
on libwwwperl to perform the necessary HTTP communication. Operla supports
a minimal form of the HTML object tag, and introduces a so-called Remote-
Cookie-Store. Three versions of Operla were deployed incrementally during the
competition each of which contained unique vulnerabilities.

The first version of the Operla implemented a Remote-Cookie-Store. This
feature was designed to upload a copy of the users’ cookies to a remote location.
While the attacker could choose an arbitrary URL to upload to, Operla would
perform this action only if an associated security header contained the correct
password. Operla stored an MD5-sum of the password, thus by determining the
plain text password associated with the MD5-sum, an attacker could trigger the
upload of the cookies. Since the MD5-sum was stored without a salt, searching
for this value on the web was enough to retrieve the required password.

The second version of Operla contained a vulnerability that mimics the real-
world vulnerability of the Sina DLoader ActiveX component [9]. This component
allowed an attacker to download and install an arbitrary file from the Internet
on the victims’ computers. Operla, by incorrectly validating the parameters for
HTML object tags, suffered from a similar vulnerability.

The final version of Operla contained a remote code execution vulnerability.
To exploit the vulnerability an attacker had to perform the following steps.
First, two HTTP headers needed to be sent back to the browser. One contained
the code that should be executed upon successful exploitation and the other
contained an arbitrary URL. To this response, Operla created a challenge string
consisting of ten random characters and transmitted them in a request to the
arbitrary URL. Second, the attacker needed to respond to the request with a
JPEG image consisting of a visual representation of the challenge string and
containing the MD5-sum of the challenge string in the image’s EXIF header. If
the image was configured properly Operla executed the attacker-provided code.
Jecko. Jecko was a vulnerable browser written in the Java language. During the
competition, we provided the teams with three versions of Jecko, each containing
a different vulnerability. All versions were distributed in bytecode format, which
was trivial to convert to source code by using a Java decompiler, such as JAD.

The first vulnerability was a command injection in the code that handles the
HTML applet tag. When Jecko parses an applet tag, it retrieves the code base
specified by the code attribute, saves it on the local disk, and executes it by
spawning a system shell, which, in turn, invokes the Java interpreter using a
restrictive security policy. In addition, Jecko allows pages to specify a custom
mx attribute to set the maximum memory available to the “applet” program.
The value, however, is used unsanitized in the shell invocation. Students had to
identify the command injection vulnerability in Jecko’s source code, and attack
it by injecting arbitrary shell commands, which would then be executed with
the privileges of the user running the browser.

Organizing Large Scale Hacking Competitions 145

The second vulnerability consisted of exposing untrusted pages to insecure
plugins. In Jecko, plugins are implemented as C libraries that are loaded by the
Jecko through the JNI framework. Pages can instantiate plugins by using the
object tag. Jecko was provided with two plugins, one of which exposed a function
that allows pages to download the resource at a given URL and execute it. This
vulnerability mimics several real-world vulnerabilities, such as CVE-2008-2463.
Exploiting this vulnerability required the attacker to understand Jecko’s plugin
mechanism and reverse-engineer the provided binary plugins.

Finally, the last vulnerability consisted of an authentication flaw in Jecko’s up-
grade system. When Jecko parses a page containing the custom XBUGPROTECTION
tag, it assumes it is visiting a site that provides updates for the browser. Then,
the URL specified by this tag should contain a serialized Java object that speci-
fies the commands required for the updates. These commands are encrypted with
a key transmitted as part of a custom HTTP header. The attacker had to reverse-
engineer this upgrade mechanism and discover that the update commands are
not signed. To launch an actual exploit, teams had to create serialized versions
of the update object and configure their pages to respond with the appropriate
custom HTTP header.

Erbrawser. Erbrawser was a browser written in the Erlang programming lan-
guage and was composed of a main module that implemented the user interface,
performed queries via the standard Erlang http library, and parsed the HTML
responses via the mochiweb toolkit. The vulnerability for this browser was de-
signed to be simple to detect and exploit. The main challenge was becoming
familiar with this functional language and producing the correct code to inject
into Erbrawser. Erbrawser was deployed in two versions containing a similar
vulnerability, although the second version of the browser was more difficult to
exploit. The source code for both browsers was given to the teams thus making
it somewhat simple to discover the exploit in the first version.

Erbrawser introduced the <script type="text/erlangscript"> tag that
executed its content in the Erlang interpreter without sanitization or sandboxing.
This feature contained a number of vulnerabilities that allowed the execution of
arbitrary third-party code inside a user process. The first version of Erbrawser
allowed the execution of any Erlang commands, thus the easiest way to exploit
was to execute shell commands through os::cmd(). The second version of Er-
brawser forbid the execution of os::cmd() and similar functions. Nonetheless,
having direct access to Erlang’s interpreter gave the attacker the ability to use
the browser as a bot by spawning an Erlang thread inside the browser. This
thread could then continuously read and submit flags to the Mothership.

Pyrefox. Pyrefox was a browser written in Python. The browser had two ver-
sions each with a vulnerability. The first version of Pyrefox used the path at-
tribute of a cookie to determine the name of the file in which to store the cookie’s
contents. Therefore, one could use a path traversal attack to overwrite or create
any file accessible to the browser’s user. The second version of Pyrefox fixed
that vulnerability but introduced a code injection vulnerability. This vulnera-
bility was associated with the fictitious scripting language, called JavaScrapt,

146 N. Childers et al.

supported by the Pyrefox browser. The JavaScrapt language allowed a modifi-
cation to the page by specifying an XML Path-like expression to a new string.
However, the path and the string were passed unsanitized to an eval() state-
ment, allowing for the execution of arbitrary Python code.

Crefox. Crefox was a browser written in the C programming language requir-
ing libcurl and htmlcxx for HTTP communications and HTML parsing re-
spectively. Crefox came in three versions, all with vulnerabilities that eventually
allowed an attacker to execute arbitrary code supplied as part of the pages re-
trieved by the browser. We voluntarily leaked all the versions of Crefox source
code throughout the competition to allow the teams to focus on exploiting the
vulnerabilties rather than reversing the binaries.

The first version of Crefox had a NULL pointer de-reference vulnerability in
addition to a mmap call that mapped the downloaded HTML page at the virtual
memory address 0. Thus, triggering the vulnerable code path required the at-
tacker to serve a page starting with the special string USESAFEPRINTFUNCTIONA,
followed by the code the attacker wanted to execute. When the special string
appeared, Crefox attempted to call a nonexistent function thus executing the
attacker’s code. The second version of the browser fixed the previous vulnerabil-
ity, but introduced a format string vulnerability triggered when the downloaded
page was about to be printed. To make this vulnerability difficult to detect, the
printf function name was encoded and subsequently retrieved at run-time.

Finally, the third version of Crefox fixed the previous vulnerability, but
introduced two new ones, namely a plain stack-based buffer overflow, and a
non-control data buffer overflow leading to a command injection. Ironically, the
former was not intended at all, but was the result of a typo that switched the
destination buffer of a string copy routine from a global variable to one residing
on the stack. To trigger the command injection vulnerability, the attacker had
to embed a new HTML ictf tag with a code attribute containing a specific
pattern followed by the shell command to inject.

4.3 Overview of the Live Exercise

The 2009 iCTF took place on December 4, 2009 between 8 am and 5 pm, PST.
The participating teams connected to the competition VPN during the preced-
ing week. The teams received an encrypted archive that contained a presentation
describing the complex setup of this competition. The presentation was supposed
to include audio that described the various steps of the competition, but unfor-
tunately the audio was not included, due to technical problems. This generated
some confusion in the initial phase of the game. We eventually gave teams the
audio portion of the instructions and the game could start.

The first problem we ran into was the poor performance of the entire system.
Various components of the infrastructure were only lightly tested and under the
full weight of hundreds of participants, they slowed to a crawl. We traced this
issue to the fact that most components were not multi-threaded and therefore
they could not respond to the volume of requests being made. We solved the

Organizing Large Scale Hacking Competitions 147

issue by adding some standard threading code and while this operation easy to
do, it still required some time, causing further delays to the game.

In addition to the scoring infrastructure woes, we also had to deal with prob-
lems with the simulated users. The aforementioned threading issues affected the
simulated user scripts causing them to misbehave and not visit teams’ websites
as often as they should have. There were also some browser specific issues, for
example the Java based Jecko browser would periodically run out of memory
causing our simulated user processes to terminate unexpectedly. This issue went
mostly unresolved and as a consequence there were not many opportunities for
teams to exploit this particular browser.

Fig. 2. The 2009 iCTF Scoreboard. Each pixel on the bottom of the screen represents
one of the 1,024 users, each colored according to the browser they used. A line from a
user to a team indicates that the user was “owned” by the team.

While we were sorting out these issues, a team managed to discover a flaw
in the banking system. The goal of the banking system was to have people
withdraw money from our simulated users and add it to their own accounts.
One enterprising team discovered a flaw in our validation routines, in that we
allowed for negative amounts. In effect, this allowed them to drain the accounts
of other teams by simply making a transfer request from their own account to
the victims account, with a negative amount. They were gracious enough to alert
us and let us patch the flaw, instead of wrecking havoc throughout the scoring
system.

148 N. Childers et al.

Even though the competition had a slow beginning, the teams started to
figure out how to exploit the competition’s complex system of interconnected
components and eventually users were compromised and made part of a botnet.
Figure 2 shows the graphic format that was used, during the competition, to
show which users were “owned” by which team.

By the end of the competition, the team CInsects managed to capture a
significant portion of the simulated users that visited their site and took first
place.

4.4 Feedback

After the 2009 competition was completed, a poll was given out to the point of
contact for each team. Each person was asked to rank various aspects of this
competition. Of the 56 participants we received 35 responses.

The most basic question we wanted to answer was in regards to the size of the
competition. Every year we see more and more teams participating, however we
did not ask about how many individuals each team had. This year we wanted to
get a more accurate number on how many people were participating. From our
respondents we learned that, on average, each team was composed of 15 players.
Although it is unfortunate that we cannot give an exact number because we did
not get feedback from every team, we can provide a very reasonable estimate
that this competition involved well over 800 individuals from all over the world,
supporting our claim of running the largest security competitions.

Table 1. Botnet Gameplay Feedback

Category No Response Awful Satisfactory Awesome

Playability 2 4 23 6
Score System 1 8 20 6
Novelty 1 2 12 20
Network Setup 1 4 16 14
Challenges 1 4 15 15

From these responses as outlined in Table 1 and the feedback received, it
is clear that while most teams enjoyed the competition there were numerous
aspects that needed improvement. The most common complaint was that the
mechanics of this competition were not entirely clear at the start and it took
teams a significant amount of time just to understand what they were being
asked to accomplish. However, the overwhelming majority of teams agreed that
it was a novel competition and echoed our sentiments in that creating a new
competition leveled the playing field. It is also interesting to note that not many
people complained about the network connectivity, even though we were having
issues with the simulated users connecting to teams early on in the competition.
We suspect that our network issues may have been masked by the fact that the
teams were taking a significant amount of time to understand the competition.

Organizing Large Scale Hacking Competitions 149

Table 2. Botnet Team Feedback

Category Yes No

First Time Playing 12 23
Developed Tools 18 17
Gained Skill 33 2
Educational 33 2

Table 3. Network Trace Characteristics

Year Duration Data Size Packets Data Rate
(hh:mm) (MB) (106) (bytes/s)

2003 3:19 2,215 6.96 188,941
2004 0:54 258 2.78 121,680
2005 7:27 12,239 30.14 1,427,060
2007 6:45 37,495 92.57 2,065,115
2008 41:29 5,631 34.11 60,179
2009 17:51 13,052 40.58 550,408

By the time the teams were actually ready to receive traffic, we had resolved the
network issues.

One of the primary goals for running these security competitions is that we
want participants to go beyond the normal course work and explore new and
original ways to accomplish these tasks. In order to check if this goal was being
met, we asked how many teams had developed tools specifically for this compe-
tition. As displayed in Table 2, half of our respondents stated they had worked
on tools specifically for this competition, giving us empirical evidence that these
competitions are working as intended. Furthermore, we also collected evidence
supporting the continuing popularity of these competitions, as more than two
thirds of our respondents were veterans who had played in previous CTFs.

5 Lessons Learned

Throughout the seven years (and eight editions) of the iCTF we learned (the
hard way) a number of lessons.

An important lesson that we learned very early is that the scoring system is
the most critical component of the competition. A scoring system must be fair
and objective. Given the size of the competitions we ran, this means that it also
needs to be automated, that is, it cannot rely on human input. Even though we
learned this lesson many years ago, our scoring system failed catastrophically
during the 2008 competition. In this case, the lack of testing forced us to switch
to manual evaluation, with very unsatisfactory results. Fortunately, because of
its design, the competition had a clear winner, which was determined in an
objective way. However, we cannot say the same about the ranking of the rest
of the teams.

A second lesson learned is that the critical events should be repeatable. That
is, all the events that cause a change in the score of a team should be logged,
so that if a bug is found in the scoring mechanisms, it is possible to handle
the failure and restore the correct scores of all teams. The 2009 scoring system
did not include a manual component, but suffered from a number of glitches,
mostly due to erroneous database programming. Fortunately, all transactions
were logged and, therefore, it was possible to troubleshoot the problems and
restore the correct scores.

150 N. Childers et al.

A third lesson learned about the scoring procedure is that a scoring system
should be easily understood by everyone involved. This helps because, on one
hand, the participants will understand what is strategically important and what
is not, and, in addition, they can identify errors in the scoring process and help
the organizers fix them. On the other hand, if the system is well-understood
by the organizers, it is easy for them to fix problems on-the-fly, which is often
necessary, given the time-critical nature of the competition.

As previously mentioned, our scoring system, as well as network traces can be
found at http://ictf.cs.ucsb.edu/. Table 3 summarizes the network traces
captured for the past iCTFs.

While these lessons described above have been learned throughout all the
editions of the iCTF, there are several lessons that are specific to the 2008 and
2009 editions.

A first lesson is that attack-only competitions like the 2008 and 2009 iCTFs
are valuable. When the iCTF was first conceived, it was to be the final test
for students finishing a graduate-level computer security course. The goal was to
provide a one-of-a-kind hands-on learning experience for teams of novice security
experts. Since then, several annual CTFs have emerged in addition to the iCTF,
and there are quite a few teams that regularly participate in these competitions.
As such, these teams have gained significant experience and are quite organized.
Even though the goal of the competition is to foster the development of novel
tools and approaches, the fact that some teams come very prepared can make
the competition too hard for newer, inexperienced teams. By having an attack-
only competition, where the teams compete side-by-side and not directly against
each other, it is possible to shield newcomers from “veteran” teams. Of course,
a major drawback of attack-only competitions is that the defense skills of the
students are not tested.

New participants were also aided by the new nature of the competition. In
fact, by changing radically the style of the competition, we managed to somewhat
level the playing field. Although the winning teams were still experienced groups,
in both the 2008 and 2009 editions, teams of first-time competitors placed quite
high in the ranking. This was possible because we intentionally did not disclose
in advance to the teams the nature of these new competitions. In both cases,
many “veteran” teams expected a standard CTF and were surprised to learn
that this was not the case. Of course, it is hard to keep surprising teams, as
designing new competitions requires a substantial amount of work. However, it
is arguable that this type of competition is inherently easier for novice teams to
participate in.

Another important lesson is that too much novelty can hurt the overall com-
petition. Although the 2008 competition was a radical departure from the tra-
ditional iCTF, the task was fairly straightforward: break into a network. With
the 2009 iCTF, the competition structure was much more complicated. Not only
did teams have to reverse-engineer the browser software they also had to per-
form Search Engine Optimization to get users to visit their sites. Moreover, once
they understood how to capture users, to score points they had to figure out

http://ictf.cs.ucsb.edu/

Organizing Large Scale Hacking Competitions 151

how the banking system worked, as well as how the botnet Mothership could be
used to generate more points. In total, there were three different kinds of points,
with a fairly complex relationship between them, which many participants found
sometimes confusing.

A final thought about these kind of competitions is: are they worth the effort?
Preparing all the editions of the iCTF and, in particular, the two completely
new iCTF structures of 2008 and 2009 took an enormous amount of time and
resources. Therefore, it is understandable to wonder what are the benefits. We
think that the fact that after the iCTF was introduced many other similar events
started surfacing shows that there is interest and perceived value for these events.
We really do think that competition fosters group work and creative thinking,
as witnessed by the feedback we gathered for the 2009 iCTF, and we think that
live exercises are a useful tool to support the security education of students.
Also, these types of competitions help the organizing team, because they provide
visibility and publicity to their institution. For example, this year a number of
the applications to the graduate program of the Department of Computer Science
at UCSB mentioned the iCTF.

6 Conclusions

Security competitions and challenges are a powerful educational tool to teach
hands-on security. However, the design, implementation, and execution of com-
plex, large-scale competitions require a substantial amount of effort. In this paper
we described two novel designs that were implemented as large-scale security live
educational exercises. These exercises involved several hundred students from
dozens of educational institutions spread across the world. The information that
we provided about the software/hardware infrastructure supporting the compe-
titions, as well as the lessons learned in running these events can be useful for
educators who want to create similar competitions.

Acknowledgements

This work has been supported by the National Science Foundation, under grants
CCR-0524853, CCR-0716753, CCR-0820907, and by the ARO under grant
W911NF-09-1-0553.

References

1. Augustine, T., Dodge, R.: Cyber Defense Exercise: Meeting Learning Objectives
thru Competition. In: Proceedings of the Colloquium for Information Systems Se-
curity Education, CISSE (2006)

2. ComputerMajors.com: Computer Science Degrees: Starting Salaries (June 2009),
http://www.computermajors.com/starting-salaries-for-computer-

science-grads

http://www.computermajors.com/starting-salaries-for-computer-science-grads
http://www.computermajors.com/starting-salaries-for-computer-science-grads

152 N. Childers et al.

3. Cowan, C., Arnold, S., Beattie, S., Wright, C., Viega, J.: Defcon Capture the Flag:
defending vulnerable code from intense attack. In: Proceedings of the DARPA
Information Survivability Conference and Exposition (April 2003)

4. Group, T.H.: The ructf challenge (2009), http://www.ructf.org
5. Mullins, B., Lacey, T., Mills, R., Trechter, J., Bass, S.: How the Cyber Defense Ex-

ercise Shaped an Information-Assurance Curriculum. IEEE Security & Privacy 5(5)
(2007)

6. Pimenidis, L.: Cipher: capture the flag (2008), http://www.cipher-ctf.org/
7. Pwn2own 2009 at cansecwest (March 2009),

http://dvlabs.tippingpoint.com/blog/2009/02/25/pwn2own-2009

8. Schepens, W., Ragsdale, D., Surdu, J.: The Cyber Defense Exercise: An Evaluation
of the Effectiveness of Information Assurance Education. Black Hat Federal (2003)

9. SecurityFocus: Sina DLoader Class ActiveX Control ’DonwloadAndInstall’ Method
Arbitrary File Download Vulnerability,
http://www.securityfocus.com/bid/30223/info

10. Vigna, G.: Teaching Hands-On Network Security: Testbeds and Live Exercises.
Journal of Information Warfare 3(2), 8–25 (2003)

11. Vigna, G.: Teaching Network Security Through Live Exercises. In: Irvine, C., Arm-
strong, H. (eds.) Proceedings of the Third Annual World Conference on Information
Security Education (WISE 3), June 2003, pp. 3–18. Kluwer Academic Publishers,
Monterey (2003)

http://www.ructf.org
http://www.cipher-ctf.org/
http://dvlabs.tippingpoint.com/blog/2009/02/25/pwn2own-2009
http://www.securityfocus.com/bid/30223/info

An Online Adaptive Approach to Alert

Correlation

Hanli Ren, Natalia Stakhanova, and Ali A. Ghorbani

Information Security Center of eXcellence
University of New Brunswick

Fredericton, New Brunswick, Canada
{e8vwe,natalia,ghorbani}@unb.ca

Abstract. The current intrusion detection systems (IDSs) generate a
tremendous number of intrusion alerts. In practice, managing and ana-
lyzing this large number of low-level alerts is one of the most challenging
tasks for a system administrator. In this context alert correlation tech-
niques aiming to provide a succinct and high-level view of attacks gained
a lot of interest. Although, a variety of methods were proposed, the ma-
jority of them address the alert correlation in the off-line setting. In this
work, we focus on the online approach to alert correlation. Specifically,
we propose a fully automated adaptive approach for online correlation
of intrusion alerts in two stages. In the first online stage, we employ a
Bayesian network to automatically extract information about the con-
straints and causal relationships among alerts. Based on the extracted
information, we reconstruct attack scenarios on-the-fly providing net-
work administrator with the current network view and predicting the
next potential steps of the attacker. Our approach is illustrated using
both the well known DARPA 2000 data set and the live traffic data
collected from a Honeynet network.

Keywords: alert correlation, Bayesian network.

1 Introduction

The rapid increase in the number, sophistication and impact of computer attacks
makes the computer systems unpredictable and unreliable, emphasizing the im-
portance of intrusion detection technology. Intrusion detection systems (IDS) are
generally designed to provide a system administrator with sufficient information
to handle intrusion incidents. In practice, with the ever increasing capacity of
networks this often translates to a large number of low-level alerts produced by
an IDS. A tremendous volume of alerts coupled with their low quality makes it
challenging for a system administrator to handle intrusions in timely manner.

In this context, the alert correlation techniques aiming to consolidate
relevant IDS alerts in a concise high-level format gained a special interest. Sev-
eral alert correlation techniques have been proposed in the recent past includ-
ing approaches based on feature similarity analysis [1], attack rules and sce-
narios [2,3,4,5,6,7] and analysis of alert statistics [8,9,10,11]. Generally, these

C. Kreibich and M. Jahnke (Eds.): DIMVA 2010, LNCS 6201, pp. 153–172, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

154 H. Ren, N. Stakhanova, and A.A. Ghorbani

techniques follow one of two directions: they either rely on expert knowledge or
infer relationships among alerts using statistical or machine learning analysis.
Although the expert knowledge based approaches appear to produce accurate
results, they are generally limited in their ability to integrate novel alerts. More-
over, accurately defining all possible relationships among existing alerts can be
prohibitively tedious and time-consuming, and thus not always feasible. The in-
ference approaches on the other hand allow to accommodate novel alerts through
automatic alert analysis. However, they might not fully discover the causal rela-
tionships between related alerts. Given the complementary nature of the expert
knowledge-based and inference approaches, it is highly desirable to combine their
strengths, while avoiding their weaknesses.

In this paper, we present a method for automatic correlation of intrusion de-
tection alerts that brings together the strengths of expert knowledge-based and
inference approaches. Instead of relying on user expertise, we propose to analyze
the casual relationships among alerts using a Bayesian network. Through this
analysis coupled with network configuration information and expert knowledge
we automatically extract the constraints and alert relationships that character-
ize attack steps. The extracted information is essentially attributed to various
attacks and thus can be employed to piece together an attack strategy in the
online setting.

To facilitate real-time intrusion analysis, we further develop a technique for
the adaptive online alert correlation. To allow the correlation procedure to auto-
matically adjust to the new previously unseen (in the offline setting) behavior,
the approach monitors the alerts behavior to reflect any significant changes that
might potentially influence the causal relationships among alerts. This online
correlation strategy not only provides a picture of the current intrusive activity
on the network, but also predicts a potential next step of an attacker.

Although the online component is specifically developed for runtime correla-
tion of alerts, both components can be applied in the offline setting.

The contributions of this paper can be summarized as follows:

– A Bayesian correlation feature selection model that allows to automatically
retrieve causal relationships and relevant features among alerts without ex-
pert or domain knowledge. The proposed feature selection method explicitly
shows the relationships among alerts and provides reasoning behind these
relations.

– An adaptive method for online attack scenario construction that allows a
user to extract attack patterns in real time. The proposed method provides
a dynamic adaptation of the correlation procedure to the temporal changes
in alerts’ behavior. This allows to address previously unseen alerts, and con-
sequently, discover new attack steps.

– Implementation of the proposed approach that allows a user to generate
attack scenarios from a large amount of raw alerts on-the-fly.

The reminder of the paper is organized as follows. A brief overview of related
work is given in Section 2. Section 3 provides an overview of the proposed ap-
proach for alert correlation. Section 4 describes the detailed design of the al-

An Online Adaptive Approach to Alert Correlation 155

ter correlation feature selection algorithm based on Bayesian causality theory.
Section 5 describes the design of online alert correlation. Experimental results
are given in Section 6. Section 7 concludes the paper with our future work.

2 Related Work

In recent years, a variety of alert correlation techniques have been proposed
aiming to reduce the overwhelming number of alerts and to provide a global
and condensed view of the network security status. Broadly speaking, these ap-
proaches can be divided into several groups: alert aggregation techniques [1,12,13]
that cluster similar alerts; the methods focused on detection accuracy improve-
ment [14,15,16] that aim to improve the accuracy of intrusion detection often
through filtering of false positive and low-interest alerts; the methods for alert
prioritization [17,18,19] that focus on adjusting priority of alerts based on their
severity; and alert causality analysis. Since our work employs the alert causality
analysis, we will primarily focus on the related work in this area.

Research on causality analysis trends can be considered within the three cat-
egories: scenario-based correlation, rule-based correlation and statistical correla-
tion. In general, the studies in the first two categories rely on expert knowledge
to find related alerts, while the approaches in the last category aim to infer
logical relationships among alerts using statistical or machine learning analysis.

Scenario-based correlation methods [5,6,7,20] find relationships among alerts
based on the known attack scenarios. The goal of alert correlation in this case
is to find a sequence of alerts that match pre-specified scenarios. Attack scenar-
ios can be specified using an attack language (e.g., SRARL [6], LAMDBA [5],
ADeLe [7]) or learned using machine learning techniques [20]. One of the major
downsides of these approaches is the necessity to develop all attack scenarios in
advance, which is not only a time-consuming and error-prone process, but also
requires a considerable expert knowledge.

Rule-based correlation approaches [2,3,4] are based on the observation that the
majority of alerts are related, i.e., they either represent the early stages of an attack
or intermediate steps of more advanced attack behavior. Thus, analyzing alerts
based on the predefined rules containing prerequisites and consequences of attack
steps is sufficient to identify related alerts. Similar to the scenario-based correla-
tion methods, these approaches require specific attack knowledge. Although they
can explicitly show the logical relationship between the alerts, they cannot handle
novel attacks since their prerequisites and consequences are undefined.

As opposed to rule-based methods, statistical approaches [8,9,10] statistically
analyze relationships among alerts based on their co-occurrence within certain
time period, and thus, are generally independent of prior domain knowledge. As
such, Qin et al. [8,21] presented a Bayesian correlation engine to discover the strong
statistical dependency among alerts. Based on the assumption that alerts are
causally related if there exists a strong statistical dependency among them, Qin
analyzes statistical patterns among the aggregated alerts, i.e. hyper alerts. The
degree of relevance of alerts is evaluated by calculating the conditional probability

156 H. Ren, N. Stakhanova, and A.A. Ghorbani

Fig. 1. Overview of the alert correlation system

among each pair of hyper alerts. The approach builds the attack scenarios by eval-
uating the causal relationship between each pair of hyper alerts. Since the number
of all possible combinations of hyper alerts can be extremely large, a straightfor-
ward application of this approach in the online setting becomes infeasible.

Motivated by this idea, we propose to generate attack strategies on-the-fly.
Specifically, rather than evaluating statistical patterns among the hyper alerts,
we focus on extracting the constraints and causal relationship between each pair
of alert types (even if the number of raw alerts is large, the number of alert types
is usually limited to a small number). We take an advantage of this strategy in the
online attack scenarios construction stage by analyzing only the most relevant
features.

There have been several works [9,10] specifically focused on the methods
for estimating correlation probability among alerts using Multilayer Percep-
tron (MLP) [22], Support Vector Machines (SVM) [23] and frequent structure
mining technique [10]. Unlike scenario-based and rule-based methods, statisti-
cal approaches do not require expert knowledge and are capable of representing
unknown attacks; they however cannot explicitly show the causal relationship
among alerts. Requiring heavy statistical analysis, these techniques are generally
time consuming and thus not applicable in the online setting.

In summary, all the above approaches focus on the offline alert correlation. In
our work, we attempt to address this issue by performing alert correlation in two
stages. Unlike scenario-based and rule-based methods, we use statistical analysis
to automatically extract prerequisites and consequences of attack steps. Since
the statistical analysis is a time-consuming process, we perform it in an offline
mode. Then, based on the extracted information, the online component then
connects related alerts and constructs attack scenarios on-the fly. Contrary to
the statistical methods, our approach can explicitly show the causal relationships
between alerts.

3 Overview

The alert correlation aims to consolidate IDS alerts based on their causal rela-
tionships. These relationships can be discovered relatively easy if attack strategy,

An Online Adaptive Approach to Alert Correlation 157

prerequisites and consequences are known in advance. In practice, manual gener-
ation of such attack information requires expert knowledge and experience, and
thus is not only time-consuming, but also error-prone. An alternative approach
to realize these relationships is through the automatic analysis of raw alerts.
However, the main challenge that arises in this context is to extract sufficient
number of constraints and conditions pertinent to the considered attack strat-
egy in order to accurately characterize the instances of this attack in the future.
In this work, we adopt the latter approach and attempt to extract casual alert
relationships automatically. To achieve this goal we propose a two-component
correlation model. The two components of our model, namely, offline Bayesian
correlation feature selection component, and online multi-step alert correlation
components, are shown in Figure 1.

In the offline component, we aim to extract relevant alert information that
can be later employed in the online alert correlation. First, we aggregate alerts
that belong to the same attack step. Based on the Bayesian causality we then
analyze the relevance of alerts representing different attack steps. Finally, we ex-
tract the features that define relevancy of attack steps. As the result of the offline
correlation, the system produces reference tables (namely, the correlation and
relevance tables) that contain information necessary to identify causal relation-
ships among alerts on-the-fly. The online alert correlation component processes
the raw low-level alerts to extract attack scenarios based on the attack informa-
tion provided by the reference tables. To dynamically adjust correlation process
to the current alerts’ behavior that might incorporate previously unseen alerts,
the online module monitors the changes in the alerts’ behavior. These temporal
changes are automatically accounted for in the attack scenario construction.

Note that the offline component primary allows to speed up the online corre-
lation process. Thus when necessary both components can be applied offline for
analysis of historical data.

4 Bayesian Correlation Feature Selection

Figure 2 shows the first step of the proposed alert correlation framework, which
is the offline analysis of low-level alerts. This analysis aims to produce sufficient
information for the following automatic real-time attack reconstruction.

In the proposed framework, this analysis is performed in two steps: prepro-
cessing and feature extraction. In the preprocessing step, the aim is to reduce
redundancy by bringing alerts into a standard format of a hyper alert [8]. Gen-
erally, intrusion detection sensors produce a number of alerts for each suspicious
event. Most of these alerts are repetitive and provide the same information about
an event. This information can be concisely represented through hyper alerts. A
hyper alert is essentially a set of low-level alerts aggregated based on the values
of their attributes and clustered into a group.

In the next step, we infer the causal relationships between the hyper alerts
through a Bayesian probability analysis. Based on the correlation probability, we
extract hyper alert attributes that significantly influence the degree of relevance

158 H. Ren, N. Stakhanova, and A.A. Ghorbani

Fig. 2. Overview of the offline alert correlation component

of two hyper alerts. Analyzing relevance of the extracted features allows to rea-
son about the relationships between hyper alerts and consequently between alert
types. One of the requirements in this context is to ensure that the inferred rela-
tionships reflect specific properties of the network environment. This information
may downgrade the relevance of alerts not applicable in a given environment or
emphasize critical relationships. For example, by introducing the network asset
group information, the relevancy of alerts whose target IP addresses belong to
the same asset group is emphasized, even though their exact destination IP ad-
dress are different. The network specific properties are incorporated through the
generalization hierarchies built using expert knowledge.

4.1 Alert Preprocessing

The preprocessing step follows a straightforward strategy to compress informa-
tion represented in low-level alerts. For the causal relationships analysis we adopt
a hyper alert format discussed by [8].

A low-level alert ai is an alert produced by intrusion detection sensor (e.g.
IDS) with a set of alert attributes, i.e, features such as destination IP address,
port number etc., denoted by f1 . . . fj. The value that a feature fj assumes in
alert ai is denoted by ai[fj]. The range of possible values, i.e., domain of feature
fj is denoted by dom(fj).

Given a set of low-level alerts a1 . . .an, a hyper alert Ai is a group of low-level
alerts ak, 1 ≤ k ≤ n with the same features’ values (except timestamp), i.e, for
each ak, al ∈ Ai, ak[fj] = al[fj]. The hyper alerts, as well as low-level alerts
can be also distinguished based on the type of alert that denotes a certain attack
class/step. To differentiate between the types of alerts, we refer to low-level alerts
using small letters and to hyper alerts using capital letters. As such, low-level
alerts ai, bi and hyper alerts Ai, Bi indicate alerts of type a and b, respectively.
Then, A = [A1, A2, A3, · · · , Am] denotes a group of all hyper alerts of type a

An Online Adaptive Approach to Alert Correlation 159

Fig. 3. The pre-processing procedure

and dom(A, fj) ⊂ dom(fj) denotes the range of values that feature fi assumes
in alerts a ∈ A.

To form a set of hyper alerts, a stream of low-level alerts is initially broken into
time windows using a sliding window approach. The alerts within each window
is clustered based on the alert type and then merged into hyper alerts based
on the alert feature values. The example of preprocessing procedure for alerts
of type a is illustrated in Figure 3. For example, the alerts a1, a2 fall into the
same time window and happened to have the same feature values, thus they are
merged into a hyper alert A1. Similarly, a5, a6, a7 occurred in the same time
window. The feature values of alert a5 match alert a7, but do not match alert
a6, thus only a5 and a7 are merged into a hyper alert A4. In the next time
window, we consider alerts not previously merged into hyper alerts, i.e., a6 and
a8. These two alerts have the same feature values, so we merge them into a hyper
alert A5. The resulting stream of hyper alerts is also broken into time windows,
Slot1, Slot2, · · · , Slott. The result of preprocessing stage is the groups of hyper
alerts of different types A, B, . . . , Z.

4.2 Feature Selection

Evaluating relationships between intrusion detection alerts essentially means an-
alyzing alert attributes, i.e. features. Since not all attributes equally contribute
to the relationship between two alerts, it is desirable to identify the attributes
that are necessary to be analyzed. Thus, given a set of hyper alerts, the goal
is to extract alert features that are the main contributors to the relationships
between intrusion detection alerts.

We perform this process in three steps as follows:

1. Feature construction: derive additional features based on the basic alert at-
tributes such as IP address, port, and protocol.

2. Correlation probability calculation: estimate the correlation probability of
alerts and determine the alert features that contribute the most to this
probability.

3. Construction of correlation and relevance tables.

160 H. Ren, N. Stakhanova, and A.A. Ghorbani

Fig. 4. An example of a generalization hierarchy of IP address

Step 1: Feature construction. The IDS alert features capture intrinsic alert
properties, such as the IP address of an alert, its port, protocol information, etc.
While the values of these features are the same for low-level alerts grouped in
one hyper alert (except time stamp), their values vary among the hyper alerts
of the same type. At the same time feature values of hyper alerts share common
patterns that allow to describe the hyper alert type. For example, a set of hyper
alerts representing an attack on a subnet, although has a different destination
IP addresses, shares the same subnet address.

Extracting the basic alert attributes may not be sufficient to fully discover
these patterns. We, thus, derive additional features from the available attributes,
called extended features. To derive extended features we follow the idea of gener-
alization hierarchy introduced by [13]. The generalization hierarchy is a directed
acyclic graph that spawns elements of an alert attribute domain. For example,
Figure 4 shows a sample generalization hierarchy for IP addresses. We employ
the following generalization hierarchies:

– Alert IP address hierarchy includes source and destination IP addresses and
is generalized into asset groups (e.g. firewalls, mail servers), subnets and
network domain (e.g. internal, external network).

– Alert port number hierarchy includes both source and destination ports and
is generalized according to a service assigned to a port (e.g., DNS, FTP,
HTTP) and into privileged and non-privileged ports.

Generally, generating generalization hierarchy is network-specific and thus re-
quires expert knowledge.

Step 2: Correlation probability calculation. The probability inference en-
gine is based on Bayesian network [24], one of the most widely used models for
understanding the causal relationships among a large number of variables. A
Bayesian network is essentially a graphical model that represents probabilistic
relationships among all variables.

A Bayesian network model consists of: (1) a network structure that describes
analyzed variables via a directed acyclic graph (DAG) and (2) a set of probabili-
ties associated with each variable and presented in conditional probability tables
(CPTs). Together, these components describe causal or dependent relationships
among variables and the strengths of these relationships [24]. Figure 5 shows a

An Online Adaptive Approach to Alert Correlation 161

Fig. 5. An example of a causal network

snapshot of an alert Bayesian network. The occurrence of children alerts is pri-
marily influenced by the state of their parents. In this context, the children alerts
can be viewed as a direct cause of parent alerts, i.e., a consequent attack step.
To evaluate the probability of child alert occurrence given its parents’ state a
conditional probability P (child|parent) has to be computed. This step is known
as probabilistic inference and can be assessed as follows:

P (child = c|parent = p) =
P (child = c ∧ parent = p)

P (parent = p)
(1)

Propagating the probabilistic inference calculation from parents to children al-
lows to infer dependencies among alerts and estimate the strengths of their
relationships.

Our interest in Bayesian inference model is not limited to relationships be-
tween alert types. To be able to assess the alert relevance in the online setting,
we need to reduce the amount of features analyzed. Thus, we employ Bayesian
model to determine the influence of the individual features on the causal rela-
tionships among alerts.

The pseudocode for estimating Bayesian correlation probability among alert
types is given in Algorithm 1. Given a pair of hyper alert groups 〈A, B〉, the
procedure aims to analyze the causal relationship between the hyper alert of
type a and b, and specifically, the influence of feature fj on this relationship.
The procedure returns the probability of the occurrence of type b alerts given
that type a alerts happened, denoted by P (B|A[fj] = dom(B, fj)). This process
requires calculation of three components:

– the prior probability of alerts of type b, P (B), which essentially indicates a
probability of type b alerts happening (Line 2). Note that prior probabilities
of alert types can be extracted during alert preprocessing step.

– the probability of occurrence of alerts of type a with a specific value,
P (A[fj] = dom(B, fj)) (Lines 4-7).

– the probability of occurrence of type b alerts with the given feature value,
P (B ∧ A[fj] = dom(B, fj)) (Lines 9-14). Intuitively, it is clear that the
relationship between alerts of two types have to be analyzed through some
temporal constraints. We employ an expirePeriod forcing the algorithm to
consider only alerts following type a alert within this specified time period.
Theoretically, a large time window allows us to find the relationships between
alerts of slowly developing attacks. However, it also increases the analysis

162 H. Ren, N. Stakhanova, and A.A. Ghorbani

Algorithm 1. Causal Relationship
Analysis procedure
1: function P (B|A[fj]) relAnalysis (< A, B >,fj)

2: calculate P (B);
3: AF ← ∅;
4: for each Ai ∈ A do

5: If Ai[fj] ∈ dom(B, fj), add Ai into AF ;

6: end for
7: calculate P (A[fj] = dom(B, fj));

8: ABF ← ∅;
9: for each Ai ∈ AF do

10: w ←number of time windows covered by the
expireP eriod ;

11: T WAi
← time window of Ai ;

12: T W ← {T WAi
, T WAi+1, · · · , TWAi+w};

13: Within T W , if ∃Bii ∈ B s.t. Bii[fj] = Ai[fj],
then add Ai into ABF ;

14: end for
15: calculate P (B ∧ A[fj] = dom(B, fj));

16: P(B|A[fj] = dom(B, fj)) ←
P(B∧A[fj]=dom(B,fj))

P (A[fj]=dom(B,fj)) ;

17: return P (B),P (B|A[fj] = dom(B, fj));

18: end function

Algorithm 2. FeatureSubsetSelec-
tion procedure
1: function Fsubset featureSelection(< A, B >,F)
2: Fsubset ← ∅;
3: for each fj ∈ F do

4: if P (B|A[fj] = dom(B, fj)) > t then

5: add fj into Fsubset;

6: end if
7: end for
8: n← number of elements in Fsubset;
9: k ← 2;
10: while k ≤ n do
11: G← all k size combinations from Fsubset;
12: tempSet← ∅;
13: for each gi ∈ G do

14: if P (B|A[G] = dom(B, G)) > t then
15: add ∀fj ∈ gi into tempSet;

16: end if
17: end for
18: if tempSet 	= ∅ then
19: Fsubset ← tempSet;
20: n← number of elements in Fsubset;
21: k ← k + 1;
22: end if
23: end while
24: return Fsubset;
25: end function

time. Thus, the expirePeriod size selection should be depend on the system
performance.

The main advantage of the casual relationship procedure (Algorithm 1) is that it
requires no knowledge of attack scenarios or constraints. Applied to the stream
of alerts, the algorithm can distinguish influential and irrelevant features for
proceeding alerts; it cannot, however, identify the degree of this influence and
determine whether combinations of certain features can be associated with the
more significant influence. This type of analysis is performed by Algorithm 2.

Based on the relevancy strength and a predefined threshold t, we can distin-
guish four kinds of features:

– If P (B|A[fj] = dom(B, fj)) = P (B), then fj is an irrelevant feature. In other
words, feature fj does not influence the occurrence probability of alerts of
type b.

– If P (B|A[fj] = dom(B, fj)) < P (B), then fj is a relevant feature with neg-
ative influence. The presence of certain values of feature fj in alerts of type
a decreases the occurrence probability of type b alerts.

– If P (B) < P (B|A[fj] = dom(B, fj)) < t, then fj is a relevant feature with
positive influence. The presence of certain values of feature fj in alerts of
type a slightly increases the occurrence probability of type b alerts.

– If P (B|A[fj] = dom(B, fj)) > t, then fj is a relevant feature with critical
influence. The presence of certain values of feature fj in alerts of type a
significantly increases the occurrence probability of type b alerts.

To analyze the significance of subsets of features, only relevant features with
critical influence are analyzed. Algorithm 2 follows a greedy approach by ana-
lyzing all possible combinations of features (Lines 10-23). Starting with pairs of

An Online Adaptive Approach to Alert Correlation 163

Table 1. An example of Correlation Table

Alert Type Pair Correlation probability Relevant Features/constrains
<T1, T2> 70% f2,f4,f6
<T1, T3> 65% f1,f3,f4,f6
.
<Ti, Tn> 80% f2 = f4

Table 2. An example of Relevance Table

Alert type Occurrence Relevant Alert Types
Probability of
Ti Alerts

Strongly relevant Weakly relevant

T1 5% T2, T3, T5, T6 T4, T7, T8, T9
...
Tn 1% T7 T1, T2, T8, T9

features, the procedure randomly adds a feature to each subset whose probability
exceeds the specified threshold t (Lines 14-16).

Step 3: Construction of correlation and relevance tables. Once the cor-
relation probabilities are evaluated, we construct reference tables, specifically,
correlation and relevance tables that allow to hypothesize about causal rela-
tionships among alerts. The correlation table contains for all alert type pairs:
the correlation probability, the relevant features that significantly influence this
probability and the constrains that characterize the relationship of this pair. We
denote T = [T1, T2, ...Tz] as a set of alert types. Table 1 gives an example of the
correlation table.

As oppose to the correlation table, the relevance table contains information
per alert type. An example of the relevance table given in Table 2 shows that
each alert type is associated with occurrence probability and the sets of weakly
or strongly relevant alert types.

5 Online Alert Correlation

One of the challenges in applying alert correlation in practice is the ability of the
system to extract attack strategies on-the-fly. This is mainly due to the amount
of information necessary to process and draw a meaningful conclusions about the
relationships among alerts. In Section 4 we introduced the Bayesian correlation
engine that performs this analysis in the offline setting and outputs probability
information of alert types and the corresponding relevant features. The goal of
the online component is to identify “causally” related alerts and construct attack
scenarios on-the-fly based on the relationships and constraints identified in the
Correlation Table.

The online alert correlation component is given in Figure 6 and consists of
the two primary modules: an alert correlation module responsible for identifying
alert causality, and an attack scenario module that produces an attack graph
based on the pairs of causally-related alerts.

164 H. Ren, N. Stakhanova, and A.A. Ghorbani

Fig. 6. Overview of online multi-step alert correlation system

Algorithm 3. Online alert correlation
procedure
1: function AttackList onlineCorrelation

(T ablecorr ,Tablerel ,t)
2: T empTablecorr ← OccurProbCheck(T ablerel);
3: RecordedAlerts ← ∅;
4: AttackList ← ∅;
5: for each incoming alert b do
6: TypeB ← Type of b;
7: for each alert a ∈ RecordedAlerts do
8: T ypeA ← Type of a;
9: T ypeP air ←< T ypeA, T ypeB > ;
10: if ∃ TypeP air in T empTablecorr then
11: p←

getCorP rob(T ypeP air, T empT ablecorr);
12: else
13: p← getCorP rob(T ypeP air, T ablecorr);
14: end if
15: if p > t then
16: F ←

getRelF eatures(T ypeP air, T ablecorr);
17: if a and b have the same value of all F

then
18: if a ∈ attack:∃attack ∈ AttackList

then
19: Add b into attack;
20: else
21: Create a new attack;
22: Add a and b into attack;
23: Add attack into AttackList;
24: end if
25: end if
26: end if
27: end for
28: Add b into RecordedAlerts;
29: end for
30: return AttackList;
31: end function

Algorithm 4. Occurrence probabil-
ity check procedure
1: function T ablerel OccurProbCheck

(T empT ablecorr)
2: alertsList← all alerts happened in the last hour
3: for each alert type t do
4: P1 ← occurrence probability of all type t alerts

in alertsList
5: P2 ← occurrence probability of type t alerts in

T ablerel
6: if P1 − P2 > 100% then

7: weaklyRel ←
getW eaklyRelT ype(t, Tablerel);

8: for each alert type wt ∈ weaklyRel do
9: recomputeCorP rob(〈t, wt〉);
10: update T empTablecorr ;
11: end for
12: end if
13: if P2 − P1 > 100% then

14: stronglyRel ←
getStronglyRelT ype(t, Tablerel);

15: for each alert type st ∈ stronglyRel do
16: recomputeCorP rob(〈t, st〉);
17: update T empTablecorr ;
18: end for
19: end if
20: end for
21: return T empT ablecorr ;
22: end function

Adaptive alert correlation module. To discover “causally” related alerts,
the correlation module relies on the reference tables. The reference tables main-
tain stable alert information that represents alerts’ behavior in the past. As we
see in practice, the majority of attacks have established patterns. Thus, it is rea-
sonable to assume that if an alert was linked to certain attack steps in the past,
it is likely to be related to those steps in the future. Following this intuition, the

An Online Adaptive Approach to Alert Correlation 165

online correlation module analyzes alert pairs with a high correlation probability
based on the information provided by the correlation table.

While this strategy works well for the known patterns frequently seen in at-
tacks, it does not allow to discover new attack steps or to incorporate in attack
scenario alerts with less obvious relationships (e.g., due to their low presence in
the data during the offline analysis). In order to account for these alerts in the
online step, the online correlation module monitors the alerts’ behavior, specif-
ically the changes in the occurrence probability of alerts. Any sudden and sig-
nificant change in the frequency of known alerts or appearance of new ones may
indicate potential change in the “strength” of relationships of the corresponding
alert pairs. These temporal changes to relationships, i.e, correlation probability
of alerts are maintained in the Temporal correlation table, which can be viewed
as a snapshot of alerts behavior at a given period of time. Since this table has a
temporal nature, it only serves as an intermediate step between scheduled runs
of the offline feature selection process.

The main advantage of such approach is that it allows to discover new alerts’
relationships without any domain or expert knowledge and incorporate them
into the attack scenario on-the-fly.

The Online alert correlation procedure function in Algorithm 3 presents the
pseudocode for online correlation component. It takes as arguments a correlation
table Tablecorr, a relevant table Tablerel, a threshold t and an alert stream
stream. The function returns the AttackList, a list of attacks where each attack
is given as a set of correlated alerts.

The online correlation of alerts is performed in two steps: first, alerts’ occur-
rence probability is analyzed to determine if any deviation in alerts’ behavior
has occurred. Second, the causal relationships among alerts are determined.

Step 1 - Alert behavior analysis: a temporary correlation table is maintained to
monitor the significant and sudden changes in the alerts’ behavior. First, we
calculate the occurrence probability of each alert type in the last period of time
(e.g. last one hour) (Line 4). Then we compare this probability with the one
stored in the Relevance Table. If the occurrence probability of Ti alerts suddenly
increases, the correlation probability of the alert type pairs grouped by Ti and
its weakly relevant alert types is re-calculated. In case the produced result does
not match the Correlation Table, the corresponding information is logged in the
Temporary Correlation Table (Lines 6-12). On the other hand, if the occurrence
probability of Ti alerts suddenly decreases, the correlation probability of the alert
type pairs grouped by Ti and the corresponding strongly relevant alert types is
re-calculated (Lines 13-19).

Step 2 - Alert fusion: before hyper alerts correlation probability can be com-
puted, we pair the alerts that have shown strong connection in the past accord-
ing to both the Correlation Table and the Temporary Correlation Table. When
fusing two alerts, the alert type pair information is queried from the Temporary
Correlation Table first, if no record found, the original Correlation Table is used.
In practice, there is a number of alerts that do not have clear relationships to

166 H. Ren, N. Stakhanova, and A.A. Ghorbani

Fig. 7. An example of Correlation Process

other alerts. Although these alerts are preserved in the Correlation Table, their
contribution to attack scenario is insignificant and even misleading. Thus, we
apply a probability threshold that allows to navigate to the alert pairs that have
the strongest relationships, i.e, are more likely to represent a meaningful step in
an attack. Thus, given a probability threshold t, two alerts Ai and Aj are linked
together, if CorProb〈Ai.Aj〉 > t, that is if the correlation probability of 〈Ai.Aj〉
exceeds the threshold t.

Illustrative example. Let a1, b1, c1, a2, c2, a3, b2, b3, a4, c3 be the latest
alert steam to be analyzed by the online component in the example in Figure 7.
Assume that the provided Correlation and Relevance tables have been built in
the offline component. First, the occurrence probabilities of each alert type ob-
served in the incoming stream are calculated and compared with the contents
of the Relevance table (Step1). Let us assume that the probability of alerts of
type b suddenly increased (P (B) = 30% compared to the previously recorded
P (B) = 1%). This increase first of all influences the correlation probability be-
tween the alerts of type b and the weakly relevant alert types. The strongly
relevant types are not considered as the probability increased and thus their rel-
evancy cannot become weak. In this case, the correlation probability of the pair
〈A, B〉 is re-calculated and the result is recorded in the Temporary Correlation
Table as shown in Step3. In Step4, the attack scenario is built based on infor-
mation contained in both the Correlation Table and the Temporary Correlation
Table.

Attack scenario analysis. An attack scenario is generated based on the pairs
of causally related alerts. Figure 8 shows a simple example of an attack graph.
As shown in the attack graph, the Port Scan, Buffer Overflow, FTP User
alerts have already been grouped. Moreover, even though FTP Pass alert was
not reported yet, the online component is able to predict it based on the known
causal relationships of Buffer Overflow alert (i.e., FTP Pass attack has the
same source IP and destination IP address with the Buffer Overflow attack).

An Online Adaptive Approach to Alert Correlation 167

Fig. 8. Attack Graph Example

6 Experimental Results

To evaluate the effectiveness of the proposed alert correlation approach, we have
implemented the algorithms described in Sections 4 and 5 and performed a series
of experiments focusing on the following issues: (1) the ability of the proposed
approach to select relevant features, (2) to construct accurate attack scenarios,
(3) the ability to discover new attack steps, and (4) performance efficiency of
the approach.

Feature selection. For our experiments we employed 2000 DARPA/Lincoln
Lab offline evaluation data [25], in particular LLDOS 1.0 scenario which includes
a distributed Denial-of-Service (DDoS) attack. In this scenario, the attacker
first scans the network to determine which hosts are “up”, then uses the “ping”
option of the sadmind exploit program to determine which of the discovered hosts
are running the sadmind service. Eventually, the attacker launches the sadmind
Remote-to-Root exploit in order to compromise the vulnerable machines, and
uses telnet, rcp and rsh to install a DDoS program in the compromised machines.

The low level alerts for a given data set were generated using the signature-
based Snort IDS [25] by replaying “Inside-tcpdump” data. Among 15 different
alert types produced by Snort, 5 alert types are directly related to the LLODS1.0
scenario. The correlation probability and the selected features of these 5 alert
types are shown in Table 3.

As the results show, alert types generally exhibit specific attack patterns. For
example, Sadmind P ing alerts usually share the same source IP address and
destination subnet, which means the attacker probes several target machines
in a subnet from one source to detect hosts running Sadmind service. On the
other hand, Mstream Zombie alerts usually share the same destination port,
which means the attacker issues same attacks (attacks against the same port)
on various targets from different sources.

168 H. Ren, N. Stakhanova, and A.A. Ghorbani

Table 3. Correlation Table

Alert Type Pair Correlation
probability

Relevant Features/constrains

<Sadmind Ping, Sadmind Ping> 0.96 SrcIP, DesSubnet
<Sadmind Ping, Sadmind Overflow> 1.0 SrcIP,DesIP,DesPort
<Sadmind Ping, Admind> 1.0 srcIP,desIP,SrcPort,DesPort
<Sadmind Ping, Rsh> 1.0 SrcIP,DesIP
<Sadmind Ping, Mstream Zombie> 1.0 DesIP of Sadmind Ping equals scrIP

of Mstream Zombie
<Sadmind Overflow, Sadmind Overflow> 0.86 SrcIP,DesSubnet,DesPort
<Sadmind Overflow, Sadmind Ping> 0.0
<Sadmind Overflow, Admind> 1.0 srcIP,desIP,SrcPort,DesPort
<Sadmind Overflow, Rsh> 0.86 SrcIP,DesIP
<Sadmind Overflow, Mstream Zombie> 1.0 DesIP of Sadmind Overflow equals

scrIP of Mstream Zombie
<Admind,Admind> 0.81 SrcIP,DesSubnet,DesPort
<Admind, Sadmind Ping> 0.13 SrcIP,DesIP
<Admind, Sadmind Overflow> 0.87 SrcIP,DesIP,DesPort
<Admind, Rsh> 0.75 SrcIP,DesIP
<Admind, Mstream Zombie> 1.0 DesIP of Admind equals scrIP of

Mstream Zombie
<Rsh, Rsh> 0.81 SrcSubnet,DesSubnet,DesPort
<Rsh, Sadmind Ping> 0.0
<Rsh, Sadmind Overflow> 0.0
<Rsh, Admind> 0.0
<Rsh, Mstream Zombie> 1.0 DesIP of Rsh equals scrIP of

Mstream Zombie
<Mstream Zombie, Mstream Zombie> 0.79 DesPort
<Mstream Zombie, Sadmind Ping> 0
<Mstream Zombie, Sadmind Overflow> 0
<Mstream Zombie, Admind> 0
<Mstream Zombie, Rsh> 0

The results in Table 3 also show the causal relationships between different
alert types. Take 〈Sadmind P ing, Sadmind Overflow〉 as an example, Sad-
mind Overflow alerts usually happen after Sadmind Ping, and they share the
same source IP, target IP and port, which means after using Sadmind Ping
to probe several targets running Sadmind service, the attacker issues Sad-
mind Overflow attacks on the same targets. While for 〈Rsh, Mstream Zombie〉,
the destination IP of Rsh alerts usually the same as the source IP address of
Mastream Zombie alerts, which means after the attacker compromises a target
machine by Rsh attacks, Mastream Zombie attacks will be launched against the
final victim from the target machine.

Accuracy. To evaluate the accuracy of our system, we use two criteria: True
positive correlated and False positive correlated rates.

True positive correlated (TPC) rate indicates the percentage of the correctly
correlated alert type pairs (True Correlated Pairs) among all the alert type
pairs that have causal relationships (Related Pairs).

TPC = number of True Correlated Pairs
number of Related Pairs

False positive correlated (FPC) rate indicates the percentage of the incorrectly
correlated alert type pairs (False Correlated Pairs) among all the correlated
alert type pairs (Correlated Pairs).

An Online Adaptive Approach to Alert Correlation 169

FPC = number of False Correlated Pairs
number of Correlated Pairs

Among all those 225 possible alert type pairs generated from the 15 types of
alerts reported by Snort, 63 alert type pairs are labeled as causally related based
on the attack scenario description given by DARPA dataset. If we set the corre-
lation threshold to 50%, there are 70 alert type pairs correlated by our system.
Among them, 9 pairs are falsely correlated, so the TPC rate of our approach on
DARPA dataset is 96.8%, and the FPC rate is 12.9%. All the 9 pairs are gener-
ated among four alert types: FTP User, FTP Pass, Email Almail Overflow and
Email Debug. The close analysis of these pairs reveals that incorrect correlation
of these alerts happens due to the high occurrence probability numbers (4% 10%
compared to the probability for other types of less than 1%). This mainly due
to the fact that most of these alerts share the same source or destination IP
addresses as the number of different IP addresses used in DARPA experiment is
very small.

Attack scenario construction. Figure 9 shows the complete attack scenario
extracted from Table 3 and a group of alerts involved in this attack. A node in
the attack scenario graph indicates an alert type (attack step), the edges in the
graph are associated with the corresponding correlation probabilities. The rest of
correlated alert type pairs, which are not shown in Table 3, also produce several
connected attack graphs. But, there is no connection between these graphs and
the DDoS attack scenario.

New attack steps discovery. In order to evaluate our method’s ability to
adapt to the temporal changes, we employed the live network traffic collected
by the netForensics Honeynet team [26]. The provided logs spawn over 7 days
of network traffic that triggered overall 15602 Snort alerts.

By scanning the traffic of the first day, Snort generated 1508 alerts belonging
to 27 different alert types. This produced 729 alert pairs. Based on the available
description and expert knowledge, out of these 729 pairs, 198 were labeled as
causally related.

Fig. 9. Attack scenario

170 H. Ren, N. Stakhanova, and A.A. Ghorbani

(a) (b)

Fig. 10. Performance of the offline and online components

Applying our Bayesian offline analysis to the alerts generated by Snort, the
CorrelationTable shows 226 correlated alert type pairs, among them 191 pairs
are correctly correlated and 36 pairs are incorrectly correlated. Thus, the TPC
rate is 96.5%, and the FPC rate is 15.9%. Most of these false positive correla-
tions are caused by the false alarms produced by Snort IDS. Specifically, Snort
reported a large number of alerts of types: ICMP Destination Unreachable, MS-
SQL Worm and WEB-MISC WebDAV. Due to the high frequency of these alerts
and the similarity of their IP addresses, the occurrence probability of these alert
types was high which resulted in their incorrect correlation.

By scanning the first hour traffic of the second day, Snort generated 221 new
alerts. Among them, 2 new alert types were found with 82 alerts all together.
This requires the recalculation of correlation probability of these two new alert
types with the existing ones. The TPC rate without such recalculation is 93.2%,
while after recalculation the TPC rate increases to 96.1%. Moreover, since the
occurrence probability of some types of alerts suddenly decreases, 4 alert type
pairs appear to be no longer correlated. Thus, the FPC rate decreases to 14%.

Performance. In this experiment, we focused on the evaluation of performance
of both offline and online components. The experiments were run on Intel(R)
Core(TM)2 with CPU of 2.4GHz. For the evaluation we employed the Honeynet
traffic. The offline component was trained based on the first 8000 alerts gen-
erated by Snort and the online correlation was performed on the other half of
alerts (7602 alerts) which constitutes around 80 hours. The results are presented
in Figure 10. The online component was run in two modes with the dynamic
adaptation to the current alert behavior and without. For this experiment, the
online correlation module was configured to perform incremental correlation on
one hour basis, i.e., the attack scenarios were continuously updated during one
hour period, after this period expired new graphs were started. As Figure 10
(b) shows, the correlation process with the dynamic adaptation on average takes
3015 ms to process alerts triggered during one hour (on average 96 alerts). This
is a reasonable processing time requirement that we consider suitable for an
offline as well as an online analysis.

An Online Adaptive Approach to Alert Correlation 171

7 Conclusion and Future Work

In this paper, we presented a novel approach for adaptive online alert corre-
lation. The approach incorporates two components: the offline module that is
responsible for retrieving relevant attack information from the previously ob-
served alerts based on Bayesian causality mechanism; and the online component
that is based on the extracted information correlates raw alerts and constructs
attack scenarios online. In addition to historic alert information, the proposed
approach is able to dynamically adjust to the current alert behavior and reflect
it in the correlation process. The advantages of the proposed correlation method
were examined using DARPA 2000 data sets and live Honeynet data. In the
future, we plan to deploy the proposed approach in the real world environment,
which might bring new insights into our approach advantages.

Acknowledgements

This work was funded by the Atlantic Canada Opportunity Agency (ACOA)
through the Atlantic Innovation Fund (AIF) and NSERC through grant RGPIN-
2277441 to Dr. Ali A. Ghorbani.

References

1. Valdes, A., Skinner, K.: Probabilistic alert correlation. In: Lee, W., Mé, L., Wespi,
A. (eds.) RAID 2001. LNCS, vol. 2212, pp. 54–68. Springer, Heidelberg (2001)

2. Ning, P., Cui, Y., Reeves, D.S.: Constructing attacks scenarios through correlation
of intrusion alerts. In: Proceedings of the 9th ACM conference on Computer and
communications security, pp. 245–254 (2002)

3. Cheung, S., Lindqvist, U., Fong, M.: Modeling multistep cyber attacks for sce-
nario recognition. In: DARPA Information Survivability Conference and Exposi-
tion, vol. 1, pp. 284–292 (2003)

4. Cuppens, F., Miege, A.: Alert correlation in a cooperative intrusion detection
framework. In: Proceedings of the 2002 IEEE Symposium on Security and Pri-
vacy, pp. 202–215 (2002)

5. Cuppens, F., Ortalo, R.: A language to model a database for detection of attacks.
In: Debar, H., Mé, L., Wu, S.F. (eds.) RAID 2000. LNCS, vol. 1907, pp. 197–216.
Springer, Heidelberg (2000)

6. Eckmann, S.T., Vigna, G., Kemmerer, R.A.: Statl: An attack language for state-
based intrusion detection. Journal of Computer Security 10, 71–103 (2002)

7. Totel, E., Vivinis, B., Mé, L.: A language driven IDS for event and alert correlation.
In: SEC, pp. 209–224 (2004)

8. Qin, X.: A probabilistic-based framework for INFOSEC alert correlation. In: Pro-
ceedings of the Symposium on Recent Advances in Intrusion Detection, vol. 2820,
pp. 73–93 (2003)

9. Zhu, B., Ghorbani, A.A.: Alert correlation for extracting attack strategies. Inter-
national Journal of Network Security, 244–258 (2006)

10. Sadoddin, R., Ghorbani, A.A.: An incremental frequent structure mining frame-
work for real-time alert correlation. Computers and Security 28, 153–173 (2009)

172 H. Ren, N. Stakhanova, and A.A. Ghorbani

11. Zhang, S., Li, J., Chen, X., Fan, L.: Building network attack graph for alert causal
correlation. Computers and Security 27, 188–196 (2008)

12. Maggia, F., Matteuccia, M., Zanero, S.: Reducing false positives in anomaly detec-
tors through fuzzy alert aggregation. Information Fusion 10, 300–311 (2009)

13. Julisch, K.: Clustering intrusion detection alarms to support root cause analysis.
ACM Transactions on Information and System Security 6, 443–471 (2002)

14. Pietraszek, T.: Using adaptive alert classification to reduce false positives in intru-
sion detection. In: Jonsson, E., Valdes, A., Almgren, M. (eds.) RAID 2004. LNCS,
vol. 3224, pp. 102–124. Springer, Heidelberg (2004)

15. Manganaris, S., Christensen, M., Zerkle, D., Hermiz, K.: A data mining analysis
of rtid alarms. Computer Networks: The International Journal of Computer and
Telecommunications Networking 34, 571–577 (2000)

16. Viinikka, J., Debar, H., Mé, L.: Processing intrusion detection alert aggregates with
time series modeling. Information Fusion 10, 312–324 (2009)

17. Morin, B., Mé, L., Debar, H., Ducasse, M.: M2d2: A formal data model for IDS alert
correlation. In: Wespi, A., Vigna, G., Deri, L. (eds.) RAID 2002. LNCS, vol. 2516,
pp. 115–137. Springer, Heidelberg (2002)

18. Morin, B., Mé, L., Debar, H., Ducasse, M.: A logic-based model to support alert
correlation in intrusion detection. Information Fusion 10, 285–299 (2009)

19. Porras, P.A., Fong, M.W., Valdes, A.: A mission-impact-based approach to infosec
alarm correlation. In: Proceedings of the 5th International Symposium on Recent
Advances in Intrusion Detection, pp. 95–114 (2002)

20. Dain, O.M., Cunningham, R.K.: Fusing a heterogeneous alert stream into sce-
narios. In: Proceeding of the 2001 ACM Workshop on Data Mining for Security
Applications, pp. 1–13 (2001)

21. Qin, X., Lee, W.: Discovering novel attack strategies from INFOSEC alerts. In:
Proceedings of the 9th European Symposium on Research in Computer Security,
Sophia Antipolis, pp. 439–456 (2004)

22. Haykin, S.: Neural networks: A comprehensive foundation, 2nd edn. (1998)
23. Cristianini, N., Taylor, J.S.: An introduction to support vector machines and other

kernel-based learning methods (2000)
24. Heckerman, D.: A tutorial on learning with bayesian networks. Technical Report

MSR-TR-95-06, Microsoft Research (1995)
25. Laboratory, M.L.: 2000 darpa intrusion detection scenario specific datasets (2000)
26. netForensics Honeynet team: Honeynet traffic logs,

http://old.honeynet.org/scans/scan34/

http://old.honeynet.org/scans/scan34/

C. Kreibich and M. Jahnke (Eds.): DIMVA 2010, LNCS 6201, pp. 173–182, 2010.
© Springer-Verlag Berlin Heidelberg 2010

KIDS – Keyed Intrusion Detection System

Sasa Mrdovic and Branislava Drazenovic

University of Sarajevo
Faculty of Electrical Engineering

Zmaja od Bosne bb
71000 Sarajevo

Bosnia and Herzegovina
{sasa.mrdovic,branislava.drazenovic}@etf.unsa.ba

Abstract. Since most current network attacks happen at the application layer,
analysis of packet payload is necessary for their detection. Unfortunately mali-
cious packets may be crafted to mimic normal payload, and so avoid detection
if the anomaly detection method is known. This paper proposes keyed packet
payload anomaly detection NIDS. Model of normal payload is key dependent.
Key is different for each implementation of the method and is kept secret.
Therefore model of normal payload is secret although detection method is pub-
lic. This prevents mimicry attacks. Payload is partitioned into words. Words are
defined by delimiters. Set of delimiters plays a role of a key. Proposed design is
implemented and tested. Testing with HTTP traffic confirmed the same detec-
tion capabilities for different keys.

Keywords: Network intrusion detection, anomaly detection, word model,
Kerckhoffs’ principle, keyed IDS.

1 Introduction

Methods of intrusion detection made a huge advance from the time of their onset in
1980s. But, during this period attacks evolved from Morris to Conflicker worm. For
each method of attack, the method of defense must be changed by modifying the
detection algorithm. Once the detection algorithm is known, a new attack is created,
and this race may continue forever. This paper is a try to hinder the creation of mimi-
cry attacks based on the information of the detection method.

Network intrusion detection system (NIDS), based on anomaly detection is subject
of this paper. Its role in the defense system is to detect network attacks that do not
have signature yet. An anomaly based NIDS is based on a model of the normal beha-
vior of the protected network segment. The deviation of the incoming traffic from
model of normal behavior is considered as an attack. Since NIDS analyze network
packets, the model is built from packet elements. Currently, most frequent attacks are
at the application level [1]. To detect application level attack, the network packet
payload analysis is obligatory.

Regardless of data used to model normal system behavior, anomaly based IDSs are
susceptible to mimicry attacks. Simply said, a model of normal behavior is a set of

174 S. Mrdovic and B. Drazenovic

allowed parameter values spans. An atypical behavior is detected when a value of one
or more parameters is outside of its normal span. When parameters and their normal
values are known, it is possible to create malicious attack packets having the same
model as normal payload. Mimicry attack packets look as normal ones, and that pre-
vents their identifications as unusual.

This paper offers a new approach to detection that could prevent mimicry attacks.
It combines and further develops two previous works by the same authors [2,3]. The
main idea is to use basic cryptography principle: the system security is not in secrecy
of its design but in secrecy of a key. The intrusion detection is based on the analyses
of the full packet payload and should be able to detect attacks on application level.
Model of normal traffic and detection of deviation from normal is based on division
of payload into “words”. Words are consecutive payload bytes separated by a set of
delimiters, selected byte values. Each implementation of method uses its own set of
delimiters, a key, which results in its own model of the normal network traffic. At-
tackers cannot generate mimicry attacks if they do not know the key. A network intru-
sion detection method employing this principle is developed and tested.

The paper is organized as follows. Related work is addressed in section 2. Section 3
explains a new implementation of the intrusion detection method and how a key can be
used. Results of testing are presented in section 4. Conclusion and discussion as well as
directions for future research work are in section 5.

2 Related Work

Papers published in recent years deal with various aspects of payload analysis. Papers
[4,5,6] advocate a partial payload analysis. Modern tools for packet manipulation
could create attack inserted in payload in diverse forms. The form could be fine-tuned
to become unrecognizable as an attack by above detection methods.

The consideration of a single application protocol makes detection easier. Number
of papers analyze HTTP requests only [7,8,9,10]. This approach showed good results.

Another research direction seeks exploit code in the packet payload [11,12,13,14].
All these papers make assumptions on how attack code might look and based on those
hypotheses analyze packet payload. With current rate of creation of new attacks and
mutations of existing ones it is questionable if such approach can keep pace. Paper
[15] states that it does not pay to try to model all versions of polymorphic sequences
of payload bytes. It suggests that signature based detection is limited and that detec-
tion of anomaly from normal is more promising.

The technique proposed in this paper is close to methods that use payload division
or byte grouping. PAYL, approach advocated in [16] and [17] uses single byte fre-
quencies to make the model. Reported results are excellent, but since a single byte
model is too simple, it is easy to create attack packets that fit the model of normal.

In Anagram detector [18] a model of normal traffic is constructed using fixed length
payload byte sequences, named n-grams. It uses simple formula that is fast to calculate
and gives excellent detection results. On the other hand, it is extremely sensitive to
attacks in training data. A single attack in these data will make all of its n-grams part of
normal model and make that and similar attacks absolutely undetectable.

 KIDS – Keyed Intrusion Detection System 175

Division of payload into byte sequences that do not have fixed length is another
approach. This approach needs delimiters, byte values that divide payload into parts.
Important result of [19] is generation of delimiter sets for a variety of protocols. Pro-
posed delimiters for HTTP are used in [20]. Authors compared results for words,
payload byte sequences separated by delimiters, model with n-grams models, and
showed that they are comparable in accuracy of detection, but have a much smaller
computational load.

First real mimicry attacks were described relatively recently [21,22]. Ideas on how
to avoid detection by anomaly based NIDS are even newer. Based on suggestions
published in [23], papers [24,25] show how to create attacks that current NIDS cannot
detect. Paper on Anagram [18] is the only one that partly addresses mimicry issue.

Detection based on multi-byte payload analysis that prevents mimicry attacks is an
approach that will be presented next.

3 Proposed Detection Method

Proposed detection method continues work of other researchers mentioned above. The
idea is to combine payload partitioning into words from [20] with an improvement of
simple anomaly score calculation in [18]. This should provide a simple, easily stora-
ble model, and a fast detection. A new part of the model data on transition from one
word to another. The most important extension of the model is use of key.

3.1 Model Building Principles

The model of the normal packet payload depends on the way of partitioning payload
into words. Term “word” has the same meaning as in written humane language: se-
quence of symbols between two delimiters. In human written language delimiters are
spaces and punctuation marks. In the payload symbols that separate words are some
predetermined bytes. The selection of delimiters is not unique or obvious as in written
human language, and might depend on the application level protocol used.

Since each set of delimiters produces a unique set of normal payload words, and
accordingly a unique model it may be used as a key. Each implementation should use
an individual set of delimiters. The important question is how a particular set of deli-
miters affects the detection capability of an IDS. This problem will be addressed in
the next section by investigating relationship between keys detection capabilities.

3.1.1 Learning and Detection
The model of normal behavior is built during the training phase. Normal, attack free,
payloads is partitioned into words. Words in normal traffic with their frequencies
constitute the first part of the model. A malicious payload will have word frequency
distribution significantly different from the normal payload.

The other part of the model is word transition frequency distribution. Probability of
appearance of a word in a language usually depends on the previous word. Assump-
tion is that payload words should behave in the same way. A malicious payload
should show a word order different than in a normal payload. During the training
phase appearances of any pair of words are counted and stored.

176 S. Mrdovic and B. Drazenovic

In the detection phase a new packet payload that was not used in learning, is ana-
lyzed and assigned two scores, named word score Sw and transition score St.

The word score is calculated using the following formula: ܵ௪ ൌ 1݇෍ 1݊ሺݓ௜ሻ௞
௜ୀଵ (1)

In this formula k is the number of words in a payload and n(wi) is the number of ap-
pearances of the word wi in the learned model. For the words that were not seen in the
normal traffic thus having n(wi) = 0, the corresponding term in the sum is set to two
instead of infinity. This value is twice the value for the word that was seen only once
during training, that has n(wi) = 1. In this way words that did not appear in training
payloads will have the highest contribution to anomaly score, but that contribution
will not be such to make contribution from rare words completely insignificant.

The formula used to calculate the transition score follows:

௧ܵ ൌ 1݉ ෍ 1݊ሺݐ௜ሻ௠
௜ୀଵ (2)

In this formula m is the number of transitions in a payload and n(ti) is the number of
appearances of the transition ti in learned model. Value of m is one less than k in (1).
Similarly to the formula for the word score, transitions not seen during training will
have n(ti) = 0. Again, term 1/n(ti) is set to two instead of infinity. The same reasoning
can be applied to formula (2) as for formula (1).

For a faster calculation of scores by avoiding division, of the inverse values of
n(wi) and of n(ti) are calculated and stored before the detection phase.

Scores based on formulas (1) and (2) are used to obtain total score S. To keep the
number of false positive detections low, both word score and transition score must be
high to have a high total score. For this reason the total score is found as their product.

S = Sw * St (3)

4 Testing

Although proposed detection method should work with any protocol, HTTP is se-
lected for testing, since it is probably the most widely used application protocol no-
wadays. Standard TCP HTTP port 80 is generally open on most firewalls. Increasing
number of Web applications increases number of vulnerabilities. According to SANS
institute statistics Web application vulnerabilities represent almost half of all vulnera-
bilities discovered in 2007 [26]. The open port and application vulnerabilities attract
attackers. Web based attacks make majority of all attacks [27]. HTTP protection
seems to be the most needed and any improvements would be welcome.

The major issue in IDS testing is evaluation dataset. A very active recent thread on
Security Focus IDS related mailing list showed how a good evaluation dataset is bad-
ly needed. The current problems in HTTP testing methods are pointed out in [28]. The
best known, and once most widely used data sets for IDS testing, were created by
DARPA/MIT Lincoln Laboratories in 1998 [29] and 1999 [30]. There are two main
reasons why DARPA data sets are not adequate for current HTTP IDS. Both traffic

 KIDS – Keyed Intrusion Detection System 177

and attacks in those data sets are obsolete. There are only four web attacks in the data
sets. Recent HTTP anomaly detection papers mostly use their own data sets
[7,8,9,10,17,18]. Those that do use DARPA data sets, also use their own [16,20].

In this paper EE department of the Sarajevo University traffic was used for testing.
Real traffic with outside world was recorded for 12 days in November 2007. Traffic
was recorded on the inner side of department external router / firewall. Traffic was
first cleaned from attacks using fully tuned Snort, signature based NIDS, with latest
signatures combined with manual inspection. The cleaned traffic therefore may have
only few attacks. It is a question if it is possible at all to get real traffic that is guaran-
teed to be attack free [31]. For detection purposes recorded traffic was intentionally
combined with attacks generated using Metasploit framework. Attack details are pro-
vided later.

4.1 Initial Set of Delimiters

The testing had two parts. The aim of the first part was to assess the ability of pro-
posed score to detect anomalous payload using the delimiter set generating maximal
number of meaningful words in HTTP and HTML protocols. The influence of key
size and content on the learning process, the normal behavior model and detection
was the task in the second part.

Initial key of 20 delimiters taken from [20] were:

CR LF TAB SPACE , . : / \ & ? = () [] " ; < >

A set of delimiter symbols may result in any length of a words and any total num-
ber of words. In order to keep the number of words down, and thus get a smaller
model, allowed word length was limited to the range from 3 to 16. Words shorter than
3 bytes are ignored, since they hardly could be an important part of an attack. Also, a
word always ends after 16 consecutive bytes, and a new word begins.

4.1.1 Learning and Detection
The recorded traffic, cleaned from attacks, was used to build a model of normal payl-
oad. All incoming traffic packet payloads were scanned and partitioned into words,
Words, word pairs, and their respective frequencies were stored in a hash table. Num-
ber of learned words leveled after the 96 hours of learning. At this point it was con-
cluded that there would be no significant increase in number of words in by continuing
the training. Testing should confirm if the conclusion was correct. Total number of
learned normal words was about 33 000.

Proposed model consists of normal word frequencies and word transition frequen-
cies. A 33 000 x 33 000 matrix would be needed to store all the word pairs and their
frequencies. The distribution of word frequencies showed that a small number of
words appeared very frequently, while a huge number appeared only several times.
This word distribution was used to create a reduced size transition matrix, instead of
full size but sparse matrix. First, the set of words that appear more than ten times in
traffic was found. Then, a set of pairs of these words was selected to enter reduced
size matrix. The resulting matrix size was 80 times smaller than the full matrix. All
the other word pairs were considered as rare, and they were assigned a high partial
anomaly score. A question remained would a similar word distribution hold for a
different set of delimiters.

178 S. Mrdovic and B. Drazenovic

To test the ability to detect attacks, packet payload was scored using formula (3).
The test checked how detection method scores real attacks. For this purpose 17 HTTP
attacks were created using Metasploit. Attacks with related vulnerabilities, CVE ref-
erences and used attack payloads are given in Table 1. It should be pointed out that
the attacks that were used mostly exploit vulnerabilities in Web servers. Attacks that
target Web applications, like SQL injection, XSS or similar should be further tested.

Table 1. Attacks with related vulnerabilities and used payloads

No. Vulnerability CVE Payload
1 Apache Chunked-Encoding 2002-0392 adduser
2 Apache Chunked-Encoding 2002-0392 meterpreter-reverse_tcp
3 Apache Chunked-Encoding 2002-0392 shell-reverse_http
4 Apache mod_jk overflow 2007-0774 adduser
5 Apache mod_jk overflow 2007-0774 shell-reverse_tcp
6 Apache mod_rewrite 2006-3747 shell-bind_tcp
7 Apache mod_rewrite 2006-3747 shell-reverse_tcp
8 Apache mod_rewrite 2006-3747 vncinject-reverse_http
9 Apache mod_rewrite 2006-3747 vncinject-reverse_tcp
10 IIS 5.0 IDQ Path Overflow 2001-0500 shell-reverse_http
11 IIS 5.0 IDQ Path Overflow 2001-0500 shell-reverse_tcp
12 IIS ISAPI w3who.dll 2004-1134 exec
13 IIS ISAPI w3who.dll 2004-1134 shell-reverse_tcp
14 Oracle 9i XDB HTTP PASS 2003-0727 shell-reverse_tcp
15 Xitami If_Mod_Since 2007-5067 shell-reverse_tcp

16
HP OpenView Network Node Manager
CGI Buffer Overflow

2007-6204 shell-reverse_tcp

17 BSD Mercantec SoftCart CGI Overflow 2004-2221 shell-reverse_tcp

Six days of traffic that were not used during learning were combined with attacks
from Table 1. Results of the test are presented on ROC curve in Fig. 1. Threshold for
an anomalous score was varied in the range from 0.2 to 2.0. False positive rate scale
goes from 0 to 0.005 to provide enough detail in the part of the picture where ROC
changes. Results are equal or better then the results reported by other researchers.
Real comparison is difficult due to reasons explained in [28].

4.2 Arbitrary Sets of Delimiters

Since a set of delimiters is a key, each implementation should use an individual set of
delimiters. A set of delimiters not optimized for the highest percentage of meaningful
words, might negatively affect the detection capability. In addition, number of words
might increase substantially. Also, word distribution might change, preventing usage
of reduced matrix for transition storage. To test above issues various 120 keys were
created. Key sizes were 15, 20, 25, 30, and 30 different sets were made for each size.
Delimiters were chosen using function “rand” to generate a number between 0 and
255. For each of these keys, the initial set tests were repeated.

Fig. 1

4.2.1 Results
For every set of delimiters,
ing, as was the case with
learned words was betwee
crease was expected, but it
on model building or stora
This is important since th
size.

Curves in Fig 2 present
positive rate points among
results vary, there are some
ing a key for practical oper
Effort to break the method
prevent key guessing and pr

Since random delimiters
stantly built. While using o
words with a new set of d
should be tested. If it is go
This enables easy change o
now dynamic and can alway

KIDS – Keyed Intrusion Detection System

1. ROC curve for initial set of delimiters

, number of learned words leveled after 96 hours of lea
initial set of delimiters. For those sets, total number

en 40000 and 50000, for 20% to 50% increase. The
t is not huge. It did not have any important adverse eff
ge. Word distribution has not changed for any of the s

he distribution was basis for the reduction of the mo

t min, average and max true positive rate for fixed fa
all 30 delimiter sets for each of four set sizes. Althou

e keys that are as effective as the initial one. Before depl
ration, experiments could be performed to find a good o
d even for small set of good keys is still high enough
ractical attacks.
s can be used, new models of normal payload can be c
one model to detect attacks, normal traffic is tokenized
delimiters. After system has trained enough a new mo
ood, it can be used for detection right away or as need
f keys in regular intervals or on request. Also, the mode
ys represent current normal payloads.

179

arn-
r of
in-

fect
sets.
odel

alse
ugh
loy-
one.
h to

con-
d to
odel
ded.
el is

180 S. Mrdovic and B. Drazenovic

Fig. 2. Average, min and max ROC curves for random sets of 15,20, 25 and 30 delimiters

5 Conclusion

Keyed intrusion detection system is an implementation of the open design principle.
Detection method is public but each implementation uses different secret key. Model
of normal behavior is key dependent. Creation of attacks that fit the model is difficult,
if not impossible, without the knowledge of the key.

Detection method analyses network packet payloads. Payload analysis enables detec-
tion of application level attacks. Payloads are tokenized to words. Model of normal payl-
oad is built on frequency distribution of words and transitions between them. Word
boundaries are defined by set of delimiters, selected byte values. Set of delimiters plays a
role of the key. Different sets of delimiters result in different words and different model.

Method is not protocol dependent. It was tested with HTTP traffic, but should
work with all text based application level protocols. This should be tested and it is
planned for future work. Future work will further check set of delimiters selection. It
has a role of a key and there might be some weak keys.

Keyed IDS might be built with basic detection method different from the one pro-
posed in this paper. It is a novel idea and there might be some better implementations.

 KIDS – Keyed Intrusion Detection System 181

References

1. Rash, M., Orebaugh, A.D., Clark, G., Pinkard, B., Babbin, J.: Intrusion Prevention and Ac-
tive Response: Deploying Network and Host IPS, Syngress (2005)

2. Mrdovic, S., Perunicic, B.: Kerckhoffs’ Principle for Intrusion Detection. In: The 13th In-
ternational Telecommunications Network Strategy and Planning Symposium, Networks
2008, pp. 1–14 (2008)

3. Mrdovic, S., Perunicic, B.: NIDS Based on Payload Word Frequencies and Anomaly of
Transitions. In: Third International Conference on Digital Information Management, IC-
DIM 2008, pp. 334–339 (2008)

4. Sekar, R., Gupta, A., Frullo, J., Shanbhag, T., Tiwari, A., Yang, H., Zhou, S.: Specification-
based anomaly detection: a new approach for detecting network intrusions, pp. 265–274.
ACM, Washington (2002)

5. Mahoney, M.V.: Network traffic anomaly detection based on packet bytes, pp. 346–350.
ACM, Melbourne (2003)

6. Zanero, S., Savaresi, S.M.: Unsupervised learning techniques for an intrusion detection
system, pp. 412–419. ACM, Nicosia (2004)

7. Kruegel, C., Vigna, G.: Anomaly detection of web-based attacks, pp. 251–261. ACM,
Washington D.C (2003)

8. Kruegel, C., Vigna, G., Robertson, W.: A multi-model approach to the detection of web-
based attacks. Computer Networks 48, 717–738 (2005)

9. Robertson, W., Vigna, G., Kruegel, C., Kemmerer, R.A.: Using Generalization and Cha-
racterization Techniques in the Anomaly-based Detection of Web Attacks (2006)

10. Ingham, K., Somayaji, A., Burge, J., Forrest, S.: Learning DFA representations of HTTP
for protecting web applications. Computer Networks 51, 1239–1255 (2007)

11. Akritidis, P., Markatos, E.P., Polychronakis, M., Anagnostakis, K.: Stride: Polymorphic
sled detection through instruction sequence analysis (2005)

12. Kruegel, C., Kirda, E., Mutz, D., Robertson, W., Vigna, G.: Polymorphic Worm Detection
Using Structural Information of Executables (2005)

13. Wang, X., Pan, C., Liu, P., Zhu, S.: SigFree: a signature-free buffer overflow attack block-
er, p. 16. USENIX Association, Vancouver (2006)

14. Polychronakis, M., Anagnostakis, K.G., Markatos, E.P.: Emulation-based Detection of
Non-self-contained Polymorphic Shellcode

15. Song, Y., Locasto, M.E., Stavrou, A., Keromytis, A.D., Stolfo, S.J.: On the infeasibility of
modeling polymorphic shellcode, pp. 541–551. ACM, Alexandria (2007)

16. Wang, K., Stolfo, S.J.: Anomalous Payload-Based Network Intrusion Detection (2004)
17. Wang, K., Cretu, G., Stolfo, S.J.: Anomalous Payload-Based Worm Detection and Signa-

ture Generation (2005)
18. Wang, K., Parekh, J., Stolfo, S.: Anagram: A Content Anomaly Detector Resistant to Mi-

micry Attack, pp. 226–248 (2006)
19. Vargiya, R., Chan, P.: Boundary Detection in Tokenizing Network Application Payload

for Anomaly Detection (2003)
20. Rieck, K., Laskov, P.: Language models for detection of unknown attacks in network traf-

fic. Journal in Computer Virology 2, 243–256 (2007)
21. Wagner, D., Soto, P.: Mimicry attacks on host-based intrusion detection systems, pp. 255–264.

ACM, Washington (2002)
22. Tan, K., Killourhy, K., Maxion, R.: Undermining an Anomaly-Based Intrusion Detection

System Using Common Exploits. In: Wespi, A., Vigna, G., Deri, L. (eds.) RAID 2002.
LNCS, vol. 2516, pp. 54–73. Springer, Heidelberg (2002)

182 S. Mrdovic and B. Drazenovic

23. Kolesnikov, O., Lee, W.: Advanced Polymorphic Worms: Evading IDS by Blending in
with Normal Traffic, College of Computing, Georgia Tech. (2005)

24. Fogla, P., Sharif, M., Perdisci, R., Kolesnikov, O., Lee, W.: Polymorphic blending attacks,
p. 17. USENIX Association, Vancouver (2006)

25. Fogla, P., Lee, W.: Evading network anomaly detection systems: formal reasoning and
practical techniques, pp. 59–68. ACM, Alexandria (2006)

26. SANS Institute, SANS Top-20 2007, Security Risks, Annual Update (2007)
27. Internet Security Threat Report, Symantec Corporation (2008)
28. Ingham, K., Inoue, H.: Comparing Anomaly Detection Techniques for HTTP. In: Kruegel,

C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS, vol. 4637, pp. 42–62. Springer,
Heidelberg (2007)

29. Lippmann, R., Fried, D., Graf, I., Haines, J., Kendall, K., McClung, D., Weber, D., Web-
ster, S., Wyschogrod, D., Cunningham, R., Zissman, M.: Evaluating intrusion detection
systems: the 1998 DARPA off-line intrusion detection evaluation, vol. 2, pp. 12–26 (2000)

30. Richard, L., Haines, J.W., Fried, D.J., Korba, J., Das, K.: The 1999 DARPA off-line intru-
sion detection evaluation. Computer Networks 34, 579–595 (2000)

31. Gates, C., Taylor, C.: Challenging the anomaly detection paradigm: a provocative discus-
sion, pp. 21–29. ACM, Germany (2006)

Modeling and Containment of Search Worms

Targeting Web Applications

Jingyu Hua and Kouichi Sakurai

Department of Informatics, Kyushu University,
Fukuoka 812-0053, Japan

{huajingyu,sakurai}@itslab.csce.kyushu-u.ac.jp

Abstract. Many web applications leak sensitive pages (we name them
eigenpages) that can disclose their vulnerabilities. As a result, some
worms like Santy locate their targets by searching specific eigenpages
in search engines with well-crafted keywords. Such worms are so called
search worms. In this paper, we focus on the modeling and containment
of these search worms. We first study the influence of the eigenpage
distribution on their spreading by introducing two propagation models:
U-Model assuming eigenpages uniformly distributed on servers and PL-
Model assuming the distribution follows a power law. We show that the
uniform distribution maximizes the spreading speed of the search worm.
Then we study the influence of the page ranking and introduce another
propagation model: PR-Model. In this model, search results are ranked
based on their PageRank values and the relative importance of their resi-
dent servers. Finally, we propose a containment system for search worms
based on honey-page insertion: a small number of fake pages which will
induce visitors to pre-established honeypots are randomly inserted into
search results, and then infectious can be detected and reported to search
engines when their malicious scans hit honeypots. We study the relation-
ship between the containment effectiveness and the honey-page insert
rate with our propagation models and find that the Santy worm can be
almost completely stopped at its early age by inserting no more than 2
honey pages in every 100 search results, which is extremely effective.

1 Introduction

1.1 Background and Motivation

Due to many reasons, a lot of worms target web servers. There are many ways
for a worm to find vulnerable servers: they can simply scan the whole IP address
space randomly as the Code Red Worm did [1], or seek help from Botnets,
who might hold hitlists of vulnerable servers. However, we should not leave
out another important resource: search engines, which are regarded as largest
warehouses of web contents. Because of security negligence, web servers may
expose sensitive pages disclosing their vulnerabilities to the public. Thereby,
once these pages are crawled by search engines, worms can accurately locate
their targets by searching these pages in search engines with carefully-crafted

C. Kreibich and M. Jahnke (Eds.): DIMVA 2010, LNCS 6201, pp. 183–199, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

184 J. Hua and K. Sakurai

keywords. We name these pages eigenpages. They might be server pages with
default titles, error pages generated by software, etc.

Actually, several worms [2, 3] using search engines to spread have appeared
in the past few years. They are called search worms. Among them, Santy [2],
which is created in Perl exploiting vulnerability in phpBB bulletin system, is the
most famous one. Since URIs of pages of these vulnerable systems usually con-
tain the phrase ”viewtopic.php”, this worm searches its potential prey on search
engines (Google, Yahoo, etc.) with the key words like: allinurl: ”viewtopic.php”
”topic=12345”, where the random number 12345 is used to increase the diver-
sity of search results. According to statistics [4], this worm spread extremely
fast: it was released on Dec 20th, 2004 and as many as 40,000 sites had been
infected two days later when Google put defenses in place. Fortunately, although
Santy worm infects Web sites, it does not infect computers used to view those
sites. Otherwise, its destructive power would be unprecedented.

Since search worms bring a great security threat on the internet, it is of great
importance to carefully characterize these search worms and develop efficient
containment strategies for them. In this paper, we right focus on the modeling
and containment of Santy-like search worms targeting web applications.

1.2 Related Work

To our best knowledge, although the first version of Santy was found as early
as in 2004 [2], there is not so much research work on search worms by now,
especially on the modeling of their propagation.

Most previous modeling works are focused on those traditional worms adopt-
ing random scanning strategy within the whole IP address space. The basis of
these worms’ modeling is the classical epidemic model [5]. It made a homoge-
neous assumption that an infected host has the equal probability to infect any
vulnerable host. Denoted by I(t) the number of infected hosts at time t; V the
total number of vulnerable hosts. The epidemic model is:

dI(t)

dt
= βI(t)[V − I(t)] (1)

where β is called the pairwise rate of infection. Based on this model, Staniford
et al. [6] presented a ”Random Constant Spread” (RCS) model to characterize
the propagation of uniform scan worms:

dI(t)

dt
=

δ

N
I(t)[V − I(t)] (2)

where δ is the scan rate and N is the size of the scanning space. Later, RCS was
extended by many researchers to analyze real worms so as to guide the designing
of containment system for these worms [7, 8, 9, 10].

The concept of search worm was first introduced by Provos et al. [11]. In their
work, they described the basic propagating steps of search worms and analyzed
the measurements taken from MyDoom.O and Santy outbreaks. They argued
that signature-based protections were ill-suitable for search worm. Thus, they

Modeling and Containment of Search Worms Targeting Web Applications 185

proposed an algorithm that prevented worm propagation based on analyzing
the result set: During indexing, pages belonging to vulnerable servers or contain
potential infection targets were tagged. Then if search results including a large
fraction of tagged pages were detected, they inferred that the query was due to a
search worm and returned only results that have not been tagged. The limitation
of this containment mechanism is that it’s hard to tag all the vulnerable servers.
After all, servers currently thought secure may also contain unknown exploitable
security holes.

Johnny [12] named malicious queries for vulnerable servers Google Dorks. He
is maintaining a Google Hacking Database (GHD) to collect emerging Google
Dorks. By now, 1423 entries have been recoded. Search engines can make use of
this database to perform query filtering, as a result, search worms using known
Google Dorks can be blocked. However, for search worms using zero-day Google
Dorks, this signature-based mechanism is helpless.

Based on the GHD, Riden et al. [13] constructed a Google Hacker Honeypot
to provide reconnaissance against attackers that use search engines as a hacking
tool against web resources. They emulated a vulnerable web application which
contains honey pages that can be searched by Google Dorks in the GHD. Then,
hackers might be induced to this honeypot by search engine and their malicious
activities could be recorded for a further study. We think, if cooperating with
search engine, such honeypot can be extended to perform search worm contain-
ment. Our containment system proposed in this paper is right such an extension.

1.3 Challenge Issues

For the modeling, since search worms spread in different ways with traditional
worms, there are some unique properties that may affect their propagation. For
example, since scans of these worms are counted on eigenpages returned by
search engine, their propagation may have a solid relation with the distribution
of eigenpages: servers containing more eigenpages are more likely to be scanned.
In addition, due to the ranking inherent in the returned results, a search worm
may encounter many result collisions across subsequent queries and popular sites
attract more infection attempts, which also affect its propagation performance.
Therefore, we have to construct propagation models for search worms by taking
these factors into consideration.

For the containment, since search engine is the SPOF (single point of failure)
of search worms, the easiest way is to detect and stop malicious queries made
by search worms directly on the search engine. However, instead of limits we de-
scribed in the last section, query filtering technologies such as those based on re-
sult set analyzing or GHD may also bring great side effects to the normal using of
search engine. In our opinion, a query is good or evil is not determined by the query
itself but by what the launcher does to search results. Actually, evil queries can
be also used for good. For example, we can make use of Google Dorks to discover
security holes on our own web site. As search engines simply deny these queries,
they also give up many useful capabilities. Therefore, we need a more advanced
mechanism to detect and contain search worms accurately and effectively.

186 J. Hua and K. Sakurai

1.4 Our Contributions

In this paper, we study the above two challenge issues and make the following
contributions in brief:

– We present a virtual search worm abstracted from Santy and detail its prop-
agation steps.

– We study the effects of eigenpage distribution on the propagation of the
search worm. For this purpose, we introduce two propagation models: U-
Model assuming eigenpages uniformly distributed on servers and PL-Model
assuming eigenpage distribution follows a power law. We show that the uni-
form distribution maximizes the spreading speed of the search worm.

– We study the effects of page ranking on the propagation of the search worm.
For this purpose, we introduce another model: PR-Model, where search re-
sults are ranked based on their PageRank values and the relative impor-
tance of their resident servers. Simulation shows the PR-Model spreads much
slower than the U-Model and PL-Model.

– Eventually, we introduce a containment system for the search worm. In this
system, search engine randomly insert honey pages among search results.
These pages are fake ones and pointing to preestablished honeypots. No
user can visit them except those induced by search engines. Then, infectious
can be detected when their malicious scans hitting honeypots. Detected in-
fectious will be reported to search engine and further queries from them
are denied. Since infectious are blocked based on detecting malicious scans
against search results, limits of using query filtering can be well overcome.
We analyze the effectiveness of this containment system under the help of
our propagation models and solve two core problems:
(1) What value should the honey-page insert rate take in order to contain
the prevalence rate of a search worm to a specific requirement?
(2) Does such value always exist for arbitrary containment requirements?
Simulations show that the Santy worm can be almost completely stopped
at its early age by inserting no more than 2 honey pages in every 100
search results. This brings negligible side-effects to the normal using of search
engines.

1.5 Page Organization

The remainder of the paper is structured as follows. Section 2 describes a typical
search worm designed by us. Section 3 presents two propagation models: U-Model
and PL-Model for this search worm. They make different assumptions with the
distribution of the eigenpages. Section 4 explores the impacts of page ranking to
the propagation of the search worm. Section 5 presents a containment system for
the search worm based on our models. Section 6 summarizes our contributions,
provides some discussions and directions for future work.

Modeling and Containment of Search Worms Targeting Web Applications 187

2 A Virtual Search Worm

In this section,wepresenta virtual searchwormthatwewill analyze in the following
sections. It is abstracted fromthe SantyWorm but stronger.Although it is not real,
we can still disclose many basic characteristics of search worms by analyzing it.

Suppose this worm targets an unknown flaw of a server application, which ex-
poses some eigenpages to the search engine. These eigenpages contain some spe-
cial keywords in specific locations. Thus, vulnerable servers can be pinpointed by
searching these keywords in the search engine. Let N and V denote the total num-
ber of suspicious servers containing eigenpages and the total number of vulnera-
ble servers really suffer the flaw, respectively. Obviously, N ≥ V . We assume one
server can be only infected once. Then, once a vulnerable server is infected by the
worm, it will repeat the following infection cycle to propagate itself:

(1) Search keywords ”special-keywords and random-keywords” in a search en-
gine. special keywords are used to make sure all the search results are eigenpages
that belong to the N suspicious servers. random-keywords are used to increase
the diversity of search results. Here, we make an attacker-favorable assumption
that because of using the random-keywords, the search engine randomly selects
m eigenpages as search results for a specific query. We say this assumption is
hacker-favorable because it will maximum the diversity of search results, which
is expected by the hacker.

(2) Select δ pages from the search results to scan their host servers. The select
mechanism will be covered later.

(3) Once a vulnerable server is found, exploit its flaw and add it to a botnet.
Then, it automatically downloads the worm code and begins this infection cycle
on itself, too.

For convenience, we provide a list of the variables used in this paper in Table 1.
Now let’s consider the propagation modeling of the above search worm.

Table 1. Notations

Symbol Explanation

N The count of servers containing eigenpages
V The count of vulnerable servers
δ The number of scans made by each infected

server in each round
I The count of infected servers
P The total count of eigenpages
ε Density of vulnerable servers, ε = V

N
.

3 Modeling the Propagation of the Search Worm

3.1 Effects of Eigenpage Distribution

Since the scans launched by the search worm are totally counted on the eigenpages
returned by the search engine, we intuitively feel that those servers containing

188 J. Hua and K. Sakurai

more eigenpages are more likely to be scanned. In other words, the propagation of
the search worm may have a solid relationship with the distribution of the eigen-
pages. In this section, we look into this issue by proposing two propagation models
with different assumptions on the distribution of eigenpages.

Before that, we make another attacker-favorable assumption that in the sec-
ond step of the infection cycle, an infected server randomly selects δ (δ ≤ m)
pages among the m search results to scan. As we known, as search engines rank
their results, pages on popular servers are more likely to appear in front com-
pared with others. Then, if a search worm selects δ top-ranking search results to
exploit as the Santy does, they may encounter many scan collisions. As a result,
the propagation slows down. But with the random select assumption, these ef-
fects caused by page ranking no longer exist. Therefore, we say this assumption
is attacker-favorable. Actually, with the two attacker-favorable assumptions, the
scan strategy can be simplified as randomly selecting δ pages among the whole
space of eigenpages.

The first model we introduce is named U-Model, which assumes that eigen-
pages are uniformly distributed on suspectable servers, that is p1 = p2 = · · · =
pN = p, where pi is the count of eigenpages on the i-th suspicious server. This
condition is not rare. For instance, if default pages generated by a vulnerable
server application during its installing phase are used as eigenpages, they are
really uniformly distributed.

Suppose that infected servers take one time tick to complete the whole in-
fection cycle and no newly infected servers can begin to propagate themselves
before the end of this cycle. This assumption might not be realistic, but it can
simplify the model without significantly affecting the results. Denote by I(t) the
total number of infected servers by the end of the time tick t. Thus, δI(t − 1)
is the total number of scans made by the infected servers during the t-th time
tick. Then, under the two attacker-favorable assumptions, the probability that
a specific suspicious server is hit by at least one scan during this period is
1 − (1 − p

Np)δI(t−1) = 1 − (1 − 1
N)δI(t−1). Since the number of remained vul-

nerable servers by the time tick t−1 is V − I(t−1), the total number of infected
servers after the i-th time tick is

I(t) = I(t − 1) + [V − I(t − 1)][1 − (1 − 1

N
)δI(t−1)] (3)

When 1
N � 1,

I(t) = I(t − 1) + [V − I(t − 1)]
δI(t − 1)

N
(4)

which is the same as the RCS model defined by (2). Thus, we find that when
eigenpages are uniformly distributed on servers, under the two attacker-favorable
assumptions, the propagation of the search worm is equivalent to the worm
adopting uniform scanning strategy. But, now, the scanning space has been
reduced from the whole IP address space to servers exposing eigenpages. So the
propagation speed can be greatly improved.

Although uniform distribution assumption is reasonable under some circum-
stances, it’s impossible in most time. Just consider the Santy worm, page

Modeling and Containment of Search Worms Targeting Web Applications 189

population varies among different phpBB bulletin systems. Huberman et al.
[14] pointed out that the distribution of web pages among sites follows a power
law. They analyzed pages of sites crawled by Alexa and Infoseek, which covered
259,794 and 525,882 sites, respectively. Both data sets displayed a power law
and appeared as a straight line on a log-log plot. Thereby, let’s consider the
propagation model of the search worm when the eigenpage distribution follows
the power law.

According to the definition of the power law, the probability that the number
of eigenpages p on a suspicious server is greater than x is

prob(p > x) = (
pmin

x
)σ (5)

where pmin is the minimum value of p and σ ≥ 1 is the exponent parameter. In
order to simplify the problem, we divide servers into k groups and assume servers
belonging to the same group have the same number of eigenpages. Denote by pi

the count of eigenpages on each server belonging to the i-th group. We assume
pi = p1 × 10i−1 and the number of servers in the i-th group is

ai = N · [prob(p > pi) − prob(p > pi+1)] = N · [(pmin

pi
)σ − (

pmin

pi+1
)σ] (6)

If we keep the two attacker-favorable assumptions, the number of infected servers
in the i-th group after the t-th time tick is

I(t, i) = I(t − 1, i) + [Vi − I(t − 1, i)][1 − (1 − pi

P
)δI(t−1)]

where P =
∑k

i=1 aipi denotes the total number of eigenpages and Vi denotes
the vulnerable servers in the i-th group. We assume the density of vulnerable
servers is the same for each group. Thereby, we derive a new spreading model
named PL-Model for the search worm:

{
I(t, i) = I(t − 1, i) + [Vi − I(t − 1, i)][1 − (1 − pi

P
)δI(t−1)]

I(t) =
∑k

i=1 I(t, i)
(7)

Using (7), we do some simulations to study the characteristics of the PL-Model.
We are mainly focused on the effects of the power law exponent. Fig.1(a) shows
the propagation of the PL-Model with different power law exponents. Fig.1(b)
shows the time ticks the PL-Model used to infect 95% of vulnerable servers with
different power law exponents. We can find that as the power law exponent σ
increases, it takes the worm less time to spread. In addition, compared with the
U-Model, the PL-Model spreads slower. Actually, we have the following theorem:

Proposition 1. Among different distributions of eigenpages, the uniform dis-
tribution optimizes the performance of search worms.

Proof. Assume s1, s2, · · · , sn are n uninfected vulnerable servers by the t-th time
tick. Denote by p1, p2, · · · , pn the numbers of eigenpages on them. Then, the next

190 J. Hua and K. Sakurai

time tick will have � =
∑n

i=1[1−(1− pi

P)δI(t)] newly infected servers. Let ri = pi

P ,
we have: {

� = n − ∑n
i=1(1 − ri)δI(t);

∑n
i=1 ri = 1, ∀i, 1 > ri > 0;

According to the mean value inequality, under the condition (1 − ri) > 0,
∑n

i=1(1 − ri)δI(t) ≥ n · (
∑ n

i=1(1−ri)
n)δI(t) with equality holding if and only if

1 − r1 = 1 − r2 = · · · = 1 − rn. Since
∑n

i=1 ri = 1, we get

� <= n − n · (n − 1

n
)δI(t) (8)

The maximum value is obtained if and only if r1 = r2 = · · · = rn, which means
the eigenpages are uniformly distributed on the servers. Thereby, we obtain the
conclusion.

Now, based on this theorem, above simulation results are easy to understand:
As σ increases, the power law distribution becomes closer to the uniform distri-
bution, where the propagation reaches the highest speed.

(a) Propagation of the search worm with
different power law exponents

(b) Time ticks used to infect 95% of vul-
nerable servers with different power law
exponents

Fig. 1. Effects of the power law exponent (All cases are for N = 107, V = 105, δ = 100
and pmin = 10)

3.2 Effects of Page Ranking

With the second attacker-favorable assumption, the effects of page ranking can
be eliminated. However, in most time, this assumption is impossible. Usually,
for security, users are only allowed to access a limited number of top-ranking
results for their queries in search engines (e.g., in Google, only the first 1000
search results are accessible for a specific query). Thus, search worm like Santy
has no choice but to scan the δ top-ranking pages of each query. As a result,

Modeling and Containment of Search Worms Targeting Web Applications 191

they will encounter many result collisions across subsequent queries which affect
their propagation performance greatly. In this section, we consider this issue.

In brief, the ranking of a page is determined by two factors: the keyword
relevance and the page importance. In this paper, we just consider the later. By
now, PageRank, which was developed by Google, is the most famous algorithm
used to measure the importance of pages. The PageRank value of a particular
page is roughly based upon the quantity of inbound links as well as the PageRank
values of the pages providing the links. Pandurangan et al. [15] and Litvak et
al. [16] claimed that the distribution of PageRank values follows the power law
and the exponent is about 1.1 for cumulative plots. Google simplified PageRank
value into 0−10 on a logarithmic scale. The base is a secret and estimated to be
between 5 and 10. We use 6. We also assume the PageRank value is an integer
and actual values from 6d to 6d+1 are all simplified to d. Then, the probability
that the PageRank value of a specific page equals to d (0 ≤ d ≤ 10) is

prob(PR = d) =

{
(1
6d)α − (1

6d+1)α 0 ≤ d < 10

(1
610)α d = 10

(9)

When PageRank values of two pages are the same, we assume their rankings
are determined by the relative importance of their resident sites. Since search
engines prefer larger sites, we simply assume a server containing more pages are
more important.

Algorithm 1. Calculate δi: expected number of scans falling in the i-th group
among the total δ scans launched by an infected server during an infection cycle
1: total ← 0, pr ← 10, i ← k
2: while pr ≥ 0 do
3: while i ≥ 1 do
4: temp = m× aipi

P
×Prob(PR = pr) /* Expected number of search results with

a PageRank of pr and belonging to the i-th group */
5: if total + temp > δ then
6: δi += δ − total
7: return
8: else
9: δi += temp

10: total += temp
11: i −−
12: end if
13: end while
14: pr −−
15: i ← k
16: end while

Now, let’s derive a new propagation model: PR-Model, for the search worm.
In this model, for a specific query, the search engine still randomly selects m
pages as the result set, but these pages are ranked and only the top δ ones

192 J. Hua and K. Sakurai

are scanned. This model makes the same assumption with the PL-Model that
eigenpages’s distribution follows a power law. At the same time, we also divide
servers into groups and assume servers belonging to the i-th group have the
same number of eigenpages: pi = p1 × 10i−1. To simplify the problem, a server
containing more eigenpages are considered larger. Thereby, servers belonging to
the j-th group are more important than servers belonging to i-th group when
j > i. Let δi denote the expected number of scans hit servers of the i-th group
among the total δ scans launched by an infected serverin an infection cycle.
δi can be computed by Algorithm.1. Then, we can derive the PR-Model as
follows,

{
I(t, i) = I(t − 1, i) + [Vi − I(t − 1, i)][1 − (1 − 1

ai
)δiI(t−1)]

I(t) =
∑k

i=1 I(t, i)
(10)

We simulate this model with m = 10000 and δ = 100, and compare it with the
PL-Model described in the last section. The results are present in Figure 2. We
can find that the propagation is slowed greatly.

Fig. 2. Comparison between the PR-Model and the PL-Model (All cases are for N =
107, V = 105, σ = 1.2, δ = 100, pmin = 10, starting on a single machine)

4 Containment of the Search Worm

One of the goals of modeling the spread of worms is to be able to detect
and contain them. In this section, we present a concept containment system
based on honey-page insertion and use our propagation models to investigate its
effectiveness.

4.1 Basic Idea

Some security systems detect traditional worms by monitoring unused IP ad-
dresses. This is because normal hosts rarely visit unused IP addresses, but once

Modeling and Containment of Search Worms Targeting Web Applications 193

they are infected by worms employing uniform scanning strategy, they may scan
those unused IP addresses. We extend this idea to detect the search worm.
We make search engines randomly insert honey pages pointing to honeypots
into search results. These pages are fake ones, i.e., no user could request them
except those induced by search engines. Then, if an infected server selects a
honey page into its target vector in an infection cycle, it will exploit a hon-
eypot and be identified. Of course, normal users may also click links of honey
pages by chance and visit honeypots. Therefore, honeypots must have the in-
telligence to distinguish between legal accesses and evil accesses. This is a hot
topic in the research area of honeypots but beyond the scope of this paper.
We simply assume our honeypots can always make correct judgement. When
infected servers are detected, honeypots can report them to search engines who
will deny their further queries to contain the worm propagation. Let’s investigate
the possibility of using this idea to build a containment system for the search
worm.

Suppose μ (0 ≤ μ < 1) is the insert rate of honey pages, which means if
the search engine returns m results for a specific query, the expected number
of honey pages among them is μm. In other words, for a specific result, the
probability that it is a honey page is μ. Then, if an infected server scans δ of
the N results, it hits a honey page with the probability: β = 1− (1−μ)δ. When
a scan from an infected server hits a honey page, we say it is observed. Let Dt

denote the number of observed infected servers by the then end of the time tick
t. Then, at the time tick t + 1, the expected number of newly observed infected
servers is β · [I(t) − D(t)]. Therefore,

D(t + 1) = D(t) + [I(t) − D(t)][1 − (1 − μ)δ] (11)

Based on (11) we can compare the evolution of observed infected servers with
the evolution of actual infected servers. Fig.3 shows an example in which we
simulate the U-Model using parameters of Santy under different honey page
insert rates. Since there were approximately 6 million web sites using phpBB
system and among them about 4,0000 were infected during the Santy breakout
[4], we simply assume N = 6 × 106 and V = 4 × 104. We can find that, in this
case, the curve where μ = 0.01 is very close to the real worm propagation using
the U-Model. This means an infected server can be induced to scan honeypots
in a very short time after it is infected even if the insert rate is very small. We
obtain similar results when we simulate the PL-Model and PR-Model. Hence,
it’s quite possible for us to construct a containment system to detect and stop
search worm by inserting a small number of honey pages in search results without
greatly affecting the normal using of search engine.

4.2 Methodology

First we set up some honeypots in the internet. URIs of honey pages inserted
into search results will induce visitors to these servers. They reply to connection
requests as a normal server so as to deceive the machine at the other end. Then,

194 J. Hua and K. Sakurai

Fig. 3. Comparison between observed infected servers and actual infected servers in U-
Model for different honey-page insert rates (All cases are for N = 6×106, V = 4×104,
δ = 100 and starting on a single machine)

if the access behavior of a visitor is considered malicious by a honeypot, its IP
address will be reported to the search engine. Once the search engine receives
such a report, the corresponding IP address is added into the blacklist and further
queries from it are denied in a certain period of time. Thus, the infected servers
can be divided into two categories: active ones and dead ones. Active ones are
those haven’t been put into the blacklist and still have the ability to propagate,
while dead ones are those have been put into the blacklist and lose the ability
to propagate. Since our detection method is relied on the real activities made
by infectious against search results (honey pages), it can be much more accurate
compared with those mechanisms based on query filtering.

For this simple containment system, one question needs to be answered: what
value the honey-page insert rate should take to contain the final prevalence rate
of a search worm to a specific level. Here, the final prevalence rate is the ration
of vulnerable servers that have ever been infected before the worm finally dies
out.

Since the U-Model spreads fastest, we mainly focus on it. With the above
containment strategy applied, the U-Model becomes:

{
A(t) = A(t − 1) + [V − A(t − 1) − D(t − 1)] δA(t−1)

N
− βA(t − 1)

D(t) = D(t − 1) + βA(t − 1)
(12)

where A(t), D(t) denote the number of active infected servers and the number
of dead infected servers by the t-th time tick, respectively. We call this model
contained U-Model. Similarly, contained PL-Model and contained PR-Model can
be also easily defined like this. We omit them here. Obviously, this is a discrete
time model. Let’s extend it to a continuous time model as follows:

Modeling and Containment of Search Worms Targeting Web Applications 195

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dA(t)
dt

= αV (t)A(t)− βA(t)
dD(t)

dt
= βA(t)

dV (t)
dt

= −αV (t)A(t)

V = A(t) + D(t) + V (t)

α = δ
N

β = 1 − (1 − μ)δ

(13)

where V (t) denotes the remained vulnerable servers at time t. This is equivalent
to the classic Kermack-McKendrick Model [5], in which the worm will die out
eventually, i.e., A(tfinal) = 0. Let’s consider the behavior of A(t) in terms of
V (t) by dividing the first equation with the third equation:

dA(t)
dV (t)

= −1 + ρV (t)−1;

where ρ = β/α. Hence, we obtain that:

A(t) = −V (t) + ρ lnV (t) + const

Let’s assume V (0) ≈ V , A(0) ≈ 0: the search worm starts with very few infected
servers, then easy to derive that const = V − ρ ln V . Thereby,

A(t) = −V (t) + ρ lnV (t) + V − ρ lnV. (14)

Based on (13), we can answer the question mentioned earlier: in order to contain
the final prevalence rate of a search worm to γ (0 ≤ γ ≤ 1), i.e., V (tfinal) =
(1 − γ)V when A(tfinal) = 0, ρ has to satisfy the following condition:

ρ =
−γV

ln (1 − γ)
(15)

Hence,
μ = 1 − [1 +

γεδ

ln (1 − γ)
]1/δ (16)

where ε = V
N is the density of vulnerable servers. It’s easy to find that μ increases

as γ decreases. Thereby, given a containment requirement, we can use (16) to
compute the bottom boundary for the honey-page insert rate. For example,
consider the Santy worm with few initial infected servers (V = 4 × 104, N =
6 × 106, δ = 100). If its final prevalence rate is required to be contained below
1%, the honey-page insert rate should be larger than 0.011. For the PL-Model
and PR-Model, since they spread slower than the U-Model, when the honey-page
insert rate is set to μ according to (16), their final prevalence rates will be lower
than γ.

We simulate the U-Model, PL-Model and PR-Model under the protection of
our containment system using the parameters of the Santy worm, respectively.
Fig.4 shows the final prevalence rates of these models for different values of μ
with 1 initial infectious. As we can see from this figure, as μ increases, the final

196 J. Hua and K. Sakurai

prevalence rate decreases. With the same μ, the final prevalence rates of the
PL-Model and the PR-Model are lower than the U-Model. In addition, when
μ = 0.011, the final prevalence rates of three models are all contained below 1%.
This means that the Santy worm can be almost completely prevented if search
engines randomly insert no more than 2 pages in every 100 search results. This
brings negligible side-effects to the normal using of search engines. Thereby, our
containment system is extremely effective.

Fig. 4. Containment effects with different honey-page insert rates (All cases are for
N = 6 × 106, V = 4 × 104, δ = 100, starting on a single machine. The power law
exponent in the PL-Model is 1.6. The power law exponent for the PageRank is 1.1.).

4.3 Discussion

In the above, we give the mathematic way to compute the honey-page insert rate
for a specific containment requirement. However, we have to answer another ques-
tion: does μ always exist for any given prevalence rate γ? Or else, is there a contain-
ment limit for our containment system? In this section, we answer this question.

According to (15), we can easily find that γ decreases as μ increases. Thereby,
when μ takes its maximum value 1, γ will reach its minimum value γmin. Obvi-
ously, If 0 < γmin < 1, μ does not exist for a prevalence rate γ < γmin, i.e., the
prevalence rate can be contained at best to γmin. But if γmin ≤ 0, for any given
γ (0 < γ ≤ 1), μ always exists. Let μ = 1, and substitute it into (15), we have:

−λγmin = ln(1 − γmin) (17)

where λ = εδ. γmin is just one solution of this equation. In order to simplify
things, we introduce a new variable x = 1 − γ, then we have to solve the new
equation:

λ(x − 1) = lnx

By considering the graphs of the two functions: f(x) = λ(x−1) and g(x) = lnx,
we can get a conclusion that if λ > 1, 0 < γmin < 1, else if 0 < λ ≤ 1, γmin ≤ 0.
Thereby, we obtain a theorem:

Modeling and Containment of Search Worms Targeting Web Applications 197

Proposition 2. For our containment system based on honey-page insertion, if
a search worm satisfies the condition that εδ ≤ 1, its final prevalence rate γ
(0 < γ ≤ 1) can be contained to any requirement by using a specific honey-page
insert rate computed by (16), otherwise, the final prevalence rate can be only
guaranteed contained to γmin, which is a solution of (17) in the interval (0, 1].

However, we have to notice that 1 is just a theoretical maximum value for μ.
It’s not practical. Because an insert rate equal to 1 means that results returned
by search engines are all honey pages, which is ridiculous. Therefore, with the
premise that our honey-page insertion should not greatly affect the function of
search engines, we reduce the maximum value of μ to 0.1. After all, one honey
page in every 10 search results is much more acceptable. With this honey-page
insert rate, we simulate the three contained models again to investigate the
containment limits of our containment system. Fig.5 presents the results. We
still use the real data of the Santy worm, but in Fig.5 (a) we vary the ε and in
Fig.5 (b) we vary the δ. We can find that, when ε < 0.011 and δ < 150, there
are no limits for our containment system to contain the Santy worm, otherwise,
the limits do exist. In addition, the curve for the PR-Model in Fig.5 (b) looks
very strange that the containment limit varies little when the δ increases from
200 to 500. According to our analysis, this is because in the PR-Model we divide
suspicious servers into groups and newly added scans between that interval are
all falling into groups whose infection rate has reached 100% since δ = 200. As a
result, they contribute nothing to increasing the final infection rate of the search
worm. Actually, this is another refection of the effects of page ranking: popular
(larger) servers attract more infection attempts.

(a) ε varies (δ = 100) (b) δ varies (ε = 4×104

6×106)

Fig. 5. Containment limits of our containment system (All cases are for N = 6 × 106,
δ = 100, starting on a single machine,the power law σ = 1.6.)

5 Conclusion and Future Work

In this paper, we have studied the modeling and containment of search worms.
We first present a virtual search worm abstracted from the Santy worm.

198 J. Hua and K. Sakurai

And then, we study two factors that greatly affect the propagation of this worm:
eigenpage distribution and page ranking. To study the influence of eigenpage
distribution, we propose two propagation models: U-Model assuming eigenpages
are uniformly distributed on suspicious servers and PL-Model assuming the dis-
tribution follows a power law. We find and prove that, the uniform distribution
maximizes the spreading speed of the search worm. To study the influence of
page ranking, we propose the PR-Model. In this model, we assume the rank-
ing of an eigenpage is determined by its PageRank value, which also follows a
power law and the relative importance of its resident host. Simulation shows the
PR-Model spreads much slower than the U-Model and PL-Model. Eventually,
We propose a containment system for the search worm by randomly inserting
honey pages among search results. Then infectious can be detected and blocked
by monitoring and analyzing access behaviors in the honeypots pointed to by
honey pages. We analyze this containment system under the help of our propa-
gation models and solve two core questions: (1) How to calculate the honey-page
insert rate for a given containment requirement? (2) Does this value always exist
for an arbitrary requirement? From our calculation and simulation, by inserting
no more than 2 honey pages in every 100 search results, the Santy worm can be
almost completely stopped at its early age. Thereby, our containment system is
really effective.

Although we make some contributions, there are still a variety of challenge
issues that require further investigations. Firstly, search worms bring significant
loads to search engines, as a result, their propagations will be constrained by
the throughput of search engines. But we haven’t considered this factor in our
propagation models by now. Secondly, search worm may validate the truth of
search results by checking the URL formats or analyzing their page contents.
Then we have to develop effective mechanisms to disguise honey pages as true
ones both in URL and contents. Since we just propose a concept containment
system in this paper, these technique details are not covered. We plan to study
these issues in the next step.

Acknowledgement

The first author of this research is supported by the governmental scholarship
from China Scholarship Council. This research is also partially supported by
JAPAN SCIENCE AND TECHNOLOGY AGENCY (JST), Strategic Japanese-
Indian Cooperative Programme on Multidisciplinary Research Field, which com-
bines Information and Communications Technology with Other Fields, entitled
”Analysis of Cryptographic Algorithms and Evaluation on Enhancing Network
Security Based on Mathematical Science.”

References

[1] Zou, C.C., Gong, W., Towsley, D.: Code Red Worm Propagation Modeling and
Analysis. In: 9th ACM Symposium on Computer and Communication Security
(CCS 2002), pp. 138–147. ACM Press, Washington (2002)

Modeling and Containment of Search Worms Targeting Web Applications 199

[2] Hyppone, M., et al.: F-Secure Virus Descriptions: Santy (2004),
http://www.f-secure.com/v-descs/santy_a.shtml

[3] Sophos.: Sophos Virus Analysis: W32/MyDoom-O (2004),
http://www.sophos.com/security/analyses/w32mydoomo.html

[4] Kotadia, M.: Google squashes Santy worm (2004),
http://news.cnet.com/Google-squashes-Santy-worm/

2100-7349 3-5500265.html

[5] Daley, D.J., Gani, J.: Epidemic Modeling: An Introduction. Cambridge University
Press, Cambridge (1999)

[6] Staniford, S., Paxson, V., Weaver, N.: How to Own the Internet in Your Spare
Time. In: The 11th USENIX Security Symposium, pp. 149–167. USENIX Associ-
ation, California (2002)

[7] Chen, Z., Gao, L., Kwiat, K.: Modeling the Spread of Active Worms. In: 2003
IEEE INFOCOMM, pp. 1890–1900. IEEE Press, San Francisco (2003)

[8] Zou, C.C., Gong, W., Towsley, D.: Worm propagation modeling and analysis
under dynamic quarantine defense. In: 2003 ACM workshop on Rapid malcode,
pp. 51–60. Acm Press, Washington (2003)

[9] Zou, C.C., Gong, W., Towsley, D., Lixin, G.: The monitoring and early detection
of internet worms. IEEE Transaction on Networking (TON) 13(5), 961–974 (2005)

[10] Sellke, S.H., Shroff, N.B., Bagchi, S.: Modeling and Automated Containment of
Worms. IEEE Transactions on Dependable and Secure Computing (TDSC) 5(2),
71–86 (2008)

[11] Provos, N., McClain, J., Wang, K.: Search Worms. In: WORM 2006, pp. 1–8.
ACM Press, Virginia (2006)

[12] Johhny.: Google Hacking Database (2009),
http://www.hackersforcharity.org/ghdb/

[13] Riden, J., McGeehan, R., Engert, B., Mueter, M.: Know your Enemy: Web Ap-
plication Threats (2008), http://www.honeynet.org/papers/webapp/

[14] Huberman, B.A., Adamic, L.A.: Growth dynamics of the world wide web. Na-
ture 401(6749), 131 (1999)

[15] Pandurangan, G., Raghavan, P., Upfal, E.: Using PageRank to characterize Web
structure. Internet Math. 3(1), 1–20 (2006)

[16] Litvak, N., Scheinhardt, W.R.W., Volkovich, Y.: In-degree and PageRank: Why
do they follow similar power laws? Internet Math. 4(2-3), 175–198 (2007)

http://www.f-secure.com/v-descs/santy_a.shtml
http://www.sophos.com/security/analyses/w32mydoomo.html
http://news.cnet.com/Google-squashes-Santy-worm/2100-7349_3-5500265.html
http://news.cnet.com/Google-squashes-Santy-worm/2100-7349_3-5500265.html
http://www.hackersforcharity.org/ghdb/
http://www.honeynet.org/papers/webapp/

HProxy: Client-Side Detection of SSL Stripping

Attacks

Nick Nikiforakis, Yves Younan, and Wouter Joosen

IBBT-DistriNet
Katholieke Universiteit Leuven
Celestijnenlaan 200A B3001

Leuven, Belgium
{nick.nikiforakis,yves.younan,wouter.joosen}@cs.kuleuven.be

Abstract. In today’s world wide web hundreds of thousands of com-
panies use SSL to protect their customers’ transactions from potential
eavesdroppers. Recently, a new attack against the common usage of SSL
surfaced, SSL stripping. The attack is based on the fact that users al-
most never request secure pages explicitly but rather rely on the servers,
to redirect them to the appropriate secure version of a particular web-
site. An attacker, after becoming man-in-the-middle can suppress such
messages and provide the user with “stripped” versions of the requested
website forcing him to communicate over an insecure channel. In this
paper, we analyze the ways that SSL stripping can be used by attack-
ers and present a countermeasure against such attacks. We leverage the
browser’s history to create a security profile for each visited website.
Each profile contains information about the exact use of SSL at each
website and all future connections to that site are validated against it.
We show that SSL stripping attacks can be prevented with acceptable
overhead and without support from web servers or trusted third parties.

Keywords: MITM Detection, SSL Stripping, Browser Security.

1 Introduction

In 1994 Netscape Communications released the first complete Secure Sockets
Library (SSL) which allowed applications to exchange messages securely over the
Internet [20]. This library uses cryptographic algorithms to encrypt and decrypt
messages in order to prevent the logging and tampering of these messages by
potential eavesdroppers. Today SSL is considered a requirement for companies
who handle sensitive user data, such as bank account credentials and credit card
numbers. According to a study by Netcraft[16], in January of 2009 the number of
valid SSL certificates on the Internet reached one million, recording an average
growth of 18,000 certificates per month. Due to its widespread usage, attackers
have developed several attacks, mainly focusing in the forging of invalid SSL
certificates and hoping that users will accept them.

Recently however a new attack has surfaced [13]. This technique is not based
on any specific programming error but rather on the whole architecture and usage

C. Kreibich and M. Jahnke (Eds.): DIMVA 2010, LNCS 6201, pp. 200–218, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

HProxy: Client-Side Detection of SSL Stripping Attacks 201

of secure webpages. It is based on the observation that most users never explicitly
request SSL protected websites, in the sense that they never type the https
prefix in their browsers. The transition from cleartext pages to encrypted ones
is done usually either through web server redirects, secure links, or secure target
links of HTML forms. If an attacker can launch a man-in-the-middle (MITM)
attack, he can suppress all such transitions by “stripping” these transitional
links from the cleartext HTTP protocol or HTML webpages before forwarding
these messages/webpages to the unsuspecting client. Due to stripping of all SSL
information, all data that would originally be encrypted are now sent as cleartext
by the user’s browser providing the attacker with sensitive data such as user
credentials to email accounts, bank accounts and credit card numbers used in
online transactions.

In this paper, we explore the idea of using the browser’s history as a detection
mechanism. We design a client-side proxy which creates a unique profile for each
secure website visited by the user. This profile contains information about the
specific use of SSL in that website. Using this profile and a set of detection
rules, our system can identify when the page has been maliciously altered by a
MITM and block the connection with the attacker while notifying the user of an
attacker’s presence on the network. Our approach does not require server-side
cooperation and it does not rely on third-party services.

The main contributions of this paper are:

– Analysis and extension of a new class of web attacks
– Development of a generic detection ruleset for potential attack vectors
– Implementation of a client-side proxy which protects end-users from such

attacks

The rest of this paper is structured as follows. In Section 2, we describe how SSL
stripping attacks work followed by the reasons which make these attacks widely
effective in Section 3. In Section 4 we present the architecture and workings
of HProxy. We discuss some difficulties and how we overcame them in Section
5. In Section 6 we present the evaluation of our approach followed by some
implementation details in Section 7. Section 8 discusses the related work and we
conclude in Section 9.

2 Anatomy of SSL Stripping Attacks

Once an attacker becomes MITM on a network, he can modify HTTP messages
and HTML elements in order to trick the user’s browser into establishing un-
encrypted connections. In the following two scenarios we present two successful
attacks based on redirect suppression and target form re-writing. The first at-
tack exploits HTTP protocol messages and the second attack rewrites parts of
a cleartext HTML webpage.

2.1 Redirect Suppression

1. The attacker launches a successful MITM attack against a wireless net-
work becoming the network’s gateway. From this point on, all requests and

202 N. Nikiforakis, Y. Younan, and W. Joosen

responses from any host on the wireless network are inspected and poten-
tially modified by him.

2. An unsuspecting user from this wireless network uses his browser and types
in the URL bar, mybank.com. The browser crafts the appropriate HTTP
message and forwards the message to the network’s gateway.

3. The attacker inspects the message and realizes that the user is about to
start a transaction with mybank.com. He forwards the message to MyBank’s
webserver.

4. mybank.com protects their entire website using SSL thus, the webserver re-
sponds with a 301 (Moved Message) to https://www.mybank.com.

5. The attacker intercepts the move message, and instead of forwarding it to the
user, he establishes a secure connection with MyBank and after decrypting
the resulting HTML, he forwards that to the user.

6. The user’s browser receives cleartext HTML, as a response to his request and
renders it. What the user now sees is an unencrypted version of MyBank’s
login page. The only thing that is missing is a subtle lock icon, which would
be otherwise located somewhere on the browser window.

7. From this point on, all user-data are transmitted as cleartext to the attacker,
where he tunnels them through his own encrypted connection. This results
in completely functional but unencrypted web sessions.

2.2 Target form Re-writing

This attack is quite similar to the redirect suppression attack except for a signif-
icant detail. Target form re-writing is an attack against websites which operate
mainly over HTTP and they only protect parts of their webpages, such as a
login form and any subsequent pages for logged-in users. The way this is con-
structed in HTML is that while the main page is transfered over HTTP, the
target URL of a specific form has an HTTPS prefix. When the user clicks the
“submit” button, the browser recognizes the secure protocol and attempts to
establish an SSL connection with the target web server. This is disastrous for
an attacker because, even though he controls all local network connections, he
has no realistic way of presenting a valid SSL certificate for the secure hand-
shake of the requested web server. The attacker thus, will have to present a
self-signed certificate resulting in multiple warnings which the user must ac-
cept before proceeding with the connection. In order to avoid this pitfall, the
attacker strips all secure form links and replaces them with cleartext versions.
So, a form with a target of https://www.example.com/login.php becomes
http://www.example.com/login.php (note the missing S from the protocol).
The browser has no way of knowing that the original link had a secure target and
thus sends the user’s credentials over an unencrypted channel. In the same way
as before, the attacker uses these credentials in his own valid SSL connection
and later forwards to the user the resulting HTML page.

HProxy: Client-Side Detection of SSL Stripping Attacks 203

3 Effectiveness of the Attack

In this section we would like to stress the severity of the SSL attacks described
in Section 2. We argue that the two main reasons which make SSL stripping
such an effective attack are: a) the wide applicability of it in modern networks
and b) the way that feedback works on browser software.

3.1 Applicability

When eavesdropping attacks were first introduced, they targeted hubbed net-
works since hubs transmit all packets to all connected hosts, leaving each host
to choose the packets that are addressed for itself and disregard the rest. The
attacker simply configured his network card to read all packets (promiscuous
mode) and had immediate access to all the information coming in and out of
the hubbed network. Once hubs started being replaced by switches, this attack
was no longer feasible since switches forwarded packets only to the hosts that
were intended to receive them (using their MAC addresses as a filter). Attack-
ers had to resort to helper techniques (such as ARP flooding, which filled-up
the switch’s memory forcing it to start transmitting everything to everyone to
keep the network functioning) in order for their eavesdropping attacks to be
effective [15].

Today however, due to the widespread use of wireless network connections,
attackers have access to hundreds of thousands of wireless networks ranging from
home and hotel networks to airport and business networks. Wireless networks are
by definition hubbed networks since the transport medium is “air”. Even secure
wireless networks (WEP/WPA2) are susceptible to MITM attacks as long as
the attacker can find the encryption key (trivial for WEP [25] not so trivial for
WPA2).

The ramifications become even greater when we consider that wireless net-
works are not restricted to laptops anymore due to the market penetration of
hand held devices which use them to connect to the Internet. More and more peo-
ple use these kind of devices to perform sensitive operations from public wireless
networks without suspecting that a potential attacker could be eavesdropping
their transactions.

3.2 Software Feedback

The second main reason that makes this attack effective is that it doesn’t produce
negative feedback. Computer users have been unconsciously trained for years
that the absence of warning messages and popups means that all operations were
successful and nothing unexpected happened. This holds true also for security
critical operations where users trust that a webpage is secure as long as the
browser remains “silent”.

In the scenario where an attacker tries to present to a web browser a self-
signed, expired or otherwise illegal certificate, the browser presents a number of
dialogues to the user which inform him of the problems and advise him not to

204 N. Nikiforakis, Y. Younan, and W. Joosen

proceed with his request. Modern browsers (such as Firefox) have the user click
many times on a number of different dialogues before allowing him to proceed.
Many users, understand that it is best to trust their browser’s warnings, espe-
cially if they are working from an unfamiliar network (such as a hotel network),
even if they end up not doing so [22].

In the SSL stripping attack however, the browser is never presented with any
illegal SSL certificates since the attacker strips the whole SSL connection before
it reaches the victim. With no warning dialogues, the user has little to no visual
cues that something has gone wrong. In the case of SSL-only websites (websites
that operate solely under the HTTPS protocol) the only visual cue that such an
attack generates is the absence of lock icon somewhere on the browser’s window
(something that the attacker can compensate for by changing the .favico icon
of the website to a padlock). In partly-protected websites, where the attacker
strips the SSL protocol from links and login forms, there are no visual cues and
the only way for a user to spot the attack is to manually inspect the source code
and identify the parts that have been changed.

4 Automatic Detection of SSL Stripping

In this section we describe our approach that automatically detects the existence
of a MITM attacker conducting an SSL stripping attack on a network. The main
strength of MITM attacks is the fact that the attacker has complete control of
all data coming in and going out of a network. Any client-side technique trying
to detect an attacker’s presence must never rely solely on data received by the
current network connection.

4.1 Core Functionality

Our approach is based on browser history. The observation that lead to this
work is that while a MITM attacker has at some point in time, complete control
of all traffic on a network, he did not always have this control. We assume that
users mainly use secure networks, such as WPA2-protected wireless networks or
properly configured switched networks and use insecure networks only circum-
stantially. Regular browsing of SSL-enabled websites from these secure locations
can provide us with enough data to create a profile of what is expected in a
particular webpage and what is not.

Our client-side detection tool, History Proxy (HProxy), is trained with the
requests and responses of websites that the user regularly visits and builds a
profile for each one. It is important to point out that HProxy creates a profile
based on the security characteristics of a website and not based on the web-
site’s content, enabling it to operate correctly on static as well as most dynamic
websites.

HProxy uses the profile of a website, the current browser request and response
along with a detection ruleset to identify when a page is maliciously modified by
a MITM conducting an SSL stripping attack. The detection ruleset is straight-
forward and will be explained in detail in Section 4.3.

HProxy: Client-Side Detection of SSL Stripping Attacks 205

4.2 Architecture of HProxy

The architecture of HProxy comprises of the detection ruleset and a number
of components which utilize and enforce it - Fig. 1. The main components are:
a webpage analyzer, which analyzes and identifies the requests initiated from
the browser along with the server responses, a MITM Identifier which checks
requests and responses against the detection ruleset to decide whether a page is
safe or not and lastly a taint module which tries to prevent the leakage of private
information even if the MITM-identifier incorrectly tags a page as safe.

Fig. 1. Architecture of HProxy

Webpage Analyzer. The webpage analyzer is the component responsible of
identifying all the critical parts of a webpage. The critical parts of a webpage are
the parts that a MITM attacker can insert or alter in order to steal credentials
from the end users and are the following:

– JavaScript blocks
– HTTP forms and their targets
– Iframe tags
– HTTP Moved messages

The Webpage Analyzer identifies all of the above data structures, along with
their attributes and records them in the page’s current profile. If a particular
page is visited for the first time then this current profile is registered in the
profile database, effectively becoming the page’s original profile, and the page
is forwarded to the user. If not, then the current profile will be checked against
the page’s original profile by the MITM Identifier. Why these structures are
dangerous will be described in detail in Section 4.3.

206 N. Nikiforakis, Y. Younan, and W. Joosen

MITM Identifier. The MITM Identifier component encapsulates almost all
the detecting capabilities of HProxy (except of the taint component which will
be discussed later). It uses the page’s current profile as created by the Webpage
Analyzer against the page’s original profile. In order to make a decision whether
a page is altered by an attacker or not, the MITM Identifier utilizes the detection
ruleset of HProxy. This ruleset consists of rules for every sensitive data structure
that was previously mentioned. Each rule contains the dangerous modifications
that can appear in each page, using the page’s original profile as a base. Any
modifications detected by the Webpage Analyzer that are identifiable by this
ruleset are considered a sign of an SSL stripping attack and thus the page is not
forwarded to the user.

PageTainter. Even though we have strived to create a ruleset which will be
able to detect all malicious modifications we deliberately decided to allow con-
tent changes when we cannot decisively classify them as an attack. In order
to compensate for these potentially false negatives, HProxy contains a module
called PageTainter. The purpose of PageTainter is to enable HProxy to stop in
time the leakage of private user data, even when the MITM Identifier module
wrongly tags a malicious page as “safe”. For HProxy to stop the leakage of pri-
vate data, it must first be able to identify what private data is. In order to do
this, PageTainter modifies each webpage that contains a secure login form (iden-
tifiable by the password-type HTML element) and adds a JavaScript routine
which sends the password from it to HProxy once the user types it in. This pass-
word is recorded in HProxy in a domain,password tuple1. In addition to that, it
taints all forms with an extra hidden field which contains location information
so that we can later identify which page initiated a GET or a POST request.
For each request that initiates from the browser, the PageTainter module, using
the hidden domain field checks for the presence of the stored password in the
outgoing data. If the page is legitimate, the domain’s password will never ap-
pear in the HTTP data because it is exchanged only over SSL. A detection of it
signifies the fact that an attacker’s successful modification passed through our
MITM Identifier and is now sending out the password. In this case, HProxy does
not allow the connection to be established and informs the user of the attack. To
make sure that an attacker will not obfuscate the password beyond recognition
by the PageTainter, our detection ruleset has very strict JavaScript rules which
will be explained in the next section.

4.3 Detection Ruleset

Using the description of SSL-stripping attacks as a base, we studied and recorded
all possible HTML and HTTP elements that could be misused by a MITM at-
tacker. This study resulted in a set of pragmatic rules which essentially describe
dangerous transitions from the original webpage (as recorded by HProxy) to all
future instances of it. A transition can be either an addition of one or more
1 HProxy runs on the same physical host as the browser(s) that it protects thus there

are no privacy issues with the stored passwords.

HProxy: Client-Side Detection of SSL Stripping Attacks 207

HTML/HTTP elements by the attacker to the original webpage or the modifi-
cation of existing ones.

The detection ruleset consists of dangerous modifications for every class of
sensitive data structures. Each page that comes from the network is checked
against each class of rules before it is handed back to the user. In the rest of this
section we present the rules for each class of sensitive structures.

HTTP Moved Messages. The HTTP protocol has a variety of protocol mes-
sages of which the “moved” messages can be misused in an SSL stripping attack
since their suppression can lead to unencrypted sessions (as shown in the exam-
ple attack in Section 2.1). The main rule for this class of messages states that,
if the original page profile contains a move message from an HTTP to an HTTPS
page, then any other behavior is potentially dangerous. Given an original request
of HTTP GET for domain a and an original response stored in the profile database
of MOVED to HTTPS domain a/page a, we list all the possible modifications and
whether they are allowed by our ruleset, in the following table.

Current Response Modification Allowed?
MOVED HTTPS domain a/page a None Yes
MOVED HTTPS domain a/page b Changed page Yes
MOVED HTTP domain a/page a Non-SSL protocol No
MOVED HTTP domain b/page a Changed domain No
MOVED HTTPS domain b/page a Changed domain No
OK <html>....</html> HTML instead of MOVED No

This ruleset derives from the observation that the developers of a website may
decide to create new webpages or rename existing ones, but they will not sud-
denly stop providing HTTPS nor export their secure service to another domain.
For websites that operate entirely using SSL, this is the only class of rules that
will be applied to them as they will operate securely over HTTPS once the MOVE
message has been correctly processed.

The rest of the ruleset is there to protect websites that are partly protected
by SSL. Such websites use SSL only for their login forms and possibly for the
subsequent pages that result after a successful login. The transition from unpro-
tected to protected pages (within the same website) is done usually through a
HTTPS form target or through a HTTPS link.

JavaScript. JavaScript is a powerful, flexible and descriptive language that
is legitimately used in almost all modern websites to make the user experience
better and to offload servers of common tasks that can be executed on the client-
side. All these features of JavaScript, including the fact that it is enabled by
default in all major browsers make it an ideal target for attackers. Attackers can
and have been using JavaScript for a multitude of attacks ranging from Cross-
site Scripting [11] to Heap Spraying attacks [19]. For the purpose of stealing
credentials, JavaScript can be used to read parts of the webpage (such as a
typed-in username and password) and send it out to the attacker.

208 N. Nikiforakis, Y. Younan, and W. Joosen

JavaScript can be categorized as either inline or external. Inline JavaScript, is
written inline an HTML webpage, e.g. <html><script>...</script> </html>.
External JavaScript, is written in separate files, present on a webserver that
are being included in an HTML page using a special tag, e.g. <html><script
src="http://domain1/js file.js"> </html>. Unfortunately for users, both
categories of JavaScript can be misused by a MITM. If an attacker adds inline
JavaScript in a webpage before forwarding it to the user, the browser has no
easy way of discerning which JavaScript parts were legitimately present in the
original page and which were later added by the attacker. Also, the attacker can
reply to a legitimate external JavaScript request with malicious code since he
already has full control over the network and can thus masquerade himself as
the webserver.

Because of the nature of JavaScript, HProxy has no realistic way of discerning
between original and “added” JavaScript except through the use of whitelisting.
The first time that a page which contains an HTTPS form is visited all JavaScript
code (internal and external) is identified and recorded in the page’s profile. If in
a future request of that specific webpage, new or modified JavaScript is identified
then the page is tagged as unsafe and it is not forwarded to the user. HProxy’s
initial whitelisting mechanism involved string comparisons of JavaScript blocks
between page loads of the same website. Unfortunately though, the practice of
simple whitelisting can lead to false positives. A way around these false positives
is through the use of a JavaScript preprocessor. This preprocessor can distinguish
between the JavaScript parts that have been legitimately changed by the web
server and the parts which have been added or modified by an attacker. We
expand HProxy to include such a preprocessor and we explore this notion in
detail later on, in Section 5.

Fig. 2. Example of an injected HTML form by a MITM attacker

Iframe Tags. can be as dangerous as JavaScript. An attacker can add extra
iframe tags in order to overlay fake login forms over the real ones [7] or reply
with malicious content to legitimate iframe requests. Our detection ruleset for

HProxy: Client-Side Detection of SSL Stripping Attacks 209

iframe tags states that no such tags are allowed in pages where an SSL login
form is present. The only time an iframe tag is allowed is when the original
profile of a website states that the login form itself is coded inside the iframe.

HTTP Forms. can be altered by a MITM attacker so as to prevent the user’s
browser from establishing an encrypted session with a web server, as was demon-
strated in Section 2.2. Additionally, extra forms can also be used by an attacker
as a way of stealing private information. The set of rules for this class of sensi-
tive data structures is similar to the HTTP Move class ruleset. The previously
mentioned Webpage analyzer, records every form, target and protocol for each
page that an SSL login form is identified. The ruleset contains the dangerous
form modifications that could leak private user credentials. The main rules are
applied on the following characteristics:

– Absence of forms - The profile for each website maintains information
about the number of forms in each page, whether they are login forms and
which forms have secure target URLs. Once a missing form is detected,
HProxy reads the profile to see the type of the missing form. If the missing
form was a secure login form then HProxy tags this as an attack and drops
the request. If the missing form was a plain HTTP form (such as a Search
form) then HProxy allows the page to proceed.

– New forms - New forms can be introduced in a webpage either by web
designers (who wish to add functionality to a specific page) or by an attacker
who tries to lure the user into typing his credentials in the wrong form - Fig 2.
If the new form is not a login form then it is an allowed deviation from the
page’s profile. If the new form is a login-form it is only allowed if the target
of the form is secure and in the same domain as the original SSL login form
of the page. Even so, there is a chance that a MITM can convince a user to
submit his credentials through a non-login form. In these cases, PageTainter
will identify the user’s password in outgoing data and drop the request before
it reaches the attacker.

– Modified forms - In this case, an attacker can modify a secure form into an
insecure form. Based on the same observation from HTTP moved messages,
HProxy does not allow a modified form to be forwarded to the browser if
it detects: (a) a security downgrade in a login form (the original had an
HTTPS target whereas the current one has an HTTP target); or (b) a
domain change in the target URL.

4.4 Redirect Suppression Revisited

In Section 2.1 we presented one of the most common SSL stripping attacks
against browsers, namely redirect suppression. The MITM suppressed the HTTP
Moved messages and provided the user with an unencrypted version of an origi-
nally encrypted website. In this section we repeat the attack but this time, the
user is running the HProxy tool. Steps 1-5 are the same with the earlier example
but are repeated here for the sake of completeness.

210 N. Nikiforakis, Y. Younan, and W. Joosen

1. The attacker launches a successful MITM attack against a wireless network
becoming the network’s gateway. From this point on, all requests and re-
sponses from any host on the wireless network are inspected and potentially
modified by him.

2. An unsuspecting user from this wireless network uses his browser and types
in the URL bar, mybank.com. The browser crafts the appropriate HTTP
message and forwards the message to the network’s gateway.

3. The attacker inspects the message and realizes that the user is about to
start a transaction with mybank.com. He forwards the message to MyBank’s
webserver.

4. mybank.com protects their entire website using SSL thus, the webserver re-
sponds with a 301 (Moved Message) to https://www.mybank.com.

5. The attacker intercepts the move message, and instead of forwarding it to the
user, he establishes a secure connection with MyBank and after decrypting
the resulting HTML, he forwards that to the user.

6. HProxy receives the response from the “server” and inspects it. HProxy’s
trained profile for MyBank states that mybank.com is an SSL protected web-
site and when the user requests the website using HTTP, the server redirects
him to the HTTPS version of it. This time however HProxy identifies the re-
sponse as cleartext HTML which is not acceptable according to its detection
ruleset.

7. HProxy drops the request and notifies the user about the presence of a MITM
on the local network along with specific details.

5 Discussion

By analyzing the JavaScript code generated by the top visited websites (as re-
ported by Alexa [24]) we discovered that the dynamic nature of today’s Internet
doesn’t stop in dynamically generated HTML. Many top websites provide dif-
ferent JavaScript code blocks each time they are visited, even when the visits
are seconds apart. This means that a simple whitelisting of JavaScript based on
string comparison would result in enough false positives to render HProxy unus-
able. In this section we discuss two techniques that can greatly reduce these false
positives: JavaScript preprocessing and Signed JavaScript. The final version of
HProxy includes a JavaScript Preprocessor while Signed JavaScript can be used
in the future to completely eliminate false positives. We also describe a differ-
ent way of identifying a MITM by inspecting client requests and the potential
problems of that approach.

5.1 JavaScript Preprocessing

Most of the JavaScript blocks, even the ones that constantly change, follow a spe-
cific structure that can be tracked along page loads. By comparing internal and
external JavaScript along two consecutive page loads of a specific webpage, we
can discover the static and the dynamic parts of that code. E.g., The JavaScript

HProxy: Client-Side Detection of SSL Stripping Attacks 211

Fig. 3. Portion of the JavaScript code present in two consecutive page loads of the
login page of Twitter. The underlined part is the part that changes with each page
load.

code in two consecutive loads of Twitter’s login page differs only in the contents
of a specific variable - Fig. 3.

We leverage this re-occurring structure to design a JavaScript preprocessor
that greatly reduces false positives. When a website is visited for the first time
through HProxy, the Webpage Analyzer (Section 4.2) makes a duplicate request
and compares the JavaScript blocks from the original response and the duplicate
one. If the blocks are different it then creates a template of the parts that didn’t
change and records the place and length of the dynamic parts. This informa-
tion is stored in the Web pages profile and all future visits of that website will
be validated against this template. This enables us, to discern between normal
dynamic behavior of a website and JavaScript that was maliciously added by a
MITM in order to steal the user’s credentials. Although a JavaScript preprocess-
ing that would work on an interpretation level would possibly be able to produce
zero false positives we believe that the overhead of such an approach would be
prohibitively high and thus we did not research that direction.

5.2 Signed JavaScript

Signed JavaScript (SJS) is JavaScript that has been signed by the web server
using a valid certificate such as the one used in HTTPS communications. SJS can
provide among other features (such as access to restricted JavaScript functions)
the guarantee that the script the browser parses has not been modified since
it was sent by the Web server [17]. This integrity assurance can be used by
HProxy to whitelist unconditionally all JavaScript code blocks that are signed.
The downside of this technique is that it requires both server and client-side
support2.

2 At the time of this writing, only Mozilla Firefox appears to support SJS.

212 N. Nikiforakis, Y. Younan, and W. Joosen

5.3 Inspecting Client Requests vs. Server Responses

It is evident that trying to secure JavaScript at the client-side can be a tedious
and error-prone process. A different approach of detecting a MITM which may at
first appear more appealing is to analyze the client-side requests for anomalous
behavior rather than the server-side responses to client-side requests. In such a
case, the resulting system would inspect the requests (both secure and insecure)
of the browser and compare them to the requests done in the past. A security
downgrade of a request, (e.g. the browser is currently trying to communicate to
website X using an unencrypted channel whereas it always used to communicate
over a secure channel), would be a sign of a MITM operating on the network
and the request would be dropped. In such a system, JavaScript whitelisting
would not be an issue since HProxy would only inspect the outgoing requests,
regardless of their origin (HTML or JavaScript).

While this approach looks promising it produces more problems than it solves
since it has no good way of discerning the nature of new outgoing requests.
Consider the scenario where an attacker adds a JavaScript routine which copies
the password from the correct form, encrypts it and sends it out using an AJAX
request to a new domain. The system would not be able to find a previous
outgoing request to match the current request by, and would have to either
drop the request (also dropping legitimate new requests - false positives) or let
it pass (false negatives). Also, in partly SSL-protected pages, where the client
communicates with the same website using both encrypted and unencrypted
channels, the MITM could force the browser to send private information over
the wrong channel which would again result in leaking credentials.

For these reasons, we decided that a combination of inspecting server re-
sponses, preprocessing JavaScript and tracking private data (through the Page-
Tainter - 4.2) would be more effective than inspecting client requests and thus
we did not implement such a system.

6 Evaluation

In this section we provide a security evaluation, the number of false positives
and the performance overhead of our approach.

6.1 Security Evaluation

HProxy can protect the end-user against the attacks described in [13] as well as
a number of new techniques that could be used to steal user credentials in the
context of SSL stripping attacks. It can protect the user from credential stealing
through redirect suppression, insecure forms, JavaScript methods and injected
iframe tags.

In order to test the actual effectiveness of our prototype we created a network
setup with two clients and a wireless Access Point(AP) with Internet connection.
One client was the legitimate user and the other one the MITM, both running
the latest version of Ubuntu Linux. From the MITM machine we enabled IP

HProxy: Client-Side Detection of SSL Stripping Attacks 213

forwarding and we used the arpspoof (part of the dsniff suite [6]) to position
ourselves between the victim machine and the AP. We then run sslstrip [21],
a tool which strips the SSL links from incoming traffic, creates SSL tunnels with
the legitimate websites and captures sensitive data typed by the user. We started
browsing the web from the victim machine and we observed that pages which
normally are protected through SSL (like GMail and Paypal) were now appearing
over HTTP, without any browser warnings whatsoever. Any data typed in fields
of those pages were successfully eavesdropped by the MITM host.

We reset the experiment, enabled HProxy and started browsing the web. We
browsed through a number of common websites so that HProxy could create a
profile for each one of them. We then repeated the procedure of becoming MITM
and run sslstrip. Through the victim client, we started visiting all the pre-
viously “stripped” websites. This time however, HProxy detected all malicious
changes done by sslstrip and warned the user of the presence of a MITM
attacker on the network.

6.2 False Positives

A false positive, is an alert that an Intrusion Detection System (IDS) issues
when it detects an attack, that in reality did not happen. When HProxy parses
a page, it can occasionally reach to the conclusion that the page was modified by
an attacker even if the page was legitimately modified by the web server. These
false conclusions can confuse the user as well as undermine his trust of the tool.
Most of HProxy’s false positives can be generated by its JavaScript rules, as
explained in section 4.3.

In order to make these occasions as rare as possible we decided to monitor
JavaScript blocks only in pages that contain (or originally contained) secure
login forms. This decision does not undermine the overall security of HProxy
since in the context of SSL Stripping attacks, JavaScript can only be used to
steal credentials as they are typed-in by the user in a secure form. In addition to
that, we developed a JavaScript Preprocessor, as explained in Section 5.1 which
generates a template of each website and a list of expected JavaScript changes.

To measure the amount of false-positives, we compiled a list of 100 websites
that contain login pages and we programmed Firefox using ChickenFoot [4] to
automatically visit them three consecutive times. Firefox’s incoming and outgo-
ing traffic was inspected by HProxy which in turn decided whether the page was
secure or not. The first time the page was visited, HProxy created a profile for
it, which it used for the next two times. Due to our lab secure network settings,
any attack reported by HProxy was a false positive.

In Fig. 4 we present the ratio of HProxy’s false-positives using three methods
of whitelisting JavaScript. The first method that we used is simply gathering all
the JavaScript blocks of a webpage and computing their MD5 checksum. If the
JavaScript blocks between two page loads differ, then their checksums will also be
different. In the second method, we use the JavaScript preprocessor with a strict
template, where the changes detected by the preprocessor must be in the precise
place and of precise length as the ones originally recorded. Finally we use the

214 N. Nikiforakis, Y. Younan, and W. Joosen

Fig. 4. False-positive ratio of HProxy using three different methods of whitelisting
JavaScript

same preprocessor but this time we include a “tolerance factor” of 10 characters,
where the position and length of changes may vary up to 10 characters (less that
1% of the total length of JavaScript code for most websites).

Using the last method as the whitelisting method of choice, HProxy can handle
almost all JavaScript changes successfully. The false-positives are created by
webpages which produce JavaScript blocks of different length each time that
they are visited. The websites that contain such pages are always the same and
can thus be added to a list of unprotected pages.

6.3 Performance

To measure the performance overhead of our HProxy prototype, we used a list
of the top 500 global websites [24] and we programmed Firefox to visit them ten
times each while measuring how much time each page needed to fully load. In

Fig. 5. Average load time of the top 500 websites of the Internet when accessed locally
without a proxy, with a simple forwarding proxy(TinyHTTPProxy) and with HProxy

HProxy: Client-Side Detection of SSL Stripping Attacks 215

order to avoid network inconsistencies we downloaded a copy of each website and
browse them locally using a web server that we setup on the same machine that
Firefox was running. All caching mechanisms of Firefox were disabled and we
were clearing the Linux memory cache between experiments. We repeated the
experiment three times and in Fig. 5 we present the average load time of Firefox
when it run:(a) without a proxy (b) using a proxy that just forwarded requests
to and from Firefox and (c) using HProxy. Hproxy shows an overhead of 33%
when compared with the forwarding proxy and 51% when compared with Firefox
directly accessing the web pages. While this overhead appears substantial, it is
important to remember that even the 51% overhead is actually an overhead of
0.41 seconds of time. Firefox starts rendering received content, long before each
page fully loads. This means that the user can start “consuming” the content of
each page without having to wait for all objects to be downloaded. Given this
behavior, we believe that the added delay of HProxy is only minutely, if at all,
perceived by the user during normal web browsing.

7 Implementation

We implemented a prototype version of HProxy using Python. We used an al-
ready implemented Python proxy, TinyHTTPProxy [10] and we built on top of
it to add the various detection mechanisms that were described in earlier sec-
tions. We chose to implement HProxy as a stand-alone application and not as a
browser plugin because we wanted to test parts of its functionality (such as the
AJAX functions emmited by the PageTainter module) with multiple browsers.
HProxy runs on the same physical machine as the browser(s) that it protects. A
proxy running on a different machine could potentially be used by multiple users
to improve caching but that would allow a MITM to impersonate HProxy and
steal user credentials. The Webpage Analyzer and the PageTainter modules use
the BeautifulSoup HTML parser [2] to recognize forms, JavaScript and iframe
tags. For the HTTP Moved messages we wrote our own parser using regular
expressions.

The reason why we chose Python instead of another programming language is
because Python’s features make it ideal for fast prototyping. We believe however,
that if HProxy gets re-implemented using a compiled language or if it becomes
part of a browser (as an extension or as part of the browser’s code) the overhead
of its use will be much lower than the one we measured in Section 6.3.

8 Related Work

To the best of our knowledge, this paper is the first academic countermeasure
which is specifically geared towards SSL stripping attacks. Previous studies
mainly focus on the detection of a MITM attacker especially on wireless net-
works. While a number of these studies detect a wider range of attacks than our
approach, it is important to point out that most of them require either specific
hardware or knowledge of the network that surpasses the average user’s session.

216 N. Nikiforakis, Y. Younan, and W. Joosen

This effectively means that unless the techniques are employed before-hand by
the administrators of the network they can be of little to no use to the connecting
clients. On the other hand HProxy is a client-side tool which protects users from
SSL stripping attacks without requiring any support from the wireless network
infrastructure.

A number of studies use the information already existing in the 802.11 pro-
tocol to identify attackers that try to impersonate legitimate wireless nodes by
changing their MAC address. The authors of [9,26] use the sequence number
field of MAC frames as a heuristic for detecting nodes who try to mimic existing
MAC addresses. The sequence number is incremented by the node every time
that a frame is sent. They create an intrusion detection system which identifies
attackers by monitoring invalid, duplicate or dis-proportionally large sequence
numbers. Martinez et al. [14] suggest the use of a dedicated passive Wireless
Intrusion Detection System (WIDS) which identifies attackers by logging and
measuring the time interval between beacon frames. Beacon frames that were
broadcasted before the expiration of the last beacon frame (as announced by
the AP) are a sign of an impersonation attack. In the same manner, Laroche et.
al [12] present a WIDS which uses information such as sequence numbers and
fragment numbers, to identify layer-2 attacks. Genetic algorithms are executed
against these datasets in an effort to identify impersonating nodes. Unfortu-
nately, their IDS requires training on labeled data sets making it impractical
for fast fluctuating wireless networks such as the ones deployed in hotels and
airports where wireless nodes are constantly added and removed.

Other researchers have focused more on the physical characteristics of wireless
networks and how they relate to intrusion detection. Chen et. al [3] as well as
Sheng et al. [18] use the Received Signal Strength (RSS) of a wireless access point
as a way to differentiate between the legitimate access point(s) and an attacker
masquerading as one. In both studies, multiple passive gathering devices are used
to record the RSS and the data gathered is analyzed using cluster algorithms
and Gaussian models. Similarly Suski et al. [23] use special wireless hardware
monitors to create and monitor an “RF Fingerprint” based on the inherent
emission features of each wireless node. While the detection rates of such studies
are quite high, unfortunately their approaches are inherently tied to a significant
increase in setup costs (in time, hardware or both) making them unattractive
for everyday deployment environments.

Moving up to the top layer of the OSI model, several studies have shown that
security systems lack usability and that users accept dialogues and warnings
without really understanding the security implications of their actions [1,5,8,22].
Xia et al. [27] try to combat MITM attacks by developing a system which tries
to give as much information to the user as possible when invalid certificates are
encountered or when a password is about to be transmitted over an unencrypted
connection. Due to the nature of SSL stripping attacks, the attacker does not
have to present an invalid certificate in order to successfully eavesdrop the user,
thus the part of their approach that deals with invalid certificates is ineffective
against it. The part that deals with the un-encrypted transmission of a password

HProxy: Client-Side Detection of SSL Stripping Attacks 217

can be of some use but can be easily circumvented using JavaScript or iframe
tags as shown in Section 4.3.

9 Conclusion

Hundreds of thousands of websites rely on SSL daily to protect their customers’
traffic from eavesdroppers. Recently though, a new kind of attack against the
usage of the SSL protocol surfaced: SSL stripping. The power of such an attack
is mainly due the fact that it produces no negative feedback, something that
users have been unconsciously trained to search for as an indicator of a page’s
“insecurity”.

In this paper we demonstrated that SSL stripping attacks are a realistic threat
and presented a countermeasure that protects against them. This countermea-
sure, called HProxy, leverages the browser’s history to create security profiles
for each website. These profiles contain information about the use of SSL and
every future load of that website is validated against that profile. Our prototype
implementation of HProxy accurately detected all SSL stripping attacks with
very few false positives. Our evaluation of HProxy showed that it can be used
with acceptable overhead and without requiring server side support or trusted
third parties to secure users against this type of attack.

Acknowledgments

This research is partially funded by the Interuniversity Attraction Poles Pro-
gramme Belgian State, Belgian Science Policy, and by the Research Fund K.U.
Leuven.

References

1. Almuhimedi, H., Bhan, A., Mohindra, D., Sunshine, J.: Toward Web Browsers that
Make or Break Trust. In: Symposium Of Usable Privacy and Security (SOUPS)
(2008)

2. BeautifulSoup Parser, http://www.crummy.com/software/BeautifulSoup/
3. Chen, Y., Trappe, W., Martin, R.P.: Detecting and Localizing Wireless Spoof-

ing Attacks. In: Proceedings of the Fourth Annual IEEE Communications Society
Conference on Sensor, Mesh and Ad Hoc Communications and Networks (IEEE
SECON 2007), San Diego, CA, USA (2007)

4. Chickenfoot for Firefox: Rewrite the Web,
http://groups.csail.mit.edu/uid/chickenfoot/faq.html

5. Dhamija, R., Tygar, J.D., Hearst, M.: Why phishing works. In: CHI 2006: Pro-
ceedings of the SIGCHI conference on Human Factors in computing systems, pp.
581–590. ACM, New York (2006)

6. dsniff, http://monkey.org/~dugsong/dsniff/
7. Egele, M., Balduzzi, M., Kirda, E., Balzarotti, D., Kruegel, C.: A Solution for

the Automated Detection of Clickjacking Attacks. In: Proceedings of ASIACCS,
Beijing, China (April 2010)

http://www.crummy.com/software/BeautifulSoup/
http://groups.csail.mit.edu/uid/chickenfoot/faq.html
http://monkey.org/~dugsong/dsniff/

218 N. Nikiforakis, Y. Younan, and W. Joosen

8. Friedman, B., Hurley, D., Howe, D.C., Felten, E., Nissenbaum, H.: Users’ concep-
tions of web security: a comparative study. In: CHI 2002 extended abstracts on
Human factors in computing systems, pp. 746–747. ACM, New York (2002)

9. Guo, F., Chiueh, T.-c.: Sequence number-based MAC address spoof detection. In:
Valdes, A., Zamboni, D. (eds.) RAID 2005. LNCS, vol. 3858, pp. 309–329. Springer,
Heidelberg (2006)

10. Hisao, S.: Tiny HTTP Proxy in Python,
http://www.okisoft.co.jp/esc/python/proxy/

11. Klein, A.: Cross Site Scripting Explained, Sanctum White Paper (2002)
12. LaRoche, P., Nur Zincir-Heywood, A.: Genetic Programming Based WiFi Data

Link Layer Attack Detection. In: CNSR 2006: Proceedings of the 4th Annual Com-
munication Networks and Services Research Conference, Washington, DC, USA,
pp. 285–292. IEEE Computer Society, Los Alamitos (2006)

13. Marlinspike, M.: New Tricks for Defeating SSL in Practice. In: Proceedings of
BlackHat 2009, DC (2009)

14. Mart́ınez, A., Zurutuza, U., Uribeetxeberria, R., Fernández, M., Lizarraga, J.,
Serna, A., naki Vélez, I.: Beacon Frame Spoofing Attack Detection in IEEE 802.11
Networks. In: ARES 2008: Proceedings of the 2008 Third International Confer-
ence on Availability, Reliability and Security, Washington, DC, USA, pp. 520–525.
IEEE Computer Society, Los Alamitos (2008)

15. Nachreiner, C.: Anatomy of an ARP Poisoning Attack,
http://www.watchguard.com/infocenter/editorial/135324.asp

16. NetCraft. One Million SSL Sites on the Web,
http://news.netcraft.com/archives/2009/02/01/one million ssl sites

on the web.html

17. Ruderman, J.: JavaScript Security: Signed Scripts,
http://www.mozilla.org/projects/security/components/

signed-scripts.html

18. Sheng, Y., Tan, K., Chen, G., Kotz, D., Campbell, A.: Detecting 802.11 MAC Layer
Spoofing Using Received Signal Strength. In: Proceedings of INFOCOM 2008, pp.
1768–1776 (2008)

19. Sotirov, A.: Heap Feng Shui in Javascript. In: Proceedings of BlackHat Europe
2007 (2007)

20. The SSL Protocol,
http://www.webstart.com/jed/papers/HRM/references/ssl.html

21. Moxie Marlinspike’s sslstrip,
http://www.thoughtcrime.org/software/sslstrip/

22. Sunshine, J., Egelman, S., Almuhimedi, H., Atri, N., Cranor, L.F.: Crying Wolf: An
Empirical Study of SSL Warning Effectiveness. In: Proceedings of Usenix Security
(2009)

23. Suski, W.C., Temple, M.A., Mendenhall, M.J., Mills, R.F.: Using Spectral Finger-
prints to Improve Wireless Network Security. In: IEEE Global Telecommunications
Conference, IEEE GLOBECOM 2008, 30-December 4, pp. 1–5 (2008)

24. Alexa Top 500 Global Sites, http://www.alexa.com/topsites
25. Walker, J.R., Submission Page Jesse Walker, Intel Corporation: Unsafe at any key

size; An analysis of the WEP encapsulation (2000)
26. Wright, J.: Detecting Wireless LAN MAC Address Spoofing (2003)
27. Xia, H., Brustoloni, J.C.: Hardening Web browsers against man-in-the-middle and

eavesdropping attacks. In: WWW 2005: Proceedings of the 14th international con-
ference on World Wide Web, pp. 489–498. ACM, New York (2005)

http://www.okisoft.co.jp/esc/python/proxy/
http://www.watchguard.com/infocenter/editorial/135324.asp
http://news.netcraft.com/archives/2009/02/01/one_million_ssl_sites_on_the_web.html
http://news.netcraft.com/archives/2009/02/01/one_million_ssl_sites_on_the_web.html
http://www.mozilla.org/projects/security/components/signed-scripts.html
http://www.mozilla.org/projects/security/components/signed-scripts.html
http://www.webstart.com/jed/papers/HRM/references/ssl.html
http://www.thoughtcrime.org/software/sslstrip/
http://www.alexa.com/topsites

Author Index

Balduzzi, Marco 81
Bayer, Ulrich 41
Boe, Bryce 132
Bruschi, Danilo 21

Cavallaro, Lorenzo 81, 132
Cavedon, Ludovico 132
Childers, Nicholas 132
Comparetti, Paolo Milani 41
Cova, Marco 111, 132

Dell’Amico, Matteo 81
Doupé, Adam 111
Drazenovic, Branislava 173

Egele, Manuel 132

Fallmann, Hanno 101
Fattori, Aristide 81

Ghorbani, Ali A. 153

Hanna, Steve 1
Hua, Jingyu 183

Jain, Nehil 61
Joosen, Wouter 200

Lee, Wenke 61

Martignoni, Lorenzo 21
Mrdovic, Sasa 173

Nappa, Antonio 81
Neugschwandtner, Matthias 41
Nikiforakis, Nick 200

Paleari, Roberto 21
Platzer, Christian 41, 101
Poosankam, Pongsin 1

Ren, Hanli 153

Sakurai, Kouichi 183
Sangal, Samrit 61
Singh, Kapil 61
Song, Dawn 1
Stakhanova, Natalia 153

Traynor, Patrick 61

Vigna, Giovanni 111, 132

Wondracek, Gilbert 101

Yin, Heng 1
Younan, Yves 200

	Title
	Preface
	Organization
	Table of Contents
	Host Security
	HookScout: Proactive Binary-Centric Hook Detection
	Introduction
	Problem Statement
	Approach Overview
	Analysis Subsystem
	Detection Subsystem

	System Design and Implementation
	Analysis Subsystem
	Detection Subsystem

	Evaluation
	Attack Space and Characteristics
	Policy Generation
	Hook Detection

	Discussion
	Related Work
	Conclusion
	References

	Conqueror: Tamper-Proof Code Execution on Legacy Systems
	Introduction
	State-of-the-Art of Attestation on Legacy Systems
	Conqueror Overview
	Threat Model
	Conqueror Architecture and Protocol

	Conqueror Implementation
	Tamper-Proof Environment Bootstrapper
	Checksum Function
	Obfuscation

	Evaluation
	Prototype
	Experimental Setup
	Estimating the Parameters of the Challenge
	Experimental Results
	A Real Application of Conqueror

	Discussion
	Related Work
	Conclusions
	References

	dAnubis – Dynamic Device Driver Analysis Based on Virtual Machine Introspection
	Introduction
	Overview
	System Implementation
	Device Driver Analysis
	Memory Analysis
	Stimulation

	Evaluation
	Quantitative Results
	Qualitative Results

	Related Work
	Limitations
	Conclusions
	References

	Trends
	Evaluating Bluetooth as a Medium for Botnet Command and Control
	Introduction
	Related Work
	Bluetooth-Based Botnets
	Infecting Devices
	Threat Model and Reasoning
	Botnet Construction and Message Passing

	Experimental Setup
	Prototype Bot
	Experimental Goals

	Trace Based Simulations
	Description of Datasets
	Simulation Results

	Modeling the Public Transport System
	Simulation Setup
	Simulation Results

	Defensive Strategies
	Conclusion
	References

	Take a Deep Breath:A Stealthy, Resilient and Cost-Effective Botnet Using Skype
	Introduction
	Skype Overview
	The Skype API

	System Description
	Botnet Protocol
	Implementation

	Experiments
	Network Traffic Simulation
	Bot Deployment

	Security Analysis
	A Host-Based Skype Malware Detector
	Related Work
	Conclusion
	References

	Covertly Probing Underground Economy Marketplaces
	Introduction
	Related Work
	Underground Marketplaces
	IRC Rooms
	Web Forums

	SystemDesign
	IRC Sensor
	Web Forum Sensor

	Experimental Evaluation
	Coverage and Proportion of IRC Networks
	IRC Observation Results
	Web Forum Observation Results
	Classification and Analysis of Web Forums Related to Underground Economy

	Conclusion
	References

	Vulnerabilities
	Why Johnny Can’t Pentest:An Analysis of Black-Box Web Vulnerability Scanners
	Introduction
	Background
	Web Application Vulnerabilities
	Web Application Scanners

	The WackoPicko Web Site
	Design
	Vulnerabilities
	Crawling Challenges

	Experimental Evaluation
	Setup
	Detection Results
	Attack and Analysis Capabilities
	Crawling Capabilities

	Lessons Learned
	Related Work
	Conclusions
	References

	Organizing Large Scale Hacking Competitions
	Introduction
	Background and History
	The 2008 iCTF — A Security ``Treasure Hunt'' Scenario
	Vulnerable Applications
	Infrastructure
	Overview of the Live Exercise

	The 2009 iCTF — A Botnet Attack Scenario
	The Crawler and Search Engine
	The Vulnerable Browsers
	Overview of the Live Exercise
	Feedback

	Lessons Learned
	Conclusions
	References

	Intrusion Detection
	An Online Adaptive Approach to Alert Correlation
	Introduction
	Related Work
	Overview
	Bayesian Correlation Feature Selection
	Alert Preprocessing
	Feature Selection

	Online Alert Correlation
	Experimental Results
	Conclusion and Future Work
	References

	KIDS – Keyed Intrusion Detection System
	Introduction
	Related Work
	Proposed Detection Method
	Model Building Principles

	Testing
	Initial Set of Delimiters
	Arbitrary Sets of Delimiters

	Conclusion
	References

	Web Security
	Modeling and Containment of Search Worms Targeting Web Applications
	Introduction
	Background and Motivation
	Related Work
	Challenge Issues
	Our Contributions
	Page Organization

	A Virtual Search Worm
	Modeling the Propagation of the Search Worm
	Effects of Eigenpage Distribution
	Effects of Page Ranking

	Containment of the Search Worm
	Basic Idea
	Methodology
	Discussion

	Conclusion and Future Work
	References

	HProxy: Client-Side Detection of SSL Stripping Attacks
	Introduction
	Anatomy of SSL Stripping Attacks
	Redirect Suppression
	Target form Re-writing

	Effectiveness of the Attack
	Applicability
	Software Feedback

	Automatic Detection of SSL Stripping
	Core Functionality
	Architecture of HProxy
	Detection Ruleset
	Redirect Suppression Revisited

	Discussion
	JavaScript Preprocessing
	Signed JavaScript
	Inspecting Client Requests vs. Server Responses

	Evaluation
	Security Evaluation
	False Positives
	Performance

	Implementation
	Related Work
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

